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Improved bounce-back methods for no-slip walls in lattice-Boltzmann schemes:
Theory and simulations
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A detailed analysis is presented for the accuracy of several bounce-back methods for imposing no-slip walls
in lattice-Boltzmann schemes. By solving the lattice-B@hatnagar-Gross-Kroglequations analytically in
the case of plane Poiseuille flow, it is found that the volumetric approach by &hadnis first-order accurate
in space, and the method of Bouziti al. second-order accurate in space. The latter method, however, is not
mass conservative because of errors associated with interpolation of densities residing on grid nodes. There-
fore, similar interpolations are applied to Chen’s volumetric scheme, which indeed improves the accuracy in
the case of plane Poiseuille flow with boundaries parallel to the underlying grid. For skew boundaries, how-
ever, it is found that the accuracy remains first order. An alternative volumetric approach is proposed with a
more accurate description of the geometrical surface. This scheme is demonstrated to be second-order accurate,
even in the case of skew channels. The scheme is mass conservative in the propagation step because of its
volumetric description, but still not in the collision step. However, the deviation in the mass is, in general,
found to be small and proportional to the second-order terms in the standard BGK equilibrium distribution.
Consequently, the schemeadspriori mass conservative for Stokes flow.
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[. INTRODUCTION Ladd [11] and Chenet al. [12] and the interpolation tech-
nigue by Bouzidiet al. [13].

In the last decade, lattice-gas and lattice-Boltzmann meth- Though these methods can deal with complex boundaries,
ods have proven to be versatile tools for simulating a widd! IS not obvious that second-order accuracy is automatically
variety of fluid dynamical applicationEl]. These include obtained. Verberg and _Ladd showed that thellr method is
turbulent single-phase flows, transport in porous media, an e:?;%grﬁsi?\rgagcr?;r%ﬁ IrgdtS((:ee(s:i(S)efirosft 2?52:%2?‘(5@?2;'”}0
multiphase flows in several scientific and industrial applica—neIS The method ,of Bouzidit al. on the other hand. is
tipns [l.—3]. .An important issue encou'nltered in aII. the,sefoun.d to be second-order accurlete in more complex’ cases
S|mulat|9ns 'S _the way _boundary conditions are _bemg 'Msuch as flow around cylinders. A drawback of this scheme is
posed, in particular, at inflow, outflow, and no-slip bound-{a¢ mass is not conserved, because of errors associated with
aries. interpolation of densities residing on grid nodes. With a

In this respect, the well-known bounce-back scheme cago|ymetric approach, on the contrary, mass can be con-
be considered as an extremely simple method for dealinggied, so that a mass conservative scheme can be set up
with arbitrary complex solid-fluid interfaces. Although still 1147
widely being applied, it is by now well accepted that the | this paper, we therefore revisit the volumetric method
bounce-back scheme is not very accurate. Several numericg}; Chenet al.[12] and present a detailed analysis in the case
simulations confirm that the method is first-order accurate inyf pjane Poiseuille flow, following the work of Het al.[15].
space and although applied only at the boundaries, it alsan analytical expression for the error is derived and com-
does affect the accuracy in the bulk of the fluid. Therefore, ityared with the data obtained by numerical simulations. We
degenerates practical simulations performed using latticgyiso analyze the method of Bouzieti al.[13] and include in
Boltzmann methods to first-order accuracy in space, alyyr study the recently published method and analysis by Ver-
though lattice-Boltzmann methods, in general, are secondserg and Ladd11].
order accurate in spa¢see Ref[4], and references ther¢in  |ngpired by the findings of these analyses, we propose two
_ In the recent few years, much effort has been spent inyternative volumetric methods with the intention to obtain
improving the bounce-back method. In a very early stagésecond-order accuracy. These approaches are then analyzed
several modifications have been proposed, which, howevefpeoretically and numerically in the case of plane Poiseuille

were restricted to rather regular geometries, e.g., flat wallgoy for varying orientations of the boundaries with respect
and octagonal cylinde{$—10]. More recently, sophisticated g the underlying grid.

schemes have been proposed that are suitable for dealing
with irregular geometries. The most notable contributions Il. ANALYSIS OF EXISTING MODIFIED
among these are the volumetric methods by Verberg and BOUNCE-BACK SCHEMES

A. Volumetric scheme of Chenet al.

*Electronic address: m.rohde@Kkilft.tn.tudelft.nl The lattice-Boltzmann method originally is a finite-
TElectronic address: b.d.kandhai@klft.tn.tudelft.nl difference discretization schenj#6]. It can, however, also
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be interpreted as @olumetric scheme. By definition, each facet
grid nodex is located in the center of a cubic célle., grid
cel) with size Ax=Ay=Az. If we assume that the mass, ,_.__ AN fo -—z=L

typically located on the grid node, is distributed uniformly
throughout the cell, the traditional lattice-Boltzmann equa-
tion can be rewritten as follows:

N;(X+CAt t+At)=Ni(X,t) +Q;(N(X,1)). (1)
Z
The only difference between E¢l) and the traditional |
lattice-Boltzmann equation is the use of masbgsrather X
than densities); . As these masses reside in cubic cells with
volume AV, the density in a cubic cell is equal to; k=1—s jo
=N;/AV. In the vicinity of a solid surface, however, this
volumetric definition is different from the original scheme,
because some cells may be cut by the surface and become
noncubic. FIG. 1. Two-dimensional representation of a horizontal channel
Chenet al. [12] proposed a modified lattice-Boltzmann with heightL and noncubic boundary cells with volume at the
scheme for these cells, where solid surfaces are defined yttom of the channel.
facetsS® with areaA“ and a surface normal®. During the
propagation step, a fraction of the mass in the cells adjacent IN;(X,1) 0 IN;(X,1)

- 2z=0

ri%

to the surface(i.e., boundary cells hits the surface of an o , pr (4)
object, and is simply reflected.e., bounced bagkin the
opposite directiori (c;, =—c;). For this bounce-back pro-  For the boundary cells or=z, andz=z, (we only con-
cess, a volumetric lattice-Boltzmann scheme for boundargider the cells at the bottom of the channel because of the
cells can be set up as follows: symmetry of the flow fielyj the propagation step, described
in the preceding section, evolves in the following manner.
N;(X+CiAt,t+At)=PU"ISTHON! (X,1) + Qi (X+ CiAL, 1), The incoming(and thus the reflect¢anass per facet is

(2) in,a out,a
1_‘i*y =I‘i ' :Ni*(zlat*)+(1_a)Ni*(ZZ!t*)- (5)

where Nj (x,)=Ni(x,t) + Q;(x,t) is the right-hand side of  Accorging to Eq.(2), the reflected mass is redistributed
the lattice-Boltzmann scheme for a cubic cells &/8%*(x)  uniformly in the cells atz; and z,, hence the propagation
represents the fraction of mass that does not hit the surfacgep at these cells is given by

during the propagation step. This fraction moves undistur-

bedly from cellx to cell x+c;At. The termQ;(x+ C;At,t) Ni(zq,t+1)=a[ N, (21,t,) + (1= a)Ni, (25,t,) ],
represents the mass that is reflected from the surface and
arrives in cellx+cAt. Nix (21, t+1)=aNi,(25,t,),
Analytical solution of plane Poiseuille flow Ni(Z2,t+1)=Ni(z1,t,) + (1—a)[Nix (Z1,t,)
On the basis of the procedure described byeltial.[15], +(1—a)N;i, (z5,t,)],
we will analyze the volumetric scheme as proposed by Chen
et al. [12] in the case of plane Poiseuille flow. Consider a Ni (Zo,t+1)=N;, (z3,t,), (6)

horizontal channel of height, consisting oim grid cells(see

Fig. 1). The position of the lower and upper surfaces is suchwheret, represents the moment after the collision step but

that the volume of all boundary cells is equal &9 hence before the propagation steipdenotes all the directiorfsom

L=(m—2)+2a (with Az=1). The facets of the surface are the surface, antt denotes the direction® the surface. Note

positioned between two vertical grid lines. that this scheme can be used for any number of velocity
The flow is driven by a body force, i.eE=(pG,,0,0), directions. For the analysis, we use the two-dimensional

and periodic boundaries are imposed at both ends of thBine-speed model on a square lattice and the BGK scheme

channel. For the analysis, we assume a steady-state floW;19- 2. The collision step then reads

hence

. . 1 . . .
Ni(X,te ) =Ni(x,t) = =[N;(x,t) =N p,u) ]+ t; ;AV - F,
Juy Juy T

u,=0, Wzo, Wzo. ©) (7)

whereAV =« for cells atz=z, andAV=1 for cells at other
This implies that positions. 7 is the relaxation parametet; ;=0 for i=0,
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By= 8a27— 16027 — 16a7* + 40023+ 13237+ 8a° 7

—18a% 72+ 27— 47— 303+ 22073 — 32222 — T a 72,

By=—32a7°— 640’7+ 782372 — 18a* 71— 32273+ 120472
+32a° 7%+ 80a 7" — 13202 73+ 1420° 77— 98a 7
— 480’7+ 42a7*— 1273+ 207"~ 167°+ 60+ 182°.

