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MARGINAL AND DEPENDENCE UNCERTAINTY: BOUNDS,
OPTIMAL TRANSPORT, AND SHARPNESS\ast 

DANIEL BARTL\dagger , MICHAEL KUPPER\ddagger , THIBAUT LUX\S , ANTONIS

PAPAPANTOLEON\P , AND STEPHAN ECKSTEIN\| 

Abstract. Motivated by applications in model-free finance and quantitative risk management,
we consider Fr\'echet classes of multivariate distribution functions where additional information on the
joint distribution is assumed, while uncertainty in the marginals is also possible. We derive optimal
transport duality results for these Fr\'echet classes that extend previous results in the related literature.
These proofs are based on representation results for convex increasing functionals and the explicit
computation of the conjugates. We show that the dual transport problem admits an explicit solution
for the function f = 1B , where B is a rectangular subset of \BbbR d, and provide an intuitive geometric
interpretation of this result. The improved Fr\'echet--Hoeffding bounds provide ad hoc bounds for
these Fr\'echet classes. We show that the improved Fr\'echet--Hoeffding bounds are pointwise sharp
for these classes in the presence of uncertainty in the marginals, while a counterexample yields that
they are not pointwise sharp in the absence of uncertainty in the marginals, even in dimension 2.
The latter result sheds new light on the improved Fr\'echet--Hoeffding bounds, since Tankov [J. Appl.
Probab., 48 (2011), pp. 389--403] has showed that, under certain conditions, these bounds are sharp
in dimension 2.

Key words. dependence uncertainty, marginal uncertainty, Fr\'echet classes, improved Fr\'echet--
Hoeffding bounds, optimal transport duality, relaxed duality, sharpness of bounds
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1. Introduction. A celebrated result in probability theory is the Fr\'echet--
Hoeffding bounds, which provide a bound on the joint distribution function (or the
copula) of a random vector in case only the marginal distributions are known. Let
\scrF (F \ast 

1 , . . . , F
\ast 
d ) denote the Fr\'echet class of cumulative distribution functions (cdfs) on

\BbbR d with (known) univariate marginal distributions F \ast 
1 , . . . , F

\ast 
d . Then, the Fr\'echet--

Hoeffding bounds state that the following inequalities hold for all joint distribution
functions with the given marginals, i.e., for all F \in \scrF (F \ast 

1 , . . . , F
\ast 
d ) it holds that\Bigl( d\sum 

i=1

F \ast 
i (xi) - (d - 1)

\Bigr) +

\leq F (x1, . . . , xd) \leq min
i=1,...,d

F \ast 
i (xi)(1.1)
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MARGINAL AND DEPENDENCE UNCERTAINTY 411

for all (x1, . . . , xd) \in \BbbR d. These bounds can be combined with results on stochastic
dominance (see, e.g., [23]), which state that for certain classes of (cost or payoff) func-
tions \varphi the inequalities on the distribution function are preserved when considering
integrals of the form

\int 
\varphi dF . In other words, the Fr\'echet--Hoeffding bounds combined

with results from stochastic dominance yield upper and lower bounds on integrals of
the form

\int 
\varphi dF , over all possible joint distribution functions with given marginals

F \ast 
1 , . . . , F

\ast 
d (or, equivalently, over all copulas).

These results have found several applications in financial and insurance mathe-
matics, since they allow the derivation of bounds on the prices of multiasset options
and on risk measures, such as the value-at-risk, in the framework of dependence un-
certainty, i.e., when the marginal distributions are known and the joint distribution
is not known; see, e.g., [7, 9, 13, 12, 14, 15, 25]. Analogous results have been also de-
rived using methods from linear programming or optimal transport theory; see, e.g.,
[10, 4, 6, 16, 17, 18]. The optimal transport duality, also known as pricing-hedging
duality in the mathematical finance literature, states, for example, that

sup
F\in \scrF (F\ast 

1 ,...,F\ast 
d )

\int 
\varphi dF = inf

\varphi 1+\cdot \cdot \cdot +\varphi d\geq \varphi 

\Bigl\{ \int 
\varphi 1dF

\ast 
1 + \cdot \cdot \cdot +

\int 
\varphi ddF

\ast 
d

\Bigr\} 
.(1.2)

In other words, using the language of mathematical finance, the model-free upper
bound on the price of an option with payoff function \varphi over all joint distributions
with given marginals equals the infimum over all hedging strategies which consist of
investing according to \varphi i in the asset with marginal F \ast 

i , subject to the condition that
\varphi 1 + \cdot \cdot \cdot + \varphi d dominates the payoff function \varphi .

The main pitfall in the framework of dependence uncertainty is that the resulting
bounds are too wide to be informative for applications; e.g., the bounds for multiasset
option prices may coincide with the trivial no-arbitrage bounds. On the other hand, we
can infer from financial and insurance markets partial information on the dependence
structure of a random vector which is not utilized in the Fr\'echet--Hoeffding bounds
and more generally the framework of dependence uncertainty, where only information
on the marginals is taken into account.

These considerations have led to increased attention on frameworks that could be
termed partial dependence uncertainty, i.e., when additional information is available
on the dependence structure. The additional information available can take several
forms; for example, some authors assume that the joint distribution function is known
on some subset of its domain, others assume that the correlation (or more generally
a measure of association) is known, while others assume that the variance of the sum
is known or bounded, and so forth. We refer the reader to [29, 30] for an overview of
this literature, with emphasis on applications to value-at-risk bounds.

Analogously to the Fr\'echet--Hoeffding bounds in the framework of dependence
uncertainty, several authors have developed improved Fr\'echet--Hoeffding bounds that
correspond to the framework of partial dependence uncertainty; see, e.g., [24, 32, 20,
21, 26]. The improved Fr\'echet--Hoeffding bounds can accommodate different types
of additional information, such as the knowledge of the distribution function on a
subset of the domain and the knowledge of a measure of association. In this article,
we consider the following Fr\'echet class under additional information:

(1.3) \scrF S,\pi (F \ast 
1 , . . . , F

\ast 
d ) :=

\bigl\{ 
F \in \scrF (F \ast 

1 , . . . , F
\ast 
d ) : F (s) = \pi s for all s \in S

\bigr\} 
,

where S \subset \BbbR d is an arbitrary set and (\pi s)s\in S a family with values in [0, 1]. In other
words, we consider all joint distribution functions with known marginals F \ast 

1 , . . . , F
\ast 
d
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412 BARTL, KUPPER, LUX, PAPAPANTOLEON, ECKSTEIN

and known value \pi s for each s \in S, where S is a subset of the domain. The addi-
tional information on the joint distribution assumed in this class may not be directly
observable in the markets but can be implied from multiasset option prices or other
derivatives by arguments analogous to [5]. Improved Fr\'echet--Hoeffding bounds for
this class have been derived in [32, 20] and read as follows:

\Bigl( d\sum 
i=1

F \ast 
i (xi) - (d - 1)

\Bigr) +

\vee max
\Bigl\{ 
\pi s  - 

d\sum 
i=1

\bigl( 
F \ast 
i (si) - F \ast 

i (xi)
\bigr) +

: s \in S
\Bigr\} (1.4)

\leq F (x1, . . . , xd) \leq min
i=1,...,d

F \ast 
i (xi) \wedge min

\Bigl\{ 
\pi s +

d\sum 
i=1

\bigl( 
F \ast 
i (xi) - F \ast 

i (si)
\bigr) +

: s \in S
\Bigr\} 
.

The authors in [32, 20] have also used the improved Fr\'echet--Hoeffding bounds in
order to derive bounds for the prices of multiasset derivatives in a framework of partial
dependence uncertainty, and showed that the additional information incorporated in
the bounds leads to a notable tightening of the option price bounds relative to the
case without additional information.

One could ask though whether this framework is realistic for applications, in
particular whether the assumption of perfect knowledge of the marginal distributions
is supported by empirical evidence or stems from mathematical convenience. We take
the view that perfect knowledge of the marginals is not a realistic assumption, and are
thus interested in frameworks that combine uncertainty in the marginals with partial
uncertainty in the dependence structure. Towards this end, we introduce Fr\'echet
classes that correspond to this framework, and we are interested in studying their
properties.

The classes we introduce allow us to consider simultaneously uncertainty in the
marginal distributions, measured either by 0th or by first order stochastic dominance,
and additional information on the dependence structure, provided by values \pi s for
s \in S. Let us thus consider the following relaxed version of the class \scrF S,\pi in (1.3),
provided by

\scrF S,\pi 
\preceq 0

(F \ast 
1 , . . . , F

\ast 
d ) :=

\Bigl\{ 
cF :

c \in [0, 1] and F cdf on \BbbR d s.t. cFi \preceq 0 F \ast 
i

for all 1 \leq i \leq d and cF (s) \leq \pi s for all s \in S

\Bigr\} 
,(1.5)

where Fi is the ith marginal distribution of F , and cFi \preceq 0 F \ast 
i means that F \ast 

i domi-
nates cFi in the 0th stochastic order, i.e., cFi \preceq 0 F \ast 

i if and only if cFi(t)  - cFi(s) \leq 
F \ast 
i (t)  - F \ast 

i (s) for all s \leq t.1 (Note that for c = 1, it follows from Fi \preceq 0 F \ast 
i that

Fi = F \ast 
i .) In other words, we consider the class of joint distribution functions (asso-

ciated with subprobability measures) whose marginals are dominated by F \ast 
1 , . . . , F

\ast 
d

in the 0th stochastic order and whose value is smaller than \pi s for each point s in a
subset S of the domain.

Moreover, we consider the following relaxed versions of the class \scrF S,\pi given by

\scrF S,\pi 

\preceq 1 (F
\ast 
1 , . . . , F

\ast 
d ) :=

\Bigl\{ 
F :

cdf on \BbbR d s.t. Fi \leq F \ast 
i for all 1 \leq i \leq d

and F (s) \leq \pi s for all s \in S

\Bigr\} 
,(1.6)

\scrF S,\pi 
\preceq 1 (F

\ast 
1 , . . . , F

\ast 
d ) :=

\Bigl\{ 
F :

cdf on \BbbR d s.t. F \ast 
i \leq Fi for all 1 \leq i \leq d

and \pi s \leq F (s) for all s \in S

\Bigr\} 
.(1.7)

1Denote by \mu and \mu \ast the (sub-)probabilities on the real line associated to cFj and F \ast 
j . Then a

Dynkin argument shows that cFj \preceq 0 F \ast 
j if and only if \mu (B) \leq \mu \ast (B) for every Borel subset of \BbbR .
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Here, Fi \leq F \ast 
i is understood pointwise, which means that Fi first order stochastically

dominates F \ast 
i , i.e., dF

\ast 
i \preceq 1 dFi. Further, for y, z \in \BbbR d we write y \leq z and y < z

if yi \leq zi, respectively, yi < zi, for all i = 1, . . . , d. This class is very similar to
the previous one; however, now we consider probability measures on \BbbR d. Let us
mention that there exist in the literature tests of first order stochastic dominance;
see, e.g., [31].

