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Improved bounce-back methods for no-slip walls in lattice-Boltzmann schemes:
Theory and simulations

M. Rohde,* D. Kandhai,† J. J. Derksen, and H. E. A. Van den Akker
Kramers Laboratorium voor Fysische Technologie, Delft University of Technology, Prins Bernhardlaan 6, 2628 BW Delft,
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~Received 25 July 2002; revised manuscript received 3 February 2003; published 10 June 2003!

A detailed analysis is presented for the accuracy of several bounce-back methods for imposing no-slip walls
in lattice-Boltzmann schemes. By solving the lattice-BGK~Bhatnagar-Gross-Krook! equations analytically in
the case of plane Poiseuille flow, it is found that the volumetric approach by Chenet al. is first-order accurate
in space, and the method of Bouzidiet al. second-order accurate in space. The latter method, however, is not
mass conservative because of errors associated with interpolation of densities residing on grid nodes. There-
fore, similar interpolations are applied to Chen’s volumetric scheme, which indeed improves the accuracy in
the case of plane Poiseuille flow with boundaries parallel to the underlying grid. For skew boundaries, how-
ever, it is found that the accuracy remains first order. An alternative volumetric approach is proposed with a
more accurate description of the geometrical surface. This scheme is demonstrated to be second-order accurate,
even in the case of skew channels. The scheme is mass conservative in the propagation step because of its
volumetric description, but still not in the collision step. However, the deviation in the mass is, in general,
found to be small and proportional to the second-order terms in the standard BGK equilibrium distribution.
Consequently, the scheme isa priori mass conservative for Stokes flow.
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I. INTRODUCTION

In the last decade, lattice-gas and lattice-Boltzmann m
ods have proven to be versatile tools for simulating a w
variety of fluid dynamical applications@1#. These include
turbulent single-phase flows, transport in porous media,
multiphase flows in several scientific and industrial appli
tions @1–3#. An important issue encountered in all the
simulations is the way boundary conditions are being
posed, in particular, at inflow, outflow, and no-slip boun
aries.

In this respect, the well-known bounce-back scheme
be considered as an extremely simple method for dea
with arbitrary complex solid-fluid interfaces. Although st
widely being applied, it is by now well accepted that t
bounce-back scheme is not very accurate. Several nume
simulations confirm that the method is first-order accurate
space and although applied only at the boundaries, it
does affect the accuracy in the bulk of the fluid. Therefore
degenerates practical simulations performed using latt
Boltzmann methods to first-order accuracy in space,
though lattice-Boltzmann methods, in general, are seco
order accurate in space~see Ref.@4#, and references therein!.

In the recent few years, much effort has been spen
improving the bounce-back method. In a very early sta
several modifications have been proposed, which, howe
were restricted to rather regular geometries, e.g., flat w
and octagonal cylinders@5–10#. More recently, sophisticate
schemes have been proposed that are suitable for de
with irregular geometries. The most notable contributio
among these are the volumetric methods by Verberg
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Ladd @11# and Chenet al. @12# and the interpolation tech
nique by Bouzidiet al. @13#.

Though these methods can deal with complex boundar
it is not obvious that second-order accuracy is automatic
obtained. Verberg and Ladd showed that their method
second-order accurate in the case of boundaries paralle
the underlying grid, but reduces to first order for skew cha
nels. The method of Bouzidiet al., on the other hand, is
found to be second-order accurate in more complex ca
such as flow around cylinders. A drawback of this schem
that mass is not conserved, because of errors associated
interpolation of densities residing on grid nodes. With
volumetric approach, on the contrary, mass can be c
trolled, so that a mass conservative scheme can be se
@14#.

In this paper, we therefore revisit the volumetric meth
by Chenet al. @12# and present a detailed analysis in the ca
of plane Poiseuille flow, following the work of Heet al. @15#.
An analytical expression for the error is derived and co
pared with the data obtained by numerical simulations.
also analyze the method of Bouzidiet al. @13# and include in
our study the recently published method and analysis by V
berg and Ladd@11#.

Inspired by the findings of these analyses, we propose
alternative volumetric methods with the intention to obta
second-order accuracy. These approaches are then ana
theoretically and numerically in the case of plane Poiseu
flow for varying orientations of the boundaries with respe
to the underlying grid.

II. ANALYSIS OF EXISTING MODIFIED
BOUNCE-BACK SCHEMES

A. Volumetric scheme of Chenet al.

The lattice-Boltzmann method originally is a finite
difference discretization scheme@16#. It can, however, also
©2003 The American Physical Society03-1
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ROHDE et al. PHYSICAL REVIEW E 67, 066703 ~2003!
be interpreted as avolumetric scheme. By definition, eac
grid nodexW is located in the center of a cubic cell~i.e., grid
cell! with size Dx5Dy5Dz. If we assume that the mas
typically located on the grid node, is distributed uniform
throughout the cell, the traditional lattice-Boltzmann equ
tion can be rewritten as follows:

Ni~xW1cW iDt,t1Dt !5Ni~xW ,t !1V i„NW ~xW ,t !…. ~1!

