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Abstract

Despite advancements in socially aware navigation, robots still often behave inappropriately in social environments. To
ensure successful application, robots must detect the human perceived appropriateness of their navigation behaviors. This
paper presents a novel dataset covering a complete range of perceived appropriateness and uniquely incorporates human
emotion and attention to facilitate the detection of perceived appropriateness of robot social navigation in pathways
(PARSNIP). It is created based on a series of human-robot interaction experiments with 30 participants and a mobile robot.
Several typical machine learning models are utilized to evaluate the dataset and analyze the contributions of different
features in detecting perceived appropriateness. The results indicate that incorporating emotional and attentional features
can significantly improve the accuracy of perceived appropriateness detection. There was an increase from 63% to 68%
using algorithm-predicted emotional and attentional features, and a further increase to 79% with the emotion and attention
data reported by the participants. With the dataset, researchers could train machine learning models to enable robots to
detect perceived appropriateness accurately, fostering adaptations that improve their responsiveness and accuracy in social
interactions. The dataset is available for download at https://github.com/duibcuiegiosahxois/PARSNiP.git, and videos will
be shared upon request by contacting Y.Zhou-13@tudelft.nl.

Keywords Socially aware navigation - HRI - Social errors - Perceived appropriateness

1 Introduction and patient rehabilitation, delivering parcels to homes and

offices, stocking shelves in warehouses, and cleaning floors

Mobile robots are increasingly operating in social environ-
ments such as offices, hospitals, and public spaces, where
they encounter and interact with humans. These robots
undertake different tasks, including assisting in nursing
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in shopping malls [1]. A fundamental prerequisite for the
successful application of mobile robots is their ability to
navigate around humans [2]. Robots that fail to respect
humans and behave inappropriately have been restricted or
banned in social environments [3].

Socially aware navigation, also referred to as human-
aware navigation [4], socially compliant navigation [5],
socially acceptable navigation [6], or socially competent
navigation [7], aims to enable robots to navigate social
environments safely, effectively, and in a socially acceptable
manner. Its primary objective is to integrate social norms
into robot navigation behaviors [8], making them, for exam-
ple, respect personal space [9], minimize path interference,
and prioritize human behavior [10]. However, pre-defined
social norms lack flexibility and fail to consider contextual
factors and individual differences adequately. More sophis-
ticated algorithms have been developed to enable robots to
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detect and respond to social dynamics, including human
physical activities [11], and social signals such as emotion
[12, 13], intention [14, 15], and dominance [16] in varied
settings including crowded scenes [17], narrow spaces [18],
and urban environments [19].

These studies primarily focus on robots perceiving and
responding to humans [1, 20], yet they often overlook how
humans perceive robots, especially real-time perception.
Just as humans pick up on social cues and adapt to others’
feedback, robots should also detect whether their behavior
is perceived as appropriate by nearby individuals. Humans
use a rich set of social cues to indicate if they perceive a
behavior as inappropriate, annoying, or unsafe, such as
facial expressions, hand gestures, and evasive motions.
Yet due to the limited studies and datasets on the perceived
appropriateness (PA) of robot navigation behavior, current
robots are unable to detect the PA of their navigation from
these cues.

This study introduces the PARSNiP dataset, which con-
tains PA labels and uniquely includes emotion and atten-
tion to improve robots’ ability to detect PA. Collected from
human-robot interaction experiments that involved 30 par-
ticipants and a robot, PARSNiP offers a complete range of
PA levels and is enriched with features crucial for PA detec-
tion, such as the motion features of both humans and the
robot, as well as human emotion and attention. Several
typical machine learning models are employed to analyze
the dataset, and findings reveal that incorporating emo-
tional and attentional features markedly improves PA detec-
tion performance. This dataset can be utilized to develop
machine learning models, which could then be applied in
robots to enhance their ability to accurately detect PA and
adapt to human behaviors more effectively.

The remainder of this paper is structured as follows: Sec-
tion 2 reviews existing datasets and their limitations, which
motivates the creation of PARSNIP. Section 3 describes the
dataset creation, including collection and processing meth-
ods. Section 4 presents the testing of the dataset on multiple
machine learning models, with an analysis and discussion of
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Fig. 1 Assumption for PA detection
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the experimental results in detecting PA. Finally, Section 5
concludes the study and outlines future research directions.