Let us point out that, since the marginals are fixed, the class \scrF S,\pi (F \ast 
1 , . . . , F

\ast 
d )

can be directly related to a class of copulas. This is the class studied in [32, 20], where
these authors assume that the copula is known in some subset S of its domain. On

the contrary, the classes \scrF S,\pi 
\preceq 0

(F \ast 
1 , . . . , F

\ast 
d ), \scrF 

S,\pi 

\preceq 1 (F
\ast 
1 , . . . , F

\ast 
d ), and \scrF S,\pi 

\preceq 1
(F \ast 

1 , . . . , F
\ast 
d )

cannot be related to a class of copulas, since there exists uncertainty in their marginals.
This is the reason for working with distribution functions instead of copulas in this
article.

These three classes belong to the framework described above, i.e., they allow
us to take into account and combine uncertainty in the marginal distributions with
additional partial information on the dependence structure. An easy computation
using arguments from copula theory, which is deferred to Appendix B, shows that the
improved Fr\'echet--Hoeffding bounds of [20, 32] hold true also for these classes. An
analogous result appears already in [26], which first considered inequality constraints
on the copula. The contributions of this article are then threefold:

\bullet We provide optimal transport, or pricing-hedging, duality results for each of

the Fr\'echet classes \scrF S,\pi ,\scrF S,\pi 
\preceq 0

, \scrF S,\pi 

\preceq 1
, and \scrF S,\pi 

\preceq 1
. In other words, we show that

the optimal transport duality holds in the presence of additional informa-
tion; this generalizes previous results in the related literature; see, e.g., [27].
Moreover, we provide optimality results for the class \scrF S,\pi that allow us to
characterize the optimal measure. In the context of mathematical finance,
we show that the pricing-hedging duality results hold also in the presence of
additional information, in which case the hedging portfolio should also con-
sist of positions in multiasset options for which the additional information is
available. Moreover, the uncertainty in the marginals translates into trading
constraints on the ``dual"" side, such as shortselling constraints.

\bullet We show that the optimization problem for the function f = 1B , for rec-
tangular sets B \subset \BbbR d, admits an explicit solution in the class \scrF S,\pi 

\preceq 0
. In the

language of mathematical finance, we show that the superhedging problem for
a multiasset digital option under shortselling constraints admits an explicit
solution, and we explain the intuition behind this result.

\bullet Finally, we discuss the pointwise sharpness of the improved Fr\'echet--Hoeffding

bounds for each of the classes \scrF S,\pi ,\scrF S,\pi 
\preceq 0

, \scrF S,\pi 

\preceq 1
, and \scrF S,\pi 

\preceq 1
. An (upper) bound

\scrB is called sharp for a certain class \scrC if \scrB \in \scrC and is called pointwise sharp
for \scrC if supF\in \scrC F (x) = \scrB (x) for all x \in dom(F ). More specifically, we show
that the improved upper Fr\'echet--Hoeffding bound is pointwise sharp for the

classes \scrF S,\pi 
\preceq 0

and \scrF S,\pi 

\preceq 1
, while the improved lower Fr\'echet--Hoeffding bound is

pointwise sharp for the class \scrF S,\pi 
\preceq 1

. In addition, by means of a counterexample,

we show that these bounds are not pointwise sharp for the class \scrF S,\pi , even
in dimension d = 2. The latter result is surprising since [32] has showed that,
under certain conditions on the set S, the upper bound is not only pointwise
sharp but even sharp, i.e., Tankov actually showed that the upper improved
Fr\'echet--Hoeffding bound belongs to the Fr\'echet class \scrF .
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This article is structured as follows: in section 2, we derive optimal transport du-
ality and optimality results for the Fr\'echet classes introduced above. In section 3, we
show that the improved Fr\'echet--Hoeffding bounds are pointwise sharp for the classes

\scrF S,\pi 

\preceq 1
and \scrF S,\pi 

\preceq 1
. In section 4, we provide an explicit solution of the dual transport prob-

lem for the function f = 1B in the class \scrF S,\pi 
\preceq 0

, and we deduce the pointwise sharpness
of the improved upper Fr\'echet--Hoeffding bound in this class. Finally, Appendix A
contains the aforementioned counterexample, Appendix B contains the derivation of

the improved Fr\'echet--Hoeffding bounds for the classes \scrF S,\pi 
\preceq 0

, \scrF S,\pi 

\preceq 1
, and \scrF S,\pi 

\preceq 1
, and

Appendix C and Appendix D contain proofs of results.

2. Transport and relaxed transport duality and optimality under ad-
ditional information. In this section, we establish our main duality and optimality
results for optimal transport problems that feature additional information on the joint
measure and, potentially, uncertainty about the marginal measures. More specifically,
we derive a dual representation for the transport problem of maximizing the expec-
tation of a d-dimensional cost or payoff function over probability measures whose
univariate marginals are given and whose mass is prescribed on certain rectangles in
\BbbR d. Using similar arguments, we obtain dual representations for two relaxations of
this problem, involving uncertainty in the marginal measures. The uncertainty takes
the form of estimates on the marginal measures in the 0th or first stochastic order.
As a corollary, we establish duality for a transport problem with constraints on the
maximum of random variables. Moreover, we establish optimality results for these
transport problems that characterize the optimal measures.

We follow the notation of optimal transport theory in this section and thus work
with measures instead of distribution functions. The precise relation between the two
notations will be clarified in section 3, when we will make the connection between
the optimal transport dualities and the sharpness of the improved Fr\'echet--Hoeffding
bounds. The proofs of the various results are postponed to the appendices in order
to improve the presentation of the material and the readability of the article.

2.1. Duality. We start by introducing useful notions and notation. Let us de-
note by ca+(\BbbR d) the set of all finite measures on the Borel \sigma -field of \BbbR d, d \geq 1, and
by ca+1 (\BbbR d) (resp., ca+\leq 1(\BbbR d)) the subset of those measures \mu satisfying \mu (\BbbR d) = 1

(resp., \mu (\BbbR d) \leq 1). The space \BbbR d might also be omitted from the notation in case
there is no ambiguity.

Let Ai
1, . . . , A

i
d \in \BbbR , and define the sets Ai := ( - \infty , Ai

1] \times \cdot \cdot \cdot \times ( - \infty , Ai
d] \subset \BbbR d

for i \in I, where I is an arbitrary index set. Define for any cost or payoff function
f : \BbbR d \rightarrow \BbbR the set

\Theta (f) :=
\bigl\{ 
(f1, . . . , fd, a) : f1(x1) + \cdot \cdot \cdot + fd(xd) +

\sum 
i\in I

ai1Ai(x) \geq f(x) for all x \in \BbbR d
\bigr\} 
,

where fj : \BbbR \rightarrow \BbbR , j \in \{ 1, . . . , d\} are bounded and measurable functions and a =
(ai) \in \BbbR I such that ai = 0 for all but finitely many i \in I. Moreover, consider the
measures \nu 1, . . . , \nu d \in ca+1 (\BbbR ), let 0 \leq \pi i \leq \pi i \leq 1, and define

\pi (f1, . . . , fd, a) :=

\int 
\BbbR 
f1 d\nu 1 + \cdot \cdot \cdot +

\int 
\BbbR 
fd d\nu d +

\sum 
i\in I

\bigl( 
ai+\pi i  - ai - \pi i

\bigr) 
for every (f1, . . . , fd, a) \in \Theta (f), where ai+ and ai - denote the positive and negative
part of ai, respectively, i.e., ai+ = max\{ ai, 0\} and ai - = max\{  - ai, 0\} . Denote by
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\Theta 0(f) the set of all (f1, . . . , fd, a) \in \Theta (f) such that f1, . . . , fd \geq 0 and ai \geq 0 for all
i \in I. Now define the functionals

\phi (f) := inf
\bigl\{ 
\pi (f1, . . . , fd, a) : (f1, . . . , fd, a) \in \Theta (f)

\bigr\} 
and

\phi 0(f) := inf
\bigl\{ 
\pi (f1, . . . , fd, a) : (f1, . . . , fd, a) \in \Theta 0(f)

\bigr\} 
.

Moreover, consider the sets of measures

\scrQ :=
\bigl\{ 
\mu \in ca+1 (\BbbR 

d) : \mu 1 = \nu 1, . . . , \mu d = \nu d and \pi i \leq \mu (Ai) \leq \pi i for all i \in I
\bigr\} 

(2.1)

and

\scrQ 0 :=
\bigl\{ 
\mu \in ca+\leq 1(\BbbR 

d) : \mu 1 \preceq 0 \nu 1, . . . , \mu d \preceq 0 \nu d and \mu (Ai) \leq \pi i for all i \in I
\bigr\} 
,

where \mu j denotes the jth marginal of the measure \mu , while \mu j \preceq 0 \nu j should be
understood as \mu j(B) \leq \nu j(B) for every Borel set B \subset \BbbR ; the latter condition is also
known as stochastic dominance in the 0th order.

The following theorem establishes a Monge--Kantorovich duality under additional
constraints in the context of optimal transportation or a pricing-hedging duality un-
der additional information in the context of mathematical finance. Indeed, in the
context of optimal transportation we seek to maximize the total cost

\int 
fd\mu relative

to transport plans \mu with marginals \nu 1, . . . , \nu d which in addition satisfy the constraint
\pi i \leq \mu (Ai) \leq \pi i for i \in I. We also consider a relaxed version of this problem, where
we seek to maximize the same total cost relative to transport plans that are dominated
by \nu 1, . . . , \nu d and satisfy the additional constraint \mu (Ai) \leq \pi i for i \in I.

In the context of mathematical finance, let f denote the payoff function of an
option depending on multiple assets, whose joint distribution is \mu . Then, the right-
hand side in (2.2) is the model-free superhedging price for this option assuming that
the marginal distributions are known (i.e., \mu 1 = \nu 1, . . . , \mu d = \nu d), while there is also
additional information present in the form of the bounds \pi i, \pi i on the price of the
multiasset digital options 1Ai , i \in I. The left-hand side in (2.2) describes hedging
or trading strategies which consist of investing in options with payoff fi in the ith
marginal \nu i, i \in \{ 1, . . . , d\} and also buying ai+ and selling ai - digital options with
payoff 1Ai at the prices \pi i and \pi i, respectively, i \in I, subject to the requirement that
the sum of these payoffs dominate f . The duality in (2.3) represents a relaxation
of the problem described above, where on the one side uncertainty in the marginals
is taken into account, while on the other side the trading strategies are subject to
shortselling constraints (i.e., they are positive).

Definition 2.1. A trading strategy (f1, . . . , fd, a) which satisfies

(f1, . . . , fd, a) \in \Theta (\varepsilon ) and \pi (f1, . . . , fd, a) \leq 0

for some \varepsilon > 0 is called a uniform strong arbitrage.

