
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Quantum Algorithms
for the Lattice
Boltzmann Method:
Encoding and
Evolution
Erio Trong Duong



Quantum
Algorithms for the
Lattice Boltzmann
Method: Encoding

and Evolution
by

Erio Trong Duong

Instructor: Matthias Möller
Project Duration: September, 2024 - June, 2025
Faculty: Institute of Applied Mathematics, TU Delft

Cover: Computer-generated patterns placed on an acrylic paint back-
ground created by OpenAI’s GPT-Image-1 model

Style: TU Delft Report Style, with modifications by Daan Zwaneveld



Preface

This thesis marks the culmination of my Master’s journey in Applied Mathematics, and it has been both
a deeply challenging and profoundly rewarding experience. I am sincerely grateful to all those who
have guided and supported me throughout this process.

First and foremost, I would like to express my heartfelt thanks to my supervisor, Professor Matthias
Möller, for introducing me to this fascinating topic at the intersection of quantum computing and fluid
dynamics. His vision, encouragement, and unwavering support have been invaluable not only for this
thesis but for my broader academic development. I am truly thankful for the freedom he gave me to
explore ambitious ideas, while always providing insightful guidance when it was most needed.

A very special thanks goes to Pham Nguyen Tam Minh, my partner in both research and life. Our many
in-depth discussions greatly enriched this work. Beyond the academic, his encouragement and care
were a constant source of strength throughout this journey.

I am also thankful to my friends and family, who provided support in countless ways. This thesis is as
much a product of that environment as it is of solitary thought.

Erio Trong Duong
Delft, June 2025

i



Summary

This thesis explores quantum algorithms for simulating fluid dynamics using the Lattice Boltzmann
Method (LBM), with a focus on developing resource-efficient quantum implementations. A central chal-
lenge in quantum physical simulation is ensuring that algorithms not only offer computational speedups
but also preserve the underlying physical structure of the system. Without this alignment, simulations
can become unstable, inaccurate, or theoretically uninformative, especially in fluid dynamics, where
conservation laws and symmetries are important. This thesis addresses that challenge by develop-
ing quantum versions of the LBM that are constructed with physical interpretability and mathematical
consistency at their core.

The main contribution of this thesis is the design and analysis of two quantum encoding strategies for
particle distribution functions in LBM: tensor-product encoding and amplitude encoding. Each approach
offers different trade-offs between circuit size, precision, and interpretability. The thesis further develops
quantum circuits to implement the collision and streaming steps for each of the encoding schemes, with
an emphasis on utilizing conservations and symmetries to facilitate the uninterrupted and coherent flow
of the multi-round LBM simulations.

To provide a realistic assessment of the methods, the thesis incorporates rigorous error analysis, includ-
ing the accuracy of each step, post-selection success probabilities, and cumulative errors over multiple
simulation steps. Through theoretical analysis and numerical simulations, this thesis demonstrates
new physically-informed approaches to quantum LBM, offering scalable and interpretable models for
fluid transport on quantum devices.
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1
Introduction

The quest to accurately and efficiently simulate fluid dynamics has been a cornerstone of scientific
and engineering endeavors, influencing fields as diverse as aerospace engineering, climate modeling,
and medical diagnostics. Traditional computational fluid dynamics (CFD) methods, primarily based
on solving macroscopic continuum equations such as the Navier-Stokes equations, have achieved
significant success in modeling fluid behavior [1]. However, these methods often encounter challenges
when dealing with complex boundary conditions [2, 3], multiphase flows [3, 4], and turbulent regimes
[5, 6].

The Lattice Boltzmann Method (LBM) [7, 8, 9] has emerged as a promising alternative to conventional
CFD approaches. Originating from lattice gas automata [9], LBM operates on a mesoscopic scale,
modeling fluids through the evolution of particle distribution functions on a discrete lattice grid using lo-
cal collision and linear advection. Macroscopic quantities evaluated from moments of the distributions
approximate the solution of incompressible Navier-Stokes equations. This approach offers several
advantages over traditional methods. The kinetic nature of LBM allows inherent modeling of phase
separation and interface dynamics of multiphase flows compared to conventional CFD methods [10,
11, 12]. Another significant advantage of LBM is its ability to handle complex boundary conditions
with relative ease. The lattice structure simplifies the representation of irregular geometries, making
LBM particularly suitable for simulating flows in intricate domains [13, 14]. Additionally, LBM’s localized
operations facilitate straightforward parallelization, enhancing computational efficiency and scalability
on high-performance computing architectures [15, 16, 17]. However, LBM is not without limitations.
Accurately simulating high-speed compressible flows with the standard LBM method remains chal-
lenging due to the method’s foundation in incompressible or low Mach number assumptions [18, 19].
Implementing precise boundary conditions, especially on curved or moving surfaces, can also be com-
plex and may introduce numerical artifacts if not handled carefully [18]. Moreover, LBM can be more
memory-intensive than traditional CFD methods, particularly when modeling three-dimensional or mul-
tiphase flows, which necessitates careful consideration of computational resources [20].

Quantum computing leverages the principles of superposition and entanglement to process informa-
tion in fundamentally new ways, offering the potential for remarkable speedups in solving certain
classes of problems. Notable examples include Grover’s unstructured search algorithm, which pro-
vides a quadratic speedup [21], the quantum Fourier transform (QFT), integral to Shor’s algorithm,
offering exponential speedup in factoring large integers [22], and Hamiltonian simulation techniques
that achieve varying degrees of speedup over classical counterparts [23, 24]. Recently, these major
branches of quantum algorithms have been unified under the emerging framework of Quantum Singu-
lar Value Transformation (QSVT) [25], which enables polynomial transformations of singular values in
linear operators, thereby encompassing a wide array of quantum algorithmic applications. These algo-
rithms and their unifying framework serve as key subroutines across various applications in quantum
computing, including integer factorization [22], quantum phase estimation [26, 27], quantum walks [28,
29], solving linear systems of equations [30, 31], and ground state preparation and energy estimation
[32, 33, 34, 35]. However, these theoretical advantages are contingent upon the realization of fully fault-
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tolerant quantum computers, which may still require several years to materialize. Over the past decade,
substantial research has focused on Noisy Intermediate-Scale Quantum (NISQ) algorithms. Charac-
terized by limited qubit counts and error-prone quantum gates, NISQ algorithms often utilize low-depth
variational ansatzes and parameter optimization methods on classical computers [36, 37]. However,
NISQ devices and algorithms currently offer no provable advantage over classical computing and are
increasingly considered impractical for solving problems at a utility scale [38, 39, 40]. Consequently, re-
search interest is shifting toward Early Fault-Tolerant Quantum Computing (EFTQC), driven by recent
progress in quantum error correction and fault tolerance [41]. Although the specific criteria defining
this new era remain under discussion, EFTQC research often employs certain error-corrected sub-
routines alongside classical data processing. Several algorithms in this category have demonstrated
potential advantages, such as polynomial-scale improvements, in simulated noisy environments [42,
43, 44].

In the context of LBM simulation, quantum computing holds the promise to make efficient simulations
as it enables encoding of a large space domain using exponentially few qubits while applying space-
localized operators simultaneously across the entire domain. The confluence of LBM and quantum
computing is a burgeoning area of research [45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57], with
studies indicating that quantum algorithms can be tailored to execute LBM simulations more efficiently.
However, none of the existing quantum implementations of the standard LBM achieve a fully coherent
evolution. Some encoding strategies enable unitary streaming but are incompatible with implementing
non-linear collisions coherently, while others fail to support a unitary streaming step altogether. Fur-
thermore, many approaches rely on measurement and state reinitialization at every time step, leading
to excessive resource costs and sub-unity success probabilities, ultimately eliminating any potential
quantum advantage.

1.1. Problem Definition
The central challenge addressed in this thesis is the design of a quantum algorithm that enables a purely
quantum implementation of the Lattice Boltzmann Method (LBM), one that does not rely on frequent
measurements or classical post-processing. Classical LBM operates by evolving discrete distribution
functions over a spatial lattice via local collision and streaming steps. Translating this algorithm to a
quantum domain involves a fundamental difficulty: while classical distributions are stored as real-valued
functions over lattice sites and discrete velocities, quantum states are unit vectors in a Hilbert space.
The question then becomes: How can the classical distribution functions fi(x, t), which encode the
population of particles at site x with velocity ci, be faithfully and efficiently represented in a quantum
system?

A viable encoding must satisfy multiple criteria. First, it should enable the extraction of macroscopic
quantities (e.g., density, velocity) via quantum measurements or state overlaps. Second, it must allow
the unitary evolution of the state to reproduce, in the hydrodynamic limit, the behavior of LBM, including
correct viscosity and conservation laws. Third, the encoding should be compatible with quantum algo-
rithmic primitives such as Quantum Singular Value Transformation (QSVT), Hamiltonian simulation, or
quantum arithmetics, depending on the strategy chosen for evolution.

This thesis aims to explore encodings of particle distribution functions into quantum states that satisfy
these physical and computational constraints, with the ultimate goal of formulating a quantum LBM
(QLBM) algorithm that is not only implementable on early fault-tolerant devices but also scalable toward
quantum advantage.

1.2. Research Objectives
To tackle the overarching goal, this thesis focuses on the following main research question:

• How can classical Lattice Boltzmann distribution functions be efficiently encoded and evolved on
a quantum computer in a way that preserves the structure and utility of LBM in simulating fluid
dynamics?

This question can be broken down into several detailed sub-questions:

A. Encoding Layer
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(a) Choice of encoding:

• How do standard encodings (e.g., amplitude, basis, etc.) perform when applied to LBM
distribution functions?

• Can we encode multiple distribution functions fi across a lattice into a single quantum
state efficiently?

• How do these encodings affect the complexity of extracting macroscopic observables?
(b) Preserving physical properties:

• Can the quantum encoding retain the local and parallel nature of the LBM update rules?
• What are the trade-offs when coherent quantum operators cannot fully support the con-
servation laws.

B. Collision and Streaming Steps

(a) Unitary Realizations of Collision Operators

• Can common LBM collision operators (e.g., BGK model) be implemented via quantum
unitaries or block-encodings?

• What is the cost (in terms of circuit depth and ancilla count) of the implemented collision
operators?

(b) Streaming as Shift Operator or Quantum Walk

• What is the role of quantum shift operators and how do they scale with problem size?
• Is it feasible to implement the streaming step as a quantum walk in the space-velocity
domain?

C. Algorithmic Framework and Performance

(a) Simulation Pipeline for QLBM and Emergent Behavior

• Under realistic implementation and computation conditions, which approachesmake the
most performing quantum algorithm for multi-round LBM simulations?

• How do errors in the quantum encoding or evolution propagate through the macroscopic
observables?

(b) Benchmark of Multi-round Performance

• How do initial conditions affect the convergence and accuracy of the QLBM simulation
in the long run?

• How good is the output of our QLBM algorithm compared to that of other classical and
quantum LBM methods?

1.3. Thesis Outline
This thesis is organized as follows:

• Chapter 1: Introduction
Introduces the motivation for combining LBM and quantum computing, highlights classical limita-
tions and quantum opportunities, and frames the central problem and questions.

• Chapter 2: Background and Fundamentals
Reviews the classical LBM in detail, including its derivation and discretization, followed by an
overview of key quantum computing concepts, with emphasis on common ingredients in popular
quantum algorithms.

• Chapter 3: Related Work
Surveys existing efforts to simulate fluid dynamics on quantum computers, including quantum
lattice gas automata and quantum encodings, together with the respective quantum-encoded
implementations of collision and streaming. Our work provide new perspectives on the quantum
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encodings and follow-up quantum operations to approach a coherent quantum algorithm for the
lattice Boltzmann method.

• Chapter 4: Methodology
Outlines the overall workflow of this thesis, from encoding design to LBM simulation flow. Presents
the theoretical framework for encoding distribution functions into quantum states, and develops
the mathematical tools for implementing quantum collision and streaming steps. This chapter
also discusses the theoretical complexity of individual components and the full LBM simulation
pipeline using our quantum algorithms.

• Chapter 5: Numerical Simulation and Analysis
Presents the results of analytical derivations and numerical simulations. Evaluates the perfor-
mance of proposed quantum encodings and operators in terms of accuracy, resource require-
ments, and scalability. Highlights trade-offs between different design choices and benchmarks
emergent macroscopic behavior.

• Chapter 6: Discussion and Conclusion
Summarizes the main contributions of the thesis and provides answers to the research questions.
Reflects on the limitations of the current approach and outlines possible directions for future re-
search, including possible improvements to the methods in this work, as well as actual quantum
implementations.



2
Background and Fundamentals

2.1. Lattice Boltzmann Method
We give a brief overview of fluid dynamics and the underlying idea of the lattice Boltzmann method.
The interested reader is referred to standard treatments in fluid dynamics [58, 1] and lattice Boltzmann
theory [7, 8, 9].

We utilize a mix of vector notation and (Einstein) index notation throughout the thesis. While the former
style is prioritized for its brevity, we might elaborate complex expressions using the latter.

2.1.1. Computational Fluid Dynamics and Boltzmann Equation
In traditional fluid dynamics simulation, one typically adopts a macroscopic fluid model governed by the
Navier–Stokes equations that describe basic conservation laws (in density, momentum, and energy)
applied to a fluid.

The conservation of density, given by the continuity equation below, expresses the fact that the density
ρ is locally conserved, with changes in ρ arising only through the advective transport of fluid moving at
velocity u,

∂ρ

∂t
+ ∇ · (ρu) = 0 (general) (2.1)

∇ · u = 0 (incompressible 1) (2.2)

The momentum equation represents the balance of forces acting on the fluid encompassing the effects
of pressure p, viscous stress tensor σ, and body force F,

∂(ρu)

∂t
+ ∇ · (ρu⊗ u) = −∇p + ∇ · σ + F (general) (2.3)

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p + η∇2u + F (incompressible) (2.4)

where σ = η (∇u+ (∇u)T ) +
(
ηB − 2

3η
)
(∇ · u)I. The coefficients η and ηB are called shear viscosity

and bulk viscosity, respectively.

The energy equation accounts for the conservation of energy (including both kinetic and internal ener-
gies) within the fluid 2. For many incompressible flow problems, the energy equation is decoupled from
the system since temperature variations and viscous heating are often secondary effects. In practice
for incompressible flows, the focus is usually on solving the continuity and momentum equations, while
the energy equation is only addressed when heat transfer or thermal effects are significant.

1A fluid incompressible iff ρ = const or, equivalently, ∇ · u = 0 as given by the continuity equation.
2The general form reads ∂(ρE)

∂t
+ ∇ · [(ρE+ p)u] = ∇ · (σ ·u) − ∇ ·q + F ·u, where E = e+ 1

2
|u|2 is the total energy

and q the heat flux. See [59] for a comprehensive treatment of compressible fluid phenomena and applications.

5
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To implement these equations on a computer, one discretizes the spatial and temporal derivatives, arriv-
ing at a multitude of possible numerical schemes. A fundamental requirement of such schemes is that
they must preserve mass, momentum (and energy for compressible fluids) to a desired accuracy. The
development of robust discretization approaches remains a core focus within the field of computational
fluid dynamics (CFD).

A notable departure from continuum-based CFD methods emerged in the late 1980s with lattice gas
automata. Here, one posits discrete particle-like entities that occupy a lattice of discrete nodes. Each
node may hold several of these discrete “particles”, which evolve by collision and propagation steps. By
construction, local collisions obey strict conservation of mass andmomentum, thereby reproducing fluid-
like behavior. However, lattice gas automata typically exhibit high statistical noise and may introduce
spurious contributions to the macroscopic equations, limiting their effectiveness [9].

Subsequent developments replaced the discrete particle count with smoothly varying distribution func-
tions, retaining both the local conservation properties and a discretized velocity space. The new
method, called lattice Boltzmannmethod (LBM), has achieved remarkable success in handling complex
flows in practical applications. LBM presents a numerical approximate solution to the Boltzmann equa-
tion, which is a kinetic equation describing the statistical behavior of a thermodynamic system. The
following paragraphs provide a simplified presentation of the method’s foundations, which is adapted
from Krüger’s textbook in LBM [7].

The Boltzmann equation can characterize the change of physical quantities like particle density, mean
momentum, and energy in the transport of fluid. Let f be the particle distribution at position x, particle
velocity ξ and time t. The change in time df

dt is attributed to the external force F(x, ξ, t), diffusion of
particles, and forces acting on particles during collisions via the differential equation

∂f

∂t
+ ξ · ∇f + F · ∇ξ f =

(
∂f

∂t

)
coll

=: Ω(f) (2.5)

The exact differential term due to collision is extremely complex, even for two-body collision. For solving
Boltzmann equation, many attempts to model the collision term have been made, among which the
simplest and most popular BGK model, was proposed by Bhatnagar, Gross, and Krook [60]. The
authors argue that the collision term effectively brings the distribution function closer to the equilibrium
distribution. The equilibrium distribution, which is also called Maxwell–Boltzmann distribution, is a result
of the kinetic theory of gases that quantifies the energy distribution of particles in their thermodynamic
equilibrium. The distribution can be derived from the principle that it maximizes the system’s entropy
constrained to a fixed average energy. (See Chapter 4 in [61].) Roughly speaking, minimizing the
negative entropy H =

∫
f ln(f)d3ξ with Lagrange multipliers yields the expression

f eq(ξ; ρ,u, θ) =
ρ

(2πθ)3/2
e−|ξ−u|2/(2θ), (2.6)

which is determined by three macroscopic quantities of the fluid, namely density ρ, mean velocity u,
and total energy E.

