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Abstract. Ice flow forced by gravity is governed by the full
Stokes (FS) equations, which are computationally expensive
to solve due to the nonlinearity introduced by the rheol-
ogy. Therefore, approximations to the FS equations are com-
monly used, especially when modeling a marine ice sheet
(ice sheet, ice shelf, and/or ice stream) for 103 years or
longer. The shallow ice approximation (SIA) and shallow
shelf approximation (SSA) are commonly used but are ac-
curate only for certain parts of an ice sheet. Here, we re-
port a novel way of iteratively coupling FS and SSA that
has been implemented in Elmer/Ice and applied to concep-
tual marine ice sheets. The FS—SSA coupling appears to be
very accurate; the relative error in velocity compared to FS is
below 0.5 % for diagnostic runs and below 5 % for prognostic
runs. Results for grounding line dynamics obtained with the
FS—-SSA coupling are similar to those obtained from an FS
model in an experiment with a periodical temperature forcing
over 3000 years that induces grounding line advance and re-
treat. The rapid convergence of the FS—SSA coupling shows
a large potential for reducing computation time, such that
modeling a marine ice sheet for thousands of years should
become feasible in the near future. Despite inefficient matrix
assembly in the current implementation, computation time is
reduced by 32 %, when the coupling is applied to a 3-D ice
shelf.

1 Introduction

Dynamical changes in both the Greenland and Antarctic ice
sheets are, with medium confidence, projected to contribute
0.03 to 0.20 m of sea level rise by 2081-2100 (IPCC, 2014).
The main reason for the uncertainty in these estimates is a
limited understanding of ice dynamics. Thus, there is a great
need for improvement of ice dynamical models (Ritz et al.,
2015). The gravity-driven flow of ice is described by the
full Stokes (FS) equations, amended by a nonlinear rheol-
ogy described by Glen’s flow law. Model validation is re-
quired over centennial to millennial timescales to capture the
long response time of an ice sheet to external forcing (Al-
ley et al., 2005; Phillips et al., 2010; Stokes et al., 2015).
However, the computation time and memory required for an
FS model to be applied to ice sheets restricts simulations to
sub-millennial timescales (Gillet-Chaulet et al., 2012; Glad-
stone et al., 2012a; Nowicki et al., 2013; Seddik et al., 2012,
2017; Joughin et al., 2014). Therefore, approximations of
the FS equations are employed for simulations over long
timescales, such as the shallow ice approximation (SIA; Hut-
ter, 1983), the shallow shelf approximation (SSA; Morland,
1987; MacAyeal, 1989), Blatter—Pattyn (Pattyn, 2003), and
hybrid models (Hindmarsh, 2004; Bernales et al., 2017).
Any ice sheet model accounting for ice shelves needs to re-
solve grounding line dynamics (GLD). Despite many recent
efforts, modeling GLD still poses a challenge in numerical
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models, as illustrated by the wide range of results obtained in
the Marine Ice Sheet Model Intercomparison Project (MIS-
MIP; Pattyn et al., 2012). In MISMIP3d, GLD differ between
FS models and SSA models, with discrepancies attributed
to so-called higher-order terms which are neglected in SSA
models but included in FS models (Pattyn et al., 2013). Based
on these model intercomparisons, it is advised to use models
that include vertical shearing to compute reliable projections
of ice sheet contribution to sea level rise (Pattyn and Durand,
2013). On the other hand, it is not entirely clear how much
of the difference in GLD is due to the different numerical
treatment of the grounding line problem in shallow models.
An updated version of the hybrid SIA/SSA Parallel Ice Sheet
Model (PISM) that uses a modified driving stress calculation
and subgrid grounding line interpolation showed GLD com-
parable to an FS model (Feldmann et al., 2014). It should be
noted that the experiments in MISMIP3d consisted of later-
ally extruded idealized 2-D geometries with quite small side-
ward disturbances, and MISMIP+ (Asay-Davis et al., 2016)
may give more insight on realistic situations. Additionally,
there is a recent publication that sheds new light on a possible
problem with the setup of MISMIP experiments (Gladstone
et al., 2018).

Solving the FS equations over large spatiotemporal do-
mains is still infeasible. However, solvers combining approx-
imations (e.g., SIA or SSA) with the FS equations allow the
simulation of ice dynamics over long time spans without in-
troducing artifacts caused by the application of approxima-
tions in parts of the domain where they are not valid. For
instance, Seroussi et al. (2012) coupled FS and SSA, in the
framework of the Ice Sheet System Model (ISSM; Larour
et al., 2012). They apply the tiling method which includes a
blending zone of FS and SSA. Their result looks promising
with respect to both accuracy and efficiency but is limited
to diagnostic experiments. The Ice Sheet Coupled Approxi-
mation Levels (ISCAL) method (Ahlkrona et al., 2016) cou-
ples SIA and FS by a nonoverlapping domain decomposition
that dynamically changes with time. ISCAL is implemented
in Elmer/Ice (Gagliardini et al., 2013), an open-source finite
element software for ice sheet modeling. Here, we present
a novel coupling between FS and SSA, also by the im-
plementation of a nonoverlapping domain decomposition in
Elmer/Ice. The domain decomposition changes dynamically
with grounding line advance and retreat. GLD are modeled
with FS and coupled to SSA on the ice shelf via boundary
conditions. The equations discretized by the finite element
method (FEM) are solved iteratively, alternating between the
FS and the SSA domain, until convergence is reached.

The extent of present-day ice shelves is limited to approx-
imately 10 % of the area of Antarctica (Rignot et al., 2013).
Therefore, one may question the reduction in computational
work by applying SSA to model ice shelves in continental-
scale simulations of marine ice sheets. However, the coupling
is targeted at conducting paleo-simulations, for which much
larger ice shelves have been present (Jakobsson et al., 2016;
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Nilsson et al., 2017). In that case, a large part of the interior
of a marine ice sheet is modeled with SIA, SSA is applied to
the ice shelves, and the FS domain is restricted to ice streams
and areas around the grounding line.

