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Abstract

Since the introduction of optical data storage systems in the 1970s, we have observed a stepwise
increase in their storage capacity using the same means for resolution improvement as in
classical microscopy and optical lithography, namely, a reduction in the source wavelength and
an increase in the numerical aperture of the imaging optics. In this paper we briefly address the
historical development of optical data storage and some recent developments towards higher
density such as non-linear recording methods and systems with a numerical aperture larger
than unity. More specifically, we explore the possibility of storing more information bits per
storage location so that optical ‘multiplexing’ becomes feasible. A multiplexing method based
on the detection of optical angular momentum of a focused light beam is treated in detail and is
illustrated with some examples of preliminary experiments on this subject. Both the existing
high-density systems and the proposed new ones require a detailed analysis of the focusing
of the scanning spot and the diffraction by the information structure on the disc. We analyse
electromagnetic focusing in multilayers and treat the diffraction of light by optical effects using
a three-dimensional form of Green’s tensor formalism.
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1. Overview of optical data storage

The first thoughts about the storage of data by optical means go back to the 1920s when
engineers were looking for new methods to store pictures and sound signals from the newly
discovered television medium. Even at that moment in time it was clear that optical methods
should be able to realize a much higher storage capacity than the acoustic phonograph.
Magnetic storage methods were not yet considered. The oldest patent about optical storage
goes back to John Logie Baird, the famous inventor of modern TV [1]. In his UK patent
he presented a system with a lamp that focused its radiation on a black-and-white storage
medium and the modulated transmitted light was then led to a detector. The storage capacity
was enough for 15 min of TV with a bandwidth of typically 20 kHz. Even at that time, such a
TV bandwidth yielded unacceptably bad images and his system never made it to the market.
Interest in optical data storage was renewed after the success of magnetic storage of TV-images
with the professional magnetic tape system of the AMPEX company. Because of its intrinsic
complexity and corresponding high price, engineers looked for storage solutions that would
give the mass consumer access to data storage in the home. The result was a ‘miniaturized’
version of the magnetic storage principle, finally resulting in the VHS video recorder standard
from the Japanese JVC company. Several other companies explored the possibilities of optical
data storage. A first research effort was carried out at Stanford University, sponsored by the
3M-company. In a paper from 1969, Rice et al [2] described a mercury-lamp-based optical
storage system that used several of todays principles. For instance, storage of the information in
a tiny microscopic track was proposed using some modulation method for the electrical signal
to be translated into a sequence of optical effects. Due to the thermal light source, neither a
good signal-to-noise ratio could be obtained nor an adequate track following achieved. The
system was not acceptable for a mass-consumer application. In the beginning of the 1970s,
systems were proposed that basically resemble our actual optical data storage systems. The
breakthrough was realized thanks to

• the use of a compact low-price helium–neon laser as the light source,

• low-price components while maintaining a high-quality optical system,

• derivation of optical error signals to detect the deviation from optimum read-out conditions
(focus, lateral off-set, disc tilt, disc thickness, etc)

• implementation of dynamic control systems for obtaining a correct axial focusing and
lateral tracking of the spiral that contains the information and

• development of advanced modulation schemes to optimally adapt the electrical signal to
the optical storage medium.

With these advancements, the initial optical players for television signals were launched in
the market at the end of the 1970s. Massive market penetration did not happen because the
systems were relatively bulky and, not unimportantly, unable to record new information; this
was in contrast to the newly introduced magnetic tape systems.

New developments drastically changed the picture. The advent of the compact AlGaAs-
semiconductor laser and cheap digital coding and error correction techniques made the new
compact disc system feasible. It was devised for audio information of superior quality and
immediately became a success after its introduction in 1983, mainly because of the compactness
of the disc player and the corresponding standardized discs and its long playing time. Portable
versions have followed the initial designs and the material to be stored changed from digital
audio to digital in general, enabling its introduction in the personal computer environment.
Together with the recording / erasure possibility, the original audio medium became the digital
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Table 1. Physical parameters of optical disc systems; storage capacity.

System Year λ [µm] NO λ/NO [µm] Capacity [GB/layer] Diameter [cm] Playing time [minutes]

Video long play 1978 0.633 0.40 1.56 4.5 30 30–60
Laser disc 1983 0.785 0.50 1.57 4.5 30 60
Compact disc 1983 0.785 0.45 1.74 0.65 12 74 (3–4)
DVD 1995 0.650 0.60 1.08 4.7 12 135 (8)
HD-DVD 2006 0.405 0.65 0.62 16 12 135 (12)
Blu Ray 2006 0.405 0.85 0.48 23 12 135 (15)

data storage medium of choice because of its removability that greatly facilitates exchange of
information and also because of the extremely low cost per stored bit.

Following the history of optical data storage, one can see that the storage capacity increases
with time as presented in table 1. Here, as basic physical parameters of an optical disc system,
we have listed the source wavelength λ, the numerical aperture (NO) of the scanning objective
for the various optical disc systems and the corresponding diffraction unit (λ/NO). The other
entries apply to quantities that are of principal importance for the user such as data capacity in
gigabyte and playing time and/or data retrieval time (between parentheses), both in minutes.
Note that the switch from the relatively bulky helium–neon laser to the tiny semiconductor
laser was already made for the analog LaserVision video system. But because of the large-
sized discs (30 cm diameter), the benefit to the size of the playing system was negligible. The
storage capacity of these first-generation optical discs in bytes can be estimated by taking the
bandwidth of the analog system (5 MHz) and multiplying this by 2 (two bits per smallest period
of the signal) and by the achieved playing time. The important reduction in size of the system
was obtained in the following generations by reducing the disc size to a diameter of 12 cm. A
rough estimate of the storage capacity follows the Rayleigh criterion; applied to optical discs,
two bits should be spaced apart by a distance equal to 0.61 λ/NO. With a useful storage area
AS of typically 92.7 cm2 maximum (with inner and outer recording radii of 23 mm and 59 mm,
respectively), the storage capacity C in bytes is given by

C = 1

8

AS

(0.61λ/NO)2
= 0.34

ASN
2
O

λ2
. (1)

Careful inspection of the table shows that the original CD-system approximately adheres to
the Rayleigh resolution criterion although the capacity is slightly less than could be expected.
The reason is that the system parameters of this first digital optical disc system have been
chosen in a rather conservative manner to assure a reliable functioning of the complete system,
including mass-produced player and discs. When considering the DVD-system, the Rayleigh
criterion prediction for the capacity leads to 2.0 GB, the realized value amounts to 4.7 GB. The
reason for this important increase in relative capacity stems from the progress made in digital
signal theory and practice (coding, modulation and detection systems, digital hardware) plus
acquired experience in mass fabrication and system tolerancing. This same progress in system
design and fabrication has also been used in the systems based on the blue GaN laser, operating
close to 400 nm wavelength. The same relative increase in density could be maintained for the
Blu Ray and HD-DVD systems despite the tighter tolerances on system and components due
to the shorter wavelength of the source.

Further developments in optical data storage have been projected on a data storage road
map. The road map shows, not surprisingly, that a saturation in system capacity is observed
due to the fact that the single-layer capacity is limited by a further decrease in the size of the
diffraction unit λ/NO. A further reduction in wavelength to the UV-region does not seem to be
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Figure 1. Schematic overview of the optical recording system. The light, emitted by a laser diode,
passes a beam shaper, collimator, polarising beam splitter, quarter-wave plate and objective to
be focused on the optical disc. The reflected light is collected by the same objective, passes the
quarter-wave plate, the polarising beam splitter and the detector lens and is finally imaged on the
detector.

realistic at this moment. The only possibility is found in an increase in the numerical aperture
beyond unity by using a so-called solid immersion lens (SIL). However, a sensitive system
such as this is not yet accepted by the data storage community as it might compromise the
easy removability of optical media. Alternative ways to achieve higher capacity rely on the
use of nonlinear optical effects at the reading or recording stage or making use of information
multiplexing. In this paper, we will concentrate on the latter option where we store more than
one bit of information in a single storage location. Apart from increasing the storage capacity,
this method also allows a proportional increase in the data retrieval rate. This latter quantity
is an important system parameter because the user wants to have a means to quickly retrieve
the full data content to another information carrier, be it a magnetic or an optical disc or a
high-speed internet link. The retrieval data rate can be increased by spinning the disc at its
maximum speed, typically 50 or even 100 Hz rotational frequency. But the retrieval time is
increased by the increased number of windings of the information spiral on the disc and this
explains the relatively high retrieval time of, e.g. a Blu Ray disc.

The detailed organization of the paper is as follows. In section 2 we briefly review the basic
optical principles of an optical disc system. Section 3 is devoted to the modelling of a modern
disc player that should be capable to play all existing disc formats listed in table 1. In section 4
we give a description of some new developments to obtain higher capacity optical storage
systems, using solid immersion lenses. Finally, in section 5, we treat various multiplexing
options and then concentrate on our research to obtain multiplexed information by imparting
orbital angular momentum to a focused light beam on reflection at the information track and
exploiting the particular far-field diffraction pattern of such a beam. With section 6, the paper
terminates with a short summary of the conclusions and a discussion of the future prospects
for optical data storage.

2. Principles of optical data storage

A schematic overview of a typical optical recording system is shown in figure 1. The light is
emitted by a laser diode, collimated and shaped further to obtain a uniformly distributed light
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Figure 2. A schematic picture of the data structure on an optical disc. On scanning a track with the
focused light spot, a detection signal is found that shows a maximum slope proportional to NO/λ,
the inverse of the lateral size of the spot. The ‘digital eye’, see the drawn lozenge in the figure,
becomes visible once a large number of signal sequences is superimposed on, e.g. an oscilloscope
that triggers on an arbitrary positive transient in the digital signal; the sequences create a so-called
eye pattern. The lateral shift of an individual transient should not exceed half the width of the
digital eye to avoid decision errors on the state of the binary signal.

beam with a high quality phase-front. Next, the light is changed to a circular polarization state
and focused on the disc. The same objective collects the reflected light which is imaged on
the detector.

Nowadays, the signals to be stored on an optical data disc are digital and their quality and
robustness at retrieval have to be guaranteed by the optical recording/read-out system. The
main factors that determine the quality of a digital signal are the following.

• Clock regeneration. The transients in the digital signal create a so-called self-clocking
signal that serves as the time base for determining at which moments the binary signal
is zero or unity. The minimum distance d in time between two transients determines
the run-length of a digital signal. The time increment between two clock ticks gives the
minimum length difference between two sequences of zeros (or ones). This increment
determines the width of the ‘digital eye’, see figure 2, and should be made as small as
possible for obtaining high density.

• Time jitter. The recording and read-out mechanism can lead to apparent time shifts of the
bits to be detected. Mechanisms that introduce time shifts can be of optical origin such
as cross-talk (signal perturbation from adjacent signal tracks) or intersymbol interference
(signal perturbation due to the adjacent in-track information bits). The optical recording
mechanism, e.g. a local transition from the crystalline to the amorphous phase of the
information layer, is based on thermal heating, and thermal diffusion can also be at the
origin of apparent shifts of a recorded information bit. If the root mean square value of the
time shifts of the transients in the digital signal attains a value of typically 1/6 of the width
of the digital eye, errors are likely to occur and the digital signal becomes unreliable.
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• Signal-to-noise ratio. While the time jitter gives rise to uncertainty of the bit detection
because of a horizontal shift of the transient in the digital eye, a bad signal-to-noise ratio
leads to an uncertainty in the detection moment because of the stochastic variations in
the signal strength. Especially in multi-level digital signals, the signal-to-noise ratio can
be a critical parameter. For two-level signals an overall signal-to-noise ratio of 30 dB is
acceptable.

