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PREFACE

This book deals with the motion of the center of mass of a spacecraft, which is an application of
the theory of celestial mechanics to spaceflight. This discipline is generally called astrodynamics.
Celestial mechanics has always attracted many mathematicians and physicists. A large number
of mathematical techniques, which are presently well known and widely used, have been devel-
oped specially to solve problems in celestial mechanics. Both in classical celestial mechanics and
in astrodynamics it is supposed that when the initial conditions of bodies and the forces acting
on them are known with sufficient accuracy, then the motion of the bodies can be computed
accurately. Although we know that this picture of deterministic mechanics is theoretically not
correct, it is still applicable to solve most problems in celestial mechanics and astrodynamics, and
produces results that are in agreement with our observations of the motion of celestial bodies and
spacecraft. Over the years, astrodynamics has achieved fantastic and very visible results. The orbit
of satellites about the Earth can be computed with centimeter accuracy; spacecraft have explored
the solar system, have navigated through the natural satellite systems of Jupiter and Saturn, have
landed on the Moon, Mars, Venus and Titan, have performed flybys of and landings on asteroids
and comets, and even have left the solar system and have entered interstellar space.

This book focuses on an analytical treatment of the motion of spacecraft and provides insight
into the fundamentals of spacecraft orbit dynamics. A large number of topics are treated in a
uniform and consistent way. The text is intended for senior undergraduate or graduate engineering
students. It is a typical student study book: the knowledge of mathematics and mechanics required
from the reader corresponds to that of students having a B.Sc. degree, and full derivations of the
formulas are given. In this respect, this book differs from most other books on astrodynamics, in
which often useful equations are given but the reader is referred to other books for the derivation
of these equations. However, the book is also useful for astrodynamicists and is a valuable resource
for anyone interested in astrodynamics.

The text starts with a treatment of the foundation of dynamics. It continues with the classical
topics of the many-body problem and the three-body problem, and modern applications of the
three-body problem for spaceflight are presented. Then, it is proved that the motion of planets,
satellites and interplanetary spacecraft can generally be approximated by a two-body problem.
This problem is analyzed in full detail and many useful relations for circular, elliptical, parabolic
and hyperbolic motion are derived. Next, the motion of a satellite relative to another satellite is
discussed and analyzed. After this, the more modern topic of regularization is treated. Then, the
basic astronomical concepts of reference frames, coordinate systems, orbital elements and time
are presented, and various topics which are crucial in modern astrodynamics are addressed. Then,
the application of rocket engines to change the orbit of a spacecraft is treated, both for coplanar
and for three-dimensional maneuvers, and various characteristic transfers from an initial orbit to
a final orbit are analyzed. Subsequently, the theory of phasing orbits, which are required to reach
a specified position in a final orbit, is presented and various cases are analyzed. Next, rendez-vous
flights between two satellites are analyzed. Then, the launching of satellites is discussed and
analyzed, as well as the execution of lunar and interplanetary flights, and the flight of spacecraft
along low-thrust trajectories. The last four chapters deal with various aspects of orbit perturbations.
First, the perturbing forces acting on a satellite are discussed and special and general perturbations
methods are described. Then, an elementary analysis of the characteristic effects of the perturbing
forces on a satellite orbit is given. The general method of variation of orbital elements is described
in detail and an application to orbit maneuvers is presented. Finally, a detailed analysis of orbit
perturbations due to the Earth’s gravity field is given. The book concludes with three appendices,
containing additional information.
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The topics of using observations to determine the spacecraft’s position and velocity at a
particular moment (orbit determination) and to improve the dynamical model applied for the orbit
computation are not covered. The main reason being that, although these topics are very important
for practical orbit computations, they are primarily applications of statistical estimation theory
and less of the theory of dynamics, which forms the backbone of this book. The orbit dynamics
methods presented in this book, however, constitute an essential ingredient of any  orbit determina-
tion procedure.

The text is based on course notes that I have used in various versions since 1976 for the course
Motion of Spacecraft (in Dutch) and since 1997 for the course Astrodynamics (until 2002 in Dutch)
for M.Sc. students at the Faculty of Aerospace Engineering of Delft University of Technology.
I retired from the university in February 2009, but continued teaching this course until April 2015.
During all these years, I have studied many classical and modern books on celestial mechanics
and astrodynamics. It is therefore inevitable that some material from these books is duplicated
here. Because it is impossible to check where that has been done, I have listed in Appendix A the
books which I have studied often. I advise anyone interested in astrodynamics to study these books.
They contain much additional information and topics that could not be included in this book.

I like to thank all secretaries who have typed parts of the many versions of the text since 1976.
The final editing has been done by me, so I am to be blamed for spelling and grammar errors. I
also like to thank Mr. J.A. Jongenelen and Mr. W. Spee of the Faculty of Aerospace Engineering
for hand-drawing the original graphs and diagrams, and Mr. A. Pfeifer of SRON Netherlands
Institute for Space Research for transferring these hand-drawn graphs and diagrams into digital
format.

Karel F. Wakker
emeritus professor of astrodynamics
Faculty of Aerospace Engineering
Delft University of Technology 

January 2015

Comments, remarks and questions on this text may be sent to K.F.Wakker@tudelft.nl.
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1. SOME BASIC CONCEPTS

In this book the translational motion of the center of mass of a spacecraft is treated. This topic
is an application of a classical branch of astronomy: celestial mechanics, to spaceflight; this
discipline is generally indicated by the term astrodynamics. Celestial mechanics, and thus
astrodynamics, is based upon four laws: Newton’s three laws of motions and Newton’s law of
gravitation. In this Chapter, the laws of motion and the law of gravitation will be discussed in
some detail and their application to the computation of the trajectories of spacecraft and the
approximative modeling of the gravity field of celestial bodies will be presented. In addition,
some basic aspects of the application of rocket engines to changing the trajectory of a spacecraft
will be presented.

1.1. Newton’s laws of motion

The three laws of motion, which were formulated by I. Newton (1643-1727) in his book
Philosophiae Naturalis Principia Mathematica, usually abbreviated to Principia, in 1687, read
in modern terminology:
First law: Every particle continues in its state of rest or uniform motion in a straight line

relative to an inertial reference frame, unless it is compelled to change that state by
forces acting upon it.

Second law: The time rate of change of linear momentum of a particle relative to an inertial
reference frame is proportional to the resultant of all forces acting upon that particle
and is collinear with and in the direction of the resultant force.

Third law: If two particles exert forces on each other, these forces are equal in magnitude and
opposite in direction (action = reaction).

It is remarkable that Abu Ali al-Hasan (also Al-Haytham; latinized: Alhacen; 965-1039) already
enunciated the concept of inertia (Newton’s first law of motion) and developed the concept of
momentum. Newton’s first two laws were, in fact, already known to Galileo Galilei (1564-1642)
and C. Huygens (1629-1695), but in Newton’s Principia they were published for the first time
together in a complete and consistent way.

Newton’s first law introduces some fundamental concepts: force, particle (or point mass),
time, uniform motion and inertial reference frame. Although the concepts of force and time, and
to some extent also the concept of point mass, are difficult to fully understand and have some
metaphysical aspects, they are widely used and we will therefore assume that they are clear to
us. Various aspects of the concept of time will be discussed in Section 11.4, and we define a point
mass, or particle, as a body with negligible dimensions but a finite mass and mass density.

Newton calls the laws of motion axioms and, after giving each in his Principia, makes a few
remarks concerning its import. Later writers regard them as inferences from experience, but
accept Newton’s formulation of them as practically final. A number of writers, among whom is
E. Mach (1838-1916), have given profound thought to the fundamental principles of mechanics,
and have concluded that they are not only inductions or simply conventions, but that Newton’s
statement of them is somewhat redundant, and lacks scientific directness and simplicity. Other
fundamental laws may be, and indeed have been, employed; but they involve more-difficult
mathematical principles at the very start. There is no suggestion, however, that Newton’s laws
of motion are not in harmony with ordinary astronomical experience, or that they cannot serve
as the basis for celestial mechanics. But in some branches of physics certain phenomena are not
fully consistent with the Newtonian principles, and they have led A. Einstein (1879-1955) and
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others to the development of the so-called principle of relativity. The astronomical consequences
of this modification of the principles of mechanics are very slight unless the time under
consideration is very long.

In the first law, the statement that a particle subject to no forces moves with uniform motion, may
be regarded as a definition of time. The second part of the law, which affirms that the motion is
in a straight line when the particle is not subjected to forces, may be taken as a definition of a
straight line, if it is assumed that it is possible to determine when a particle is subject to no forces.
This part may also be taken as showing, together with the first part, whether or not forces are
acting, if it is assumed that it is possible to give an independent definition of a straight line. Either
alternative leads to troublesome difficulties when an attempt is made to employ strict and
consistent definitions.

In the second law, the statement that the rate of change of linear momentum is proportional
to the force impressed, may be regarded as a definition of the relation between force and matter
by means of which the magnitude of a force, or the amount of matter in a particle, can be
measured, according as one or the other is supposed to be independently known. In the statement
of the second law it is implied that the effect of a force is exactly the same in whatever condition
of rest or of motion the particle may be, and to whatever other forces it may be subject. Hence,
the implication in the second law is, if any number of forces act simultaneously on a particle,
whether it is at rest or in motion, each force produces the same change of linear momentum that
it would produce if it alone acted on the particle at rest. It is apparent that this principle leads to
great simplifications of mechanical problems, for in accordance with it the effects of the various
forces can be considered separately.

Newton derived in his Principia also the parallelogram of forces from the second law of
motion. He reasoned that as forces are measured by the accelerations which they produce, the
resultant of, say, two forces should be measured by the resultant of their accelerations. One of
the most frequent applications of the parallelogram of forces is in the subject of statics, which,
in itself, does not involve the ideas of motion and time. In it the idea of mass can also be entirely
eliminated.

The first two of Newton’s laws are sufficient for the determination of the motion of one particle
subject to any number of known forces; but another principle is needed when the investigation
concerns the motion of a system of two or more particles subject to their mutual interactions. The
third law of motion expresses precisely this principle. It is that if one particle presses against
another, the second resists the action of the first with the same force. And also, though it is not
so easy to conceive it, if one particle acts upon another through any distance, the second reacts
upon the first with an equal and oppositely directed force.

In the Scholium appended to his discussion on the laws of motion, Newton made some
remarks concerning an important feature of the third law. This was first stated in a manner in
which it could actually be expressed in mathematical symbols by J.B. le Rond d’Alembert (1717-
1783) in 1742. In essence, the statement reads “When a particle is subject to an acceleration, it
may be regarded as exerting a force which is equal and opposite to the force by which the
acceleration is produced.” This may be considered as being true whether the force arises from
another particle forming a system with the one under consideration, or has its source exterior to
the system. In general, in a system of any number of particles, the resultants of all the applied
forces are equal and opposite to the reactions of the respective particles. In other words, the
impressed forces and the reactions, or the expressed forces, form systems which are in
equilibrium for each particle and for the whole system. This makes the whole science of
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dynamics, in form, one of statics, and formulates the conditions so that they are expressible in
mathematical terms. This phrasing of the third law of motion has been made the starting point
for the elegant and very general investigations of J.L. Lagrange (1736-1813) in the subject of
dynamics.

1.2. Inertial reference frames

The concept of an inertial reference frame deserves some special attention. It is clear that it is not
possible to have a fruitful discussion on motion if one does not define a reference frame with
respect to which this motion is described. A very special kind of reference frame is an inertial
reference frame, also called a Newtonian reference frame. The formal definition of an inertial
reference frame can be derived from Newton’s first law: “An inertial reference frame is a
reference frame with respect to which a particle remains at rest or in uniform rectilinear motion
if no resultant force acts upon that particle.” Thus, one may state that Newton’s first law actually
defines a reference frame with respect to which Newton’s second law is valid. There is, however,
a circular reasoning in this formulation. The first law defines the concept of uniform rectilinear
motion with the help of the concept of an inertial reference frame, while this inertial reference
frame is defined with the help of the concept of uniform rectilinear motion. In this book, this
philosophical aspect will not be dealt with and it is assumed that Newton’s laws are completely
clear to us.

Figure 1.1: Inertial reference frame XYZ and a reference frame X'Y'Z' that moves with constant velocity
relative to the XYZ frame.

From the definition of an inertial reference frame it follows that if one inertial reference frame
is known, immediately an entire class of inertial reference frames is known; namely all reference
frames that perform a uniform rectilinear translational (no rotational) motion with respect to the
original inertial reference frame and in which the time differs only by a constant from the time
in the original inertial reference frame. This can be proved as follows. Suppose that in Figure 1.1
XYZ is an inertial reference frame and that XNYNZN is a non-rotating reference frame that is moving
with a constant velocity  with respect to XYZ and in which the time differs by a constant T
from the time in XYZ. For simplicity, it is assumed that the origins of both reference frames
coincide on t0. Then, the following transformation relations hold:

(1.1)

These relations are known as the Galilei transformations. For the velocity of particle P in both
reference frames we may write
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(1.2)

Combination of (1.1) and (1.2) yields

(1.3)

Since XYZ is an inertial reference frame,  is constant when no (resulting) force is acting on P.
Because we have assumed that also  is constant,  must be constant too. Using the definition
of an inertial reference frame, we thus may conclude that XNYNZN is also an inertial reference
frame.

Newton’s second law expresses the relation between the force, , acting upon a particle and the
particle’s motion under the influence of this force. In mathematical terms, the law is expressed
by

(1.4)

Naturally, we must require that the second law of motion is invariant when applied in different
inertial reference frames. Therefore, in the reference frames XYZ and XNYNZN the following
relations must hold:

(1.5)

where it has been assumed that force and mass are invariant in different inertial reference frames.
Substitution of (1.1) and (1.3) into the second equation of (1.5) yields

(1.6)

which shows that Newton’s second law is only invariant in the different inertial reference frames
if dm/dt = 0, i.e. for a particle of constant mass. In that case, relation (1.6) can be rewritten as

(1.7)

This proves that the well-known relation (1.7) is only valid for particles with constant mass and
when their motion is considered with respect to an inertial reference frame.

It is noted that in Einstein’s special relativity theory, the Galilean/Newtonian idea of absolute
time running at an equal rate in all inertial reference frames is replaced by the concept that time
runs differently in different inertial reference frames, in such a way that the speed of light has the
same measured value in all of them. In both Newtonian physics and special relativity theory,
inertial reference frames are preferred because physical laws are most simple when written in
terms of inertial coordinates. In Einstein’s general relativity theory time (and even space-time)
is influenced not only by velocity but also by gravity fields, and there are no preferred reference
frames. However, for an infinitely small space-time region around an observer (considered to be
a massless point), one can introduce so-called ‘locally inertial reference frames’ where, according
to Einstein’s equivalence principle, all physical laws have the same form as in an inertial
reference frame in special relativity theory. Such locally inertial reference frames are used to



Fundamentals of Astrodynamics     SS     Some basic concepts 5

describe observations taken by the point-like observer.

In reality, spacecraft are not point masses but bodies with finite dimensions. In addition, we often
consider the motion of spacecraft relative to a non-inertial reference frame, and the mass of the
spacecraft will vary with time when a rocket engine is thrusting. The reformulation of Newton’s
second law of motion such that it can also be applied in these cases is a major topic of classical
theoretical mechanics. As such, it is outside the scope of this book. Therefore, only a brief survey
will be given of those aspects that are relevant to astrodynamics.

A spacecraft of finite dimensions can be thought of as a continuous mass system consisting
of discrete point masses. When Newton’s second law of motion is applied to the motion of this
system of point masses relative to an inertial reference frame, we find for a rigid body:

(1.8)

where  is the net external force acting on the body, M is the total mass of the body and the
index cm refers to the center of mass of the body. In deriving this expression, the velocity and
acceleration of an element of the body relative to its center of mass (flexibility effects) have been
neglected. To good approximation, spacecraft may be considered as rigid bodies, except in cases
where the spacecraft is subjected to shocks and e.g. large solar panels may perform oscillatory
motion relative to the spacecraft. Planets, moons and other celestial bodies may, to first-order
approximation, also be considered as rigid bodies. This means that for all practical cases in
celestial mechanics and astrodynamics, where we analyze the translational dynamics (no
rotations) of celestial bodies or spacecraft, we may consider the body as a point mass located at
the center of mass of the body and with a mass equal to the mass of the body. Therefore, in this
book we will use the words ‘point mass’, ‘particle’ and ‘body’ interchangeably.

When the motion of a spacecraft is described relative to a non-inertial reference frame, we
can still use Newton’s second law of motion, provided that we add suitably selected apparent
forces to the net natural force, . These apparent forces are also called fictitious forces, pseudo
forces, d’Alembert forces or inertial forces. In this book we will use the term apparent force
exclusively. Four apparent forces are well-known: one caused by a rectilinear acceleration of the
origin of the reference frame, two caused by a rotation of the reference frame (centrifugal force
and Coriolis force), and a forth caused by a variable rate of rotation of the frame (Euler force).
All apparent forces are proportional to the mass of the body upon which they act, which is also
true for gravity. This led Einstein to wonder whether gravity was an apparent force as well. He
was able to formulate a theory with gravity as an apparent force; the apparent acceleration due
to gravity is then attributed to the curvature of space-time. This idea underlies Einstein’s general
theory of relativity. In our analyses, we will always start from the equations of motion relative
to an inertial reference frame. The relevant apparent forces will then automatically show up after
we have applied the coordinates transformations needed to obtain the equations of motion relative
to a non-inertial reference frame.

When a rocket engine on the spacecraft is thrusting, mass is expelled and the mass of the
spacecraft is not constant but will decrease with time. However, the mass of the spacecraft plus
the rocket engine combustion products, which have been expelled by the rocket engine, is still
constant. When we apply Newton’s second law of motion to the motion of all point masses
constituting this entire mass system relative to an inertial reference frame, we eventually find
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(1.9)

where  is the net external (natural) force acting on the body, M is the instantaneous mass of the
spacecraft,  is the mass flow leaving the rocket engine nozzle per unit of time, and Vj is the
effective exhaust velocity (relative to the spacecraft), which consists of an impulsive term and
a pressure term. The effective exhaust velocity may, generally, be considered constant, in
particular for a rocket engine thrusting outside an atmosphere. Note that the velocity vector 
points away from the spacecraft. The second term on the left-hand side of (1.9) including the
minus-sign formally is an apparent force, which has to be included to allow the application of
Newton’s second law of motion to a spacecraft with a time-varying mass. This force is called the
thrust of the rocket engine. It has the magnitude

(1.10)

and acts in the direction opposite to the flow of linear momentum through the rocket engine
nozzle exit area. We conclude that we may apply (1.8) for the motion of a spacecraft with a
thrusting rocket engine, if M is considered to represent the instantaneous mass of the spacecraft
and if the thrust is considered as a real external force that is added to the other external forces
acting on the spacecraft. It is emphasized that in arriving at (1.9) a number of assumptions and
approximations had to be introduced: 1) the spacecraft itself is considered as a rigid body; 2) the
Coriolis force acting on the combustion product particles due to a rotation of the rocket engine
is negligible with respect to the thrust; 3) the flow of combustion products leaving the rocket
engine nozzle is stationary; 4) the velocity of the center of mass of the spacecraft relative to the
spacecraft body is negligible with respect to the exhaust velocity of the combustion products.

1.3. Deterministic and chaotic motion

A fundamental aspect of Newton’s theory, and the basis of classical mechanics, is the idea that
the computation of the motion of an object is a deterministic problem. This means that we assume
that if we know the initial position and velocity of a body accurately enough and if we can
determine the forces acting on the body accurately enough, then we can compute the position and
velocity of that body at any given time with high accuracy. It is true that in the past one has
realized that an uncertainty in the initial conditions may yield a divergence of the computed
position and velocity at a certain time (Section 5.8 and Section 10.1), but this error was still
viewed as a deterministic phenomenon. In the last decennia, however, one started to realize that
chaotic behavior also plays a certain role in mechanical problems. Although, for the classical
problems in celestial mechanics and for the time intervals associated with these problems, these
chaotic aspects usually are of no importance, a short examination of chaos will be given below
in order to provide some understanding of the limitations of deterministic mechanics.

Chaos arises in deterministic systems because of their specific instability. For example,
imagine a billiard game. The player sends the ball into the usual array of other balls. The slightest
variation in the direction of the original push will send the ball down quite a different path and
the difference will not attenuate but will grow with time. Each collision of the balls with each
other will further amplify this divergence. To prolong the motion, let us assume that the loss of
energy is small. Newton’s laws do determine the trajectory of each ball and the sequence of
collisions. But the prediction will be completely wrong after a certain number of collisions, even
if the initial push is defined with an error as small as the gravitational effect of a single electron
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on the margin of the galaxy. The deviation grows exponentially in time, so that prediction is
impossible at any level of precision of the initial conditions. If the boards are convex (Sinay
billiard) even a single ball reduced to a material point will display the same instability. With a
multitude of such turning points, a dynamic system may display erratic, complicated behavior,
which looks and is called chaotic. Though deterministic, it will be unpredictable, because
prediction would require paradoxical precision of the initial conditions. This is not an abstract
extravaganza. On the contrary, chaotic systems can be surprisingly simple, like the nonlinear
pendulum, for example.

In his research on the three-body problem (Chapter 3), J.H. Poincaré (1854-1912) became
the first person to discover a chaotic deterministic system. Given the law of gravitational
attraction and the initial positions and velocities of the three bodies, the subsequent positions and
velocities are fixed; so the three-body system is deterministic. However, Poincaré found that the
evolution of such a system is often chaotic in the sense that a small perturbation in the initial
state, such as a slight change in one body’s initial position, might lead to a radically different later
state than would be produced by the unperturbed system. If the slight change is not detectable by
our measuring instruments, then we would not be able to predict which final state will occur. So,
Poincaré’s research proved that the problem of determinism and the problem of predictability are
distinct problems. The scientific line of research that Poincaré opened was neglected until 1963,
when meteorologist E.N. Lorenz (1917-2008) rediscovered a chaotic deterministic system: the
Earth’s atmosphere. Earlier, Poincaré had already suggested that the difficulties of reliable
weather predicting are due to the intrinsic chaotic behavior of the atmosphere. Amazingly, this
kind of chaos does contain inherent regularities. These regularities can be understood, and some
integral traits of chaotic behavior can even be predicted. One fundamental regularity in chaotic
behavior was discovered by Lorenz in his study on thermal convection in the atmosphere. Figure

Figure 1.2: Lorenz strange attractor.

1.2 shows a phase space for this system; its three coordinates characterize the intensity of the
convection stream, and horizontal and vertical temperature gradients. This means that a point
completely defines the state of the system at some moment of time; the evolution in time is
defined by a trajectory. The lines (curves) show that trajectory. The (hardly visible) dots in Figure
1.2 show 10,000 different states at some moment of time. They evolved from 10,000 initial states,
which were so close that they are all merged into one dot in Figure 1.2 (somewhere in the top
right corner). In other words, microscopic initial perturbation leads to macroscopic divergence,
and prediction is impossible. However, there exists an inherent regularity: all states eventually
congregate around the configuration represented by the lines. These lines are the asymptotic
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trajectories; the evolution of the system will gradually be attracted to them. They occupy the
subspace called the chaotic or strange attractor. Nowadays, we know that the shape of such a
distribution is fractal-like. However, the scientific study of fractals did not begin until B.B.
Mandelbrot’s (1924-2010) work in 1975, a century after Poincaré’s first insight.

Chaos in the solar system is associated with gravitational resonances. The simplest case of
such resonance occurs when the orbital periods of two bodies are about in the ratio of two small
integers. The solar system is full of this type of resonance. For instance, the orbital periods of
Venus and Earth are in the ratio of about 13:8, of Venus and Mars about 3:1, of Jupiter and
Saturn about 5:2, of Uranus and Neptune about 2:1, and of Neptune and Pluto about 3:2. Jupiter’s
moons Io, Europa and Ganymede have orbital periods in the ratio of 4:2:1 and Saturn’s moons
Enceladus and Dione in the ratio of about 2:1. There are other more subtle gravitational
resonances associated with the precession of the orbits (Section 23.3) of the bodies in addition
to their orbital period. Resonances thread the entire solar system in a complex web and it is
therefore remarkable that our solar system proved to be rather stable over extended periods of
time (Section 5.8).

1.4. Newton’s law of gravitation

Partially based on the observed motions of the planets around the Sun, Newton formulated his
law of gravitation and published it also in his Principia:
S Two particles attract each other with a force directly proportional to their masses and inversely

proportional to the square of the distance between them.
Mathematically, this law can be expressed as follows:

(1.11)

where r is the distance between the two particles. Note that when the distance between the
particles approaches zero, the gravitational force as expressed by (1.11) would approach infinity.
This implies that there must be some small distance at which the gravitation equation breaks
down, perhaps at quantum distances. Newton himself did not use the law of gravitation in the
form of (1.11); rather he worked with ratios so that the constant G cancels out. Later, the law of
gravitation took its modern form. The proportionality constant G is called the universal
gravitational constant; it appears both in Newton’s gravity law and in Einstein’s general
relativity theory. In celestial mechanics, the effects of the gravitational forces between celestial
bodies are studied. These bodies move at relatively large distances from each other, and most of
them have an almost spherical shape and a nearly radially-symmetric mass density distribution.
As will be shown in Section 1.5, such bodies may be considered as point masses located at the
centers of these bodies, as far as there mutual gravitational attraction force is concerned, and
(1.11) may be applied. When (1.11) is applied to compute the gravitational force between a
celestial body and a spacecraft, the spacecraft certainly may be considered as a point mass, since
its dimensions are much smaller than those of (most) celestial bodies. To give an example of the
magnitude of the gravitational force and the resulting acceleration of a body, consider the case
of a satellite with a mass of 10,000 kg at an altitude of 1000 km above the Earth. Substituting the
values of the universal gravitational constant, the mass of the Earth, and the radius of the Earth,
which are given in Appendix B, we find from (1.11) for the attraction force: 73.3 kN. For the
acceleration of the satellite and of the Earth due to this gravitational force we then find: 7.33 m/s2

and 1.23*10-20 m/s2, respectively. Just as could be expected, the acceleration of the Earth is
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extremely small, which is a direct result of its large mass. As a second example, we consider two
spacecraft, each with a mass of 10,000 kg and at a distance of 1 km from each other. If we
assume that both spacecraft may be considered as point masses as far as their gravitational
attraction is concerned, we find for the attraction force on each spacecraft: 6.67*10-9 N, and for
the acceleration of each spacecraft: 6.67*10-13 m/s2. This very small value shows that the
gravitational attraction between spacecraft can be neglected when computing their motion.

The determination of the value of G requires a very delicate experiment measuring the
gravitational force between two masses. H. Cavendish (1731-1810) used in 1798 a special torsion
balance to determine the mean mass density of the Earth, which was an important scientific
problem at the time. He found that the Earth’s mean mass density is about D . 5.4 gr/cm3, which
is much larger than the density of rocks at the Earth’s surface. This observation was one of the
first strong indications that density must increase substantially towards the center of the Earth.
In 1894, C.V. Boys (1855-1944) published the first calculation of the value of G. Rather than
performing a new experiment, he used Cavendish’s torsion balance measurements and found
G = 6.74*10-11 m3/kg s2. Nowadays, the adopted value is G = 6.67428*10!11 m3/kg s2. It is usual
to assume that G is independent of scale and that Newton’s inverse-square law of gravitational
attraction holds on both laboratory and planetary scales. So, G is considered as a fundamental
constant of physics; it is, however, the least well determined fundamental physical constant
owing to the intrinsic weakness of the gravitational force. Indeed, the limited accuracy available
for G limits the accuracy of the determination of the mass of the Sun and the planets. In Chapter
5 the gravitational parameter of a celestial body, : = GM, where M is the mass of the body, is
introduced. That parameter is known with much higher precision than the values of G and M
individually. The gravitational parameter of the Earth is : = 398600.4418 km3/s2.

It is interesting to note that the idea of planetary motion about the Sun, where the planets are
attracted toward the Sun by a force proportional to the inverse square of the distance between
planet and Sun, was already advocated by Hipparchos (-190-120 B.C.). His supposition was
based on ideas from various cultures long before him. The inverse square dependence on the
distance came from the assumption that the attraction is propagated along rays emanating from
the surfaces of the bodies. Brahmagupta (598-668) and Abu Ja’far Muhammad ibn Musa (-803-
873) proposed that there is a force of attraction between the Sun and the heavenly bodies. A
vague idea of a gravitational force that diminishes with distance was proposed by Johannes
Scotus Eriugena (815-877). Alhacen discussed the theory of attraction between masses, and it
seems that he was aware of the magnitude of acceleration due to gravity. Ismael Bullialdus (born
as Ismael Boulliau, 1605-1694) supported the hypothesis published by J. Kepler (1571-1630) in
1609 that the planets move in elliptical orbits around the Sun (Section 5.4), but argued against
Kepler’s proposal that the strength of the force exerted on the planets by the Sun would decrease
in inverse proportion to their distance from it. He argued in 1640 that if such a force existed it
would instead have to follow an inverse-square law. However, Bullialdus did not believe that any
such force did exist! R. Hooke (1635-1703) wrote in 1680 that all planets are pulled towards the
Sun with a force proportional to their mass and inversely proportional to the square of their
distance to the Sun. By that time, this assumption was rather common and had been advanced by
a number of scientists for different reasons. In 1687, Newton published his Principia, in which
he hypothesizes the inverse-square law of universal gravitation between any two bodies.

Many scientists have philosophized about the nature of the gravitational force. R. Descartes
(1596-1650) and Huygens used vortices to explain gravitation. Hooke and J. Challis (1803-1882)
assumed that every body emits waves which lead to an attraction of other bodies. N. Fatio de
Duillier (1664-1753) and G.L. le Sage (1724-1803) proposed a corpuscular model, using some
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sort of screening or shadowing mechanism. Later, a similar model was developed by H.A.
Lorentz (1853-1928), who used electromagnetic radiation instead of corpuscular radiation.
Newton and G.F.B. Riemann (1826-1866) argued that aether streams carry all bodies to each
other. Newton and L. Euler (1707-1783) proposed a model, in which the aether loses density near
the masses, leading to a net force directing to the bodies. W. Thomson (Lord Kelvin; 1824-1907)
proposed that every body pulsates, which then could explain gravitation and electric charges. In
2010, E.P. Verlinde (1962-) argued that gravity is linked to the amount of information associated
with matter and its location, measured in terms of entropy. Changes in this entropy when matter
is displaced then leads to a reaction force that we know as gravity.

In Einstein’s general relativity theory, gravitation is not a force but a phenomenon resulting
from the curvature of space-time. This curvature is caused by the presence of matter (objects).
Einstein proposed that free-falling objects are moving along locally straight paths in curved
space-time (this type of path is called a geodesic). The more massive the object is, the greater the
curvature it produces and hence the more intense the gravitation. As celestial objects move
around in space-time, the curvature changes to reflect the changed locations of those objects. In
certain circumstances, the time-varying accelerations of compact massive bodies (e.g. neutron
stars, black holes) in binary star systems, or produced by neutron star mergers or black hole
formations, may create fluctuations in the curvature of space-time. These fluctuations generate
gravitational waves, which propagate outwards at the speed of light and transport energy as
gravitational radiation. When a gravitational wave passes an observer, that observer will find
space-time distorted and will measure distances between free objects to increase and decrease
rhythmically as the wave passes, at a frequency corresponding to that of the wave. The amount
of gravitational radiation emitted by the solar system is far too small to measure. In theory, the
loss of energy through gravitational radiation makes the Earth orbit to slowly spiral in at a rate
of about 10!15 m/day. At this rate, it would take the Earth approximately 1013 times more than the
current age of the universe to spiral onto the Sun, while the Earth is predicted to be swallowed
by the Sun in the red giant stage of its life in a few billion years time. Gravitational radiation has
been indirectly observed as an energy loss over time in binary pulsar systems. In the past decades,
gravitational radiation observatories have been built to measure this type of radiation, but no
confirmed detections have yet been made. Space-based interferometers aiming at measuring
gravitational waves, such as the NGO system that is proposed by ESA for launch after 2022, are
being studied. The NGO mission aims at measuring gravitational waves over a broad band at low
frequencies, from about 100 µHz to 1 Hz. The mission will employ three spacecraft forming a
rotating nearly equilateral triangle with an arm length of 106 km, positioned in heliocentric,
Earth-trailing orbits with a radius of about 1 AU and with the plane of the constellation inclined
at 60E to the ecliptic. Lasers in each of the spacecraft will measure changes in path length
between free falling test masses housed in the three spacecraft to picometer accuracy.

In this book, we will apply Newton’s law of gravitation, which assumes that G is a constant
and that the gravitational force acts instantaneously; i.e. irrespective of the position or velocity
of two bodies, the force will always act along the instantaneous straight line connecting the two
bodies. So, we may say that this law assumes that the speed of gravity to be infinite. Conse-
quently, orbit computations must use true, instantaneous positions of all celestial bodies when
computing the gravitational attraction by the bodies. For example, even though we know that the
Earth is at a distance of about 500 light-seconds from the Sun, Newtonian gravitation theory
describes the force on Earth directed towards the Sun’s position ‘now’, not its position 500 s ago.
This aspect has already worried P.S. Laplace (1749-1827) and he made in 1805 an attempt to
combine a finite gravitational speed with Newton’s law of gravitation. He found that, for a stable
solar system, the speed of gravitational interactions should be at least 7*106 times the speed of
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light. However, his analysis was fundamentally incorrect.
The infinite speed of gravity in Newtonian theory seems to contradict Einstein’s relativity

theory, which forbids any effect to propagate faster than the speed of light. However, we should
realize that general relativity is conceptually very different from Newtonian gravitation theory.
Loosely stated, it tells us that for any mass that moves uniformly relative to an inertial frame its
gravity field appears static relative to the mass itself— i.e., it moves as if attached to the mass.
For weak fields, which occur in our solar system and in ‘normal’ stellar systems, one finds that
the ‘force’ in general relativity is not quite central—it does not point directly towards the source
of the gravity field—and that it depends on velocity as well as position. The net result is that the
effect of propagation delay is almost exactly cancelled, and general relativity theory very nearly
reproduces the Newtonian gravity result. It is noted that when the orbit of a celestial body has
been computed, the position where we ‘see’ that body can be computed by allowing for the delay
of light traveling from that body to Earth. This aberration effect is discussed in Section 5.11.

It is remarkable that the parameter ‘mass’ is present both in the equation of motion (1.7) and in
the equation for the attracting force (1.11). Intuitively, we always assume that the meaning of
‘mass’ is identical in both equations. However, this is not trivial! According to (1.7), we have to
exert a force to change an object’s velocity. The necessary force is proportional to the inertial
mass of the object; the more massive the object, the larger the necessary force. The gravitational
force exerted by two objects on each other is proportional to their gravitational masses. Newton
assumed that the gravitational mass of an object is identical to its inertial mass. As a result, the
acceleration of a body acted upon by gravitational forces is independent of the mass of that body,
as we will see later on. However, Newton realized that the assumption that inertial mass and
gravitational mass are identical is not self-evident. The effort it takes us to move an object, does
not necessarily have to be dependent on the gravitational mass that determines the force that the
object exerts itself. Consider, for example, an electrical force; this force is proportional to the
electric charge and not to its inertial mass. L. von Eötvös (1848-1919) and R.H. Dicke (1916-
1997) have verified that materials of different composition and mass experience exactly the same
acceleration in a gravity field, which indicates that inertial mass and gravitational mass are very
much equal; their results had an accuracy of 10-8 and 10-11, respectively. Presently, experiments
even achieve an accuracy of 10-12. Einstein has proved that in the supposition of a constant speed
of light for all observers (which is the substance of the special theory of relativity), gravitational
mass and inertial mass are identical indeed.