2 Related Work

Many datasets have been developed to improve and evalu-
ate socially aware navigation systems. These datasets pri-
marily focus on gathering human motion data [21], covering
a variety of environments, both indoors [22-28] and out-
doors [28-36]. These datasets are used to train data-driven
methods, such as reinforcement learning [37] and deep
learning techniques [38], for simulating robot social navi-
gation behaviors. However, they do not take into account
the decision-making processes and psychological states of
humans.

Additional datasets have integrated affective features,
extracted from posture and movement cues [39], to enable
the detection of human emotion [40]. Although these data-
sets have enhanced robots’ ability to navigate socially in
human environments, they often fail to consider feedback
regarding humans’ perceived appropriateness of the robots’
navigation behavior. In response, recent datasets have
shifted their focus to social errors or mistakes, enabling
robots to recognize and correct their inappropriate behav-
iors [41, 42]. While these studies are not within the navi-
gation context, they have yielded significant insights. They
demonstrate that social cues play a crucial role in detecting
the perceived appropriateness of robot behavior [43, 44],
and indicate that integrating emotion and attention could
further enhance PA detection performance [41]. In robot
social navigation, only 1 dataset has considered and enabled
PA detection, albeit with limitations such as focusing solely
on robot inappropriate positioning behavior and including
only low-level motion features [45].

In this study, the PARSNIiP dataset is created to offer a
complete range of PA levels and uniquely incorporate emo-
tion and attention to enhance PA detection.

3 Dataset Creation

This study is based on the assumption that human and robot
motion features, together with human emotion (through
valence and arousal, where valence refers to how positive
or negative an event is, and arousal reflects whether an event
is exciting or calming [46]) and attention, contribute to the
detection of perceived appropriateness (PA) of robot navi-
gation behavior, as shown in Fig. 1. Emotion and attention
are intermediate features that can be predicted from low-
level human and robot motion features [47, 48].
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Fig. 3 Overview of the setting. Each participant walks from the start
point to the end point for each interaction

Figure 2 shows the workflow to create the PARSNiP
dataset. It consists of 4 major steps: Step 1 involves the
human-robot interactions, with the participants interacting
with a robot 8 times. Step 2 is the data collection, including
RGB-D recordings and robot odometry to capture human
and robot motion, along with questionnaires to gather par-
ticipants’ subjective annotations of emotion, attention, and
PA. In Step 3, the data processing, human and robot motion
features are extracted and computed from the raw data. Step
4 is the dataset building, which integrates the computed
human and robot features with attention, emotion, and PA to
build the PARSNIP. The study was approved by the ethical
committee of the university.

3.1 Pilot Study

A pilot study involving both field observations and con-
trolled human-robot interactions has been conducted to
determine the setting and types of interactions that contrib-
ute to triggering a complete range of PA.

The field observations involved a mobile robot (Clear-
path Husky) navigating in diverse outdoor public spaces:
narrow pathways, open areas, cross-shaped roads, and street
corners. A robot operator fully controlled the robot’s navi-
gation behavior to observe the robot’s behavioral impact on
humans in a natural but safe way. Narrow spaces consis-
tently elicited richer and more nuanced reactions and PA
of the robot [49], consistent with the literature indicating a
higher incidence of human-robot conflicts in narrow spaces
[50]. A subsequent controlled study involved 8 participants

interacting with the robot in pathways of different widths
(1.0 m, 1.2 m, and 1.4 m). Based on observations and ques-
tionnaires, a pathway width of 1.2 m was selected, strik-
ing a balance between the richness of PA and human safety.
Importantly, the richness of PA persisted even when the
pathway was merely marked by floor indicators. During the
controlled study, interactions that were highly effective in
eliciting diverse human reactions and PA were identified,
such as the robot making sudden changes in trajectory and
velocity near humans and unconventional human-robot spa-
tial relationships like blocking or squeezing paths.

3.2 Step1: Human-Robot Interactions
3.2.1 Setting

The setting is shown in Fig. 3, which is a pathway delin-
eated by tape markers on the floor. An RGB-D ZED2 cam-
era, positioned on a table 0.75 m high and 1 m away from
the end of the pathway, is used to capture the participants’
full-body motion (1080p, 30fps). This setup ensures the col-
lection of clean, comprehensive data on human-robot inter-
actions, avoiding the limitations of an onboard camera that
has a restricted field of view or experiences data occlusion
when humans are in close proximity.

