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Abstract

Economic theory is built on the assumption that people are omniscient utility maximizers.

In reality, this is unlikely to be true and often people lack information about all alternatives
that are available to them; either because the information is unavailable or that the cost of
searching for and evaluating that information is high. In this paper, we develop a simple and
tractable model that captures satisficing behavior. We show that the model can retrieve con-
sistent parameters under a large range of experimental conditions. We test our model on
synthetic data and present an empirical application. We discuss the implications of our
results for the use of satisficing choice models in explaining choice.

Introduction

Economic theory is built on the assumption that people are omniscient utility maximizers.
That they have complete information about all available options, knowledge of their prefer-
ences and the ability to calculate their expected utility from choosing any one option. While
these assumptions are useful for welfare analysis, they may not fully describe how people make
choices in real life. Indeed, people routinely make decisions that cannot readily be described
by the standard model of rationality [1-9]. Simon [1] argued that people lack the memory and
cognitive abilities to be perfectly rational; or that they actively choose to avoid the (significant)
cognitive effort associated with searching for and evaluating all possible alternatives available
to them. Instead, people are “boundedly rational”. The idea of bounded rationality is built on
the premise that people rarely have complete information about alternatives nor do they have
perfect knowledge of their preferences, but learn about both through the (costly) search for
information and deliberation [1, 10, 11].

The search for information about alternatives has interesting implications for choice. First,
it is at odds with the standard model of expected utility maximization. That model assumes
that people have complete information about all available alternatives. Let us call this collection
of alternatives the grand choice set, and it includes every single possible (relevant) alternative.
When an individual searches for alternatives, their choice set is growing with one alternative
per period of search. Let us call these smaller choice sets, which are proper subsets of the grand
choice set, their consideration sets. In optimal search theory, this process of growing the con-
sideration set would continue until the expected gains from continuing to search would be less
than or equal to the marginal cost of continuing to search [12, 13]. At this point, a choice will
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be made among the alternatives present in the consideration set. This choice can still be com-
pensatory and made by an individual maximizing utility. However, it is not necessarily true
that the alternative maximizing utility in the consideration set is the ‘global” utility maximizing
alternative, indicating that the chosen alternative may be suboptimal. Furthermore, this pro-
cess also implies that people can continue to search for additional alternatives even after a sat-
isfactory or utility maximizing alternative has been found. Indeed, Stiittgen et al. [14] find
evidence that people keep searching after having found a satisfactory alternative, which the
authors argue may be a way of confirming that the choice they made was a good one. To

use the terminology in Aribarg et al. [7], this would be a typically sequential and stochastic
process.

That said, Simon [1] argues that even this might be too complex a decision for people to
make and that decisions might not even involve maximization of some function at all. Rather
people make a sequence of decisions based on whether or not the utility of the current alterna-
tive exceeds some threshold utility. We formally define the threshold utility in the next section
of the paper. We also note that it is not necessary to work within the framework of utility, but
as economists, we find it useful to do so. As such, the decision process is one in which each
alternative is evaluated sequentially and the first one exceeding the threshold utility is chosen.
For example, imagine you are on holiday in a new city and are going out for dinner. How do
you decide where to go? Do you consider every restaurant in the city and choose the one that
gives the highest expected utility based on the menu, distance from the hotel, renown and ser-
vice? Probably not. It is more likely that you engage in a type of satisficing process where you
evaluate a set of restaurants sequentially, and subject to how hungry you are, choose the first
one that has an acceptable menu, distance to the hotel, renown and service. The utility derived
from the marginal restaurant meeting all these minimum requirements (later: aspiration lev-
els) is the threshold utility and the chosen restaurant is the first one giving a utility higher than
this, i.e., exceeds the minimum on at least one attribute level. We want to make clear that satis-
ficing differs from other non-compensatory decision rules such as lexicographic choices and
elimination-by-aspects. Continuing with our restaurant example: A decision maker choosing
lexicographically will choose a restaurant based on their perceived most important attribute;
whereas a decision maker who eliminates-by-aspects will gradually reduce the number of res-
taurants by iteratively excluding those that do not meet minimum acceptable attribute cut-off
levels until a single chosen restaurant remains. As stated above, a satisficing choice may or
may not be utility maximizing. If the first satisfactory restaurant encountered happens to be
the one that gives the highest global utility, then that choice is also utility maximizing. How-
ever, any other choice is by definition satisfactory, but not maximizing [15, 16].

Several authors have found evidence that people in experimental settings make decisions
that are (partly) consistent with a satisficing decision rule [8, 11, 17-20] (for a more thorough
review of the literature see the review sections in Sandorf and Campbell [8], Gonzalez-Valdés
and Ortuzar [19], Manski [10], Papi [16] and Aribarg et al. [7]). For example, Caplin et al. [21]
develop a theoretical model of search and satisficing, which they test on choice process data
that allows the experimenter to track participants’ choices. They find that when people work
under a time constraint, they tend to choose the first option that meets their aspiration level.
Reutskaja et al. [18], on the other hand, use eye-tracking, as opposed to choice process data, to
determine the order in which alternatives were evaluated. They impose a strict time constraint
with a monetary penalty for participants who spent more time than they were allotted, and
they find that participants’ choices are partly consistent with satisficing. In a different eye-
tracking study, Stiittgen et al. [14] find that participants stop searching for new alternatives
when they find one that is satisfactory. Manski [10] explores satisficing in the context of delib-
eration costs. He shows that if the cost of learning about one’s preferences is prohibitively
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high, then people will resort to a no deliberation strategy, which involves choosing the first
alternative they encounter. If costs are positive, but not prohibitive, people will engage in satis-
ficing behavior, and if costs are low, possibly zero, people will optimize, e.g., maximize utility.
Satisficing decisions are not limited to the domain of frequent or infrequent decisions. Giger-
enzer [22] argues that moral decisions can be so difficult and mentally taxing that satisficing is
particularly prevalent in this context.

Herbert Simon’s idea of satisficing has been quite successful but has received limited inter-
est from choice modelers. To the authors’ knowledge, only a few papers have developed mod-
els that can identify satisficing behavior in more traditional discrete choice data (e.g., see
Sandorf and Campbell [8] and Gonzalez-Valdés and Ortazar [19]), and none are necessarily
readily implemented within existing software. Gonzalez-Valdés and Ortazar [19] describe a
“stochastic” satisficing model where an alternative is deemed satisfactory if all attribute levels
are deemed satisfactory. Their model dismisses the notion of utility completely and relies on a
set of acceptability functions. The model is stochastic in the sense that it assumes a random
starting point and direction to model the search path. To overcome the implications of find-
ings by Stiittgen et al. [14] they assume that people choose the first acceptable alternative and
do not continue to search. Sandorf and Campbell [8] on the other hand developed a model to
systematically explore the use of the satisficing decision rule. Specifically, they considered 944
possible satisficing rules (threshold utilities) and allowed respondents to revise their rules
throughout the choice sequence, which is in line with aspiration adaption [23]. While only a
minority chose according to a satisficing rule, the implications for welfare estimates were
significant.

Any model trying to capture satisficing behavior needs to make assumptions concerning i)
when information search starts, ii) the direction of information search, and iii) when search
stops. In addition, a properly specified model needs to address potential search costs. The
assumptions i)-iii) implies that the search path is observable. This is generally not the case
with standard discrete choice data. Eye-tracking can help, but to fully observe the search path,
mechanisms to detect and track this must be in place at the design and implementation stages.
If the search path is observable, then determining i)-iii) is trivial.

Sandorf and Campbell [8] developed and applied a satisficing model to data obtained from
a standard stated preference survey that was not designed to detect satisficing behavior. To
estimate the model they had to assume that people evaluated alternatives in a particular order.
Specifically, they assumed that alternatives were evaluated in the direction of reading, i.e.,
from left to right. In this paper, we develop a simple satisficing model that accommodates
choosing the first alternative with utility exceeding some threshold level of utility. This thresh-
old utility is estimated along with the marginal utility parameters. To test the performance of
our model, we run a series of Monte-Carlo simulations on data generated assuming people are
utility maximizing, i.e., a standard multinomial logit model, and data generated assuming peo-
ple are satisficing, i.e., the simple satisficing model. In addition to satisficing, we also allow for
other secondary decision rules, for example, choose the first and choose the last. We show that
our model can retrieve the true parameters under various assumptions about the level of the
threshold utility. A benefit to the simple satisficing model is that it can be run on standard
data, using, for example, the same assumptions as in Sandorf and Campbell [8], but is best
suited when evaluation order is known. For this reason, we also test the model on stated choice
experiment data designed to compare the standard way of displaying all alternatives at the
same time to one in which respondents actively choose between revealing another alternative
or select their preferred alternative from those they have already revealed. Our results show
that our model nests a “choose the first alternative” strategy, which is analogous to the no
deliberation strategy in Manski [10], and a utility maximization strategy, which is analogous to
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the optimization strategy in Manski [10]. We discuss the implications of our results for welfare
analysis and prediction.

Econometric approach

To introduce notation, we assume that a decision maker faces a choice between J different
alternatives provided in the complete and exhaustive choice set C,,. Decision makers are
indexed by n € {1, 2, . . ., N} and alternatives by j € {1, 2, .. ., J}. The utility, denoted by u, deci-
sion maker # receives from choosing the j™ alternative can be described by the random utility
function in Eq 1.

U, ="v,+¢,= anj +e&, (1)

where x,,; is a column k-vector of the attributes of alternative j encountered by individual n, B
is a conformable row k-vector of unknown marginal utility parameters to be estimated and &,;
is an idiosyncratic random disturbance term. The observable part of utility (i.e., v,;) is made
up of Bx,,; and the unobservable part of utility is made up of &,,;. Under the assumption that £,,;
is a deviate from an identically and independently (i.i.d.) extreme value distribution with vari-
ance 77°/6, the probability that alternative j is chosen by individual 7 can be represented by a
conditional logit model [24, 25]:

PG, | X, B = prm)) @

JGCYI

All terms in Eq 2 are as defined above. The probability in Eq 2 follows from the classic util-
ity maximization problem and we assume that the choice is made from the grand choice set of
alternatives.

Satisficing model

When people make choices, they do not always choose the utility maximizing alternative. One
possibility is that they choose the first alternative exceeding some minimum level of acceptable
utility. Let us define the minimum level of utility, or threshold utility, as ¢. The threshold utility
is a function of the aspiration levels for each of the attributes making up an alternative. The
threshold utility then is the (marginal) utility derived when all aspiration levels are met and as
such is directly informed by a decision maker’s preferences. This then connects Selten’s [23]
view of aspiration levels with our notion of a threshold utility and, furthermore, provides a
mechanism for how the threshold utility changes in response to revised aspiration levels [23].
For example, assume that you are in the market to buy a car. Furthermore, when it comes to
cars, you only care about the engine size and fuel economy. The absolute minimum for buying
anew car is that it is better than your current car. This implies that the aspiration levels are set
to the levels of your current car and that the threshold utility is the utility derived from owning
your current car. In other words, the threshold would be based on some kind of status-quo sit-
uation. If this was indeed the threshold and you were satisficing, you would buy the first car
you see that is better than your car subject to your budget constraint. This is rather unlikely. It
is more likely that you have a minimum set of aspiration levels, e.g., a minimum engine size
and a minimum level of fuel economy. Once these are decided upon, the preferences for these
aspiration levels lead to the derived threshold utility. The threshold utility then is fully deter-
mined by your preferences and aspiration levels.

