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Approach

by Tarek AWADALLA

Gas flow in fractured nano-porous shale formations is complicated by a hierarchy of
structural features, ranging from nanopores to microseismic and hydraulic fractures,
and by several transport mechanisms that differ from standard viscous flow used in
reservoir modelling. In small pores, self-diffusion becomes more important than
advection, also slippage effect and Knudsen diffusion becomes relevant at this scale.

The characteristics and properties of the fracture networks plays a major role
in the performance of shale gas reservoirs, therefore the use of accurate simulation
technique that honor the complexity of these reservoirs and capture the associated
dynamics of nanopores is strongly required. However, these accurate simulations
often necessitate a large amount of computations for field scale models and there-
fore require upscaling. Yet the upscalling techniques generally in use are based on
idealizations that do not reflect the discrete features of the reservoir.

In this work, we first incorporate the formulations of a statistical bundle of dual
tube model to describe the dynamics of shale gas into a discrete fracture model. The
formulation of the DFM model we use applies an unstructured control volume fi-
nite difference approach with a two point flux approximation. We then propose to
upscale these detailed descriptions using two different techniques, with the major
difference in their coarse grid geometry. The first approach, referred to as EDFM
upscaling, relies on a structured Cartesian coarse grid. While the second method,
which we call the multiple subregion (MSR) upscaling, introduces a flow based
coarse grid to replicate the diffusive character of the pressure in the matrix. The
required parameters for the coarse scale model in both methods and the geome-
try of the subregions in the second method are determined efficiently from global
single-phase flow solution using the underlying discrete fracture model.

The methods are applied to simulate single-phase gas flow in 2D fractured reser-
voir models, and are shown to provide results in close agreement with the underly-
ing DFM and with considerable reduction in the computational time. We notice that
in order to account for the prevailing transient effects in low permeability shale, the
upscaled transmissibility need to be related to pressure for better results.

Finally, we consider the EDFM upscaling we propose as an easier approach in its
implementation, while the MSR technique as a more accurate method.
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Chapter 1

Introduction and literature review

Within the hydrocarbon family, the fastest growing hydrocarbon resource is natural
gas. Natural gas is becoming the primary source of electricity generation for many
nations around the world, its popularity is due to its reduced greenhouse gas emis-
sions compared to other fossil fuels.

The emergence of shale gas resources largely increases global natural gas re-
serves. The U.S Energy Information Administration (EIA) estimates that known
shale gas deposits worldwide add 47 percent to the global technically recoverable
natural gas resources Fig.1.1. However, extracting the gas from shale poses a num-
ber of risks to the environment that needs to be accounted for in order to benefit
from the potential resources previously recognized as economically infeasible ow-
ing to their low productivity.

SHALE BASIN

Low

Low to medium

Medium to high

High

Extremely high

Arid & low water use

BASELINE WATER STRESS LEVEL

LEGEND

CANADA
573

Country name

Average Baseline Water Stress Level

Technically recoverable shale gas
resources (trillion cubic meters)

FIGURE 1.1: Location of world’s shale play and the volume of techni-
cally recoverable shale gas 1 2

As shale gas reservoirs are characterized by a very low permeability, gas produc-
tion can only be achieved by stimulating the shale formation through hydraulic frac-
turing. Combined with horizontal drilling it maximises extraction by allowing mul-
tiple fractures along the shale bed which in turn allows the gas to be commercially

1Source: World resources institute
2The map is also intended to show the level of baseline water stress which is outside the scope of

this research
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extracted. The large development costs of shale gas reservoirs makes it a necessity
to develop accurate and reliable modelling tools for uncertainty quantification and
risks assessment.1

The use of conventional reservoir simulation methods cannot provide reasonable
production analysis for shale gas reservoirs because they are designed for viscous
displacement processes (Hadjiconstantinou, 2006). These tools strongly underesti-
mate the potential of shale gas resources due to the highly nonlinear and complex
mechanisms driving the flow in extremely low permeability formations.

Researchers (e.g. Javadpour et al., 2007; Darabi et al., 2012) recently charac-
terized complex networks of nanopores within shale gas which behave differently
than Darcy flow. They identified that the gas release in shale is the outcome of
several different transport mechanisms, mainly viscous flow and molecular diffu-
sion induced by gas expansion. Additionally, the no-slip boundary condition is no
longer adequate as pore diameter become within the order of the molecular mean
free path, which also induces molecule-wall collisions and affects the diffusion coef-
ficient (Knudsen effect). Hence, it is necessary to account for the different dynamics
in shale gas, which are normally not considered in traditional reservoir simulations.

Furthermore, the analysis of gas production from shale formation is complicated
by a hierarchy of structural features induced by the multistage hydraulic fractur-
ing and the consequent micro-seismic events which creates a connected network of
secondary fractures within the reservoir.

The characteristics of the generated fracture systems are crucial to estimate shale
gas production rate, yet their geometrical complexity along the strong permeabil-
ity contrast between fractures and nano-pores of shale is a challenge for reservoir
simulation.

Next we will introduce several models for simulation of flow in fractured media.

1.1 Fracture modeling methods

1.1.1 Discrete fracture model (DFM)

In DFM approach each fracture is modelled explicitly using, in most of the cases,
highly resolved unstructured grids. This allowed the simulation of fine scale ge-
ological models with complex and various fracture geometries. For these reasons,
DFM is considered as the most accurate representation of fracture networks but with
the disadvantage of high computational cost as a tremendous amount of grid cells
are involved.

Various procedures to solve the flow equations for systems using unstructured
grids can be found in the literature. Using finite element approach such as the ear-
liest work of Baca et al. (1984) as they proposed to solve for 2D single-phase flow
with heat and solute transport. Juanes et al. (2002) presented a more general ap-
proach with finite-element formulation for 2D and 3D for single-phase flow in frac-
tured porous media. These early methods were then extended to handle incompress-
ible two-phase fluid flow including capillary pressure effect such as in the work of

1Data and information about natural gas, shale gas resources and its development were gathered
from various resources on the web such as:

• EIA: https://www.eia.gov/

• Shale Gas Europe: http://shalegas-europe.eu/

• Resources for the Future: http://www.rff.org/
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Kim and Deo (2000) and Karimi-Fard and Firoozabadi (2001), compositional multi-
component flow in Hoteit and Firoozabadi (2005), and three-phase flow in Fu et al.
(2005).

Matthäi et al. (2005) presented a control-volume finite-element (CVFE) approach
to accurately quantify two-phase flow simulation in fractured rock masses using 3D
hybrid meshes. Their work was then expanded to include applications for compress-
ible three phase flow in Matthäi et al. (2007) and in Geiger-Boschung et al. (2009).

Finite element procedures are generally more expensive than the standard finite-
volume, the latter being most popular choice among the majority of existing reser-
voir simulation techniques. Karimi-Fard et al. (2003) offered a simplified DFM based
on a finite volume approach. The method is applicable to connection list based
general purpose reservoir simulators and offers significant improvement in the effi-
ciency of DFM’s using unstructured grids.

There are, however, some effective procedures based on structured discretiza-
tion schemes. For example, Lee et al. (2001) presented a hierarchical modelling of
flow in fractured formations. In this model, the small fractures were introduced by
adjusting the reservoir properties, while the large fractures were modelled explic-
itly. Another proposed method also using structured grids is the embedded discrete
fracture model (EDFM: Li and Lee, 2008), in which the fractures are discretized sep-
arately from the matrix and then coupled together using a transfer term.

It is only the advances in geological characterization tools as well as the im-
proved computational capabilities that allowed implementation of DFMs for mod-
elling complex fracture networks.