An overview of the FS and SSA equations governing ice
sheet and shelf dynamics in three dimensions (3-D) is pre-
sented in Sect. 2, together with the boundary conditions.
Memory and performance estimates of an FS—SSA coupling,
independent of the specific coupling implemented, are pro-
vided in Sect. 2.3. Section 3 describes the coupled FS—-SSA
model, hereafter “coupled model”. The coupling is applied to
a conceptual ice shelf ramp and marine ice sheet in Sect. 4.
The simulation of a 3000-year long cycle of grounding line
advance and retreat (described in Sect. 4.2.2) shows the ro-
bustness of the coupling.

2 Governing equations of ice flow

Ice is considered to be an incompressible fluid, such that
mass conservation implies that the velocity is divergence-
free:

V-u=0, ey

where u = (u, v, w)T describes the velocity field of the ice
with respect to a Cartesian coordinate system (x,y, z)T,
where z is the vertical direction. For ice flow, the acceleration
term can be neglected in the Navier—Stokes equations (Hut-
ter, 1982). Therefore, the conservation of linear momentum
under the action of gravity g can be described by

_Vp4V- (n(Vu+(Vu)T))+,0g=0, @)

where V is the gradient operator, p pressure, 1 viscosity, p
ice density, and g gravity. Letting o denote the stress tensor,
pressure p is the mean normal stress (p = —1/3%;0;;) and
D(u) is the strain rate tensor, related by

o =2nD(u) — pl=n(Vu+ (Vu)T) — pI, 3)

where I is the identity tensor. Together, Egs. (1) and (2) are
called the full Stokes equations. Observations by Glen (1952)
suggest that the viscosity depends on temperature 7' and the
effective strain rate D (u):

1 —n
n@.T) = ZAT) 1 D) 7. )
=BG @)
W= 2 ox ay az
1 (a_u&)ﬁ(a_ua_w):(a_ua_wy
4\ \3y ox 9z Ox 9z dy ’

where Glen’s exponent n = 3. The fluidity parameter A in-
creases exponentially with temperature as described by the
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Arrhenius relation (Paterson, 1994). This represents a ther-
modynamically coupled system of equations. However, in
the current study, we focus on the mechanical effects and
a uniform temperature is assumed. Due to the velocity de-
pendence of the viscosity in Eq. (4), the FS equations form a
nonlinear system with four coupled unknowns, which is time
consuming to solve. Therefore, many approximations to the
FS equations have been derived in order to model ice sheet
dynamics on long timescales; see Sect. 2.1.

2.1 Shallow shelf approximation

Floating ice does not experience basal drag, hence all resis-
tance comes from longitudinal stresses or lateral drag at the
margins. For ice shelves, the SSA has been derived by dimen-
sional analysis based on a small aspect ratio and surface slope
(Morland, 1987; MacAyeal, 1989). This dimensional analy-
sis shows that vertical variation in # and v is negligible, such
that w and p can be eliminated by integrating the remaining
stresses over the vertical and applying the boundary condi-
tions at the glacier surface and base (described in Sect. 2.2).
Then, the conservation of linear momentum, Eq. (2), simpli-
fies to

Vi - (27 (Dp(w) + tr(Dp ()I)) = pg H Vhzs, (6)

where the subscript h represents the components in the x—y
plane, 7 the vertically integrated viscosity, H the thickness
of the ice shelf, and zg the upper ice surface; see Fig. 1. The
effective strain rate in Eq. (5) simplifies to

Dy (u) = (N
\/8142 w\> dudv 1fou dv)>
(Bx) + (By) + dx dy + 4(3y + Bx) ’
where w is eliminated using incompressibility; Eq. (1). The
SSA equations are still nonlinear through 7, but since w and
p are eliminated and vertical variation in u and v is neglected,
the 3-D problem with four unknowns is reduced to a 2-D
problem with two unknowns. Therefore, the SSA model is
less computationally demanding than FS. The horizontal ve-
locities are often of main interest, for example when results
are validated by comparison to observed horizontal surface

velocity. If desirable, the vertical velocity can be computed
from the incompressibility condition.

2.2 Boundary conditions and time evolution

The coupling is applied to a marine ice sheet, with bedrock
lying (partly) below sea level (see Fig. 1), and involves
boundaries in contact with the bedrock, ocean and atmo-
sphere. The only time dependency is in the evolution of the
free surfaces.

www.geosci-model-dev.net/11/4563/2018/
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Figure 1. Overview of the notations and domain decomposition for
a conceptual marine ice sheet. The vertical scale is exaggerated. The
sea level at z =0 is dashed blue and the interface between the FS
and SSA domains is solid red. The bed elevation is denoted by b,
the coupling interface by x¢, and the grounding line by xgr.. The
distance between x¢ and xgr., defined in Eq. (17), is denoted by

dgL.-

2.2.1 Bedrock

Where the ice is grounded (in contact with the bedrock), the
interaction of ice with the bedrock is commonly represented
by a sliding law f(u, N), that relates the basal velocity uy
and effective pressure N to the basal shear stress as

ti-o-np=fWw,Nu-t;, i=1,2, (8)
(w-n)p+a,=0, )]

where ¢; are the vectors spanning the tangential plane, n is the
normal to the bed, and ay, describes basal refreezing or melt.
A sliding law suggested by Budd et al. (1979) is assumed,
which depends on uy, and the height above buoyancy z, such
that

F@.N)=—Bluy|n 'z, (N). (10)

Here, the sliding parameter § is constant in time and space.
In line with Gladstone et al. (2017), instead of modeling N, a
hydrostatic balance is assumed to approximate z, implying
a subglacial hydrology system entirely in contact with the
ocean:

H if zp >0,
z+(H) = H+pr_w if 7 <0, (11D
P

where zy, is the lower ice surface and py, the water density and
the sea level is at z = 0. Equation (11) implies that z, equals
zero when the flotation criterion (Archimedes’ principle) is
satisfied, i.e., where

z5= (1—ﬁ) H z=-Ln (12)
Pw Pw

2.2.2 Ice-ocean interface

As soon as the seawater pressure p,, at the ice base zp is
larger than the normal stress exerted by the ice at the bed,
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the ice is assumed to float. For a detailed description of the
implementation of the contact problem at the grounding line
in Elmer/Ice, see Durand et al. (2009). At the ice—ocean in-
terface, the tangential friction is neglected (f(#, N) =0 in
Eq. 8) and

0 -n=—pyn where py(z) = —pwgz if 2 <0, (13)

and o - n = 0 above sea level (z > 0). Calving at the seaward
front of the ice shelf is not explicitly modeled, but the length
of the modeling domain is fixed and ice flow from the shelf
out of the domain is interpreted as a calving rate.