The only difference between Eq.~1! and the traditional
lattice-Boltzmann equation is the use of massesNi rather
than densitiesni . As these masses reside in cubic cells w
volume DV, the density in a cubic cell is equal toni
5Ni /DV. In the vicinity of a solid surface, however, th
volumetric definition is different from the original schem
because some cells may be cut by the surface and bec
noncubic.

Chen et al. @12# proposed a modified lattice-Boltzman
scheme for these cells, where solid surfaces are define
facetsSa with areaAa and a surface normalnW a. During the
propagation step, a fraction of the mass in the cells adja
to the surface~i.e., boundary cells! hits the surface of an
object, and is simply reflected~i.e., bounced back! in the
opposite directioni (cW i* [2cW i). For this bounce-back pro
cess, a volumetric lattice-Boltzmann scheme for bound
cells can be set up as follows:

Ni~xW1cW iDt,t1Dt !5Pi
undist~xW !Ni8~xW ,t !1Qi~xW1cW iDt,t !,

~2!

whereNi8(xW ,t)[Ni(xW ,t)1V i(xW ,t) is the right-hand side o

the lattice-Boltzmann scheme for a cubic cells andPi
undist(xW )

represents the fraction of mass that does not hit the sur
during the propagation step. This fraction moves undis
bedly from cellxW to cell xW1cW iDt. The termQi(xW1cW iDt,t)
represents the mass that is reflected from the surface
arrives in cellxW1cW iDt.

Analytical solution of plane Poiseuille flow

On the basis of the procedure described by Heet al. @15#,
we will analyze the volumetric scheme as proposed by C
et al. @12# in the case of plane Poiseuille flow. Consider
horizontal channel of heightL, consisting ofm grid cells~see
Fig. 1!. The position of the lower and upper surfaces is su
that the volume of all boundary cells is equal toa, hence
L5(m22)12a ~with Dz51). The facets of the surface ar
positioned between two vertical grid lines.

The flow is driven by a body force, i.e.,FW 5(rGx,0,0),
and periodic boundaries are imposed at both ends of
channel. For the analysis, we assume a steady-state
hence

uz50,
]ux

]x
50,

]ux

]t
50. ~3!

This implies that
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]Ni~xW ,t !

]x
50,

]Ni~xW ,t !

]t
50. ~4!

For the boundary cells onz5z1 andz5z2 ~we only con-
sider the cells at the bottom of the channel because of
symmetry of the flow field!, the propagation step, describe
in the preceding section, evolves in the following mann
The incoming~and thus the reflected! mass per facet is

G i*
in,a5G i

out,a5Ni* ~z1 ,t* !1~12a!Ni* ~z2 ,t* !. ~5!

According to Eq.~2!, the reflected mass is redistribute
uniformly in the cells atz1 and z2, hence the propagation
step at these cells is given by

Ni~z1 ,t11!5a@Ni* ~z1 ,t* !1~12a!Ni* ~z2 ,t* !#,

Ni* ~z1 ,t11!5aNi* ~z2 ,t* !,

Ni~z2 ,t11!5Ni~z1 ,t* !1~12a!@Ni* ~z1 ,t* !

1~12a!Ni* ~z2 ,t* !#,

Ni* ~z2 ,t11!5Ni* ~z3 ,t* !, ~6!

where t* represents the moment after the collision step
before the propagation step,i denotes all the directionsfrom
the surface, andi * denotes the directionsto the surface. Note
that this scheme can be used for any number of velo
directions. For the analysis, we use the two-dimensio
nine-speed model on a square lattice and the BGK sch
~Fig. 2!. The collision step then reads

Ni~xW ,t* !5Ni~xW ,t !2
1

t
@Ni~xW ,t !2Ni

eq~r,uW !#1t f ,iDVcW i•FW ,

~7!

whereDV5a for cells atz5z1 andDV51 for cells at other
positions. t is the relaxation parameter,t f ,i50 for i 50,

FIG. 1. Two-dimensional representation of a horizontal chan
with height L and noncubic boundary cells with volumea at the
bottom of the channel.
3-2
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t f ,i5
1
3 for i 51,2,3,4, andt f ,i5

1
12 for i 55,6,7,8. The equi-

librium distribution functionNi
eq reads

Ni
eq~r,uW !5tp,irDVS 113~cW i•uW !1

9

2
~cW i•uW !22

3

2
uW 2D ,

~8!

where tp,i5
4
9 for i 50, tp,i5

1
9 for i 51,2,3,4, andtp,i5

1
36

for i 55,6,7,8. The kinematic viscosityn5(2t21)/6 and

the speed of soundcs5A1
3 .

