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Abstract

Unmanned vehicles are a vital topic in today’s science and technology field. The safety
problem of unmanned vehicles has been paid more attention from researchers. People are
continually developing new control technologies, making the auxiliary driving or control of
vehicles more accurate and reliable. Before designing a reliable controller, researchers need to
obtain an accurate model of the vehicle system. However, the vehicle is a complex system, and
various vehicle parameters are difficult to obtain by direct sensor measurement. In addition,
there are deviations between the actual vehicle and the simulation model. At this time, it is
necessary to make system identification to obtain reliable vehicle parameters and models.
In this paper, vehicle simulation is carried out based on the CarSim C-Class model under
the environment of CarSim vehicle simulation software. The model includes tire, suspension,
steering, driver, and other subsystems. This platform can simulate a vehicle closed to the
real one. The vehicle model can be controlled through Simulink and output the real-time
data of various variables of the vehicle system. Then, the data required for identification and
validation can be obtained through the joint simulation of CarSim and Simulink.
By comparing different vehicle and tire models, different identification data sets and different
algorithms, this paper summarizes the advantages and disadvantages of different choices and
their applicability. First, the comparison between the bicycle model and the four wheels vehi-
cle model is implemented. The Interior-point algorithm was used to identify the two models
under different control data sets. The results of parameter validation and vehicle validation
are analyzed.
Then, under the same control data set, the four wheels model is selected for the compara-
tive experiment between different algorithms. The first comparison with the Interior-point
algorithm is the Unscented Kalman Filter (UKF) and its improved method Particle Swarm
Optimization-Unscented Kalman Filter (PSO-UKF). The Magic Formula tire model was then
identified by Genetic Algorithm (GA) algorithm, which compares with the Dugoff tire model.
Each model and algorithm has its suitable scenarios. Also different data sets lead to various
result. The analysis and application suggestions of different algorithms, data sets and models
will be given in the end.
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Chapter 1

Introduction

1-1 Project Background

In the field of systems and control, various algorithms are used to control machine to operate
stably, accurately and rapidly. This has very high requirements for the control algorithm.
For example, the control system needs to have a fast response speed, small overshoot, and
no steady-state error. At the same time, the system should also have robustness and anti-
interference ability [5]. Therefore, before designing the control system, the precise mathemat-
ical model of the system must be mastered, and system identification plays this role.
The system identification uses statistical methods to construct dynamic systems’ mathemati-
cal models from measured data [6]. System identification also includes identification algorithm
selection and the optimal design of experiments to generate data set to fit such models effec-
tively.
When doing vehicle design and control, The accuracy of parameters plays an important role
in dynamic modeling and control of a vehicle, such as mass, the moment of inertia, stiffness.
Such parameters’ uncertainty will have serious adverse effects on the acceleration and brak-
ing performance and steering stability, which would lead to a decline in safety. Given the
limitation of sensors, it is hard to measure the value of some states directly. As a result, the
vehicle dynamical parameters identification is the top priority of vehicle control.
For vehicle parameters identification, the commonly used method are least-square optimiza-
tion [7][8], Kalman Filter (KF)[9][10], and neural network[11]. Other optimization methods
can also be used to do identification similar as least-square optimization, such as Interior-point
method. Moreover, Genetic Algorithm (GA)[3] and Particle Swarm Optimization (PSO)[12]
can be used to solve problems with high dimension or multiple local optimums.
In this project, the Interior-point algorithm and the Unscented Kalman Filter (UKF) are
implemented to identify the vehicle’s parameters. The PSO method is combined with the
UKF. The GA identify the parameters of the Magic Formula.
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2 Introduction

1-2 Project Goals

The goal of this project will be divided into the following parts. Firstly, a vehicle’s full iden-
tification cycle will be practiced in the bicycle vehicle model and four wheels vehicle model
scenarios by using Interior-point algorithm with different data sets. The difference between
simplified and complex models, the result from different data sets, and the validation results
will be studied.
Secondly, some other algorithms such as UKF, Particle Swarm Optimization-Unscented Kalman
Filter (PSO-UKF), and GA will also be implemented. The results will be analyzed and com-
pared.
The conclusion of data set, model, and algorithm selection is given by analyzing the results
of the experiments.

1-3 Vehicle Simulation Platform

In this project, CarSim is used to simulate a real vehicle. CarSim delivers the most accurate,
detailed, and efficient methods for simulating the performance of passenger vehicles and light-
duty trucks. With twenty years of real-world validation by automotive engineers, CarSim is
universally the preferred tool for analyzing vehicle dynamics, developing active controllers,
calculating a car’s performance characteristics, and engineering next-generation active safety
systems [13].

1-4 Report Structure

This thesis will be introduced in the following chapters. The tire model and vehicle model
are introduced in Chapter 2. Chapter 3 discusses data acquisition from CarSim and data
processing method. The experiments and analysis of parameter identification by Interior-
point method are shown in Chapter 4 and the experiments and analysis by other methods
such as UKF and GA are introduced in Chapter 5. The conclusions and recommendations
are given in the last part, Chapter 6.
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Chapter 2

Vehicle Modeling

Before implemented the identification algorithms, the physical model should be formulated.
The vehicle is simulated as an object in space, which is composed of many separate parts in
a three-dimensional space and has a high degree of freedom. After simplification, it can be
processed as a three-degree-of-freedom model (3-DOF) system.
There are generally two methods to construct a vehicle model: the kinetic and dynamic
methods. The dynamic method can better describe the dynamic performance by analyzing
the equation relation between the force and acceleration of the vehicle, and it is chosen for
this project. Also, some components, such as the tire model, are required when constructing
a vehicle model and will be given in the next section.
This chapter refers to the book "Vehicle dynamics and control" [14].

2-1 Tire Model

Tires are the only part of the vehicle that comes into contact with the ground. They drive,
brake, and steer the vehicle by acting force against the ground. Therefore, the tire model is
one of the essential parts of vehicle simulation. Tire models describe the longitudinal, lateral
forces and moments generated by the wheel motion under different force and slip conditions.
There are many different types of tire models being used. Usually, models can be distin-
guished as theoretical models based on physics of the tire construction[15][16], and empirical
or semi-empirical models based on experimental results[17][18]. Also, combinations of both
approaches are used in the development of the tire model[3]. The Magic Formula and the
Dugoff model will be studied in this thesis.

2-1-1 Magic Formula

The Magic Formula tire model was proposed by Professor H.B.Pajejka of Delft University of
Technology in the Netherlands in 1987. It is a semi-empirical tire model based on experimen-
tal data.
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4 Vehicle Modeling

The tire test data are fitted by trigonometric function combination, and a set of models with
the same form can express the tire longitudinal force, lateral force and moment.
The equations of Magic Formula reference the paper "An Alternative Method to Determine
the Magic Tyre Model Parameters Using Genetic Algorithms" [3] and "The Magic Formula
Tyre Model" [17].
The Magic Formula [17] at pure slip conditions is expressed as:

y(x) = D · sin[C · arctan{B · x− E · (B · x− arctan(B · x))}] (2-1)

where:

Ypure(X) = y(x) + Sv

x = X + Sh
(2-2)

Where the output variable Ypure represents the braking and traction force Fx when the input
variable X represents the longitudinal slip ratio λ and Ypure represents the lateral force Fy
when the input variable X represents the slip angle α[3]. Sv represents horizontal shift and
Sh represents vertical shift which are set as zero in this project.
Slip ratio is the difference value between the actual distance traveled by the tire and the
equivalent distance of the tire’s rotation for a time unit divided by the larger value in be-
tween which can be denoted as:

λ = ω · rwheel − u
max(ω · rwheel, u) (2-3)

Slip angle is the difference between steering angle and the actual heading angle which can be
denotes as Fig. 2-1.

Figure 2-1: Angle information of tire movement

Eq. 2-1 can produce characteristic forces Fy and Fx, which closely match the measurement
curve, as functions of their respective slips: slip Angle α and longitudinal slip ratio λ under
the action of load Fz [1]. The curve reflects the geometry information of the Magic Formula
is shown in Fig. 2-2.
The coefficient D represents the peak value and the product BCD denotes the slope at the
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2-1 Tire Model 5

Figure 2-2: Curve produced by Magic Formula [1]

origin. C controls the limits of the range of sine function appearing in eq. 2-1. E controls
the horizontal position of the peak [1].
Weighting functions G are introduced which multiplied with original pure slip functions pro-
duce the combined effects of λ on Fx and of α on Fy[3], so the Magic Formula at combined
slip conditions is expressed as:

Ycombined(X) = G(x) · Ypure(X) + Sv (2-4)

The coefficients for each tire characteristic are expressed as follows and their meaning is pre-
sented at Pacejka [17]:
where the coefficients for pure longitudinal characteristic are presented at Pacejka[17] as:

D = (PDX1 + PDX2 · dfz) · Fz
C = PCX1
E = (PEX1 + PEX2 · dfz + PEX3 · df2

z ) · (1− PEX4 · sgn(λ+ Shx))
B · C ·D = Fz · (PKX1 + PKX2 · dfz) · e−PKX3·dfz

B = B · C ·D
C ·D

Shx = (PHX1 + PHX2 · dfz)
Svx = Fz · (PV X1 + PV X2 · dfz)

(2-5)

where Fz represents the vertical force and dfz is the notation for the non-dimensional incre-
ment of the vertical load with respect to the (adapted) nominal load [1].