Just as we cannot observe an individual’s utility function, we cannot observe their aspiration
levels nor the resulting threshold utility. For this reason, and to avoid trying to determine each
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individual aspiration level, we make probabilistic statements about whether or not the utility
of the alternative exceeds the threshold. Let us define the threshold #, as being comprised of an
observable component 7 to be estimated and an unobservable component ¢,,, such that £, = 7+
€,- We assume that ¢,, is i.i.d. and follows an extreme value distribution and furthermore that
the differences in the unobserved parts of u,; and t, (i.e., £,j and ¢,, respectively) are logistically
distributed with the scale parameter being unity. This implies that the threshold utility deter-
mining a satisfactory alternative is independent of the utility experienced from any given alter-
native. While this assumption may seem restrictive at first glance, we argue that it is, in fact,
quite trivial. To see this, we need to emphasize that within a given decision context and deci-
sion maker, there is only one threshold utility and that this utility is fully determined by a
given decision maker’s preferences. This follows directly from the discussion above relating to
aspiration levels. To continue with our new car example, before you even begin looking at a
new car, you have an idea about what would be satisfactory levels of engine size and fuel econ-
omy, i.e., you already have established aspiration levels and consequently a threshold utility for
what would be an acceptable car fully informed by your preferences. When you encounter a
new alternative, i.e., you look at a new car, the utility you derive is a function of that alterna-
tive’s attributes and determined by your preferences. The utility you derive from this new
alternative is independent of previously seen alternatives and your threshold utility since all
are determined by the same set of underlying preferences for the attributes comprising these
alternatives. Note that this implicitly assumes that there is no preference learning as you view
more cars. A point which we remark on again below.

Having established this, we can express the probability that alternative j yields utility greater
than the threshold using a logistic function:

Pr(unj >t | X, B, T) = Pr(vnj +e,>1+ €,) = Pr(sn]. —€,>T— an)
B 1 (3)
T Tt ep(t—px,)

Inherent in the satisficing model is the assumption that decision makers consider alterna-
tives sequentially. This opens up for the possibility that a decision maker revises the threshold
as they progress through the search and evaluation process [1, 8, 23]. This adjustment of the
threshold may reflect a learning process, either of preferences or the range of possible alterna-
tives in the market. Let us continue with the car example. Before visiting dealerships, it is
important to you that your next car has good fuel economy and a large engine, but that fuel
economy is the most important. As you visit different dealerships, you realize that there is a
trade-off between the two and that a larger engine usually comes at the cost of worse fuel econ-
omy. Consequently, you may adjust your aspiration level for engine size down [23] and it fol-
lows that threshold utility also adjusts down. Despite the importance of aspiration adaption
[23] in satisficing models, to keep the model simple and tractable, we assume that the threshold
is stable throughout the entire decision process. Obviously, extending the model in this direc-
tion would be interesting. One possibility would be to parameterize T with specific (possibly
individual level) aspiration levels such that the threshold utility ¢,; would reflect changing aspi-
ration as individuals progress through the sequence of alternatives. This also provides another
way to think about the threshold utility function as it is specified here: It is simply estimated as
a constant with none of the attributes specified meaning that it is a collective parameter that
would capture overall changes in threshold utility without capturing individual changes in
aspiration levels. Importantly, whether the aspiration levels are specified in the function does
not affect the ability of the model to capture potential search costs, which can also be added to
the threshold function.
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Given the sequential manner in which decision makers consider alternatives, the probabil-
ity of an alternative being chosen in a satisficing model must account for the probability that
all subsequent alternatives were not chosen:

Pr(u, >t,|x,,B,7) if j= 1; or,
Pr(j, | X, B, 7, Satisficing) = "
Pr(un]‘ >, | p B,’L') Hje{l,,..J,l}(l — Pr(unj >t, | X, ﬁ,’[)) if ] > 1.

The probability that none of the alternatives in the choice set yield utility that exceeds the
threshold utility is simply one minus the sum of the probability of an alternative being chosen
in a satisficing model over all alternatives:

Pr(u, <t | X, B,7)=1-— ZPr(jn | X,,B, 1, Satisficing), (5)

j€c,

where 0 < Pr(u, < t,| X,, B, 7) < 1.

Given the strict inequality Pr(u, < t, | X, B, 7) > 0, there remains a probability that the
choice task contains no satisfactory alternative, meaning that, after evaluating all possible alter-
natives, a decision maker must switch to another, secondary, decision strategy. Therefore, Pr
(u, < t, | X,,, B, 7) can be interpreted as the probability of decision maker n switching to a sec-
ondary decision rule after they have evaluated all ] alternatives in choice set C,, and established
that none of them meet their acceptable threshold utility. The overall choice probability then
becomes the satisficing probability plus the choice probabilities derived conditional on the sec-
ondary decision rule weighted by the probability that this rule is enacted:

Pr(j, | X,,B, 7, 1" : Satisficing, 2" : -) = Pr(j, | X,, B, 7, Satisficing)

6
B, <6 | X, B0prG, 1)

where 1%:Satisficing and 2"%:- signify the primary and secondary decision making rules,
respectively, and Pr(j, | -) is the probability of choice conditional on the secondary decision
making strategy. The secondary decision rule may entail a combination of decision making
strategies and possible heuristics. In this paper, we consider four such secondary, or backup,
strategies: i) utility maximization; ii) choose the opt-out; iii) choose the last; and, iv) choose at
random.

The first strategy is where the decision maker chooses the utility maximizing alternative,
which is represented by a conditional logit expression:

Pr(j, | X, B, RUM) = % (7a)

jec

Secondly, we consider the strategy where the decision maker chooses to opt-out or chooses
the explicitly offered status-quo option:

1 if j = opt-out or status-quo; and,

Pr(j, | Opt-out) = { (7b)

0 otherwise.

The third strategy is the situation where the decision maker simply chooses the last alterna-
tive in the choice set. This may, for example, arise due to a lack of recall or because alternatives
are only temporarily available (e.g., as in the case when choosing a car parking space [26]). The
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conditional probability of choice under this strategy is given by:

1 if j=]; and,
Pr(j, | Last) = { (7¢)

0 otherwise.

Finally, we consider the strategy where the decision maker chooses a random alternative
after establishing that none of the available alternatives provide utility greater than the thresh-
old. This leads to the following conditional probability:

Pr(j, | Random) = % (7d)

Properties of the model

The model outlined in Eq 6 benefits from nesting three different models. As the threshold, 7,
goes to —oo every single alternative will have a utility higher than the threshold (i.e., lim, ,_,
Pr(u, < t,|X,, B, 7) = 0). In this case, choosing the first alternative that exceeds the threshold
involves choosing the first alternative you are presented with. If search costs are subtracted
from the threshold utility, then this becomes analogous to the no deliberation strategy outlined
by Manski [10]. Indeed, letting the threshold be a function of cost is an interesting (and sim-
ple) extension of the proposed model in the current paper. The choice probability under a no
deliberation strategy is equal to 1 and will approach 1 under a satisficing strategy as 7 goes to
—00. The consequence of this is that if the threshold utility is sufficiently low such that 7 identi-
fies every choice as a satisficing choice, then the log-likelihood value of the model will tend to
zero. This is expected when the model perfectly describes the data generation process. Con-
versely, as T goes to + 00, none of the alternatives will give a utility that is higher than the
threshold (i.e., lim, ., o, Pr(u, < t,|X,, B, 7) = 1). The model will, therefore, collapse to the
model associated with the secondary decision rule. In this case, the model has the same fit and
retrieves the same parameters as the secondary model, but is less parsimonious.

While the probability of the threshold utility being higher than the utility of all alternatives
in the choice set in Eq 5 is, appropriately, unaffected by the order in which alternatives are
evaluated, the satisficing choice probability in Eq 4 and, thus, the joint choice probability in
Eq 6 are affected. Therefore, the evaluation order must be known. In cases where this is not
known, it will be necessary to rely on simplifying assumptions. For example, if the position of
alternatives is known, one could assume that people process alternatives from left to right or
top to bottom in a sequential manner [8, 27]. Of course, the suitability of this assumption is
an empirical decision and should be considered on a case-by-case basis, requiring discretion
and objective judgment on behalf of the analyst (see Sandorf and Campbell [8] for a discussion
and Campbell and Erdem [28] and for a related discussion on the influence of position on
information processing). It is also necessary to assume that people choose the first alternative
exceeding their threshold utility. If they choose the second or third alternative exceeding the
threshold, they cannot have chosen according to a satisficing decision rule.

Similarly, if opting-out is an option, or if there is an explicitly offered status-quo option, it
will be necessary to make assumptions regarding the order in which the opt-out alternative is
evaluated. If individuals consider it as a reference point it is effectively the first encountered
alternative. In this case, opt-out or status-quo choices would be consistent with satisficing
behavior in situations where individuals deem this option to be both satisfactory and sufficient
and do not evaluate any of the non-opt-out or non-status-quo alternatives. Depending on the
decision context this could be difficult to distinguish from not entering the market to begin
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with. Conversely, in situations where individuals evaluate options before choosing to opt-out
or the status-quo alternative, it is effectively the final alternative in the choice task. Ultimately,
this must be determined by the analyst.

A further aspect of the model is that the probability of switching to a secondary decision
rule depends also on the number of alternatives in the choice set. As one would expect, as the
choice set grows in terms of the number of alternatives the probability that the secondary deci-
sion rule is needed reduces. This comes directly from taking the product in calculating the
satisficing probability in Eq 4. But more obviously, as the number of alternatives increases the
likelihood of encountering a satisfactory alternative can also be expected to increase, all else
being equal.

We assume that all individuals use satisficing as their primary decision making rule and
that they use one of four decision rules as their secondary rule. Admittedly, this has the poten-
tial of predicting choice outcomes that may be at odds with outcomes driven by resource
rational decision making. Furthermore, in reality, every individual will use a strategy (or com-
bination of strategies) that may be unique to them and that is likely to be highly dependent on
the choice context. Hence, the assumption of persistent use of the same primary and secondary
rule is a simplification. This limitation could, of course, be potentially relaxed through the use
of probabilistic decision rule process models that accommodate heterogeneity in decision
making strategies across individuals (e.g., see Hensher et al. [29]). This form of model recog-
nizes that an individual’s actual decision making process is unobserved and cannot be known
with certainty, but probabilistic statements about the likelihood of competing decision strate-
gies being their true strategy can be reached based on their observed choices. However, this
goes beyond the aims and scope of the paper. The purpose of the current paper is to develop a
simple and tractable model to capture satisficing behavior. Readers interested in an application
of this type of model to systematically explore satisficing behavior are directed to Sandorf and
Campbell [8].

We assume that the threshold utility is stable throughout the entire decision process. As
discussed above, this assumption can be relaxed by parameterizing 7 to reflect changing aspi-
ration levels as individuals progress through the sequence of alternatives and choice tasks.
Moreover, following Giith [30] and Giith et al. [31], there may be a desire to investigate if
satisficing behavior is absorbable (i.e., whether individuals continue to use it as a decision
rule when they become aware of it). It is, however, challenging to separately explore absorb-
ability and threshold revision within the current framework because it is difficult to know
whether changes in 7 are driven by a change in decision rule once they are aware that they
satisfice, i.e, T goes to + oo to collapse to a secondary rule, or if it is because aspiration levels
change in light of experience. While parameterizing 7 will help get closer to separately identi-
fying the two, confounding between the constants and the threshold parameters is likely to
remain.