By using the definition of the velocity,

DVrux~zk ,t !5 (
i 50¯b

ci ,xNi~zk ,t ! ~9!

and Eqs.~6!, ~8!, and ~7!, we can derive an equation wit
macroscopic quantities only~see the Appendix!. This equa-
tion reads

A1ux~z1!1A2ux~z2!1A3Gx50 ~10!

with

A152t14at23a,

A25a22at,

A354at26a216a2t24at224t2.

A similar procedure is applied to grid cells at positionz2 , z3,
etc. For positionz2, the following equation is obtained:

B1ux~z2!1B2ux~z3!1B3Gx50 ~11!

with

B1517at2250at3219a3t28a3t3122a3t2256a2t3

132at4116a2t426t3112t415a3156a2t2

216a2t,

FIG. 2. Discrete velocity set for the two-dimensional nine-spe
BGK scheme.
06670
B258a2t216a2t4216at4140a2t3113a3t18a3t3

218a3t212t324t423a3122at3232a2t227at2,

B35232at5264a3t178a3t2218a4t232a3t3112a4t2

132a2t4180at42132a2t31142a2t2298at3

248a2t142at2212t3120t4216t516a4118a3.

For positionszk53¯m22, the equation reads

C1ux~zk21!22C2ux~zk!1C3ux~zk11!1G50 ~12!

with

C15C25C35
2t21

6
5n.

We clearly see that for the fluid nodes atzk53¯m22, a
second-order central-difference scheme is obtained for
Navier-Stokes equations in the case of steady-state Poise
flow. Equations~10!–~12! are solved by substituting a veloc
ity profile, i.e., a parabolic profileplus a numerical error
Dux ,

ux~zk!5
4Umax

L2
zk~L2zk!1Dux~zk! ~13!

with Umax5L2G/8n. By substituting the profile into Eq
~12!, we obtain

Dux~zk11!1Dux~zk21!22Dux~zk!50. ~14!

Due to the symmetry of the grid atz5L/2, the simulated
velocity profile in the channel~and thus the numerical error!
is also symmetrical with respect to the center of the chan
This implies that Eq. ~14! only holds when Dux(z2)
5Dux(z3)5•••5Dux(zm21). The numerical error at posi
tion z1 can, however, still be different from the error at th
other positions, as confirmed by numerical simulations. S
stituting the profile Eq.~13! into Eqs.~10! and ~11! for z1

5a2 1
2 , z25a1 1

2 , andz35a11 1
2 gives us two equations

with two unknowns, becauseDux(z2)5Dux(z3). The nu-
merical error reads

d

Dux~z1!5
1

3
Umax

32t3240at2216t2124a2t24at16t212a3112a223a

2t2a

1

L2
24Umax

at2t2a21a

2t2a

1

L
,

Dux~zk!5
1

3
Umax

32t3216at2240t2120at16t212a3112a223a

2t2a

1

L2
14Umax

a~a21!

2t2a

1

L
. ~15!
3-3
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From Eq.~15! it is evident that the method is first-orde
accurate with respect to the grid spacing 1/L @the error is of
the formDux(z)5E1 /L1E2 /L2]. Simulations confirm this
result, as shown in Fig. 3.

Note that the accuracy is second order in the case oa
51, which is equivalent to the common bounce-ba
scheme with walls placed halfway between two grid nod
~known ashalfway Bounce-Back method!. The error then
reads

Dux~zk!5
Umax~16t2220t13!

3L2
~16!

for all positions in the channel. This result was also found
He et al. @15#.

In summary, the main result obtained so far is that
volumetric scheme studied in this section is first-order ac
rate with respect to the lattice spacing. One important
sumption in this scheme is that the reflected mass is dis
uted uniformly in the boundary cells. This may indu
numerical diffusion and affect the accuracy of the schem

B. Schemes by Bouzidiet al. and Verberg and Ladd

Several authors used interpolation of particle densitie
the vicinity of the surface to improve the accuracy of th
method. The resulting density profile is then reflected~i.e.,
bounced back! into the fluid. This was recently done by Ve
berg and Ladd@11# and by Bouzidiet al. @13#. Verberg and
Ladd used a volumetric approach with refined stairc
shaped surfaces, while the method of Bouzidiet al. is based
on densities located at grid nodes.

