
 
 

Delft University of Technology

PARSNiP
A Novel Dataset for Better Perceived Appropriateness Detection in Robot Social
Navigation with Emotional and Attentional Features
Zhou, Yunzhong; Vroon, Jered; Rusák, Zoltán; Kortuem, Gerd

DOI
10.1007/s12369-025-01266-x
Publication date
2025
Document Version
Final published version
Published in
International Journal of Social Robotics

Citation (APA)
Zhou, Y., Vroon, J., Rusák, Z., & Kortuem, G. (2025). PARSNiP: A Novel Dataset for Better Perceived
Appropriateness Detection in Robot Social Navigation with Emotional and Attentional Features. International
Journal of Social Robotics, 17(10), 2245-2257. https://doi.org/10.1007/s12369-025-01266-x

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s12369-025-01266-x
https://doi.org/10.1007/s12369-025-01266-x


International Journal of Social Robotics
https://doi.org/10.1007/s12369-025-01266-x

and patient rehabilitation, delivering parcels to homes and 
offices, stocking shelves in warehouses, and cleaning floors 
in shopping malls [1]. A fundamental prerequisite for the 
successful application of mobile robots is their ability to 
navigate around humans [2]. Robots that fail to respect 
humans and behave inappropriately have been restricted or 
banned in social environments [3].

Socially aware navigation, also referred to as human-
aware navigation [4], socially compliant navigation [5], 
socially acceptable navigation [6], or socially competent 
navigation [7], aims to enable robots to navigate social 
environments safely, effectively, and in a socially acceptable 
manner. Its primary objective is to integrate social norms 
into robot navigation behaviors [8], making them, for exam-
ple, respect personal space [9], minimize path interference, 
and prioritize human behavior [10]. However, pre-defined 
social norms lack flexibility and fail to consider contextual 
factors and individual differences adequately. More sophis-
ticated algorithms have been developed to enable robots to 

1  Introduction

Mobile robots are increasingly operating in social environ-
ments such as offices, hospitals, and public spaces, where 
they encounter and interact with humans. These robots 
undertake different tasks, including assisting in nursing 
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detect and respond to social dynamics, including human 
physical activities [11], and social signals such as emotion 
[12, 13], intention [14, 15], and dominance [16] in varied 
settings including crowded scenes [17], narrow spaces [18], 
and urban environments [19].

These studies primarily focus on robots perceiving and 
responding to humans [1, 20], yet they often overlook how 
humans perceive robots, especially real-time perception. 
Just as humans pick up on social cues and adapt to others’ 
feedback, robots should also detect whether their behavior 
is perceived as appropriate by nearby individuals. Humans 
use a rich set of social cues to indicate if they perceive a 
behavior as inappropriate, annoying, or unsafe, such as 
facial expressions, hand gestures, and evasive motions. 
Yet due to the limited studies and datasets on the perceived 
appropriateness (PA) of robot navigation behavior, current 
robots are unable to detect the PA of their navigation from 
these cues.

This study introduces the PARSNiP dataset, which con-
tains PA labels and uniquely includes emotion and atten-
tion to improve robots’ ability to detect PA. Collected from 
human-robot interaction experiments that involved 30 par-
ticipants and a robot, PARSNiP offers a complete range of 
PA levels and is enriched with features crucial for PA detec-
tion, such as the motion features of both humans and the 
robot, as well as human emotion and attention. Several 
typical machine learning models are employed to analyze 
the dataset, and findings reveal that incorporating emo-
tional and attentional features markedly improves PA detec-
tion performance. This dataset can be utilized to develop 
machine learning models, which could then be applied in 
robots to enhance their ability to accurately detect PA and 
adapt to human behaviors more effectively.

The remainder of this paper is structured as follows: Sec-
tion 2 reviews existing datasets and their limitations, which 
motivates the creation of PARSNiP. Section 3 describes the 
dataset creation, including collection and processing meth-
ods. Section 4 presents the testing of the dataset on multiple 
machine learning models, with an analysis and discussion of 

the experimental results in detecting PA. Finally, Section 5 
concludes the study and outlines future research directions.

2  Related Work

Many datasets have been developed to improve and evalu-
ate socially aware navigation systems. These datasets pri-
marily focus on gathering human motion data [21], covering 
a variety of environments, both indoors [22–28] and out-
doors [28–36]. These datasets are used to train data-driven 
methods, such as reinforcement learning [37] and deep 
learning techniques [38], for simulating robot social navi-
gation behaviors. However, they do not take into account 
the decision-making processes and psychological states of 
humans.