1.1.2 Dual continuum models

One of the most popular and practical flow model applied in fractured reservoir is
the dual-porosity model. The idea, introduced by Barenblatt and Zheltov (1960), is
founded on the subdivision of the system into two separate continuum, where ma-
trix represent most of fluid storage while large-scale flow occurs through the frac-
tures. The exchange of flow between matrix and fracture is represented by a transfer
function. Warren and Root (1963) proposed an idealized representation of the reser-
voir using a set of identical rectangular parallelepipeds as matrix blocks, separated
by fractures Fig.1.2. In their approach, flow takes place only through the fracture
network while the matrix blocks are feeding the fractures though a transfer func-
tion.

The transfer function, also known as the shape-factor, has been the subject of
many investigation. This parameter generally depends on the shape of the matrix
block and the flow mechanisms.

Interblock matrix-matrix flow is not represented in the dual-porosity model.
Blaskovich et al. (1983) and Hill and Thomas (1985) introduced the dual-porosity/dual-
permeability models where matrix to matrix connections were considered to account
for the contribution of matrix to the overall flow.

This addition allowed to improve the capabilities of dual continuum models,
which was limited to highly connected fractured reservoir, in simulating variations
of fracture network densities.

Despite being a computationally attractive approach, the dual-continuum mod-
els are too limited to represent detailed geological characterization. In such cases,
discrete fracture modelling offers the required accuracy.
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FIGURE 1.2: Idealized dual-porosity reservoir model (Warren and
Root, 1963)

1.2 Upscaling

The detailed geological description of highly heterogeneous fractured reservoirs are
generally far too fine for direct flow simulation and therefore need to be upscaled.
Sablok and Aziz (2008) summarizes upscaling errors in reservoir simulation. They
focused on the errors introduced by local single-phase upscaling, for any type of
heterogeneous reservoirs, as a result of coarsening and homogenization.

The conventional dual continuum models (dual-porosity (Barenblatt and Zhel-
tov, 1960), dual-porosity/dual-permeabiltiy (Blaskovich et al., 1983; Hill and Thomas,
1985)) are the mostly widely used representation for upscaling fractured reservoir.
As mentioned in the previous section, in the dual porosity model, the matrix acts as
source that feeds the fractures and flow occurs only in fractures. This limitation was
corrected for with the dual-porosity/dual-permeability procedure. In these mod-
els, equivalent permeability for the coarse block is determined through local single
phase flow simulations over the fine scale model. The major limitation brought by
using these models, in addition to the fracture network idealization, is the assump-
tion of an existing REV. Such assumption is generally accepted in formations with
highly interconnected dense fracture network but is not applicable for poorly con-
nected networks or if the network fractures has no characteristic size limit (Berkowitz,
2002).

Lee et al. (2001) proposed a hierarchical fracture upscaling that is meant to reduce
the error brought by homogenization when fracture length scale distribution is non-
uniform or the network is poorly connected. In their approach, large scale fractures
were modeled explicitly and the effective permeability contribution from smaller
fractures was determined analytically.

The EDFM model in Li and Lee (2008) can also be used for upscaling of fractured
networks. This method, represents an interesting development to the dual contin-
uum approaches, where fracture networks are discretely connected to matrix blocks
by a series of source terms. It also has the advantage that fractures and matrix are
represented by independent grid domains. However, difficulties might arises when
evaluating the transfer function to describe exchange of fluid between matrix and
fracture.

In an effort to tackle limitation of conventional upscaling approaches, Vitel and
Souche (2007) proposed a technique based on the upscaling of transmissibility from a
fine scale “pipe network”. The workflow involve a simplification stage where nodes
are removed iteratively by applying electric simplifications then it is followed by an
optimization step where connections of low transmissibility are removed. This ap-
proach is rather appealing as it does not depend on computing effective properties.
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Recently, Gong et al. (2006) and Karimi-Fard et al. (2006) presented a systematic
multi-subregion (MSR) upscaling approach based on the integration of DFM into a
general multiple continuum representation. The method was developed as an ef-
fort to include spatial variability within local matrix region, considering that most
of the dual-porosity implementations model the pressure and saturation as constant
within the matrix. They succeed to resolve spatial variation within the matrix with
a novel flow-based subgridding technique using the solution of a local discrete frac-
ture flow problem over each coarse grid block. The parameters for the coarse scale
model are also extracted from the solution of DFM fine scale flow problems. Appli-
cation of the method to simulate 2D and 3D fracture models, with viscous, gravita-
tional and capillary pressure effect is also shown in their work.

1.3 Research objectives

In shale gas, we are mostly dealing with a single phase problem; which despite being
considered as the simplest form of upscaling, the transient phenomena associated to
the low permeability of shale formation as well as its complex setting brought by the
complex fracture networks represent a challenge to standard upscaling methods.

In this research, our goal is to benefit from the accuracy of discrete fracture repre-
sentation to model shale gas dynamics in fractured environment. We also would like
to develop an upscaling procedure with the capacity to approximately reproduce the
same flow behaviour as the original DFM solution in shale gas.

To achieve our objectives, we propose two upscaling models with a systematic
workflow, and analyse their applicability on fractured shale gas. The methods we
study here are based on adaptation and modifications to the EDFM method and the
multi subregion method (MSR) in order to include formulation describing the shale
gas dynamics and provide accurate upscaled results.



6 Chapter 1. Introduction and literature review

1.4 Flow simulation

We perform all of our simulations using the Stanford automatic differentiation gen-
eral purpose research simulator (ADGPRS) developed by Voskov et al. (2009). ADG-
PRS is a unified reservoir simulation framework providing an extensive set of non-
linear formulations (Voskov and Tchelepi, 2011; Voskov, 2012; Zaydullin et al., 2012),
flexible spatial discretization (Zhou et al., 2011), and implements a connection list
approach where each grid node may have a variable and arbitrary number of neigh-
bouring or connected nodes that depends on the grid geometry. In such implemen-
tation, there is no distinct dimensionality as the conventional spatial indices i,j,k are
not used but rather a unique number is assigned to each block.

The specification of all possible pairs of connections are established in an ar-
ray during discretization performed at a preprocessing stage. Note that for no flow
boundaries the connections are excluded.
Such implementation has the advantage to simplify redundant flux calculations that
may occur in conventional block based approach, as inter-block fluxes are only eval-
uated when pairs of grid blocks are connected.

This thesis proceeds as follows, in chapter 2 the different transport physics in shale
gas and their equations are described. Chapter 3 presents the DFM approach we
are implementing to describe shale gas dynamics in fractured formation with ex-
ample application. Then the proposed upscaling procedures and their application
are explained in chapter 4, with analysis of the upscaled results. Finally, the thesis
conclusions are presented in chapter 5.



7

Chapter 2

Gas Dynamics in Shale

To investigate the dynamics of gas flow in complex shale systems we had recourse to
a conceptual model. Conceptual models are a representation of the systems, with the
sole objective to convey fundamental principles and functionality of the represented
process which help to improve the understanding of the phenomena.

Pore network geometries are in general very complex; various conceptual mod-
els were previously proposed and successfully used to model flow in porous media
(Fig.2.1). The complexity of the model in literature varies from simple bundle of
tubes (Fatt, 1956), throat-bulb model (Lee et al., 1996) and the more complex pore
network reconstruction using 3D imaging tools (Blunt et al., 2013). The degree of
complexity of the relevant network should reflect the complexity of the physical
phenomena to be described.

(A) (B)

FIGURE 2.1: Porous network conceptual models, (A) Pore network
extracted from 3D imaging tools (Blunt et al., 2013) (B) bulb throat

model (Lee et al., 1996)

Owing to the fact that we are concerned by the modeling of single phase gas, a
simplified model can be used. In this research, we adapt the formulation of a bundle
of dual tube model (Lunati and Lee, 2014) in a numerical framework to represent the
pore network structure in shale gas and capture the relevant macroscopic effects.
Considering the fact that most of the matrix storage volume is provided by pores
connected through their pore throats, Lunati and Lee proposed a statistical BoDtm
as a generalization of the BoTM, where the effect of the successive pores and throats
is homogenized. Hence, each pathway is described by two effective diameters; a
large diameter describes the effective storage along the tube and a smaller diameter
which represent the effective permeability of the throats Fig.2.2.
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FIGURE 2.2: A dual tube conceptual model (Lunati and Lee, 2014)

In our adaptation, which is numerical rather than statistical, the matrix storage
is represented by the pore volume of the corresponding control volume (discretized
element of the reservoir) while the flow across neighboring control volumes is con-
trolled by the effective permeability of a bundle of tubes. Our concern, is to model
the dynamics of shale gas with respect to the complex settings brought by the net-
works of fractures generally characterized in shale formations.