Remark 2.2. The strategy described above is called a uniform strong arbitrage
because its price at inception is less than or equal to zero, while its outcome is bounded
from below by \varepsilon > 0. The next theorem relates the absence of uniform strong arbitrage
with the existence of an element in \scrQ , the set of probability measures with given
marginals that satisfy the condition \pi i \leq \mu (Ai) \leq \pi i for all i \in \scrI . In other words, the
absence of arbitrage allows us to conclude something about probability measures with
given marginals, and vice versa. Notice that the absence of uniform strong arbitrage
is a very weak condition that is implied by the classical no-arbitrage conditions.
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416 BARTL, KUPPER, LUX, PAPAPANTOLEON, ECKSTEIN

Theorem 2.3. Let f : \BbbR d \rightarrow \BbbR be an upper semicontinuous and bounded function.
Then, there does not exist a uniform strong arbitrage if and only if \scrQ is not empty.
In this case,

\phi (f) = max
\mu \in \scrQ 

\int 
\BbbR d

f d\mu .(2.2)

Moreover,

\phi 0(f) = max
\mu \in \scrQ 0

\int 
\BbbR d

f d\mu .(2.3)

Proof. See Appendix C.

Remark 2.4. The optimal transport duality under additional information (2.2)
appears in a similar form in [22, Theorem 3.2]. These two results were developed
in parallel; however, their proofs are completely different. Moreover, in [22] the au-
thors consider the Fr\'echet class of d-dimensional probability distributions with given
marginals, whose copulas are bounded from below and above by arbitrary quasi-
copulas; a quasi-copula generalizes the notion of a copula. Specifically, in the notation
of Theorem 2.3, these authors assume that the measures \mu are bounded on the entire
domain from above and below, i.e.,

\pi 
\bigl( 
\mu 1(( - \infty , A1]), . . . , \mu d(( - \infty , Ad])

\bigr) 
\leq \mu (A) \leq \pi 

\bigl( 
\mu 1(( - \infty , A1]), . . . , \mu d(( - \infty , Ad])

\bigr) 
for all subsets A = ( - \infty , A1] \times \cdot \cdot \cdot \times ( - \infty , Ad] \subset \BbbR d, where \pi , \pi : [0, 1]d \rightarrow [0, 1] are
quasi-copulas, i.e., they are Lipschitz continuous and fulfill certain boundary condi-
tions. These constraints give rise to particular instances of the set \scrQ considered in
(2.1), so that our formulation in Theorem 2.3 is slightly more general than the setting
in [22].

Remark 2.5. The appearance of subprobability measures in \scrQ \preceq 0 stems from the
duality theorems and can be traced in the constructive proof of these theorems. In
terms of mathematical finance, we can view them both on the primal and on the dual
side of (2.3). On the primal side, subprobability measures arise once we consider
marginals that are not fully known, and their uncertainty is measured with 0th order
stochastic dominance. On the dual side, they arise once we consider shortselling
constraints on the trading strategies. Both scenarios, uncertainty in the marginals
and shortselling constraints, are very realistic.

As a corollary of Theorem 2.3 we derive in the following a duality result for
a maximum transport problem. This problem corresponds to the situation where,
besides the marginal distributions, the value of the measures is prescribed on an
increasing track in \BbbR d. In terms of random variables, this is equivalent to knowing
the distribution of the maximum of d random variables.

Corollary 2.6 (maximum transport problem). Let I = \BbbR , Ai = ( - \infty , i]d and
\pi i = \pi i = \nu max(( - \infty , i]) for some measure \nu max \in ca+1 (\BbbR ). Then

\scrQ =
\bigl\{ 
\mu \in ca+1 (\BbbR 

d) : \mu 1 = \nu 1, . . . , \mu d = \nu d and \mu \circ max - 1 = \nu max

\bigr\} 
,(2.4)

and for every upper semicontinuous bounded function f : \BbbR d \rightarrow \BbbR one has

\phi (f) = inf
\Bigl\{ d\sum 

j=1

\int 
\BbbR 
fj d\nu j +

\int 
\BbbR 
g d\nu max : f1, . . . , fd, g

\Bigr\} 
,
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where f1, . . . , fd, g : \BbbR \rightarrow \BbbR are bounded and measurable functions such that

f1(x1) + \cdot \cdot \cdot + fd(xd) + g(maxx) \geq f(x) for all x \in \BbbR d,(2.5)

where maxx := maxj=1,...,d xj for x \in \BbbR d.

Proof. See Appendix C.

Next, we provide another relaxation of the duality in (2.2) which follows along
the same lines of reasoning as (2.3). In particular, this can be interpreted again
as a pricing-hedging duality, where the superhedging problem involves uncertainty
both in the marginals and in the joint distribution, while the hedging strategy takes
into account bid and ask prices on single-asset options and the trading of multiasset
digital options. The uncertainty in the marginals is now measured in terms of first
order stochastic dominance.

Let us fix \nu j , \nu j \in ca+1 (\BbbR ) for each j = 1, . . . , d such that \nu j first order stochasti-
cally dominates \nu j . Recall that \nu j \preceq 1 \nu j in the first stochastic order if \nu j([t,\infty )) \leq 
\nu j([t,\infty )) for all t \in \BbbR or, equivalently, if

\int 
\BbbR f d\nu j \leq 

\int 
\BbbR f d\nu j for every nondecreasing

bounded function f : \BbbR \rightarrow \BbbR .
Let f : \BbbR d \rightarrow \BbbR be a cost or payoff function, and define the set

\Theta 1(f) :=
\Bigl\{ 
(f1, g1, . . . , fd, gd, a) :

d\sum 
j=1

\bigl( 
fj(xj) - gj(xj))+

\sum 
i\in I

ai1Ai(x) \geq f(x)\forall x \in \BbbR d
\Bigr\} 
,

where fj , gj : \BbbR \rightarrow \BbbR are nondecreasing and bounded functions, and a = (ai)i\in I is
such that ai = 0 for all but finitely many i \in I. Define

\pi (f1, g1, . . . , fd, gd, a) :=

d\sum 
j=1

\bigl( \int 
\BbbR 
fj d\nu j  - 

\int 
\BbbR 
gj d\nu j

\bigr) 
+

\sum 
i\in I

\bigl( 
ai+\pi i  - ai - \pi i

\bigr) 
for all (f1, g1, . . . , fd, gd, a) \in \Theta 1(f), and further define the functional

\phi 1(f) := inf
\bigl\{ 
\pi (f1, g1, . . . , fd, gd, a) : (f1, g1, . . . , fd, gd, a) \in \Theta 1(f)

\bigr\} 
.

Moreover, consider the set of measures

\scrQ 1 :=
\bigl\{ 
\mu \in ca+1 (\BbbR 

d) : \nu j \preceq 1 \mu j \preceq 1 \nu j and \pi i \leq \mu (Ai) \leq \pi i for all i, j
\bigr\} 
.

Then the following holds.

Theorem 2.7. Let f : \BbbR d \rightarrow \BbbR be an upper semicontinuous and bounded function.
Then, if \phi 1(\varepsilon ) > 0 for every \varepsilon > 0, it holds that

\phi 1(f) = sup
\mu \in \scrQ 1

\int 
\BbbR d

f d\mu .(2.6)

Proof. See Appendix C.

2.2. Optimality. We will provide now results that outline under which condi-
tions the infimum on the left-hand side of the transport duality in (2.2) is attained.
This result will also allow us to characterize the optimal measure \mu  \star on the right-hand
side of this duality.
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Proposition 2.8. Let f : \BbbR d \rightarrow \BbbR be a bounded function, and assume that
the set I is finite. Then, there exists (f1, . . . , fd, a) \in \Theta 0(f) such that \phi 0(f) =
\pi (f1, . . . , fd, a), that is, the infimum in the definition of \phi 0 is attained. If, in ad-
dition, we assume that \scrQ is nonempty and that for every a \in \BbbR I \setminus \{ 0\} there exists
a coupling \mu between \mu 1, . . . , \mu d such that

\sum 
i\in I a

i\mu (Ai) > \pi (0, . . . , 0, a), then there
exists (f1, . . . , fd, a) \in \Theta (f) such that \phi (f) = \pi (f1, . . . , fd, a).

Proof. See Appendix D.

Remark 2.9. The assumption that
\sum 

i\in I a
i\mu (Ai) > \pi (0, . . . , 0, a) can be thought

of as (slightly stronger than) requiring that the additional constraints are actual con-
straints and not automatically satisfied. In case of only one constraint A1, for example,
this simply means that inf\mu \mu (A

1) < \pi 1 \leq \pi 1 < sup\mu \mu (A
1), where in both cases \mu 

runs through all couplings. In two dimensions, if \mu 1 = \mu 2 is the restriction of the
Lebesgue measure to [0, 1] and A = [0, 1

2 ]
2, then this assumption is satisfied if and

only if 0 < \pi 1 \leq \pi 1 < 1
2 .

The result we are really after is the following consequence of Proposition 2.8.

Corollary 2.10. If, in addition to the assumptions of Proposition 2.8, we have
that \pi i = \pi i for all i \in I, then for a probability measure \mu  \star \in \scrQ the following
statements are equivalent:

(i) There exists some (f1, . . . , fd, a) \in \Theta (f) such that

f1(x1) + \cdot \cdot \cdot + fd(xd) +
\sum 
i\in I

ai1Ai(x) = f(x) for \mu  \star -a.e. x \in \BbbR d.(2.7)

(ii) The probability measure \mu  \star is optimal, that is, \phi (f) =
\int 
f d\mu  \star .

Proof. See Appendix D.

Note that in the absence of constraints and in the two-dimensional case (d = 2),
this readily implies that \mu  \star \in \scrQ is optimal if and only if it is f -monotone in the sense
of [33]. The latter concept was extended to the case of continuous constraints in [34,
Theorem 3.6].

Remark 2.11. An optimality result analogous to Corollary 2.10 for the set \scrQ 1

is possible and requires some further technical arguments. We have refrained from
providing this here for the sake of brevity.

Remark 2.12. Besides Corollary 2.10, (the proof of) Proposition 2.8 has another
consequence, namely, that of duality for measurable cost functions. Indeed, the proof
shows that for every sequence of uniformly bounded Borel cost functions fn which
increase pointwise to some f , one has that \phi (f) = supn \phi (f

n); similarly \phi 0(f) =
supn \phi 0(f

n). An application of Choquet's capacitability theorem in the form of [1,
Theorem 2.2] then implies that Theorem 2.3 extends to all bounded Borel f ; that is,
under the assumptions made in Proposition 2.8, we have

\phi (f) = sup
\mu \in \scrQ 

\int 
\BbbR d

f d\mu and \phi 0(f) = sup
\mu \in \scrQ 0

\int 
\BbbR d

f d\mu 

for all f : \BbbR d \rightarrow \BbbR bounded and Borel.