Related, for this paper, we assume a constant 7, which implies that everyone has the same
observable threshold utility. A pure satisficing strategy lies where 7 uniquely identifies all
choices in the data. For obvious reasons, this may require 7 to be individual-specific, and in
many, but not all, settings it makes sense to set the threshold utility to be equal to or higher
than the utility of the opt-out or status-quo alternative. As discussed above, to move away
from the status-quo, the new situation has to be at least as good. To fully capture satisficing
behavior, an easy extension to the model involves reparameterization of 7 to accommodate
the potential influence that individual ability, motivation and a range of other, perhaps unob-
served, factors have on the likelihood to satisfice; or to fully specify the alternative in terms of
aspiration levels to allow for changing threshold utilities through adapted aspiration levels. Of
course, there is also scope for further specifications to accommodate preference heterogeneity.
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Indeed, this may be, in fact, a necessary step to, at least partially, alleviate potential confound-
ing concerns between B and 7.

Analytical example

To illustrate, in Table 1 we show how the choice probabilities of an alternative being chosen
under satisficing are dependent on 7, evaluation order and the secondary decision making
rule. For demonstration purposes, we assume 7 € {-3, 0, 3, 6}, there are five alternatives to
choose from (i.e., ] = 5), the observed utilities v; € {~2, —1, 0, 1, 2}, and that the alternatives are
either evaluated from the one that provides the lowest observed utility to the one that provides
the highest observed, or vice versa. For the case where the secondary decision rule is to choose
the opt-out alternative, we show only the results for when it is assumed to be the first evaluated
alternative since the results for when individuals evaluate all options before choosing the opt-
out can be ascertained from the choose the last strategy.

From Table 1, we see that irrespective of evaluation order, with relatively small thresholds
(in this example where T < —3) there is practical certainty that the choice set contains an alter-
native that exceeds the utility threshold (i.e., Pr(u < t | v, 7< —3) & 0). Note also that with very

Table 1. Choice probability of an alternative being chosen under satisficing (for different satisficing thresholds and evaluation order of alternatives).

v; Alternatives evaluated from lowest to highest Alternatives evaluated from highest to lowest
-2.000 -1.000 0.000 1.000 2.000 2.000 1.000 0.000 -1.000 -2.000
7=-3.000 Pr(u < ¢ | v, 7) = 0.000
Pr(u; > t| v 1) 0.731 0.881 0.953 0.982 0.993 0.993 0.982 0.953 0.881 0.731
Pr(j | v;, 7, Satisficing) 0.731 0.237 0.031 0.001 0.000 0.993 0.007 0.000 0.000 0.000
Pr(j | Vj T ISt:Satisﬁcing, 2".RUM 0.731 0.237 0.031 0.001 0.000 0.993 0.007 0.000 0.000 0.000
Pr(j | v T, ISt:Satisﬁcing, 2"d:Opt—0ut 0.731 0.237 0.031 0.001 0.000 0.993 0.007 0.000 0.000 0.000
Pr(j| Vj T, ISt:SatiSﬁcing, 274 Last 0.731 0.237 0.031 0.001 0.000 0.993 0.007 0.000 0.000 0.000
Pr(j| Vj T, ISt:Satisﬁcing, 2"d:Random 0.731 0.237 0.031 0.001 0.000 0.993 0.007 0.000 0.000 0.000
7=0.000 Pr(u < t|v,7)=0.010
Pr(u; >t | Vj, T) 0.119 0.269 0.500 0.731 0.881 0.881 0.731 0.500 0.269 0.119
Pr(j | v, T, Satisficing) 0.119 0.237 0.322 0.235 0.076 0.881 0.087 0.016 0.004 0.001
Pr(j| Vj T, lSt:Satisﬁcing, 2".RUM 0.119 0.237 0.323 0.238 0.083 0.887 0.090 0.017 0.005 0.002
Pr(j| Vj T, ISt:Satisﬁcing, Z“d:Opt—out 0.130 0.237 0.322 0.235 0.076 0.891 0.087 0.016 0.004 0.001
Pr(j| Vj T, ISt:Satisﬁcing, 27 Last 0.119 0.237 0.322 0.235 0.087 0.881 0.087 0.016 0.004 0.012
Prj|vyt, 1St:Satisﬁcing, 2"4:Random 0.121 0.239 0.324 0.237 0.078 0.883 0.089 0.018 0.006 0.003
7=3.000 Pr(u < t|v, 1) =0.598
Pr(uj >t Vs T) 0.007 0.018 0.047 0.119 0.269 0.269 0.119 0.047 0.018 0.007
Pr(j | Vi T Satisficing) 0.007 0.018 0.046 0.111 0.220 0.269 0.087 0.031 0.011 0.004
Pr(j | v T, 1*:Satisficing, 2"4RUM 0.014 0.037 0.098 0.251 0.601 0.650 0.227 0.082 0.030 0.011
Pr(j| Vj T, ISt:SatiSﬁcing, 2nd:Opt—0ut 0.605 0.018 0.046 0.111 0.220 0.867 0.087 0.031 0.011 0.004
Pr(j| Vj T, ISt:Satisﬁcing, 2" Last 0.007 0.018 0.046 0.111 0.818 0.269 0.087 0.031 0.011 0.602
Pr(j| Vj T, ISt:SatiSﬁcing, 2"%:Random 0.126 0.138 0.166 0.230 0.340 0.389 0.207 0.150 0.131 0.124
7=6.000 Pr(u < t|v,7)=0.972
Pr(u; >t \ Vv, T) 0.000 0.001 0.002 0.007 0.018 0.018 0.007 0.002 0.001 0.000
Pr(j | v} T, Satisficing) 0.000 0.001 0.002 0.007 0.018 0.018 0.007 0.002 0.001 0.000
Pr(j| Vp T, ISt:Satisﬁcing, 2".RUM 0.012 0.032 0.086 0.234 0.636 0.636 0.234 0.086 0.032 0.012
Pr(j| Vj T, ISt:Satisﬁcing, 2"d:0pt-0ut 0.972 0.001 0.002 0.007 0.018 0.990 0.007 0.002 0.001 0.000
Pr(j|vyt, 1St:Satisﬁcing, 274 Last 0.000 0.001 0.002 0.007 0.990 0.018 0.007 0.002 0.001 0.972
Pr (j | vj, 7, 1*:Satisficing, 2"%:Random 0.195 0.195 0.197 0.201 0.212 0.212 0.201 0.197 0.195 0.195

https://doi.org/10.1371/journal.pone.0275339.t001
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small thresholds practically all of the choice probability is allocated to the first evaluated alter-
native. Whereas, with relatively high thresholds (in this case where 7 > 6) the probability that
any alternative yields utility above the threshold is practically zero and, as a result, the contri-
bution of the satisficing choice probabilities to the likelihood function is, in effect, zero (i.e., Pr
(u < t]v,7>6)=~1).Itis important to point out that the non-infinite boundaries of 7 that
produce values of Pr(u < t| v, 7) that are distinguishable from 0 and 1 depends entirely on the
observed utilities assumed here. Indeed, the effect of 7 on the satisficing choice probabilities
depends on its relative magnitude to the observed utilities. This aside, we can see that 7 affects
the overall joint likelihoods under the settings used in this analytical demonstration. With rela-
tively low values of T we can see that the probability of requiring a secondary decision making
strategy is very small. In such cases, the joint likelihoods for the four secondary strategies are,
therefore, practically equivalent to the satisficing choice probabilities. However, as 7 increases,
the satisficing choice probabilities get smaller meaning that the choice shares for the secondary
strategies make a larger contribution to the likelihood function. As 7 approaches its infinite
boundary, effectively all of the likelihood is explained by the backup decision rule.

Even though the full choice set comprises the same alternatives, Table 1 clearly shows that
different evaluation sequences can lead to markedly different probabilities. This difference is
most stark with relatively low values of 7 (since more of the likelihood is explained by the satis-
ficing choice probabilities). Take, for instance, the case where 7= -3 and focusing on the alter-
native with the highest observable utility of 2. When alternatives are evaluated from the one
that provides the lowest utility to the highest utility, the respective joint choice probabilities
are practically zero. However, in the case where the alternatives are evaluated in the opposite
order, the respective joint choice probabilities are effectively one. In this example, not until
> 6, in which case the backup strategy essentially explains all of the likelihood function, do we
find the joint probabilities to be relatively commensurate for the utility maximizing and ran-
dom choice secondary strategies. For the choose opt-out and last alternative backup strategies,
however, the probabilities are more commensurate at the non-infinite boundaries of 7, which
is because sequence order plays an additional role in both strategies. Under the settings of this
analytical example, T ~ 1.80 yields the most comparable probabilities for the alternative with
the highest utility in these backup strategies. This is especially the case for choosing the last
alternative secondary decision rule, where the probabilities are practically equivalent, albeit the
probabilities for the other alternatives remain somewhat different.

Synthetic application
Data

To test the performance of our model and how well it retrieves the true parameters under vary-
ing experimental conditions we run a series of Monte-Carlo simulations. Our Monte-Carlo
strategy involves a variety of generation processes. To test the ability of the model to correctly
retrieve the parameters under designs with varying numbers of alternatives, we generate data
where J € {2, 3,4, 5, 6, 8, 10, 25, 50} alternatives. Each alternative is described by four generic
attributes: AttA and AttB, which have binary (0, 1) levels; AttC, which takes levels between 0
and 1 in 0.01 increments; and, Cost, which has levels between €5 and €30 in €0.50 increments.
Thus, the full factorial consists of 20,604 profiles (i.e., two levels for AttA times two levels for
AttB times 101 levels for AttC times 51 levels for Cost). We assume that the true parameters
were: 0.5 for AttA, 0.8 for AttB, -1.6 for AttC, and -0.1 for Cost, and that the alternative-spe-
cific constants are all zero.

We generate data based on different assumptions regarding the level of the threshold utility.
The threshold utilities are derived by generating the full factorial design, which consists of all
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Table 2. Threshold utilities.

%ile 0.00, 0.05| 0.10, 0.15| 0.20| 0.25, 0.30| 0.35| 0.40 045 050 0.55 0.60 0.65 0.70 0.75| 0.80| 0.85| 090 0.95 1.00
T -7.74 | -3.76 | -3.29| -296 | -2.69 | -2.45 | -2.23| -2.03| -1.83| -1.64| -1.44 | -1.25 -1.04| -0.83| -0.60 | -0.35| -0.06 | 0.30| 0.77 | 1.52| 23.83

https://doi.org/10.1371/journal.pone.0275339.1002

possible combinations of the levels of the attributes, and for each profile generate Eq 1 based
on 1,000 simulated draws of € per profile. We then derive the minimum, maximum and inter-
mediate ventile utility values for the simulated full factorial design, thus producing 21 values of
7, which are reported in Table 2. This leads to 189 (i.e., nine settings relating to the number of
alternatives times 21 settings relating to 7) different simulation treatments. Each treatment
consists of 1,000 individuals answering a single choice task. We note that a panel of repeated
choice contexts could also be accommodated under this framework. However, in this data gen-
eration process, we assume preference homogeneity and a constant threshold meaning that
having a panel would be redundant. Though it is recognized that the ability to identify satisfi-
cing behavior and the threshold employed by a given individual will be higher in panel data
since a behavioral rule that is respected over a sequence of multiple choices is, clearly, more
convincing than one observed in a single choice (see Sandorf and Campbell [8] for an
exploration of this issue). The experimental design for each simulated dataset was generated

at random. Since idiosyncratic results can arise from a single sample, we generate multiple
replications of the experimental design. In total, we generate 1,000 replications for the 189
treatments.