2.1 Physics of gas transport in shale formation

Gas flow in low permeability shale gas cannot be modeled using standard Darcy
flow models designed for viscous dominated displacement. As the size of the con-
fining pore space reduces to nano-scale, the validity of the standard approach based
on Navier-Stokes equation with no-slip boundary condition diminishes (Hadjicon-
stantinou, 2006) see the Fig.2.3.

(A)

(B)

FIGURE 2.3: (A) no-slip flow in micro scale pores and (B) slip flow in
nano size pores

Researchers (e.g. Javadpour et al., 2007; Darabi et al., 2012 as well as others) iden-
tified the main transport mechanisms in shale gas as viscous flow and self-diffusion
due to gas expansion. Additionally, as pore diameter become of the order of the
molecular mean free path the molecule-wall collisions becomes more pronounced,
also known as Knudsen effect. Therefore, it is necessary to account for these different
flow regimes to model gas flow in shale formations.

Knudsen number, KN , is used in order to determines the appropriateness of the
continuum model, Fig. 2.4. It is a widely recognized dimensionless parameter, de-
fined as the ratio of the gas mean free path l and the pore diameter d,

KN =
l

d
, (2.1)

where l the molecular mean free path is defined as the average distance the molecules
of gas travels between two successive collisions with other molecules. Using kinetic
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elementary theory, and assuming a Maxwell-Boltzmann distribution of the velocity,
the mean free path becomes:

l =

(
m√
2σ

)
1

ρ
, (2.2)

in which m is the molecular mass and σ is the cross-sectional area of collision. For
methane σ = πδ2 = 0.42 nm2, using a methane molecular diameter δ = 3.8◦A.

FIGURE 2.4: Flow regime classification based on Knudsen number

2.1.1 General mass balance

The study of transport phenomenon in general entails the analysis of conservation
of mass within the system. The general mass balance equation that is used to de-
scribe the flow through porous medium, for an element (control volume) within the
medium is defined as:

∂(φρ)

∂t
+∇.j = q. (2.3)

The equation depicts the accumulation of mass, the mass flux through the sys-
tem and the physio-chemical reactions respectively, where ρ is the density, φ is the
porosity, j is the total flux and q is the source term.

The total flux refers to the dominating physical processes. In the modeling pro-
cess, this is an advective flux due to mean gas velocity and a diffusive flux due to
density gradient,

j = jadv + jdiff = uρ−D∂ρ

∂x
. (2.4)

The diffusive flux is related to density gradient using the diffusion coefficient D,
while the mean gas velocity is defined as proportional to pressure gradient using
Darcy’s law as follow:

u = −k
µ

∂p

∂x
, (2.5)

where k is the absolute permeability tensor and µ is the viscosity of the gas.

The analysis of the gas kinetics that governs the physics of gas inside the pores
investigated by Lunati and Lee is presented next. Lunati and Lee based their re-
sults on elementary kinetic theory for an isothermal system, suggesting that the low
porosity of shale and the small gas flux besides the large thermal capacity and con-
ductivity of the rock leads to negligible effects on temperature.
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2.1.2 Permeability with slip effect correction

Based on the Hagen–Poiseuille equation for viscous flow in a pipe, permeability in
the longitudinal direction can be expressed as:

k = κd2, (2.6)

where κ is a dimensionless constant that is related to the configuration of the flow-
paths (1/32 for a circular tube and 1/12 for planar fractures), d is the diameter of the
circular tube or the aperture of a plane fracture.

As pore size d becomes very small and comparable to the mean free path l, the
no-slip condition at the solid boundary is no more applicable and the equation has
to be modified. Brown et al. (1946) proposed a correction to account for the slippage
effect as:

k =

[
1 + 4

l

d

(
2

σv
− 1

)]
κd2, (2.7)

where κ is the same dimensionless constant as in equation 2.6, 0 < σv < 1 is
the tangential-momentum accommodation coefficient that indicates the fraction of
molecules that are diffusively reflected by the wall. Assuming we have tubes of
rough surfaces that reflects all molecules diffusively, then σv = 1 and substituting
with the definition of mean free path in Eq.2.2, the equation simplifies to:

k =

[
1 + 4

m√
2σρd

]
κd2. (2.8)

2.1.3 Viscosity

The viscosity defines the ability of intermolecular collisions to transfer momentum
and based on the elementary kinetic theory of gases (Hirschfelder et al., 1954), it is
defined as:

µ =
1

3
ρlvt, (2.9)

where vT , the thermal velocity, is interpreted as the mean magnitude of the molecu-
lar velocity and is given by:

vT =

√
8kB
πm

T
1
2 , (2.10)

where kB = 1.38 x 10−23JK−1 is the Boltzmann constant.
Therefore µ can be written as:

µ = ξµ

√
kBm/π

σ
T

1
2 , (2.11)

where the numerical prefactor ξµ = 2/3.
Note that viscosity is only a function of temperature; hence it is considered as

constant for isothermal processes.

2.1.4 Molecular diffusion coefficient

The molecular diffusion coefficient describes the mass transfer due to molecular col-
lisions, and therefore is proportional to the thermal velocity and to the mean free
path:

Dm =
1

3
lvT . (2.12)
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The molecular diffusion coefficient then becomes:

Dm = ξD

√
kBm/π

σ

T
1
2

ρ
, (2.13)

with ξD = 2/3.
The equation above is used to describe self-diffusion for a pure gas.

2.1.5 Knudsen diffusion

When the size of the pore d is comparable to or smaller than the mean free path of
the gas molecules l, the interactions with the solid walls of the pores become more
significant than the intermolecular interactions. The mass transfer due to the effects
of collision with the wall is described by the Knudsen diffusion coefficient, obtained
by replacing l by d in equation 2.12:

Dk =
1

3
dvT = Dmd

l
. (2.14)

2.1.6 Effective diffusion

The Knudsen number is also used to describe the relative importance of the molecule-
molecule collisions with respect to the molecule-wall collisions, which varies de-
pending on the reservoir conditions. Knudsen diffusion is more likely to be prevail-
ing at lower pressure, while molecular diffusion in nano-pores is dominant at higher
pressure as intermolecular collisions are more likely. To consider the contribution of
these two mechanisms, the effective diffusion coefficient introduced by Lunati and
Lee is used:

Deff = Dm [1 +KN ]−1 , (2.15)

which describes their combined effect and tends to Dm when KN << 1 and to Dk

when KN >> 1.

2.1.7 Adsorption and desorption

In shale gas, the gas is stored as compressed gas in pores but also as adsorbed gas to
the pore walls and as soluble gas in solid organic materials (Javadpour et al., 2007).
As the pressure within the reservoir is depleted by production, the adsorbed gas gets
released into the nano-pores followed by the diffusion of organic matter dissolved
gas to the surface of the pores.

The volume of adsorbed gas in shale formations can be of large quantities; up
till now its significance to production is the subject of many studies and analyses of
different types of shales (e.g. Yu and Sepehrnoori, 2014; Yang et al., 2015, and the ref-
erences therein), and its contribution is mostly accounted at the very low pressures
of late stage recovery.