2.2.3 Surface evolution

Ice surface (assumed stress-free, o - n = 0) and ice base at z
and zp behave as free surfaces according to

0Zs/b 0Zs/b 0Zs/b
ast/ + us/ba_;/ + Us/ba_;/ = Ws/b + As/b, (14)

where ag/p, is the accumulation (as, > 0) or ablation (as/, <
0) in meter ice equivalent per year, at the surface or base,
respectively. By vertical integration of the incompressibility
condition, Eq. (1), w can be eliminated using Leibniz integra-
tion rule and substituting the free surface equations (Eq. 14),
which yields the thickness advection equation:

OH | OHT  3HY s
— =as — ap,
ar ' ax | oy o

where & and v are the vertically integrated horizontal veloci-
ties.

2.3 Memory and performance estimates of an FS—-SSA
coupling

The reduction in the memory required for an FS—-SSA cou-
pling by domain decomposition, compared to an FS model,
can be estimated. This estimate is independent of the spe-
cific implementation of the coupling between the domains
and concerns only the most ideal implementation in which
no redundant information is stored. The main advantage of
the SSA model is that ugg is independent of z, such that the
SSA equations can be solved on a part of the domain with
a mesh of 1 dimension fewer. Besides that, there are fewer
unknowns since p and w are eliminated. An additional ad-
vantage of eliminating p is that the resulting system is math-
ematically easier to discretize and solve. In particular, diffi-
culties related to a stable choice for the basis functions for
the pressures and velocities are avoided (see, e.g., Helanow
and Ahlkrona, 2018) and there is no need for specialized iter-
ative solution techniques to solve the so-called saddle-point
problem that the FS equations pose (see Benzi et al., 2005).
Suppose that the computational domain €2 is discretized
with N, nodes regularly placed in the z direction and Ny
nodes in a horizontal footprint mesh and is decomposed into
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two parts (2ssa and Qrs; see Fig. 1). The fraction of nodes
in Qgsa is denoted as 6 with 0 < 6 < 1. The number of nodes
in Qpg is then approximately (1 — )Ny N;, and in Qgsa, it
is 6 Ny, neglecting shared nodes on the boundary. For a 3-
D physical domain, SSA has two unknowns (¢ and v) and
FS has four unknowns (u, v, w, and p). Hence, the memory
needed to store the solution with a coupled model is pro-
portional to 2Ny (6 +2(1 —60)N;). For a 2-D simulation in
the x — z plane, where FS has three unknowns and SSA only
one, the memory is proportional to N (6 +3(1 —6)N,). The
memory requirement for a physical domain in d dimensions
reduces to

coupled model memory 0
4var = =1-6 + -,
FS model memory 5—-4d)N;
d=2,3, (16)

when part of the domain is modeled by the SSA equations.
The memory requirements for mesh-related quantities reduce
t0 gmesh = 1 — 6 +6/N_ in both 2-D and 3-D. The quotients
Gvar and gpesp are close to 1 — 6 if N, >10.

The computational work is more difficult to estimate a pri-
ori since it depends on the implementation of the coupling.
The dominant costs are for the assembly of the finite ele-
ment matrices, the solution of the nonlinear equations, and an
overhead for administration in the solver. The work to assem-
ble the matrices grows linearly with the number of unknown
variables. Suppose that this work for FS in 3-D is 4Cgs Ny N,
in the whole domain, for FS 4Cgs(1 — ) Ny N, in QFs, and
for SSA 2Cssa0 Ny in Qgsa. The coefficients Crs and Cssa
depend on the basis functions for FS and SSA and the com-
plexity of the equations. The reduction in assembly time for
the matrix is gass = 1 — 0 + Cssa8/2Cps N;. If Cps &~ Cssa,
then the reduction is approximately as in Eq. (16). The same
conclusion holds in 2-D. Therefore, the reduction in that part
is estimated to be similar to the reduction in Eq. (16).

3 Method for coupling FS and SSA

All equations are solved in Elmer/Ice (Gagliardini et al.,
2013) using the FEM. First the velocity u (using FS or SSA)
is solved for a fixed geometry at time ¢. The mesh always
has the same dimension as the physical modeling domain,
but ugsa is only solved on the basal mesh layer, after which
the solution is re-projected over the vertical axis. Then, the
geometry is adjusted by solving the free surface and thick-
ness advection equations using backward Euler time integra-
tion. The nonlinear FS and SSA equations are solved using
a Picard iteration. The discretized FS equations are stabi-
lized by the residual free bubbles method (Baiocchi et al.,
1993), the recommended stabilization method in Gagliardini
and Zwinger (2008). First, the coupling for a given geometry
is presented, followed by the coupled surface evolution, both
summarized in Algorithm 1.

www.geosci-model-dev.net/11/4563/2018/
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Algorithm 1 Iteratively coupling FS and SSA for one time step, including surface update.

Initialize: & := 0, Q := (Qrs,Qss4) by restricting Q554 to the ice shelf and requiring || — zar||n > der forall @ in Qsg4.

if ¢ > O then
Take wrs,0,Us54,0, fss4,0 from previous time step.
else
UFS,0,US54,0, fssa,0=0.
end if
converged=false

while not converged do

Compute urs,k+1 on Qg with boundary condition o s k41 - (e, 2) = pg(z — zs)n +

fssak(ze)
wH

at .