3.2.2 Designed Interactions

8 interactions are designed to trigger a complete range of PA
of robot navigation behavior. This is built upon the study of
Koay et al., which identified specific interactions causing
human discomfort [51], as well as insights from the pilot
study. Husky A200 is used as the robot platform to interact
with the participants (dimensions of 0.90 x 0.67 x 0.39m)
[52]. Each interaction with the robot and human start and
end points is visualized in Fig. 4 and detailed below:

e Interaction 1: Block. Initiating the interaction from 7.5
meters away—outside the social space [53]-the robot
gradually moves toward its endpoint. Midway, it blocks
the participant’s path at close proximity until the partici-
pant passes.

e Interactions 2, 3: Change Direction. Starting at a dis-
tance of 7.5 meters, the robot moves toward its endpoint
while changing direction to approach the participant
from different angles at a close distance, until the par-
ticipant passes.

e Interaction 4: Squeeze. As it proceeds toward its end-
point, the robot narrows the available pathway for the
participant until the participant passes.

e Interactions 5, 6: Stop. Starting at a distance of 7.5
meters from the participant, the robot moves toward its
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Fig. 4 The sketch of robot-human directional relationships for 8 interactions. During each interaction, the PA of the robot’s behavior may vary

based on factors such as distance, speed, acceleration rate, etc

goal and then stops when in close proximity to the par-
ticipant until being passed.

e Interaction 7: Accelerate. Starting 7.5 meters away, the
robot moves toward its endpoint and then unexpectedly
accelerates, continuing to accelerate even after passing
the participant.

e Interaction 8: Stationary. The robot remains stationary
within the environment, serving as a control condition
that is expected to be socially acceptable and minimally
intrusive the entire time.

These interactions span up to 26 seconds, enabling natural
and continuous engagement between the participant and
the robot. Each interaction is comprised of a sequence of
behaviors, carefully designed to elicit a wide span of PA rat-
ings. While some interactions, such as “Change Direction”
or “Squeeze,” involve behaviors that might be perceived
as inappropriate, they are often initiated with the robot at a
distance respecting human social space norms [53]. Further-
more, within each interaction, there are periods where the
robot maintains a safe distance, adjusts its trajectory to avoid
the participant, or simply passes by, which are expected to
be appropriate. For instance, “Interaction 1: Block™ begins
with the robot 7.5 meters away from the participant, and the
blocking behavior only occurs midway through the interac-
tion. “Interaction 5: Stop” also starts with a considerable
distance between the robot and participant, and includes
moments where the robot is simply moving towards its goal
before making any sudden stops. These interactions, there-
fore, encompass a diverse range of behaviors, from clearly
appropriate to potentially inappropriate, allowing for the
collection of a comprehensive and balanced dataset of PA
ratings. Each 2-second clip of these interactions is treated as
an individual data point, capturing the dynamic nature of PA
within each interaction.

@ Springer

3.2.3 Experiment

The experimental procedure consists of the following steps:
Preparation: Participants provides informed consent
and familiarize themselves with the setting through an
initial walkthrough. The experimental setup is explained,
including the 7.5 m pathway and interaction protocol.

Robot Positioning: For most interactions, the robot is
positioned at the pathway endpoint. interactions 3,4, and 8§,
the robot is positioned 1.5 m ahead of the participant. All
relevant positions are clearly marked to ensure that both
the participant and the robot start from the same location in
each trial, ensuring consistency across trials.

Interaction: Each participant completes 8 interactions in
randomized order to prevent learning effects (see Fig. 4).
For each interaction: (1) The participant starts at the desig-
nated start point. (2) The participant traverses the pathway
to the end point. (3) An experienced operator is trained to
manually control the robot, utilizing the Wizard-of—Oz pro-
tocol [54]. (4) Both the robot and the participants could step
outside the pathway for safety or other concerns, similar to
what might occur in real-life pathways.

Figure 5 depicts real-life human-robot interactions, with
the detected skeletal points visualized.