If we now consider the force acting on particle m2 due to the mutual gravitational attraction
between m1 and m2, we may write (1.11) as

(1.12)

where  is the position vector from m1 to m2. We can imagine the force acting on m2 to be caused
by a gravity field generated by m1. The force per unit of mass of m2 at the location of m2 is called
the field strength, , of the gravity field generated by m1:

(1.13)

We now introduce a scalar quantity



Fundamentals of Astrodynamics     SS     Some basic concepts 12

(1.14)

where U2,0 is an arbitrary constant. Note that U2 is a function of the position of body m2 relative
to body m1 only. From (1.13) and (1.14) follows:

(1.15)

where  is the nabla operator (del operator, gradient), i.e. the derivative of U2 in three-
dimensional space with respect to the coordinates of body m2. From theoretical mechanics we
know that if the local field strength can be found by partial differentiation of a scalar function of
position coordinates to these position coordinates, then this function is called a potential.
Therefore, U2 is the potential of the force field generated by body m1 at the location of body m2.
The potential energy of body m2 is m2U2. In celestial mechanics, it is customary to choose the
potential at infinity equal to zero, which means that . Thus, at any other distance the
gravitational potential is negative, and the gravitational potential of a particle m1 at an arbitrary
distance, r, can be expressed as

(1.16)

From theoretical mechanics we know that if a potential is not explicitly depending on time, then
the force field is conservative and the sum of potential and kinetic energy of a body moving in
that force field is constant. So, the Newtonian gravity field described by (1.16) is conservative.
Notice that when computing the Earth’s gravitational force acting on an object on the surface of
the Earth, of course, the centrifugal force due to the rotation of the Earth should be added to the
gravitational force. At the equator, this centrifugal force leads to an outward acceleration of 3.39
cm/s2. In that case, the centrifugal potential  where  is the rotational velocity of the
Earth and d is the distance of the object from the rotation axis of the Earth, should be added to
the gravitational potential in (1.15).

An arbitrary body L with finite dimensions can be viewed as a collection of particles. Since
potential functions may be added, the gravity field of such a body may be written as

(1.17-1)

where

(1.17-2)

and dm is a particle from the collection constituting L. In reality, one will use an integration over
the entire body instead of the summation as given in (1.17-1).

For a body of arbitrary shape and mass distribution it is not possible to find a closed-form
analytical solution for the gravitational potential of that body and one is forced to use series
expansions. Exceptions are spherical shells of constant mass density and spheres with a radially
symmetric mass density distribution. We know that the shape of the stars, the Sun, the Moon and
the planets closely resembles that of a sphere, and that, to first approximation, the mass density
distribution of these celestial bodies can be assumed to be radially symmetric. Therefore, we will
derive in the next Section expressions for the gravity field of a thin spherical shell and of a
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sphere.

1.5. Gravity field of a thin spherical shell and a sphere

Let we first consider the gravitational potential of a homogeneous thin spherical shell in a point
P within that shell. The radius of the shell is R and its thickness is t; for the analysis given below
we assume t n R. In Figure 1.3 (left) a thin ring perpendicular to the line CP is shown, where C
is the center of the spherical shell and l is the distance between C and P. All points on the ring
are at a distance r from P. The circumference of the ring is 2BR sin2, and the mass of the ring
is given by

where D is the mass density of the shell. The gravitational potential of the ring at P is

(1.18)

Figure 1.3: Geometry for the computation of the internal (left) and external (right) gravity field of a thin
spherical shell.

For r we write

(1.19)

and for the mass of the thin spherical shell:

Substitution of these relations into (1.18) yields for the gravitational potential of the shell at P:

(1.20)

Differentiation of (1.19) yields for R > l:

(1.21)

Combination of (1.20) and (1.21) gives

or, after integration,



Fundamentals of Astrodynamics     SS     Some basic concepts 14

(1.22)

This equation shows that within a spherical shell the gravitational potential is constant, i.e.
independent of the position of P. Since the total force on particle P with mass mp in an arbitrary
direction x can be expressed as

(1.23)

it can be concluded that the resulting attracting force on P is equal to zero.

Next, the case of P outside the spherical shell is considered (Figure 1.3 (right)). In a similar way
as for the case of P within the shell, the following expression can be derived:

or

(1.24)

Note that in this case the gravitational potential is dependent on the position of P. The resulting
attracting force on P is directed along l and is according to (1.23) and (1.24) equal to

(1.25)

So, a spherical shell attracts a mass mP outside the shell as if the mass of the shell were
concentrated in the center of the spherical shell.

A spherical body with a radially symmetric mass density distribution can be considered as
a series of thin spherical shells with the same center and each with its own constant mass density.
Using (1.24), the external gravity field of such a body can be written as

(1.26)

where Mi is the mass of a spherical shell and MT is the total mass of the sphere. According to
(1.23), the total attracting force on P can be expressed as

(1.27)

where the force is again directed along l. Note that the gravitational potential and the
gravitational force are independent of the mass density distribution within the sphere, as long as
this distribution is radially symmetric. Also note that the sphere attracts point mass mP as if the
entire mass of the sphere were concentrated at the center of the sphere. This is a very important
result, because it demonstrates that, to first-order approximation, we may consider celestial
bodies as point masses as far as their gravitational attraction is concerned.

The slight deviations in the internal mass distribution of the Sun and the planets will hardly
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have any effect on the motion of the planets around the Sun, because of the very large distances
between them. Totally different is the case of the motion of a satellite about the Earth. Many
satellites orbit the Earth at distances from the Earth’s surface that are small compared to the
radius of the Earth. Therefore, the slight deviations from a radially-symmetric mass distribution
of the Earth will have a clearly observable effect on the satellite orbit. A second difference
between satellite orbits and planetary orbits is the fact that satellites often move so close to the
Earth’s surface that their orbits are significantly influenced by atmospheric forces. It are these
two effects, i.e. the non-spherical mass distribution of the Earth and the occurrence of
atmospheric forces, that make precise orbit computations of satellites about the Earth more
difficult than precise orbit computations of planets about the Sun. Fortunately, both effects can
be considered as perturbations of the orbit. For satellite orbit computations, we may, to first-order
approximation, consider the Earth as purely spherical and its mass density distribution as radially
symmetric, and we may neglect the atmospheric forces. The perturbations of satellite orbits and
the computation of perturbed satellite orbits will be dealt with in Chapters 20 to 23.

1.6. External gravity field of a body with arbitrary mass distribution

As mentioned before, it is not possible to derive a closed-form analytical solution for the external
gravitational potential of a body with an arbitrary shape and mass distribution. Therefore, the
gravitational potential is usually expressed through series expansion. To gain some insight in the
character of these series expansions, we will discuss a few special cases.

Consider body L that has an arbitrary shape and internal mass density distribution. Connected to
this body is a reference frame XYZ, of which the origin, O, coincides with the center of mass of
L (Figure 1.4). An element Q of L has a mass dm and coordinates x, y, z. At some distance l from
O there is a particle P, which has a mass m1 and coordinates x1, y1, z1. It is assumed that l is larger
than the largest dimension of L; i.e. P is positioned outside a sphere around O that fully contains
body L. 

Figure 1.4: Arbitrary body L and an external point P. The origin of reference frame XYZ coincides with
the center of mass of L.

According to Newton’s law of gravitation, the force acting on P due to the mutual attraction
between P and Q can be expressed as

where G is the universal gravitational constant and  is a vector along the line connecting P



Fundamentals of Astrodynamics     SS     Some basic concepts 16

and Q, which is directed from P to Q and has a magnitude equal to the distance between P and
Q. Therefore, the gravitational potential of body L at the position of P is

(1.28)

where the integral has to be taken over the entire body L. For the distance PQ and the distances
from P and Q to the origin O, the following expressions hold:

Combination of these expressions gives

(1.29)

When the notations

(1.30)

are introduced, where 2 is the angle POQ, (1.29) can be rewritten as

Substitution of this relation into (1.28) yields

(1.31)

Since every point Q must satisfy " < 1 and since also: q # 1, it is possible to use the following
series expansion for (1.31):

(1.32)

where

(1.33)

The structure of these expressions reveals that Pi are Legendre polynomials in q. Evaluating the
first integral in (1.32) yields

(1.34-1)

where M is the total mass of L. With (1.33) the second integral in (1.32) yields

Since O is the center of mass of L, the result is



Fundamentals of Astrodynamics     SS     Some basic concepts 17

(1.34-2)

Evaluation of the third integral in (1.32) gives

(1.35)

The moments of inertia A, B, C and D of body L about the X-, Y- and Z-axis and the line OP,
respectively, are defined as

(1.36)

Using these expressions, (1.35) may be rewritten as

(1.34-3)

When the series expansion in (1.32) is truncated after the third term, substitution of relations
(1.34) into (1.32) results in:

(1.37)

which leads to the following expression for the (central) attracting force on P per unit of mass:

(1.38)

where g is the acceleration due to gravity. Equation (1.37) has first been published by J.
MacCullagh (1809-1847) in 1849 and is generally known as MacCullagh’s formula; it gives a
first-order approximation of the external gravity field of a body with arbitrary shape and mass
density distribution. Equation (1.38) shows that the gravitational attraction of an irregular body
has two contributions; the first is the attraction of a point mass with mass M located at the center
of mass of the body, the second term depends on the moments of inertia around the principal
axes, which in turn depend completely on the mass distribution of the body. The first term decays
as 1/l 2 with increasing distance, l, while the second term decays as 1/l 4. So, at large distances the
gravity field approaches that of a point mass and becomes less and less sensitive to aspherical
variations in the mass distribution of the body. This is the reason why the CHAMP, GRACE and
GOCE (Section 19.1) satellites, which were launched in 2000, 2002, 2009, respectively, and were
dedicated to measuring the gravity field of the Earth accurately, have flown at altitudes as low
as 300 km, 450 km and 250 km, respectively.

For a sphere or a spherical shell

which leads to

(1.39)

These results are, of course, identical to the ones found in Section 1.5. For the general case, we
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can, using (1.30) and (1.36), derive the following expression for D:

According to Figure 1.4 :

Then, D can be written as

(1.40)

We now assume that the reference frame is oriented such that XYZ are the principal axes of
inertia of body L. In that case, the products of inertia are zero and all terms containing xy, xz and
yz can be set equal to zero. This yields

(1.41)

After some trigonometric manipulation this relation can be rewritten as

 

or, with (1.36),

(1.42)

With this relation it is possible to calculate D of an arbitrary body of which the principal
moments of inertia A, B and C are known, and consequently determine an approximation of the
external gravity field of L at point P.

As a simplification, we now assume that the principle moments of inertia A and B are equal.
This is the case for a body of which both the shape and the internal mass density distribution is
rotationally symmetric about the Z-axis. Using relation (1.42) we then find

(1.43)

Substitution of A = B and (1.43) into (1.37) and (1.38) yields

(1.44)

The term ½(3sin2N-1) is the second-degree Legendre polynomial in sinN. If the series expansion
in (1.32) would have been continued after the third term, we would have found a gravitational
potential consisting of a sum of Legendre polynomials (Section 20.1).

The expressions (1.44) are often used as a first-order approximation of the Earth’s external
gravity field. This is allowed, because for the Earth the higher-order terms are indeed small of
the second order (Section 20.1). Equations (1.44) can also be written as
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(1.45)

where R is the radius of the body in the XY-plane. We may write

(1.46)

The ratio (C - A)/C may be found from observations on the luni-solar precession of the Earth
(Section 11.2), while the ratio C/MR2 may be estimated from the theory of hydrostatic
equilibrium of the Earth. This method was used by G.H. Darwin (1845-1912) and further
developed by W. de Sitter (1872-1934); its limitation depends on the degree of applicability of
the theory of hydrostatic equilibrium to the Earth. When we substitute in (1.46) modern values
of the relevant parameters listed in Appendix B, we find (C - A)/(MR2) . 1.082*10-3, which
demonstrates that the effect of the non-radially-symmetric mass distribution is very small indeed.

Equation (1.45-2) shows that the acceleration of a body due to gravity is independent of the
mass of that body. For small altitude variations at the surface of the Earth (l . R) we find from
(1.45-2) that, at a certain location on Earth, the acceleration of the body is constant. Ancient
scholars were not aware of this fact. As an example, Aristotle (-384-322 B.C.), who probably
was the first writer who gave a quantitative description of falling motion, wrote that an object
falls at a constant speed, attained shortly after being released, and that this speed is proportional
to the weight of the body. After him, many scientists discussed the motion of free falling bodies.
Galileo Galilei (1564-1642) was the first who realized in 1604 that, if air resistance and buoyancy
can be neglected, all falling bodies experience a constant acceleration, irrespective of their mass.
He also tried to measure the acceleration of free falling bodies, and of objects rolling down an
inclined plane. However, he never got accurate results due to the lack of an accurate clock. The
invention by Huygens of an accurate pendulum clock in 1656 afforded the first practical means
of measuring the acceleration due to gravity. To honor Galilei for his studies on the acceleration
due to gravity, the unit often used in gravimetry is the gal (symbol Gal): 1 Gal = 1 cm/s2 . 10-3

g. Until the second half of the nineteenth century it was virtually impossible to measure gravity
with an accuracy of better than 1 Gal. Around 1900 a measurement precision of 1 mGal was
achieved; nowadays, routine relative gravity field measurements (difference in gravity between
two locations) have an accuracy of about 5 :Gal; in a laboratory an accuracy of down to about
0.1 :Gal is achieved.

When we substitute in (1.45-2) modern values of the relevant parameters listed in Appendix
B, we find g = 9.814 m/s2 at the equator and g = 9.832 m/s2 at the poles. The first observations
that gravity varies at different points on Earth was made in 1672 by J. Richer (1630-1696), who
took a pendulum clock to Cayenne, French Guiana, and found that it lost 2.5 min per day. In
1687, Newton showed in his Principia that this was because the Earth has a slightly oblate shape
(flattened at the poles; Section 11.1). In 1737, P. Bouguer (1698-1758) made a series of
pendulum observations in the Andes mountains, Peru, at three different altitudes, from sea level
to the top of the high Peruvian plateau. His measurements showed that gravity fell off slower than
with the inverse square of the distance from the center of the Earth. He correctly attributed the
‘extra’ gravity to the gravitational field of the huge Peruvian plateau. Nowadays, we know that
the shape of the Earth can be approximated by an ellipsoid of revolution (Section 11.1), with its
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minor axis, having a length of 6356.752 km, oriented along the Earth’s rotation axis and its major
axis, having a length of 6378.137 km, oriented in the equatorial plane. Due to the oblateness of
the Earth and its rotational velocity, the total acceleration experienced by a body at this reference
surface varies from 9.780 m/s2 at the equator to 9.832 m/s2 at the poles.

1.7. Maneuvers with rocket thrust

On several places in this book the application of rocket engines for launch vehicles and spacecraft
maneuvers will be discussed. To prevent that elements of this subject have to be treated more
than once, this Section deals with those elements. The analysis concerns high-thrust propulsion
systems, such as chemical and future thermal-nuclear rocket engines. In Chapter 19, an analysis
will be presented for low-thrust propulsion systems, such as ion rocket engines. In the discussion,
it is assumed that the reader already has some general knowledge of trajectories of rockets and
spacecraft.

The thrust of a rocket engine is, according to (1.10), given by , where  is the mass flow
rate, i.e. the mass of exhaust gases that flow per second through the nozzle, and Vj is the
(effective) exhaust velocity. With f = F/M and , where f is the thrust acceleration
and M is the (instantaneous) mass of the space vehicle, we find from (1.10):

Integration from t = 0, i.e. the time that the engine starts thrusting, to the time that the engine
stops thrusting, te, gives

(1.47)

The initial mass of the spacecraft, M0, may be assumed to consist of three components: the mass
of the construction (including the rocket engines and propellant tanks), Mc , the mass of the
payload, Ml, and the mass of the propellants, Mp. So, M0 = Mc + Ml + Mp. For the mass at te, when
all propellants have been consumed, we may write Me = Mc + Ml. From these relations we find

This expression shows that, for a given value of Mc /M0, a maximum payload ratio, Ml/M0,
corresponds to a minimum value of M0/Me. This means a minimum value of the integral on the
right-hand side of (1.47). Note that a higher exhaust velocity will always lead to a larger payload
ratio. For these thrusting systems the exhaust velocity may, generally, be considered constant
during the thrusting phase, which means that, for a given spacecraft with specified initial mass
and engine exhaust velocity, the payload ratio is maximum if

(1.48)

It is emphasized that the integral given above, generally, is not equal to the velocity increment
of the vehicle at the end of the thrusting period. The reason is that other forces are acting on the
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spacecraft.
To find the optimum thrust program (magnitude and direction of the thrust) and the optimum

trajectory of the spacecraft, we have to integrate the equations of motion for specified initial and
final conditions (including flight time), and using (1.48) as a minimization criterion. In this book,
we will not address the computation of optimum trajectories. When, as a zeroth-order
approximation, we assume that no other forces are acting on the spacecraft (this condition is
generally referred to as gravity-free space) and that the (effective) exhaust velocity is constant,
then integration of (1.47) leads to

 (1.49)

where )V is the ideal velocity increment produced by the propulsion system during the period
t0 to te. This equation is known as Tsiolkovski’s law. It was published by K.E. Tsiolkovski (1857-
1935) in 1903, and represents for gravity-free space the relation between the amount of
propellants used, the (effective) exhaust velocity and the velocity increment achieved. The ideal
velocity change is independent of the thrust program, as long as the exhaust velocity is constant. 

In reality, the gravitational attraction by the Earth is acting on the spacecraft. In Figure 1.5
a section of a trajectory is sketched, where it is assumed that during the time interval t0 to te a
thrust  acts upon the spacecraft continuously. The gravitational attraction force is indicated by

. The angle between the thrust vector and the normal to the position vector (thrust angle), and
the angle between the velocity vector and the normal to the position vector (flight path angle) are
indicated by * and (, respectively.

Figure 1.5: Geometry of powered flight and a definition of the flight path angle, (, and the thrust angle,
*.

Starting from (1.9), we can write for the motion along the trajectory

(1.50)

where g = G/M. For satellite launchers and high-thrust spacecraft orbit change maneuvers, the
optimum flight profile usually requires that the thrust is directed (approximately) tangentially to
the trajectory (* . (). If the exhaust velocity is assumed to be constant, integration of (1.50) then
gives
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(1.51)

This equation shows that the true velocity increment is smaller than the ideal velocity increment.
The second term on the right-hand side of (1.51) represents the gravity loss:

(1.52)

This gravity loss is determined by the thrust program, which determines g and ( as a function of
time, and by the total thrusting time te-t0. The gravity loss is equal to zero when the thrust vector
is continuously directed perpendicularly to the position vector (( = 0E). In reality, trajectory
optimization and mission requirements will not permit the thrust vector to be directed
perpendicularly to the position vector during the entire propelled flight, and thus gravity losses
will occur. Quantitative information about the magnitude of the gravity loss occurring during
orbit maneuvers will be provided in Section 12.7 and Section 18.9.

Satellite launch vehicles will also experience a drag loss, )VD, due to their motion through
the atmosphere, and for these vehicles we may write

Both the drag and the gravity loss are sensitive to the initial thrust-to-mass ratio, (F/M)0. Low
thrust-to-mass ratios cause the gravity loss to be high because the vehicle spends more time in
ascent, while high thrust-to-mass ratios cause the drag loss to be high because of the higher
velocities achieved in the lower atmosphere. For medium-to-large launch vehicles flying
optimum trajectories the gravity loss amounts to 0.7 - 1.5 km/s and the drag loss to 20 - 50 m/s.

In analyses of spacecraft maneuvers, the concept of an impulsive shot is often used. This concept
is based on the fact that for these maneuvers a rocket engine usually operates only for a (very)
short time interval and that we therefore may assume that the maneuver generates a discontinuous
change in velocity, while the position of the spacecraft remains unaltered. In other words, by
using the impulsive shot approximation, we assume that the kinetic energy per unit of mass of
the spacecraft is changed, while the potential energy per unit of mass remains the same. It is clear
that for an impulsive shot both the gravity loss and the drag loss are zero. In that case, (1.49)
shows that, for a given initial mass and construction mass, a maximum payload mass is realized
if the ideal velocity increment is minimum. So, the optimization criterium becomes a
minimization of )V; this criterion will be used many times in this book. The concept of an
impulsive shot can, of course, only be applied when using chemical and thermal-nuclear
propulsion, of which the thrusting time is short in comparison to the travel time for a certain
mission. Using these types of propulsion systems, the larger part of the flight is performed
gravitating without thrust. If electric propulsion is used, the propulsion system operates during
a large part of the flight (Chapter 19) and the concept of an impulsive shot loses its meaning.

Figure 1.6 refers to a satellite that orbits the Earth. At time t0, the position vector and the
velocity vector are indicated by  and , respectively. We assume that at that time an
impulsive shot  is applied. The position vector and velocity vector just after the impulsive
shot are  and , respectively, with
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Figure 1.6: Geometry of an impulsive shot.

(1.53)

As stated above, an optimum maneuver requires, for a given initial mass and a specified orbital
change, that )V is minimum. Here, an elementary analysis will be presented for two basic
maneuvers: a maneuver to change the spacecraft’s orbital angular momentum and a maneuver
to change the spacecraft’s orbital energy. We assume that the initial mass of the spacecraft and
its initial orbit about the Earth are known. We want to determine both the position where the
maneuver has to be executed and the direction of the thrust vector, such that the change of the
angular momentum or of the orbital energy, both per unit of mass, is maximum for a prescribed
value of )V. The change in orbital angular momentum per unit of mass is given by

(1.54)

The change in the orbital energy per unit of mass is equal to the change in kinetic energy per unit
of mass:

(1.55)

From expressions (1.54) and (1.55) some interesting conclusions can be drawn:
S For a given magnitude of , the maximum change in orbital angular momentum is achieved

if the impulsive shot is executed when the spacecraft is farthest away from the Earth and if 
is perpendicular to .

S If the direction of the orbital angular momentum vector should not be changed,  should be
directed in the initial orbital plane. If the direction of the angular momentum vector should be
changed, a component of  should be directed perpendicular to the initial orbital plane.

S For a given magnitude of , the maximum change in (total) orbital energy is achieved if the
impulsive shot is executed at the point in the orbit where the velocity reaches a maximum
value, and if  is directed along the velocity vector , i.e. tangentially to the (initial) orbit.

These conclusions strictly only hold for an impulsive shot maneuver, but they are to first-order
approximation also valid for most realistic spacecraft maneuvers.

The last conclusion listed above can be applied directly for the analysis of interplanetary
trajectories (Chapter 18). For such missions, an important topic is the optimum impulsive shot
maneuver to leave a circular parking orbit about the Earth and to enter an interplanetary
trajectory, or to enter a parking orbit about another planet upon arrival at that planet. In both
cases, the goal of the impulsive shot is to increase or decrease the total orbital energy of the
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spacecraft, and that maneuver, of course, has to be executed in such a way that it requires a
minimum amount of propellants. For the case of leaving a circular parking orbit about the Earth,
we know that for each position in the parking orbit the initial velocity vector of the spacecraft,

, is directed perpendicular to the local satellite position vector, , and that its magnitude is
the same for each position in the parking orbit. Consequently, the impulsive shot can be applied
at any point in the parking orbit and, according to (1.55), the impulsive shot should be directed
tangentially to the circular parking orbit and in the direction of the initial velocity, . For the
case of entering an (elliptical) parking orbit about the target planet, the deceleration impulse
should, according to (1.55), be applied at the point in the flyby trajectory where the velocity in
that trajectory is a maximum, and in the direction opposite to the velocity vector at that point in
the trajectory. We will use these results in Chapter 18.

1.8. Astronomy and the solar system

To understand the problems in astrodynamics, it is necessary to have some knowledge of
astronomy and a global overview of the structure and physical characteristics of our solar system.
However, these subjects falls outside the scope of this book and the reader is referred to the many
introductory books on this subject. Some physical, astronomical and geophysical data that are
useful in astrodynamics are summarized in Appendix B.
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2. MANY-BODY PROBLEM

Let us consider a system composed of n bodies, which may be considered as point masses (Figure
2.1). Assume that body i with mass mi has the coordinates xi, yi, zi with respect to an inertial
reference frame. For any other body j the corresponding parameters are mj, xj, yj, zj. The position
of body j relative to body i can be expressed as

(2.1)

where the magnitude of vector  is

(2.2)

Figure 2.1: Position of n point masses relative to an inertial reference frame XYZ.

When we assume that no external forces act on the system, and that within the system of n bodies
only gravitational forces occur, then, applying Newton’s second law of motion and Newton’s law
of gravitation, the motion of body i with respect to the inertial reference frame can be written as

(2.3)

where the summation is taken from j = 1 to j = n, excluding j = i. This equation shows that the
motion of body i is governed largely by those bodies j for which the ratio mj /rij

2 is large, i.e.
bodies that have a large mass and that are close to body i. The equation of motion of body i may
be written as three scalar second-order differential equations. Similarly, for the motion of n
bodies 3n second-order differential equations can be written. The n-body problem can then be
formulated as follows: “Consider n point masses in three-dimensional physical space. Suppose
that the force of attraction experienced between each pair of point masses is Newtonian. Then,
if the initial positions and velocities are specified for every particle at some moment of time,
determine the position of each particle at every future (or past) moment of time.” For n = 2, the
problem was solved by J. Bernoulli (1667-1748) in 1710. For n > 2, we generally have to rely on
numerical integration techniques to determine the motion of the bodies. However, some general
characteristics of the many-body problem can be derived. These characteristics are known as the
ten integrals of motion, which will be derived in the following Section.
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2.1. Integrals of motion

The position vector to the center of mass of the n bodies is given by

(2.4)

In celestial mechanics the center of mass of a system of bodies is called the barycenter.
Summation of (2.3) for all i gives

It is obvious that the right-hand side of this equation is equal to zero; hence,

(2.5)

Integration of (2.5) leads to

where  is an integration constant. This expression shows that the total linear momentum of the
many-body system is constant in magnitude and direction. In rectangular coordinates this leads
to the following three integrals of motion:

(2.6)

where c1, c2, c3 are integration constants.
Combination of (2.4) and (2.5) gives

(2.7-1)

or, after integration,

(2.7-2)

where  and  are constant vectors. In rectangular coordinates this leads to the following three
integrals of motion:

(2.8)

where a1, a2, a3, b1, b2, b3 are integration constants. These integrals of motion show that the
barycenter of the n bodies does not experience an acceleration, but either remains at rest or
performs a uniform rectilinear motion relative to the inertial reference frame. Thus, it can be
concluded (Section 1.2) that a non-rotating reference frame with its origin at the center of mass
of all bodies in the universe is the ‘primary’ inertial reference frame. All reference frames that
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perform a uniform rectilinear motion with respect to this primary reference frame are inertial
reference frames too.

Three more integrals of motion can be found by taking the vector product of (2.3) and  and
subsequently applying a summation for all i:

An evaluation of this expression yields, after substitution of (2.1),

Due to its anti-symmetric properties, the right-hand side of this equation is equal to zero and we
may write

(2.9)

or

(2.10)

where  denotes the total angular momentum of the many-body system, which is constant in
magnitude and direction. This constant vector defines a plane that passes through the barycenter
of the n bodies and that is perpendicular to the angular momentum vector. This plane is called
the invariable plane of Laplace and can be used as a reference plane for describing the motion
of the n bodies. It was introduced by P.S. Laplace (1749-1827) in 1784. Three integrals of motion
can be derived from (2.10), which indicate that the rectangular components of the angular
momentum vector are constant:

(2.11)

It is emphasized that the concept of the invariable plane of Laplace should be used carefully. The
angular momentum of the system consists of contributions by the rotational motion of each body
about its own axis and contributions by the motion of each body around the origin of the
reference frame, is constant. We have assumed that all bodies are point masses (particles). Then,
the angular momentum of rotation is zero for all bodies and there exists an invariable plane
perpendicular to the angular momentum vector that is linked to the motion of the bodies about
the origin of the reference frame (orbital angular momentum). If the bodies are not point masses
or infinitely rigid bodies, precession phenomena and friction effects generated by tides will occur,
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which will result in an exchange between the angular momentum of motion and the angular
momentum of rotation of the bodies. In that case, the invariable plane as defined by (2.10) will
not remain constant. However, in the solar system these effects are minute and the angle between
the invariable plane and the plane in which the Earth moves about the Sun: the ecliptic1, has an
almost constant value of 1E35N.

From (2.3) it follows that the force on body i is given by

The force per unit of mass of i is called the field strength, , at the position of body i (Section

1.4). So,

(2.12)

Now, a scalar quantity Ui, which is a function of the spatial coordinates of all bodies, is
introduced:

(2.13)

where  is an arbitrary constant. Combination of (2.12) and (2.13) shows that the field strength
can be written as

(2.14)

As already stated in Section 1.4, it is known from theoretical mechanics that if the local field
strength can be found by partial differentiation of a scalar function of the spatial coordinates to
the spatial coordinates, that scalar function is a potential. So, Ui is the potential of the force field
at the position of body i and the potential energy of body i is given by miUi . In Section 1.4, it was
stated that it is common practice in celestial mechanics to set the potential at an infinitely large
distance equal to zero. Then, Ui,0 in (2.13) is equal to zero and the potential has a negative value
at any finite distance. Two remarks can be made about the force field at the position of i. First,
the field certainly is not central, because Ui is a function of rij and not of ri. Secondly, the value
of the potential at a fixed position relative to the inertial reference frame will vary with time,
because the bodies j are moving. For such a time-varying potential the sum of kinetic and
potential energy of body mi is not constant (Section 1.4). Therefore, we are dealing with a non-
central, non-conservative force field.

It is possible to find an energy integral for the system of n bodies. Taking the scalar product
of  and (2.3), and subsequently applying a summation for all i, gives

1 The ‘ecliptic’ is described in more detail in Section 11.2.
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or, with (2.1),

 (2.15)

We now introduce the notation

and write

When we use the fact that within the double summation the indices i and j may be interchanged,
we can write this relation as

or

(2.16)

Substitution of (2.16) into (2.15) yields

where Vi is the velocity of body i. Integration of this equation leads to

(2.17)

The first term in (2.17) represents the total kinetic energy, õk, of the system of n bodies. The
second term (including the minus sign), which actually expresses some kind of internal energy
of the system, is called the total potential energy, õp, of the system. Consequently, (2.17) can be
written as

(2.18)

This proves that, while the sum of kinetic energy and potential energy of an individual body is,
generally, not constant, the sum of kinetic energy and potential energy of the entire system is
constant.

Equation (2.17) shows that when two (or more) bodies collide, a singularity occurs while all
distances ri remain finite. This equation also shows that when two (or more) bodies approach
each other very closely (rij 6 0), the velocity of at least one body will become very large (Vi 6 4)
and at least one of the bodies may escape from the system (ri 6 4). This would result in a so-
called non-collision singularity. For a long time, an intriguing question was whether it could be
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proved that without collisions one of the bodies could really be ejected to infinity in finite time?
P. Painlevé (1863-1933) already conjectured that this was possible indeed for n > 3. The concern
was finally resolved by Z. Xia (1962-) in 1988; he proved that three-dimensional examples of
such ejections exist for all n $ 5.

Above, we have proved that for a closed (isolated) system of n bodies, in which the only forces
acting upon the bodies are the mutual gravitational forces according to Newton’s law of gravity:
1) the total linear momentum is constant; 2) the barycenter remains at rest or performs a uniform
rectilinear motion; 3) the total angular momentum is constant; 4) the total energy is constant. In
fact, these conservation laws hold for any system that is not affected by external forces or torques
and that does not experience an energy exchange with its surroundings, and for any type of
internal forces. It is emphasized that in our analysis we have assumed that the total energy of the
system of n bodies consists of gravitational potential energy and kinetic energy only, and we have
excluded other forms of energy.

These conservation laws were expressed through ten independent algebraic integrals of the
general n-body problem; i.e. ten integrals that are algebraic functions of position, velocity and
time. The first general theorems on the dynamics of n-body systems were given by I. Newton
(1643-1727) in his Principia; they relate to the motion of the barycenter. L. Euler (1707-1783)
appears to have been the first to develop celestial mechanics much beyond the state in which
Newton left it; the ten general integrals were known to him. E.H. Bruns (1848-1919) proved in
1887 that if rectangular coordinates are used as variables, besides these ten integrals there can
be no other algebraic integrals independent of these ten integrals. This does not, of course,
exclude the possibility of algebraic integrals when other variables are used. A generalization of
Brun’s theorem is due to Painlevé, who showed in 1898 that any integral of the n-body problem
which is an algebraic function of the velocities and is analytic in the coordinates is a combination
of the classical integrals. It is emphasized that these theorems do not prove that the n-body
problem is unsolvable. Mathematically, they only show that a certain method, i.e. solving a
system of differential equations by finding (first) integrals, fails to solve the problem! J.H.
Poincaré (1854-1912) has demonstrated that the problem of three bodies admits no new uniform
transcendental integrals, even when the masses of two of the bodies are very small compared to
the mass of the third body. In his theorem, the dependent variables are the elements of the orbits
of the bodies, which continually change under their mutual attractions. However, from this
theorem it does not follow that integrals of the class considered by Poincaré do not exist when
other dependent variables are employed. In fact, T. Levi-Civita (1873-1941) has shown the
existence of this class of integrals in a special problem, which comes under Poincaré’s theorem,
when suitable variables are used. The practical importance of the theorems of Bruns, Painlevé
and Poincaré have often been overrated by those who have forgotten the conditions under which
they have been proved to hold.

To determine the orbits of the n bodies under the influence of their mutual attractions with
respect to an inertial reference frame, a set of 3n scalar second-order differential equations has
to be solved, which is equivalent to the determination of 6n integrals. Of these 6n integrals, only
ten are known. Therefore, the many-body problem can be reduced to solving a set of first-order
differential equations of the order 6n-10. These reductions have actually been carried out,
especially for the problem of three bodies, by various researchers, starting with J.L. Lagrange
(1736-1813) in 1772, K.G.J. Jacobi (1804-1851) in 1842, J.C.R. Radau (1835-1911) in 1868 and
Poincaré in 1896, and more recently by V.I. Arnol’d (1937-2010) in 1985. A further reduction
by two orders is possible by the elimination of the time, i.e. by the use of one of the dependent
variables as the independent variable, and by the so-called elimination of the nodes. So, an
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ultimate reduction to the order 6n-12 is possible. The method of the elimination of the nodes was
originally developed for a three-body system by Jacobi in 1842. Since then it has been extended
and applied to a system of four bodies up to a system of n bodies by T.L. Bennett (-) in 1904, Y.
Hagihara (1897-1979) in 1970, F. Boigey (-) in 1981, A. Deprit (1926-2006) in 1983, and others.
In essence, this quite complicated method comes down to an appropriate selection of the
orientation of the barycentric inertial reference frame (or a series of reference frames) such that
a coordinate transformation with preferred mathematical characteristics is possible. However,
these further reductions have little practical value, since the resulting expressions are rather
complicated. In 1912, the Finnish astronomer K.F. Sundman (1873-1949) published a series
expansion in powers of t1/3 for the coordinates of each of the bodies of the three-body problem.
That series expansion is convergent for all t, except for the case that the angular momentum of
the system is zero. Q. Wang (-) has generalized this kind of analysis and published in 1991
similar convergent series expansions for any n $ 3. His method excludes the case of solutions
leading to singularities—collisions in particular. These series expansions, however, have only
very limited practical meaning. Although convergent, they show a slow convergence. One would
have to sum up very many terms to determine the motion of the point masses with moderate
accuracy, even for short intervals of time. Then, the round-off errors make these series unusable
in numerical analyses.