Additional datasets have integrated affective features, 
extracted from posture and movement cues [39], to enable 
the detection of human emotion [40]. Although these data-
sets have enhanced robots’ ability to navigate socially in 
human environments, they often fail to consider feedback 
regarding humans’ perceived appropriateness of the robots’ 
navigation behavior. In response, recent datasets have 
shifted their focus to social errors or mistakes, enabling 
robots to recognize and correct their inappropriate behav-
iors [41, 42]. While these studies are not within the navi-
gation context, they have yielded significant insights. They 
demonstrate that social cues play a crucial role in detecting 
the perceived appropriateness of robot behavior [43, 44], 
and indicate that integrating emotion and attention could 
further enhance PA detection performance [41]. In robot 
social navigation, only 1 dataset has considered and enabled 
PA detection, albeit with limitations such as focusing solely 
on robot inappropriate positioning behavior and including 
only low-level motion features [45].

In this study, the PARSNiP dataset is created to offer a 
complete range of PA levels and uniquely incorporate emo-
tion and attention to enhance PA detection.

3  Dataset Creation

This study is based on the assumption that human and robot 
motion features, together with human emotion (through 
valence and arousal, where valence refers to how positive 
or negative an event is, and arousal reflects whether an event 
is exciting or calming [46]) and attention, contribute to the 
detection of perceived appropriateness (PA) of robot navi-
gation behavior, as shown in Fig. 1. Emotion and attention 
are intermediate features that can be predicted from low-
level human and robot motion features [47, 48].

Fig. 1  Assumption for PA detection
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Figure  2 shows the workflow to create the PARSNiP 
dataset. It consists of 4 major steps: Step 1 involves the 
human-robot interactions, with the participants interacting 
with a robot 8 times. Step 2 is the data collection, including 
RGB-D recordings and robot odometry to capture human 
and robot motion, along with questionnaires to gather par-
ticipants’ subjective annotations of emotion, attention, and 
PA. In Step 3, the data processing, human and robot motion 
features are extracted and computed from the raw data. Step 
4 is the dataset building, which integrates the computed 
human and robot features with attention, emotion, and PA to 
build the PARSNiP. The study was approved by the ethical 
committee of the university.

3.1  Pilot Study

A pilot study involving both field observations and con-
trolled human-robot interactions has been conducted to 
determine the setting and types of interactions that contrib-
ute to triggering a complete range of PA.

The field observations involved a mobile robot (Clear-
path Husky) navigating in diverse outdoor public spaces: 
narrow pathways, open areas, cross-shaped roads, and street 
corners. A robot operator fully controlled the robot’s navi-
gation behavior to observe the robot’s behavioral impact on 
humans in a natural but safe way. Narrow spaces consis-
tently elicited richer and more nuanced reactions and PA 
of the robot [49], consistent with the literature indicating a 
higher incidence of human-robot conflicts in narrow spaces 
[50]. A subsequent controlled study involved 8 participants 

interacting with the robot in pathways of different widths 
(1.0 m, 1.2 m, and 1.4 m). Based on observations and ques-
tionnaires, a pathway width of 1.2  m was selected, strik-
ing a balance between the richness of PA and human safety. 
Importantly, the richness of PA persisted even when the 
pathway was merely marked by floor indicators. During the 
controlled study, interactions that were highly effective in 
eliciting diverse human reactions and PA were identified, 
such as the robot making sudden changes in trajectory and 
velocity near humans and unconventional human-robot spa-
tial relationships like blocking or squeezing paths.

3.2  Step1: Human-Robot Interactions

3.2.1  Setting

The setting is shown in Fig. 3, which is a pathway delin-
eated by tape markers on the floor. An RGB-D ZED2 cam-
era, positioned on a table 0.75 m high and 1 m away from 
the end of the pathway, is used to capture the participants’ 
full-body motion (1080p, 30fps). This setup ensures the col-
lection of clean, comprehensive data on human-robot inter-
actions, avoiding the limitations of an onboard camera that 
has a restricted field of view or experiences data occlusion 
when humans are in close proximity.

3.2.2  Designed Interactions

8 interactions are designed to trigger a complete range of PA 
of robot navigation behavior. This is built upon the study of 
Koay et al., which identified specific interactions causing 
human discomfort [51], as well as insights from the pilot 
study. Husky A200 is used as the robot platform to interact 
with the participants (dimensions of 0.90 × 0.67 × 0.39m) 
[52]. Each interaction with the robot and human start and 
end points is visualized in Fig. 4 and detailed below:

	● Interaction 1: Block. Initiating the interaction from 7.5 
meters away—outside the social space [53]-the robot 
gradually moves toward its endpoint. Midway, it blocks 
the participant’s path at close proximity until the partici-
pant passes.