ρ(x, t) =

∫
f(x, ξ, t) d3ξ

ρ(x, t)u(x, t) =

∫
ξf(x, ξ, t) d3ξ

ρ(x, t)E(x, t) =

∫
1

2
|ξ|2f(x, ξ, t) d3ξ

(2.7)

The appearance of temperature θ = RT in the equilibrium distribution is due to the contribution of
RT/2 to the internal energy density for each degree of freedom, i.e. ρE = 1

2ρ|u|
2+ 3

2RT in the case of
mono-atomic gas.
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In fact, the central moments of the equilibrium distribution, derived using Gaussian integrals 3, give rise
to the macroscopic quantities.

ρ =

∫
f eq d3ξ

0 =

∫
(ξ − u)f eq d3ξ

ρRT I =

∫
(ξ − u)⊗ (ξ − u)f eq d3ξ (I ≡ δαβ)

0 =

∫
(ξ − u)⊗3f eq d3ξ

5ρ(RT )2I(4) =

∫
(ξ − u)⊗4f eq d3ξ (I(4) ≡ I(4)αβγδ = δαβδγδ + δαγδβδ + δαδδβγ)

(2.8)

In the BGK model, the distribution f will relax to f eq over a relaxation time τ , hence

∂f

∂t
+ ξ · ∇f + F · ∇ξ f = ΩBGK(f) = −

f − f eq

τ
(2.9)

This particle-based description agrees with continuum hydrodynamic equations on the macroscopic
scale. In fact, the Navier-Stokes equations can be recovered from either the Boltzmann equation or
the lattice Boltzmann equation (introduced later) through a framework called Chapman-Enskog theory
(Chapter 3 in [61]). We refer interested readers to the modern approach in [62]. An immediate conse-
quence of the Chapman-Enskog theory in the context of Boltzmann equation (2.5) is that the collision
operator must preserve the mean density, momentum, and energy of the particles. The BGK operator
ΩBGK, as a valid collision operator, must satisfy:

∫
f eq d3ξ =

∫
f d3ξ = ρ∫

ξf eq d3ξ =

∫
ξf d3ξ = ρu∫

|ξ|2f eq d3ξ =

∫
|ξ|2f d3ξ = 2ρE

(2.10)

2.1.2. Discrete-velocity Boltzmann equation
The Boltzmann equation deals with a distribution function f(x, ξ, t) defined over a continuous velocity
space of ξ. Numerically, this is intractable. Hence, one replaces the continuum of possible veloci-
ties with a finite, carefully chosen set {ξi}. Each velocity vector ξi then carries its own distribution,
fi(x, t) ≡ f(x, ξi, t). Suitable selection of ξi and their weights wi ensures that the resulting discrete
model reproduces the low-order velocity moments (e.g., density, momentum, energy) governing fluid
behavior at macroscopic scales.

A pivotal step is specifying the equilibrium distribution. In continuous kinetic theory, the Maxwell–
Boltzmann form (2.6) is Gaussian. To approximate it in a discrete-velocity setting, one often uses
a truncation of the Hermite expansion

f(ξ) = w(ξ)

∞∑
n=0

1

n!
anHn(ξ), an =

∫
f(ξ)Hn(ξ) d

3ξ (2.11)

in which the Hermite polynomials (probabilist’s definition) in d-dimensions generated by

Hn(x) =
(−1)n

w(x)
∇(n)w(x), w(x) =

1

(2π)d/2
e−|x|2/2 (2.12)

3It’s simpler to compute the integrals using index notation
∫
(ξα1 − uα1 ) . . . (ξαn − uαn )f

eqd3ξ.
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are orthogonal with respect to w(x). The first Hermite polynomials are H0(x) = 1, H1(x) = x, and
H2(x) = x ⊗ x − I. The first coefficients for the Hermite expansion of the equilibrium distribution f eq
are indeed related to macroscopic quantities [7]

aeq0 = ρ, aeq1 = ρu, aeq2 = ρ(u⊗ u+ (θ − 1)I) (2.13)

As a result, truncating the series at second order fulfills the conservation laws and represents the
macroscopic equations. Yet, the inclusion of higher order terms can improve the numerical stability
and accuracy. The truncated equilibrium distribution at second order is given by

f eq(ρ,u, ξ) ≈ w(ξ)ρ
[
1 + ξ · u+

1

2
(u⊗ u+ (θ − 1)I) : (ξ ⊗ ξ − I)

]
= w(ξ)ρ

[
1 + ξ · u+

1

2

(
(ξ · u)2 − |u|2+(θ − 1)|ξ|2−3(θ − 1)

)]
= w(ξ)ρ Q(ξ), Q(ξ) :=

[
1 + ξ · u+

1

2

(
(ξ · u)2 − |u|2+(θ − 1)|ξ|2−3(θ − 1)

)]
(2.14)

Discrete velocities {ξi} and corresponding weights {wi} are selected to compute the leading moments
of the truncated equilibrium distribution that corresponds to macroscopic quantities. The moments
have the form ρ

∫
w(ξ)Q(ξ)P (ξ) d3ξ where P (ξ) is a polynomial with degree ≤ 2. This integral can

be evaluated exactly by summing the integrand over a finite set of velocities ξi if and only if ξi are
abscisses of a Gauss-Hermite quadrature of a precision degree ≥ maxP deg(Q(ξ)P (ξ)) = 4. Namely
the discrete velocity set must at least form a 4th-order accurate Hermite quadrature. Such a set of
velocities often carry an unhandy factor of

√
3. In practice, one uses normalized velocities ci := csξi,

where cs = 1√
3
is called the speed of sound in lattice Boltzmann theory.

Beyond conserving mass and momentum, a critical requirement is to preserve rotational isotropy of the
lattice. The specific criterion for a lattice to be “sufficiently isotropic” depends on the underlying physics.
In most applications of the LBM to the Navier–Stokes equations, one demands isotropy in all moments
of the weight up to fifth order (noting that fifth-order integration via Hermite polynomials is employed).
This requirement then leads to the following conditions (Chapter 5 in [9])

∑
i

wi = 1;∑
i

wici = 0;∑
i

wici ⊗ ci = c2sI;∑
i

wic
⊗3
i = 0(3);∑

i

wic
⊗4
i = c4sI

(4);∑
i

wic
⊗5
i = 0(5)

(2.15)

In the LBM community, models are commonly designated by the notation DnQm, where n is the spatial
dimension, andm is the number of discrete velocity directions. For instance,D2Q9 is a two-dimensional
LB scheme with nine discrete velocities, while D3Q15 is a three-dimensional LB scheme comprising
fifteen discrete velocities. Figure 2.1 shows the velocity set in three DnQm configurations. The actual
values of discrete velocities and their weights can be found in LBM handbooks [7, 8].

The discrete set {f eqi = f eq(ci)} satisfies the same conservation laws for the first three moments as
the continuous Gaussian equilibrium distribution f eq. Under isothermal assumption θ = 1, the final
expression of f eqi reads

feqi = wiρ

[
1 +

ci · u
c2s

+
(ci · u)2

2c4
− |u|

2

2c2s

]
(2.16)
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D1Q3 D2Q9 D3Q15

Figure 2.1: Three common DnQm configurations. In each of the settings, the discrete velocity set comprises the colored
vectors and the zero vector.

The first moments of the equilibrium distribution in the discretized velocity space have the following
explicit expressions [7].

Πeq
0 =

∑
i

f eqi = ρ

Πeq
1 =

∑
i

cif
eq
i = ρu

Πeq
2 =

∑
i

cicif
eq
i = ρ(uu+ c2sI)

Πeq
3,αβγ

4 =
∑
i

ciαciβciγf
eq
i = ρc2s(uαδβγ + uβδαγ + uγδαβ)

(2.17)

2.1.3. Lattice Boltzmann equation
The discrete-velocity distributions fi(x, t), i = 1, 2, . . . , Nv (Nv is the size of the velocity set) are still
continuous functions in space and time. Time-discretizing the Boltzmann equation for each fi leads to
the lattice Boltzmann equation (LBE). For the BGK collision model, the LBE is given by

fi(x+ ci∆t, t+∆t) = fi(x, t) −
∆t

τ
[fi(x, t) − f

(eq)
i (ρ(x, t), u(x, t))] + ∆t Fi(x, t), i = 1, . . . , Nv

(2.18)

From these equations, the distributions fi can be updated after every time step ∆t. The change de-
pends on the BGK collision term and the forcing term Fi, which can be modelled in many ways as
a function of the velocity ci and the external force F [63, 64, 65, 66]. For simplicity, this thesis only
addresses the force-free scenario, i.e., F = 0 and Fi = 0. Furthermore, the equation can be simulated
on a lattice or grid in the space domain. The idea is that the populations fi always reach neighboring
lattice nodes after every time step. Assuming a uniform grid with unit distance∆x, we choose∆x such
that components ci,α of ci = (ci,x, ci,y, ci,z) are integer multiples of ∆x

∆t . This is possible as the velocity
ci have integral components (even ci,α ∈ {−1, 0,+1} in many common configurations). In the unit time
∆t, the update rule for a simulation of the LBE becomes

4This expression uses index notation for clarity. In vector notation, Πeq
3 = ρc2s(u ⊗ I ⊗ I + I ⊗ u ⊗ I + I ⊗ I ⊗ u)sym. The

subscript “sym” indicates taking all 3!= 6 permutation of tensor indices α, β, γ, i.e (Tsym)αβγ = 1
6

∑
σ∈S3

Tσ(α),σ(β),σ(γ).
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fi(x+ ci, t+ 1) = (1− ω)fi(x, t) + ωf eqi (x, t) (2.19)

where ω = ∆t
τ is called the relaxation rate. The time evolution in a lattice Boltzmann simulation is

conveniently divided into two separate sub-steps: collision and streaming.

f∗i (x, t) = (1− ω)fi(x, t) + ωf eqi (x, t) (collision)
fi(x+ ci, t+ 1) = f∗i (x, t) (streaming)

(2.20)

The explicit discretisation in velocities, space, and time allows for a simple setup of complex boundary
conditions. Also, the two sub-step protocol allows for effective parallelisation, in which the collision step
can be performed simultaneously over the entire lattice due to its localized nature, and the streaming
step is just a memory update.

2.2. Quantum Computation
Quantum computation uses the principles of quantum mechanics, most notably superposition and en-
tanglement, to encode and manipulate information in ways that differ fundamentally from classical
methods. Instead of bits, which can be 0 or 1, quantum computers use qubits that can exist in “super-
positions” of states, which reads α |0〉 + β |1〉 in bra-ket notation. This expanded state space can, in
principle, allow certain computations to be carried out with exceptionally fewer resources than classical
machines.

Modern formulations of quantum computing often follow the “gate model”, in which qubits evolve un-
der a sequence of unitary gates analogous to Boolean logic gates. This gate-based model is often
visualized by a quantum circuit, which represent the unitary gates by the order they act on the quan-
tum state. Two landmark results that helped popularize the field are Shor’s quantum algorithm for
factoring large integers, potentially undermining many current cryptosystems [22], and Grover’s search
algorithm, which achieves a quadratic speedup for unstructured search problems [21]. More broadly,
quantum algorithms have been proposed for a variety of tasks in simulation [23, 24, 67, 68], machine
learning [69, 70], and data analysis [71, 72], including solving certain linear systems of equations [30,
31].

From an applied-mathematics perspective, quantum computing is especially intriguing because it re-
casts computational tasks such as those arising in large-scale simulations of physical systems into a
quantum framework. Many fluid-dynamics solvers rely heavily on linear algebra operations, and part
of the appeal of quantum methods is the possibility (under ideal conditions) of exponential acceleration
in handling very large system sizes. Of course, achieving such speedups demands not just suitable
hardware but also carefully designed quantum algorithms that mitigate error rates and match well with
the problem’s structure.

While today’s quantum devices remain limited (the so-called “Noisy Intermediate-Scale Quantum” or
NISQ era), research on quantum algorithms for numerical methods, including those relevant to the
Lattice Boltzmann Method, points towards long-term prospects in accelerating fluid simulations and
other heavy computational tasks in scientific computing. For deeper treatments of the foundations of
quantum computing and well-known quantum algorithms, see Nielsen & Chuang’s standard textbook
in quantum computation [73]. We present a number of concepts and techniques that often serve as
building blocks in advanced quantum algorithms but are not always covered in basic introductions
to quantum computing. We decide to focus on their mathematical aspect and defer the respective
implementation on quantum circuits to later chapters.

2.2.1. Single-qubit state and Bloch sphere representation
A single-qubit pure state may always be written in the form

|ψ〉 = cos
(θ
2

)
|0〉 + eiϕ sin

(θ
2

)
|1〉 , (2.21)

where the polar angle 0 ≤ θ ≤ π and the azimuthal angle 0 ≤ ϕ < 2π. This representation shows
how the relative amplitude and phase between |0〉 and |1〉 completely specify the qubit’s state. The
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Figure 2.2: Bloch sphere representation for |ψ⟩ = cos(θ/2) |0⟩ + eiϕ sin(θ/2) |1⟩.

conventional choice of θ and ϕ removes any physically irrelevant global phase and ensures that only
the two degrees of freedom unique to a single qubit are retained.

A geometric interpretation places every valid single-qubit state on the Bloch sphere, a unit sphere
whose coordinates correspond to the qubit’s amplitudes in a real, three-dimensional space. Here, θ
and ϕ define the Bloch vector

nψ = (sin θ cosϕ, sin θ sinϕ, cos θ) (2.22)

As shown in Figure 2.2, a qubit state thus corresponds to a single point on this sphere, with its latitude
and longitude set by θ and ϕ. Rotations around the Bloch sphere can be carried out by unitary gates,
reflecting how quantum gates transform the amplitudes and phases of the qubit’s state.

2.2.2. Quantum Fourier transform
The quantum Fourier transform (QFT) is a foundational block in quantum algorithms, first introduced
as part of Shor’s algorithm [22]. It acts as the quantum analogue of the discrete Fourier transform and
is defined on an n-qubit basis state |x〉 by the operation

QFT : |x〉 7→ 1√
2n

2n−1∑
k=0

exp

(
2πi x k

2n

)
|k〉 . (2.23)

We label the qubits so that an integer x = xn−1xn−2 . . . x0 has its least significant bit (LSB) on the right.
In that notation, the action of the QFT can be written as a tensor product

QFT |xn−1xn−2 . . . x0〉 =
n−1⊗
m=0

1√
2

(
|0〉+ e2πiϕm(x)

)
(2.24)

where the phase ϕm(x) depends on the bits x0, . . . , xm. In binary-fraction form,

ϕm(x) = 0.xmxm−1 . . . x0 = xm2−1 + xm−12
−2 + · · ·+ x02

−(m+1) (2.25)
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Unlike a classical Fourier transform that processes 2n points in roughly O(2n log(2n)) time, implement-
ing QFT in the tensor form (2.24) requires only O(n2) quantum gates (or O(n log(n)) for an approx-
imation), giving it a central role in highly efficient quantum algorithms. A prominent application is in
extracting periodic information for problems like integer factoring, most famously in Shor’s algorithm
[22].

A more specialized usage of the QFT appears in the design of Draper’s adder [74], a quantum circuit
to perform addition of binary numbers. When two numbers |x〉 and |y〉 are encoded in separate n-
qubit registers, there is a way to add x to y by transforming |y〉 into the Fourier domain, applying
controlled phase operations conditioned on |x〉, and then inverting the QFT. Because addition by x in
the computational basis corresponds to multiplication by phase factors exp(2πikx/2n) in the Fourier
basis, the net effect is to shift |y〉 to |y + x〉.

2.2.3. Quantum phase estimation
Quantum phase estimation (QPE) is an algorithm that uses the quantum Fourier transform (QFT) to
extract the eigenvalues of a given unitary operator U . In more concrete terms, if |ψ〉 is an eigenstate
of U with eigenvalue e2πiθ, 0 ≤ θ < 1, then QPE can approximate θ to a chosen number of bits of
precision. This ability to read off the eigenphase of a quantum operator forms the foundation of many
more complex quantum algorithms, including quantum walks [29] and certain linear-systems solvers
[30].

The standard approach to QPE starts by preparing an ancillary register of n qubits in the state |+〉⊗n =
1√
2n

∑2n−1
k=0 |k〉 and a system register in the eigenstate |ψ〉. Applying the controlled-U gate

UC =

2n−1∑
k=0

|k〉 〈k| ⊗ Uk (2.26)

on the system evolves the state into 1√
2n

(∑2n−1
k=0 exp (2πikθ) |k〉

)
|ψ〉. The inverse QFT on the ancilla

then coherently recovers the binary fraction of θ̄, an n-bit representation of θ. With probability at least
4
π2 , the value obtained is the nearest n-bit representation of θ [75]. A recent work proposes a method to
use additional O(log(log(1/ε)) ancillary qubits to increase the probability to 1−ε [27]. The performance
of the original QPE algorithm can be formally described as follows.

Theorem 2.1: Quantum phase estimation [26]

LetU be a unitary operator with eigenvectors |ψj〉 and eigenvalues e2πiθj for θj ∈ [0, 1], j = 1, . . . , N .
For a precision parameter ε > 0, there exists a quantum algorithm that runs in time O

(
log(N)
ε

)
and

with probability 1 − 1
poly(N) maps a state |ψ〉 =

∑
j αj |ψj〉 to the state |ψ〉 =

∑
j αj |ψj〉

∣∣θ̄j〉 such
that |θ̄j − θj |< ε for all j = 1, . . . , N .

