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We investigate the site-percolation problem on the square and simple-cubic lattices by means of a Monte
Carlo algorithm that in fact simulates systems with size Ld−1��, where L specifies the linear system size. This
algorithm can be regarded either as an extension of the Hoshen-Kopelman method or as a special case of the
transfer-matrix Monte Carlo technique. Various quantities, such as the magnetic correlation function, are
sampled in the finite directions of the above geometry. Simulations are arranged such that both bulk and
surface quantities can be sampled. On the square lattice, we locate the percolation threshold at pc

=0.592 746 5�4�, and determine two universal quantities as Qgbc=0.930 34�1� and Qgsc=0.793 72�3�, which
are associated with bulk and surface correlations, respectively. These values agree well with the exact values
2−5/48 and 2−1/3, respectively, which follow from conformal invariance. On the simple-cubic lattice, we locate
the percolation threshold at pc=0.311 607 7�4�. We further determine the bulk thermal and magnetic exponents
as yt=1.1437�6� and yh=2.5219�2�, respectively, and the surface magnetic exponent at the ordinary phase
transition as yhs

�o�=1.0248�3�.
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I. INTRODUCTION

Percolation problems have been of great research interest
to physicists and mathematicians �1�, and a variety of appli-
cations have been reported �2�. It was determined �3� that the
word “percolation” has appeared in the title of almost 4000
physics papers in the last quarter of the past century. In the
field of critical phenomena, the percolation theory provides a
simple picture and a fascinating illustration of many impor-
tant concepts in terms of geometric properties. This is mainly
due to the Kasteleyn-Fortuin mapping �4�, which exactly re-
lates the bond-percolation model and the random-cluster rep-
resentation of the q-state Potts model �5� in the q→1 limit.
For a review of the Potts model, see Ref. �6�. Thus, a gener-
alized set of percolation models, which are “correlated” and
belong to an infinite range of universality classes, is ob-
tained, and rich critical phenomena are observed �7�.

The Kasteleyn-Fortuin mapping �4� enables the direct ap-
plication of much of the knowledge that has been gathered
for the Potts model to the percolation model. In particular,
owing to exact mappings, Coulomb gas theory, and confor-
mal field theory �7–11�, the bulk critical exponents in two
dimensions are exactly available: the thermal exponent is
yt=3/4, and the magnetic ones are yh1=91/48 and yh2
=19/48 �12�, respectively. For the percolation model on the
semi-infinite plane with a free surface–i.e., a free one-
dimensional edge, the surface magnetic exponent is also ex-
actly known �13� as yhs

�o�=2/3, where the superscript �o� rep-
resents the “ordinary” surface phase transition.

The upper critical dimensionality of the percolation model
is 6 �14�, so that universal properties of the percolation
model for d�6 are expected to be mean-field-like, apart
from the possible existence of logarithmic corrections. The
mean-field values of thermal and magnetic exponents are ỹt
=yt /d=1/3 and ỹh=yh /d=2/3, respectively. For percolation

models in 2�d�6 dimensions, however, no exact values
are available for yt and yh. Therefore, investigations have to
depend on various types of approximations, such as series
expansions and Monte Carlo simulations.

In comparison with many simulations in statistical phys-
ics, such as the Swendsen-Wang algorithm �15� for the Potts
model, Monte Carlo studies of the percolation problem are
relatively simple. No Markov process is needed to perform
importance sampling, and thus no critical slowing down ex-
ists. For clarity, we consider the bond-percolation model on a
regular lattice. For each pair of nearest-neighbor sites, a uni-
formly distributed random number 0�r�1 is produced, and
the bond in between is occupied for r� p or empty for r
� p, respectively, where p is the bond-occupation probabil-
ity. Two sites connected through a chain of occupied bonds
are said to percolate, i.e., to be in the same cluster. As a
result, the whole lattice is decomposed into a number of
clusters, usually including single-site ones. Then, various
questions can be asked concerning the distribution of cluster
sizes, the fractal dimension of the clusters, the percolation
probability, etc.

An extension of the above standard method is the well-
known Hoshen-Kopelman �16� algorithm. In this algorithm,
the so-called cluster multiple labeling technique is applied,
and thus only the state of parts of the lattice sites needs to be
stored. Another approach of cluster generation is the Leath
method �17�. By means of these algorithms, systems of con-
siderable sizes have been simulated �18,19�. Recently, New-
man and Ziff introduced �3� an efficient Monte Carlo algo-
rithm, which allows one to calculate quantities of interest
over the entire range of site or bond occupation probabilities
from zero to one in a single run. Other numerical methods
�20,21� have been developed to answer specific questions
about percolation models, such as the hull-generation algo-
rithm.
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Naturally, these Monte Carlo simulations are performed
for systems of finite extent. In the study of bulk critical be-
havior, one usually chooses the torus geometry, i.e., a
d-dimensional hypercube with periodic boundary conditions
in each of the d directions.