The ten integrals found for the many-body problem, and especially the angular momentum
and energy integrals, are very useful in classical celestial mechanics to check numerical
calculations. They enable us to get an idea of the inevitable accumulation of numerical errors.
They are also important for the physical interpretation of various problems in celestial mechanics.
However, we have to realize that when we consider the orbit of an Earth satellite or the trajectory
of an interplanetary spacecraft, the application of the conservation laws for angular momentum
and energy has little practical value. The reason is that the mass of a spacecraft is very small in
comparison to the mass of a celestial body. Even if the positions of the Moon and the planets
would be known up to twenty significant digits, which they are not, a characteristic ratio in the
order of 1022 between the mass of the planets and the mass of a spacecraft would still cause errors
in the calculation of the total energy of the system that are a hundred times larger than the total
energy of the spacecraft. In other words: the orbit of the spacecraft can deviate very much
without any noticeable change in the total energy of the system.

2.2. Motion relative to the barycenter

Equation (2.3) holds for the motion of body i (point mass) relative to an arbitrary inertial
reference frame, where it is assumed that only the gravitational attraction forces between body
i and a number of bodies j (j … i) act on body i. We now consider the motion of body i relative
to a non-rotating reference frame with its origin at the barycenter (center of mass) of the system
of n bodies. As shown before, this reference frame is an inertial reference frame. Hence, the
integrals of motion are also valid with respect to this reference frame.

Since the equation of motion (2.3) holds for any inertial reference frame, we may write for
the motion of body i relative to the barycentric inertial reference frame:

(2.19)

where the vector  now denotes the position vector of body i in the barycentric reference frame.

According to (2.1) we can write
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Since  = 0, we thus can write

Since the barycenter is the origin of the reference frame, we conclude from (2.4) that the first
term on the right-hand side of the expression given above is zero, and we obtain

or

(2.20)

Subtraction of (2.20) from the right-hand side of (2.19) leads to

or

(2.21)

where M is the total mass of the system of n bodies. This remarkable expression is known as the
barycentric form of the equation of motion, and shows that the motion of body i relative to the
barycentric inertial reference frame can be described as a superposition of two components. The
first term on the right-hand side describes the so-called two-body motion of body i about the
barycenter, where the entire mass of the system of n bodies is assumed to be concentrated at the
barycenter and only the gravitational attraction between that fictitious mass and body i is
accounted for; the second term describes a motion component that is the result of the attractions
between body i and all bodies j … i. In Sections 5.2 and 5.3 it will be shown that the two-body
motion leads to an orbit that has the shape of a conic section (circle, ellipse, parabola, hyperbola),
and that this orbit can be computed in a closed analytical way. It is emphasized that (2.19) and
(2.21) are equivalent; both describe the motion of body i relative to a non-rotating barycentric
reference frame. In general, (2.19) is used for numerical analyses, because of its simpler
structure. However, in cases where the second term on the right-hand side of (2.21) is small
compared to the first term on the right-hand side, which implies that the gravitational attraction
by the bodies j only produce a perturbation of the two-body motion of body i, then (2.21)
certainly has to be preferred over (2.19). The reason is that then only a perturbative term, i.e. the
second term on the right-hand side of (2.21), has to be integrated numerically, which generally
allows larger integration steps and yields smaller integration errors. In Section 4.2 it will be
proved that, both for the computation of the orbits of planets about the Sun and of the orbits of
satellites about the Earth, all bodies j produce only small perturbing accelerations superimposed
on the main acceleration that results from the gravitational attraction between Sun and planet or
Earth and satellite, respectively.

There is an interesting aspect associated with (2.21) when we use it to compute the orbit of
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the Earth, or of any other planet of our solar system. Then, the Sun is one of the bodies j in the
second term on the right-hand side of (2.21), and so the mass of the Sun is not only included in
the parameter M, but also appears in the perturbative term. Since the mass of the Sun is more than
thousand times the mass of any other body of our solar system,  and it might seem that

(2.21) would have little value for solar-system problems. This is, however, not the case, as will
be shown below. When, in the second term on the right-hand side of (2.21), we separate the effect
of the gravitational attraction by the Sun on the motion of body i from the effects of the attraction
by all other bodies j, we can write (2.21) as

(2.22)

where the index S refers to the Sun. Since the Sun makes up about 99.86% of the total mass of
the solar system, the barycenter of the solar system is near the center of the Sun. In the most
unfavorable case, namely when all planets would line up on one side of the Sun, the barycenter
would still be only at a distance of about two solar radii, or about one percent of the distance
between Sun and Earth, measured from the center of the Sun. Consequently, we may write

, where Δ is of the order of xS, yS, zS, i.e. the coordinates of the Sun in the barycentric

reference frame; these quantities are small compared to  for all planets. We then find:

(2.23)

where the notation O denotes ‘of the order of’. Since we describe positions relative to the
barycentric reference frame, we find from (2.4):

(2.24)

Substitution of (2.23) and (2.24) into the second term on the right-hand side of (2.22) leads to

 

which shows that mS effectively cancels out. Consequently, the entire second term on the right-
hand side of (2.21) produces only a perturbation of the two-body orbit of a planet about the
barycenter of the solar system. In Section 4.1, the application of (2.21) for perturbed trajectories
will be discussed briefly.

2.3. Polar moment of inertia, angular momentum and energy

In this Section we continue our analysis of the motion of the n bodies relative to a non-rotating
(inertial) reference frame with its origin at the barycenter of the system of the n bodies. The
position of a body (point mass) with respect to this reference frame will be indicated by x, y en
z. The polar moment of inertia, I, of the system is then given by

(2.25)

We may derive an interesting equation where I is expressed in the mutual distances between the
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bodies. For that, we consider again a particular body i and denote an other body by the index j.
Then,

(2.26)

where the summation is taken over all bodies j of the n-body system. Since the motion is
considered relative to an inertial reference frame attached to the barycenter of the n-body system,
we can write with (2.4):

Hence, (2.26) simplifies to

(2.27)

where M is the total mass of the system. Multiplication of (2.27) by mi and subsequent summation
for all i, yields with (2.25)

or

(2.28)

We will use this relation later.

Differentiating (2.15) with respect to time yields

(2.29)

Substitution of (2.3) into (2.29-2) gives

(2.30)

We now introduce an auxiliary variable

Because in a double summation the indices i and j may be interchanged, we find from this
relation



Fundamentals of Astrodynamics     SS     Many-body problem 35

(2.31)

Substitution of (2.31) into (2.30) gives

or, with (2.17),

(2.32-1)

or, with (2.18),

(2.32-2)

The relations (2.32) are known as the Lagrange-Jacobi identity and were derived by J.L.
Lagrange (1736-1813) in 1772, and extended by Jacobi. From the definition of õp it follows that
the value of õp is always negative. Of course, õk is always positive. Hence, from (2.32-2) follows
that if C $ 0, the quantity d 2I/dt2 is always positive. Thus, even if dI/dt would be negative
initially, dI/dt will become positive after some time and I will increase unboundedly with time.
This means that at least one of the bodies will move unboundedly far away from the origin and
will escape from the system, and we are dealing with an unstable system. So, a necessary, but not
sufficient, condition for a stable system is C < 0; i.e. the sum of kinetic and potential energy
should be negative. That this is a non-sufficient condition follows directly from the fact that,
according to (2.32-2), for certain values of õp and õk, negative values of C can exist that still
yield d 2I/dt2 > 0. It should be noted that stability does not necessarily demand that d 2I/dt2 < 0
holds continuously; it is sufficient that dI/dt and d 2I/dt2 vary in such a way that I never becomes
unboundedly large. However, no general statement about this required variation can be made.

The (constant) angular momentum of the n-body system may be written with (2.10) as

So, the magnitude of the angular momentum is given by

(2.33)

where γi is the angle between  and the normal to . In the two-body problem (Chapter 5) this
angle is called the flight path angle; it was already introduced in Section 1.7. When we apply
Cauchy’s inequality, which states that for arbitrary a and b:

to (2.33), we find

 (2.34)
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We may write (2.29-1) as

or

Application of Cauchy’s inequality to this expression yields

(2.35)

Combining (2.34) and (2.35) yields

or

Substitution of (2.32-2) into this relation gives

(2.36)

This so-called inequality of Sundman provides a relation between the angular momentum of the
system of n bodies, its polar moment of inertia and the first- and second-derivatives of the polar
moment of inertia, and its total energy. Often, a somewhat weaker form of this inequality is used:

(2.37)

We will use this form in Sections 2.4 and 2.5.

2.4. Evolution of n-body systems

In Section 2.2 we have found that if C $ 0, the system of n bodies is always unstable; if C < 0,
the system may be stable or unstable. In this Section some interesting relations that provide
information about the evolution of the system will be derived.

Systems with C > 0
We know that for C > 0 the system is unstable, which implies that it will expand unboundedly.
Now the question may be asked: “How fast will the system expand?” To answer this question,
we consider (2.32-2), which, because õp < 0, õk > 0, C > 0, and both expressions (2.32-2) have
to be satisfied, leads to the condition

(2.38)



Fundamentals of Astrodynamics     SS     Many-body problem 37

Since C > 0, and consequently d 2I/dt2 > 0, integration of (2.38) yields

(2.39)

where A1 and A2 are integration constants; the values of these constants are, in general, not equal
to zero. The right-hand side of (2.39) represents a set of second-degree polynomials, which have
their minimum values: -A1

2/8C+A2 at t = -A1/4C. For an expanding system, I > 0 for all values of
t $ 0. With these conditions, we obtain

Because C > 0 and A2 > 0, the second inequality can be written as

(2.40)

Now, it is postulated that, irrespective of the values of C, A1 and A2, it is always possible to find
a positive constant E, for which the following expression holds:

(2.41)

This assertion can be proved as follows. From (2.41) follows that

This second-degree equation in t has no roots and consequently

Since A2 > 0, we may write this inequality as

Because E is assumed to be positive, this relation shows that the inequality (2.41) can only be
true if

(2.42)

From (2.40) and (2.42) follows that indeed there exists a value of E > 0 that satisfies (2.41). So,
(2.39) may be written as

(2.43)

According to (2.28), we may write for the polar moment of inertia:

(2.44)

where rmax = MAX (rij), i.e. rmax is the maximum value of all distances between two bodies at a
certain time. When we consider that stage of the expanding system for which the total mass is
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constant, we can write according to (2.44)

(2.45)

Combining this relation with (2.43) yields

So,

(2.46)

Since E and M are positive constants for a given system of n bodies, this relation shows that rmax

has to increase more than linearly with time. Hence, the expansion of the system occurs
according to a kind of accelerating process, in which the rate of expansion increases with time.

Systems with C = 0
For this case, the system is also unstable and integration of (2.38) leads to

(2.47)

where the values of the integration constants are, in general, not equal to zero. The right-hand
side of (2.47) represents a set of lines. Because for an expanding system I > 0 for all values of
t $ 0, we find as constraints for the values of A1 and A2: A1 > 0, A2 > 0. Now, it is postulated that,
irrespective of the values of A1 and A2, it is always possible to find a positive constant E, for
which the following expression holds:

(2.48)

This assertion can be proved as follows. From (2.48) we find

This inequality can, for all values of t, and for A1 > 0, A2 > 0, only be satisfied if

So, indeed there exists a value of E > 0 that satisfies (2.48). Combination of (2.47) and (2.48)
yields

(2.49)

Combination of (2.45) and (2.49) yields

So,

(2.50)

Since E > 0 and M > 0, this relation shows that rmax has to increase faster than t1/2. Hence, the
system is still expanding, but cases may occur in which the rate of expansion decreases with time.
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Systems with C < 0
As explained in Section 2.2, these systems can be stable or unstable. Because õp < 0, õk > 0, and
C < 0, and both expressions (2.32-2) have to be satisfied, the following condition holds:

(2.51)

which indicates that, because C < 0, there is a negative lower bound for d 2I/dt2. In this case, the
simplified form of Sundman’s inequality (2.37) can be written as

(2.52)

Because H and C are constants, (2.52) shows that the sign of d 2I/dt2 is determined solely by the
instantaneous value of I. When a so-called critical value for the moment of inertia is introduced:

(2.53)

we find that for I < Icr: d
2I/dt2 > 0, which corresponds to an unbounded expansion. If I > Icr, it

may only be concluded from (2.52) that d 2I/dt2 is larger than some negative value, which tells
us nothing about the sign of d 2I/dt2.

Stable systems
We now consider the case that the system is stable, which means that the n bodies remain in a
bounded region of space and that no body escapes from the system. We have already found that
this requires that the distance between two or more bodies does not become too small. In the
following, we will derive an expression for the upper bound of the minimum distances between
the bodies in a stable system. 

From the definition of õp follows:

(2.54)

where rmin is the minimum distance between two bodies in the system at a certain time. When the
notation

(2.55)

is introduced, where A is a known positive constant for a given system, (2.54) may be written as

(2.56)

For C < 0, (2.18) yields

Since õk $ 0, we find

(2.57)

Combining (2.56) and (2.57) yields
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Because rmin has a positive value, we find with (2.55):

(2.58)

Thus, for a given number of bodies with given masses and a given value of C < 0, we can always
find an upper bound for the minimum distance between two bodies during the evolution of the
system. The value of the upper bound increases when the total mass of system increases and/or
when the absolute value of the constant C decreases.

When we average (2.32-1) over a time interval 0 - te, we may write

or

where the ‘bar’ indicates average values. Substitution of (2.29-1) into this expression yields

(2.59)

In a stable system no collisions and no escapes occur. In other words: all bodies stay within a
finite distance from the origin and the velocities of all bodies remain finite. In that case, the value
of the expression between brackets in (2.59) will remain finite. Therefore, if the time interval 0
- te is chosen large enough, the left-hand side of (2.59) will approach zero. So, for a sufficiently
long averaging period, we find for a stable system:

(2.60)

For each system we have

which implies

(2.61)

Combination of (2.60) and (2.61) yields

(2.62)

This relation is known as the virial theorem. It shows that for a stable system the value of the
total kinetic energy averaged over a long period of time is equal to minus half the average value
of the total potential energy, and is equal to the negative value of the integration constant from
relation (2.18). In essence, a similar analysis was used by R.J.E. Clausius (1822-1888) in his



Fundamentals of Astrodynamics     SS     Many-body problem 41

studies on the mechanical nature of heat, and on the relation between pressure, volume and
temperature in a non-ideal gas. He used the term ‘virial’ (derived from the Latin word ‘virias’
which means ‘forces’) for the first time around 1870 to denote what we would call today the
internal energy of gas in a container. The virial theorem is therefore also known as the Clausius’
theorem. The virial theorem plays an important role in astrophysics. For instance, Poincaré
applied a form of this theorem in 1911 to the problem of determining cosmological stability, and
F. Zwicky (1898-1974) was the first to use the theorem to deduce the existence of ‘unseen
matter’, what is nowadays called dark matter. S. Chandrasekhar (1910-1995) and E. Fermi
(1901-1954) extended the virial theorem in 1953 for astrophysical applications to include the
presence of magnetic fields. A simple application of the virial theorem concerns galaxy clusters.
If a region of space is unusually full of galaxies, it is safe to assume that they have been together
for a long time, and the theorem can be applied. Doppler measurements give lower bounds for
the relative velocities of the galaxies, and the virial theorem then gives a lower bound for the total
mass of the cluster, including any dark matter.

2.5. Total collision

When the n bodies all collide at the same time, we speak of a total collision. For such a collision,
we know that at the last stage of the process: rij 6 0 for all i, j-combinations, ri 6 0 and I 6 0. This
indicates that the total collision occurs in the center of mass of the system. In this Section, the
positions of the bodies are again described with respect to a non-rotating reference frame with
its origin at the center of mass of the system of n bodies. First, it will be proved that if such a total
collision occurs, it can never occur after an infinitely long time. To prove this statement, it will
be shown that it is impossible that I 6 0 for t 6 4.

For a total collision, rij 6 0 and we find from (2.17) and (2.18): õp 6 -4. Since C is a finite
constant, we find from (2.32-2): d 2I/dt2 6 4. Consequently, for t > t1, where t1 is some point in
time, the following relation holds:

where A0 is a positive constant. Integration of this relation yields for t > t1:

(2.63)

where A1 and A2 are constants. From (2.63) follows that if t 6 4: I 6 4, which contradicts with the
assumption: t 6 4 , I 6 0. So, we have proved that a total collision can only occur within a finite
interval of time.

A theorem by Sundman states that a total collision can only occur if for the total system: .
This can be proved in the following way. For a system where none of the bodies escape, we know
that C < 0. Now, it is assumed that the total collision occurs at t = t1, where 0 - t1 indicates a
finite time interval. Then, we have for t 6 t1: I 6 0, õp 6 -4, d 2I/dt2 6 4. So, for t2 # t # t1: d

2I/dt2

> 0, where t2 is an appropriately chosen point in time. However, the system can only undergo a
total collision if dI/dt < 0 for t2 # t # t1. Multiplying the simplified form of Sundman’s inequality
(2.37) by the positive quantity -(dI/dt)/I yields
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Integration of this equation for t > t2 yields

where D is a constant. Because (dI/dt)2 > 0, we obtain

(2.64)

For t 6 t1: I 6 0 and ln(1/I) 6 4. So, according to (2.64): H 2 6 0. But since H is constant, H = 0
should hold during the entire period of motion, which proves Sundman’s theorem. Of course, H
= 0 is a necessary, but not sufficient, condition for the total collision. Summarizing, it may be
stated that in the final phase of a total collision the following conditions hold: I 6 0; dI/dt < 0;
d 2I/dt2 6 4.

2.6. Pseudo-inertial reference frames

Until now, we have considered the motion of celestial bodies (point masses) with respect to
inertial reference frames. Although from a theoretical point of view the application of inertial
reference frames is of fundamental importance, in practice we cannot use ‘true’ inertial reference
frames and we are always forced to work with so-called pseudo-inertial reference frames. This
implies that one deliberately neglects the accelerations and rotations of the pseudo-inertial
reference frame relative to a ‘true’ inertial reference frame. As an example, consider the
computation of the trajectory of a bullet. In that case, we may neglect the rotation of the Earth
because the bullet’s flight time is short. Although we know that the Earth’s rotation gives rise to
centrifugal and Coriolis accelerations, these accelerations can be neglected for the calculation of
the trajectory of the bullet and therefore a pseudo-inertial reference frame may be chosen that is
fixed to the Earth’s surface. For the calculation of the trajectory of a ballistic missile, the rotation
of the Earth may certainly not be neglected. However, in that case the motion of the Earth about
the Sun may be neglected, and a non-rotating reference frame with its origin at the center of mass
of the Earth can be chosen as pseudo-inertial reference frame. To describe the motion of bodies
in our solar system, the origin of the pseudo-inertial reference frame should be chosen at the
barycenter of the solar system. We then neglect the effects of bodies outside the solar system. The
invariable plane of Laplace goes through this barycenter; the angle between this plane and the
orbital plane of the Earth (ecliptic) is about 1E35N (Section 2.1). Because of the enormously large
mass of the Sun with respect to the other masses in the solar system, the barycenter is near the
center of the Sun and we often adopt a non-rotating reference frame with its origin at the center
of the Sun as a pseudo-inertial reference frame. When one analyzes a two-body problem or a
three-body problem, and describes the motions relative to a non-rotating reference frame with
its origin at the barycenter of the two or three bodies, this reference frame is in fact a pseudo-
inertial reference frame, because we know that the universe contains more bodies. In all the cases
mentioned, we often omit the phrase ‘pseudo’, and speak for simplicity of an ‘inertial reference
frame’.
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2.7. Angular momentum in the two-body problem

In the special case that the many-body problem reduces to a two-body problem (Chapter 5), an
important relation for the orbital angular momentum of the bodies, which will already be used
in Chapter 3, can be derived. When we describe the motion of the two bodies with respect to a
(pseudo-)inertial reference frame XNYNZN with its origin at the barycenter of the two bodies
(Figure 2.2) that moves with a constant velocity relative to the inertial reference frame XYZ, we
can write, according to (2.4),

or

(2.65)

where  and  are the position vectors of the two bodies.

Figure 2.2: A pseudo-inertial reference frame and the positions of the bodies of the two-body problem
relative to this reference frame.

For the two-body problem (2.10) reduces to

(2.66)

Substitution of (2.65) into (2.66) yields

(2.67)

Equations (2.67) indicate that the orbital angular momentum vectors of bodies 1 and 2 in their
motion about the barycenter of the system have the same direction; namely the direction of .
Hence, both bodies move in the same fixed plane about the barycenter, and the motion of the
bodies about each other also occurs within that plane. The magnitude of the orbital angular
momentum of each body is constant. Furthermore, from (2.65) we conclude that the two bodies
will always be positioned diametrically opposite to each other and that the orbits described by
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both bodies about the barycenter of the system are of the same shape (similar). As an example,
Figure 2.3 shows elliptical orbits of the two bodies about the barycenter (absolute motion) and
about each other (relative motion).

Figure 2.3: Absolute (left) and relative (right) motion of two bodies under the influence of their mutual
gravitational attraction (m1/m2 = 2).
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3. THREE-BODY PROBLEM

In modern terminology, the three-body problem may be stated as: “What are the motions of three
given bodies (point masses) moving under the influence of their mutual gravitational attraction?”
As such, knowledge of the three-body problem is of great importance in classical dynamical
astronomy, e.g. to determine the motion of the Moon in the Sun-Earth-Moon system, and in
astrodynamics, e.g. to determine the motion of a spacecraft in the Earth-Moon system.
Throughout the last three centuries, the three-body problem has played a major role in the
development of natural sciences. It has triggered many mathematical studies, methods and
theories by L. Euler (1707-1783), J.L. Lagrange (1736-1813), P.S. Laplace (1749-1827), K.G.J.
Jacobi (1804-1851), W.R. Hamilton (1805-1865), S. Newcomb (1835-1909), C.L. Siegel (1896-
1981), and many others. The development of an accurate theory to describe the motion of the
Moon about the Earth was competing during the eighteenth century with the progress in
timekeeping systems for measuring longitudes on Earth. 

It was Euler who stated the general three-body problem for the first time (as soon as 1727,
in his diary), and who recognized the great difficulties arising in the solution of this problem. He
realized that in the first instance the simplest cases have to be solved, e.g. the collinear case
(Section 3.2), where the three bodies are always on a straight line; and the two-center problem,
where the position of two bodies remains fixed. He also mentioned the triangular case (Section
3.2), where the three bodies always form an equilateral triangle; and the restricted three-body
problem (Section 3.3), where the mass of one of the bodies being very small when compared with
that of either of the other two bodies. The difficulties experienced in finding solutions for the
three-body problem were the reason for the introduction of new qualitative analysis methods by
J.H. Poincaré (1854-1912), G.D. Birkhoff (1884-1944) and others; methods which have since
then been extended to many other branches of science. It is interesting to note that while in the
early 1960’s meteorologists, like E.N. Lorenz (1917-2008), studied the chaotic behavior in
atmospheric systems and have discovered the strange attractor (Section 1.3) by using modern
computers in their analyses, such chaotic behavior had already been discovered by astronomers
in numerical studies of the three-body system. These discoveries, in fact, are closely related to
theoretical analyses of Poincaré and Birkhoff on the so-called ergodic theorem and that of A.N.
Kolmogorov (1903-1987), V.I. Arnol’d (1937-2010) and J.K. Moser (1928-1999) on the behavior
of orbits close to periodic motions. But, only during the last decades we start to understand how
general these types of motions are in all kinds of dynamical systems.

The centuries of investigations in the three-body problem have reached the point where most
theoreticians believe that, when each of the three masses is non-zero, all solutions are basically
unstable, in the sense that at any place in the three-body space escape solutions are the most
probable on the long run. However, this assertion is contested by most numerical analysts. If the
theoreticians are correct, a new type of instability will appear: a kind of very-long-term stability,
which is finally destroyed by very small and long-lasting resonance effects. Perhaps, this would
even imply that the ultimate future of our solar system is dispersion (Section 5.8)!

In this Chapter, we will start with some general aspects of the three-body problem and with
a discussion on a couple of famous solutions. Then, we will discuss in more detail the special
case of the so-called circular restricted three-body problem and some practical applications of
that problem.

3.1. Equations of motion

We assume that the forces on three bodies P1, P2 and P3, with masses m1, m2, m3, are solely due
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to the gravitational attractions between the bodies and that the bodies can be considered as point
masses. In Figure 3.1, the geometry of the system is sketched; the inertial reference frame XYZ
has its origin O at the mass center of the system of the three bodies. It is emphasized that the
general situation is considered, where the motions of the bodies are not confined to a single plane.

Figure 3.1: Geometry of the system of three bodies and the vectors used in the Euler and Lagrange
formulation.

Using Newton’s second law of motion and his law of gravitation (Chapter 1), we may write for
the motion of the bodies:

 (3.1)

where

(3.2)

The set of three second-order differential equations (3.1) represents the classical or Euler
formulation of the three-body problem. When the position of the bodies is written in the
rectangular coordinates x, y, z, we arrive at a set of first-order differential equations of the order
eighteen. In Section 2.1 it was mentioned that by using the integrals of motion and applying the
methods of the elimination of the time and the elimination of the nodes we can reduce the order
of the set of differential equations. No general solutions have been obtained for the set of
equations. Only some series expansion types of solutions and partial solutions for very special
cases are known.

In the Lagrange formulation of the three-body problem, the variables are , , and 
(cyclic set of parameters). When we start with the vector , we may write

or

 (3.3)

Combination of (3.1) and (3.3) yields
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or

(3.4-1)

In a similar way, we find

(3.4-2)

(3.4-3)

with, of course,

(3.5)

This form of the equations of motion is often used as a starting point for analytical studies on the
three-body problem. Note that each equation consists of a two-body part (the second term in
brackets) and a part accounting for the attraction by the third body (the first term in brackets).

Jacobi has proposed to use other parameters to describe the positions of the three bodies and
it turned out that his decomposition of the three-body problem is the most powerful for detailed
analyses and e.g. forms the basis of lunar theory and triple stellar system problems. His
decomposition is non-symmetric and he used two main vectors to describe the relative positions
of the bodies (Figure 3.2): the vector and the vector  from the center of mass of P1 and P2

to P3. This vector , of course, passes through the barycenter of the entire system. In Figure 3.2
these centers of mass are indicated by O12 and O, respectively.

Figure 3.2: Jacobi method of describing the position of the three bodies.

Let
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(3.6)

then

(3.7)

Multiplication of (3.7-1) with " and (3.7-2) with (1-"), and subsequently adding both relations
gives

Differentiation of this equation results in

Substitution of the Lagrange equations (3.4-2) and (3.4-3) gives

or

(3.8)

From (3.6) we find

With this relation we may write

and

where M is the total mass of the three bodies. Substitution of these relations into (3.8) finally
yields

(3.9-1)

This equation and a slightly modified version of Lagrange equation (3.4-1):
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(3.9-2)

form the Jacobi set of equations for the three-body problem. It is emphasized that these equations
constitute a twelfth-order system.

As an application of the Jacobi set of equations, we consider the so-called lunar case and
planetary case. In the lunar case, where P1 is the Earth, P2 the Moon and P3 the Sun, we know
that

With these approximations, (3.9) can be simplified to

(3.10)

For the planetary case, with P1 the Sun, P2 the Earth and P3 a planet, we have:

and we arrive at the same approximative equations of motion. Equation (3.10-1) describes the
relative motion of bodies P1 and P2; (3.10-2) describes the motion of body P3 relative to the
center of mass of bodies P1 and P2. So, we conclude that both for the lunar case and the planetary
case the (relative) motions of the bodies may be approximated by a superposition of two two-
body trajectories. It will be shown in Sections 5.2 and 5.3 that a two-body trajectory has the
shape of a conic section; such orbits are generally called Keplerian orbits.

3.2. Central configuration solutions

Lagrange has found a particular case of three-body motion in which the mutual distances between
the bodies remain constant, and Euler has extended this class of motion and has found solutions
in which the ratios of the mutual distances remain constant. These classes of solutions refer to
cases where the geometric shape of the three-body configuration does not change with time,
although the scale may change and the configuration may rotate. Lagrange and Euler showed that
for three bodies of arbitrary mass such solutions are possible if:
S The resultant force on each body passes through the barycenter of the system.
S The resultant force is proportional to the distance of a body from the barycenter of the system.
S The magnitudes of the initial velocity vectors are proportional to the respective distances of

the bodies from the barycenter of the system, and these velocity vectors make equal angles
with the radius vectors to the bodies from the barycenter of the system.

Because of these requirements, the solutions are generally referred to as central configurations.
We will determine the possible configurations that satisfy these requirements.

Because in Figure 3.1 O is the barycenter of the system of three bodies, we may write
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(3.11)

This relation can also be written as

or

(3.12)

where, again, M is the total mass of the system of three bodies. Scalar multiplication of this
relation with itself yields

(3.13)

If the shape of the configuration does not alter, the distances r12, r23 and r31 are given by

(3.14)

where the index 0 denotes the value of the distance at t0, i.e. the epoch1 when the bodies are
placed in the required configuration, and f(t0) = 1. Combining (3.13) and (3.14), we obtain

where n, the angle between  and , is constant. Since the term in brackets is constant, we

may write r1 = c f(t), where c is a constant. Because f(t0) = 1, we find

or, generalizing this result,

(3.15)

Since n is constant, we can write for the angular velocity, Ti, of body Pi about the barycenter

(3.16)

We know that the total angular momentum of the system about the origin (barycenter), , is
constant, which means

(3.17)

Combining (3.15), (3.16) and (3.17), we obtain

(3.18)

Because H is constant and the term in brackets is constant, also the product {f(t)}2T(t) must be
constant.

1 Epoch is a moment in time used as a reference point for some time-varying astronomical quantity. In the older
astronomical literature it was customary to denote as epoch not the reference time, but rather the values at that date
and time of those time-varying quantities themselves.
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The angular momentum of body i is given by  or, with (3.15) and (3.16),

This proves that the angular momentum of each body about the barycenter is constant, which
means that the resulting force acting on each body passes through the barycenter of the system.
When the force per unit of mass acting on mi is indicated by gi, we know from classical
mechanics that, if the force acts along the radius vector, the equation of motion of mi is

Substitution of (3.15) and (3.16) into this equation yields

or

For each body the term in brackets is identical, which means that

(3.19)

Because the force acting on a body passes through the barycenter of the system, we have:

or, with Newton’s second law of motion,

(3.20)

We now go back to (3.1) and take the vector product of with the left- and right-hand sides of

(3.1) for i = 1. With (3.2) we then obtain

or, with (3.20),

Substitution of (3.11) into this equation gives

or
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(3.21)

There are, of course, two similar equations for the other bodies:

(3.21)

The set of relations (3.21) reveals immediately the two possible solutions:

(3.22)

which gives the equilateral triangle solution, and

(3.23)

which puts the three bodies on a straight line. These two cases are the only ones possible. The
first case is often called the Lagrange case, while the second case is usually called the Euler case.
These solutions were published by Lagrange and Euler in 1772 and 1767, respectively. 

Figure 3.3: Elliptical Lagrange case (left) and elliptical Euler case (right) of central configuration
solutions.

In the Lagrange case (Figure 3.3, left), we can write (3.1) for i = 1:

With (3.12) this relation can be written as

(3.24)

Because in this case the angle between  and  is 60E, we may write (3.13) as
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or, with (3.22),

When we define

(3.25)

where M * is constant, we can write (3.24) as

(3.26)

This is the two-body equation of motion (Chapter 5), which means that body P1 moves about the
barycenter of the three-body system in a conic section (ellipse, parabola or hyperbola, depending
upon the initial velocity) as if a mass M * was placed in the barycenter of the three-body system.
Of course, a corresponding result is obtained for each of the two other bodies. As long as the
initial conditions stated before are satisfied, the configuration of the three bodies remains an
equilateral triangle, though its size may oscillate or grow indefinitely and its orientation may
change. Relative to the XYZ frame with origin at the mass center of the system, the three bodies
describe three Keplerian orbits with the same eccentricity and the same attraction center (Figure
3.3, left). However, because the value of the ‘artificial’ mass at the attraction center is different
for each body, the semi-major axis of the three Keplerian orbits is not the same.

In the collinear (Euler) situation (Figure 3.3, right), where the three bodies are placed in the order
P1-P2-P3 with the barycenter, O, between P1 and P2, we can write for the gravitational force per
unit of mass acting on P1:

With (3.14) and (3.15) we may write this equation as

(3.27)

where c1 and c2 are constants. So, P1 is acted upon by a central force with a magnitude that is
proportional to the inverse-square of the distance of P1 from the origin of the reference frame. In
Chapter 5 it will be shown that for such a force field the trajectory is a conic section, as are the
orbits of the other two bodies. So, just as for the Lagrange case, the three bodies describe three
Keplerian orbits, with the same eccentricity but with different periods, about the barycenter.

The line connecting the three bodies is rotating with angular velocity T about the center of
mass, such that the collinear configuration is always maintained. This means that we want
solutions that satisfy (Figure 3.3, right)
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(3.28)

where the value of the constant T depends upon the initial conditions. As the shape of the
configuration does not alter, we may write according to (3.14)

  (3.29)

where " is a constant. It is emphasized that this auxiliary parameter " is different from the one
introduced in Section 3.1. Subtraction of (3.28-1) from (3.28-2) and (3.28-2) from (3.28-3) gives

(3.30)

Substitution of the relations (3.29) into (3.30) gives

From these relations we find

or

Re-ordering this equation in powers of " results in the quintic equation:

(3.31)

Since the coefficients of the powers of " change sign only once, we may conclude from
Descartes’ rule of signs that this equation has only one positive (real) root. Hence, from (3.29)



Fundamentals of Astrodynamics     SS     Three-body problem 55

we conclude that for three given masses there are always three, and only three, collinear central
configurations, according to which mass is between the other two.

From (3.31) we conclude that the mutual positions of the three bodies in the collinear
configuration are a function of the masses of the three bodies. To indicate the position of the
barycenter of the system, O, relative to the three bodies we may use the quantity r1/r12. Because
O is the center of mass, we may write according to Figure 3.3 (right):

or

or

(3.32)

Substitution of (3.29) into (3.32) leads to

(3.33)

From (3.31) we find

or, after re-ordering of the various terms

After some algebraic manipulation, we find

Substitution of this relation into (3.33) finally yields

(3.34)

This equation shows that in a collinear Euler three-body configuration the position of the
barycenter is a function of the positions of the three bodies only, and is independent of the masses
of the bodies.