Compute ussa,k+1 on 2gs54 with boundary condition wssa,k+1(€c) = WFs,k+1(Ee, 2b).

Let fssa,k+1 = ASSAk+1USSA k+1 — DSSA k1.

converged = ||urs,k+1 — ursk||/||ursk|| <ecand ||ussarr1 —ussakll/||ussarl| <ec

k=k+1.
end while

Surface evolution by free surface equations (Eq. 14) for Qps.

Surface evolution by thickness equation (Eq. 15) for Qgs4, with Hssa(®.) = Hrs(z.).

The FS domain Qpg contains the grounded ice and a part
of the shelf around the grounding line; see Fig. 1. The SSA
domain Qgga is restricted to a part of the ice shelf and starts
at the coupling interface x at the first basal mesh nodes lo-
cated at least a distance dgr, from the grounding line xgt,,
such that

llx = x6Lll =/ (x — 2602 + (6 — yo0)? + (2 — 261)?
> dg for all x in QgsA. 17

3.1 Boundary conditions at the coupling interface

Horizontal gradients of the velocity are not neglected in the
SSA equations (unlike in the SIA; Hutter, 1983). Thus, not
only FS and SSA velocities but also their gradients have to
match, in order to allow a coupling of the two. Therefore,
one cannot solve one system of equations independently, for
use as an input to the other system, as done for a one-way
coupling (e.g., Ahlkrona et al., 2016). Instead, the coupling
of FS and SSA is solved iteratively, updating the interaction
between FS and SSA velocities in each iteration to obtain
mutually consistent results. SSA-governed ice shelf flow is
greatly influenced by the inflow velocity from the FS domain.
Therefore, we start the first iteration of the coupled model by
solving the FS equations. A boundary condition is necessary
at x.; we assume that the cryostatic pressure acts on Q2fg at
xc:

OFs - n(xc,z) = pg(zs —2)n, (18)

where n is normal to the coupling interface x.. The FS ve-
locity at x provides a Dirichlet inflow boundary condition to

www.geosci-model-dev.net/11/4563/2018/

the SSA equations. Then, the Neumann boundary condition
in Eq. (18) has to be adjusted based on the ice flow as calcu-
lated for Q2ssa. This is done using the contact force denoted
by fssa, as explained below.

The SSA equations are linearized and, by means of FEM,
discretized. This leads to a matrix representation Au = b,
where u is the vector of unknown variables (here, horizon-
tal SSA velocities). In FEM terminology, the vector b that
describes the forces driving or resisting ice flow is usually
called the body force and A the system matrix (Gagliardini
et al., 2013). In Elmer/Ice, Dirichlet conditions for a node
i are prescribed by setting the ith row of A to zero, except
for the diagonal entry which is set to be unity, and b; is
set to have the desired value (Raback et al., 2018). For an
exact solution of Au = b, the residual f = Au — b is zero.
If we instead use the system matrix Agga obtained without
the Dirichlet conditions being set, the resulting residual is
equal to the contact force that would have been necessary
to produce the velocity described by the Dirichlet bound-
ary condition. Since the SSA equations are vertically inte-
grated, fgga = Assaltssa — bssa is the vertically integrated
contact force and needs to be scaled by the ice thickness H.
In Elmer/Ice, fggu is mesh dependent and needs to be scaled
by the horizontal mesh resolution w as well. For 2-D config-
urations, w = 1. Using f g, instead of explicitly calculating
the stress is advantageous since it is extremely cheap to find
the contact force if Agga is stored.

To summarize the boundary conditions at x, for FS, an
external pressure is applied:

oFs'n(xc,z)=pg(z—zs)n+M, (19)
wH

Geosci. Model Dev., 11, 4563-4576, 2018
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where fgga := 0 in the first iteration (for its derivation, see
Appendix A). For SSA, a Dirichlet inflow boundary condi-
tion,

ussa(xe) = ups(xc, 2p), (20

provides the coupling to the FS solution. Here we take the
ufs at zp, but any z can be chosen since x. should be lo-
cated such that ups(x, z) hardly varies with z. Every itera-
tion, fgga,and ugs(xc, zp) are updated until convergence up
to a tolerance &..

3.2 Surface evolution

The surface evolution is calculated differently in the two do-
mains Qps and Qssa. Equation (14) is applied to Qps for
the evolution of zg and zp, avoiding assuming hydrostatic
equilibrium beyond the grounding line, since the flotation
criterion is not necessarily fulfilled close to the grounding
line (Durand et al., 2009). The thickness advection equation,
Eq. (15), is used for Q2gsa, which is advantageous since the
ice flux ¢ = Huggsa is directly available (because ugsa does
not vary with z) and no vertical velocity is needed. Moreover,
only one time-dependent equation is solved instead of one for
the lower and one for the upper free surface. The evolution
of the surfaces zs and zy, for Qgsa is then calculated from the
flotation criterion, Eq. (12). At x., Hssa = Hrs is applied
as a boundary condition to the thickness equation. First the
surface evolution is solved for Qrs; then Qgga follows.

3.3 The algorithm

The iterative coupling for one time step is given by Algo-
rithm 1. First, the shortest distance d to the grounding line is
computed for all nodes in the horizontal footprint mesh at the
ice shelf base. Then, a mask is defined that describes whether
anode is in Q2pg, 2554, or at the coupling interface x ., based
on the user-defined dgr. Technically, the domain decompo-
sition is based on the use of passive elements implemented
in the overarching Elmer code (Raback et al., 2018), which
allow for deactivating and reactivating elements. An element
in Qg is passive for the SSA solver, which means that it is
not included in the global matrix assembly of Agga and vice
versa.