For simplicity we will only include the contribution of free gas trapped in the
rock pores into our simulations.
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2.2 Flow in fractures

Fractures are generally characterized with a much higher permeability than the shale
matrix despite the different fractures categorized within shale formations. The Knud-
sen number for the flow of gas in these fractures mostly fall below 0.001, which in-
dicate a viscous dominated flow.

The simplest model of flow through a rock fracture is the parallel plate model
(Sarkar et al., 2004), where fracture walls are represented by parallel plates separated
by an aperture “h”. This model provide exact same solution as Navier-Stokes and
therefore can be formulated in the same way as Darcy’s law. The average velocity
within a fracture is then given by:

u = − h2

12µ

∂p

∂x
, (2.16)

where h2

12 is basically the fracture permeability.
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Chapter 3

Fracture Modeling

The economical profitability of shale formation came to significance with emergence
of the improved recovery techniques by means of long horizontal wells stimulated
by multi-staged hydraulic fracturing treatment.
The hydraulic fractures and the micro-seismic events following the stimulation pro-
cess allow the well to communicate with the shale reservoir, creating a complex net-
work of multiple length scale fractures.
The characteristics and properties of these fracture networks play an important role
in shale gas reservoir performance. Therefore, it is significantly important to accu-
rately characterize and represent these features in the modeling of these formations.

In this chapter, the approach used to model fractured shale gas is clarified. The
numerical formulation of the equations used and adapted into the reservoir simu-
lator are also explained, along with several test cases to show the dynamics of gas
flow in fractured shale.

3.1 Discrete fracture modelling DFM

Discrete fracture models, in which the fractures are represented individually, are
considered as one of the most accurate techniques to model fracture networks. How-
ever, DFM approaches are sought to require rigorous computations. Recently, im-
proved techniques and advances in numerical solution methods have significantly
improved its efficiency.

In this work, we follow the approach proposed by Karimi-Fard et al. (2003) where
an unstructured control volume finite-difference technique with a two point flux
approximation is used.

3.1.1 Geometrical discretisation

The first step covers the partitioning of the reservoir domain into discrete control
volumes where the conservation law is locally applied.
To accurately capture the complexity of the fracture network, it is usually necessary
to use an unstructured discretization scheme. The use of unstructured grids allow
the modelling of non-ideal fracture geometries, such as non-orthogonal and non-
planar fracture orientations.
In this work we employ a standard Delaunay triangulation scheme (TRIANGLE)
Shewchuk (1996) to discretize the domain. For a 2D problem, the matrix blocks are
represented by polygons while fractures are represented by segments.

The fracture thickness is not represented in the grid domain but only in the com-
putational domain for flow rate evaluation, which consequently simplifies the grid-
ding of fractured domain as showin in Fig. 3.1.
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The mean properties of the grid block as well as the evaluated variables are defined
in nodes, at the centroid of each corresponding control volume which is representa-
tive of the entire grid block.

Various unstructured gridding schemes can be used in a similar fashion; R. Schnei-
ders listed on his webpage many of the meshing tools we can found online : http:
//www.robertschneiders.de/meshgeneration/software.html.

(A)

*

Matrix control volume

Fracture control volume

Fracture node

Matrix node

(B)

FIGURE 3.1: (A) 2D fracture domain, (B) Discretization using unstruc-
tured triangulation

One can notice that our discretization scheme generate grids that are not neces-
sarily orthogonal, unlike the Perpendicular Bisector (PEBI) grids which are orthog-
onal by construction but introduce a lot of small control volumes. This issue with
generally unstructured grids can be improved by simple modifications to the dis-
cretization as summarized in the work of Karimi-Fard (2008).

3.1.2 Numerical formulation

The mass balance equation for single phase, single component shale system after
substituting with all the derived coefficients corresponding to each of the transport
physics in shale gas as explained in chapter 2 will be:

∂(φρ)

∂t
= ∇.

[
φ
ρ

µ
(1 + 4KN )κd2.∇p+ φ

Dm

1 +KN
.∇ρ

]
+ q. (3.1)

The left hand side represents the temporal accumulation of mass, whereas the
right hand side depicts the mass flow rate of the gas by convection and diffusion
plus the source/sink term. Notice that porosity (φ) was introduced to the flux term
to reform it for porous media.

Integration of the partial differential equation, over a finite control volume, ∆V ,
gives:

∂

∂t

˚

∆V

(φρ)dV =

˚

∆V

∇.
[
φ
ρ

µ
(1 + 4KN )κd2.∇p+ φ

Dm

1 +KN
.∇ρ

]
dV

+

˚

∆V

q dV. (3.2)
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Applying the Gauss divergence theorem, the volume integral on the mass flux
term can be rewritten as:
˚

∆V

∇.
[
φ
ρ

µ
(1 + 4KN )κd2.∇p+ φ

Dm

1 +KN
.∇ρ

]
dV

=

¨

∆A

[
φ
ρ

µ
(1 + 4KN )κd2.∇p+ φ

Dm

1 +KN
.∇ρ

]
.~n dA, (3.3)

where ~n is the outward unit vector of the surface ∆A and
˜
∆A

is the surface integral

over the boundary of the control volume.
The source/sink is assumed to be uniformly distributed over the control volume,

therefore: ˚

∆V

q dV = Q. (3.4)

Finally, the integrated mass balance becomes:

∂

∂t

˚

∆V

(φρ)dV =

¨

∆A

[
φ
ρ

µ
(1 + 4KN )κd2.∇p+ φ

Dm

1 +KN
.∇ρ

]
.~n dA+Q. (3.5)

3.1.3 Discretization of the mass balance equation

After we defined the flow equation in its integral form, the next steps is to discretize
it using control volume finite difference approach with a cell-centered scheme. In
this method the fluxes across control volume faces are defined in terms of the pres-
sures only in the two cells sharing each of the interfaces, also known as a two-point
flux approximation (TPFA).

For a given gridblock i, the volume integral of the accumulation term is approx-
imated to:

∂

∂t

˚

∆V

(φρ)dV =
∂

∂t
[(φρ)iVi] , (3.6)

and its finite difference form is:

∂

∂t
[(φρ)iVi] =

PVi
∆t

(ρn+1 − ρn), (3.7)

where PVi = (φV )i is the pore volume of gridblock i, n is the time step level and ∆t
is the time step length.

To approximate the surface integral of the flux term in eq.(3.5), we subdivide the
surface Ai into subsurface Aij for N neighboring blocks in order to represent the
individual boundaries between the reference block i and each of its neighbors:

Ai =

N∑
j=1

Aij . (3.8)
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Consequently, the surface integral in eq.(3.5) can be interpreted as the summation
of the fluxes across each interface of the grid block i to its neighbors j:

¨

∆A

[
φ
ρ

µ
(1 + 4KN )κd2.∇p+ φ

Dm

1 +KN
.∇ρ

]
.~n dA

=
N∑
j=1

¨

Aij

[
φ
ρ

µ
(1 + 4KN )κd2.∇p+ φ

Dm

1 +KN
.∇ρ

]
.~n dA. (3.9)

The integral in (3.9) is then approximated and represented in the its finite differ-
ence form as:
¨

Aij

[
φ
ρ

µ
(1 + 4KN )κd2.∇p+ φ

Dm

1 +KN
.∇ρ

]
.~n dA

=
N∑
j=1

Aij

[
φ
ρ

µ
(1 + 4KN )κd2.

(pj − pi)
Dij

+ φ
Dm

1 +KN
.
(ρj − ρi)
Dij

]
.~n. (3.10)

The discretized form of the flow equation can finally be written as:

PVi
∆t

(ρn+1−ρn) =

N∑
j=1

Aij

[
φ
ρ

µ
(1 + 4KN )κd2.