3.3. Circular restricted three-body problem

In an effort to gain insight into the characteristics of the three-body problem, Euler, Lagrange,
Jacobi, G.W. Hill (1828-1914), Poincaré, and others, have made a large number of studies of the
so-called circular restricted three-body problem. For this special three-body problem, the
following assumptions are made:
S The mass of two bodies is much larger than the mass of the third body. Then, the third body

moves in the gravity field of the two massive bodies, but the effect of the gravitational
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attraction by the third body on the motion of these massive bodies can be neglected.
S The two massive bodies move in circular orbits about the barycenter of the system.
The orbits of the two massive bodies being known, the problem is to determine the motion of the
third body. The general three-body problem is thus reduced from nine second-order differential
equations to three second-order ones. This means a reduction from order eighteen to order six.
Since the mass of the third body is assumed to be negligible, the two main bodies move as if they
form a two-body system. In Section 2.7 it was shown that in such a system both bodies move in
a single plane and that the two bodies are always positioned diametrically opposite to each other.
It is emphasized that the angular momentum and energy integrals of motion found in Section 2.1
for the n-body problem cannot be used for the analysis of the motion of the third body in the
circular restricted three-body problem. The reason is that we have assumed that the two massive
bodies move in circular orbits in a single plane, which can only be true if the mass of body P is
zero. In that case the angular momentum and total energy of that body is zero, and the integrals
of motion hold for the system of the two main bodies. For any mass of P not equal to zero the
motion of the two main bodies will not be confined to a single plane anymore. Of course, when
the mass of P is small the assumption that the two massive bodies move in a single plane is a
good approximation. However, the consequence of this assumption is that the conservation of
energy and angular momentum is violated. 

Figure 3.4: Inertial and rotating reference frames in the circular restricted three-body problem.

Now, a (pseudo-) inertial reference frame >0. is chosen with its origin, O, at the barycenter of
the system of three bodies and with the .-axis perpendicular to the plane in which the two main
bodies are moving (Figure 3.4). Of course, the barycenter is located on the line connecting the
two massive bodies. The coordinates of the main bodies P1 and P2 are >1,01,0 and >2,02,0,
respectively; the coordinates of the third body are >,0,.. The motion of the third body P is not
restricted to the >0-plane and hence the equation of motion with respect to the inertial reference
frame is

(3.35)

where

(3.36)

Since both massive bodies move in circular orbits about O, we conclude that:
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– The distances OP1 and OP2 are constant.
– The line segment P1P2 rotates about O with a constant angular velocity.
Now, a new reference frame XYZ is chosen, which again has its origin at O and of which the X-
axis coincides with P1P2 (Figure 3.4). The XY-plane coincides with the >0-plane. This reference
frame rotates about the .-axis (Z-axis) with a constant angular velocity T (= d2/dt). When the
velocity of P with respect to the inertial reference frame is indicated by  and with respect
to the rotating reference frame by , the following expression holds:

(3.37)

where  has the magnitude T and is directed along the Z-axis. This relation between the time
derivatives of a vector in both reference frames is generally applicable. So, we may also write

(3.38)

Differentiation of (3.37) gives for the acceleration with respect to the inertial reference frame:

(3.39)

where we have used the fact that  is constant. Substitution of (3.37) and (3.38) into (3.39) gives

 (3.40)

Substitution of (3.40) into (3.35) yields for the equation of motion of P with respect to the
rotating reference frame

 (3.41)

The second and third term on the right-hand side of this equation are the Coriolis and centrifugal
acceleration, respectively. The equation illustrates the fact, which was already mentioned in
Section 1.2, that we can apply Newton’s second law of motion with respect to a non-inertial
reference frame, provided that in addition to the natural forces we introduce suitably selected
apparent forces.

To simplify (3.41), we now introduce new units of mass, length and time. As unit of mass we
take (m1 + m2). Then, the masses of the main bodies can be expressed as

(3.42-1)

We now require that : # ½, which means that if the masses of both bodies are not equal, body
P1 has the larger mass. As unit of length, the distance P1P2 is selected. Since O is the barycenter
of the system, the following expression holds:

or
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Because OP1 + OP2 has with the new unit of length the value 1, we find

(3.42-2)

As unit of time we choose 1/T. Using these new non-dimensional units, (3.41) can be written as

(3.43)

where  is the unit vector along the Z-axis. When the quantities expressed in the new units are

indicated by *, we obtain from (3.43)

(3.44)

From theoretical mechanics we know that if P2 (and thus also P1) moves in a circular orbit about
O, then the motion of P2 is given by

or, with (3.42),

When, for simplicity, we now omit the index *, (3.44) can thus be written in non-dimensional
units as

(3.45)

Using

(3.45) can be written as three scalar equations:
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(3.46)

where the notations @ and @@ are used to indicate velocities and accelerations, respectively, and

(3.47)

Now, a scalar function, U, of spatial coordinates is introduced:

(3.48)

Partial differentiation of (3.48) yields

(3.49)

Combination of (3. 46) and (3.49) gives

(3.50)

In accordance with the definition of potential functions as given in Section 1.4, we conclude that
U is a potential function that accounts for both the gravitational forces and the centrifugal force.
The potential function can, of course, not account for the Coriolis force, because this force is a
function of velocity components. The force field described by the potential U is clearly non-
central. Because the bodies P1 and P2 have fixed positions with respect to the rotating reference
frame, U is not explicitly a function of time, which means that the force field is conservative.
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3.4. Jacobi’s integral

Multiplication of (3.50-1) with , of (3.50-2) with  and of (3.50-3) with , and subsequent
summation of the resulting equations, gives

(3.51)

Since U is only a function of the spatial coordinates x, y, z and not explicitly of time, we may
write

(3.52)

Combination of (3.51) and (3.52) yields, after integration,

(3.53-1)

or

(3.53-2)

where the value of the integration constant C is determined by the position and velocity of body
P at time t = 0. In these relations the integration constant is written as -C; this is attractive for the
analysis in Section 3.6. It is emphasized that V indicates the velocity of P with respect to the
rotating reference frame. Equation (3.53) is known as Jacobi’s integral and was discovered by
Jacobi around 1836. In 1899, Poincaré proved that Jacobi’s integral is the only algebraic integral
of motion that exists in the circular restricted three-body problem. Any other integral would not
be an analytical function of the system coordinates, momenta, and time. This total energy integral
gives the relation between the velocity and position of the body with negligible mass with respect
to a rotating reference frame XYZ, of which the X-axis coincides with the line connecting the two
main bodies and of which the XY-plane coincides with the orbital plane of the two main bodies.
It shows that if the third body approaches one of the main bodies closely, then it passes that body
with high velocity. The constant C is referred to as Jacobi’s constant, and may, according to
(3.48) and (3.53-2), be expressed as

(3.54)

However, as already stated in Section 3.3, we have to be careful in the physical interpretation of
this result. The mass of body P may be very small, but is certainly not zero. So, in reality, bodies
P1 and P2 will not move exactly in circular orbits in a single plane. Therefore, (3.53) can only be
considered as a good approximation for the motion of a real body with negligible mass.
Numerical calculations performed in the 1960s by various researches have indicated the existence
of another integral of motion, besides Jacobi’s integral, in the planar restricted three-body
problem. That new integral is not analytical and will not be discussed in this book.

Jacobi’s integral be rewritten in a form in which position and velocity are expressed relative
to the inertial reference frame >0.. To this end, (3.37) is written as

Evaluation of this expression and rewriting the result in the dimensionless units introduced in the
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previous Section leads to

(3.55)

where , ,  are unit vectors along the >-, 0- and .-axis. Scalar multiplication of  with 

and using (3.55) results for body P in

(3.56)

When we realize that *r/*t = V and x2 + y2 = >2 + 02, then combination of (3.48), (3.53-2) and
(3.56) results in

(3.57)

where expressions for r1 and r2 are given by (3.36). The terms on the left-hand side of (3.57)
express the kinetic energy, the potential energy and the angular momentum about the .-axis,
respectively, all per unit of mass and with respect to the inertial reference frame >0.. So,
although neither the total energy nor the angular momentum about the .-axis of body P are
constant, (3.57) shows that their sum is constant.

3.5. Copenhagen problem

The non-existence of uniform integrals apart from Jacobi’s integral, makes it impossible to obtain
the totality of solutions of the restricted three-body problem, and therefore already early in the
study of the three-body problem attention was directed towards periodic orbits. It was hoped that
their study would be sufficient for a qualitative description of all possible solutions, while their
periodicity made the study of their properties easier. The total number of periodic orbits
discovered and studied today is enormous and in this Section only reference is given to an
exhaustive study between 1913 and 1939 that was made by S.E. Strömgren (1870-1947) and a
group of researchers at Copenhagen. They considered the coplanar circular restricted case, where
the three bodies move in a single plane, with : = ½. This group is known as the Copenhagen
school and their special problem is commonly called the Copenhagen problem. Because of the
assumptions, the configuration of periodic orbits in the Copenhagen problem is symmetric about
the X-axis of the rotating reference frame.

In the Copenhagen problem, there are many families of periodic orbits. Only one, class F in the
notation of the Copenhagen school, will be considered in this Section. The analysis of this class
will give at least an understanding of what is meant by a ‘family’, and what is meant by the
evolution of orbits within a family. The Class F family of the Copenhagen problem can be
described by starting with a small circular orbit around P2 (Figure 3.5). The body with
infinitesimal mass is placed at a certain distance from P2 on the X-axis, and the velocity is chosen
such that the body moves initially in a retrograde circular orbit about P2, relative to the rotating
reference frame. When the dimension of the orbit increases by starting the motion at greater and
greater distances from P2, the orbits evolve from oval to kidney-shaped (Figure 3.5a). For even 
greater distance the orbits become more and more distorted, until a collision orbit is reached and
the body collides with P1 (Figure 3.5b). This orbit is, of course, also an ejection orbit and ends
the first phase of the development. In the second phase (Figure 3.5c), orbits develop showing a
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loop about P1. This loop grows and distorts from orbit to orbit until the second phase ends with
a collision at P2. A new oval appears, grows, and a new collision occurs; this process is repeated
indefinitely. The calculation of Jacobi’s constant, C, from orbit to orbit shows that, as expected,
it falls in value rapidly at first from its very-high value for the tiny circular orbit about P2,
reaching a value of 2.04 at the first collision with P1, and a value of 1.74 when collision occurs
at P2.

Figure 3.5: Evolution of orbits about P2 for the Class F family of the Copenhagen problem at decreasing
values of C.

The American and Russian lunar space programs inspired extensive numerical and analytical
searches for periodic orbits in the Earth-Moon system. These investigations have led to the design
of so-called free-return trajectories (Section 3.11) in the US Apollo program. During the 1960’s,
M. Hénon (1931-) came back to the Copenhagen problem using modern computers and found
an unexpected phenomenon: the profusion of chaotic motion, which he called semi-ergodic
motion in his early papers. In fact, these chaotic motions have already been known since the
works of Poincaré, but they were considered merely as a curiosity and not at all as an essential
phenomenon. We now know that chaotic motion occur in almost all domains of science (Section
1.3). In fact, it also plays a major role in astrodynamics in the design of minimum-energy
trajectories to the Moon and the planets (Sections 3.12, 17.5 and 18.12).

3.6. Surfaces of Hill

We now return to the analysis of Jacobi’s integral. A special case occurs when the velocity of the
small body P is zero. According to (3.53), then

(3.58)

or, with (3.48),

(3.59)

where expressions for r1 and r2 are given by (3.47). This equation describes the surfaces of Hill.
These are surfaces in XYZ-space on which the velocity of the third body is zero. Inspection of
(3.47) and (3.59) shows that, because only the squares of y and z occur, the Surfaces of Hill are
symmetric with respect to the XY- and XZ-planes, and, when : = ½, with respect to the YZ-plane
too. Moreover, the surfaces are contained within a cylinder whose axis is the Z-axis and whose
radius is %C&, to which certain of the folds are asymptotic at z2 = 4; for, as z2 increases, r1 and r2

increase and (3.59) approaches as a limit:
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Since for any real body V 2 $ 0, the region in space where the third body can move is given by

(3.60)

So, although we cannot determine the orbit of the third body, with (3.60) we can determine which
part of the XYZ-space is accessible to the third body for a given value of C; i.e. for given initial
conditions.

Figure 3.6: Schematic picture of the surfaces of Hill for decreasing values of C (Cn+1 < Cn ).

For a qualitative discussion about the shape of the surfaces of Hill as a function of C and a fixed
value of :, we now consider the intersection of the surfaces of Hill with the XY-plane (Figure
3.6). Using (3.59), we find the following expression for this intersection:

(3.61)

where r denotes the radius measured from the origin O. From this relation we conclude that for
(very) large values of C the following solutions exist: r (very) large, or r1 (very) small, or r2

(very) small. So, for large values of C the intersection of the surfaces of Hill with the XY-plane
consist of three (more or less) circles: one with a large radius  around the origin, one with
a small radius around P1 and one with a small radius around P2 (Figure 3.6a). In the hatched area
of Figure 3.6a, which is bounded by the three curves, the square of the velocity would be
negative. Hence, this part of the XYZ-space is not accessible to the third body. When the body
is originally located near P1, it will remain forever in the close surroundings of P1, because it
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cannot cross the hatched area. When the third body is originally located outside the larger circle
surrounding O, it can never reach the neighborhood of P1 or P2. Figure 3.6 shows that when the
value of C decreases, the smaller ‘circles’ become oval and swell up, and that the ‘outer circle’
becomes smaller, until two ‘inner curves’ touch each other in point L1 (Figure 3.6b). A further
decrease of the value of C causes the two curves around P1 and P2 to merge. Only then, it is
possible for a body that is originally located near P1 to reach the neighborhood of P2. The
question whether and when this will happen, and which orbit the third body will follow, cannot
be answered. A further decrease of the value of C will cause the ‘inner curve’ to touch the ‘outer
curve’ in point L2 (Figure 3.6d). When the value of C is further decreased, then a body that is
originally located near P1 can not only reach the neighborhood of P2, but can also move away
from the two main bodies to an unbounded distance. So, the body can escape from the gravity
fields of P1 and P2. With a further decreasing value of C, a new point L3 shows up (Figure 3.6e),
after which for even smaller values of C the hatched area shrinks further, until it finally
‘dissolves’ into L4 and L5. Hence, for all values of the entire XYZ-space is accessible for
a body that is originally located near P1 or P2.

The fact that for a certain value of C a small body that is originally located near P1 can never
reach an infinite distance from P1, was first discovered by Hill in 1878, hence the name surfaces
of Hill. Hill considered the motion of the Moon in the Sun-Earth-Moon three-body system. He
discovered that when the eccentricity of the Earth’s orbit and the mass of the Moon with respect
to the mass of the Earth are neglected, the constant C of the motion of the Moon has such a value
that the surface on which the velocity of the Moon would be zero, is closed. This surface is
located at a distance of 100-110 Earth radii from the center of the Earth. The Moon, which is
located at a distance of about 60 Earth radii, moves within this surface. This, Hill argued, was
proof that the Moon has always been close to the Earth. However, it may be shown that his
conclusion does not have to be valid when the applied simplifications are abandoned. In 1952,
Y. Hagihara (1897-1979) proved that all natural satellites in the solar system, with the exception
of four moons of Jupiter (VIII, IX, XI, XII, which are in retrograde orbits), move in orbits within
closed surfaces of Hill. This means that their orbits are stable in the sense of Hill.

The above discussion was based on the value of the integration constant C. To clarify the
physical meaning of the ‘forbidden region’ we now assume that body P is close to body P1. If the
position of P is known, we may compute with (3.48) the value of U. For a given value of U,
(3.53) shows that a large value of C means a small value of the velocity V. So, for a small value
of V the motion of the third body is restricted to a bounded region about P1. If, at the same
position, the velocity of P would increase (smaller value of C) the ‘forbidden region’ shrinks
until, for a sufficiently large value of V, the entire space is accessible to body P. The same kind
of conclusion can be drawn if body P is at a (very) large distance from P1 (and P2).

3.7. Lagrange libration points

In Figure 3.7, the intersections of the surfaces of Hill with the XY-plane, XZ-plane and YZ-plane,
respectively, are sketched for : = 0.27. All curves drawn in this Figure satisfy the relation
2U = C, where the curves closer to P1 and P2 correspond to higher values of C and U. Figure 3.7a

shows that if y = z = 0, the equation for the surfaces of Hill has six real roots on the X-axis for
C = C1. For an appropriate value of C within the range C3 <  C < C2 , for which the two inner
curves touch in L1, two of these x-roots coincide. Inspection of Figure 3.7a reveals that therefore
at point L1: MU /Mx = 0. For z = 0, , Figure 3.7a shows that there are even four coinciding
y-roots on the line  for this value of C. This means that at point L1 at least MU /My = 0. 
Figure 3.7b shows that for , y = 0, there are also four coinciding z-roots. That means that
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Figure 3.7: Cross sections of the surfaces of Hill with the XY-, XZ- and YZ-plane (: = 0.27).

at point L1 at least MU /Mz = 0. So, at point L1 the following condition holds:

(3.62)

A further detailed analysis of the geometry of the surfaces of Hill shows that expression (3.62)
holds for all L points.

Substitution of (3.62) into (3.49) gives

(3.63)

Because r1 and r2 are positive and 0 < : # ½, (3.63-3) yields z = 0. This implies that the five
points L1 to L5 are all located in the XY-plane. Combination of (3.47), (3.63-1) and (3.63-2) yields
as a first solution:

(3.64)

This equation cannot be solved in a closed analytical way. However, it can be shown that the
fifth-degree equation (3.64-2) has three real roots, corresponding to the x-coordinates of the
points L1, L2 and L3. Thus, these points are located on the X-axis. Point L2 is located to the right
of P2; point L3 is located to the left of P1. For point L1: r2 # r1, whereby L1 is located closer to P2

when : is smaller. When we apply the notation shown in Figure 3.8, an extensive analytical
elaboration of (3.64) yields the following series expansions for the dimensionless distances
between the points L1, L2, L3, and the main bodies:
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Figure 3.8: Definition of the non-dimensional distances (1, (2, and (3.

The second solution of (3.63) can be found by solving the two equations:

(3.65)

Multiplication of (3.65-2) by -(:+x) and adding this result to (3.65-1) yields r2 = 1. Multiplication
of (3.65-2) by (1-:-x) and adding this result to (3.65-1) yields r1 = 1. So, the second solution of
(3.63) is

(3.66)

This solution corresponds to the points L4 and L5. Thus, these points form an equilateral triangle
with the two main bodies and the coordinates of the points L4 and L5 are

(3.67)

Substitution of (3.66) and (3.67) into (3.48) gives

(3.68)

The minimum value of C for which the surfaces of Hill exist, and thus for which the space in
which the third body can move is bounded, can be found from (3.58) and (3.68):

Since 0 < : # ½, we find for the value of Cmin:

(3.69)

In Table 3.1 the positions of the points L1 to L5 are presented for some three-body systems with
the main bodies indicated in the first column. The data on the mass of the celestial bodies were
taken from Appendix B. Note that the points L1 and L2 are located relatively close to the main
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body with the smaller mass (P2). The distance between point L3 and the main body with the larger
mass (P1) is almost equal to the distance between the two main bodies.

Table 3.1: Position of the points L1, L2, L3 for various three-body systems.

System : (1 (2 (3

Sun-Venus 2.448*10-6 9.315*10-3 9.373*10-3 1.00000

Sun-Earth+Moon 3.040*10-6 1.001*10-2 1.008*10-2 1.00000

Sun-Mars 3.227*10-7 4.748*10-3 4.763*10-3 1.00000

Sun-Jupiter 9.537*10-4 6.668*10-2 6.978*10-2 0.99944

Earth-Moon 1.215*10-2 1.509*10-1 1.679*10-1 0.99291

Jupiter-Ganymede 7.804*10-5 2.934*10-2 2.992*10-2 0.99995

Figure 3.9 shows the location of all Earth-Moon L points and of two Sun-Earth L points to scale.
In this projection, the Moon and the Earth-Moon L points, of course, rotate relative to the line
connecting the Sun-Earth L1 and L2 points.

Figure 3.9: Positions of all Earth-Moon L points and of two Sun-Earth L points (to scale).

In the literature, point L1 of the Earth-Moon system is sometimes confused with the neutral point,
N, of this system. This neutral point is defined as the point on the line between Earth and Moon
where the gravitational forces generated by the Earth and the Moon cancel. With the notation
used in Table 3.1, the location of point N follows from

where (N is measured from body P2. For : = 0.01215, this equation has the solution (N =
0.09983. Comparing this value with the value of (1 listed in Table 3.1 for the Earth-Moon
system, we conclude that point N is closer to the Moon than point L1. The reason, of course, is
that in the computation of the location of point N, we did not account for the rotation of the Earth-
Moon system, which will lead to a centrifugal force exerted on a body positioned in N.

Substitution of (3.62), which formulates the conditions in the L points, into the equations of
motion (3.50) leads to

(3.70)
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When a body with zero velocity is located at an L point, then, according to (3.70),

(3.71)

So, the body does not experience an acceleration with respect to the rotating reference frame; in
other words: these points are equilibrium points and are called Lagrange libration points
(‘libration’ means ‘oscillation’). The three collinear libration points were discovered by Euler
around 1750; the two equilateral libration points by Lagrange around 1760. However, it is
common in the literature to refer to all points as the ‘Lagrange libration points’.

3.8. Motion after leaving a surface of Hill

By definition, a small body located on a surface of Hill has a zero velocity. In general, the
acceleration of the body will not be zero, unless it is at one of the five libration points. An
interesting question that will be addressed in this Section is: “in what direction will the body
leave the surface of zero velocity?”

Figure 3.10: Cusp at a curve of zero velocity.

We assume that at t = 0 the small body is at point A on a surface of Hill (Figure 3.10), while A
does not coincide with a libration point. The initial conditions of the body are specified as x0, y0,
z0; . When we apply a series expansion of the coordinates of the body around the

starting point A, we may write

(3.72)

We know that , so the first coefficients for which we have to find suitable

expressions are . These expressions can be found from (3.50). When we introduce the

notation

(3.73-1)

we find

(3.74)
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The next coefficients in the series expansion can be obtained by differentiation of (3.50), using
(3.52):

(3.75)

where the notation

(3.73-2)

has been used. Since  we find from (3.75)

(3.76)

Substitution of (3.50) into (3.76) gives

(3.77)

Substitution of (3.74) and (3.77) into (3.72) yields

(3.78)

When we introduce the position vector

where ,  and  are unit vectors along the X-, Y- and Z-axis, we can write (3.78) as

(3.79)

We know that

where  is a vector normal to the surface of Hill at A, and  is a vector tangential to the surface
of Hill at A and parallel to the XY-plane. After truncation of the series expressions (3.79) at terms
of the order t3, we therefore can write

(3.80)

These relations show that the motion starts along the normal to the surface of zero velocity and
that the transverse component becomes only significant as t increases. In our analysis, t < 0
before the body is at point A. From (3.80-1) we note that the second term on the right-hand side
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has an equal value for t = t1 and for t = -t1, while the third term on the right-hand side has opposite
signs for both cases. This means that if at t = 0 the small mass is on the surface of Hill at A, then
the transverse position component changes sign before and after t = 0. Consequently, the
trajectory forms a cusp at x0, y0, z0, as shown in Figure 3.10.

3.9. Stability in the libration points

One may wonder whether the equilibrium in the libration points is stable or not. Here, we define
the motion as stable if a small body positioned at a libration point and with zero velocity does not
move away from that libration point unboundedly when a small perturbing force acts upon that
body. To analyze the motion, we start from (3.50) and investigate the behavior of MU/Mx, MU/My,
and MU/Mz in the neighborhood of a libration point. Therefore, we write with a Taylor series
expansion for MU/Mx:

(3.81)

where the index 0 refers to the conditions at a libration point. According to (3.62), the first term
on the right-hand side of (3.81) is zero for all L points. If only small deviations are considered,
higher-order terms are neglected, and the notation

(3.82)

is applied, (3.81) can be written as

(3.83-1)

where the notation (3.73-2) has been used. Since U0 is continuous:

Similarly, we may derive the following relations:

(3.83-2)

Substitution of (3.83) into (3.50) leads, with (3.82), for the motion of a body in the neighborhood
of a libration point to

(3.84)

This is a set of simultaneous linear differential equations with constant coefficients. For each of
the libration points, the values of the coefficients Uxx, Uyy, Uzz, Uxy, Uxz, Uyz can be found by partial



Fundamentals of Astrodynamics     SS     Three-body problem 71

differentiation of the expressions (3.49) and by subsequent substitution of the coordinates of the
particular libration point. The system of equations (3.84) can be simplified by using the fact that
all libration points are located in the XY-plane; so, z = 0. Equation (3.49-3) can be written as

From this equation, we find for a libration point (z = 0)

(3.85)

Substitution of these expressions into (3.84) gives

(3.86)

Note that the motion in the Z-direction is completely decoupled from the motion in the X- and
Y-direction. Because Uzz < 0, the solution of (3.86-3) is

(3.87)

Hence, for all libration points the motion in the Z-direction is purely periodic, i.e. an undamped
non-diverging oscillation, which, according to our definition, is considered as stable. The period
of this motion is independent of the characteristics of the motion in the X- and Y-direction.

The solution of the first two simultaneous differential equations with constant coefficients
((3.86-1) and (3.86-2)) can be found by applying a classical technique. First, the expressions

(3.88)

are substituted into these equations. We then obtain

(3.89)

This set of homogeneous linear equations in A and B can only be solved for arbitrary values of
A and B, if the coefficient-determinant is zero:

or

(3.90)

The solution of (3.90) will consist of four values of 8 that will, generally, have complex values.
However, the equation is quadratic in 82 and thus the values of 8 will consist of conjugate pairs.
For example, 82 = -81, 84 = -83. If the four roots are all different, the motion of a small body with
respect to a libration point can be written as
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(3.91)

If 82 and 84, and hence 81 and 83, are equal, the solution is

(3.92) 

From (3.91) and (3.92) we conclude that the motion described by (3.86) is, according to our
definition, stable if all 8’s are different and if their real part is smaller than or equal to zero. The
last requirement can be explained as follows. In general, we may write 8 = " + i$, where " and
$ are real values. So, e8t = e"t ei$t. The term ei$t is associated with sine- and cosine-functions. We
therefore conclude that if " = 0 the term e8t will lead to pure sinusoidal oscillations, if " < 0 to
damped oscillations, and if " > 0 to diverging oscillations. So, if " # 0, xN and yN cannot increase
arbitrarily. Since the 8’s occur in conjugate pairs, the requirement for stability reduces to 8i’s
different and purely imaginary, which results in 8i

2 being real and negative. In that case, the
motion described by (3.86) is a pure oscillation.

First, the equilibrium of the point L1, L2 and L3 will be investigated. For these points, we write
with (3.47)

Differentiation of (3.49) yields, after substitution of these relations,

(3.93)

where

(3.94)

Substitution of (3.93) into (3.90) leads to

We have found that for a stable equilibrium this equation should have two real negative roots for
82. Then, the product of these roots is positive, which, since K > 0, requires

(3.95)

The location of the points L1, L2, L3 is described by (3.63-1), which can also be written as

or, with (3.94),

(3.96)
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Inspection of Figure 3.4 and Figure 3.8 reveals that (3.96) yields for the points L1, L2, L3:

(3.97)

From (3.95) and (3.97) we conclude that the equilibrium at the points L1, L2 en L3 is unstable.
For the libration points L4 and L5 we write with (3.66) and (3.67)

Differentiation of (3.49) yields, using these relations and (3.47),

(3.98)

Substitution of these values into (3.90) results in

The two roots 82 of this equation are given by

For a stable equilibrium we must require that these two roots are different and real, and have a
negative value. This leads to the condition 27:(1-:) < 1. Since 0 < : # ½: 27:(1-:) > 0, which
means that if the roots satisfy the conditions of being real and different, they are negative. So, the
problem can be reduced to finding the values of : for which

(3.99)

For the roots of ö we find

Substitution of : = ½ into (3.99) yields ö < 0 and substitution of : = 0 yields ö > 0. Since
always : # ½, the requirement for a stable equilibrium in the libration points L4, L5 becomes

Figure 3.11: Regions of first-order stability in the L4 and L5 points for the case that the two main bodies
move in elliptical orbits.
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(3.100)

So, if : < 0.03852, then a small body located at the libration points L4 or L5 will perform, after
a small perturbation, a pure oscillation about these points, which represents, according to our
definition, stable motion. Of course, this motion is infinitesimally stable, since we are dealing
with a linearized theory. For : > 0.03852, the motion of the body will diverge from the libration
points L4 or L5. We have to realize that in reality other forces may be present that can drive the
body from the L4 or L5 point. In addition, it is emphasized that our stability analysis only holds
for the case when the orbits of P1 and P2 are circular. In case the orbits of P1 and P2 are elliptical,
the equilibrium at the points L4 and L5 may also be stable, although then the stability is not just
a function of :, but also of the eccentricity of the elliptical orbits. In Figure 3.11, the stability
area (hatched area) is presented for the L4 and L5 points for elliptical orbits of the main bodies.

3.10. Motion about the libration points

Equations (3.86) describe the linearized motion of a small body about a libration point of the
circular restricted three-body problem. In this Section, we will analyze some characteristics of
that motion.

We already have found in Section 3.9 that for all five libration points the motion in the Z-
direction is an undamped oscillation and is uncoupled from the motion in the X- and Y-direction.
From (3.87) we find that the period of the motion in the Z-direction is given by

or, with (3.85) and (3.94),

(3.101)

In Section 3.9 we have found:

(3.102)

For a given three-body problem and a selected libration point, the value of K is known. In the
following, the motion in the X- and Y-direction will be analyzed.

Collinear libration points
Combination of (3.93) and (3.102) gives for the three collinear libration points

(3.103)

With (3.103), the equations of motion (3.86) can be written as

(3.104)

and the characteristic equation (3.90) as

(3.105)
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Defining

(3.106)

we can write (3.105) as

The roots of this equation are

(3.107)

So, both roots are real and of opposite sign. When we write

(3.108)

we find that 81 and 82 are real, while 83 and 84 are pure imaginary. In the previous Section, it was
already concluded that the four roots 8i are two by two equal in magnitude but of opposite sign,
resulting in the equations of motion (3.91). The coefficients Ai and Bi in these equations are not
independent. In fact, substitution of (3.93) into (3.89-1) gives

(3.109)

where i = 1, ...., 4. From (3.106) to (3.109) we conclude that the values of 8i and (i are a function
of K only, and thus are known for each collinear libration point. Consequently, the four initial
conditions xr0, yr0, x0r0, y0r0 will completely determine the four coefficients Ai and Bi. When, just
as in Section 3.9, we assume that 82 = -81 and 84 = -83, then (3.109) yields (2 = -(1 and (4 = -(3,
and we can therefore write (3.91) as

(3.110)

Because 81 is real and 83 is purely imaginary, the first two terms on the right-hand side of (3.110)
represent exponentially increasing or decreasing motion, and the last two terms represent periodic
bounded motion about the libration point. The actual type of motion depends on the values of the
integration constants Ai. A few families of trajectories can be discerned:
S If A1 = A2 = 0, the solution consists of periodic terms only, leading to oscillations about the

equilibrium position.
S If 81 > 0 and A1 … 0, or if 81 < 0 and A2 … 0, then for t 6 4 the small body moves unboundedly

far from the equilibrium position.
S If 81 > 0 and A1 = 0, or if 81 < 0 and A2 = 0, then for t 6 4 the trajectories asymptotically

approach periodic oscillations about the equilibrium position.
S If 81 > 0 and A1 = A3 = A4 = 0, or if 81 < 0 and A2 = A3 = A4 = 0, then for t 6 4 the trajectory

approaches the equilibrium position.

We now continue our analysis for the case that A1 = A2 = 0 (pure oscillatory motion). Then,
(3.110) can be written as
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(3.111)

Substituting the initial conditions:

we find

Solving for A3 and A4, we find

Substitution of these expressions into (3.111), leads, after some algebraic manipulation, to

(3.112)

Because 83 and (3 are both imaginary, we define

(3.113)

where s and < are real, and find with (3.107) to (3.109)

(3.114)

Substituting (3.113) into (3.112), and using the classical relation between trigonometric functions
and exponential functions

we find

(3.115)

Differentiation of (3.115) with respect to time, and subsequent substitution of t = 0, yields

(3.116)

These expressions indicate that if the initial conditions xN0 and yN0 have been selected, the initial
velocities required for the bounded motion cannot be chosen arbitrarily, but have to satisfy
(3.116). For xN0 > 0 , yN0 = 0, (3.116) yields x0N0 = 0, y0N0 < 0. This demonstrates that the direction
of motion about the libration point is opposite to the direction of rotation of the XYZ-reference
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frame.
Squaring both equations (3.115) and subsequently adding the resulting relations, leads to

(3.117)

So, in the XY-plane the trajectory of a small body about a collinear libration point is an ellipse
centered at the libration point. Since K > 1, we find from (3.114):

Since s > 0, we find that the minimum value of the right-hand side of this inequality occurs at
s = %3& and takes the value < = %3&. So, we conclude that always v2 $ 3. This means that the major
axis of the elliptical trajectory described by (3.117) is parallel to the Y-axis, and that the minor
axis is along the X-axis. When the semi-major axis and semi-minor axis are indicated by a and
b, respectively, we find from (3.117):

(3.118)

Note that for a particular collinear libration point the factor a/b is independent of the initial
conditions of the body that performs the bounded motion about that libration point. These two-
dimensional periodic orbits in the orbital plane of the primary bodies are generally called
Lyapunov orbits after A.M. Lyapunov (1857-1918), who pioneered the analysis of stability in
dynamical systems. Note that, because the libration point does not coincide with one of the two
massive bodies of the three-body problem, the small body moves in an elliptical orbit about an
‘empty mathematical point’. This is in contrast to ordinary Keplerian motion (Chapter 5), where
the small body moves in a conic section about a massive body. Another remarkable difference
is that in Keplerian orbits velocity decreases with increasing distance, while, according to
(3.116), in a Lyapunov orbit velocity increases with increasing distance. Combination of the
results from (3.110) and (3.118) leads to the conclusion that the trajectory of a small body relative
to a collinear libration point is, generally, a Lyapunov periodic orbit superimposed on an
exponentially increasing or decreasing component, and that the trajectory is fully determined by
the initial conditions. This result is a crucial element of the theory of invariant manifolds, which
is described in Section 3.12.

For the period of the motion in the XY-plane, we find according to (3.115):

(3.119)

where the time is expressed in the unit of time introduced in Section 3.3: 1/T, where T is the
angular velocity of the reference frame. The period of the circular motion of body P2 about body
P1 is in physical time expressed by

(3.120)

So, in physical time we may write
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(3.121)

and with (3.101) for the motion in the Z-direction:

(3.122)

These expressions show that the period of the motion is independent of the initial conditions of
the body that moves about the libration point, and is thus independent of the dimension of the
periodic orbit. This is an important result for formation flying missions, where two or more
spacecraft move close together. It will be shown in Section 5.8 and Section 10.1 that two
satellites in an orbit about the Earth (or about any other celestial body) will drift apart if they
move in different, even slightly different, orbits. A constellation of spacecraft flying about an L
point will, according to our first-order analysis, remain together, because the orbital periods of
all spacecraft involved are the same.