Two kinds of iterations are involved, since computing ei-
ther ugs x or ussa .k for the kth coupled iteration also requires
Picard iteration by the nonlinearity in the viscosity. As the
experiments will show, calculating ugg x dominates the com-
putation time in the coupled model. The coupled model is
therefore more efficient if the total number of FS Picard it-
erations (the sum of FS Picard iterations over all coupled
iterations) decreases. This is accomplished by limiting the
number of FS Picard iterations before continuing to compute
ussa k. instead of continuing until the convergence tolerance
ep is reached, since it is inefficient to solve very accurately
for ugs x if the boundary condition at x is not yet accurate.
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Despite interrupting the Picard iteration, the final solution in-
cludes a converged FS solution since the coupled tolerance
&c is reached. Picard iteration for ussa i is always continued
until convergence since the computation time is negligible
compared to FS.

An element may switch from Qgsa to Q2fs, for example
during grounding line advance. Then, the coupled iteration
either starts with the initial condition for upg if the element
is in Qpg for the first time, or the latest urs () computed in
this element, before switching to SSA.

4 Numerical experiments

To validate the coupled model, we first verify for a concep-
tual ice shelf ramp that solutions obtained with the coupled
model resemble the FS velocity in 2-D and 3-D. Then the
coupled model is applied to a 2-D conceptual marine ice
sheet (MIS). Whenever “accuracy of the coupled model” is
mentioned, this refers to the accuracy of the coupled model
compared to the FS model. Investigating the accuracy of the
FS model itself is outside the scope of this study. No con-
vergence study of the FS model with respect to discretization
in either time or space is performed. Instead, equivalent set-
tings are used for the FS and coupled model, such that they
can be compared, and the FS model is regarded as a reference
solution.

4.1 Ice shelf ramp
4.1.1 Two-dimensional ice shelf ramp

A simplified test case is chosen for which the analytical so-
Iution to the SSA equations exists in 2-D as described in
Greve and Blatter (2009). It consists of a 200km long ice
shelf (see Fig. 2), with a horizontal inflow velocity u(0, z) =
100myr~! and a calving front at x = 200 km where the hy-
drostatic pressure as exerted by the sea water is applied. The
shelf thickness linearly decreases from 400m at x =0 to
200 m at x = 200 km; zp and z follow from the flotation cri-
terion (Eq. 12). By construction, the SSA model is expected
to be a good approximation of the FS model. The domain
is discretized by a structured mesh and equidistant nodes on
the horizontal axis and extruded along the vertical to quadri-
laterals. All constants used and all mesh characteristics are
specified in Table Al.

Three models are applied to this setup, FS-only, SSA-only,
and the coupled model, for which the horizontal velocities
are denoted as ufs, ussa, and u., respectively. The relative
node-wise velocity differences between ussa and ugs stay
below 0.02 % in the entire domain. However, computing time
for the SSA solution only takes 3 % of that of the FS solution,
which is promising for the potential speedup of the coupled
model.

The coupling location is fixed at x, = 100km, as no
grounding line is present to relate x. to. In the first coupled

www.geosci-model-dev.net/11/4563/2018/



E. C. H. van Dongen et al.: Coupling ice flow models using Elmer/Ice (v8.3) 4569

ue [myr ']
6500

= 4800

T
o
S

3200

0 100 200 600

|urs — ue|/urs - 100 [%]
0.3

=0.225

o
w

o
o
=
[l

0 100 200
 [km]

o
o

Figure 2. The horizontal velocity uc (m yr_l) and node-wise dif-
ference |upg —uc|/ugs - 100 (%) in the coupled solution for the 2-D
ice shelf ramp. The vertical scale is exaggerated 100 times. The ice
thickness ranges from 400 to 200 m.

iteration, uc(xc, zp) = 100myr’1, while in the final solution
urs (xe, zp) = 4805 myr~!. The cryostatic pressure applied
to Qfs at x buttresses the ice flow completely and the force
imbalance of the hydrostatic pressure at the calving front
does not yet influence the velocity u. in Qrs. In the sec-
ond iteration, when fgqa is applied, a maximum difference
of only 0.3 % between ups and u. in the entire domain re-
mains. The coupling converges after three iterations; the ve-
locity u. and relative difference compared to FS are shown
in Fig. 2. Convergence of the coupled model requires 31 FS
Picard iterations compared to 35 for FS-only. However, as-
sembly time per FS iteration almost doubles in the coupled
model compared to the FS model, and assembly time dom-
inates the computational work in this simplified 2-D case.
Therefore, the coupled model needs almost twice as much
computation time as the FS model. This issue is due to the
use of passive elements and is addressed in the “Discussion”
section (Sect. 5).

4.1.2 Three-dimensional ice shelf ramp

The 2-D ice shelf ramp is extruded along the y axis (see
Fig. 3). On both lateral boundaries at y =0 and 20km,
u -n = 0. All other boundary conditions remain identical to
the 2-D case, and the coupling interface is located halfway
x. = (100, y) km. First the solutions of the FS and SSA
model in Elmer/Ice will be compared before applying the
coupled model.

The limited width of the domain (20km) in combina-
tion with the boundary condition u-n =0 at both lateral
sides yields a negligible flow in the y direction (vps <
10~ myr—!). Despite differences in the models, the relative
difference in u is below 1.5 %. Running the experiment with
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Figure 3. Horizontal velocity u¢ (m yr_l) from coupled model for
the 3-D ice shelf ramp with x. = (100, y) km.

the SSA model takes only 0.8 % of the time needed to run it
with the FS model.

The maximum relative difference between ugs and u. is
1.4 %, which is of the same order of magnitude as the ve-
locity difference between FS and SSA. The mean assembly
time per FS iteration is 6 % higher than in the FS-only model,
but the solution time decreases by 55 %. Convergence of the
coupled model requires 30 FS iterations compared to 27 for
FS-only. The total computation time decreases by 32 %.

4.2 Marine ice sheet

First, a diagnostic MIS experiment is performed in 2-D to
compare velocities for the initial geometry. After one time
step, velocity differences between the coupled and FS mod-
els yield geometric differences. In prognostic experiments,
velocity differences can therefore be due to the coupling and
to the different geometry for which the velocity is solved.
Computation times for the FS and coupled model are pre-
sented for the prognostic case only.