Another important numerical method in the study of criti-
cal phenomena is the transfer-matrix technique. In contrast to
the above Monte Carlo methods, this technique usually ap-
plies to systems in a pseudo-one-dimensional geometry,
namely Ld−1��, with L the side length of the
�d−1�-dimensional hypercube. In two dimensions, this ge-
ometry reduces to the surface of an infinitely long cylinder.
The main idea of the transfer-matrix technique is to calculate
the partition sum and other quantities by means of matrix
operations. Typically, only a few of the leading eigenvalues
and the associated eigenvectors are calculated. Various cor-
relation lengths are determined by these eigenvalues. More-
over, in two dimensions, these correlation lengths are exactly
related to critical exponents by means of a conformal map-
ping �22�. The main ingredients of the numerical transfer-
matrix method include the construction of the matrix and the
repeated multiplication of a state vector by this matrix. The
calculations do not involve approximations except for the
finite numerical precision of floating-point operations, and
thus the numerical uncertainty is only limited to the machine
precision, at least in principle. This is in contrast to the afore-
mentioned Monte Carlo simulations, where the dominant er-
rors are usually of a statistical nature, so that the number of
samples quadratically increases as a function of the inverse
of the required precision. On the other hand, the dimension
of the transfer matrix, i.e., the number of elements, increases
exponentially as �aLd−1

, where a is a constant. Some addi-
tional techniques can be utilized to reduce the requirement of
computer memory, such as symmetry operations and the
sparse-matrix technique �23,24�. Nevertheless, the maximum
system sizes that can be investigated by the sparse transfer-
matrix method are rather limited, even with the help of mod-
ern computers. In two dimensions, the maximum size L is of
order 20, while L in three dimensions is normally restricted
to be less than 6. Thus, for d�2, transfer-matrix calculations
become less practical.

The size restrictions are alleviated by the transfer-matrix
Monte Carlo method, which involves a stochastic represen-
tation of the multiplication of the state vector by the transfer
matrix. This method is related to the diffusion quantum
Monte Carlo method and typically uses a population of ran-
dom walkers such as described, e.g., in Ref. �25�. The
transfer-matrix Monte Carlo method has already been ap-
plied to several three-dimensional systems, such as the Ising,
XY, and Heisenberg models �26�.

Another approach of transfer-matrix Monte Carlo calcula-
tions to percolation problems was pioneered by Derrida and
Vannimenus �27�. Thus far, it was mainly used to compute
the conductivity of random resistor networks �28–31�. In this
approach, such a network in geometry Ld−1�� is con-
structed by adding resistors layer by layer �column by col-
umn in two dimensions� along the infinite direction. A set of
potentials Ui �i=1,2 ,… ,Ld−1� is then imposed on each site
of the newly added layer—i.e., the free surface—and the

currents Ii are measured. In terms of vectors and matrices,
the relation between the potentials and the currents can be
written as I=AU, where A is a random Ld−1�Ld−1 matrix.

In the present paper, we construct a Monte Carlo method
that simulates the percolation model in an Ld−1�� geom-
etry. This geometry is obtained by iteratively adding an Ld−1

layer of lattice sites during each Monte Carlo step. Only the
connectivity of the newly added layer is stored in computer
memory. Thus, one actually simulates in �d−1� dimensions
for d-dimensional percolation models.

The organization of the present paper is as follows. Sec-
tion II describes the detailed formulation of our algorithm. In
Sec. III, the algorithm is applied to the site-percolation
model on the square and simple-cubic lattices; the numerical
data are analyzed by finite-size scaling. A brief discussion is
then given in Sec. IV.

II. ALGORITHM

This section describes the Monte Carlo algorithm used in
this work in the language of the site-percolation model on a
square lattice of size L��; the infinite-size direction is re-
ferred to as the transfer direction t. The lattice sites are de-
noted by coordinates �t ,k� with 1�k�L. For simplicity, we
first apply free boundary conditions in the perpendicular di-
rection, i.e., site �t, 1� is not a nearest-neighbor site of �t ,L�
for L�2. In this case, the geometry L�� reduces to a strip.

Each site is occupied with probability 0� p�1, and
empty with probability 1− p. Two sites connected through a
chain of occupied nearest-neighboring sites are said to be in
the same cluster. Each site �t ,k� is labeled by a non-negative
integer mt,k :mt,k=0 represents an empty site, while mt,k�0
denotes a cluster label. This site labeling is done such that
sites in the same cluster are labeled by the same number m
�0, while two sites that are not connected are labeled by
different numbers mt,k�mt,l. This information may be called
“connectivity” and can be used to construct a transfer matrix
for the random-cluster representation of the Potts model �25�.
The connectivity on the tth layer is exclusively determined
by the first t layers and thus does not change when new
layers are added.

The connectivity of layer t, together with the distribution
of occupied and empty sites in a newly added layer t+1,
determines the connectivity of the �t+1�th layer. The first
version of our algorithm is then formulated as follows.