3. Sharpness of the improved Fr\'echet--Hoeffding bounds for the classes

\bfscrF \bfitS ,\bfitpi 
\preceq \bfone 

and \bfscrF \bfitS ,\bfitpi 

\preceq \bfone 
. In this and in the following sections, we will present sharpness and

nonsharpness results for the improved Fr\'echet--Hoeffding bounds in the Fr\'echet classes
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presented in the introduction of this work. More specifically, in this section we will
show that the improved upper Fr\'echet--Hoeffding bound is pointwise sharp for the

Fr\'echet class \scrF S,\pi 

\preceq 1
introduced in (1.6), while the improved lower Fr\'echet--Hoeffding

bound is pointwise sharp for the Fr\'echet class \scrF S,\pi 
\preceq 1

introduced in (1.7). In section 4,
we will show that the improved upper Fr\'echet--Hoeffding bound is pointwise sharp
for the Fr\'echet class \scrF S,\pi 

\preceq 0
introduced in (1.5). Finally, the counterexamples in the

subsequent Appendix A show that the improved Fr\'echet--Hoeffding bounds are not
pointwise sharp for the class \scrF S,\pi .

Before we proceed with the statements and their proofs, let us clarify the relation
between the notation used in section 2 and the notation used in the Introduction
and also in section 3 and section 4, as well as in Appendix A. The following figure,
Figure 1, shall help us clarify the connection between the two notations.

S

Ai

s

Fig. 1. Illustration of the relation between the sets S and (Ai)i\in I .

Recall the definition of the set \scrF S,\pi (F \ast 
1 , . . . , F

\ast 
d ) in (1.3): for every point s \in S

there exists a value \pi s \in [0, 1] such that \pi s = F (s). Recall also the definition of the
set \scrQ in (2.1) and assume, for simplicity, that \pi i = \pi i = \pi i for all i \in I. Then,

for every point s \in S we can define a set Ai via Ai =\times d

j=1
( - \infty , sj ] (see Figure 1);

hence card(S) = card(I). Then, by construction, we have the following equalities:
\mu (Ai) = \pi i = \pi s = F (s) for some i \in I and some s \in S. Therefore, the set \scrF S,\pi in
(1.3) corresponds exactly to the set \scrQ in (2.1) in the setting described above. The

relation between the sets \scrF S,\pi 
\preceq 0 and\scrQ \preceq 0 is completely analogous. The relation between

the sets \scrF S,\pi 
\preceq 1

and \scrF S,\pi 

\preceq 1
and the set \scrQ \preceq 1 is also analogous once we observe that the

former have one-sided constraints, while the latter has two-sided constraints.
The question of sharpness or pointwise sharpness of the Fr\'echet--Hoeffding bounds

has a long history in the probability theory literature. The upper Fr\'echet--Hoeffding
bound is a distribution function itself; hence the bound is actually sharp. On the other
hand, the lower Fr\'echet--Hoeffding bound is a distribution function, and thus sharp,
only in dimension 2, while in the general case [28] showed that the lower Fr\'echet--
Hoeffding bound is pointwise sharp. Regarding the improved Fr\'echet--Hoeffding
bounds, [32] showed in dimension 2 that the upper bound is a distribution func-
tion, and thus also sharp, in case the set S is decreasing (i.e., for (u1, u2), (v1, v2) \in S
holds (u1  - v1)(u2  - v2) \leq 0). This result was later strengthened by [3], using weaker
assumptions. On the other hand, [20] showed that in the higher-dimensional case
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(d > 3) the upper improved Fr\'echet--Hoeffding bound is sharp only in trivial cases.
The counterexample in Appendix A is therefore surprising because it shows that once
the condition of [32] is violated the bound is not even pointwise sharp.

Let us first show that the improved upper Fr\'echet--Hoeffding bound is pointwise

sharp for \scrF S,\pi 

\preceq 1 .

Proposition 3.1. Let S be a bounded subset of \BbbR d. The following holds for every
x \in \BbbR d:

(3.1) max
F\in \scrF S,\pi 

\preceq 1 (F\ast 
1 ,...,F\ast 

d )

F (x) = min
j=1,...,d

F \ast 
j (xj) \wedge min\{ \pi s : s \in S such that x \leq s\} .

Proof. The definition of \scrF S,\pi 

\preceq 1 (F
\ast 
1 , . . . , F

\ast 
d ) immediately implies that the left-hand

side (LHS) of (3.1) is smaller than or equal to its right-hand side (RHS).
In order to show the reverse inequality, fix x \in \BbbR d. Since S is bounded, there exists

r \in \BbbR large enough such that r \geq xj +1 and r \geq sj +1 for all j = 1, . . . , d and s \in S.
Let us distinguish between the following two cases:
Case 1: Assume that the RHS in (3.1) is attained at minj F

\ast 
j (xj). Define

Gj(t) := F \ast 
j (xj)1[xj ,r)(t) + F \ast 

j (t)1[r,\infty )(t)

for t \in \BbbR , j = 1, . . . , d, and F (y) = minj=1,...,d Gj(yj) for y \in \BbbR d. One can check that
F is a cdf, and it holds that Fj(t) = Gj(t) \leq F \ast 

j (t) for all t \in \BbbR and j = 1, . . . , d. To
show that F (s) \leq \pi s for all s \in S, fix s \in S. If x \leq s, then xj \leq sj \leq r for j = 1, . . . , d
and therefore F (s) = minj Gj(s) = minj F

\ast 
j (xj) = RHS \leq \pi s. Otherwise, i.e., if there

exists some j\ast such that sj\ast < xj\ast , one has F (s) \leq Gj\ast (sj\ast ) = 0 \leq \pi s. This shows

F \in \scrF S,\pi 

\preceq 1 (F
\ast 
1 , . . . , F

\ast 
d ). Further, since F (x) = minj F

\ast 
j (xj) = RHS, one obtains that

LHS \geq RHS.
Case 2: Assume that the RHS is attained at \pi s\ast for some s\ast \in S. Define

Gj(t) := \pi s\ast 1[xj ,r)(t) + F \ast 
j (t)1[r,\infty )(t)

for t \in \BbbR , j = 1, . . . , d, and F (y) = minj Gj(yj) for y \in \BbbR d. One can again check
that F is a cdf. Since \pi s\ast \leq F \ast 

j (xj), one has Fj(t) = Gj(t) \leq F \ast 
j (t) for all t \in \BbbR and

j = 1, . . . , d. For s \in S with x \leq s, it holds that F (s) = minj Gj(s) = minj F
\ast 
j (xj) =

\pi s\ast \leq \pi s since the RHS is attained at \pi s\ast . Otherwise it holds that F (s) = 0, so that

F \in \scrF S,\pi 

\preceq 1 (F
\ast 
1 , . . . , F

\ast 
d ). Since F (x) = minj F

\ast 
j (xj) = RHS, one therefore obtains that

LHS \geq RHS.

As usual, for a nondecreasing function g : \BbbR d \rightarrow \BbbR or g : \BbbR \rightarrow \BbbR , we define its
left-continuous version by g(x - ) := supy<x g(y) for all x. Let us next show that the

improved lower Fr\'echet--Hoeffding bound is pointwise sharp for \scrF S,\pi 
\preceq 1 .

Theorem 3.2. Let S be a bounded subset of \BbbR d. The following holds for every
x \in \BbbR d:

inf
F\in \scrF S,\pi 

\preceq 1
(F\ast 

1 ,...,F\ast 
d )

F (x - )

= max
\Bigl\{ 
1 - d+

d\sum 
j=1

F \ast (xj - ), 0
\Bigr\} 

\vee sup
s\in S

\Bigl\{ 
\pi s  - 

d\sum 
j=1

1\{ sj\geq xj\} 
\bigl( 
1 - F \ast 

i (xj - )
\bigr) \Bigr\} 

.(3.2)D
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Moreover, if S is finite, then for every x \in \BbbR d,

inf
F\in \scrF S,\pi 

\preceq 1
(F\ast 

1 ,...,F\ast 
d )

F (x)

= max
\Bigl\{ 
1 - d+

d\sum 
j=1

F \ast (xj), 0
\Bigr\} 

\vee max
s\in S

\Bigl\{ 
\pi s  - 

d\sum 
j=1

1\{ sj>xj\} 
\bigl( 
1 - F \ast 

j (xj)
\bigr) \Bigr\} 

.(3.3)

Proof. For y \in \BbbR d, we define A(y) := \{ z \in \BbbR d : z \leq y\} and B(y) := \{ z \in \BbbR d : z <
y\} . Fix x \in \BbbR d. Throughout, we assume that f1, . . . , fd : \BbbR \rightarrow \BbbR are nonincreasing
bounded functions and as \geq 0 for all s \in S and as = 0 for all but finitely many s \in S.
The proof is divided into the following steps.

Step 1. We claim that

inf
F\in \scrF S,\pi 

\preceq 1
(F\ast 

1 ,...,F\ast 
d )

F (x - ) = inf
F\in \scrF S,\pi 

\preceq 1
(F\ast 

1 ,...,F\ast 
d )

\int 
\BbbR d

1B(x) dF

= sup
\Bigl\{ d\sum 

j=1

\int 
\BbbR 
fj dF

\ast 
j +

\sum 
s\in S

as\pi s :

d\sum 
j=1

fj +
\sum 
s\in S

as1A(s) \leq 1B(x)

\Bigr\} 
.(3.4)

The argumentation is similar to Theorem 2.7; thus we only provide a sketch. For
every lower semicontinuous bounded function f : \BbbR d \rightarrow \BbbR , we define

\phi 
1
(f) := sup

\Bigl\{ d\sum 
j=1

\int 
\BbbR 
fj dF

\ast 
j +

\sum 
i\in I

ai\pi i :

d\sum 
j=1

fj(zj) +
\sum 
s\in S

as1A(s)(z) \leq f(z)\forall z \in \BbbR d
\Bigr\} 
.

Since \scrF S,\pi 
\preceq 1 (F

\ast 
1 , . . . , F

\ast 
d ) is not tight, we restrict to those payoff functions f for which

the limit limz\rightarrow  - \infty f(z) exists. For each N > 0, we modify the marginals \~F \ast 
j :=

F \ast 
j \wedge 1[ - N,\infty ) and consider the approximate version

\~\phi 
1
(f) := sup

\Bigl\{ d\sum 
j=1

\int 
[ - N,\infty )

fj d \~F \ast 
j +

\sum 
i\in I

ai\pi i :

d\sum 
j=1

fj(zj) +
\sum 
s\in S

as1A(s)(z) \leq f(z) for all z \in [ - N,\infty )d
\Bigr\} 
.

Similar to Theorem 2.7, it holds that \~\phi 
1
(f) = minF\in \scrF S,\pi 

\preceq 1
( \~F\ast 

1 ,..., \~F\ast 
d )

\int 
[ - N,\infty )d

f dF .