To illustrate the effect of using interpolation of the den
ties on the absolute error in the velocity, the analysis of
preceding section is also applied to the method of Bou
et al. Suppose that the distance between the grid nodesz1

FIG. 3. The relative error in the velocity at the centerline o
channel against grid spacing. The size of the channel was varie
the range fromL58 to L520, t was set to 1. The volume of th
boundary cells at the bottom and top of the channel was varie
the rangea50.1–0.9. The points correspond to the simulation da
the lines represent the analytical findings.
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and the wall is denoted byq ~in the volumetric approach
a5q11/2 for q,1/2 and a5q21/2 for q>1/2). The
propagation step in the case of a first-order interpolation
the densities reads

ni~z1 ,t11!52qni* ~z1 ,t* !1~122q!ni* ~z2 ,t* ! S q,
1

2D
ni~z1 ,t11!5

1

2q
ni* ~z1 ,t* !1

2q21

2q
ni~z1 ,t* ! S q>

1

2D .

~17!

The two different expressions in Eq.~17! are necessary
because of stability reasons@13#. By applying the same
analysis as described in the preceding section, we obtain
the error in the velocity atz1¯m in the case ofq,1/2,

Dux~z1¯m!5
Umax~16t228t224qt112q212q2!

3L2
,

~18!

which indeed indicates second-order accuracy. Simulati
confirm Eq.~18! ~see Fig. 4!.

One may also use a second-order interpolation based
the densities on three neighboring nodes,z1 , z2, andz3 @13#.
The propagation step then reads

ni~z1 ,t11!5q~2q11!ni* ~z1 ,t* !

1~112q!~122q!ni* ~z2 ,t* !

2q~122q!ni* ~z3 ,t* ! S q,
1

2D

in

in
,

FIG. 4. The relative error in the velocity at the centerline of
channel as a function ofq in the case of the first-order interpolatio
scheme as proposed by Bouzidiet al. The size of the channel wa
varied in the range ofm54 to m540 (L5m2112q), t was set
to 1. The points correspond to the simulation data, the lines to
analytically found numerical error of Eq.~18!.
3-4
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ni~z1 ,t11!5
1

q~2q11!
ni* ~z1 ,t* !1

2q21

q
ni~z1 ,t* !

1
122q

112q
ni~z2 ,t* ! S q>

1

2D . ~19!

After the error analysis, the error for the second-ord
interpolation forq,1/2 reads

Dux~z1¯m!5
Umax~16t228t224qt112q2!

3L2
. ~20!

As expected, we find that the absolute error is smalle
the case of second-order interpolation. Note that both er
~related to first-order and second-order interpolations! reduce
to the error for the halfway bounce back forq51/2 (a
51). Despite the simplicity of this scheme, it seems to ha
a drawback. The scheme does not conserve mass, becau
errors associated with interpolation of densities residing
grid nodes.

Verberg and Ladd also analyzed the numerical error of
volumetric method presented in Ref.@11#. The error in the
case of plane Poiseuille flow for the nine-speed BGK sche
at z2¯m21 reads

Dux~z2¯m21!5
Umax~16t2216t1116a226a!

3L2

1
Umaxa

2~a21!2

L4
, ~21!

which also shows second-order accuracy with respect to
spacing (a denotes the volume of a cell at the boundar!.
However, the accuracy is reduced to first order in the cas
more complex geometries, such as a skew channel with
spect to the underlying grid@11#.

III. MODIFIED VOLUMETRIC SCHEMES

A. Chen’s scheme with interpolation

We now return to the volumetric method of Chenet al.
@12#, which was found to be first-order accurate in space
the case of plane Poiseuille flow. This behavior may be
tributed to the uniform redistribution of the reflected ma
across the boundary cells. In fact, the uniformly reflec
mass profile can be regarded as azeroth-orderapproximation
of the actual profile. In the preceding section, we have s
that, by applying a higher-order interpolation, a second-or
accuracy with respect to the discretization of space can
achieved. We shall therefore apply these ideas to the v
metric scheme of Chenet al.

Consider a facet with surfaceAa and the parallelepiped
with volumeF i

a , intersecting some grid cells in the vicinit
of the surface@see Fig. 5~a!#. Some of these grid cells ar
directly cut by the facet~type-I cells!, others are not~type-II
cells!. The intersecting volumes of the parallelepiped a
cells of the same type are summed and rearranged, such
two new volumes are created@see Fig. 5~b!#. The idea now is
06670
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that the density profile of the incoming mass is approxima
by interpolating the densities between the centers of th
two volumes~i.e., j1 and j2). Subsequently, this profile is
reflected~i.e., bounced back! by faceta, resulting in a pro-
file of reflected densities.