The weighting function G for combined longitudinal force is:

G(α) = cos(Cα · arctan(Bα · (α+ Shα)))
cos(Cα · arctan(Bα · Shα) )

Cα = RCX1
Bα = RBX1 · cos(arctan(RBX2 · λ))
Shα = RHX1

(2-6)

and for combined lateral force, where the coefficients for pure lateral characteristic are pre-
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6 Vehicle Modeling

sented at Pacejka [17] as:

D = (PDY 1 + PDY 2 · dfz) · Fz
C = PCY 1
E = (PEY 1 + PEY 2 · dfz) · (1− PEY 3 · sgn(α+ Shy))

B · C ·D = PKY 1 · Fz0 · sin(2 · arctan( Fz
PKY 2 · Fz0

))

B = B · C ·D
C ·D

Shy = (PHY 1 + PHY 2 · dfz)
Svy = Fz · (PV Y 1 + PV Y 2 · dfz)

(2-7)

the weighting function G for combined lateral force is:

G(λ) = cos(Cλ · arctan(Bλ · (λ+ Shλ)))
cos(Cλ · arctan(Bλ · Shλ))

Cλ = RCY 1
Bλ = RBY 1 · cos(arctan(RBY 2 · (α−RBY 3)))
Shλ = RHY 1 +RHY 2 · dfz
Dvλ = D · (RV Y 1 +RV Y 2 · dfz) · cos(arctan(RV Y 4 · α))
Svλ = Dvλ · sin(RV Y 5 · arctan(RV Y 6 · λ))

(2-8)

Figure of longitudinal force as a function of slip ratio is shown in Fig. 2-3. It goes up linearly,
then it goes down slowly after reaches the summit and end with a almost constant force.
In CarSim, the tire model is also constructed according to the Magic Formula. However, as
the Magic Formula requires more than 30 parameters to be identified for a single tire, it is
obviously very difficult for the identification algorithm to process the high dimensional data.
This requires a trade-off between precision and computation. In the second half of the report,
Genetic Algorithm (GA) is tried to identify the Magic Formula parameters.
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Figure 2-3: Slip ratio-longitudinal curves of Magic Formula and Dugoff Model
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2-1 Tire Model 7

2-1-2 Dugoff Model

The Dugoff model is widely used in vehicle identification and simulation. The model uses
a series of variables such as tire longitudinal slip ratio, slip Angle and cornering stiffness to
describe the longitudinal and lateral friction of tires, which has the advantages of simple equa-
tion, low computational load and suitable for multi-lateral/longitudinal working conditions
[19]. The Dugoff model can be denoted as [20]:

Fx = Cλ λ

1− λf(ζ)

Fy = Cα tan(α)
1− λ f(ζ)

ζ = µmaxFz(1 + λ)
2
√

(Cλλ)2 + (Cαtan(α))2

f(ζ) =
{

(2− ζ), ζ < 1
1, ζ ≥ 1

(2-9)

where Fx = longitudinal forces of tires(N)
Fy = lateral forces of tires (N)
Cλ = longitudinal stiffness of tires (N/rad)
Cα = lateral stiffness of tires (N/rad)
α = side slip angle of tires (rad)
λ = longitudinal slip ratio of tires
µmax = maximum friction coefficient.

The comparison between Dugoff model and Magic Formula is shown in Fig. 2-3. As can be
seen, the force changing can be divided in two sections, which are linear section and minor
changing to almost constant section. It doesn’t have decrease section comparing to Magic
Formula model. In reality, vehicle tires usually slip within a small section to keep stability and
control, where the Dugoff model can describe the tire system very well. Moreover, the Dugoff
model only needs to identify three parameters for a single tire, which can effectively reduce
the coupling of parameters and reduce the computational load for the overall identification of
vehicles. In the following system identification, this project will mainly use the Dugoff model.

2-1-3 Simplified Tire Model

Both the Dugoff model and Magic Formula are nonlinear models. When a linear model is
required for the system, the tire model also needs to be simplified. Fortunately, tire models
can be mostly represented by linear equations within the range of stable operation, as shown
in Fig. 2-4. So in this project, the tire model in the bicycle model study is represented by
the following formula.

Fx = Cλ · λ
Fy = Cα · α

(2-10)
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Figure 2-4: Slip ratio-longitudinal curves of Dugoff and linear model

2-2 Vehicle Dynamic Model

2-2-1 Bicycle Model

In the process of vehicle simulation or identification, the bicycle model is usually firstly
studied. The bicycle model is a simplified version of the vehicle model, which combines the
left and right wheels into one. It can be approximated by linear state space equations. The
plot is shown in Fig. 2-5.

Figure 2-5: The bicycle model

The ideal vehicle dynamic model can be represented by a differential equation. This model
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2-2 Vehicle Dynamic Model 9

depends on Newton Laws, D’Alembert’s principle, Lagrange principle, etc.
The dynamic model is based on differential equation which is expressed as the function of
velocities, yaw rate, moment of inertial, etc [21].

max = m(u̇− vr) =
∑

Fx = Fxfcosδ − Fyfsinδ + Fxr − Fair
may = m(v̇ + ur) =

∑
Fy = Fxfsinδ + Fyfcosδ + Fyr

Iz ṙ =
∑

Mz = lf (Fxfsinδ + Fyfcosδ)− lrFyr

(2-11)

where ax and ay are the longitudinal and lateral acceleration, u and v are the longitudinal
and lateral velocity, Fxf and Fyf are the longitudinal and lateral forces of front wheel, Fxr
and Fyr are the longitudinal and lateral forces of rear wheel. Fair is the longitudinal air
friction which can be calculated by eq. 2-12. δ is the steering angle, Iz is the yaw inertia, r
is the yaw rate, Mz is the moment acting on COG, l is the length of the vehicle, lr and lf
are the distance between COG and the corresponding axles. The steering angle δ usually is
within a small amount, so to keep the system simple, cosδ is approximated as 1 and sinδ is
approximated as 0.
The longitudinal air friction can be calculated as:

Fair = Cair · u2 (2-12)

where Cair is the air friction coefficient. The front and rear slip angle can be denoted as:

αf = δf −
v + lfr

u
(2-13)

αr = δr −
v − lrr
u

(2-14)

Then eq. 2-13 and eq. 2-14 can be taken into eq. 2-10 to calculate the lateral forces Fy.

Eq. 2-3 can be taken into eq. 2-10 to calculate the lateral forces Fx.

2-2-2 Four Wheels Model

Although the bicycle model is simple and practical, in some cases it cannot meet the require-
ments of accuracy. In order to achieve higher accuracy for yaw movement estimation, four
wheels model is very necessary as shown in Fig. 2-6.

The formula for the four wheels model is very similar to that for the bicycle model, as shown
below:

max = m(u̇− vr) =
∑

Fx = Fxfl + Fxfr + Fxrl + Fxrr − Fair
may = m(v̇ + ur) =

∑
Fy = Fyfl + Fyfr + Fyrl + Fyrr

Iz ṙ =
∑

Mz = lf (Fyfl + Fyfr)− lr(Fyrl + Fyrr)−Bl(Fxfl + Fxrl) +Br(Fxfr + Fxrr)
(2-15)
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10 Vehicle Modeling

Figure 2-6: The four wheels vehicle model

where Br represents the distance between the center of right wheel to the COG and Bl
represents the distance between the center of left wheel to the COG. Fxi and Fyi can be
denoted by the following equation.[

Fxi
Fyi

]
=

[
cosδi −sinδi
sinδi cosδi

][
Fxwi
Fywi

]
, i = fl, . . . , rr (2-16)

where Fxwi and Fywi are the lateral and longitudinal force of each tire in the tire coordinate.
The slip angle calculation also needs to be slightly modified as:

αfl = δfl −
v + lfr

u− Bl
2 r

αfr = δfr −
v + lfr

u+ Br
2 r

αrl = δrl −
v − lrr
u− Bl

2 r

αrr = δrr −
v − lrr
u+ Br

2 r

(2-17)

In order for the vehicle to steer smoothly, the circle center of steering angle of each tire should
be at the same point, which requires the Ackermann geometry shown as Fig. 2-7.

Most steering systems on cars and light trucks only have 50% to 75% of Ackermann steer [22].
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2-3 Conclusion 11

Figure 2-7: The Ackermann geometry

2-3 Conclusion

This chapter describes the commonly used vehicle and tire models that can be selected for
subsequent system identification algorithms. It is very important to construct an accurate
vehicle system model for simulation or identification. A detailed vehicle model will have
dozens of degrees of freedom, which requires a very high amount of computation and a lot of
sensors to obtain information. Practically, such a complex and sophisticated model is generally
not required. So the trade-off between computational complexity and model accuracy need
to be considered, therefore, the bicycle model and the four wheels model are widely used and
adopted by this project. Similarly, a tire model also requires a trade-off between complexity
and accuracy. In the following experiments, this project will identify and compare vehicle
models and tire models of different complexity.
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Chapter 3

Data Acquisition and Processing

In the vehicle system identification experiment, the vehicle’s position, speed, acceleration,
forces, and other information need to be acquired through the sensor. Since the experiment
requires high precision for some measurements, such as the slip ratio and slip angle values,
which are very small, the tiny errors in the measurements may also lead to a substantial error
in the final experimental results. Therefore, the noises of the sensors need to be within a
minimal range, and the signal also needs to be filtered before it can be used. In this project,
the simulation software CarSim was used to simulate as an actual vehicle. Meanwhile, noises
are added to some key variables to get close to the real-life situation. This chapter provides
a brief introduction to CarSim and how to use it, as well as data processing related issues.

3-1 CarSim Introduction

CarSim is a simulation software that can predict the vehicle’s response to driver control
in different road geometry, friction, wind, and other environments. The software simulates
physical tests with mathematical models, allowing engineers to see results similar to the real
vehicle test results, but that can be repeated, safely, and faster than physical tests. They
include the state and response of the tire when it comes into contact with the road, and how
the force of the tire/road interface is transferred to the chassis through the suspension, etc.
Manufacturers have repeatedly validated these models to reproduce the overall vehicle motion
needed to assess handling, directional and rolling stability, braking, and acceleration [13].

3-2 CarSim-Simulink Co-simulation

CarSim can co-simulate with Simulink. CarSim can pass the model to Simulink, and the cor-
responding CarSim package can be used in Simulink for simulation. Input parameters, output
parameters, road conditions, and driver models can be set in the CarSim. In Simulink, con-
trol signals can be sent to the CarSim package, and output information can be obtained for
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14 Data Acquisition and Processing

further calculation. As shown in Fig. 3-1

Figure 3-1: CarSim-Simulink co-simulation

3-3 Data Processing

In this project, the sampling frequency is 10. This frequency is far less than half of the
system’s highest response frequency, which conforms to the Shannon sampling theorem. In
order to simulate similar to the real situation of vehicles, white noise was added to the three
main signals, longitudinal and lateral forces, u (Longitudinal Velocity), v (Lateral Velocity),
and r (Yaw rate). The standard deviation of the noises are between 0.1% to 5% of the average
value depending on the characteristics of the system. Therefore, a filter is needed to process
the signal to reduce noises interference.
Because the mean of noise is 0, and the signals are continuous, the change at the adjacent
sampling points can be ignored. The appropriate filter is smoothing filter. An averaging
method is adopted, and the average value of adjacent points is calculated as the value of this
point. The range is plus or minus two sampling points.