Then, by letting N \rightarrow \infty , we end up with \phi 
1
(f) = infF\in \scrF S,\pi 

\preceq 1
(F\ast 

1 ,...,F\ast 
d )

\int 
\BbbR d f dF .

Step 2. We next show that the value of the optimization problem (3.4) is given
by the expression in (3.2). This follows from the following partial Steps 2a--2c.

Step 2a. First, we consider the simplified optimization problem

(3.5) sup

d\sum 
j=1

\int 
\BbbR 
fj dF

\ast 
j such that

d\sum 
j=1

fj \leq 1B(x).

Similar to the classical Fr\'echet--Hoeffding lower bound, the supremum of (3.5) is
attained at

d\sum 
j=1

\=fj \equiv 0 or

d\sum 
j=1

\=fj = 1 - d+

d\sum 
j=1

1( - \infty ,xj),
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and the respective optimal value is given by max\{ 1 - d+
\sum d

j=1 F
\ast 
j (xj - ), 0\} .

Step 2b. Next, we consider the optimization problem

sup

d\sum 
j=1

\int 
\BbbR 
fj dF

\ast 
j +

\sum 
s\in S

as\pi s : such that

d\sum 
j=1

fj +
\sum 
s\in S

as1A(s) \leq 1B(x).(3.6)

It is enough to maximize (3.6) over all (as)s\in S such that
\sum 

s a
s \leq 1. Indeed, let

f1, . . . , fd and (as)s\in S such that
\sum 

s a
s > 1 and

\sum 
j fj +

\sum 
s a

s1A(s) \leq 1B(x). Then,

for \~f1, . . . , \~fd and (\~as)s\in S such that 0 \leq \~as \leq as,
\sum 

s \~a
s = 1, \~f1 = f1 +

\sum 
s(a

s  - \~as),

and \~fj = fj for j = 2, . . . , d, we have
\sum 

j
\~fj +

\sum 
s \~a

s1A(s) \leq 1B(x), but
\sum 

j

\int 
\~fj dF

\ast 
j +\sum 

s \~a
s\pi s \geq 

\sum 
j

\int 
fj dF

\ast 
j +

\sum 
s a

s\pi s. This shows that it is enough to maximize over
those (as)s\in S which satisfy 0 \leq 

\sum 
s a

s \leq 1.
Further, in order for the admissibility constraint in (3.6) to hold, one has to com-

pensate as1A(s) with the nonincreasing functions f1, . . . , fd whenever A(s) \not \subseteq B(x).
Therefore, by replacing as1A(s) with as(1A(s) - 

\sum 
j 1\{ si\geq xj\} 1[xj ,\infty )), the optimal value

in (3.6) is given by

sup

d\sum 
j=1

\int 
\BbbR 
fj dF

\ast 
j +

\sum 
s\in S

as
\bigl( 
\pi s  - 

d\sum 
j=1

1\{ sj\geq xj\} F
\ast 
j (xj - )

\bigr) 
(3.7)

such that

\biggl\{ 
0 \leq 

\sum 
s\in S as \leq 1,\sum d

j=1 fj +
\sum 

s\in S as
\bigl( 
1A(s)  - 

\sum d
j=1 1\{ sj\geq xj\} 1[xj ,\infty )

\bigr) 
\leq 1B(x).

Step 2c. The optimization problem (3.7) can be reformulated as follows. First,

notice that 1A(s)  - 
\sum d

j=1 1\{ sj\geq xj\} 1[xj ,\infty ) \leq 1B(x) for all s \in S. Further, by the

nonincreasingness of
\sum d

j=1 fj , the constraint

d\sum 
j=1

fj \leq 1B(x)  - 
\sum 
s\in S

as
\bigl( 
1A(s)  - 

d\sum 
j=1

1\{ sj\geq xj\} 1[xj ,\infty )

\bigr) 
is equivalent to

\sum 
j fj \leq (1  - 

\sum 
s a

s)1B(x). Therefore, we conclude that the optimal
value of (3.7) is equal to

sup

d\sum 
j=1

\int 
\BbbR 
fj dF

\ast 
j +

\sum 
s\in S

as
\bigl( 
\pi s  - 

d\sum 
j=1

1\{ sj\geq xj\} F
\ast 
j (xj - )

\bigr) 
(3.8)

such that

\biggl\{ 
0 \leq 

\sum 
s\in S as \leq 1,\sum d

j=1 fj \leq (1 - 
\sum 

s\in S as)1B(x).

Then, the optimal value of (3.8) is given by

\Bigl( 
sup\sum d

j=1 fj\leq (1 - 
\sum 

s\in S as)1B(x)

d\sum 
j=1

\int 
\BbbR 
fj dF

\ast 
j

\Bigr) 
\vee sup

s\in S

\Bigl\{ 
\pi s  - 

d\sum 
j=1

1\{ sj\geq xj\} F
\ast 
j (xj - )

\Bigr\} 

= max
\Bigl\{ 
1 - d+

d\sum 
j=1

F \ast 
j (xj - ), 0

\Bigr\} 
\vee sup

s\in S

\Bigl\{ 
\pi s  - 

d\sum 
j=1

1\{ sj\geq xj\} F
\ast 
j (xj - )

\Bigr\} 
,(3.9)

where the last inequality follows from Step 2a. This shows that the optimal value of
(3.4), which is equal to the value of (3.6) and (3.8), is given by the value in (3.9).
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Step 3. It remains to show the equality (3.3) under the assumption that S is
finite. We approximate A(x) with open intervals from above. To that end, for every
n \in \BbbN , let xn = (x1 + 1

n , . . . , xd + 1
n ) so that A(x) = \cap n\in \BbbN B(xn). Then, by the

previous Step 2, we obtain

inf
F\in \scrF S,\pi 

\preceq 1
(F\ast 

1 ,...,F\ast 
d )

F (x) = inf
F\in \scrF S,\pi 

\preceq 1
(F\ast 

1 ,...,F\ast 
d )

\int 
\BbbR d

1A(x) dF

= inf
n\in \BbbN 

inf
F\in \scrF S,\pi 

\preceq 1
(F\ast 

1 ,...,F\ast 
d )

\int 
\BbbR d

1B(xn) dF

= inf
n\in \BbbN 

\Bigl( 
max

\Bigl\{ 
1 - d+

d\sum 
j=1

F \ast 
j (x

n
j  - ), 0

\Bigr\} 
\vee max

s\in S

\Bigl\{ 
\pi s  - 

d\sum 
j=1

1\{ sj\geq xn
j \} 
\bigl( 
1 - F \ast 

j (x
n
j  - )

\bigr) \Bigr\} \Bigr) 

= max
\Bigl\{ 
1 - d+

d\sum 
j=1

F \ast 
j (xi), 0

\Bigr\} 
\vee max

s\in S

\Bigl\{ 
\pi s  - 

d\sum 
j=1

1\{ sj>xj\} 
\bigl( 
1 - F \ast 

j (xj)
\bigr) \Bigr\} 

.

The infiumum and the maxima can be interchanged, since for every \varepsilon > 0 there
exists n0 \in \BbbN such that F \ast 

j (xj) + \varepsilon \geq F \ast 
j (x

n
j  - ) and  - 1\{ sj>xj\} (1  - F \ast 

j (xj)) + \varepsilon \geq 
 - 1\{ sj\geq xn

j \} (1 - F \ast 
j (x

n
j  - )) for all s \in S, j = 1, . . . , d, and n \geq n0.

4. Sharpness of the improved upper Fr\'echet--Hoeffding bound for the
class \bfscrF \bfitS ,\bfitpi 

\preceq \bfzero 
. The aim of this section, is to show that the improved upper Fr\'echet--

Hoeffding bound is pointwise sharp for the class \scrF S,\pi 
\preceq 0

. In order to deduce this result,

we will show that the primal2 problem \phi 0(f) admits an explicit solution for the
function f = 1B for rectangular sets B \subset \BbbR d. The main result of this section is
the following theorem, while the sharpness of the improved upper Fr\'echet--Hoeffding
bound is a direct corollary thereof.

Theorem 4.1. Let B \subset \BbbR d be a rectangular set. The following holds:

max
\mu \in \scrQ 0

\mu (B) = min
i=1,...,d

\bigl\{ 
\nu i(( - \infty , Bi])

\bigr\} 
\wedge min

i\in I

\Bigl\{ 
\=\pi i +

d\sum 
j=1

\nu j((A
i
j , Bj ])

\Bigr\} 
.

Remark 4.2. In order to ease the presentation of the proof of this result, we
consider in the following the case d = 2 for a box B = ( - \infty , B1]\times ( - \infty , B2] and finite
I, i.e., I = \{ 1, . . . , n\} . In other words, we will prove that

max
\mu \in \scrQ 0

\mu (B) = min
\bigl\{ 
\nu 1(( - \infty , B1]), \nu 2(( - \infty , B2]),min

i\in I

\bigl\{ 
\=\pi i+\nu 1((A

i
1, B1]))+\nu 2((A

i
2, B2])

\bigr\} \bigr\} 
.

The proof for the higher-dimensional case (d > 2) can be obtained by analogous
arguments.

2In some parts of the literature on optimal transportation this is called the primal problem (see,
e.g., [33]), while in other parts this is called the dual problem (see, e.g., [19]).
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B B B

A

Fig. 2. A graphical representation of Theorem 4.1 for d = 2.

B

A1

A2

Fig. 3. Nonoptimality of superhedging with two boxes.

Figure 2 offers a graphical representation of Theorem 4.1 in the two-dimensional
case. Let us call ``box"" a multiasset option with payoff 1B with B \subset \BbbR 2, i.e., an
option that pays off one unit of currency in case all asset prices at maturity lie inside
B. Moreover, let us call ``strip"" a single-asset option with payoff 1J\times \BbbR or 1\BbbR \times J with
J \subset \BbbR , i.e., an option that pays off one unit of currency in case the corresponding
asset price at maturity lies inside J . Then, in the language of mathematical finance,
this result states that there are three possible ways to superhedge the box B: either
using a horizontal strip (left), or a vertical strip (middle), or another box A plus the
horizontal and/or vertical strips adjacent to it (right).

Figure 3 offers an intuitive explanation of why it is not optimal to buy two boxes
A1 and A2 in order to superhedge B, in the presence of shortselling constraints.
Indeed, in case one buys both A1 and A2, then the shaded region is bought twice
incurring unnecessary additional costs, while the shaded region is still not hedged.
In order to hedge the latter, a further investment in horizontal and/or vertical strips
is required, thus further increasing the cost of the hedging strategy.

