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I

Abstract

In this thesis we introduce valuation techniques to price electricity storage contracts,
where the electricity prices follow a structural model based on polynomial processes. In
particular we focus on a Fourier-based pricing method known as the COS method, which
performs impressively to price the contracts accurately. We provide details on how to
formalize an electricity storage contract, taking into account the physical limitations of
an electricity storage and the operational constraints of the electricity grid. In addition
to the electricity storage contract, other well-known options are being considered, such
as the European option, Bermudan option and Bermudan option with multiple early-
exercise rights, where the same asset price model is used based on polynomial processes.
We propose an approximation of the characteristic function, so that the Fast Fourier
Transform (FFT) can be applied to significantly reduce the computational complex-
ity of the COS method, which is especially suitable for pricing Bermudan options and
Bermudan options with multiple early-exercise rights. With the FFT-based algorithm,
the computation time of the valuation of the discussed Bermudan-type options with the
COS method is reduced from seconds to milliseconds. Furthermore, the Least Squares
Monte Carlo (LSMC) method is presented to value the discussed financial derivatives
and used to validate the results obtained with the COS method.
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1 1 Introduction

1 Introduction

1.1 Relevance and background of electricity storage

In order to limit climate change, the European Union (2011) has the agreed objective to
reduce greenhouse gas emissions by 80-95% by 2050, compared to 1990 levels [1]. This
reduction of greenhouse gasses needs to go down to a zero emission by 2060-2070 if the
European Union wants to meet the Paris Agreement’s long-term temperature goal to
keep the increase in global average temperature to well below 2 ◦C above pre-industrial
levels [2].

One of the main options for the reduction of greenhouse gasses is the use of renewable
energy [3]. To achieve this reduction, the electricity generation will gradually become less
dependent on fossil fuels and make more use of renewable energy sources, like wind and
solar energy. However, the current renewable energy sources have high variable output,
which creates a great challenge in energy generation and maintaining the balance between
demand and supply to ensure a reliable and stable energy system [4].

Many valuable endeavors have been made to find a viable solution for the high variable
output of renewable energy sources, e.g. electricity storage, grid expansion, demand-side-
management and electricity export/import [5]. Among all solutions, electricity storage
is acknowledged as the solution with one of the highest potentials [6]. Indeed, by storing
electricity when there is too much supply and discharge it during high demand, the
renewable electricity output will be more stable and the reliability of renewable energy
systems will improve.

There are many different technologies for large-scale electricity storage systems (i.e.
lithium-ion batteries, lead-acid batteries, thermal energy storage, pumped hydroelectric
storage systems, compressed air energy storage systems, hydrogen storage, flywheel)
and each technology has its own technical characteristics (i.e. capacity, efficiency, power
output, lifetime) [4], [7], [8]. In the future it is expected that the technical characteristics
of the electricity storage will improve. In addition, new techniques and concepts are being
developed that can be used for electricity storage (e.g. Car as Power Plant [9] [10]).

Because of the rapid technological improvements of electricity storages, it is also
becoming increasingly interesting from a financial point of view. By storing electricity
when there is a lot of supply (and therefore low price) and by selling when the demand is
high (and therefore high price) a profit can be made. Multiple profitability and business-
economic analyses have been done in the literature [11], [12], [13], [14], usually for one
technology in a specific application. Besides the value of selling and buying electricity
in the market, a storage can have additional value for electricity companies, because of
the importance of a reliable and stable energy system.

Due to the great potential of electricity storage, extensive research has been done
in this area. The business-economic consequences, profitability analyses, technological
developments and applications of electricity storages have been thoroughly researched,
while the quantitative financial mathematical research is lacking. In this thesis a quan-
titative research is conducted into the valuation of various options and contracts for
storing electrical energy by trading on the electricity market. This valuation does not
take into account additional values of an electricity storage, such as the value of a stable
electricity system.
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1.2 Electricity market

In the last few decades many countries have liberalized their electricity markets. Prior to
the liberalization price fluctuations were minimal and often regulated. Currently, electric-
ity is considered a commodity, which can be bought and sold at market rates. Electricity
and electricity derivatives, such as forwards and options, can be traded over the counter
(OTC) or on electricity exchanges (e.g. APX Group, Nord Pool AS, NYMEX).

Although electricity is treated as a commodity, its prices behave differently from other
commodities because it cannot be stored in big amounts (technological progress could
change this) causing the prices to respond more extreme to the relationship between
supply and demand. External events, like a shortage of coal or a defective power plant,
will result in having significant impact on the electricity prices [15]. The impact of the
external events will increase when switching to renewable energy, which entails even
more uncertainty. These features make the prices exhibit unique characteristics, such as
seasonality, high volatility, mean reversion and extreme price spikes.

1.3 Structure of thesis

The thesis is organized as follows. In Section 2 we introduce a stochastic pricing model
based on polynomial processes, which can capture the unique characteristics of electricity
prices. Subsequently, in Section 3 we provide details about the European option, the
Bermudan option and the Bermudan option with multiple early-exercise rights and in
addition the electricity storage contract is formalized. Moreover, it is discussed how these
financial derivatives can be valued. In Section 4 the COS method for pricing the options
and the electricity contract is presented. In particular, subsection 4.3.2 defines the
Fourier cosine coefficients for valuation of derivatives where the asset/electricity prices
follow the model based on polynomial processes. In Section 5 various approximations
of the characteristic function are introduced, which can be used to significantly reduce
the computational complexity of the option valuation by means of the COS method.
In addition, a detailed error analysis is given. In Section 6 the Least Squares Monte
Carlo method is presented for pricing the discussed options and the electricity storage
contract. The results obtained with this simulation based method are used to compare
to the results obtained with the COS method. The numerical results of the options and
the electricity storage contracts are discussed in respectively Section 7 and Section 8.
Finally, in Section 9 we provide a conclusion and outlook reflecting on the results and
the methods used.
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2 Electricity price dynamics

The relationship between supply and demand in electricity markets has a major influence
on the formation of the electricity price, especially in liberalized markets. In contrast to
most financial markets, the energy commodity markets show high volatility, occasional
extreme spikes and mean reversion.

The first commonly used pure stochastic model for electricity markets is developed
by Schwartz and Smith (2000) [16] and Lucia and Schwartz (2002) [17], where a two-
factor model with short-term mean reverting effects is presented. Further, Barlow (2002)
[18] introduced a tractable structural model, based on the demand and supply, where
the electricity price is a linear transformation of an underlying factor, modelled as an
Ornstein-Uhlenbeck (OU) process. Many other different models are suggested for pricing
in electricity markets, on which the aforementioned models often had a strong influence
(cf. [19], [20], [21], [22] for reviews on different models).

Furthermore, since electricity prices exhibit mean reverting behavior, naturally the
models use processes with this property. The simplest and most common mean reverting
process is the OU process, see Appendix A.2.

The method used in this thesis for modelling the electricity price is introduced by
Filipovic, Larsson and Ware (2018) [23]. They described that with the use of a polynomial
map the electricity prices can be generated, where a polynomial process is used for the
underlying factors. This structural model provides a framework that shows a general
and tractable relationship between the underlying factors and the resulting electricity
prices. In the sequel of this thesis this model is referred to as the polynomial model.

In the next subsection we elaborate on this model and its features.

2.1 Polynomial model for electricity pricing

The main idea of the polynomial model is the use of an increasing polynomial map,
which maps an underlying polynomial process to the electricity price process. It is possi-
ble to exploit the freedom in choosing the increasing polynomial map to generate desired
dynamics for the price process, e.g. create extreme spikes, while the underlying poly-
nomial process is relatively calm. With the competence of generating certain dynamics,
this method still provides a framework that allows a tractable relationship between the
underlying factors of the polynomial process and the resulting electricity prices.

The application of polynomial processes has appeared in the literature since Wong
(1964) [24], however the use of it in finance began in the early 2000s, where Delbaen and
Shirakawa [25] and Zhou [26] introduced a new method on interest rate modelling. In
2011 Cuchiero [27] described a new technique for option pricing and hedging for a class of
polynomial processes. More recently, Filipovic and Larsson [28] provided a mathematical
foundation for polynomial processes. These polynomial processes are relevant in many
financial applications, including financial market models for interest rates, commodities
and electricity.

The price model with polynomial processes is as follows. If Xt follows a polynomial
process, e.g. GBM or OU process, then the spot price at time t can be modelled in the
following form:

St = Φ(Xt),

where Φ is an increasing polynomial map.
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The polynomial model utilizes the properties of polynomial processes. A polynomial
process has the property [27] that any conditional expectation of the form E

[
Φ(Xt)

∣∣Xs

]
,

where Φ is a polynomial, is again a polynomial function of Xs of the same or lower degree
than that of Φ. This implies that the conditional moments of all orders of Xt can be
computed without its probability distribution or characteristic function.

In the following sections, first the polynomial processes are defined and a formula is
given to analytically determine the conditional moments of all orders of a polynomial
process. Subsequent, we describe the polynomial model in detail. Moreover, it is also
examined how the parameters for this model should be estimated.

2.1.1 Defining polynomial processes and the moments formula

In this section polynomial processes are defined and a lemma is given with which polyno-
mial processes can be easily recognized. In addition, the moments formula is provided,
with which it is possible to compute the moments of all orders of a polynomial process
without the probability distribution or characteristic function. This section is based on
the contents of paper [28] and the approach is inspired by [29].

Polynomial processes
First, general definitions are given about the class of polynomials, after which the defi-
nition of a polynomial process and a lemma to easily recognize a polynomial process are
presented.

Definition 2.1. (Polynomial) A polynomial p on Rd is a map, p : Rd → R, of the form:∑
α

cαx
α1
1 · ... · x

αd
d ,

where α = (α1, ..., αd) ∈ Nd denote the multi-indices of summation and only finitely
many coefficients cα are nonzero. This representation is unique and the degree of the
polynomial is deg(p) = max{α1 + ...+ αd : cα 6= 0}.

Let Pol(Rd) indicate the ring of all polynomials on Rd and Poln(Rd) the subspace
spanned by polynomials of degree at most n. Let E be a subset of Rd, then a polynomial
on E is the constraint p = q|E to E of a polynomial q ∈ Pol(Rd). The degree of this
polynomial p is deg(p) = min{deg(q) : p = q|E , q ∈ Pol(Rd))}. Furthermore, let Pol(E)
denote the ring of polynomials on E, and Poln(E) the subspace spanned by polynomials
on E of degree at most n.

Consider the following partial differential operator G:

Gf̄(x) =
1

2
Tr(a(x)∇2f̄) + b(x)>∇f̄ , (2.1)

for f̄ any C2-function, x ∈ Rd and where

a : Rd → Sd,
b : Rd → Rd,

(2.2)

where Sd is the set of real symmetric d× d matrices.
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Definition 2.2. (well-defined) G is well-defined as an operator on Pol(E) if Gf̄ = 0 on
E for any f̄ ∈ Pol(Rd) with f̄ = 0 on E.

For example, assume d = 2, E = R × {0}, and the operator as in (2.1) with a = 1
and b = 1, then the operator G is not well-defined on Pol(E), because f̄(x, y) = y is zero
on E, but Gf̄ = 1.

Now the definition of a polynomial process will be described. Let Xt be an E-valued
solution to the stochastic differential equation (SDE):

dXt = b(Xt)dt+ σ(Xt)dWt, (2.3)

where Wt is a d-dimensional Brownian motion, σ : Rd → Rd×d with σ(x)σ>(x) = a(x)
on E and a(x) and b(x) defined in (2.2). Definition 2.3 shows when the solution of (2.3)
is a polynomial process.

Definition 2.3. (polynomial process) The operator G is called polynomial on E if it is
well-defined on Pol(E), and thus maps Poln(E) to itself ∀n ∈ N. In this case, we call
any E-valued solution to (2.3) a polynomial process on E.

The next lemma provides a simple way to verify if the solution of the SDE (2.3) is a
polynomial process as described in Definition 2.3.

Lemma 2.4. Let G as defined in (2.1), a and b as (2.2). Assume G is well defined on
Pol(E). Then the following statements are equivalent:

(i) G maps Poln(E) to itself ∀n ∈ N.

(ii) G maps Poln(E) to itself for n ∈ {1, 2}.

(iii) The components of a and b restricted to E lie respectively in Pol2(E) and Pol1(E).

Proof. See Lemma 2.2. of [28].

With Lemma 2.4 it is easy to find out if an E-valued solution to (2.3) is a polynomial
process, by looking at the coefficients of G. Hence, polynomial processes are charac-
terized by a linear drift and the squared volatility parameter being at most quadratic.
Furthermore, it follows that if the components a(x) are polynomials of degree at most
two and b(x) of degree at most one, that for any n ∈ N and any polynomial p ∈ Poln(E),
Gp is also a polynomial of degree at most n on E.
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Moments formula
Let N denote the dimension of Poln(E) for any n ∈ N. Then ∀p ∈ Poln(E) there ∃!
vector ~p ∈ RN such that:

p(x) = H(x)>~p,

Gp(x) = H(x)>G~p,
(2.4)

where H(x) = (h1(x), ..., hN (x))> denotes the vector of basis functions for the space of
polynomials of degree n (e.g. for N = 1, the basis functions are H(x) = (h1(x))> =
(1, x, x2, ..., xn)>) and G ∈ RN is the unique matrix representation of the partial differ-
ential operator G (2.1).

The following theorem, which is one of the most important properties of the polyno-
mial processes, presents how the moments of all orders of XT under a filtration can be
computed.

Theorem 2.5. (Moment formula). Let Xt be a polynomial process. If E
[
||X0||2n

]
<∞,

then ∀p ∈ Poln(E) with coordinate vector ~p as in (2.4), it holds that for 0 ≤ t ≤ T :

E [p(XT )|Ft] = H(Xt)
>e(T−t)G~p.

Proof. See theorem 3.1. of [28].

Example 2.6. In this example Theorem 2.5 is applied to compute the first moment and
the variance of the OU process, see Appendix A.2 for the dynamics of the OU process.

First Lemma 2.4 is used to show that the OU process Xt is a polynomial process.
The OU process has the following parameters (2.2) for the operator G:

a = σ2,

b(x) = κ(θ − x).
(2.5)

It follows that a ∈ Pol2 and b(x) ∈ Pol1, so according Lemma 2.4 is the OU process
indeed a polynomial process.

Now Theorem 2.5 is applied to compute the first two moments of XT , for which the
basis H(x) = (1, x, x2)> is used. For the first moment we compute:

E[XT |F0] = H(X0)>eTG~p,

with ~p = (0, 1, 0)> and G the unique matrix representation of G. For the second moment
the coefficient vector should be chosen as ~p = (0, 0, 1)>.

Now G, the matrix representation of G, is computed. The partial differential operator
G, with parameters a and b defined in (2.5), is given by:

Gf̄(x) =
1

2
σ2 ∂

2

∂x2
f̄(x) + κ(θ − x)

∂

∂x
f̄(x).

Applying the elements of H(x) to G results in:

G1 = 0, Gx = κθ − κx, Gx2 = σ2 + 2κθx− 2κx2,
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which produces the following matrix representation of the partial differential operator:

G =

0 κθ σ2

0 −κ 2κθ
0 0 −2κ

 .
To compute eTG, the matrix G will be diagonalized as G = UDU−1, where U , D and
U−1 are given by:

U =

1 θ2 − σ2

2κ −θ
0 −2θ 1
0 1 0

 , D =

0 0 0
0 −2κ 0
0 0 −κ

 , U−1 =

1 θ θ2 − σ2

2κ
0 0 1
0 1 2θ

 .
It follows that eTG can be computed as:

eTG = UeTDU−1 =

1 θe−κT (eκT − 1) e−2κT (eκT−1)(σ2eκT+2κθ2eκT−2κθ2+σ2

2κ
0 e−κT 2θe−2κT (eκT − 1)
0 0 e−2κT

 .
Now we have all the components to compute the first and second moment. The first
moment is calculated as follows:

E[XT |F0] = H(X0)>eTG~p

=
(
1 X0 X2

0

)
eTG

0
1
0


= X0e

−κT + θ(1− e−κT ),

and the second moment is found as follows:

E[X2
T |F0] = H(X0)>eTG~p

=
(
1 X0 X2

0

)
eTG

0
0
1


= e−2κTX2

0 + 2e−2κT (−1 + eκT )θX0

+
e−2κT (−1 + eκT )(eκTσ2 + σ2 + 2κθ2eκT − 2κθ2

2κ
.

With the first and second moment the variance can be computed:

V ar[XT |X0] = E[X2
T |X0]− E[XT |X0]2

=
σ2

2κ
(1− e−2κT ).

The expected value and variance computed with this method are the same as stated in
the literature, see Appendix A.2.
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2.1.2 The polynomial price model

Now that the polynomial processes and its properties are defined, the polynomial price
model, introduced in [23], will be stated. In order to generate electricity prices, the
characteristics of the electricity prices need to be captured in the model. This can be
done with an increasing polynomial map Φ, which can exploit the freedom in choosing the
degree and the parameters to generate the desired characteristics, such as extreme price
spikes, high volatility and seasonality. Furthermore, with Theorem 2.5 all the moments
of the polynomial model can be computed without the use of the density function or
characteristic function.

The polynomial model is defined as follows. If Xt follows a polynomial process, e.g.
GBM or OU process, then the spot price at time t can be modelled in the form:

St = Φ(Xt) = H(Xt)
>~p, (2.6)

where H(Xt) denotes the vector of basis functions for the space of polynomials preserved
by the polynomial process (e.g. H(Xt) = (1, Xt, X

2
t , ..., X

n
t )> for an one-dimensional

polynomial of degree n ∈ N) and the elements in vector ~p are the coefficients that
characterize the polynomial map Φ. The construction of these increasing polynomial
maps is explained in detail in Section 2.1.3. Moreover, seasonality can be included by
making the coefficients in vector ~p time-dependent.

Furthermore, with the polynomial model electricity forwards can be priced in a direct
way. The pricing formulas for the computation of the forwards are given in [30]. The
time t price of an electricity forward, where the electricity is directly delivered at time
T ≥ t is given by:

f̃(t, T,Xt) := EQ[ST |Ft],

where Q is the risk-neutral measure.
In reality, electricity is not directly delivered, but gradually over a time interval. This

leads to the following definition for an electricity forward at time t with the delivery
interval [T1, T2), with t ≤ T1 < T2:

F̃(t, T1, T2, Xt) :=
1

T2 − T1
EQ

[∫ T2

T1

Su du

∣∣∣∣∣Ft
]
.

F̃(t, T1, T2, Xt) is often called a swap price.
Proposition 2.7 presents the closed-form solutions of the forward prices.

Proposition 2.7. Let ~p be the vector of coefficients that define the polynomial map
St = Φ(Xt) = H(Xt)

>~p, as defined in (2.6). The time t price of the electricity forward,
f̃(t, T,Xt), for t ≤ T is given by:

f̃(t, T,Xt) = H(Xt)
>e(T−t)G~p,

and the time t price of the forward price with delivery interval, for t ≤ T1 < T2 is given
by:

F̃(t, T1, T2, Xt) =
1

T2 − T1
H(Xt)

>e(T1−t)G
∫ T2−T1

0

euG du ~p.

Proof. This follows from Theorem 2.5 and rearranging terms, see [30].
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2.1.3 Increasing polynomial maps

To model the spot prices with the polynomial model a polynomial map is needed that
provides a 1-1 map from a polynomial process Xt to the spot price St. In order to
capture the characteristics of the electricity commodity market, increasing polynomial
maps Φ( · ) from [0,∞) onto [0,∞) will be used.

Such increasing polynomial maps can be constructed from non-negative polynomials
on [0,∞) [31]. To create these increasing polynomial maps the multiplication of positive
quadratics will be used. These quadratics are defined as [32]:

q̃α,γ(x) =
α

2
x2 + (1− α− γ)x+ γ, (2.7)

where the quadratic polynomials q̃α,γ are normalized such that:∫ ∞
0

e−xq̃α,γ(x)dx = 1.

To produce all the possible quadratic polynomials that are on [0,∞), the parameter set
(α, γ) is chosen as follows:

α = r̂ cos(ξ),

γ = r̂ sin(ξ),
(2.8)

where ξ ∈ [0, π/2] and r̂ ∈
[
0, cos(ξ) + sin(ξ) +

√
sin(2ξ)

]
.

With the quadratic polynomials as described above the increasing polynomial map,
Φ( · ) : [0,∞) 7−→ [0,∞), can be constructed from pairs of parameters (α1, γ1), ..., (αK , γK)
where K ∈ N+:

Φ(x) =

∫ x

0

K∏
k=1

q̃αk,γk(u)du. (2.9)

Note that if αk 6= 0 ∀k ∈ [1,K] the degree of Φ is 2K + 1. Furthermore, under this
general construction of the polynomial map (2.9) a polynomial process with even order
can be obtained by setting αk = 0 for some k ∈ [1,K].

Example 2.8. The cubic polynomial is an example of a polynomial map with degree 3:

Φ3(x) = a3x
3 + a2x

2 + a1x+ a0.

The cubic polynomial can be obtained by setting K = 1 in equation (2.9)

Φ3(x) =

∫ x

0

q̃α,γ(u)du =
α

6
x3 +

(1− α− γ)

2
x2 + γx+ α0

=
r cos(ξ)

6
x3 +

(1− r cos(ξ)− r sin(ξ))

2
x2 + r sin(ξ)x+ α0.

(2.10)

Now by setting ξ = π/3, r̂ = 1 and α0 = 0 the following cubic polynomial is obtained,
see Figure 1, which in theory could be used to map a polynomial process Xt to the spot
prices St.
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Figure 1: Increasing polynomial map (2.10), where ξ = π
3

, r̂ = 1 and α0 = 0.

2.1.4 Parameter estimation for the polynomial model

In this subsection it is described how the parameters of the underlying process Xt and
the polynomial map Φ can be estimated using maximum likelihood estimation (MLE),
as discussed in [33]. First the Geometric Brownian Motion (GBM) is examined as un-
derlying polynomial process, then it is shown how the same method can be applied to
an underlying OU process.

Geometric Brownian Motion
Assume that the asset price St can be generated by the polynomial model, which takes
the form of (2.6):

St = Φ(Xt),

where the underlying polynomial process Xt follows the GBM, which characteristics are
defined in Appendix A.1.

First we let the time interval [0, T ] be equally divided by N parts, such that dt = T
N

and (0, t1, t2, ..., tN−1, T ). Note that the increments of xtn = log(Xtn) = log(Φ−1(Stn))
are normally distributed:

xtn − xtn−1 = log

(
Xtn

Xtn−1

)
∼ N

((
µ− σ2

2

)
(tn − tn−1), σ2(tn − tn−1)

)
. (2.11)

The polynomial model Φ of degree 2n + 1 is thus determined by the parameter set
ξ =

(
µ, σ, (α1, γ1), ..., (αn, γn)

)
, where an even degree is obtained by setting one of the

αi’s to zero. To calibrate the parameters in the set ξ MLE can be used. From the
distribution (2.11) the log-likelihood of (S0, ..., SN ), i.e. (X0, ..., XN ) or (x0, ..., xN ), can
be computed. The log-likelihood is given by:

LL := l(µ, σ;xt0 , ..., xtN ) = −N
2

log
(
σ̂22π

)
− 1

2σ̂2

N∑
n=1

(xtn − xtn−1
− µ̂)2, (2.12)

where µ̂ =
(
µ− σ2

2

)
dt and σ̂2 = σ2dt.
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The MLE estimates the parameters (µ̂, σ̂) by maximizing the log-likelihood function.
This method estimates parameters for which the observed data is most probable:

(µ̂MLE , σ̂MLE) = arg max
µ̂,σ̂

l(µ̂, σ̂;xt0 , ..., xtN ).

This results in the following parameters:

µ̂MLE =
xtN − xt0

N
,

σ̂2
MLE =

1

N

N∑
n=1

(xtn − xtn−1 − µ̂MLE)2.
(2.13)

Now by substitution of the parameters (2.13) in the log-likelihood function (2.12), the
following log-likelihood function is obtained:

LL = −N
2

log

(
2π

N

N∑
n=1

(
xtn − xtn−1

− xtN − xt0
N

)2
)
− N

2
. (2.14)

Finally, the optimal polynomial coefficients of the polynomial map (2.6) need to be
estimated. The closed-form solution log-likelihood function for this problem is not avail-
able, so numerical methods will be necessary to find the maximum likelihood estimators
[33].

Summarizing, we got the following problem that needs to be calibrated:

max{LL} = max

{
−N

2
log

(
2π

N

N∑
n=1

(
xtn − xtn−1 −

xtN − xt0
N

)2
)
− N

2

}
, (2.15)

xn = log
(
Φ−1(Sn)

)
, (2.16)

Φ(x) =

∫ x

0

K∏
k=1

q̃αk,γk(t)dt. (2.17)

To calibrate the model, the problem (2.15)-(2.17) can be fitted to electricity market
prices, S0, ..., SN . Note that maximizing the log-likelihood function (2.15) is done by
minimizing the following expression:

N∑
n=1

(
xtn − xtn−1

− xtN − xt0
N

)
. (2.18)

This minimization problem (2.18) is not easy to solve analytically. If a second-order
polynomial model is taken, i.e. K = 1 and α1 = 0 in (2.17), the expression that needs to
be minimized is already a complicated function of the polynomial coefficients. Therefore
numerical methods need to be used to find the maximum likelihood estimators. Global
optimization is a numerical method to perform this task.
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Remark 2.9. For the polynomial model with an underlying OU process a similar deriva-
tion can be done to calibrate the model. In Appendix A.2 it is shown that the OU process
is normally distributed with mean and variance defined in (A.9).

Using the same discretization of [0, T ] by N parts as used in the MLE for the GBM,
it follows that the next expression is normally distributed:

Xtn − e−κdtXtn−1
∼ N

(
θ(1− e−κdt), σ

2

2κ
(1− e−2κdt)

)
. (2.19)

Therefore the log-likelihood is given by:

LL :=− N

2
log
(
σ̂22π

)
− 1

2σ̂2

N∑
n=1

(
Xtn − λ̂Xtn−1

− µ̂
)2

, (2.20)

where σ̂2 = σ2

2κ (1− e−2κdt), λ̂ = e−κdt and µ̂ = θ(1− e−κdt).
Thus for the nth-order polynomial model with an underlying OU process we need to

maximize the log-likelihood function (2.20) over the parameter set ξ =
(
µ̂, λ̂, σ̂, (α1, γ1),

..., (αn, γn)
)
. Similar as with the MLE for GBM, numerical methods are needed to find

the maximum likelihood estimators.
An example of the MLE for calibration of the third-order polynomial model with an

underlying OU process is given in [32].

Example 2.10. Let our price model take the form of (2.6), with Xt following the
Geometric Brownian Motion (A.1) and a polynomial map Φ of degree 3 as described in
section 2.1.3. By using Ito’s formula we can define the solution for Xt as

Xt = X0 exp

((
µ− 1

2
σ2

)
(t− t0) + σ(Wt −W0)

)
. (2.21)

The parameters used for this model are set as follows:

µ = 0.05, σ = 0.8, α = 0.75, γ = 0.75. (2.22)

The results are shown in Figure 2.

Figure 2: Polynomial model with the parameters as described in (2.22). From left to right: The
simulation of process Xt following the GBM; The degree 3 increasing polynomial map Φ; The
resulting spot prices St = Φ(Xt).

As showed in Figure 2, the increasing polynomial map Φ is used to change the dy-
namics of the polynomial process Xt to the more extreme dynamics of the price process
St = Φ(Xt).
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3 Options and electricity storage contracts

In this section several different options are described. An option is a financial contract
that gives the option holder the right, but not the obligation, to trade an underlying
asset for a predetermined strike price K at a fixed time in the future. Within these
financial contracts there is a general distinction between a call and a put option. A call
option gives the holder the right to buy the asset for the strike price K, whereas a put
option gives the right to sell.

In addition to the options, this section defines another financial contract, the elec-
tricity storage contract. This is a contract where electricity can be sold/bought at fixed
moments by trading on the electricity market in order to make a profit while the energy
level in the storage changes. The electricity storage contract does not use a predeter-
mined strike price K but trades with the market prices of electricity.

3.1 European option

A European option is a financial contract which limits the holder to exercise at only one
prescribed time T , which is called the maturity time. At the maturity time the holder
can decide to exchange the asset for the agreed strike price K. Generally, the holder
will only exercise the option when it has a positive value. Therefore, the option value at
time T , v(T, ST ), is equal to the payoff function, g(T, ST ):

v(T, ST ) ≡ g(T, ST ) =

{
max(ST −K, 0), for a call,

max(K − ST , 0), for a put.
(3.1)

Due to the fact that there are no early-exercise features, the value of a European
option at time t can be computed as the expectation of the discounted option value at
exercise time T , by means of the risk-neutral valuation formula:

v(t, St) = e−r(T−t)EQ[v(T, ST )|Ft], (3.2)

where Ft = σ(Ss; s ≤ t), r the constant interest rate and EQ[ · ] the expectation under
the risk-neutral measure Q.