3-4 Conclusion

This chapter introduces how to obtain vehicle data through CarSim-Simulink co-simulation.
In the following sections, the data used for identification and validation comes from this
emulator. The vehicle can be driven in a straight line or change the direction and velocity
according to different identification requirements.
At the same time, in order to make the experiment close to the real-life situation, white noises
are added in some data sets. The smoothing filter is used to process the signal before the
system identification.
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Chapter 4

Vehicle Identification by Interior-point
Algorithm

System identification is based on the system’s input and output functions in time or frequency
domain to determine the mathematical model describing the system’s behavior. The purpose
of establishing a mathematical model through identification is to estimate parameters that
characterize the behavior of the system, to build a model that mimics the behavior of a system
in real life, to predict the future evolution of system output using the current measurable sys-
tem inputs and outputs, and to design controllers. The main problem of analyzing the system
is to determine the output signal according to the input time function and the characteristics
of the system.
There are plenty of identification methods. Optimization Algorithms and Kalman Filter (KF)
are commonly used, and neural networks have developed rapidly to solve complex problems.
In this chapter, the identification problem is transferred into optimization problem and the
Interior-point algorithm is used to identify the parameters of a vehicle. Some algorithms
have also been tested as comparison and are also introduced in Chapter 5, such as Unscented
Kalman Filter (UKF), Particle Swarm Optimization (PSO) and Genetic Algorithm (GA).

4-1 Interior-point Algorithm

The nonlinear optimization algorithm is the most commonly used system identification method
because system identification can usually be transformed into a nonlinear optimization prob-
lem. It uses the difference between the estimated value and the real value as the cost function
to find the parameter value that makes the error function approach zero.
For an unconstrained optimization problem, we can use the Newton method and other meth-
ods to solve it. When facing a constrained problem, we often need more advanced algorithms.
Simplex Method can be used to solve linear programming propositions with constraints, Active
Set Method can be used to solve quadratic programming with constraints, and Interior-point
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16 Vehicle Identification by Interior-point Algorithm

Method is another method used to solve nonlinear optimization problems with constraints.
For system parameter identification, the range of some parameters can often be estimated,
so the constrained optimization algorithm can be applied in this field. According to the
experimental results, the Interior-point method has a good performance as an optimization
algorithm for system identification. So it is used in this experiment as the identification
method.
Interior-point method with barrier function is introduced as following [23].
For a optimization problem:

min f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

(4-1)

where f0, . . . fm are differentiable convex functions. Meanwhile, the optimal solution of x∗

exists, and the corresponding target function value is p∗. Furthermore, the existence of the
optimal dual variable λ∗ and ν∗, together with the original variable x∗, satisfies the KKT
condition:

∇f0(x∗) +
m∑
i=1

λ∗
i fi(x∗) +AT ν∗ = 0

Ax∗ = b

fi(x) ≤ 0, i = 1, . . . ,m
λ∗ ≥ 0

λ∗
i fi(x∗) = 0, i = 1, . . . ,m

(4-2)

The inequality constraint in KKT condition makes it difficult to solve this problem. Therefore,
the idea of Barrier Method is to replace the inequality constraint by adding an penalty function
to the original objective function, which makes eq. 4-1 look like the following:

min f0(x) +
m∑
i=1
−(1/t)log(−fi(x))

subject to Ax = b

(4-3)

where −(1/t)log(−fi(x)) is the barrier function and the value of the function is zero when no
constraint is violated, and infinity when the constraint is violated.
Then define the logarithmic barrier as:

φ(x) = −
m∑
i=1

log(−fi(x)) (4-4)

and the objective function becomes:

min tf0(x) + φ(x)
subject to Ax = b

(4-5)

The central path of x∗(t) is defined as:

x∗(t) = argmin
x

(tf0(x) + φ(x)) (4-6)
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4-2 Internal Parameters Identification 17

x∗(t) converge to x∗ for t→∞. But the computational load also increases, so an appropriate
t should be obtained iteratively. This is proved in the book "Convex optimization" [23].
As shown in 4-5, the inequality constraint optimization problem is transferred into equality
constraint optimization problem, for which the optimum can be calculated as Sequential
Quadratic Programming [24].
The optimization procedures are shown as the following: Given feasible x, and t := t(0)>0,
µ > 1, tolerance ε > 0.
repeat

1. Centering step. Compute x∗(t) by minimizing tf0 +φ, subject to Ax = b, starting at x.

2. Update. x := x∗(t).

3. Stopping criterion. Quit if m/t < ε

4. Increase t. t = µt

Using Interior-point method to do Identification The ideal is to minimize the difference
between estimated value and measured value.
Assume there are m (input, output) points:

(x1, y1), (x2, y2), . . . , (xm, ym)

and a function:
y = f(x, θ) (4-7)

where θ is the unknown parameter vector which has n elements and (m� n). The goal is to
find the optimal set of θ to minimize the norm of the residual terms.

S =

√√√√ m∑
i=1

r2
i (4-8)

where ri = yi − f(xi, θ)

With the CarSim simulator, we can obtain real-time information about various variables, from
which we can select some variables to be used in the identification system. The variables that
can be used: tire vertical force Fz, steering angle δ, longitudinal velocity u, lateral velocity v,
yaw rate r, and the wheel spinning speed Vspin.
In the following sections, the identification experiments by Interior-point method and its
results as well as the corresponding validation results are introduced.

4-2 Internal Parameters Identification

Before implementing complex algorithms, some parameter can be calculated easily by the
vertical force. The mass and center of gravity (COG) of a vehicle system varies with different
passenger load and fuel load. Therefore, mass and COG should be calculated at the beginning
of each driving maneuver.
Mass m, front and rear length lf and lr, and left and right width Bl and Br can be identified
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18 Vehicle Identification by Interior-point Algorithm

Vertical Force Fzfl Fzfr Fzrl Fzrr
Value(N) 4172 4260 2687 2767

Table 4-1: Vertical force for each wheel in a stationary state

by vertical force Fz in a stationary state of vehicle.

The distance between front and rear axle is L = 2.578 m and the distance between left and
right wheel center is B = 1.539 m which can be measured easily. Then the position of COG
can be represented by the distance between axle to COG and wheel to COG which can be
calculated by vertical forces and the formula is shown in eq. 4-9.

lf = L
Fzrl + Fzrr

Fzfl + Fzfr + Fzrl + Fzrr

lr = L− lf

Bl = B
Fzfr + Fzrr

Fzfl + Fzfr + Fzrl + Fzrr

Br = B −Br

(4-9)

where lf is the distance between front axle and COG, lr is the distance between real axle and
COG, Bl is the distance between left wheel center to COG, and Br is the distance between
right wheel center to COG.
The result is shown in Table 4-2

Symbol lf lr Bl Br
Value(m) 1.0125 1.5665 0.7788 0.7602

Table 4-2: Distance between axles and wheels to COG

The mass of vehicle system can be calculated by
∑
Fz/9.8 which is 1416.9kg.

4-3 Bicycle Model Identification

The next step is to identify the parameters of simplified tire model, yaw inertia Iz and
the air coefficient Cair. Experiments are divided into longitudinal maneuver and lateral
maneuver from which the corresponding data required by identification can be obtained.
In each subsection, the data acquisition, identification, validation, and result discussion are
introduced.

4-3-1 Longitudinal Maneuver Identification

Data Acquisition The data used in parameter identification is generated by Simulink and
CarSim co-simulation. In longitudinal maneuver, the steering angle is set to zero, which
means the vehicle runs in a straight line, and the lateral velocity and yaw rate are also zero.
Then the vehicle should be driven in a straight line with changing longitudinal velocity. For
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Figure 4-1: Driving Sample 1 for lon-
gitudinal maneuver
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Figure 4-2: Driving Sample 2 for lon-
gitudinal maneuver

each section, two sets of data for different driving samples are given, showing in Fig. 4-1 and
Fig. 4-2.
The test samples are selected as follows, Sample 1 includes the accelerating and decelerating
process, and Sample 2 is a pure accelerating process.
The data obtained from CarSim is listed in Table 4-3.

Name Longitudinal Velocity(m/s) Wheel Spinning Velocity
Symbol u ωrwheel

Table 4-3: Data obtained from CarSim for longitudinal maneuver

Parameter Identification According to Chapter 2, take eq. 2-10 into eq. 2-11, the vehicle
longitudinal acceleration can be calculated as:

u̇ = 1/m (2Cλfλf + 2Cλrλr − Fair) (4-10)

where the longitudinal slip ratio λ can be calculated by eq. 2-3. Then the parameters need
to be identified are shown in Table 4-4. This vehicle is front-wheel driven and the slip ratio

Name Symbol
Front Wheel Longitudinal Stiffness Cλf
Air Friction Coefficient Cair

Table 4-4: Parameters need to be identified for bicycle model in longitudinal maneuver

for rear wheel is too small to get an accurate identification result, therefore, the rear wheel’s
longitudinal stiffness coefficient is set equal as the front one, which is Cλr = Cλf .
Then the estimated longitudinal velocity can be calculated by:

ũ = u̇∆t (4-11)

A set of data points can be derived as: (u1, ũ1), (u2, ũ2), . . . , (un, ũn).
The stiffness coefficient and air friction coefficient can be calculated as:

min
Cλf ,Cair

‖ eu ‖2= min
Cλf ,Cair

‖ u− ũ ‖2 (4-12)
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This optimization problem can be solved by Interior-point method and the result is shown in
Table 4-5.

Sample 1 Identification Sample 2 Identification
Parameter Value Parameter Value
Cλ 50929 Cλ 76889
Cair 0.6246 Cair 0.3096

Table 4-5: Longitudinal maneuver identification result for bicycle model

Validation To prove the validity of the identified parameters, validation is required. The
validation data is also generated from CarSim similar as Data Acquisition. Validation is also
divided into parameter validation and system validation. Parameter validation validates each
identified parameter, using longitudinal and lateral force measurements. System validation
validates the vehicle as a whole and observe the difference between the estimated value and
the true value of the vehicle system in longitudinal, lateral velocity and yaw rate.
To numerically display the validation result, Root Mean Square Error (RMSE) and variance
accounted for (VAF) are used. And the validation plot are also presented. The validation
result is shown in Table 4-6

Sample 1 Validation Sample 2 Validation
Term Value RMSE VAF(%) Fig. Term Value RMSE VAF(%) Fig.
Cλ 50929 258.79 90.8 4-3 Cλ 76889 141.11 97.3 4-4
Cair 0.6246 39.45 22.1 4-5 Cair 0.3096 3.67 99.5 4-6
System
Identification:
u

0.8920 99.4 4-7
System
Identification:
u

0.9262 99.3 4-8

Table 4-6: Longitudinal maneuver validation result for bicycle model

Analysis In system validation for u, the VAF of both samples are very close, and over 99%,
which means the estimated system perfectly imitate the real one in most sections. However,
from 7 s to 10 s in Fig. 4-7 and Fig. 4-8, there is a rapid increase in velocity and a significant
deviation in the prediction of velocity. This is because the slip ratio at this section is very
high, where the force changes with a low speed with the change of the slip ratio, but the
linear tire model ignores this section. Therefore, the linear tire model can predict very well
at small acceleration changes, but the prediction of the linear tire model is not accurate at
large slip ratio cases.
In parameter validation for Cλ and Cair, high errors occur in Sample 1 validation. Compared
with Sample 2, the data of Sample 1 in longitudinal identification of bicycle model is an
unsuitable data set. The value of each parameter should be well-identified with a suitable
data set.
Fair is a small value comparing with Fx, but both forces affect the longitudinal movement
together. The identification accuracy is higher when the parameter has the dominant effect
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4-3 Bicycle Model Identification 21

and vice versa. According to 2-12, air friction increase with the increase of velocity. So when
the velocity is higher, the air resistance is also higher, and the influence of the air resistance
on the longitudinal velocity is also greater. Therefore, the time spent in the high-speed stage
of Sample 2 is longer; thus, the identification of Cair is more accurate.
In the following experiments, the results of the two samples are compared in other aspects.
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Figure 4-4: Driving Sample
2: Validation of Cλ for bicycle
model
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Figure 4-5: Driving Sample 1:
Validation of Cair for bicycle
model
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Figure 4-6: Driving Sample 2:
Validation of Cair for bicycle
model
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Figure 4-7: Driving Sample 1:
System Validation of u for bicycle
model
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Figure 4-8: Driving Sample 2:
System Validation of u for bicycle
model

Master of Science Thesis Chenxi Zhang



22 Vehicle Identification by Interior-point Algorithm

4-3-2 Lateral Maneuver Identification

Data Acquisition In lateral maneuver, the longitudinal velocity is controlled as 50km/h
and the steering angle changes. Then the vehicle should be driven in a curve with constant
velocity. Two sets of data for different driving sample are given, showing in Fig. 4-9 and Fig.
4-10.