The individual counterfactual choices are produced by identifying the first alternative
where u,,; > t. If u,,; < tVj the choices are determined based on the four models in Eq 7. In this
case, this, respectively, involves identifying the alternative with the largest utility value, the first
(i.e., opt-out) alternative, the last alternative, or a random alternative.

Analysis

For every dataset generated, we estimate two candidate models: (i) the naive specification
based solely on the respective secondary decision rule (where we retrieve parameter estimates
for the marginal utilities and alternative-specific constants for the first and last alternatives);
and, (ii) the specification where satisficing is used as the primary decision rule and the respec-
tive strategy as the secondary decision rule (where we, again, retrieve parameter estimates for
the marginal utilities and alternative-specific constants for the first and last alternatives in
addition to the threshold utility). Strictly speaking, the naively specified model is only esti-
mated for the treatment where the utility maximizing alternative is chosen as the backup
strategy. For the other secondary decision rule settings, the shares are conditional only on the
data and can be established deterministically since they are equal to the sample shares for the
respective decision rule. We retrieve alternative-specific constants for the first and last alterna-
tives to shed light on the potential misinterpretation of alternative-specific constants under
satisficing behavior. We omitted these constants from the expressions in Section to avoid
cluttering.

Estimating both candidate models allows us to compare the effects under correctly specified
and misspecified cases and to make inferences regarding the consequences of the naive
assumption. Combined, this leads to a total of 1,512,000 (i.e., 189 simulation treatments times
1,000 replications times four secondary decision rules times two model specifications) models
to estimate.
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Results

Observed choice shares by decision rule. In Fig 1, we compare the average share (across
the 1,000 sample simulations) of simulated choices that are consistent with satisficing. We see
that if the threshold is very low, practically all choices are consistent with satisficing. This is
quite logical. With a sufficiently low threshold, any alternative encountered would be better
and should be chosen under satisficing. As the threshold utility increases, the probability of
satisficing decreases. If none of the alternatives meets the satisficing threshold, then the deci-
sion maker has to revert to their secondary decision rule. Crucially, the probability of satisfi-
cing depends on the number of available alternatives. We see that even at higher utility
thresholds, the probability of satisficing remains high when many alternatives exist. Again, this
is quite logical. If you can search through many alternatives, chances are higher that at least
one of them will exceed the threshold. However, for sufficiently high thresholds, this probabil-
ity drops rapidly to zero.

For the sake of brevity, the observed share for the secondary decision strategies as a function
of the level of the threshold are presented and discussed in Appendix A in S1 Appendix. We
observe that the share of choices that are consistent with the secondary decision rule increases
with the threshold, which follows the same logic as above. This is found for all secondary deci-
sion rules apart from choosing the opt-out alternative, where a u-shaped pattern is observed
because the opt-out is the first alternative encountered in our case. Across all decision rules,
the share of choices consistent with the backup strategy reduces as the number of alternatives
increases.

Correctly predicted. Since comparisons of model fit are possible for only the treatments
where the utility maximizing alternative is chosen as the backup strategy (i.e., because the
shares under the naive models are established deterministically for the other secondary deci-
sion rules), we compare the percentage of choices that are correctly predicted as having the
largest choice probability [32]. The weakness of this as a measure of goodness to fit is acknowl-
edged—see Train [33] (page 69)—but is chosen as a way to allow more direct comparison
across treatments. In Fig 2, we show the average (across the 1,000 sample simulations) percent-
age difference in correctly predicted, with the share observed for naive specification being the
subtrahend, broken down by the secondary decision rule.
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Fig 1. Share of choices consistent with satisficing.

https://doi.org/10.1371/journal.pone.0275339.g001
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Fig 2. Change in choices correctly predicted under satisficing model relative to the naive baseline model. (a) Data generated on
basis of choose the utility maximizing alternative secondary decision rule. (b) Data generated on basis of choose the opt-out alternative
secondary decision rule. (c) Data generated on basis of choose the last alternative secondary decision rule. (d) Data generated on basis of
choose a random alternative secondary decision rule.

https://doi.org/10.1371/journal.pone.0275339.9002
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Looking firstly at the results for the utility maximizing treatment in Fig 2a, the difference
between the correctly predicted choices under the two candidate models is negligible at the
infinite boundaries of 7. But note, this result for the lower infinite boundary is driven by the
alternative-specific constant for the first alternative, which ensures the model fits are equiva-
lent. Recall that the alternative-specific constants were zero in the data generation process,
meaning that, while both models describe choices equally well at the lower extreme of 7, the
naive baseline model leads to biased behavioral inferences. As the threshold increases, the
probability that this is true is decreasing. This stems from the fact that the model fits, and
hence share of correctly predicted, of both models converge as the threshold increases. Of
course, the satisficing model is less parsimonious with one additional parameter meaning that
the gains achieved under the satisficing model will eventually be outweighed by the loss of par-
simony. We note that the speed at which the models converge depends on the number of alter-
natives. Specifically, we see that as the number of alternatives grows, the increase in the share
of choice correctly predicted peaks higher for higher thresholds. Thus, the implications of not
considering satisficing behavior may be greater with larger choice sets even when the threshold
utility is relatively high. This mirrors closely the results found above and the logic for why this
is true is the same: as the number of alternatives grows, the probability that one of them will be
satisfactory is also increasing. All this aside, we emphasize that the average increase in choices
correctly predicted is relatively modest, at the maximum ranging between 1.78 percent and
7.60 percent for the case where ] = 2 and ] = 50, respectively. Looking at how this equates in
terms of improvement in model fit, we find that the maximum average increase in model fit of
the satisficing model ranges between around 25 and 760 log-likelihood units for J = 2 and
J = 50, respectively. While both represent an improvement in model fit even after accounting
for the loss of parsimony caused by the estimation of an additional parameter, it equates to an
average increase of the choice probabilities of between just 1.6 and 7.8 percent, respectively.
Thus, accounting for satisficing is unlikely to yield any substantial gains in model fit. Of
course, model fit is not the only factor to consider as not accounting for satisficing may have
implications for key behavioral outputs.

For choosing the opt-out alternative treatment in Fig 2b the satisficing model explains
choices much better, especially so as the number of alternatives increases and at extreme values
of 7. This latter observation stems from the fact that at both extremes more of the choice prob-
ability is allocated to the opt-out alternative because the first alternative exceeds the acceptable
utility in the former and because none of the alternatives exceeds this threshold in the latter. In
Fig 2c the naive model assigns zero probability to the chosen alternative, whereas the satisfi-
cing model with choosing the opt-out alternative secondary decision rule predicts them per-
fectly. But the difference in correctly predicted drops as the value of 7 increases, such that both
models predict the last alternative being chosen. As T approaches its upper infinite boundary
this difference approaches zero. This is the case regardless of the number of alternatives, but 7
approaches its upper infinite boundary sooner when there are fewer alternatives. In Fig 2d, a
similar pattern to Fig 2a is observed. With a random choice secondary decision rule, the naive
model assigns 1/] to all chosen alternatives. At the lower infinite boundary of 7, where the first
presented alternative is the chosen one, the satisficing model predicts the choice perfectly pro-
ducing a difference in the likelihood of 1 — 1/]. However, as the threshold increases, more
weight is allocated to the secondary decision rule resulting in a smaller difference in the share
of choices correctly predicted.

Retrieving the true parameters. In addition to choice prediction, it is important to assess
if the threshold utility 7 is retrieved well. We use the root-mean-square errors (RMSEs) as indi-
cators of our model’s ability to retrieve the true parameters. The RMSE is a measure of the
magnitude of the difference between the estimated parameters and the true parameters used in
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the data generating process. It represents the standard deviation of the difference between pre-
dicted and actual values over the 1,000 replications, thus giving a single measure of the predic-
tive power for a parameter of interest for all candidate models.

In Fig 3, we plot the RMSE share of estimated values of 7. For the data generated assuming
the utility maximization secondary decision rule the plot in Fig 3a reveals that the threshold
utility parameter is estimated relatively well for non-extreme threshold values. Thinking about
the evidence above, this is, in fact, the region where we expect our satisficing model to work
well. With a very low threshold, chances are very high that the utility of the first encountered
alternative is higher. As such, it does not matter what value 7 takes, the predicted probability is
the same. The same argument holds for very large values of 7 since any value of 7 above this
point will, for all intents and purposes, lead to the same predicted probabilites. Fig 3 appears to
contradict this, but note that all models used the data generation parameters as starting param-
eters. As the threshold increases, the value of T moves less from its original position. So, our
model is only able to correctly identify the threshold parameter within a reasonable region.
This result does follow from the properties of our model and mirrors the results of Manski
[10]. Finally, we note that our ability to correctly identify the threshold parameter is dependent
on the number of alternatives. In particular, as the number of alternatives increases a higher
threshold is generally required to estimate it correctly. This suggests there to be a “Goldilocks”
number of alternatives for this particular satisficing model (and maybe for satisficing models
in general). It is clear that with too few alternatives, we tend to estimate the threshold better
when it is relatively low, and with too many alternatives, we tend to estimate it better as it
increases. Under the assumptions in this paper (and specific parameters of the data generating
process), the threshold utility is generally best estimated (over the threshold range) when there
are either five or six alternatives. The intuition is quite clear. With fewer alternatives, there is a
reduced chance of seeing alternatives that exceed the threshold, and with many you are practi-
cally guaranteed to see one that exceeds the threshold. Given the probabilistic nature of our
model, an alternative that yields utility that is minisculely smaller than the threshold leads to a
probability of 0.5 in Eq 3. This could be what leads to the observed pattern. We do remark that
more research is needed before this result can be generalized.

Empirical application
Data

Our experimental design aims to overcome the inherent limitation in the standard way of dis-
playing alternatives in a stated choice experiment. We propose an approach that involves
respondents actively revealing alternatives. This mimics a real world search process. We had to
find a good that is relatively cheap so that people buy it with some frequency, yet rich enough
in attributes to induce search. In this experiment, we use a decision maker’s choice among bot-
tles of wine. The choice of wine is likely to capture both those who search for a particular bottle
of wine that match their preferences and those who do not.