(pj − pi)
Dij

+ φ
Dm

1 +KN
.
(ρj − ρi)
Dij

]n+1

.~n

+Qn+1
i . (3.11)

3.1.4 Transmissibility

The discretized flow term can be represented in terms of a list of connected control
volumes, where flow rate is related to pressure gradient by a transmissibility term.
For each control volume (V), we express the flow rate across each one of its interfaces
with the neighbouring cells as:

Qij = φ[λTA + TD](pj − pi), (3.12)

which depicts the flow rate from Vi to Vj .
Notice that we use two transmissibility terms to account for the coefficients cor-

responding to the advective flux and diffusive flux, TA and TD respectively
The terms λ is the ratio ρ

µ and along with the porosity φ, they are both computed
using upstream information (upwind)1.

The transmissibilities are defined at the interface using a harmonic average of the
properties within the connected blocks in a similar fashion as done for corner-point
systems Ponting (1989).
In general, the harmonic average of tranmissibility is computed as:

Tij =
αiαj
αi + αj

. (3.13)

As said we defined two different Tij, for each of which the term α will be:
1we relate density to pressure using the equation of state for an ideal gas ρ = pm

RT
, where R is the

universal gas constant and is equal to 8.31446 x 10−5m3barK−1mol−1
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• for advection
αi =

Aij
Di

(1 + 4KN )κd2 ~ni.~fi, (3.14)

• for diffusion
αi =

Aij
Di

Dm

(1 +KN )

m

RT
~ni.~fi, (3.15)

while αj for both transmissibilities is computed in the exact same manner but using
the corresponding subscript j.

In 3.14 and 3.15Aij is the area of the interface between the neighboring Vi and Vj ,
Di is the distance between the centroid of the interface and the centroid of Vi, ~ni is
the unit normal to the interface inside Vi and ~fi is the unit vector along the direction
of the line joining the control volume centroid to the centroid of the interface as
illustrated in Fig. 3.2.The dot product of these two unit vectors ~ni and ~fi is simply
equivalent to cos(θ), where θ represents the angle between these two vectors. Note
that for a 2D problem the interface is represented by a segment.

FIGURE 3.2: Geometrical representation of adjacent control volumes
and the parameters included in transmissibility computation

3.1.5 Fracture transmissibility

The transmissibility for a connection between two fractures in a 2D problem is com-
puted similarly , owing to a simplification proposed by Karimi-Fard et al. (2003).
They propose to implicitly account for an intermediate control volume (V0) to redi-
rect the flow between the two segments as shown in Fig.3.3.

The use of this intermediate volume in the way proposed allows the modelling
of fractures with varying thickness without the need to estimate unknowns at the
introduced cell, which prevent any numerical complication. The simplification is
based on the fact that such intermediate control volume will typically have similar
properties to the adjacent cells and has a much smaller volume.

Therefore, equation 3.13 is used to compute fracture-fracture transmissibility, but
here the term α is defined differently, since the flow is only dominated by viscous
forces as explained in section 2.2. In that case there is only a single transmissibility
term (purely geometrical) and α will simply be:

αi =
Ai
Di
κh2

i , (3.16)
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FIGURE 3.3: Connection between two fracture segments with an in-
termediate control volume used for flow computation only

where κ = 1
12 and hi is the fracture aperture of the i-th block, we note that ~ni. ~fi is

equal to 1 in such configuration and αj is formulated similarly with properties of the
j-th block.

3.1.6 Multiple intersections

The application of "star-delta" transformation for a network of resistors used in elec-
trical circuits, has found popularity in simplifying the transmissibility computation
for a system of fractures intersecting at a point. The analogy is quite useful especially
when it comes to more than 2 fracture segments meeting at a point.

In Fig. 3.4 we show an example of fractures intersecting at a point. For such
network the transmissibility is computed using:

T12 =
α1α2

α1 + α2 + α3 + α4
, T13 =

α1α3

α1 + α2 + α3 + α4
,

T14 =
α1α4

α1 + α2 + α3 + α4
, T23 =

α1α2

α1 + α2 + α3 + α4
,

T24 =
α2α4

α1 + α2 + α3 + α4
.

(3.17)

Therefore for an intersection with n connections, Eq.3.17 can be generalized to:

Tij '
αiαj∑n
k=1 αk

. (3.18)

3.2 Flow simulations

To show the applicability of the discrete fracture model, presented in our work, to
model the dynamics of gas flow in fractured shale we present the results of flow
simulations performed with ADGPRS. The problems modeled here represent the
pressure solution for a fractured reservoir with its fracture network connected to
a producing well. We model only the pressure profile of the reservoir over time,
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FIGURE 3.4: multiple fracture segments intersected at a point repre-
sented in the grid domain

since the dynamics of reservoir pressure depletion in shale gas represents the most
important factor in their development strategies.

3.2.1 Simple fractured porous media

In this example, simulations are performed over a simple configuration of inter-
sected fractures, all connected, in a 100 x 100 m2 domain as shown in Fig.3.5. The
porosity of the matrix is 6% while its permeability is defined by a pore throat diame-
ter of 1 nano-meter (10−9m). The fractures has an aperture of 1 mm (kfrac = 84.1md).
The initial reservoir pressure and temperature are 200 bars and 423 degK (150 ◦C)
respectively, and the well is producing by a controlled bottom hole pressure of 100
bar. The domain is bounded by a no-flux boundary.

The geometry is discretized using a Delaunay triangulation shown in Fig.3.6 with
approximately 5000 triangles.
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FIGURE 3.5: Simple fractured medium

Fig.3.7a represents the pressure profile after 1000 days of gas production, the
different transport mechanisms related to flow in shale media are taken into account
in the model while Fig.3.7b depicts the same simulation based on a basic Darcy flow
model where only viscous flow is introduced.
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FIGURE 3.6: Delaunay triangulation of the simple fracture medium
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FIGURE 3.7: Pressure profile at 1000 day of production (A) using shale
gas model and (B) using Darcy model

These simulations are repeated at a higher permeability (d = 10−7m), as shown
in Fig.3.8, indicating that both model becomes similar at higher permeability when
viscous flow is the dominant regime.

3.2.2 Complex fractured network

In this example we show the applicability of the presented model on a larger scale
complex fracture network with realistic geological features obtained from Boersma
(2016) and shown in Fig.3.9, where the majority of the represented fractures are con-
nected with each other at their intersections. The model is simulated using similar
initial conditions as used for the low permeability fracture network shown in the
previous example. The domain has a dimension of 5.5 km (width) and 7 km (length),
discretized with about 16,000 control volume.

The simulation is performed using the shale gas model, assuming the fractured
network is connected to a well producing for about 50,000 days as shown in Fig.3.10.
Due to the larger spacial scale, the transient effects are more significant in this mode
in comparison to the previous example.
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FIGURE 3.8: Flow simulation at higher permeability (d = 10−7m) (A)
Shale model, (B) Darcy model.
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FIGURE 3.10: Flow simulation using shale gas model
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Chapter 4

Upscaling

The modelling of large scale and complex fractured reservoir is often computation-
ally demanding, and therefore it is required to use simplified models to improve the
efficiency of flow simulations.

Upscaling techniques essentially approximate the static and dynamic character-
istics of a fine-scale model into a coarse-scale model, hence it reduces the number of
grid blocks for flow simulation.
The simplified models commonly in use in the world of fractured formations, of-
ten rely on idealized fracture distribution that doesn’t honour the heterogeneity im-
posed by the actual complex fracture networks.

In this work, we investigate upscaling techniques that take advantage of the de-
tailed fracture models that recent measurements and modelling techniques are able
to generate, in order to capture the flow features of fine scale flow simulation in
fractured shale gas.

We propose two different methods to achieve that objective, in a procedure that
is based on two distinct steps. The first step concerns the building of the coarse grid
and the second step is to determine the upscaled transmissibility information from
the solution of discrete fracture model as built in the previous chapters.