3.2 Bermudan option

A Bermudan option gives the holder the right to exercise the option once at a predeter-
mined finite set of exercise moments before expiry. The holder receives the payoff when
the option is exercised.

Consider a Bermudan option with M exercise moments, where t0 is the initial time
and {t1, ..., tM} the set of exercise moments, where 0 = t0 < t1 < ... < tM = T and the
time between exercise moments is equally distributed, ∆t := (tm+1 − tm). The payoff
function of a Bermudan option with strike price K when exercised at time tm is given
by:

g(tm, Stm) =

{
max(Stm −K, 0), for a call,

max(K − Stm , 0), for a put.
(3.3)
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At maturity time tM the choices for the holder are to exercise the option or to let
the option expire, therefore the value of a Bermudan option at time tM is equal to the
payoff function:

v(tM , StM ) ≡ g(tM , StM ).

At each exercise moment before maturity, tm ∈ {t1, ..., tM−1}, the holder has the
choice to exercise or continue. This results in the following values for the two choices:

1. If the holder exercises the option, the value of the option at time tm will be equal
to the payoff at that time, g(tm, Stm).

2. If the holder does not exercise the option, the Bermudan option at time tm still
has value, because the option can be exercised at a later exercise moment. This
value is called the continuation value and is defined by c(tm, Stm).

The holder will select the choice which results in the highest value. Therefore, the value
of the Bermudan option at time tm, for m ∈ {1, ...,M − 1}, is as follows:

v(tm, Stm) = max
(
g(tm, Stm), c(tm, Stm)

)
.

At initial time t0 the option can not be exercised, so the value at time t0 is equal to
the continuation value:

v(t0, St0) ≡ c(t0, St0).

Between two exercise moments tm and tm+1, for m ∈ {0, ...,M −1}, the continuation
value of a Bermudan option can be considered as that of the value of a European option,
and can be computed with the risk-neutral valuation formula (3.2):

c(tm, Stm) = e−r∆tEQ[v(tm+1, Stm+1
)|Ftm ]. (3.4)

Due to the fact that the option value at maturity time tM is known and the continu-
ation value at time tm can be computed with the option value at time tm+1, a backward
induction method is used to result in the Bermudan option value at initial time t0. The
backward induction algorithm to value the Bermudan option is summarized as follows:

v(tM , StM ) = g(tM , StM ),

v(tm, Stm) = max
(
g(tm, Stm), c(tm, Stm)

)
, for m ∈ {M − 1, ...., 1},

c(tm, Stm) = e−r∆tEQ[v(tm+1, Stm+1)|Ftm ], for m ∈ {M − 1, ...., 0},
v(t0, St0) = c(t0, St0).

(3.5)

3.3 Bermudan option with multiple early-exercise rights

In this subsection the Bermudan option, where the holder has the right to exercise the
option once, is extended so that the holder has the right to exercise the option multiple
times at a predetermined finite set of exercise moments before expiry. The number of
rights that a holder is entitled to exercise the option before expiry will be denoted by
R, so for a Bermudan option R = 1. With this option the holder can only use at most
one right at each exercise moment. Thus it is not possible to have more exercise rights
than exercise moments, therefore R ≤ M . We let R := {1, ..., R} denote the set of all
the possible numbers of early-exercise rights left.
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Now we create an extra dimension in the notation for the multiple exercise framework:
the number of early-exercise rights left. This will be denoted as a superscript j in the
notation. So vj(tm, Stm) and cj(tm, Stm) are respectively the value of the option and
the continuation value at time tm with j rights left. The continuation value cj(tm, Stm)
is computed with the risk-neutral valuation formula (3.2), just like with the Bermudan
option:

cj(tm, Stm) = e−r∆tEQ[vj(tm+1, Stm+1
)|Ftm ]. (3.6)

To make a pricing algorithm for the Bermudan option with multiple early-exercise
rights we must be able to determine the value vj(tm, Stm) in (3.6). Two different settings
are taken in consideration:

1. The holder has as many exercise rights left as there are exercise moments.

2. The holder has less exercise rights than there are exercise moments.

These two settings are elaborated below.

1. In the first setting there are as many exercise rights left as there are exercise
moments, therefore the holder will use the right to exercise at every exercise moment
if the value of the option is positive. Therefore the value at tM−j+1 with j exercise
moments left is equal to the payoff function at every exercise moment discounted to
time tM−j+1. For example, the value at time tM−1 with two exercise moments left,
v2(tM−1, StM−1

), is equal to the payoff at time tM−1 plus the discounted payoff at time
tM .

Now it is shown that the value of the option with j exercise rights left at moments
tM−j+1 in equation (3.6) can be written as the payoff at time tM−j+1 plus the continu-
ation value with one right less at time tM−j+1.

We start with the continuation value where j = 1:

c1(tM−1, StM−1
) = e−r∆tEQ[v1(tM , StM )|FtM−1

]

= e−r∆tEQ[g(tM , StM )|FtM−1
].

(3.7)

Note that the continuation value with zero rights left equals zero, so indeed v1(tM , StM )
can be written as the payoff at time tM plus the continuation value with one right less
(which equals zero).

For two exercise rights and two exercise moments left the following derivation is done:

c2(tM−2, StM−2
) = e−r∆tEQ[v2(tM−1, StM−1

)|FtM−2
]

= e−r∆tEQ[g(tM−1, StM−1
) + e−r∆tg(tM , StM )|FtM−2

]

= e−r∆t
(
EQ[g(tM−1, StM−1

)|FtM−2
] + EQ[e−r∆tg(tM , StM )|FtM−2

]
)

= e−r∆t
(
EQ[g(tM−1, StM−1

)|FtM−2
] + EQ[e−r∆tEQ[g(tM , StM )|FtM−1

]|FtM−2
]
)

(3.7)
= e−r∆t

(
EQ[g(tM−1, StM−1

)|FtM−2
] + EQ[c1(tM−1, StM−1

)|FtM−2
]
)

= e−r∆tEQ[g(tM−1, StM−1
) + c1(tM−1, StM−1

)|FtM−2
],

where the tower rule and the linearity of the conditional expectation is used.
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By applying the tower rule repetitive it can be shown that the value of the option
with j exercise rights left at moments tM−j+1 in equation (3.6) can be written as:

vj(tM−j+1, StM−j+1
) = g(tM−j+1, StM−j+1

) + cj−1(tM−j+1, StM−j+1
), ∀j ∈ R. (3.8)

We call this value the initialization for the level of exercise rights left.

2. The second setting contains the cases where there are fewer exercise rights left than
there are exercise moments left. The holder of the option at time tm for m ∈ {M−j, ..., 1}
with j rights left has to make the decision between the following two choices:

– Exercise the option and receive the payoff g(tm, Stm) and continue with j−1 rights,
resulting in the value g(tm, Stm) + cj−1(tm, Stm).

– Not exercising the option and continue with j rights, resulting in the value cj(tm, Stm).

The holder will make the choice that gives the highest value. Therefore, the value of the
option at time tm for m ∈ {M − j, ..., 1} with j rights left is defined as follows:

vj(tm, Stm) = max
(
g(tm, Stm) + cj−1(tm, Stm), cj(tm, Stm)

)
, ∀j ∈ R. (3.9)

By combining the two setting described above we can compute all the continuation
values at all exercise moments for any number of exercise rights left backward in time.
Note that, just like the Bermudan option, the option with multiple early-exercise rights
at initial time t0 cannot be exercised, so the value is equal to the continuation value at
time t0. Summarizing, the backward induction algorithm to value the Bermudan option
with R early-exercise rights at initial time t0 is given by:

c0(tm, Stm) = 0, ∀m,
vj(tM−j+1, StM−j+1

) = g(tM−j+1, StM−j+1
) + cj−1(tM−j−1, StM−j−1

), ∀j ∈ R,
vj(tm, Stm) = max

(
g(tm, Stm) + cj−1(tm, Stm), cj(tm, Stm)

)
,

∀j and m ∈ {M − j, ..., 1},
cj(tm, Stm) = e−r∆tEQ[vj(tm+1, Stm+1

)|Ftm ], ∀j and m ∈ {M − 1, ..., 0},
vR(t0, St0) = cR(t0, St0).

(3.10)

3.4 Electricity storage contracts

To acquire an electricity storage contract we alter the Bermudan option with multiple
early-exercise rights. Similar to the Bermudan option with multiple early-exercise rights
the holder of the electricity storage contract has to decide which action to take at every
exercise moment. The actions that can be taken are withdrawing electricity from the
storage, injecting electricity in the storage or doing nothing. Because the holder of the
contract can make this choice at any exercise moment, it applies that there are as many
early-exercise rights as exercise moments (i.e. R = M).

Furthermore, compared to the Bermudan option with multiple early-exercise rights
there are more features to be taken into account:
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1. Physical limitations of the electricity storage, e.g. capacity and endurance.

2. Efficiency of the electricity storage.

3. Restrictions to the amount of electricity that can be withdrawn and injected from
the electricity grid.

4. The possibility to have negative payoff by withdrawing electricity.

5. A storage contract often includes a penalty function that is activated if the holder
of the contract does not comply with the contract conditions.

These additional features make it a more complex problem than a standard Bermudan
option or Bermudan option with multiple early-exercise rights. In the following two
subsections an electricity storage contract with such features is defined in more detail
and the backward induction algorithm for the contract valuation is given.

3.4.1 Details electricity storage contract

In this section a storage contract is defined in a similar way as in [34], where a gas storage
contract is discussed, although it is adapted so that it is applicable to an electricity
storage.

Similarly as with the Bermudan option with multiple early-exercise rights there are M
exercise moments, where t0 is the initial time and {t1, ..., tM} the set of exercise moments,
where the time between the exercise moments is evenly distributed, ∆t = (tm+1 − tm).
However, the storage contract includes an extra moment tM+1 on which it is not possible
to exercise, called the settlement date of the contract.

On the settlement date, the holder of the contract can receive a penalty if there is
not the agreed amount of energy in the storage. For example, if the battery of an electric
car is used for storage, there must be a certain level of energy in the battery at the end
of the contract so that the car can still drive. The penalty function at the settlement
date is denoted by qs

(
tM+1, StM+1

, e(tM+1)
)
, where the notation e(tm) represents the

amount of energy left in the storage at time tm, for all m ∈ {0, ...,M + 1}.
As described, the holder of the contract can take three actions: do nothing, withdraw

energy or inject energy. These actions correspond to a change in energy level in the
storage, denoted as ∆e(tm) = e(tm+1) − e(tm). If nothing is done at moment tm, the
energy level does not change, ∆e(tm) = 0, withdrawing energy is taken as a negative
energy change, ∆e(tm) < 0, and injecting energy as a positive energy change, ∆e(tm) >
0. By definition, at initial time t0 the holder can not take any action and the volume
change is zero, ∆e(t0) := 0.

The payoff function depends on the action taken by the holder of the contract, and
is defined by:

g(tm, Stm ,∆e(tm)) =


−c̄(Stm)∆e(tm) ,∆e(tm) > 0,

0 ,∆e(tm) = 0,

−p̄(Stm)∆e(tm) ,∆e(tm) < 0,

(3.11)

where c̄(Stm) and p̄(Stm) are respectively the cost of injection and the profit of with-
drawing energy as a function of the electricity spot price.
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This thesis includes the efficiency of the storage, e.g. an electric motor is typically
between 85% and 90% efficient [10]. The efficiency of the storage will be denoted by η,
which means it converts η · 100% of the purchased electricity into electricity which can
be sold. Therefore the following cost and profit functions are used:

c̄(Stm) =
Stm
η
,

p̄(Stm) = Stm .

(3.12)

These functions imply that we have to buy (1/η) > 1 units of energy in order to sell 1
unit of energy.

There are also physical limitations to the capacity of the storage, therefore we intro-
duce a maximum and minimum energy level for the storage, respectively emin and emax.
The energy level of the electricity storage should satisfy for all tm, m ∈ {0, ...,M + 1}:

emin ≤ e(tm) ≤ emax. (3.13)

Furthermore, there are operational restrictions on the minimum and maximum levels
of energy that can be injected and withdrawn, respectively iminop and imaxop . In most

markets there is also a required minimum energy injection, denoted as iminmarket. So the
allowed energy level changes at an exercise moment are limited by:

∆e(tm) ∈
[
iminop , iminmarket

]
∪
[
0, imaxop

]
, ∀m ∈ {1, ...,M}, (3.14)

where iminop ≤ iminmarket ≤ 0 ≤ imaxop .
In addition, the endurance of the storage facility should be taken into account, e.g.

charging/discharging a battery too quickly has been known to reduce the battery lifetime
[35]. That is why we have set an interval [iminb , imaxb ] for energy changes in which the
storage can last as long as possible. A constant penalty function is introduced in case
the holder of the contract wants to make a change in the energy level that lies outside
this interval. This penalty function for exercise moment tm depends only on the action
∆e(tm) that is taken and is denoted as qb(∆e(tm)).

Summarizing the storage limitations, the set of allowed actions ∆e(tm) is limited by
the capacity and the operational constraints. We define this set of all allowed actions at
time tm, for all m ∈ {1, ...,M}, as follows:

A(tm, e(tm)) =
{

∆e
∣∣emin ≤ e(tm) + ∆e ≤ emax and ∆e ∈

[
iminop , iminmarket

]
∪
[
0, imaxop

]}
,

(3.15)
and the set of allowed actions ∆e(tm) without getting a penalty qb(tm,∆e(tm)) is defined
as follows:

D(tm, e(tm)) =
{

∆e
∣∣emin ≤ e(tm) + ∆e ≤ emax and ∆e ∈

[
iminb , iminmarket

]
∪
[
0, imaxb

]}
.

(3.16)
Note that the set of allowed actions where a penalty is handed out is given by A \D.



19 3 Options and electricity storage contracts

The value of the contract at initial time t0 is given by the discounted future payoff
and penalties, where the holder of the contract chooses the optimal allowed action at
each exercise moment. Thus the following pricing problem is considered:

v(t0, St0) = max
∆e∗

EQ

[
M∑
m=1

e−rtm
(
g
(
tm, Stm ,∆e(tm)

)
+ qb

(
∆e(tm)

))

+ e−rtM+1qs
(
tM+1, StM+1

, e(tM+1)
)]
,

(3.17)

where Q is the risk-neutral pricing measure, r the risk-neutral interest rate and the op-
timal actions are given by the set ∆e∗ = {∆e∗(t1), ...,∆e∗(tM )}.

In Table 1 the characteristics of the electricity storage contract are described.

Start date t0
Number of exercise moments M
Time to maturity T
Time between exercise moments ∆t = T

M
Settlement date tM+1

Start energy level e(t0)
Min. capacity emin

Max. capacity emax

Min. energy level change iminop ≤ 0
Max. energy level change imaxop ≥ 0
Required min. injection in market iminmarket

Min. energy level change without penalty iminb ≤ 0
Max. energy level change without penalty imaxb ≥ 0
Penalty of charging/discharging too rapidly qb(∆e)
Penalty at settlement date qs(e)
The efficiency of the storage η

Table 1: The electricity storage contract characteristics

3.4.2 The contracts backward induction pricing algorithm

This section shows how the electricity storage contract, with the details described in
Section 3.4.1, can be priced with a backward induction algorithm.

First, the total electricity storage capacity is discretized into Ne equally distributed
energy levels, with δ := (emax − emin)/Ne the energy between two consecutive energy
levels. This results in the set E := {emin, emin+δ, emin+2δ, · · · , emax} of all the possible
energy levels that the storage can have. It is assumed that the action ∆e(tm) at any
exercise moment tm is a multiple of δ.

Furthermore, the pricing algorithm is computed backward in time and it is not known
which energy levels will be visited beforehand. Therefore, the contract values need to be
computed for all the possible energy levels e ∈ E. So the notation of the contract value
at each exercise moment needs to be extended by the level of energy in storage at that
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time. The contract value at time tm with e(tm) energy in storage and the electricity price
Stm is denoted by v(tm, Stm , e(tm)). Note that the number of early-exercise rights does
not need to be kept track of, as with the Bermudan option with multiple early-exercise
rights, because the holder can exercise at any exercise moment.

On the settlement date tM+1 it is not possible for the holder to change the energy
level in the storage. However, if there is not the agreed amount of energy left in the
storage the holder of the contract will receive a penalty. Therefore, the value of the
contract at time tM+1 is equal to the penalty function:

v(tM+1, StM+1
, e) = qs(tM+1, StM+1

, e), ∀e ∈ E (3.18)

At all the exercise moments tm, m ∈ {M, ..., 1}, before the settlement date the holder
of the contract can choose an action ∆e(tm) ∈ A. The holder will choose the action that
ultimately gives him/her the highest value. To make this decision, continuation values
are needed to show what the expected value is after choosing a specific action. So
the continuation value depends on the energy level in storage after the action is taken,
e(tm) + ∆e(tm) = e(tm+1). Therefore the continuation value is denoted by:

c(tm, Stm , e(tm) + ∆e(tm)) = c(tm, Stm , e(tm+1)) (3.19)

Note that this makes it possible that at time tm the continuation value can be the
same for different levels of energy in storage, by choosing certain actions. As an example,
the situation with energy level e(tm) = 2 and action ∆e(tm) = 1 results in the same
continuation value as the situation with energy level e(tm) = 4 and action ∆e(tm) = −1,
assuming that ∆e(tm) ∈ A. These situations result in the same continuation value due
to the fact that they have the same energy level at time tm+1.

Therefore, the continuation value does not have to be determined for every energy
level e(tm) and all its corresponding allowed actions ∆e(tm) ∈ A, but only for the
possible energy levels in the set E. The continuation value, for all the possible energy
levels e ∈ E, can be computed with the risk-neutral valuation formula, similar as with
the Bermudan option with multiple early-exercise rights:

c(tm, Stm , e) = e−r∆tEQ[v(tm+1, Stm+1
, e)|Ftm ], ∀e ∈ E. (3.20)

Now that the continuation function has been defined, the value of the contract can
be given. The holder of the contract at time tm with e ∈ E electricity in storage and
electricity price Stm chooses the action ∆e ∈ A(tm, e) that gives him/her the highest
value, taking into account the penalty function. This results in the following contract
value at time tm:

v(tm, Stm , e) = max
∆e∈A(tm,e(tm))

{
g
(
tm, Stm ,∆e

)
+ c
(
tm, Stm , e+ ∆e

)
+ qb

(
∆e
)}
, ∀e ∈ E.

(3.21)
The value of the contract at initial time t0 is equal to the continuation value, similar

as with the Bermudan option with multiple early-exercise rights, because no actions can
be taken at this time:

v(t0, St0 , e(t0)) = c(t0, St0 , e(t0)) = e−r∆tEQ[v(t1, St1 , e(t0))|Ft0 ]. (3.22)
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Now we have all the building blocks to determine the contract value backward in
time. This is summarized in the following backward induction algorithm:

v(tM+1, StM+1
, e) = qs(tM+1, StM+1

, e), ∀e ∈ E,
c(tm, Stm , e) = e−r∆tEQ[v(tm+1, Stm+1 , e)|Ftm ], ∀e ∈ E and m ∈ {M, ...., 0},
v(tm, Stm , e) = max∆e∈A

{
g
(
tm, Stm ,∆e

)
+c
(
tm, Stm , e+ ∆e

)
+qb

(
∆e
)}
, ∀e ∈ E and m ∈ {M, ...., 1},

v(t0, St0 , e) = c(t0, St0 , e), ∀e ∈ E.
(3.23)

3.5 Option and contract valuation

As shown in the descriptions of the options and the electricity contract, option/contract
pricing usually comes down to computing the conditional expectation of the discounted
value of the financial derivative under the risk-neutral measure, the so-called risk-neutral
valuation formula.

There are several ways to compute this conditional expectation. Ideally there is an
analytical solution, however this is generally only the case with the simplest option types
(European options) with the most basic asset price dynamics (e.g. the dynamics assumed
with the Black-Scholes equation). Alternatively, we can apply numerical techniques to
approximate the conditional expectation for the derivation of the option value. Com-
monly used numerical techniques for this are numerical integration and Monte Carlo
methods. A comparison for various numerical techniques is made in [36], where Fourier-
based integration techniques have performed as one of the best for pricing many options.

Furthermore, in financial mathematics it is an important branch of research to price
options as quickly and/or accurately as possible. For calibration of a model the speed
of the computation is most essential, while for pricing a specific derivative contract the
accuracy and robustness is crucial [37].

In this thesis we introduce valuation techniques to price various options and the
electricity storage contract, which are defined in this section, where the electricity price
process follows the polynomial model. In particular we focus on a Fourier-based method
known as the COS method. Additionally, the Least Squares Monte Carlo (LSMC)
method is used to validate the results obtained with the COS method.

3.5.1 Greeks

In addition to the option value, there is also relevant information in the so-called Greeks
(also called hedge parameters or risk sensitivities). These Greeks are quantities that
measure the sensitivity of the option value with respect to a change in the underlying
parameters, e.g. the asset price S or the volatility σ.

The Greeks are defined as follows, respectively Delta, Gamma and Vega:

∆ :=
∂v

∂S
, Γ :=

∂2v

∂S2
=
∂∆

∂S
, ν :=

∂v

∂σ
. (3.24)
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3.6 Risk-neutral measure

In risk and portfolio management, where asset movements are uncertain, the probability
space (Ω,F ,P) is considered, where Ω denotes the sample space of all scenarios, F the
σ-algebra on Ω and P the probability measure that assigns a probability to every event
ω ∈ Ω. The probability measure P is called the real world measure.

However, when pricing derivatives another measure is used, namely the risk-neutral
measure Q (also called martingale measure). Under the risk-neutral measure Q the
discounted prices of assets are martingales, which is not assured under the real world
measure P, i.e.

EQ[e−r(T−t)ST |Ft] = St,

where Ft ⊂ F is the natural filtration on (Ω,F) and St the price of an asset at time t.
The fundamental theorems of asset pricing (FTAPs) give conditions for a market

to be free of arbitrage and to be complete. The first FTAP states that a market is
arbitrage free if and only if there exists a risk-neutral probability measure, equivalent1

to the real world measure. The second FTAP states that an arbitrage-free market is
complete, that is that every risky derivative can be hedged, if and only if there exists a
unique risk-neutral measure that is equivalent to the real world measure.

3.6.1 Risk-neutral measure for the electricity market

As described in the second FTAP, in complete markets the risk-neutral pricing measure
is unique, ensuring only one arbitrage-free price of the option/storage contract. Fur-
thermore, in a complete market the risk can be removed to a large extent by a trading
strategy, called delta hedging. By means of delta hedging, the drift has no influence
on the pricing of options. In contrast to a complete market, an incomplete market has
many different risk-neutral measures and there does not exist such a property to hedge
the risk.

The electricity market is a typical example of an incomplete market, due to its char-
acteristics, therefore the risk-neutral measure is not unique. In the literature there are
different ways to deal with this incompleteness. It is possible to obtain a risk-neutral
probability measure Q with the Esscher transform, which is often used in derivative
pricing for incomplete markets. Another commonly used approach is to assume that
the measure is already risk-neutral, and directly perform the pricing. This latter ap-
proach calibrates the model through implied parameters from a liquid market, however
the electricity market is illiquid.

In this thesis we follow another common approach (see e.g. [17] [34] [38]), it is assumed
there exists a risk premium to compensate for the risk. The risk premium, defined by
λσ(t,Xt), is subtracted from the real drift of the process, where λ is the market price
per unit risk linked to the state variable Xt and σ(t,Xt) the volatility parameter of the
process. This risk premium, calibrated from observed market data, determines the choice
of one specific risk-neutral measure.

Next, we show how to use the risk premium for the OU process and the second-order
polynomial model.

1Given a space (Ω,F), two measure are equivalent on (Ω,F) if they agree on which sets in F have
probability zero.
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Ornstein-Uhlenbeck process
Consider the OU process, described in Appendix A.2:

dXt = κ(θ −Xt)dt+ σdWt. (3.25)

Let the risk premium, λσ(t,Xt), be subtracted from the drift term of the process, the
drift of the OU process is µ(t,Xt) = κ(θ − Xt). This results in the following adjusted
drift term:

µ̂(t,Xt) = κ

(
θ − λσ

κ
−Xt

)
.

Moreover, through the Radon-Nikodym derivative and the Girsanov theorem, the fol-
lowing measure change is considered:

dWt = dW ∗t − λdt,

and equivalently:
Wt = W ∗t − λt,

where W ∗t is the Brownian motion under the risk-neutral measure Q.

Under the measure change the stochastic process (3.25) can be rewritten as:

dXt = κ(θ − λσ

κ
−Xt)dt+ σdW ∗t . (3.26)

Second-order polynomial model
The second-order polynomial model is defined by choosing the parameters K = 1 and
α1 = 0 in the increasing polynomial map (2.9). These parameters result in the following
second-order polynomial model:

St = Φ(Xt) =

∫ Xt

0

(1− c)u+ c du = CX2
t + cXt, (3.27)

where C := 1−c
2 and the underlying process Xt has the following general dynamics:

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt.

With Ito’s lemma the following SDE is obtained, using (3.27):

dSt = (2CXt + c)dXt + 2C(dXt)
2.

Note that (dXt)
2 = σ(t,Xt)

2dt. Therefore, by substitution of dXt and simplification,
the SDE is given by:

dSt =
(
µ(t,Xt)(2CXt + c) + 2Cσ(t,Xt)

2
)
dt+ σ(t,Xt)(2CXt + c)dWt

= µ̃(t,Xt)dt+ σ̃(t,Xt)dWt.
(3.28)

By subtracting the risk premium, λσ̃(t,Xt), from the drift term of the process and
changing the measure with the Girsanov theorem, the SDE (3.28) can be rewritten as:

dSt = (µ̃(t,Xt)− λσ̃(t,Xt)) dt+ σ̃(t,Xt)dW
∗
t , (3.29)

where dW ∗t is the risk-neutral Brownian motion increment and the drift and volatility
parameters are defined as follows:

µ̃(t,Xt) = µ(t,Xt)(2CXt + c) + 2Cσ(t,Xt)
2,

σ̃(t,Xt) = σ(t,Xt)(2CXt + c).
(3.30)



4 The COS method 24

4 The COS method

The COS method is a pricing method, introduced by Fang and Oosterlee [39], which
approximates the risk-neutral valuation formula. The risk-neutral valuation formula can
be written as an integral representation, where v denotes the option value, x the state
variable at time t and y at time T :

v(t, x) = e−r∆tEQ[v(T, y)|Ft] = e−r∆t
∫ ∞
−∞

v(T, y)f(y|T, t, x)dy. (4.1)

Furthermore, besides the accurate approximation of the option value, the COS method
can compute the Greeks at almost no extra computational costs.

The main idea of the COS method is to approximate the conditional probability
density function, f(y|T, t, x), via the Fourier cosine expansion (also called cosine expan-
sion). Moreover, the COS method makes use of the relation between the coefficients of
the Fourier cosine expansion and the characteristic function. The use of the characteristic
function is convenient, because the density function is often unknown for relevant asset
processes, in contrast to the characteristic function. For processes with affine dynamics,
the characteristic function can be derived by solving the Ricatti differential equations
[40]. However, affinity is not invariant under polynomial transformations [41] and there-
fore the characteristic function of the polynomial model, St = Φ(Xt), generally does not
exist.

So the characteristic function does not exist in closed-form for every pricing model,
e.g. the characteristic function of the polynomial model St = Φ(Xt) is not available.
However, by choosing the state variables in equation (4.1) conveniently, the characteristic
function of the underlying process Xt can be used. Furthermore, if the characteristic
function has a certain form, an efficient fast Fourier transform (FFT) based algorithm
can be applied to significantly reduce the computational complexity of calculating the
values of the Bermudan option, the Bermudan option with multiple early-exercise rights
and the electricity storage contract. If the closed-form characteristic function does not
have this form, the characteristic function can be approximated to establish this form,
this is described in Section 5.

4.1 Density approximation via the Fourier cosine expansion

In this section the probability density function is approximated via the Fourier cosine
expansion. This approximation makes use of the closed-form relation between the den-
sity and the characteristic function. The characteristic function is given by the Fourier
transform of the probability density function, whereas the density function is obtained by
the inverse Fourier transform of the characteristic function. This combination is called
a Fourier transform pair and is defined as follows:
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Fourier transform pair

The density function f(y|T, t, x) and the characteristic function φ(u|T, t, x) is an
example of a Fourier pair, where x denotes the state variable at time t and y at
time T :

φ(u|T, t, x) =

∫ ∞
−∞

eiuyf(y|T, t, x)dy, (4.2)

and

f(y|T, t, x) =
1

2π

∫ ∞
−∞

e−iuyφ(u|T, t, x)du. (4.3)

Consider a function f(θ), supported on the interval [0, π]. The Fourier cosine expan-
sion for this function is defined by:

f(θ) =

∞∑
k=0

′
Ak cos(kθ), (4.4)

where
∑′

implies that the first term of the summation is multiplied by 1
2 and the coef-

ficients Ak are given by:

Ak =
2

π

∫ π

0

f(θ) cos(kθ)dθ. (4.5)

For functions supported on a finite interval [a, b] ∈ R, the Fourier cosine expansion
can be obtained by a change of variables:

θ =
y − a
b− a

π, y =
b− a
π

θ + a.