	● Interactions 2, 3: Change Direction. Starting at a dis-
tance of 7.5 meters, the robot moves toward its endpoint 
while changing direction to approach the participant 
from different angles at a close distance, until the par-
ticipant passes.

	● Interaction 4: Squeeze. As it proceeds toward its end-
point, the robot narrows the available pathway for the 
participant until the participant passes.

	● Interactions 5, 6: Stop. Starting at a distance of 7.5 
meters from the participant, the robot moves toward its 

Fig. 3  Overview of the setting. Each participant walks from the start 
point to the end point for each interaction

 

Fig. 2  The workflow for creating PARSNiP
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3.2.3  Experiment

The experimental procedure consists of the following steps:
Preparation: Participants provides informed consent 

and familiarize themselves with the setting through an 
initial walkthrough. The experimental setup is explained, 
including the 7.5 m pathway and interaction protocol.

Robot Positioning: For most interactions, the robot is 
positioned at the pathway endpoint. interactions 3,4, and 8, 
the robot is positioned 1.5 m ahead of the participant. All 
relevant positions are clearly marked to ensure that both 
the participant and the robot start from the same location in 
each trial, ensuring consistency across trials.

Interaction: Each participant completes 8 interactions in 
randomized order to prevent learning effects (see Fig. 4). 
For each interaction: (1) The participant starts at the desig-
nated start point. (2) The participant traverses the pathway 
to the end point. (3) An experienced operator is trained to 
manually control the robot, utilizing the Wizard-of–Oz pro-
tocol [54]. (4) Both the robot and the participants could step 
outside the pathway for safety or other concerns, similar to 
what might occur in real-life pathways.

Figure 5 depicts real-life human-robot interactions, with 
the detected skeletal points visualized.

3.2.4  Demographics

30 participants are recruited through onsite convenience 
sampling, including 11 females and 19 males, with no 
exclusions. Most participants (27) are young adults between 
18 and 34 years old, while 3 are adults aged 35 to 54 years. 
The majority (26 out of 30) are Dutch. Regarding robot 
experience, most participants have limited interactions with 
robots: 23 have no prior interactions with robots, 6 have 
some interactions, and only 1 has frequent interactions.

goal and then stops when in close proximity to the par-
ticipant until being passed.

	● Interaction 7: Accelerate. Starting 7.5 meters away, the 
robot moves toward its endpoint and then unexpectedly 
accelerates, continuing to accelerate even after passing 
the participant.

	● Interaction 8: Stationary. The robot remains stationary 
within the environment, serving as a control condition 
that is expected to be socially acceptable and minimally 
intrusive the entire time.

These interactions span up to 26 seconds, enabling natural 
and continuous engagement between the participant and 
the robot. Each interaction is comprised of a sequence of 
behaviors, carefully designed to elicit a wide span of PA rat-
ings. While some interactions, such as “Change Direction” 
or “Squeeze,” involve behaviors that might be perceived 
as inappropriate, they are often initiated with the robot at a 
distance respecting human social space norms [53]. Further-
more, within each interaction, there are periods where the 
robot maintains a safe distance, adjusts its trajectory to avoid 
the participant, or simply passes by, which are expected to 
be appropriate. For instance, “Interaction 1: Block” begins 
with the robot 7.5 meters away from the participant, and the 
blocking behavior only occurs midway through the interac-
tion. “Interaction 5: Stop” also starts with a considerable 
distance between the robot and participant, and includes 
moments where the robot is simply moving towards its goal 
before making any sudden stops. These interactions, there-
fore, encompass a diverse range of behaviors, from clearly 
appropriate to potentially inappropriate, allowing for the 
collection of a comprehensive and balanced dataset of PA 
ratings. Each 2-second clip of these interactions is treated as 
an individual data point, capturing the dynamic nature of PA 
within each interaction.