4.1 First method: Embedded discrete fractures upscaling

The upscaling approach developed here is inspired from the work of Li and Lee
(2008), where they propose an embedded fracture modelling (EDFM) technique.
Based on their approach, the matrix domain is discretized separately with a struc-
tured Cartesian grid, while the fractures intersecting these matrix blocks are dis-
cretized by the matrix cell boundaries, Fig.4.1. The coupling of these two domain
was made through a connectivity index based on the concept of the well bore pro-
ductivity index (PI). In their work they prescribe an analytical approach to approxi-
mate this index.

+ =

FIGURE 4.1: Discreization of matix domain using a cartesian grid,
while fracture are discretized by the matrix cell boundaries in EDFM
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In our study, we follow the similar matrix discretisation technique and we apply
it for a coarse scale model. At the same time, we define connectivity between the
two domains in a different way.

To take advantage of the DFM accuracy in defining the matrix-fracture connec-
tivity, we determine the transmissibility between these two systems in the coarse
scale using a fine scale flow simulation from DFM solution.

In general terms, transmissibility expresses the block to block mass flow rate in
terms of the difference in pressure between the two blocks.

T ki,j =
µ

ρ

Qki,j

(pki − pkj )
(4.1)

From the solution of the fine-scale DFM, we have matrix pressure pki and fracture
pressure pkj corresponding to each block k and the flow rate between them Qki,j . For
pressures this is accomplished using a pore volume weighted average of the pres-
sures within the fine scale cells associated with block k, Fig.4.2.

pki =

∑
i∈k viφipi∑
i∈k viφi

(4.2)

(A) (B)

FIGURE 4.2: Example coarse block k with DFM fine scale unstruc-
tured cells in the background (A) represents the fine scale cells from
which the average matrix pressure of the coarse scale are calculated
(B) fine scale fracture cells used to caluclate average fracture pressure

in the coarse scale

The mass flow rate Qi,j is determined from the sum of fluxes crossing the frac-
tures interface within the coarse block k as shown in Fig.4.3.
Matrix-matrix and fracture-fracture transmissibility for the coarse scale are com-
puted in the exact same way used for DFM (Chapter 3) with the only difference
that we are using a Cartesian grid to represent the matrix.

Note that we are considering a homogeneous matrix and therefore we do not
deal with permeability upscaling in our work.

4.1.1 EDFM Upscaling example cases

In this section we present some application of the described upscaling technique,
on a nano-Darcy permeability shale gas problem and on a relatively higher matrix
permeability using Darcy formulation. Both problems are tested on the example
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FIGURE 4.3: Mass flux Qij through the matrix-fracture interface com-
puted from the fine scale DFM solution

fracture distribution previously introduced in chapter 3 in Fig.3.5 with the common
properties summarized in table 4.1.

TABLE 4.1: Example fracture system common properties for test cases

Matrix porosity φ (%) 6

Fracture aperture (mm) 1

Reservoir temperature ◦F 300

Gas viscosity µ (cp) 0.01

Reservoir initial pressure (bar) 200

Producing well BHP (bar) 100

Test Case: Nano-Darcy Shale gas upscaling using method-1

We start by setting up the coarse grid (5 x 5), as shown in Fig. 4.1.
Then to extract the matrix-fracture connectivity information, we run a DFM simula-
tion on a fine scale problem, we use the same fine scale unstructured grid presented
in chapter 3 Fig. 3.6.

The simulation consist of a drainage problem, by placing a producing well with
constant bottom-hole pressure (bhp) at a point within the connected fracture net-
work. Since the system is isolated due to the no-flow boundaries, the pressure of
the domain will get depleted with time and, after a transient period, will reach a
pseudo-steady state.
Fig. 4.4 depicts an example plot of the matrix-fracture transmissibility over time
for a specific coarse block, indicating the pseudo-steady state at which the upscaled
transmissibility is recorded.

Once all the matrix-fracture connections are formulated as well as the rest of
the transmissibilities between each of these domains computed, we can now run an
upscaled simulation with less number of grid block.
Figure 4.6 shows the results of the upscaled simulation and the fine scale DFM solu-
tion at the same time (1000 days), the DFM solution is averaged over the coarse grid
block and taken as the reference solution.
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FIGURE 4.4: Matrix-fracture transmissibility plot over time extracted
for a specific coarse grid-block.

Notice that transmissibility in general Darcy form is only expressed as a geomet-
rical factor while in the equations derived to emulate shale gas dynamics, transmis-
sibility is pressure dependent.

In our first upscaling attempts we used a constant transmissibility factor, which
is representative of the pseudo-steady state regime. The solution obtained has a
practical aspect but is not the most accurate.

To improve our results, we introduced a modification to account for the prevail-
ing transient effects in low permeability shale gas. Basically, we decided to fit a
linear relationship for the same transmissibility extrated before and consider it as a
function of the upwinding pressure as shown in Fig.4.5. This step represent a cru-
cial upgrade to the accuracy of the presented upscaling technique specifically for
nano-scale permeabilities.
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FIGURE 4.5: Transmissibility plotted as a function of upwinded pres-
sure.

The results of the upscaling using an upscaled transmissibility, formulated in
terms of the upwinded pressure are shown in Fig.4.7.
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Test Case: Upscaling using method-1 for relatively higher k formation

The same procedure is repeated here, for a formation characterized with matrix per-
meability corresponding to pore size 10−8m.
The results of the upscaling using the constant pseudo-steady transmissibility are
shown in Fig.4.8 and clearly infers that when viscous flow is the dominant transport
mechanism, the upscaling techinque explained here provides acceptable resutls.

Table 4.2 and 4.3, summarizes the performance and the accuracy of the embeded
fracture upscaling technique on tested examples.

TABLE 4.2: Summary of the performance and accuracy for the shale
gas upscaling (test case 1) using method-1

Total Simulation Time
(seconds)

L2 Pressure
Error (%)

Time steps (days) 1000 1000
DFM fine scale 30.4 -
EDFM upscale (Trans = const) 2.26 8.5
EDFM upscale (Trans(P)) 3.89 5.9

TABLE 4.3: Summary of the performance and accuracy for the higher
permeability formation (test case 2) using method-1

Total Simulation Time
(seconds)

L2 Pressure
Error (%)

Time steps (days) 150 150
DFM fine scale 13.26 -
EDFM upscale (Trans = const) 0.956 6.7
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FIGURE 4.6: Comparison between the upscaled solution (A) and the
fine scale averaged solution (B), and the error plot(C) at t = 1000 day
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FIGURE 4.7: Comparison between the upscaled solution using the
upgraded transmissibility in terms of upwinded pressure (A) and the
fine scale averaged solution (B), and the error plot(C) at t = 1000 day
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FIGURE 4.8: Comparison between the upscaled solution for a rela-
tively higher permeability formation (A) and the fine scale averaged

solution (B), and the error plot(C) at t = 150 day
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4.2 Second method: Multiple subregion (MSR) upscaling

Although acceptable results were obtained from the upscaling procedure described
in the previous section, it is remarked that an improvement can be obtained by in-
creasing grid block resolution in the coarse scale. Yet, the use of large Cartesian
blocks, for functionality, had masked the flow dynamics and features observed in
fine scale flow solution of fractured shale gas. Therefore, we propose another up-
scaling technique to confront the problem and account for the extended transient
effects prevalent in tight formations.

The proposed method suggests the use of a flow based gridding technique to
capture the spatial variability within the matrix in a similar way as done in the work
of Karimi-Fard et al. (2006).
Based on the fact that pressure variation inside the matrix behaves like a diffusion
process, the matrix is divided into regions using iso-pressure curves obtained from
the pressure solution of a discrete fracture model.

As in the previous upscaling technique, we obtain the solution of the fine scale
model using the formulations derived in the previous chapters. We use this pressure
solution for the construction of the multiple subregion model as shown in Fig.4.9, the
shapes of the iso-pressure curves are strongly dependent on the fracture geometries
as seen. Note that the pressure inside the fractures are approximately the same due
to their high permeability.

FIGURE 4.9: Iso pressure curves are extracted from the solution of the
fine scale DFM to define the coarse scale regions.