3.2.4 Demographics

30 participants are recruited through onsite convenience
sampling, including 11 females and 19 males, with no
exclusions. Most participants (27) are young adults between
18 and 34 years old, while 3 are adults aged 35 to 54 years.
The majority (26 out of 30) are Dutch. Regarding robot
experience, most participants have limited interactions with
robots: 23 have no prior interactions with robots, 6 have
some interactions, and only 1 has frequent interactions.
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Fig. 5 Human-robot interactions, with the human’s 18 skeletal points captured by the ZED SDK

3.3 Step 2: Data Collection

After completing all 8§ interactions, the participants are
given definitions of valence and arousal [46]. Afterwards,
they are given questionnaires to indicate their current levels
of valence and arousal. They are also requested to provide
explanations for their responses to ensure that they under-
stand how to assess and report their valence and arousal
levels accurately. Meanwhile, the recorded interactions
from the camera are divided into 2-second clips, result-
ing in 25-42 clips [55, 56]. These clips are presented to
participants with online questionnaires to self-report PA,
emotion, and attention, as data points of the dataset. PA is
assessed on a 7-point scale ranging from—3 to 3, with par-
ticipants asked to indicate the appropriateness of the robot’s
behavior (7-point scale: “The robot behaved completely
inappropriately”—Not sure/Neutral”—“The robot behaved
completely appropriately”) [45]. Emotion is evaluated in
terms of valence and arousal; both are also measured on a
7-point scale from—3 to 3. Attention is rated on a 6-point
scale ranging from 0% to 100%. Additionally, participants
are asked multiple-choice questions aimed at identifying
perceptions of robot behaviors concerning PA value below
3, selecting from a list of factors identified in the pilot study.
These factors include moving too fast or slow, taking sharp
turns, getting too close, moving unnaturally, being too
noisy, blocking the path, appearing threatening, squeezing
the walkable area, making sudden changes, and an “other”
option.

3.4 Step 3 &4: Data Processing and Building

After the interactions and the questionnaires, all data
points are collected. For each data point, the raw data from
recorded interactions and robot odometry undergo process-
ing to extract human and robot motion features. The ZED
Software Development Kit (SDK) is utilized to extract
human motion data, comprising 3D positions of 18 skeletal
points and the body center for each frame. A 95% detection
confidence threshold is established using the “Accurate”
detection model, which fills in missing keypoints using
historical data and human kinematics. The robot motion
data are captured by the robot’s odometer and an Aruco
Marker, with the former providing consistent tracking and
the latter ensuring reliable position data. The robot’s data is
transformed into the same coordinate system as the human
data to ensure alignment for analysis. Using the Genetic
Algorithm (GA) Toolkit in Matlab, this transformation
minimizes the mean squared error compared to ground truth
measurements and ensures consistent robot positional data
for feature computation.

Human and robot motion features are computed based on
processed robot and motion data. Both the robot and human
motion features are characterized by 5 statistical measures—
minimum, maximum, mean, standard deviation, and min-
to-max ratio—across each data point. Each point includes
30 robot motion features, including robot speed, accelera-
tion, jerk, robot-human distance, robot-human direction,
and robot turning angle [45]. Specifically, the robot-human
approach angle is computed as the angle between the
robot’s current heading and the straight-line vector that
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connects the robot’s current position to the human’s posi-
tion. These features could provide insights into the dynam-
ics of human-robot interactions. For example, features such
as robot-human distance and robot-human approach angle
can reveal whether the robot is heading toward a person or
will merely pass by. A small approach angle, combined with
a low min-to-max distance ratio and a short mean distance,
generally indicates that the robot is heading directly toward
a person. Conversely, the same small approach angle, when
paired with a high min-to-max distance ratio and a longer
mean distance, might suggest that the robot, initially aimed
toward the person, is moving away or adjusting its path.
Additionally, a large approach angle with a low min-to-max
distance ratio and a short mean distance could imply that,
despite not facing the person directly, the robot is moving
toward them.

Each data point also includes 360 human motion fea-
tures, with 11 groups encompassing kinematic features, cur-
vature, quantity of motion, bounding volume, displacement
of joints, motion features, effort component of the Laban
Movement Analysis, spatial extension, symmetry of the
movement, body balance, and gaze [47, 58, 59]. Specifi-
cally, jerk derived directly from position data can be quite
noisy. To address the inherent noise issues associated with
this calculation, a low-pass filter is applied to the accelera-
tion data [57]. The effort of the Laban Movement Analysis
is computed according to the following functions [47, 58]:

E(ti) =) Elt) = Y aw"(t:)? (1)

keK keK

Weight(t;) = max E(t;), i=1,2,3,...,N

i€[1,T) (2)
1 T

Time* (t;) = — » _ a*(t:) 3)
1=1
1 T

Flow"(t;) = T > k) 4)
=1

By organizing human and robot motion features and human
emotion (valence and arousal), attention, and PA for each
data point, the dataset is thus built. A complete overview of
the dataset is presented in Table 1.