By changing the variables the Fourier cosine expansion is as follows:

f(y) =

∞∑
k=0

′
Ak cos

(
kπ
y − a
b− a

)
, (4.6)

where the coefficients are given by:

Ak =
2

b− a

∫ b

a

f(y) cos

(
kπ
y − a
b− a

)
dy. (4.7)

The Fourier cosine expansion of the conditional density function f(y|T, t, x) (4.3) is
similar. Next the Fourier cosine expansion of f(y|T, t, x) will be rewritten such that the
characteristic function is used instead of the density function.

Firstly we notice that the characteristic function (4.2) can be approximated by trun-
cating the integral range, this is possible due to the conditions for the existence of a
Fourier transform and the fact that the density function f(y|T, t, x) has no mass in the
tails. Assume that the integration range [a, b] is chosen such that the characteristic func-
tion (4.2) can be approximated adequately. This results in the following approximation:

φ(u|T, t, x) ≈ φ̂(u|T, t, x) =

∫ b

a

eiuyf(y|T, t, x)dy. (4.8)
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Secondly it is noticed that Ak (4.7) can be rewritten to use the truncated character-
istic function instead of the density function. For this derivation the Euler formula is
used:

eiu = cos(u) + i sin(u),

which shows that Re{eiu} = cos(u). Therefore the coefficients Ak of the Fourier cosine
expansion of f(y|T, t, x) can be rewritten as:

Ak =
2

b− a

∫ b

a

f(y|T, t, x) · cos

(
kπ
y − a
b− a

)
dy

=
2

b− a

∫ b

a

f(y|T, t, x) · Re
{
eikπ

y−a
b−a

}
dy

=
2

b− a
Re

{∫ b

a

f(y|T, t, x) · eikπ
y
b−a dy · e−ikπ

a
b−a

}

=
2

b− a
Re

{
φ̂

(
kπ

b− a

∣∣∣∣T, t, x) · eikπ −ab−a

}
.

(4.9)

By using (4.8) the coefficients Ak can be approximated by Âk:

Ak ≈ Âk =
2

b− a
Re

{
φ

(
kπ

b− a

∣∣∣∣T, t, x) · eikπ −ab−a

}
. (4.10)

Summarizing, the Fourier cosine series expansion of f(y|T, t, x) supported on the
interval [a, b] ∈ R can be written as (4.6):

f(y|T, t, x) =

∞∑
k=0

′
Ak cos

(
kπ
y − a
b− a

)
, (4.11)

where the coefficients Ak are described as in (4.7):

Ak =
2

b− a

∫ b

a

f(y|T, t, x) cos

(
kπ
y − a
b− a

)
dy. (4.12)

By truncating the series summation and replacing the coefficients Ak by its approx-
imation (4.10), the following approximation of the conditional density function is ob-
tained:

f(y|T, t, x) ≈ 2

b− a

N−1∑
k=0

′
Re

{
φ

(
kπ

b− a

∣∣∣∣T, t, x) · e−ikπ a
b−a

}
cos

(
kπ
y − a
b− a

)
. (4.13)

4.2 The characteristic function

In section 4.1 the characteristic function is defined, i.e. the Fourier transform of the
density:

φ(u|x,∆t) = E[eiuy|x] =

∫ ∞
−∞

eiuyf(y|T, t, x)dy, (4.14)

where ∆t = T − t.
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For a large group of pricing models, including the models with available characteristic
functions used in this thesis, the characteristic function can be written in the following
form:

φ(u|x,∆t) = eiuβxφ(u|∆t), (4.15)

where φ(u|∆t) does not depend on x. For processes with independent and stationary
increments, e.g. exponential Lévy processes, it holds that β = 1. For the OU process it
holds that β = e−κ∆t. In the sequel this form (4.15) will be used to describe the general
characteristic function.

For processes where β = 1, an efficient FFT-based algorithm can be used to reduce
the computational complexity of the calculation of the continuation values used in the
pricing of options with the COS method [42], this is further explained in Remark 4.3.

It is not the case that the closed-form characteristic function can be determined for
any process. However, for processes with affine dynamics (e.g. GBM, exponential Lévy
processes, the OU process) the characteristic function exists [40], it can be obtained
by solving the Ricatti differential equations. Affinity is not invariant under polynomial
transformations [41], therefore generally the characteristic function of the polynomial
model is not available.

In Section 5, we introduce approximations of the characteristic function, which can
be used for the efficient FFT-based algorithm. Furthermore, the characteristic function
of the process does not have to exist for these approximations.

4.3 The COS method for European options

As described in Section 3.1, the value of a European option is given by the risk-neutral
valuation formula. This risk-neutral valuation formula can be written in the integral
form defined in (4.1).

By truncation of the infinite integration range to [a, b] ∈ R in the integral form of (3.2),
similar as for the integral in (4.8), the European option value v can be approximated by:

v(t0, x) = e−r∆tEQ[v(T, y)|Ft0 ] ≈ e−r∆t
∫ b

a

v(T, y)f(y|T, t0, x)dy, (4.16)

where the state variables x and y can be any function of respectively the asset prices St0
and ST , e.g. x = Φ−1(St0) = Xt0 or x = St0 .

The COS method for pricing European options is obtained by replacing the condi-
tional density function f(y|T, t0, x) by its Fourier cosine expansion approximation (4.13).
This results in the following approximation for the option value:

v(t0, x) ≈ e−r∆t
∫ b

a

v(T, y)

N−1∑
k=0

′ 2

b− a
Re

{
φ

(
kπ

b− a

∣∣∣∣T, t0, x) eikπ −ab−a

}
cos

(
kπ
y − a
b− a

)
dy.

(4.17)
By interchanging the integral and the summation the following formula is obtained,

the so-called COS formula:

v(t0, x) ≈ e−r∆t
N−1∑
k=0

′
Re

{
φ

(
kπ

b− a

∣∣∣∣T, t0, x) eikπ −ab−a

}
Vk, (4.18)
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where coefficients Vk are defined by:

Vk =
2

b− a

∫ b

a

v(T, y) cos

(
kπ
y − a
b− a

)
dy. (4.19)

The closed-form solution of the coefficients Vk is available for several choices of the state
variables x and y, see Section 4.3.1.

4.3.1 The coefficients Vk

In this subsection the closed-form solutions of the coefficients Vk (4.19) for the European
option are computed. The variable to be integrated in equation (4.19) depends on
the state variables x and y chosen in equation (4.16) and thus subsequently on which
characteristic function is taken in the COS formula (4.18). For example, when the
characteristic function of the price process St generated with the polynomial model St =
Φ(Xt) is used, the variable y = ST is integrated. However, if the characteristic function
of the underlying process Xt is used, the variable y = Φ−1(ST ) = XT is integrated
in equation (4.19). Note that when integrating over the underlying process, the payoff
function must be written in terms of the underlying process.

In general, the characteristic function of the price process generated with the poly-
nomial model is not available, however it is possible that the characteristic function of
the underlying process does exist. Furthermore, many frequently used asset processes,
such as the GBM and the one-factor model by Schwartz, have a log-normal distribution.
The characteristic function of such processes is unknown, which is why the available
characteristic function of the log-adjusted process is typically used.

The payoff function, defined for a European option in (3.1), must represent the vari-
able of the process used for the characteristic function. In this subsection two different
state variables are examined for the computation of the coefficients Vk, for the asset
price y = ST and for the log-adjusted asset price y = log(ST /K). In the next subsection
the coefficients Vk are computed for the payoff function which represents the underlying
process of the polynomial model, y = Φ−1(ST ) = XT .

For the calculations of the coefficients Vk we look at a generalized form on the interval
[x1, x2] ⊆ [a, b], so that the computations can also be used for the COS method of the
other options and the electricity storage contract. This generalized coefficient will be
denoted as Gk(x1, x2):

Gk(x1, x2) =
2

b− a

∫ x2

x1

v(T, y) cos

(
kπ
y − a
b− a

)
dy. (4.20)

Note that Vk = Gk(a, b).

1. The coefficients Vk for the state variable y = ST .
The variable ST in the payoff function can be directly integrated, if the character-
istic function of the price process itself is used. This results in the following option
value at maturity time T , where y = ST is the asset process at time T :

v(T, y) = g(T, y) =

{
max(y −K, 0), for a call,

max(K − y, 0), for a put.
(4.21)
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This results in the following coefficients Gk(x1, x2):

Gk(x1, x2) =


2
b−a

∫ x2

x1
I(y>K)(y −K) cos

(
kπ y−ab−a

)
dy, for a call,

2
b−a

∫ x2

x1
I(y<K)(K − y) cos

(
kπ y−ab−a

)
dy, for a put.

(4.22)

where Vk = Gk(a, b) and I is the indicator function.

After integration and simplifying the notation, the following coefficients for the call
and put options are obtained:
• For k = 0

Gcall0 (x1, x2) =



2
b−a

[
Ky − y2

2

]x2

x1

, for K < x1,

2
b−a

[
Ky − y2

2

]x2

K
, for x1 ≤ K ≤ x2,

0 , for K > x2.

(4.23)

Gput0 (x1, x2) =



0 , for K < x1,

2
b−a

[
y2

2 −Ky
]K
x1

, for x1 ≤ K ≤ x2,

2
b−a

[
y2

2 −Ky
]x2

x1

, for K > x2.

(4.24)

• For k > 0

Gcallk (x1, x2) =



[
−2
(

(a−b) cos(kπ a−ya−b )+kπ(y−K) sin(kπ y−aa−b )
)

k2π2

]x2

x1

, for K < x1,

[
−2
(

(a−b) cos(kπ a−ya−b )+kπ(y−K) sin(kπ y−aa−b )
)

k2π2

]x2

K

, for x1 ≤ K ≤ x2,

0 , for K > x2.

(4.25)

Gputk (x1, x2) =



0 , for K < x1,

[
2
(

(a−b) cos(kπ a−ya−b )+kπ(y−K) sin(kπ y−aa−b )
)

k2π2

]K
x1

, for x1 ≤ K ≤ x2,

[
2
(

(a−b) cos(kπ a−ya−b )+kπ(y−K) sin(kπ y−aa−b )
)

k2π2

]x2

x1

, for K > x2.

(4.26)
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2. The coefficients Vk for the state variable y = log (ST /K).
The log-adjusted process is typically used for the GBM and the one-factor model by
Schwartz, because for these models the characteristic function of the log-adjusted
process is known in closed-form. The log-adjusted process results in the following
payoff at maturity time T , where y = log

(
ST
K

)
:

v(T, y) = g(T, y) =

{
max(Key −K, 0), for a call,

max(K −Key, 0), for a put.
(4.27)

By substitution of (4.27) in (4.20) the coefficients Gk(x1, x2) can be computed as
follows:

Gk(x1, x2) =


2
b−a

∫ x2

x1
I(y>0)(Ke

y −K) cos
(
kπ y−ab−a

)
dy, for a call,

2
b−a

∫ x2

x1
I(y<0)(Ke

y −K) cos
(
kπ y−ab−a

)
dy, for a put.

(4.28)

This results in the following coefficients for a call, with x1 ≥ 0, and a put, with
x2 ≤ 0, where the notation of Section 3.1 of [39] is used:

Gk(x1, x2) =

{
2
b−aK(χk(x1, x2)− ψk(x1, x2)), for a call,

2
b−aK(−χk(x1, x2) + ψk(x1, x2)), for a put,

(4.29)

where χk(x1, x2) and ψ(x1, x2) are defined by:

χk(x1, x2) :=

∫ x2

x1

ey cos

(
kπ
y − a
b− a

)
dy

=
1

1 +
(
kπ
b−a

)2

[
cos

(
kπ
x2 − a
b− a

)
ex2 − cos

(
kπ
x1 − a
b− a

)
ex1

+
kπ

b− a
sin

(
kπ
x2 − a
b− a

)
ex2 − kπ

b− a
sin

(
kπ
x1 − a
b− a

)
ex1

]
,

ψk(x1, x2) :=

{[
sin
(
kπ x2−a

b−a

)
− sin

(
kπ x1−a

b−a

)]
, k 6= 0,

x2 − x1, k = 0.

(4.30)

The Fourier coefficients Vk for the European option are given by [39]:

Vk =

{
Gk(0, b), for a call,

Gk(a, 0), for a put.
(4.31)
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4.3.2 The coefficients Vk for the polynomial model St = Φ(Xt)

As mentioned before, the characteristic function of the polynomial model is not available.
However, the COS method can use the characteristic function of the underlying process
Xt to compute the option value. This results in the following payoff function used in the
coefficients Vk (4.19), where y = Φ−1(ST ) = XT is the underlying asset value at time T :

v(T, y) = g(T, y) =

{
max(Φ(y)−K, 0), for a call,

max(K − Φ(y), 0), for a put.
(4.32)

By substitution of the payoff function (4.32) in (4.20) the coefficients G(x1, x2) can be
computed as follows:

Gk(x1, x2) =


2
b−a

∫ x2

x1
I(Φ(y)>K)(Φ(y)−K) cos

(
kπ y−ab−a

)
dy, for a call,

2
b−a

∫ x2

x1
I(Φ(y)<K)(K − Φ(y)) cos

(
kπ y−ab−a

)
dy, for a put,

(4.33)

where Vk = Gk(a, b).
The coefficients Gk(x1, x2) in (4.33) can be computed analytically for any finite-

order polynomial map Φ(·) if the inverse Φ−1(K) exists. However, if this inverse is not
available in closed-form, the coefficients can still be determined by using a numerical
approximation of Φ−1(K).

Example 4.1. In this example the coefficients Gk(x1, x2) are computed for a European
put option where the asset prices follow a second-order polynomial process:

St = Φ(Xt) =
1− c

2
X2
t + cXt = CX2

t + cXt. (4.34)

The coefficients Gk(x1, x2) for the put option are calculated as follows:

Gputk (x1, x2) =
2

b− a

∫ x2

x1

I(Φ(y)<K)(K − Φ(y)) cos

(
kπ
y − a
b− a

)
dy. (4.35)

This leads to the following coefficients Gk(x1, x2) for the put option:

Gputk (x1, x2) =



0 ,K < Cx2
1 + cx1,

2
b−a

∫K
x1

(K − y) cos
(
kπ y−ab−a

)
dy , C = 0 and x1 ≤ K ≤ x2,

2
b−a

∫ √c2+4CK−c
2C

x1
(K − Cy2 − cy) cos

(
kπ y−ab−a

)
dy , C 6= 0 and

Cx2
1 + cx1 ≤ K ≤ Cx2

2 + cx2,

2
b−a

∫ x2

x1
(K − Cy2 − cy) cos

(
kπ y−ab−a

)
dy ,K > Cx2

2 + cx2.

(4.36)
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After integration the following coefficients are obtained:

• for k = 0:

Gput0 (x1, x2) =



0 ,K < Cx2
1 + cx1,

2
b−a

[
Ky − 1

2y
2
]K
x1

, C = 0 and x1 ≤ K ≤ x2,

2
b−a

[
Ky − c

2y
2 − C

3 y
3
]√c2+4CK−c

2C

x1
, C 6= 0 and

Cx2
1 + cx1 ≤ K ≤ Cx2

2 + cx2,

2
b−a

[
Ky − c

2y
2 − C

3 y
3
]x2

x1
,K > Cx2

2 + cx2.

(4.37)

• for k > 0:

Gputk (x1, x2) =



0 ,K < Cx2
1 + cx1,

2
b−a

[
(a−b)(πk(y−K) sin(πk(a−y)

a−b )+(b−a) cos(πk(y−a)
a−b ))

π2k2

]K
x1

, C = 0 and x1 ≤ K ≤ x2,

2
b−a


− 1
π3k3 (a− b)

(
sin
(
πk(y−a)
a−b

) (
−2a2C+

4abC − 2b2C + π2k2(y(c+ Cy)−K)
)

+

πk(a− b)(c+ 2Cy) cos
(
πk(y−a)
a−b

))


√
c2+4CK−c

2C

x1

, C 6= 0 and

Cx2
1 + cx1 ≤ K ≤ Cx2

2 + cx2,

2
b−a


− 1
π3k3 (a− b)

(
sin
(
πk(y−a)
a−b

) (
−2a2C+

4abC − 2b2C + π2k2(y(c+ Cy)−K)
)

+

πk(a− b)(c+ 2Cy) cos
(
πk(y−a)
a−b

))

x2

x1

,K > Cx2
2 + cx2.

(4.38)
The coefficients V putk for the European put option where the prices follow the second-

order polynomial model are V putk = Gputk (a, b), ∀k.
A similar computation can be performed for the coefficients of a European call option

and/or for a higher-order polynomial model.
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4.4 The COS method for Bermudan options

The Bermudan option is valuated backwards in time, as described in the backward
induction algorithm (3.5). Moreover, the continuation values in this algorithm are defined
by the risk-neutral valuation formula, and therefore can be approximated by the COS
method [42].

The approximation of the continuation value can be obtained with the COS method
in a similar way as for the European option value (4.18). This results in the following
COS formula for the continuation value, where x denotes the state variable at time tm−1

and y at time tm:

c(tm−1, x) ≈ ĉ(tm−1, x) := e−r∆t
N−1∑
k=0

′
Re

{
φ

(
kπ

b− a

∣∣∣∣∆t, x) eikπ −ab−a

}
Vk(tm), (4.39)

where the coefficients Vk(tm) are defined by:

Vk(tm) =
2

b− a

∫ b

a

v(tm, y) cos

(
kπ
y − a
b− a

)
dy. (4.40)

Using (4.39) and the fact that at initial time t0 the Bermudan option value equals the
continuation value, the value of the Bermudan option at time t0 can be approximated
by the following COS formula:

v(t0, x) ≈ ĉ(t0, x) = e−r∆t
N−1∑
k=0

′
Re

{
φ

(
kπ

b− a

∣∣∣∣∆t, x) eikπ −ab−a

}
Vk(t1). (4.41)

Therefore, the idea of valuating the Bermudan option with the COS method is to
compute the coefficient Vk(t1) and substitute this into (4.41). Next it is shown that the
coefficients Vk(tm) can be recovered from Vk(tm+1), by means of a backward induction
method.

4.4.1 The coefficients Vk(tm) for Bermudan options

In this section it is shown how the coefficients Vk(tm), (4.40), for m = {M, ..., 1}, can
be computed in a backward manner. The coefficients Vk(tm) for a Bermudan option are
defined as follows:

Vk(tm) =
2

b− a

∫ b

a

v(tm, y) cos

(
kπ
y − a
b− a

)
dy, (4.42)

where v(tm, y), for m = {M, ..., 1}, is given by:

v(tm, y) =

{
g(tm, y), for m = M,

max
(
g(tm, y), c(tm, y)

)
, for m = {M − 1, ..., 1},

(4.43)

with the functions written in terms of state variable y.
First Vk(tM ) is obtained by substituting v(tM , y) = g(tM , y) in (4.42), resulting in

the same calculation of the integral as for the European option.
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For Vk(tm), m = {M − 1, ..., 1}, the integral is split in two parts, due to the fact that
the integral is taken as the maximum of the payoff function g(tm, y) and the continuation
value c(tm, y). The split of the integral is based on the so-called early-exercise point
x∗m, which is the point where the continuation value equals the payoff function, i.e.
c(tm, x

∗
m) = g(tm, x

∗
m). The early-exercise point x∗m can be determined by for example

Newton’s method, see [43] for more information about the use of Newton’s method for
this problem.

For a Bermudan put option it holds on the interval y ∈ [a, x∗m] that g(tm, y) ≥ c(tm, y)
and on the interval y ∈ (x∗m, b] that g(tm, y) < c(tm, y). The opposite applies for a
Bermudan call option, namely that on the interval y ∈ [a, x∗m] that g(tm, y) ≤ c(tm, y)
and on the interval y ∈ (x∗m, b] that g(tm, y) > c(tm, y).

Therefore, once x∗m is found, the integral to compute the coefficients Vk(tm), for
m ∈ {M − 1, ..., 1} and ∀k, can be split into two parts:

Vk(tm) =

{
Ck(a, x∗m, tm) +Gk(x∗m, b), for a call,

Gk(a, x∗m) + Ck(x∗m, b, tm), for a put,
(4.44)

and at maturity time tM the coefficients are given by:

Vk(tM ) =

{
Gk(a, b), for a call,

Gk(a, b), for a put,
(4.45)

where the Fourier cosine series coefficients of the payoff function, Gk(x1, x2), and of the
continuation value, Ck(x1, x2, tm), are defined by:

Gk(x1, x2) =
2

b− a

∫ x2

x1

g(tm, y) cos

(
kπ
y − a
b− a

)
dy, (4.46)

Ck(x1, x2, tm) =
2

b− a

∫ x2

x1

c(tm, y) cos

(
kπ
y − a
b− a

)
dy, (4.47)

It remains to compute Gk(x1, x2) and Ck(x1, x2, tm).

The coefficients Gk(x1, x2)
The Fourier coefficients of the payoff function, Gk(x1, x2), can be found in closed-form
for several choices of state variables x and y. The integral to be calculated in (4.46) is
similar to the integral used for the computation of the Fourier coefficients Vk for Euro-
pean options, (4.20). Therefore the same coefficients G(x1, x2) can be used as computed
in Section 4.3.1 and for the polynomial model in Section 4.3.2.

Remark 4.2. Note that in the computation of Gk(x1, x2) for the log-adjusted process
y = log(STK ), described in (4.29), it must hold that x1 ≥ 0 for a call option and x2 ≤ 0 for
a put option. This feature is a fact for the early-exercise points x∗m, m ∈ {1, ...,M − 1},
allowing formula (4.29) to be used to compute the closed-form solution of Gk(a, x∗m) and
Gk(x∗m, b) for the log-adjusted process. However at time tM the option value equals the
payoff function and therefore the coefficient Vk(tM ) equals (4.45), where the integral is
taken between [a, b]. Therefore, similar as for the coefficient Vk for the European option,
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it holds for the log-adjusted process that the coefficient Vk(tM ) for the Bermudan option
equals:

Vk(tM ) =

{
Gk(0, b), for a call,

Gk(a, 0), for a put.
(4.48)

The coefficients Ck(x1, x2, tm)
To obtain the coefficients Ck(x1, x2, tm), the approximation of the continuation value
with the COS formula ĉ(tm, y), defined in (4.39), is used. By inserting ĉ(tm, y) in equation
(4.47) and interchanging summation and integration gives the following approximation
of coefficients Ck(x1, x2, tm), where it is assumed that the characteristic function can be
written in the general form φ(u|y,∆t) = eiuyβφ(u|∆t), as described in (4.15):

Ĉk(x1, x2, tm) = e−r∆t
N−1∑
l=0

′
Re

{
φ

(
kπ

b− a

∣∣∣∣∆t) V̂l(tm+1)Mk,l(x1, x2)

}
, (4.49)

with the coefficients V̂l(tm) for m = {1, ...,M − 1} given by:

V̂l(tm) =

{
Ĉl(a, x

∗
m, tm) +Gl(x

∗
m, b), for a call,

Gl(a, x
∗
m) + Ĉl(x

∗
m, b, tm), for a put,

(4.50)

where for m = M the coefficient is V̂l(tM ) = Vl(tM ), as described in (4.45), and the
coefficients Mk,l(x1, x2) are defined as:

Mk,l(x1, x2) =
2

b− a

∫ x2

x1

eilπ
βy−a
b−a cos

(
kπ
y − a
b− a

)
dy. (4.51)

From basic calculus the coefficients Mk,l(x1, x2) can be rewritten into two parts [44]:

Mk,l(x1, x2) = − i
π

(
Ms

k,l(x1, x2) +Mc
k,l(x1, x2)

)
,

where it holds that

Mc
k,l(x1, x2) =

{ (x2−x1)πi
b−a , for k = j = 0

1
lβ+k

[
e

((jβ+k)x2−(l+k)a)πi
b−a − e

((lβ+k)x1−(l+k)a)πi
b−a

]
, otherwise,

(4.52)

Ms
k,l(x1, x2) =

{ (x2−x1)πi
b−a , for k = j = 0

1
lβ−k

[
e

((lβ−k)x2−(l−k)a)πi
b−a − e

((lβ−k)x1−(l−k)a)πi
b−a

]
, otherwise.

(4.53)

Remark 4.3. For characteristic functions where β = 1 an efficient FFT-based algo-
rithm for the computation of the Fourier coefficients Ĉ(tm) = {Ĉ0(tm), ..., ĈN−1(tm)}
can be used [42]. The key to this efficient algorithm is that the matrices Ms =
{Ms

k,l(x1, x2)}N−1
k,l=0 andMc = {Mc

k,l(x1, x2)}N−1
k,l=0 have respectively a Toeplitz and Han-

kel structure, ∀ k, l, x1, x2:

Ms
k,l(x1, x2) =Ms

k+1,l+1(x1, x2) and Mc
k,l(x1, x2) =Mc

k+1,l−1(x1, x2).

With these matrix structures, the FFT can be applied directly for an efficient matrix-
vector multiplication to compute the continuation value coefficients Ĉk(x1, x2, tm) for all
k in O(N log2(N)) computational complexity. The algorithm to compute these coeffi-
cients with this method is described in Algorithm 2 in section 2.3 of [42].
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4.5 The COS method for Bermudan options with multiple early-
exercise rights

In this section the COS method for Bermudan options is extended to options with mul-
tiple early-exercise rights, discussed in Section 3.3. The COS method will be used to
approximate the continuation value for the number of exercise rights left.

In the paper [44], Zhang and Oosterlee introduced the COS method for swing options.
In their model the swing options have the property to be exercised early more than
once continuous in time before expiry and adopted the concept of recovery time (if the
holder has exercised the option early, he/she has to wait the recovery time before they
can exercise again). This method for the swing options is more difficult than for the
Bermudan option with multiple early-exercise rights considered in this section, since we
are dealing with discrete exercise moments instead of continuous ones.

As described in the backward induction algorithm (3.10) the value of the Bermudan
option with R early-exercise rights at initial time t0 can be computed by the continuation
value, i.e. vR(t0, x) = cR(t0, x).

The continuation value for the Bermudan option with j ∈ R early-exercise rights left
can be approximated directly with the COS formula in a similar way as for the Bermudan
option (4.39). The difference is that the coefficients Vk depend on the number of early-
exercise rights left. It follows that the COS formula to compute the continuation value
of the Bermudan option with j early-exercise rights left at time tm−1, ∀m ∈ {1, ...,M},
where x and y respectively denote the state variables at time tm−1 and tm, is defined by:

cj(tm−1, x) ≈ ĉj(tm−1, x) := e−r∆t
N−1∑
k=0

′
Re

{
φ

(
kπ

b− a

∣∣∣∣∆t, x) eikπ −ab−a

}
V jk (tm), (4.54)

where the coefficients V jk (tm) are given by:

V jk (tm) =
2

b− a

∫ b

a

vj(tm, y) cos

(
kπ
y − a
b− a

)
dy. (4.55)

So the value of the Bermudan option with R early-exercise rights can be approximated
if the coefficients V Rk (t1) are found. In the next section it is shown how these coefficients

V jk (tm), for all j ∈ R and m ∈ {1, ...,M}, can be derived backward in time.

4.5.1 The coefficients V jk (tm) for Bermudan options with multiple early-
exercise rights

In this subsection the coefficients V jk (tm), defined in (4.55), used in the COS formula for
the Bermudan option with multiple early-exercise rights are recovered. Similarly as the
derivation of the backward induction algorithm described in Section 3.3, the recovery
of the coefficients V jk (tm) is done in two settings/steps in a backward manner in time
∀j ∈ R:

1. First the coefficients are recovered where the number of exercise rights left is
equal to the number of exercise moments left, the so-called initialization. As described
in Section 3.3, in this initialization setting the value of the option, vj(tM−j+1, StM−j+1

),
used for computing the continuation value can be written as the payoff function at



37 4 The COS method

time tM−j+1 plus the continuation value with one right less, see formula (3.8). So the

coefficients V jk (tM−j+1) for this initialization step can be written as:

V jk (tM−j+1) =
2

b− a

∫ b

a

vj(tM−j+1, y) cos

(
kπ
y − a
b− a

)
dy

=
2

b− a

∫ b

a

(
g(tM−j+1, y) + cj−1(tM−j+1, y)

)
cos

(
kπ
y − a
b− a

)
dy

=
2

b− a

∫ b

a

g(tM−j+1, y) cos

(
kπ
y − a
b− a

)
dy

+
2

b− a

∫ b

a

cj−1(tM−j+1, y) cos

(
kπ
y − a
b− a

)
dy

:= Gk(a, b) + Cj−1
k (a, b, tM−j+1).

(4.56)

2. In the second step the setting is taken where there are less exercise rights than
exercise moments left. As shown in the backward induction algorithm (3.10) the value
of the option in this setting is given for all j ∈ R by:

vj(tm, y) = max{cj(tm, y), cj−1(tm, y) + g(tm, y)} , for m ∈ {M − j, ..., 1}. (4.57)

The coefficient V jk (tm) can be recovered by substituting this maximum in equation (4.55).
Furthermore, similar as the Bermudan option, there exists a point x∗jm , called the early-
exercise point for j level of rights left, where cj(tm, x

∗j
m ) = cj−1(tm, x

∗j
m ) + g(tm, x

∗j
m ).