Figure 3.12: Periodic xNyN-motion about the libration points (not to scale).

Figure 3.12 shows a cartoon of the xNyN-motion about the three collinear libration points. Note
that, as was already mentioned before, the direction of motion in the elliptical orbits about the
L points is opposite to the direction of rotation of the XYZ-reference frame, which means in our
case a clockwise motion in the elliptical orbits. The reason for this clockwise motion can be
understood as follows. Consider in Figure 3.12 the elliptical orbit about the L2 point. At the
crossing point of this orbit and the X-axis to the right of point L2: ẍN < 0 in the elliptical orbit.
However, at that point on the X-axis the inward gravitational attraction is slightly smaller than
at point L2, and the outward centrifugal acceleration is slightly larger than at point L2, leading to
a residual outward acceleration. The only way to force ẍN to be negative is to decrease the
centrifugal acceleration, which means that at that crossing point y0N has to be negative. This leads
to a clockwise motion about L2. Similar arguments can be given for the other crossing point and
for the other L points. Table 3.2 summarizes the values of some characteristic parameters of the
motion about the collinear libration points of the Sun-Earth(+Moon), Sun-Jupiter and Earth-
Moon circular restricted three-body systems. Note that for the L1 and L2 libration points the value
of the ratio a/b is in each system about 3, while for L3 this value is 2 in each system. Both for the
motion in the XY-plane and for the motion in the Z-direction we note that the period of the motion
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Table 3.2: Characteristics of the motion of a small body about the collinear libration points for three
three-body systems.

Sun-Earth+Moon Sun-Jupiter Earth-Moon

L1 L2 L3 L1 L2 L3 L1 L2 L3

K 4.062 3.939 1.000 4.446 3.623 1.001 5.150 3.192 1.011

Uxx 9.123 8.877 3.000 9.893 8.247 3.002 11.299 7.384 3.021

Uyy -3.062 -2.939 0.000 -3.446 -2.623 -0.001 -4.150 -2.192 -0.011

Uzz -4.062 -3.939 -1.000 -4.446 -3.623 -1.001 -5.150 -3.192 -1.011

s 2.087 2.057 1.000 2.178 1.977 1.001 2.335 1.863 1.010

v 3.229 3.187 2.000 3.360 3.074 2.000 3.587 2.913 2.000

a/b 3.229 3.187 2.000 3.360 3.074 2.000 3.587 2.913 2.000

T2 (yr/d) 1.000 1.000 1.000 11.857 11.857 11.857 27.322 27.322 27.322

Txy 3.011 3.055 6.283 2.885 3.178 6.278 2.691 3.373 6.218

Txy (yr/d) 0.479 0.486 1.000 5.447 5.999 11.852 11.702 14.665 27.040

Tz 3.118 3.166 6.283 2.980 3.301 6.281 2.769 3.517 6.250

Tz (yr/d) 0.496 0.504 1.000 5.625 6.232 11.857 12.040 15.293 27.177
T2, Txy and Tz are given in years for the Sun-Earth+Moon and the Sun-Jupiter systems, and in days for the Earth-Moon
system.

is for the L3 point about twice the period of the motion about the L1 and L2 points. To give an
impression of the velocity (relative to the rotating reference frame) of the small body, consider
the insertion of a spacecraft into a Lyapunov orbit about the L1 point of the Sun-Earth system. If
we assume that injection takes place at xN0 = 5000 km, yN0 = 0, then we find with (3.116) and
Table 3.2 that the spacecraft should have velocity components of x0N0 = 0, y0N0 = -6.7 m/s.

The three-dimensional motion of the body can be found by superposition of the motion in the
XY-plane and the motion in the Z-direction. In general, s2…K, which means that the period of the
motion in the Z-direction is different from the period of the motion in the XY-plane. Conse-
quently, the trajectory does not lie in a fixed plane and constitutes a three-dimensional Lissajous
orbit, named after J.A. Lissajous (1822-1880) who pioneered the study of (acoustic) waves and
vibrations. However, since the difference between Txy and Tz is rather small for realistic cases
(Table 3.2), the three-dimensional trajectory can be viewed as a slowly-changing elliptical path.
If the small body is a spacecraft, it is possible to correct for the slow drift of the quasi-elliptical
trajectory by firing rocket thrusters periodically. This leads to a quasi-periodic elliptical orbit
about the libration point. It is remarkable that only very small rocket pulses after relatively long
time intervals (some months) have to be applied to keep the spacecraft in the, basically unstable,
Lissajous orbit, which makes this trajectory an attractive concept for various missions. The total
maneuver )V, generally, is of the order of only 10 m/s per year.

One should keep in mind that all results discussed above follow from linearized theory.
Within the constraints of such a theory, the existence of special initial conditions giving
trigonometric functions as solutions of the equations of motion means that the collinear libration
points, while yielding in general unstable motion, possess conditional stability in the linear sense
for motions with infinitesimal amplitudes. In reality, of course, second-order effects and forces
that are neglected in the circular restricted three-body problem will affect the finite-amplitude
motion of the body. However, also in that case, rocket pulses may be applied to keep a spacecraft
in a quasi-elliptical orbit about a libration point.

We now consider the L1 and L2 points in the Sun-Earth system. Then the XY-plane is the
ecliptic, i.e. the plane in which the Earth moves about the Sun. A spacecraft orbiting the L1 or L2
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point describes a Lissajous pattern centered at that libration point. For both libration points this
can have adverse consequences for communications, since at times the line of sight from the
Earth to the spacecraft (L1) or from the spacecraft to the Earth (L2) comes quite close to the Sun,
which introduces radio noise on the downlink signal (L1) or uplink signal (L2). A solution is to
inject the spacecraft into the Lissajous orbit such that it crosses the Earth-Sun line very late.
Before the crossing, an orbit change has to be executed to set the spacecraft on a trajectory that
crosses the Earth-Sun line later. However, one would, of course, prefer a situation where the
spacecraft circulates about the libration point in a closed loop orbit of fixed geometry and size,
which is called a halo orbit, and that this orbit is oriented such that the communication problems
mentioned before do not occur. It can be shown that halo-type periodic motion is possible if the
amplitude of the in-plane motion of the Lissajous orbit is of sufficient magnitude. Then, second-
order effects induce a coupling between the motion in the XY-plane and the motion in the Z-
direction. This results in a situation where the period of the motion about the libration point is
no longer independent of the size of the trajectory, and where the period of the motion in the XY-
plane becomes equal to the period of motion in the Z-direction. Consequently, the motion is in
a plane that is inclined to the XY-plane. For the Sun-Earth collinear libration points, such an orbit
needs a minimum amplitude of about 200,000 km in the X-direction, 650,000 km in the Y-
direction, and 120,000 km in the Z-direction.

Figure 3.13: Two classes of L2 halo orbits for the Sun-Earth(+Moon) system with x-, y-, and z-amplitudes
of 215,000 km, 686,000 km, and 125,000 km, respectively.

Halo orbits comprise two classes symmetrical to the XY-plane as shown in Figure 3.13. The orbits
of Class 1 have the point of maximum distance from the Earth (apogee) above the ecliptic; the
orbits of Class 2 below the ecliptic. As an example, Figure 3.13 shows for the two classes a L2

halo orbit for the Sun-Earth(+Moon) system having x-, y-, and z-amplitudes of approximately
215,000 km, 686,000 km, and 125,000 km, respectively. The orbital period of these orbits is
about six months and the elongation from the solar direction varies from about 4E to 25E.

Equilateral libration points
For these points r1 = r2 = 1, and according to (3.102):

(3.123)

which means, according to (3.101), that the period of the motion in the Z-direction is
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(3.124)

So, the period of the motion in the Z-direction is equal to the period of the rotation of the XYZ
reference frame relative to inertial space.

Equation (3.98) gives the second-order derivatives of the potential U in these libration points,
where the plus-sign in the expression for Uxy holds for the libration point L4 and the minus-sign
for the libration point L5. With these relations, the equations of motion (3.86) for a small body
describing a trajectory about the points L4 or L5 can be written as

(3.125)

and the characteristic equation (3.90) can be written as

(3.126)

Defining again

(3.127)

we can write (3.126) as

The roots of this equation are

(3.128)

Note that 71 and 72 have either real or complex values, depending on the value of

(3.129)

In Section 3.9 we have found that if 0 < : < 0.03852 the motion of a small body about the
libration points L4 and L5 is (unconditional) stable; if 0.03852 < : # 0.5 the motion will be
unstable. Because for most existing three-body systems 0 < : < 0.03852, we will confine the
following discussion to the case of stable motion.

In that case:

(3.130)

which means, according to (3.128), that both 71 and 72 are real and negative. Consequently, the
original four roots 8i are pure imaginary:

(3.131)

With the notation

(3.132)

where s and < are real, we can write (3.131) as

(3.133)
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where, according to (3.128),

(3.134)

Combining (3.129), (3.130) and (3.134), we find

(3.135)

Substitution of (3.134) into (3.91) yields

(3.136)

where, according to (3.89-1), the relation between Ai and Bi is

(3.137)

With (3.133) we can write (3.137), after some algebraic manipulation, as

(3.138)

where

(3.139)

and s1, s2, Uxy are known functions of :, while Uxx is a constant. Substitution of (3.98) into (3.139)
yields

(3.140)

This equation can be simplified further. From (3.134) we obtain

or, after some algebraic manipulation,

Substitution of this result into (3.140) yields

(3.141)

With the classical relations
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we may write (3.136) in the form

Defining

(3.142)

we finally obtain

(3.143)

The four initial (t = 0) conditions xr0, yr0, x0r0, y0r0 are linearly related to the four independent
coefficients C1 , S1 , C2 , S2 appearing in the solutions (3.143). This can be shown by substituting
these initial conditions into (3.143) and into the time-derivatives of these equations:

(3.144)

where it is recalled that '1 , '2 , s1 , s2 and Uxy are known functions of :.
Equations (3.143) show that, in general, the xNyN-motion of a small body about libration point

L4 or L5 is a superposition of two periodic motions with frequencies s1 and s2. According to
(3.135): s1 < s2, which means that the terms containing s2 describe short-period motion
components and the terms containing s1 describe long-period motion components. The periods
of both motions are given by

      (3.145)
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or, using (3.120) and (3. 121), in physical time:

(3.146)

Either the short- or the long-period terms in the motion of the body can be eliminated by selecting
the initial conditions properly. We will consider the case of the elimination of short-period terms,
but the same approach can be applied to eliminate long-period terms. In fact, the equations that
will be derived may be used directly for the short-period motion component, if all terms with
index 1 are replaced by corresponding terms with index 2. The reason being that (3.143) are
symmetrical in terms containing s1 and terms containing s2 .

According to (3.143), the elimination of short-period terms requires

(3.147)

Substitution of (3.147) into (3.144) leads to

From these equations the parameters C1 and S1 can be eliminated, leading to expressions for the
initial velocity required to perform the prescribed long-period motion, starting at the initial
position components xr0 , yr0:

(3.148)

Because s1, Uxy and '1 are known functions of :, the required initial velocity components can be
computed from (3.148). Since '1 > 0, and Uxy > 0 for libration point L4 and Uxy < 0 for libration
point L5 , we conclude from (3.148) that at xr0 > 0 , yr0 = 0 the following conditions hold:

This means that in both cases the small body traverses the trajectory about the libration point in
a direction opposite to the direction of rotation of the reference frame relative to inertial space,
just as in the collinear libration points case.

To find the characteristics of the long-period motion, we start from (3.143) and write

(3.149)

Multiplying the first of these equations by , the second by -C1, and subsequently adding both
resulting expressions gives

(3.150-1)

Multiplying the first of (3.149) by  and the second by -S1, and subsequently adding the
resulting expressions gives
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(3.150-2)

Squaring both equations (3.150) and subsequently adding the results yields

(3.151)

With (3.142), the various combinations of coefficients in this equation may be written as

Substitution of these relations into (3.151) yields

(3.152)

If the term with xNyN would be absent in this equation, then the ‘reduced’ equation indicates that
the body would move in an elliptical orbit about the libration point. In an attempt to eliminate the
term containing the product xNyN, we introduce the coordinates  and , defined by

(3.153)

The introduction of these new coordinates effectively means a rotation of the set of coordinates
xryrzr about the Zr-axis over an angle n in the direction of the angular velocity of the XYZ
reference frame relative to inertial space. Substitution of (3.153) into (3.152) yields, after some
algebraic manipulation,

(3.154)

Note that the mixed -term becomes zero, if

With (3.98), (3.134) and (3.141), we can write this expression as

(3.155)

where the minus-sign holds for the point L4 and the plus-sign for the point L5. So, for : < 0.0385:
n . - 30E at L4 and n . 30E at L5. A sketch of the periodic -motion is given in Figure 3.12.

When n is specified by (3.155), we may write (3.154) as

(3.156)

where
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(3.157)

and G1 , G2 and G3 are functions of : only. The functions G1 and G2 are plotted in Figure 3.14.
This Figure shows that G1 $ 0, G2 > G1 > 1, which means that (3.156) represents an ellipse with
its major axis parallel to the direction. The magnitudes of the semi-major axis, a, of the semi-
minor axis, b, and of the ratio a/b are given by

(3.158)

The ratio a/b is shown in Figure 3.14 as a function of :. A numerical analysis has shown that if
0.0002 < : < 0.0385 then 2.43 < a/b < 41. Figure 3.14 also shows similar results for the short-
period motion. In that case a numerical analysis has shown that if 0.0002 < : < 0.0385 then 2.00
< a/b < 2.40. Just as in the case of elliptical motion about the collinear libration points, the period
of the motion in the Z-direction will, in general, differ from the period of motion in the XY-plane.
Consequently, the trajectory does not lie in a fixed plane and is shaped as a Lissajous figure.

Figure 3.14: Values of G1, G2 and a/b as a function of :, both for the long-period and the short-period
components of the motion about the L4 and L5 points.

Table 3.3 summarizes the values of some characteristic parameters of the motion about the L4 and
L5 points for the Sun-Earth(+Moon), Sun-Jupiter and Earth-Moon circular restricted three-body
problems. Note that for the short-period component of the motion (index s), the periods in the XY-
plane and in the Z-direction are about equal. This means that this motion may be visualized as
a slowly-changing elliptical path. By firing small thrusters periodically it is possible to correct
for the slow drift of the quasi-elliptical trajectory, leading to a near-halo orbit. For the long-period
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Table. 3.3: Characteristics of the motion of a small body about the triangular libration points for three
three-body systems. 

Sun-Earth+Moon Sun-Jupiter Earth-Moon

L4 L5 L4 L5 L4 L5

Uxx 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500

Uxy 1.2990 -1.2990 1.2966 -1.2966 1.2675 -1.2675

Uyy 2.2500 2.2500 2.2500 2.2500 2.2500 2.2500

Uzz -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000

s1 0.00453 0.00453 0.0805 0.0805 0.2982 0.2982

s2 0.9999 0.9999 0.9968 0.9968 0.9545 0.9545

(a/b)1 331.27 331.27 18.668 18.668 5.1316 5.1316

(a/b)s 2.0000 2.0000 2.0022 2.0022 2.0344 2.0344

T2 (yr/d) 1.000 1.000 11.857 11.857 27.322 27.322

(Txy)1 1387.04 1387.04 78.0860 78.0860 21.0704 21.0704

(Txy)1 (yr/d) 220.75 220.75 147.42 147.42 91.623 91.623

(Txy)s 6.2832 6.2832 6.3036 6.3036 6.5827 5.5827

(Txy)s (yr/d) 1.0000 1.0000 11.901 11.901 28.624 28.624

Tz 6.2832 6.2832 6.2832 6.2832 6.2832 6.2832

Tz (yr/d) 1.0000 1.0000 11.862 11.862 27.322 27.322

n (E) -30.00 30.00 -30.00 30.00 -30.00 30.00
T2, Txy and Tz are given in years for the Sun-Earth+Moon and the Sun-Jupiter systems, and in days
for the Earth-Moon system.

motion component (index l), we observe that the period in the XY-plane is much larger than the
period in the Z-direction. The oscillation with the long period is generally called libration. For
the Sun-Earth and Sun-Jupiter cases the values of the ratio a/b are very large, meaning that the
motion in the XY-plane primarily is a motion along the -axis.

For arbitrary initial conditions, the motion of the body about the equilateral libration points

Figure 3.15: Linearized solution for the trajectory about an Earth-Moon triangular libration point for
0.5 year (top, left), one recurrency (.1.3 year, bottom, left) and five recurrencies (.6.3 year, right).
Numbers on curves denote the elapsed dimensionless time, t’.
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will be a superposition of the short-period (s2) and the long-period (s1) solutions. Figure 3.15
shows an example of a complete linearized solution for the -motion about the Earth-Moon
libration point L4. The numbers along the orbit represent the elapsed non-dimensional time t’ =
2B/27.32 t, where t is measured in days. The orbit is non-periodic, since s1/s2 is an irrational
number. The motion starts at x̄r = ȳr = 0, with

We should keep in mind, however, that the analysis presented in this Section only yields a
linearized solution for the actual motion about the L4 and L5 points. In reality, second-order terms
and other perturbing forces will produce effects that will disturb this simple motion.

3.11. Application of Jacobi’s integral for lunar trajectories

The circular restricted three-body problem is of great importance for a qualitative analysis of
trajectories to the Moon (Chapter 17). In Earth-Moon space it are primarily the Earth and the
Moon that determine the trajectory of a spacecraft traveling to the Moon. Since the Moon moves
in an almost circular orbit about the Earth, one can obtain a first-order approximation of such a
trajectory by regarding the motion as a circular restricted three-body problem.

In the years 1968-1972 the USA has flown a number of manned missions to the Moon in the
Apollo program (Chapter 17). The Apollo spacecraft consisted of a Command Module (CM) that
housed the three astronauts, a Service Module (SM) that carried the propulsion system, electrical
power system and life-support system, and a Lunar Module (LM), in which two astronauts
performed a landing on the Moon; the combination of CM and SM was indicated by CSM. The
Apollo spacecraft was launched by the giant Saturn V rocket. After injection into a lunar
trajectory, the CSM separated from the third stage of the launcher, the S-IVB stage, turned in
space by 180E and docked with the LM that was still attached to the third stage. Then, the
complete Apollo spacecraft separated from the third stage. In this Section, we take an Apollo
trajectory as a characteristic example of a classical trajectory to the Moon.

We consider the flight of the Apollo spacecraft after it has been injected into a trajectory to the
Moon by the third stage of the Saturn V rocket, and we will perform a simplified analysis for
determining the required injection velocity. In Figure 17.12, a picture of the mission geometry
is shown. For our simplified analysis we first consider the motion of the spacecraft relative to the
rotating reference frame XYZ defined in Section 3.3, and assume that: 1) the trajectory of the
spacecraft lies in the plane in which the Moon moves about the Earth (z = 0); 2) the spacecraft
is injected by an impulsive shot at an altitude of 200 km above the Earth into a lunar trajectory
(Section 1.7); 3) injection occurs above that part of the Earth’s surface that is turned away from
the Moon, and on the line connecting Earth and Moon; 4) the spacecraft’s velocity vector at
injection is directed perpendicular to the line connecting Earth and Moon, and in the negative Y-
direction (Figure 3.4). These assumptions are quite realistic. With the expressions given in
Section 3.7 for (1, (2, (3, and for the location of the L4 and L5 libration points, and the geometry
depicted in Figure 3.8, we compute the x- and y-coordinates of the five libration points in the
Earth-Moon system (: = 0.0121506) in the non-dimensional units applied in Section 3.7.
Subsequently, we compute from (3.59) the value of Jacobi’s constant, C, for the case that a
surface of Hill passes through a libration point, also in non-dimensional units. These values of
x, y, and C are listed in Table 3.4 for each libration point. Note that if the Apollo spacecraft has
to reach the Moon, we must require C < 3.18834. If C < 2.98799, any place in Earth-Moon space
is accessible to the Apollo spacecraft. This means that when no braking would occur near the
Moon, the spacecraft would probably escape from the Earth-Moon system.
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Table. 3.4: Position of the libration points in the Earth-Moon system, boundary values of C and the
corresponding injection velocities for a simplified Apollo-type trajectory.

L1 L2 L3 L4, L5

( 0.150871 0.167884 0.992912 1

x 0.836978 1.155734 -1.005063 0.487849

y 0 0 0 ±0.866025

C 3.188341 3.172160 3.012147 2.987997

Vrot (km/s) 10.85715 10.85793 10.86564 10.86680

Vinert (km/s) 10.88709 10.88787 10.89558 10.89675

To compute the injection velocity, relative to the rotating reference frame, that corresponds to
the value of C for which the surface of Hill passes through a libration point, we substitute (3-48)
into (3.53-2) and write the resulting expression in the conventional physical units. We then find

(3.159)

where Vrot is the velocity of the spacecraft relative to the rotating reference frame, and the other
parameters are defined in Section 3.3. It is emphasized that C is still expressed in the non-
dimensional units applied in Section 3.3. We now apply (3.159) for the Earth-Moon system and
write m1 = mE, m2 = mM, P1P2 = rM, T = nM, where mE is the mass of the Earth, mM is the mass of
the Moon, rM the mean distance between Earth and Moon; nM = 2B/Tsid, where Tsid is the length
of a sidereal month, is the mean motion of the Moon in its orbit about the Earth. With this
notation we can write (3.159) as

(3.160)

From the adopted injection geometry relative to the rotating reference frame, we find

(3.161)

where R is the mean equatorial Earth’s radius and h is the altitude of the injection point (h = 200
km). Combination of (3.160) and (3.161) yields the injection velocity, Vrot , for each value of C.
The values of GmE, mE/mM = (1 - :)/:, rM , Tsid , and R are given in Appendix B. Note that (3.160)
only yields the magnitude of the injection velocity and not its direction, which means that the
trajectory after injection cannot be computed. We can only say that if C is slightly smaller than
the value for which a surface of Hill passes through libration point L2, then a spacecraft may
escape from the Earth-Moon system, will then fly through the ‘neck’ region around L1 and L2

(Section 3.12) and will pass the Moon at a relatively small distance.
We have assumed that the injection velocity is perpendicular to the X-axis and in the negative

Y-direction and we therefore can compute the injection velocity relative to the inertial reference
frame, Vinert , from
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The values of Vrot and Vinert are listed in Table 3.4 for each value of C. We conclude that in order
to reach the Moon, the spacecraft has to be accelerated to a velocity of at least 10.88709 km/s
with respect to the inertial reference frame. A velocity that is only 0.78 m/s larger is already
sufficient to escape from the Earth-Moon system. This leads to the important conclusion that a
lunar trajectory requires almost as much energy as an escape trajectory from the Earth-Moon
system, which is a minimum requirement for interplanetary flights. In reality, the injection of an
Apollo spacecraft was certainly not an impulsive shot: the rocket engine of the Saturn third stage
that was used for leaving the initial near-circular low-altitude parking orbit about the Earth and
for injection into the translunar trajectory burned for 5.3-5.8 min. During this powered flight the
spacecraft covered an appreciable horizontal and vertical distance, resulting in significantly
higher injection altitudes. Table 17.2 presents a summary of trajectory parameters for a series of
Apollo flights. From that Table we conclude that: 1) injection altitude actually varied from 314
km to 369 km; 3) injection velocity actually varied from 10.79 km/s to 10.84 km/s. When the
differences in injection altitude are accounted for, the value of 10.887 km/s computed above with
a simplified theory compares quite well with the real injection velocities of the Apollo spacecraft.
In Section 17.3, results from a simplified two-dimensional analysis of a lunar mission that starts
from a 200 km circular parking orbit about the Earth and ends in a 500 km altitude orbit about
the Moon are presented. For that analysis it was assumed that both the acceleration maneuver to
leave the parking orbit about the Earth and the deceleration maneuver to enter an orbit about the
Moon can be modeled as an impulsive shot. The minimum-energy trajectory for that mission was
found to require an injection velocity of 10.914 km/s. As expected, this value is slightly larger
than the ‘absolute’ minimum injection velocity of 10.887 km/s found in this Section.

In Section 7.1 an expression for the escape velocity, Vesc , is derived ((7.3)), for the case that
the motion of the spacecraft is considered as a pure two-body problem. From that expression we
find for an altitude of 200 km above the Earth: Vesc = 11.0086 km/s. From Table 3.4 we conclude
that for the three-body approximation an injection velocity of at least 10.8879 km/s is required
to escape from the Earth-Moon system. Consequently, for the two-body approximation the
injection velocity required to escape from the Earth is about 0.12 km/s higher then the minimum
escape injection velocity computed for the three-body model. So, we conclude that the gravity
field of the Moon may (in certain cases) reduce the injection impulse required to escape from the
Earth. This is, in fact, an example of the swingby effect that will be discussed in Section 18.11.

Upon arrival at the Moon, the engine of the SM was ignited such that the value of C was
increased to C > 3.1883. The applied deceleration impulse was about 0.9 km/s. As a result, the
Apollo spacecraft entered an orbit about the Moon. The value of C was, albeit in a somewhat
different form, calculated by the onboard computer of the Apollo spacecraft and was, in addition
to other parameters, used to determine the burning period of the engine.

The first Apollo flights have used so-called free-return trajectories. These trajectories were
designed such that after the S-IVB engine stopped thrusting the spacecraft was able to reach the
Moon, but could not escape from the Earth-Moon system (C > 3.1722), even if the SM engine
that had to provide the braking to enter an orbit about the Moon would fail. Moreover, in this
trajectory the spacecraft would approach the Earth again after a reasonable period of time,
providing an option for a save return. From Apollo-12 on, a so-called hybrid trajectory was flown
in order to save propellants and to satisfy a number of operational constraints. In these missions,
the flight started out in a free-return trajectory. After the CSM had docked with the LM during
its translunar trajectory, a mid-course correction of about 4.5 m/s was applied that brought the
spacecraft into a non-free-return trajectory to the Moon. If for these trajectories the spacecraft
was not decelerated near the Moon, it would irrevocably be lost in space. The non-free-return
trajectories were designed such that if the SM engine would fail, the spacecraft’s reaction control
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system or the LM engine could provide the impulse required to go back to a free-return
trajectory. As we know, a serious problem has occurred with Apollo-13, launched in April 1970.
That spacecraft moved in such a non-free-return trajectory, when at a distance of about
322,000 km from Earth an explosion occurred within the SM, destroying the SM engine. In order
to safe the crew, the descent engine of the LM was used to increase the value of C of the
spacecraft such that it returned to a free-return trajectory that, after passing the Moon, would
bring the spacecraft back to Earth. This maneuver was successful and the crew was saved. In later
Apollo flights the shift from a free-return trajectory to a non-free-return trajectory was executed
progressively earlier in the mission, and during the last Apollo 15 to 17 missions the spacecraft
was even directly injected into a non-free-return trajectory.

3.12. Ballistic capture, weak stability boundary and invariant manifold

For a numerical computation of the trajectory of a spacecraft in Earth-Moon space, in
interplanetary space, or within the natural satellite systems of the outer planets, the gravitational
attractions by all relevant celestial bodies are taken into account. So, the motion of the spacecraft
is considered as a many-body problem. For the analytical analysis of such trajectories,
traditionally the motion is described by a series of patched two-body problems (Sections 17.3 and
18.1). In Section 5.3 it will be shown that in a two-body problem the trajectories are conic
sections. So, in the classical approach the trajectory is described by a series of patched conics,
where for each conic section only the gravitational attraction by one celestial body is taken into
account. However, in the analytical approach the motion can more accurately be described by a,
or by a series of, (circular) restricted three-body problem(s); in particular when it concerns flights
to the Moon or within natural satellite systems. When the spacecraft is close to a celestial body,
the motion may be considered again as a perturbed two-body problem. In this analysis, use is
made of the known characteristics of two-body orbits or of (circular) restricted three-body
trajectories. This dualism of describing a spacecraft trajectory as a series of two-body trajectories
or as a, or a series of, three-body trajectory(ies), is very helpful for understanding modern transfer
trajectories in Earth-Moon space or within the planetary natural satellite systems.

In this Section, three fundamental concepts: ballistic capture, weak stability boundary and
invariant manifold, which are nowadays often applied for the design of spacecraft trajectories to
the Moon, the planets, and the moons of the outer planets, will be introduced. A full treatment
of these concepts is beyond the scope of this book and therefore a qualitative analysis addressing
only the main features of these concepts will be presented.

Ballistic capture
To understand the concept of ballistic capture, also called gravitational capture, it is necessary
to discriminate between a closed and an open two-body orbit. A spacecraft is in a closed orbit
about a celestial body if its velocity is not large enough to escape from that body; a spacecraft
is in an open orbit about a celestial body if its velocity is large enough to escape from that body.
To identify the type of two-body orbit about the celestial body, we may use the definition of the
total orbital energy in the two-body problem: õ = ½V 2 -:/r (Section 5.1), where V is the velocity
of the spacecraft relative to a non-rotating reference frame centered at the attracting body, and
r is the distance of the spacecraft from that body. In Chapters 6 to 8 it will shown that this total
energy is negative for an elliptical orbit, zero for a parabolic orbit and positive for a hyperbolic
orbit. So, we may say that the spacecraft is in an open orbit if its energy is zero or positive, and
that it is in a closed orbit if its energy is negative. In the two-body problem this energy remains
constant. However, when we consider the motion of the spacecraft as a three-body problem, the
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total energy of the spacecraft relative to one of the two main bodies is no longer constant, and can
change sign from positive to negative or from negative to positive. When the variation is from
positive to negative, a ballistic capture has taken place. The opposite situation, when the energy
changes from negative to positive is called a ballistic escape.

Now, consider a spacecraft that was launched from the Earth and is approaching the Moon.
If at a certain position its velocity is too high, then the Moon’s gravity field will only bend the
trajectory and the spacecraft will escape again from the Moon’s gravity field. If the velocity is
too low, the trajectory will be bent very much and the spacecraft may even crash on the lunar
surface. Therefore, the question may be raised: “Is it possible that the spacecraft arrives at a
certain position above the lunar surface with a special magnitude and direction of its velocity
relative to the Moon such that it is just captured by the gravity field of the Moon”? Then, the
spacecraft will be in a phase between escape from and capture by the lunar gravity field. This is
basically a chaotic phase, and only a tiny amount of )V at some moment is needed to change the
motion of the spacecraft from an escape trajectory to a closed orbit about the Moon, or vice versa.
If the spacecraft is in a (temporary) closed orbit and this )V is not applied, the spacecraft will
perform several orbits around the Moon and then it will escape again. Therefore, this process is
generally called weak capture. E.A. Belbruno (1951-) has addressed the concept of weak ballistic
capture around 1987 in his pioneering research on propellant-efficient trajectories for the LGAS
(Lunar Get Away Special) and Hiten (Section 17.5) spacecraft.

Weak stability boundary
As stated above, weak ballistic capture may occur when a spacecraft arrives at a given location
near the Moon with special values of the direction and magnitude of its velocity. A combination
of all possible cases yields a catalog of velocity values a spacecraft would need as a function of
altitude, latitude and longitude relative to the Moon. This catalog forms what was called by
Belbruno a weak stability boundary around the Moon. The weak stability boundary is a very
useful concept for designing low-energy (propellant-efficient) trajectories from the Earth to the
Moon, or for designing low-energy trajectories through the multi-moon systems of the large outer
planets. In Sections 17.5 and 18.12 applications for lunar and planetary missions will be
described.

In Section 3.7, it was shown that at the five Lagrange libration points the gravitational forces
of Earth and Moon together with the centrifugal force exactly balance on a spacecraft, provided
that the spacecraft keeps a fixed position relative to the rotating reference frame and so relative
to the Moon. The weak stability boundary about the Moon can be viewed as a region where these
three forces approximately balance when the spacecraft is, more generally, in motion with respect
to the Moon. Belbruno has demonstrated that the motion associated with this region is not only
chaotic in nature but also resonant in nature. This means that if a trajectory started in this region
as an orbit about the Moon, then the motion would quickly evolve into an elliptical orbit about
the Earth, in resonance with the Moon. Moreover, when the trajectory returned to the Moon, it
would again interact with the weak stability boundary, and go into another resonant elliptical
orbit about the Earth, of a different resonance type. Thus, the spacecraft would perform a
resonance transition, from one resonant orbit to another via a weak capture phase. In principle,
the same definition can be applied to define weak stability regions about the Lagrange points. In
this book, however, we will not do that.

A typical Belbruno low-energy trajectory to the Moon consists of the following phases: 1)
spacecraft injection from an initial circular orbit about the Earth into an elliptical orbit that
crosses the Moon’s orbit; 2) swingby maneuver (Section 18.11) about the Moon to increase the
apocenter distance of the initial elliptical orbit; 3) use of solar gravitational attraction, and
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sometimes a small rocket impulse, when the spacecraft is in the apocenter region, in order to rise
the pericenter to the distance of the Moon’s orbit from the Earth; 4) ballistic capture of the
spacecraft by the Moon. The apocenter lies in the region about the Sun-Earth L1 or L2 libration
points, which are located at a distance of about 1.5*106 km from the Earth. There, the velocity
and acceleration of the spacecraft are small. So, the spacecraft stays for a relatively long period
of time in a region where the gravitational attraction by the Sun may drastically change the
spacecraft’s trajectory. Typically, the total )V required for such a transfer from a low-altitude
orbit about the Earth to a low-altitude orbit about the Moon is about 0.3 km/s less than for a
classical direct transfer. However, the transfer takes 100-300 days, versus about 5 days for a
direct transfer.

An analytical analysis of this type of transfer trajectories is difficult, since the motion is
basically characterized by an Earth-Moon-Sun-spacecraft restricted four-body problem. However,
a qualitative analysis can be given when the motion is considered as two coupled (circular)
restricted three-body problems: a Sun-Earth-spacecraft and an Earth-Moon-spacecraft problem.
In Section 3.6 it was shown that for small enough values of Jacobi’s constant, C, the surface of
Hill ‘opens’ at the L2 libration point, and a spacecraft that originally moves about main body P1

(Earth) can leave the three-body system, or a spacecraft from ‘outside’ this system can reach P1

or P2 (Moon). A spacecraft that has to arrive in the region about the Sun-Earth L1 or L2 libration
points has to leave the Earth-Moon system. For designing propellant-efficient (low-energy)
Belbruno transfer trajectories from an orbit about the Earth to an orbit about the Moon, we are
therefore particularly interested in trajectories with a value of Jacobi’s constant just below that
corresponding to the Earth-Moon L2 point (C = 3.172; Table 3.4). For this case, the three-
dimensional Hill’s region contains a ‘neck’ about L1 and L2 (Figures 3.6d and 3.6e). The spacecraft
then crosses three regions of unstable dynamical equilibrium: the L1 or L2 region of the Sun-
Earth-spacecraft circular restricted three-body problem, and the L1 and L2 regions of the Earth-
Moon-spacecraft circular restricted three-body problem. Furthermore, the passage through the
Earth-Moon L1-L2 region guides the spacecraft to a dynamical state close to the corresponding
zero velocity curves of the Earth-Moon system. For this type of exterior trajectories the angle
between the Earth-apocenter line and the Earth-Sun line is crucial. If this angle lies in the
appropriate quadrant the solar gravitational attraction will shape the trajectory such that the
spacecraft can be weakly captured by the Moon. The solar effect must be strong enough to raise
the pericenter to the lunar orbit, but small enough to allow the spacecraft to reach the Moon with
the minimum possible energy in order to be (weakly) captured by the lunar gravity field. A small
)V is then required to lower the apolune, since further Earth perturbations could again send the
spacecraft into a higher energy escape orbit.