2.2.4. Grover's search algorithm
Grover’s search algorithm addresses the problem of locating a marked element in an unstructured
database of size N in approximately O(

√
N) operations, improving on the classical O(N) approach.

The algorithm starts with the uniform superposition |s〉 = 1√
N

∑N−1
k=0 |k〉, which equally weights all N

possible database entries. An oracle unitary O marks a special solution |x0〉 by performing

O : |x〉 7→
{
− |x〉 , if x = x0
|x〉 , otherwise (2.27)

This phase flip alone does not yet isolate |x0〉. Grover’s algorithm applies O followed by a diffusion
operator D that reflects states about the average amplitude. Formally,

D = 2 |s〉 〈s| − I (2.28)
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Each Grover iteration G is the composition G = DO. Letting G act on |s〉 repeatedly rotates the state
vector in a two-dimensional subspace spanned by |s〉 and |x0〉. We summarize the main result on the
algorithm’s complexity in the following theorem.

Theorem 2.2: Grover’s algorithm [21]

Given access to the quantum oracle O to a vector x = {0, 1}N , the Grover’s algorithm, with high
probability, finds the index of the marked element using O

(√
N
)
applications of O.

2.2.5. Amplitude amplification
Amplitude amplification generalizes Grover’s method to scenarios where one starts with a procedure
A that prepares a “good” state |ψgood〉 with some probability p, embedded in a superposition

|ψ〉 = A
∣∣0⊗n〉 = √p |ψgood〉+

√
1− p |ψbad〉 (2.29)

In place of Grover’s oracle, one uses a reflection S0 that flips the phase of the component |ψgood〉, and
a second reflection Sψ about the overall initial superposition. If Q = SψS0 is the amplification operator
(analogous to G = DO in Grover’s algorithm), repeated applications of Q systematically increase √p
to near unity, so that a final measurement reveals |ψgood〉 with high probability. The complexity scales
as O

(
1√
p

)
, mirroring the O

(√
N
)
speedup in the case where p = 1

N . This method is thus a potent
subroutine in quantum algorithms that begin with a known but imperfect preparation step and wish to
amplify its success amplitude. The result is summarized as follows.

Theorem 2.3: Amplitude amplification [76]

Given one copy of the quantum state |ψ〉, unitary S0 = I − 2 |ψgood〉 〈ψgood|, and unitary Sψ =
2 |ψ〉 〈ψ| − I = 2A |0⊗n〉 〈0⊗n|A† − I. There exists a quantum algorithm that, with high probabil-
ity, produces the state |ψgood〉 using O

(
1√
p

)
applications of S0 and Sψ. (Equivalently, O

(
1√
p

)
applications of A and A†.)

Important variants of amplitude amplification generalizes the algorithm to the scenarios when p is un-
known (fix-point search [77]), A is a block-encoding unitary acting on a non-trivial initial state (oblivious
amplitude amplification [78]), or both [79].

2.2.6. Block encoding
Block encoding is a powerful framework that allows embedding arbitrary (non-unitary) linear operators
into larger unitary matrices, enabling quantum algorithms to access and manipulate such operators
efficiently within the constraints of quantum mechanics [80]. Suppose A is an 2n × 2n matrix (not
necessarily unitary) with operator norm ‖A‖≤ α. A unitary matrix U acting on a larger space (typically
n+ a qubits) is said to be an (α, a, ε)-block encoding of A if

∥∥A− α(〈0⊗a|⊗Is)U (|0⊗a〉 ⊗ Is)
∥∥
2
≤ ε (2.30)

This means that the top-left block of U , in the basis where the first a qubits are in the state |0〉⊗a,
approximates the scaled matrix A to error ε in operator norm.

U =

[
A/α ·
· ·

]
(2.31)

The encoding of U in quantum circuits can be realized by one of the following techniques: linear combi-
nation of unitaries (LCU) [81, 82], density matrix block encoding [83], sparse access oracles [84]. The
preferable choice of encoding depends on sparsity and specific properties of A [85].
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Block encodings enable quantum access to dense or structured matrices that appear in linear alge-
bra problems. Many important matrices (Hamiltonians, density operators, Jacobians, etc.) can be
embedded this way using ancillary qubits and controlled unitaries. Once A is block encoded, quan-
tum algorithms can perform operations such as phase estimation, matrix inversion, exponentiation, or
singular value transformation via techniques like quantum signal processing (QSP) [24] and quantum
singular value transformation (QSVT) [80].

The strength of block encoding lies in its modularity: it abstracts non-unitary operators into a unitary-
compatible form, allowing powerful primitives like Hamiltonian simulation, quantum linear system solvers,
or amplitude estimation to be generalized beyond sparse or diagonal matrices. This makes it a key uni-
fying tool in modern quantum algorithm design.

The quantum algorithms introduced earlier (subsections 2.2.2 to 2.2.6) belong to the class of fault-
tolerant quantum algorithms. They come with strong theoretical backing and are widely believed to
offer quantum speedups for certain problems. That said, turning these algorithms into actual quantum
circuits composed of native gates is far from straightforward. Many protocols, such as the Quantum
Fourier Transform, require gate operations with very high precision, which remains a significant chal-
lenge for current hardware. As of now, there is no experimental evidence that demonstrates any of
these algorithms working reliably at a practical scale.

2.3. Representation Theory
Representation theory plays a foundational role in the analysis of many symmetry-involving algorithms.
In quantum information and quantum computation, the theory finds practical applications in quantum
error characterization and error mitigation strategies [86, 87, 88, 89]. In recent years, representation
theoretic methods also have gained prominence in the design of machine learning models aimed at
solving symmetry-constrained problems in both classical [90, 91, 92, 93, 94, 95] and quantum comput-
ing [96, 97, 98, 99], giving rise to the field known as geometric machine learning.

2.3.1. Basics
This section provides a brief overview of the essential concepts, with a focus on equivalent repre-
sentations and the technique of twirling, both of which are particularly relevant to one of our main
techniques.

Definition 2.1: Group

A group G is a set equipped with a binary operation · : G×G→ G satisfying:
1. Associativity: g1 · (g2 · g3) = (g1 · g2) · g3 for all g1, g2, g3 ∈ G
2. Identity: There exists an element e ∈ G such that e · g = g · e = g for all g ∈ G
3. Inverses: For each g ∈ G, there exists g−1 ∈ G such that g · g−1 = g−1 · g = e

(The symbol · is usually omitted for quick writing, i.e. g1g2 ≡ g1 · g2)

If G and H are groups and ϕ : G → H is a map, ϕ is called a group homomorphism if it satisfies
ϕ(g1g2) = ϕ(g1)ϕ(g2) for all g1, g2 ∈ G. That is, ϕ respects the group operation: the image of a product
is the product of the images.

Definition 2.2: Representation

A representation of a group G on a vector space V is a homomorphism τ : G → GL(V ), where
GL(V ) denotes the group of invertible linear operators on V . The vector space V is called the
representation space of τ . We often call the pair (τ, V ) a representation of G.

Representations can also be defined on infinite dimensional vector spaces or on vector spaces over
fields other than C, but in the scope of our work, we mainly consider representations on finite dimen-
sional complex vector spaces. For example, for finite-dimensional quantum systems on H ∼= Cd, we
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typically consider τ(g) ∈ U(H), the group of unitary operators on the Hilbert space. In that case, τ is
also called a unitary representation.

Definition 2.3: Irreducible representation

A subspaceW of V is called invariant under τ if τ(g)W ⊆W for all g ∈ G. The representation τ is
called irreducible or simple if V and {0} are the only invariant subspaces.

A group can have many representations, but in many cases, we might consider some of them as “the
same” representation. The following definition tells when two representations are the same.

Definition 2.4: Equivariance

Let (τ1, V1) and (τ2, V2) be two representations of a group G. A linear map T : V1 → V2 is called
an intertwining map or equivariant map if

Tτ1(g) = τ2(g)T, for all g ∈ G (2.32)

The representations τ1 and τ2 are also equivariant. Furthermore, when T is bijective, the represen-
tations are equivalent, denoted by τ1 ∼= τ2.

The notion of equivariance is the preservation of structural properties of representations. The intertwin-
ing map T transfers the group’s action on V1 to V2.

One can combine different representations to make new representations. A possible construction is
through a direct sum defined as follows.

Definition 2.5: Direct sum of representations

Let (τ1, V1) and (τ2, V2) be two representations of a group G. The direct sum of τ1 and τ2 is the
representation τ1 ⊕ τ2 on V1 ⊕ V2 defined by

[(τ1 ⊕ τ2)(g)](v1, v2) = (τ1(g)v1, τ2(g)v2), for all g ∈ G, vi ∈ Vi (2.33)

Definition 2.6: Completely reducible representation

A representation is completely reducible or semisimple if it is equivalent to a direct sum of irreducible
representations.

Theorem 2.4: Complete reducibility of unitary representations

A unitary representation τ on a finite-dimensional Hilbert space H is completely reducible.

Proof. Let W ⊆ H be an invariant subspace of τ and W⊥ be its orthogonal complement in H. Using
the unitarity of τ , it is straightforward to seeW⊥ is also an invariant subspace and H =W ⊕W⊥. We
prove the theorem by induction on d = dimH. If d = 1, τ must be irreducible. Now, by recursion on
dimension, we can decompose H =W1 ⊕W2 ⊕ . . .Wk, where each τ |Wi is irreducible.

2.3.2. Schur's lemma
Next, we present Schur’s lemma and its consequences in the setting of finite-dimensional vector spaces.
These are elementary yet extremely useful tools in representation theory.
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Theorem 2.5: Schur’s lemma

Let (τ1, V1) and (τ2, V2) be finite-dimensional complex irreducible representations of a groupG, and
let T : V1 → V2 be an intertwining map. The following statements hold:

1. If V1 and V2 are not isomorphic, T = 0.
2. If V1 ∼= V2, T is bijective.

Proof. Suppose T 6= 0. We show that V1 and V2 are isomorphic. The kernel of T , ker(T ) ⊆ V1, is an
invariant subspace. The irreducibility of τ1 implies ker(A) = 0. Similarly, the image Im(T ) ⊆ V2 is also
an invariant subspace, so we have Im(T ) = V2 by the irreducibility of τ2. The intertwining map T is
injective and surjective, hence bijective.

Corollary 2.1

Let (τ, V ) be a finite dimensional irreducible complex representation of a group G. Let T : V → V
be an intertwining map of τ with itself, Tτ(g) = τ(g)T for all g ∈ G. Then T = λI for some scalar
λ ∈ C.

Proof. Fix an eigenvalue λ of T . The operator T − λI is also a self-intertwining map which is not
injective. Then it must be zero, i.e. T = λI.

Corollary 2.2

Let (τ, V ) be a finite dimensional completely reducible complex representation of a group G. Sup-
pose τ = ⊕imiτi be a decomposition of τ into irreducible subrepresentations, in which τi is repre-
sentative of a distinct isomorphism class with multiplicity mi. Then the commutant algebra

EndG(V ) := {T ∈ End(V ) |Tτ(g) = τ(g)T for all g ∈ G} (2.34)

is isomorphic to the direct sum of matrix algebras

EndG(V ) ∼=
⊕
i

Matmi
(C) (2.35)

i.e. one copy of mi ×mi matrices for each irreducible type τi.

Proof. Let Wi be the image of the irreducible subrepresentation τi. The decomposition of τ implies a
decomposition of V :

V ∼=
⊕
i

(Wi ⊗ Cmi) (2.36)

Fix an isomorphism Vi ∼=Wi⊗Cmi in which τ(g)|Vi
= τi(g)⊗Imi

. Suppose T : V → T is an intertwining
map. Since Vi as the image of isomorphic irreducible subrepresentations are G-invariant, T maps Vi
to Vj if and only if Wi

∼= Wj . By Schur’s lemma, any intertwining map between Wi ≇ Wj is zero, T
must have no component mapping between Vi and Vj . The commutant is decomposed as

EndG(V ) ∼=
⊕
i

EndG(Vi) (2.37)

By our choice of Vi such that τ(g)|Vi= τi(g) ⊗ Imi , any operator Ti that commutes with τ(g)|Vi must
act trivially on Wi, i.e. it has the form Ti = IWi

⊗ A for any matrix A ∈ Matmi
(C). Hence EndG(Vi) ∼=

Matmi
(C).

Intuitively, a self-intertwining map T of a completely reducible representation acts as the identity on
each irreducible subspace Wi but mixes the multiplicities copies via arbitrary linear maps. The map
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has the following structure
T =

⊕
i

(IWi
⊗Ai), Ai ∈ Matmi

(C) (2.38)

2.3.3. Twirling
Schur’s lemma underpins the uniqueness (up to scalar) of intertwining maps between irreducible rep-
resentations and is foundational for the concept of twirling. Twirling is a general averaging procedure
associated with group actions, used to extract the invariant part of a linear transformation under a given
symmetry.

Let G be a compact group with a unitary representation π : G→ U(V ), where V is a finite-dimensional
complex Hilbert space. Given a linear operator T : V → V , the twirled version of T , denoted TG(T ), is
defined by averaging over the group action

TG(T ) :=
∫
G

π(g)Tπ(g)† dµ(g), (2.39)

where dµ denotes the normalized Haar measure on G. If G is a finite group, this expression simplifies
to:

TG(T ) =
1

|G|
∑
g∈G

π(g)Tπ(g)† (2.40)

This construction satisfies several important properties:

• Equivariance: The operator TG(T ) commutes with the group action:

π(h) TG(T ) = TG(T )π(h), ∀h ∈ G.

Hence, TG(T ) ∈ EndG(V ), the commutant of the representation π.
• Projection property: If T ∈ EndG(V ), then TG(T ) = T . In this sense, twirling acts as a projection
from End(V ) onto EndG(V ).

By Schur’s lemma and its generalizations, this means that twirling effectively removes all components
of T that are not symmetric under the group action. In other words, it isolates the group-invariant part
of an operator.

Example: Pauli Twirling In practice, one often uses the Pauli group Pn for n-qubit systems. The
Pauli twirl of noise channel E transforms it into a Pauli channel, i.e., one that applies Pauli errors with
certain probabilities. This simplification is crucial for designing efficient error correction codes and for
benchmarking quantum devices [86, 87, 88, 89].



3
Related work

Quantum algorithms for simulating physical systems have progressed rapidly in recent decades, fueled
by the promise of quantum speedup in solving high-dimensional, structured problems such as partial
differential equations (PDEs). Among these, the LBM as a mesoscopic model for fluid dynamics has
emerged as a natural candidate for quantum implementation due to its local, rule-based structure and
parallelizability. The idea of leveraging quantum systems to simulate LBM originated in the late 1990s,
with foundational contributions from Yepez and others. In what follows, we review the evolution of
quantum lattice Boltzmann methods (QLBM), beginning with these early works and continuing through
to recent developments that incorporate advances in quantum hardware and algorithmic design.

3.1. Quantum Lattice Boltzmann Methods: The First Steps
The earliest proposals for simulating classical fluid dynamics using quantum algorithms were introduced
by Jeffrey Yepez in a series of seminal works spanning from the late 1990s to early 2000s. Yepez’s 1998
work laid the theoretical foundation for what would later be termed the quantum lattice-gas automaton
(QLGA), where qubit ensembles represent occupation probabilities in a discretized lattice space, and
local quantum gates mimic collision dynamics between virtual fluid particles [100].

In his 2001 and 2002 papers [101, 102], Yepez presented increasingly refined models where unitary
evolution, interleavedwith ensemblemeasurements and classical communication, yields amesoscopic-
scale finite-difference lattice-Boltzmann equation. Particularly in his 2002 paper, Yepez demonstrates
the emergence of the nonlinear Burgers equation from a type-II quantum computer architecture, a lattice
of small quantum processors with communication. This work explicitly bridges the microscopic (quan-
tum) and macroscopic (fluid) scales, pioneering the factorized quantum lattice-gas (QLG) algorithm
and introducing the notion of encoding fluid fields via occupation probabilities of local qubits.

Yepez’s algorithm is based on the repeated application of three key steps: state preparation, local uni-
tary collision, and streaming by measurements and classical communication. Notably, by choosing a
U(2) collision operator that preserves local occupancy (i.e., particle number), Yepez derives an emer-
gent quantum lattice-Boltzmann equation capable of capturing nonlinear phenomena such as shock
formation. His numerical simulations of Burgers turbulence validated the quantum algorithm against
exact solutions, with the simulation showing second-order spatial convergence and first-order temporal
accuracy [102].

However, a fundamental limitation of Yepez’s approach is its reliance on a type-II quantum computing
architecture, where every node of the lattice is equipped with its own quantum processor. These proces-
sors are restricted to performing local operations, while the streaming step is implemented non-unitarily
via collapse of quantum states, classical communication of measurement outcomes, and reinitialization
at each time step. Although this enables a clean separation between quantum and classical layers, the
large system size introduces a significant scalability bottleneck for large-scale simulations and vastly
diverges from existing NISQ architectures.

18
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3.2. Dilemma of Encoding Designs
Following Yepez’s early contributions, the field of quantum computational fluid dynamics saw limited
progress for over a decade, until a recent wave of renewed interest—particularly in the development of
quantum lattice Boltzmann methods. These efforts have led to a variety of algorithmic strategies [46,
47, 48, 49, 50, 57, 51, 52, 53, 54, 55], yet all face a fundamental design choice: how to encode fluid
distribution functions onto quantum registers in a manner that facilitates an implementation of collision
and streaming. The two prevailing options are amplitude encoding and product state encoding (also
known as basis state encoding), each with inherent limitations.