For a put option it holds on the interval y ∈ [a, x∗jm ] that cj−1(tm, y) + g(tm, y) ≥
cj(tm, y) and on the interval y ∈ (x∗jm , b] that cj−1(tm, y)+g(tm, y) < cj(tm, y). Vice versa
for the call option, i.e. on the interval y ∈ [a, x∗jm ] that cj−1(tm, y) + g(tm, y) ≤ cj(tm, y)
and on the interval y ∈ (x∗jm , b] that cj−1(tm, y) + g(tm, y) > cj(tm, y).

Therefore, based on the early-exercise point x∗jm the integral of (4.55) can be split in
two parts, such that the maximum of (4.57) is always taken. Hence for the put option
the coefficients V jk (tm) for m ∈ {M − j, ..., 1} and ∀j ∈ R are given by:

V jk (tm) =
2

b− a

∫ b

a

vj(tm, y) cos

(
kπ
y − a
b− a

)
dy

=
2

b− a

∫ b

a

max{cj(tm, y), cj−1(tm, y) + g(tm, y)} cos

(
kπ
y − a
b− a

)
dy

=
2

b− a

∫ x∗jm

a

(cj−1(tm, y) + g(tm, y)) cos

(
kπ
y − a
b− a

)
dy

+
2

b− a

∫ b

x∗jm

cj(tm, y) cos

(
kπ
y − a
b− a

)
dy

:= Gk(a, x∗jm ) + Cj−1
k (a, x∗jm , tm) + Cjk(x∗jm , b, tm).

(4.58)

A similar derivation can be done for the call option.
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Summarizing, the coefficients V jk (tm) for the Bermudan put option with j ∈ R exer-
cise rights left is given by:

V jk (tm) =

{
Gk(a, b) + Cj−1

k (a, b, tM−j+1), for m = M − j + 1,

Gk(a, x∗jm ) + Cj−1
k (a, x∗jm , tm) + Cjk(x∗jm , b, tm), for m ∈ {M − j, ..., 1}.

(4.59)
The closed-form solution of the Fourier cosine series coefficients of the payoff function,
Gk(x1, x2), are computed in Section 4.3.1 for various state variables y and for the poly-
nomial model in Section 4.3.2. Furthermore, the Fourier cosine series coefficients of the
continuation value, Cjk(x1, x2, tm), can be approximated in the same way as described in

(4.49), however V jk (tm+1) is used instead of Vk(tm+1). Note that the continuation value
with zero rights left is always zero.

4.6 The COS method for electricity storage contracts

In this section the COS method for electricity storage contracts is discussed. The main
idea is to approximate the continuation values, described in the backward induction
pricing algorithm (3.23), with the COS method for each allowed energy level e ∈ E in
storage.

The approximation of the continuation values can be obtained by means of the COS
method in a similar way as for the Bermudan option with multiple early-exercise rights.
The difference is that the coefficients Vk now depend on the energy level e ∈ E instead
of the number of early-exercise rights left. The COS formula for approximating the
continuation value with e ∈ E energy in storage is defined, for m ∈ {M + 1, ..., 1}, by:

c(tm−1, x, e) ≈ ĉ(tm−1, x, e) := e−r∆t
N−1∑
k=0

′
Re

{
φ

(
kπ

b− a

∣∣∣∣∆t, x) eikπ −ab−a

}
Vk(tm, e).

(4.60)
The value of the electricity contract with e(t0) electricity in storage can be approxi-

mated if the coefficients Vk(t1, e(t0)) have been recovered, due to the fact that the initial
value of the contract is equal to the continuation value at time t0.

The next section will show how to determine the coefficients Vk(tm, e) backward in
time for each energy level e ∈ E.

4.6.1 The coefficients Vk(tm, e) for electricity storage contracts

In this section it is shown how the coefficients Vk(tm, e), used in the COS formula (4.60),
can be recovered backward in time. The coefficients Vk(tm, e) are defined, for m ∈
{M + 1, ..., 1}, by:

Vk(tm, e) =
2

b− a

∫ b

a

v(tm, y, e) cos

(
kπ
y − a
b− a

)
dy, ∀e ∈ E. (4.61)

First, the coefficients are recovered at the settlement date tM+1, where the value of
the contract equals the penalty function, v(tM+1, y, e) = qs(tM+1, y, e). Therefore, by
substitution of this penalty function in formula (4.61) the coefficients Vk(tM+1, e) are
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obtained for each energy level:

Vk(tM+1, e) =
2

b− a

∫ b

a

qs(tM+1, y, e) cos

(
kπ
y − a
b− a

)
dy, ∀e ∈ E. (4.62)

At moments tm, m ∈ {M, ..., 1}, with energy level e ∈ E in storage, the holder
of the contract chooses an allowed action ∆e ∈ A(tm, e) which ensures the maximum
ultimate value. This decision results in the contract value v(tm, y, e) defined in (3.21).
By substitution of this value in (4.61), it follows that the coefficients at time tm, m ∈
{M, ..., 1}, with e ∈ E energy in storage are obtained by:

Vk(tm, e) =
2

b− a

∫ b

a

max
∆e∈A(tm,e)

{
g
(
tm, y,∆e

)
+ c
(
tm, y, e+ ∆e

)
+ qb

(
∆e
)}

cos

(
kπ
y − a
b− a

)
dy, ∀e ∈ E.

(4.63)

Note that the coefficients V jk (tm) for the Bermudan option with multiple early-
exercise rights are realized by taking the integral of a maximum of two functions. This
integral can always be divided into two parts by means of the early-exercise point, so that
the maximum of the two functions is always taken. When determining the coefficients
for the electricity contract, Vk(tm, e) (4.63), a maximum of Dim

(
A(tm, e)

)
functions is

taken.
To take the integral of the maximum in formula (4.63), the integration range [a, b]

is split into intervals, [a, x1], [x1, x2], [x3, x4], ..., [xn, b], so that the maximum is always
taken. This split is based on the so-called optimal actions ∆e∗i ∈ A(tm, e), for which the
contract value v(tm, y, e) results in the maximum on interval [xi, xi+1], for i ∈ {0, ..., n}.

These intervals with corresponding optimal actions can be found by discretizing the
interval [a, b], i.e. [a, a + δ, a + 2δ, ..., b], and compare the values v(tm, y, e) for all the
actions ∆e ∈ A(tm, e) at each element in the discretization and choose the action which
gives the maximum value. This results for example in the interval [xi, xi+1] = [a +
200δ, a+235δ] where the action ∆e∗i gives the maximum value v(tm, y, e) for each element
y ∈ [a+ 200δ, a+ 201δ, ..., a+ 235δ]. Note, it is possible that the same action can be an
optimal action at various different intervals, e.g. ∆e∗2 = ∆e∗5.

Once the intervals and the corresponding optimal actions for splitting the integral
are found, the coefficients Vk(tm, e) (4.63) for all e ∈ E at moment tm, m ∈ {M, ..., 1},
can be written as:

Vk(tm, e) =
2

b− a

[ ∫ x1

a

(
g
(
tm, y,∆e

∗
0

)
+ c
(
tm, y, e+ ∆e∗0

)
+ qb

(
∆e∗0

))
cos
(
kπ
y − a
b− a

)
dy

+

∫ x2

x1

(
g
(
tm, y,∆e

∗
1

)
+ c
(
tm, y, e+ ∆e∗1

)
+ qb

(
∆e∗1

))
cos
(
kπ
y − a
b− a

)
dy

+ · · ·

+

∫ b

xn

(
g
(
tm, y,∆e

∗
n

)
+ c
(
tm, y, e+ ∆e∗n

)
+ qb

(
∆e∗n

))
cos
(
kπ
y − a
b− a

)
dy

]
=

n∑
i=0

[
Gk
(
xi, xi+1,∆e

∗
i

)
+ Ck

(
xi, xi+1, e+ ∆e∗i

)
+Qk

(
xi, xi+1,∆e

∗
i

)]
,

(4.64)
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where x0 = a, xn+1 = b, ∆e∗i ∈ A(tm, e) the optimal action on interval [xi, xi+1] and the
Fourier cosine series coefficients of the payoff function, the continuation value and the
penalty function are respectively defined, ∀∆e ∈ A(tm, e), by:

Gk
(
xi, xi+1,∆e

)
=

2

b− a

∫ xi+1

xi

g
(
tm, y,∆e

)
cos
(
kπ
y − a
b− a

)
dy (4.65)

Ck
(
xi, xi+1, e+ ∆e

)
=

2

b− a

∫ xi+1

xi

c
(
tm, y, e+ ∆e

)
cos
(
kπ
y − a
b− a

)
dy (4.66)

Qk
(
xi, xi+1,∆e

)
=

2

b− a

∫ xi+1

xi

qb
(
∆e
)

cos
(
kπ
y − a
b− a

)
dy. (4.67)

The Fourier coefficients Ck(xi, xi+1, e+∆e) are approximated in the same way as de-
scribed in (4.49), however the coefficients Vk(tm+1, e+∆e) are used instead of Vk(tm+1).
Next it is shown how the coefficient Gk(xi, xi+1,∆e) and Qk(xi, xi+1,∆e) are computed
in closed-form.

The coefficients Gk(xi, xi+1,∆e)
The coefficients Gk(xi, xi+1,∆e) can be obtained by substitution of the payoff function
of the electricity contract (3.11) in equation (4.65), after which the integral can be calcu-
lated. Furthermore, we assume that the electricity price process follows the polynomial
model, St = Φ(Xt), described in Section 2.1.

Since the characteristic function of the polynomial model does not exist, the charac-
teristic function of the underlying process Xt is used. Therefore, the state variables are
defined as x = Φ−1(Stm−1) and y = Φ−1(Stm). So the coefficients Gk(x1, x2,∆e) (3.11)
can be calculated as follows:

Gk
(
xi, xi+1,∆e

)
=


2
b−a

∫ xi+1

xi

−Φ(y)
η ∆e cos

(
kπ y−ab−a

)
dy ,∆e > 0,

0 ,∆e = 0,
2
b−a

∫ xi+1

xi
−Φ(y)∆e cos

(
kπ y−ab−a

)
dy ,∆e < 0.

(4.68)

The coefficients Gk
(
xi, xi+1,∆e

)
can be computed in closed-form for any finite-order

polynomial map Φ(·).

Example 4.4. In this example the coefficients Gk
(
xi, xi+1,∆e

)
are computed where the

electricity price follows a second-order polynomial model, defined by:

St = Φ(Xt) =
1− c

2
X2
t + cXt = CX2

t + cXt.

After substitution of the second-order polynomial model in (4.68), the integral can be
computed. This results in the following coefficients Gk

(
xi, xi+1,∆e

)
:

• For k = 0

Gk
(
xi, xi+1,∆e

)
=


2
b−a

∆e
η

[
− c

2y
2 − C

3 y
3
]xi+1

xi
,∆e > 0,

0 ,∆e = 0,
2
b−a∆e

[
− c

2y
2 − C

3 y
3
]xi+1

xi
,∆e < 0,

(4.69)
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• For k > 0

Gk
(
xi, xi+1,∆e

)
=



2
b−a

∆e
η


− 1
π3k3 (a− b)

(
sin
(
πk(y−a)
a−b

) (
−2a2C+

4abC − 2b2C + π2k2y(c+ Cy)
)

+

πk(a− b)(c+ 2Cy) cos
(
πk(y−a)
a−b

))

xi+1

xi

,∆e > 0,

0 ,∆e = 0,

2
b−a∆e


− 1
π3k3 (a− b)

(
sin
(
πk(y−a)
a−b

) (
−2a2C+

4abC − 2b2C + π2k2y(c+ Cy)
)

+

πk(a− b)(c+ 2Cy) cos
(
πk(y−a)
a−b

))

xi+1

xi

,∆e < 0,

(4.70)

Example 4.5. In this example the coefficients Gk(xi, xi+1,∆e) are calculated where the
electricity price follows a third-order polynomial model, defined by:

St = Φ(Xt) = AX3
t +BX2

t + CXt +D.

This third-order polynomial model results in the following coefficients Gk(x1, xi+1, e):

• For k = 0

Gk
(
xi, xi+1,∆e

)
=


2
b−a

∆e
η

[
− A

4 y
4 − B

3 y
3 − C

2 y
2 −Dy

]xi+1

xi
,∆e > 0,

0 ,∆e = 0,
2
b−a∆e

[
− A

4 y
4 − B

3 y
3 − C

2 y
2 −Dy

]xi+1

xi
,∆e < 0,

(4.71)
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• For k > 0

Gk
(
xi, xi+1,∆e

)
=



2
b−a

∆e
η



(a−b)
π4k4

(
πk sin

(
πk(a−y)
a−b

) (
− 2a2(3Ay +B)+

4ab(3Ay +B)− 2b2(3Ay +B)+

π2k2(y(y(Ay +B) + C) +D)
)
+

(a− b) cos
(
πk(y−a)
a−b

) (
6a2A− 12aAb+

A(6b2 − 3π2k2y2)− π2k2(2By + C)
))



xi+1

xi

,∆e > 0,

0 ,∆e = 0,

2
b−a∆e



(a−b)
π4k4

(
πk sin

(
πk(a−y)
a−b

) (
− 2a2(3Ay +B)+

4ab(3Ay +B)− 2b2(3Ay +B)+

π2k2(y(y(Ay +B) + C) +D)
)
+

(a− b) cos
(
πk(y−a)
a−b

) (
6a2A− 12aAb+

A(6b2 − 3π2k2y2)− π2k2(2By + C)
))



xi+1

xi

,∆e < 0.

(4.72)

The coefficients Qk(x1, x2,∆e)
The penalty function qb(∆e) depends only on the action ∆e ∈ A taken and not on the
electricity price. Furthermore, the penalty function will only be nonzero if an action
∆e ∈ A \ D is taken. Substitution of the penalty function in equation (4.67) results in
the following Fourier cosine series coefficients of the penalty function:

• For k = 0

Qk
(
xi, xi+1,∆e

)
=

{
0 ,∆e ∈ D,

2
b−aqb(∆e)(xi+1 − xi) ,∆e ∈ A \ D.

(4.73)

• For k > 0

Qk
(
xi, xi+1,∆e

)
=

{
0 ,∆e ∈ D,
2
πk qb(∆e)

(
sin
(
πk(a−xi+1)

a−b

)
− sin

(
πk(a−xi)
a−b

))
,∆e ∈ A \ D.

(4.74)
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4.7 The integration range for the COS method

The interval of integration, [a, b], for the COS method is essential for the accuracy of
valuation. If an interval is set too small, a significant integration-range truncation error
occurs, whereas if an interval is chosen too large, a large value for N should be selected
to remain accurate, which increases the computation time.

The integration range is defined as proposed in [37]:

[a, b] :=

[
κ1 − L̄

√
κ2 +

√
κ4, κ1 + L̄

√
κ2 +

√
κ4

]
, (4.75)

where κn is the nth-order cumulant of the process used for the characteristic function
and L̄ depending on the user-defined tolerance level, typically L̄ ∈ [6, 12].

4.8 The Greeks with the COS method

A substantial advantage of the COS method is that the Greeks, described in Section
3.5.1, can be calculated at almost no additional computational complexity. The Greeks
are found by differentiating the COS formula, where v := v(t0, St0), S := St0 and
X := Xt0 , respectively the option value at t0, the asset price and the underlying process
used in the payoff and characteristic function:

∆ :=
∂v

∂S
=

∂v

∂X

∂X

∂S
, Γ :=

∂2v

∂S2
=

∂2v

∂X2

(
∂X

∂S

)2

+
∂v

∂X

∂2X

∂S2
, ν :=

∂v

∂σ
. (4.76)

Note that the general COS formula for the various options is defined as:

v ≈ e−r∆t
N−1∑
k=0

′
Re

{
φ

(
kπ

b− a

∣∣∣∣∆t, x) eikπ −ab−a

}
Vk, (4.77)

where the coefficients Vk are computed differently for the different options, i.e. (4.19),
(4.42), (4.55) and (4.61) for respectively the European option, Bermudan option, Bermu-
dan option with multiple early-exercise rights and the electricity storage contract.

It follows that the cosine series expansions of the Greeks ∆, Γ and ν are given by:

∆̂ ≈∂X
∂S
· e−r∆t

N−1∑
k=0

′
Re

{
φ

(
kπ

b− a

∣∣∣∣∆t, x) eikπ −ab−a
ikπ

b− a
β

}
Vk,

Γ̂ ≈
(
∂X

∂S

)2

· e−r∆t
N−1∑
k=0

′
Re

{
φ

(
kπ

b− a

∣∣∣∣∆t, x) eikπ −ab−a

(
ikπ

b− a
β

)2
}
Vk

+
∂2X

∂S2
· e−r∆t

N−1∑
k=0

′
Re

{
φ

(
kπ

b− a

∣∣∣∣∆t, x) eikπ −ab−a
ikπ

b− a
β

}
Vk,

ν̂ ≈ e−r∆t
N−1∑
k=0

′
Re

{
∂φ
(
kπ
b−a
∣∣∆t, x)

∂σ
eikπ

−a
b−a

}
Vk,

(4.78)

where the characteristic function is defined as in Section 4.2.
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Example 4.6. In this example the Greeks ∆̂ and Γ̂ are derived for the second-order
polynomial model, where the characteristic function of the underlying process is used.
The asset prices generated with the second-order polynomial model are given by:

St = Φ(Xt) =
1− c

2
X2
t + cXt = CX2

t + cXt.

The Greeks ∆̂ and Γ̂ are obtained by taking the first and second derivative of the inverse
X0 = Φ−1(S0) with respect to the asset price S0 and substitute those in the equations
of (4.78).

The inverse of St = Φ(Xt) is given by:

Xt =

{
St, for C = 0,
√
c2+4CSt−c

2C , for C 6= 0.

The first and second derivative of this function at initial time t0 is computed as follows,
where S := St0 and X := Xt0 :

∂X

∂S
=

{
1, for C = 0,

1√
c2+4CS

, for C 6= 0,

∂2X

∂S2
=

{
0, for C = 0,

− 2C

(c2+4CS)
3
2
, for C 6= 0.

(4.79)

By substitution of these derivatives in (4.78) the COS method approximated Greeks ∆̂
and Γ̂ are obtained.

Example 4.7. In this example the Greek ν̂ is derived, where the characteristic function
of the OU process is used in the COS formula. The characteristic function of the OU
process is defined by [43]:

φOU (u|x,∆t) = exp

(
iuxe−κ∆t +

(e−2κ∆t − e−κ∆t)(u2σ2 + ueκ∆t(uσ2 − 4iκθ)

4κ

)
.

(4.80)

To compute the ν̂ it is necessary to differentiate the characteristic function with
respect to the volatility parameter σ:

∂φOU (u|x,∆t)
∂σ

= φOU (u|x,∆t) · (e−2κ∆t − e−κ∆t)(2u2σ + 2u2eκ∆tσ)

4κ
. (4.81)

By substitution of (4.81) in ν̂ (4.78) the COS method to approximate the Greek ν is
obtained.
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5 The characteristic function approximation

In this section, various methods are discussed to approximate the characteristic func-
tion. In addition, we show that with a small modification in these approximations the
FFT-based algorithm can be applied to compute the continuation value by means of the
COS method in an efficient way, as mentioned in Remark 4.3.

The following approximations will be considered in this section:

• Approximation using the moments of the process.

• Approximation using the cumulants of the process.

• An empirical recovery of the characteristic function.

• Approximation with the adjoint expansion.

These numerical methods can be used for the approximation of the characteristic function
of a variety of stochastic processes, including the polynomial model and the OU process.
Moreover, the closed-form characteristic function of the process does not have to exist
for these approximations.

5.1 Characteristic function approximation with moments

This approximation can be used for stochastic processes where the characteristic function
is not available as a closed-form solution, but the moments can be generated for the
process, e.g. the polynomial model.

The approximation with the moments is formed using the Maclaurin series expansion
of the characteristic function. By the definition of the characteristic function and the
MacLaurin series expansion of the exponent around zero, it holds for t < T :

φ(u|Xt,∆t) = E[eiuXT |Ft] = E

 ∞∑
j=0

(iuXT )j

j!

∣∣∣∣∣Ft
 =

∞∑
j=0

E[Xj
T |Ft]

(iu)j

j!
, (5.1)

where ∆t = T − t.
By truncation of the series summation, the J th-order approximation is given by:

φ(u|Xt,∆t) ≈ φ̂(u|Xt,∆t) =

J∑
j=0

E[Xj
T |Ft]

(iu)j

j!
. (5.2)

Due to the fact that the moments of a process are often known, this appears to
be a good way to approach the characteristic function for a wide range of stochastic
processes, e.g. the polynomial model. However, after testing, it turned out that hundreds
of moments were needed to be accurate on a large interval, and not just around zero.
This made this method to approximate the characteristic function inefficient. To show
this an example is given, where this approximation (5.2) is used to approximate the
characteristic function of the standard normal distribution.
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Example 5.1. Let X be normally distributed with zero mean and variance one. The
characteristic function and all the moments are known for this distribution. Note that
the characteristic function of the standard normal distribution only has a real part. In
Figure 3 different values of order J in formula (5.2) are used to evaluate the accuracy of
the approximated characteristic function.

Figure 3: The approximated characteristic function (5.2) for various J compared to the closed-
form characteristic function of the standard normal distribution.

As can be seen in Figure 3, the approximated characteristic function is accurate
around zero, but at a larger interval the approximated characteristic function diverges
from the closed-form characteristic function. The more moments that are used, the larger
the interval that is accurate.

5.2 Characteristic function approximation with cumulants

In this section the characteristic function is approximated in terms of its cumulants.
The cumulants are closely related to the moments of a stochastic process, i.e. any two
processes with identical moments will have identical cumulants as well. Moreover, the
cumulants of a process can be recovered by its moments, and vice versa.

The nth-order cumulant κn of a stochastic process XT conditional on Xt, for t ≤ T ,
is defined by the cumulant generating function KXT |Xt(u):

KXT |Xt(u) = logE
[
euXT

∣∣Ft] ,
κn =

∂n

∂un
KXT |Xt(u)

∣∣∣∣
u=0

.

Note that the moment generating function is the exponential of the cumulant generat-
ing function. Furthermore, the cumulants can be recovered by the moments with the
following relation:

κn = E
[
Xn
T

∣∣Ft]− n−1∑
m=1

(
n− 1

m− 1

)
κmE

[
Xn−m
T

∣∣Ft] .
Hence, the first- and second-order cumulant of a stochastic process is equal to respectively
the mean and variance of that process.

Now that the cumulants have been defined, we can approximate the characteristic
function with them. In a similar manner as with the approximation with the moments,
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the approximation with the cumulants is formed by using the Maclaurin series. By
the definition of the cumulants, the characteristic function and the MacLaurin series
expansion of the cumulant generating function around zero, it holds that [45]:

φ(u|Xt,∆t) = E[eiuXT |Ft] = exp

 ∞∑
j=1

κj
(iu)j

j!

 . (5.3)

By truncation of the series summation, the J th-order approximation of the characteristic
function is given by:

φ(u|Xt,∆t) ≈ φ̂(u|∆t,Xt) = exp

 J∑
j=1

κj
(iu)j

j!

 . (5.4)

We expect the cumulant approximation of the characteristic function to be more
accurate than the moment approximation in section 5.1, because we do not expand
the exponential function itself. However, similar as with the approximation with the
moments, the obtained approximation of the characteristic function can be inaccurate
on some intervals, this is due to the fact that the series is obtained as a Taylor series
around zero.

Example 5.2. In this example the cumulants are used to approximate the characteristic
function of the OU process, defined in Appendix A.2, with parameters set as follows:

κ = 0.5, θ = 10, σ = 1, X0 = 10, T = 1, t0 = 0. (5.5)

Because the OU process is normally distributed with mean X0e
−κT + θ(1 − e−κT ) and

variance σ2

2κ (1 − e−2κT ), the cumulants κn for n > 2 are zero. Therefore, it is expected
that the approximated characteristic function, φ(u|X0,∆t), is similar to the closed-form
characteristic function for J = 2. The results of the imaginary and real parts of the
characteristic function of the OU process approximated with the cumulants is given in
Figure 4.

Figure 4: The characteristic function of the OU process approximated by its cumulants (5.4)
for J = 2 in comparison to the closed-form characteristic function of the OU process.
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Example 5.3. In this example the cumulant approximation will be applied to a second-
order polynomial model, with an OU process as underlying process. The increasing
second-order polynomial map and the parameters of the OU process are defined in re-
spectively (3.27) and (5.5). The polynomial model is not normally distributed, so the
cumulants κn are not zero for n > 2. Figure 5 shows the real part of the cumulant ap-
proximation of the characteristic function (5.4) of the second-order polynomial model for
various approximation orders J and in addition the absolute differences. The differences
of the imaginary part of the characteristic function approximations are of the same order
of magnitude as the real part.

Figure 5: The characteristic function and absolute differences of the second-order polynomial
model approximated with the cumulants (5.4) for various J .

5.3 Empirical characteristic function approximation

If the dynamics of a stochastic process are known, the characteristic function can be
approximated with its samples. The justification for the empirical characteristic function
approximation is that there is a direct relation between the cumulative distribution
function (CDF) and the characteristic function. That is to say, the characteristic function
is the Fourier–Stieltjes transform of the CDF. As a consequence, all the information of the
empirical characteristic function is contained in the samples. The empirical characteristic
function is defined as follows:

φ(u|Xt,∆t) ≈ φ̂ECF (u|XT ,∆t) =

∫
eiuxT dFN (xT ) =

1

N

N∑
j=1

eiuXj,T , (5.6)

where XT = {X1,T , ..., XN,T } are iid samples of a process at time T which started at
time t and FN (xT ) the empirical CDF.

The disadvantage of this approximation is that the calculation takes a relatively long
CPU time compared to approximating the characteristic function with the moments or
cumulants of a process, which is done respectively in sections 5.1 and 5.2.

Example 5.4. Let Xj,T be the jth trajectory of the OU process at time T , with the
parameters as defined in (5.5) and j ∈ {1, 2, ..., N}. In Figure 6 the real part of the em-
pirical characteristic function of the OU process are compared with the closed-form ones,



49 5 The characteristic function approximation

φ(u|X0,∆t), where different numbers of samples are used for the empirical characteristic
function. The errors of the imaginary part of the characteristic function approximations
are of the same order of magnitude as the real part.

Figure 6: The empirical characteristic function (5.6) and absolute error for various number of
samples N compared to the closed-form characteristic function of the OU process.

In the results of Example 5.4 it can be seen that the characteristic function approx-
imation around zero is accurate, but that it has a fluctuating error when moving away
from zero, especially when using a small number of samples. This development, of a
fluctuating error, is called the Gibb’s phenomenon. When valuating options by means
of the COS method, there are methods to filter this Gibb’s phenomenon, see e.g. [46].

5.4 Characteristic function approximation with the adjoint ex-
pansion

In this section the characteristic function is approximated with the adjoint expansion
method, introduced in [47]. With the adjoint expansion method the characteristic func-
tion of the general class of local Lévy processes is approximated by a Taylor-based
expansion in a way that it exhibits a convenient form for the pricing of options:

eiux
n∑
k=0

(x− x)kĝn,k(u|t, T ), (5.7)

where ĝn,k does not depend on x. Thus the approximation of the characteristic function
can be written as a sum of products depending on u and functions that are a linear
combination of eiux(x − x)k, k ∈ N. This form has the advantage that it exhibits
properties so that the FFT-based algorithm can be used to price the continuation values
of options/contracts, [48]-[49].
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5.4.1 General framework of the adjoint expansion method

Consider the local Lévy model with the following risk-neutral dynamics:

dXt = µ(t,Xt)dt+ σ(t,Xt)dW
Q
t , (5.8)

where the discounted asset price X̃t := e−rtXt has the martingale property under the
risk-neutral measure Q.

It is known by the Feynman-Kac theorem that the price of a European option with
maturity T and payoff function g(T,XT ) is computed as [37]:

v(t,Xt) = e−r(T−t)EQ [g(T,XT )|Ft] . (5.9)

To compute this option price the following function needs to be considered:

ū(t,Xt) = EQ [g(T,XT )|Ft] . (5.10)

Furthermore, ū(t,Xt) can be computed as a solution of the following Cauchy problem:{
Lū(t, x) = 0, t ∈ [0, T ), x ∈ R,
ū(T, x) = g(T,X), x ∈ R,

(5.11)

where L is the following differential operator:

Lū(t, x) = ∂tū(t, x) + µ(t, x)∂xū(t, x) +
σ2(t, x)

2
∂xxū(t, x). (5.12)

This operator is also called the Kolmogorov backward operator (KBO). Moreover, the
function ū(t, x) in (5.10) can be written as an integral:

ū(t, x) =

∫
R
g(T, y)f(y|T, t, x)dy, (5.13)

where f(y|T, t, x) is defined as the probability density of y at time T given x at time
t < T . Note that f is the fundamental solution of the operator (5.12).