Even if all conditions for correct digital signal reconstruction are satisfied, disc scratches or
temporary strong defocus might give rise to full signal loss. For those cases, error correction
schemes based on the integrity of larger sequences of bits have been devised. In this way, a
relative immunity with respect to in-track perturbations is obtained. However, the solution
against track-loss (comparable to the hang-up on old long play audio discs) is much more
difficult and requires the use of a larger amount of memory in the optical player.

2.1. Optical transfer

The optical read-out process is most readily described by means of the optical frequency
transfer function. This concept is limited to the domain of linear systems and, as such, is not
appropriate for the read-out of an optical disc with the single-spot scanning method.

In a seminal paper it was demonstrated by Welford [3] that scanning microscopy is directly
comparable to classical microscopy and has to be treated using an adapted version of the general
imaging theory for objects that are illuminated with partially coherent light [4]. The theory of
the scanning microscope was further developed by Wilson and Sheppard [5, 6]. The analogy
between the scanning and the classical microscope is easily explained by means of figure 3.
The basic resolution in the two systems is provided by the objectives, OS in the scanning
microscope and OI in the classical microscope. The particular effects of the setting of the
condenser aperture C in the classical microscope on the coherence of the object illumination
are well described by the van Cittert-Zernike theorem [4]. The same coherence effects can
be obtained in the scanning microscope by adapting the size of the aperture in front of the
detector D. In both cases, it is the sine of the opening angle of the condenser or the detector
that determines the ‘partial’ coherence, denoted by the factor σ . An opening angle approaching
zero leads to fully coherent illumination or detection (σ = 0). If the sine of the opening angle
of the condenser or detector is much larger than the objective aperture, the illumination can
be said to be fully incoherent (σ → ∞). In the case of an optical disc system used in
reflection, a natural choice is an equal aperture for objective (NO) and detector (ND) which
leads to a partially coherent setting that is close but not equal to the fully incoherent case. The
resulting extreme cases in spatial frequency transfer from the scanned object to the detector are
illustrated in figure 4. The practical solution adopted in optical disc systems ND/NO = 1 asks
for a treatment that is linear neither in optical amplitude (coherent case, σ = 0) nor in optical
intensity (fully incoherent case, σ → ∞). The subtle differences between the various stages
of ‘coherence’ in the read-out of an optical disc is best illustrated by taking a one-dimensional
binary object (step function) that produces an abrupt change in reflectivity from zero to unity.
The intensity response SD(x, y) of the detector if the scanning spot is exactly centred on the
transition (x = 0) is given by

SD(0, y) =

 1/4 (σ = 0)

1/3 (σ = 1)

1/2 (σ → ∞)

. (2)

The upper and the lower results can be easily derived by summing respectively the amplitude
or the intensity of the scanning spot that is 50% transmitted or reflected by the step function.
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Figure 3. (a) The scanning optical microscope SOM and (b) the ‘classical’ imaging optical
microscope IOM with simultaneous illumination of the full field (as an example, two source points
out of the extended incoherent source are shown in the drawing). The scanning microscope is
optically characterized by the numerical aperture of its objective and the collecting angle (aperture)
of the detector (dashed cone). In the figure, the aperture ND of the detector has been taken equal to
the numerical aperture NO of the objective OS, a situation that corresponds to standard reflective
read-out of an optical disc.

Figure 4. Schematic drawing of the modulation transfer function as a function of the spatial
frequency in the scanned object. The function |H(u)| corresponds to the fully coherent case (left-
hand graph) and has a high-level uniform frequency transfer up to a limiting frequency equal to
NO/λ with a the half diameter of the objective pupil and f1 the focal distance. In the fully incoherent
case (σ = ND/NO � 1) the frequency transfer (|H̃ (u)|) is nonzero up to twice as large value but
the modulation of the detected signal is continuously decreasing for larger spatial frequency u.

The result for SD(0, y) in the partially coherent case with σ = 1 is more intricate; an analytical
derivation of the result 1/3 was given long ago in [7].

The conclusion from the diffraction calculations above is that fully incoherent detection
(σ = ∞) produces highest liability in detecting transients of the information track. Because of
the impossibility to realize this value in practice, optical data detection has to take into account
the effects of finite ‘coherence’ and accommodate lateral shifts of transients of the order of
0.1 λ/NO. The shifts are partly predictable by prior knowledge about the bit sequences to
be detected using modulation schemes but, for a substantial part, these shifts are of a more
random nature once the influence of neighbouring tracks is also incorporated (cross-talk). For
this reason, a basic uncertainty in transient position of typically 0.03 λ/NO is unavoidable in
optical data storage; for the Blu Ray system, this value amounts to approximately 10–15 nm,
to be compared with a basic feature length of 150 nm. Higher density on optical discs is
hampered by this basic optical uncertainty, together with the influence of noise sources such
as electrical noise, laser noise, photon shot noise and, last but not least, medium noise.
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2.2. Modelling of the read-out system

The rather superficial analysis of the preceding paragraph gave a global idea of the limits
that are encountered in achieving higher density. Note that in this paper we do not focus
on the recording process (optical disc mastering, phase-change recording or magneto-optic
recording); we suppose that means are available for producing optical effects with a certain
density. Our emphasis here is on a more detailed modelling of the read-out process that goes
beyond the standard approach described in the earlier literature. The first publications on
optical disc systems used a relatively simple optical scattering model. An early experimental
system was based on the use of very high resolution photographic material [2]. Instead of
this, because of ease of replication, relief structures were proposed and the design of the
optical ‘pits’ was based on achieving a phase difference of π between the light reflected from
a depression (or ‘bump’) and the light reflected from the environment (‘land’ region) [8–11].
Later publications used a more elaborate model, analogous to the scanning microscope model;
the disc structure is still represented by an infinitely thin reflection screen with a spatially
varying complex reflection coefficient [12–16]. A full account of the scanning microscope
approach to optical disc read-out is found in [17] and this paper also gives a detailed description
of the numerical implementation of the corresponding scalar diffraction theory. A system
description using this same scalar diffraction picture of optical disc read-out that turned out
to be sufficiently accurate for the lower density optical discs systems such as laser disc, CD
and DVD can be found in [18,19]. General descriptions of optical disc systems are also found
in [20–28].

2.2.1. Vector focusing. At relatively low numerical aperture, the calculation of the field in
the focal region is carried out using scalar diffraction theory. At higher numerical aperture
one has to include the state of polarization of the light as was done in early references on this
subject [29–32]. Further refinements include the presence of aberrations, either of circularly
symmetric nature [33,34] or of a general nature [35–38], and the incorporation of several layer
transitions in [39]. As the geometrical numerical aperture in the information layer of an optical
disc has been reduced by a factor of Re(nmed) (the real part of the refractive the layer), the
vector effects in focus remain relatively small, even for the high numerical aperture Blu Ray
system. However, as soon as the solid immersion lens (SIL) method of focusing is introduced
[40–42], the vector effects become very pronounced and have to be included in order to obtain
a good prediction of the detector signal retrieved form the high-density disc.

2.2.2. Vector diffraction. At an early stage it was recognized that the scalar diffraction
theory was basically insufficient to accurately account for all observed effects in optical
disc read-out. From the very beginning, the lateral dimensions of an optical effect were
of the order of the wavelength of the light and this means that the electromagnetic boundary
conditions used in, for example, Kirchhoff’s scalar diffraction approach are inadequate. The
influence of the state of polarization on the diffracted far-field and the apparent depth of optical
pits as a function of incident field polarization was described in [43] using the numerical
methods for electromagnetic diffraction that were available at that moment [44–46]. Later
research has aimed at an improvement in convergence and speed of these three-dimensional
diffraction calculation methods based on plane wave incidence. A more recent treatment
using a rigorous two-dimensional diffraction theory is given in [47, 48]. High-numerical-
aperture read-out of an optical disc pattern needs information about the scattered field for a
large number of angles of incidence of the elementary plane wave and this leads to a high
computational load.
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2.3. New high-density systems

In this subsection we briefly describe potential high-density systems in optical data storage
that could find a position in the mass-consumer market in the coming decade. We start by
excluding a certain type of system, namely, the holographic page-oriented systems. These
systems are based on classical holography [49, 50] and nowadays use angular multiplexing to
store images or bit patterns and to retrieve them from a CCD-type array detector. More recent
systems use specific properties of volatile recording materials such as bacteriorhodopsin and
rely on polarization holography [51, 52]. In all cases, the holographic systems lack the low-
price capability that is needed for a penetration of the mass-consumer market. The holographic
systems also lack an easy replication option which makes them unsuited for distribution of
huge amounts of data. For this reason we will not consider volumetric recording systems in
this paper and concentrate on systems that achieve the highest possible capacity per individual
information layer. In general, a single layer disc can be extended to a multi-layer system as has
been done in the DVD-standard. The high-density systems based on nonlinear effects are only
briefly considered; they exploit temperature-induced nonlinear refractive index effects [53]
and/or super-resolution effects in, e.g. crystalline/amorphous thin layers based on antimony
or silveroxide (super-RENS [54, 55]). Other systems use magneto-optic thin layer stacks
(MAMMOS [56]). The complexity or limited durability of these nonlinear information stacks
seems to prohibit them from becoming a widely accepted standard and from penetrating the
market.

To illustrate the effect of typical nonlinear read-out behaviour we suppose the following
dependence of the refractive index on the focal spot intensity I (x, y)

n(x, y) = n0 + �nI (x, y) = n0 + �n|a(x, y)|2, (3)

where a(x, y) represents the complex amplitude of the electric field in the focal region.
In the simplified scalar diffraction approximation, the reflected amplitude a′(x, y) in the

immediate ‘near-field’ is given by the product of the reflection function, approximated by that
of a thin phase object, and the incident wave function leading to

a′(x, y) = exp
[
i2k0

(
n0 + �n|a(x, y)|2) h(x, y)

]
a(x, y), (4)

where k0 equals the wave number in vacuum and h(x, y) describes the height profile of an
information pit on the optical disc.

A height profile with the property h(x, y) � λ leads to the approximate expression

a′(x, y) ≈ [
1 + i2k0

(
n0 + �n|a(x, y)|2) h(x, y)

]
a(x, y). (5)

The complex amplitude B(X, Y ) reflected back into the exit pupil of the scanning objective is
given by the Fourier transform of a′(x, y) and we obtain

B(X, Y ) ≈ A(X, Y ) + 2ik0n0H(X, Y ) ∗ A(X, Y )

+ 2ik0�nH(X, Y ) ∗ FT
[|a(x, y)|2a(x, y)

]
, (6)

where the functions A(X, Y ) and H(X, Y ) are the Fourier transforms (FT) of a(x, y) and
h(x, y), respectively, and (X, Y ) are the normalized Cartesian co-ordinates of a general point
on the pupil sphere.