4.2.1 Diagnostic MIS experiment

The domain starts with an ice divide at x =0, where u =
0, and terminates at a calving front at x = L = 1800 km.
An equidistant grid with grid spacing Ax = 3.6 km is used.
Other values of constants and mesh characteristics are speci-
fied in Table A2. Gagliardini et al. (2016) showed that resolv-
ing grounding line dynamics with an FS model requires very
high mesh resolution around the grounding line. However,
Gladstone et al. (2017) showed that the friction law assumed
in this study (see Sect. 2.2.1) reduces the mesh sensitivity
of the FS model compared to the Weertman friction law as-
sumed in Gagliardini et al. (2016), allowing the coarse mesh
used here. The bedrock (m) is negative below sea level and
is given by

b(x) = 200 — 900%. @1)
Basal melt is neglected, and the surface accumulation ag
(myr~!) is a function of the distance from the ice divide:

Py x

e (22)

as(x) =
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Figure 4. The coupled velocity uc (m yr_l) and relative difference |upg —uc|/ugs- 100 (%), for the diagnostic MIS experiment. The bedrock
is shaded in grey, xgp, = 730.8 km, and xc = 763.2 km (the mesh resolution yields ||x¢ —xgr || = 32.4 km). The vertical scale is exaggerated

100 times with an ice thickness ranging from 1435 to 296 m.

This experimental setup is almost equivalent to Gladstone
et al. (2017), except that they applied a buttressing force to
the FS equations. It is possible to parameterize buttressing for
the SSA equations as well through applying a sliding coeffi-
cient (Gladstone et al., 2012b). This was not done here as it
may introduce a difference between the FS and SSA models
that is unrelated to the coupling.

The diagnostic experiments are run on a steady-state ge-
ometry computed by the FS model. First, the experiment
“SPIN” in Gladstone et al. (2017) is performed, starting from
a uniform slab of ice (H = 300m), applying the accumula-
tion in Eq. (22) for 40 kyr, such that a steady state is reached.
The geometry yielded from these SPIN runs (which include
buttressing) is used in simulations without buttressing until
a new steady state (defined as a relative ice volume change
below 107°) is reached. This removal of buttressing leads to
grounding line retreat from 871.2 to 730.8 km (Fig. 4).

Again, FS-only, SSA-only, and the coupled model are ap-
plied to this setup. Where ups > Smyr~!, the relative dif-
ference between ups and uggp is below 1.8 %. The velocity
uc is given in Fig. 4, with dgr = 30km such that 58 % of
the nodes in the horizontal footprint mesh are located inside
QssaA (@ =0.58). The coupled model converges after 27 FS
iterations on the restricted domain 2rs, compared to 24 Pi-
card iterations in the FS model. The relative difference be-
tween ups and u. is below 0.5 % (Fig. 4); this small differ-
ence shows that dg, = 30km is sufficient. For this configu-
ration, 4 % of the FS nodes are located between xgp, and x.
with dgL, = 30 km; hence, decreasing dgr, does not affect the
proportion of nodes in Qrg significantly. Therefore, dgr. is
kept equal to 30 km for the prognostic experiment.
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4.2.2 Prognostic MIS experiment

The prognostic experiment aims to verify model reversibility
as in Schoof (2007). Starting from the steady-state geometry,
the ice temperature T is lowered over a period of 500 years
from —10 to —30 °C and back according to

T(t) =—10(2 — cos(2mt/500)) °C
for 0 <t <500years. 23)

The resulting change in A (see Eq. 4) induces a grounding
line advance and retreat and changes Qssa by Eq. (17). Af-
terwards, T = —10 °C for 2500 years. Mass balance forcing
is kept constant throughout. The length of one time step is
1 year.

The maximum difference between u. and ups after
3000 years is 10myr—! (shown in Fig. 5), corresponding
to a relative difference of 1.6 %. The time evolution of xgr,,
up(xgL), H(xgL), and the grounded volume V; is shown in
Figs. 6 and 7. In general, uy, is slightly higher in the coupled
model, with a maximum difference of 5.3 % in the entire ex-
periment. The grounding line advances to xgL, = 1036.8 km
in the FS model and xgr, = 1044 km in the coupled model.
The FS model returns back to the original xgr, = 730.8 km,
but the coupled model yields xgL, = 734.4 km, an offset of
one grid point. The maximum difference in thickness is 1 %.
After 3000 years, V; still decreases but the relative difference
is below 10~ between two time steps.

To investigate the efficiency of the coupled model, the sim-
ulation is performed with 10 different settings, where the
maximum number of FS iterations per coupled iteration is
varied from 1 to 10. The assembly of the FS matrix takes
75 % of the computation time of the FS model (see 74 in Ta-
ble 1), and assembly time per FS iteration is similar for the
coupled and FS model. Only 5 % of the computation time is
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Table 1. Computation times for the MIS simulation of 3000 years with FS-only and the coupled model. Model Ci denotes the coupled model,
with i being the maximum number of nonlinear FS iterations per coupled iteration; C5—C9 are omitted for brevity. The assembly time for
Afg is denoted as 7p. All relative computation times are given in percentage of the total time ftot. The number of FS and coupled iterations

are averaged over the time steps.

Model 15 (%) ts (%) No.FSiter. 1t5(%) tssa (%) No.couplediter. fof (cpus)
FS 75 5 5.0 20 - - 48 641
C10 68 4 4.6 25 4 2.7 49724
C4 61 3 3.7 31 5 2.9 44143
C3 59 3 3.6 33 5 3.1 44040
C2 56 3 34 36 5 3.4 44334
Cl 49 3 32 43 6 4.2 47135
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Figure 5. Absolute difference |ups — uc| (m yrfl) after 3000 years. The vertical scale is exaggerated 100 times. The ice thickness ranges

from 1445 to 296 m.
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Figure 6. Time evolution of xgp, (red) and up(xgr) (blue) with
solid lines for FS and dashed lines for the coupled model.

used to solve the linearized FS system (#; in Table 1). For all
coupled simulations, assembling and solving the SSA matrix
(tssa) takes 4 %—6 %. All the time that is left will be called
overhead, #,, which includes launching solvers, i.e., allocat-
ing memory space for vectors and matrices, the surface evo-
lution, and solvers for post-processing. As expected, the total
number of FS iterations is the smallest when just performing
one FS Picard iteration per coupled iteration. However, the
model then changes between solvers more often, meaning
that both overheads and the time to solve the SSA model in-
crease. It turns out that a limit of three FS Picard iterations
per coupled iteration balances minimizing #, and ¢4, yield-
ing a 10 % decrease in computation time with respect to the
FS model. This speedup comes from a lower number of FS
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Picard iterations (Table 1) and a slight decrease in the time
used to solve the linearized FS system (13 % lower than the
time that the FS model takes).