Fig. 4  The sketch of robot-human directional relationships for 8 interactions. During each interaction, the PA of the robot’s behavior may vary 
based on factors such as distance, speed, acceleration rate, etc
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3.4  Step 3 &4: Data Processing and Building

After the interactions and the questionnaires, all data 
points are collected. For each data point, the raw data from 
recorded interactions and robot odometry undergo process-
ing to extract human and robot motion features. The ZED 
Software Development Kit (SDK) is utilized to extract 
human motion data, comprising 3D positions of 18 skeletal 
points and the body center for each frame. A 95% detection 
confidence threshold is established using the “Accurate” 
detection model, which fills in missing keypoints using 
historical data and human kinematics. The robot motion 
data are captured by the robot’s odometer and an Aruco 
Marker, with the former providing consistent tracking and 
the latter ensuring reliable position data. The robot’s data is 
transformed into the same coordinate system as the human 
data to ensure alignment for analysis. Using the Genetic 
Algorithm (GA) Toolkit in Matlab, this transformation 
minimizes the mean squared error compared to ground truth 
measurements and ensures consistent robot positional data 
for feature computation.

Human and robot motion features are computed based on 
processed robot and motion data. Both the robot and human 
motion features are characterized by 5 statistical measures—
minimum, maximum, mean, standard deviation, and min-
to-max ratio—across each data point. Each point includes 
30 robot motion features, including robot speed, accelera-
tion, jerk, robot-human distance, robot-human direction, 
and robot turning angle [45]. Specifically, the robot-human 
approach angle is computed as the angle between the 
robot’s current heading and the straight-line vector that 

3.3  Step 2: Data Collection

After completing all 8 interactions, the participants are 
given definitions of valence and arousal [46]. Afterwards, 
they are given questionnaires to indicate their current levels 
of valence and arousal. They are also requested to provide 
explanations for their responses to ensure that they under-
stand how to assess and report their valence and arousal 
levels accurately. Meanwhile, the recorded interactions 
from the camera are divided into 2-second clips, result-
ing in 25–42 clips [55, 56]. These clips are presented to 
participants with online questionnaires to self-report PA, 
emotion, and attention, as data points of the dataset. PA is 
assessed on a 7-point scale ranging from − 3 to 3, with par-
ticipants asked to indicate the appropriateness of the robot’s 
behavior (7-point scale: “The robot behaved completely 
inappropriately”–“Not sure/Neutral”–“The robot behaved 
completely appropriately”) [45]. Emotion is evaluated in 
terms of valence and arousal; both are also measured on a 
7-point scale from − 3 to 3. Attention is rated on a 6-point 
scale ranging from 0% to 100%. Additionally, participants 
are asked multiple-choice questions aimed at identifying 
perceptions of robot behaviors concerning PA value below 
3, selecting from a list of factors identified in the pilot study. 
These factors include moving too fast or slow, taking sharp 
turns, getting too close, moving unnaturally, being too 
noisy, blocking the path, appearing threatening, squeezing 
the walkable area, making sudden changes, and an “other” 
option.

Fig. 5  Human-robot interactions, with the human’s 18 skeletal points captured by the ZED SDK
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E(ti) =
∑
k∈K

Ek(ti) =
∑
k∈K

αkvk(ti)2
� (1)

Weight(ti) = max
i∈[1,T ]

E(ti), i = 1, 2, 3, . . . , N � (2)

Timek(ti) = 1
T

T∑
i=1

αk(ti)� (3)

Flowk(ti) = 1
T

T∑
i=1

jk(ti)� (4)

By organizing human and robot motion features and human 
emotion (valence and arousal), attention, and PA for each 
data point, the dataset is thus built. A complete overview of 
the dataset is presented in Table 1.

4  Dataset Analysis

4.1  Dataset Distributions

Table 2 provides a comparison between the PARSNiP data-
set and existing datasets in robot social navigation, high-
lighting its unique attributes and contributions to the field. 
Unlike its predecessors, PARSNiP encompasses a broad 
spectrum of human and robot features. It includes human 
PA, head, body, and hand motions, trajectories, emotion, 

connects the robot’s current position to the human’s posi-
tion. These features could provide insights into the dynam-
ics of human-robot interactions. For example, features such 
as robot-human distance and robot-human approach angle 
can reveal whether the robot is heading toward a person or 
will merely pass by. A small approach angle, combined with 
a low min-to-max distance ratio and a short mean distance, 
generally indicates that the robot is heading directly toward 
a person. Conversely, the same small approach angle, when 
paired with a high min-to-max distance ratio and a longer 
mean distance, might suggest that the robot, initially aimed 
toward the person, is moving away or adjusting its path. 
Additionally, a large approach angle with a low min-to-max 
distance ratio and a short mean distance could imply that, 
despite not facing the person directly, the robot is moving 
toward them.