The lengths of the two new volumes are

g15VI /A*
a 5 (

xWPtype-I cells

Vi
a~xW !/A

*
a ,

g25VII /A
*
a 5 (

xWPtype-II cells

Vi
a~xW !/A

*
a , ~22!

where VI and VII represent the volumes,g11g25ucW i u and
A

*
a 5(cW i•nW a)/ucW i uAa. The densities in the new volumes ca

be approximated by averaging the densities of the bound
cells involved, according to

ni~j1!5
1

VI
(

xWPtype-I cells

Vi
a~xW !ni~xW !,

ni~j2!5
1

VII
(

xWPtype-II cells

Vi
a~xW !ni~xW !. ~23!

Now that the volumes and densities have been simplifi
the densities moving towards the surface~i.e., thei * direc-
tion! can easily be interpolated according to

ni* ~j!52
@ni* ~j2!2ni* ~j1!#

g11g2
j1ni* ~j1!, ~24!

wherej1 is set to the origin of thej axis. The total incoming
mass is obtained by integrating the interpolated densi
over the total volume of the parallelepiped

G i*
in,a5A

*
a E

2(1/2)g1

(1/2)g11g2
ni* ~j!dj

5A
*
a @g1ni* ~j1!1g2ni* ~j2!#, ~25!

which is the same amount of mass as in Eq.~5!.

FIG. 5. Two-dimensional representation of the intersecting v
umes of type I (VI , indicated with / / /) and type II (VII , indicated
with \ \ \) cells in a parallelepiped, extruded from a facet wi
areaAa.
3-5



on
th
ith
e

n
te

tio

e
he
e
i-
c
in
na
s

or
.

th
d

de
t

t

or

ck
-

ex-

e-
acy
la-

the
the
b-

o-
ins

erg
ond
re-
en-
-

a
ried
-
the
ta,

ROHDE et al. PHYSICAL REVIEW E 67, 066703 ~2003!
The interpolated densities are reflected~i.e., bounced
back! by faceta. The resulting density profile then reads

ni~j!522
@ni* ~j2!2ni* ~j1!#

g11g2
~j2g2!1ni* ~j1!.

~26!

By applying this reflection, a more accurate redistributi
of the reflected mass is obtained compared to the me
described in Sec. II A. The redistribution in the volumes w
center pointsj1 and j2 results from the integration of th
reflected density profile over these volumes,

G i
out,a~j1!5A

*
a E

2(1/2)g1

(1/2)g1
ni~j!dj

5A
*
a F 2g1g2

g11g2
ni* ~j2!1

~g12g2!g1

g11g2
ni* ~j1!G ,

G i
out,a~j2!5A

*
a E

(1/2)g1

(1/2)g11g2
ni~j!dj

5A
*
a F ~g22g1!g2

g11g2
ni* ~j2!1

2g1g2

g11g2
ni* ~j1!G .

~27!

Here, the difference between the method of Sec. II A a
the interpolation method can clearly be seen; the reflec
mass is now redistributed on two positions in space (j1 and
j2) instead of one. Note that mass is conserved by defini
@G i*

in,a5G i
out,a(j1)1G i

out,a(j2)#.
It should be realized that the method as described abov

not the only way to approximate the density profile in t
parallelepiped. Another route is to split the parallelepip
into two equal volumes (g15g2) and calculate the geometr
cal intersection with the grid cells. In this way, the exa
amount of mass present in these volumes can be determ
A disadvantage of this method is that it requires additio
computational effort for the calculation of the intersection
For this reason, we restrict the following analysis to the m
simple method described at the beginning of this section

1. Analytical solution of plane Poiseuille flow

The same analysis regarding the accuracy of the me
with respect to the grid spacing can be performed as
scribed in Sec. II A. The numerical error is found to be

Dux~z1!5
1

3
Umax

16t2224ta14t112a2212a13

L2
,

Dux~zk52¯m21!5
1

3
Umax

16t2220t112a2212a13

L2
.

~28!

Hence, the error in the flow field shows a second-or
dependency on the grid spacing (;1/L2), as is also eviden
from Fig. 6. Moreover, from Eq.~28! it follows that the error
at zk52¯m21 has a minimum ata50.5 and a maximum a
06670
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a50,1 for a fixed value oft. Note that fora5q11/2 and
q,1/2, Eq.~28! is equivalent to the expression obtained f
the method by Bouzidiet al. with second-order interpolation
@Eq. ~20!#.

By rearranging the error atzk52¯m21, we obtain

Dux~zk52¯m21!5
Umax~16t2220t13!

3L2

1
4Umaxa~a21!

L2
. ~29!

Here, we identify the error of the halfway bounce-ba
method@Eq. ~16!# plus a contribution solely due to the frac
tional volume of the boundary cells. In the case ofa51, the
original halfway bounce-back method is recovered as
pected~this also applies to the error atz1).