Using the standard detection method employed in optical disc players, one collects all
the light captured within the exit pupil of the objective on the way back from the disc. The
detector current is then proportional to

iD ∝
∫ ∫

Spupil

|B(X, Y )|2 dXdY. (7)
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Figure 5. (a) A schematic drawing of the Fourier transform G(X, Y ) of the function g(x, y) =
|a(x, y)|2a(x, y) as compared with the FTs of a(x, y) and |a(x, y)|2, plotted in terms of normalized
transfer functions H(u) (upper figure). (b) A cross-section in the plane Y = 0 of the function
G(X, Y ), off-set by a x-frequency component close to 4NO/λ and its contribution within the
detection pupil (shaded region within the detection pupil A(X, 0) with normalized extent ±1).

In the case of a perfect diffraction-limited scanning spot a(x, y), its Fourier transform A(X, Y )

simply reduces to the so-called top-hat function, equal to unity within the pupil of the objective
and zero outside. In the absence of any information on the disc, the function H(X, Y ) is a
δ-function and the contribution from the second term in equation (6) reduces to 2ik0n0A(X, Y ).
The presence of the optical information pits leads to a spatial modulation of the function h(x, y)

and the Fourier transformed function H(X, Y ) acquires a certain extent. Part of that spatial
extent might not be contained within the detection solid angle determined by the exit pupil
size and may be lost for detection purposes. But the convolution product H(X, Y ) ∗ A(X, Y )

leads to a broadening with respect to the original function H(X, Y ) so that the information
stored in the tracks on the disc can still be captured by the detector. A careful analysis shows
that spatial frequencies corresponding to a sine of the diffraction angle that is twice the value
of the numerical aperture of the objective are still present in the detector signal, albeit with
a strength that approaches zero, see figure 4. The influence of the nonlinear effect, present
in the third term of equation (6), is a further broadening of the frequency transfer due to the
convolution with the Fourier transform of the function g(x, y) = |a(x, y)|2a(x, y). In figure 5
we have plotted the basic shape of the function G(X, Y ) = FT {g(x, y)}. It is seen that the total
support of this function is ±3NO/λ. This means that frequency components in H(X, Y ) close
to 4NO/λ can be folded back and still be transmitted through the outer part of the exit pupil of
the objective. However, in practice, the nonlinear effect due to, e.g. thermal heating in phase-
change recording layers is small and the resulting signals are weak. A negative side-effect is
that the repeated heating of a layer tends to be destructive for the stored information.

An improved version of the nonlinear read-out described above is obtained by the so-
called RENS or super-RENS principle [54, 55]. With an extra absorbing layer showing a
pronounced nonlinear behaviour, the read-out spot is reduced in size by means of the local
thermal bleaching of the nonlinear auxiliary layer. The corresponding sharpening of the spot
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Figure 6. A circularly polarized light beam with a uniform amplitude and phase distribution is
imaged on the optical disc in the focal region. The operator ML represents the objective with
NO = sin α, rotating the electric field vector in the entrance pupil to be transversal to the spherical
cap with as its origin the focal point. The material transitions in the focal region take into account
the cover layer (2), the data containing layer (3) and the substrate (4).

leads to a broader band of transferred frequencies, very much like the nonlinear mechanism
described above. Fine-tuning of the read-out power is needed to achieve the optimum bleaching
window for the reduction of the scanning spot size. Practical problems (stability of the RENS-
layer, laser power control, photon efficiency) have so far prohibited the application of this
nonlinear recording and read-out principle in optical data storage.

We conclude this section by introducing the potential high-density systems that we will
treat in more detail in the rest of this paper:

• systems with a numerical aperture larger than unity (solid immersion lens or ‘SIL’-option)
• multiplexed optical data systems.

Regarding the systems with a numerical aperture exceeding unity and the multiplexed optical
systems, we will show how the basic design of the read-out beam and the information structures
has to be derived from rigorous calculations that take the vector character of the light into
account.

3. High-density optical recording

Since the introduction of the optical disc system, the commercially available optical recording
products have advanced to the stage of the Blu Ray disc system. This system approaches
the limits of the validity of the scalar theory used to describe the illumination. For an
accurate treatment of such a high numerical aperture system, it is necessary to use a theoretical
description based on the fully vectorial Maxwell equations, not only for the interaction with
the data but also for the modelling of the illuminating scanning spot. We separate the optical
recording setup in three different regimes, the illumination of the disc, the interaction with the
data and the detection. In this section, we compare a scalar and a vectorial treatment of the
current high numerical aperture system, concentrating on the illumination and the interaction
with the data since the detection part is still accurately described by a scalar treatment.

3.1. The illumination

The imaging system used for optical recording is effectively similar to a scanning microscope;
a schematic overview is given in figure 6. The circularly polarized light beam is focused by the
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objective onto the optical disc. The objective has a numerical aperture NO = 0.85, and although
the geometrical aperture inside the storage medium has a value of NO/nmed = 0.85/1.6 =
0.531, the light distribution in the focal region shows small but significant differences when
calculated using the scalar equations as compared with a fully vectorial description. The
Ignatowsky [29] or Richards and Wolf integral [30], derived from the Debye integral [57], is
given by

E(r) = − i

2π

∫ ∫
�

a(kx, ky)

kz

eik·rdkxdky, (8)

where the integration takes place over the exit pupil of the imaging system, in terms of
the spatial-frequency co-ordinates kx and ky . The field in the exit pupil is effectively
decomposed in plane waves with frequencies kx , ky and kz1 = (k2

1 − k2
x − k2

y)
1/2. The

relation of the exit pupil distribution to the entrance pupil distribution is given by a(kr , kφ) =
Rf(kz1/k)1/2ML · E0(kr , kφ) with Rf the focal length of the lens system and the general
lens matrix incorporating possible layer transitions, as derived in [39] and summarized in
appendix A,

M±
L,i(kr , kφ) =


 g0±

i − g2±
i cos 2kφ −g2±

i sin 2kφ 0
−g2±

i sin 2kφ g0±
i + g2±

i cos 2kφ 0
−g1±

i cos kφ −g1±
i sin kφ 0


 , (9)

where g
j±
i have been introduced as generalized reflection and transmission coefficients in

equation (23). As long as the entrance pupil distribution satisfies the scalar wave equation,
the vectorial electric field distribution obtained with this formalism is a solution of Maxwell’s
equations, as demonstrated in [58]. In the case of a completely scalar situation, i.e. when the
numerical aperture is small enough, the integral in a homogeneous medium reduces to

U(r, φ, 0) = −ik1RfN
2
OE0

J1(NOk1r)

NOk1r
. (10)

Now, we compare the field in the focal plane, calculated with the scalar and the vectorial theory.
In figure 7(a) the field in the focal plane is shown for the modulus of the total electric field, |E|,
for the transversal field component |Et| and for the longitudinal field component |Ez|. The
field as calculated with the scalar theory is, for the relatively small geometrical aperture, almost
equal to the transversal component. However, a considerable amount of the total intensity is
available in the z component of the electromagnetic field. The difference in the scalar and
vectorially calculated intensity profiles in the focal plane are shown in figure 7(b). The total
field distribution in the focal region is shown in figure 7(c).

Note that the imaging system has to be corrected for the spherical aberration caused by
the cover layer of the system. Due to the layer transition d1 = 100 µm in front of the focal
plane, the field at the focal plane is severely distorted. In a practical situation, the objective
corrects for these aberrations, which can be accurately described by incorporating the inverse
effect in the lens operator ML. The explicit transmission coefficients for the layer transition,
see equation (A.21), are given by

f s+
2 (kx, ky) = 2kz,1

kz,1 + kz,2
exp

[
i
(
kz,1 − kz,2

)
d1

]
, (11a)

f
p+
2 (kx, ky) = k2

k1

2ε1kz,1

ε2kz,1 + ε1kz,2
exp

[
i
(
kz,1 − kz,2

)
d1

]
. (11b)

For the design of the objective, only the exponential function present in these coefficients is
taken into account. The effect of the reduction in amplitude of the plane waves contributing
to the field in the focal region for the higher frequencies is not corrected for and added with
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Figure 7. (a) Modulus of the total electric field |E| (——) of the transversal field component
|Et| = (|Ex |2 + |Ey |2)1/2 (· · · · · ·) and the longitudinal field component |Ez| (- - - -) in focus
for an imaging system with NO = 0.85 and initially a circular polarization state. (b) Difference
between the vectorially and scalarly calculated intensities. (c) Modulus of the of the total electric
field distribution in the focal region at the (x,z)-plane.

the radiometric effect yields a larger illumination spot. In the low-numerical-aperture case,
the optimization of the illumination spot is generally done by maximizing the so-called Strehl
intensity using the scalar diffraction model. In appendix A.4, we briefly describe the modified
definition of Strehl intensity in the case of a high numerical aperture illumination spot.

The imaging system used for current optical recording effectively consists of four layers.
First the air medium in which the objective is located, next the cover layer, the data containing
layer and the substrate, with refractive indices n1, n2, n3 and n4, respectively. To incorporate
the effect of these layer transitions, we have used the method as described in appendix A for
calculating the field in the focal region.

3.2. Interaction with the data

Once the field in the focal region is correctly described, the interaction with the scattering
structures can be calculated. As stated before, the structures on the disc are of the order of the
wavelength. Therefore, for an accurate description, the field reflected by the disc should be
calculated with rigorous simulation tools. However, since the emersion of optical recording
this was not feasible due to the lack of computer power, so the previously mentioned Kirchhoff
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Figure 8. Schematic overview of the pit structure in the metallic layer. The track direction is along
the x-axis. The width of the pit, perpendicular to the track direction, is wd = 140 nm, the depth
is hm = 63.3 nm, and the slope of the pit is γ = 20◦ which yields a width of the sloping wall of
ws = 23.0nm.

approximation was used, instead where the field in the focal plane is multiplied with a spatially
dependent reflection function describing the effect of the data containing structures. Since then
these structures have been reduced even further in dimensions, but the computer power has
significantly increased; nowadays it is possible to calculate the reflection from the scattering
structures on the disc rigorously.

The calculated structures have been schematically depicted in figure 8, where the depth
of the structures in the focal plane is described by h(x, y). For a representation of the pit
structure, a simplified model has been used following the Blu Ray disc system. At the top of
a pit, the width is equal to its design width wm = 140 nm, but at the bottom of a pit, at a depth
hm = 63.3 nm corresponding to a quarter-wavelength in the medium n2, the width is reduced
by twice the factor ws = 23.0 nm corresponding to the width of the sloping wall of the pit with
slope angle γ = 20◦. The quarter-wavelength depth of the pit applies only to the ideal value
for the scalar situation; in practice, the depth is optimized for obtaining the best contrast. The
spatially varying complex reflection function is given by

r(x, y) = f (x, y) exp [ih(x, y)], (12)

where the function f (x, y) describes the strength of the reflection in the focal region. Now,
the reflected near-field is obtained by multiplication of the function r(x, y) with the field in the
focal region. Consecutively, the reflected field at the exit pupil can be obtained by performing a
Fourier transform of the reflected near-field. In our simulation we use a homogeneous strength
of the reflection function f (x, y) = 1.