It is noted that in contrast to the exterior transfer discussed above, there also exist interior
low-energy lunar transfers. In these interior transfers, the semi-major axis of the spacecraft’s orbit
about the Earth is steadily increased by small )V’s provided by a chemical propulsion system
or by electric propulsion thrusting arcs (Chapter 19), and resulting from lunar flybys, until the
spacecraft is weakly captured by the Moon. Then the Moon centered semi-major axis is
decreased by the same method. In this transfer technique, the spacecraft-Moon synchronization
is very important, since the spacecraft has to meet the Moon properly and several times at several
apogee distances. The )V saving and flight time are about equal to the values obtained for an
exterior low-energy lunar transfer. Of course, in designing interior transfers, the solar
gravitational field must be taken into account, but this is a perturbation effect, which does not
change the general scheme.
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Invariant manifold
In the late nineteenth century, Poincaré searched for mathematical theories that would allow an
understanding of the dynamical stability of systems. His investigations resulted in the
development of dynamical systems theory. This theory is based on a geometric view for the set
of all possible states of a system in the six-dimensional position-velocity space. In his analysis
on the motion of the small body P in the circular restricted three-body problem (Section 3.3),
Poincaré introduced the concept of organizing similar trajectories into ‘manifolds’; such a
manifold can be any smooth surface. In Section 3.10 we have found that a family of planar
periodic Lyapunov orbits exists about the collinear libration points. Since the dynamics at these
Lagrange points is unstable (Section 3.9), this implies that the Lyapunov periodic orbits about
these points are also unstable. Poincaré noted that if the (unstable) motion of the third body P is
periodic, it generates special surfaces in the six-dimensional position-velocity space, that the
trajectories lie on. These are the so-called invariant manifolds, which means that a body P with
negligible mass that starts on a particular surface will remain on that surface forever unless a
force is applied to make it to leave that surface. These manifolds appear as two-dimensional tube-
shaped surfaces when projected onto the three-dimensional position space. So, if we plot the path
of a spacecraft drifting out of a particular Lyapunov orbit with a specific orbital energy (Jacobi’s
constant C) around the Sun-Earth L2 point, for example, we will see it slowly unwind into a spiral
wrapped along the surface of the tube corresponding to that energy level. This tube is called the
unstable manifold of the initial orbit. Furthermore, another manifold contains all the paths with
the same orbital energy that wind onto the original orbit; that manifold is called the stable
manifold (Figure 3.16). It should be noted, however, that the ‘stable’ manifold actually refers to
an ‘unstable’ Lyapunov orbit! If, for instance, a spacecraft moves on a stable manifold near the
Earth, it can travel all the way to L2 and go into orbit about it for no )V, thus saving substantial
propellant. An indication of the existence of these families of trajectories was already given by
(3.110), which describes the linearized motion of a body with negligible mass about a collinear
libration point.

Figure 3.16: A periodic Lyapunov orbit about the Sun-Earth L2 point and its associated stable and
unstable invariant manifolds in position space. The two manifolds ‘twist’ as they wrap around the region
near the Earth. [copied from: W.S. Koon et al., Dynamical Systems and Space Mission Design, presen-
tation at California Institute of Technology, Pasadena, June 2000.]

In the late 1960s, C.C. Conley (1933-1984) and R. McGehee (-) extended the work of Poincaré
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on manifolds and analyzed in detail the orbits winding onto and off a quasi-periodic three-
dimensional halo or Lissajous orbit about the Sun-Earth L1 point. In 1968, Conley constructed
a low-energy lunar transfer trajectory based on the dynamics of the three-body problem. Around
the same time, R.W. Farquhar (-) and A.A. Kamel (-) constructed large halo orbits about the lunar
L1 and L2 points using a series-expansion technique. In the 1980s, various groups in the USA and
Spain reintroduced Poincaré’s tube theory for spaceflight applications. The central question was:
“Is it possible to ride the stable and unstable manifolds to travel in a propellant-efficient way
between the L1 and L2 points of a single three-body system or of different three-body systems?”.
In the latter case, a four-body system, consisting e.g. of Sun, Earth, Moon, and spacecraft, is
considered as a superposition of two three-body systems, in this case: Sun-Earth-spacecraft, and
Earth-Moon-spacecraft, where for one of the systems the unstable manifold is considered and for
the other the stable manifold. This, of course, requires that these unstable and stable manifolds
of equal energy intersect. However, even if only manifolds of slightly different energies intersect,
this would be useful as the energy difference can be bridged by executing a small rocket engine
impulse.

It is important to note that a transport between the L1 and L2 points requires that the spacecraft
initially just misses the manifold. If a spacecraft rides the manifold in, it will be trapped in a
Lissajous orbit around the Lagrange point, but if the spacecraft is maneuvered to a point that lies
inside the tube, it will plunge towards the planet. What happens next gets very compli-
cated—chaotic, in fact—but the spacecraft can emerge at either Lagrange point, or can wind up
in orbit around the planet. Figure 3.17 (right) shows the four types of trajectories that exist for
the Sun-Earth system in the region around L2: 1) an unstable periodic orbit (oval); 2) two
cylinders of asymptotic trajectories that wind on to or off this periodic orbit; they form pieces of
the stable and unstable manifolds; 3) transit trajectories which the spacecraft can use to make a
transition from one realm to the other; for example, passing from the exterior region (interplane-
tary space) into the inner space surrounding the Earth via the neck region; 4) non-transit
trajectories where the spacecraft bounces back to its original realm. So, the tubes act as
separatrices for the trajectories through the L2 region: those inside the tubes are transit orbits and

Figure 3.17: (left) Projection of the three-dimensional surfaces of Hill (schematic) on the XY-plane for
the Sun-Earth system and for a value of C for which ‘necks’ exist about the L1 and L2 points. (right)
Motion in the region near L2 projected on the XY-plane, showing a bounded orbit about L2, an asymptotic
orbit winding onto this bounded orbit, two transit trajectories, and two non-transit trajectories
(schematic). A similar sketch holds for the region around L1. [copied from: G. Gómez et al., Connecting
orbits and invariant manifolds in the spatial restricted three-body problem, Nonlinearity, Vol. 17, 2004.]
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those outside the tubes are non-transit orbits.

During the last decades, many scientists have worked on the application of the stable and unstable
manifolds of three-body systems for designing low-energy (propellant-efficient) spacecraft
trajectories. In 1990, the Japanese Hiten mission was sent to the Moon through the implementa-
tion of a low-energy transfer, constructed by Belbruno using his weak stability boundary theory.
In 2000, W.S. Koon (-) et al. developed one of the first algorithms that could be used to
reproduce a Hiten-like trajectory using invariant manifold theory, although it was limited to
planar transfers. In 2005, J.S. Parker (-) and M.W. Lo (-) developed a method to construct three-
dimensional low-energy lunar transfers using invariant manifold theory. Nowadays, for the
design of efficient transfer trajectories to the Moon and the planets, or within planetary satellite
systems, extensive use is made of the concepts of weak stability boundaries and invariant
manifold tubes.

We should realize that any three-body system has this kind of tube systems. The tubes are global
objects and extend far beyond the vicinity of the L1 and L2 points. In case the manifolds of two
three-body systems intersect in position-velocity phase space, a ballistic transit from a manifold
to the other is easily achievable, whereas if intersections only occur in position space multiple
burns of a chemical propulsion system or low-thrust arcs by an electric propulsion system are
mandatory. Fortunately, the manifolds for the Sun-Earth and for the Earth-Moon systems
intersect in phase space, making a propellant-efficient transfer possible. At the intersection only
a (very) small trajectory correction has to be executed by rocket thrusters to let the spacecraft
move from the Sun-Earth manifold to the Earth-Moon manifold. For interplanetary missions we
can imagine a large number of Sun-planet and planet-moon tube systems that rotate with various
angular velocities in inertial space. Sometimes, they intersect but it may take up to thousands of
years before they do that again. When a series of these tube systems intersect, one can visualize
the motion of the spacecraft as a travel along an interplanetary network of tubes. During that
travel no significant )V maneuver is required, except every now and then a small rocket impulse
to ‘jump’ to another manifold tube. That network of tubes in space is sometimes referred to as
the system of interplanetary superhighways. It is noted, however, that no intersections between
Sun-planet manifolds for the inner planets of the solar system exist. A disadvantage of this kind
of trajectories is that the overall flight time to the Moon, the target planet or a moon of that target
planet may be significantly longer than for a Hohmann transfer, which is the minimum-energy
transfer in a two-body system (Section 12.1).

The manifold tubes also are an important concept for analyzing the dynamics of asteroids and
comets. In the classical picture of the solar system, it is visualized as a series of planets isolated
in stately, concentric, nearly circular orbits. In that picture, it is surprising that asteroids and
comets periodically intrude the inner solar system. But the invariant manifolds theory provides
an easy way to explain that. As a tube sweeps through the outer reaches of our solar system,
every now and then some debris will fall into it and will be whisked in toward the center.
Referring back to the schematic diagram in Figure 3.17 (right), we notice that the transit
trajectories pass through the oval of the periodic orbit about L2. This e.g. explains why Jupiter
comets always seem to pass by the Sun-Jupiter L1 and L2 points. In fact, it was noticed that the
shattered comet Shoemaker-Levy 9, which consisted of 21 major fragments, passed by the Sun-
Jupiter L2 point before the fragments crashed into Jupiter from July 16 through 22, 1994 (Section
18.11).

It is interesting to note that while the concepts of weak stability boundaries and invariant
manifolds have been developed independently, they are, in fact, interrelated. Low-energy lunar



Fundamentals of Astrodynamics     SS     Three-body problem 97

trajectories were originally found by applying the weak stability boundary concept via a trial-and-
error approach, before the concept of tube dynamics in the system was known. However, weak
stability boundary theory may be explained heuristically using invariant manifold theory,
although the relevant algorithms do not require any knowledge or computation of invariant
manifolds. In fact, the Lissajous orbits about the Earth-Moon L1 and L2 points together with the
manifold pathways that lead to them intersect in an infinitely complex manner in a region about
the Moon, forming a weak stability boundary.

3.13. Phenomena at and use of libration points

In astronomy, there are certain phenomena that are closely connected to the existence of libration
points and in this Section we will mention a few.

We known that for the Earth-Moon system the L4 and L5 points provide a stable equilibrium
(: = 0.01215 < 0.0385). This means that material may be trapped near these points. Indeed, near
these points clouds of particle have been observed. These clouds can only be seen with sensitive
equipment at night, because the matter concentrated in these clouds reflects sunlight.

Also in the L2 point of the Sun-Earth system, which is observable from the dark side (night
side) of the Earth, there appears to be a concentration of material. With sensitive equipment, and
under very favorable conditions also with the naked eye, a faint glow diametrically opposite to
the Sun can be seen in the sky at night, called the Gegenschein. Because the L2 point in the Sun-
Earth system is located in the penumbra region of the Earth (Section 20.4), in the older literature
this light phenomenon is explained as the reflection of sunlight from material that is temporarily
trapped at the L2 point. Although the equilibrium at this point is unstable, there might be a
concentration of material at this point if the material density in space is sufficiently high. During
the last Apollo flights, pictures were taken of this phenomenon against the background of the
stars when the spacecraft was far from the Sun-Earth line. From these pictures it was possible to
determine the distance of the region where the phenomenon is produced through triangulation
techniques. It was found that the region is much farther away from the Earth than the L2 point.
Since the Gegenschein was still present in the observations by the Pioneer 10 spacecraft out to
1.86 AU, it is now widely accepted that the Gegenschein is the enhancement of scattered sunlight
in the backward direction by interplanetary dust grains.

The famous and classical proof of the theory of motion about the L4 and L5 libration points
is the existence of the Trojan asteroids; a class of asteroids moving in the orbit of Jupiter and
oscillating about the L4 and L5 points of the Sun-Jupiter system. These were predicted by
Lagrange in 1772. Observational verification came in 1906 when the first of the Trojan group,
588 Achilles, was discovered by M.F.J.C. Wolf (1863-1932) near the equilateral libration point
L4 of the Sun-Jupiter system. A total of 4,076 Jupiter Trojans have been identified near the L4 and
L5 point as of February 2010. The total number of Jupiter Trojans larger than 1 km in diameter
is believed to be about 1 million. The names given to the larger Trojans are Greek or Trojan and
are chosen from the Iliad. As in the mythology, the Greeks are ahead of Jupiter and the Trojans
are behind Jupiter, with the exception of Hector and Patroclus: two unfortunate warriors who are
surrounded by their enemies and more than one billion kilometers away from their friends! The
average period of their libration motion is about 150 years (compare the values listed in Table
3.3). The amplitude of the libration motion, as seen from the Sun, varies from 0.6° to 88°, with
the average being about 33°. The Voyager-1 and -2 spacecraft have discovered two small
asteroids in the Saturnian system close to an equilateral libration point of the Saturn-Thetys
system and another two asteroids at an equilateral libration point of the system Saturn-Dione.
Since then more asteroids in the L4 and L5 points of other systems have been found, and these are
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generally also referred to as Trojans. By mid 2011, seven Trojans were identified in the Sun-
Neptune system, four in the Sun-Mars system, and one in the Sun-Earth system. The latter Trojan
is moving about the Sun-Earth L4 point, leading the Earth in its motion bout the Sun. That no
Trojans have yet been found in the Sun-Saturn system is most likely the result of the perturbing
forces produced by Jupiter’s gravity field which have removed them from their orbits about the
libration points.

The libration points also provide important applications for space missions. In 1950, A.C. Clark
(1917-2008) suggested that the L2 point of the Earth-Moon system would be an ideal position for
a spacecraft to broadcast radio and TV signals to colonies on the backside of the Moon. Of
course, that satellite would have to fly a trajectory about this point, because at the L2 point the
spacecraft would be invisible from Earth. In 1966, Farquhar proposed the Lissajous path,
mentioned in Section 3.10, around this point to keep maneuvering costs low and allowing
visibility from Earth most of the time. To allow continuous communication with Earth, periodic
out-of-plane maneuvers would be needed. A data-relay satellite that would fly such a path was
considered for the Apollo 17 mission, when that mission was planned to be the first manned
landing on the far side of the Moon. But that idea was dropped when the Apollo program was
shortened and Apollo 17 was redefined as a near-side mission. In 1973, Farquhar and Kamel
discovered that when the in-plane oscillation about the Earth-Moon L2 point is larger than 32,380
km, the out-of-plane oscillation has the same period, producing a halo orbit (Section 3.10). With
the end of the Apollo program, interest in lunar missions waned until they returned high on the
agenda of the space agencies around 2004.

As early as 1964, Farquhar recognized that the Sun-Earth L1 point would be an ideal location
to continuously monitor Earth-Sun interactions, in a first step of what now is known as ‘space
weather’ monitoring. In 1972, NASA decided to include a spacecraft near the Sun-Earth L1 point
in a three-spacecraft program that became known as the International Sun-Earth Explorer (ISEE)
program. ISEE-1 and ISEE-2 would stay in a highly-elliptical Earth orbit with an apogee distance
of about 24 Earth radii. ISEE-3 would be located in a halo orbit about the Sun-Earth L1 point to
monitor high-energy particles ejected by the Sun about one hour before they reached the Earth’s
magnetosphere, and ISEE-1 and 2. A relatively small-amplitude Lissajous path was ruled out,
because of the resulting frequent crossings of the solar radio interference exclusion zone: a 3E
radius centered at the Sun (as seen from the Earth) where communication would be difficult or
impossible, because the radio signals transmitted by the spacecraft would be buried in the

Figure 3.18: Transfer trajectory of the ISEE-3 spacecraft to its halo orbit.
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background solar radio noise and therefore can hardly be detected by radio telescopes on Earth.
The Z-amplitude selected for ISEE-3’s orbit was 120,000 km, subtending 4.5E at the distance of
the Sun-Earth L1 point; the corresponding Y-amplitude was 666,670 km. The spacecraft was
launched by a Delta 2000 rocket on August 12, 1978; its 100 days transfer trajectory is shown
in Figure 3.18, which is a rotating ecliptic-plane view with the Sun-Earth line fixed (horizontal).
The design of the trajectory was largely based on dynamical systems theory and the application
of the characteristics of invariant manifolds (Section 3.12). Three )V maneuvers, totaling 57 m/s,
were applied to remove launch injection errors and to insert the spacecraft into the halo orbit on
November 20, 1978. It was the first spacecraft to enter this type of orbit. During the 3.5 years it
remained in this orbit (Section 18.12), less than 10 m/s per year was needed to maintain the orbit.

In recent years, Lissajous and halo orbits around the Sun-Earth L1 and L2 points have become a
popular concept for scientific space missions. The SOHO (1995, halo), ACE (1997, Lissajous),
and Genesis (2001, halo) spacecraft have orbited the Sun-Earth L1 point, while the MAP (2001,
Lissajous) spacecraft was the first to orbit the Sun-Earth L2 point. The LISA Pathfinder
spacecraft, which will pave the way for the LISA gravitational waves detection mission by testing
in flight the measurement concept, will be placed in a halo orbit about the Sun-Earth L1 point in
2015. In particular for advanced astrophysical missions, the Sun-Earth L2 point is very attractive.
When the satellite carries cryogenic sensors it needs a cold and stable environment. Then, orbits
about the Earth are less suitable, because of the radiation by the Earth and the Moon and the
thermal cycling from frequent encounters with the Earth’s shadow cone. In Lissajous or halo
orbits about the Sun-Earth L2 point these problems do not occur; these orbits provide a constant
geometry for observation with half the celestial sphere available at all times, and a nearly
constant communication range of roughly 1.5*106 km. The Sun, Earth and Moon are always
‘behind’ the spacecraft, thereby providing a stable observation environment, making observation
planning much simpler, and allowing the application of a single heatshield to isolate the
spacecraft from the heat inputs from Sun, Earth and Moon. For a space interferometer mission,
involving a number of spacecraft flying in formation, a halo orbit about the L2 point is also very
attractive. In the region around an L point the gradient of the force field is very small (Section
3.10), which certainly helps to achieve the extreme relative position accuracies of the spacecraft 

Figure 3.19: Three-dimensional picture of the transfer trajectory to and Lissajous orbit about the Sun-
Earth L2 point of the Planck spacecraft (left) and of the transfer trajectory to and quasi-halo orbit of the
Herschel spacecraft about this L point (right). The unit of scale in the X- and Y-direction is 106 km; in the
Z-direction 105 km. [copied from: M. Hechler, Orbiting L2, Herschel-Planck Mission Analysis, ESOC,
March 2009.]
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required for space interferometry. On May 14, 2009, an Ariane 5 ECA launcher injected the ESA
Herschel and Planck spacecraft into two different trajectories to the Sun-Earth L2 point. On July
3, 2009, Planck was injected into a medium-amplitude Lissajous orbit about the L2 point, with
the Sun-spacecraft-Earth angle limited to 15E. On July 13, 2009, Herschel slipped into a large-
amplitude Lissajous, quasi-halo, orbit about this point, with a maximum Sun-spacecraft-Earth
angle of 40E. Figure 3.19 shows a three-dimensional picture of the transfer trajectory to and the
medium-amplitude Lissajous orbit (2.5 yr propagation) about the L2 point of the Planck
spacecraft (left) and of the transfer trajectory to and the quasi-halo orbit (4 yr propagation) of the
Herschel spacecraft about this L point (right). In addition, orthogonal projections of the entire
trajectories onto the XY-, XZ- and YZ-plane are shown. A number of other astronomy missions
are already flying or are planned to fly in (quasi-)halo or Lissajous orbits about the Sun-Earth L2

point.

An interesting feature of some large-amplitude Lissajous orbits, which are close to halo orbits,
about the Sun-Earth L2 point is that they can be reached from a low-altitude Earth parking orbit
by a single injection into a transfer trajectory. This injection requires an impulsive shot of about
3.2 km/s. No further insertion maneuver is needed for these Lissajous orbits. The inclination of
the initial parking orbit should be selected such that the transfer trajectory has an out-of-ecliptic
component in order to induce an out-of-plane amplitude of the orbit above 120,000 km, below
which no halo-like orbits exist. The distance of the L2 point is so large that the spacecraft is
always outside the Earth’s shadow cone (umbra), but it may periodically enter the Earth’s
penumbra (Section 20.4). This can be avoided by performing a relatively small maneuver of 15
m/s in order to jump to another orbit, where the in- and out-of-plane motion have the same
amplitudes but a different relative phase. This results in a continuous and constant illumination
by the Sun, which is ideal for the generation of electrical power. A disadvantage of free-insertion
Lissajous orbits is that they have relatively large amplitudes above 600,000 km and thus there
can be large angular separations between the positions of the Sun and the Earth as seen from the
spacecraft. This leads to a more-complex and larger thermal shielding system. The solution to
this problem is to invest some )V for an insertion maneuver that puts the spacecraft on a smaller-
amplitude Lissajous orbit. However, on such Lissajous orbits it cannot be avoided that the
spacecraft comes close to the Earth’s penumbra. This requires a periodical adjustment of the
libration orbit.

In the future, man will undoubtedly build lunar bases. As was mentioned before, a spacecraft in
an orbit about the Earth-Moon L2 point can be very attractive for a lunar base at the far side of
the Moon. That spacecraft will, in general, describe a three-dimensional Lissajous curve.
However, because the frequency difference between the periodic motion in the XY-plane and the
Z-axis oscillation is small (Table 3.2), the trajectory can be viewed as a slowly-changing elliptical
path. For communication purposes, the spacecraft should perform oscillations that are large
enough to make the spacecraft visible from any point on the part of the Earth that faces the Moon.
Figure 3.20 shows an example of such an uncontrolled trajectory, as seen from the Earth.
Unfortunately, the spacecraft will periodically enter the lunar occultation zone. To avoid that
situation, the oscillation can be adverted by using a rocket thrusters control technique. In this
scheme, a single-axis control is used to synchronize the fundamental Y-axis and Z-axis
oscillations. That control will produce a closed elliptical path in the YZ-plane that always avoids
the occultation zone, and a continuous and uninterrupted communication link between the Earth
and the far side of the Moon can be established.
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Figure 3.20: An uncontrolled trajectory about the L2 point in the Earth-Moon system. The Figure shows
the occultation geometry (left, not to scale), and the trajectory as viewed from the Earth (right).

As was mentioned in Section 3.10, in the Apollo project the combined CSM/LM was inserted
into a low-altitude lunar orbit, from which the LM with two astronauts descended to the surface
of the Moon. An alternative method would use the Earth-Moon L1 point for the parking position
of the CSM/LM, instead of the lunar parking orbit. The LM would then descend from the L1 point
to the lunar surface and would have to return to this L1 point again after the visit to the Moon. It
can be shown that this L1 point rendez-vous concept requires less propellant than the lunar
parking concept for landing sites at higher lunar latitudes. Because the L1 point is stationary with
respect to the lunar surface, the libration point rendez-vous technique has the important
operational advantage of an infinite launch window of the lunar lander to and from the lunar
surface. This timing advantage also makes the L1 point an ideal location for a lunar logistics
staging depot or for a depot of lunar materials that have to be transported to a space station in
orbit about the Earth.

A modified version of this libration point rendez-vous technique can be used for future
missions to the outer planets. One of the options is to operate an interplanetary shuttle vehicle
between the L1 point of the Sun-Earth system and the L2 point of a Sun-planet system. That
vehicle would use a combination of a high-thrust and a low-thrust (Chapter 19) propulsion
system. The transfer is initiated by applying a small impulse (high thrust) at the Sun-Earth L1

point and then starting the low-thrust engine. As the spacecraft passes close to the Earth, a much
larger impulse (high thrust) is applied. During the heliocentric part of the transfer, only low thrust
is applied. At the closest approach to the target planet, another large impulse (high thrust) is
applied, and the planetary landing vehicle is separated from the interplanetary shuttle and lands
on the planet. The shuttle then proceeds to the Sun-planet L2 point, where capture is effected by
another small impulse (high thrust). A reverse procedure is used for the inbound transfer back
to Earth. From the total propellant consumption standpoint, this libration point rendez-vous
technique probably does not have any significant advantage over the classical interplanetary
flights (Chapter 18). However, the increased flexibility in the timing of the various operations
(e.g. rendez-vous, abort, and landing) may justify the application of this concept.
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4. RELATIVE MOTION IN THE MANY-BODY PROBLEM

The previous Chapters dealt with the motion of bodies with respect to a (quasi-)inertial reference
frame. However, in many practical cases one will hardly be interested in the motion of a body
with respect to the center of mass of a system of n bodies, but one wants to know the motion with
respect to one of the other bodies. For example, it is not that interesting to know the orbit of an
Earth satellite about the center of mass of the solar system, but it is much more interesting to
know its orbit about the Earth. Then, we have to describe the motion of the satellite relative to
a non-rotating reference frame with its origin at the center of the Earth. However, such a
reference frame experiences translational accelerations and thus is not an inertial one.
Consequently, we cannot use (2.3) or (2.21), which describe the motion of body i relative to an
inertial reference frame. In this Chapter, we will therefore derive expressions for the motion of
body i relative to one of the other bodies; that body will be referred to as body k.

4.1. Equations of motion

When we consider a system of n bodies, where all bodies attract each other according to
Newton’s law of gravitation, we can write for the motion of bodies i and k with respect to a non-
rotating reference frame XYZ (Figure 4.1), with its origin at the center of mass of the n-body
system (inertial reference frame), according to (2.3):

(4.1)

Figure 4.1: Geometry of the bodies i, j and k relative to an inertial reference frame XYZ.

or

(4.2-1)
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(4.2-2)

Of course, the following identities hold:

(4.3)

Subtracting (4.2-2) from (4.2-1) and using (4.3) we arrive at

All vectors in this equation originate from body k. When we consider the motion of body i with
respect to a non-rotating reference frame fixed to body k, the index k may be omitted and the
equation can be written as

(4.4)

This equation can be integrated numerically to find the trajectory of body i relative to the non-
rotating (non-inertial) reference frame with its origin at body k. In Section 2.2 we have derived
equation (2.21) that describes the motion of body i relative to a non-rotating (inertial) reference
frame with its origin at the barycenter of the system. Note that expressions (2.21) and (4.4) both
contain a two-body term and a term expressing the effects of all other bodies. In general, only the
second term has to be integrated numerically as the two-body term leads to an orbit that can be
computed in a closed analytical way (Section 5.2). When we only look at the efficiency and
accuracy of the numerical integration process, the choice whether (4.4) or (2.21) should be used
in a particular numerical situation depends upon the relative magnitude of the second term on the
right-hand side of both equations. We should preferably use the formulation where the ratio of
the magnitude of the second term to the magnitude of the first term is smallest. The effectiveness
of the barycentric form for a planet superior to Jupiter was first demonstrated by S.B. Nicholson
(1891-1963) and N.U. Mayall (1906-1993) in 1931, when a computed unperturbed barycentric
orbit of Pluto gave results nearly as good as a computed heliocentric orbit including perturba-
tions. In that same year, E.C. Bower (1890-1964) numerically integrated a perturbed barycentric
orbit of Pluto, finding that the smoothness of the barycentric motion enabled a lengthening of the
integration interval to 320 days.

Nowadays, there are also other reasons to compute the orbits of planets and spacecraft
relative to the barycentric reference frame. The original approaches to construct reference frames
in astronomy were completely based on the concepts of Newtonian gravitation and Euclidean
(Euclid; -300 B.C.) absolute space and time. Modern astronomy, astrodynamics and navigation,
however, are based on very accurate geometric and dynamical models, timing systems and
measurements (Sections 11.2 and 11.4). At this level, the primary gravitational theory must be
Einstein’s theory (A. Einstein; 1879-1955) of general relativity with a corresponding replacement
of the Euclidean space and time by the four-dimensional Riemannian (G.F.B. Riemann; 1826-
1866) space-time manifold. In general relativity theory the concept of inertial reference frames
loses its meaning. In astronomy, official transition from Newtonian to relativistic concepts
commenced in 1991, when a few recommendations were adopted by the International
Astronomical Union (IAU). Nowadays, it is widely accepted that in order to fully exploit the
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modern high-precision astronomical observations and to compute very accurate orbits of celestial
bodies and spacecraft, one has to use several relativistic reference systems. The solar system
Barycentric Celestial Reference System (BCRS), in combination with the relativistic Barycentric
Dynamical Time (Temps Dynamique Barycentrique, TDB) time scale, can be used to model light
propagation from distant celestial objects and thus to describe accurately the angular positions
of these objects, as well as to model the motion of bodies within the solar system. The Geocentric
Celestial Reference System is physically adequate to describe processes occurring in the vicinity
of the Earth (Earth rotation, motion of Earth satellites, etc.). Further local reference systems
centered at the Moon, Mars, Jupiter, etc. are defined for specific applications, where physical
phenomena in the vicinity of the corresponding body play a role. In the vicinity of an observer
one may construct an observer-centered local reference system and use that for modeling
phenomena in the neighborhood of the observer. Coordinate transformations between BCRS and
the other relativistic reference systems require complicated four-dimensional space-time
transformations that also contain acceleration terms and gravitational potentials. In this book we
base our analyses on Newtonian mechanics and will not apply these advanced concepts for the
analysis of orbits. 

We now return to our analysis of the motion of body i relative to a non-rotating reference frame
centered at body k. In celestial mechanics it is common practice to express the gravitational
influence of bodies through potential functions. To this end, we start with the expression for the
gravitational potential of body k at the position of body i (Section 1.4):

Now, a slightly modified function, defined as

(4.5)

and a scalar function, defined as

(4.6)

are introduced. With (4.5) and (4.6), and the expressions

we can write for the partial derivatives of Ûi and Ri to xi:

Similar expressions can be derived for the partial derivatives of Ûi and Ri to y and z. Substitution
of these expressions into (4.4) yields

(4.7)
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Analogous to the discussion in Section 2.1, we conclude that body i moves in a force field that
is described by the potential . This force field is clearly non-central and non-conservative.
The value of the potential  is only determined by bodies k and i and is therefore called the
primary potential; Ri expresses the influence of the perturbing bodies j and is called the
perturbing potential. This perturbing potential plays a major role in the analysis of the
perturbations of satellite orbits due to the gravitational attraction by the Sun, Moon and planets.

Returning to (4.4), we note that the influence of the bodies j on the motion of body i with respect
to body k is expressed by the term

(4.8)

The first part of this term expresses the acceleration of body i as a result of the gravitational
attraction between body i and body j; the second part expresses the acceleration of body k, the
origin of the reference frame, as a result of the gravitational attraction between bodies k and j.
Therefore, the first part is generally called the principal part and the second part the indirect part.
To illustrate the physical meaning of (4.8), we consider the Sun-Earth-Moon system. Using the
numerical data presented in Appendix B, we find for the magnitude of the gravitational forces
between the Sun (index S) and the Moon (index M), and between the Earth (index E) and the
Moon

So, the force between the Sun and the Moon is about twice the force between the Earth and the
Moon. This seems to contradict the fact that the Moon keeps orbiting the Earth! The explanation
for this apparent contradiction is given by (4.8). This equation shows that the influence of the Sun
on the motion of the Moon about the Earth is not determined by the pure gravitational attraction
between the Sun and the Moon, but by the difference between the acceleration of the Moon due
to the gravitational attraction by the Sun and the acceleration of the Earth due to the gravitational
attraction by the Sun. Because this difference is small in comparison to the acceleration of the
Moon due to the gravitational attraction by the Earth, the gravitational attraction by the Sun
produces only a perturbation on the motion of the Moon about the Earth.

We will use (4.4) as the starting point for the analysis of the acceleration of the Earth (body
i) produced by the gravitational attraction by the Sun (body k) and by the ‘differential attraction’
by the Moon, one of the other planets, a near-by star or a near-by galaxy (body j); as well as for
the analysis of the acceleration of a satellite (body i) produced by the gravitational attraction by
the Earth (body k) and by the ‘differential attraction’ by the Sun, the Moon, one of the other
planets, a near-by star or a near-by galaxy (body j). For simplicity, we will assume that the
planets move in circular orbits about the Sun and that the satellite moves in a circular orbit about
the Earth. It will be shown that for both cases the acceleration of body i produced by each body
j is (very) small when compared to the acceleration due to the gravitational attraction between
bodies i and k. Therefore, in the following we will replace the index j with d to indicate that it is
a disturbing body, and we will call the first term on the right-hand side of (4.4) the main
acceleration, am, of body i and the second term the perturbing acceleration, ad, of body i.
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4.2. Relative perturbing acceleration of the Earth and of an Earth satellite

The magnitude and direction of the perturbing acceleration of body i is, of course, determined
by the relative positions of the bodies i, j and k. At any time, these relative positions determine
a plane. That plane and the notation used for the analysis are shown in Figure 4.2. A qualitative
analysis of (4.8) and the geometry shown in Figure 4.2 shows that, for specified values of ri and
rj, the term  expresses a vector that rotates over an angle of 180E when "
increases from " = 0E to " = 180E, and of which the magnitude first decreases and later increases
again but never becomes zero. According to the definition given above, the magnitude of the
main acceleration of body i is

(4.9)

where the mass of body i is neglected with respect to the mass of body k. This is justified by the
fact that the mass of the Earth is much smaller than the mass of the Sun, and that the mass of a
satellite is much smaller than the mass of the Earth.

Figure 4.2: Relative positions of bodies k, i, and d.

For the magnitude of the perturbing acceleration follows from (4.4) with the present notation:

which gives

(4.10)

According to Figure 4.2, the following relations hold:

With these expressions, cos$ and rid can be eliminated from (4.10) and we obtain
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(4.11)

where ( = ri /rd. Note that this equation holds for rd > ri and for rd < ri; the latter case only occurs
when computing the perturbation of the Earth’s orbit by Mercury and Venus. An analysis of the
square-root function reveals that:
S The value of the function under square-root is positive for all values of ( > 0, irrespective of

the value of ".
S For an arbitrary value of ( the square-root function takes a maximum value at " = 0E, which

corresponds to the situation of a minimum distance between the bodies i and d. This result
could be expected from a qualitative analysis of (4.8).

S For ( < 1.74 a second maximum occurs at " = 180E; for ( < 0.01 the value of that maximum
is (about) equal to the value of the maximum at " = 0E. For larger values of ( the value of the
maximum at " = 180E steadily decreases relative to the value of the maximum at " = 0E.

S For ( < 0.5 the function takes a minimum value at " . 90E, 270E, while for larger values of
( the minimum occurs at values of " that slowly shift away from 90E and 270E into the
direction of 180E, until for ( > 1.74 the minimum occurs at " = 180E.

S For ( < 0.1 the minimum value of the square-root function is about equal to ( and the
maximum value is about equal to 2(. 