The probability density and its characteristic function form a Fourier pair. The
characteristic function for u of the variable x, φ(u|T, t, x), is given by the following
Fourier transform:

φ(u|T, t, x) = F
(
f(y|T, t, ·)

)
(u) =

∫
R
eiuyf(y|T, t, x)dy. (5.14)
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5.4.2 Adjoint expansion for the OU process

In this section the characteristic function of the OU process is approximated by the
adjoint expansion. The main idea is to consider the approximation of the drift and the
volatility variables of a Lévy process (5.8) with a Taylor expansion.

Remember the OU process as described in Appendix A.2. The drift and the volatility
parameters are given as follows:

µ(t, x) = κ(θ − x),

σ(t, x) = σ.
(5.15)

Note that the volatility parameter is constant for the OU process, thus only the drift
will be approximated. The nth-order Taylor polynomial of µ(t, x) around x is given by:

µ(t, x) ≈ µ0 +

n∑
k=1

µk(x− x)k, (5.16)

where
µ0 = µ(t, x),

µk =
∂kµ(t, x)

∂xk
1

k!

∣∣∣∣
x=x

.

The coefficients of the Taylor approximation are as follows:

µ0 = κ(θ − x) and µ1 = −κ. (5.17)

Note that this is the highest-order approximation, because µk = 0 for all k > 1.

By substituting the Taylor approximation (5.16) in the differential operator (5.12)
the nth-order approximation L is introduced, ∀n ≥ 1:

Ln : = L0 +

n∑
k=1

µk(x− x)k∂x

= L0 − µ1(x− x)∂x,

(5.18)

where

L0 = ∂t + µ0∂x +
σ2

2
∂xx.

The nth-order approximation of the probability density used in (5.13) is defined by:

f (n)(y|T, t, x) =

n∑
k=0

Ḡk(t, x;T, y), (5.19)

where the first term Ḡ0 is the fundamental solution of the following Cauchy problem:{
L0Ḡ

0(t, x;T, y) = 0, t ∈ [0, T ), x ∈ R,
Ḡ0(T, x;T, y) = δy(x), x ∈ R,

(5.20)
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where δy(x) is the delta function. The following terms Ḡk, for k ≥ 1, are defined
recursively with the following Cauchy problems:{

L0Ḡ
k(t, x;T, y) = −

∑k
h=1(Lh − Lh−1)Ḡk−h(t, x;T, y), t ∈ [0, T ), x ∈ R,

Ḡk(T, x;T, y) = 0, x ∈ R,
(5.21)

where ∀h = 1, ..., k:
Lh − Lh−1 = µh(x− x)h∂x. (5.22)

To obtain the nth-order approximation of the characteristic function φ(n), the Fourier
transform with respect to y of the approximated density function f (n) (5.19) is taken:

φ(n)(u|T, t, x) =

n∑
k=0

F
(
Ḡk(t, x;T, ·)

)
(u) =

n∑
k=0

Ĝk(t, x;T, u). (5.23)

Notice that the operator L acts on (t, x) while the characteristic function is a Fourier
transform with respect to y. To utilize this transformation the terms Ḡk will be char-
acterized as solutions of the adjoint operator L̃ of L, which acts on (T, y), after which a
Fourier transformation takes place to obtain the terms Ĝk.

The adjoint operator L̃ of an operator L is defined by:∫
R2

u(t, x)Lv(t, x)dxdt =

∫
R2

v(t, x)L̃u(t, x)dxdt.

The adjoint of the differential operator L (5.12) is called the Kolmogorov forward oper-
ator (KFO). This adjoint of the operator can be approximated in the same way with a
Taylor expansion as the operator (5.12). Furthermore, the fundamental solutions of Ḡk

are characterized as the following adjoint Cauchy problems:{
L̃0Ḡ

0(t, x;T, y) = 0, T > t, y ∈ R,
Ḡk(T, x;T, y) = δx(y), y ∈ R,

(5.24)

where

L̃0 = −∂T − µ0∂y +
1

2
σ2∂yy.

Moreover, the terms Ḡk, for k ≥ 1, are defined recursively as:{
L̃0Ḡ

k(t, x;T, y) = −
∑k
h=1(L̃h − L̃h−1)Ḡk−h(t, x;T, y), t ∈ [0, T ), x ∈ R,

Ḡk(T, x;T, y) = 0, x ∈ R,
(5.25)

where ∀h = 1, ..., k:

L̃h − L̃h−1 = −µh(y − x)h∂y − µhh(y − x)h−1.
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Remark that the adjoint Cauchy problems, (5.24) and (5.25), have a solution in the
Fourier space. Thus to find the terms Ĝk in (5.23) the Fourier transform is taken
and the problem is solved explicitly in the Fourier space. The Fourier transform of
L̃0Ḡ

k(t, x;T, y), for all k ≥ 0, with respect to y is computed as follows:

F
(
L̃0Ḡ

k(t, x;T, ·)
)
(u) = −∂T Ĝk(t, x;T, u) + µ0iuĜ

k(t, x;T, u)− 1

2
σ2u2Ĝk(t, x;T, u)

= −∂T Ĝk(t, x;T, u) + ψ(u)Ĝk(t, x;T, u),
(5.26)

where

ψ(u) = µ0iu−
1

2
σ2u2. (5.27)

This results in the following problems in the Fourier space:{
∂T Ĝ

0(t, x;T, u) = Ĝ0(t, x;T, u)ψ(u), T > t,

Ĝ0(t, x; t, u) = eiux, x ∈ R,
(5.28)

and for k > 0:{
∂T Ĝ

k(t, x;T, u) = ψ(u)Ĝ0(t, x;T, u) +
∑k
h=1 F(L̃h − L̃h−1)Ĝk−h(t, x;T, u), T > t,

Ĝk(t, x; t, u) = 0,

(5.29)
where the Fourier transform F(L̃h − L̃h−1) is as follows, ∀h = 1, ..., k:

F
(
L̃h − L̃h−1

)
= F(−µh(y − x)h∂y − µhh(y − x)h−1)

= µh(−i∂u − x)hiu− µhh(−i∂u − x)h−1.
(5.30)

The solutions of the ordinary differential equations (5.28) and (5.29) are given by:{
Ĝ0(t, x;T, u) = eiux+(T−t)ψ(u),

Ĝk(t, x;T, u) =
∫ T
t
eψ(u)(T−s)∑k

h=1 F
(
L̃h − L̃h−1

)
Ĝk−h(t, x; s, u)ds, k ≥ 1.

(5.31)

Now for k = 1 we obtain:

Ĝ1(t, x;T, u) =

∫ T

t

eψ(u)(T−s)
[(
µ1(−i∂u − x)iu− µ1

)
Ĝ0(t, x; s, u)

]
ds

=

∫ T

t

eψ(u)(T−s)µ1

(
∂uuĜ

0(t, x; s, u)− xiuĜ0(t, x; s, u)− Ĝ0(t, x; s, u)
)
ds

(∗)
=

∫ T

t

eψ(u)(T−s)Ĝ0(t, x; s, u)µ1

(
u (ix+ (s− t)ψ′(u)) eiux+(s−t)ψ(u) − xiu

)
ds

=Ĝ0(t, x;T, u)µ1

∫ T

t

(
u (ix+ (s− t)ψ′(u)) eiux+(s−t)ψ(u) − xiu

)
ds

=Ĝ0(t, x;T, u)µ1

(
1

2
uψ′(u)(T − t)2 + iu(x− x)(T − t)

)
,

(5.32)
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with ψ(u) as in (5.48), ψ′(u) = µ0i− σ2u and at (∗) it is used that:

∂u

(
uĜ0(t, x; s, u)

)
= Ĝ0(t, x; s, u) + u (ix+ (s− t)ψ′(u)) eiux+(s−t)ψ(u).

Thus the first-order approximation of the characteristic function (5.23) is given by:

φ(1)(u|T, t, x) = Ĝ0(t, x;T, u) + Ĝ1(t, x;T, u)

= eiux+ψ(u)(T−t)
(

1 + µ1

(
1

2
uψ′(u)(T − t)2 + iu(x− x)(T − t)

))
.

(5.33)
For k = 2 a similar straightforward computation is done, which results in:

Ĝ2(t, x;T, u) = Ĝ0(t, x;T, u)

2∑
j=0

ĝ
(2)
j (T − t, u)(x− x)j , (5.34)

where

ĝ
(2)
0 (T − t, u) =µ2

1u(T − t)3

(
1

8
(T − t)uψ′(u)2 +

1

6
uψ′′(u) +

1

6
ψ′(u)

)
+ µ2(T − t)2

(
− 1

3
ui(T − t)ψ′(u)− 1

2
uψ′′(u)

)
,

ĝ
(2)
1 (T − t, u) =µ2

1u(T − t)2

(
1

2
(T − t)iuψ′(u) +

1

2
i

)
+ µ2u(T − t)2ψ′(u),

ĝ
(2)
2 (T − t, u) =− 1

2
µ2

1(T − t)2u2 + µ2iu(T − t).

(5.35)

Resulting in the second-order approximation of the characteristic function (5.23):

φ(2)(u|T, t, x) = Ĝ0(t, x;T, u) + Ĝ1(t, x;T, u) + Ĝ2(t, x;T, u). (5.36)

The first- and second-order approximation of the characteristic function, respectively
(5.33) and (5.36), can be written in the form (5.7), for which the FFT-based algorithm
can be used to compute the continuation value by means of the COS method in an
efficient way.

5.4.3 Adjoint expansion for the second-order polynomial model

The adjoint expansion for the polynomial model is done in a similar way as the adjoint
expansion for the OU process. However, the polynomial model does not have a constant
volatility parameter, therefore it has an additional Taylor approximation term compared
to the adjoint expansion for the OU process. In this section a second-order polynomial
model will be considered, the adjoint expansion of higher-order polynomial models can
be determined in the same way.

Consider the following second-order polynomial model, where Xt follows an OU pro-
cess: 

St = CX2
t + cXt,

dXt = κ(θ −Xt)dt+ σdWt,

C = 1−c
2 .

(5.37)
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With Ito’s lemma and the substitution of Xt = Φ−1(St) the following SDE is obtained
for this model:

dSt = µ̃(t, St)dt+ σ̃(t, St)dWt, (5.38)

where for C 6= 0:

µ̃(t, St) = κ

(
θ −
√
c2 + 4CSt − c

2C

)(√
c2 + 4CSt

)
+ 2Cσ2,

σ̃(t, St) = σ
(√

c2 + 4CSt

)
.

(5.39)

To obtain the approximation of the characteristic function we develop a Taylor ex-
pansion around x for coefficients in the differential operator L (5.12):

a(t, x) :=
σ̃2(t, x)

2
and µ̃(t, x).

The nth-order approximation of L is defined as follows:

Ln : = L0 +

n∑
k=1

[
µk(x− x)k∂x + ak(x− x)k∂xx

]
, (5.40)

where
L0 = ∂t + µ0∂x + a0∂xx,

and

µn =
∂nµ(t, x)

∂xn
1

n!

∣∣∣∣
x=x

and an =
∂na(t, x)

∂xn
1

n!

∣∣∣∣
x=x

.

This gives us the following coefficients µn and an for n ∈ {0, 1}:

µ0 = κ

(
θ −
√
c2 + 4Cx− c

2C

)
·
(√

c2 + 4Cx
)

+ 2Cσ2, a0 =
1

2
σ2
(
c2 + 4Cx

)
,

µ1 =
κ
(
−2
√
c2 + 4Cx+ c+ 2Cθ

)
√
c2 + 4Cx

, a1 = 2Cσ2

(5.41)
Remember that the nth-order approximation of the density f is given by:

f (n)(y|T, t, x) =

n∑
k=0

Ḡk(t, x;T, y). (5.42)

The fundamental solutions of the terms Ḡk, k ≥ 0, have the same Cauchy problems as
described in (5.20) and (5.21), except Lh − Lh−1 (5.22) is different, ∀h = 1, ..., k:

Lh − Lh−1 = µh(x− x)h∂x + ah(x− x)h∂xx. (5.43)

Remember also that the nth-order approximation of the characterisitic function is given
by the Fourier transform of f (n) (5.42):

φ(n)(u|T, t, x) =

n∑
k=0

F
(
Ḡk(t, x;T, ·)

)
(u) =

n∑
k=0

Ĝk(t, x;T, u). (5.44)
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Furthermore, due to the fact that the operator L acts on (t, x) and the approximated
characteristic function φ(n) is a Fourier transform with respect to y, the adjoint operator
of L will be used, acting on (T, y). The adjoint Cauchy problems are as follows:{

L̃0Ḡ
0(t, x;T, y) = 0, T > t, y ∈ R,

Ḡk(T, x;T, y) = δx(y), y ∈ R,
(5.45)

where
L̃0 = −∂T − µ0∂y + a0∂yy.

Moreover, the terms Ḡk, for k ≥ 1, are defined recursively as:{
L̃0Ḡ

k(t, x;T, y) = −
∑k
h=1(L̃h − L̃h−1)Ḡk−h(t, x;T, y), t ∈ [0, T ), x ∈ R,

Ḡk(T, x;T, y) = 0, x ∈ R,
(5.46)

where ∀h = 1, ..., k:

L̃h − L̃h−1 =− µh(y − x)h∂y − µhh(y − x)h−1 + ahh(h− 1)(y − x)h−2

+ 2ahh(y − x)h−1∂y + ah(y − x)h∂yy.

In order to compute the terms Ĝk, the Fourier transforms of the adjoint Cauchy problems
(5.45) and (5.46) are taken. First we see that the Fourier transform of L̃0Ḡ

k(t, x;T, y),
for all k ≥ 0, w.r.t. y is given by:

F
(
L̃0Ḡ

k(t, x;T, ·)
)
(u) = −∂T Ĝk(t, x;T, u) + ψ(u)Ĝk(t, x;T, u), (5.47)

where
ψ(u) = µ0iu− a0u

2. (5.48)

Furthermore, the Fourier transform F(L̃h − L̃h−1) is as follows, ∀h = 1, ..., k:

F
(
L̃h − L̃h−1

)
=µh(−i∂u − x)hiu− µhh(−i∂u − x)h−1 + ahh(h− 1)(−i∂u − x)h−2

− 2ahh(−i∂u − x)h−1iu− an(−i∂u − x)hu2.
(5.49)

Hence, the Cauchy problems (5.45) and (5.46) have the following solution in the Fourier
space:{

Ĝ0(t, x;T, u) = eiux+(T−t)ψ(u),

Ĝk(t, x;T, u) =
∫ T
t
eψ(u)(T−s)∑k

h=1 F
(
L̃h − L̃h−1

)
Ĝk−h(t, x; s, u)ds k ≥ 1.

(5.50)
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For k = 1 we obtain:

Ĝ1(t, x;T, u) =

∫ T

t

eψ(u)(T−s)
[(
µ1(−i∂u − x)iu− µ1 − 2a1iu

+ a1(−i∂u − x)(−u)2
)
Ĝ0(t, x; s, u)

]
ds

=

∫ T

t

eψ(u)(T−s)
[(
µ1(−i∂u − x)iu− µ1

)
Ĝ0(t, x; s, u)

]
ds

+

∫ T

t

eψ(u)(T−s)
[(
− 2a1iu+ a1(−i∂u − x)(−u)2

)
Ĝ0(t, x; s, u)

]
ds

(5.32)
= Ĝ0(t, x;T, u)µ1

(
1

2
uψ′(u)(T − t)2 + iu(x− x)(T − t)

)
+ Ĝ0(t, x;T, u)

∫ T

t

a1iu
2
(
ix+ (s− t)ψ(u)

)
+ a1xu

2ds

=Ĝ0(t, x;T, u)

(
µ1

1

2
uψ′(u)(T − t)2 + µ1iu(x− x)(T − t)

+
1

2
a1iu

2ψ′(u)(T − t)2 − a1u
2(x− x)(T − t)

)
.

(5.51)
The first-order adjoint expansion approximation of the characteristic function of the
second-order polynomial model is therefore:

φ(1)(u|T, t, x) = Ĝ0(t, x;T, u) + Ĝ1(t, x;T, u), (5.52)

where Ĝ0(t, x;T, u) and Ĝ1(t, x;T, u) are respectively defined in (5.50) and (5.51). This
can be written in the form (5.7), for which the FFT-based algorithm can be used to
compute the continuation values by means of the COS method.

Remark 5.5. Most commonly used in practice is to expand the coefficients around
x = x, which simplifies the obtained approximations of the characteristic function sig-
nificantly. In this way, the characteristic function approximation is just eiux multiplied
by a sum of terms that depend only on t, T and u. This has the same form as de-
scribed in (4.15) with β = 1 and therefore the FFT-based algorithm can be used for the
computation of the continuation values as mentioned in Remark 4.3.

If x 6= x then a FFT-based algorithm can still be used, for this we refer to section
3.2 of [48].

Example 5.6. In this example the first- and second-order adjoint expansion is used to
approximate the characteristic function of the OU process with the parameters defined
in (5.5). Figure 7 shows the real part of the approximation of the characteristic function
of the OU process with the adjoint expansion and the absolute error of these approxi-
mations. The imaginary part of the characteristic function approximations has an error
of the same order of magnitude as the real part.
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Figure 7: The approximation and absolute error of the characteristic function of the OU process
with the adjoint expansion for J = 1 and J = 2, respectively (5.33) and (5.36).

5.5 An efficient characteristic function approximation for the
COS method

In this section we introduce an adjustment to the characteristic function approximation
with the cumulants, defined in Section 5.2, so that it can be used to efficiently compute
the continuation values by means of the COS method with the FFT-based algorithm.
The approximation with the cumulants is used because after testing the various approx-
imations, the cumulant approximation was the most accurate and takes relatively little
computation time (although these adjustments can also be applied to approximations
with the moments and the empirical method, respectively Section 5.1 and 5.3).

The approximation with the adjoint expansion is also quite accurate and takes little
computation time and the FFT-based algorithm can be directly applied without the
adjustments introduced in this section, see Remark 5.5.

As mentioned in Section 4.2 and Remark 4.3, the efficient FFT-based algorithm can
be used if the characteristic function can be written in the following form with β = 1:

φ(u|x,∆t) = eiuβxφ(u|∆t) β=1
= eiuxφ(u|∆t), (5.53)

where φ(u|∆t) does not depend on x.
The method suggested here uses the following two consecutive approximations on the

closed-form characteristic function:

1. Approximate the closed-form characteristic function of a process with its cumu-
lants, described in Section 5.2:

φ̂1(u|x,∆t) = exp

 J∑
j=1

κj
(iu)j

j!

 . (5.54)

This approximation has the following relation with the closed-form characteristic
function:

φ̂1(u|x,∆t) = φ(u|x,∆t) · e−iu
∑∞
j=J+1 κj

(iu)j−1

j!

= φ(u|x,∆t) · eiuε̂1 ,
(5.55)
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where

ε̂1 = −
∞∑

j=J+1

κj
(iu)j−1

j!
. (5.56)

However the value of the stochastic process at time t, denoted as x, is not known for
t > 0, due to the fact that the asset/electricity prices are simulated from time t = 0.
Therefore we use E[x|F0] instead of x in our approximation of the characteristic
function. This results in the following approximation of the characteristic function
φ(u|∆t, x) =

∫∞
−∞ eiuyf(y|∆t, x)dy:

φ̃1(u|x,∆t) = exp

 J∑
j=1

κ̃j
(iu)j

j!

 , (5.57)

where κ̃j is the jth order cumulant of y conditional on E[x|F0] and ∆t = T − t.
The approximation (5.57) has the following relation with the closed-form charac-
teristic function:

φ̃1(u|x,∆t) = φ(u|E[x|F0],∆t) · e−iu
∑∞
j=J+1 κ̃j

(iu)j−1

j!

= eiuβE[x|F0]φ(u|∆t) · e−iu
∑∞
j=J+1 κ̃j

(iu)j−1

j!

= φ(u|x,∆t) · eiuβ(E[x|F0]−x) · e−iu
∑∞
j=J+1 κ̃j

(iu)j−1

j!

= φ(u|x,∆t) · eiuε̃1 ,

(5.58)

where

ε̃1 = β (E[x|F0]− x)−
∞∑

j=J+1

κ̃j
(iu)j−1

j!
. (5.59)

2. Approximate the characteristic function so that the FFT-based algorithm can be
applied, which is the case when β = 1. This can be accomplished by the following
approximation of the general characteristic function [43]:

φ̃2(u|x,∆t) = φ(u|E[x|F0],∆t)eiuxe−iuE[x|F0]. (5.60)

It has the following connection with the closed-form characteristic function:

φ̃2(u|x,∆t) = φ(u|E[x|F0],∆t)eiuxe−iuE[x|F0]

= eiuβE[x|F0]φ(u|∆t)eiuxe−iuE[x|F0]

= eiuβE[x|F0]φ(u|∆t)eiuxe−iuE[x|F0]eiuβxe−iuβx

= eiuβxφ(u|∆t)eiuxe−iuE[x|F0]eiuβE[x|F0]e−iuβx

= φ(u|x,∆t) · eiu(1−β)(x−E[Xt|F0])

= φ(u|x,∆t) · eiuε̃2 ,

(5.61)

where ε̃2 is defined by:
ε̃2 = (1− β)(x− E[x|F0]). (5.62)
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These two approximation methods can be combined, which results in the following ap-
proximation of the characteristic function:

φ̃(u|x,∆t) = φ̃1(u|x,∆t) · eiuxe−iuE[Xt|F0]. (5.63)

This approximation has the following relation with the closed-form characteristic func-
tion:

φ̃(u|x,∆t) = φ̃1(u|x,∆t) · eiux · e−iuE[x|F0]

(5.58)
= φ(u|E[x|F0],∆t) · e−iu

∑∞
j=J+1 κ̃j

(iu)j−1

j! · eiux · e−iuE[x|F0]

(5.61)
= φ(u|x,∆t) · eiu(1−β)(x−E[x|F0]) · e−iu

∑∞
j=J+1 κ̃j

(iu)j−1

j!

= φ(u|x,∆t) · eiuε3 ,

(5.64)

where ε3 is defined as follows:

ε3 = (1− β)(x− E[x|F0])−
∞∑

j=J+1

κ̃j
(iu)j−1

j!
. (5.65)

5.6 Error analysis for COS method with approximated charac-
teristic function

This section shows the error of using the approximated characteristic function as defined
in (5.63) for the valuation of a Bermudan option with the COS method. In this error
analysis we follow the analysis from [43] applied to our approximation of the character-
istic function. The error is described as the difference between the Bermudan option
value obtained with the closed-form characteristic function and obtained with the ap-
proximated characteristic function. There is also an error using the COS method itself,
this error and its convergence are described in [39]. Furthermore, the error of using the
adjoint expansion for valuation of Bermudan options is specified in Section 4 of [48].

For the error analysis the following errors are considered:

• ε3: The error by approximating the characteristic function as in (5.64).

• εc(x, t): The error in the continuation value at time t.

• εx(t): The error in the early-exercise point x∗t at exercise moment t.

• εv(t): The error in the coefficients Vk(t).

As earlier mentioned, the value of the Bermudan option is recovered in a backward man-
ner. The error analysis is approached in the same way, first the error in the step from
tM to tM−1 is examined.
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The error in the first step
In this step an error, due to the approximation of the characteristic function, is dis-
tinguished in the continuation value and in the computation of the early-exercise point
x∗tM−1

with Newton’s method. These errors are the origin of the error in the coefficients
Vk(tM−1), defined by εv(tM−1). For the other steps, m = 1, ...,M − 2, the errors in the
continuation value and the early-exercise point are not only related to the approximated
characteristic function, but also to the error in the coefficients Vk(tm+1).

The error in the continuation value in the first step is given in the Lemma 5.7.

Lemma 5.7. The error in the continuation value is given by

εc(x, tM−1) = ĉ
(
x+ β−1ε3, tM−1

)
− ĉ(x, tM−1), (5.66)

where ĉ(x, t) is from the COS formula for the continuation value, defined in (4.39), and
ε3 is defined in (5.65).

Proof. In (5.64) the relation between the approximated and the closed-form characteristic
functions is defined. By rewriting we get:

φ̃(u|x,∆t) = φ(u|x,∆t) · eiuε3

= eiuβxφ(u|∆t) · eiuε3

= eiuβ(x+β−1ε3)φ(u|∆t)
= φ(u|x+ β−1ε3,∆t).

(5.67)

By inserting this into the COS formula for the continuation value ĉ(x, tM−1), (4.39), the
following is obtained:

c̃(x, tM−1) := ĉ(x+ β−1ε3, tM−1). (5.68)

Therefore the error in the continuation value, due to the use of the approximated char-
acteristic function, is as follows:

εc(x, tM−1) = c̃(x, tM−1)− ĉ(x, tM−1) = ĉ
(
x+ β−1ε3, tM−1

)
− ĉ(x, tM−1).

Next a corollary is presented, which explains how the positivity/negativity of the
error of the characteristic function affects the positivity/negativity of the error of the
continuation value and early-exercise point.

Corollary 5.8. For put options it holds that if β−1ε3 > 0, then εc(x, tM−1) < 0 ∀x and
subsequently εx(tM−1) > 0. To the contrary, if β−1ε3 < 0, then εc(x, tM−1) > 0 ∀x and
subsequently εx(tM−1) < 0.

Proof. The continuation value is a decreasing function for put options, which implies
that for β−1ε3 > 0 and ∀x:

ĉ(x+ β−1ε3, tM−1) < ĉ(x, tM−1). (5.69)

Thus it holds according to lemma 5.7 that:

εc(x, tM−1) = ĉ(x+ β−1ε3, tM−1)− ĉ(x, tM−1) < 0.
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Now it is shown that εx(tM−1) > 0. It is known that the early-exercise point x∗ is
the point where the continuation value is equal to the payoff function. So for the early
exercise point, obtained by the closed-form characteristic function, we have:

ĉ(x∗tM−1
, tM−1) = g(x∗tM−1

, tM−1).

As a result and by the fact that the continuation value is a decreasing function it holds
that:

c̃(x∗tM−1
, tM−1) = ĉ(x∗tM−1

+ β−1ε3, tM−1) < ĉ(x∗tM−1
, tM−1) = g(x∗tM−1

, tM−1), (5.70)

where equation (5.68) is used.
So the continuation value obtained with the approximated characteristic function,

c̃(x∗tM−1
, tM−1), is less than the payoff function, g(x∗tM−1

, tM−1). Consequently the early-
exercise point obtained by the approximated characteristic function must be larger than
the early-exercise point obtained by the closed-form characteristic function and thus
εx(tM−1) > 0.

The proof that if β−1ε3 < 0 then εc(x, tM−1) > 0 ∀x and subsequently εx(tM−1) < 0
is similar.

The next lemma shows the upper bounds of the absolute errors |εc(x, tM−1)| and
|εx(tM−1)|.

Lemma 5.9. ∀x ∈ [a, b] and ∀t, we have that:∣∣ĉ(x+ β−1ε3, t)− ĉ(x, t)
∣∣ ≤ Θ ·

∣∣β−1ε3
∣∣ =: ε̃c, (5.71)

where Θ is based on the underlying process Xt being used for the characteristic function
and subsequent on the terms which are represented in the payoff function of the put
option:

Θ =



Kea, for St = KeXt ,

ea, for St = eXt ,

1, for St = Xt,

∂
∂xΦ(x)

∣∣∣∣
x=a

, for St = Φ(Xt).

(5.72)

The bound (5.71) implies that ∀x ∈ [a, b]:

|εc(x, tM−1)| ≤ ε̃c, (5.73)

Furthermore, the error |εx(tM−1)| is bounded by:

|εx(tM−1)| ≤ ε̃c∣∣h′(δ, tM−1)
∣∣ , (5.74)

for some δ ∈ (x∗tM−1
, x∗tM−1

+ εx(tM−1)) and h′(x, t) = ∂
∂xh(x, t) = ∂

∂x (g(x, t)− ĉ(x, t)).

Proof. This is the proof for the polynomial model St = Φ(Xt) where the characteristic
function of the underlying process Xt is used. The differences in the proof for other
processes will be indicated in brackets.
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First the Lagrange’s mean value theorem is applied:

∣∣ĉ(x+ β−1ε3, t)− ĉ(x, t)
∣∣ =

∣∣β−1ε3
∣∣ ∣∣∣∣∣
[
∂

∂x
c(x, t)

]
x=δ0

∣∣∣∣∣ , (5.75)

where δ0 ∈ (x, x+ β−1ε3). Note that for a Bermudan put option it holds that ∂c(x,t)
∂x is

a non-positive and non-decreasing function for x ≥ Φ−1(K) (With St = Xt it holds for
x ≥ K, with St = eXt for x ≥ log(K) and with St = KeXt for x ≥ 0). Furthermore,
∂c(x,t)
∂x goes to zero as x goes to infinity. Therefore, if a ≥ Φ−1(K) we have:

max
x∈[a,b]

∣∣∣∣∂c(x, t)∂x

∣∣∣∣ =

∣∣∣∣[∂c(x, t)∂x

]
x=a

∣∣∣∣ . (5.76)

This derivative of the continuation value at x = a is denoted by c′(a, t). Now (5.75) can
be bounded by: ∣∣ĉ(x+ β−1ε3, t)− ĉ(x, t)

∣∣ ≤ ∣∣β−1ε3
∣∣ |c′(a, t)| .