Figure 4-9: Driving Sample 1 for lat-
eral maneuver

Figure 4-10: Driving Sample 2 for lat-
eral maneuver

The data obtained from CarSim is listed in Table 4-7

Name Symbol
Longitudinal Velocity(m/s) u

Lateral Velocity(m/s) v

Yaw Rate(rad/s) r

Steering Angle(deg) δ

Wheel Spinning Velocity(m/s) ωrwheel

Table 4-7: Data obtained from CarSim for lateral maneuver

Parameter Identification According to Chapter 2, take eq. 2-10 into eq. 2-11, the vehicle
lateral acceleration and yaw rate can be calculated as:

v̇ = 1/m(Fyf + Fyr)− ur
ṙ = 1/Iz(lfFyf − lrFyr)

(4-13)

Then the parameters need to be identified are shown in Table 4-8. with eq. 2-10, eq. 2-13,
and eq. 2-14, the above equation can be rewritten in a state space equation:

[
v̇
ṙ

]
=


−Cαf+Cαr

mu
−lfCαf+lrCαr

mu − u

−lfCαf+lrCαr
Izu

− l2fCαf+l2rCαr
Izu


[
v
r

]
+


Cαf
m

lfCαf
Iz

 δ (4-14)

Then the parameters need to be identified are shown in Table 4-8.
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Name Symbol
Front Wheel Lateral Stiffness Cαf
Rear Wheel Lateral Stiffness Cαr
Yaw Inertia Iz

Table 4-8: Parameters need to be identified for bicycle model in lateral maneuver

Similar to the longitudinal identification, the estimated lateral velocity and yaw rate can be
calculated by:

ṽ = v̇∆t
r̃ = ṙ∆t

(4-15)

A set of data points can be derived as: (
[
v1
r1

]
,

[
ṽ1
r̃1

]
), (

[
v2
r2

]
,

[
ṽ2
r̃2

]
), . . . , (

[
vn
rn

]
,

[
ṽn
r̃n

]
).

The lateral stiffness of front and rear wheel and the yaw inertia can be calculated by solving
the following optimization problem by Interior-point method:

min
Cαf ,Cαr,Iz

‖ ev,r ‖2= min
Cαf ,Cαr,Iz

‖
[
v
r

]
−

[
ṽ
r̃

]
‖2 (4-16)

The result is shown in Table 4-9

Parameter Cαf Cαr Iz
Sample 1 28143 50398 5000
Sample 2 46341 21663 1697

Table 4-9: Lateral maneuver identification result for bicycle model

Validation The real lateral force compares with estimated lateral force for front and real
wheels calculated from eq. 2-10 to validate Cαf and Cαr and uses yaw rate to validate Iz. The
estimation of lateral velocity v and yaw rate r are used for lateral maneuver system validation
The validation result is shown in Table 4-10

Analysis In system validation for v, the result for Sample 2 is better than Sample 1, and for r,
the result for Sample 1 is better than Sample 2. Similar to longitudinal maneuver validation,
the parameter identification result for Sample 2 is significantly better than Sample 1. So
it can be inferred that in Sample 1, parameter coupling occurs between the parameters Cα
and Iz. The estimated forces calculated from Cα create a large error with the real value and
produces excessive torque. However, the same excessive moment of inertia ’weakens’ the effect
of excessive torque and makes the system’s overall performance normal. One way to solve this
problem is to let the data sets have persistency of excitation [25]. Persistency of excitation
of an input or a noise signal is of importance in system identification, and adaptive control
[26]. In system identification, it can be understood that when the data set is in sufficient
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24 Vehicle Identification by Interior-point Algorithm

Sample 1 Validation Sample 2 Validation
Term Value RMSE VAF(%) Fig. Term Value RMSE VAF(%) Fig.
Cαf 28143 228.62 88.9 4-11 Cαf 46341 71.94 98.9 4-12
Cαr 50398 212.81 75.9 4-13 Cαr 21663 156.26 87.0 4-14
Iz 5000 0.0448 58.6 4-15 Iz 1697 0.0059 99.3 4-16
System
Identification:
v

0.0059 85.3 4-17
System
Identification:
v

0.0047 90.7 4-18

System
Identification:
r

0.0259 98.3 4-17
System
Identification:
r

0.0746 85.7 4-18

Table 4-10: Lateral maneuver validation result for bicycle model

conditions, the parameters identified are more likely to converge. A sufficient data set can
be expressed as multi-frequency oscillations. Sample 2 is a sinusoidal curve, so it is more
sufficient than Sample 1, and the parameter is closer to the real value.
In this model, the influence of longitudinal force on the yaw rate is ignored because the
longitudinal force is smaller than the lateral force, so the influence of torque generated by
longitudinal force is relatively small. In the case of low requirements for model identification
accuracy, such a linear model can be used to reduce the complexity and calculation, but at
the same time, some errors may be hard to prevent.
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Figure 4-11: Driving Sample 1: Vali-
dation of Cαf for bicycle model
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dation of Cαf for bicycle model
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Figure 4-13: Driving Sample 1: Vali-
dation of Cαr for bicycle model
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Figure 4-14: Driving Sample 2: Vali-
dation of Cαr for bicycle model
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Figure 4-15: Driving Sample 1: Vali-
dation of Iz for bicycle model
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Figure 4-16: Driving Sample 2: Vali-
dation of Iz for bicycle model
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tem Validation of v and r for bicycle
model
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tem Validation of v and r for bicycle
model
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26 Vehicle Identification by Interior-point Algorithm

4-4 Four Wheels Model Identification

The bicycle model is linearized and simplified in many places, and the yaw acceleration is
calculated without considering the influence of the vehicle’s longitudinal force, which causes
errors. Theoretically, these errors are endurable when the system accuracy is not required to
be high. Still, if the system accuracy is needed to be high, there is a certain possibility that
the identification accuracy does not meet the requirements.
Therefore, in this section, Interior-point algorithm is used to identify four wheels vehicle and
the Dugoff model is used as the tire model.

4-4-1 Longitudinal Maneuver Identification

Data Acquisition The data sets used for identification and validation are the same as those
in bicycle model.

Parameter Identification According to eq. 2-15, the vehicle longitudinal acceleration can
be calculated as:

u̇ = 1/m (Fxfl + Fxfr + Fxrl + Fxrr − Fair) (4-17)

Then the parameters need to be identified are shown in Table 4-11.

Name Symbol
Front Left Wheel Longitudinal Stiffness Cλfl
Front Right Wheel Longitudinal Stiffness Cλfr
Friction Coefficient µ

Air Friction Coefficient Cair

Table 4-11: Parameters need to be identified for four wheels model in longitudinal maneuver

This vehicle is front-wheel driven and the slip ratio for rear wheel is too small to show
a pattern, therefore, the rear wheels’ longitudinal stiffness coefficients are set equal as the
front, which are Cλrl = Cλfl and Cλrr = Cλfr.
Then the estimated longitudinal velocity can be calculated by eq. 4-11 and a set of data
points can be derived as: (u1, ũ1), (u2, ũ2), . . . , (un, ũn).
The stiffness coefficient and air friction coefficient can be calculated as:

min
Cλfl,Cλfr,µ,Cair

‖ eu ‖2= min
Cλfl,Cλfr,µ,Cair

‖ u− ũ ‖2 (4-18)

The identification result is shown in Table 4-12.

Parameter Cλfl Cλfr µ Cair
Sample 1 62514 78890 0.9390 0.4798
Sample 2 80976 80391 0.5036 0.3843

Table 4-12: Longitudinal maneuver identification result for four wheels model
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4-4 Four Wheels Model Identification 27

Validation The validation result is shown in Table 4-13

Sample 1 Validation Sample 2 Validation
Term Value RMSE VAF(%) Fig. Term Value RMSE VAF(%) Fig.
Cλfl 62514 142.89 97.2 4-19 Cλfl 80976 52.99 99.6 4-20
Cλfr 78890 103.60 98.5 4-21 Cλfr 80391 49.65 99.7 4-22
µ 0.939 µ 0.5036
Cair 0.4798 19.92 80.1 4-23 Cair 0.3843 7.25 97.4 4-24
System
Identification:
u

0.1662 100 4-25
System
Identification:
u

0.1170 100 4-26

Table 4-13: Longitudinal maneuver validation result for four wheels model

Analysis Compared with the bicycle model, the four wheels model considers the force of
the left wheel and the right wheel of the vehicle, respectively. In addition to considering
the longitudinal motion, it is also necessary to maintain the torque balance to make the
vehicle move in a straight line. More relational constraints can also avoid the occurrence of
parameter coupling and increase the accuracy of identification. For example, in Sample 1,
the results of the four wheels model validation were significantly improved. The four wheels
model system validation results of Sample 2 are very close to that of Sample 1, both with
minimal errors. Therefore, in system identification, models with high accuracy are more
likely to identify better results for different data sets, but it also causes more computational
load. For vehicle longitudinal identification, the calculation time of the four wheels model
is about 20 s, although this is longer than the experiment for the bicycle model about 8 s,
the time consumption is still acceptable. Therefore, four wheels model is suitable for vehicle
identification and control.
It can also be seen from the system identification results of u that at the high acceleration
stage between 7 s and 10 s, the estimation error of the Dugoff tire model is tiny, VAF is
close to 100%. The Dugoff model can simulate the saturation state between tire force and
slip ratio, whereas the linear model is incapable in this range.
µ is the friction coefficient, which calculates the tire force together with the stiffness coefficient
Cλ. In general, the accuracy of Sample 2 is higher, so the identified parameters result of
Sample 2 are selected for lateral maneuver identification.
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Figure 4-19: Driving Sam-
ple 1: Validation of Cλf for
four wheels model
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Figure 4-20: Driving Sam-
ple 2: Validation of Cλf for
four wheels model
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Figure 4-21: Driving Sam-
ple 1: Validation of Cλr for
four wheels model
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Figure 4-22: Driving Sam-
ple 2: Validation of Cλr for
four wheels model
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Figure 4-23: Driving Sam-
ple 1: Validation of Cair for
four wheels model
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Figure 4-24: Driving Sam-
ple 2: Validation of Cair for
four wheels model
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Figure 4-25: Driving Sam-
ple 1: System Validation of
u for four wheels model
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Figure 4-26: Driving Sam-
ple 2: System Validation of
u for four wheels model
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4-4 Four Wheels Model Identification 29

4-4-2 Lateral Maneuver Identification

Data Acquisition The data sets used for identification and validation are the same as those
in bicycle model.