For a rigorous treatment of the scattering problem, more advanced calculation techniques
have to be used, such as finite difference time domain calculations, Fourier modal methods or
volume integral methods. We will concentrate on the latter, using a Green’s tensor technique
to obtain the reflected field in the focal region, as discussed in more detail in appendix B.
This method discretizes the geometry of the scatterer and depends on the analytically known
response multiplied by the difference of a spatially varying refractive index function with
respect to a refractive index background. The total electric field Et (r) is given by the sum of
the initial electric field Eu(r) and an electric Green’s tensor response Ge multiplied with the
total electric field and the refractive index difference function,

Et (r) = Eu(r) +
∫ [

εt (r′) − εu(r′)
]

Ge(r, r′) · Et (r′)dr′, (13a)

Ht (r) = Hu(r) +
∫ [

εt (r′) − εu(r′)
]

Gh(r, r′) · Et (r′)dr′, (13b)
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where the Green’s tensors are given by

Ge(r, r′) = κ2

ε

[
iκR − 1

κ2R2

(
I − 3R̂R̂

)
+

(
I − R̂R̂

)]
g(r, r′), (14a)

Gh(r, r′) = − iω
iκR − 1

R

(
R̂ × I

)
g(r, r′) (14b)

and the Green’s function by

g(r, r′) = eiκ|R|

4π |R| . (15)

The relative distance between observation and source point is given by the vector R = r − r′.
As usual, a hat denotes normalization and |R| denotes the length of the vector. The vectorial
product of R̂R̂ yields a tensor of rank 2 with elements RiRj/|R|2. For our simulation, we use
a hypothetical refractive index of the metal layer containing the pits of n = 5 + 5i.

In figure 9, we show the difference in the calculated reflected light, where the illumination
spot is scanned over the disc, for the Kirchhoff approximated result and the rigorous simulated
results (Green’s tensor). Note the small modulation depth of the signal, which is still sufficient
owing to the high quality electronics post-processing the data. The reduction in modulation
depth is partly due to the high numerical aperture read-out; the reflected light that can be
scattered outside the detection pupil is a relatively small fraction of the total light power.

4. Near-field optical recording

A logical step to increase the data capacity for the optical recording system is to use an objective
lens with an even higher numerical aperture, i.e. beyond the maximum of unity in air. However,
this maximum is determined by the refractive index of the material in which the light propagates.
In this section, we discuss an example of a solid immersion system which has a NO = 1.5,
where the medium of the objective has a refractive index of nsil = 2.086. For a successful
commercial product, it is very important to keep the recording medium exchangeable in the
system, which means that the objective and the disc should not be permanently connected
(removability). To ensure this, the light from the solid immersion lens will have to travel
through a sub-wavelength air-gap in order to ‘connect’ the medium of the objective lens to
that of the optical disc. Since the numerical aperture cannot be higher than unity inside the
air-gap, higher frequencies are basically not supported and, as a consequence, the light at these
frequencies will be reflected. However, the light at these high frequencies can be transmitted
as evanescent waves. In [39], we have shown that even for a relatively large air-gap of λ/2
the lateral size of the spot illuminating the data-layer is still reduced in width. In practice, it
is possible to keep the air-gap much smaller at approximately 30 nm, while the focus actuator
is still able to obtain a good focus error-signal [42, 59]. The geometrical aperture in the
recording medium (polycarbonate) is NO/nmed = 1.5/1.6 = 0.94 and clearly requires a
vectorial treatment.

For the solid immersion setup, a relatively thin cover layer is used with still enough
thickness to protect the disc from scratches. In our example, we have chosen a thickness of
3 µm. Again, the lens is expected to correct the phase front for both the cover layer and the
air-gap (exp [i(kz,1 − kz,2)d1 + i(kz,2 − kz,3)d2]). In figure 10, we show the field in the focal
region for the solid immersion setup for the total electric field, the transversal component and
the longitudinal component. The maximum contribution of the z component to the total electric
field is 31%, causing a broadening of the spot in the focal plane. In [42], it is shown that even a
four-layer recording system is feasible for near-field recording. Data storage systems based on
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Figure 9. The integrated reflected intensity as a function of a scan along the track (bottom graph)
for the scalar results (
) and the vectorially calculated results 2.85λ/n2 above the structure (◦)
and in the far-field (�). The data structures are shown in the top graph, with an example position
of the scanning spot in the centre. The middle graph shows the average depth of the illuminated
area, weighted for the intensity distribution of the spot.

this principle can be expected to achieve a single-layer capacity of 125 GB and a single-sided
capacity of 500 GB.

An alternative for obtaining a circularly symmetric spot is to use radial polarization [39,61],
which yields for high numerical aperture systems a smaller transversal width of the illumination
spot. The radial and azimuthal polarization states can be obtained by the insertion of a specially
designed liquid crystal cell can in the beam [62].

5. Multiplexing

In optical recording, the reflected total electric intensity is measured, while scanning the focal
spot along the track. Consequently, the shape of the pit in the track direction is translated in
terms of a set of frequencies. However, the spatially varying electric field distribution at the
detector plane has more information available about the illuminated structure, which is stored
in the spatially resolved amplitude, phase and polarization values. Of course, it should be
possible to store more information per storage unit if one would detect these variables. This is
denoted as information multiplexing. So far multiplexing for optical recording has only been
attempted in grey-level recording [60] (multiplexing in amplitude). However, other systems
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Figure 10. Modulus of the electric field in the focal region for (a) the total field, (b) the transversal
component and (c) the longitudinal component for an imaging system with NO = 1.5 and an
initially circular polarization state.

have been proposed based on multiplexing in wavelength and frequencies in the direction
orthogonal to the scan direction on the disc [63]. These systems have not yet resulted in a
substantial gain of the storage capacity. However, multiplexing is only going to be possible
when the detected quantities are more or less independent. Here we present a candidate for
multiplexing of such an independent variable, angular momentum, available as the phase and
polarization information in the detector plane.

To determine whether it will be possible to use angular momentum as a data-channel for
optical recording, we performed an experiment using the ‘staircase’ structures discussed in the
next section. In the experiment the structures are illuminated by a diffraction-limited focused
beam with its centre aligned with the centre of the staircase structures. The structures are
imaged on the camera, and each individual image of the obtained series has a different amount
of defocus on the camera. The structures transfer orbital angular momentum to the light beam,
which is made visible by defocusing the image. For a better understanding of the obtained
measured data, we compare the data with numerical calculations based on a decomposition in
Gauss–Laguerre modes.

5.1. Staircase structures

To obtain a sense of rotation in the light beam, a set of staircase structures has been fabricated,
see figure 11. These structures yield per step a reflected field which is delayed in time with
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Figure 11. Quadrant staircase structures of dimensions 2 µm × 2 µm. (a) Schematic overview
and identification of the step-size. (b) Topography of the structures obtained with an atomic force
microscope.

respect to the previous step. In the limit of infinitely small steps, the rotational sense becomes
continuous and approaches a spiral phase-plate [64]. In the case of a finite amount of discrete
steps a modal decomposition over the entire set of helical functions is performed. For our
experiment, staircase structures with 4 steps were fabricated in a silicon wafer with a focused
ion beam (FIB), each structure having a total dimension of 2 µm × 2 µm. A single step height
d2 is chosen such that d1 = 0, d3 = 2d2 and d4 = 3d2. After reflection the various step sizes
d2 are equivalent to phase differences of π/2, 3π/8, π/4 and π/8 for a wavelength of 650 nm.

5.2. Experimental setup

For an experimental verification of the presence of angular momentum, a simple optical
interferometer has been used, as schematically shown in figure 12. For illumination of the
sample we use a stabilized helium–neon gas laser with λ = 633 nm and an output power
of 1 mW. The emitted light propagates through a beam expander, followed by an optical
isolator. Next, the beam is focused by a low numerical aperture objective at 18 cm in front
of a microscope objective (NO = 0.5) used for imaging of the sample. Since the structures
are slightly larger compared with the helium–neon laser wavelength, the staircase structures
are illuminated by a diffraction-limited spot, where the illumination did not completely fill
the microscope objective, to effectively yield a numerical aperture of NO = 0.4. This light
path forms one branch of the interferometer, the other branch provides a reference beam for
alignment purposes. An image of the sample is formed with a magnification of M ≈ 29,
and another microscope objective with a numerical aperture of NO = 0.45 collimates the
light. Finally, a low numerical aperture lens re-images the sample on the CCD-camera with a
magnification of M ≈ 22 which results in a combined magnification of M = 640.

5.3. Angular momentum in the data-structures

A set of images is obtained for four typical staircase structures with different amounts of
defocus. In figure 13, we show the measured data for the defocus parameter −0.6zr � z �
0.6zr, with zr ≈ 1.9 mm, the Rayleigh range just in front of the lens placed on the motorized
translation stage. Each column corresponds to a phase step of π/2, 3π/8, π/4 and π/8 per
step in the staircase structure.

To understand the measured data, a numerical comparison was done; due to the still
reasonably small numerical aperture, the scalar theory is used. The interaction of the data with
the structures is assumed to be adequately described by a linear phase function multiplied with
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Figure 12. Schematic overview of the experimental setup. Light enters the setup emitted by a
HeNe-laser, passes through beam expanding optics, followed by an optical isolator and enters the
interferometer via a low numerical aperture lens. The light is focused on the sample by an NO = 0.5
microscope objective. Finally, a lens mounted on a motorized translation table re-images the light
on a CCD-camera, with a magnification M = 640.

the illumination. The field distribution is then decomposed in Gauss–Laguerre modes due to
their natural separation in cylindrical coordinates.

Starting with the paraxial situation, with a beam predominantly travelling in the positive
z-direction, the paraxial wave equation can readily be derived:

i
∂V

∂z
= − 1

2κ

(
∂2V

∂x2
+

∂2V

∂y2

)
. (16)

Next, by introducing a cylindrical coordinate system, the eigenmodes of the system of order
(p,l) can be obtained as discussed in [65], yielding the well-known set of normalized Gauss–
Laguerre modes:

Vpl(r) = upl

√
2

ksw(z)

(
2ρ2

w2(z)

)|l|/2

L|l|
p

(
2ρ2

w2(z)

)

× exp

[
ilϕ − ρ2

w2(z)
− iκρ2

2R(z)
+ i(2p + |l| + 1) tan−1 z

zr

]
, (17)

with

w(z) =
√

2(z2 + z2
r )

κzr
, R(z) = z2 + z2

r

z
, upl = (−1)pks

√
p!

π(p + |l|)! , (18)

where we have introduced r = (ρ, ϕ, z), the Rayleigh range zr, the wavenumber scaled by the
Rayleigh range ks = (κ/zr)

1/2 and the associated Laguerre polynomials L
|l|
p (r).

The azimuthal index l corresponding to a contribution of exp [ilϕ], is related to the amount
of orbital angular momentum in the beam. Next, only the modes with highest contributions are
considered, and the modes are re-imaged for the different defocusing positions (z = −0.6zr to
z = 0.6zr), as shown in figure 14. The rotational sense of the beam is clearly present, and it is
possible to distinguish the four different step sizes of the staircase structures. The comparison
with figure 13 is relatively good, although not perfect due to always present aberrations and
non-ideal depths of the individual steps. We have observed the transfer of a certain amount of
angular momentum from the structures to the electromagnetic field.
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Figure 13. Experimentally obtained data for the though-focus imaging (z = −0.6zr to z = 0.6zr)
of four staircase configurations with φ = π/2, φ = 3π/8, φ = π/4 and φ = π/8. The defocus
parameter z is normalized on the Rayleigh range zr ≈ 1.9 mm.