4 Dataset Analysis
4.1 Dataset Distributions

Table 2 provides a comparison between the PARSNiP data-
set and existing datasets in robot social navigation, high-
lighting its unique attributes and contributions to the field.
Unlike its predecessors, PARSNiP encompasses a broad
spectrum of human and robot features. It includes human
PA, head, body, and hand motions, trajectories, emotion,

Table 1 Overview of the PARSNIP dataset. The dataset includes 922 data points collected from 30 participants, each interacting 8 times with the

robot

Data type Data (source) Measurement (per 2-second interval)

Low-level Human motion 11 categories of 360 human motion features, described by the min, max, mean, standard deviation,
features (3D position of 18 and min-to-max ratio:

skeletal points from
RGB-D recordings)

*Kinematic features (velocity, acceleration, and jerk (smoothed by low-pass filtering [57]) for head,
wrists, and ankles) [47, 58],

*Curvature for head, wrists, and ankles [47],
*Quantity of motion (aggregated speed over a set of joints) for the arm and head region, upper body,

lower body [47],

*Bounding volume for the arm region, head region, upper body, lower body [47],

*Displacement of joints for the head, wrists, and ankles [47],

*Motion features (verticality, extension, left and right elbow flexion, left and right arm shape, hand
relationship, and feet relationship) [47, 58],

*Effort component of the Laban Movement Analysis (time, weight, flow) for the arm region, head
region, upper body, lower body, and whole body [47, 58],

*Spatial extension [47, 59],

*Symmetry of the movement (horizontal, vertical, and bounding triangle-related symmetry) [47, 59],
*Body balance (balance, center of mass for the arm region, head region, upper body, lower body,

and whole body) [47],
*Human gaze [60]

Robot motion
(Robot odometry,
RGB-D recordings)

30 Robot motion features, described by the min, max, mean, standard deviation, and min-to-max
ratio: robot speed, robot acceleration, robot jerk, robot-human distance, robot-human approach
angle, robot turning angle [45]

Emotion and atten-
tion (Self-report)

Intermediate
features

Attention (0% to 100%, 6-point scale), valence and arousal (=3 to 3, 7-point scale)

Label PA (Self-report)

PA (from—3 to 3, 7-point scale)

@ Springer
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Table 2 Datasets for socially aware robot navigation

Dataset Year PA Head Body Hand Trajectories Emotion Attention
motion motion motion
UCY [32] 2007 X X X Vv X v
ETH [29] 2009 X X X X vV X X
KITTI [33] 2012 X X X X v X X
Edinburg [30] 2009 X X X X v X X
Town center [34] 2011 X vV vV X vV X X
CFF [35] 2014 X X X X Vv X X
WildTrack [36] 2018 X X X X Vv X X
SCANDI31] 2022 X X X X v X X
VIRAT [23] 2011 X X X X vV X X
ATC [22] 2013 X i Vv X Vi X X
L-CAS [26] 2017 X X X X Vv X X
KTH [24] 2015 X vV X X vV X X
THOR [25] 2020 X i i X i Vi X
EgoMotion [27] 2016 X v v v v X X
JackRabbot [28] 2019 X X X X v X X
UNC [39] 2019 X X X X Vv X X
Vroon [45] 2019 Position v v/ X v X X
PARSNiP 2023 v v v v v Vv N
3 400
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Fig. 6 The distribution of different PA levels

and attention. The inclusion of emotion and attention marks
a significant advancement, offering insights into better PA
detection.

4.1.1 PA Distribution

Participants exhibited variations in their responses to the
robot: 3 participants showed signs of disorientation and dis-
comfort in the presence of the robot, even when it remained
stationary. Conversely, 1 participant maintained a positive
attitude towards the robot, showing high tolerance regard-
less of the robot’s behavior. The range of observed human
responses to specific robot behaviors varied significantly,
especially during potential conflicts with the robot: Some

participants paused to assess the situation before proceed-
ing, while others subtly changed their path or quickened
their pace to avoid the robot. A few participants turned their
bodies to navigate past the robot.

Figure 6 shows the distributions of different PA levels,
illustrating a complete range of PA, from—3 (completely
inappropriate) to 3 (completely appropriate). The data show
that the participants largely report the robot’s behavior as
completely appropriate, which highlights the need for fur-
ther processing when using machine learning techniques.