Parameter Identification According to eq. 2-15, the vehicle lateral acceleration and yaw
rate can be calculated as:

v̇ = 1/m(Fyfl + Fyfr + Fyrl + Fyrr)− ur
ṙ = 1/Iz(lf (Fyfl + Fyfr)− lr(Fyrl + Fyrr)−Bl(Fxfl + Fxrl) +Br(Fxfr + Fxrr))

(4-19)

Then the parameters need to be identified are shown in Table 4-14.

Name Symbol
Front Left Wheel Lateral Stiffness Cαfl
Front Right Wheel Lateral Stiffness Cαfr
Rear Left Wheel Lateral Stiffness Cαrl
Rear Right Wheel Lateral Stiffness Cαrr
Yaw Inertia Iz

Table 4-14: Parameters need to be identified for four wheels model in lateral maneuver

The estimated lateral velocity and yaw rate can be calculated by eq. 4-15 and a set of data

points can be derived as: (
[
v1
r1

]
,

[
ṽ1
r̃1

]
), (

[
v2
r2

]
,

[
ṽ2
r̃2

]
), . . . , (

[
vn
rn

]
,

[
ṽn
r̃n

]
).

The lateral stiffness of four wheels and the yaw inertia can be calculated by solving the
following optimization problem by Interior-point method:

min
Cαi,Iz

‖ ev,r ‖2= min
Cαi,Iz

‖
[
v
r

]
−

[
ṽ
r̃

]
‖2, i = fl, fr, rl, rr (4-20)

The result is shown in Table 4-15

Parameter Cαfl Cαfr Cαrl Cαrr Iz
Sample 1 44021 39093 50148 31825 1767
Sample 2 47254 39950 40064 37433 1810

Table 4-15: Lateral maneuver identification result for four wheels model

Validation The validation result is shown in Table 4-16
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Sample 1 Validation Sample 2 Validation
Term Value RMSE VAF(%) Fig. Term Value RMSE VAF(%) Fig.
Cαfl 44021 38.83 99.7 4-27 Cαfl 47254 62.08 99.2 4-28
Cαfr 39093 78.33 98.8 4-29 Cαfr 39950 66.97 99.1 4-30
Cαrl 50148 173.44 84.5 4-31 Cαrl 40064 85.58 96.2 4-32
Cαrr 31825 59.72 98.2 4-33 Cαrr 37433 54.10 98.6 4-34
Iz 1767 0.0053 99.4 4-35 Iz 1810 0.0038 99.7 4-36
System
Identification:
v

0.089 65.6 4-37
System
Identification:
v

0.0044 92 4-38

System
Identification:
r

0.0242 98.5 4-37
System
Identification:
r

0.0197 99 4-38

Table 4-16: Lateral maneuver validation result for four wheels model

Analysis It can be seen from the parameter validation results that the accuracy of the four
wheels model is significantly improved compared with the bicycle model. Sample 2 VAF has
been raised above 99%. Although the error in Sample 1 in Cαrl is still large, it still has a
significant improvement over the bicycle model. It can be seen that the parameters are more
likely to converge to the real value in a relatively accurate model. The identification time was
about 36 seconds on the computer used in this thesis, while the bicycle model took about
13 seconds. Although the running time is three times longer, it is still within the acceptable
range.
It can also be seen from the parameter validation that the Dugoff model lacks a peak value
between the linear section and the saturation section compared with the actual tire model.
However, as shown in the system identification of Sample 2 that the error in this section
has a relatively small impact on the whole system. The Magic Formula accurately describes
the real-time model. With more than 30 parameters per tire, the Interior-point method is
challenging to directly optimize such a high dimensional model. In section 5-3-1, the Magic
Formula model is attempted to identify by using GA.
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Figure 4-27: Driving Sample 1:
Validation of Cαfl for four wheels
model
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Figure 4-28: Driving Sample 2:
Validation of Cαfl for four wheels
model
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Figure 4-29: Driving Sample
1: Validation of Cαfr for four
wheels model
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Figure 4-30: Driving Sample
2: Validation of Cαfr for four
wheels model
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Figure 4-31: Driving Sample
1: Validation of Cαrl for four
wheels model
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Figure 4-32: Driving Sample
2: Validation of Cαrl for four
wheels model
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Figure 4-33: Driving Sample
1: Validation of Cαrr for four
wheels model
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Figure 4-34: Driving Sample
2: Validation of Cαrr for four
wheels model
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Figure 4-35: Driving Sample
1: Validation of Iz for four
wheels model
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Figure 4-36: Driving Sample
2: Validation of Iz for four
wheels model
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Figure 4-37: Driving Sample 1:
System Validation of v and r for
four wheels model
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Figure 4-38: Driving Sample 2:
System Validation of v and r for
four wheels model

4-5 Conclusion

This chapter introduces the system identification of the bicycle model and four wheels model
by using the Interior-point method. The bicycle model is linearized and ignoring the influence
of the vehicle’s width. The tire model also adopts the simplified tire model. The identifica-
tion of the four wheels model takes into account the influence of longitudinal force on the
yaw movement and the difference of vertical force on the left and right side caused by roll
movement, and also adopts a more complex Dugoff tire model.
Validation results show that the overall result of RMSE and VAF of the four wheels model is
better than that of the bicycle model, so the accuracy has been greatly improved. There are
two main reasons for this.
First, the mathematics model is more accurate. For example, in the calculation of yaw mo-
tion, although the influence of longitudinal force is smaller than that of lateral force, the
influence will become larger as time accumulates.
The second is that in each identification model, the number of equations is smaller than
the number of unknown parameters, so it is possible that there will be coupling between
the parameters, such as Cλ and Cair, Cα and Iz. In more complex models, each parameter
establishes more relationships with the system, limiting the size of the parameter and distin-
guishing it from other parameters. This makes the parameters more likely to converge to the
real value.
The above experiments also compared the influence of different data sets on the final iden-
tification results. For a good data set, good system validation results are needed and good
validation results for each parameter are also required. Better data sets require selection
through identification results. The data set should also have persistency of excitation, which
eases the coupling between parameters and improve the parameters convergency.
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Chapter 5

Vehicle Identification by Other
Algorithms

In addition to the Interior-point method, many other algorithms can also be used as system
identification algorithms. In this study, Unscented Kalman Filter (UKF) will also be practiced
and compared with the Interior-point method to analyze the advantages and disadvantages
of each method and its application scenarios. For the problem of UKF, Particle Swarm
Optimization-Unscented Kalman Filter (PSO-UKF) will also be tried to optimize UKF to
explore if this algorithm is practical.
Two tire models were introduced in Section 2-1, and the Dugoff model has fewer parameters
but is less precise than the Magic Formula. However, the Magic Formula has ten times as
many parameters as the Dugoff model, which the identification method previously attempted
would be challenging to optimize on this dimension. Genetic Algorithm (GA) is a relatively
effective algorithm in the identification of the Magic Formula. Although the final result is
not satisfactory, GA identification of the Magic Formula is still presented and analyzed as a
failure control group in this project.

5-1 Unscented Kalman Filter Identification

5-1-1 UKF Introduction

Kalman Filter (KF) is an algorithm that uses the linear system state equations to optimally
estimate the state of a dynamic system through input and output observations. When using
KF to do system identification, unknown parameters are estimated with the state parameters.
Since the observation data includes the influence of random perturbations and interference in
the system, the optimal estimation can also be regarded as a filtering process [4] [27].
UKF has become a popular technique in nonlinear estimation which include estimating the
state of a nonlinear dynamic system and the parameters for nonlinear system identification
[28]. The following sections will introduce UKF and how to use UKF on an identification
problem.
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5-1-2 UKF

The UKF approximates the nonlinear transformation through a set of sample points. These
sample points are chosen by Unscented Transformation(UT), which calculates the statistics
of a random variable which undergoes a nonlinear transformation [29].
Assume x has mean x and covariance Px. To calculate the statistics of y, a matrix χ of 2L+1
sigma vectors χi is constructed where L is the dimension of x. Wi is the corresponding weight
value as the following [28].