Each data point also includes 360 human motion fea-
tures, with 11 groups encompassing kinematic features, cur-
vature, quantity of motion, bounding volume, displacement 
of joints, motion features, effort component of the Laban 
Movement Analysis, spatial extension, symmetry of the 
movement, body balance, and gaze [47, 58, 59]. Specifi-
cally, jerk derived directly from position data can be quite 
noisy. To address the inherent noise issues associated with 
this calculation, a low-pass filter is applied to the accelera-
tion data [57]. The effort of the Laban Movement Analysis 
is computed according to the following functions [47, 58]: 

Table 1  Overview of the PARSNiP dataset. The dataset includes 922 data points collected from 30 participants, each interacting 8 times with the 
robot
Data type Data (source) Measurement (per 2-second interval)
Low-level 
features

Human motion 
(3D position of 18 
skeletal points from 
RGB-D recordings)

11 categories of 360 human motion features, described by the min, max, mean, standard deviation, 
and min-to-max ratio:
•Kinematic features (velocity, acceleration, and jerk (smoothed by low-pass filtering [57]) for head, 
wrists, and ankles) [47, 58],
•Curvature for head, wrists, and ankles [47],
•Quantity of motion (aggregated speed over a set of joints) for the arm and head region, upper body, 
lower body [47],
•Bounding volume for the arm region, head region, upper body, lower body [47],
•Displacement of joints for the head, wrists, and ankles [47],
•Motion features (verticality, extension, left and right elbow flexion, left and right arm shape, hand 
relationship, and feet relationship) [47, 58],
•Effort component of the Laban Movement Analysis (time, weight, flow) for the arm region, head 
region, upper body, lower body, and whole body [47, 58],
•Spatial extension [47, 59],
•Symmetry of the movement (horizontal, vertical, and bounding triangle-related symmetry) [47, 59],
•Body balance (balance, center of mass for the arm region, head region, upper body, lower body, 
and whole body) [47],
•Human gaze [60]

Robot motion 
(Robot odometry, 
RGB-D recordings)

30 Robot motion features, described by the min, max, mean, standard deviation, and min-to-max 
ratio: robot speed, robot acceleration, robot jerk, robot-human distance, robot-human approach 
angle, robot turning angle [45]

Intermediate 
features

Emotion and atten-
tion (Self-report)

Attention (0% to 100%, 6-point scale), valence and arousal (−3 to 3, 7-point scale)

Label PA (Self-report) PA (from − 3 to 3, 7-point scale)

1 3
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participants paused to assess the situation before proceed-
ing, while others subtly changed their path or quickened 
their pace to avoid the robot. A few participants turned their 
bodies to navigate past the robot.

Figure 6 shows the distributions of different PA levels, 
illustrating a complete range of PA, from − 3 (completely 
inappropriate) to 3 (completely appropriate). The data show 
that the participants largely report the robot’s behavior as 
completely appropriate, which highlights the need for fur-
ther processing when using machine learning techniques.

Figure 7 illustrates the distribution of PA values across 
the 8 interaction types. Many interactions received a score 
of 0 to 2, indicating a neutral to slightly positive perception 
of the robot. However, distinct deviations are observed in 
interactions 1, 6, 7, 8. Interaction 1 shows a slightly negative 
value in median PA, while interaction 8 receive a positive 

and attention. The inclusion of emotion and attention marks 
a significant advancement, offering insights into better PA 
detection.

4.1.1  PA Distribution

Participants exhibited variations in their responses to the 
robot: 3 participants showed signs of disorientation and dis-
comfort in the presence of the robot, even when it remained 
stationary. Conversely, 1 participant maintained a positive 
attitude towards the robot, showing high tolerance regard-
less of the robot’s behavior. The range of observed human 
responses to specific robot behaviors varied significantly, 
especially during potential conflicts with the robot: Some 

Table 2  Datasets for socially aware robot navigation
Dataset Year PA Head

motion
Body
motion

Hand
motion

Trajectories Emotion Attention

UCY [32] 2007 × × × × √ × √

ETH [29] 2009 × × × × √ × ×
KITTI [33] 2012 × × × × √ × ×
Edinburg [30] 2009 × × × × √ × ×
Town center [34] 2011 × √ √ × √ × ×
CFF [35] 2014 × × × × √ × ×
WildTrack [36] 2018 × × × × √ × ×
SCAND[31] 2022 × × × × √ × ×
VIRAT [23] 2011 × × × × √ × ×
ATC [22] 2013 × √ √ × √ × ×
L-CAS [26] 2017 × × × × √ × ×
KTH [24] 2015 × √ × × √ × ×
THOR [25] 2020 × √ √ × √ √ ×
EgoMotion [27] 2016 × √ √ √ √ × ×
JackRabbot [28] 2019 × × × × √ × ×
UNC [39] 2019 × × × × √ × ×
Vroon [45] 2019 Position √ √ × √ × ×
PARSNiP 2023 √ √ √ √ √ √ √

Fig. 7  Interactions and PA levels

 

Fig. 6  The distribution of different PA levels
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100%, reflecting heightened cognitive engagement or focus. 
Interaction 8 notably receives the lowest median and an 
expanded range, indicating fluctuating levels of participant 
attention and potentially lower engagement.