To decide on which attributes to include in our experiment, we relied on the information
displayed on the shelves in the supermarket, information commonly displayed on the super-
market’s websites, attributes discussed on wine review websites and feedback from our infor-
mal focus groups. Based on this, we selected seven attributes: 1) country of origin, 2) color of
the wine, 3) alcohol by volume, 4) grape variety, 5) characteristic of the wine, 6) whether the
wine was organic, and 7) price. Next, we scraped the websites of three large supermarket
chains in the UK to get the attribute information for all the wines they sell. We limited the lev-
els of the “country of origin” and “grape variety” attributes to include only the eight most com-
mon countries and ten most common grape varieties (determined based on the results from
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Fig 3. Accuracy of 7. (a) Data generated on basis of choose the utility maximizing alternative secondary decision rule. (b) Data
generated on basis of choose the opt-out alternative secondary decision rule. (c) Data generated on basis of choose the last alternative
secondary decision rule. (d) Data generated on basis of choose a random alternative secondary decision rule.

https://doi.org/10.1371/journal.pone.0275339.9003
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the web-scraping). We limited the “characteristic of the wine” attribute to be on five-point
scales ranging from dry to sweet for white and rosé wines and light to full-bodied for red
wines, and we limited price to include 35 levels at varying increments. The full factorial
included 1,848,000 possible combinations of our attributes. We excluded all infeasible combi-
nations, e.g., grape variety and color, and characteristic of the wine and grape variety, which
left us with 381,920 possible wines. Using the web-scraped wine data, we calculated a set of
probability weights to establish the likelihood of each experimentally designed wine bottle
being available in the supermarket. We used these weights to sample individual random pro-
files from the restricted factorial each time an individual entered the survey. The idea was that
the alternatives available to a respondent would mimic (probabilistically) the wine selection in
the supermarket and that the respondent will see a larger proportion of more familiar and
likely wines as opposed to more unfamiliar and unlikely wines. Importantly, this random
experimental design process assures that we have a lot of variation in our data, meaning that
we eliminate order and path dependency in choices between respondents, such that any behav-
ioral or choice patterns we detect are unlikely to be an artifact of the experimental design. Fur-
thermore, given that respondents reveal alternatives sequentially, not all alternatives allocated
to the individual design will be seen and considered by the respondent. Using a random design
ensures that our ability to make inferences about the parameters is not systematically affected
by respondents not revealing all alternatives. Lastly, the search path is also varied randomly
but remains observed by the analyst, which should average out any path-dependency effects
that might exist in the real world. As such our experimental data should cleanly predict behav-
ior and provide testable hypotheses for real world data.

The survey was programmed in Shiny [34], which is an R package, and the data was gath-
ered at the end of January 2020. In total, 4,121 respondents were randomly allocated to one of
10 treatments, each designed to test a specific aspect of search and preference learning. In the
present paper, we rely on the first four of these:

o Treatment 1: Standard stated choice experiment with three alternatives and a “buy none”
and comprises 554 individuals who, combined, made 4,774 choices.

o Treatment 2: Standard stated choice experiment with six alternatives and a “buy none” and
comprises 541 individuals who, combined, made 4,652 choices.

o Treatment 3: Standard stated choice experiment with nine alternatives and a “buy none” and
comprises 518 individuals who, combined, made 4,437 choices.

o Treatment 4: Sequential search stated choice experiment where a respondent could reveal
up to nine alternatives by clicking a button and comprises 424 individuals who, combined,
made 3,691 choices.

Our experimental setup falls under what Artinger et al. [35] would classify as satisficing
under risk, where an individual is unaware of the available alternatives but has some informa-
tion about their distribution, e.g., prior knowledge about types of wines or ranges of the attri-
bute levels, or how costly it is to search (in our search treatment (i.e., treatment 4), the search
cost was very close to zero). It is possible to work out what is the optimal choice, and, indeed,
in our search treatment, a satisficing decision maker will choose the first alternative exceeding
the utility threshold, however, a non-satisficing decision maker can choose among all revealed
alternatives, i.e., perfect recall and availability. Regardless, there is a risk that the chosen alter-
native is suboptimal in the sense that there might be a better unrevealed alternative out there.

To show respondents how to answer the choice tasks, we created short instructional videos.
The information was presented neutrally and was consistent across all treatments. To achieve
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this we created the videos using screen capture software and used Amazon Polly from AWS to
create the voice-over. Respondents were instructed to watch the video carefully before pro-
ceeding with the choice tasks. Example tasks and the instruction videos can be found at
https://choice-tasks.inspire-project.info/.

Respondents were randomly recruited from the UK population aged 18 and over. We did
not use any quota sampling to ensure that our samples were representative of the target popu-
lation. Our data collection effort was approved by the General University Ethics Panel of the
University of Stirling (#: GUEP611). All respondents received an information sheet and were
asked to complete an online consent form. The consent form asked respondents to tick a series
of boxes to indicate that they understood the information provided to them and that they con-
sented to participate. Only respondents who consented entered the survey.

Results

Observed choice shares. Before continuing with the estimation results, we first consider
the observed choice shares by alternative for the four treatments in Table 3. This reveals that
there is a general downward trend in the share of choices as we move from the leftmost alterna-
tive (i.e., j = 1) to the rightmost alternative (i.e., j =4, j =7 and j = 10 in treatments 1, 2 and 3 as
well as 4, respectively). While clearly not unequivocal evidence, it signals that there may be an
inherent tendency to process the alternatives from left to right and to choose accordingly. This
decline in choice share appears to get progressively more pronounced as the number of alterna-
tives grows. In treatment 4, where the information search was controlled, the downward trend
is especially stark, since the share of times each subsequent alternative was revealed (and thus
part of the presented choice task) dropped (see final column). Indeed, the final alternative was
revealed in less than 10 percent of cases (incidentally, this was mainly in the first choice task).
Inspecting further, we find that in almost 60 percent of all choices respondents choose their last
revealed alternative where additional alternatives were not revealed. On the face of it, this choice
behavior is consistent with satisficing. However, upon further inspection, it is found that in just
over 50 percent of these cases the status-quo alternative was chosen without revealing any non-
status-quo alternatives. This makes it difficult to say for sure if a satisficing decision rule was
adopted or if these choices are an artifact of some form of status-quo effect. Indeed, almost
25 percent of respondents in treatment 4 always choose the status-quo alternative (which is
considerably higher compared to treatments 1, 2 and 3) and 20 percent never revealed another
alternative. In any case, this still leaves over one-quarter of all choices in treatment 4 to be the
respondent’s last revealed alternative where it is not the status-quo or final alternative.

Table 3. Choice breakdown by alternative.

j Choice shares (percent) Revealed share (percent)
Treatment 1 Treatment 2 Treatment 3 Treatment 4 Treatment 1 Treatment 2 Treatment 3 Treatment 4

1 28.84 22.03 19.65 45.38 100.00 100.00 100.00 100.00
2 23.48 13.54 12.10 18.67 100.00 100.00 100.00 69.47
3 26.90 16.85 14.24 10.00 100.00 100.00 100.00 53.05
4 20.78 16.04 12.40 8.45 100.00 100.00 100.00 46.74
5 12.64 10.25 6.58 100.00 100.00 39.39
6 10.08 7.66 4.25 100.00 100.00 29.29
7 8.81 6.33 2.76 100.00 100.00 21.70
8 6.13 1.65 100.00 15.55
9 6.18 1.35 100.00 11.08
10 5.05 0.89 100.00 8.18
Alwaysj =1 12.09 9.43 9.07 22.41 0.00 0.00 0.00 18.16

https://doi.org/10.1371/journal.pone.0275339.t003
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Estimation results. For the empirical data, we focus only on the utility maximization
case and estimate two naive specifications where it is the only decision rule (which we label
RUM-OptOut and RUM-ASCs) and two specifications where it is the secondary decision
rule enacted only if none of the alternatives meets the satisficing threshold (which we label
SAT-OptOut and SAT-ASCs). The difference between the specifications is that in RUM-Opt-
Out and SAT-OptOut, we only estimate an alternative-specific constant for the ‘none-of-
these-bottles’ alternative and in RUM-ASCs and SAT-ASCs, we estimate the full J — 1 alterna-
tive-specific constants relative to the ‘none-of-these-bottles’ alternative. Results for treatments

Table 4. Estimation results for treatment 1.

1,2, 3 and 4 are presented in Tables 4-7, respectively.

RUM-OptOut SAT-OptOut RUM-ASCs SAT-ASCs
Price -0.087** (0.007) -0.090%* (0.007) -0.087** (0.007) -0.090** (0.008)
Country of origin
Chile -0.039 (0.095) -0.051 (0.100) -0.039 (0.095) -0.048 (0.100)
France 0.041 (0.065) 0.046 (0.068) 0.039 (0.065) 0.044 (0.069)
Ttaly 0.009 (0.073) 0.010 (0.076) 0.010 (0.074) 0.011 (0.076)
New Zealand -0.108 (0.094) -0.112 (0.098) -0.104 (0.095) -0.105 (0.098)
South Africa -0.182* (0.090) -0.183 (0.093) -0.183* (0.090) -0.182 (0.093)
Spain 0.019 (0.075) 0.024 (0.078) 0.011 (0.075) 0.016 (0.079)
USA -0.290%* (0.078) -0.299%* (0.081) -0.294** (0.078) -0.303** (0.081)
Grape

Cabernet Sauvignon

0.249** (0.089)

0.259** (0.094)

0.249** (0.090)

0.260** (0.095)

Chardonnay

0.268** (0.097)

0.277** (0.103)

0.271** (0.098)

0.279** (0.103)

Chenin Blanc

0.061 (0.085)

0.056 (0.088)

0.056 (0.086)

0.053 (0.089)

Malbec 0.146 (0.091) 0.145 (0.095) 0.145 (0.092) 0.147 (0.095)
Merlot 0.310** (0.084) 0.315** (0.088) 0.301** (0.085) 0.308** (0.088)
Pinot Grigio 0.310** (0.089) 0.320** (0.094) 0.309** (0.089) 0.317** (0.093)
Pinot Noir 0.219** (0.076) 0.224** (0.079) 0.222** (0.076) 0.228** (0.079)

Sauvignon Blanc

0.242* (0.102)

0.242* (0.107)

0.251* (0.103)

0.254* (0.107)

Tempranillo 0.080 (0.090) 0.082 (0.094) 0.073 (0.090) 0.074 (0.093)
Character

Red wine 0.028 (0.019) 0.029 (0.020) 0.030 (0.019) 0.030 (0.020)

White wine 0.116** (0.023) 0.123** (0.024) 0.119** (0.023) 0.124** (0.025)
Organic 0.075 (0.043) 0.078 (0.045) 0.071 (0.043) 0.072 (0.045)
Alcohol by volume 0.032 (0.021) 0.033 (0.022) 0.032 (0.021) 0.034 (0.022)
ASC

j=1 0.255 (0.283) 0.166 (0.296)

j=2 -0.277 (0.284) -0.242 (0.294)

j=3 -0.125 (0.286) -0.040 (0.304)

j=4 -0.393 (0.285) -0.272 (0.312)
T 2.131** (0.373) 2.043** (0.553)
Log-likelihood -6,371.815 -6,368.449 -6,352.218 -6,351.631
Observations 4,774 4,774 4,774 4,774
K 22 23 24 25
p? 0.034 0.034 0.037 0.036
AIC 12,787.631 12,782.899 12,752.436 12,753.261
BIC 12,929.991 12,931.731 12,907.739 12,915.035

https://doi.org/10.1371/journal.pone.0275339.t004
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Table 5. Estimation results for treatment 2.