λ = α2(L+ κ)− L
χ0 = x

χi = x+ (
√

(L+ λ)Px)i i = 1, . . . , L

χi = x− (
√

(L+ λ)Px)i−L i = L+ 1, . . . , 2L

W
(m)
0 = λ

L+ λ

W
(c)
0 = λ

L+ λ
+ (1− α2 + β)

W
(m)
i = W

(c)
i = 1

2(L+ λ) i = 1, . . . , 2L

(5-1)

In the above equations, λ is the principal scaling parameter. α determines the spread of sigma
points about the mean x̂ and be set as 0.01. The constant κ is a secondary scaling parameter,
generally set to 3 − L. In here, κ is set as 0. The constant β is used to incorporate prior
knowledge of the distribution and β = 2 is optimal for Gaussian distributions [29]. Then the
UKF algorithm can be written as following equations.
Calculate the sigma points:

χ(k − 1) = [x̂(k − 1) x̂(k − 1)±
√

(L+ λ)P (k − 1)] (5-2)

Time update:

χ(k|k − 1) = f(χ(k − 1))

x̂(k|k − 1) =
2L∑
i=0

W
(m)
i χi(k|k − 1)

P (k|k − 1) =
2L∑
i=0

W
(c)
i [χi(k|k − 1)− x̂(k|k − 1)][χi(k|k − 1)− x̂(k|k − 1)]T +Q

Y (k|k − 1) = h(χ(k|k − 1))

ŷ(k|k − 1) =
2L∑
i=0

W
(m)
i Yi(k|k − 1)

(5-3)
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Update after the measurement of y(k):

Py(k),y(k) =
2L∑
i=0

W
(c)
i [Yi(k|k − 1)− ŷ(k|k − 1)][Yi(k|k − 1)− ŷ(k|k − 1)]T +R

Px(k),y(k) =
2L∑
i=0

W
(c)
i [χi(k|k − 1)− x̂(k|k − 1)][Yi(k|k − 1)− ŷ(k|k − 1)]T

K = Px(k),y(k)P
−1
y(k),y(k)

x̂(k) = x̂(k|k − 1) +K(y(k)− ŷ(k|k − 1))
P (k) = P (k|k − 1)−K(Py(k),y(k))KT

(5-4)

5-1-3 Identification by UKF

The UKF has been introduced, how to identify the parameters of a system will be given in
this section.
The UKF approaches to determine the unknown parameter is obtained by extending the state
vector x with the parameter vector θ [30]. The dynamic model and measurements can be put
in the following form:

x(k + 1) = f(x(k), θ) + w(k)
y(k) = h(x(k), θ) + v(k)

(5-5)

The vector x and f have the following structure:

x(k) =



s1(k)
s2(k)
...

sn(k)
¯¯
θ1
θ2
...
θm


; f(k) =



f1(x(k), θ)
f2(x(k), θ)

...
fn(x(k), θ)

¯¯
θ1
θ2
...
θm


(5-6)

where si(k) indicates the states of the system and θj indicated the unknown parameters of
the system. The parameters keep constant over time. Then the parameters can be identified
with the state variables by UKF [31].
In the identification by using UKF, the identification and validation data are the same as the
ones in Chapter 4 and only the four wheels vehicle model is identified.
Since UKF is updated with the value of each step, the variation of parameters in each step is
relatively small, and the existing data length is not sufficient for the parameter states of UKF
to converge to the optimal solution. Therefore, the same set of data is used for multiple times
in a loop [31]. The final value of the parameter states of the previous group of iteration is set
to the initial value of the parameter states of the next group of iteration. When the parameter
state is no longer changing, this value can be taken as the parameter value estimated by UKF.
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5-1-4 Longitudinal Maneuver Identification

Parameter Identification The state matrix in this experiment is constructed as:

x(k) =



u(k)
r(k)
Cλl
Cλr
µ
Cair


(5-7)

f(x(k), θ) can be constructed according to eq. 2-15 and h(x(k), θ) takes the measurement
value of u and r. The key problem of UKF is that its estimated performance is greatly affected
by the values of the covariance matrices Q and R which are state noise and measurement
noise matrices. According to KF, Q and R must take into account the randomness of the
corresponding noises, however, as these are usually unknown [2]. For measurement and state
noise matrices, they need to be tuned manually by trail and error [2]. This raises the question
of what happens if the R and Q matrices of Sample 1 is applied to Sample 2, where the result
is shown in the third row of Table 5-1.
After tuning, the measurement noise matrix R in longitudinal maneuver identification for

Sample 1 is
[
1× 10−5 0

0 1× 10−5

]
.

The state noise matrixQ is



1× 10−4 0 0 0 0 0
0 1× 10−4 0 0 0 0
0 0 1× 10−4 0 0 0
0 0 0 1× 10−4 0 0
0 0 0 0 1× 10−4 0
0 0 0 0 0 1× 10−4


.

The measurement noise matrix R in longitudinal maneuver identification for Sample 2 is[
1× 10−6 0

0 1× 10−6

]
.

The state noise matrixQ is



1× 10−3 0 0 0 0 0
0 1× 10−3 0 0 0 0
0 0 1× 10−3 0 0 0
0 0 0 1× 10−3 0 0
0 0 0 0 1× 10−3 0
0 0 0 0 0 1× 10−3


.

The result of identification by UKF is shown in Table 5-1.

Parameter Cλfl Cλfr µ Cair
Sample 1 77063 69472 0.2986 3.3496
Sample 2 with Sample 1 R and Q matrices 26559 27198 2.3921 −1.1315
Sample 2 68346 65507 0.5924 0.5477

Table 5-1: Longitudinal maneuver identification result for four wheels model
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Validation The validation result is shown in Table 5-2 and Table 5-3 and also be quantitized
by Root Mean Square Error (RMSE) and variance accounted for (VAF).

Sample 1 Validation Sample 2 Validation
Term Value RMSE VAF(%) Fig. Term Value RMSE VAF(%) Fig.
Cλfl 77063 220.58 93.3 5-1 Cλfl 68346 76.64 99.2 5-2
Cλfr 69472 231.60 92.6 5-3 Cλfr 65507 102.7 98.5 5-4
µ 0.286 µ 0.5924
Cair 3.3496 406.48 0 5-5 Cair 00.5477 29.23 57.0 5-6
System
Identification:
u

0.3181 99.9 5-7
System
Identification:
u

0.1093 100 5-8

Table 5-2: Longitudinal maneuver validation result for four wheels model in UKF identification

Sample 2 with Sample 1 R and Q matrices Validation
Term Value RMSE VAF(%) Fig.
Cλfl 26559 542.49 59.5 5-9
Cλfr 27198 532.95 60.8 5-10
µ 2.3921
Cair -1.1315 390 0 5-11
System
Identification:
u

0.588 99.7 5-12

Table 5-3: Longitudinal maneuver Sample 2 validation result by using Sample 1 R and Qmatrices
in UKF identification
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Figure 5-3: Driving Sample 1: Vali-
dation of Cλr for four wheels model in
UKF identification
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Figure 5-4: Driving Sample 2: Vali-
dation of Cλr for four wheels model in
UKF identification
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Figure 5-5: Driving Sample 1: Vali-
dation of Cair for four wheels model
in UKF identification
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Figure 5-6: Driving Sample 2: Vali-
dation of Cair for four wheels model
in UKF identification

0 2 4 6 8 10 12 14 16 18 20

Time(s)

0

2

4

6

8

10

12

14

16

18

Lo
ng

itu
di

na
l V

el
oc

ity
(m

/s
)

Four Wheels Model-Vehicle System Longitudinal Validation

u_Est
u_Real
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model in UKF identification
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Figure 5-8: Driving Sample 2: Sys-
tem Validation of u for four wheels
model in UKF identification
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Figure 5-9: Driving Sample 2 with
Sample 1 R and Q matrices: Valida-
tion of Cλf for four wheels model in
UKF identification
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Figure 5-10: Driving Sample 2 with
Sample 1 R and Q matrices: Valida-
tion of Cλr for four wheels model in
UKF identification
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Figure 5-11: Driving Sample 2 with
Sample 1 R and Q matrices: Valida-
tion of Cair for four wheels model in
UKF identification
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Figure 5-12: Driving Sample 2 with
Sample 1 R and Q matrices: System
Validation of u for four wheels model
in UKF identification

5-1-5 Lateral Maneuver Identification

The state matrix in this experiment is constructed as:

x(k) =



v(k)
r(k)
Cαfl
Cαfr
Cαrl
Cαrr
Iz


(5-8)

f(x(k), θ) can be constructed according to eq. 2-15 and h(x(k), θ) takes the measurement
value of v and r. After tuning, the measurement noise matrix R in lateral maneuver identifi-

cation for Sample 1 is
[
2× 10−1 0

0 2× 10−1

]
.
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The state noise matrix Q is



10−6 0 0 0 0 0 0
0 10−6 0 0 0 0 0
0 0 10−6 0 0 0 0
0 0 0 10−6 0 0 0
0 0 0 0 10−6 0 0
0 0 0 0 0 10−6 0
0 0 0 0 0 0 10−1


.

The measurement noise matrixR in lateral maneuver identification for Sample 2 is
[
2× 10−2 0

0 2× 10−2

]
.

The state noise matrix Q is same as Q matrix for Sample 1.
The result for lateral maneuver is shown in Table 5-4

Parameter Cαfl Cαfr Cαrl Cαrr Iz
Sample 1 51373 33596 35469 34302 1708
Sample 2 46904 39874 35822 32167 1806

Table 5-4: Lateral maneuver identification result for four wheels model

Validation The validation result is shown in Table 5-5

Sample 1 Validation Sample 2 Validation
Term Value RMSE VAF(%) Fig. Term Value RMSE VAF(%) Fig.
Cαfl 51373 130.22 96.5 5-13 Cαfl 46904 58.96 99.3 5-14
Cαfr 33596 155.13 95.1 5-15 Cαfr 39874 67.70 99.1 5-16
Cαrl 35469 70.01 97.5 5-17 Cαrl 35822 62.40 98.0 5-18
Cαrr 34302 50.00 98.8 5-19 Cαrr 32167 57.41 98.4 5-20
Iz 1708 0.0058 99.3 5-21 Iz 1806 0.0049 99.5 5-22
System
Identification:
v

0.0022 98.0 5-23
System
Identification:
v

0.0023 97.8 5-24

System
Identification:
r

0.0158 99.4 5-23
System
Identification:
r

0.0095 99.8 5-24

Table 5-5: Lateral maneuver validation result for four wheels model in UKF identification
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Figure 5-13: Driving Sample 1:
Validation of Cαfl for four wheels
model in UKF identification
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Figure 5-14: Driving Sample 2:
Validation of Cαfl for four wheels
model in UKF identification
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Figure 5-15: Driving Sample
1: Validation of Cαfr for four
wheels model in UKF identifica-
tion
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Figure 5-16: Driving Sample
2: Validation of Cαfr for four
wheels model in UKF identifica-
tion
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Figure 5-17: Driving Sample 1:
Validation of Cαrl for four wheels
model in UKF identification
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Figure 5-18: Driving Sample 2:
Validation of Cαrl for four wheels
model in UKF identification
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Figure 5-19: Driving Sample 1:
Validation of Cαrr for four wheels
model in UKF identification
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Figure 5-20: Driving Sample 2:
Validation of Cαrr for four wheels
model in UKF identification
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Figure 5-21: Driving Sample 1:
Validation of Iz for four wheels
model in UKF identification
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Figure 5-22: Driving Sample 2:
Validation of Iz for four wheels
model in UKF identification
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Figure 5-23: Driving Sample 1:
System Validation of v and r for
four wheels model in UKF identi-
fication
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Figure 5-24: Driving Sample 2:
System Validation of v and r for
four wheels model in UKF identi-
fication
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5-1-6 Discussion