2. Analysis for a skew channel

An important question is whether the interpolation proc
dure described above will also lead to higher-order accur
for more complex cases. We, therefore, performed simu
tions on plane Poiseuille flow in a skew channel, where
boundary is positioned at a nonzero angle with respect to
underlying grid. The results are shown in Fig. 7. Data o
tained for the original scheme of Chenet al. are also in-
cluded in the graph. It is clear that, although linear interp
lation reduces the error in the velocity, the accuracy rema
first order. These findings are similar to the results of Verb
and Ladd@11#, where the accuracy degenerates from sec
order to first order as the angle deviates from zero. Mo
over, other interpolation schemes for approximating the d
sity profile near the boundary~such as the technique sug

FIG. 6. The relative error in the velocity at the centerline of
channel against the grid spacing. The size of the channel was va
in the range ofL54 –16,t was set to 1. The volume of the bound
ary cells at the bottom and top of the channel was varied in
range ofa50.1–0.9. The points correspond to the simulation da
the lines represent the analytical findings of Eq.~28!.
3-6
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gested at the end of Sec. III A! or increasing the number o
facets, did not result in higher-order accuracy.

We believe that, even though the particle distributions
interpolated near the wall, first-order accuracy is still o
tained due to the way the volumes I and II in Fig. 5 a
lumped. Moreover,VI andVII are determined exactly, but th
geometrical structureof the boundary cells is not incorpo
rated. Consequently, the shape of the surface is not capt
accurately enough to obtain second-order accuracy.

B. A different volumetric approach

In the preceding section, it was suggested that volume
boundary cells only do not describe the surface accura
enough, therefore resulting in a first-order bounce-b
scheme. In order to incorporate the shape of these cells
ditional geometrical information of the boundary is need
One way to accomplish this is by introducing a weighi
factor a i in each directioni separately, instead of a sing
volume ~see Fig. 8!. This weighing factor is determined b
the intersection of a specific link and the correspond
boundary cell, which can be considered as an effective
ume along each link. In the case of a cubic boundary cella i
is equal to 1 for alli. For noncubic boundary cells,a i may
vary in the range of 0.5<a i<1.5. The weighing factors fo
opposite directions are the same, thusa i5a i* . E.g., for cell
(x1 ,z1) in Fig. 8, these area15a351, a25a45 7

8 , a5
5a751, anda65a85 4

5 . With the definition ofa i , we can
now define the particle density that moves in directioni,
which is ni[Ni /a i ~instead ofNi /DV). This definition en-
ables us to set up a mass conservative bounce-back sch

The propagation steps~in terms of densities! on the
shifted grid nodes (x2 ,z18) and (x2 ,z28) in directionsi 52 and
i * 54 read

ni~z18 ,t11!5ni* ~z18 ,t* !,

FIG. 7. The relative error in the centerline velocity of a ske
channel against the grid spacing. The relaxation parametert was set
to 1. Simulations were performed for an anglef5arctan(0.5) with
respect to the grid. Results are shown for Chen’s method with
without application of an interpolation scheme.
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ni* ~z18 ,t11!5ni* ~z28 ,t* !,

ni~z28 ,t11!5ni~z18 ,t* !,

ni* ~z28 ,t11!5ni* ~z38 ,t* !, ~30!

where the grid nodeszk8 are shifted such that the distanc
from the boundary to the first grid nodez18 equals 1/2~thex2

coordinate is omitted for clarity!. Hence, Eqs.~30! represent
a normal bounce-back scheme for a wall positioned halfw
between two grid nodes. We can estimate the density in
rectionsi and i * on zk8 by linearly interpolating the densitie
on (x2 ,zk) and (x2 ,zk11) according to

ni~zk8 ,t !5a ini~zk ,t !1~12a i !ni~zk11 ,t !. ~31!

By substituting Eq.~31! in Eq. ~30!, we obtain a set of
equations in terms of densities on the grid nodes (x,z),

k51, a ini~z1 ,t11!1~12a i !ni~z2 ,t11!

5a ini* ~z1 ,t* !1~12a i !ni* ~z2 ,t* !,

a ini* ~z1 ,t11!1~12a i !Ni* ~z2 ,t11!

5a ini* ~z2 ,t* !1~12a i !ni* ~z3 ,t* !,

k.1, a ini~zk ,t11!1~12a i !ni~zk11 ,t11!

5a ini~zk21 ,t* !1~12a i !ni~zk ,t* !,

a ini* ~zk ,t11!1~12a i !ni* ~zk11 ,t11!

5a ini* ~zk11 ,t* !1~12a i !ni* ~zk12 ,t* !. ~32!