Theorem 2.3 applied to f = 1B yields immediately that

\phi 0(1B) = max
\mu \in \scrQ 0

\int 
1Bd\mu = max

\mu \in \scrQ 0

\mu (B);

hence we need to show that \phi 0(1B) admits the following representation:

\phi 0(1B) = min
\bigl\{ 
\nu 1(( - \infty , B1]), \nu 2(( - \infty , B2]),min

i\in I

\bigl\{ 
\=\pi i+\nu 1((A

i
1, B1]))+\nu 2((A

i
2, B2])

\bigr\} \bigr\} 
.
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B

A1

A3

A2

Rd42

d32

d22

d12

d41d31d21d11

Fig. 4. The main setting is illustrated in this figure, where d31 = B1 hence i1 = 3.

Let us introduce some notation now that will be used in the subsequent proofs;
it is illustrated in Figure 4. Define Dj := \{ Ai

j : i \in I\} \cup \{ Bj\} for j = 1, 2, and let

Dj = \{ dkj : k = 1, . . . ,mj\} be an enumeration such that d1j < d2j < \cdot \cdot \cdot < d
mj

j . Further,

define F 0
j := ( - \infty , d1j ], F

i
j := [dij , d

i+1
j ) for i = 1, . . . ,mj  - 1, and F

mj

j := (d
mj

j ,\infty )

for j = 1, 2. Moreover, let i1 be such that di11 = B1. In a first step, notice that in the
definition of \phi 0(1B) we can and will restrict ourselves, without loss of generality, to
functions fj of the form

fj(x) :=

mj\sum 
i=1

f i
j1F i

j
(x), where f i

j are positive constants.

We will refer to the functions f1 as ``vertical marginals"" and to the functions f2 as
``horizontal marginals.""

Lemma 4.3. Let R := F i1 - 1
1 \times \BbbR . Then

\phi 0(1B) = min
s\in \{ 0,1\} 

\bigl\{ 
s\nu 1(F

i1 - 1
1 ) + s\phi 0(1B\setminus R) + (1 - s)\eta (1B)

\bigr\} 
,(4.1)

where

\eta (1B) := inf
\bigl\{ 
\pi (0, f2, a) : f2(x2) +

\sum 
i\in I

ai1Ai(x) = 1 for all x \in B and f2, a
i \geq 0

\bigr\} 
= min

\bigl\{ 
\nu 2(( - \infty , B2]), min

i\in I:B1\leq Ai
1

\bigl\{ 
\=\pi i + \nu 2((A

i
2, B2])

\bigr\} \bigr\} 
.(4.2)

D
ow

nl
oa

de
d 

05
/3

1/
22

 to
 1

31
.1

80
.2

27
.1

95
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

426 BARTL, KUPPER, LUX, PAPAPANTOLEON, ECKSTEIN

B

B1

B2

B

A

B1

B2

A1

A2

Fig. 5. A graphical representation of the functional \eta (1B).

The functional \eta (1B) is graphically illustrated in Figure 5 and states that there
are two ways to superhedge the box B without using the vertical marginals: either
using the horizontal strip 1\BbbR \times ( - \infty ,B2] or using another box A with A1 \geq B1 and, in
case B2 > A2, the horizontal strip ``above"" this box, i.e., 1\BbbR \times (A2,B2].

Proof. Initially, notice that all optimization problems appearing are finite-
dimensional linear problems, so that minimizers always exist.

We start by proving (4.1) and first show that the LHS is smaller than the RHS.
Indeed, in case s = 0, this reduces to the fact that obviously \phi 0(1B) \leq \eta (1B), since
\phi 0(1B) is defined as the infimum over a larger set. In case s = 1, let (f1, f2, a) \in 
\Theta 0(1B\setminus R) be optimal---in the sense that \pi (f1, f2, a) = \phi 0(1B\setminus R)---and notice that one

can assume without loss of generality that f i1 - 1
1 = 0. Now define

\^f i
1 :=

\Biggl\{ 
f i
1 if i \not = i1  - 1,

1 else,

and it follows that ( \^f1, f2, a) \in \Theta 0(1B). By the definition of \^f i
1 it holds that

\pi ( \^f1, f2, a) = \nu 1(F
i1 - 1
1 ) + \pi (f1, f2, a) = \nu 1(F

i1 - 1
1 ) + \phi 0(1B\setminus R),

which shows that \phi 0(1B) \leq \nu 1(F
i1 - 1
1 ) + \phi 0(1B\setminus R).

In order to prove the reverse inequality, notice that by interchanging two minima
it holds that

\phi 0(1B) = min
s\in [0,1]

\bigl\{ 
s\nu 1(F

i1 - 1
1 ) + \phi 

\setminus i1 - 1
0 (1B  - s1R)

\bigr\} 
,(4.3)

where

\phi 
\setminus i1 - 1
0 (1B  - s1R) := inf

\bigl\{ 
\pi (f1, f2, a) : (f1, f2, a) \in \Theta 0(1B  - s1R) and f i1 - 1

1 = 0
\bigr\} 
.

Fix some optimal s in (4.3) and an optimal strategy (f1, f2, a) for \phi 
\setminus i1 - 1
0 (1B  - s1R).

Since f i1 - 1
1 = 0, it follows that

f2(x2) +
\sum 
i\in I

ai1Ai(x) = f2(x2) +
\sum 

i\in I:B1\leq Ai
1

ai1Ai(x) \geq 1 - s for all x \in B \cap R.

Let t :=
\sum 

i\in I:B\subset Ai ai. On the one hand, if t \geq 1  - s, set \=ai := (1  - s)ai/t for every
i such that B \subset Ai, \=ai = 0 else, and \=f2 = 0. Then

\sum 
i\in I \=a

i1Ai(x) = 1 - s for x \in B;
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thus (0, 0, \=a) is an admissible strategy for \eta ((1 - s)1B) = (1 - s)\eta (1B). Further define
\~a := a - \=a \geq 0. Then one can check that (f1, f2, \~a) \in \Theta 0(s1B\setminus R). Therefore

\phi 0(1B) = s\nu 1(F
i1 - 1
1 ) + \pi (f1, f2, a)

= s\nu 1(F
i1 - 1
1 ) + \pi (f1, f2, \~a) + \pi (0, 0, \=a)(4.4)

\geq min
s\in [0,1]

\bigl\{ 
s\nu 1(F

i1 - 1
1 ) + s\phi 0(1B\setminus R) + (1 - s)\eta (1B)

\bigr\} 
.

Moreover, since the last term is affine in s, it follows that the minimum over s \in [0, 1]
yields the same value as the minimum over s \in \{ 0, 1\} .

On the other hand, assume that t < 1 - s, and define \=ai := ai for all i such that
B \subset Ai. For notational convenience we assume that Ai

1 \geq B1 exactly for i = 1, . . . ,m
and that B2 > A1

2 > A2
2 > \cdot \cdot \cdot > Am

2 ; the case where Ai
2 = Aj

2 for some i, j \leq m works
in the same way but requires additional notation. Further denote by k0 the index
such that dk0

2 = B2 and by ki the index such that dki
2 = Ai

2, for i = 1, . . . ,m. Then,
for every i = k1, . . . , k0  - 1 it needs to hold that f i

2 \geq \=f i
2 := 1 - s - t > 0. Moreover

f i
2 + a1 \geq 1 - s - t for k2 \leq i \leq k1  - 1,(4.5)

i.e., f2(x2) + a1 \geq 1  - s  - t for all x \in R with x2 \in (A1
2, B2]. Now, there are two

possibilities:
\bullet If a1 \geq \=a1 := 1  - s  - t, then set \=f i

2 := 0 for i \leq k1  - 1 and \=ai := 0
for i = 2, . . . ,m. Then (0, \=f2, \=a) is an admissible strategy for \eta (1B) and
(f1, \~f2, \~a) \in \Theta 0(s1B\setminus R), where \~f2 := f2  - \=f2 and \~a := a - \=a. Hence, it follows
from linearity of \pi , as in (4.4), that

\phi 0(1B) \geq min
s\in [0,1]

\bigl\{ 
s\nu 1(F

i1 - 1
1 ) + s\phi 0(1B\setminus R) + (1 - s)\eta (1B)

\bigr\} 
.

\bullet Otherwise, if \=a1 := a1 < 1  - s  - t, define \=f i
2 := 1  - s  - t  - a1 \leq f i

2 for all
k2 \leq i \leq k1  - 1, and set \~t := t+ a1. Then

\=f2(x2) +
\sum 

i\in I:B1\leq Ai
1

\=ai1Ai(x) = 1 - s for x \in B such that A1
2 \leq x2 \leq B2

and necessarily f i
2 + a2 \geq 1  - s  - \~t for k3 \leq i \leq k2  - 1. This means that

the situation is the same as in (4.5). Repeating this procedure at most m
times, one finds an admissible strategy (0, \=f2, \=a) for \eta (1B). Since (f1, \~f2, \~a) \in 
\Theta 0(s1B), where \~f2 := f2  - \=f2 \geq 0 and \~a := a  - \=a \geq 0, it follows from the
linearity of \pi that (4.4) holds true.

We proceed now with the proof of (4.2). First notice that for all i with B \subset Ai

it holds that
\eta (1B) = min

ai\in [0,1]

\bigl\{ 
ai\=\pi i + (1 - ai)\eta \setminus i(1B)

\bigr\} 
,

where \eta \setminus i is defined as \eta , with the additional requirement that ai = 0. Hence ai \in 
\{ 0, 1\} . If ai = 1 for some i with B \subset Ai, then the proof is complete. Otherwise
denote by l an element in \~I := \{ i \in I : B1 \leq Ai

1 and Ai
2 \leq B2\} such that Ai

2 \leq Al
2

for all i \in \~I. Then l = dk2 for some k and it necessarily has to hold that f2 = 1 on
(Al

2, B2]. Thus
\eta (1B) = \nu 2((A

l
2, B2]) + \eta (1B\setminus R),

where R := \BbbR \times (Al
2, B2]. Since B \setminus R is again a box, the claim now follows by

induction.
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We are now ready to prove the main result of this section.

Proof of Theorem 4.1. Let R := F i1 - 1
1 \times \BbbR . If s = 0 and s = 1 are both optimizers

in (4.1), we always chose s = 0 in order to exclude many pathological cases (see the
proof below).

Case 1: If s = 0, this means that \phi 0(1B) = \eta (1B). However, by (4.2) an optimal
strategy for \eta (1B) consists of either the full horizontal marginal, i.e., f2 = 1( - \infty ,B2]

and a = 0, or exactly one box Ai with B1 \leq Ai
1 (i.e., ai = 1 and aj = 0 for j \not = i)

and the horizontal marginal ``above"" this box, i.e., f2 = 1(Ai
2,B2]; see again Figure 5.

Since both strategies are elements of \Theta 0(1B), the proof is complete.
Case 2: If s = 1, this means that an optimal strategy for \phi 0(1B) consists of

f i1 - 1
1 = 1 plus an optimizer for \phi 0(1B\setminus R). If B \setminus R is empty, this means that the opti-
mizer of \phi 0(1B) is the full vertical marginal, i.e., f1 = 1

F
i1 - 1
1

= 1( - \infty ,B1]. Otherwise

notice that \^B := B \setminus R is again a (nonempty) box. Hence one can apply Lemma 4.3
again: Define \^R := F i1 - 2

1 \times \BbbR so that

\phi 0(1 \^B) = min
s\in \{ 0,1\} 

\bigl\{ 
s\nu 1(F

i2 - 1
1 ) + s\phi 0(1 \^B\setminus \^R) + \eta (1 \^B)

\bigr\} 
.