1. Add a new layer t+1 and extend existing clusters to
layer t+1. For each site �t+1,k� in the �t+1�th layer, a uni-
formly distributed random numbers rk is drawn to determine
whether it is occupied or empty. If site �t+1,k� is occupied
and further its nearest-neighbor site in the tth layer is also
occupied, i.e., they are connected, one simply sets mt+1,k
=mt,k. Otherwise, the label mt+1,k remains to be determined.
After all sites in layer t+1 are visited, the information about
the connectivity of the tth layer has no further use, and the
corresponding memory is freed.

2. Grow and merge existing clusters in layer t+1. Se-
quentially visit the lattice sites that are labeled in step 1, and
form complete clusters for them, as in the conventional
Monte Carlo method �16,17�. If two sites �t+1,k� and �t
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+1, l� with different cluster labels are connected through a
chain of occupied sites, the pertinent clusters are merged,
i.e., all sites �t+1, i� with mt+1,l are relabeled as mt+1,i

←mt+1,k.
3. Create new clusters. Clusters are also formed for the

remaining occupied sites �t+1,k� that have not been labeled
after steps 1 and 2. New cluster labels m are used by increas-
ing the largest existing cluster label by 1.

These steps are shown in Fig. 1. By repeating steps 1–3,
an arbitrarily long strip is obtained. This procedure does not
keep track of the connectivity along the transfer direction;
sampling procedures are performed only on the newly added
surface layers.

A. Linkage technique

Among the above steps 1–3, the most time-consuming
one is step 2, because a scan of the whole �t+1�th layer is
required whenever two clusters m and m� merge. This is
especially expensive for large system sizes, because the total
number of clusters is proportional to the volume of the sys-
tem. Thus, one expects that the computer time for step 2
increases as �L2d−2. To improve the efficiency, we introduce
a linkage technique.

In addition to the above cluster labeling method, we also
link all sites �t ,k� in layer t in the same cluster by a “chain”
with two open ends �this chain is a two-dimensional array
during programming�. Further, we construct this linkage in
increasing order k1�k2� ¯ �ki�¯ of the in-layer coordi-
nate. Therefore, in the case in which the sites in cluster m are
going to be relabeled, one need not scan over the whole layer
but just follow the linkage to reach all the lattice sites in this
cluster. More specifically, except for the empty sites and
those sites at the ends of a chain, each site “points” to two
other sites in the same cluster, whose coordinates are closest
to that of this site. Both the linkage technique and the cluster-
labeling method are independently sufficient to represent a
connectivity.

With the linkages of the sites in layer t, the formal version
of the algorithm reads as follows.

1. Distribution of the occupied and empty sites in the
�t+1�th layer.

2. Cluster construction using the cluster-labeling method.

Since the connectivity of the tth layer is already completely
specified by the linkages, we do not need the previous labels
and we set the cluster label m of the first occupied site k as
mk=1. The growth of cluster mk then involves the following
two parts. First, visit the nearest-neighbor sites in layer t+1.
If they are occupied, include them in the cluster labeled by
mk and store their coordinates in a “stack” memory. Second,
visit the nearest-neighbor site in layer t. If it is occupied,
follow its linkage and visit all sites �t , i� on this linkage. If
the corresponding site �t+1, i� in the �t+1�th layer is occu-
pied, include it in cluster mk and store in the “stack.” Read a
site from the “stack” �and erase it from the “stack”�, and
repeat the above procedures until cluster mk is completed.
Then, go to the next occupied site in the �t+1�th layer that
has not yet been labeled, set its label to the next integer mk
+1, and grow a new cluster. Repeat this until all the occupied
sites in the �t+1�th layer are visited. We mention that, in
order to avoid duplicate usages of the linking information of
the tth layer, the link between any two sites is immediately
deleted after it is used.

3. Linkage creation. After step 2, the connectivity of the
new layer is completely specified by cluster labels m. The
task of the present step is to derive on the basis of these
labels the linking information of the �t+1�th layer. First, an
additional array is introduced containing a value lf�m� for
each value of the labels m. Its elements are initially set as 0
during step 2. Then, one sequentially visits the occupied sites
in layer t+1. Suppose the present site is k. Let site k+1 be
the site that is visited. If site k+1 is also occupied, link sites
k and k+1 to each other; if site k+1 is empty, one sets
lf�mk�=k. This means that site k is the last site in the cluster
labeled by mk among sites 1� i�k+1. In the case that site
k−1 is empty, one reads the element lf�mk�. If lf�mk� is non-
zero, link sites lf�mk� and k; otherwise, do nothing. Note that
no action is needed if site k−1 is occupied, because the link
between sites k−1 and k was already defined when site k
−1 was visited.

Iterating steps 1–3 eventually yields a strip L��. The
above steps are illustrated in Fig. 2.

Each of the above three steps consists of a number of
operations of order Ld−1. In comparison with the previous
procedure without the linkage technique, the efficiency is
improved by a factor of order Ld−1.