The impact of a robot’s presence within the participant’s 
field of view on human attention and emotion (valence 
and arousal) is also examined. Given the dynamic nature 
of human-robot interactions captured in 2-second inter-
vals, direct comparisons are challenging. Factors such as 
the robot’s movements into or out of view or a transient 
presence complicate the analysis. Therefore, we differenti-
ated the data points based on two scenarios: A. the robot is 
entirely outside the participant’s view the whole time, and 
B. the robot has been within view.

A Mann-Whitney U test was conducted comparing the 
differences between the two scenarios [61]. The statistical 
analysis revealed significant differences in attention and 
emotional responses. For Scenario A, the average atten-
tion was 82.7%, compared to 58.0% for Scenario B, with 
a significant p-value of 1.26 × 10−29. This suggests more 
human attention when the robot is in view. Emotional 
responses also varied; valence averaged 0.73 in Scenario A 
and 0.18 in Scenario B, with a p-value of 5.5 × 10−6, indi-
cating more negative emotions when the robot is in view. 
Arousal was −0.44 for Scenario A and 0.25 for Scenario B, 
with a p-value of 6.0 × 10−8, indicating that the presence 

peak, indicating higher PA. These variations in PA scores 
highlight how different types of interactions are perceived 
in terms of appropriateness, providing valuable insights into 
the contextual factors that may influence perceptions and 
the richness of PA levels.

The dataset includes 11 types of PA, detailed in Fig. 8. 
Notably, “Block” with 173 instances, “Squeeze” with 112 
instances, and “Sudden” with 110 instances are significant 
factors affecting the human perception of robot behaviors. 
In contrast, perceptions of “Threat”, “Unnatural,” and 
“Fast” are reported less frequently. Different interactions 
reveal variations in PA, providing insights into human-robot 
interaction dynamics. Interestingly, although interaction 8 
generally receives positive evaluations, previous inappro-
priate interactions could potentially influence the percep-
tions of the robot. Overall, these 8 interactions contribute 
to a complete range of PA levels and richness of PA types, 
thereby enabling PA detection.

4.1.2  Emotion and Attention Distribution

Figure  9 illustrates the emotional responses and attention 
levels across 8 different interactions.

Figure 9a presents the distribution of emotional valence 
across 8 interaction types. The median valence for interac-
tions 1 to 6 remains consistently neutral, underscoring a 
uniform emotional response among these categories. Inter-
actions 7 and 8 receive a higher median valence, indicating 
a more positive emotional reaction. Specifically, interaction 
8 shows a narrower interquartile range, suggesting less vari-
ability and a more consistent response among participants.

Figure 9b illustrates the arousal levels across the 8 types 
of interactions. Interactions 2 to 8 display medians at zero, 
indicating no substantial deviation from a baseline arousal 
state, while interaction 1 shows a higher median arousal 
level.

Figure 9c shows that the attention metrics vary signifi-
cantly across different types of interactions. Interactions 
1, 2, and 4 achieve the highest median attention scores of 

Fig. 9  Valence, arousal, and attention distributions under different interactions

 

Fig. 8  Interactions and PA types
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strategies: Strategy 1 assigns PA levels − 3 to 0 to Cluster 1 
and 1 to 3 to Cluster 2. Strategy 2 groups PA levels − 3 to 1 
in Cluster 1 and 2 to 3 in Cluster 2.

The dataset is tested using various typical machine learn-
ing models, employing a 5-fold cross-validation to ensure 
the reliability of the results. The models include Random 
Forest (RF), Gradient Boosting Decision Trees (GBDT), 
AdaBoost with decision trees (AdaB), Feedforward Neural 
Network (FNN), and Extreme Gradient Boosting (XGB). 
The performance was evaluated based on accuracy, preci-
sion, recall, and F1 score, as shown in Table 3. Strategy 2 
displays more balanced performance metrics between Clus-
ters 1 and 2 across all classifiers, indicating a more uniform 
data separation, and is selected for further analysis.

of the robot within the view was more emotionally exciting 
for the participants.