Additional insight into the field distribution after interaction with the staircase structure
is gained by decomposition in the Gauss–Laguerre modes, as shown in figure 15. The mode
number p is associated with the radial direction, l with the azimuthal direction. Without the
staircase structure, the field would be radially symmetric, i.e. no contributions are present for
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Figure 14. Simulated data for the though-focus imaging (z = −0.6zr to z = 0.6zr) of four staircase
configurations with φ = π/2, φ = 3π/8, φ = π/4 and φ = π/8. The defocus parameter z is
normalized on the Rayleigh range zr ≈ 1.9 mm.

l �= 0, and it is given by the point spread function according to equation (10). A decompo-
sition in the Gauss–Laguerre modes yields a predominant contribution of p = 0 and smaller
contributions from p > 0 to fit the rings around the central spot. This behaviour can be seen in
figure 15(d), where small contributions are given by l �= 0, indicating already an asymmetric
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Figure 15. Modal decomposition of the light after interaction with the staircase structure with a
step size of (a) φ = π/2, (b) φ = 3π/8, (c) φ = π/4 and (d) φ = π/8.

image with a certain amount of orbital angular momentum. By increasing the step size of the
staircase structures, the field distribution gets more asymmetric and, for φ = π/2, most of
the light is available in the l = −1 modes, corresponding to the rotation of the structure. In
addition to l = −1, there is also a small population for l = 3. The explanation here is that the
first three steps of the staircase structure can be associated with an equal amount of gain of
orbital angular momentum in the same direction; however, the last step is three times as large
as the previous steps and corresponds to the opposite direction.

For a low numerical aperture, the measurements show good correspondence with the ex-
pected rotational behaviour of the light distribution as shown in figure 14. Although sensitive
to noise by interference and residual aberrations of the imaging system, orbital angular mo-
mentum is expected to be a good candidate for optical multiplexing. Besides the possibility
of changing the step size, variations in directionality and orientation of the staircase structures
with respect to the track direction should be easily observable and thus can be used as indepen-
dent multiplex channels. Further experiments are required to study the effect of interference
by neighbouring structures.

5.4. Angular momentum in the light beam

Another candidate for optical multiplexing, based on using polarization and phase information
combined in an angular momentum data-channel, moves the available intrinsic angular
momentum from the structures to the illumination. Using an asymmetric structure, the
reflected light can distinguish between different orientations of the structure. A promising
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Figure 16. Test structures of dimension 2 µm × 2 µm with two elliptically-shaped pits. (a)
Schematic overview. (b) Topography of the structures obtained with an atomic force microscope.

candidate is a set of two closely spaced ellipses. Illumination of such a structure is done with
a Gauss–Laguerre beam with l �= 0.

A sample consisting of ellipses with a typical size of 2 µm×2 µm is shown in figure 16(a).
These ellipses have been fabricated in the wafer with a focused ion beam. The depth is
approximately 100 nm, and several ellipses are available with different orientation directions
as can be seen in figure 16(b). Furthermore, it is possible to change the size, the separation
and the depth of the structures to distinguish as many different information levels as possible.
A Gauss–Laguerre mode with index p = 0 and l = 1 contains the required orbital angular
momentum to break the symmetry of the problem. In a similar way as for the staircase structures
in the previous section, the illumination is multiplied with the phase function representing the
ellipsoidal structures and a decomposition in Gauss–Laguerre modes tells us the changes in the
reflected field distribution. Such a mode decomposition is shown in figure 17 where the depth of
the ellipses is varied from π/4 to π , corresponding to a depth change from 50 to 200 nm. With
a decreasing depth of the ellipses, the modes redistribute from a range of odd l-values to the
single l = 1 mode corresponding to the illumination. When the size of the ellipses is changed,
i.e. the region where the phase difference is obtained, the field is again redistributed over the
lower l-modes, but also a different modal distribution for different p-indices is observed, as
shown in figure 18.

Preliminary experiments, with a Gaussian mode without intrinsic angular momentum,
show that it is possible to distinguish already the different orientations of the structures over
a range of π radians. Further experiments are required to study the amount of different
information levels that can be distinguished, as well as the effect of noise, and the effect of
neighbouring structures.

6. Conclusion

The development of optical data storage has reached a stage where further progress along the
classical road of reducing the diffraction unit λ/NO seems questionable. In this sense, a parallel
between optical data storage and high-resolution lithography is evident. High-resolution
lithography is the driver of Moore’s law and it has equally progressed in density through
time by reducing the diffraction unit. However, because of the professional environment in
which optical lithography is used, exotic wavelengths like 193 nm (KrF-laser) or even 13.5 nm
(plasma-generated extreme UV) are possible. Liquid immersion has also been successfully
applied in optical lithography to further increase the capacity of integrated circuits. In optical
data storage, the application of wavelengths beyond the blue region seems questionable, among
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Figure 17. Decomposition in Gauss–Laguerre modes of the ellipses multiplied with the incident
illumination distribution. The depth of the structure is varied, the size of the ellipses is kept constant
at ω = ω0.

other reasons because of the limited lifetime of plastic and other amorphous glass-based optical
materials when exposed to light in the deep UV spectral region. The increase of numerical
aperture beyond unity is possible using the principle of frustrated internal reflection by making
the light tunnel through a very thin air gap between the last surface of the objective and the data-
or cover-layer of the optical disc. The air gap is typically less high than 50 nm and the optical
information is read-out in the so-called ‘solid’ immersion. Such a high-density system has
to cope with extra boundary conditions (ultra-flat disc surface, dust protection, contamination
issues) that are not easily solved for a mass-consumer product. But preliminary experiments
on the solid-immersion option show that this approach might be more realistic for widespread
application than was initially thought. Even the intrinsically low modulation depth of the
detected signal is not a basic problem in the presence of modern detection techniques. Other
prototype high-density data storage systems are based on a holographic storage technique.
Early experiments at the beginning of the 1970s already used the holographic principle, albeit
in a rather primitive way. For example, pictures like TV-frames were directly recorded onto
the holographic medium without any picture coding. Nowadays techniques use coded bit
patterns to be stored holographically so that cross-talk between images can be repaired in the
digital domain using decoding and error correction techniques. But the basic drawback of a
holographic storage medium remains its complexity. The system needs a 2D pixelized light
modulator for recording and a 2D-detector for the reconstruction. Moreover, the proposed
holographic systems rely on angular multiplexing (beam deflection) for superimposing the
holograms in the recording medium and this introduces yet another expensive optical element.
For these reasons, it seems highly improbable that the actual holographic systems have a serious
chance of penetrating the mass-consumer storage market.

In this paper, we have discussed alternative methods for obtaining high density discs,
using the multiplex principle. In our proposal we have introduced a fine structure in the
recorded optical effects so that more bits than one can be stored per location. A specific way
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Figure 18. Decomposition in Gauss–Laguerre modes of the ellipses multiplied with the incident
illumination distribution. The depth of the structure is kept constant at φ = π , the size of the
ellipses is varied.

of multiplexing was based on the introduction of angular momentum in the reflected beam by
making the optical effects impart a helical phase pattern on reflection. One extra bit is possible
by choosing the screw sense of the phase as an extra degree of freedom. Another degree of
freedom is the azimuth of the specially designed optical effects. In this way, a substantial
increase in storage capacity should be feasible. As an extra advantage of the multiplexing
approach we mention the automatic increase of the data retrieval rate. In the actual high-
density systems, data retrieval rate is becoming a problem and the multiplexing option offers
an interesting relief in this respect.

Throughout our analysis of the high-density system, we have employed rigorous methods
to describe the electromagnetic field in focus in the multilayered optical disc structure. We
have also used a rigorous description of the diffraction process at the sub-wavelength structures
which contain the stored information. Our preferred tool has been a three-dimensional
electromagnetic version of Green’s tensor formalism. It is shown by means of calculated read-
out signals that, in high-density optical systems, the commonly employed scalar diffraction
theory using Kirchhoff boundary conditions is inadequate and that vector diffraction methods
need to be applied.

Appendix A. Field in the focal region

This appendix provides an explicit expression for the transmission and reflection matrices
required to calculate the field in the focal region in stratified media, as described in [39, 66]
and a treatment of the Strehl intensity in the high numerical aperture case.
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Figure A1. Schematic overview of the projection operator P and the rotation operator R. The
Cartesian basis (x̂, ŷ, ẑ) and natural basis (k̂, l̂, m̂) have been introduced to describe the lens operator
L = P−1RP.

Appendix A.1. Lens rotation matrix

To be able to include the rotation effect of the lens on the field vector, we project the Cartesian
basis (x̂, ŷ, ẑ) on a cylindrical basis (k̂, l̂, m̂) denoted by the operation P, perform a rotation of
the field vectors in the cylindrical basis denoted by the operation R and project the cylindrical
basis back onto the Cartesian basis; this latter operation is the inverse of the first operation
P−1, yielding a lens operator matrix L, as depicted in figure A1. The matrices describing the
operations P, R and L are given by

P =

 cos kφ sin kφ 0

− sin kφ cos kφ 0
0 0 1


 , (A.1)

R = 1

k1


 kz1 0 −kr

0 k1 0
kr 0 kz1


 , (A.2)

L = P−1RP = 1

k1


 kz1 cos2 kφ + k1 sin2 kφ (kz1 − k1) sin kφ cos kφ −kr cos kφ

(kz1 − k1) sin kφ cos kφ kz1 sin2 kφ + k1 cos2 kφ −kr sin kφ

kr cos kφ kr sin kφ kz1


 ,

(A.3)

where we have introduced the propagation vector k = (kr , kφ, ±kz) in cylindrical coordinates
and identify k1 = |k1| as the modulus of the propagation vector in the first medium. It remains
to propagate the field through the several planar medium transitions with their surface normals
pointing in the z-direction.

Appendix A.2. Layer transitions

Therefore, we start by studying an arbitrary plane wave with wave vector ki

E(k±
i ) = Ae±ik±

i ·r. (A.4)

The subscript i from the propagation vector k±
i = (kri , kφi, ±kzi) denotes the medium in the

medium in which the vector is defined and the superscript ± denotes the sign of the propagation
direction. Since the transition of one medium i to the next medium j at the plane z = di,j

should be independent of the spatial cylindrical coordinates r = (ρ, ϕ, di,j ), it follows from
equation (A.4) that kri = krj = kr and kφi = kφj = kφ . For monochromatic waves, as is the
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case considered here, we have a fixed length of the propagation vector k2
i = k2

zi + k2
r . The

sign of the square root which should be taken to acquire the propagation vector kzi in the z-
direction follows from energy conservation; i.e. the sign should be chosen such that the wave is
exponentially decreasing in the direction of propagation. In the cylindrical basis, the unit vector
k̂ = k/k is parallel to the direction of propagation of the wave, the unit vector l̂ = (k̂×ẑ)/|k̂×ẑ|
is perpendicular to the propagation vector and the normal to the interface (TE-polarization)
and the unit vector m̂ = k̂ × l̂ completes the orthonormal basis (TM-polarization).

k̂
±
i = 1

ki


 kr cos kφ

kr sin kφ

±kzi


 , l̂

±
i = l̂ =


 sin kφ

− cos kφ

0


 , m̂±

i = 1

ki


 ±kzi cos kφ

±kzi sin kφ

−kr


 . (A.5)

By performing a scalar multiplication of the field vector with the three unit vectors as defined
in equation (A.5), we obtain three components associated with the oscillation direction.