Amplitude encoding stores the entire distribution functions in the amplitudes of a quantum state in the
form

∑
x,i fi(x) |x〉 |i〉 or

∑
x,i

√
fi(x) |x〉 |i〉. This is highly efficient in terms of qubit usage and allows for

streaming operations to be implemented unitarily as velocity-controlled shift operators in Hilbert space.
However, as Schalkers shows, this encoding is fundamentally incompatible with direct implementation
of non-linear collision operators [45]. Because amplitudes evolve linearly under unitary operations,
encoding non-linear fluid dynamics requires an indirect strategy.

To address this, several methods have been proposed to block-encode the non-linear collision operator
into a larger unitary, enabling it to be simulated within the constraints of quantum gates. Currently, three
main approaches exist:

• Equilibrium distribution encoding, where a first-order expansion of the equilibrium function (e.g.,
f eqi = wiρ(1 + ci · u/c2s)) is block-encoded and used to generate update amplitudes [46, 47, 48,
49, 50, 57]. An implicit assumption in this approach is the uniformity of the velocity field over the
domain, which makes the approach suitable for simulating laminar flows.

• Carleman-linearized collision, where the non-linear collision operator is approximated by a trun-
cated Carleman linearization, which can then also be embedded in a block-encoded unitary [51,
52, 56]. Both streaming and collision steps are achieved via unitary operators in this approach at
the cost of a complex quantum circuit.

• Controlled rotation schemes, where refined controlled rotations are used to prepare amplitudes
matching the desired post-collision state, followed by conditional branching [54] or post-selection
to eliminate undesired parts [53].

All three methods introduce overhead in the form of ancillary qubits and probabilistic success. All of
the three approaches require full-state tomography, which provides an estimate of the post-collision
amplitudes only to be re-prepared at every time step, resulting in a ”evolve-then-reset” algorithmic flow
that is resource-intensive and difficult to scale.

Product state encoding offers an alternative by assigning each momentum population its own qubit or
register. This allows for local, possibly non-linear collision operators to be implemented directly and
deterministically. However, as Schalkers also proves, this comes at a different cost: streaming be-
tween lattice sites generally becomes non-unitary [45]. While this approach offers more flexibility in
implementing non-linear dynamics, it does not scale easily under current quantum hardware due to the
demand for high-precision arithmetics. A notable work by Steijl [55], who proposes the use of a quan-
tum arithmetic logic unit to perform the non-linear collision operator coherently. Fluid quantities are
encoded into quantum registers and the update rule is evaluated via reversible arithmetic circuits. This
avoids measurement altogether and enables a fully unitary implementation. Acknowledging different
advantages of amplitude-based and basis-state-based encodings, Steijl calls for further investigation
on efficient transformations between the two representation types [103, 104] as basis-state-based al-
gorithms can also have quantum advantage, including Fourier transform [105]. Meanwhile, Schalkers
suggested a basis state encoding scheme that takes into account the distributions within the vicinity
of x. If that vicinity contains every possible position particles can move to after T streaming steps, the
encoding scheme ensures a coherent quantum LBM/LGA simulation within a time duration T .

While the question of optimal encoding remains unresolved, progress has continued on other important
fronts. Notably, several efforts have focused on efficient techniques for implementing the streaming
step, aiming to reduce circuit depth and qubit overhead [47]. Boundary conditions, especially specular
reflections, have also received attention. Approaches have been designed to encode solid boundaries
and physically correct particle flow behavior at walls [106]. In parallel, some researchers have explored
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the potential of collisionless QLBM, applying the framework to regimes where transport phenomena
dominate, such as rarefied flows [107] and self-gravitating systems [108].



4
Methodology

4.1. Overview
This chapter presents the methodology employed in this master’s thesis to address the research ques-
tions introduced in chapter 1. The primary objective of this work is to investigate which encoding
strategies for particle distributions enable an effective quantum implementation of the lattice Boltzmann
method (LBM). In particular, we introduce two quantum LBM algorithms that differ in their underlying
data-encoding strategies.

Before we describe these methods in detail, we first introduce the general encoding structure common
to both schemes. A choice of data encoding comes with its own set of operations that can be con-
veniently executed by the algorithm. Here, our consideration is restricted to quantum computers with
sequential unitary operators (quantum gates) acting on two-level systems (qubits).

Let the lattice nodes be located on integral coordinates in a grid of dimension Lx × Ly × Lz, and let
each node be labeled by the corresponding coordinate vector x = (x, y, z). We denote the distribution
at each node by fx,i = fi(x). Because the total number of nodes, L = LxLyLz, can be very large, an
efficient encoding strategy for the spatial component is to use a superposition of the form

|ψ〉 =
∑
x

|x〉 |ψx〉 , (normalization omitted) (4.1)

where |ψx〉 encodes all the fictitious velocities (i.e., fx,i for every i) at position x, whose form is de-
termined by the choice of encoding. This representation requires O(log2(L)) qubits for the spatial-
coordinate register.

With this general framework in mind, we turn to the two main methods developed in this work. In par-
ticular, section 4.2 introduces the first method, which utilizes a tensor-product encoding scheme. We
detail its algorithmic formulation and theoretical underpinnings. Subsequently, section 4.3 describes
the second method, based on amplitude encoding, following the same pattern of algorithmic descrip-
tion. section 4.4 is dedicated for the analysis on the accuracy and performance of quantum algorithms
associated to the encoding methods. By covering both methods within a unified framework, this chapter
offers a perspective on the range of encoding strategies for quantum LBM. Some detailed refinements
and numerical simulation results are delayed until chapter 5.

4.2. Tensor-product-encoding-based algorithm
4.2.1. Encoding distributions
We propose a product-state encoding method that encodes Nv distributions fx,1, . . . fx,Nv

employing
Nv qubits in the state

|ψx〉 =
Nv⊗
i=1

1√
2

(
|0〉+ eifx,i |1〉

)
(4.2)

21
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This embedding has several advantages:

• First, it allocates a single separate qubit to “store” each distribution, which has the Bloch sphere
coordinates n⃗x,i = (cos(fx,i), sin(fx,i), 0).

• Second, the state |ψ〉 can be easily prepared from either classical data or quantum data by apply-
ing controlled rotations on the uniform superposition

∑
x |x〉 |+〉

⊗Nv . If one needs to prepare the
state from classical data, the rotations controlled by the lattice node |x〉 rotate by a predefined set
of angles. When the data distribution values |fx, i〉 are available as a computational basis state,
the rotations are controlled by both the lattice node and the basis state.

• Third, it is also fairly simple to discard the distribution register in state |ψx〉 without affecting other
parts of the quantum state |ψ〉, except for possibly introducing new relative phases. One can
reset the i-th qubit in the register by measuring it in the standard basis and apply a NOT gate
when the measurement outcome is 1, which will also leave a relative phase eifx,i

Fig. 4.1 iillustrates a generic quantum circuit that prepares this encoding from classical data.

site0 : H • •
site1 : H • •
vel0 : H

phase enc at site 0

0

phase enc at site 1

0

phase enc at site 2

0

phase enc at site 3

0

vel1 : H
1 1 1 1

vel2 : H
2 2 2 2

Figure 4.1: Encoding circuit of the distribution for a D1Q3 scheme with 4 sites. The “phase_enc_at_site_k” unitaries are tensor
products of single-qubit phase gates across the “vel” (velocity) register.

4.2.2. Estimating macroscopic quantities
The described encoding strategy enables estimating macroscopic quantities, such as density and mo-
mentum, using purely quantum operations. Observe that |ψx,i〉 = 1√

2

(
|0〉+ eifx,i |1〉

)
is the eigenstate

of the rotation Rx,i = exp(ifx,i(n⃗x,i · σ⃗)) with eigenvalue eifx,i , where σ⃗ = (X,Y, Z) is the vector of
Pauli operators. That being said, applying quantum phase estimation (QPE) would return the value of
(a multiple of) fx,i stored in some ancillary qubits. The QPE protocol requires the implementation of
Rx,i, which is available without explicit knowledge of fx,i. Let Ax,i be the unitary that prepares the state
|ψx,i〉. The rotation Rx,i = A exp(ifx,iZ)A

† can be implemented using A,A† and the rotation about Z
axis,

exp(ifx,iZ) = (2 |+〉 〈+| − I)(2 |ψx,i〉 〈ψx,i| − I)
= XA(2 |0〉 〈0| − I)A†

= XAZA†

(4.3)

A straightforward preparation of Ax,i involves a Hadamard gate H followed by a phase gate P (fx,i) =
diag(1, eifx,i). Denote Px,i = P (fx,i) for short. The rotation is realized by the gate sequence

Rx,i = Px,iHXPx,iXP
†
x,iHP

†
x,i (4.4)

We consider the entire state |ψ〉. This state can be evolved from
∑
k |x〉 ⊗ |+〉

⊗Nv by the unitary U =∑
x |x〉 〈x| ⊗ Px,1 ⊗ . . . ⊗ Px,Nv

, i.e. phase gates controlled by x. We also introduce the x-controlled
rotation unitary

R =
∑
x

|x〉 〈x| ⊗Rx,1 ⊗ . . . Rx,Nv

= U · (I log2(L) ⊗ (HX)⊗Nv ) · U · (I log2(L) ⊗X⊗Nv ) · U † · (I log2(L) ⊗H⊗Nv ) · U†
(4.5)
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Applying the QPE protocol for the unitary R on the state |ψ〉 essentially encodes the macroscopic
density ρx =

∑
i fx,i as binary numbers in an ancillary register.

QPER |ψ〉
∣∣0⊗r〉 =∑

x

|x〉 ⊗
Nv⊗
i=1

|ψx,i〉 ⊗
∣∣∣∣ρx2r2π

〉
(4.6)

The same procedure also leads to the encoding of the macroscopic momentum. Common velocity
configurations have discrete velocities ci ∈ {0,+1,−1}3. By applying other three separate QPE proto-
cols, we can estimate and store

∑
i ci,αfi, α = x, y, z in ancillary registers for momentum. Note that

the macroscopic density is equivalent to the case when ci,α = +1 for all i. We might capture possible
minus signs by the eigenphase e−ifx,i associated to the eigenstate |ψx,i〉 of the reverse rotation

R†
x,i = Px,iHPx,iXP

†
x,iXHP

†
x,i (4.7)

Let {1, . . . , Nv} be partitioned into I0,α, I+1,α, and I−,α by the value of ci,α. Phase estimation of the
mixed rotation

Rα =
∑
x

|x〉 〈x| ⊗

 ⊗
i∈I+1,α

Rx,i

⊗
 ⊗
i∈I0,α

I

⊗
 ⊗
i∈I−1,α

R†
x,i

 , α ∈ {x, y, z} (4.8)

yields the α-component of the momentum px,α =
∑
i ci,αfx,i. The estimation of macroscopic den-

sity and momentum include 1 + 3 = 4 QPE protocols as shown in Fig. 4.2. At the end of the QPE
protocols, the quantum state below carries all neccesary variables required to compute the collision
process

∑
x

|x〉 ⊗
Nv⊗
i=1

|ψx,i〉 ⊗
∣∣∣∣2rρx2π

〉 ∣∣∣∣2rpx,x2π

〉 ∣∣∣∣2rpx,y2π

〉 ∣∣∣∣2rpx,z2π

〉
(4.9)

site0 : H

data enc

0

density estm

3

momentum axis 0 estm

3

momentum axis 1 estm

3

momentum axis 2 estm

3

site1 : H
1 4 4 4 4

vel0 : H
2 5 5 5 5

vel1 : H
3 6 6 6 6

vel2 : H
4 7 7 7 7

density0 :
0

density1 :
1

density2 :
2

momentum axis 00 :
0

momentum axis 01 :
1

momentum axis 02 :
2

momentum axis 10 :
0

momentum axis 11 :
1

momentum axis 12 :
2

momentum axis 20 :
0

momentum axis 21 :
1

momentum axis 22 :
2

Figure 4.2: Quantum circuit that creates the state (4.9) for an imaginary D3Q3 scheme. The binary-fraction representaions of
density and momentum are stored in lower registers.

This paragraph discusses an issue and the solution regarding the accuracy of using QPE in the phase
estimation problem. The standard QPE protocol of a unitary U using r precision qubits is introduced in
chapter 2, which involves applying the unitary

2r−1∑
k=0

|k〉 〈k| ⊗ Uk (4.10)
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on the initial state |+〉⊗r of the precision qubits. However, the probability of getting the closest binary
representation θ̄ to the true phase θ (i.e., the error |θ − θ̄| is below the threshold δ := 2−(r+1)) can be
as low as 4

π2 ≈ 0.4. The work in [27] introduces a method called Tapered Quantum Phase Estimation
(tQPE) and shows that using rtaper = 6 additional precision qubits can increase the probability of
getting δ-bounded errors to 1− ε for ε ≤ 10−11. We describe the implementation of the tQPE protocol
on quantum circuits in Appendix A.

4.2.3. Computing equilibrium distributions
We have applied a QPE-based protocol to estimate macroscopic quantities and store the density and
the momentum vector as binary values. It is then natural to compute the equilibrium distributions using
the expression (2.16). As the values are stored in a quantum superposition, the computation involves
quantum arithmetic logic units (qALU) that perform elementary arithmetics for binary inputs. We de-
sign the quantum subroutines for computing addition, subtraction, multiplicaton, and division of signed
numbers, whose constructions rely on two building blocks called Quantum Fourier Transform and Con-
trolled Phase Shift. We will explain the notions and circuit implementations of the building blocks and
basic arithmetics on binary numbers.

Quantum Fourier Transform The definition of quantum Fourier transform (QFT) is already intro-
duced in (2.23). A typical implementation of the transform realizes the product-form expression in
(2.24) using Hadamard gates and the controlled version of the phase gate Pk := diag(1, exp

(
2π/2k

)
).

The desired output can be obtained by applying bn/2c SWAP gates from the output of the circuit de-
picted in Figure 4.3 that effectively reverses the order of qubits. The SWAP gates are often omitted to
save gate counts. In that case, operations succeeding the QFT circuit must also respect the reversed
qubit order.

|x0⟩ : • • •
P2

H

|x1⟩ : • •
P2 P3

H •
|x2⟩ : •

P2 P3 P4

H • •
|x3⟩ : H • • •

QFT24(x)

Figure 4.3: Quantum circuit for the Quantum Fourier Transform on 4 qubits (without final SWAP gates).

Controlled Phase Shift Controlled phase shift (CPS)multiplies each computational basis state |x〉 |y〉
by the phase e 2πi

2n xy, i.e. it implements |x〉 |y〉 7→ e
2πi
2n xy |x〉 |y〉. Expanding xy =

(∑n−1
k=0 xk2

k
)(∑n−1

l=0 yl2
l
)

in the phase factor yields

e
2πi
2n xy =

n−1∏
k=0

n−1∏
l=0

exp
(
2πi · xkyl · 2k+l−n

)
(4.11)

Only terms with k + l ≥ n contribute nontrivially to the product. Hence the CPS can be realized by the
commuting gate sequence

U =

n−1∏
k=0

n−1−k∏
l=0

CPn−k−l (4.12)

where CPn−k−l denotes the controlled version of the Pn−k−l gate. (Control-target direction does not
matter as the gate is symmetric.) The circuit in Figure 4.4 visualizes an arrangement of the gate se-
quence that facilitates parallel execution of every CPk gate for each k = 1, 2, . . . . The circuit can also
be modified to handle the case when y has a different bit lengthm < n. The idea is using the standard
CPS circuit for x and ỹ, a zero-padded bitstring of y, and removing CP gates that act on a padded zero
as those gates always act as identity.
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|x3⟩ : •
|x2⟩ : • •
|x1⟩ : • • •
|x0⟩ :

P1

•
P2

•
P3

• •
P4|y0⟩ : •

P1

•
P2

•
P3

•
|y1⟩ : •

P1

•
P2

•
|y2⟩ : •

P1

•
|y3⟩ : •

CPS(x, y)

Figure 4.4: Quantum circuit for the Controlled Phase Shift on a pair of 4-bit numbers. The qubits of x is shown in reversed
order for consistency with the reversal of bits as a result of the SWAP-less QFT circuit (Figure 4.3) applied on |x⟩.

Addition, Subtraction, Weighted Sum Addition of signed integers lies at the heart of computational
arithmetics, on which other operations such as subtraction, weighted sum, multiplication, and division
are built. Draper’s adder is a seminal quantum algorithm for performing modular addition efficiently in
the quantum setting [74]. The algorithm transforms a number to the Fourier basis and performs addition
on the phase space as follows

|x〉 |y〉 QFT⊗I7−−−−−→
∑
k

e
2πi
2n xk |k〉 |y〉 CPS7−−−→

∑
k

e
2πi
2n (x+y)k |k〉 |y〉 QFT†⊗I7−−−−−→ |(x+ y) mod 2n〉 |y〉 (4.13)

Phase space computation also provides ample flexibility for computing general expressions of the form
x+αy, α ∈ Z [109]. The expression can be computed by using (CPS)α, the α-exponent of the controlled
phase shift operator. We note that (CPS)α can be implemented using an identical circuit to the CPS
operator, with the angle of every phase gatemultiplied by α. This generalization also enables computing
the weighted sum

∑m
i=1 αixi with m application of the CPS operator:

(QFT |0〉)0 |x1〉1 . . . |xm〉m
CPS0,17−−−−→

∑
k

e
2πi
2n (0+α1x1)k |k〉0 |x1〉1 . . . |xm〉m

. . .