If a < Φ−1(K), the equation (5.76) does not hold. However, this upper bound is still
valid, because otherwise the error can be overestimated [43], e.g. when x is very small
the payoff function is used instead of the continuation value over the integration range
[a, b] and thus the error will be zero.

Thus, it holds that for each time step that |c′(x, t)| ≤ |g′(x, t)| for x < Φ−1(K). So,
for a < Φ−1(K) we have:

|c′(a, t)| ≤ |g′(a, t)| = Φ′(a).

For a ≥ Φ−1(K) it holds that:

|c′(a, t)| ≤ |c′(Φ−1(K), t)| ≤ |g′(Φ−1(K), t)| = Φ′(Φ−1(K)) ≤ Φ′(a).

Thus for all cases we have:
|c′(a, t)| ≤ Φ′(a). (5.77)

Similar derivations can be done for St = KeXt , St = eXt and St = Xt, which results in:

|c′(a, t)| ≤



Kea, for St = KeXt ,

ea, for St = eXt ,

1, for St = Xt,

∂
∂xΦ(x)

∣∣∣∣
x=a

, for St = Φ(Xt).

(5.78)

By substitution of (5.78) in (5.76) the following boundary is obtained ∀x ∈ [a, b] and ∀t:∣∣ĉ(x+ β−1ε3, t)− ĉ(x, t)
∣∣ ≤ Θ ·

∣∣β−1ε3
∣∣ =: ε̃c,

where Θ is defined in (5.72). Thus it holds that:

|εc(x, tM−1)| ≤ ε̃c.
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Now we take a look at the error in the early-exercise point at time tM−1. Assume
x∗tM−1

and x∗tM−1
+ εx(tM−1) are the early-exercise points obtained by the closed-form

and approximated characteristic function, respectively. We have:

ĉ(x∗tM−1
, tM−1) = g(x∗tM−1

, tM−1),

c̃(x∗tM−1
+ εx(tM−1), tM−1) = g(x∗tM−1

+ εx(tM−1), tM−1).
(5.79)

Therefore:

g(x∗tM−1
+ εx(tM−1), tM−1)− ĉ(x∗tM−1

+ εx(tM−1), tM−1)

= c̃(x∗tM−1
+ εx(tM−1), tM−1)− ĉ(x∗tM−1

+ εx(tM−1), tM−1)

= ĉ(x∗tM−1
+ εx(tM−1) + εx(tM−1), tM−1)− ĉ(x∗tM−1

+ εx(tM−1), tM−1)

=: εc(x
∗
tM−1

+ εx(tM−1), tM−1),

(5.80)

using equation (5.68).
We define the following function: h(x, t) := g(x, t)− ĉ(x, t). Due to (5.79) and (5.80)

it holds respectively:

h(x∗tM−1
, tM−1) = 0,

h(x∗tM−1
+ εx(tM−1), tM−1) = εc(x

∗
tM−1

+ εx(tM−1), tM−1).
(5.81)

By (5.81) and because we already saw that |εc(x, tM−1)| ≤ Θ|β−1ε3| ∀x, it holds that:

|h(x∗tM−1
+εx(tM−1), tM−1)−h(x∗tM−1

, tM−1)| = |εc(x∗tM−1
+εx(tM−1), tM−1)| ≤ Θ|β−1ε3|.

By the Lagrange mean value theory we obtain:

|εx(tM−1)|
∣∣∣∣[∂h(x, tM−1)

∂x

]
x=δ

∣∣∣∣ ≤ Θ|β−1ε3|,

where δ ∈ (x∗tM−1
, x∗tM−1

+ εx(tM−1)).
Due to the fact that the early-exercise point x∗ is unique for Bermudan put options it
holds that:

|h(x∗tM−1
+ εx(tM−1), tM−1)− h(x∗tM−1

, tM−1)| > 0.

Therefore if εx(tM−1) 6= 0 we have |h′(δ, tM−1)| > 0 and thus:

|εx(tM−1)| ≤ Θ|β−1ε3|
|h′(δ, tM−1)|

.

As shown in Lemma 5.9, the upper bound for the error in the early-exercise points
can be determined by the error of the continuation value. If the error of the continuation
value goes to zero, the error of the early-exercise points also goes to zero.

In the next lemma the error of the coefficients Vk(tM−1), defined in (4.42), is exam-
ined.
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Lemma 5.10. For εx(tM−1) > 0, there exists two points, δ1 ∈ (x∗tM−1
+ εx(tM−1), b)

and δ2 ∈ (x∗tM−1
, x∗tM−1

+ εx(tM−1)), so that:

εv(tM−1) =εc(δ1, tM−1)Ik
(
x∗tM−1

+ εx(tM−1), b
)

+
(
g(δ2, tM−1)− ĉ(δ2, tM−1)

)
Ik
(
x∗tM−1

, x∗tM−1
+ εx(tM−1)

)
,

(5.82)

where

Ik
(
x1, x2

)
=

2

b− a

∫ x2

x1

cos

(
kπ
x− a
b− a

)
dx.

Moreover, there is an upper bound for the terms in front of the integral Ik:

|εc(δ1, tM−1)| ≤ ε̃c and
∣∣(g(δ2, tM−1)− ĉ(δ2, tM−1)

)∣∣ ≤ ε̃c.
Proof. See Lemma 4.3 of [43].

Remark 5.11. The proof where εx(tM−1) < 0 goes similar and gives the following
results. There exists two points, δ1 ∈ (x∗tM−1

, b) and δ2 ∈ (x∗tM−1
+ εx(tM−1), x∗tM−1

), so
that:

εv(tM−1) =εc(δ1, tM−1)Ik
(
x∗tM−1

, b
)

+
(
g(δ2, tM−1)− ĉ(δ2, tM−1)

)
Ik
(
x∗tM−1

+ εx(tM−1), x∗tM−1

)
.

(5.83)

Moreover, |εc(δ1, tM−1)| ≤ ε̃c and
∣∣(g(δ2, tM−1)− ĉ(δ2, tM−1)

)∣∣ ≤ ε̃c.
Remark 5.12. As described in (4.44), the coefficient Vk(t) can be split in two parts, in
one part the continuation value is considered and in the other part the payoff function.
The error εv(tM−1), for εx(tM−1) > 0, also consists of two parts:

1. εc(δ1, tM−1)Ik
(
x∗tM−1

+ εx(tM−1), b
)
.

2.
(
g(δ2, tM−1)− ĉ(δ2, tM−1)

)
Ik
(
x∗tM−1

, x∗tM−1
+ εx(tM−1)

)
.

The two parts of the error refer to the split in the coefficient Vk(t). The first error occurs
because the continuation value is taken between x∗+ εx and b instead of between x∗ and
b. The second error because the payoff function is taken between a and x∗ + εx instead
of between a and x∗. A similar statement can be made about εx(tM−1) < 0.

The error in the other steps
The error in the steps m ∈ {M − 2, ..., 1} will be determined with a backward induction
proof. The main idea is to find an upper bound for εc(x, t0), because as earlier mentioned
it holds that the value of a Bermudan option at initial time t0 is equal to the continuation
value at time t0, v(x, t0) = c(x, t0). First the error at exercise moment t = tM−2 will be
analysed:

Lemma 5.13. ∀x ∈ [a, b] it holds that:

|εc(x, tM−2)| ≤ ε̃c · (1 + e−r∆t),

where ∆t = T
M and ε̃c defined in (5.71).

Proof. See Lemma 4.4 of [43].
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With induction the error in the continuation value at t0 is obtained as follows:

Theorem 5.14. ∀x ∈ [a, b], j ∈ {1, ...,M − 1} and where the induction assumption is:

|εc(x, tM−j)| ≤ ε̃c
j∑
l=1

e−r(l−1)∆t.

Then it follows that, ∀x,

|εc(x, tM−j−1)| ≤ ε̃c
j+1∑
l=1

e−r(l−1)∆t.

Proof. See Theorem 4.1 and Remark 4.2 of [43].

Remark 5.15. The error in the Bermudan option value at initial time t0 is equal to
the error of the continuation value at time t0 and therefore can be bounded according
to Theorem 5.14 by:

|εc(x, t0)| ≤ ε̃c
M∑
l=1

e−r(l−1)∆t,

where ∆t = T
M and ε̃c defined in (5.71).
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6 The Least Squares Monte Carlo method

In this section the Least Squares Monte Carlo method (LSMC) is discussed, developed
by Longstaff and Schwartz [50]. Remember that the values of the Bermudan option, the
Bermudan option with multiple early-exercise rights and the electricity storage contract
are obtained by computing the continuation values. Therefore it is important for the
valuation of these financial derivatives to determine the continuation value as accurate
as possible. In Section 4 the COS method is used to obtain an approximation of the
continuation values. The LSMC is another method to approximate these continuation
values, based on simulations of the asset price.

This method presents a simple, intuitive, yet powerful approximation to value the
Bermudan option, the Bermudan option with multiple early-exercise rights and the elec-
tricity storage contract. The main insight behind LSMC is that the conditional expecta-
tion to compute the continuation value can be approximated by the use of least squares
regression as a function of the simulated price process.

An advantage of the LSMC is that it is not model dependent, a multi-factor pricing
model can be valuated just as easily as a simpler model. In addition, the method is easy
to implement, since only a least squares regression is needed on the simulations of the
pricing model. However, the COS method generally has less CPU time, jumps in the
price process are easy to add with the COS method and the Greeks can be determined
without additional computational costs.

6.1 LSMC for Bermudan options

The LSMC for Bermudan options uses least squares regression to compute the continu-
ation value at the M exercise moments, t1, ..., tM . This is done for each simulated asset
price path. Recall that the continuation value is computed in a backward manner, as
described in the backward induction algorithm (3.10).

Before explaining the backward algorithm of the LSMC method, the following nota-
tions are defined:

• Sim : the asset price of trajectory i at time tm.

• POim := g(tm, S
i
m), where g(t, S) is the payoff function of asset S at time t.

• CV im := c(tm, S
i
m), where c(t, S) is the continuation value of asset S at time t.

• CF im: The cash flow of the asset trajectory i at time tm. Note that for each
trajectory i there is at most one exercise moment tm ∈ {t1, ..., tM} where the cash
flow CF im > 0, since the Bermudan option has only one exercise right.

• DCF im :=
∑
k>m e

−r(k−m)∆tCF ik, is the discounted cash flow.

With the LSMC method we start at the last exercise moment tM and work backward
in time. At time tM the continuation values of all the trajectories are equal to zero, since
it is the last moment to exercise. Therefore at time tM the cash flow equals the payoff,
∀ trajectories i:

CF iM = POiM ,

where for a Bermudan put option the payoff is defined by POim := max(K − Sim, 0).
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For the next step, at exercise moment tM−1, the option is exercised iff the payoff at
time tM−1 exceeds the continuation value, i.e. the value of exercising exceeds the value
if you do not exercise.

The LSMC method uses least squares regression of the discounted cash flowsDCF iM−1

onto the basis functions of the asset price of all the trajectories that are in the money at
time tM−1 to approximate the continuation value. Only in the money asset trajectories
are considered since the exercise decision is only relevant if the option is in the money,
otherwise you will not exercise. The approximation of the continuation value with the
LSMC is defined as follows, for all trajectories i that are in the money at time tM−1:

CV iM−1 ≈
P∑
p=1

aM−1
p Bp(S

i
M−1), (6.1)

where Bp is the set of basis functions of the asset price SiM−1 and aM−1
p the regression

coefficients at time tM−1. For example if a third-order polynomial is used for the regres-
sion then: CV iM−1 ≈ a1 + a2S

i
M−1 + a3(SiM−1)2 + a4(SiM−1)3. Finding the regression

coefficient aM−1
p boils down to regressing the discounted cash flows, DCFM−1, on the

asset prices, SM−1, such that the coefficients fit the cross-sectional data best in least
squares sense.

Now that the continuation value is approximated, the exercise decision at time tM−1

can be updated. The holder of the option will perform the early-exercise of trajectory i
at time tM−1 if the payoff function exceeds the continuation value, POiM−1 > CV iM−1.
The cash flow values for each trajectory are now updated as follows:

CF iM−1 =

{
POiM−1 , if POiM−1 > CV iM−1,

0 , otherwise.
(6.2)

Note that when the trajectory is exercised at time tM−1 and thus the cash flow CF iM−1

is set to the payoff function, the cash flow at time tM is set to zero, because a Bermudan
option has only one exercise right.

For the other iterations backward in time, m ∈ {M − 2, ..., 1}, the same steps can
be taken to obtain the cash flow CF im of each trajectory i. So the cash flow is set to
the payoff function if POim > CV im, where the continuation value is approximated by
(6.1) applied to tm instead of tM−1. Again note that the cash flow CF ik for k > m is
set to zero if the holder exercises at time tm, because the Bermudan option can only be
exercised once.

At the end, when all the cash flows CF im are known for all trajectories i ∈ {1, ..., N}
and all time steps m ∈ {1, ..,M}, the approximation of the Bermudan option value is
given by the arithmetic average of the discounted cash flows:

v(t0, S0) ≈ 1

N

N∑
i=1

DCF i0 =
1

N

N∑
i=1

M∑
m=1

e−r·m∆tCF im. (6.3)

The psuedocode of the LSMC method for pricing the Bermudan option is given in
Algorithm 1 in Appendix B.
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6.2 LSMC for Bermudan options with multiple early-exercise
rights

In this section the LSMC method for Bermudan options is extended to have multiple
early-exercise rights. This extension is introduced by Dörr [51].

The LSMC method for multiple early-exercise rights works in a similar way as for
the Bermudan options, where the holder can only exercise once - described in Section
6.1. However, now the number of early-exercise rights left must be taken into account.
Therefore, in the notation of Section 6.1 a superscript j is added for the variables affected
by the number of early-exercise rights left:

• CV i,jm := cj(tm, S
i
m), where cj(tm, S

i
m) is the continuation value of the option with

j ∈ R rights left at time tm with the underlying asset Sim.

• CF i,jm : The cash flow of the asset trajectory i at time tm with j ∈ R rights left.

• DCF i,jm :=
∑
k>m e

−r(k−m)∆tCF i,jk is the discounted cash flow if there are j ∈ R
rights left.

For the asset price and the payoff of trajectory i at time tm the same notation is used
as in section 6.1, respectively Sim and POim.

The main difference between the LSMC method for one early-exercise right and for
multiple early-exercise rights is that the value of exercising the option is not only equal
to the payoff but equal to the payoff plus the continuation value with one right less.
Therefore least squares regression needs to be done to approximate the continuation
value for all the number of exercise rights j ∈ R. Furthermore, due to the fact that
the holder has more than one early-exercise right the cash flow for trajectory i can be
positive for more than one exercise moment, in contrast with the LSMC method for the
Bermudan option.

Now the backward LSMC algorithm for the Bermudan option with multiple early-
exercise rights will be elaborated. The algorithm has the same two settings/steps as
described in Section 3.3:

1. The LSMC algorithm starts with the initialization for all the level of rights j ∈ R,
i.e. when the number of exercise rights is equal to the number of exercise moments. Note
that in this initialization there is no need to compute the continuation value, because
the holder will exercise at each exercise moment if the value is positive. Therefore the
cash flow at these exercise moments equals the payoff. Thus the cash flow with j rights
left is as follows, for all trajectories i:

CF i,jm = POim, for m ∈M, ...,M − j + 1.

2. Now the cash flows are described for the setting when there are less exercise rights
than exercise moments. Here the holder has to make the decision if he/she wants to
exercise the option early and continue with one right less or to not exercise and continue
with the same amount of rights. So in contrast to the initialization step, the continuation
value needs to be computed ∀j ∈ R to make this decision.

The approximation of the continuation value is done with least squares regression in
a similar way as with the LSMC method for the Bermudan option. For each number of
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rights j ∈ R, which is less than the number of exercise moments left, the continuation
value at time tm is approximated separately for each j by least squares regression of
the cash flow discounted to tm onto the basis functions of the asset price trajectories at
time tm. In the regression only the trajectories with positive payoff are considered, as
discussed in Section 6.1.

After the approximation of the continuation values, the decision can be made if the
holder should use the early-exercise right or continue with the same amount of rights. The
holder of the option prefers the choice that has the most value at that time. Therefore the
right to exercise early is used if and only if POim+CV i,j−1

m > CV i,jm for m ∈ {M−j, ..., 1}.
This results in the following cash flow with j ∈ R rights at time tm for each trajectory
i, for m ∈ {M − j, ..., 1}:

CF i,jm =

{
POim , if POim + CV i,j−1

m > CV i,jm ,

0 , otherwise.
(6.4)

If the option of trajectory i is exercised early at time tm the cash flow needs to be up-
dated: The cash flow at time tm equals the payoff function at that time, CF i,jm = POim.
In addition, it is important that the cash flows for the exercise moments k > m for this
trajectory i are replaced by the cash flows at those exercise moments with one right less,
CF i,jk = CF i,j−1

k . This replacement is important in the algorithm so that the holder can
not use more early-exercise rights than he/she is entitled to.

When all the cash flows for all the trajectories i ∈ {1, ..., N} are computed, the
approximation of the Bermudan option value with R early-exercise rights and M exercise
moments is given by the arithmetic average of the discounted cash flows:

vR(t0, S(t0)) ≈ 1

N

N∑
i=1

DCF i,R0 =
1

N

N∑
i=1

M∑
m=1

e−r·m∆tCF i,Rm . (6.5)

The psuedocode of the LSMC method for pricing the Bermudan option with multiple
early-exercise rights is given in Algorithm 2 in Appendix B.

Remark 6.1. For the valuation with the LSMC method of the Bermudan option with
R early-exercise rights, the cash flow and continuation value for every number of rights
j ∈ R = {1, ..., R} is computed. Therefore you can directly obtain the values of the
Bermudan option with r < R early-exercise rights without extra computation costs by
taking the arithmetic average of the discounted cash flows for r early-exercise rights.
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6.3 LSMC for electricity storage contracts

In this section the LSMC method for Bermudan options with multiple early-exercise
rights is extended so that it can be used for the valuation of electricity storage contracts.

The LSMC method for electricity storage contracts works similarly as for the Bermu-
dan option with multiple early-exercise rights. However, instead of keeping track of the
amount of early-exercise rights left, it keeps track of the energy level in storage. In
addition, for each energy level the accumulated value of the cash flows of the optimal
actions taken in the future are kept track of. Furthermore, the penalty function and
limitations of the contract are taken into account. Therefore, the notation of Section 6.2
is adjusted for the electricity storage contract, where e ∈ E indicates the electricity level
in the storage and i ∈ {1, ..., N} the trajectory:

• CV i,em : The continuation value with e ∈ E electricity level in storage after action
∆e ∈ A is taken at time tm.

• CF i,em : The cash flow at time tm with e ∈ E energy level in storage.

• ACF i,em : The accumulated value of the cash flows for the optimal actions realised
for moments tk, k ∈ {m, ...,M + 1}, with energy level e ∈ E.

• DACF i,em := e−r∆tACF i,em+1, the discounted accumulated value of cash flows with
e ∈ E energy in storage.

• Q∆e
m := qb(∆e), the penalty function, which is imposed if an action ∆e ∈ A(tm, e)\
D(tm, e) is taken.

• POi,∆em := g(tm, S
i
m,∆e), the payoff function if action ∆e ∈ A is taken, as defined

in formula (3.11).

In contrast with the Bermudan option with multiple early-exercise rights, where the
LSMC method starts at moment tM , the LSMC method for the electricity contract
starts at tM+1 and works back in time to get the contract value at initial time t0.

At time tM+1 the contract is settled and no action can be taken. Therefore, the cash
flow at settlement time equals the penalty function for all energy levels e ∈ E:

CF i,eM+1 = qs(tM+1, S
i
M+1, e), ∀e ∈ E. (6.6)

Due to the fact that no cash flows occur after moment tM+1, the accumulated value of
cash flows is equal to the cash flow at this moment:

ACF i,eM+1 = CF i,eM+1, ∀e ∈ E. (6.7)

Note that this cash flow is a penalty and therefore either negative or zero.

At moments tm, m ∈ {M, ..., 1}, with energy level e ∈ E in storage, the holder of
the contract has to choose between different actions ∆e ∈ A(tm, e). The holder will
choose the action that results in the highest value. In order to make this decision, the
continuation values are required.
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The continuation values CV i,em are approximated using least squares regression of
the discounted accumulated cash flows DACF i,em onto the basis functions of the asset
prices Sim, in a similar way as for the Bermudan type options. The regression is done
separately for each allowed energy level e ∈ E. Note that for Bermudan-type options only
trajectories with positive payoff are considered for the regression. This consideration does
not work with a storage contract, because injecting energy naturally generates negative
payoffs.

After the continuation values have been determined, the holder can choose an optimal
action ∆e∗ ∈ A(tm, e) for each individual energy level e ∈ E, which results in the highest
ultimate value. The optimal action with energy level e ∈ E in storage for trajectory i is
defined by:

∆e∗ =∆e∈A(tm,e)

{
POi,∆em + CV i,e+∆e

m +Q∆e
}
, ∀e ∈ E. (6.8)

With this decision the cash flow at time tm is computed for each trajectory i and energy
level e ∈ E:

CF i,em = POi,∆e
∗

m +Q∆e∗ , ∀e ∈ E, (6.9)

and the accumulated value of cash flows is updated:

ACF i,em = CF i,em + e−r∆tACF i,e+∆e∗
m+1 , ∀e ∈ E. (6.10)

Ultimately, at initial time t0, when all the accumulated values of the cash flows are
computed for all trajectories i ∈ {1, ..., N} and energy levels e ∈ E at each time step
tm ∈ {t1, ..., tM+1}, the approximation of the value of the electricity contract is given by
the arithmetic average of the accumulated cash flows discounted to t0:

v(t0, S(t0), e(t0)) ≈ 1

N

N∑
i=1

DACF
i,e(t0)
0 =

1

N

N∑
i=1

e−r∆tACF
i,e(t0)
1 . (6.11)

The psuedocode of the LSMC method for pricing the electricity storage contract is
described in Algorithm 3 in Appendix B.
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7 Numerical results of the options

In this section numerical experiments are done to see how well the COS method works
for pricing options where the electricity/asset price follows the polynomial model. In
addition, the implementations of the pricing methods have been verified by doing similar
experiments as in validated papers and comparing our results, in these experiments the
asset price follows the well-known GBM.

All the experiments with the COS method have been done for both the closed-form
characteristic function as well as the cumulants approximated characteristic function,
defined in Section 5.5. In addition, the 95% confidence intervals (c.i.) of the option
values are given, derived with the LSMC method.

For the COS method we set N = 256 terms in the Fourier series expansion and
L̄ = 10 to make the integration interval. Moreover, for the LSMC method 100 000 paths
are taken with 5000 time steps each (unless otherwise stated). Furthermore, the 95%
confidence intervals are computed by repeating the LSMC method ten times. After the
ten repetitions, the confidence interval is constructed as follows:

Confidence Interval =

[
V − zα/2

(
σ̄√
10

)
, V + zα/2

(
σ̄√
10

)]
, (7.1)

where V is the sample mean of the ten experiments, σ̄ the standard deviation and zα/2
the critical Z-value (zα/2 = 1.96 for a 95% confidence interval).

For all numerical experiments Python 3.7.1 is used and the CPU is an Intel(R)
Core(TM) i7-8750H CPU (2.20GHz, 2208 Mhz, 6 Cores, 12 Logical Processors).

7.1 Verification of the COS and LSMC method

This section examines whether the COS method and the LSMC have been properly
implemented. Furthermore, the results of the COS method where the closed-form char-
acteristic function is used are compared to the results where the characteristic function
approximation with the cumulants is used.

7.1.1 The European and Bermudan option

In this test the European and Bermudan put option values are computed with the COS
method and (LS)MC method, where the asset price process is driven by the GBM. The
value of the European option is analytically known. Furthermore, to verify if the methods
for the Bermudan option are implemented correctly, the same test has been conducted
as in [42]. The parameters of this test are given in Table 1 of [42]:

S0 = 100, K = 110, T = 1, σ = 0.2, µ = r = 0.1.

The reference values for the European option and the Bermudan option with M = 10
exercise moments are respectively 7.715179... and 10.479520... . The numerical results
obtained with the COS method and LSMC method are given in Table 2.
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Pricing method (LS)MC 95% c.i. the COS method

Characteristic function - Closed-form
Approximation
with cumulants

European option [7.7017 , 7.7286] 7.5152 7.5152
Bermudan option [10.4693 , 10.4860] 10.4795 10.4795

Table 2: The European option value and the Bermudan option value with M = 10 exercise
moments obtained with the COS method and the LSMC method.

The results in Table 2 are similar as the reference values, this shows that the COS
method and (LS)MC for European options and Bermudan options have been correctly
implemented.

Furthermore, the results show that the European and Bermudan option values ob-
tained with the COS method where an approximated characteristic function of the GBM
is used are identical to the values obtained with the closed-form characteristic function.
Remark that the closed-form characteristic function of the GBM is already in the FFT-
form (β = 1), described in Section 4.2, which explains the accurate results obtained with
the approximated characteristic function.

7.1.2 The Bermudan option with multiple early-exercise rights

To demonstrate that the COS method and LSMC method for a Bermudan option with
multiple early-exercise rights are well implemented, the same experiment is performed
as in the validated paper [52] and the results are compared. In this experiment the
Bermudan option is valued for up to R = 6 early-exercise rights and M = 12 exercise
moments, where the asset price follows a GBM with the following parameters from [52]:

S0 = 35, K = 40, T = 0.5, σ = 0.25, µ = r = 0.0488.

The results of this experiment with the COS method and LSMC are stated in Table 3.

Pricing method LSMC 95% c.i. The COS method

Characteristic function - Closed-form
Approximation
with cumulants

R=1 [5.3720 , 5.3847] 5.3816 5.3816
R=2 [10.6783 , 10.7089] 10.6956 10.6956
R=3 [15.9132 , 15.9609] 15.9407 15.9407
R=4 [21.0826 , 21.1436] 21.1157 21.1157
R=5 [26.1814 , 26.2537] 26.2187 26.2187
R=6 [31.2041 , 31.2904] 31.2474 31.2474

Table 3: The values of the Bermudan option with multiple early-exercise rights where the price
follows the GBM computed with the LSMC method and the COS method.

The results from [52], which are shown in Table 3.1 of the paper, are all in the 95%
LSMC confidence interval given in Table 3. In addition, the values obtained with the
COS method are close to these results. For other parameter combinations and results in
Table 3.1 from [52] the same is concluded. This suggests that the COS method and the
LSMC method for Bermudan options with multiple early-exercise rights are correctly
implemented and work well.
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7.2 The Bermudan option

In this section the Bermudan option is evaluated where the asset price is generated
by the second-order polynomial model with an underlying Ornstein-Uhlenbeck process.
This second-order polynomial model is given by:

St = Φ(Xt) =
1− c

2
X2
t + cXt = CX2

t + cXt,

dXt = κ(θ −Xt)dt+ σdWt.
(7.2)

The following parameters of the model are reviewed and analysed on how much they
affect the error that occurs when using the approximated characteristic function:

• The coefficient c.

• The number of exercise moments M .

• The maturity time T .

• The parameters κ and σ.

The other parameters of the OU process are set as follows:

θ = 11, X0 = 10, K = 50, S0 = Φ(X0), (7.3)

and the risk-free interest rate r = 0.05.

The COS method for this model can be determined with the characteristic function
of the polynomial model, St, or with the characteristic function of the underlying OU
process, Xt. In the following experiments, both characteristic functions are approximated
with its cumulants, as described in Section 5, to examine which approach is most accurate
in pricing the options using the efficient FFT-based algorithm. These results obtained
with the approximations are compared with the COS method where the closed-form
characteristic function of the OU process is used, denoted by analytical COS method.
Note that the closed-form characteristic function of the polynomial model does not exist,
it can be approximated.

Furthermore, to better analyse the polynomial model, the SDE of the process is
considered. With Ito’s lemma the following SDE is obtained of the polynomial model
(7.2):

dSt = µ̃(t,Xt)dt+ σ̃(t,Xt)dWt, (7.4)

where the drift and volatility variables are given by

µ̃(t,Xt) = κ(θ −Xt)(2CXt + c) + 2Cσ2,

σ̃(t,Xt) = σ(2CXt + c).
(7.5)

Moreover, in Figure 8 six asset paths are simulated for various c.
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c = 0 c = 0.5 c = 1

Figure 8: The simulation of six asset paths with dynamics (7.4) for various c and σ = κ = 0.3
and other parameters set as in (7.3).

The simulations in Figure 8 show that the asset paths exhibit larger price differences
for a smaller coefficient c, resulting in a higher variance. Note that for c = 1 a normal
OU process is simulated and for c = 0 the square of the OU process.