5 Discussion

The presented coupling is dynamic, since the coupling in-
terface x. changes with grounding line changes, but the dis-
tance dgr, that defines x. has to be chosen such that the FS
velocity at the interface is almost independent of z. In the ex-
periments described in Sect. 4, this is already the case at the
grounding line. We propose that further studies let Q2gsa be
determined automatically, for example, by a tolerance for the
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vertical variation in the horizontal velocities, which should
be close to zero in order to allow for a smooth coupling to
SSA. Another option is to use a posteriori error estimates
based on the residual (Jouvet, 2016).

The current implementation in Elmer/Ice does not give as
much speedup as expected from computation times of the
FS- and SSA-only models for the ice shelf ramp (fssp =
0.037rg) and from the performance estimates in Sect. 4.2.
This is due to an inefficient matrix assembly. The assembly
of the system matrix Aps restricted to Qg currently takes
at least as much time as the assembly for the full domain
2, even though the domain Qg is much smaller than ; in
Eq. (13), 6 = 0.5 for the ice shelf ramp and 6 = 0.58 for the
diagnostic MIS experiment. Since the assembly time domi-
nates the total solution time in simple 2-D simulations, this
is problematic. The inefficient assembly is caused by the use
of passive elements implemented in the overarching Elmer
code (Raback et al., 2018), which allow the de- and reacti-
vation of elements. A passive element is not included in the
global matrix assembly, but every element must be checked
to determine if it is passive. The inefficient assembly can be
overcome by implementing the coupling on a lower level,
hard-coded inside the FS solver. This was done for the cou-
pling of SIA and FS in ISCAL (Ahlkrona et al., 2016), which
showed significant speedup when restricting the FS solver to
a smaller domain. However, using passive elements is more
flexible, since the coupling is independent of the solver used
to compute velocities outside Q2gsa . One is free to choose be-
tween the two different FS solvers in Elmer/Ice (see Gagliar-
dini et al., 2013) or to apply ISCAL. The latter is irrelevant in
the experiments presented here since both the grounded and
floating ice experiences low basal drag, and SIA is not ca-
pable of representing ice stream and shelf flow. Only a pre-
liminary 3-D experiment is performed here, since the cur-
rent implementation is not sufficiently efficient to allow ex-
tensive testing in 3-D. If the coupling is implemented effi-
ciently such that the time spent on solving the FS equations
on the restricted domain Qgs scales with the size of Qgs, the
computational work is expected to decrease significantly (see
Sect. 4.2).

6 Conclusions

We have presented a novel FS—SSA coupling in Elmer/Ice,
showing a large potential for reducing the computation time
without losing accuracy. At the coupling interface, the FS ve-
locity is applied as an inflow boundary condition to SSA. To-
gether with the cryostatic pressure, a depth-averaged contact
force resulting from the SSA velocity is applied as a bound-
ary condition for FS. The main finding of this study is that
the two-way coupling is stable and converges to a velocity
that is very similar to the FS model in the tests on conceptual
marine ice sheets, and it yields a speedup in 3-D.
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In diagnostic runs, the relative difference in velocity ob-
tained from the coupled model and the FS model is below
1.5 % when applying SSA at least 30 km seaward from the
grounding line. During a transient simulation, where the cou-
pling interface changes dynamically with the migration of the
grounding line, the coupled model is very similar to the FS
model, with a maximum difference of 5.3 % in basal velocity
at the grounding line. An offset of 3.6 km remains in the re-
versibility experiment in Sect. 4.3, which is within the range
of the expected resolution dependence for FS models (Glad-
stone et al., 2017).

In experiments involving areas where SIA is applicable,
this new FS—SSA model can be combined with the ISCAL
method in Ahlkrona et al. (2016) that couples SIA and
FS in Elmer/Ice. This mixed model is motivated by paleo-
simulations, but reducing computational work by the combi-
nation of multiple approximation levels is also convenient for
parameter studies, ensemble simulations, and inverse prob-
lems.

Code availability. The code of Elmer/Ice is available at
https://github.com/ElmerCSC/elmerfem/tree/elmerice  (last  ac-
cess: 13 November 2018). An example of the coupling is
provided at https://doi.org/10.5281/zenodo.1202407 (van Don-
gen et al, 2018). The version of the Elmer/Ice code that
includes the coupling discussed in the paper can be accessed
by using the hash qualifier linked to the commit of the cou-
pling code at https://github.com/ElmerCSC/elmerfem/archive/
bal17583defafe98bb6fd1793c9c6f341c0c876.zip  (last
13 November 2018).
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Appendix A: Derivation of the interface boundary
condition

The boundary condition in Sect. 3.1 between the FS and
the SSA domains is derived following a standard procedure
in FEM using the weak formulation of the equations. Let
QFs € Rd, d = 2,3 denote the open FS domain in two or
three dimensions with the boundary I'rs. After multiplying
Eq. (2) with a test function v and integrating over the domain
QFs, the weak form of Eq. (2) is

—/v-(V-a):/pv'g. (A1)

Qps Qrs

Use the definition of ¢ and the divergence theorem to rewrite
Eq. (Al):

/r}D(u):D(v)—/pV~v=/pv-g+/v~a~n. (A2)