FIG. 2. Discrete velocity set for the two-dimensional nine-speedgq, positionsz,_s..._», the equation reads

BGK scheme.

t;;=3 fori=1,2,3,4, and; ;= {; for i=5,6,7,8. The equi-
librium distribution functionN79 reads

R . . 9. .. 3.
NF9p,u)=t,pAV 1+3(ci~u)+§(ci-u)2—§u2 :

tS)
wheret,;=§ for i=0, t,;=5 for i=1,2,34, and;=3;
for i=5,6,7,8. The kinematic viscosity=(27—1)/6 and

the speed of sounds= \/§
By using the definition of the velocity,

AVpuz = 2 CisNi(ziD) 9)

and Eqgs.(6), (8), and (7), we can derive an equation with

macroscopic quantities onlisee the Appendix This equa-
tion reads

AqUy(z1) + Axuy(Z) + A3G4=0 (10)
with
A1=2r+4a7—3a,
Ar,=a—2ar,
As=4ar—6a’+6a’7—4art®—47°.

A similar procedure is applied to grid cells at position z3,
etc. For positiorz,, the following equation is obtained:

Biuy(z2) + Baly(z3) + B3Gx=0 (11)
with
B,=17a7?—50a7— 19a°7— 84373+ 22a° 7% — 56a°7°
+32a7*+ 16027 — 67°+ 127* + 508+ 5602 72

— 1642,

1 3273 — 40 7% — 167°+ 240’ 71— Aat+ 67— 12a%+ 120°— 3 1

Ciuy(Zy—1) — 2Couy(Zy) + Cauy(Ze+ 1)+ G=0 (12
with
271
Cl = Cz = Cg = 6 = V.

We clearly see that for the fluid nodes &t 5., », a
second-order central-difference scheme is obtained for the
Navier-Stokes equations in the case of steady-state Poiseuille
flow. Equationg10)—(12) are solved by substituting a veloc-
ity profile, i.e., a parabolic profilglus a numerical error
Auy,

4UmaX
Ux(Z) = Tzk(L_Zk)JFAUx(Zk) (13)

with U.=L2G/8v. By substituting the profile into Eq.
(12), we obtain

AU(Zy+ 1)+ AU(Zc-1) — 2AUx(Z) =0. (14)

Due to the symmetry of the grid at=L/2, the simulated
velocity profile in the channdlnd thus the numerical erpor
is also symmetrical with respect to the center of the channel.
This implies that Eq.(14) only holds when Au,(z,)
=AUy (z3)="---=Auy(Zy_1). The numerical error at posi-
tion z; can, however, still be different from the error at the
other positions, as confirmed by numerical simulations. Sub-
stituting the profile Eq(13) into Egs.(10) and (11) for z;
=a—3%, Z,=a+3, andzz=a+ 13 gives us two equations
with two unknowns, becausau,(z,)=Au,(z3). The nu-
merical error reads

ar—1—a’+al

Auy(Z1) = 5 Umax 2r—a

1 3278 — 16 7?— 407%+ 20a 7+ 67— 120°+ 120~ 3a 1

Auy(z) = §Umax

27—«

E_ max 27—« L’
a(a—1) 1 15
2t Ama T 19

066703-3



ROHDE et al. PHYSICAL REVIEW E 67, 066703 (2003

0.8 — : : , — - ] | | | _
-1 PRt T 7 S 4
X 0.1 T e ]
12 ~ Lok X7 - s . i
Lﬂb -14 :-— /_,-‘X/'/‘/ ,*"/"; 0.01 |~ --.N"“L\ \\\ A
/)(/V -7 : b o o
%D 1.6 . .- ol T ! 53]
= -l6 e e -
.”¥." ......... Lt 0001 i
18T - -
A
...... + a=0.1
o b VIt 0.0001 |
- ¥ a=09
-2.2 —1 : : : ' 0.00001 ! ! I !
-3 12 -1 -1 -09 0 01 02 03 04 05
log 1/L q

FIG. 3. The relative error in the velocity at the centerline of a  FIG. 4. The relative error in the velocity at the centerline of a
channel against grid spacing. The size of the channel was varied ithannel as a function af in the case of the first-order interpolation
the range fronL=8 to L=20, 7 was set to 1. The volume of the scheme as proposed by Bouzétial. The size of the channel was
boundary cells at the bottom and top of the channel was varied iwaried in the range ofn=4 to m=40 (L=m-1+2q),  was set
the rangex=0.1-0.9. The points correspond to the simulation datajto 1. The points correspond to the simulation data, the lines to the
the lines represent the analytical findings. analytically found numerical error of E@18).