Now, there are again two possibilities:
\bullet If s = 0, i.e., \phi 0(1 \^B) = \eta (1 \^B), then an optimal strategy for \eta (1 \^B) consists of
either the full horizontal marginal f2 = 1( - \infty , \^B2]

= 1( - \infty ,B2] only or exactly

one box Ai with \^B1 \leq Ai
1 and the horizontal marginal above the box, i.e.,

f2 = 1(Ai
2,

\^B2]
= 1(Ai

2,B2]. We claim that the first case cannot happen, while

in the second one it holds that Ai
1 = \^B1. Indeed, if f2 = 1( - \infty ,B2] is optimal,

then (0, f2, 0) \in \Theta 0(1B). In particular the previous choice f i1 - 1
1 = 1 was not

optimal. Similarly, it follows that in the second case Ai
1 = \^B1.

\bullet If s = 1, then the optimal strategy for \phi 0(1 \^B) consists of f
i1 - 1
1 = f i1 - 2

1 = 1
plus the optimal one for \phi 0(1 \^B\setminus \^R).

By induction, it follows that an optimal strategy for \phi 0(1B) can take one of the
following forms:

either f1 = 1(\infty ,B1], f2 = 0, and a = 0

or f1 = 0, f2 = 1( - \infty ,B2], and a = 0

or f1 = 1(Ai
1,B1], f2 = 1(Ai

2,B2], and aj = 1 if j = i and aj = 0 else;

compare again with Figure 2. This completes the proof.

Now we are ready to provide the pointwise sharpness result for the improved
upper Fr\'echet--Hoeffding bound for the class \scrF S,\pi 

\preceq 0
.

Corollary 4.4. The following holds, for every x \in \BbbR d:

max
F\in \scrF S,\pi 

\preceq 0
(F\ast 

1 ,...,F\ast 
d )

F (x) = min
i=1,...,d

F \ast 
i (xi)\wedge min

\Bigl\{ 
\pi s+

d\sum 
i=1

\bigl( 
F \ast 
i (xi) - F \ast 

i (si)
\bigr) +

: s \in S
\Bigr\} 
.

Proof. This is a reformulation of Theorem 4.1 in the language of distribution func-
tions. Indeed, the set \scrQ 0 contains all measures induced by the distribution functions
in \scrF S,\pi 

\preceq 0
(F \ast 

1 , . . . , F
\ast 
d ), and vice versa; see again Figure 1.

Remark 4.5. Let us point out that an analogous result for the improved lower
Fr\'echet--Hoeffding bound remains an open question for future research. The necessary
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duality result is straightforward in this case; however, the analogon of Theorem 4.1
cannot be proved with the techniques developed in the present article.

Appendix A. The improved upper Fr\'echet--Hoeffding bound is not
pointwise sharp for the class \bfscrF \bfitS ,\bfitpi .

The following counterexample---communicated to us by Stephan Eckstein---
illustrates that the improved Fr\'echet--Hoeffding bounds (1.4) are in general not point-
wise sharp for \scrF S,\pi (F \ast 

1 , . . . , F
\ast 
d ), even in dimension d = 2.

Example A.1. The marginal cdfs are given by

F \ast 
1 := F \ast 

2 := 0.1 \cdot 1[0,1) + 0.3 \cdot 1[1,2) + 0.35 \cdot 1[2,3) + 1[3,\infty ),

i.e., F \ast 
i are cdfs of the probability measure 0.1\delta 0 + 0.2\delta 1 + 0.05\delta 2 + 0.65\delta 3. Consider

the additional information

S = \{ (0, 0), (0, 2), (2, 0), (1, 1)\} with \pi (0,0) = 0 and \pi (0,2) = \pi (2,0) = \pi (1,1) = 0.1.

For the cdf \^F which corresponds to the probability measure
\sum 3

x1,x2=0 cx1,x2
\delta (x1,x2)

with weights given by Table 1 one can verify that

\^F \in \scrF S,\pi (F \ast 
1 , F

\ast 
2 ) :=

\bigl\{ 
F \in \scrF (F \ast 

1 , F
\ast 
2 ) : F (s) = \pi s for all s \in S

\bigr\} 
.

This shows that \scrF S,\pi (F \ast 
1 , F

\ast 
2 ) \not = \emptyset . Let x = (x1, x2) := (0, 1); then the improved

upper Fr\'echet--Hoeffding bound is given by

min\{ F \ast 
1 (0), F

\ast 
2 (1)\} \wedge min

\Bigl\{ 
\pi s +

2\sum 
j=1

(F \ast 
j (xj) - F \ast 

j (sj))
+ : s \in S

\Bigr\} 
= 0.1,

whereas for \varphi (u) = 1\{ u\leq x\} it can easily be checked that

sup
F\in \scrF S,\pi (F\ast 

1 ,F\ast 
2 )

\int 
\varphi dF = sup

F\in \scrF S,\pi (F\ast 
1 ,F\ast 

2 )

F (0, 1) = \^F (0, 1) = 0.05.

Moreover, the improved lower Fr\'echet--Hoeffding bound is provided by

\bigl( 
F \ast 
1 (0) + F \ast 

2 (1) - 1
\bigr) + \vee max

\Bigl\{ 
\pi s  - 

2\sum 
i=1

\bigl( 
F \ast 
i (si) - F \ast 

i (xi)
\bigr) +

: s \in S
\Bigr\} 
= 0,

while the infimum takes the value 0.05.

Table 1
Weights of the joint probability measure.

cx1,x2 x2 = 0 x2 = 1 x2 = 2 x2 = 3
x1 = 0 0 0.05 0.05 0
x1 = 1 0.05 0 0 0.15
x1 = 2 0.05 0 0 0
x1 = 3 0 0.15 0 0.5

Remark A.2. Tankov in [32] showed that in dimension 2, the upper improved
Fr\'echet--Hoeffding bound is a copula in \scrF S,\pi , and hence sharp, whenever the set S is
decreasing, i.e., (u1  - v1)(u2  - v2) \leq 0 for all (u1, u2), (v1, v2) \in S. Example A.1 is
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surprising in so far as it demonstrates that when S fails to be decreasing, then neither
the copula property of the improved upper bound nor its pointwise sharpness over
the set \scrF S,\pi is guaranteed. Note that the set S = \{ (0, 0), (0, 2), (2, 0), (1, 1)\} in the
example is not decreasing, as for (0, 0), (1, 1) we have (1 - 0)(1 - 0) = 1.

Bernard, Jiang, and Vanduffel [3] extended Tankov's result and showed that the
upper improved Fr\'echet--Hoeffding bound is a copula under weaker conditions, namely,
it suffices that S is such that either the functions

min\{ u : (u, v) \in S\} and max\{ u : (u, v) \in S\} 

are nonincreasing while (u1+u2

2 , v) \in S for all (u1, v), (u2, v) \in S or the functions

min\{ v : (u, v) \in S\} and max\{ v : (u, v) \in S\} 

are nonincreasing while (u, v1+v2
2 ) \in S for all (u, v1), (u, v2) \in S. Evidently, the set

S = \{ (0, 0), (0, 2), (2, 0), (1, 1)\} fulfills neither of the two conditions, as min\{ u : (u, 0) \in 
S\} = 0 \leq min\{ u : (u, 1) \in S\} = 1 and analogously for min\{ v : (u, v) \in S\} .

Appendix B. Derivation of the improved Fr\'echet--Hoeffding bounds for

the classes \bfscrF \bfitS ,\bfitpi 
\preceq \bfzero 

, \bfscrF \bfitS ,\bfitpi 

\preceq \bfone 
and \bfscrF \bfitS ,\bfitpi 

\preceq \bfone 
.

In this appendix, we show that the improved upper Fr\'echet--Hoeffding bound

is valid for the classes \scrF S,\pi 
\preceq 0

and \scrF S,\pi 

\preceq 1
, while the improved lower Fr\'echet--Hoeffding

bound is valid for the class \scrF S,\pi 
\preceq 1

. The derivation uses simple arguments borrowed
from copula theory; see, e.g., [20]. Let us point out that the sharpness results in
section 3 and section 4 allow us to recover the statements proved below.

Lemma B.1. Let G \in \scrF S,\pi 
\preceq 0

(F \ast 
1 , . . . , F

\ast 
d ), H \in \scrF S,\pi 

\preceq 1
(F \ast 

1 , . . . , F
\ast 
d ), and

J \in \scrF S,\pi 
\preceq 1

(F \ast 
1 , . . . , F

\ast 
d ). Then, for all (x1, . . . , xd) \in \BbbR d, we have that

G(x1, . . . , xd) \leq min
i=1,...,d

F \ast 
i (xi) \wedge min

\Bigl\{ 
\pi s +

d\sum 
i=1

\bigl( 
F \ast 
i (xi) - F \ast 

i (si)
\bigr) +

: s \in S
\Bigr\} 
,

H(x1, . . . , xd) \leq min
i=1,...,d

F \ast 
i (xi) \wedge min\{ \pi s : s \in S such that x \leq s\} ,

J(x1, . . . , xd) \geq 
\Bigl( d\sum 

i=1

F \ast (xi) - d+ 1,
\Bigr) +

\vee max
s\in S

\Bigl\{ 
\pi s  - 

d\sum 
i=1

\bigl( 
1 - F \ast 

i (xi)
\bigr) 
1\{ si>xi\} 

\Bigr\} 
.

Proof. By the definition of the class \scrF S,\pi 
\preceq 0

(F \ast 
1 , . . . , F

\ast 
d ), we have immediately that

G(x1, . . . , xd) = cF (x1, . . . , xd) \leq c min
i=1,...,d

Fi(xi) = min
i=1,...,d

cFi(xi) \leq min
i=1,...,d

F \ast 
i (xi).

(B.1)

Moreover, for any xi, si \in \BbbR , it holds that F (x1, . . . , xi, . . . , xd) - F (x1, . . . , si, . . . , xd) \leq \bigl( 
Fi(xi) - Fi(si)

\bigr) +
; hence, using a telescoping sum, we get that

F (x) - F (s) \leq 
d\sum 

i=1

\bigl( 
Fi(xi) - Fi(si)

\bigr) +
.(B.2)

Therefore, using again the properties of this class, we arrive at

G(x) \leq cF (s) +

d\sum 
i=1

\bigl( 
cFi(xi) - cFi(si)

\bigr) + \leq \pi s +

d\sum 
i=1

\bigl( 
F \ast 
i (xi) - F \ast 

i (si)
\bigr) +

.(B.3)
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We conclude by minimizing over all s \in S and combining the outcome with (B.1).