Qs QFs Qps Igs

The operation A : B denotes the sum Zi, inj B;j. The test
function v vanishes on the inflow boundary I, has a van-
ishing normal component on the bedrock boundary I'y,, and
lives in the Sobolev space [WL1/n+1(Qrs)1? (Jouvet, 2016),
ie.,

veVy={ve W (Qps)1 v, =0,
v|r, -n =0}. (A3)

The space V) has this form because the boundary conditions
on I'; and I'y are of Dirichlet type. Furthermore, there is a
lateral boundary I'; for Qps € R3, where the normal com-
ponent also vanishes (v|r, -n =0), and we assume a van-
ishing Cauchy-stress vector for unset boundary conditions to
velocity components, such that the integral over I'y vanishes.
Then, the boundary integral in Eq. (A2) consists of a sum of
the remaining boundary terms:

d—1
/v-a~n:Z/fu-tiv-ti—/pwmv—i— / v-o-n, (Ad)
i=1
Ty

I'ps Fy IFsint

given by the boundary conditions on I', in Egs. (8) and
(9), on the ocean boundary I'y, in Eq. (13), and the internal
boundary I'rsine between the FS and the SSA domains. The
force o - n on ['psipc is determined by the SSA solution.

The open SSA domain Qgsa € R?, coupled to Qg € R3,
has the boundary I'ssa = I'ssaint UL'crU 'y where I'ssaint 1S
adjacent to Qs and partly coinciding with ['gsijy (but of one
dimension less) and I'cF is at the calving front. Let B have
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the elements
B _4_8u+2_8v By — B __8u+_8v
11 = nax ﬂay» 12 = Zl—ﬁay ﬁax,
_du _dv
By =2— 44—, (A5)
ax dy

when d =3. If d =2, then B =4n0du/dx. Then the SSA
equations Eq. (6) can be written as follows:

Vo B=f,, (A6)

where f, = pgHVhzs and Vj, is the horizontal gradient op-
erator. The boundary condition on I'ssain¢ 1S the Dirichlet
condition (Eq. 20), and the force due to the water pressure
at the calving front I'cr is fcr, as in Eq. (13) but integrated
over z. Define the two test spaces
W= ve W/ (Qssa)l! | vlr, -n =0},

Wo = {v e W| v|rggu, =0} (A7)
Multiply Eq. (A6) by v € W, and integrate. The weak form
of Eq. (A6) is

/v~(Vh~B)= /v~fg. (A8)

QssA QssA

Apply the divergence theorem to Eq. (A8) to obtain

— /th:B—l—/vB-n:—/th:B—i—

Qssa Issa QssA
+/v'fCF+ / U'fSSA=/v'fg- (A9)
Lcr I'ssAint Qssa

A mesh is constructed to cover Qs and Qgsa with nodes at
x;i. In the finite element solution of Eq. (A9), the linear test
function v; € Wy is non-zero at xj and zero in all other nodes.
The integral over I'ssaine vanishes when v € W). The finite
element solution uy, of Egs. (A6) and (A9) satisfies

—/thiiB(uh)+ vi'fCF_/vi'fg:O’
QssA Lcr Q2ssA

xi € Qssa UTlcF. (A10)

It follows from Eq. (A9) that with a test function v; € }V that
is non-zero on I'ssaint and the solution uy, from Eq. (A10)

/ Vi fssa = (A1)
IssAint
= / Vh; : B(up) — /Ui'fCF+ / Vi fo, (A12)
QgsA I'cr QssA
xi € Qssa UT'cp UTssAint- (A13)

The first integral in Eq. (A12) corresponds to (Assa#ssa)i
in Sect. 3.1 and bgsa; to the second and third integrals. By
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Eq. (A10), the right-hand side of Eq. (A12) vanishes for all
x; in Q2ssa and on I'cf, but for a node on the internal bound-
ary, x; € I'ssaint, the force fgqa from the ice due to the state
up in Qgsa is obtained. The internal pressure in the ice in
Qgsa is assumed to be cryostatic as in Eq. (18). The total
force on I'rsjye consists of one component due to the state
up at I'ssaine and one due to the cryostatic pressure there.
Let §2§S A denote the mesh on Qssa, which is extruded in
the z direction. The common boundary between Qps and
Qgs A 18 T'Esint, and let f §s A be the stress force there, in-
dependent of z. Since f;h‘ f §S A = Sfssa at T'Esin, we have

Fésa = H! fssa. Let vj be a test function on Qps |J Qg
which is non-zero on I'gsine and zero in all other nodes. Then
the weak form of the force balance at I'gsjnt 1S

/vi-a-n= /f§SA~vi— /pg(zs—z)n~vi

FSint FSint FSint

= /H_lfSSA'”i_ /Pg(zs—Z)n-vi,

FSint FSint

(A14)

and the corresponding strong form of the boundary condition
at I'gsin 18
o -n=H""fosp—pg(ss—2)m; (A15)

cf. Eq. (19). Thus, by computing the residual as in Eq. (19),
the two finite element solutions in Qps and Q2gsa are coupled
together at the common boundary I'psine and ['ssaint.
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Table Al. Numerical values of the constants used in the ice shelf
ramp experiment. Since the shelf is afloat, there is no sliding at the
base.

Parameter Symbol  Value  Unit
Ice density o 900 kgm™3
Water density Pw 1000 kg m3
Gravitational acceleration g 981 ms2
Fluidity parameter A 10716 py=3 g1
Number elements N, 10

Ny 120

Ny 10
Picard convergence tolerance ep 1073
Coupled convergence tolerance  &¢ 1074

Table A2. Numerical values of the constants for the MIS experi-
ment.

Parameter Symbol Value  Unit
Ice density P 910 kg m—3
Water density Pw 1000 kg m—3

Gravitational acceleration g 981 ms 2

Sliding parameter B 7%x107%  MPam™4/3 yr]/ 3
Temperature T —-10 °C
Number elements N, 11

Ny 500
Picard convergence tolerance ep 1074
Coupled convergence tolerance & 104
Time step dt 1 year
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