Figure 7 illustrates the distribution of PA values across
the 8 interaction types. Many interactions received a score
of 0 to 2, indicating a neutral to slightly positive perception
of the robot. However, distinct deviations are observed in
interactions 1, 6, 7, 8. Interaction 1 shows a slightly negative
value in median PA, while interaction § receive a positive

@ Springer
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peak, indicating higher PA. These variations in PA scores
highlight how different types of interactions are perceived
in terms of appropriateness, providing valuable insights into
the contextual factors that may influence perceptions and
the richness of PA levels.

The dataset includes 11 types of PA, detailed in Fig. 8.
Notably, “Block” with 173 instances, “Squeeze” with 112
instances, and “Sudden” with 110 instances are significant
factors affecting the human perception of robot behaviors.
In contrast, perceptions of “Threat”, “Unnatural,” and
“Fast” are reported less frequently. Different interactions
reveal variations in PA, providing insights into human-robot
interaction dynamics. Interestingly, although interaction 8
generally receives positive evaluations, previous inappro-
priate interactions could potentially influence the percep-
tions of the robot. Overall, these 8 interactions contribute
to a complete range of PA levels and richness of PA types,
thereby enabling PA detection.

4.1.2 Emotion and Attention Distribution

Figure 9 illustrates the emotional responses and attention
levels across 8 different interactions.

Figure 9a presents the distribution of emotional valence
across 8 interaction types. The median valence for interac-
tions 1 to 6 remains consistently neutral, underscoring a
uniform emotional response among these categories. Inter-
actions 7 and 8 receive a higher median valence, indicating
a more positive emotional reaction. Specifically, interaction
8 shows a narrower interquartile range, suggesting less vari-
ability and a more consistent response among participants.

Figure 9b illustrates the arousal levels across the 8 types
of interactions. Interactions 2 to 8 display medians at zero,
indicating no substantial deviation from a baseline arousal
state, while interaction 1 shows a higher median arousal
level.

Figure 9c shows that the attention metrics vary signifi-
cantly across different types of interactions. Interactions
1, 2, and 4 achieve the highest median attention scores of

2 2
o =
2 2
§ 0 <% 0
- -2

175

Robot behavior
. o 2. Change direction-A
125 3. Change direction-B
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50 8. Stationary
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Fig. 8 Interactions and PA types

100%, reflecting heightened cognitive engagement or focus.
Interaction 8 notably receives the lowest median and an
expanded range, indicating fluctuating levels of participant
attention and potentially lower engagement.

The impact of a robot’s presence within the participant’s
field of view on human attention and emotion (valence
and arousal) is also examined. Given the dynamic nature
of human-robot interactions captured in 2-second inter-
vals, direct comparisons are challenging. Factors such as
the robot’s movements into or out of view or a transient
presence complicate the analysis. Therefore, we differenti-
ated the data points based on two scenarios: A. the robot is
entirely outside the participant’s view the whole time, and
B. the robot has been within view.

A Mann-Whitney U test was conducted comparing the
differences between the two scenarios [61]. The statistical
analysis revealed significant differences in attention and
emotional responses. For Scenario A, the average atten-
tion was 82.7%, compared to 58.0% for Scenario B, with
a significant p-value of 1.26 x 10~2%. This suggests more
human attention when the robot is in view. Emotional
responses also varied; valence averaged 0.73 in Scenario A
and 0.18 in Scenario B, with a p-value of 5.5 x 1075, indi-
cating more negative emotions when the robot is in view.
Arousal was —0.44 for Scenario A and 0.25 for Scenario B,
with a p-value of 6.0 x 1078, indicating that the presence
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Fig.9 Valence, arousal, and attention distributions under different interactions
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Table 3 Performance metrics Str. Mod. Clus. Acc. Prec. Rec. F1
over strategies (Str.) and models 1 RF 1 0.78 0.64 078 0.70
(Mod.), with data groupegi by ) 0.49 0.67 0.49 0.57
clusters (Clus.). The metrics : ) ) :
include accuracy (Acc.), preci- GBDT 1 0.74 0.65 0.74 0.69
sion (Prec.), recall (Rec.), and the 2 0.55 0.65 0.55 0.59
F1 score (F1) AdaB 1 0.70 0.62 0.70 0.66
2 0.51 0.60 0.51 0.55
FNN 1 0.74 0.65 0.74 0.69
2 0.55 0.65 0.55 0.59
XGB 1 0.78 0.64 0.78 0.70
2 0.51 0.67 0.51 0.58
2 RF 1 0.74 0.60 0.74 0.66
2 0.61 0.75 0.61 0.67
GBDT 1 0.70 0.60 0.70 0.65
2 0.63 0.73 0.63 0.68
AdaB 1 0.63 0.55 0.63 0.59
2 0.59 0.67 0.59 0.63
FNN 1 0.70 0.61 0.70 0.65
2 0.65 0.73 0.65 0.68
XGB 1 0.70 0.58 0.70 0.63
2 0.60 0.72 0.60 0.65

of the robot within the view was more emotionally exciting
for the participants.