The influence of the coefficient c
The drift and the volatility variables in (7.5) show that the coefficient c has an influence
on the process. To measure the impact of the coefficient c on the option valuation, we
compute the option values with the COS method and the LSMC method for various
c and σ ∈ {0.3, 0.9}. In addition, it is examined how well the COS method with an
approximated characteristic function can determine the value of the Bermudan option
with the efficient FFT-based algorithm and how large the impact of the coefficient c is
on the accuracy. Furthermore, it is verified whether the values obtained with the COS
method lie within the 95% confidence interval acquired with the LSMC method.

In Figure 9 and Table 4 the Bermudan option with M = 10 exercise moments is
priced with the LSMC method and the COS method for various c.
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Figure 9: The values and differences of the Bermudan option obtained with the COS method
with closed-form and approximated characteristic function for various c and σ ∈ {0.3, 0.9} and
the other parameters set.

σ = 0.3 κ = 0.3 T = 0.5
Pricing method LSMC 95% c.i. The COS method

Characteristic
function

- Closed-form
Approximation

polynomial
with cumulants

Approximation
OU

with cumulants
c=0 [0.4183, 0.4207] 0.4191 0.4377 0.4262

c=0.1 [3.8514, 3.8539] 3.8528 3.8528 3.8528
c=0.5 [19.8664, 19.8779] 19.8672 19.8672 19.8672
c=0.9 [35.8814, 35,8819] 35.8817 35.8817 35.8817
c=1 [39.8851, 39.8853] 39.8853 39.8853 39.8853

CPU time 529 sec 18.3 sec 0.078 sec 0.060 sec
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σ = 0.9, κ = 0.3, T = 0.5.
Pricing method LSMC 95% c.i. The COS method

Characteristic
function

- Closed-form
Approximation

polynomial
with cumulants

Approximation
OU

with cumulants
c=0 [1.8668, 1.8768] 1.8724 2.1364 1.9057

c=0.1 [4.2363, 4.2477] 4.2439 4.3312 4.1989
c=0.5 [19.8577, 19.8633] 19.8584 19.8584 19.8584
c=0.9 [35.8797, 35.8816] 35.8799 35.8799 35.8799
c=1 [39.8847, 39.8856] 39.8853 39.8853 39.8853

CPU time 535 sec 18.0 sec 0.062 sec 0.052 sec

Table 4: The Bermudan option values with 10 early-exercise moments obtained with the COS
method and the LSMC method for various coefficients c and the other parameters set.

Table 4 shows that the values obtained with COS method where the closed-form
characteristic function is used always lie within the 95% LSMC confidence interval. Fur-
thermore, the values derived with the approximated characteristic functions are close to
the closed-form results and almost always within the LSMC confidence interval. The
only values that are not within the boundaries of the interval are the values for c = 0 for
both σ′s and for c = 0.1 for σ = 0.9.

The results from Figure 9 and Table 4 suggest that for a higher coefficient c the
COS method where the characteristic function is approximated is closer to the values
obtained with the closed-form characteristic function. Moreover, the accuracy is higher
for a smaller σ. Furthermore, the values obtained by means of the COS method with the
approximated characteristic function of the underlying OU process with the cumulants
are more accurate than with the approximated characteristic function of the polynomial
model with the cumulants for the examined parameter combinations.

The influence of the number of exercise moments M
In Figure 10 and Table 5 the Bermudan option value is computed with the LSMC method
and the COS method for different numbers of early-exercise moments before expiry, while
the other parameters are set.
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Figure 10: The values and differences of the Bermudan option obtained with the COS method
for various number of early-exercise moments M and the other parameters set.
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σ = 0.9 c = 0.5, κ = 0.3, T = 0.5.
Pricing method LSMC 95% c.i. The COS method

Characteristic
function

- Closed-form
Approximation

polynomial
with cumulants

Approximation
OU

with cumulants
M=1 [18.6662 , 18.6773] 18.6690 18.6690 18.6690
M=5 [19.7165 , 19.7194] 19.7187 19.7187 19.7187
M=10 [19.8576 , 19.8608] 19.8584 19.8584 19.8584
M=15 [19.9033 , 19.9058] 19.9054 19.9054 19.9054

σ = 0.9 c = 0.1 κ = 0.3 T = 0.5
Pricing method LSMC 95% c.i. The COS method

Characteristic
function

- Closed-form
Approximation

polynomial
with cumulants

Approximation
OU

with cumulants
M=1 [3.6182 , 3.6407] 3.6315 3.6315 3.6315
M=5 [4.1822 , 4.1960] 4.1927 4.1859 4.1468
M=10 [4.2368 , 4.2510] 4.2439 4.3313 4.1989
M=15 [4.2501 , 4.2626] 4.2582 4.5225 4.2141

σ = 0.3 c = 0.1 κ = 0.3 T = 0.5
Pricing method LSMC 95% c.i. The COS method

Characteristic
function

- Closed-form
Approximation

polynomial
with cumulants

Approximation
OU

with cumulants
M=1 [2.6961 , 2.7030] 2.6962 2.6962 2.6962
M=5 [3.7070 , 3.7109] 3.7082 3.7082 3.7082
M=10 [3.8514 , 3.8539] 3.8528 3.8528 3.8528
M=15 [3.8997 , 3.9017] 3.9016 3.9015 3.9016

Table 5: The Bermudan option values computed with the COS method and the LSMC method
for various number of early-exercise moments M and the other parameters set.

The Bermudan option value increases when there are more exercise moments, due
to the fact that the option holder has more possible moments to exercise the option for
the strike price K if the asset price is low. Furthermore, Table 5 shows that the values
obtained with the closed-form characteristic function by means of the COS method for
all chosen parameters and number of early-exercise moments M lie within the 95%
confidence interval obtained with the LSMC method.

Figure 10 clearly shows that the error obtained by using the characteristic function ap-
proximation of the polynomial model with its cumulants increases as more early-exercise
moments occur, while this is not the case if the approximation of the OU process with
its cumulants is used. In general, the COS method is more accurate using the approxi-
mated characteristic function of the OU process with the cumulants than of the polyno-
mial model with the cumulants for pricing the Bermudan option for the different choices
of the number of exercise moments M . Moreover, the errors for both approximations
remain lowest for a large value of coefficient c and a low value for σ.
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Pricing method LSMC 95% c.i. The COS method

Characteristic
function

- Closed-form
Approximation

polynomial
with cumulants

Approximation
OU

with cumulants
M=1 480 sec 0.001 sec 0.006 sec 0.002 sec
M=5 490 sec 7.8 sec 0.041 sec 0.021 sec
M=10 530 sec 17.6 sec 0.060 sec 0.045 sec
M=15 570 sec 27.4 sec 0.071 sec 0.058 sec

Table 6: The average CPU time of 10 runs for various number of early-exercise moments M
before expiry, T = 0.5 and ∆t = T/5000 the time step size used for the LSMC simulations.

The influence of the maturity time T
The maturity time T has substantial impact on the accuracy of the LSMC method
and the COS method. The numerical results of these two pricing methods for different
maturity times is shown in Figure 11 and Table 7. Furthermore, for the LSMC method
the step size ∆t = 1/2500 is taken for all T for the simulation of the 100 000 asset paths.
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Figure 11: The values and differences of the Bermudan option obtained with the COS method
for various T and the other parameters set.

σ = 0.9 κ = 0.3 c = 0.5
Pricing method LSMC 95% c.i. The COS method

Characteristic
function

- Closed-form
Approximation

polynomial
with cumulants

Approximation
OU

with cumulants
T=0.1 [19.9713 , 19.9729] 19.9715 19.9715 19.9715
T=0.5 [19.8573 , 19.8601] 19.8584 19.8584 19.8584
T=1 [19.7173 , 19.7214] 19.7187 19.7188 19.7187
T=2 [19.4457 , 19.4549] 19.4471 19.4453 19.4453

σ = 0.9 κ = 0.3 c = 0.1
Pricing method LSMC 95% c.i. The COS method

Characteristic
function

- Closed-form
Approximation

polynomial
with cumulants

Approximation
OU

with cumulants
T=0.1 [3.9768 , 3.9793] 3.9790 3.9827 3.9757
T=0.5 [4.2400 , 4.2462] 4.2439 4.3312 4.1989
T=1 [4.5272 , 4.5409] 4.5364 4.7044 4.4594
T=2 [4.9034 , 4.9190] 4.9067 5.1785 4.7905

Table 7: The Bermudan option values computed with the COS method and the LSMC method
for various maturity times T and the other parameters set.

The results in Table 7 show that if the maturity time gets higher the range of the
LSMC confidence interval increases in size. Moreover, the values obtained by means
of the COS method with the closed-form characteristic function all lie within the 95%
LSMC confidence interval.

From Figure 11 it can be concluded that the lower the maturity time T , the lower
the error caused by the use of the approximated characteristic function. Furthermore, it
is clear to see from the figures that the parameters c and σ have a major impact on the
numerical results obtained with the COS method where the approximated characteristic
function is used.
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Pricing method LSMC 95% c.i. The COS method

Characteristic
function

- Closed-form
Approximation

polynomial
with cumulants

Approximation
OU

with cumulants
T=0.1 28.6 sec 18.0 sec 0.059 sec 0.050 sec
T=0.5 117.2 sec 17.3 sec 0.063 sec 0.042 sec
T=1 245.0 sec 17.5 sec 0.067 sec 0.042 sec
T=2 570.0 sec 17.3 sec 0.060 sec 0.043 sec

Table 8: The average CPU time of 10 runs for various maturity times T and ∆t = 1/2500 the
time step size used for the LSMC simulations.

The influence of the parameters κ and σ
Previous analyses of the influence of the parameters on the error by using the approxi-
mated characteristic function in the COS method indicate that parameter σ has a sub-
stantial effect on the error. In addition, it is expected that κ will also have a significant
effect on the error, because β = e−κ∆t in the characteristic function of the OU process,
which is set equal to β = 1 with a transformation to be able to use the efficient FFT-
based algorithm. Therefore the error is analysed for various combinations of κ and σ to
get a better understanding on how it affects the error.

First the value of the Bermudan option is given for the different parameter combi-
nations, obtained with the COS method with the closed-form characteristic function.
Thereafter, the error is given if an approximated characteristic function is used.
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Figure 14: The values and errors of the Bermudan option obtained with the COS method for
various κ and σ and the other parameters set.

The numerical results of Figure 14 show that the parameters κ and σ both have
a significant influence on the error. In addition, it can be seen that changes in the
parameters σ, κ and c affect the error more if the cumulants approximated characteristic
function of the polynomial model is used than if the approximation with the cumulants
of the OU process is used. For almost all parameter combinations, the values obtained
with the approximated characteristic function of the OU process with the cumulants
are more accurate than the values obtained with the approximation of the characteristic
function of the polynomial model with the cumulants.
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7.3 The Bermudan option with multiple early-exercise rights

This section shows the numerical results of the valuation of the Bermudan option with
multiple early-exercise rights by means of the COS method and LSMC method where the
price process follows the second-order polynomial model with an underlying OU process
(7.2). The same parameters (7.3) are used as in the valuation of the Bermudan option.

σ = 0.3 κ = 0.3 c = 0.1 M = 10
Pricing method LSMC c.i. The COS method

Characteristic
function

- Closed-form
Approximation

polynomial
with cumulants

Approximation
OU

with cumulants
R=1 [3.8522 , 3.8548] 3.8528 3.8528 3.8528
R=2 [7.5595 , 7.5654] 7.5610 7.5629 7.5609
R=3 [11.1267 , 11.1356] 11.1281 11.1352 11.1275
R=4 [14.5566 , 14.5680] 14.5581 14.5756 14.5565
R=5 [17.8529 , 17.8674] 17.8553 17.8903 17.8529

CPU time 605 sec 118.2 sec 0.141 sec 0.100 sec

σ = 0.3 κ = 0.3 c = 0.5 M = 10
Pricing method LSMC c.i. The COS method

Characteristic
function

- Closed-form
Approximation

polynomial
with cumulants

Approximation
OU

with cumulants
R=1 [19.8672 , 19.8683] 19.8672 19.8672 19.8672
R=2 [39.6025 , 39.6050] 39.6033 39.6044 39.6033
R=3 [59.2086 , 59.2128] 59.2100 59.2143 59.2099
R=4 [78.6865 , 78.6925] 78.6889 78.6994 78.6885
R=5 [98.0382 , 98.0468] 98.0414 98.0623 98.0409

CPU time 609 sec 117.0 sec 0.139 sec 0.110 sec

σ = 0.3 κ = 0.3 c = 0.8 M = 10
Pricing method LSMC c.i. The COS method

Characteristic
function

- Closed-form
Approximation

polynomial
with cumulants

Approximation
OU

with cumulants
R=1 [31.878 , 31.8786] 31.8781 31.8781 31.8781
R=2 [63.6347 , 63.6360] 63.6352 63.6356 63.6351
R=3 [95.2716 , 95.2737] 95.2723 95.2740 95.2722
R=4 [126.7892 , 126.7923] 126.7904 126.7946 126.7903
R=5 [158.1889 , 158.1932] 158.1905 158.1989 158.1903

CPU time 615 sec 117.8 sec 0.139 sec 0.111 sec
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σ = 0.9 κ = 0.3 c = 0.1 M = 10
Pricing method LSMC c.i. The COS method

Characteristic
function

- Closed-form
Approximation

polynomial
with cumulants

Approximation
OU

with cumulants
R=1 [4.2392 , 4.2466] 4.2439 4.3312 4.1989
R=2 [8.3813 , 8.3917] 8.3874 8.5725 8.3138
R=3 [12.4136 , 12.4311] 12.4244 12.7256 12.3405
R=4 [16.334 , 16.3559] 16.3496 16.7919 16.2748
R=5 [20.1364 , 20.1644] 20.1568 20.7717 20.1119

CPU time 599 sec 119.9 sec 0.134 sec 0.103 sec

σ = 0.9 κ = 0.3 c = 0.5 M = 10
Pricing method LSMC c.i. The COS method

Characteristic
function

- Closed-form
Approximation

polynomial
with cumulants

Approximation
OU

with cumulants
R=1 [19.8562 , 19.8605] 19.8584 19.8584 19.8584
R=2 [39.5706 , 39.5816] 39.5771 39.5867 39.5768
R=3 [59.1482 , 59.1616] 59.1582 59.1963 59.157
R=4 [78.5898 , 78.6068] 78.6035 78.698 78.6005
R=5 [97.8953 , 97.9183] 97.9149 98.1022 97.9091

CPU time 611 sec 121.1 sec 0.129 sec 0.112 sec

σ = 0.9 κ = 0.3 c = 0.8 M = 10
Pricing method LSMC c.i. The COS method

Characteristic
function

- Closed-form
Approximation

polynomial
with cumulants

Approximation
OU

with cumulants
R=1 [31.8734 , 31.8756] 31.8745 31.8745 31.8745
R=2 [63.6213 , 63.6269] 63.6247 63.6285 63.6245
R=3 [95.2464 , 95.2533] 95.2516 95.2668 95.2511
R=4 [126.7492 , 126.7580] 126.7563 126.7941 126.7551
R=5 [158.1298 , 158.1416] 158.1399 158.2148 158.1376

CPU time 609 sec 120.2 sec 0.140 sec 0.119 sec

Table 9: The Bermudan option with R early-exercise rights values computed with the COS
method and the LSMC method for various σ and coeffients c and the other parameters set.

The Bermudan option value with multiple early-exercise rights increases when the
holder gets more rights to early-exercise, which makes sense because he/she has the
right to sell the asset for the strike price K more often. Moreover, the values obtained
by means of the COS method with the closed-form characteristic function all lie within
the LSMC 95% confidence interval.
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The approximated characteristic function of the OU process with the cumulants per-
forms better than the characteristic function approximation of the polynomial model.
Furthermore, Table 9 and additional experiments with various parameter settings show
that the approximation of the characteristic function of the OU process with its cu-
mulants works well for the same parameters where the approximation works well for
the Bermudan option. Although it can be seen that the values become somewhat less
accurate if there are more early-exercise rights. The reason for this inaccuracy is that
the continuation value must be calculated more often and if the continuation value is
computed with the approximated characteristic function by means of the COS method
an error occurs, as shown in the error analysis in Section 5.6.

7.4 Implications of the numerical results

The COS method with the closed-form characteristic function of the OU process works
well for pricing the options and the obtained option values always lie within the LSMC
95% confidence interval. Furthermore, the computation for determining the value of the
financial derivatives is in general a lot faster with the COS method compared to the
LSMC method.

Moreover, it has been shown that with the approximation of the characteristic func-
tion of the (underlying) price process with the cumulants, the efficient FFT-based algo-
rithm can be used, so that the computation time of the COS method decreases signif-
icantly. For many parameter settings, the values obtained with the approximation are
close to the values obtained with the closed-form characteristic function and lie within the
LSMC 95% confidence interval. Furthermore, after testing various parameter settings,
it can be concluded that the option values obtained with the cumulants approximation
of the characteristic function of the underlying OU process is more accurate than the
cumulants approximation of the characteristic function of the polynomial model.

The same parameter settings that work well when pricing the Bermudan option by
means of the COS method with the approximated characteristic function of the OU
process also work well when pricing the Bermudan option with multiple early-exercise
rights. Although it can be seen that the price becomes slightly less accurate if there
are more early-exercise rights, the reason for this is that the continuation value must
be calculated more often. Namely, when the continuation value is calculated, an error
occurs when using the approximated characteristic function, as shown in Section 5.6.

In general, the option values, where the asset price follows a second-order polynomial
model with an underlying OU process, obtained by means of the COS method with the
approximated characteristic function of the OU process are most accurate for low values
of σ, κ and maturity time T and a high value for coefficient c. For the number of exercise
moments M , the accuracy is indifferent.

Remark 7.1. The experiments are also performed with the adjoint expansion approxi-
mation of the characteristic function of the OU process, which gave essentially the same
numerical results as with the approximation of the characteristic function of the OU
process with the cumulants. However, the advantage of the cumulative approximation
is that it is a simpler and more tractable approach.
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8 Numerical results electricity contract

In this section, several different electricity storage contracts are valuated by means of
the COS method where the closed-form characteristic function is used and compared
with the values obtained where the approximated characteristic function is used. In
addition, using the LSMC method, the 95% confidence intervals of the contract values
are determined and the average energy level in storage for each contract over time is
given. The confidence intervals are computed in the same way as defined in (7.1).

Python 3.7.1 is used for all the numerical experiments and the CPU is an Intel(R)
Core(TM) i7-8750H CPU (2.20GHz, 2208 Mhz, 6 Cores, 12 Logical Processors).

For pricing the various electricity storage contracts, the electricity price is modeled
according to the second-order polynomial model:

St = Φ(Xt) =
1− c

2
X2
t + cXt, (8.1)

where the underlying process Xt follows an OU process:

dXt = κ(θ −Xt)dt+ σdWt.

The parameters for this model are chosen as follows:

c = 0.5, κ = 0.3, θ = 11, σ ∈ {0.3, 0.6, 0.9, 1.2}, X0 = 10, S0 = Φ(X0). (8.2)

The valuation of the electricity storage contract is done for σ = 0.3 (low volatility),
σ = 0.6 (mid-low volatility), σ = 0.9 (mid-high volatility) and σ = 1.2 (high volatility).
Note that for a stock market these are all fairly high volatility parameters, however
the electricity market is much more volatile than the stock market. In Figure 15, six
simulations of the electricity price process trajectory St are shown for each volatility
parameter.
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Low volatility Mid-low volatility

Mid-high volatility High volatility

Figure 15: Six simulations of the electricity price process simulated by the second-order poly-
nomial model (8.1) with parameters defined in (8.2).

8.1 The electricity storage contracts

This section is focused on five different electricity storage contracts. There are many
different technologies for large scale electricity storage systems and each technology has
its own technical characteristics. Each contract is based on these technical characteristics.
In addition, expected improvements of the characteristics and new concepts to store
electricity are considered, such as higher battery efficiency and the concept of the Car-
Park as Power Plant [10].

Some of the electricity storage contract characteristics will be the same for each
contract, these are shown in Table 10. The other contract characteristics will differ per
contract. The five contracts and their characteristics are defined in the remainder of this
section.



8 Numerical results electricity contract 90

Start date t0 0
Time to maturity T 1
Number of exercise moments M 50
Time between exercise moments ∆t 1/50
Required min. injection in market iminmarket −0.1 MWh [10]

Table 10: The general electricity storage parameters, used for each discussed contract.

Contract 1: Standard electricity storage
The most widely used electricity storage system is the rechargeable battery. The current
rechargeable battery storage facilities often have capacities between 0.25-50 MWh and
an output of 0.1-20 MW, depending on the battery [53]. Furthermore, rechargeable
batteries can have an efficiency up to ∼ 95% [5]. In addition, charging and discharging
a rechargeable battery too rapidly reduces the battery lifetime, so there is a penalty
qb(∆e) < 0 for this. Moreover, the settlement penalty of −350 euro is activated when
the energy level in the battery is lower than when the contract started.

The characteristics for contract 1 are given in Table 11.

Start energy level e(t0) 7 MWh
Min. capacity emin 0 MWh
Max. capacity emax 15 MWh
Min. energy level change iminop −2 MWh
Max. energy level change imaxop 2 MWh
Min. energy level change without penalty iminb −1 MWh
Max. energy level change without penalty imaxb 1 MWh
Efficiency of the battery η 95 %
Penalty of charging/discharging too rapidly qb(∆e) for ∆e ∈ A \ D −3 ¤
Penalty at settlement date qs(e) for e < e(t0) −350 ¤

Table 11: The electricity storage characteristics for contract 1.

Contract 2: Highly efficient electricity storage
In this contract a highly efficient electricity storage is considered, with an efficiency of
100%. Batteries of ∼ 100% efficiency already exist, but due to the high manufacturing
costs, they are not yet used for electricity storage [6].

The contract characteristics for contract 2 are the same as for contract 1 (Table 11),
only the efficiency of the electricity storage is increased to η = 100%.

Contract 3: Fast charging/discharging electricity storage
Contract 3 is a contract for an electricity storage that can charge/discharge faster com-
pared to the standard contract 1. Therefore, higher energy changes can take place in the
storage at each exercise moment.

The characteristics of this contract are defined in Table 12.
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Start energy level e(t0) 7 MWh
Min. capacity emin 0 MWh
Max. capacity emax 15 MWh
Min. energy level change iminop −6 MWh
Max. energy level change imaxop 6 MWh
Min. energy level change without penalty iminb −4 MWh
Max. energy level change without penalty imaxb 4 MWh
Efficiency of the battery η 95 %
Penalty of charging/discharging too rapidly qb(∆e) for ∆e ∈ A \ D −3 ¤
Penalty at settlement date qs(e) for e < e(t0) −350 ¤

Table 12: The electricity storage characteristics for contract 3.

Contract 4: Highly efficient and fast charging/discharging electricity storage
This contract considers an electricity storage facility that combines the added charac-
teristics described in contracts 2 and 3, a fast charging/discharging electricity storage
facility with high efficiency.

The characteristics of this contract are given in Table 13.

Start energy level e(t0) 7 MWh
Min. capacity emin 0 MWh
Max. capacity emax 15 MWh
Min. energy level change iminop −6 MWh
Max. energy level change imaxop 6 MWh
Min. energy level change without penalty iminb −4 MWh
Max. energy level change without penalty imaxb 4 MWh
Efficiency of the battery η 100 %
Penalty of charging/discharging too rapidly qb(∆e) for ∆e ∈ A \ D −3 ¤
Penalty at settlement date qs(e) for e < e(t0) −350 ¤

Table 13: The electricity storage characteristics for contract 4.

Contract 5: Car-Park as Power Plant (CPPP)
The Car-Park as Power Plant is a concept that is seen as a solution for the high variable
output of renewable energy sources. Cars are parked for an average of 96% of the time
[54], therefore there is a lot of potential in using the battery of an electric vehicle for
electricity storage. However, a single car cannot work on the electricity market because
there are minimal injection rules of 100 KWh while a full electric car has an average of
80 KWh. In addition, a single car may not be available continuously, while the presence
of a large number of cars is highly predictable [55]. That is why we consider multiple
electric vehicles at the same time that are seen as one storage, e.g. a car park can be
used [10].

For this contract, a car park is assumed with 150 electric vehicles and an average of
80 KWh capacity and 90% efficiency per electric vehicle [10]. At each exercise moment,
the vehicles can change 25% of its energy level without getting a penalty. This results
in a total capacity of 12 MWh and an energy change without penalty of 3 MWh.
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At the end of the contract, the owner of the car must be able to drive away, which is
why there is a high penalty if there is not enough energy in the car.

Start energy level e(t0) 6 MWh
Min. capacity emin 0 MWh
Max. capacity emax 12 MWh
Min. energy level change iminop −4 MWh
Max. energy level change imaxop 4 MWh
Min. energy level change without penalty iminb −3 MWh
Max. energy level change without penalty imaxb 3 MWh
Efficiency of the battery η 90 %
Penalty of charging/discharging too rapidly qb(∆e) for ∆e ∈ A \ D −10 ¤
Penalty at settlement date qs(e) for e < e(t0) −2000 ¤

Table 14: The electricity storage characteristics for contract 5.

8.2 The numerical contract values

This section shows the numerical results of the values of the storage contracts, which
are defined in Section 8.1, obtained with the COS method, for both the closed-form
characteristic function and the characteristic function approximated with the cumulants
of the OU process. Moreover, the 95% confidence intervals of the contract values are
given, derived with the LSMC method.

Furthermore, the average energy level and the 95% confidence interval of the energy
level in the storage is shown, obtained with the LSMC method. The average energy level
gives an indication to the holder of a contract which energy levels must be maintained
to get maximum profit. Additionally, the maximum and minimum energy levels of all
the trajectories used in the LSMC method are given.

For the COS method we set N = 128 terms in the Fourier series expansion and
L̄ = 10 to make the integration interval. Moreover, the resulting confidence intervals are
computed by ten runs with the LSMC method of 50 000 trajectories. In addition, the
maximum and minimum energy levels at each exercise moments are taken over all the
trajectories of the ten runs of the LSMC method.

Contract 1: Standard electricity storage
Table 15 shows the numerical results of the values of contract 1, with characteristics
defined in Table 11. In addition, in Figure 16 the average energy levels in storage are
given, together with the 95% confidence interval. Figure 17 gives a closer look at the
average energy levels of Figure 16. Note that the y-axes in Figure 17 are not scaled
equally.
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Pricing method LSMC 95% c.i. COS
Characteristic

function
- Closed-form Approximated

σ N=50000 N=128 N=128
0.3 [0.0000 , 0.0000] 0.0000 -0.0049
0.6 [-0.0001 , 0.0008] 0.0002 0.0006
0.9 [0.0014 , 0.0107] 0.0065 0.0035
1.2 [0.1084 , 0.1370] 0.1222 0.0985

Table 15: The values of contract 1 obtained with the COS method and the LSMC method.

Figure 16: The average energy level in storage for, respectively from left to right, low volatility,
mid-low volatility, mid-high volatility and high volatility obtained with the LSMC method.
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Figure 17: A zoom in at the average energy levels in Figure 16.

Table 15 shows that the values obtained with the COS method with the closed-
form characteristic function are always in the 95% LSMC confidence interval. Most of
the COS values obtained with the approximated characteristic function also lie in the
confidence interval, however due to the relatively low contract values, there is still a high
error in percentage terms compared to the COS values obtained with the closed-form
characteristic function.

As seen in Table 11, the values of contract 1 are relatively low, especially for less
volatile price processes. The reason for this is that the efficiency of the electricity storage
is 95%, so the discounted electricity price must have increased by (1/0.95− 1)% to make
a profit. This price change happens more often when the volatility of the price is higher,
with the low volatility price process (σ = 0.3) this did did not occur, as shown in Figures
16-17.

Although there is little energy change taking place, Figures 16-17 show that the
strategy is to slowly start storing electricity around t = 0.1 in the battery if this is
expected to yield a profit. In the end, the energy is usually sold until the starting energy
level is reached to avoid being fined 350 euros at the settlement date. However, with
mid-high and high volatility levels, all energy is sometimes sold from the battery even if
a penalty has to be paid, because this strategy yields more profit.

The computation time of the methods is as follows. The LSMC method took ±26
minutes to compute a contract value. The CPU time of the COS method with the
closed-form characteristic function is ±28 minutes, however the valuation with the mid-
high volatility parameter took only ±20 minutes. This lower CPU time is because at
each exercise moment the integration range is split into fewer parts compared to the
computations with the other volatility parameters and therefore the continuation value
had to be calculated less often. Furthermore, the COS method with the approximated
characteristic function took only ±14 seconds.
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Contract 2: Highly efficient electricity storage
Table 16 and Figures 18-19 state the numerical results of contract 2.

Pricing method LSMC 95% c.i. COS
Characteristic

function
- Closed-form Approximated

σ N=50000 N=128 N=128
0.3 [1.5543 , 1.6054] 1.5918 0.6690
0.6 [2.9985 , 3.0658] 3.0370 0.6488
0.9 [4.5021 , 4.6516] 4.5905 0.9508
1.2 [6.1667 , 6.3611] 6.2705 1.8628

Table 16: The values of contract 2 obtained with the COS method and LSMC method.