From Eq.(15) it is evident that the method is first-order and the wall is denoted by (in the volumetric approach,
accurate with respect to the grid spacing fthe error is of a=q+1/2 for q<1/2 and a=q—1/2 for q=1/2). The
the formAu,(z) =E; /L +E,/L?]. Simulations confirm this propagation step in the case of a first-order interpolation of
result, as shown in Fig. 3. the densities reads

Note that the accuracy is second order in the case of

=1, which is equivalent to the common bounce-back , ;. t4+1)=2an.(z. t.)+(1—2a)N. (2.t ( <_>
scheme with walls placed halfway between two grid nodes (zutrD)=2am, (2, 6)+(1-20)m, (2.4 [ 4<3
(known ashalfway Bounce-Back methpdThe error then
reads 1 q— 1
Au(z) U mad 1672 — 207+ 3) 6 Mi(23, 1 1) = 50 M (20, ) T 5= Mi(20,t) (q? 5)-

U (z)=

X 3L2 (17)
for all positions in the channel. This result was also found by The two different expressions in EGL7) are necessary,
He et al. [15]. because of stability reasofd3]. By applying the same

In summary, the main result obtained so far is that theanalysis as described in the preceding section, we obtain for
volumetric scheme studied in this section is first-order accuthe error in the velocity at,...,, in the case of<1/2,
rate with respect to the lattice spacing. One important as-
sumption in this scheme is that the reflected mass is distrib- 2 oo o2
uted uniformly in the boundary cells. This may induce Ay (z, . )= Uma( 167~ 87— 2497+ 129~ 129 ),
numerical diffusion and affect the accuracy of the scheme. 3L2

B. Schemes by Bouzidet al. and Verberg and Ladd (18)

Several authors used interpolation of particle densities ifyhich indeed indicates second-order accuracy. Simulations
the vicinity of the surface to improve the accuracy of their .qnfirm Eq.(18) (see Fig. 4

bmethod(.j Tt')he)(resultri]ngﬂd%nsitg profile is theln (;eflecged., One may also use a second-order interpolation based on
ounced backinto the fluid. This was recently done by Ver- {he gensities on three neighboring nodgs, z,, andzs [13].
berg and Ladd11] and by Bouzidiet al. [13]. Verberg and 116 propagation step the% readsg 08S: 22, 3 [13]

Ladd used a volumetric approach with refined staircase
shaped surfaces, while the method of Bousdal. is based
on densities located at grid nodes.

To illustrate the effect of using interpolation of the densi- +(1+29)(1—20)Nni,(Z,t,)
ties on the absolute error in the velocity, the analysis of the
preceding section is also applied to the method of Bouzidi
et al. Suppose that the distance between the grid nodes at

Ni(z;,t+1)=0a(29+ 1)Nn;, (z1,t,)

1
_Q(l—ZQ)ni*(Zs,t*) (q<§)

066703-4
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29—1
ni(z,t+1)= ni*(zlvt*)+Tni(Zlat*)

1
q(29+1)

+1+2q

1
ni(zy,t,) QBE)- (19

After the error analysis, the error for the second-order
interpolation forq<<1/2 reads

U max 1672— 87— 24q7+ 1297)
AU(Zg...m) = — N . (20

As expected, we find that the absolute error is smaller in a b
the case of second-order interpolation. Note that both errors FIG. 5. Two-dimensional representation of the intersecting vol-
(related to first-order and second-order interpolatioaduce  umes of type | ¥, indicated with / / /) and type 1, , indicated
to the error for the halfway bounce back fq=1/2 (« with \ \ \) cells in a parallelepiped, extruded from a facet with
=1). Despite the simplicity of this scheme, it seems to havereaA“.
a drawback. The scheme does not conserve mass, because of
errors associated with interpolation of densities residing orthat the density profile of the incoming mass is approximated
grid nodes. by interpolating the densities between the centers of these
Verberg and Ladd also analyzed the numerical error of théwo volumes(i.e., &, and &,). Subsequently, this profile is
volumetric method presented in R¢fL1]. The error in the reflected(i.e., bounced bagkby faceta, resulting in a pro-
case of plane Poiseuille flow for the nine-speed BGK scheméle of reflected densities.

atz,...,—, reads The lengths of the two new volumes are
Umay( 1672 — 167+ 1+ 6a%—6a) yi=VIAS= > VHX)IAZ,
AUX(ZZ...m,l): 2 xetypel cells
3L
Unaxa*(@—1)? =VilAL = X VIIAY, (22
+ T, (21) xetypell cells

where ), and V, represent the volumesy;+ y,=|c;| and

which also shows second-order accuracy with respect to griga:(a n )/|6_|Aa The densities in the new volumes can
* I [ | .

spacing (x denotes the volume of a cell at the boundary pe anhroximated by averaging the densities of the boundary
However, the accuracy is reduced to first order in the case qQly ;5 involved according to

more complex geometries, such as a skew channel with re-

spect to the underlying griplL1]. 1 N
(€)= > VEoni(x),
xetypel cells

IIl. MODIFIED VOLUMETRIC SCHEMES

1 - -
A. Chen’s scheme with interpolation ni(&)= N 2 VEX)N;(X). (23
We now return to the volumetric method of Chenal. ! xetypeli cells