For the maximum perturbing acceleration (" = 0E) we find from (4.11)

(4.12)

Relative perturbing acceleration of the Earth
In this case, ( = rE /rd, where rE and rd are the distances of the Earth and the perturbing body from
the center of the Sun, respectively. The value of ( ranges from 10-10 (if the perturbing body is a
near-by galaxy) to 2.6 (if the perturbing body is Mercury). Combining (4.9) and (4.12), and
substituting the mass of the Sun, mS, for mk, we find for the maximum relative perturbing
acceleration

(4.13)

If the perturbing body is the Moon or a planet, the term md  /mS is always very small; even for the
largest planet (Jupiter) this term is md  /mS . 9.5*10-4. The product of the second and third term
on the right-hand side of (4.13), which are functions of rE/rd, does not have to be small. For
distant planets it is small: for Jupiter its magnitude is about 0.02. But e.g. for Venus the
magnitude of this term is about 11.1. However, because for Venus md/mS is very small (2.4*10-6)
also for this planet the maximum relative perturbing acceleration is small.

Table 4.1 lists the maximum value of the relative perturbing accelerations by the Moon, the
planets 1, a near-by star (Proxima Centauri) and a near-by galaxy (Large Magellanic Cloud) on

1 In this book, Pluto is still considered as a planet, although the International Astronomical Union has decided on
August 24, 2006, that Pluto should be considered as a ‘dwarf planet’ and therefore has added this body to the class
of dwarf planets.
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Table 4.1: Maximum relative perturbing acceleration of the Earth in its motion about the Sun due to the
gravitational attraction by celestial bodies.

Perturbing body md /mS rE /rd (ad /am)max

Moon 3.69*10-8 9.97*10-1 5.6*10-3

Mercury 1.66*10-7 2.58 6.7*10-7

Venus 2.45*10-6 1.38 2.7*10-5

Mars 3.23*10-7 6.56*10-1 1.0*10-6

Jupiter 9.55*10-4 1.92*10-1 1.9*10-5

Saturn 2.86*10-4 1.05*10-1 7.8*10-7

Uranus 4.37*10-5 5.21*10-2 1.3*10-8

Neptune 5.15*10-5 3.33*10-2 4.0*10-9

Pluto 6.58*10-9 2.53*10-2 2.2*10-13

Proxima Centauri 1.23*10-1 3.75*10-6 1.3*10-17

Large Magellanic Cloud . 1010 . 10-10 . 10-20

the Earth in its orbit about the Sun. The relevant data on the masses and distances of the celestial
bodies were taken from Appendix B. This Table shows that the Moon produces the largest
maximum relative perturbation. The planet Venus comes in second place, due to its relatively
large mass in combination with its short distance from the Earth; next the planet Jupiter. Despite
its short distance from the Earth, Mars comes in fourth place because of its relatively small mass.
Of course, we can apply the same analysis method for the perturbing acceleration experienced
by another planet. For example, when consider the planet Saturn, we find that the largest relative
perturbing acceleration is produced by the planet Jupiter and amounts to 1.4*10-3; the Earth
produces a relative perturbing acceleration of Saturn of 2.7*10-4. Table 4.1 shows that the
perturbations produced by the star Proxima Centauri (distance 4.3 light-year) and the Large
Magellanic Cloud (distance 160,000 light-year) on the motion of the Earth are extremely small.
In fact, this holds for all bodies of the solar system. We thus may neglect these perturbations and
conclude that the solar system may be considered as an isolated n-body system. This fact is used
implicitly in the analysis of planetary orbits and interplanetary trajectories (Chapter 18).

Relative perturbing acceleration of a satellite
In this case, ( = rs/rd, where rs and rd are the distances of the satellite (or the Moon) and the
perturbing body from the center of the Earth, respectively. Combining (4.9) and (4.12), and
substituting the mass of the Earth, mE, for mk, we find for the maximum relative perturbing
acceleration

(4.14)

Note that, in contrast to the analysis of the relative perturbation of the Earth, in this case the mass
of perturbing bodies in our solar system is not always small when compared to the mass of the
body at the origin of the reference frame: the Earth. For example, selecting the Sun as the
perturbing body, we have mS /mE . 3.3*105; for Jupiter as perturbing body, we find mJ/mE .
3.2*102. However, in these cases the value of rs/rd is (very) small, and the accelerations produced
by the Sun or Jupiter are still small. Note that for a given disturbing body the relative perturbing
acceleration of the satellite increases with increasing orbital altitudes.
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Table 4.2 lists the maximum value of the relative perturbing acceleration of a satellite that
moves in a circular orbit with a radius of 42,164 km about the Earth, as produced by other
celestial bodies2. Again, the relevant data on the masses and distances of the celestial bodies were
taken from Appendix B. The Table shows that for this satellite, the Moon produces the largest
relative perturbing acceleration; next come the Sun, Venus, Jupiter and Mars, respectively. Note
that the relative perturbation produced by the Moon is about twice that produced by the Sun.
Moon and the Sun produce relative perturbing accelerations that are at least a factor 104 larger
than the perturbations by all other celestial bodies. Therefore, in first-order perturbations analysis
it is often sufficient to consider only the perturbations by the Sun and the Moon. Again, it is clear
that perturbations due to bodies outside the solar system are completely negligible.

Table 4.2: Maximum relative perturbing acceleration of a geostationary satellite due to the gravitational
attraction by celestial bodies.

Perturbing body md /mE rs /rd (ad /am)max

Sun 3.33*105 2.82*10-4 1.5*10-5

Moon 1.23*10-2 1.10*10-1 3.9*10-5

Mercury 5.53*10-2 4.60*10-4 1.1*10-11

Venus 8.15*10-1 1.02*10-3 1.7*10-9

Mars 1.07*10-1 5.38*10-4 3.4*10-11

Jupiter 3.18*102 6.71*10-5 1.9*10-10

Saturn 9.52*101 3.30*10-5 6.8*10-12

Uranus 1.45*101 1.55*10-5 1.1*10-13

Neptune 1.71*101 9.70*10-6 3.1*10-14

Pluto 2.10*10-3 7.32*10-6 1.7*10-18

Proxima Centauri 4.09*104 1.06*10-9 9.6*10-23

Large Magellanic Cloud . 1015 . 10-14 . 10-25

For a satellite altitude below 36,000 km, we find for the Moon as disturbing body rs /rd # 1.1*10-1,
and for all other disturbing bodies rs /rd # 10-3. Therefore, in this case we can apply a series
expansion of (4.11) in powers of ( and find after some algebraic manipulation

The first and second term of the expression under square-root describe a contribution that is
rotationally symmetric about  and symmetric about a plane through mk and perpendicular to

; the third term describes an asymmetric contribution that is the result of the gradient of the
gravity field of the disturbing body. Because for all disturbing bodies, excluding the Moon,
( = rs/rd is very small, we can further approximate this relation by

(4.15)

For the Moon as disturbing body, this approximation is less accurate and leads to errors in the

2 This is the so-called geostationary orbit, which will be defined in Section 6.2.
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computed value of ad, depending on the value of ", of up to 30% for a geostationary satellite and
of up to 4% for a satellite at 1000 km altitude. Combining (4.9) and (4.15), and substituting the
mass of the Earth, mE, for mk, we find for the relative perturbing acceleration of the satellite

(4.16)

This expression shows that: 1) the relative perturbing acceleration is maximum if " = 0E and
" = 180E; 2) the minimum relative perturbing acceleration occurs at " = 90E and " = 270E; 3)
the maximum value is twice the minimum value. These results agree with the conclusions of the
analysis of (4.11) given above, for ( < 0.01. It is interesting to note that this analysis can also be
used to analyze the tidal phenomenon. If we assume that the entire Earth would be covered by
an ocean and that we restrict ourselves to ocean tides, we may conclude from (4.16) that the
gravity field of the Moon and the Sun each produce two tidal bulges of the sea surface; one on
the side of the Earth that is turned towards the Sun or the Moon (" = 0E), and the other on the
side that is turned away from the Sun or the Moon (" = 180E). As the Earth rotates, the tidal
bulges move around the Earth. When Earth, Moon, and Sun line up, the combined gravitational
effects of the Moon and the Sun reinforce each other and produce very high tides (spring tide).
When the Earth-Moon and Earth-Sun lines are at right angles to each other the lowest tides (neap
tide) occur. In reality, the observed tides at a certain location on Earth are affected by the
distribution of the land masses, bathymetry, sea currents, winds, and other factors.

From (4.16), we conclude that the maximum relative perturbing acceleration is approximately
given by

(4.17)

This relation, which can also be obtained by linearizing (4.14) for rs /rd n 1, shows that, for a
satellite moving about the Earth at an altitude below 36,000 km, the relative perturbing
acceleration increases with the cube of the distance from the center of the Earth. When we
substitute the values of the relevant parameters of the Sun or the Moon listed in Appendix B into
(4.17), we find that the maximum relative perturbing acceleration produced by the Moon is 2.2
times the maximum relative perturbing acceleration produced by the Sun, for any satellite orbital
altitude. Note that when we compare the values listed in Table 4.2 for a geostationary satellite,
we find that the ratio of the maximum relative perturbing accelerations produced by Moon and
Sun is 2.6. The reason for this somewhat larger value for this high orbit is that the numerical
values listed in Table 4.2 are computed from the full expression (4.14), while the value of 2.2 is
obtained from the approximative relation (4.17). 

When we consider the motion of the Moon about the Earth with the Sun as perturbing body,
we find ( . 2.6*10-3. Therefore, the approximative relation (4.17) can also be applied for the
motion of the Earth’s natural satellite, and we find for the maximum relative perturbing
acceleration caused by the Sun: (ad /am)max . 1.1*10-2. Although this value is still small enough
to make the influence of the Sun on the motion of the Moon about the Earth a perturbation, it
shows that the perturbation of the motion of the Earth about the Sun caused by, for example,
Venus or Jupiter (Table 4.1) is much smaller than the perturbation of the motion of the Moon
about the Earth caused by the Sun. This is the reason why an analytical analysis of the orbit of
the Moon about the Earth belongs to the most difficult problems in celestial mechanics.
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From the examples treated in this Section a very important conclusion can be drawn: for the
motion of the Earth about the Sun as well as for the motion of a satellite about the Earth, the
influence of all other celestial bodies is (very) small. So, for first-order analyses the influence of
these perturbing bodies can be neglected and the motion of the Earth about the Sun, or of a
satellite about the Earth, may be considered as a pure two-body problem. Chapters 5 to 8 deal
with such two-body motion.

4.3. Sphere of influence

In Section 4.2 we have found that for a satellite moving about the Earth, the relative perturbing
acceleration due to the gravitational attraction by other celestial bodies increases with increasing
distance from the center of the Earth. Now, consider the motion of an interplanetary spacecraft
(Chapter 18). That motion starts close to the Earth, where the gravitational attraction by the Earth
dominates the spacecraft’s motion. Gradually, the spacecraft’s distance from the Earth increases
and the relative perturbing acceleration produced by the gravitational attraction of the Sun
increases, and at large distances from the Earth the gravitational attraction by the Sun will
dominate the motion of the spacecraft. For first-order analyses, one usually approximates the
interplanetary trajectory of the spacecraft by a series of two-body trajectories (Chapter 18). Close
to the Earth, one then describes the motion of the spacecraft relative to a non-rotating reference
frame with its origin at the center of the Earth. For that part of the trajectory the gravitational
attraction by the Sun can be considered as a perturbing force. Far from the Earth, one describes
the motion of the spacecraft relative to a non-rotating reference frame with its origin at the center
of the Sun. For that part of the trajectory the gravitational attraction by the Earth can be
considered as a perturbing force. The question now is: “Within what volume of space around the
Earth can we describe the motion of the spacecraft as a perturbed two-body trajectory about the
Earth?” P.S. Laplace (1749-1827) has addressed a similar question around 1805 in his studies on
the motion of comets that pass Jupiter at a relatively short distance. He was interested to know
within what volume of space around Jupiter the motion of the comet could be described as a
perturbed two-body trajectory about Jupiter. He proved that that volume is approximately a
sphere about Jupiter, which is called the sphere of influence. That concept can also be used to
answer the question formulated above concerning the motion of a spacecraft about the Earth (or
any other celestial body).

In this Section, we consider the general case where three bodies are indicated by P1, P2 and P3.
We address the question whether the motion of body P2 should be expressed with respect to a
non-rotating reference frame attached to body P1 or with respect to a non-rotating reference frame
attached to body P3, while body P3 or body P1, respectively, is considered as the perturbing body.
Figure 4.3 shows the relative positions of the three bodies in the instantaneous plane through the
bodies, and the notation used in the analysis. Note that at any time a plane can be constructed
through the three bodies; so the geometry indicated can be used to describe the three-dimensional
position of P2 relative to the line connecting bodies P1 and P2. With (4.4) and using the notation
indicated in Figure 4.3, we can write for the motion of body P2 with respect to P1

(4.18)

while the motion of P2 with respect to P3 is described by
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Figure 4.3: Relative positions of three bodies and the notation used in the analysis of the sphere of
influence concept.

(4.19)

According to Laplace, the advantage of either form depends on the ratio of the perturbing force
to the corresponding main force. Whichever form provides the smaller ratio is the one to be
preferred.

We first consider the motion of body P2 with respect to body P1. According to (4.18), the
magnitude of the main acceleration is

and the magnitude of the perturbing acceleration is

Consequently, we find for the ratio ad /am:

(4.20)

According to Figure 4.3, the following relation holds:

Substitution of this expression into (4.20) yields

(4.21)

where, according to Figure 4.3,

(4.22)

Now, we consider the orbit of P2 with respect to P3. According to (4.19), the magnitude of
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the main acceleration then is

and the magnitude of the perturbing acceleration is

Consequently, we now find for the ratio ad /am:

(4.23)

By definition, on the sphere of influence the ratios ad /am found for both cases are equal.
Equating (4.21) and (4.23) gives

(4.24)

where the ratio d/D is given by (4.22).

We now select P1 as the body relative to which we want to describe the motion of body P2, and
we consider P3 as the perturbing body. Both for the motion of an interplanetary spacecraft
receding from the Earth and for the motion of a comet close to Jupiter we may assume r n D, m2

n m1, m2 n m3. In that case, we can obtain an approximate explicit solution for r/D. Evaluation
of (4.22) and a series expansion of two terms in (4.24) yields

Substitution of these expressions into (4.24) leads to the relation

or, in first-order approximation,
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(4.25)

This expression describes a three-dimensional surface about P1. This surface is rotationally
symmetric about the line connecting the bodies P1 and P3, and symmetric about a plane through
P1 and perpendicular to the line connecting the bodies P1 and P3. The minimum radius, rmin,
occurs in the direction to P3 and opposite to the direction to P3; the maximum radius, rmax, occurs
perpendicular to the direction to P3. For these radii we find from (4.25):

If we neglect this difference in radii and substitute Rs.i for rmax, we can further approximate (4.25)
by

(4.26)

This equation describes a sphere about P1 with radius Rs.i; this sphere is referred to as the sphere
of influence of P1 with respect to P3. Inside this sphere it is appropriate to describe the motion of
P2 with respect to a non-rotating reference frame with P1 as origin and to consider P3 as the
perturbing body, while outside this sphere we should use P3 as the origin of the non-rotating
reference frame and consider P1 as the perturbing body. 

For a first-order analysis of the motion of an interplanetary spacecraft about the planets of our
solar system, P1 is the Earth or another planet, P2 is the spacecraft, and P3 is the Sun. We can then
compute the radii of the sphere of influence of the various planets with respect to the Sun from
(4.26); these radii are listed in Table 4.3. Again, the relevant data on the masses and distances
of the Sun and the planets were taken from Appendix B. Note that for the Earth Rs.i . 106 km,
while for the giant outer planets Rs.i . 48*106 - 87*106 km. For each planet, the radius of the
sphere of influence is large when compared to the radius of the planet (R), but small when
compared to the (mean) distance of the planet from the Sun (a). This is a very important result
for the computation of interplanetary trajectories (Chapter 18). In fact, it allows us to apply a
relatively simple analysis scheme for the computation of these trajectories.

Table 4.3: The radii of the sphere of influence of the planets with respect to the Sun, both in kilometers
and in terms of the mean distance of the planet from the Sun (a) and of the planet’s radius (R).

Planet Rs.i (106 km) Rs.i (10-2 a) Rs.i (102 R)

Mercury 0.11 0.19 0.46

Venus 0.62 0.57 1.02

Earth 0.92 0.62 1.45

Mars 0.58 0.25 1.70

Jupiter 48.2 6.19 6.74

Saturn 54.5 3.82 9.05

Uranus 51.8 1.80 20.2

Neptune 86.6 1.93 35.0

Pluto 3.10 0.052 25.9
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When we consider a lunar trajectory, we are, of course, interested in the sphere of influence of
the Moon with respect to the Earth in the system Moon (P1), spacecraft (P2), Earth (P3). We then
find from (4.26): Rs.i/D . 0.172, which leads with D = 384,401 km to Rs.i . 66,183 km. Although
Rs.i /D < 0.2, this value is significantly larger than the corresponding values for the planetary
spheres of influence. This means that the series expansions leading to (4-25) are less accurate.
It can also be concluded that the sphere of influence of the Moon with respect to the Earth is
located within the sphere of influence of the Earth with respect to the Sun. So, for a first-order
analysis of trajectories to the Moon (Chapter 17) only the gravitational attraction by the Earth and
the Moon have to be taken into account. During an interplanetary flight (Chapter 18) the
spacecraft moves within the sphere of influence of the Earth, of the target planet, possibly of the
Moon, and possibly of other planets that are passed at a short distance. Therefore, at least the
gravitational forces of these celestial bodies have to be taken into account.
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5. TWO-BODY PROBLEM

Equation (4.4) describes the motion of body i with respect to a non-rotating reference frame with
body k as origin, under the influence of all gravitational forces between the bodies i, j and k. In
Section 4.2, it was shown that for the motion of the Earth about the Sun and of satellites about
the Earth (and about other planets) in first-order approximation the effects of the gravitational
attraction between the bodies j and i can be neglected with respect to the effect of the
gravitational attraction between the bodies i and k. In that case, the relative motion of body i is
to good approximation described by

(5.1-1)

where the index ki indicates that the motion of body i is described relative to a non-rotating
reference frame with body k as origin. When we would have started from the barycentric form
of the equation of motion ((2.21)), then the equation for two-body motion would read

(5.1-2)

where the index Bi indicates that the motion of body i is described relative to a non-rotating
reference frame with the barycenter as origin. With (2.65), we may write

Substitution of these expressions into (5.1-2) leads, after some algebraic manipulation, to

(5.1-3)

A comparison of (5.1-1) and (5.1-3) shows that the orbits described by both equations are similar;
this result was already found in Section 2.7.

If the notation

(5.2-1)

is introduced and the index ki is omitted, (5.1-1) can be written as

(5.3)

where : is a constant that depends on the universal gravitational constant, G, and the masses of
both bodies. If the notation

(5.2-2)
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is introduced and the index Bi  is omitted, (5.1-3) also can be written as (5.3). So, (5.3) holds both
for the motion of body i relative to a non-rotating reference frame connected to body k and for
the motion of body i relative to a non-rotating reference frame connected to the barycenter of the
two-body system. However, the parameter : is defined differently in both cases. In many
practical cases mi n mk. For example, for the motion of the Earth about the Sun: mi/mk . 3.0* 10-6;
for the motion of the largest planet (Jupiter) about the Sun: mi/mk . 9.5*10-4; for a satellite with
a mass of 10 ton in an orbit about the Earth: mi/mk . 1.7*10-21. Therefore, as a good approxima-
tion we may write (5.2-1) and (5.2-2) as

(5.4)

in particular for computing orbits of satellites about the Earth (or other planets). The parameter
:, as defined by (5.4), is only dependent on the mass of the main body k (i.e. the Sun or the
Earth). This makes it a characteristic parameter of the main body and it is called the gravitational
parameter of that body. For the Sun, : . 1.32712*1011 km3/s2; for the Earth, : . 398,600 km3/s2.
The use of (5.4) as a definition of : has a fundamental consequence. Equation (5.3) then
describes the motion of body i about body k if we assume that mi = 0. In that case, body k does
not experience an acceleration, and the reference frame with body k as origin is an inertial
reference frame. We then deal with the so-called one-body problem.

In the following discussion, we will use the general equation (5.3) that holds irrespective as
to whether : is defined according to (5.2-1), (5.2-2) or (5.4).

5.1. Conservation laws

Two conservation laws can be derived for the motion of body i. To derive the first conservation
law, we take the scalar product of (5.3) and and obtain

or

Integration of this equation gives

(5.5)

where õ is an integration constant. The first term of (5.5) indicates the kinetic energy per unit of
mass of body i. In Section 4.1, it was found that if the motion of body i is described relative to
a non-rotating reference frame fixed to body k, the gravitational potential of body k at the position
of body i is given by

or, in the notation used here,
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So, the term -:/r in (5.5) indicates the potential energy per unit of mass of body i, and õ indicates
the total energy per unit of mass of body i. According to (5.5), this total energy is constant.

To find the second conservation law, we take the vector product of (5.3) and  and obtain:

Integration gives

(5.6)

where  is an integration constant. Equation (5.6) is the angular momentum integral, which
shows that the angular momentum of the motion of body i (per unit of mass) remains constant.
In Section 2.1 it was proved that also for the many-body problem the total angular momentum
is constant and defines the invariable plane of Laplace. In classical celestial mechanics,  is
therefore also called the second Laplace vector. This term implies that there also is a first Laplace
vector; this vector will be introduced in Section 5.7.

Figure 5.1: Motion of body i about body k.

Because the motion of body i occurs in a fixed plane perpendicular to , a non-rotating reference
frame is introduced of which the origin coincides with body k and of which the XY-plane
coincides with the plane of motion (Figure 5.1). At t0 the distance between bodies i and k is r; at
some time interval )t later r+)r. When n is a polar coordinate measured from an arbitrary fixed
reference direction in this plane, the following expression holds according to (5.6):

(5.7)

where H is the magnitude of the angular momentum vector (per unit of mass). From (5.7) we
observe that the angular velocity,  with which body i moves about the origin, is larger when
the body is closer to the origin. Of course, in all practical cases H … 0. Otherwise, we would have
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which, for r > 0, would mean n = constant. So, in that case the motion degenerates to a
rectilinear orbit through body k. Most textbooks discuss rectilinear orbits and then distinguish
between rectilinear elliptical, parabolic and hyperbolic orbits. However, these types of
degenerated orbits have only limited practical value; an exception is the motion of some comets
that can very well be approximated by a rectilinear ellipse or hyperbola. In this book only the
case H … 0 is considered, except in the next paragraph where the case H = 0 is analyzed to
illustrate the enormous effect that a continuously acting gravitational force may have on the
motion of a body.

We assume that at time t0 a body is at a distance r0 from the center of the Sun and that it then has
a velocity V0 = 0 relative to a non-rotating reference frame with origin at the mass center of the
Sun. We further assume that the gravitational force between that body and the Sun is the only
force acting on the body. In that case, the body will move in a rectilinear orbit towards the center
of the Sun.

For the acceleration of the body at a distance r1 from the center of the Sun, we write
according to (5.3)

where :S is the gravitational parameter of the Sun. This acceleration is, of course, directed
towards the Sun. Because V0 = 0, we find from (5.5) for the (inward) velocity of the body at a
distance r1:

 

Since for this type of rectilinear motion: V = - dr/dt, we can write for the local velocity

From this relation we obtain

with 0 # r/r0 # 1. Integration of this equation from r = r0 to r = r1 yields, after some algebraic
manipulation, for the flight time tf = t1 - t0, where t1 is the time that the body reaches the distance
r1 from the Sun,

From this equation we obtain for the hypothetical flight time to the center of the Sun (r1 = 0):
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If the acceleration along the trajectory would have been constant:  then the flight time

to the center of the Sun would be given by . So, the increasing acceleration with
decreasing distance results in a (true) flight time to the center of the Sun that is equal to
B/4 . 0.78 times the flight time in case of a hypothetical constant acceleration.

For a numerical example, we assume that at t0: r0 = 227.936*106 km; this is about the distance
of Mars from the Sun. At that time the velocity of the body is zero and its (inward) acceleration
is only 0.255 cm/s2. With the relations given above, we can compute that after 28.7 days the body
is still at a distance of 220*106 km from the center of the Sun; at that time its (inward) velocity
is already 6.48 km/s and its acceleration is still only 0.274 cm/s2. About 56.5 days later, the body
crosses the orbit of the Earth (r1 = 149.598*106 km) with a velocity of 24.7 km/s and an
acceleration of 0.593 cm/s2. About 16.1 days later it crosses the orbit of Venus (r1 = 108.209*106

km) with a velocity of 35.9 km/s and an acceleration of 1.13 cm/s2. About 13.0 days later it
crosses the orbit of Mercury (r1 = 57.909*106 km) with a velocity of 58.5 km/s and an
acceleration of 3.96 cm/s2, and about 7.2 days later it plunges into the outer layers of the Sun
(r1 = 0.6955*106 km) with a velocity of 617 km/s and an acceleration of 274 m/s2. The entire trip
from the orbit of Mars to the Sun lasts only 121.4 days. From this analysis we conclude that the
continuously acting gravitational force speeds up the body to very high velocities. We also
conclude that any body in the solar system with an orbital angular momentum H = 0 will be
removed by the Sun within a relatively short period of time and that only bodies with H … 0 may
survive and live in the solar system for extended periods of time.

We now continue with our analysis for the case H … 0, and consider a small surface element that
is defined by the distances r and r+)r (Figure 5.1). For the area of this surface element we may
write

When we take the limit )t 6 0, we obtain

or, with (5.7),

which, after integration, yields

(5.8)

This result shows that body i sweeps out equal segments A in equal intervals of time )t. It is
noted that in this derivation we only have used the fact that the angular momentum of body i is
constant. As the angular momentum is constant when only a radially directed force acts on body
i, (5.8) holds for any central force field and not only for a force field that is inversely proportional
to the square of the distance.
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5.2. Shape of the orbit

To determine the shape of the orbit described by body i, we form the scalar product of (5.3) with
:

Substitution of

(5.9)

results in

(5.10)

Equations (5.7) and (5.10) form a system of two coupled non-linear differential equations. To
solve these equations, we write

Substitution of (5.7) into these equations gives

(5.11)

For simplicity, we introduce a new variable u, defined as

(5.12)

Then, (5.11) can be written as

(5.13)

Substitution of (5.7), (5.12) and (5.13-2) into (5.10) yields, since H … 0,

(5.14)

The general solution of this second-order differential equation reads

(5.15)

where c1, c2, c3 and T are integration constants. When we transform (5.15) back to the variable
r, we obtain
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(5.16-1)

This is the orbital equation that describes the relation between r and n.
A mathematically more-elegant method for finding this orbital equation is given below. First,

the vector product of (5.3) with  is taken:

Evaluation of the vector triple-product gives

or, with (5.9),

(5.17)

Since  is constant, integration of this equation leads to

where  is a constant vector. Scalar multiplication with  yields

Substitution of

finally gives

(5.18)

Now, we define  to be directed towards the point in the orbit where the distance between body
i and body k is a minimum. We already have introduced the angle n between a reference direction
in the orbital plane and  we now introduce T to indicate the angle between the reference
direction and  (Figure 5.2). With this notation, we obtain from (5.18):

or

(5.16-2)

Comparison of (5.16-1) and (5.16-2) shows that both equations are, of course, identical, with
c3 = c4 and 2 = n - T. In the next Section, we will prove that (5.16) describes a conic section in
polar coordinates, where the origin of the reference frame (body k) is located at one of the foci
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of that conic section.

Figure 5.2: Direction of the vector  and the definition of the angles n, T and 2.

5.3. Conic sections

A conic section can be defined as the geometric collection of all points P for which the ratio of
the distance to a fixed point F and the distance to a fixed line l is constant (Figure 5.3). The fixed
point is called the focus, the fixed line is called the directrix and the ratio of the distances is
called the eccentricity, e, of the conic section. With this definition and the notation shown in
Figure 5.3, we find the following equations for a conic section:

   P to the left of l:

   P to the right of l:

Figure 5.3: Geometric definition of a conic section.

When we introduce the focal parameter, p, which is defined as

(5.19)

then we can write these equations as

   P to the left of l: (5.20-1)

   P to the right of l: (5.20-2)

Because the cosine function is symmetric with respect to 2 = 0E, the line FD is an axis of
symmetry of the conic section. What type of conic section is described by (5.20) depends on the
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value of the eccentricity, e. The following cases can be distinguished:
e = 0 : circle
0 < e < 1 : ellipse
e = 1 : parabola
e > 1 : hyperbola

For a circle: k = 4. Since e $ 0 and k > 0, p has a finite positive value for all conic sections. Of
course, also r $ 0. With (5.20) we then obtain

P to the left of l:  

P to the right of l:

Because e $ 0 and cos 2 # 1 it is clear that the curve to the right of l can only be realized for
e > 1; in other words: for a hyperbola. The circle, the ellipse and the parabola are entirely located
to the left of l; the hyperbola has a branch to the left as well as to the right of l.

Comparison of (5.16) and (5.20) demonstrates that body i moves in a conic section about
body k, with body k located at a focal point, and that the following relations must hold:

(5.21)

We know that H 2, : and p have positive values and therefore in physical reality (5.16) can only
describe a conic section to the left of l. So, if the orbit is hyperbolic, (5.16) describes only the left
branch. The reason is that the gravitational force is an attracting one. Therefore, for all problems
in celestial mechanics the trajectory is uniquely described by

(5.22)

The chord of the conic section that passes through F and is perpendicular to FD (2 = 90E), has,
according to (5.22), a length of 2p. This chord is generally referred to as the latus rectum. It is
interesting to note that Newton already has shown that elliptical motion is possible when the
attractive central force is described by either  or  where c is a positive constant.
In the first case, the attracting body k is located at a focus of the ellipse; in the second case at the
center of the ellipse.

For a circle and an ellipse: e < 1, and (5.22) shows that for each value of 2 there exists a finite
positive value of r. Hence, circles and ellipses are closed curves. For a parabola: e = 1, which,
according to (5.22), also yields a finite value of r for each value of 2, except for 2 = 180E, where
r = 4. For a hyperbola: e > 1. According to (5.22), for this type of conic section only finite values
of r exist if 2 satisfies the relation

The integration constants p, e and T describe the size, shape and orientation of the conic section
in the orbital plane of mi. Because these are constants, we conclude that the size, shape and
orientation of the conic section are independent of time. The angle T indicates the position of the
point where r is a minimum. When we do not refer to a particular celestial body, this point of
closest approach is called the pericenter or periapsis; for an elliptical orbit the point of farthest
excursion is then called the apocenter or apoapsis. For a trajectory about the Sun these points are
called apohelion 1 and perihelion; for a trajectory about the Earth apogee and perigee; for a

1 The term aphelion is often used for euphony.
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trajectory about the Moon aposelene and periselene, or apolune and perilune. The angle T is then
called argument of pericenter, argument of perihelion, argument of perigee or argument of
perilune, respectively. The angle 2 = n - T, which is called true anomaly, is an angle in the
orbital plane, measured from the pericenter to the orbiting body in the direction of motion. The
name ‘true anomaly’ is based on the ancient belief that for celestial bodies uniform circular
motion was considered to be ‘normal’; a deviation from this motion was therefore considered an
‘anomaly’.

We now return to (5.10) and write this in the form

From this relation we conclude that the radial acceleration of body i is equal to the difference
between the centrifugal acceleration and the gravitational acceleration. Now, suppose that body
i moves in a circular orbit about body k. Then,  and, consequently, the centrifugal force
equals in magnitude the (centripetal) gravitational force, but acts in an opposite direction. So, the
two forces cancel but this should not let us conclude that the body will move along a straight line.
We should realize that the expression, in fact, holds relative to a rotating reference frame and for
that reason the centrifugal force, which is an apparent force, appears in the expression. Relative
to the rotating reference frame, body i keeps a fixed position. This is in agreement with out
conclusion that the two forces acting on the body cancel. Relative to the inertial reference frame,
only the centripetal gravitational force (natural force) acts on the body, leading to the circular
orbit.

5.4. Kepler’s laws

In the previous Sections, two important properties have been derived:
S Body i sweeps out sectors of equal area in equal intervals of time.
S The orbit of body i about body k is a conic section, of which body k is located at one of the

foci.
These results are the general form of Kepler’s second and first law, respectively. In 1609, J.
Kepler (1571-1630) published Astronomia nova seu physica coelestis (usually referred to as
Astronomia nova), in which he formulated two empirical laws about the orbits of the planets
around the Sun:
Kepler’s first law: The orbit of a planet is an ellipse with the Sun at one of the two foci.
Kepler’s second law: A line joining a planet and the Sun sweeps out equal areas during equal

intervals of time.
Kepler deduced these laws from observations of Mars taken by Tycho Brahe (Tyge Ottesen
Brahe; 1546-1601) over a long period of time (Section 5.5), but he immediately concluded that
these laws must hold for all planets. His laws broke with the Ptolemaic model (Claudius Ptolemy;
latin: Ptolemaeus; -85-165), in which the Earth was the center of the universe, and also with
Copernicus’ model (N. Copernicus; 1473-1543), in which the planets moved in circular orbits
about the Sun (Section 5.5). In 1619, Kepler published Harmonices mundi, in which he formu-
lated, without proof, his third empirical law:
Kepler’s third law: The square of the orbital period of a planet is directly proportional to the

cube of the semi-major axis of its orbit.
This law will be proved in Section 6.4.

Kepler’s first law describes only one case (ellipse) of the orbits in which celestial bodies can
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move. The other types of conic sections occur too. Some comets move in (near-)parabolic or
hyperbolic orbits about the Sun, and hyperbolic orbits with respect to the Earth and other planets
are flown in interplanetary missions (Chapter 18). Some natural satellites and many artificial
satellites move in (near-)circular orbits about the Earth and other planets. We call all these conic
sections Keplerian orbits.