RUM-OptOut SAT-OptOut RUM-ASCs SAT-ASCs
Price -0.084** (0.008) -0.089** (0.008) -0.086** (0.008) -0.088** (0.008)
Country of origin
Chile 0.011 (0.088) -0.001 (0.094) 0.019 (0.088) 0.011 (0.091)
France 0.109 (0.062) 0.124 (0.066) 0.113 (0.062) 0.122 (0.066)
Italy 0.105 (0.071) 0.111 (0.076) 0.106 (0.071) 0.112 (0.075)
New Zealand 0.158" (0.080) 0.173* (0.085) 0.166" (0.081) 0.168" (0.083)
South Africa -0.007 (0.079) 0.005 (0.084) 0.000 (0.078) 0.005 (0.082)
Spain 0.074 (0.071) 0.065 (0.076) 0.080 (0.071) 0.075 (0.073)
USA -0.084 (0.080) -0.094 (0.085) -0.077 (0.080) -0.085 (0.083)
Grape

Cabernet Sauvignon

0.156 (0.080)

0.191* (0.086)

0.162* (0.081)

0.178* (0.085)

Chardonnay 0.120 (0.096) 0.113 (0.102) 0.121 (0.096) 0.121 (0.099)
Chenin Blanc 0.105 (0.085) 0.116 (0.090) 0.100 (0.085) 0.112 (0.089)
Malbec 0.181* (0.085) 0.212* (0.092) 0.201* (0.086) 0.214* (0.090)
Merlot 0.179* (0.076) 0.209* (0.082) 0.183* (0.076) 0.196* (0.080)
Pinot Grigio 0.431** (0.090) 0.459** (0.098) 0.429** (0.091) 0.449** (0.095)
Pinot Noir 0.006 (0.069) 0.024 (0.073) 0.014 (0.069) 0.022 (0.072)
Sauvignon Blanc 0.308** (0.091) 0.324** (0.099) 0.306™* (0.091) 0.315** (0.095)
Tempranillo 0.064 (0.079) 0.071 (0.084) 0.077 (0.080) 0.080 (0.082)
Character
Red wine 0.055* (0.022) 0.054* (0.023) 0.054* (0.022) 0.054* (0.023)
White wine 0.116** (0.023) 0.123** (0.025) 0.116™* (0.023) 0.120** (0.024)
Organic 0.053 (0.042) 0.063 (0.044) 0.054 (0.042) 0.059 (0.044)
Alcohol by volume 0.013 (0.021) 0.012 (0.022) 0.014 (0.021) 0.013 (0.022)
ASC
j=1 0.465 (0.297) 0.086 (0.319)
j=2 -0.432 (0.302) -0.370 (0.314)
j=3 -0.207 (0.303) -0.084 (0.322)
j=4 -0.254 (0.303) -0.074 (0.334)
j=5 -0.506 (0.304) -0.286 (0.345)
j=6 -0.741* (0.305) -0.489 (0.356)
j=7 -0.876"* (0.303) -0.593 (0.365)
T 1.710** (0.320) 1.990** (0.343)
Log-likelihood -8,702.515 -8,645.718 -8,604.934 -8,603.495
Observations 4,652 4,652 4,652 4,652
K 22 23 27 28
p? 0.036 0.042 0.046 0.046
AIC 17,449.030 17,337.437 17,263.868 17,262.990
BIC 17,590.821 17,485.673 17,437.885 17,443.452

https://doi.org/10.1371/journal.pone.0275339.t005

Comparing RUM-OptOut and SAT-OptOut for treatments 1-3 (standard stated prefer-
ence), we see that considering satisficing leads to an improvement in fit of 3.4, 56.8 and 185.2
log-likelihood units, respectively. This suggests that even in standard data, considering satisfi-
cing under the assumption of a left-to-right search path is important. However, in the models
where we estimate the full ] — 1 set of alternative-specific constants, the story is somewhat
moderated. It is clear that RUM-ASCs and SAT-ASCs across the three treatments fit the data
better than both RUM-OptOut and SAT-OptOut. Furthermore, we notice that all alternative-
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Table 6. Estimation results for treatment 3.

RUM-OptOut SAT-OptOut RUM-ASCs SAT-ASCs
Price -0.083** (0.008) -0.085** (0.009) -0.084"* (0.009) -0.084** (0.009)
Country of origin
Chile -0.048 (0.087) -0.063 (0.093) -0.060 (0.089) -0.061 (0.089)
France -0.026 (0.063) -0.060 (0.070) -0.038 (0.064) -0.037 (0.065)
Italy -0.046 (0.068) -0.052 (0.076) -0.057 (0.070) -0.058 (0.070)
New Zealand -0.014 (0.086) 0.011 (0.095) -0.010 (0.088) -0.010 (0.088)
South Africa -0.079 (0.080) -0.075 (0.086) -0.093 (0.082) -0.093 (0.082)
Spain -0.050 (0.066) -0.050 (0.073) -0.051 (0.068) -0.050 (0.068)
USA -0.304** (0.075) -0.354** (0.080) -0.327** (0.077) -0.326"* (0.077)
Grape
Cabernet Sauvignon 0.436** (0.080) 0.472** (0.084) 0.440** (0.081) 0.439** (0.081)
Chardonnay 0.242** (0.093) 0.245* (0.100) 0.253"* (0.094) 0.252** (0.094)
Chenin Blanc 0.175 (0.091) 0.169 (0.097) 0.181 (0.093) 0.181 (0.093)
Malbec 0.222°* (0.082) 0.272** (0.088) 0.244** (0.084) 0.243"* (0.084)
Merlot 0.197* (0.083) 0.213* (0.087) 0.201* (0.084) 0.202* (0.084)
Pinot Grigio 0.409%* (0.089) 0.429** (0.096) 0.428"* (0.091) 0.427** (0.091)
Pinot Noir 0.242** (0.071) 0.279** (0.077) 0.244** (0.073) 0.245** (0.073)

Sauvignon Blanc

0.346™* (0.094)

0.346** (0.097)

0.347** (0.097)

(
0.363** (0.102)
(

Tempranillo 0.285** (0.082) 0.344** (0.086) 0.299** (0.082) 0.299** (0.082)
Character
Red wine 0.051* (0.020) 0.048" (0.022) 0.049* (0.021) 0.050* (0.021)
White wine 0.127** (0.023) 0.127** (0.025) 0.126"* (0.024) 0.126* (0.024)
Organic 0.128"* (0.040) 0.134** (0.042) 0.129** (0.040) 0.129** (0.040)
Alcohol by volume 0.063** (0.020) 0.067** (0.021) 0.067** (0.020) 0.067** (0.020)
ASC
j=1 1.413%* (0.296) 0.844** (0.318)
j=2 -1.140** (0.304) -1.141** (0.304)
j=3 -0.968** (0.306) -0.970** (0.306)
j=4 -1.117** (0.304) -1.118"* (0.304)
j=5 -1.304** (0.311) -1.306"* (0.312)
j=6 -1.598** (0.311) -1.600"* (0.311)
j=7 -1.802** (0.306) -1.802** (0.306)
j=8 -1.826** (0.306) -1.828"* (0.307)
j=9 -1.826** (0.308) -1.828"* (0.309)
j=10 -2.020** (0.308) -2.023** (0.309)
T 2.407** (0.306) 7.137** (0.000)
Log-likelihood -9,759.748 -9,573.560 -9,533.002 -9,533.000
Observations 4,437 4,437 4,437 4,437
K 22 23 30 31
p? 0.043 0.061 0.064 0.064
AIC 19,563.497 19,193.121 19,126.004 19,128.000
BIC 19,704.247 19,340.268 19,317.936 19,326.330

https://doi.org/10.1371/journal.pone.0275339.t006

specific constants are negative and tend to become larger (in absolute terms) as we move from
left to right in the choice task. This implies that alternatives further to the right, all else equal,
are less likely to be chosen relative to the ‘none-of-these-bottles’ alternative. The most notable
finding when comparing RUM-OptOut and SAT-OptOut is that accommodating satisficing
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Table 7. Estimation results for treatment 4.

RUM-OptOut

SAT-OptOut

RUM-ASCs

SAT-ASCs

Price

-0.107** (0.011)

-0.108** (0.011)

-0.106** (0.011)

-0.110** (0.011)

Country of origin

Chile

-0.140 (0.116)

-0.143 (0.118)

-0.143 (0.116)

-0.126 (0.126)

France

-0.093 (0.086)

-0.092 (0.088)

-0.093 (0.087)

-0.067 (0.094)

Italy

0.014 (0.101)

0.023 (0.104)

0.013 (0.101)

0.093 (0.113)

New Zealand

-0.020 (0.123)

-0.026 (0.125)

-0.020 (0.123)

-0.004 (0.130)

South Africa

-0.132 (0.108)

-0.139 (0.111)

-0.131 (0.109)

-0.135(0.117)

Spain

-0.113 (0.094)

-0.114 (0.095)

-0.115 (0.095)

-0.101 (0.099)

USA

-0.447** (0.105)

-0.452** (0.107)

-0.448"* (0.106)

-0.432** (0.114)

Grape

Cabernet Sauvignon

0.282* (0.118)

0.285* (0.119)

0.282* (0.119)

0.287* (0.124)

Chardonnay

0.484** (0.142)

0.489** (0.144)

0.480** (0.142)

0.470** (0.148)

Chenin Blanc

0.340** (0.129)

0.346** (0.131)

0.341** (0.129)

0.346* (0.138)

Malbec

0.276* (0.121)

0.282* (0.124)

0.276* (0.122)

0.306* (0.129)

Merlot

0.274* (0.114)

0.286* (0.116)

0.273* (0.115)

0.310% (0.123)

Pinot Grigio

0.430* (0.122)

0.436* (0.124)

0.427** (0.122)

0.449** (0.128)

Pinot Noir

0.350** (0.099)

0.359** (0.101)

0.352** (0.100)

0.389** (0.105)

Sauvignon Blanc

0.518** (0.150)

0.526** (0.154)

0.519** (0.151)

0.552** (0.161)

Tempranillo 0.174 (0.114) 0.179 (0.116) 0.176 (0.114) 0.194 (0.120)
Character
Red wine 0.093** (0.027) 0.094** (0.028) 0.092** (0.027) 0.094** (0.029)
White wine 0.133** (0.036) 0.134** (0.037) 0.133** (0.036) 0.129** (0.038)
Organic 0.039 (0.059) 0.044 (0.060) 0.038 (0.059) 0.074 (0.064)
Alcohol by volume 0.036 (0.029) 0.035 (0.030) 0.036 (0.029) 0.032 (0.031)
ASC
j=1 -0.188 (0.422) -0.254 (0.429)
j=2 0.145 (0.424) 0.240 (0.456)
j=3 0.178 (0.428) 0.355 (0.459)
j=4 0.258 (0.430) 0.526 (0.460)
j=5 0.284 (0.434) 0.693 (0.462)
j=6 0.282 (0.435) 0.856 (0.462)
j=7 0.242 (0.459) 1.010* (0.487)
j=8 0.147 (0.470) 1.278" (0.503)
j=9 0.414 (0.453) 2.046"* (0.492)
j=10 0.281 (0.480) 2.892** (0.581)
T 2.804** (0.557) 2.399** (0.135)
Log-likelihood -3,670.398 -3,667.829 -3,667.282 -3,640.319
Observations 3,691 3,691 3,691 3,691
K 22 23 30 31
p? 0.046 0.046 0.044 0.051
AIC 7,384.796 7,381.657 7,394.564 7,342.639
BIC 7,521.496 7,524.571 7,580.973 7,535.262

https://doi.org/10.1371/journal.pone.0275339.t007

leads to very modest increases in model fit: 0.6, 1.4 and 2 x 10~ log-likelihood units for treat-
ments 1, 2 and 3, respectively. This is not surprising given the estimated values of 7, which are
large relative to the other estimated parameters, indicating that no satisfactory alternative was
found and a decision maker defaults to their backup strategy. As a result, support for satisficing
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behavior in these treatments is small. That said, we want to emphasize that in these treatments,
the evaluation order is unknown and we assume that alternatives are processed in the direction
of reading. We recognize that this assumption is questionable given that a decision maker
might just as easily start in the middle or at the right side of the choice task. It is also increas-
ingly likely that this assumption is violated as the number of alternatives increases (which
might explain the minuscule improvement in model fit for treatment 3). This issue aside,
although not directly comparable (due to potential scale differences) the marginal utility
parameters estimated in both candidate models are broadly equivalent in terms of the sign,
magnitude and significance.