4.2 Dataset Analysis
4.2.1 Clustering and Algorithms

A principal component analysis (PCA) is conducted to
reduce the number of dimensions and mitigate noise.
This step entails calculating eigenvalues and the cumula-
tive explained variances, as depicted in Fig. 10. The study
selects components with eigenvalues exceeding 1 [62], with
45 principal components that account for around 90% of the
total variance.

The PA levels are binarized for further analysis, ensuring
that the smaller group constitutes at least 40% of the data to
enable balanced clusters. This leads to 2 distinct clustering

strategies: Strategy 1 assigns PA levels—3 to 0 to Cluster 1
and 1 to 3 to Cluster 2. Strategy 2 groups PA levels—3 to 1
in Cluster 1 and 2 to 3 in Cluster 2.

The dataset is tested using various typical machine learn-
ing models, employing a 5-fold cross-validation to ensure
the reliability of the results. The models include Random
Forest (RF), Gradient Boosting Decision Trees (GBDT),
AdaBoost with decision trees (AdaB), Feedforward Neural
Network (FNN), and Extreme Gradient Boosting (XGB).
The performance was evaluated based on accuracy, preci-
sion, recall, and F1 score, as shown in Table 3. Strategy 2
displays more balanced performance metrics between Clus-
ters 1 and 2 across all classifiers, indicating a more uniform
data separation, and is selected for further analysis.
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4.2.2 Ablation Study

An ablation study is conducted to understand the impact
of various feature sets on the performance of PA detection.
Based on the assumption that emotional and attentional
features may act as intermediate variables that improve PA
detection, participants’ self-reported emotions and attention
are included for comparisons. Since emotional and atten-
tional features are not typically observable in real-world
conditions, the study also predicts these features based
on human and robot movement data, achieving a valence
detection accuracy of 71.0%, arousal detection accuracy
of 69.2%, and attention detection accuracy of 72.8%. The
study evaluates the effectiveness of the following feature
combinations: Robot and human motion (RH), Robot and
Human motion+predicted emotion and predicted attention
(RHP), Robot and human motion+human reported emotion
and attention data (RHEA).

The effectiveness of the XGBoost algorithm across a
variety of feature combinations is assessed. Results include
the Receiver Operating Characteristic (ROC) and Precision-
Recall (PR) curves (Fig. 11). The ROC curve (Fig. 11a)
illustrates the model’s sensitivity (true positive rate) versus
its fall-out (false positive rate) at various thresholds. This
offers a comprehensive evaluation of the model’s discrimi-
native capability, unaffected by class distribution. The PR
curve (Fig. 11b), on the other hand, provides insight into
the model’s precision in relation to its recall, which is espe-
cially relevant for imbalanced datasets. The HREA feature
set demonstrates the highest performance, achieving the
top Area Under the Curve (AUC) scores in both the ROC
(0.79 £ 0.02) and PR (0.77) analyses. This indicates a con-
sistent and reliable detection of true positives across differ-
ent thresholds, thereby enhancing the detection’s reliability
and robustness. The high AUC values suggest a model that
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(a) Receiver operating characteristic curves

accurately predicts while maintaining a balanced sensitivity
and precision. In comparison, the HRP feature set shows
significant improvement over the HR set, as indicated by
higher AUC values in the ROC (0.69 + 0.05 vs. 0.63 +
0.05) and PR (0.68 vs. 0.62) curves. This improvement
highlights the benefit of including predicted emotional and
attentional features for superior detection capabilities.