CPSm−1,m7−−−−−−−→
∑
k

e
2πi
2n (0+α1x1+...αmxm)k |k〉0 |x1〉1 . . . |xm〉m

QFT†
07−−−−→ |(α1x1 + · · ·+ αmxm) mod 2n〉0 |x1〉1 . . . |xm〉m

(4.14)

Draper’s adder and its generalizations perform modular arithmetics on unsigned integers. A modular
expression is effectively nonmodular when the desired output does not overflow the output register’s
dimension. This can be achieved by suplementing extra “carry” qubits to the output register. Suppose
addends x1, . . . xm are n-bitstrings, i.e. 0 ≤ xi < 2n if xi is an unsigned binary number or 0 ≤ |xi|< 2n−1

if xi is a signed binary number encoded in two’s complement (explained in the next paragraph). The
weighted sum α1x1 + . . . αmxm with bounded weights |αi|≤ A is then bounded by R = mA · 2n for
unsigned inputs or R = mA · 2n−1 for signed inputs. Assigning dlog2Re qubits for the output space
ensures a nonmodular outcome. Standard addition and subtraction are simple cases when one extra
carry qubit suffices, i.e we allocate n+1 qubits for the register with |x〉 and n qubits for the register with
|y〉.

To enable both signed and unsigned arithmetic in a uniform manner, we adopt the two’s complement
representation for integers. In classical digital logic, the two’s complement of an n-bit number x is
constructed by first computing the bitwise complement of x (often called “one’s complement”) and then
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adding 1. More concretely, if x is an integer in the range −2n−1 ≤ x ≤ 2n−1 − 1, we represent x in
binary by

x̄ =

{
x, if x ≥ 0

2n + x, if x < 0

whose most significant bit indicates the sign of x,

MSB(x̄) =

{
0, if x ≥ 0
1, if x < 0

The computation of arithmetics described earlier also needs correction in the output’s sign. We consider
the nonmodular Draper’s adder in which we encode |x̄〉 and |ȳ〉 using n qubits each. A carry qubit
initialized in |0〉 is placed as the most significant bit in the x̄-register. Without modification, the standard
algorithm sends |0x̄〉 |ȳ〉 to

∣∣(x̄+ ȳ) mod 2n+1
〉
|ȳ〉, where the output is

(x̄+ ȳ) mod 2n+1 =

 (x+ y) mod 2n+1, if x, y ≥ 0
(x+ y + 2n) mod 2n+1, if x ≥ 0, y < 0 or x < 0, y ≥ 0

(x+ y + 2n+1) mod 2n+1, if x, y < 0
(4.15)

The desired outcome, presumably in two’s complement, is (x+y+2n+1)mod 2n+1 regardless of inputs’
sign. The algorithm fails to produce this output when exactly one input is negative. We modify the
algorithm by initializing the carry bit in |MSB(x̄)⊕MSB(ȳ)〉, which can be obtained by two CNOTs gate
from the most significant bit of the two’s complements to the carry bit prior to the main algorithm. This
ensures the final output is correctly encoded in two’s complement with the sign of x + y stored in the
carry bit. This correction rule generalizes to the integer-weighted sum

∑m
i=1 αixi when we initialize

the sign bit in
∑
i αi ·MSB(x̄i) modulo 2. The circuit constructions for addition and weighted sum are

presented in Figure 4.5.

|x̄0⟩ :
QFT

CPS

QFT†|x̄1⟩ : •
|0⟩ :
|ȳ0⟩ :
|ȳ1⟩ : •

(a) ADD(x, y)

∣∣0⊗(n+r)
〉
:

SignBitCorrection

QFT

CPSα1

0

CPSα2

0

CPSα3

0

CPSα4

0
QFT†

|x̄1⟩ :
1

|x̄2⟩ :
1

|x̄3⟩ :
1

|x̄4⟩ :
1

(b) WSUM(x1, x2, x3, x4;α1, α2, α3, α4)

Figure 4.5: (a) Quantum circuit for adding two 2-bit signed integers x and y. The CNOT gates correct the sign qubit that starts
in |0⟩. The sum is stored in the top three qubits with MSB being the sign qubit. (b) Quantum circuit for computing the weighted

sum
∑4

i=1 αixi. If every x̄i is encoded using n bits, a nonmodular computation requires at least
r = ⌈log2(|α1|+|α2|+|α3|+|α4|)⌉ extra qubits.

Multiplication Multiplying an integer with another can be carried out in the same manner as comput-
ing a weighted sum with the “weights” being the other’s bit. Concretely, the multiplication of x with an
unsigned binary y = ym−1 . . . y0 can be written as xy =

∑m−1
i=0 yi2

ix. One can construct the multipli-
cation circuit from the weighted sum circuit which gets its weights from qubits of y. In general, when y
is also a signed integer, we multiply x|y| and correct the product sign if y < 0. The negation in two’s
complement is formally expressed as a complement y 7→ (2m−y). Taking absolute value of y, however,
only involves a negation of m − 1 value bits if the sign bit is 1. The reversible circuits to compute the
complement and the absolute value are depicted in Figure 4.6. Given these ingredients, we construct a
circuit in Figure 4.7 to multiply an n-bit x and anm-bit y and store the product using n+m−1 bits.

Division Division is a fundamental arithmetic operation with challenging implementation as the oper-
ation produces an output pair, quotient and remainder. Unlike multiplication, which can be efficiently
performed using QFT and addition in the phase domain, division requires iterative approaches that
mimic classical division techniques while maintaining reversibility. We adopt a quantum circuit for divi-
sion based on a non-restoring division algorithm [110]. Given two non-negative n-bit integers as input
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|y0⟩ :
QFT cCPS(a) QFT†. . .

|ym−2⟩ :

(a) INCREMENTa

|y0⟩ : X

INCREMENT1
. . . X

|ym−2⟩ : X

(b) COMPLEMENT

|ȳ0⟩ :
COMPLEMENT. . .

|ȳm−2⟩ :
|ȳm−1⟩ : •

(c) ABS(y)

Figure 4.6: (a) Quantum circuit for adding a classical number a to an (m− 1)-bit y. This resembles the function ADD(y, a) in
which the Controlled Phase Shift is replaced by a classically Controlled Phase Shift (cCPS) that performs classical if -conditions
instead of CNOT gates. (b) Quantum circuit for taking the complement 2m−1 − y. (c) Quantum circuit for taking the absolute
value of y. We denote the initial state ȳm−1ȳm−2 . . . ȳ0 to emphasize that this circuit applies for two’s complement encoding.

The unsigned binary number |y| is stored in the firstm− 1 qubits, while the original sign in the last qubit is unchanged.

|ȳ0⟩ :

ABS

• •

ABS†
. . . •

|ȳm−2⟩ : •
|ȳm−1⟩ : •

|x̄0⟩ :

CPS2
0

. . .CPS2
i

. . . CPS2
m−2

. . .

|x̄n−2⟩ :
|x̄n−1⟩ : •

|00⟩ :
QFT QFT† COMPLEMENT. . .

|0n+m−2⟩ :

MULTIPLY(x, y)

Figure 4.7: Quantum circuit for multiplying two signed numbers x and y. The Toffoli gate corrects the sign bit of the product. At
the end of the circuit, the inputs |x̄⟩ and |ȳ⟩ are unchanged, and the product xy in two’s complement is stored in the last

n+m− 1 qubits.

(dividend and divisor), the circuit outputs the quotient and remainder through conditional addition and
subtraction. For signed inputs, the quotient and remainder are negated accordingly. The circuit in
Figure 4.8 implements a division between two non-negative integers.

|yn−2:0⟩ • • • • •
|yn−1 = 0⟩ • • • •
R0 : |x0⟩

+(−1)Q1y

0

+Q0y

0

. . .

+(−1)Qiy . . .

0

Rn−2 : |xn−2⟩

+(−1)Qn−1y

0 n−2

Q0 : |xn−1⟩

−y

0 n−1 • X

Q1 : |0⟩ n−1
X •

. . . n−1
· · ·X •

Qn−1 : |0⟩ n−1
X •

UDIVIDE(x, y)

Figure 4.8: Quantum circuit for dividing x by y. The inputs are non-negative and encoded in n-bit two’s complement, i.e.
x = 0xn−2 . . . x0 and y = 0yn−2 . . . y0. The quotient and the remainder can be found in the qubits |Q⟩ = |Qn−1 . . . Q0⟩ and

|R⟩ = |Rn−2 . . . R0⟩, respectively.

Process to evaluate equilibrium distributions Given quantum arithmetical instruments, one can
effectively compute the equilibrium distribution. However, efficiently grouping operations leads to not
only less computational expenses but also better numerical stability. Substituting the lattice’s speed of
sound cs = 1√

3
into (2.16), we get
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f eqi = wiρ

[
1 + 3ci · u+

9

2
(ci · u)2 −

3

2
|u|2

]
= wi

[
ρ+ 3 ci · p+

(3ci · p)2 − 3|p|2

2ρ

] (4.16)

The second expression, as a function of density ρ and momentum p = ρu, accomodates arithmetics
from the macroscopic quantities given in the quantum state (4.9). Let the rational-valued weights wi =
αi

βi
, where αi and βi are coprimes. We can further rewrite the expression as a fraction.

f eqi =
αi
[
2ρ (ρ+ 3 ci · p) + (3 ci · p)2 − 3|p|2

]
2ρβi

=:
Nu.

De.
(4.17)

Evaluating the equilibrium distribution using this expression induces minimal truncation error as it only
uses a single integer division. We suggest a qubit-saving strategy to compute f eqi in a reversible manner
through the following steps

1. The initial macroscopic quantities are stored in binary-fraction form |ρ〉 |px, py, pz〉.

2. Make another copy of each momentum component using CNOT gates: |ρ〉 |px, py, pz〉⊗2.

3. Compute the sum (3ci) · p =
∑
α(3ci,α) pα and store it in a register: |ρ〉 |px, py, pz〉⊗2 |3ci · p〉.

4. Make another copy of the previous result: |ρ〉 |px, py, pz〉⊗2 |3ci · p〉⊗2

5. Compute ρ + 3ci · p, (3 ci · p)2, and 3p · p and store them in different registers:
|ρ〉 |px, py, pz〉⊗2 |3ci · p〉⊗2 |ρ+ 3ci · p〉

∣∣(3ci · p)2〉 |3p · p〉.
6. Compute 2ρ (ρ + 3ci · p) and store it in a register:
|ρ〉 |px, py, pz〉⊗2 |3ci · p〉⊗2 |ρ+ 3ci · p〉

∣∣(3ci · p)2〉 |3p · p〉 |2ρ (ρ + 3ci · p)〉
7. Compute the numerator and denominator in (4.17) and store them in two registers:
|ρ〉 |px, py, pz〉⊗2 |3ci · p〉⊗2 |ρ+ 3ci · p〉

∣∣(3ci · p)2〉 |3p · p〉 |2ρ (ρ + 3ci · p)〉 |Nu.〉 |De.〉
8. Copy the numerator state to another register:
|ρ〉 |px, py, pz〉⊗2 |3ci · p〉⊗2 |ρ+ 3ci · p〉

∣∣(3ci · p)2〉 |3p · p〉 |2ρ (ρ + 3ci · p)〉 |Nu.〉⊗2 |De.〉
9. Compute the division, which should output the quotient bf eqi c in one of the numerator registers

and a truncated remainder {f eqi } := f eqi − bf
eq
i c in a new register.

The final state after the arithmetical process has the form

|ρ〉 |px, py, pz〉⊗2 |3ci · p〉⊗2 |ρ+ 3ci · p〉
∣∣(3ci · p)2〉 |3p · p〉 |2ρ (ρ + 3ci · p)〉 |Nu.〉 |De.〉 |bf eqi c〉 |{f

eq
i }〉
(4.18)

One might notice that we have access to the binary values of ρ and p in the unit of 2r

2π from the quantum
state (4.9). Performing the same procedure on the provided binary numbers still gives the the same
equilibrium distribution value, except that it is also scaled by 2r

2π . We will later show this factor can be
absorbed by the structure of the circuit that implements the streaming part.

The process to compute the non-linear equilibrium distribution outlined above is expensive in terms
of qubit counts and high-fidelity quantum gates. We enumerate the number of qubits to perform each
step of the computation. Assume (i) the lattice is 3-dimensional (ii) every number is stored in the
two’s complement representation (iii) each of the values ρ, px, py, pz are stored using r qubits. We
bound intermediate values using ρ, |px|, |py|, |pz|≤ 2r−1, from which suitable number of qubits can be
allocated to store such values. Since commonDnQm configurations have discrete velocities with ci,α ∈
{−1, 0, 1}, we can compute and store 3ci ·p using r+4 qubits for |3ci ·p|≤ 9 ·2r−1 < 2r+3. By bounding
their values in a similar manner, we can store ρ+3ci ·p, (3ci ·p)2, 3|p|2, and 2ρ(ρ+3ci ·p) using r+4,
2r+6, 2r+3, and 2r+4 qubits, respectively. Estimating this number for the numerator and denominator
requires the exact values of discrete weights wi. We take the D3Q27 configuration as an example in
which αi ≤ 8 and βi ≤ 256. In that case, the numerator and the denominator are bounded by 832 ·22r−2

and 512 · 2r−1, hence their binary forms requires 2r + 9 and r + 9 qubits for storing, respectively. As a
result, one also needs 2r+9 qubits for the quotient and r+9 qubits for the remainder. To summarize, the
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final state (4.18) consumes a total of 22r+61 qubits for storing the binary values. Note that the process
would also need a couple of ancillary qubits to store sign-related factors during the computation. The
ancillas, however, are reusable as they are always returned to |0〉 after each step.

4.2.4. Updating post-collision state
This part describes how to lift the post-collision distribution f∗i = (1 − ω)fi + ωf eqi , ω = ∆t/τ , to the
phase, creating new quantum states 1√

2

(
|0〉+ eif

∗
i |1〉

)
. These states will replace 1√

2

(
|0〉+ eifi |1〉

)
as

the initial data-encoded states in the succeeding simulation time. In order to ensure the reversibility of
the QPE-based macroscopic quantity estimation and equilibrium distribution evaluation, the initial state
1√
2

(
|0〉+ eifi |1〉

)
must stay intact after the update step. As the no-cloning theorem inhibits making

copies of the initial state, we might be only able to encode f∗i = f eqi i.e. the post-collision distribution
corresponding to the full relaxation ω = 1. The new encoding can be carried out by controlled rotations
whose angles are determined by the binary-fraction representation |f eqi 〉. We formally describe the
state update of one discrete velocity as the mapping

|+〉
∣∣∣∣2rf eqi2π

〉
7→ |ψ∗

i 〉
∣∣∣∣2rf eqi2π

〉
=

1√
2

(
|0〉+ eif

eq
i |1〉

) ∣∣∣∣2rf eqi2π

〉
(4.19)

We illustrate an implementation of this mapping knowing no explicit value but the qubits that store 2rfeq
i

2π
in Figure 4.9.

∣∣∣f̃i,0〉 : •∣∣∣f̃i,1〉 : •
... •∣∣∣f̃i,s−1

〉
: •

|+⟩ : P(2π/2r) P(2π/2r−1) P (. . .) P(2π/2r−s+1)

Figure 4.9: Quantum circuit that prepares the state 1√
2
(|0⟩+ eifi |1⟩) from the s-bit binary-fraction

∣∣∣f̃i〉 =
∣∣∣ 2rfi2π

〉
.

After creating the new post-collision state without destroying the initial state, we can free up the working
space by uncomputing the phase estimations and arithmetic computations in reverse order. This would
return the working-space qubits to |0〉. Omitting the free qubits, we have the entire system in the
state ∑

x

|x〉 ⊗
Nv⊗
i=1

|ψx,i〉 ⊗
Nv⊗
i=1

∣∣ψ∗
x,i

〉
(4.20)

Lastly, we can reset the Nv qubits carrying the initial state to |0〉. This requires measuring the qubits
in the standard basis and apply a corrective NOT gate to qubits that have the measurement outcome
1. In that case, the correction also leaves a relative phase of eifx,i , yet they are irrelevant to our
algorithm. The final state after collision update has the same form as the initial superposition, except
measurement-dependent phases φx.

∑
x

eiφx |x〉 ⊗
Nv⊗
i=1

∣∣ψ∗
x,i

〉
(4.21)

4.2.5. Propagating distributions
Propagation, or streaming, is an essential component of any LBM algorithm. In the classical LBM
setting, the streaming operation adjust the “position” of the distributions

∑
x

|x〉 ⊗
Nv⊗
i=1

|ψx,i〉 7→
∑
x

|x〉 ⊗
Nv⊗
i=1

|ψx+ci,i〉 (4.22)
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It was proved that basis encoding does not allow a unitary streaming operation [45]. Even though
our tensor-product encoding is slightly different, the same problem persists. As we might consider
distribution-encoded states |ψx,i〉 as arbitrary states on the Bloch sphere’s equator, we can only trans-
form the superposition in a meaningful way by applying gates on the coordinate register. In fact, we
can stream every distribution along a fixed velocity c by adding −c to the coordinates.

∑
x

|x〉 ⊗
Nv⊗
i=1

|ψx,i〉 7→
∑
x

|x− c〉 ⊗
Nv⊗
i=1

|ψx,i〉 ≡
∑
x

|x〉 ⊗
Nv⊗
i=1

|ψx+c,i〉 (4.23)

It is clear that streaming every distribution along the same direction fails to satisfy the conservation of
density and momentum. We propose two solutions to performing the propgation, each of which has its
own limitation. Before diving into the solutions, we rewrite the quantum states as time-dependent.