For the transition from medium i to the next medium j , we multiply these components
with the corresponding unit vectors; performing both operations at once yields three matrices

k̂
±
j k̂

+

i , lj li and m̂±
j m̂+

i , resulting in

k̂
±
j k̂

+

i = 1

kikj


 k2

r cos2 kφ k2
r sin kφ cos kφ krkzi cos kφ

k2
r sin kφ cos kφ k2

r sin2 kφ krkzi sin kφ

±krkzj cos kφ ±krkzj sin kφ ±kzikzj


 , (A.6a)

l̂l̂ =

 sin2 kφ − sin kφ cos kφ 0

− sin kφ cos kφ cos2 kφ 0
0 0 0


 , (A.6b)

m̂±
j m̂+

i = 1

kikj


 ±kzikzj cos2 kφ ±kzikzj sin kφ cos kφ ∓krkzj cos kφ

±kzikzj sin kφ cos kφ ±kzikzj sin2 kφ ∓krkzj sin kφ

−krkzi cos kφ −krkzi sin kφ k2
r


 . (A.6c)

The unit vector l̂ is independent of both the medium and the direction of propagation, therefore
the same holds for matrix l̂l̂. We know that k̂i k̂i + l̂i l̂i + m̂im̂i = I, the identity matrix.

Next, we have to derive the transmission and reflection coefficients for optical waves. The
Maxwell equations yielding the boundary conditions between medium i and medium j are
given by

εiE⊥i = εjE⊥j , E‖i = E‖j , µiH⊥i = µjH⊥j , H‖i = H‖j . (A.7)

We obtain two independent equations for the transverse electric (TE) and for the transverse
magnetic (TM) polarized components. For the TE-polarization (s), the electric and magnetic
field components read as

E⊥i = 0, E‖i = Es
i , H⊥i = kr

ωµ0
Es

i , H‖i = − kzi

ωµ0
Es

i , (A.8)

where we have used iωµ0Hi = iki × Ei from the Maxwell arbitrary plane wave as defined by
equation (A.4) with µ = µ0. Combined with the boundary conditions, we obtain the relations

As+
i eikzidi,j + As−

i e−ikzidi,j = As+
j eikzj di,j + As−

j e−ikzj di,j , (A.9a)

kziA
s+
i eikzidi,j − kziA

s−
i e−ikizdi,j = kzjA

s+
j eikzj di,j − kzjA

s−
j e−ikzj di,j , (A.9b)

and for the TM polarization (p) the electric and magnetic field components read as

E⊥i = −kr

ki

E
p

i , E‖i = kzi

ki

E
p

i , H⊥i = 0, H‖i = ki

ωµ0
E

p

i , (A.10)
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which yields the relations
εi

ki

A
p+
i eikzidi,j +

εi

ki

A
p−
i e−ikzidi,j = εj

kj

A
p+
j eikzj di,j +

εj

kj

A
p−
j e−ikzj di,j , (A.11a)

kzi

ki

A
p+
i eikzidi,j − kzi

ki

A
p−
i e−ikzidi,j = kzj

kj

A
p+
j eikzj di,j − kzj

kj

A
p−
j e−ikzj di,j . (A.11b)

Solving both sets of equations for A
s/p−
i and A

s/p+
i , we obtain the ratio of backward travelling

waves over forward travelling waves:

(A±/A∓)
s/p

i = F
s/p

i,j e∓ikzj di,j + (A±/A∓)
s/p

j e±ikzj di,j

e∓ikzj di,j + (A±/A∓)
s/p

j F
s/p

i,j e±ikzj di,j

e∓2ikzidi,j . (A.12)

The Fresnel reflection coefficients for the TE and TM polarizations are given by

F s
i,j = kzi − kzj

kzi + kzj

, (A.13a)

F
p

i,j = εj kzi − εikzj

εj kzi + εikzj

. (A.13b)

Since we know that in the last medium with i = N there are no backward travelling waves
coming from infinity, the ratio (A−/A+)

s/p

N = 0. In the first medium with i = 1, the same
holds for the forward over backward travelling waves (A+/A−)

s/p

1 = 0.
Next, we propagate the field calculated in layer i to the next layer j . The effective reflection

and transmission coefficients pertaining to a general transition (i, j) can be calculated by
progression through the successive layers using equations (A.9a) and (A.11a):

A
s/p±
j = γ

s/p

i,j

[
A

s/p±
i e±ikzidi,j − A

s/p∓
i F

s/p

i,j e∓ikzidi,j

]
e∓ikzj di,j . (A.14)

The polarization-dependent pre-factor is defined as

γ s
i,j = kzi + kzj

2kzj

, (A.15a)

γ
p

i,j = kj

ki

εj kzi + εikzj

2εj kzj

. (A.15b)

The progression has to be continued until the final layer where the observation point r is
located. Note that for p-polarization each layer transition is accompanied by a change of the
basis vectors, which effect is incorporated in the matrix multiplication:

m̂±
j m̂+

i = m̂±
j m̂±

j−1 · . . . · m̂±
i+2m̂±

i+1 · m̂±
i+1m̂+

i . (A.16)

The kφ dependence in the projection matrices in equations (B.17a) and (B.17b), using∫ 2π

0
eımkφ eıρkr cos(kφ−φ)dkφ = 2πımJm(ρkr)e

ımφ, (A.17)

can be integrated analytically:∫ 2π

0
l̂l̂eiρkr cos (kφ−ϕ)dkφ = 2π

2


 J0 + J2 cos 2ϕ J2 sin 2ϕ 0

J2 sin 2ϕ J0 − J2 cos 2ϕ 0
0 0 0


 , (A.18)

∫ 2π

0
m̂±

j m̂+
i eiρkr cos (kφ−ϕ)dkφ

= 2π

kikj


 ± kzikzj

2 (J0 − J2 cos 2ϕ) ∓ kzikzj

2 J2 sin 2ϕ ∓ikrkzj J1 cos ϕ

∓ kzikzj

2 J2 sin 2ϕ ± kzikzj

2 (J0 + J2 cos 2ϕ) ∓ikrkzj J1 sin ϕ

−ikrkziJ1 cos ϕ −ikrkziJ1 sin ϕ k2
r J0


 , (A.19)
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where, for clarity, the argument of the Bessel functions Jm(ρkr) has been omitted. The kr

dependence has to be integrated numerically. We have used an adaptive Gauss–Kronrod
quadrature for this purpose.

Appendix A.3. Generalized lens matrix

In general, the lens operator could include several layer transitions to be able to calculate the
field in layer i. Using equations (A.6a)–(A.6c), we obtain

Mz±
i = f z±

i · k̂±
i k̂1 · L = f z±

i

ki


 0 0 −kr cos kφ

0 0 −kr sin kφ

0 0 ±kzi


 , (A.20a)

Ms±
i = f s±

i · l̂ l̂ · L = f s±
i


 sin2 kφ − sin kφ cos kφ 0

− sin kφ cos kφ cos2 kφ 0
0 0 0


 , (A.20b)

Mp±
i = f

p±
i · m̂±

i m̂1 · L = f
p±
i

ki


 ±kzi cos2 kφ ±kzi cos kφ sin kφ 0

±kzi cos kφ sin kφ ±kzi sin2 kφ 0
kr cos kφ kr sin kφ 0


 , (A.20c)

where f z±
i , f s±

i and f
p±
i denote the effective transmission and reflection coefficients for the

longitudinal, TE and TM polarization components, respectively. Since optical waves travelling
in the longitudinal direction are purely transversal, we can set the effective transmission
and reflection coefficients for the longitudinal contribution to zero, f z±

i = 0, therefore the
contribution of the matrix Mz±

i = 0.
Next, we define f

s/p±
i = A

s/p±
i /A

s/p+
1 , yielding for the effective transmission coefficient

in the first medium f
s/p+
1 = 1 and for effective reflection coefficient f

s/p−
1 = (A−/A+)1. The

fraction (A−/A+)1 is obtained by using equation (A.12) in an iterative procedure, starting in
layer N with (A−/A+)N = 0. Now we rewrite equation (A.14) as

f
s/p±
i+1 = γ

s/p

i,i+1

[
f

s/p±
i e±ikzidi,i+1 − f

s/p∓
i F

s/p

i,i+1e∓ikzidi,i+1

]
e∓ikzi+1di,i+1 . (A.21)

Finally, we find for the total propagation matrix

M±
i = Mp±

i + Ms±
i =


 g0±

i − g2±
i cos 2kφ −g2±

i sin 2kφ 0
−g2±

i sin 2kφ g0±
i + g2±

i cos 2kφ 0
g1±

i cos kφ g1±
i sin kφ 0


 , (A.22)

with the generalized reflection and transmission coefficients given by

g0±
i = 1

2

(
f s±

i ± f
p±
i

kzi

ki

)
, (A.23a)

g2±
i = 1

2

(
f s±

i ∓ f
p±
i

kzi

ki

)
, (A.23b)

g1±
i = f

p±
i

kr

ki

, (A.23c)

where the number n = 0, 1, 2 relates to the angular dependence of the sine- or cosine-function
that the coefficient is multiplied with in the propagation matrices for the integration over kφ .
Note that for a single medium N = 1, M+

1 = M and M−
1 = 0, where the lens rotation matrix L
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would be equal to the propagation matrix M if the last column is taken equal to zero. Finally,
since a(kr , kφ) = M(kr , kφ + π) · E(kr , kφ), the general propagation matrix is given by

M±
i (kr , kφ) =


 g0±

i − g2±
i cos 2kφ −g2±

i sin 2kφ 0
−g2±

i sin 2kφ g0±
i + g2±

i cos 2kφ 0
−g1±

i cos kφ −g1±
i sin kφ 0


 . (A.24)

Appendix A.4. The definition and calculation of Strehl intensity in the
high-numerical-aperture case

In the scalar case, applicable to numerical apertures as small as 0.40 to 0.50, the axial or Strehl
intensity is defined by

IS(0, 0) =

∣∣∣ 1
π

∫ ∫
Spupil

exp
[
ifρ2 + i�(ρ, θ)

]
ρdρdθ

∣∣∣2

1
π

∫ ∫
Spupil

ρdρdθ
. (A.25)

In this expression we have used polar coordinates (ρ, θ) on the pupil sphere with ρ normalized
to half the diameter 2ρmax of the exit pupil. The term with the defocus parameter f allows
an adjustment of the focus setting by an amount �z with respect to the nominal position
at recording or read-out in order to optimize the Strehl intensity; f is given πzN2

O/λ. The
aberration function � accounts for the phase aberration introduced by the optical system. For
a perfect optical imaging system in optimum focus (f = 0),the value of IS amounts to unity.