Because, in the bulk of the fluid~i.e., for k.1),
ni(zk11 ,t11)5ni(zk ,t* ) and ni* (zk ,t11)
5ni* (zk11 ,t* ), we may simplify Eq.~32! as follows:

k51, ni~z1 ,t11!5S 12
1

a i
Dni~z1 ,t* !1ni* ~z1 ,t* !

1S 1

a i
21Dni* ~z2 ,t* !,

d

FIG. 8. Example of the volumesa i in each directioni near a
boundary. The circles represent the centers of the grid cells@with
coordinates (x,z)] and the squares represent the shifted center
directioni @with coordinates (x,z8)]. Here, the surface has an ang

f5arctan(1/4) and is located at position (x12
1
2 ucW i u,z12

1
2 ucW i u).
3-7
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ni* ~z1 ,t11!5ni* ~z2 ,t* !,

k.1, ni~zk11 ,t11!5ni~zk ,t* !,

ni* ~zk11 ,t11!5ni* ~zk12 ,t* !. ~33!

By using Eqs.~33!, it can be shown that~i! the bounce-
back scheme is mass conservative@( iNi(xW ,t11)
5( iNi(xW ,t* )# ~ii ! all densities propagate to the adjacent g
node in the usual way, except~of course! for the reflected
densityni(z1 ,t11).

The collision step, ni(x,t* )5(121/t)ni(x,t)
1(1/t)ni

eq(x,t) can be rewritten in terms of mass, and
given byNi(t* )5(121/t)Ni(t)1(1/t)a ini

eq(t). It follows
that ~i! in the collision step, mass density and moment
density are conserved quantities, i.e.,( ini(xW ,t* )
5( ini(xW ,t) and( icini(xW ,t* )5( icini(xW ,t), respectively.~ii !
the total mass is not conserved,( iNi(xW ,t* )[( ia ini

eq(xW ,t)

Þ( iNi(xW ,t). After some simple algebraic manipulations,
is found that the deviation in the total mass is of the or
;uuW u2. For Stokes flow, these quadratic terms in the equi
rium distribution are not needed, and then this scheme d
conserve mass.

1. Analytical solution for nonskew plane Poiseuille flow

Following the method described in Sec. II A, the error
the velocity is given by

Dux~zk52¯m21!5
Umax~16t2220t13!

3L2

1
4Umaxa i~12a i !

L2
, ~34!

which indicates that the method is second-order accurate
this specific situation. Note that all weighing factorsa i for
the directions toward the wall are then equal.

2. Analysis for a skew channel

In the case of a skew channel, the position of the bou
ary with respect to the grid and the angle of the channel w
varied. The results can be found in Fig. 9. It is clear that
method is second-order accurate in all cases. The hig
deviation in the total mass with respect to the total mass
the channel, indicated withDm/Nt3Lc /(2Umax)1/m524
31024 ~with Dm being the deviation in the total massm, Nt
being the number of time steps related to the mass devia
and Lc being the length of the channel! is found for the
smallest channel, because the velocities near the boun
are then relatively high. It is also found thatDm is smaller
than in the scheme of Bouzidiet al. Note that the leakage o
mass can be corrected for in anad hocway, by simply re-
distributing Dm over all boundary cells according toDNi
5Dma i /( ia i . This slightly reduces the accuracy of th
method~slope;1.8), but results, in the case of a skew cha
nel, in a satisfactory flow profile. We are aware, howev
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that this correction is not a fundamental solution to this pro
lem. Such a solution may require different collision rule
which are not restricted to the discrete velocity setci em-
ployed here. Some details about this research topic can
found in Refs.@16,17#.

IV. CONCLUSION

In this paper, several boundary techniques are analy
for imposing no-slip walls in lattice-Boltzmann scheme
More specifically, the accuracy in the velocity field with r
spect to the spatial discretization is studied analytically a
numerically. First, the volumetric boundary method as p
posed by Chenet al. @12# is considered. An analytical ex
pression for the error in the velocity in the case of pla
Poiseuille flow is derived, pursuing the approach due to
et al. @15#. It is found that the method is first-order accura
in space. Furthermore, the analysis shows that the error
pends on the relaxation parameter and the volume of
boundary cells.

A similar study elucidates that the boundary method p
posed by Bouzidiet al. @13# is second-order accurate i
space. This method uses linear or quadratic interpolation
the particle densities close to the wall, in contrast to
uniform redistribution of the reflected mass inherent to
method of Chenet al. The scheme of Bouzidiet al., how-
ever, does not conserve mass. A linear approximation of
reflected density profile is therefore applied to the volume
scheme of Chenet al. For this modified scheme, it is show
analytically that, in the case of plane Poiseuille flow wi
boundaries aligned parallel to the underlying grid, seco
order accuracy in space is obtained. For boundaries p

FIG. 9. The relative error in the centerline velocity in a ske
channel against the grid spacing. The vertical size of the cha
was varied in the range ofL56 –20. The relaxation parametert
was set to 1. For tanf51/2, two positions with respect to the gri

were taken@origins at (12 , 1
2 ) (n) and (12 , 3

4 ) (L) for the lower

wall#. For tanf51/3, the origin was located at (3
2 ,1) (h). The

upper wall was shifted according to the channel height.
3-8
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tioned at an angle with respect to the underlying grid, ho
ever, this scheme is first-order accurate only. This may
due to the fact that volumes only do not provide an adequ
description of the shape of the boundary.