4.2  Dataset Analysis

4.2.1  Clustering and Algorithms

A principal component analysis (PCA) is conducted to 
reduce the number of dimensions and mitigate noise. 
This step entails calculating eigenvalues and the cumula-
tive explained variances, as depicted in Fig. 10. The study 
selects components with eigenvalues exceeding 1 [62], with 
45 principal components that account for around 90% of the 
total variance.

The PA levels are binarized for further analysis, ensuring 
that the smaller group constitutes at least 40% of the data to 
enable balanced clusters. This leads to 2 distinct clustering 

Str. Mod. Clus. Acc. Prec. Rec. F1
1 RF 1 0.78 0.64 0.78 0.70

2 0.49 0.67 0.49 0.57
GBDT 1 0.74 0.65 0.74 0.69

2 0.55 0.65 0.55 0.59
AdaB 1 0.70 0.62 0.70 0.66

2 0.51 0.60 0.51 0.55
FNN 1 0.74 0.65 0.74 0.69

2 0.55 0.65 0.55 0.59
XGB 1 0.78 0.64 0.78 0.70

2 0.51 0.67 0.51 0.58
2 RF 1 0.74 0.60 0.74 0.66

2 0.61 0.75 0.61 0.67
GBDT 1 0.70 0.60 0.70 0.65

2 0.63 0.73 0.63 0.68
AdaB 1 0.63 0.55 0.63 0.59

2 0.59 0.67 0.59 0.63
FNN 1 0.70 0.61 0.70 0.65

2 0.65 0.73 0.65 0.68
XGB 1 0.70 0.58 0.70 0.63

2 0.60 0.72 0.60 0.65

Table 3  Performance metrics 
over strategies (Str.) and models 
(Mod.), with data grouped by 
clusters (Clus.). The metrics 
include accuracy (Acc.), preci-
sion (Prec.), recall (Rec.), and the 
F1 score (F1)

 

Fig. 10  PCA results: eigenvalues and explained variance
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accurately predicts while maintaining a balanced sensitivity 
and precision. In comparison, the HRP feature set shows 
significant improvement over the HR set, as indicated by 
higher AUC values in the ROC (0.69 ± 0.05 vs. 0.63 ± 
0.05) and PR (0.68 vs. 0.62) curves. This improvement 
highlights the benefit of including predicted emotional and 
attentional features for superior detection capabilities.

The statistical significance of these findings is supported 
by the hypothesis tests detailed in Table 4. Comparing 
HREA to HR, and HRP to HR, the analysis reveals signifi-
cant t-values and small p-values, indicating not just statisti-
cal significance but also meaningful effect sizes as measured 
by Cohen’s d. This confirms that the performance differ-
ences are statistically significant and practically important. 
Furthermore, the accuracy and F1 score statistics shown in 
Table 4 corroborate these results, with HREA outperform-
ing and HRP significantly better than HR. These statistics, 
together with insights from the ROC and PR curves in Fig. 
11, underscore that the inclusion of emotional and atten-
tional features, as represented by HREA, and the predicted 
emotional and attentional features, as described by HRP, 
markedly improve the model’s detection effectiveness. 
Specifically, the high PA detection performance with the 
inclusion of the human self-reported emotion and attention 
strongly demonstrates an upper bound on the usefulness of 
emotion and attention to predict PA.

4.3  Limitations and Discussion

The PARSNiP dataset faces several methodological limita-
tions that warrant consideration.

Data Collection and Reliability. The reliance on par-
ticipants’ self-reported data for PA, emotion (valence and 
arousal), and attention after all interactions may introduce 
recall biases, potentially compromising data reliability. 

4.2.2  Ablation Study

An ablation study is conducted to understand the impact 
of various feature sets on the performance of PA detection. 
Based on the assumption that emotional and attentional 
features may act as intermediate variables that improve PA 
detection, participants’ self-reported emotions and attention 
are included for comparisons. Since emotional and atten-
tional features are not typically observable in real-world 
conditions, the study also predicts these features based 
on human and robot movement data, achieving a valence 
detection accuracy of 71.0%, arousal detection accuracy 
of 69.2%, and attention detection accuracy of 72.8%. The 
study evaluates the effectiveness of the following feature 
combinations: Robot and human motion (RH), Robot and 
Human motion + predicted emotion and predicted attention 
(RHP), Robot and human motion + human reported emotion 
and attention data (RHEA).