However, our results do have important implications for the behavioral interpretation of
the alternative-specific constants in both a satisficing and non-satisficing model. In the models
where we estimate only the ‘none-of-these-bottles’ alternative, the large increase in model fit
associated with the inclusion of 7 suggests that it has large explanatory power. However, the
fact that its inclusion when we estimate J — 1 alternative-specific constants does not lead to a
large improvement in model fit suggests that in standard data, 7 acts like a generative constant
that explains the ordering effect normally captured by the full set alternative-specific constants
when these are not included. Furthermore, in the naive model specifications, the alternative-
specific constants capture the general downward trend in choice proportions from the leftmost
alternative to the rightmost alternative. But in the satisficing model, this is captured by T, leav-
ing the alternative-specific constants to capture the average influence of factors that are not
explained by the attributes or the left-right processing of alternatives. Indeed, our Monte-
Carlo simulations show considerable bias in the alternative-specific constants when we fail to
estimate the threshold when the data generating process is satisficing.

Whereas the evaluation order was unknown in treatments 1-3, in treatment 4 it is known.
When comparing RUM-OptOut and SAT-OptOut, we see that the improvement in model fit
from estimating 7 is very small. Interestingly, we see that in terms of log-likelihood value,
SAT-OptOut and RUM-ASCs both comparably fit the data, but when we consider the AIC
and BIC statistics SAT-OptOut fits the data much better. This further underlines the result
above that 7is a generative constant and that its ability to explain the alternative-specific con-
stants is much greater the more closely tied the alternative-specific constants are to the actual
order in which alternatives were evaluated. Remember that in treatment 4 alternatives could
only be chosen if they were in fact revealed. Thus, the fact that the alternative-specific con-
stants are increasingly positive implies that, once they are revealed, alternatives that appear
later in the sequence are more likely to be chosen. This is a logical finding given that latter
alternatives are less likely to be revealed if an alternative appearing earlier in the sequence
exceeded some minimum level of acceptable utility. The fact that this expectation is only cor-
roborated in the satisficing model provides further support for its use when the evaluation
order is known. Comparing RUM-ASCs and SAT-ASCs, we do see an improvement in the
model fit of almost 30 log-likelihood units. While this improvement in model fit is supported
even after accounting for the loss of parsimony, we admit that it is a relatively small gain com-
pared to what could be achieved under alternative-specifications (e.g., accounting for unob-
served heterogeneity). But this improvement in fit is all the more striking given the insights
from the synthetic application that accounting for satisficing is unlikely to yield any substantial
gains in model fit. It also reinforces the need to know the evaluation order for this type of
model, only then are you likely to observe any meaningful improvement in model fit. Once
more, the estimated marginal utility parameters are fairly consistent.

Scenario analysis. While the improvement in model fit may not be large from explicitly
considering satisficing, the failure to do so has significant implications for prediction. Con-
sider, that you manage a store and need to place bottles of wine on the shelf. Supposing the
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Table 8. Bottles considered in scenario analysis.

Bottles A-I (superior bottles) Bottles R-Z (inferior bottles)
A B C D E F G H I R S T U \'% w X Y VA

Price (£) 4.00 | 4.00 | 4.00 | 450 | 4.50 | 4.50 | 4.50 | 5.00 | 5.50 | 15.50 | 16.00 | 16.50 | 17.00 | 17.00 | 18.00 | 18.00 | 18.00 | 20.00
Country of origin

Australia v v v v v v v v

France v 4 v v v

Italy ' v

USA v v v
Grape

Blend v v v v v v

Cabernet Sauvignon v v v v

Malbec v v

Merlot v v v

Pinot Noir v

Tempranillo v v
Character (Red wine) 5 4 5 4 5 4 5 5 4 3 4 5 5 4 2 4 4 1
Organic v v v v v v v

Alcohol by volume (%) 13.0 | 13.5 | 150 | 11.5 | 12.0 | 12.,5 | 13,5 | 12.5 | 145 | 12.0 13.5 12.5 12.0 11.5 10.0 12.0 14.5 11.5
https://doi.org/10.1371/journal.pone.0275339.t008

collection of nine relatively “superior” and nine relatively “inferior” bottles, as shown in
Table 8. Our classification of superior” andinferior” bottles are informed by the esti-
mated marginal utilities. Compared to the inferior bottles, the superior bottles are cheaper and
have combinations of non-price attributes that were found, on average, to have higher mar-
ginal utilities. As a result, the superior bottles yield higher utility compared to the inferior bot-
tles. The questions for you as a manager are: What bottles to place on the self? and; What is the
optimal order in which to place these bottles? As an analyst, we ask a slightly longer question:
What is the optimal selection and order in which to place the bottles conditional on how cus-
tomers make decisions? The implications, as we will show, are clear. If you believe that people
are utility maximizing and consider all bottles before making a choice, the order does not mat-
ter. However, if you believe that people are satisficing, then placing the bottles on the shelf as if
they are utility maximizing may lead to suboptimal orderings and consequently a loss in sales
revenue.

In Tables 9 and 10, we show simulation results of the optimal order based on the actual
parameter estimates from each of our empirical models. Specifically, we identify the arrange-
ment (and subset) of bottles that maximize the expected revenue, E(Revenue), generated

from a single representative consumer: E(Revenue) = Z]]-:1 Pr(j| X, B, t)x,, where
Pr(j | X, B, 1) denotes the probability for alternative j conditional on scenarios X and esti-

mated parameters B and, where applicable, 7; and, Xp; is the price of alternative j. For this
analysis we consider bottles A-I and bottles R-Z in Table 8 and the “none-of-these-bottles”
option. Results are shown in Tables 9 and 10, respectively.

Focusing firstly on the arrangement of the superior bottles (Table 9) where self space is lim-
ited to three bottles (akin to treatment 1), there are 3! (93) = 504 possible arrangements. All
four models for treatment 1 identify that the optimal arrangement includes bottles F, H and I,
but the optimal order differs by model. Based on the RUM-OptOut model, where utility maxi-
mizing is assumed, the optimal arrangement leads to an expected revenue of £3.87 per repre-
sentative consumer. Note, however, if utility maximization is the incorrect assumption and the
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Table 9. Predictions or expected revenue and optimal arrangement for bottles A-I (superior bottles).

Best arrangement Expected revenue (£) conditional on Difference
Utility maximization Satisficing
Treatment 1
RUM-OptOut FHI* 3.87 [3.70,4.04] 3.68 [3.35,3.93] -0.19 [-0.56, 0.12]
SAT-OptOut F,LH 3.87 [3.70,4.04] 3.79 [3.44,4.06] -0.09 [-0.47, 0.24]
Difference 0.00 [0.00,0.00] 0.11 [0.06,0.16] 0.11 [0.06,0.16]
RUM-ASCs H,LF 3.91 [3.73,4.08] 3.71 [3.30,3.94] -0.20 [-0.64, 0.10]
SAT-ASCs F,LH 3.90 [3.72,4.07] 3.73 [3.33,3.96] -0.17 [-0.60, 0.13]
Difference -0.01 [-0.02, 0.00] 0.02 [-0.01, 0.06] 0.03 [0.00,0.07]
Treatment 2
RUM-OptOut D,H,LE,F,G* 3.93 [3.78,4.06] 3.63 [3.22,3.94] -0.29 [-0.72, 0.04]
SAT-OptOut E,.LH,D,F,G* 3.86 [3.73,3.99] 3.83 [3.39,4.16] -0.03 [-0.49, 0.32]
Difference -0.06 [-0.07,-0.05] 0.20 [0.16,0.24] 0.26 [0.22,0.30]
RUM-ASCs F,LH,D,G,E 3.99 [3.84,4.13] 3.79 [3.56,3.95] -0.21 [-0.47, 0.02]
SAT-ASCs E,LH,ED,G 3.88 [3.74,4.01] 3.88 [3.65,4.04] 0.00 [-0.26, 0.22]
Difference -0.11 [-0.14,-0.09] 0.09 [0.07,0.11] 0.20 [0.17,0.24]
Treatment 3
RUM-OptOut A,CE,G,FH,D,[.B* 3.87 [3.75,3.98] 4.19 [3.93,4.37] 0.31 [0.04,0.54]
SAT-OptOut B,LH,E,F,D,G,C,A* 3.87 [3.75,3.98] 4.19 [3.93,4.37] 0.31 [0.04,0.54]
Difference 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00]
RUM-ASCs G,LLH,E,D,F,B,A,C 4.01 [3.88,4.13] 3.97 [3.85,4.09] -0.04 [-0.20, 0.13]
SAT-ASCs G,I,H,E,D,F,A,B,C 3.97 [3.85,4.09] 4.01 [3.88,4.13] 0.04 [-0.13, 0.21]
Difference -0.04 [-0.06,-0.02] 0.03 [0.02,0.05] 0.07 [0.05,0.10]
Treatment 4
RUM-OptOut LH,F,D,G,E,B,A,C 2.92 [1.65,4.05] 2.77 [1.59,3.87] -0.15 [-1.81, 1.57]
SAT-OptOut LH,G,E,D,F,B,C,A 2.90 [1.65,3.98] 2.79 [1.59,3.87] -0.12 [-1.80, 1.58]
Difference -0.02 [-1.71, 1.70] 0.01 [-1.63, 1.65] 0.03 [-2.33, 2.39]
RUM-ASCs ILH,F,G,E,D,A,C,B 2.91 [1.66,3.97] 2.73 [1.55,3.77] -0.17 [-1.83, 1.48]
SAT-ASCs H,LE,D,F,G,A,C,B 2.84 [1.62,3.90] 2.77 [1.56,3.80] -0.07 [-1.71, 1.59]
Difference -0.07 [-1.74, 1.60] 0.03 [-1.60, 1.66] 0.10 [-2.23, 2.45]
Notes:

* signifies that there is more than one best arrangment; 95 percent confidence intervals are reported in square brackets.

https://doi.org/10.1371/journal.pone.0275339.t009

consumer instead adopts a satisficing decision rule, this arrangement will yield a lower
expected revenue of £3.68. That is, revenue will be overpredicted by almost £0.20 per con-
sumer when in fact the consumer satifices. If instead, the manager arranges the bottles accord-
ingly to the SAT-OptOut model, where consumers are believed to satisfice, a revenue of £3.79
can be expected. Note that since the bottles are optimally arranged (with satisficing accounted
for) this estimate is higher than the respective estimate predicted using the RUM-OptOut
arrangement. This difference of £0.11 is the expected loss in revenue due to a suboptimal
ordering of bottles that arises when the consumer is assumed to be a utility maximizer when in
fact the consumer satisfices. It is crucial to note that there is no expected revenue loss from
assuming satisficing when in fact utility maximization is adopted. That is, the optimal arrange-
ments under RUM-OptOut and SAT-OptOut both predict the same revenue under utility
maximization. This insight, leads to a straightforward recommendation for the manager to
base the predictions on a satisficing model, even if utility maximizing is assumed to be the

true behavior, as bottle order is less consequential for revenue predictions under utility
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Table 10. Predictions or expected revenue and optimal arrangement for bottles R-Z (inferior bottles).