After tuning, the validation result of the longitudinal maneuver is slightly worse than that of
the Interior-point method, and the lateral result is slightly better than that of the Interior-
point method. Overall, UKF can identify similar results as the Interior-point method, which
means UKF can be used to identify nonlinear systems.
Unlike the Interior-point method, which optimizes the data of the whole time series, UKF
optimizes and updates at each step. Thus lateral maneuver identification only costs 10 s,
which is much lower than 36 s for the Interior-point method. In addition, UKF optimizes the
state value by taking the minimum estimated covariance of the measured and the calculated
quantity of the state.
The Interior-point method is suitable for off-line estimation, while UKF can also perform the
on-line estimation. It is suitable for observing the system parameter that keeps changing.
However, because each step updates the parameter state in a tiny amount, it is applicable to
the system with slow parameter changing speed.
For off-line identification, the Interior-point method is more recommended than UKF. For
one reason, UKF introduces new parameters: measurement and state noise covariance ma-
trices Q and R. For the system state, under the condition of accurate model, different R
and Q matrices will not have a dramatic impact on the final state. But this is not the case
for parameter identification. Since parameters have the coupling effect, there are many local
optimum for the identification. For UKF, the different choices of R and Q matrices will
affect the point to which the system converges. As shown in Table 5-3, the validation result
for Sample 2 identification has a significant deviation, but the system identification shows a
good result with VAF of 99.7%. Therefore, for different data sets, it is necessary to manually
adjust the R and Q matrix value so that the final result can converge to real value. Although
the value of the matrix is within an approximate range and does not need to be particularly
precise, the manual tuning still consumes time and reduces the autonomy of the system.
In the longitudinal identification, the results of Sample 1 are much inferior to those of Sample
2 for UKF identification. More experiments in this project also show that UKF has a large
deviation for different samples and also for different R and Q matrices, so UKF identification
stability is relatively inferior and also requires more manual tuning time. Therefore, to auto-
matically complete the identification, the PSO-UKF in the next section will attempt to find
the appropriate covariance matrix.
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5-2 Particle Swarm Optimization - Unscented Kalman Filter Iden-
tification

5-2-1 Particle Swarm Optimization Algorithm

Particle Swarm Optimization (PSO) algorithm is a global random search algorithm, which
was inspired by the migration and clustering behaviors during the foraging of birds.
In PSO, each particle is like a bird in the search space. All particles have a fitness value
determined by the optimized function, and each particle has a speed that determines the
direction and distance they fly.
PSO initially construct a group of random particles and then iterated to find the optimal
solution. In each iteration, the particle updates itself by tracking two best solutions; The first
is the personal best found by the particle itself; The other best is the common best experience
among the members.
The procedures are shown below:

1. Initialization. Initialize a population of particles with a population size of M in the
search space. Each individual in the population includes position xi(t) and velocity
vi(t).

2. Individual and global optimum calculation. According to the fitness function, the per-
sonal best is updated by the best position found for each particle, marked as pi(t). The
common best is updated by the best value from these personal best solutions, which is
marked as g(t).

3. Velocity and position updating. Calculate the new speed for each individual by the
personal best and common best positions as the following formula:

vi(t+ 1) = wvi(t) + c1r1(pi(t)− xi(t)) + c2r2(g(t)− xi(t)) (5-9)

where w is inertia weight.
c1 and c2 are learning factors, also known as acceleration constant.
r1 andr2 are random numbers within [0, 1].

In equation 5-9, the first part represents the influence of the previous velocity of the
particle to ensure the global convergence of the algorithm. The second part and the
third part gives the algorithm have local convergence possibility. It can be seen that
the inertial weight w in equation 5-9 indicates to what extent the original velocity is re-
tained. Large w means strong global convergence possibility and weak local convergence
possibility; Small w means strong local convergence possibility, weak global convergence
possibility.
Then, the new position for each individual can be calculated as:

xi(t+ 1) = xi(t) + vi(t+ 1) (5-10)

4. Termination. The iteration will be terminated when the maximum iteration number is
reached or the difference between the best value of two consecutive iteration is less than
the threshold.
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5-2-2 PSO-UKF

One crucial problem of UKF is that the performance of its system is affected by measurement
noises covariance matrix R and state noises covariance matrix Q. R and Q matrices are
generally difficult to know when making system identification at the beginning. It is necessary
to manually adjust the parameters of the two according to the error, but this makes the system
less autonomous and consumes more time. Therefore, it is worth exploring to optimize the
Q and R parameters of UKF through PSO [2].
The block diagram of this method is shown in Fig. 5-25.

Figure 5-25: Block diagram of PSO-UKF parameter estimation system [2]

The Performance evaluator will evaluate the performance of UKF by using the current Q and
R matrices, and send it to PSO. Base on the evaluation result, PSO will update Q and R
matrices by the algorithm introduced in Section 5-2-1. The new matrices will be used for the
adaptation of the UKF for the next iteration until the maximum number of iteration reached
and optimum obtained [2].

5-2-3 Identification by PSO-UKF

The size of R and Q matrices determine the reliability of the measured value and the state
calculated value. The larger R is, the greater the noise of the measured value is, the lower
the reliability is, and vice versa. When the R value is small, and the measurement reliability
is high, the prediction depends more on the quantity of measurement than the quantity of
state calculation. Q and R matrices can be estimated by PSO-UKF.

Parameters Identification This method is tried on lateral maneuver because the model is
relatively complex, it can better reflect the quality of the algorithm. The better data set
Sample 2 for lateral maneuver are used in this identification.
The convergence of the PSO depends on the initial points and its parameters c1, c2 and
w. The values of these parameters are defined as follows: c1 = 2, c2 = 2 and w = 0.5 [2].
The value of initial points of PSO are chosen from 10−1 to 10−5. The result Q matrix is
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4.2× 10−2 0 0 0 0 0 0
0 4.4× 10−2 0 0 0 0 0
0 0 4.5× 10−2 0 0 0 0
0 0 0 4.6× 10−2 0 0 0
0 0 0 0 4.2× 10−2 0 0
0 0 0 0 0 4.3× 10−2 0
0 0 0 0 0 0 4.2× 10−2


.

The result R matrix is
[
1e− 4 0

0 1e− 4

]
.

Take R and Q matrices into UKF, the estimated parameters are shown in Table 5-6.

Parameter Cαfl Cαfr Cαrl Cαrr Iz
Value 69279 12920 33872 31686 725

Table 5-6: Lateral maneuver identification result for four wheels model in PSO-UKF identification

Validation The validation result is shown in Table 5-7

Sample 2 Validation
Term Value RMSE VAF(%) Fig.
Cαfl 69279 337.10 76.9 5-26
Cαfr 12920 491.53 51.1 5-27
Cαrl 33872 66.45 97.7 5-28
Cαrr 31686 61.59 98.1 5-29
Iz 725 0.1023 0 5-30
System Identification: v 0.0146 13.4 5-31
System Identification: r 0.0217 98.8 5-31

Table 5-7: Longitudinal maneuver validation result for four wheels model in PSO-UKF identifi-
cation

5-2-4 Discussion

After many experiments, the results obtained by PSO-UKF are worse than UKF. Since each
point needs to be computed multiple times UKF for iteration. The running time of one point
for one iteration is about 1 second, and the identification needs 15 minutes for 9 initial points
and 200 iterations. Compared with the Interior-point method and UKF, the time cost is
dramatically increased, and the result accuracy cannot be guaranteed. One reason is that
PSO needs dozens or even hundreds of initial points and thousands of iterations to find the
optimal solution in such dimension. But the time cost is too high.
On the other hand, PSO-UKF uses the difference between the measured value and the es-
timated value for evaluation, but it cannot eliminate the influence of noises. Therefore,
PSO-UKF tends to make the R matrix as low as possible to ensure that the estimated value
is the same as the measured value with noises, which leads to the inaccuracy of the final
result.
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However, this method can be used to make a prediction without knowing the magnitude of
parameters to be identified as a reference.
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Figure 5-26: Driving Sample 2:
Validation of Cαfl for four wheels
model in PSO-UKF identification
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wheels model in PSO-UKF iden-
tification
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Figure 5-28: Driving Sample 2:
Validation of Cαrl for four wheels
model in PSO-UKF identification
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Figure 5-29: Driving Sample 2:
Validation of Cαrr for four wheels
model in PSO-UKF identification
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Figure 5-30: Driving Sample 2:
Validation of Iz for four wheels
model in PSO-UKF identification
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5-3 Genetic Algorithm Identification

5-3-1 Genetic Algorithm

GA is a computational model of biological evolution that simulates the natural selection and
laws of natural genetics. It is a method to search for the optimal solution by simulating the
natural evolution process.
A GA starts with a population that represents a possible collection of potential solutions to a
problem, while a population consists of individuals encoded by genes. As the main carrier of
genetic, chromosome is a collection of multiple genes, and its internal expression determines
the external expression of an individual.
The introduction of GA reference the paper "An Alternative Method to Determine the Magic
Tyre Model Parameters Using Genetic Algorithms" [3].
The optimization problem is given by:

min f(X)
subject to :
gi(X) ≤ 0 j = 0, 1, 2, . . . ,m
xi ∈ [lii, lsi] ∀xi ∈ X

(5-11)

where f(·) is the goal function, where each individual X can obtain its fitness value from it.
gi(·) are the constraints defining the search space.
This optimization method begins with a set of starting population, where each individual
(chromosome) randomly generates a set of parameters (genes) in identification system repre-
senting a possible solution.
Each gene xi can be expressed by binary code of of size p [32] which determines the precision
of each gene and the range is within [li, ls].
Next, the initial population must evolve into a population where each individual has a better
solution. This can be done through natural selection, reproduction, mutation or other ge-
netic operations. Selection and reproduction are carrier out sequentially, and mutation is an
independent process [3].

Selection In terms of selection, usually two individuals are randomly selected as parents from
the population to form a couple for reproduction. The weight of each individual depends on
its fitness, so the best individual has the greatest probability of being chosen.
In this project, the selection method references Storn and Price [33], known as differential
evolution. One parent V is the combination of two randomly selected individuals and the
best individual, shown as following:

V = Xbest + F · (Xr1 −Xr2) (5-12)

where Xbest is the best individual of a population, Xr1 and Xr2 are two randomly selected
individuals, and F is set as 0.4 that controls the disturbance of the best individual.
Another parent Xi is randomly selected from population with probability.
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Reproduction Next, two parents V and Xi will reproduce its descendant through crossover,
which interchange part of genes from parent individuals to form the descendant genes. The
schematic diagram of crossover is shown in Fig. 5-32

Figure 5-32: Piecewise multi-point crossover for reproduction [3]

The crosing points, (j, j + k), are randomly selected.
The new descendant XN

i will be kept only if its fitness is better than its antecedent Xi,
otherwise, Xi is retained. Crossover is carried out with a probability defined as CP ∈ [0, 1].
CP is set as 0.6 in this project.