Now, let H \in \scrF S,\pi 

\preceq 1
(F \ast 

1 , . . . , F
\ast 
d ); then we get immediately that H(x1, . . . , xd) \leq 

mini=1,...,d F
\ast 
i (xi). Moreover, the estimate in (B.2) is still valid; therefore from the

definition of \scrF S,\pi 

\preceq 1
(F \ast 

1 , . . . , F
\ast 
d ) we arrive at an estimate similar to the first inequality

in (B.3) (with G replaced by H and c = 1). However, the information available on
the marginals does not allow us to estimate the difference Fi(xi)  - Fi(si), and the
best we can say is that for x \leq s this term collapses to zero. The statement follows
once again by minimizing over all s \in S. Finally, the last part is similar to the other
two, and the proof is omitted for the sake of brevity.

Appendix C. Proof of duality results.
In this appendix, we provide sketches of the proofs of the duality results for the

sake of brevity. Let us first introduce the functionals \phi \ast 
Cb

and \phi \ast 
Ub

which are defined
as follows:

\phi \ast 
Cb
(\mu ) := sup

f\in Cb

\Bigl\{ \int 
fd\mu  - \phi (f)

\Bigr\} 
and \phi \ast 

Ub
(\mu ) := sup

f\in Ub

\Bigl\{ \int 
fd\mu  - \phi (f)

\Bigr\} 
,(C.1)

where Ub denotes the set of all bounded upper semicontinuous functions f : \BbbR d \rightarrow \BbbR ,
and Cb the set of all bounded continuous functions. Then, the representation result
stated in the following paragraph holds true.

Let \phi : Ub \rightarrow \BbbR be a convex and increasing function, and assume that for every
sequence (fn) of continuous bounded functions such that fn decreases pointwise to
0, it holds that \phi (fn) \downarrow \phi (0). Then, \phi admits the following representation:

\phi (f) = max
\mu \in ca+

\Bigl\{ \int 
fd\mu  - \phi \ast 

Cb
(\mu )

\Bigr\} 
(C.2)

for all f \in Cb. Assume, in addition, that \phi \ast 
Cb
(\mu ) = \phi \ast 

Ub
(\mu ) for any \mu \in ca+; then

\phi (f) = max\mu \in ca+\{ 
\int 
fd\mu  - \phi \ast 

Ub
(\mu )\} for all f \in Ub. The proof is similar to [2, Theorem

2.2]; see also [8, Theorem A.5].

Proof of Theorem 2.3. By definition, \phi : Ub \rightarrow \BbbR \cup \{  - \infty \} is a sublinear and in-
creasing function. By the exclusion of uniform strong arbitrage, it satisfies \phi (m) = m
for all m \in \BbbR . Moreover, for every sequence (fn) in Cb such that fn \downarrow 0 pointwise,
by tightness of the marginals \nu 1, . . . , \nu d, there exists a compact K \subset \BbbR d such that
\phi (f11Kc) is arbitrarily small, which by Dini's lemma ensures that \phi (fn) \downarrow 0. Further,
an explicit computation of the conjugates yields

\phi \ast 
Cb
(\mu ) = \phi \ast 

Ub
(\mu ) =

\Biggl\{ 
0 if \mu \in \scrQ ,

+\infty otherwise,

which by the above representation result implies (2.2) and that \scrQ is nonempty. Con-
versely, if \scrQ is not empty, it is straightforward to verify that there does not exist
uniform strong arbitrage. The proof of (2.3) works analogously.

Proof of Corollary 2.6. Define

\phi max(f) = inf
\Bigl\{ d\sum 

j=1

\int 
\BbbR 
fj d\nu j +

\int 
\BbbR 
g d\nu max : f1, . . . , fd, g

\Bigr\} 
,

where f1, . . . , fd, g satisfy inequality (2.5). Verification shows that \scrQ has the form
given in (2.4), and \phi (f) \geq \phi max(f) \geq sup\mu \in \scrQ 

\int 
\BbbR d f d\mu . Finally, Theorem 2.3 yields

that the previous inequalities are actually equalities.
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Proof of Theorem 2.7. First, on can check that \phi 1 : Ub \rightarrow \BbbR is a sublinear and
increasing functional which satisfies \phi 1(m) = m for all m \in \BbbR . Moreover, it holds that
\phi 1(f) \geq 

\int 
\BbbR d f d\mu for every \mu \in ca+1 (\BbbR d) such that \nu j \preceq 1 \mu j \preceq 1 \nu j for all 1 \leq j \leq d and

\pi i \leq \mu (Ai) \leq \pi i for all i \in I. Finally, let (fn) be a sequence of bounded continuous
functions which decreases pointwise to 0. For \varepsilon > 0, fix m \in \BbbN such that

max
\bigl\{ 
\nu j(( - \infty , - m+ 1]), \nu j([m - 1,\infty ))

\bigr\} 
\leq \varepsilon 

cd

for every j = 1, . . . , d, where c := supx\in \BbbR d f1(x), and define the nondecreasing func-
tions fj(t) := c(1 + (0 \vee (t+ 1 - m) \wedge 1)) and gj(t) := c(0 \vee (t+m) \wedge 1). Then

fj  - gj \geq sup
x\in \BbbR d

f1(x)1[ - m,m]c and

\int 
\BbbR 
fj d\nu j  - 

\int 
\BbbR 
gj d\nu j \leq 

\varepsilon 

d
,

which shows that \phi 1(f
11Kc) \leq \varepsilon for the compact K = [ - m,m]d. It follows from

Dini's lemma that \phi 1(f
n) \downarrow 0.

Appendix D. Proof of optimality results.

Proof of Proposition 2.8. We start with the proof for \phi 0. By definition, there
exists a sequence (fn

1 , . . . , f
n
d , an)n in \Theta 0(f) such that \pi (fn

1 , . . . , f
n
d , an) converges to

\phi 0(f). As all fn
i are positive, an (iterated) application of Koml\'os's lemma (cf. [11,

Lemma A.1]) implies the existence of forward convex combinations (denoted by \~fn
i

for i = 1, . . . , d) which have a \mu i-almost sure limit. Calling (\~an)n the sequence which
emerges from (an)n by applying the same convex combinations as used for \~fn, we
find that

( \~fn
1 , . . . ,

\~fn
d , \~an) \in \Theta 0(f)

(as the constraint defining \Theta 0 is linear). Moreover, convexity of \pi implies that \phi 0(f) =
infn \pi ( \~f

n
1 , . . . ,

\~fn
d ,

\~fn). In particular, for every i \in I with \pi i > 0, the sequence (\~ain)n
needs to be bounded. For every i \in I with \pi i = 0, set \~ain := \| f\| \infty . This does not
change the admissibility, and this modified sequence is still a minimizing sequence.

Now we may pass to a (not relabeled) subsequence for which \~ain has a limit;
denote the limit by ai. Moreover, denote by fi := lim supn

\~fn
i for i = 1, . . . , d. As the

limsup is \mu i-almost surely an actual pointwise limit, Fatou's lemma implies

\pi (f1, . . . , fd, a) \leq lim inf
n

\pi ( \~fn
1 , . . . ,

\~fn
d , \~a

n) = \phi 0(f).

Further, superlinearity of the limsup shows that (f1, . . . , fd, a) \in \Theta 0(f). In conclusion,
(f1, . . . , fd, a) is the desired strategy.

We now come to the proof of the second part concerning \phi . Denote by

\scrT (\cdot ) := inf\{ \pi (f1, . . . , fd, 0) : (f1, . . . , fd, 0) \in \Theta (\cdot )\} 

the value of the classical optimal transport problem. Then we can rewrite \phi in the
sense that

\phi (f) = inf
a\in \BbbR I

\Bigl\{ 
\scrT 
\bigl( 
f  - 

\sum 
i\in I

ai1Ai

\bigr) 
+ \pi (0, . . . , 0, an)

\Bigr\} 
.(D.1)

Moreover, for any bounded measurable function g, we have \scrT (g) = sup\mu \in Cpl

\int 
g d\mu ,

where Cpl denotes the set of all couplings between \mu 1, . . . , \mu d; see [19, Corollary 2.15].
Further, employing similar arguments as in the previous step shows that the infimum
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in the definition of \scrT (g) is attained for every bounded function g; alternatively use
[19, Theorem 2.21].

In conclusion, it remains to show that the infimum over a \in \BbbR I in (D.1) is attained.
To that end, it is enough to show that every minimizing sequence (an) needs to be
bounded. Heading for a contradiction, assume otherwise; that is, after passing to a
(not relabeled) subsequence, one has | an| \rightarrow \infty . Then, possibly passing to another
subsequence, an/| an| converges to some \=a \in \BbbR I with | \=a| = 1. At this point we make use
of our assumption that there is \=\mu \in Cpl with \=\varepsilon := \pi (0, . . . , 0, \=a) - 

\sum 
i\in I \=a

i\=\mu (Ai) > 0.
Since clearly \scrT (\cdot ) \geq 

\int 
\cdot d\=\mu , we can estimate

\scrT 
\bigl( 
f  - 

\sum 
i\in I

ain1Ai

\bigr) 
+ \pi (0, . . . , 0, an) \geq \pi (0, . . . , 0, an) - 

\sum 
i\in I

ain\=\mu (A
i) - \| f\| \infty .

As an behaves likes | an| \=a for large n, the last term above behaves like | an| \=\varepsilon \rightarrow \infty for
large n. This gives the desired contradiction and thus completes the proof.

Proof of Corollary 2.10. Assume that \mu  \star \in \scrQ is optimal, and let (f1, . . . , fd, a) \in 
\Theta (f) be the optimizer obtained in Proposition 2.8. By definition of \Theta (f), the LHS in
(2.7) is larger than the RHS for every x \in \BbbR d. Employing that (f1, . . . , fd, a) attains
the minimum in \phi (f), we get\int 

\BbbR d

f d\mu  \star = \phi (f) =

\int 
\BbbR d

\bigl\{ 
f1(x1) + \cdot \cdot \cdot + fd(xd) +

\sum 
i\in I

ai1Ai(x)
\bigr\} 
\mu  \star (dx).

This shows that the RHS in (2.7) needs to be larger than the LHS, at least for \mu  \star -
almost every x \in \BbbR d.

To prove the reverse direction, let (f1, . . . , fd, a) \in \Theta (f) such that (2.7) holds
true. By definition of \phi and as \mu  \star \in \scrQ , we have\int 

\BbbR d

f d\mu  \star \leq \pi (f1, . . . , fd, a) =

\int 
\BbbR d

\bigl\{ 
f1(x1) + \cdot \cdot \cdot + fd(xd) +

\sum 
i\in I

ai1Ai(x)
\bigr\} 
\mu  \star (dx).

The last term equals
\int 
\BbbR d f d\mu  \star by assumption (2.7), which completes the proof.
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