The effectiveness of the XGBoost algorithm across a 
variety of feature combinations is assessed. Results include 
the Receiver Operating Characteristic (ROC) and Precision-
Recall (PR) curves (Fig. 11). The ROC curve (Fig.  11a) 
illustrates the model’s sensitivity (true positive rate) versus 
its fall-out (false positive rate) at various thresholds. This 
offers a comprehensive evaluation of the model’s discrimi-
native capability, unaffected by class distribution. The PR 
curve (Fig.  11b), on the other hand, provides insight into 
the model’s precision in relation to its recall, which is espe-
cially relevant for imbalanced datasets. The HREA feature 
set demonstrates the highest performance, achieving the 
top Area Under the Curve (AUC) scores in both the ROC 
(0.79 ± 0.02) and PR (0.77) analyses. This indicates a con-
sistent and reliable detection of true positives across differ-
ent thresholds, thereby enhancing the detection’s reliability 
and robustness. The high AUC values suggest a model that 

Fig. 11  ROC and Precision/Recall curves showing the PA detection performance with different features
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substantially improves the detection of perceived appro-
priateness (PA) in robot navigation. The improvement in 
detection accuracy from 63% with motion features alone to 
79% with emotional and attentional features demonstrates 
the critical role of these psychological factors in human-
robot interactions. Second, even predicted emotional 
and attentional states enhance PA detection capabilities, 
achieving a 68% accuracy rate. This finding has impor-
tant practical implications, as it suggests that robots can 
improve their social navigation even without direct access 
to human psychological states. Third, the comprehensive 
range of interaction scenarios captured in PARSNiP pro-
vides insights into the appropriateness of robot navigation 
behaviors, particularly in confined spaces such as pathways. 
This understanding is crucial for developing more socially 
acceptable robot navigation strategies. These findings have 
immediate applications for robotic systems in social envi-
ronments. Engineers and researchers can implement these 
insights to develop robots capable of: adapting their navi-
gation behavior based on detected human responses; main-
taining appropriate social distance and movement patterns; 
and responding proactively to potential social discomfort. 
Looking forward, this work opens new avenues for real-
time social navigation systems that can continuously adjust 
to human preferences and expectations, ultimately leading 
to more successful integration of mobile robots in human 
environments.
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Despite implementing mitigating measures—such as show-
ing participants recordings of their facial expressions and 
maintaining brief interactions—recall biases may persist. 
Future studies should explore real-time annotation methods, 
including “think-aloud” techniques, which would enable 
real-time reporting for each interaction.

Temporal Resolution. The study’s assumption of con-
sistent human states during 2-second intervals presents 
another limitation, as it may not fully capture real-world 
behavioral dynamics. While this interval was chosen to opti-
mize data collection efficiency, real-life applications require 
a more nuanced approach. We suggest that researchers and 
engineers implement a sliding-window method for practi-
cal applications, using overlapping data windows that shift 
incrementally (e.g., every 0.5 seconds) [56]. This approach 
would enable continuous PA detection and allow robots to 
adapt their behavior dynamically during interactions.

Experimental Setup. While using an onsite camera for 
data collection is advantageous for controlling experimental 
conditions, we recognize that the specific setup—position-
ing the camera on a table—may not fully align with real-
world applications. To bridge this gap, several strategies 
can be employed to adapt the collected data for use with 
different setups such as onboard cameras. For example, data 
mapping and transformation techniques can simulate the 
perspective of an onboard camera, while data augmentation 
and simulation can create additional datasets that replicate 
various camera positions and angles. These approaches can 
improve the practicality of the dataset and deserve further 
investigation.

5  Conclusion

The PARSNiP dataset represents a significant advancement 
in enabling robots to navigate social environments more 
appropriately. Our analysis demonstrates three key findings: 
First, the integration of emotional and attentional features 

Table 4  Descriptive statistics and hypothesis tests for Accuracy and F1 score with different feature sets using the XGBoost algorithm
(a) Hypothesis tests for PA detection with different sets of features. Since the data used are normal, Cohen’s d is used to measure the effect 
size.
Feature Accuracy F1 score

t(4) p d t(4) p d

HR vs HREA 12.00 0.004 4.37 12.82 0.003 4.10
HR vs HRP 6.831 0.019 2.00 6.35 0.003 1.56
HRP vs HREA 8.454 0.039 1.53 8.21 0.033 1.96
(b) PA detection statistics for Accuracy and F1 score with different features.
Features Accuracy F1

µ σ µ σ

HR 0.63 0.05 0.68 0.05
HRP 0.68 0.05 0.72 0.05
HREA 0.79 0.05
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