Mutation Mutation is the value of certain genes on chromosome changes according to the
characteristics of the coding. In binary coding, some position on the gene changes from "0"
to "1" or "1" to "0". Mutation happens with a small probability defined as MP ∈ [0, 1] which
is much lower than CP . MP is set as 0.6 in this project.
The flow chart of GA is shown in Fig. 5-33
GA is used in this section to identify the parameters of the magic formula.
According to Subsection 2-1-1, the goal function can be set as [3]:

min
PARA

n∑
i=1

[Y ∗
combined(Xi)− Ymeasured(Xi)]2

where Xi = {α1, α2, . . . , αi} ∨Xi = {λ1, λ2, . . . , λi}

and PARA =
{
PDX1, PDX2, PCX1, PEX1, PEX2, PEX3, PEX4, PKX1, PKX2,
PKX3, PHX1, PHX2, PV X1, PV X2, RCX1, RBX1, RBX2, RHX1

}
∨

PDY 1, PDY 2, PCY 1, PEY 1, PEY 2, PEY 3, PKY 1,
PKY 2, PHY 1, PHY 2, PV Y 1, PV Y 2, RCY 1, RBY 1,

RBY 2, RBY 3, RHY 1, RV Y 1, RV Y 2, RV Y 4, RV Y 5, RV Y 6

→ Y ∗
combined

(5-13)

Identification This algorithm is firstly tried in lateral maneuver identification and the data
is the same one used in Interior-point identification part.
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Figure 5-33: Scheme of the entire algorithm of genetic algorithm [3]

Due to the large parameter dimension, the lateral force Fy is used directly. The result for one
tire is shown in Table 5-8

Parameter Value Parameter Value Parameter Value
PDY1 -1.059 PDY2 0.064 PCY1 0.223
PEY1 -2.529 PEY2 0.200 PEY3 -0.531
PKY1 -18.29 PKY2 3.99 PHY1 0.060
PHY2 -0.053 PVY1 0.280 PVY2 -0.090
RCY1 4.098 RBY1 9.321 RBY2 7.661
RBY3 -0.245 RHY1 0.296 RVY1 0.301
RVY2 -0.079 RVY4 11.204 RVY5 4.869
RVY6 -54.376

Table 5-8: Identified parameters of Magic Formula

Validation The lateral force calculated by the identified parameters compares with measured
data. The plot is shown in Fig. 5-34
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Figure 5-34: Magic Formula Validation

5-3-2 Discussion

This experiment shows that in the case of vehicle driving maneuver, it is challenging to identify
Magic Formula. The main reason is that Magic Formula has more than 20 parameters. Each
dimension requires multiple values to find the global optimal solution. Even assuming two
values for each dimension, that would require 220, nearly a million different combinations. It
remains challenging to optimize through selection, mutation, and crossover. As a result, the
parameters identified in the end deviate significantly from the real value, and it is not easy
to find the global optimal solution in this dimension. Therefore, it is necessary to reduce the
dimension of the system before the optimization calculation. In general, when the tire vertical
load is constant, the parameter B,C,D and E are also constant. At this time, if different
slip angles and their generated lateral forces can be obtained, B,C,D and E can be identified
first, and then the corresponding sub-parameters can be identified respectively. This method
can reduce parameter identification of more than 20 dimensions to 4 dimensions. However,
in the vehicle driving maneuver, the longitudinal force of each tire of the vehicle changes as
the driving angle changes, and it cannot be controlled to keep constant. So Magic Formula
is not suitable for use in this situation. Relatively speaking, the Dugoff model can simulate
the tire model well under the condition of stable operation of most cases, and the number of
parameters is greatly reduced, which can make the model establishment more accurate, so it
is a very efficient choice.

5-4 Conclusion

This chapter attempts several identification methods, including UKF, PSO-UKF and GA.
UKF results are close to the Interior-point method, but due to the introduction of noise
covariance matrices, which needs to be tuned. This increases the time consumption for man-
ually tuning, uncertainty and reduces the autonomy of identification system. Since UKF can
estimate at each time step, it is very suitable for on-line system identification and parameter
estimation. For off-line identification, the Interior-point method is a better choice. PSO-UKF
is used to adjust the noise covariance matrices automatically, but because PSO needs dozens
of initial points and hundreds or even thousands of iteration times, which means UKF iden-
tification process needs to be calculated thousands of times and consume a scary amount of
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time. In the case of a small number of initial points and iterations, the result of PSO-UKF is
greatly influenced by initial points. When the choice of initial points are far from the optimal
solution, PSO-UKF is difficult to converge. Finally, we try to identify a more accurate Magic
Formula tire model by GA. In the case of vehicle tests, it is difficult to keep the vertical force
constant with changing steering angle, so effectively reduce the dimension is very difficult.
GA at this time directly dealing with the Magic Formula tire model is not capable of. The
above experiments are the algorithm comparisons of the Interior-point method.
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Chapter 6

Conclusions and Recommendations

This chapter summarizes the vehicle’s overall system identification in three aspects: data set,
model, and algorithm selection. The areas for further exploration and improvement will also
be suggested.

6-1 Conclusions

A good vehicle identification result mainly needs three key elements: proper data set, an
accurate vehicle model, and an efficient algorithm. These three elements are also be selected
and optimized by validation results. The vehicle identification cycle’s key elements are shown
in Fig. 6-1. The following conclusion about this thesis is also divided into these aspects.

Figure 6-1: A schematic view of the key elements in vehicle identification cycle [4]
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6-1-1 Data Set Selection

In the experiments of the Interior-point algorithm and Unscented Kalman Filter (UKF), there
are two data sets involved in the identification for both longitudinal and lateral maneuver.
The identification result of Sample 2 is often better than that of Sample 1. By comparing
the results of these two samples, some conclusions and suggestions for data set selection can
be drawn. The system validation results of Sample 1 are usually excellent, but the errors of
parameter identification results are substantial. There are two main reasons, the coupling of
parameters and lack of ’excitation’ in parameter identification. Parameter coupling, such as
between Cα and Iz, the error calculated from both parameters cancels out in estimation. One
way to solve this problem is to add constraints to the parameters. When there are no new
restrictions, the selected data set should have persistency of excitation, where the data set
is multi-frequency oscillation, and the identification parameters are easier to converge to the
true value.
If the influence of parameters on the system is more significant, the identification accuracy will
be higher. The air resistance increases with the quadratic speed, where the resistance is small
at low speed and becomes large at high speed. When the influence of air resistance on the
system is small, the identification error would be more extensive. Therefore, the longitudinal
maneuver identification error of Sample 1 is greater than that of Sample 2. So the right data
set needs to be chosen according to the characteristics of the parameters.

6-1-2 Model Selection

The establishment of a vehicle model is a crucial step in vehicle’s system identification, in-
cluding the selection of vehicle mathematical model, vehicle subsystem model, and sensor.
The complexity of model selection is determined according to the requirements of identifica-
tion, and the accuracy of a complex system is usually better than that of a simple system.
However, overly complex systems introduce unknown parameters, which may cause param-
eter coupling. Decoupling needs an enormous computational load and more sensors. After
the previous experiment, the four wheels model has the right balance between the calculation
amount and accuracy. The dynamic performance of the system can be well described by
establishing the relationship between forces and accelerations or inertia through differential
equations. The bicycle model has a good performance in longitudinal identification, while the
error in lateral identification is larger. This result can meet the requirements of low precision
tasks. Identification took 13 s, about a third as long as the four wheels model. For the system
with strict calculation amount requirements, the calculation amount of the bicycle model will
be much less. By comparing the results of Sample 1 and Sample 2, it can be seen that the
bicycle model can get quite different results for different data sets, so its selection of data sets
should be more rigorous.
The tire model is a mathematical expression based on theoretical calculation and practice.
The accurate model is the Magic Formula, but the Magic Formula is not suitable for this
project because of the excessive number of parameters. The Dugoff model also provides a
model to balance accuracy and computational effort in situations where it is impossible to
disassemble a tire for separate simulation experiments. The simplified linear model is suitable
for stable and gentle driving maneuver, which will cause a large error if the force caused by
slip is in a saturation stage.
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6-1-3 Algorithm Selection

The algorithm should also have the advantages of less computational load and higher preci-
sion. The Interior-point nonlinear optimization algorithm method is chosen because it can
find the best parameter set at a fast speed and with decent accuracy. Moreover, it can do
the optimization of the data over the whole time cycle. Identification by UKF, approximate
results can be obtained, and the computation time is about one-third of the Interior-point
method. However, since UKF introduces new algorithm variables, R and Q matrices. For
each data set, manual tuning of the matrices is needed to avoid local optimum, which signif-
icantly increases the human effort and the time to construct a proper identification system.
By comparing Sample 1 and Sample 2, it can also be found that UKF produces extensive
difference identification results for different data sets, so the stability is worse than that of the
Interior-point method. Particle Swarm Optimization-Unscented Kalman Filter (PSO-UKF)
makes the system automatically adjust the parameters, but its low accuracy and long compu-
tation time make it no advantage over the Interior-point method. However, UKF is suitable
for on-line identification of slowly changing or constant parameters. For the off-line identifi-
cation of vehicles in this project, the Interior-point method is a better choice. The project
tried to identify the parameters of the Magic Formula with Genetic Algorithm (GA). It turns
out that while the Magic Formula is suitable for finding the optimum in the non-convex and
multidimensional system, it still fails to deal with the dimension of the Magic Formula.

6-2 Recommendations

6-2-1 Identification in Less Stable Condition

This project is mainly carried out experiments at low speed with a large steering angle or
high speed with a small steering angle, not much considering the state of parameters when
tire forces are saturated under drifting or out of control conditions. Research in this area can
improve vehicle safety in extreme environments and conditions.

6-2-2 Parameters Decoupling

Parameter coupling is a difficult problem to solve in system identification. When the ob-
servable states are far less than the unknown parameters, parameter coupling often occurs.
For example, air resistance and tire longitudinal force will affect the vehicle’s longitudinal
movement, which is difficult to be separated. In general, solving parameter coupling can
increase the mathematical relationship between the parameters of the model, thus increasing
the limitation. Alternatively, add observable quantities, such as air resistance sensors, or use
data sets with the persistence of excitation. However, all approaches have limitations, such
as some models cannot be constructed more mathematical relations, and the cost of adding
observers or sensors is too high. In this case, how to decouple the parameters is a necessary
research direction.
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Glossary

List of Acronyms

KF Kalman Filter
UKF Unscented Kalman Filter
PSO Particle Swarm Optimization
PSO-UKF Particle Swarm Optimization-Unscented Kalman Filter
GA Genetic Algorithm
COG center of gravity
RMSE Root Mean Square Error
VAF variance accounted for
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