The number of subregions in the upscaled model depends on the pressure levels
selected, from the DFM solution, to be represented by iso-pressure curves. Fig.4.10
depicts various matrix discretization using iso-pressure curves obtained from the
same DFM run, of which the user is free to select depending on the objectives of
study.

Once the coarse grid geometry is defined, the next step entails the determination
of the connectivity map that will be used for our coarse scale simulation. Fig.4.11
shows a sample of the upscaled domain, indicating that the setup of these regions
implies a one dimensional character which allows the representation of the connec-
tions using a linear sequence as shown.

We simulate the coarse scale using a finite volume scheme similarly to the pre-
vious upscaling technique. Therefore we need to determine the upscaled transmis-
sibility to describe the exchange of flux from one subregion to another or into a
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FIGURE 4.10: The number of regions can be varied and selected in
different combinations depending on the variation of pressure or the

dynamics of pressure diffusion we wish to capture.

fracture. The transmissibility is then defined by

Ti,j =
µ

ρ

Qi,j
(pi − pj)

(4.3)

The average pressure of each adjacent region and the flux across the interface
is also captured from the fine scale DFM simulation as explained in the previous
technique.
The use of an upscaled transmissibility linearily associated to the upwinded pres-
sure is also advised to obtain accurate results as shown in the previous technique,
especially for formation with a permeability in nanoscale.

1 2 3 4 5

f1
f
2

f
3

f
4

Connectivity List

Matrix – Matrix

1 2

2 3

3 4

4 5

Matrix – Fracture

5 f
1

5 f
2

5 f
3

5 f
4

FIGURE 4.11: The construction of the regions imposes a one dimen-
sional scheme for the connectivity list to define the exchange of flow

between the regions and fracture.

4.2.1 MSR upscaling example cases

The MSR upscaling results will be illustrated using the example fracture distribution
we used so far for most of our test cases as shown in Fig.3.5. The properties of the
system are also similar except for the matrix permeability which varies depending
on the test case we are analysing.
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FIGURE 4.12: MSR upscaling workflow sequence

Test Case 1: MSR upscaling of Shale Gas dynamics

Fig.4.12 depicts the workflow in a sequential representation. Starting by the syn-
thetic fracture system composed of 15 fracture segments (all connected) (fig.4.12a),
which is then discretized using an unstructured gird into 5223 triangular matrix ele-
ment for the DFM simulation (fig.4.12b). The model is then simulated for a relatively
short period of time (about 1000 day) in order to extract the regions (fig.4.12c). We
use 4 pressure levels to generate 41 region in total (fig.4.12d). The next step entails
the extraction of the transmissibilities to represent the matrix-matrix and matrix-
fracture exchange, to do so we run the DFM model for about 80,000 day (to make
sure that pseudo-steady state is reached). Finally, we perform upscaled simulation
as in fig.4.12e.

To examine the accuracy of the upscaled solution we compare the results of the
upscaling to the fine scale DFM simulations averaged over the coarser cells (regions).
Fig.4.13 shows the results of the upscaling solution using the constant pseudo-steady
state transmissibility at two different time steps compared to the DFM solution.
We also perform the upscaling using transmissibility taken as a function of the up-
winded pressure and we compare it again to the fine scale solution as in Fig.4.14.

Test Case 2: MSR upscaling of low permeability formation using Darcy formula-
tion

We now consider the case of simulating nano-scale permeability formation while
neglecting the transport mechanisms attributed to shale gas and only considering
viscous flow. As for the rest of properties, the same exact values are used here as in
the previous example.

Because we are neglecting slippage effect and the diffusion processes to define
the transport of fluid within the formation, we run our simulations for a longer pe-
riod of time to obtain similar pressure profile as obtained in the previous test case.
We only carry out the upscaling using the constant pseudo-steady state transmissi-
bility, since the results were accurate enough and did not require the use of a pres-
sure dependent transmissibility as shown in Fig.4.15.
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TABLE 4.4: MSR upscaling test case 1 (Shale gas dynamics) perfor-
mance and accuracy summary.

Total Simulation Time
(seconds)

L2 Pressure
Error (%)

Time Steps (days) 1000 5000 1000 5000
DFM fine scale 30.4 92.5 - -
MSR upscale (Trans = const) 1.88 6.32 6.5 6.5
MSR upscale (Trans(P)) 3.88 10.78 2.8 2.5

TABLE 4.5: MSR upscaling test case 2 (Darcy) performance and accu-
racy summary.

Total Simulation Time
(seconds)

L2 Pressure
Error (%)

Time Steps (days) 5000 25000 5000 25000
DFM fine scale 47.4 176.3 - -
MSR upscale (Trans = const) 6.61 24.76 2.7 2.1

Table 4.4 and 4.5 summarizes the performance and accuracy of the MSR upscaling
technique in the presented examples.

4.3 Discussion

In this chapter we presented a systematic methodology for constructing two differ-
ent upscaling models from detailed fracture characterization. From the analysis of
the L2 error, summarized in tables (4.2,4.3,4.4, and 4.5), we notice that the upscaling
results from the MSR method, using flow based coarse grid, is probably more accu-
rate in capturing the flow features observed in the DFM fine scale solution. How-
ever, the EDFM upscaling method, using Cartesian coarse grids, provides an easier
workflow whose accuracy depends on the resolution of the coarse grids, additional
results with higher resolution are presented in the appendix A. We also notice that
the upscaling of shale gas dynamics, requires the use of a pressure dependent up-
scaled transmissibility to obtain more accurate results, while the upscaling of viscous
dominated flow using a constant pseudo-steady state transmissibility is considered
sufficiently enough to obtain acceptable results.

The EDFM upscaling procedure can be furtherly optimized by restricting the
DFM model and fine scale grid only to the coarse blocks intersected by fracture seg-
ments rather than solving the DFM problem over the whole domain.

In the original MSR upscaling work, the subregions were defined using the pseudo-
steady state DFM solution. We realize that the regions can be created, first of all,
using the DFM solution of problems formulated with simpler physics such as Darcy
formulation rather than shale gas formulation as long as the pressure diffusion dy-
namics are captured. This also implies that the DFM solution does not necessarily
need to be captured at pseudo-steady state as long as the proper pressure levels to be
represented are selected as we’ve shown in Fig.4.10. On the other hand, the higher
the resolution of the DFM solution, from which the flow based coarse grids are built,
the sharper and better will be the regions outcome.
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The effect of the DFM grid resolution on the upscaled transmissibility calculation
was examined in this work; we present MSR upscaled results based on a lower reso-
lution DFM solution summarized in appendix A, a quick look at the results suggests
that the accuracy is not strongly impacted by the reduced resolution.

The application of the proposed upscaling approaches on the detailed fractured
characterization obtained from Boersma (2016) is represented in appendix B along
with the results summary.
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FIGURE 4.13: MSR upscaling results of shale gas dynamics using con-
stant transmissibility, on the left side the results correspond to 1000
days of production and on the right side the results for the 5000 days
simulation. (A) & (B) represents the upscaling results, (C) & (D) are
the DFM averaged results,and (E) & (F) is a comparison of the up-

scaled results to the fine scale ones.
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FIGURE 4.14: MSR upscaling results of shale gas dynamics using
pressure dependent transmissibility, on the left side the results corre-
spond to 1000 days of production and on the right side the results for
the 5000 days simulation. (A) & (B) represents the upscaling results,
(C) & (D) are the DFM averaged results,and (E) & (F) is a comparison

of the upscaled results to the fine scale ones.
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FIGURE 4.15: MSR upscaling results for Darcy model in low perme-
ability, on the left side the results correspond to 1000 days of produc-
tion and on the right side the results for the 5000 days simulation. (A)
& (B) represents the upscaling results, (C) & (D) are the DFM aver-
aged results,and (E) & (F) is a comparison of the upscaled results to

the fine scale ones.