[12], which was found to be first-order accurate in space in Ny that the volumes and densities have been simplified,
the case of plane Poiseuille flow. This behavior may be ati,e gensities moving towards the surface., thei* direc-
tributed to the uniform redistribution of the reflected MaSStion) can easily be interpolated according to

across the boundary cells. In fact, the uniformly reflected

mass profile can be regarded azesoth-orderapproximation [N (&) —Nik(€1)]
of the actual profile. In the preceding section, we have seen N, () =2 vty

that, by applying a higher-order interpolation, a second-order L

accuracy with respect to the discretization of space can bgneres, is set to the origin of the axis. The total incoming
achieved. We shall therefore apply these ideas to the volypass is obtained by integrating the interpolated densities

metric scheme of Cheet al. _ over the total volume of the parallelepiped
Consider a facet with surfac&® and the parallelepiped

with volume®{*, intersecting some grid cells in the vicinity ina_ na [(HA71172
of the surfacesee Fig. §a)]. Some of these grid cells are T t=A f_(l,z)y
directly cut by the faceftype-I cellg, others are nottype-Il !
cells. The intersecting volumes of the parallelepiped and =AL[ 1N (1) + yani  (E2)], (25
cells of the same type are summed and rearranged, such that

two new volumes are creat¢see Fig. B)]. The idea now is  which is the same amount of mass as in ).

E+ni(6), (29

ni*(f)df
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The interpolated densities are reflectéice., bounced 0 T T T
back by faceta. The resulting density profile then reads
[ix (£2)—Nix (£0)] 051 -7
n(&)=-2 —y2)+n; .
|(§) 71+ Y2 (é: 72) |*(§1) ( ) 1 - L /::
26 -1 P x
i . j’/*' AT
By applying this refle_ction, a more accurate redistribution mb 15k o ,*5{“/// |
of the reflected mass is obtained compared to the method &0 Bl “j,L“ oA .
described in Sec. Il A. The redistribution in the volumes with - e ,;;*X_rz/
center pointsé; and &, results from the integration of the ok ,,:'j& - -
reflect nsity profile over these volum -
eflected density profile over these volumes, "’&///’g + a=01
(112)y, 25 E X a=0.254
F?”t‘“(§1)=A$J ni(§)dé et X a=05
—(1/2)y; O a=09
.3 1 ] l
ol 27172 (y1—7v2) 71 -1.2 -1 -0.8 -0.6
Y1t 72 Y1t 72 og 1/
FIG. 6. The relative error in the velocity at the centerline of a
(HY2)y1+ 72 . . . . .
Toute(g,) :AZJ ni(§)dé channel against the grid spacing. The size of the channel was varied
(12)y, in the range of. =4-16, r was set to 1. The volume of the bound-
ary cells at the bottom and top of the channel was varied in the
—A? (v2= 7172 N, (£)+ 27172 N, (£1) range ofa=0.1-0.9. The points correspond to the simulation data,
|oytys ST gy, U the lines represent the analytical findings of E2f).

@ a=0,1 for a fixed value ofr. Note that fora=q+1/2 and

Here, the difference between the method of Sec. Il A and1<1/2, Eq.(28) is equivalent to the expression obtained for
the interpolation method can clearly be seen; the reflectethe method by Bouzidét al. with second-order interpolation
mass is now redistributed on two positions in spageand  [EQ. (20)].
&,) instead of one. Note that mass is conserved by definition By rearranging the error a&_...,—1, We obtain
[Tl =T (&) + TPV (&)1,

It should be realized that the method as described above is Umax(1672— 207+ 3)
not the only way to approximate the density profile in the AUy(Zy=2.-m-1) = 3.2
parallelepiped. Another route is to split the parallelepiped
into two equal volumesy; = v,) and calculate the geometri-
cal intersection with the grid cells. In this way, the exact >
amount of mass present in these volumes can be determined. L
A disadvantage of this method is that it requires additional i )
computational effort for the calculation of the intersections. Here, we identify the error of the halfway bounce-back
For this reason, we restrict the following analysis to the moréN€thod[Eq. (16)] plusa contribution solely due to the frac-

simple method described at the beginning of this section. tional volume of the boundary cells. In the casexct 1, the
original halfway bounce-back method is recovered as ex-

1. Analytical solution of plane Poiseuille flow pected(this also applies to the error af).

The same analysis regarding the accuracy of the method
with respect to the grid spacing can be performed as de-

+4Umaxa(a_1). 29

2. Analysis for a skew channel

scribed in Sec. Il A. The numerical error is found to be An important question is whether the interpolation proce-
dure described above will also lead to higher-order accuracy

1 1672 — 247+ 47+ 120 — 120+ 3 for more complex cases. We, therefore, performed simula-

Auy(zy)= §Umax 2 ) tions on plane Poiseuille flow in a skew channel, where the

L . . .