FIG. 1. Illustration of the cluster construction for the newly
added layer without the help of the “linkage” technique. This ex-
ample applies to linear size L=8, and free boundary conditions are
imposed in the vertical direction.

FIG. 2. Illustration of the cluster construction for the newly
added layer with the help of the “linkage” technique. This example
applies to linear size L=8, and free boundary conditions are im-
posed in the vertical direction.
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B. Combined samplings of bulk and surface quantities

During the above procedures, quantities of interest, such
as moments of the cluster-size distribution and the correla-
tion functions, can be sampled on each newly added layer.
However, this layer is actually the free surface at the end of
the strip, and thus does not provide adequate information
concerning bulk critical phenomena.

Nevertheless, the procedure can be adapted such that
some bulk quantities can be sampled. Instead of a single
strip, one simultaneously simulates two independent strips
with the same site-occupation probability p. After adding a
new layer to each strip, these two new layers are “glued”
together by nearest-neighbor bonds. The result is that the
connectivity of each of the two layers represents a bulk layer
of the percolation model.

In the present work, we slightly modified this procedure
by inserting a third layer of randomly occupied and empty
lattice sites, also using probability p. Both free surfaces are
then connected to the third layer, and bulk quantities are
sampled on it. This is illustrated by Fig. 3. In this way, the
information about the connectivity of the two free layers,
which is still needed for further growing of the strips, is
more easily preserved.

C. Generalization

It is straightforward to generalize the above procedures to
the bond-percolation model, to percolation models in d�2
dimensions, and to models with periodic boundary condi-
tions in the perpendicular direction. The detailed reformula-

tion of the algorithm is sufficiently obvious and omitted here,
except for one remark about the “linkage” technique for
higher dimensions d�2. As in two dimensions, we use one
number to specify a lattice site in a �d−1�-dimensional layer.
For instance, for d=3, the lattice site �x ,y� in the L�L
square layer is labeled by a number k= �y−1�L+x. On this
basis, one can also arrange the linkage between lattice sites
in the same cluster such that it occurs in an increasing order
k1�k2�¯. An example of such linkages is shown in Fig. 4
for the three-dimensional site percolation model.

We conclude this section by mentioning a property of the
linkages for the two-dimensional strip. Consider four sites
k1�k2�k3�k4 in a layer. If sites k1 and k3 are mutually
connected, and so are sites k2 and k4, then necessarily all four
of them are connected. In other words, no intersections exist
between the paths specified by the linkages. The same ap-
plies to the layer connectivity of the random-cluster model of
the Potts model in two dimensions. This “well-nestedness”
property is used in transfer-matrix calculations of the general
q-state Potts model. The construction of the transfer matrix
requires a one-to-one mapping between allowed connectivi-
ties and consecutive integers 1,2,3,…. The well-nestedness
property greatly reduces the number of allowed connectivi-
ties.

FIG. 4. Illustration of a cluster linkage on a two-dimensional
layer of the cylinder L2��. The layer is a square lattice with L
=5, with periodic boundary conditions in both the x and y
directions.

FIG. 5. Scaled magnetic bulk correlation L2Xhgb�L /2� for the
square-lattice site-percolation model vs the site-occupation prob-
ability. The bulk magnetic scaling dimension Xh is equal to 5/48.
The data points +, �, �, �, �, �, and � represent system sizes
L=16,24,32,40,64,80, and 120, respectively.

FIG. 6. Bulk ratio Qgb for the square-lattice site-percolation
model vs the site-occupation probability. The data points +, �, �,
�, �, �, and � represent system sizes L=16,24,32,40,64,80, and
120, respectively.

FIG. 3. Illustration of the sampling of bulk quantities. The thick
solid lines represent the two free surfaces of the simulated strips
and a newly inserted layer of randomly distributed occupied and
empty sites, respectively. These layers are “glued” together by add-
ing horizontal bonds.
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III. APPLICATIONS

A. Two dimensions

As mentioned earlier, the nature of phase transition of the
percolation model is now well established �7,10–13�. Never-
theless, there still exist critical exponents whose exact values
are not available so far, such as the backbone exponent
�32–34�, and thus numerical studies are needed.

The critical points of several site- and bond-percolation
models are also exactly known; for a review, see, e.g., Ref.
�35�. These exact results can be obtained �36� by using dual
symmetries and matching features of planar lattices, the
bond-to-site transformation, and the star-triangle transforma-
tion. Table I summarizes some exact percolation thresholds
for the honeycomb, Kagome, square, and triangular lattices.
The square lattice is self-dual, and the triangular lattice is
self-matching. The honeycomb and triangular lattices are
dual to each other. However, percolation thresholds of most
systems still rely on numerical determinations. The site-
occupation percolation thresholds on the honeycomb and
square lattices were estimated as pc

�s�=0.697 043�3� �37� and
pc

�s�=0.592 746 21�13� �3�, respectively, where the super-
script �s� specifies the site-occupation probability. The bond-
percolation threshold on the Kagome lattice was determined
as pc

�b�=0.524 405 3�3� �38�.
Using the Monte Carlo algorithm developed in Sec. II, we

simulate the site-percolation model on an L�� square lat-
tice. Periodic boundary conditions are applied in the perpen-
dicular direction, so that the simulated geometry can be re-
garded as the surface of a very long cylinder. Initial
simulations of 10L or more are discarded before sampling
procedures are carried out.