Assume the current time is t. The ideal quantum state at time t+ 1 is

∑
x

|x〉 ⊗
Nv⊗
i=1

∣∣∣ψ(t+1)
x,i

〉
=
∑
x

|x〉 ⊗
Nv⊗
i=1

∣∣∣ψ∗(t)
x−ci,i

〉
(4.24)

The streaming quantum operator should be able to send the current post-collision states in their re-
spective directions ∑

x

|x〉 ⊗
Nv⊗
i=1

∣∣∣ψ∗(t)
x,i

〉 streaming
7−−−−−−−→

∑
x

|x〉 ⊗
Nv⊗
i=1

∣∣∣ψ∗(t)
x−ci,i

〉
(4.25)

First approach to streaming: space-time encoding The presence of every state
∣∣∣ψ∗(t)

x−ci,i

〉
in the

entanglement with |x〉 is important for the simulation at time t+1. The first solution ensures such pres-
ences with additional distribution-encoded qubits and related arithmetics. This approach is motivated
by the fact that for every i,

∣∣∣ψ∗(t)
x−ci,i

〉
is prepared using initial states

∣∣∣ψ(t)
x−ci,j

〉
for j = 1, . . . , Nv. The

initial states are also a streamed post-collision state at the previous time,
∣∣∣ψ(t)

x−ci,j

〉
=
∣∣∣ψ∗(t−1)

x−ci−cj ,j

〉
.

Induced by the set S = {ci : i = 1, . . . , Nv} of displacement vectors, the light cone of all possible
positions up to time T is defined as

LT (S) =
T⋃
t=0


t∑

j=1

cij : cij ∈ S

 , (4.26)

where for T = 0 the sum is interpreted as the singleton set {0}. The approach assumes the initial
encoding ∑

x

|x〉 ⊗
⊗

c∈LT (S)

Nv⊗
i=1

∣∣∣ψ(0)
x−c,i

〉
(4.27)

Then our original method can be adapted to perform the LBM simulation up to time T , i.e. to create the
quantum state ∑

x

|x〉 ⊗
Nv⊗
i=1

∣∣∣ψ(T )
x,i

〉
(4.28)

The fundamental problem with this approach is the number of qubits we need to store and process
the initial distributions. As the size of the light cone LT (S) can be as large as O

(
(Nv)

T
)
, the encoding

(4.27) requiresO
(
(Nv)

T+1
)
qubits in the velocity register initially. Preparing this state and applying any

operation on this large number of qubits are generally impractical, unless we only simulate the system
in a very short window T .
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Second approach to streaming: approximating nearby distributions Recall that, at every time
step, the quantum states

∣∣ψ∗
x−ci,i

〉
are encodings of the post-collision distributions f∗x−ci,i

= f eqx−ci,i
. It

is possible to approximate the equilibrium distribution using macroscopic information and equilibrium
distribution at node x as given by the binary-fraction values stored in the registers |ρx〉 |px,x〉 |px,y〉 |px,z〉
and

∣∣f eqx,i〉, respectively. We use the first-order Taylor expansion

f eqi (x− ci) = f eqi (x)− ci · ∇f eqi (x) (4.29)

The spatial gradient of the equilibrium distribution is evaluated by

∇f eqi (x) =
∂f eqi
∂ρ
∇ρ+ ∂f eqi

∂u
∇u (4.30)

The gradients of density and velocity can be solved by two equations that involve the zero- and first-
order moment of the non-equilibrium part fneqi = fi − f eqi . By conservation of density and momen-
tum,

∑
i

fneqi = 0,
∑
i

cif
neq
i = 0 (4.31)

Alternatively, we can evaluate the moments using the first-order approximation of the non-equilibrium
part in the Chapman-Enskog expansion,

fneqi = −τ(∂t + ci · ∇)f eqi (4.32)

Using the standard expression for evaluating f eqi (2.16) and rotational isotropy conditions (2.15), we es-
timate

∑
i f

neq
i and

∑
i cif

neq
i as functions of∇ρ and∇u. The roots of these functions are approximate

values of ∇ρ and ∇u. Substituting their values to the first-order Taylor expansion (4.29), we success-
fully approximate the post-collision state of a nearby neighbor, e.g. we obtain the binary representation
of
∣∣f∗x−ci,i

〉
. Note that we have discussed previously that the state

∣∣∣ψ∗(t)
x−ci,i

〉
can be prepared using the

binary value
∣∣∣f∗(t)x−ci,i

〉
with a number of controlled rotations. Since

∣∣∣ψ(t+1)
x,i

〉
=
∣∣∣ψ∗(t)

x−ci,i

〉
, this procedure

also replaces the usual streaming step for every state
∣∣∣ψ∗(t)

x−ci,i

〉
with ci 6= 0.

It remains a challenge to solve for the post-collision state using coherent quantum operators. We
demonstrate in Appendix B that the approximate equations are linear in ∇ρ and ∇u, but solving the
system of equations and computing follow-up quantities require fault-tolerant quantum linear solver.
This approach requires intensive management and calibrations of arithmetic components that are be-
yond the scope of our work.

4.3. Amplitude-encoding-based algorithm
4.3.1. Encoding distributions
The particle distributions fx,1, . . . fx,Nv with a normalization constraint

∑
i fx,i = 1 can be encoded

using Nv qubits in the state

|ψx〉 =
Nv∑
i=1

√
fx,i |ei〉 (4.33)

where ei ∈ {0, 1}Nv is a one-hot vector with 1 at position i and 0 everywhere else. This embedding
identifies every velocity or mode in the LBM configuration to a qubit and offer several benefits.

• First, it can be prepared using Nv rotations and controlled rotations. We present the preparation
procedure in the next paragraph.

• Second, there are unitary operators called excitation gates that preserve the form of the state upon
acting on the encoded state. That is, such operators map a state in R := {

∑
i αi |ei〉 : αi ∈ R}

to another state in R. This is particularly helpful for designing a collision operator that does not
alter the form of the encoding.



4.3. Amplitude-encoding-based algorithm 32

• Third, this encoding is equivariant to permutations of distributions. Suppose (f1, . . . , fNv ) 7→
(fσ(1), . . . fσ(Nv)) for some permutation σ ∈ SNv

. The action of the permutation on the Hilbert
space can be represented by a unitaryW (σ) comprising of SWAP gates among qubits that map
|ei〉 7→

∣∣eσ−1(i)

〉
. The action of it on the encoded state is

W (σ)

(
Nv∑
i=1

√
fx,i |ei〉

)
=

Nv∑
i=1

√
fx,i

∣∣eσ−1(i)

〉
, (4.34)

which is identical to
∑Nv

i=1

√
fx,σ(i) |ei〉 upon a re-indexing of qubits. This symmetry-preserving

property of the amplitude encoding is desirable as the collision operator in common LBM config-
urations also has certain permutation symmetries.

We describe the preparation of the quantum state
∑
i

√
fi |ei〉 from the initial basis state |0〉⊗Nv , where

each |ei〉 corresponds to a one-hot vector having exactly one qubit in the state |1〉.

The preparation proceeds iteratively. First, we apply a single-qubit rotation Ry(θ1) on the first qubit,
with the rotation angle given by θ1 = 2arcsin

(√
f1
)
, yielding the superposition state

√
f1|10 · · · 0〉+

√
1− f1|00 · · · 0〉 (4.35)

Subsequently, for each qubit k (with 2 ≤ k ≤ Nv − 1), we apply a multi-controlled Ry(θk) rotation
conditioned on ever previous qubit being in state |0〉, where

θk = 2arcsin

(√
fk

1−
∑k−1
j=1 fj

)
(4.36)

Each iteration transfers the appropriate amplitude from the residual state |0 · · · 0〉 to the state where
only the k-th qubit is flipped to |1〉. After performing this controlled-rotation process sequentially on all
Nv − 1 qubits, the final quantum state accurately encodes each amplitude

√
fi into the corresponding

computational basis state |ei〉. (The general preparation circuit is shown in Figure 4.10.) This state
then serves as the starting point for subsequent symmetry-respecting transformations in the quantum
operator for collision.

|0⟩ : RY (θ1)

|0⟩ : RY(θ2)

|0⟩ : RY(θ3)

|0⟩ : RY(θ4)

Figure 4.10: Quantum circuit to prepare states of the form
∑4

i=1

√
fi |ei⟩. Rotation angles are computed by (4.36).

4.3.2. Feasibility of ideal collision operator for amplitude encoding
Collision as a fully unitary opetor Weexamine the feasibility of simulating the collision phenomenon
using a unitary operator that acts on amplitude-encoded states. Let S =

{(
x(i),y(i)

)}S
i=1

be a dataset of

involving the initial distributions and post-collision distributions. In particular, x(i) =

(√
f
(i)
1 , . . . ,

√
f
(i)
Nv

)
with ‖x(i)‖2= 1 encode the square root of initial distributions and y(i) :=

(√
f
eq(i)
1 , . . . ,

√
f
eq(i)
Nv

)
the

corresponding equilibrium distributions. Suppose Ucol ∈ CNv×Nv be a unitary collision matrix, hence
Ucolx

(i) ≈ y(i). It is natural to assume Ucol to be the solution to optimization problem
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min
U:UU†=I

S∑
i=1

1−
∣∣∣∣(y(i)

)†
Ux(i)

∣∣∣∣ (4.37)

We will prove later that the solution must be a real unitary, or orthogonal, matrix up to a global phase.
Ignoring the phase, the objective function can be rewritten in the least-square form using the identity
1− |(y(i))†Ux(i)|= 1

2‖Ux(i) − y(i)‖22. Let X = [x(1) . . .x(S)] and Y = [y(1) . . .y(S)] be data matrices in
RNv×S . The optimization (4.37) is equivalent to

min
U:UU†=I

1

2
‖UX−Y‖2F (4.38)

This optimization problem is known as the Orthogonal Procrustes Problem. Upon expanding the ex-
pression, the solution can be found by maximizing ReTr

(
UXY†). Let XY† have the singular value

decomposition XY† = RΣQ†. The solution to the problem (4.37) is S − Tr(Σ), which is achieved at
U∗ = QR†. As X and Y are real matrices, the left and right singular vectors of XY† also have real
entries up to a global phase. The solution U∗ is then a real unitary matrix. This unitary matrix can be
made compatible with the amplitude encoding (4.33) by identifying standard basis vectors ei ∈ Rn with
the corresponding one-hot binary vectors |ei〉 as quantum states. For example,

Nv∑
i=1

√
fiei 7→

Nv∑
i=1

√
fi |ei〉 (4.39)

We find the average fidelity error 1−|(y(i))†U∗x(i)| from numerical simulations to be 1−Tr(Σ)/S ≈ 0.04.
This error is well above numerical precision, hence we might argue that there is no unitary operator to
perform the collision ideally.

Collision as a block-encoded operator Some papers, on the other hand, utilize block-encoding
techniques to embed a non-unitary collision operator in a larger unitary [46, 47, 48, 49, 50]. We will ex-
amine whether this approach is possible to create an ideal collision operator. For the next paragraphs,
we write

∣∣x(i)〉 and ∣∣y(i)〉 instead of x(i) and y(i) for clarity, even though they are not necessarily quan-
tum states in a two-level system. The collision operator is block-encoded in a unitary that acts on
CNv·2r , where r is the number of ancillary qubits. Let the large unitary act on |a〉 |xi〉, where |a〉 is some
initial state of the ancillas. Assume the output state |ŷi〉 of the collision operator is obtained in the sub-
space |0〉⊗r with the corresponding measurement probability λi. The entire output state can be written
as

U |a〉 |xi〉 =
√
λi |0〉⊗r |ŷi〉+

√
1− λi |φ〉 (4.40)

where |φ〉 has the support on the orthogonal complement of |0〉⊗r. We introduce a similar optimization
to (4.37) for the block-encoding case,

min
U :UU†=I

S∑
i=1

1− |〈yi|ŷi〉| = min
U :UU†=I

S∑
i=1

1− 1√
λi

∣∣〈0|⊗r〈yi|U |a〉|xi〉∣∣
= min
U :UU†=I

S∑
i=1

1− 1√
λi

+
1

2
√
λi

∥∥U |a〉|xi〉 − |0〉⊗r|yi〉∥∥2
(4.41)

with probabilities λi = ‖(〈0|⊗r⊗I)U |a〉 |xi〉 ‖2. This is an optimization problem on the orthogonal man-
ifold Op = {X ∈ Rp×p|XXT = Ip} with p = Nv · 2r and, unlike the previous case, does not have
an analytical solution. We obtain an optimal solution that we believe to be the global optimum using a
gradient-basedmethod called “landing algorithm”, a novel technique presented in [111]. Themain differ-
ence of the landing algorithmwith other optimization algorithms onmanifolds is its retraction-free nature.
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A retraction is a (not necessarily orthogonal) projection onto the manifold Op and usually requires ex-
pensive computations. The landing algorithm still converges to a matrix U such that ‖UUT − I‖= 0 to
numerical precision. The linear operator that acts as the collision operator can be obtained by restricting
the unitary to a subspace, (〈0|⊗r⊗I)U(|a〉 ⊗ I).

We defer the details of numerical simulations to compute the performance of this method to chapter 5.
For r = 2 and ancillary state |a〉 = |+〉⊗r, the mean error is 1 − |〈yi|ŷi〉|≈ 0.002 with mean probability
λi ≈ 0.74. This numerical evidence demonstrates the possibility of using a block-encoded operator to
perform the ideal collision. The resulting unitary can be implemented on the quantum circuit by Givens
rotations by the identification (4.39) and technique in quantum optics called Clements’s decomposition
of universal interferometers [112, 113]. Briefly speaking, a real unitary of size p can be decomposed
into p(p− 1)/2 single-excitation rotations whose common form is shown in (4.47).

To extract the desired output states, we perform a post-selection onto the subspace |0〉⊗r |ŷi〉 by mea-
suring the ancillas in the computational basis. The probability of obtaining the desired outcome in
round i is λi < 1. For a multi-round LBM simulation to succeed, each intermediate post-selection must
succeed; otherwise, the resulting state deviates from the target and must be discarded, requiring the
simulation to start from scratch. To mitigate this failure probability, we apply a few rounds of amplitude
amplification to boost the likelihood of the “good” state |0〉⊗r |ŷi〉. Specifically, we employ the oblivious
version [79] of the fixed-point amplitude amplification method from [77] to increase the success proba-
bility to at least 1− ε for any small ε > 0. This involves L iterations of a modified Grover-like operator,
each comprising one application of U , U †, and phase rotations on the ancillary qubits. In our context,
it suffices to take

L ≥ log(2/
√
ε)√

λ
(4.42)

where λ ≤ mini λi denotes a uniform lower bound on the individual post-selection probabilities, ensur-
ing the total failure probability is below ε.

4.3.3. Symmetry-preserving collision operator
This section presents an alternative method to design a collision quantum operator based on conserva-
tions and symmetries of LBM configurations. The collision operator Ω describe the behavior of particle
distributions at a collision event. Due to the symmetric pattern of the velocities and their weights,
Ω carries certain physical properties that can be phrased as invariance and equivariance relations
[114].

The invariances of density and momentum are discussed in the paragraph below (2.14). Denote f∗i
the post-collision state of velocity ci. The invariances are given by conservation equations

∑
i

(fi − f∗i ) = 0,
∑
i

(fi − f∗i ) ci = 0 (4.43)

The equivariance of scale, which is the first-order homogeneity with respect to f = (f1, . . . , fNv
), is given

by Ω(λf) = λΩ(f) for λ ≥ 0. Lastly, the collision operator is equivariant to rotations and reflections of
the configurations. For example, the collision operator in the D2Q9 model is equivariant with respect
to the action of the dihedral group D8 = 〈r, s|r8 = s2 = e, srs = r−1〉, which constitute the symmetries
of a regular octagon. The equivariance reads

Ω(σ · f) = σ · Ω(f), ∀σ ∈ D8, (4.44)

where the group actions in the left-hand side and right-hand side apply on the pre-collision and post-
collision distributions, respectively. An immediate application of the equivariance is the generation of
new data from a few through symmetry-defined permutations (f , f∗) 7→ {(σ · f , σ · f∗) : σ ∈ D8}. In the 3-
dimensional model D3Q27, the symmetry group of collsion contains 48 elements that form symmetries
of an octahedral.

Taking D2Q9 as a working example, we consider how to translate those invariances and equivariances
to the language of quantum operators. First, the equivariance of scale always holds as the amplitude
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encoding assumes normalized distribution. Furthermore, since the collision is realized by a unitary
operator, which is norm-preserving and therefore secures the invariance of density. The equivariance
of σ ∈ D8 with respect to its unitary representationW (σ) is defined by the commutativeness

UcolW (σ) =W (σ)Ucol, ∀σ ∈ D8, (4.45)

where Ucol represents the unitary collision operator acting on the Hilbert space of the encoded quantum
state (4.33). If a Hermitian operator H satisfies the commutation [H,W (σ)] = 0, the time evolution of
it also has the same commutation, i.e. [eitH ,W (σ)] = 0, θ ∈ R. Then Ucol might be realized as time
evolutions of symmetry-preserving Hermitian operatorsH such that [H,W (σ)] = 0 for all σ ∈ D8. Such
an operator can be obtained by projecting any Hermitian operator H0 onto the D8-invariant subspace.
This is accomplished by twirling it with respect to the representation W of D8. The concept of twirling
and its properties are discussed in subsection 2.3.3. In our context,

H = TD8(H0) =
1

|D8|
∑
σ∈D8

W (σ)H0W (σ)† (4.46)

Lastly, the invariance of momentum is not assured by our encoding scheme and quantum collision op-
erator. However, we might let the collision operator to “learn” the invariance by optimizing the evolution
time t. It is natural to require the quantum collision operator to preserve the realness of the amplitudes.
Our encoding resembles a single-particle state in Nv fermionic orbital modes in the Hartree-Fock basis.
Research in quantum chemistry often employs a class of particle-preserving unitaries made of single-
excitation and double-excitation rotations[115]. Also referred to as Givens rotations, those unitaries are
rotations in 2-dimensional subspaces with a fixed number of particles. As suggested by their names,
single- and double-excitation rotations preserve the presence of one and two particles in the subspaces
they act on, respectively.