boundary is positioned at a nonzero angle with respect to the

5 5 underlying grid. The results are shown in Fig. 7. Data ob-

Auy(z ):} 167°— 207+ 120"~ 12a+3 tained for the original scheme of Chast al. are also in-
X\ Fk=2-m=1/7 3 M max L2 ' cluded in the graph. It is clear that, although linear interpo-

(28) lation reduces the error in the velocity, the accuracy remains

first order. These findings are similar to the results of Verberg

Hence, the error in the flow field shows a second-ordeand Ladd[11], where the accuracy degenerates from second

dependency on the grid spacing {/L?), as is also evident order to first order as the angle deviates from zero. More-

from Fig. 6. Moreover, from Eq.28) it follows that the error  over, other interpolation schemes for approximating the den-
at zy—,...n,—1 has a minimum atr=0.5 and a maximum at sity profile near the boundarfsuch as the technique sug-
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2 )('" +  Chen B FIG. 8. Example of the volumes; in each direction near a
-’ X Interpolatefl boundary. The circles represent the centers of the grid pelth
coordinates X,z)] and the squares represent the shifted centers in
25 | 1 1 | 1 directioni [with coordinatesX,z’)]. Here, the surface has an angle
-18 -16 -14 -12 -1 -08 -06 ¢=arctan(1/4) and is located at position, C 3|Ci|,z,— 3|Ci]).
log 1/L

N, (zy,t+1)=n;,(z,,t,),
FIG. 7. The relative error in the centerline velocity of a skew 1+ (22 )= (22,4

channel against the grid spacing. The relaxation parametas set

to 1. Simulations were performed for an angle- arctan(0.5) with
respect to the grid. Results are shown for Chen’s method with and
without application of an interpolation scheme.

ni(zy,t+1)=n;(z;,t,),

ni*(zé't+1):ni*(zért*)1 (30)
gested at the end of Sec. Il)Ar increasing the number of where the grid nodeg, are shifted such that the distance
facets, did not result in higher-order accuracy. from the boundary to the first grid node equals 1/2thex

We believe that, even though the particle distributions ar&oordinate is omitted for clarily Hence, Eqs(30) represent
interpolated near the wall, first-order accuracy is still ob-a normal bounce-back scheme for a wall positioned halfway
tained due to the way the volumes | and Il in Fig. 5 arebetween two grid nodes. We can estimate the density in di-
lumped. Moreovery, andV), are determined exactly, but the rectionsi andi* on z; by linearly interpolating the densities
geometrical structureof the boundary cells is not incorpo- 0On (X»,z) and (»,z1) according to
rated. Consequently, the shape of the surface is not captured

X Ni(zy ,t) = ainj(z,t) + (1= a;)N;(Z41,1).
accurately enough to obtain second-order accuracy. (26,0 = aini(Z, O+ (1= a)ni(Ze 1.0

(3D

By substituting Eq.(31) in Eq. (30), we obtain a set of
equations in terms of densities on the grid nodeg)(

In the preceding section, it was.suggested that volumes of k=1, ani(zy,t+1)+(1—a)n(z,,t+1)
boundary cells only do not describe the surface accurately
enough, therefore resulting in a first-order bounce-back
scheme. In order to incorporate the shape of these cells, ad-
ditional geometrical information of the boundary is needed.
One way to accomplish this is by introducing a weighing
factor a; in each direction separately, instead of a single
volume (see Fig. 8 This weighing factor is determined by
the intersection of a specific link and the corresponding
boundary cell, which can be considered as an effective vol-
ume along each link. In the case of a cubic boundary egll,
is equal to 1 for alli. For noncubic boundary cells;; may
vary in the range of 08 a;=<1.5. The weighing factors for
opposite directions are the same, thys «;, . E.g., for cell
(X1,2;) in Fig. 8, these arev;=a3=1, a,=a,=%, asg
=a;=1, andag= ag= 2. With the definition ofx; , we can Because, in the bulk of the fluidi.e., for k>1),
now define the particle density that moves in directipn Nnj(zx+1,t+1)=n;(z,t,) and N, (z,,t+1)
which isn;=N;/q; (instead ofN;/AV). This definition en- =N, (z+1,t,), we may simplify Eq.(32) as follows:
ables us to set up a mass conservative bounce-back scheme.