As mentioned in Sec. II, the actual simulations were per-
formed on two independent cylinders, and a layer of bulk
connectivity is generated after each Monte Carlo step. The
sampling procedure thus involves two independent surface
layers and one bulk layer. The connectivity of each layer is
used to define cluster sizes li as the total number of sites in
the ith cluster in the present layer. On this basis, the second
and fourth moments of cluster sizes are sampled as

c2 =
1

L2 � �li�2 and c4 =
1

L4 � �li�4. �1�

The parameters li, c2, and c4, can stand for surface or bulk
quantities, and a second index s or b will thus be appended
whenever necessary. Then, dimensionless ratios are defined
as

Qc = �c2�2/�3�c2
2� − 2�c4�� , �2�

where the brackets �� denote the statistical average. A justi-
fication of Eq. �2� can be found in Refs. �39,40�.

We also sampled data for the correlation function g�r� on
the surface and the bulk layers, defined as the probability that
two lattice sites at a distance r are in the same cluster. We
chose the distance r as L /2 and L /4. Accordingly, another
dimensionless ratio is defined as Qg=g�L /2� /g�L /4�.

The simulations used 24 system sizes in the range 4�L
�20 000. For small system sizes, the number of samples was
of order Ns�108 per Monte Carlo run. Note that Ns is the
length of the cylinder that is simulated. For L=20,000, we
took Ns=4�106: taking into account that two cylinders are
simultaneously generated, a system of 1.6�1011 sites was
simulated. For L=20 000, a single run took about 24 hours
on a PC running at 700 MHz. The simulations used several
independent runs, and the total number of samples per sys-
tem size was about 1.5�109 for L�200 and 2.0�108 for
L�200.

Parts of the numerical data for the quantities gb�L /2�,
Qgb , gs�L /2�, and Qgs are shown in Figs. 5, 6, 7, and 8.

In two dimensions, the consequences of conformal invari-
ance of critical systems have been studied extensively and
yielded a large amount of results for both bulk and surface
critical phenomena �11,13,41�. A well-known example is
Cardy’s mapping �42� between the infinite plane �x ,y� and
the surface of the infinitely long cylinder �t ,k��1�k�L�. In
terms of complex numbers z=x+iy and w= t+ik, Cardy’s

TABLE I. Summary of percolation thresholds for nearest-neighbor percolation models on the honeycomb,
Kagome, square, and triangular lattices. Where exact values are not available, numerical estimates and their
references are listed. The parameter z is the coordination number; pc

�b� and pc
�s� represent the critical bond- and

site-occupation probabilities, respectively.

Honeycomb Kagome Square Triangular

z 3 4 4 6

pc
�b� 1−2 sin�	 /18� 0.5244053�3� �38� 1/2 2 sin�	 /18�

pc
�s� 0.697043�3� �37� 1−2 sin�	 /18� 0.59274621�13� �3� 1/2

FIG. 7. Scaled surface correlation function L2Xh
�o�

gb�L /2� for the
square-lattice site-percolation model vs the site-occupation prob-
ability. The surface magnetic scaling dimension Xh is equal to 1/3.
The data points +, �, �, �, �, �, and � represent system sizes
L=32,40,48,64,80,120, and 200, respectively.
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mapping reads w= �L /2	�ln z. Therefore, the two-point cor-
relation in the �x ,y� plane

g�x1,y1;x2,y2� � ��x2 − x1�2 + �y2 − y1�2�−X �3�

covariantly transforms into

g�t1,k1;t2,k2� �
�2	/L�2X

	2 cosh
2	

L
�t2 − t1� − 2 cos

2	

L
�k2 − k1�
X

,

�4�

where X can be the bulk thermal and magnetic scaling di-
mensions, respectively. Equation �4� gives the exact form of
two-point correlation functions on the cylinder, apart from an
unknown constant factor. On a perpendicular layer, i.e., t2
= t1, Eq. �4� reduces to

g�i1,i2� �
�2	/L�2X

	2 − 2 cos
2	

L
�i2 − i1�
X

, �5�

so that one has gb�r=L /2�� �2	 /L�2X4−X and gb�r=L /4�
� �2	 /L�2X2−X. The asymptotic value of the critical bulk

magnetic ratio Qgb=gb�L /2� /gb�L /4� is then equal to 2−Xh

=2−5/48�0.930342¯.
Cardy’s mapping transforms a semi-infinite plane �x ,y�

for y�0 into an infinitely long cylinder with a free surface.
Thus, Eq. �5� also holds for surface correlation functions at