Therefore, these volumetric ideas are extended to
scheme where the boundary is resolved more accurate
weighing factor is introduced in each directioni, represent-
ing an effective volume along each link. This indeed resu
in second-order accuracy in space. The mass is conserv
the propagation step, but still not in the collision step. T
deviation in the total mass, however, is very small and p
portional to the second-order terms in the equilibrium dis
bution. Consequently, the scheme isa priori mass conserva
tive for Stokes flow. Though only flat surfaces are studied
this paper, the method can be applied to any boundary
some specific cases, such as a grid node located close
inner corner of a concave surface, the scheme needs t
modified because of the lack of the second grid node atz2.

The extra computational time, introduced by the propo
scheme, is found to be very small when the weighing fact
are calculated and stored beforehand. The computati
time for the calculation of the weighing factors is about 5
per 1000 boundary grid nodes on a 1.8 GHz PC in the c
of a 15-speed lattice-Boltzmann scheme, which is relativ
very small compared to the overall computation time. T
weighing factors need an additional amount of memo
which is proportional to the number of boundary nodes,
number of discrete velocity directions, and the number
bytes used per floating point number. In most cases, the n
ber of boundary nodes is much smaller than the total amo
of grid nodes, hence the additional memory required is sm

Formulation of a method that does conserve mass an
second-order accurate in space in all cases is an impo
subject for future work. Moreover, this study will be e
tended to more complex flows and geometries, such as
bulent channel flow and flow around curved moving boun
aries, following the method as proposed by Rohdeet al. @18#.
Ultimately, the aim is to apply these advanced bound
techniques to real-life applications such as mixing proces
in a stirred vessel.

APPENDIX: DERIVATION OF EQ. „10…

The lattice-Boltzmann equation for directionsi
51,3,5,6,7,8 for the cells atz1 and z2, together with the
simplifications for Poiseuille flow in Eq.~4! and the reflec-
tion rules of Eqs.~6!, read

N1~z1!5
1

9
ra@113ux~z1!13ux~z1!2#1

1

3
ratGx ,

N3~z1!5
1

9
ra@123ux~z1!13ux~z1!2#2

1

3
ratGx ,

N5~z1!5aS N7~z1!21/tH N7~z1!2
1

36
ra@123ux~z1!

13ux~z1!2#J 2
1

12
raGx1~12a!FN7~z2!
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21/tH N7~z2!2
1

36
r@123ux~z2!13ux~z2!2#J

2
1

12
rGxG D ,

N6~z1!5aS N8~z1!21/tH N8~z1!2
1

36
ra@113ux~z1!

13ux~z1!2#J 1
1

12
raGx1~12a!FN8~z2!

21/tH N8~z2!2
1

36
r@113ux~z2!13ux~z2!2#J

1
1

12
rGxG D ,

N7~z1!5aFN7~z2!21/tH N7~z2!2
1

36
r@123ux~z2!

13ux~z2!2#J 2
1

12
rGxG ,

N8~z1!5aFN8~z2!21/tH N8~z2!2
1

36
r@113ux~z2!

13ux~z2!2#J 1
1

12
rGxG ,

N1~z2!5
1

9
r@113ux~z2!13ux~z2!2#1

1

3
rtGx ,

N3~z2!5
1

9
r@123ux~z2!13ux~z2!2#2

1

3
rtGx ,

N5~z2!5N5~z1!21/tH N5~z1!2
1

36
ra@113ux~z1!

13ux~z1!2#J 1
1

12
raGx1

12a

a
N5~z1!,

N6~z2!5N6~z1!21/tH N6~z1!2
1

36
ra@123ux~z1!

13ux~z1!2#J 2
1

12
raGx1

12a

a
N6~z1!.

~A1!

DistributionsN7(z2) andN8(z2) are kept as unknown. Sub
stitution of the above equations in the definition of the v
locities atz1 andz2 of Eq. ~9! results in two equations which
only contain the unknownN8(z2)2N7(z2) term and the ve-
locities ux(z1) and ux(z2). By combining these two equa
tions and thereby removing the termN8(z2)2N7(z2), Eq.
~10! is obtained.
3-9
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