The propagation stepsin terms of densities on the
shifted grid nodesx;,z;) and ,,z5) in directionsi =2 and
i*=4 read

B. A different volumetric approach

= aiNiy (21,t,) + (1= ai)nie (22,t4),
aiNi (Zy,t+1)+(1—aj)Nj, (25,1 +1)
= aiNiy (Zo,t,) + (1= ai)niy (23,14,
k>1, aini(zt+1)+(1—a)ni(zgsq,t+1)
= aini(Ze-1,t) + (1= a)ni(z.ty),
aiNiy (Z 1+ 1)+ (1— aj)Ni, (Zegq,t+1)

=aiNiy (Zs1,0) F (A=) (Zk 2, ty). (32

1
k=1, nj(z;,t+ 1):(1_ ;) Ni(Z1,t) TNk (21,t,)
i

+

1
__1)ni*(22!t*)a

a;

ni(zi,t+1)=ni*(zi,t*),
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Nk (Z1,t+1)=n;, (25,t,), -0.5 I L i
k>1, ni(Zgs1,t+1)=ni(z,t,), a1k ' -
ni*(zk+lvt+1):ni*(zk+21t*)- (33) 15k ~ I,/—’Z‘//‘ ‘EP"’/:

By using Egs.(33), it can be shown thafi) the bounce- s /Ep”A
back scheme is mass conservatives;N;(x,t+1) LSO Y ;-"/.,,.. a7 -
=3:N;(x.t,)] (i) all densities propagate to the adjacent grid .2 [, -~ e
node in the usual way, exceftf course for the reflected 25k T _
densityn;(z,,t+1). ’ //,[ji """

The collision — step, m(x.t,)=(1-1mni(xt) Fe A tan ¢=1/2
+(1/7)n79(x,t) can be rewritten in terms of mass, and is B3 © tan ¢=1/2, shifted
given by N;(t,)=(1—2/7)N;(t) + (1/7) a;n{Y(t). It follows O tan ¢=1/3
that (i) in the collision step, mass density and momentum -35 ! | 1
density are conserved quantities, i.e.¥;n;(x.t,) -14 -1.2 -1 -0.8 -0.6
=3n;(x,t) and=;c;n;(x,t, ) ==,cini(X,t), respectively(ii) log 1/L
the total mass is not conserveﬁ-,Ni(x,t*)EEiainfq(x,t) FIG. 9. The relative error in the centerline velocity in a skew

#EiNi(i,t). After some simple algebraic manipulations, it channel against the grid spacing. The vertical size of the channel
is found that the deviation in the total mass is of the ordemwas varied in the range df=6-20. The relaxation parameter
N|J|2_ For Stokes flow, these quadratic terms in the equilib-Was set to 1. For tagp=1/2, two positions with respect to the grid
rium distribution are not needed, and then this scheme doesere taken[origins at (,3) (A) and (,3) (¢) for the lower

conserve mass. wall]. For tan¢=1/3, the origin was located at(1) (). The
upper wall was shifted according to the channel height.
1. Analytical solution for nonskew plane Poiseuille flow

Following the method described in Sec. Il A, the error in that this correction is not a fundamental solution to this prob-

the velocity is given by lem. Such a solution may require different collision rules,
which are not restricted to the discrete velocity seem-
Umax 1672— 207+ 3) ployed here. Some details about this research topic can be
Auy(Zy=2..m-1)= 312 found in Refs[16,17.
4U i(1—a))
N maxT_li ) (34) IV. CONCLUSION

In this paper, several boundary techniques are analyzed
for imposing no-slip walls in lattice-Boltzmann schemes.
Fore specifically, the accuracy in the velocity field with re-
spect to the spatial discretization is studied analytically and
numerically. First, the volumetric boundary method as pro-
posed by Cheret al. [12] is considered. An analytical ex-
pression for the error in the velocity in the case of plane

In the case of a skew channel, the position of the boundPoiseuille flow is derived, pursuing the approach due to He
ary with respect to the grid and the angle of the channel weret al. [15]. It is found that the method is first-order accurate
varied. The results can be found in Fig. 9. It is clear that thén space. Furthermore, the analysis shows that the error de-
method is second-order accurate in all cases. The highepends on the relaxation parameter and the volume of the
deviation in the total mass with respect to the total mass irboundary cells.
the channel, indicated witlA u/N3L./(2U a0 L/u=—4 A similar study elucidates that the boundary method pro-
X 10 * (with A u being the deviation in the total mags N, posed by Bouzidiet al. [13] is second-order accurate in
being the number of time steps related to the mass deviatiogpace. This method uses linear or quadratic interpolation of
and L, being the length of the channeis found for the the particle densities close to the wall, in contrast to the
smallest channel, because the velocities near the boundagyniform redistribution of the reflected mass inherent to the
are then relatively high. It is also found thAj is smaller  method of Cheret al. The scheme of Bouzidét al, how-
than in the scheme of Bouzidt al. Note that the leakage of ever, does not conserve mass. A linear approximation of the
mass can be corrected for in ad hocway, by simply re- reflected density profile is therefore applied to the volumetric
distributing A over all boundary cells according t#N; scheme of Cheamt al. For this modified scheme, it is shown
=Aunea;/Z;a;. This slightly reduces the accuracy of the analytically that, in the case of plane Poiseuille flow with
method(slope~1.8), but results, in the case of a skew chan-boundaries aligned parallel to the underlying grid, second-
nel, in a satisfactory flow profile. We are aware, however,order accuracy in space is obtained. For boundaries posi-

which indicates that the method is second-order accurate f
this specific situation. Note that all weighing factars for
the directions toward the wall are then equal.