criticality, and the universal value Qgs is equal to 2−Xhs
�o�

=2−1/3�0.793701¯.
In order to estimate the critical probability pc, we fitted

Monte Carlo data for the ratio Qg and the correlation func-
tion g by

Qg�p,L� = Qgc + �
k=1

4

qk�p − pc�kLkyt + b1Lyi + b2L−2 + b3L−3

+ b4L−4 + c�p − pc�Lyt+yi + n�p − pc�2Lyt �6�

and

g�p,L/2� = L−2X�g0 + �
k=1

4

gk�p − pc�kLkyt + b1Lyi + b2L−2

+ b3L−3 + b4L−4 + c�p − pc�Lyt+yi + n�p − pc�2Lyt� ,

�7�

respectively, where Qg stands for the bulk and surface ratios
Qgb and Qgs, and similar for the correlation function g. Equa-
tions �6� and �7� are obtained by Taylor expansions of the
finite-size scaling formulas of Q and g. The scaling dimen-
sion X in Eq. �7� was fixed at Xh=5/48 or Xhs

�o�=1/3 for the
bulk and surface correlation functions, respectively. The ther-
mal exponent was fixed at yt=3/4. The correction-to-scaling
exponent yi, arising from the leading irrelevant scaling field,
is equal to −2 �11� and −1 �43� for bulk and surface quanti-
ties, respectively. The term with coefficient c accounts for
the combined effect of the relevant and the leading irrelevant
scaling fields, and the term with amplitude n accounts for the
nonlinearity of the scaling field as a function of the site-
occupation probability p− pc. It can be seen from Figs. 6–8
that Eqs. �6� and �7� satisfactorily describe the general be-
havior of Q and g: the slopes of the curves increase with L,
while the intersections converge to pc, because all terms in-

FIG. 9. Bulk ratio Qcb for the simple-cubic site-percolation
model vs the site-occupation probability. The data points +, �, �,
�, �, �, and � represent system sizes L=16,20,24,32,40,48, and
64, respectively.

FIG. 10. Surface ratio Qgs for the simple-cubic site-percolation
model vs the site-occupation probability. The data points +, �, �,
�, �, �, and � represent system sizes L=16,20,24,32,40,48, and
64, respectively.

FIG. 8. Surface ratio Qgs for the square-lattice site-percolation
model vs the site-occupation probability. The data points +, �, �,
�, �, �, and � represent system sizes L=32,40,48,64,80,120, and
200, respectively.
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dependent of p have negative powers of L. By means of
least-squares fits, we obtain pc=0.592 746 6�8� from
Qgb , pc=0.592 746 5�4� from gb , pc=0.592 746 8�10� from
Qgs, and pc=0.592 746 6�6� from gs. The asymptotic values
of the bulk and surface ratios are Qgbc=0.930 34�1� and
Qgsc=0.793 72�3�, in agreement with the predictions of con-

formal invariance, i.e., Qgbc=2−Xh and Qgsc=2−Xhs
�o�

, as de-
rived above. Fixing Qgbc and Qgsc at the exactly known val-
ues leads to essentially the same results and leads only to a
small reduction of the estimated statistical errors.

According to the Coulomb gas theory �7,10,12�, the sec-
ond leading bulk magnetic scaling field in the two-
dimensional percolation model is also relevant; the associ-
ated exponent is yh2=2−Xh2=77/48. This means that
subleading terms with L−Xh−Xh2 and L−2Xh2 may exist in bulk
magnetic quantities. In terms of corrections to scaling, these
can be included in the brackets in Eq. �7� with exponents
y1=Xh−Xh2=−3/2 and y2=2Xh−2Xh2=−3; the latter has al-
ready been included in Eq. �7�. Since the bulk ratio Qgb is
defined on the basis of gb, terms with y1 should also exist in
Eq. �6�. We therefore also included terms with y1 in the least-
squares analysis of gb and Qgb, but no substantial evidence
was found for such terms.

B. Three dimensions

On the simple-cubic lattice, the critical probabilities for
the bond- and site-percolation models are known as pc
=0.248 821 6�5� �44� and pc=0.311 608 1�13� �39�, respec-
tively. The bulk critical exponents were estimated as yt
=1.123�25� and yh=2.523�4� �44,45�.