Best arrangement Expected revenue (£) conditional on Difference
Utility maximization Satisficing
Treatment 1
RUM-OptOut UV,Y* 8.57 [7.58,9.55] 8.50 [7.41,9.54] -0.08 [-1.53, 1.37]
SAT-OptOut UYy,v 8.57 [7.58,9.55] 8.56 [7.48,9.61] -0.01 [-1.48, 1.44]
Difference 0.00 [0.00,0.00] 0.06 [0.01,0.13] 0.06 [0.01,0.13]
RUM-ASCs Y,V,U 8.61 [7.63,9.59] 8.39 [7.40,9.37] -0.22 [-1.62, 1.18]
SAT-ASCs UV, Y 8.61 [7.63,9.58] 8.40 [7.40,9.38] -0.21 [-1.61, 1.19]
Difference -0.01 [-0.05, 0.03] 0.01 [-0.09, 0.11] 0.01 [-0.08, 0.12]
Treatment 2
RUM-OptOut T,U,V,W,Y,X* 9.99 [8.87,11.08] 10.68 [9.22,12.00] 0.68 [-1.11, 2.44]
SAT-OptOut W,X,Y,U,V,T* 9.83 [8.75,10.87] 10.68 [9.22,12.00] 0.84 [-0.93, 2.57]
Difference -0.16 [-0.32, 0.01] 0.00 [0.00,0.01] 0.16 [0.00,0.32]
RUM-ASCs V,Y,UX,T,W 9.99 [8.87,11.08] 9.98 [8.86,11.01] 0.00 [-1.55, 1.52]
SAT-ASCs W,Y,U,V.X,T 9.83 [8.80,10.84] 10.16 [9.00,11.24] 0.33 [-1.21, 1.83]
Difference -0.16 [-0.33, 0.02] 0.17 [0.06,0.30] 0.33 [0.12,0.54]
Treatment 3
RUM-OptOut R,UX,S,T,V,Z,Y,W* 9.95 [8.78,11.10] 12.69 [11.57,13.70] 2.74 [1.17,4.28]
SAT-OptOut Z,W,X,Y,V,U,T,S,R* 9.95 [8.78,11.10] 12.70 [11.58,13.72] 2.75[1.18,4.29]
Difference 0.00 [0.00,0.00] 0.01 [0.01,0.02] 0.01 [0.01,0.02]
RUM-ASCs X,V,Y,T,USS,W,R,Z 10.04 [8.82,11.17] 9.99 [8.81,11.13] -0.05 [-1.68, 1.65]
SAT-ASCs X,V,Y, T,U,S,W,R,Z 9.99 [8.76,11.15] 10.05 [8.88,11.19] 0.06 [-1.56, 1.75]
Difference -0.05 [-0.11, 0.02] 0.06 [-0.03, 0.15] 0.11 [0.00,0.22]
Treatment 4
RUM-OptOut V,T,X,U,Y,W,ZR,S 7.20 [3.84,10.50] 6.86 [3.66,10.04] -0.33 [-4.96, 4.26]
SAT-OptOut V,T,X,U,W,Y,ZR,S 7.05 [3.74,10.33] 6.99 [3.68,10.20] -0.06 [-4.78, 4.54]
Difference -0.15 [-4.70, 4.37] 0.13 [-4.27, 4.52] 0.27 [-6.17, 6.56]
RUM-ASCs V,T.X,U,Y,W,Z,R,S 7.23 [3.71,10.68] 7.35 [3.83,10.81] 0.12 [-4.84, 5.04]
SAT-ASCs V,T,U,Y,X,S,Z,R,W 7.10 [3.77,10.42] 7.47 [3.89,10.97] 0.36 [-4.43, 5.30]
Difference -0.13 [-4.86, 4.48] 0.12 [-4.75, 4.92] 0.25 [-6.33, 7.10]
Notes:

* signifies that there is more than one best arrangment; 95 percent confidence intervals are reported in square brackets.

https://doi.org/10.1371/journal.pone.0275339.t010

maximization. Moreover, the mistake of wrongly assuming satisficing is small compared to the
mistake of wrongly assuming utility maximizing. Turning attention to predictions arising
from the RUM-ASCs and SAT-ASCs models, we observe a similar pattern. This said, the
expected revenue loss of £0.02 associated with incorrectly assuming utility maximizing when
in fact the true behavior is satisficing is considerably smaller. This is not surprising given that
the alternative-specific constants in the RUM-ASCs model do capture the general downward
trend in choosing bottles further along the shelf. Moving to the situation where self space is
limited to six bottles (akin to treatment 2) the task for the manager is to identify the best
arrangement out of 6!(2) = 60, 480 possible arrangements. Again, all four models suggest the

same subset of bottles, but different orderings. The predictions retrieved from RUM-OptOut
and SAT-OptOut reinforce the inferences derived from treatment 1. When alternative-specific
constants are accommodated, however, the simulations suggest that the mistake of wrongly
assuming utility maximizing is larger (in absolute terms) compared to the mistake of wrongly
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assuming satisficing. If there is space for all nine bottles (as in treatments 3 and 4) the manag-
er’s task is identify the optimal ordering from 9! = 362, 880 possible arrangements. For these
treatments, we find a somewhat different story. The differences between models are relatively
small, meaning that, while the recommendation for the manager to defaultly generate predic-
tions on the satisficing model still holds, it is of lesser consequence. The predicted difference
between the two behavioral rules appears of greater relevance. For example, for the RUM-Opt-
Out model in treatment 3, there is a difference of £0.31 per representative consumer. In short,
making an incorrect assumption on the behavioral rule is more costly than using the incorrect
model.

Switching attention to the optimal arrangement of inferior bottles (Table 10), we find simi-
lar results. The most notable difference, however, is that the loss of revenue from failing to
consider satisficing is potentially larger in absolute terms as the number of bottles to arrange
increases. However, these estimates are largely insignificant. This result is rather unsurprising.
The inferior bottles of wine tend to be expensive bottles with less desirable attributes, e.g.,
grape variety and country of origin. Even when compared to other inferior bottles of wine,
they are unlikely to be chosen under either decision rule. However, given that they are all
expensive, the potential loss from an incorrect assumption about the underlying decision rule
is greater in absolute terms.

Tables 9 and 10 separately identifies the optimal arrangement for superior and inferior bot-
tles of wine, respectively. In effect, the bottles the manager has to arrange are relatively homo-
geneous in terms of expected utility. With this in mind, a suboptimal arrangement is likely to
have a modest impact on predicted revenue. For the sake of brevity, we show the optimal
arrangement when there is a mixture of superior and inferior bottles in Appendix B in S1
Appendix. As expected, the differences are generally of a much higher magnitude. Therefore,
the implications of not using the correct behavioral rule are heightened when the bottles are
more varied. This is an additional factor that the manager should be cognizant of.

Conclusion

Choice modelers are increasingly interested in capturing and explaining non-utility maximiz-
ing decision processes. Several researchers have developed models to capture decision rules
such as elimination-by-aspects [3] and random regret minimization [2], but few have looked
at satisficing [8, 19]. In this paper, we set out to develop a simple satisficing choice model that
is equally applicable to revealed and stated preference data. A satisficing individual will choose
the first alternative (option) with a utility higher than some threshold level of utility. The use-
fulness of the model proposed in the current paper lies in its ability to explain choices. The
model has the desirable property that it nests a no deliberation, or choose-the-first, strategy on
the one hand and a secondary decision strategy on the other hand. The secondary decision
strategy can be any the analyst deems appropriate.

We test the performance of our model using a series of Monte-Carlo simulations on data
generated using the secondary decision rules and data generated using a satisficing model. We
find that our satisficing model does better than the corresponding secondary decision rules at
retrieving the true parameters for low to high levels of the utility threshold. For very high util-
ity thresholds, the secondary decision rule models do just as well and are more parsimonious.
That said, a pure satisficing decision rule, even one that is framed in the context of utility, is
still a non-compensatory decision rule in the sense that no real trade-offs between alternatives
are made. This has implications for the applicability of the model in welfare analysis for both
revealed and stated preference data.
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The empirical data uses a novel experimental design procedure that allows us to control the
search path. Specifically, in one treatment participants received alternatives sequentially. At
each point in time, respondents decided whether to choose among currently revealed alterna-
tives or keep searching. This way of modeling satisficing is much more in line with the idea
put forth by Simon [1]. An exploration of the observed choice shares revealed a large share of
choices in this treatment were consistent with satisficing behavior. The model confirmed this.
However, for standard treatments, where all alternatives were shown at once, the gains in
model fit did not materialize. Although care is needed when drawing conclusions based on a
single study, this suggests, that although our satisficing model can be applied to any revealed
and stated preference data, unless the evaluation order is known its usefulness is likely to be
relatively limited.

An important finding following our work is the implication for how to interpret and think
about alternative-specific constants. In standard choice models that do not account for satisfi-
cing, the alternative-specific constants capture the general downward trend in choice propor-
tions from the leftmost alternative to the rightmost alternative. But in the satisficing model,
this is captured by the threshold parameter, leaving the alternative-specific constants to cap-
ture the average influence of factors that are not explained by the attributes or the left-right
processing of alternatives. Furthermore, excluding all alternative-specific constants bar the one
for the opt-out alternative and estimating the utility threshold suggests that the utility thresh-
old can be viewed as a generative constant in that it captures and explains the part of the alter-
native-specific constants that are associated with ordering effects. Depending on the data
generation process, the gain in explanatory power for estimating the threshold can be quite
substantive. Furthermore, from a practical decision making standpoint, the satisficing model
is better equipped to identify the optimal order of alternatives to present to a decision maker
to maximize the likelihood of an alternative being chosen. For example, from a store owner’s
perspective, what is the optimal order in which to place bottles on a shelf to maximize revenue?
We show using simulation that a store owner assuming that their customers are satisficers can
expect somewhat higher revenues compared to one that assumes they are utility maximizing.

Finally, it is acknowledged that the results are based on the condition that preferences and
the threshold are homogeneous for choice observations. For obvious reasons, these are strong
assumptions unlikely to hold in reality. To fully capture satisficing behavior, easy extensions to
the model involve accounting for preference heterogeneity and the reparameterization of the
threshold to accommodate search costs; observed and unobserved individual-specific factors
that may affect the likelihood of satisficing; or aspiration levels to allow for more explicit
updating of the threshold utility in response to learning. Although this is expected that this
facilitates the estimation of the utility thresholds and, in doing so, better explains the presence
of satisficing behavior, more research to properly investigate these aspects is warranted.
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