2. Analysis for a skew channel
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tioned at an angle with respect to the underlying grid, how-
ever, this scheme is first-order accurate only. This may be
due to the fact that volumes only do not provide an adequate
description of the shape of the boundary.

Therefore, these volumetric ideas are extended to a
scheme where the boundary is resolved more accurately. A
weighing factor is introduced in each directionrepresent-

PHYSICAL REVIEW E 67, 066703 (2003

1
- 1/7'[ N7(z2) — 3—6P[1— BUy(Zp) +3Uy(22)?]

1G
_1_2Px’

ing an effective volume along each link. This indeed results Ny(z,)= a( 8(21)—1/7-( Ng(z1)— 16pa[1+3ux(21)

in second-order accuracy in space. The mass is conserved in
the propagation step, but still not in the collision step. The
deviation in the total mass, however, is very small and pro-
portional to the second-order terms in the equilibrium distri-
bution. Consequently, the schemeaipriori mass conserva-
tive for Stokes flow. Though only flat surfaces are studied in
this paper, the method can be applied to any boundary. In
some specific cases, such as a grid node located close to an
inner corner of a concave surface, the scheme needs to be
modified because of the lack of the second grid nods, at

The extra computational time, introduced by the proposed
scheme, is found to be very small when the weighing factors
are calculated and stored beforehand. The computational
time for the calculation of the weighing factors is about 5 s
per 1000 boundary grid nodes on a 1.8 GHz PC in the case
of a 15-speed lattice-Boltzmann scheme, which is relatively
very small compared to the overall computation time. The
weighing factors need an additional amount of memory,
which is proportional to the number of boundary nodes, the
number of discrete velocity directions, and the number of
bytes used per floating point number. In most cases, the hum-
ber of boundary nodes is much smaller than the total amount
of grid nodes, hence the additional memory required is small.

Formulation of a method that does conserve mass and is
second-order accurate in space in all cases is an important
subject for future work. Moreover, this study will be ex-
tended to more complex flows and geometries, such as tur-
bulent channel flow and flow around curved moving bound-
aries, following the method as proposed by Roktlal.[18].
Ultimately, the aim is to apply these advanced boundary
techniques to real-life applications such as mixing processes
in a stirred vessel.

APPENDIX: DERIVATION OF EQ. (10)

The lattice-Boltzmann equation for directions
=1,3,5,6,7,8 for the cells at; and z,, together with the
simplifications for Poiseuille flow in Eq4) and the reflec-
tion rules of Eqs(6), read

1 1
Ni(z1)=gpall+3uy(zy)+ 3uy(z1)?] +3parGy,

1 1
Ns(z1) = 5 pal 1-3u,(21) +3u,(21)?] 5 parGy,

N7(z)=«a

Ng(z1)=a

Ns5(z2) =Ns(z1) =1/

Ng(Z2) =Ng(z1) — LT

Ng(z)

+3Uy(27) ]] ! paG +(1—-a)

1
- 1/7'( Ng(z;) — %P[l"‘ 3Uy(zp) + 3Ux(22)2]]

1
+1—2pGX ,

1
N-(zp)— 1/7'( N7(z3) — %P[l_ 3Uy(Z5)

1
+ 3ux(22)2]] _TZPGX} )

1
Ns(zz)_llT( 8(22) — 6P[1+3Ux(22)

+3Uy(22)°]

1
+1—2pGX )
1 ,o 1
Nl(Zz):§P[1+3Ux(22)+3ux(22) ]+§PTGX.
1
[1 3Uy(Z5) +3Uy(2Z,) ]_ p7Gy,

N3(zp) =

1
Ns(zp)— %P“[:H‘ 3Uy(2y)

1
+3U(2)7] | +75paG,t ——Ns(20),

1
Ne(z1) — %P“[l_ 3Uy(z;)

1
+3uy(z1)%] — PCVG + ——Ng(Z9).

(A1)

DistributionsN,(z,) andNg(z,) are kept as unknown. Sub-

stitution of the above equations in the definition of the ve-

1
Ns5(z1) = a( N7(zy) — 1/7{ N7(zy) — 3_6Pa[1_ 3uy(zy)

locities atz; andz, of Eq. (9) results in two equations which
only contain the unknowig(z,) —N-(z,) term and the ve-

locities u,(z;) andu,(z,). By combining these two equa-

1
+3Ux(2y) ]] PCYG +(1-a)[N7(2)

tions and thereby removing the terNy(z,) —N7(z,), Eq.
(10) is obtained.
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