39

Chapter 5

Conclusions

In this thesis, shale gas dynamics were investigated and implemented into a DFM
approach in order to capture the highly detailed geological features of fractured
shale formations. For that we implemented shale gas formulation into the finite
volume based discrete fracture model, presented by Karimi-Fard et al. (2003). The
technique is meant to handle unstructured grids, for which we have shown the ap-
plication of a triangulation gridding scheme that has the ability to efficiently dis-
cretize complex fractured networks.

The influence of the various transport mechanisms, induced by the low per-
meability of shale gas, was shown through successful flow simulations examples
carried out by the described DFM technique. We obtained these results using the
equations of a bundle of dual tubes (Lunati and Lee, 2014), initially derived for a
statistical model, which we numerically adapted into a general purpose reservoir
simulator using a connection list approach (ADGPRS).

Despite proven to be efficient for simulating flow across complex fracture net-
works of relatively small scale, performing DFM simulations for large scale shale gas
fields wouldn’t be practical. Simulations of that size, would involve an extremely
large amount of grid cells beyond the computational capabilities or time constraints
of reservoir simulators. Hence, the application of upscaling techniques is usually the
favorable choice in practice but also causes the dilution of details in heterogeneous
environment.

For that reason, we thoroughly investigated and proposed the application of two
systematic upscaling technique that honor detailed fracture characterizations and
applicable to shale gas. Moreover, these proposed methods are linked to the results
of accurate DFM technique as their resource to formulate the upscaling parameters.
Our first approach can be seen as an adaptation of the EDFM method, as the coarse
scale is made of structured grid blocks and the fractures are embedded within. This
method has the advantage of being easier to apply as only the matrix-fracture con-
nections are upscaled from the DFM solution. We then proposed a second upscaling
model which uses a flow based gridding technique for the coarse level similarly to
the MSR upscaling technique in Karimi-Fard et al. (2006) and Gong et al. (2006).
The regions are obtained from the DFM flow simulation which depicts the pressure
diffusion character of fractured shale gas under production. Then we extract the up-
scaling parameters, in that case for matrix-matrix and matrix-fracture connections,
similarly to our first approach. Using the flow based regions to form the upscaled
blocks offers an improved accuracy in replicating the flowing profile of the DFM
solution with a significant reduction in the number of grid cells.

On the other hand, we have shown that to depict the transient character of low
permeability shale gas, one need to consider the pressure dependency in the param-
eters defining the mass transfer across the regions. For that, we correlated the trans-
missibility to the upwinding pressure and obtained better results that we validated
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FIGURE 5.1: Shale gas development strategies (Courtesy Statoil)

it by the fine scale DFM solution.
Lastly, we consider our upscaling models to be mostly convenient for shale gas

field simulation. As shown in Fig.5.1 shale gas fields can be divided into separate
isolated blocks each of which drained by an individual well; as the low permeabil-
ity of these formation limits to almost none the interference between wells. This
aspect allows us to run global DFM flow simulation for each isolated block, and
can be considered an achievable objective for determining the upscaled parameters.
The use of a global flow solution with no flow boundaries is the key optimization
and advantage over many of the available upscaling techniques that rely on local
flow problems with specified boundaries to obtain the upscaling parameters, which
introduces additional steps and errors.
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Appendix A

Influence of Resolution

A.1 EDFM upscaling using higher resolution coarse grid blocks
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FIGURE A.1: Comparison between the EDFM upscaled solution us-
ing a higher resolution (8x8) coarse grid, shale gas formulation and
pseudo-steady state transmissibility (A) and the fine scale averaged

solution (B), and the error plot (C) at t = 1000 day



42 Appendix A. Influence of Resolution

meter

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

(b
a
r)

100

110

120

130

140

150

160

170

180

190

200

(A) DFM Average

meter

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

(b
a
r)

100

110

120

130

140

150

160

170

180

190

200

(B) Upscaled solution

DFM averaged

100 110 120 130 140 150 160 170 180 190 200

E
D

F
M

 u
p

s
c
a

le
d

100

110

120

130

140

150

160

170

180

190

200

(C)

FIGURE A.2: Comparison between the EDFM upscaled solution us-
ing a higher resolution (8x8) coarse grid, shale gas formulation and a
pressure dependent transmissibility (A) and the fine scale averaged

solution (B), and the error plot (C) at t = 1000 day

TABLE A.1: EDFM upscaling (Shale gas dynamics, high resolution
coarse grid) performance and accuracy summary.

Total Simulation Time
(seconds)

L2 Pressure
Error (%)

Time steps (days) 1000
DFM (5223 triangle) 30.4 -
EDFM upscale (Trans = const) 2.76 5.19
EDFM upscale (Trans (P)) 3.27 4.8
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A.2 MSR upscaling using lower resolution DFM
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FIGURE A.3: MSR upscaling results of shale gas dynamics using low
resolution DFM, constant transmissibility. On the left side the results
correspond to 1000 days of production and on the right side the re-
sults for the 5000 days simulation. (A) & (B) represents the upscaling
results, (C) & (D) are the DFM averaged results,and (E) & (F) is a com-

parison of the upscaled results to the fine scale ones.
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FIGURE A.4: MSR upscaling results of shale gas dynamics using low
resolution DFM, pressure dependent transmissibility. On the left side
the results correspond to 1000 days of production and on the right
side the results for the 5000 days simulation. (A) & (B) represents the
upscaling results, (C) & (D) are the DFM averaged results,and (E) &

(F) is a comparison of the upscaled results to the fine scale ones.
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TABLE A.2: MSR upscaling (Shale gas dynamics, low resolution
DFM) performance and accuracy summary.

Total Simulation Time
(seconds)

L2 Pressure
Error (%)

Time steps (days) 1000 5000 1000 5000
DFM 3.6 10.65 - -
MSR upscale (Trans = const) 1.13 4.86 4.7 3.46
MSR upscale (Trans (P)) 1.54 5.24 4.15 4.38
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Appendix B

Large Scale Fracture Network
Upscaling

B.1 EDFM upscaling of large scale fracture system
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FIGURE B.1: Comparison between the EDFM upscaled solution for
the large scale fracture system (10x10) coarse grid, shale gas formula-
tion and a pressure dependent transmissibility (A) and the fine scale

averaged solution (B), and the error plot (C) at t = 10000 day
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FIGURE B.2: Comparison between the EDFM upscaled solution for
the large scale fracture system (10x10) coarse grid, shale gas formula-
tion and a pressure dependent transmissibility (A) and the fine scale

averaged solution (B), and the error plot (C) at t = 50000 day

TABLE B.1: EDFM upscaling (Shale gas dynamics, large scale fracture
system) performance and accuracy summary.

Total Simulation Time
(seconds)

L2 Pressure
Error (%)

Time steps (days) 10000 50000 10000 50000
DFM (15972 triangle) 533 2268 - -
EDFM upscale (Trans (P)) 141.6 662.9 1.04 3.975
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B.2 MSR upscaling of large scale fracture system
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FIGURE B.3: Comparison between MSR upscaled solution (143 re-
gion) for the large scale fracture system (A) using shale gas formu-
lation and a pressure dependent transmissibility, and the fine scale

averaged solution (B), and the error plot (C) at t = 10000 day
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FIGURE B.4: Comparison between MSR upscaled solution (143 re-
gion) for the large scale fracture system (A) using shale gas formu-
lation and a pressure dependent transmissibility, and the fine scale

averaged solution (B), and the error plot (C) at t = 50000 day

TABLE B.2: MSR upscaling (Shale gas dynamics, large scale fracture
system) performance and accuracy summary.

Total Simulation Time
(seconds)

L2 Pressure
Error (%)

Time steps (days) 10000 50000 10000 50000
DFM 533 2268 - -
MSR upscale (Trans (P)) 247.5 1178 0.68 3.34
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