In expression (A.25) we have supposed a uniform intensity distribution over the exit
pupil. An extension to the more general situation of varying amplitude strength over the pupil
cross-section leads to

IS(0, 0) =

∣∣∣ 1
π

∫ ∫
Spupil

A(ρ, θ) exp
[
ifρ2 + i�(ρ, θ)

]
ρdρdθ

∣∣∣2

1
π

∫ ∫
Spupil

|A(ρ, θ)|2 ρdρdθ
. (A.26)

The definition of Strehl intensity is preferably limited to small values of �, typically of the
order of unity or less. In that case we can expand the exponential factor in equation (A.26)
up to second order and the average complex amplitude AS(0, 0) between the modulus signs is
given by

AS(0, 0) = 1

π

∫ ∫
Spupil

A(ρ, θ) exp
[
ifρ2 + i�(ρ, θ)

]
ρdρdθ

= 1

π

∫ ∫
Spupil

A(ρ, θ)

[
1 + i(fρ2 + �) − 1

2
(fρ2 + �)2)

]
ρdρdθ

=
[
A − 1

2
A�2

f + iA�f

]
, (A.27)

where we have first substituted �f (ρ, θ) = �(ρ, θ) − fρ2 and then omitted the coordinate-
dependence in the expression.

The expression for the Strehl intensity can now be written as

IS(0, 0) =
(
A

)2 − A�2
f +

(
A�f

)2

A2
. (A.28)

An optimization of the Strehl intensity can be carried out by adapting the defocus parameter f .

Even for a perfectly corrected optical system, IS(0, 0) cannot exceed the value
(
A

)2
/A2.
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Appendix A.4.1. Strehl intensity for a high-numerical-aperture focused beam. The extension
of the definition of Strehl intensity to the high-numerical-aperture case needs the following
adaptations due to the vector diffraction analysis:

• the Strehl intensity is proportional to the modulus squared of the electric field vector;

IS(0, 0) ∝ |E|2; (A.29)

here, we can use the fact that the electric field components that are not parallel to the
incident linear polarization vector are all zero in the on-axis focal point.

• the contribution to the non-zero electric field component in the axial focal point is not
constant over the exit pupil cross-section; it is determined by a factor Ap that in the case
of x-polarized incident light is given by

Ap(ρ, θ) = 1

2

(
1 +

√
1 − N2

Oρ2

)
− 1

2

(
1 −

√
1 − N2

Oρ2

)
cos 2θ. (A.30)

• the mapping of the amplitude of a uniform plane wave in the entrance pupil onto the
exit pupil leads to an amplitude non-uniformity given by (1 − NOρ2)−1/4, the so-called
radiometric effect (see [29, 30]).

The combined amplitude function including radiometric effect and a linear incident state of
polarization (x-direction) reads as

Ax(ρ, θ) =

(
1 +

√
1 − N2

Oρ2

)
−

(
1 −

√
1 − N2

Oρ2

)
cos 2θ

2(1 − N2
Oρ2)1/4

. (A.31)

In the case of an aberration-free optical system we find the following expression for the Strehl-
intensity [67]

IS(0, 0) =
(

8

75N2
O

) [
8 − 5(1 − N2

O)3/4 − 3(1 − N2
O)5/4

]2

4 + 3N2
O − (1 − N2

O)1/2(4 − N2
O)

. (A.32)

As an example we consider the value of NO = 0.95. The corresponding on-axis intensity
is 1.05856 (numerator of equation (A.32)) and, after normalization to the incident power
(1.060075), we find a Strehl intensity IS equal to 0.99857.

A further deviation from scalar theory is the exact description of the defocusing phase
factor at high numerical aperture. The phase aberration due to a defocusing over a distance z

is exactly given by

�f = z
2π

λ

(
1 −

√
1 − N2

Oρ2

)
, (A.33)

showing that the defocusing term is not simply described by a quadratic phase factor. At high
values of NO, substantial values of order four and higher need to be incorporated in the series
expansion of the square root expression.

Appendix A.4.2. Strehl intensity of a generally polarized incident beam. We write the incident
electric field as E = (Ex, Ey, 0) and, with reference to equation (A.27), we find for the electric
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field on axis

ES(0, 0) =
[
ExAx − 1

2
ExAx�

2
f + iExAx�f

]
êx

+

[
EyAy − 1

2
EyAy�

2
f + iEyAy�f

]
êy, (A.34)

where êx and êy are the unit vectors in the x- and y-directions and Ay is obtained from
equation (A.31) by replacing θ by (θ − π/2). In the general case, Ex and Ey are functions of
(ρ, θ) and can have a varying phase difference, allowing a very general state of polarization
of the wave in the exit pupil or on the focusing region [68].

The Strehl intensity is obtained by evaluating the modulus squared ES(0, 0) and this yields

IS(0, 0) =
[(

ExAx

)2
+

(
EyAy

)2 − ExAx�
2
f − EyAy�

2
f

+
(
ExAx�f

)2
+

(
EyAy�f

)2
] / [

(ExAx)2 + (EyAy)2
]
. (A.35)

We conclude from equation (A.35) that the contributions from orthogonal polarization
components in the entrance pupil add incoherently to the Strehl intensity in the image plane.
The exact optimization of Strehl intensity for optimum read-out is outside the scope of
this paper. The foregoing analysis is meant to give the framework within which wavefront
minimization has to be carried out.

Appendix B. Solution to the general scattering problem using the Green’s tensor
formalism

In this appendix, we obtain a solution for the total electromagnetic field, by a separation of the
wave equations in a homogeneous part describing the initial electromagnetic field distribution
and an inhomogeneous part with a virtual source describing the final electromagnetic field
distribution. The Green’s tensors required to obtain a solution for these newly formed
inhomogeneous wave equations are discussed next.

Appendix B.1. Solution of the scattering problem

To find a solution for the electromagnetic field scattered by structures of a different material
with a more complicated shape other than planar interfaces, we separate a virtual source term
from an analytically known stratified media term. Starting with Maxwell’s equations

∇ × E = iωµH, (B.1a)

∇ · εE = ρe, (B.1b)

∇ × H = − iωεE + Je, (B.1c)

∇ · µH = 0, (B.1d)

we identify as the source term the current density Je and charge density ρe. Furthermore, we
introduce a introduce a constant κ = (µε)1/2ω for the wavenumber. Since we are operating
in the optical regime, we consider µ = µ0. The Maxwell equations combine to

∇ × ∇ × E − κ2E = iωµ0Je, (B.2a)

ε∇ × 1

ε
∇ × H − κ2H = ε∇ × 1

ε
Je. (B.2b)

Now we identify two situations, described by the set of sourceless Maxwell equations (ρe = 0,
Je = 0), where a subscript u or t denotes the initial or final situation. It is straightforward to



2356 A S van de Nes et al

identify a virtual source term to describe the scattered fields Es = Et − Eu and Hs = Ht − Hu

in the initial configuration. The source term is obtained as follows:

Je = iωεuEs + ∇ × Hs

= iωεu (Et − Eu) + ∇ × (Ht − Hu)

= iωεu (Et − Eu) − iω (εtEt − εuEu)

= − iω (εt − εu) Et . (B.3)

The wave equations describing the system given in equations (B.2) with the virtual source
extension combine to

∇ × ∇ × Es − κ2
uEs = (

κ2
t − κ2

u

)
Et , (B.4a)

εu∇ × 1

εu

∇ × Hs − κ2
uHs = −iωεu∇ ×

(
εt − εu

εu

)
Et . (B.4b)

Since equations (B.4a) and (B.4b) depend on the final electric field, we have to solve an
inverse problem. To obtain a solution, we need to know either the Green’s tensor, describing
the dipole response or the electromagnetic field in the final situation. We use the latter
condition, in combination with the set of inhomogeneous wave equations for the general
electric source, equation (B.3), and the electromagnetic field and permittivity distribution of
the initial configuration denoted by subscript u. Next, we apply a corollary of Green’s second
theorem, [70], modified for tensors, to derive an expression for the electric field,

Es(r′) =
∫

(εt − εu) GT
e (r, r′) · Et (r)dr, (B.5a)

Hs(r′) =
∫

(εt − εu) GT
h (r, r′) · Et (r)dr, (B.5b)

where the integration takes part over the total volume R
3 but is only non-zero inside the

scattering structures. An alternative solution is obtained in the form of surface integrals:

Es(r′) = i

ω

∮ [
GT

h (r, r′) × Es(r) + GT
e (r, r′) × Hs(r)

] · n̂dAr , (B.6a)

Hs(r′) = i

ω

∮ [
GT

h (r, r′) × Hs(r) − εu

µ0
GT

e (r, r′) × Es(r)
]

· n̂dAr . (B.6b)

where the integration surface encloses all sources and n is the surface normal pointing inwards.
Finally, the inverse problem in equations (B.5a) and (B.5b) or (B.6a) and (B.6b) has to be
solved. First the scatterer will be discretized by replacing the integral with summation over
a finite amount of cells. Next, the inverse problem is solved using an iterative procedure as
described in [69].

Appendix B.2. The Green’s tensor formalism

In this section we derive a solution for the Maxwell equations, describing the electromagnetic
response from an electric dipole source, as schematically depicted in figure B1:

∇ × Ge(r, r′) = iωµGh(r, r′), (B.7a)

∇ · εGe(r, r′) = − ∇ · δ(r − r′)I, (B.7b)

∇ × Gh(r, r′) = − iωεGe(r, r′) − iωδ(r − r′)I, (B.7c)

∇ · µGh(r, r′) = 0. (B.7d)
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x

y
z

I

^r’

r
Ge(r,r’)
Gh(r,r’)

^

^

Figure B1. Green’s tensors at r obtained for an electric source Ge and Gh located at r′. The
tensor consists of the electric or magnetic field response from a source oscillating in the x-, y- and
z-directions.

Once more we restrict ourselves to µ = µ0 and find for the wave equations

∇ × ∇ × Ge − κ2Ge = ω2µ0δ(r − r′)I, (B.8a)

ε∇ × 1

ε
∇ × Gh − κ2Gh = − iωε∇ × δ(r − r′)

ε
I. (B.8b)

Next, we apply the tensor identity, ∇ × ∇ × A = ∇∇ · A − ∇2A, to obtain

∇2Ge + κ2Ge = − ω2µ0δ(r − r′)I + ∇ (∇ · Ge) , (B.9a)

∇2Gh + κ2Gh = iω∇ × δ(r − r′)I + ∇ (∇ · Gh) , (B.9b)

By substituting the divergence of the Green’s tensors, as given in equations (B.7a)–(B.7d), we
obtain

∇2Ge + κ2Ge = − ω2µ0

(
I +

∇∇
κ2

)
· δ(r − r′)I, (B.10a)

∇2Gh + κ2Gh = iω∇ × δ(r − r′)I. (B.10b)

To solve this set of inhomogeneous wave equations, we use the solution of the scalar wave
equation for a dipole source at location r′, denoted as the scalar Green’s function g(r, r′),

∇2g(r, r′) + κ2g(r, r′) = −δ(r − r′). (B.11)

For the one-dimensional (1D), the two-dimensional (2D) and the three-dimensional (3D)
situations, respectively, the Green’s function is given by

g1d

(
r, r′) = i

2kz

eikz|z−z′|ei(kxx+kyy), (B.12a)

g2d

(
r, r′) = i

4
H0 (ρkr) eikyy, (B.12b)

g3d (r, r) = eiκ|r−r′|

4π |r − r′| . (B.12c)