G(1)(θ) =

(
cos

θ

2
|01〉+ sin

θ

2
|10〉

)
〈01|+

(
− sin

θ

2
|01〉+ cos

θ

2
|10〉

)
〈10|

G(2)(θ) =

(
cos

θ

2
|0011〉+ sin

θ

2
|1100〉

)
〈0011|+

(
− sin

θ

2
|0011〉+ cos

θ

2
|1100〉

)
〈1100|

(4.47)

The rotations are time evolutions G(i)(θ) = exp
(
iθH(i)

)
, i = 1, 2 of their generating Hermitian opera-

tors

H(1) =
1

4
(XY − Y X)

H(2) =
1

16
(XXXY +XXYX −XYXX +XY Y Y − Y XXX + Y XY Y − Y Y XY − Y Y Y X)

(4.48)

Let subscripts k, l indicate the qubits (from 1 to Nv) the operators act on. As the encoded state
|ψx〉 =

∑
i

√
fx,i |ei〉 has Hamming weight 1, double-excitation rotations act trivially. Meanwhile, single-

excitation rotations can be seen as interactions between two qubits, which average to zero upon twirling
unless an interaction is between the stationary mode (assume c1 = 0) and any non-stationary mode
(ck 6= 0 for k 6= 1) in the D2Q9 model.

TD8

(
H

(1)
k,l

)
=

1

4|D8|
∑
σ∈D8

W (σ)(XkYl − YkXl)W (σ)†

=
1

64

∑
σ∈D8

Xσ(k)Yσ(l) − Yσ(k)Xσ(l)

=

{
0, k, l 6= 1

± 1
8

∑
i ̸=1H

(1)
1,i , k = 1 or l = 1

(4.49)
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That is, twirling single-excitation rotations gives rise to only one operator which captures the interaction
between the stationary mode and every other non-stationary mode. The collision operator Ucol ≡
Ucol(θ) is now parametrized with a single parameter θ in exp

(
iθ
∑
i ̸=1H

(1)
1,i

)
, which is implemented by

the trotterization

exp

iθ∑
i ̸=1

H
(1)
1,i

 = lim
M→∞

∏
i ̸=1

exp

(
i
θ

M
H

(1)
1,i

)M = lim
M→∞

∏
i ̸=1

G
(1)
1,i

(
θ

M

)M (4.50)

It is evident that a single parameter cannot capture the collision phenomenon in which the equilibrium
state alone is determined by at least two physical quantities, namely the density and the velocity field.
Furthermore, themathematical expressions of equilibrium distributions are second-order polynomials in
the velocity field u. ApplyingUcol(θ) on |ψx〉 can only create new amplitudes that are linear combinations
of
√
fx,i, which are incapable to capture the second-order component of the collision. As a result, one

might introduce higher-order terms via the encoding

∑
x

|x〉 |ψx〉 |ψx〉 =
∑
x

|x〉

(∑
i

√
fx,i |ei〉

)⊗2

(4.51)

The new encoding now hasHammingweight 2 that enablesmeaningful applications of double-excitation
rotations within |ψx〉⊗2 in addition to single-excitation rotations.

When a sequence of twirled rotations forms a parametrized unitaryU(θ), the unitary apparently satisfies
the equivariance condition

U(θ)W (σ) =W (σ)U(θ), ∀σ ∈ D8, (4.52)

This makes it a valid symmetry-preserving ansatz for the collision operator Ucol(θ). The parameters are
selected by maximizing the overlap of pre-collision state |ψ〉 =

∑
i

√
fi |ei〉 and the post-collision state

|ψ∗〉 =
∑
i

√
f∗i |ei〉 over a generated dataset S = {(f , f∗)}where f∗ are post-collision distributions from

incoming distributions f . The optimal parameters implement the collsion operator by Ucol = Ucol(θ
opt)

with θopt = argminL(θ) for the loss function

L(θ) = 1

|S|
∑

(f ,f∗)∈S

1− |〈ψ∗|⊗2Ucol(θ)|ψ〉⊗2|2 (4.53)

4.3.4. Collision ansatz design
Even after we project every generator onto the symmetry-invariant subspace by twirling, the operator
pool that survives is still enormous. All symmetry-adapted single-excitation rotations G̃(1)(θ) and dou-
ble�excitation rotations G̃(2)(θ) emain available, where the tildes indicate that each rotation has been
twirled. Because specifying the collision ansatz architecture by an a priori fixed sequence of such gates
is impractical, we grow the circuit adaptively in the spirit of ADAPT-VQE [116, 117].

At every step we consider the operator pool P of all twirled single- and double-excitation rotations.
Starting from the current operator Ucol(θ

∗), we evaluate the magnitude of the loss-function derivative
with respect to the parameter of each candidate operator G̃ ∈ P .

gG̃ :=

∣∣∣∣∂L((θ∗, θ))

∂θ

∣∣∣∣
θ=0

(4.54)

where loss function now takes G̃(θ)Ucol(θ
∗) as the collision operation. New rotations to be inserted

to the ansatz are sampled from the normalized distribution of (gG̃)G̃∈P . As new operators are being
added to the ansatz, the entire set of parameters should be reoptimized.

In the end of the optimization, we prune redundant gates to control circuit depth. We look for rotations
whose current angles fall below a pruning tolerance εprune. The following pruning strategy is adopted
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from [118]. As newly added rotations have a tendency to have small angles, we bias the pruning
towards rotations near the start of the ansatz. To balance between the magnitude and the relative
position of a rotation, we introduce a decision factor for each operator.

fi = F1(θi)F2(xi) (4.55)

where xi := i/N is the relative position of the rotation in an ansatz with N operators and θi the rotation
angle. We emphasize operators with small rotations and low tendency to change

F1(θi) =
1

θ2i

∣∣∣∣ ∂L∂θi
∣∣∣∣−1

(4.56)

We also prioritize the removal of operators that appear early in the ansatz, which accounts for the small
magnitude of newly added rotations near the convergence regime, by a decaying function F2 = e−αxi .
As the angles and the respective gradients are available after optimizing the loss function, the evaluation
of all decision factors fi can be done in O(N) time. We identify candidates for removal by operators
with the largest factors fi.. We only remove candidate operators with magnitude below the threshold
εprune, which features the average magnitude of the NL most recently added operators

εprune =
0.1

NL

NL−1∑
i=0

|θN−i| (4.57)

The removal is performed after every grow-optimize iteration, as outlined in Algorithm 1. We might pro-
ceed the next iteration without reoptimizing parameters as eliminating these small-magnitude operators
has a negligible effect on the ansatz.

Algorithm 1 Adaptive collision ansatz
Input: number of new operators each step NL.
Initialize operator pool P and initial ansatz Ucol(θ).
repeat

Compute gradients gG̃ = |∂L/∂θ|θ=0 for every pool operator G̃ ∈ P
Sample NL operators from P with probability ∼ gG̃.
Add new operators to the ansatz and extend parameters θ ← (θ, 0, . . . , 0).
Optimize ansatz parameters θ ← argminL(θ) with the loss function (4.53).
Compute the decision factors fi (4.55) for all ansatz operators.
Select NL operators G̃j with the largest fj values.
Compute the prunning threshold εprune (4.57).
if |θj |< εprune then.

Remove operator G̃j from the ansatz and remove θj from θ.
end if
Evaluate the loss function value L(θ).

until convergence
Output: optimized collision operator Ucol(θ) and mean fidelity 1− L(θ).

4.3.5. Unitary streaming
A quantum implementation of the streaming step that is compatible to the amplitude encoding performs
the transformation

∑
x

Nv∑
i=1

|x〉
√
fx,i |ei〉 7→

∑
x

Nv∑
i=1

|x〉
√
fx+ci,i |ei〉 =

∑
x

Nv∑
i=1

|x− ci〉
√
fx,i |ei〉 (4.58)

Since |ei〉 has exactly one 1-bit at the position i, the described operator can be realized by unitaries that
perform addition of −ci in the spatial-coordinate register controlled on qubit i of the velocity register.
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We further separate the coordinate into spatial axes |x〉 = |x〉 |y〉 |z〉. Then the streaming operator can
be expressed by the unitary

Ustr =

Nv∏
i=1

[
ADD(−ci,x)⊗ADD(−ci,y)⊗ADD(−ci,z)⊗ |1〉 〈1|i + I⊗3 ⊗ |0〉 〈0|i

]
(4.59)

Since every velocity ci has components ci,x, ci,y, ci,z ∈ {0, 1,−1} in common DnQm models, the op-
erator can be perform by the controlled version of arithmetic circuits INCREMENT1 and INCREMENT−1

illustrated in Figure 4.6. Note that in the presence of two copies of |ψx〉, which is the case for the
encoding (4.51), the streaming operator is equivalent to applying two Ustr operators sequentially, each
on a copy of |ψx〉 and the shared coordinatedel register |x〉.

4.3.6. Multi-round LBM simulations
From the theoretical complexity and numerical performance that will be presented in chapter 5, we find
that implementing the collision operator as a block-encoded operator is the most feasible option. We
propose a pipeline for multi-round LBM simulations in Figure 4.11, which combines amplitude encoding,
block-encoded collision (optimization and application), and unitary streaming.

Figure 4.11: Quantum algorithm for the LBM using amplitude encoding. The process begins with the construction of a
block-encoded collision unitary, obtained by optimizing a cost function over the orthogonal manifold with respect to physical
constraints such as conservation laws and lattice symmetries. In the main simulation loop, each step applies the collision

unitary, followed by optional oblivious amplitude amplification to boost post-selection success probability. The ancillas are then
measured, and upon successful post-selection, a unitary streaming operation shifts the encoded distributions across lattice

sites.

4.4. Error analysis of quantum Lattice Boltzmann simulations
4.4.1. Simulation using tensor-product encoding
The performance of our quantum Lattice Boltzmann method is characterized by three layers of approx-
imation error, the estimation error from phase estimation protocols, the arithmetic error in computing
equilibrium distributions, and the error that occurs in streaming.

We first consider the phase estimation procedure used to extract the particle density ρ and momenta pα
for α ∈ {x, y, z}. Let ρ̂ and p̂α denote the estimated quantities. If the protocol uses r principal precision
qubits, the accuracy of estimation satisfies:

Pr(|ρ̂− ρ|< δest) ≥ 1− εcol, Pr(|p̂i − pi|< δest) ≥ 1− εcol (4.60)
with resolution δest = 2−(r+1). When the tapered protocol introduces an additional rtaper ancillary qubits
to improve fault tolerance, the failure probability εcol can be bounded by

εcol ≤ min

{
8 exp

[
− 2R0 − 1

2
π2 log(4R)

]
, 10 exp

[
− 2R0 − 6

2
π2 log(100R0 + 75)

]}
(4.61)
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for R = 2r+rtaper and R0 = 2rtaper−1 − 1 [27].

Next, arithmetic subroutines discussed in subsection 4.2.3 are used to compute the equilibrium dis-
tribution fi = fi(ρ,p) via the expression (4.16). These circuits assume the availability of sufficient
ancilla qubits to implement fixed-point arithmetics with QFT-based operations. The output estimates
f̂ eqi satisfy

Pr(|f̂ eqi − f
eq
i |< Cδest =: δcol) ≥ 1− εcol (4.62)

for a constant C that depends on the bit-width of intermediate arithmetic operations and the truncation
of binary division (4.17). This bound ensures that the total error incurred in the quantum LBM pipeline
remains within tolerable limits for practical fluid simulation.

Finally, the streaming step implements a shift of the distribution components along discrete velocity
directions. We have discussed two alternative approaches, space-time encoding and approximate
streaming, to address the non-unitary nature of streaming in subsection 4.2.5. When implemented
with finite resources such as using registers with bounded precision, the streaming operation incurs its
own implementation error. Let f̂ streami denote the distribution component after the streaming operation.
Assume we can bound the streaming error by

Pr(|f̂ streami − f streami |< δstr) ≥ 1− εstr (4.63)

where δstr captures the maximal deviation due to imperfect shift operations, and εstr is the correspond-
ing failure probability. The values of δstr and εstr depend on the choice of propagation method and
internal settings. For example, space-time encoding enables a perfect streaming, i.e. δstr = 0 and
εstr = 0 at the cost of large qubit use. The approximate streaming, on the other hand, incurs errors
from the Chapman–Enskog expansion and the numerical precision within a quantum solver and a prob-
ability of failure from the algorithm of the quantum solver.

Assuming the error events are independent and each round consists of these two steps, we define the
total pointwise error per round as

δround := δcol + δstr, εround := εcol + εstr (4.64)

Then, overN rounds of simulation, the total pointwise error accumulates linearly in the worst case, and
the failure probability accumulates additively by the union bound. Therefore, the final distribution f̂ (N)

i

after N rounds satisfies

Pr(|f̂ (N)
i − f (N)

i |< N δround) ≥ 1−N εround (4.65)

This worst-case bound ensures robustness under sequential updates and provides a guideline for
choosing initial roundwise precision such that the final error stays within desired tolerance ∆, i.e., by
setting

δround ≤
∆

N
, εround ≤

εtotal
N

(4.66)

for target accuracy ∆ and total failure probability εtotal.

4.4.2. Simulation using amplitude encoding
In the amplitude encoding approach, the sole source of error arises from the non-perfect nature of the
employed collision operator. For a block-encoded collision operator, since the output state must be post-
selected on an ancilla subspace, the procedure is inherently probabilistic. To mitigate this, we apply
oblivious amplitude amplification, specifically the fixed-point method, to amplify the success probability
to at least 1 − εcol for a small failure probability bound εcol > 0, while ensuring that the desired output
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state is preserved within acceptable error bounds. (See the last paragraph of subsection 4.3.2). Recall
that both the variational method in Algorithm 1 and the unitary optimization in (4.41) find the collision
operator by maximizing the fidelity of the estimate

∑
i(f̂

eq
i )1/2 |ei〉 and the target state

∑
i(f

eq
i )1/2 |ei〉.

A classical distance between distributions f eq = (f eq1 , . . . , f eq
Nv

) and f̂ eq = (f̂ eq1 , . . . , f̂ eqNv
) is called total

variation and is defined by

dTV(f̂
eq, f eq) =

1

2

Nv∑
i=1

|f eqi − f̂
eq
i | (4.67)

We can relate the total variation distance to quantum fidelity F =
∑
i|f

eq
i f̂ eqi |1/2 by the inequali-

ties

1− F ≤ dTV(f̂
eq, f eq) ≤

√
1− F 2 (4.68)

Since we have optimized the collision operator with randomly sampled input distributions, the error
bounds do not hold for individual distributions but for the expectation value over the space of distribu-
tions

Pr(E[dTV(f̂
eq, f eq)] < δcol) ≥ 1− εcol (4.69)

for a value δcol > 0 incurred by the fidelity error, e.g., the results in Figure 5.1. Although the error bound
can also be generalized to N rounds of simulation in a similar manner to (4.65), the actual error can
become saturated as the system converges to its steady state. Figure 5.3 illustrates two scenarios:
one where the error saturates, and another where it diverges.

The proposed quantum algorithm offers a potential exponential memory advantage over classical lattice
Boltzmann solvers by leveraging amplitude encoding. In a classical setting, representing the particle
distribution functions fi(x) acrossM lattice sites and Nv discrete velocities requires O(MNv) memory.
In contrast, our amplitude encoding strategy stores this data in the amplitudes of a quantum state over
dlog2Me + Nv qubits. Note that we might need further r (usually r ≤ 2) ancillary qubits as they are
reusable after each simulation step.

The quantum collision step via block-encoded unitary UC ∈ Rp×p for p = 2rNv can be implemented
by a sequence of p(p − 1)/2 two-qubit gates [112]. Suppose the amplitude amplification subroutine
applies L layers of a Grover-like operator which involve two queries to UC and U †

C . The fixed-point
strategy in [77] is capable of increasing the post-selection success probability to ≥ 1 − ε for ε > 0

for any L ≥ log(2/
√
ε)√

λ
, where λ is the initial success probability as demonstrated in Figure 5.1. The

measurement of ancillas only induces a small complexity, assuming r is small. Lastly, implementing
the unitary streaming operator on our encoding requires O(N2

v ) CNOT gates. The total number of
two-qubit gates for each step of the simulation is

O

(
p(p− 1) log(2/

√
ε)√

λ

)
+O(N2

v ) = O

(
N2
v 4

r log(2/
√
ε)√

λ

)
. (4.70)



5
Numerical Simulations and Analysis

5.1. Performance of collision operators by optimization on the or-
thogonal manifold

We simulate the optimization (4.41) with different number of ancillas to determine whether the collision
operator can be implemented by a block-encoding unitary. Figure 5.1 presents the fidelity error of the
resulting operator, along with themean success probability. The figure also includes experiments where
two copies of |ψ〉 =

∑
i

√
fi |ei〉 are concatenated together to make the data-carrying initial state.
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Figure 5.1: Mean fidelity error per copy of the output state of the optimal unitary collision. The optimization becomes finding
the best (block-encoded) unitary to map |+⟩⊗r |x⟩⊗c to |0⟩⊗r |y⟩⊗c with r being the number of ancillas. Shown values

λ = ∥(⟨0|⊗r⊗I)U |a⟩ |x⟩ ∥2 are the probability of measuring the ancillas in the state |0⟩⊗r for post-selection. The case r = 0
correspond to a fully unitary collision operator, hence λ = 1.