The statistical significance of these findings is supported
by the hypothesis tests detailed in Table 4. Comparing
HREA to HR, and HRP to HR, the analysis reveals signifi-
cant t-values and small p-values, indicating not just statisti-
cal significance but also meaningful effect sizes as measured
by Cohen’s d. This confirms that the performance differ-
ences are statistically significant and practically important.
Furthermore, the accuracy and F1 score statistics shown in
Table 4 corroborate these results, with HREA outperform-
ing and HRP significantly better than HR. These statistics,
together with insights from the ROC and PR curves in Fig.
11, underscore that the inclusion of emotional and atten-
tional features, as represented by HREA, and the predicted
emotional and attentional features, as described by HRP,
markedly improve the model’s detection effectiveness.
Specifically, the high PA detection performance with the
inclusion of the human self-reported emotion and attention
strongly demonstrates an upper bound on the usefulness of
emotion and attention to predict PA.

4.3 Limitations and Discussion

The PARSNIP dataset faces several methodological limita-
tions that warrant consideration.

Data Collection and Reliability. The reliance on par-
ticipants’ self-reported data for PA, emotion (valence and
arousal), and attention after all interactions may introduce
recall biases, potentially compromising data reliability.

Precision-Recall Curves
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(b) Precision/recall curves

Fig. 11 ROC and Precision/Recall curves showing the PA detection performance with different features
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Table 4 Descriptive statistics and hypothesis tests for Accuracy and F1 score with different feature sets using the XGBoost algorithm

(a) Hypothesis tests for PA detection with different sets of features. Since the data used are normal, Cohen’s d is used to measure the effect

size.

Feature Accuracy F1 score

t(4) 4 d t(4) p d
HR vs HREA 12.00 0.004 4.37 12.82 0.003 4.10
HR vs HRP 6.831 0.019 2.00 6.35 0.003 1.56
HRP vs HREA 8.454 0.039 1.53 8.21 0.033 1.96
(b) PA detection statistics for Accuracy and F1 score with different features.
Features Accuracy F1

5 o m o
HR 0.63 0.05 0.68 0.05
HRP 0.68 0.05 0.72 0.05
HREA 0.79 0.05

Despite implementing mitigating measures—such as show-
ing participants recordings of their facial expressions and
maintaining brief interactions—recall biases may persist.
Future studies should explore real-time annotation methods,
including “think-aloud” techniques, which would enable
real-time reporting for each interaction.

Temporal Resolution. The study’s assumption of con-
sistent human states during 2-second intervals presents
another limitation, as it may not fully capture real-world
behavioral dynamics. While this interval was chosen to opti-
mize data collection efficiency, real-life applications require
a more nuanced approach. We suggest that researchers and
engineers implement a sliding-window method for practi-
cal applications, using overlapping data windows that shift
incrementally (e.g., every 0.5 seconds) [56]. This approach
would enable continuous PA detection and allow robots to
adapt their behavior dynamically during interactions.

Experimental Setup. While using an onsite camera for
data collection is advantageous for controlling experimental
conditions, we recognize that the specific setup—position-
ing the camera on a table—may not fully align with real-
world applications. To bridge this gap, several strategies
can be employed to adapt the collected data for use with
different setups such as onboard cameras. For example, data
mapping and transformation techniques can simulate the
perspective of an onboard camera, while data augmentation
and simulation can create additional datasets that replicate
various camera positions and angles. These approaches can
improve the practicality of the dataset and deserve further
investigation.

5 Conclusion

The PARSNIP dataset represents a significant advancement
in enabling robots to navigate social environments more
appropriately. Our analysis demonstrates three key findings:
First, the integration of emotional and attentional features

substantially improves the detection of perceived appro-
priateness (PA) in robot navigation. The improvement in
detection accuracy from 63% with motion features alone to
79% with emotional and attentional features demonstrates
the critical role of these psychological factors in human-
robot interactions. Second, even predicted emotional
and attentional states enhance PA detection capabilities,
achieving a 68% accuracy rate. This finding has impor-
tant practical implications, as it suggests that robots can
improve their social navigation even without direct access
to human psychological states. Third, the comprehensive
range of interaction scenarios captured in PARSNiP pro-
vides insights into the appropriateness of robot navigation
behaviors, particularly in confined spaces such as pathways.
This understanding is crucial for developing more socially
acceptable robot navigation strategies. These findings have
immediate applications for robotic systems in social envi-
ronments. Engineers and researchers can implement these
insights to develop robots capable of: adapting their navi-
gation behavior based on detected human responses; main-
taining appropriate social distance and movement patterns;
and responding proactively to potential social discomfort.
Looking forward, this work opens new avenues for real-
time social navigation systems that can continuously adjust
to human preferences and expectations, ultimately leading
to more successful integration of mobile robots in human
environments.
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