For the 1D-case the source extends to infinity in the x and y directions, and both the x- and the
y-component of the wave vector, kx and ky , are constant and satisfy the relation κ2 = k2

x+k2
y+k2

z .
For the 2D-case the source extends to infinity in the y direction, the effective distance to the
line-source is given by the cylindrical coordinate ρ and the y-component of the wave vector, ky ,
is constant and satisfies the relation κ2 = k2

r +k2
y . The function Hn(ρkr) = Jn(ρkr)+ iYn(ρkr)

denotes the Hankel function of the first kind, of order n.
To solve the set of equations (B.10), we use once more the corollary of Green’s second

theorem, [70]. Note that the integration should be carried out carefully if the integration volume
includes the point r = r′, since Green’s function is singular in that point. The explicit solution
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z^

^

^
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^

ki
^

mi
^

±

±

Figure B2. System-specific choice of a medium-dependent set of vectors forming an orthonormal

basis, a material transition in z-direction is included in the system. The set of vectors (k̂
±
i ,l̂,m̂±

i )
corresponds to the direction of propagation, the s-polarization and the p-polarization, respectively,
the superscript ± denotes forward or backward propagation in the z-direction.

for the Green’s tensors at r �= r′ in a single medium is given by is given by

εGe(r, r′) = κ2

(
I +

1

κ2
∇∇

)
g(r, r′)

= κ2

[
iκR − 1

κ2R2

(
I − 3R̂R̂

)
+

(
I − R̂R̂

)]
g(r, r′), (B.13a)

Gh(r, r′) = − iω∇ × g(r, r′)I

= − iω
iκR − 1

R

(
R̂ × I

)
g(r, r′), (B.13b)

where we defined R = r − r′, and R̂R̂ denotes the matrix with elements RiRj .
To obtain the solution for the Green’s tensors in stratified media, from equations (B.8a)

and (B.8b), it will prove useful to take the Fourier transform, yielding

εF
[
Ge(k, κ)

] = κ2I − kk
k2 − κ2

, (B.14a)

F
[
Gh(k, κ)

] = − iω
ik × I
k2 − κ2

. (B.14b)

The coordinates k in the frequency domain form a Fourier pair with the coordinates r in the
spatial domain. An expression for the Green’s tensors in the spatial domain is obtained by
taking the inverse Fourier transform of equations (B.14a) and (B.14b):

εGe(r, r′) = 1

(2π)3

∫
κ2I − kk
k2 − κ2

eik·(r−r′)dk, (B.15a)

Gh(r, r′) = ω

(2π)3

∫
k × I

k2 − κ2
eik·(r−r′)dk. (B.15b)

Appendix B.3. Stratified media

So far we concentrated on the calculation of the Green’s tensor in a single homogeneous
medium. In this section we give a description of the Green’s tensors for the general situation
of stratified media following [69]. In practice we separate the Green’s tensor in a direct and
an indirect contribution, which is the light travelling from the source point to the observation
point directly, without encountering any material transitions, and the part affected by medium
transitions and reflections.

Again, we assume a stack of layers with the surface normal pointing in the z-direction. To
describe the effects of the layer transitions on the Green’s tensors, we use a similar approach
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r

Ge,Ghε(r)
x

y
z

I
^r’

^

^

Figure B3. Green’s tensors for stratified media as obtained by an electric Ge and Gh. The tensors
are constructed from the three vectors containing the electric or magnetic field as obtained by a
source oscillating in the x-, y- and z-direction. The source is located at r′, the point of observation
is located at r.

as discussed in appendix A.2 and introduce the cylindrical basis (k̂, l̂, m̂) with the three unit
vectors defined in equation (A.5), as shown in figure B2. We rewrite equations (B.15a) and
(B.15b) in terms of our new basis-vectors, starting in the layer i where the source r′ is located:

εiGe(r, r′) = 1

(2π)3

∫
κ2

i I − kk

k2 − κ2
i

eik·(r−r′)dk

= 1

(2π)3

∫ (
ẑẑ +

κ2
i I − kk

k2 − κ2
i

)
eik·(r−r′)dk − 1

(2π)3

∫
ẑẑeik·(r−k′)dk

= i

8π2

∫
κ2

i I − k±
i k±

i

kzi

eik±
i ·(r−r′)krdkrdkφ − δ(r − r′)ẑẑ

= − δ(r − r′)ẑẑ +
iκ2

i

8π2

∫
l̂l̂ + m̂±

i m̂±
i

kzi

eik±
i ·(r−r′)krdkrdkφ,

(B.16a)

Gh(r, r′) = ω

(2π)3

∫
k × I

k2 − κ2
i

eik·(r−r′)dk

= ω

(2π)3

∫
k × (k̂k̂ + l̂l̂ + m̂m̂)

k2 − κ2
i

eik·(r−r′)dk

= iω

8π2

∫
k±

i × (l̂l̂ + m̂±
i m̂±

i )

kzi

eik±
i ·(r−k′)krdkrdkφ

= iω

8π2

∫
κi

m̂±
i l̂ − l̂m̂±

i

kzi

eik±
i ·(r−r′)krdkrdkφ, (B.16b)

where, after integration over kz, the length of the vector |k±
i | = κi , the positive sign

is used for z > z′ and the negative sign is used for z < z′. For the integration
over kz in equations (B.16a) and (B.16b) , we have anticipated a singularity caused by
the layer transitions and taken this component out of the equation, where it is integrated
separately.

Now, we incorporate the effects of a system consisting of several layers, as schematically
depicted in figure B3. This yields a direct contribution when source and observation point
are located within the same medium; otherwise there is only an indirect contribution from
possibly multiple reflections and transmissions of the surrounding layers. The electric and
magnetic field components incorporating the reflection and transmission coefficients of the
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layer transitions are given by

Ge(r, r′) = − δ(r − r′)
εi

ẑẑ +
iω2µ0

8π2

∫
1

kzi

[
l̂l̂eikzi |z−z′| + Rs+

i eikzi z + Rs−
i e−ikzi z

+ m̂±
i m̂±

i eikzi |z−z′| + Rp+
i eikzi z + Rp−

i e−ikzi z
]i→j

eiρkr cos (kφ−ϕ)krdkrdkφ

= − δ(r − r′)
εi

ẑẑ +
iω2µ0

8π2

∫ [(
As+

j + Ap+
j

)
eikzj z

+
(

As−
j + Ap−

j

)
e−ikzj z

]
eiρkr cos (kφ−ϕ) kr

kzi

dkrdkφ, (B.17a)

Gh(r, r′) = iω

8π2

∫
k±

j × 1

kzi

[
l̂l̂eikzi |z−z′| + Rs+

i eikzi z + Rs−
i e−ikzi z

+ m̂±
i m̂±

i eikzi |z−z′| + Rp+
i eikzi z + Rp−

i e−ikzi z
]i→j

eiρkr cos (kφ−ϕ)krdkrdkφ

= iω

8π2

∫ [
k+

j ×
(

As+
j + Ap+

j

)
eikzj z

+ k−
j ×

(
As−

j + Ap−
j

)
e−ikzj z

]
eiρkr cos (kφ−ϕ) kr

kzi

dkrdkφ, (B.17b)

with the vector r − r′ expressed in cylindrical coordinates as (ρ, ϕ, z) and Rs/p+
i and Rs/p−

i the
effective reflection tensors for electric waves travelling in the positive and negative direction,
respectively. We have introduced the layer-dependent electric field components As/p±

j , where
the positive sign denotes forward and the negative sign backward propagating fields. The arrow
i → j indicates that we start in the layer where the source point is located and migrate to the
layer where the observation point is located. The combination of direct and indirect waves are
stored in As/p±

i as

As/p±
i =

[
Rs/p±

i + �(±z ∓ z′)Cs/p±
i e∓ikzi z

′]
, (B.18)

with Cs±
i = l̂l̂ for the TE- and Cp±

i = m̂±
i m̂±

i for the TM-polarization. The Heaviside step
function �(x) = 1 for x > 0 and �(x) = 0 for x < 0.

We can obtain an expression for Rs/p±
i , if we use for each component of the tensors the

relation (
A±

i

A∓
i

)s/p

z≶z′
= Rs/p±

i

Rs/p∓
i + Cs/p∓

i e±ikzi z′ , (B.19)

yielding a set of two equations for z ≶ z′, where z < z′ is associated with the ratio of positive
over negative waves and z > z′ is associated with the ratio of negative over positive waves.
For each element of the effective reflection tensors we find

R
s/p±
i,αβ =

(A±
αβ/A∓

αβ)
s/p

i,z≶z′

1 − (A+
αβ/A−

αβ)
s/p

i,z≶z′(A
−
αβ/A+

αβ)
s/p

i,z≷z′
[(A∓

αβ/A±
αβ)

s/p

i,z≷z′C
s/p±
i,αβ e∓ikzi z

′
+ C

s/p∓
i,αβ e±ikzi z

′
].

(B.20)

Since we know that in the last medium with i = N there are no backward travelling waves
coming from infinity, the ratio (A−/A+)

s/p

N = 0 as defined in equation (A.12). In the
first medium with i = 1, the same holds for the forward over backward travelling waves
(A+/A−)

s/p

1 = 0. Now, it is possible to calculate this ratio in the adjacent layers until we
obtain the ratio in the layer of the source. Note the difference between this ratio and that with
subscripts αβ, since the definition of the reflection coefficient for the p-polarization includes a
rotation of the vector, which implies an extra minus sign for α = z. The calculation of As/p±

i
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leads to the expressions

As±
i = (A±/A∓)si

1 − (A±/A∓)si (A
∓/A±)si

[(A∓/A±)si l̂l̂e
∓ikzi z

′
+ l̂l̂e±ikzi z

′
] + l̂l̂�(±z ∓ z′)e∓ikzi z

′
,

(B.21a)

Ap±
i = (A±/A∓)

p

i

1 − (A±/A∓)
p

i (A∓/A±)
p

i

[(A∓/A±)
p

i m̂±
i m̂±

i e∓ikzi z
′
+ m̂∓

i m̂±
i e±ikzi z

′
]

+m̂±
i m̂±

i �(±z ∓ z′)e∓ikzi z
′
, (B.21b)

To propagate the field calculated in layer i to the next layer j we use equation (A.14):

A
s/p±
j = γ

s/p

i,j [As/p±
i e±ikzidi,j − A

s/p∓
i F

s/p

i,j e∓ikzidi,j ]e∓ikzj di,j . (B.22)

Finally, we require, aside from equations (A.18) and (A.19), the expressions for k±
j ×l̂l̂ = kj m̂±

j l̂

and k±
j × m̂±

j m̂+
i = −kj l̂m̂+

i

∫ 2π

0
m̂±

j l̂eiρkr cos (kφ−ϕ)dkφ = 2π


 ∓ kzj

2 J2 sin 2ϕ ∓ kzi

2 (J0 − J2 cos 2ϕ) 0
± kzi

2 (J0 + J2 cos 2ϕ) ± kzi

2 J2 sin 2ϕ 0
−ikrJ1 sin ϕ ikrJ1 cos ϕ 0


 ,

(B.23)

−
∫ 2π

0
kj l̂m̂+

i eiρkr cos (kφ−ϕ)dkφ

= 2πkj

ki




kzi

2 J2 sin 2ϕ − kzi

2 (J0 + J2 cos 2ϕ) ikrJ1 sin ϕ
kzi

2 (J0 − J2 cos 2ϕ) − kzi

2 J2 sin 2ϕ −ikrJ1 cos ϕ

0 0 0


 . (B.24)
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