5.2. Performance of symmetry-preserving collision ansatzes
We examine the training process and convergence of the unitary collision created by Algorithm 1 when
the operator pool is created by twirling excitation rotations (4.47) with respect to the symmetry group
of the D2Q9 model. The corresponding encodings on 9 qubits of mesotropic distributions are |ψ〉 =

41
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∑9
i=1

√
fi |ei〉 and |ψ∗〉 =

∑9
i=1

√
f∗i |ei〉 for the initial state and the post-collision state, respectively.

(See the description of (4.33) for related assumptions and notations.). The parametrized unitary might
act on either 9 or 18 qubits; in the latter case, two copies of the states, i.e., |ψ〉⊗2 and |ψ∗〉⊗2, are used
as the initial state and target state. Note that the operator pool has size |P|= 105 in the latter case,
while the form case has only |P|= 1 twirled operator, which makes the algorithm converge after one
iteration. The quality of the collision unitary, measured by the mean fidelity error per copy, is reported
in Figure 5.2.
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Figure 5.2: Mean fidelity error per copy of the output states of the parametrized collision operator. With c = 1 copy of the given
states, the ansatz contains exactly one operator. With c = 2, the growing and pruning strategies described in Algorithm 1 apply
to balance the ansatz performance and its size. At every iteration, the algorithm selects NL = 2 operators to insert and also

removes at most NL existing operators from the circuit. The numbers above small dots indicate the number of operators in the
ansatz at an iteration.

5.3. Simulations of the Quantum Lattice Boltzmann Method
From the numerical results presented in the previous sections, we find the collision operators via
optimization-on-manifold give excellent performance using a reasonable amount of quantum resources.
Therefore, we decide to apply the resulting block-encoding unitary (that corresponds to c = 1 and r = 2)
for follow-up LBM simulations.

Figure 5.3 illustrate the fluid flow and the fidelity error for the evolution of two initial density distributions.
Depending on the initial density distribution, the quantum algorithm can maintain high-fidelity outputs or
experience a diverging error. A similar numerical simulation (up to 10 steps) for theGaussian distribution
(subfigures (c) and (d)) was presented in a recent work [57] also using amplitude encoding. At step
t = 10, our method achieves an error that is smaller by a factor of approximately 7 to 8 compared to
their method.
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(a) Evolution of a uniformly random distribution and velocity field.
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(c) Evolution of Gaussian distribution with initial velocity field (ux, uy) = (0.4, 0).
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Figure 5.3: Simulation of the quantum algorithm for the lattice Boltzmann method with amplitude encoding strategy for the
D2Q9 model on a 16× 16 lattice. Every simulation step includes an application of the 2-ancilla block-encoded collision
operator (with successful post-selection) followed by exact unitary streaming. (a,c) Time evolution of an initial density
distribution (top: quantum algorithm, bottom: ideal simulation). (b,d) Convergence and error of the quantum algorithm,

measured in terms of fidelity, F (ψ, ϕ) = |⟨ψ|ϕ⟩|. The red lines present the convergence of the ideal flows measure by its
change at a step. The blue lines show the fidelity error of the output by the quantum algorithm with respect to the ideal flow.



6
Discussion and Conclusion

This thesis has explored quantum algorithms for simulating fluid dynamics through the lattice Boltzmann
method (LBM), with a particular focus on designing efficient quantum circuits for streaming and collision
steps. Central to our quantum algorithms for the LBM are two encoding schemes for representing
particle distribution functions as quantum states: amplitude encoding and tensor-product encoding.
Each scheme offers distinct advantages and limitations in terms of circuit depth, accuracy, and physical
interpretability.

Tensor-product encoding assigns each distribution component to a separate qubit. This preserves lo-
cality and allows a more modular representation of distributions. For instance, state preparation and in-
termediate updates at every time step can be performed simultaneously on the distribution-carry qubits.
Collision operations can be decomposed into macroscopic quantity estimations and arithmetics, which
are implemented by quantum phase estimation and quantum arithmetics protocols, respectively. This
allows a perfect collision operator up to numerical resolution induced by the qubit width r for binary
representations, which comes at the cost of resource overheads to perform intermediate computations.
The main limitation of this approach is Quantum Fourier Transform operators on O(r) qubits that typi-
cally serve as key components in quantum arithmetic circuits performing calculation in the Fourier do-
main. Additionally, tensor-product encoding inhibits unitary streaming, and alternative methods, such
as space-time encoding and approximate streaming, further require a significant amount of resources
and entail another source of error. Although tensor-product encoding supports high-precision LBM im-
plementations with a transparent mathematical interpretation, its high gate complexity and the need for
precise calibration of intermediate operations render it suitable only for relatively large, fault-tolerant
quantum architectures.

In contrast, amplitude encoding encodes the square roots of distribution values directly into the ampli-
tudes of a single quantum state. As this encoding allows a straightforward representation of symmetry
groups of LBM models, low-depth symmetry-preserving variational models can be designed to approx-
imate the collision effect. This gate efficiency makes this variational approach well-suited for near-term
quantum hardware, where quantum gates are prone to errors. On the other hand, amplitude encoding
allows collision operators to be expressed via block-encoded unitaries and manipulated using standard
techniques such as oblivious amplitude amplification, altogether implemented byO(N2

v ) two-qubit gates
on O(Nv) data-carrying qubits, where Nv is the number of velocity vectors. For Nv ≤ 27, the neces-
sary system size falls within the projected capacity of early fault-tolerant quantum devices, justifying
continued investigation in the near future. This encoding scheme, however, also suffers from several
drawbacks. First, post-selection is typically required to extract physically meaningful outputs, which
introduces non-determinism into multi-step simulations. Second, the encoding obscures locality and
makes it challenging to interpret output states in terms of physical quantities.

To validate the feasibility of amplitude encoding, we implemented preliminary experiments using block-
encoded collision operators and a unitary streaming transformation. We studied the relation between
probabilities of successful post-selection and the number of ancillas to guide our selection of the block-
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encoding model. We also measure errors across multiple rounds along the convergence of the system
in a full LBM simulation, verifying the algorithm outputs final quantities to within acceptable error.

Looking ahead, several directions emerge for near-future work. First, theoretical analysis of error ac-
cumulation across successive LBM steps, especially under repeated post-selection of quantum super-
positions, is essential for understanding long-term stability. In particular, the varying post-selection
probabilities associated with intermediate states of the form∣∣∣ψ̃i〉 =

√
λi |0r〉 |ψ〉+

√
1− λi

∣∣0r⊥〉 |. . .〉 , i = 0, 1, . . . (6.1)

introduce amplitude imbalances when constructing global superpositions like
∑
i |i〉

∣∣∣ψ̃i〉. If these vari-
ations are not properly accounted for, the block-encoded collision operator may inadvertently distort
the amplitudes across lattice sites, effectively driving the quantum state out of the subspace spanned
by uniform superpositions. This deviation can lead to a violation of mass conservation, undermining
the physical foundation of the simulation.

Second, implementing and comparing different types of boundary conditions, such as bounce-back
versus specular reflection, within both encoding frameworks would illuminate how effectively quantum
circuits can capture particle interactions at walls. Techniques to impose these constraints unitarily could
open up practical routes to model dynamics of confined flows.

In the longer term, one promising direction is to design collision operators for amplitude encoding
that incorporate physical parameters, such as viscosity or relaxation time, directly into their construc-
tion, rather than relying solely on pre-sampled equilibrium distributions. This would enable a form of
physics-informed quantum learning, where the solver is variationally trained to respect macroscopic
fluid behavior. Such an approach could allow the quantum circuit to adapt collision dynamics based
on flow conditions, improving accuracy and generalizability. Another avenue is to combine symmetry-
preserving ansatzes with post-selection techniques, leveraging group-theoretic structure to restrict our
search to physically admissible subspaces. This could significantly reduce the training overhead by
narrowing the variational search space and improving convergence, especially when learning LBM
dynamics constrained by certain conservations and symmetries.

In conclusion, this thesis lays foundational work for quantum fluid simulation using the lattice Boltzmann
framework. The two encoding strategies studied here represent two ends of a design spectrum, one
optimized for compactness and precision, the other for efficiency and applicability. Their trade-offs, as
well as their interplay with circuit depth, error tolerance, and physical interpretation, provide a basis
for future development. As new quantum hardware and algorithms continue to advance, the meth-
ods developed in this work can serve as building blocks for larger-scale quantum simulations of fluid
phenomena.
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A
Tapered Quantum Phase Estimation

In the end of subsection 4.2.2, we discuss a technique called tapered Quantum Phase Estimation
(tQPE) to, with a high probability, significantly increase the accuracy of the estimation. Unlike the
standard QPE protocol that starts with the initial state |+〉⊗r, tQPE requires r′ = r + rtaper precision
qubits to be initialized in the state

|φ〉 :=
2r

′
−1∑
k

sin
(
πk/2r

′
)

√
2r′−1

|k〉 (A.1)

Then applying
∑2r

′
−1

k=0 |k〉 〈k| ⊗Uk, followed by the inverse quantum Fourier transform on the precision
qubits, increases the probability of getting an estimate error below δ = 2−(r+1) to 1 − ε. In particular,
the original work [27] shows that rtaper = 1+ dlog2(logd10/εe+4)e suffices for ε ≥ 10−81. For example,
ensuring the failure rate below e = 10−11 requires only rtaper = 6 extra qubits.

Since the original work does not address the preparation of the initial state (A.1), we describe a circuit
with O(r) simple gates to prepare |φ〉 with an ancilla. First, apply H⊗(r′+1) on |0〉⊗r

′
|0〉 to create the

state 1√
2r′

∑2r
′
−1

k=0 |k〉 ⊗
|0⟩+|1⟩√

2
. Then, apply controlled phase gradients in the following manner. For

every precision qubit j = 1, 2, . . . , r′, apply the phase gate P (θj) and the ancilla-controlled phase gate
CP (−2θj) for θj = π/2r

′−j . Then, apply H on the ancilla to create the state

1√
2r′

2r
′
−1∑

k=0

(
cos

(
πk

2r′

)
|k〉 |0〉+ i sin

(
πk

2r′

)
|k〉 |1〉

)
(A.2)

We shall amplify the amplitude of the subspace where the ancilla is |1〉. We can raise the corresponding
probability of measuring the ancilla in state |1〉 from 1

2 to 1 using a single iteration of modified amplitude
amplification. Denote A the quantum circuit that prepares the state (A.2) from |0〉⊗r

′
|0〉. After one

iteration of A · C0r′P (π/2) · A−1 · (I⊗r′ ⊗ P (π/2)), the ancilla is deterministically disentangled in the
final state |φ〉 |1〉. In the expression, P (π/2) = diag(1, i) is called the quantum S gate, and C0r′P (π/2)

denotes the S gate acting on the ancilla when the precision qubits are in the state |0〉⊗r
′
.
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B
Approximate streaming

We can approximate the post-streaming distributions f eqi (x + ∆x) ≈ f eqi (x) + ∆x · ∇f eqi (x) with the
conservations of density and momentum applied on the non-equilibrium part fneqi = fi − f eqi , i.e.,∑
i f

neq
i = 0 and

∑
cif

neq
i = 0.

We establish the relation between fneqi and ∇f eqi with the first-order approximation1in the Chapman–
Enskog expansion [7],

fneqi ≈ −τ (∂tf
eq
i + ci · ∇f eqi ) (B.1)

Applying the chain rule on the expression (2.16) of equilibrium distributions yields

∇f eqi =
∂f eqi
∂ρ
∇ρ+ ∂f eqi

∂u
∇u

= wi

[
1 +

ci · u
c2s

+
(ci · u)2

2c4
− |u|

2

2c2s

]
∇ρ+ wi∇u ·

[
ci
c2s

+
(ci · u)ci

c4s
− u

c2s

] (B.2)

where ∇u ≡ (∇u)ij = ∇jui denotes the Jacobian of the velocity field. We substitute this to the
approximation (B.1) to evaluate

∑
i

cif
neq
i ≈ −τ

∑
i

ci (∂tf
eq
i + ci · ∇f eqi )

= −τ

[∑
i

ci∂tf
eq
i

+
∑
i

wi

(
1 +

ci · u
c2s

+
(ci · u)2

2c4
− |u|

2

2c2s

)
(ci · ∇ρ) ci

+ρ
∑
i

wi

(
ci · ∇u ·

[
ci
c2s

+
(ci · u)ci

c4s
− u

c2s

])
ci

]
(B.3)

The first term vanishes as ∂tf eqi = O(Kn)2, which is the same order as the error of the approximation
(B.1).

1The exact expression obtained from the force-free Lattice Boltzmann equation (2.18) is − 1
τ
f
(1)
i =

(
∂t1f

eq
i + ci · ∇1f

eq
i

)
,

where f (1)i , ∂t1 , and∇1 come from the multiscale expansion in several orders in ε = O(Kn) that fi = feqi +εf
(1)
i +ε2f

(2)
i + . . . ,

∂t = ε∂t1 + ε2∂t2 + . . . , and ∇ = ε∇1. Neglecting second and higher order terms leads to the approximate expression
− 1

τ
fneqi =

(
∂tf

eq
i + ci · ∇feqi

)
, which has an error of O(ε). Provided that the LBM formulation is accurate up to O(ε2), this

approximation presents a considerable source of error compared to the standard LBM.
2Knudson number (Kn): the ratio of molecular mean free path to a characteristic length
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In the second term, only components with an even order of ci make a contribution, as odd-order mo-
ments vanish by the isotropy conditions (2.15). The remaining parts are−τ

∑
i wi

(
1− |u|2

2c2s

)
(ci ·∇ρ) ci

and − τ
2c4s

∑
i wi(ci · u)2(ci · ∇ρ) ci. Those terms can be evaluated upon rearranging ci factors

∑
i

wi

(
1− |u|

2

2c2s

)
(ci · ∇ρ) ci =

(
1− |u|

2

2c2s

)
(∇ρ⊗ I) ·

∑
i

wici ⊗ ci

=

(
1− |u|

2

2c2s

)
(∇ρ⊗ I) · c2s I

= Tr(I)

(
c2s −

|u|2

2

)
∇ρ

(B.4)

where Tr(I) = d is the number of spatial dimensions, and

∑
i

wi(ci · u)2(ci · ∇ρ)ci = (u⊗ u⊗∇ρ⊗ I) ·
∑
i

wici ⊗ ci ⊗ ci ⊗ ci

= (u⊗ u⊗∇ρ⊗ I) · c4sI(4)
(B.5)

The rank-4 tensor I(4) is defined as I(4)αβγδ = δαβδγδ + δαγδβδ + δαδδβγ . We can further simplify the last
equation as |u|2∇ρ+ 2(u · ∇ρ)u, hence,

∑
i

wi

(
1 +

ci · u
c2s

+
(ci · u)2

2c4
− |u|

2

2c2s

)
(ci · ∇ρ) =

(
dc2s +

(
1− d

2

)
|u|2

)
∇ρ+ 2(u · ∇ρ)u (B.6)

We can remove odd-order moments in the third term and evaluate it in a similar manner

ρ
∑
i

wi

(
ci · ∇u ·

[
ci
c2s

+
(ci · u)ci

c4s
− u

c2s

])
ci =

ρ

2c4s

∑
i

wi (ci · ∇u · ci) (ci · u)ci

− ρ

c2s

∑
i

wi(ci · ∇u · u)ci

=
ρ

2c4s
(∇u⊗ u⊗ I) ·

∑
i

wici ⊗ ci ⊗ ci ⊗ ci

− ρ

c2s
((∇u · u)⊗ I) ·

∑
i

wici ⊗ ci

=
ρ

2
(∇u⊗ u⊗ I) · I(4) − ρ ((∇u · u)⊗ I) · I

=
ρ

2

[
(∇ · u)u+

1

2
∇|u|2+(u · ∇)u

]
− dρ(u · ∇)u

= ρ

[
1

2
(∇ · u)u+

1

4
∇|u|2+

(
1

2
− d
)
(u · ∇)u

]

(B.7)

By combining the three computed terms in (B.3), we obtain an approximate equation for
∑
i cif

neq
i = 0

that is linear in both ∇ρ and ∇u. Another equation is needed to obtain needed values to evaluate the
gradient in (B.2). The same calculation for

∑
i f

eq
i = 0 yields the equation

−τ (u · ∇ρ+ ρ∇ · u) = 0 (B.8)

Assume a quantum linear solver outputs a solution (∇ρ,∇u) to the system of equations, then we can
compute ∇f eqi from it and the post-streaming distributions f eqi (x+∆x) ≈ f eqi (x) +∆x · ∇f eqi (x). With
∆x = −ci, we result in an approximate streaming scheme consistent with the quantum LBM algorithm
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for tensor-product encoding. The error of this streaming method is not only O(Kn) in its formulation
but also depends on specific quantum algorithms to solve the linear system of equations and compute
subsequent evaluations.
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