Figure 18: The average energy level in storage for contract 2, respectively from left to right, low
volatility, mid-low volatility, mid-high volatility and high volatility obtained with the LSMC
method.
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Figure 19: A zoom in at the average energy levels in Figure 18, note that the scale of the y-axes
are not equal.

As shown in Table 16, the values obtained with the COS method with the closed-
form characteristic function are all within the 95% LSMC confidence interval, however
the values obtained with the approximated characteristic function by means of the COS
method are not. This is partly because at each exercise moment the integral is divided
into many parts in order to take the maximum of all actions, and at each split the ap-
proximated characteristic function is used to determine the continuation value resulting
in an error.

The values of contract 2 are a lot higher than of contract 1, this is because the 100%
efficiency allows greater use to be made of smaller fluctuations in the price process.

The strategy is also different compared to contract 1, a lot of electricity is immediately
stored at the start of the contract and then it is withdrawn slowly. As the settlement
date approaches, it is ensured that the energy level returns to the starting energy level to
avoid a penalty. Although, the maximum and minimum energy levels in figure 18 show
that at mid-high and high volatility electricity price processes all energy is sometimes
sold and a penalty is accepted.

The CPU times of the various valuation methods for contract 2 are as follows. The
LSMC method took ±28 minutes, the COS method with closed-form characteristic func-
tion ±37 minutes and the COS method with approximated characteristic function ±15
seconds. Again, the COS method with the closed-form characteristic function where the
mid-high volatility parameter is used took less computation time, namely ±25 minutes.
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Contract 3: Fast charging electricity storage
The numerical results of contract 3 are shown in Table 17 and Figures 20-21. The
characteristics of contract 3 are defined in Table 12.

Pricing method LSMC 95% c.i. COS
Characteristic

function
- Closed-form Approximated

σ N=50000 N=128 N=128
0.3 [0.0000 , 0.0000] 0.0000 0.0022
0.6 [-0.0010 , 0.0023] 0.0003 0.0007
0.9 [0.0055 , 0.0200] 0.0144 0.0059
1.2 [0.1935 , 0.2434] 0.2094 0.1307

Table 17: The values of contract 3 obtained with the COS method and the LSMC method.

Figure 20: The average energy level in storage for contract 3, respectively from left to right, low
volatility, mid-low volatility, mid-high volatility and high volatility obtained with the LSMC
method.
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Figure 21: A zoom in at the average energy levels in Figure 20, note that the scale of the y-axis
is not equal.

There are more actions possible at each exercise moment with this contract in com-
parison to contracts 1 and 2, the other characteristics are the same as in contract 1. The
extra actions allow the holder of the contract to make better use of price fluctuations,
which increases the value of the contract, as shown in Table 17.

The values obtained with the COS method where the closed-form characteristic func-
tion is used lie within the 95% confidence interval. Moreover, the values derived with the
COS method where the approximated characteristic function is used have a relatively
large difference compared to the COS values derived with the closed-form characteristic
function, due to the error obtained when calculating the continuation value for each split
part of the integration interval at each exercise moment.

The strategy is comparable to contract 1, first electricity is gradually stored, after
which all the electricity up to the starting energy level is sold just before the settlement
date to maximize the profit.

The CPU time is as follows. The LSMC method took ±53 minutes, the COS method
with closed-form characteristic function ±52 minutes and the COS method with ap-
proximated characteristic function ±22 seconds. The COS method where the mid-high
volatility parameter is used took only ±32 min. The computation time for each method
took longer with this contract, compared to contracts 1 and 2, because more actions
need to be considered at each exercise moment.
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Contract 4: Highly efficient and fast charging/discharging electricity storage
The numerical results of the fast charging/discharging electricity storage with highly
efficiency are stated in Table 18 and Figures 22-23.

Pricing method LSMC 95% c.i. COS
Characteristic

function
- Closed-form Approximated

σ N=50000 N=128 N=128
0.3 [1.9703 , 2.0255] 1.9756 0.8691
0.6 [3.7016 , 3.8055] 3.7518 0.8546
0.9 [5.5749 , 5.8276] 5.6629 1.1898
1.2 [7.5772 , 7.7689] 7.7270 2.2016

Table 18: The values of contract 4 obtained with the COS method and the LSMC method.

Figure 22: The average energy level in storage for contract 4, respectively from left to right, low
volatility, mid-low volatility, mid-high volatility and high volatility obtained with the LSMC
method.
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Figure 23: A zoom in at the average energy levels in Figure 22, note that the scale of the y-axis
is not equal.

Contract 4 has the advantages of both contract 2 and contract 3, that is to say, fast
charging/discharging and a 100% efficient electricity storage. Therefore, it is possible for
the holder to make maximum use of the fluctuations in the price process, resulting in a
higher contract value, as shown in Table 18.

Moreover, it can be seen that the contract values calculated by means of the COS
method with closed-form characteristic function for all price processes are within the
95% LSMC confidence intervals. The values obtained with the COS method where the
approximated characteristic function is used lie far outside the confidence intervals.

The strategy is the same as in contract 2, however it is possible to inject/withdraw
more energy per exercise moment, therefore higher energy levels are achieved in storage.
Furthermore, the low volatility electricity price processes achieve a higher average energy
level in the beginning, this can be explained by the upward drift in the price process, a
process with low volatility is more dependent on this.

The CPU time is as follows. The LSMC method took ±55 minutes, the COS method
with closed-form characteristic function ±59 minutes and the COS method with approx-
imated characteristic function ±23 seconds. Again the CPU time for the COS method
with closed-form characteristic function is less when the mid-high volatility parameter
is used, namely ±32 minutes.
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Contract 5: Car-Park as Power Plant (CPPP)
In Table 14 and Figure 24 the numerical results are shown for contract 5, intended for
the concept CPPP.

Pricing method LSMC 95% c.i. COS
Characteristic

function
- Closed-form Approximated

σ N=50000 N=128 N=128
0.3 [0.0000 , 0.0000] -0.0005 -0.0085
0.6 [0.0000 , 0.0000] 0.0000 0.0003
0.9 [-0.0007 , 0.0001] 0.0000 0.0000
1.2 [-0.0042 , 0.0018] 0.0004 -0.0007

Table 19: The values of contract 5 obtained with the COS method and the LSMC method.

Figure 24: The average energy level in storage for contract 5 for high volatility obtained with
the LSMC method.

Table 19 shows that the Car-Park as Power Plant has almost no profit by trading on
the energy market, where the electricity prices are generated by the dynamics described in
(8.1)-(8.2). The reason is that the efficiency is not high enough to make profitable use of
the fluctuations of the electricity price (this can change due to technical improvements).
Furthermore, an electricity storage consists of more value than obtained by trading on
the electricity market, e.g. guaranteeing a more stable energy system.

In Figure 24 the average energy level in the storage is shown, where the high volatility
price process is used. The strategy is the same as with contract 1 and contract 3, where
the storage has an efficiency of 95%. A difference is that, due to the high penalty at the
settlement date, there are no trajectories that sell all the energy in the end even if the
penalty has to be paid.

The CPU time is as follows. The LSMC method took ±34 minutes, the COS method
with closed-form characteristic function ±25 minutes and the COS method with approx-
imated characteristic function ±14 seconds.
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8.3 The Greeks of the electricity storage contracts

An advantage of the COS method is that the Greeks can be calculated at almost no
additional computation costs on top of the computation of the option value, unlike
Monte Carlo methods. Tables 20 and 21 show the Greeks of the electricity contracts, with
respectively an underlying low and mid-high volatility electricity price as described in
(8.1)-(8.2), calculated by means of the COS method where the closed-form characteristic
function is used.

Contract 1 Contract 2 Contract 3 Contract 4 Contract 5

∆̂ -0.0509 0.0523 -0.0607 -0.0579 -0.0408

Γ̂ 0.1263 1.5676 0.1512 1.5967 0.1015
ν̂ 0.0229 0.2864 0.0274 0.2914 0.0184

Table 20: The Greeks of the electricity contracts, where low volatility (σ = 0.3) electricity prices
are used, obtained with the COS method.

Contract 1 Contract 2 Contract 3 Contract 4 Contract 5

∆̂ -0.0054 -0.2254 -0.0104 -0.2929 -0.0001

Γ̂ 0.0092 0.4959 0.0169 0.5183 0.0006
ν̂ 0.0050 0.2696 0.0091 0.2813 0.0003

Table 21: The Greeks of the electricity contracts, where mid-high volatility (σ = 0.9) electricity
prices are used, obtained with the COS method.

The Delta ∆̂ measures the change in the contract value resulting from a change in
the electricity price. Genuinely, put options have a negative Delta due to the negative
relationship with the electricity price - so the value of a put option will increase if the
asset price falls, and vice versa. Conversely, call options have a positive Delta - so the
value of a call option will increase if the asset price increases, and vice versa. In general,
the further away the Delta is from 0, the more likely the option will be in-the-money.

However with an electricity storage contract the electricity can be both bought and
sold, and thus benefits from both price decreases and price increases, therefore Delta
can be both positive and negative. With a positive Delta, such as with Contract 2 with
a low volatility parameter, the contract benefits more from a price increase, and vice
versa with a negative Delta. Moreover, as shown in Tables 20 and 21, most considered
contracts benefit from a price decrease, especially highly efficient electricity storages
where the price process has a high volatility parameter. In addition, the Delta becomes
more extreme when the holder can make higher energy changes.

Furthermore, if the starting energy level is higher than the level for which the holder
receives a penalty, we see that the Delta is rising strongly and is positive, i.e. ∆̂ � 0.
This makes sense because the holder will benefit from a high price because he/she can
sell more than he/she has to buy in order not to receive a penalty at the settlement date.
We see the opposite if the starting energy level is lower than the energy level for which
a penalty is obtained, i.e. ∆̂� 0.

The Gamma Γ̂ is a measure of the change of Delta resulting from a change in the
electricity price. Since Delta values change continually with the electricity price, Gamma
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is used to give an idea on how stable a contract is. For Gamma’s far from zero, the Delta
changes drastically when the price changes, making the contract behave differently after
the next price change.

The contracts where a highly efficient storage is considered have a higher Gamma.
In addition, the Gamma also becomes slightly higher if the holder has actions with high
energy changes to choose from. However, the Gamma is the highest for contracts where
highly efficient electricity storages are considered and high volatility price processes take
place.

The Vega ν̂ measures the impact of a change in the volatility parameter σ on the
contract value. For the electricity contract, Vega is expected to be positive, because with
a more fluctuating electricity price more profit can be made by buying the electricity at
a low price and selling it at a high price.

The results show that with a lower volatility parameter a change in σ has more effect
on the contract value than with a higher volatility parameter. Furthermore, the Greek
Vega is the highest for the contracts that can make the most use of a high volatility, i.e.
high efficiency and allowing bigger energy changes.

8.4 Implications of the numerical results

The numerical results of the contract value obtained with the COS method, where the
closed-form characteristic function is used, are all within the LSMC 95% confidence
interval. From this it can be implied that the COS method can accurately approximate
the contract value. In addition, an advantage of the COS method is that the Greeks
can be computed at almost no additional computational costs, in contrast to the LSMC
method where the computation of the Greeks can be difficult and time consuming.

Although the contract value is accurately approximated by means of the COS method
with the closed-form characteristic function, the CPU time is relatively high compared
to pricing the other discussed financial derivatives with the COS method in Section 7.
The reason for this is that when calculating the electricity storage contract, the integral
is split into many parts to determine the maximum of all actions and the continuation
value must be calculated for each split, which takes the most time.

Moreover, it is likely that splitting the integral, so that the continuation value has
to be determined multiple times at each exercise moment, is also the reason why the
contract values determined with the COS method where an approximated characteristic
function is used has a relatively large error compared to the values determined for other
options with this method. Namely, when computing the continuation value, there is
an error when using the approximated characteristic function, as shown in Section 5.6.
Therefore we do not recommend using the approximated characteristic function when
pricing electricity storage contracts. The same conclusion is obtained when using the
adjoint expansion for the approximation of the characteristic function.

Furthermore, the electricity price dynamics (8.1) have an impact on the electricity
contract value. The larger the volatility parameter σ, the more the holder of the elec-
tricity storage contract can take advantage of the large price fluctuations, resulting in a
higher contract value. It is also clearly visible in the Greek ν̂ that the parameter σ of the
underlying price process has a major influence on the contract value, see Tables 20 and
21. In addition, the rate of mean reversion parameter κ was also examined, which shows
that the contract values typically decrease as κ increases, this is because for a higher κ
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the price process goes to the mean faster and thus creates less volatility.
Additionally, the contract value depends on the electricity storage contract charac-

teristics, defined in Tables 10-14. The numerical results clearly show that the efficiency
has a major influence, this is because when the energy is bought the discounted price
must increase by (1/η − 1)% in order not to make a loss. As a result, the price of the
storage contract, which only takes into account trading on the electricity market by buy-
ing and selling electricity, is lower. In addition, the magnitude of electricity change per
exercise moment is important for the value, the greater the permitted electricity change,
the greater the value.

Besides the dependence on the contract values, the characteristics also have a ma-
jor influence on the strategy of injecting/withdrawing energy at each exercise moment.
When the characteristics of the contract change, the strategy can change completely, as
can be seen by comparing the strategy of contract 3 and contract 4. Although the strat-
egy depends more on the contract characteristics, the price dynamics also have an effect
on this. Especially if there is low volatility, it can be seen that the confidence interval is
a lot smaller and therefore the same strategy is more often applied to the trajectories.



105 9 Conclusions and outlook

9 Conclusions and outlook

In this thesis we have introduced the COS method to price European options, Bermudan
options, Bermudan options with multiple early-exercise rights and electricity storage con-
tracts, where the asset/electricity prices follow a structural model based on polynomial
processes. In particular we focused on the well-known Ornstein-Uhlenbeck (OU) pro-
cess as the underlying polynomial process. In addition, the Least Squares Monte Carlo
(LSMC) method is presented to price the financial derivatives and validate the values ob-
tained with the COS method. The numerical results show that the COS method, where
the closed-form characteristic function is used, performs impressively and can price the
discussed financial derivatives accurately.

We formalized a contract for storing electricity by trading on the electricity market,
allowing the contract to be valued efficiently. An electricity storage contract deals with
the physical limitations of an electricity storage, the operational constraints of the elec-
tricity grid and the subsequent actions that a holder of the contract can make. These
features make it a more complex problem than standard Bermudan options or Bermudan
options with multiple early-exercise rights.

Different types of electricity storage contracts are considered, where each discussed
contract has its own characteristics (i.e. storage efficiency, charge/discharge rate, en-
durance of the storage). Moreover, we looked at the concept Car Park as Power Plant
(CPPP), where the numerical results indicate that the efficiency of electric vehicle bat-
teries is not yet high enough to make a profit with just trading on the electricity market.

For the valuation of the electricity storage contracts, the COS method with the
closed-form characteristic function is competitive with the LSMC method in terms of
computation time and accuracy. That is to say, while pricing the contracts accurately,
either the LSMC method or the COS method with closed-form characteristic function
can have faster computation times depending on the parameters of the price process
and the electricity storage contract characteristics. An advantage of the COS method
is that the Greeks can be computed at almost no additional computational costs, in
contrast to the LSMC method where the calculation of the Greeks can be difficult and
time consuming. However, if a general trading strategy based on the average energy level
in storage is preferred over the Greeks, then the LSMC method should be used instead
of the COS method.

Moreover, we investigated the COS method for pricing European options, Bermu-
dan options and Bermudan options with multiple early-exercise rights, where the asset
prices also follow the structural model based on polynomial processes. For these options,
the COS method with the closed-form characteristic function outperforms the LSMC
method. Both methods can accurately price the options, but the COS method requires
significantly less computation time compared to the LSMC method.

Furthermore, we presented an approximation of the characteristic function which en-
ables us to apply the Fast Fourier Transform (FFT) when pricing the discussed financial
derivatives by means of the COS method, which significantly reduces the computation
time of the valuation. In addition, this approximation can be used for (underlying)
processes where the closed-form characteristic function is not available.

The numerical results show that the approximation of the characteristic function
of the OU process performs well when pricing Bermudan-type options for most pa-
rameter combinations. For the Bermudan option and Bermudan option with multiple
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early-exercise rights, where the underlying price process follows an OU process, the
computation time is reduced from seconds to milliseconds while the results remain accu-
rate. While the approximation works well for the Bermudan-type options, for electricity
storage contracts there is an excessive pricing error when using the COS method with
the approximated characteristic function and therefore the approximation is not recom-
mended for pricing electricity storage contracts.

9.1 Outlook

As mentioned, the COS method for valuing the electricity storage contract does not
perform well with the approximated characteristic function, so the FFT can not be
applied to reduce the computation time. Therefore, we suggest parallelizing parts of
the COS pricing algorithm to reduce the CPU time. Especially the parts where the
Fourier coefficients of the continuation value are calculated, because this takes most of
the computation time. For example, at each exercise moment, the Fourier coefficients of
the continuation value can be calculated simultaneously for each energy level in storage.
In addition, all elements of the matrices Mc

k,l and Ms
k,l, defined in respectively (4.52)

and (4.53), can also be computed simultaneously instead of per element of the N × N
matrices.

We also suggest further research on the choice of L̄ used in the integration range of
the COS method and the number of terms N in the Fourier cosine expansion. A smart
choice of L̄ can ensure that less terms in the Fourier cosine expansion are needed to
achieve the same accuracy while reducing the computation time.

In addition, it can be investigated whether our approach to approximate the charac-
teristic function works well in valuing financial derivatives with the COS method when
other stochastic models or higher-order polynomial models are used for the generation
of the asset/electricity prices.

Moreover, the use of antithetic variates can be applied to the LSMC method to
reduce the variance of the obtained results. This means that fewer trajectories need to
be simulated to achieve the same accuracy with the LSMC method, resulting in higher
computational efficiency.

Furthermore, due to the great potential of electricity storage, there are many different
technologies for large-scale electricity storage and there is rapid technological progress
in this area. Therefore it may be interesting to conduct more research into different
electricity storage technologies and concepts that can be priced with the formalized
electricity storage contract.
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Appendices

A The dynamics of stochastic processes

In this appendix we present the dynamics of some stochastic processes used in this thesis.

A.1 Geometric Brownian Motion

The Geometric Brownian Motion (GBM) statisfies the following SDE:

dXt = µXtdt+ σXtdWt, (A.1)

where t ≥ 0, µ > 0 denotes the drift parameter, σ > 0 the percentage volatility parameter
and Wt the Brownian motion under real-world measure P.

By Ito’s lemma it will be demonstrated that (A.1) has the lognormal distribution,
i.e. that log(Xt) has the normal distribution. By setting x(t) = log(Xt) and applying
Ito’s lemma it gives:

dxt =

(
µ− 1

2
σ2

)
dt+ σdWt. (A.2)

As the increments of the Brownian motion Wt are normally distributed with mean
zero and variance dt, it shows that (A.2) has an expected value of

(
µ− 1

2σ
2
)
dt and a

variance of σ2dt. Because an integral can be regarded as an infinite sum, the variable xt
can be represented as the sum of the increments dxt, such that xt = log(Xt) is normally
distributed:

xt = log(Xt) ∼ N
(

log(X0) +

(
µ− σ2

2

)
(t− t0), σ2(t− t0)

)
. (A.3)

Moreover, the right-hand side of the log-transformation dxt (A.2) does not depend
on xt, and therefore can be simply integrated on both sides. Integration from t0 to t
results in the following solution:

xt = xt0 +

(
µ− σ2

2

)
(t− t0) + σ(Wt −Wt0). (A.4)

Now Xt = ext is obtained by taking the exponential on both sides of (A.4), which
gives the following solution for Xt:

Xt = Xt0 exp

((
µ− σ2

2

)
(t− t0) + σ(Wt −Wt0)

)
. (A.5)

When GBM is used for the risk-neutral valuation under the risk-neutral measure Q,
the drift term µ is set equal to the risk-free interest rate r to avoid arbitrage (i.e. µ = r).

Furthermore, the characteristic function of the GBM is given by:

φ(u|x,∆t) = eiux+A(u,∆t), (A.6)

where

A(u,∆t) = iu

(
µ− σ2

2

)
∆t− 1

2
σ2u2∆t.
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A.2 Ornstein-Uhlenbeck process

The Ornstein-Uhlenbeck (OU) process has the following SDE:

dXt = κ(θ −Xt)dt+ σdWt, (A.7)

where t ≥ 0, κ the rate of mean reversion, θ the long-run mean, σ the volatility of the
process and Wt the Brownian motion under real-world measure P.

Integration from t0 to t on both sides of the SDE (A.7) yields the following solution
of the OU process:

Xt = Xt0e
−κ(t−t0) + θ

(
1− e−κ(t−t0)

)
+ σe−κ(t−t0)

∫ t

t0

eκsdWs. (A.8)

By using a scaled time-transformed Brownian motion an analytical solution of the inte-
gral in equation (A.8) can be computed, see [56] for further details.

Moreover, the OU process is normally distributed, i.e. Xt ∼ N
(
E[Xt], V ar[Xt]

)
,

where the expected value and variance are given by:

E[Xt|F0] = Xt0e
−κ(t−t0) + θ(1− e−κ(t−t0)),

V ar[Xt|F0] =
σ2

2κ
(1− e−2κ(t−t0)),

(A.9)

with initial position Xt0 .
Furthermore, the well-known characteristic function of the OU process is given by

[43]:

φ(u|x,∆t) = eiuxe
−κ∆t+A(u,∆t), (A.10)

where

A(u,∆t) =
1

4κ

(
e−2κ∆t − e−κ∆t

) (
u2σ2 + ueκ∆t

(
uσ2 − 4iκθ

))
.
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B The LSMC algorithms

In this appendix the algorithms for the LSMC method are stated. Algorithm 1 and 2
are based on the algorithms in [57].

Algorithm 1 The LSMC algorithm for a Bermudan option.

1: POim = (K − Si(tm))+ ,∀i = 1, ..., N and ∀m = 1, ...,M
2: CF iM = POiM ,∀i = 1, ..., N
3: for m = M − 1, ..., 1 do
4: Xi = Si(tm) ,∀i where POim > 0
5: Y im = DCF i(tm) =

∑
k>m e

−r(k−t)∆tCF ik ,∀i where POim > 0
6: p = polyfit(X,Y, 3)
7: CVm = polyval(p,Xi

m) ,∀i where POim > 0
8: for i = 1, ..., N do
9: if CV im < POim then

10: CF im = POim
11: CF ik = 0 ,∀k > m
12: end if
13: end for
14: end for
15: v(t0, S(t0)) = 1

N

∑N
i=1DCF

i
0 = 1

N

∑N
i=1

∑M
m=1 e

−r·m∆tCF im
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Algorithm 2 The LSMC algorithm for a Bermudan option with multiple early exercise
rights.

1: POim = (K − Si(tm))+ ,∀i = 1, ..., N and ∀m = 1, ...,M
2: for j=1,...,R do
3: for m=M,...,M-j+1 do
4: CF i,jm = POim ,∀i = 1, ..., N
5: end for
6: end for
7: for m = M − 1, ..., 1 do
8: Xi = Si(tm) ,∀i where POim > 0
9: for j = 1, ...,min(M − t, R) do

10: Y i,jm = DCF i,j(tm) =
∑
k>m e

−r(k−t)∆tCF i,jk ,∀i where POim > 0
11: pj = polyfit(X,Y j , 3)
12: CV i,jm = polyval(p,Xi

m) ,∀i where POim > 0
13: end for
14: for min(M −m,R) > 1 do
15: for j = min(M −m,R), ..., 2 do
16: for i = 1, ..., N do
17: if POim + CV i,j−1

m > CV i,jm then
18: CF i,jm = POim
19: CF i,jk = CF i,j−1

k ,∀k > m
20: end if
21: end for
22: end for
23: end for
24: for i = 1, ..., N do
25: if CV i,0m < POim then
26: CF i,0m = POim
27: CF i,0k = 0 , ∀k > m
28: end if
29: end for
30: end for
31: for j = 1, ..., R do
32: vj(t0, S(t0)) = 1

N

∑N
i=1DCF

i,j
0 = 1

N

∑N
i=1

∑M
m=1 e

−r·m∆tCF i,jm
33: end for
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Algorithm 3 The LSMC algorithm for the electricity contract.

1: for e = 0, ..., Ncap do

2: CF i,eM+1 = qs(tM+1, S
i(tM+1), e) ,∀i = 1, ...N

3: ACF i,eM+1 = CF i,eM+1 ,∀i = 1, ...N
4: end for
5: for m = M, ..., 1 do
6: Xi = Si(tm) ,∀i = 1, ..., N
7: for e = 0, ..., Ncap do

8: DACF i,e = e−r∆tACF i,em+1 ,∀i = 1, ..., N
9: pe = polyfit(X,DACF e, 3)

10: CV i,em = polyval(pe, Xi
m) ,∀i = 1, ..., N

11: end for
12: for e = 0, ..., Ncap do
13: for i = 1, ..., N do
14: ∆ei,∗ =∆e∈A(tm,e)

{
POi,∆em + CV i,e+∆e

m +Q∆e
}

15: CF i,em = POi,∆e
i,∗

m +Q∆ei,∗

16: ACF i,em = CF i,em + e−r∆tACF i,e+∆ei,∗

m+1

17: end for
18: end for
19: end for
20: for e = 0, ..., Ncap do

21: v(t0, S(t0), e) = 1
N

∑N
i=1DACF

i,e
0 = 1

N

∑N
i=1 e

−r∆tACF i,e1

22: end for
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[3] S. Lechtenböhmer, L.J. Nilsson, M. Åhman, and C. Schneider. Decarbonising the
energy intensive basic materials industry through electrification–implications for
future eu electricity demand. Dubrovnik, 2015.

[4] X. Luo, J. Wang, M. Dooner, and J. Clarke. Overview of current development in
electrical energy storage technologies and the application potential in power system
operation. Applied energy, 137:511–536, 2015.

[5] V. Jülch. Comparison of electricity storage options using levelized cost of storage
(lcos) method. Applied Energy, 183:1594–1606, 2016.

[6] H. Chen, T.N. Cong, W. Yang, C. Tan, Y. Li, and Y. Ding. Progress in electrical
energy storage system: A critical review. Progress in natural science, 19(3):291–312,
2009.

[7] G.L. Kyriakopoulos and G. Arabatzis. Electrical energy storage systems in elec-
tricity generation: Energy policies, innovative technologies, and regulatory regimes.
Renewable and Sustainable Energy Reviews, 56:1044–1067, 2016.

[8] A. Poullikkas. A comparative overview of large-scale battery systems for electricity
storage. Renewable and Sustainable Energy Reviews, 27:778–788, 2013.

[9] H. Lund and W. Kempton. Integration of renewable energy into the transport and
electricity sectors through v2g. Energy policy, 36(9):3578–3587, 2008.

[10] E.H. Park Lee. A socio-technical exploration of the Car as Power Plant. PhD thesis,
Delft University of Technology, 2019.

[11] I. Staffell and M. Rustomji. Maximising the value of electricity storage. Journal of
Energy Storage, 8:212–225, 2016.

[12] H. Lund and G. Salgi. The role of compressed air energy storage (caes) in future
sustainable energy systems. Energy conversion and management, 50(5):1172–1179,
2009.

[13] F. Graves, T. Jenkin, and D. Murphy. Opportunities for electricity storage in dereg-
ulating markets. The Electricity Journal, 12(8):46–56, 1999.

[14] D. Connolly, H. Lund, P. Finn, B.V. Mathiesen, and M. Leahy. Practical operation
strategies for pumped hydroelectric energy storage (phes) utilising electricity price
arbitrage. Energy Policy, 39(7):4189–4196, 2011.



113 References

[15] G.P. Girish and S. Vijayalakshmi. Determinants of electricity price in competitive
power market. International Journal of Business and Management, 8(21):70, 2013.

[16] E. Schwartz and J.E. Smith. Short-term variations and long-term dynamics in
commodity prices. Management Science, 46(7):893–911, 2000.

[17] J.J. Lucia and E.S. Schwartz. Electricity prices and power derivatives: Evidence
from the nordic power exchange. Review of derivatives research, 5(1):5–50, 2002.

[18] M.T. Barlow. A diffusion model for electricity prices. Mathematical finance,
12(4):287–298, 2002.

[19] F.E. Benth, J.S. Benth, and S. Koekebakker. Stochastic modelling of electricity and
related markets, volume 11. World Scientific, 2008.

[20] A. Eydeland and K. Wolyniec. Energy and power risk management: New develop-
ments in modeling, pricing, and hedging, volume 206. John Wiley & Sons, 2003.

[21] R. Weron. Electricity price forecasting: A review of the state-of-the-art with a look
into the future. International journal of forecasting, 30(4):1030–1081, 2014.

[22] R. Carmona and M. Coulon. A survey of commodity markets and structural models
for electricity prices. In Quantitative Energy Finance, pages 41–83. Springer, 2014.
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