In comparison with two-dimensional systems, phase tran-
sitions on the free surfaces of the three-dimensional percola-
tion model appear to display a richer structure. This can be
illustrated in the language of the simple-cubic bond-
percolation model with bulk and surface bond-occupation
probabilities p and p�s�. For the “disordered” bulk, i.e., p
� pc, the two-dimensional surfaces can sustain long-range
order associated with an infinite cluster if the surface param-
eter p�s� is sufficiently enhanced. A limiting case is bulk
probability p=0, in which the surface percolation problem

reduces to the two-dimensional bond-percolation model. Ac-
cordingly, a line of “surface” phase transitions pc

�s��p� occurs.
This line pc

�s��p� meets the bulk critical percolation threshold
p= pc at the “special” phase transition. Depending on the
enhancement of p�s�, “ordinary” and “extraordinary” surface
phase transitions occur at bulk criticality p= pc. The associ-
ated surface magnetic exponents were determined �40,46� as
yhs

�o�=1.0246�4�, yts
�s�=0.5387�2�, yhs

�s�=1.8014�6�, and yhs
�e�

=1.25�6�, where the superscripts �s� and �e� denote the “spe-
cial” and “extraordinary” transitions, respectively.

Using the Monte Carlo algorithm described in Sec. II, we
investigated the site-percolation model on the simple-cubic
lattice. The simulations used a geometry L2��, with peri-
odic boundary conditions in both of the finite directions. The
system size L took 21 values in the range 4�L�1000.
Again, two systems were simultaneously and independently
simulated. The length of the transfer direction per system
was about 1.0�107 for L�120, 5.0�106 for 200�L
�400, and 2.0�106 for L�400. This means that systems
with up to 4.0�1012 sites were simulated.

We sampled various bulk and surface quantities, including
the moments c2 and c4 of the cluster-size distribution, the
correlation functions g�L /2� and g�L /2�, and the associated
dimensionless ratios. The pair correlation function g�L /2�
was evaluated over a distance L /2 along the x and y direc-
tions, and g�L /2� in the diagonal direction of the quadratic
layer. Parts of the Monte Carlo data for Qcb in Eq. �2� and for
Qgs are shown in Figs. 9 and 10, respectively. The data for
Qcb, Qgb, Qcs, and Qgs were fitted by Eq. �6�, and those of
c2b, gb, c2s, and gs by Eq. �7�. All the involved critical expo-
nents were left free; these include the bulk thermal exponent
yt and the bulk and surface magnetic dimensions Xh and Xhs

�o�.
The correction exponent yi of the leading irrelevant field was
also left free. The results for the above quantities are shown
in Table II. In those cases where independent results for the
same parameter appear, they are consistent with each other.
Next, we simultaneously analyzed the data for Qcb, Qgb, Qgs,
c2b, gb, and gs, such that the critical exponents and the per-
colation threshold appear only once in the fitting formulas;
for a detailed description of this technique, see Ref. �48�. We

FIG. 11. Logarithm of the order parameter g1�r� for the square-
lattice bond-percolation model at criticality vs the scaled distance
r /L to the first layer of the cylinder. The data points +, �, �, �, �,
�, and � represent system sizes L=8,16,32,64,128,256, and 512,
respectively.

FIG. 12. Logarithm of the order parameter g1�r� for the square-
lattice bond-percolation model at criticality vs the scaled distance
r /L. The quantity Xhs used to the rescaling of the vertical axis is the
surface magnetic dimension at the ordinary phase transition Xhs

�o�

=1/3. The data points +, �, �, �, �, �, and � represent system
sizes L=8, 16,32, 64,128, 256, and 512, respectively.

MONTE CARLO STUDY OF THE SITE-PERCOLATION … PHYSICAL REVIEW E 72, 016126 �2005�

016126-7



obtain pc=0.311 607 7�3�, yt=1.1450�7�, yh=2.5226�1�, and
yhs

�o�=1.0247�3�. A comparison of our estimates and some ex-
isting results is shown in Table III.

We mention that Cardy’s mapping in d�2 dimensions
does not transform the infinite space into geometry Ld−1

��. Instead, under Cardy’s transformation of the space, one
obtains the so-called spherocylinder geometry �42,47�, which
is reached by extending the surface of a d-dimensional
sphere into another dimension. Thus, we have no direct re-
lation between the magnetic exponents and the asymptotic
values Qgbc and Qgsc.

IV. DISCUSSION

The validity of the algorithm defined in Sec. II is con-
firmed by the agreement of its results in two dimensions and
the predictions of the theory of conformal invariance. The
efficiency is reflected by the precision of the three-
dimensional results.

The present algorithm has elements in common with those
discussed in Sec. I, including the Hoshen-Kopelman routine
�16�, the transfer-matrix Monte Carlo technique �25�, and the
Derrida-Vannimenus transfer-matrix approach �27�. Just like
the Hoshen-Kopelman method, the simulations are “straight-
forward,” and only a fraction f �1 of lattice sites needs to be

stored. In this sense, our algorithm can be regarded as an
extension of the Hoshen-Kopelman method. Since the num-
ber of clusters is proportional to the volume of the system,
the fraction f in the the Hoshen-Kopelman method has a
lower bound, i.e., f � f0�0. However, for a d-dimensional
percolation model, the present algorithm actually works on
�d−1�-dimensional layers, and thus f approaches 0 for large
system sizes.

In comparison with other cases, the transfer matrix of the
percolation model has the special feature that the sum of its
elements in each column equals 1. Thus, the matrix can be
directly interpreted as a transition probability matrix as used
in the transfer-matrix Monte Carlo method. This means that
the weight of the random walkers is preserved during the
simulation. Population control then becomes unnecessary,
and it is sufficient to simulate just one random walker. There-
fore, the present method can also be considered as a special
case of the transfer-matrix Monte Carlo method �25�.

Since systems simulated by our algorithm have an open
surface, direct sampling of surface quantities can be per-
formed. Just like the sampling of bulk quantities, the present
algorithm is suitable for the study of various types of surface
transitions, including the “surface,” “ordinary,” “special,”
and “extraordinary” phase transitions. Namely, one may gen-
erate an additional layer of percolation configuration with an

TABLE II. Results of least-squares fits for the site-percolation model on the simple-cubic lattice. The data
for sizes L�Lmin were not included in the fits. The correlation function g was sampled at a distance L /2 in
the diagonal direction of the square-lattice layer. The fits of c2b, gb, and gs were performed with the thermal
exponent yt fixed at 1.145.

Qcb Qgb Qgs c2b gb gs

Lmin 7 8 8 8 8 8

Qc 0.5143�2� 0.87299�6� 0.7337�2�
pc 0.3116076�4� 0.3116077�6� 0.3116085�18� 0.3116081�6� 0.3116080�4� 0.3116078�9�
yt 1.1452�8� 1.146�1� 1.144�3�
yh 2.5225�2� 2.5226�1�
yhs

�o� 1.0247�3�
yi −1.5�3� −2.1�3� −1.7�3� −1.8�3�

TABLE III. Summary of results for site-percolation thresholds on the simple-cubic lattice and the asso-
ciated scaling exponents.

Year pc yt yh yhs
�o�

Hansen et al. �49� 1989 1.04�5�
Grassberger �21� 1992 0.311 604�6� 1.030�6� 2.525�4�
Lorentz et al. �44� 1998 1.12�2� 2.523�4�
Jan et al. �50� 1998 0.311 600�5� 2.530�4�
Lin et al. �45� 1998 0.311 6�1� 1.12�2� 2.49�1�
Ballesteros et al. �39� 1999 0.311 608 1�13� 1.141�2� 2.5230�3�
Martins et al. �51� 2003 0.311 5�3� 1.140�16�
Deng et al. �46� 2003 1.025�4�
Deng et al. �40� 2005 1.0246�4�
Present work 2005 0.311 607 7�3� 1.1450�7� 2.5226�1� 1.0247�3�
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enhanced surface parameter, and “glue” it on the top of the
simulated system.

The conventional way of studying surface critical phe-
nomena is to simulate an Ld lattice with two free surfaces in
one direction, as in Ref. �40�. In order to obtain two layers of
surface percolation configurations, one then has to produce L
layers of configurations. This procedure tends to become
computationally expensive, in particular for the “surface”
phase transitions, where the bulk is in a “disordered” state.
Thus, compared to the conventional simulations, the present
algorithm offers a good alternative to study surface transi-
tions.

In Sec. III, the sampling was performed in layers perpen-
dicular to the transfer direction. Nevertheless, it is also pos-
sible to keep track of the connectivity along the transfer di-
rection. As an example, we investigated the square-lattice
bond-percolation model at its percolation threshold pc=1/2.
The length of the simulated cylinder is four times its circum-
ference, i.e., the transfer dimension was simulated up to a
distance 4L. Fixed boundary conditions were applied to the
zeroth layer from which the cylinder starts to grow, and thus
all the lattice sites on this layer belong to the same cluster,
say cluster 1. Then, the fraction of the lattice sites of the rth
layer in cluster 1, g1�r�, was sampled along the transfer di-
rection; the data for L=23, 24, 25, 26, 27, 28, and 29 are
shown in Fig. 11. Taking into account that the magnetic cor-
relation length along the cylinder is a bulk quantity while the
power governing the scaling of g1�r ,L� as a function of L is

the surface magnetic dimension, one has at the percolation
threshold

g1�r,L� � L−Xhs
�o�

e−2	Xhr/L. �8�

We mention that, because of the fixed boundary conditions at
the first layer of the cylinder, the exponent in Eq. �8� is Xhs

�o�

instead of 2Xhs
�o�. For large distance r� �1, Eq. �8� reduces

to g1�r ,L�=aL−Xhs
�o�

e−2	Xhr/L. This explains why the data lines
in Fig. 11 are approximately parallel to each other; the slope
is equal to −2	Xh=−5	 /24 for L→�. Furthermore, the dis-
tance between any pair of nearest-neighbor lines in Fig. 11
should be equal to Xhs

�o�ln 2= �ln 2� /3, apart from finite-size
corrections. This is confirmed by the rapid convergence of
the data lines in Fig. 12, where the vertical axis is
ln g1�r ,L�+Xhs

�o�ln L.
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