In this book, we have derived Kepler’s laws from Newton’s laws of motion and Newton’s law
of gravitation. Historically, a different development has taken place. I. Newton (1643-1727)
published his three laws of motion in his Principia in 1687. He proved by geometric methods that
if his three laws of motion are valid to describe the elliptical motion of a planet about the Sun,
and if the planetary motion can be described by the three empirical laws of Kepler, then there
must be an attractive force between the Sun and a planet that is proportional to the mass of both
bodies and inversely proportional to the square of the distance between them. Since Newton
realized that, as a result of the enormous distance between the Sun and a planet, both bodies can
be viewed as point masses, he postulated that such an attractive force is present between all point
masses: Newton’s law of gravitation. It is not widely known, however, that Newton thoroughly
analyzed a variety of power-law central attracting forces of the type  where " is a
positive constant, and showed that different integer exponents n yield circular, conic, spiral, and
other orbits in an often surprising manner. Only the exponents n = -2 and n = 1 lead to conic
sections; for n = -2 a conic section with its focus at the center of the Sun, and for n = 1 a conic
section with its center at the center of the Sun. In continental Europe the methods of calculus
were cultivated with ardor at the beginning of the eighteenth century, and Newton’s system of
mechanics did not find immediate acceptance; indeed, the French clung to the vortex theory of
R. Descartes (1596-1650) until Voltaire (F.M. Arouet, 1694-1778), after his visit to London in
1727, vigorously supported the Newtonian theory. This, with the fact that the English continued
to employ the geometric methods of the Principia, delayed the analytical solution of the two-
body problem. J. (Johann) Bernouilli (1667-1748) solved the inverse problem in 1710. He used
analytical methods to show that a central attracting force with magnitude inversely proportional
to the square of the distance between a planet and the Sun always leads to an orbit about the Sun
that can be represented by a conic section. There are, however, indications that this solution was
actually found by J. Hermann (1678-1733), a pupil of J. (Jacob) Bernouilli (1654-1705). Newton
presented a similar analysis in the second edition of his Principia in 1713. J. (Johann) Bernouilli
proved that a central attracting force with magnitude inversely proportional to the cube of the
distance between a body and the Sun leads to a particular Cotes’ spiral (R. Cotes, 1682-1716)
about the Sun, depending on the choice of the initial conditions. The two-body problem was
solved in detail by L. Euler (1707-1783) in 1744 in his Theoria Motuum Planetarum et
Cometarum. Since that time, the modifications have been mainly in the choice of variables in
which the problem is expressed. By the end of the nineteenth century, various studies were
performed to determine by analytical methods which types of central forces would make particles
to move in conic sections. J.L.F. Bertrand (1822-1900) has shown in 1873 that the only laws of
central attraction force under the action of which a particle will describe a conic section for all
initial conditions are F = -"/r2 and F = -"r, where " is a positive constant. This confirmed the
results obtained by Newton who used geometric methods. G.X.P. Koenigs (1858-1931) has
proved in 1889 that the only laws of central attraction force depending upon the distance alone,
for which the curves described by the particle are algebraic for all initial conditions are F = -"/r2

and F = -"r. F.L. Griffin (1854-1933) has shown in 1905 that the only law, where the attraction
force is a function of the distance alone, where it does not vanish at the center of force, and where
it is real throughout the plane, giving an elliptical orbit is the Newtonian law.
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5.5 From geocentrism to heliocentrism

To anyone on Earth looking at the sky, it seems clear that the Earth is stationary, while all
celestial bodies rise in the east and set in the west once a day. Observing over a longer time, one
observes that some bodies exhibit more complicated motions: planets and comets follow their
individual trajectories relative to the invariable stellar configurations, and sometimes meteoroids
flash across the sky when they burn up in the atmosphere. Ancient cultures already observed
these phenomena and were in particular interested in the motion of the five planets that can be
seen with the naked eye (Mercury, Venus, Mars, Jupiter, Saturn). These objects were called by
the Greek ‘ast‘r plan‘t‘s’ (‘wandering star’). Scientists of ancient antiquity all over the world
started to develop kinematic models of the universe to describe and predict the motions of the
observed celestial bodies and to find explanations for recurring celestial phenomena. Examples
are the development of cosmology in ancient Egypt and Mesopotamia. Since in Egypt the
principal deities were heavenly bodies, a great deal of effort was made by the priesthood to
calculate and predict the time and place of their god’s appearances. Babylonian astronomy is
noted for the detailed, and continuous, records of astronomical phenomena, such as eclipses,
positions of the planets and risings and settings of the Moon; these records date back to 800 B.C.
While their record keeping was a novel technology for the time, and their system of stellar names
and measurement system was passed on to later civilizations, the Babylonians never developed
a cosmological model in which to interpret their observations. It were the early Greek
astronomers that have achieved this goal using the Babylonian data.

According to the early Babylonian cosmology (-3000 B.C.) the Earth and the heavens form
a unit within infinite ‘waters of chaos’. The Earth is assumed to be flat and circular, and a solid
dome (Latin: ‘firmamentum’) keeps out the outer ‘chaos ocean’. This conception was adopted
in the early Jewish cosmology and is reflected in the book Genesis of the Bible. However, the flat
Earth model conflicted with various kinds of observations, and already in the sixth century B.C.,
Greek, Egyptian and Babylonian astronomers knew that the Earth is a sphere. Central to Greek
cosmology is the belief that the underlying order of the universe can be expressed in mathemati-
cal form. In Greek antiquity the ideas of celestial spheres first appeared in the cosmology of
Anaximander (-610-546 B.C.). After him, Pythagoras of Samos (-570-495 B.C.), Xenophanes
of Colophon (-570-475 B.C.) and Parmenides of Elea (-515-450) held that the universe is
spherical and that celestial bodies are placed on concentric celestial spheres. According to Plato
(-427-347 B.C.), the Earth is a sphere, stationary at the center of the universe. The celestial
bodies are housed in spheres about the Earth and the motion of these bodies is uniform along
circles. His argument was that the heavens are the place of the gods and thus represent perfection:
a ‘kosmos’ (Greek for ‘order’ and ‘harmony’), and spheres and circles are of ‘divine uniformity’.
He proposed that the seemingly irregular motions of the planets could be explained by
combinations of uniform circular motions centered on a spherical Earth. In essence, this is an
early formulation of a Fourier analysis by which we may approximate any function, e.g. the
trajectory of a planet, by a series of trigonometric functions. One should realize that the adoption
of a geocentric model was largely based on several astronomical observations; e.g., ancient
cultures could not measure any stellar parallax, and observed an apparent consistency of Venus’
luminosity. In this context, it is noted that: 1) the parallax of a star (61 Cygni) was first measured
by F.W. Bessel (1784-1846) in 1839; 2) the loss of light caused by Venus’ phases largely
compensates for the increase in apparent size caused by its varying distance from Earth. The idea
that the Earth is at the center of the universe was further supported by the belief that the Earth
could not rotate or move through space, because we otherwise would experience huge winds,
objects would be spun out into space, objects dropped from a tower would fall behind that tower,
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etc. Eudoxus of Cnidus (-409-355 B.C.), who worked with Plato, developed a more mathemati-
cal explanation of the planet’s motions based on Plato’s dictum that all phenomena in the heavens
can be explained with uniform circular motions. He developed a system involving some 27
geocentric ‘crystalline’ spheres. Of these spheres, the outermost bore the stars and accounted for
their daily motion across the sky, three each were used to account for the motion of the Sun and
the Moon, and four each were necessary for the more complicated motions of the planets known
at that time. Each sphere turns uniformly about an axis, and each planet is attached to a sphere.
So, the motion of the planet is a circle about the Earth. By tilting the axes of the spheres, and
assigning each a different period of revolution, he was able to approximate the celestial
‘appearances’. Note that the concept of an outer sphere to which the stars are attached has
survived the centuries and is still used to describe angular positions of objects in space (Section
11.2). A great achievement of Eudoxus was his concept that the rotations of two of the spheres
for a given planet could be tuned in such a way that the phenomenon of planetary retrogression
could be modeled. Aristotle (Aristotél‘s; -384-322 B.C.), a student of Plato, and Callippus of
Cyzicus (-370-300 B.C.), who was a student of Eudoxus and worked with Aristotle, found that
27 spheres was insufficient to accurately account for the planetary movements, and so they added
more spheres. In Aristotle’s fully developed model, the spherical Earth is at the center of the
universe and the planets are moved by either 47 or 55 interconnected spheres. Each of these
concentric spheres is moved by its own god. While Eudoxus thought of his spheres as being
purely mathematical concepts, Aristotle and Callippus have thought of them as having material
existence. Aristotle believed that these spheres are made of an unchanging fifth element2, aether.
Heraclides Ponticus (-387-312 B.C.) explained the apparent daily motion of the celestial bodies
through the rotation of the Earth and proposed to account for the retrograde motions of Mercury
and Venus by circular orbits centered in the Sun and carried by it in a circular orbit around the
Earth. Ambrosius Theodosius Macrobius (395-423) later described this as the ‘Egyptian system’,
suggesting that the model originally came from ancient Egypt. Thus may have been born the
Greek concepts of epicycle and deferent (Figure 5.4), which were developed by Appollonius of 

Figure 5.4: (left) Ptolemaic model for the motion of celestial bodies; Sun, Moon and planets move about
the Earth. (center) A planet moves along an epicycle, while the center of this epicycle moves along the
deferent. Epicycle speed is uniform with respect to the equant. (right) Deferent motion is in direction of
point 1 to 7, but the planet’s epicycle carries it on a cycloid path so that from points 3 through 5 the
planet moves backwards (retrograde).

2 The ancient Greeks believed that everything was made up of four elements: earth, water, air, and fire. Aristotle
suggested that there was a fifth element, aether, because it seemed strange that heavenly bodies would be made out
of earthly elements.
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Perga (-265-190 B.C.) and Hipparchos (-190-120 B.C.) into a system that accounted quite well
for observed variations in the motion of planets. The system was modified and improved by
Ptolemy and published in his Almagest (Mathematike syntaxis; Syntaxis mathematica;
Almagestum) in about 150. The basic Ptolemaic model is based upon a system consisting of a
deferent and an epicycle for each of the five planets known to him and only a deferent for the Sun
and the Moon (Figure 5.4). The deferent is a circle centered near the Earth; because the Earth is
positioned outside the center of the deferent this center is referred to as the eccentric. Although
this construction violated the rule that the Earth is the center of the cosmos and all planetary
motions, this displacement was minimal and was considered a slight bending of the rule rather
than a violation. The eccentric in Figure 5.4 is fixed; it could also be made movable. In this case,
the center of the deferent is a point that rotates around the Earth in a small circle centered on the
Earth. In some constructions this little circle was even not centered in the Earth. The epicycle is
a circle centered on a point on the deferent which moves counterclockwise (seen from the
celestial north pole) along the deferent at an angular rate that appears constant when viewed, not
from the center of the circle, but from the equant. By introducing this equant, Ptolemy could
account for the velocity variations in the motions of the planets. The equant is placed directly
opposite the Earth from the center of the deferent and at the same distance from the center as the
Earth. A planet moves counterclockwise along an epicycle with a constant angular rate. The
planes of the deferents of the planets are inclined at small angles to the plane of the Sun about
the Earth, while the planes of their epicycles are inclined at small angles to the deferents. By
selecting appropriate values of these angles and of the radii of deferent and epicyle, Ptolemy
succeeded in fitting the model with reasonably accuracy through the existing observations. To
account for discrepancies between his model and observations, he later added more epicycles to
the model. His model, with some further modifications introduced by later scholars, came down
to the sixteenth and seventeenth centuries as the accepted Ptolemaic system.

Already long before Ptolemy there were scholars in the ancient Arabic, Chinese, Greek, Indian
and Latin world who expressed ideas that not the Earth but the Sun is at the center of the universe
and that some or all of the planets revolve around the Sun. These early sources, however, do not
provide techniques to compute any observational consequences of their proposed heliocentric
ideas, and most of the ancient literature has been lost. The first complete and detailed non-
geocentric model of the universe was proposed by Philolaus of Croton (-470-385 B.C.), a
Pythagorean. He taught that the Earth, Sun, Moon and planets revolve in uniform circular motion
about a ‘central fire’ at the center of the universe, and that a ‘counter-Earth’, which is positioned
on the other side of the central fire and collinear with the Earth and the central fire, revolves
about the central fire with the same period of revolution as the Earth. The central fire, the five
known planets, Sun, Moon and Earth add up to nine bodies. In his days, 10 was considered as the
‘perfect’ number and therefore it was believed that the total number of bodies should be ten;
hence the introduction of the counter-Earth. The Sun revolves around the central fire once a year,
and the stars are stationary. The Earth maintains the same hidden face towards the central fire,
rendering both it and the counter-Earth invisible from Earth. The first person known to have
proposed a true heliocentric system is Aristarchus of Samos (-310-240 B.C.). His writings are
lost, but some information is known from surviving descriptions and critical commentary by his
contemporaries. Aristarchus stated that the Earth rotates daily about its axis and revolves
annually about the Sun in a circular orbit. Hipparchos also has studied a heliocentric system, but
he abandoned his work because the calculations showed that the orbits were not perfectly circular
as believed to be mandatory by the science of his time. There were likely other astronomers in
the classical period who also espoused heliocentrism, but whose work is now lost to us. The only
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other astronomer from antiquity who is known to have supported Aristarchus’ heliocentric model
was Seleucus of Seleucia (-190-150 B.C.). A fragment of his work has survived in Arabic
translation. At that time some ideas about the existence of a force attracting the planets towards
the Sun had already been formulated (Section 1.4), but the motion of celestial bodies was still
considered as a kinematic problem.

The European cultural elite of the first century A.D. were fully aware of the existence of a
heliocentric model of planetary motions. However, the geocentric model of Ptolemy was
generally used and remained in use. This was partly the result of the rise of the Christian Church,
which gave the Earth a special and privileged position. In Roman Carthage, Martianus Capella
(-365-440) expressed the opinion that the planets Venus and Mercury did not go about the Earth
but instead circle the Sun. His model was discussed in the Early Middle Ages by various
anonymous commentators. Medieval astronomers and philosophers developed diverse theories
about the causes of the celestial sphere’s motions. By the end of the Middle Ages, the common
opinion in Europe was that the outermost sphere carrying the stars was moved by the Prime
Mover, who was identified with God. Each of the lower spheres was moved by a subordinate
spiritual mover, identified with the angels of Revelation.

In India, Aryabhata (476-550) propounded a model in which the Earth is spinning about its
axis and the periods of the planets are given with respect to a stationary Sun. Although this may
be seen as a sign of an underlying heliocentric concept, he developed a geocentric model of the
solar system, in which Sun and Moon are each carried by epicycles which revolve around the
Earth. The motions of the planets are each governed by two epicycles; the positions of the planets
was calculated relative to uniformly moving points. In the case of Mercury and Venus, they move
around the Earth at the same mean speed as the Sun. In the case of Mars, Jupiter, and Saturn, they
move around the Earth at specific speeds. This two-epicycle model reflects elements of pre-
Ptolemaic Greek astronomy. Early followers of Aryabhata’s model include Varahamihira (505-
587) and Brahmagupta (598-668). Bhaskara (1114-1185) also made reference to heliocentrism
and he accurately calculated astronomical constants based on a heliocentric system. Nilakantha
Somayaji (1444-1544) developed around 1500 a partially heliocentric planetary model, in which
the planets orbit the Sun, which in turn orbits the Earth, similar to the Tychonic system (see
below). Nilakantha’s system also incorporated the Earth’s rotation about its axis and elliptical
orbits.

Little is known about the development of cosmological theories in ancient China, but we
know that Chinese astronomers were the most persistent and accurate observers of celestial
phenomena anywhere in the world before the Arabs. Early maps of stellar configurations were
found that date back to 6000 years ago. The ancient Chinese developed three different
cosmological models: 1) a hemispherical dome model conceived the heavens as a hemisphere
lying over a dome-shaped Earth; 2) a model that saw heavens as a celestial sphere quite similar
to the spherical models developed in the Greek and Hellenistic traditions; 3) a model that viewed
heavens as infinite in extent and the celestial bodies as floating about at rare intervals. Detailed
records of astronomical observations began in the fourth century B.C. Shen Kuo (Shen Gua;
1031-1095) published cosmological hypotheses explaining the variations of planetary motions,
including retrogradation. His hypotheses were similar to the concept of the epicycle in the Greco-
Roman tradition.

In the Medieval Islamic world, the Muslim astronomers accepted unanimously the Ptolemaic
geocentric model. However, several Muslim scholars questioned the Earth’s apparent immobility
and centrality within the universe. Abu Ali al-Hasan (Alhacen; 965-1039) proposed that the Earth
is rotating about its axis. Abu Rayhan Biruni (973-1048) discussed the possibility of whether the
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Earth rotates about its own axis and around the Sun, but he considered this a philosophical
problem rather than a mathematical one. Mu’ayyad al-Din al-’Urdi (-1266) developed a non-
Ptolemaic model, in particular for the motion of the Moon. Muhammad ibn Muhammad ibn
Hasan Tusi (1201-1274), better known as Tusi in the West, made very accurate tables of
planetary movements. He invented a geometric technique called a Tusi-couple, which generates
linear motion from the sum of two circular motions. He used this technique to replace Ptolemy’s
equant. Tusi criticized Ptolemy’s use of observational evidence to show that the Earth was at rest,
and he was the first to present empirical observational evidence of the Earth’s rotation. Najm al-
Din al-Qazwini al-Katibi (-1276) wrote an argument for a heliocentric model, but later abandoned
the idea. Qotb al-Din Shirazi (1236-1311) discussed the possibility of heliocentrism, but also later
rejected it. Ibn al-Shatir (1304-1375) applied the Tusi-couple concept and developed a geocentric
system that employed mathematical techniques, which were almost identical to those Copernicus
(see below) later employed in his heliocentric system. However, the Islamic scientists never made
the big leap to heliocentrism. By the end of the fourteenth century Arabian astronomy practically
ceased to make any further progress.

Astronomy began to revive in Europe toward the end of the fifteenth century in the labors of G.
von Peuerbach (1423-1461), B. Walther (Waltherus; 1430-1504) and J. Müller von Königsberg
(Regiomontanus; 1436-1476). It was given a great impetus by Copernicus. In 1543, he published
his De revolutionibus orbium coelestium, in which he proposed that the Sun is the center of the
universe and that all planets move about the Sun. He discussed the philosophical implications of
his proposed system, used selected astronomical observations to derive the parameters of his
model, and wrote astronomical tables which enabled one to compute the past and future positions
of the stars and planets. In doing so, Copernicus moved heliocentrism from philosophical
speculation to predictive geometrical astronomy. His theory resolved the issue of planetary
retrograde motion by arguing that such motion was only perceived and apparent, rather than real.
It is emphasized that Copernicus’ heliocentric theory was still based on circular orbits. Therefore,
he was forced to use epicycles to account for deviations in the observed planetary motion. He
eliminated Ptolemy’s concept of the equant at the cost of additional epicycles. In developing his
theories of planetary motion, Copernicus was probably indebted to the earlier work of Martianus
Capella, Aryabhata, Tusi and Ibn al-Shatir; they had resolved significant problems in the
Ptolemaic system, though retaining an essentially geocentric arrangement.

The first information about the heliocentric views of Copernicus were circulated already
some time before 1514 in manuscript and became well known among astronomers and others.
His ideas contradicted the then-prevailing understanding of the Bible. In 1533, J.A.
Widmannstetter (1506-1557) delivered in Rome a series of lectures outlining Copernicus’ theory.
The lectures were heard with interest by Pope Clement VII and several Catholic cardinals. In
1536, the Archbishop of Capua, N. von Schönberg, wrote a letter to Copernicus from Rome
encouraging him to publish a full version of his theory. Copernicus finished his De revolutionibus
orbium coelestium in 1530, but did not publish it until the year of his death. The book, which he
dedicated to Pope Paul III, contained an unsigned preface by A. Osiander (1498-1552) defending
the system and arguing that it was useful for computation even if its hypotheses were not
necessarily true. Possibly because of that preface, the work of Copernicus inspired very little
debate on whether it might be heretical during the next sixty years.

Tycho Brahe advocated around 1585 an alternative to the Ptolemaic geocentric system. It was
a geo-heliocentric system, now known as the Tychonic system, in which the five then known
planets orbit the Sun, while the Sun and the Moon orbit the Earth. He rejected the system of
Copernicus because he could not observe any parallax in the fixed stars. Tycho was an
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indefatigable and most painstaking observer. He is credited with the most accurate astronomical
observations of his time; no one before Tycho had attempted to make so many planetary
observations. He was the last major astronomer to work without the aid of a telescope. From 1600
until his death in 1601, he had Kepler as assistant.

After Tycho’s death, Kepler was appointed his successor and imperial mathematician at the
court of the Holy Roman Emperor Rudolph II at Prague. In that position he had access to all of
Tycho’s observations. Kepler lived in an era where there was no clear distinction between
astronomy and astrology, but there was a strong division between astronomy and physics. He was
the first who tried to combine both disciplines and to treat astronomy as part of a universal
mathematical physics. With this approach he broke with the ancient picture that the motion of
celestial bodies was the result of ‘divine powers’ and that the cause of that motion was therefore
out of the reach of human beings. Within his religious view of the cosmos, he considered the Sun
as the source of ‘motive force’ in the solar system and supposed that the ‘motive power’ radiated
by the Sun weakens with distance, causing faster or slower motion as planets move closer or
farther from it. His Mysterium cosmographicum (1596) was the first published defense of the
Copernican system. During his studies he became very interested in the shape of the orbits of the
planets and spent a lot of effort in trying to fit polygons, three-dimensional polyhedra and ovoids
through the existing observations of the motion of the planets, in particular of Mars. After these
efforts had failed, in early 1605 he at last hit upon the idea of an ellipse, which he had previously
assumed to be too simple a solution for earlier astronomers to have overlooked. This time he had
success. Finding that an elliptical orbit fitted the Mars data, he immediately concluded that all
planets move in elliptical orbits about the Sun. The introduction of elliptical orbits eliminated the
need of epicycles. In this context, it is interesting to note that any ellipse can be described by a
deferent and an epicycle with appropriately selected radii! Kepler’s research culminated in the
publication of Astronomia nova seu physica coelestis (1609), in which he formulated his first two
laws of planetary motion (Section 5.4). His ideas, however, were not immediately accepted and
many well-known astronomers and mathematicians of his time objected Kepler’s introduction
of physics into astronomy, and completely ignored his early works. In Epitome astronomia
Copernicanae, consisting of three books published between 1615 and 1621, he explained
heavenly motions through physical causes and he explicitly extended his first two laws of
planetary motion to all the planets as well as the Moon and the satellites of Jupiter, which were
discovered by Galileo Galilei (1564-1642) in 1610 (see below). In 1619 he published Harmonices
mundi, in which he attempted to explain the proportions of the natural world—particularly the
astronomical and astrological aspects—in terms of music. The central set of ‘harmonies’ was the
musica universalis, which had been studied by Pythagoras, Ptolemy and many others before
Kepler. In book V, dealing with planetary motion, Kepler articulated his harmonic law, which
became known as his third law of planetary motion (Sections 5.4 and 6.4). He found that law
empirically after trying many combinations of the mean distance of planets and the periods of
their motion about the Sun. Following Kepler’s death in 1630 his Epitome astronomia
Copernicanae was the main vehicle for spreading his ideas. It was read by astronomers and
mathematicians throughout Europe. In the late seventeenth century, a number of physical
astronomical theories draw on Kepler’s work. This culminated in Newton’s Principia, published
in 1687, in which Newton derived Kepler’s laws of planetary motion from a force-based theory
of universal gravitation.

Galileo Galilei, a contemporary of Kepler, applied the newly invented telescope to look at
celestial objects. In 1610 he discovered four satellites encircling Jupiter, the rings of Saturn and
spots on the Sun; he also found that Venus exhibited a full range of phases. These discoveries
were not consistent with the Ptolemaic model of the solar system. He therefore became an ardent
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supporter of the heliocentric theory, but completely ignored Kepler’s work. Galileo claimed that
heliocentrism was not contrary to the Bible. In 1616, Pope Paul V summoned Galileo to Rome
to defend his position. The Church then decided to accept the use of heliocentrism as a
calculating device of great mathematical simplicity, but opposed it as a literal description of the
solar system. Galileo received the papal command not to ‘hold or defend’ the heliocentric idea
in public. Pope Urban VIII encouraged Galileo to publish the pros and cons of heliocentrism.
Galileo’s Dialogue concerning the two chief world systems, published in 1632, clearly advocated
heliocentrism and appeared to ridicule the Ptolemaic model and the Pope. Therefore, Urban VIII
became hostile to Galileo and he was again summoned to Rome and was put on trial before the
Inquisition in 1633. For advancing heliocentric theory he was accused of heresy and was
sentenced to house arrest for life. In 1664, Pope Alexander VII published a new version of the
Index Librorum prohibitorum (Index of prohibited books), which included all previous
condemnations of heliocentric books. An annotated copy of Newton’s Principia was published
in 1742 by two Catholic mathematicians with a preface stating that the author’s work assumed
heliocentrism and could not be explained without that theory. In 1758 the Catholic Church
dropped the general prohibition of books advocating heliocentrism from the Index librorum
prohibitorum.

It is emphasized that all ancient models for the motion of celestial bodies were kinematic. The
early scholars looked for regularities and repetitions of observed astronomical phenomena and
tried to model these in a kinematic way such that they could predict future phenomena, like solar
eclipses, etc. These theories lacked an analysis of the cause of the motion of celestial bodies, i.e.
the nature of dynamics. That cause was generally considered as ‘divine power’ and outside the
domain of human investigation. However, already before the second century B.C. various
scientist had proposed that the planets are attracted towards the Sun and that this force shapes the
trajectories of the celestial bodies (Section 1.4). The link between observed motion of a celestial
body and the physical laws that govern this motion was established in the seventeenth century.
The development of dynamical theories started with Newton’s Principia in 1687 (Section 1.1).

In the view of modern science, Kepler’s laws of planetary motion were used as arguments
in favor of the heliocentric hypothesis. An apparent proof of the heliocentric hypothesis was
provided by F.W. Bessel (1784-1846) in 1838. He measured a parallax of 0.314O of the star 61
Cygni and by this proved that the Earth moves in space. In the same year F.G.W. von Struve
(1793-1864) and T. Henderson (1798-1844) measured the parallaxes of the stars Vega and Alpha
Centauri. The thinking that the heliocentric view is also not true in a strict sense was achieved
in steps. That the Sun was not the center of the universe, but one of innumerable stars, was
already advocated by the Giordano Bruno (1548-1600). Over the course of the eighteenth and
nineteenth centuries, the status of the Sun as merely one star among many became increasingly
obvious. With the observations of F.W. Herschel (1738-1822) astronomers realized that the solar
system is moving through space, and by the 1920s E.P. Hubble (1889-1953) had shown that it
is part of a galaxy that is only one of many billions. We know today that the Sun is not at the
center of mass of the solar system because the masses of the planets cannot be neglected in
comparison to the Sun’s mass (Section 2.2). In addition, the concept of an absolute velocity,
including being ‘at rest’ as a particular case, is ruled out by the principle of relativity, eliminating
any obvious ‘center’ of the universe as a natural origin of coordinates. In modern calculations,
the origin and orientation of a coordinate system often are selected for practical reasons, and we
may select the origin in the center of mass of the Earth, of the Earth-Moon system, of the Sun,
of the Sun plus the major planets, or of the entire solar system, as long as the laws of dynamics
are applied correctly. For us, the selection of ‘geocentric’ or ‘heliocentric’ reference frames has
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only practical implications and not philosophical or physical ones. Today, we know that there is
no real ‘truth’ in describing the orbits of celestial bodies. We may think the planets to move about
the Sun as well as the Sun and the planets to move about the Earth. However, there is a major
difference: the concept of planets moving about the Sun, in combination with Newton’s law of
gravitation, leads to the simplest dynamical model and representation of the orbits.

5.6. Velocity components

When the flight path angle, (, is introduced (Figure 5.5), the radial and normal velocity
components and the angular momentum, per unit of mass, of the motion can be expressed as

(5.23)

(5.24)

(5.25)

Figure 5.5: The flight path angle, (, and the radial and normal velocity components.

Differentiation of (5.22) to time yields another expression for the radial velocity component:

(5.26)

An expression for the normal velocity component follows directly from (5.7) and (5.22):

(5.27)

From (5.23), (5.24), (5.26) and (5.27) we obtain for the flight path angle

(5.28)

Since -90E # ( # 90E, ( is unambiguously defined by (5.28). This relation is depicted in Figure
5.6 for 0E # 2 # 180E; for 180E # 2 # 360E a mirror image of the curve is obtained. The extreme
value of ( ((extr) for a particular value of e < 1 is found from

We then obtain, after some algebraic manipulation, for (extr and the true anomaly for which (extr

occurs (2(,extr):
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Figure 5.6: The flight path angle,(, as a function of the true anomaly, 2. 

As e $ 0, values of (extr and 2(,extr are only found for circular, elliptical and parabolic orbits. We
then find -90E # (extr # 90E and 90E # 2(,extr # 270E. Meaningful values of (extr and 2(,extr only
exist for elliptical and parabolic orbits. For parabolic orbits: (extr = 90E, 270E; 2(,extr = 180E. For
elliptical orbits we find that if 90E < 2(,extr < 180E then (extr = 2(,extr - 90E; if 180E < 2(,extr < 270E
then (extr = 2(,extr - 270E. The first of these relations is plotted as a dashed line in Figure 5.6.

Elimination of 2 from (5.26) and (5.27) yields

(5.29)

Figure 5.7: Velocity hodographs for elliptical, parabolic and hyperbolic motion.

We now draw a velocity hodograph, in which the radial velocity  is plotted versus the normal
velocity  (Figure 5.7). According to (5.29), such a hodograph is a circle with radius :e/H and
with its center on the -axis at a distance :/H from the origin. In these hodographs a number
of quantities can be indicated: position of pericenter (p) and apocenter (a), true anomaly, 2, (extr

and e, and the limit value 2lim for a hyperbola. From Figure 5.7 we conclude that for a parabola:
2 = 2(; this characteristic will be proved analytically in Chapter 7. The straight line correspond-
ing to e = 1 in Figure 5.6 also suggests this linear relationship between ( and 2. These
hodographs, and also acceleration hodographs, in which the acceleration components are plotted
versus each other, have found application for a qualitative analysis of optimal transfer orbits and
rendez-vous orbits.
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The velocity of body i can also be resolved into a component perpendicular to the radius vector,
Vn, and a component perpendicular to the axis of symmetry of the conic section, Vl. According
to Figure 5.8, then the following relations hold:

Figure 5.8: Definition of the velocity components Vl and Vn.

Substitution of (5.26) and (5.27) into these relations yields

(5.30)

The expressions (5.30) show that for a Keplerian orbit the magnitude of both velocity
components Vl and Vn is constant; the velocity component Vl also has a constant direction. At
pericenter passage both components have the same direction, leading to a maximum value of the
velocity; at apocenter passage Vn is directed opposite to Vl, leading to a minimum value of the
velocity. The existence of these two constant velocity components is known as Whittaker’s
theorem, which was formulated by E.T. Whittaker (1873-1956) around 1904.

5.7. Eccentricity vector

In Section 5.2, a constant vector  was introduced that is directed from the focus of the conic
section towards pericenter (Figure 5.2). In Section 5.3 is was shown that the magnitude of this
vector is equal to the eccentricity, e, of the conic section. This vector is therefore generally called
the eccentricity vector, .

An interesting expression can be derived from (5.17). Since  is constant, we can write that
equation as

Evaluation of the vector triple-product gives

or
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Integration yields

(5.31)

where  is a constant vector. This equation shows that in a Keplerian orbit velocity and position
vary in such a way that if the local position and velocity vectors, and their magnitudes, are
inserted into (5.31) a constant vector  results. That vector lies in the orbital plane and its
direction and magnitude can be determined as follows. At pericenter:

Substitution of these relations into (5.31) gives

This means that  points towards pericenter and has a magnitude e; so, the vector  is identical
to the eccentricity vector, , mentioned above. In the literature, this vector is called the first
Laplace vector or the Laplace-Runge-Lenz vector, which illustrates the fact that this vector was
‘rediscovered’ several times. J. Hermann was the first to show in 1710 that  is conserved for
an inverse-square central force field and worked out its connection to the eccentricity of an
elliptical orbit. Hermann’s work was generalized by J. (Johann) Bernouilli in 1710. P.S. Laplace
(1749-1827) rediscovered the conservation of  in 1799, deriving it analytically rather than
geometrically. W.R. Hamilton (1805-1865) derived the equivalent eccentricity vector in 1847,
using it to show that, for motion in an inverse-square central force field, the velocity vector
moves on a circle in a velocity hodograph (Figure 5.7). J.W. Gibbs (1839-1903) derived the
eccentricity vector by vector analysis in 1901. Gibb’s derivation was used as an example by
C.D.T. Runge (1856-1927) in a textbook published in 1919, which was referenced by W. Lenz
(1888-1957) in an old quantum theory analysis of the hydrogen atom in 1924. In 1926, the
eccentricity vector was used by W.E. Pauli (1900-1958) to derive the spectrum of the hydrogen
atom from modern quantum mechanics theory. After this publication, the vector became
generally known as the Runge-Lenz vector.

According to (5.31), we thus can write for the eccentricity vector:

(5.32)

This interesting expression for the motion in a Keplerian orbit will be used in Section 10.2 for
an analysis on regularization.

From (5.32) we obtain

Substitution of (Figure 5.5) leads after some algebraic manipulation to
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(5.33)

This is a very important relation between the (constant) eccentricity of a Keplerian orbit and the
continuously varying quantities r, V and ( that describe the instantaneous position and velocity
of body i in that orbit. We will use this relation several times in other Chapters.

5.8. Stability of Keplerian orbits

In Sections 5.2 and 5.3 it has been shown that the trajectory of a body in a central force field with
potential -:/r is a conic section. One usually assumes implicitly that this trajectory is stable.
However, when discussing the topic of ‘stability’, one should be aware that there exist numerous
definitions of various kinds of stability, often leading to contradictory conclusions.

An elliptical two-body orbit is generally considered stable, since a small change of the initial
conditions will not significantly change the shape and orientation of the orbit. This kind of
stability, known as orbital stability, is intuitively clear. Consider, on the other hand, the same
elliptical orbit and let us again change the initial conditions slightly so that the semi-major axis
will change ever so slightly. The orbital stability is still valid, but the change of the semi-major
axis will result in a change of the orbital period (Section 6.3). The resulting small change in the
mean angular motion (Section 6.3) will displace the body along the orbit. After a sufficiently
large number of revolutions, the perturbed body might be close to apocenter at the time the body
on its original orbit will be at pericenter (Section 10.1). The two orbits will be very close, but the
distance between the body on the original orbit and the body on the slightly changed orbit will
be the length of the major axis. This behavior certainly cannot be considered stable, in spite of
the fact that the original and the new orbits are close. J.H. Poincaré (1854-1912), using the first,
geometric idea, calls the motion stable, while A.M. Lyapunov (1857-1918), using the second,
kinematic idea, considers the motion unstable. Poincaré’s definition refers to orbital stability;
Lyapunov’s is usually referred to as isochronous (equal time or simultaneous) stability; it is also
called dynamical stability.

The question on the stability of our solar system is an important issue in celestial mechanics.
In Newton’s mind the solar system was unstable. He thought that gravitation alone could not
account for its stability and that the intervention of divine forces was necessary for preserving
the regular planetary motion around the Sun. Newton, however, never approached the stability
question with mathematical tools. Euler was the first to apply perturbations theory to the motion
of planets. His works opened the way for the research of P.S. Laplace (1749-1827) and J.L.
Lagrange (1736-1813) on the stability of the solar system. According to Laplace, stability
requires that the semi-major axes of the planetary orbits show no secular changes but only small
periodic changes, so that the orbits do not intersect. Another, similar definition connects
planetary stability with no collisions and no escapes. It took until 1950 before D. Brouwer (1902-
1966) and A.J.J. van Woerkom (1915-1991) proved that if the semi-major axes of the planetary
orbits are assumed bounded and without secular trends, then the analytical solution for the long-
term behavior of the other orbital elements of all major planets is also bounded and represented
by purely oscillatory functions. In 1773, Laplace proved that, up to the second powers of the
eccentricities, the major axes, and consequently the mean motions of the planets, have no secular
terms. This theorem was extended by Lagrange in 1774 and 1776 to all powers of the
eccentricities and of the sine of the mutual inclinations, for perturbations of the first order with
respect to the masses. S.D. Poisson (1781-1840) proved in 1809 that the major axes have no
purely secular terms in the perturbations of the second order with respect to the masses. The
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computations of Poisson were considerably simplified by J. Liouville (1809-1882) and V.A.
Puiseux (1820-1883) in 1841, and then by F.F. Tisserand (1845-1896) in 1876. However, S.C.
Haretu (1851-1912) proved in 1877 that there are secular variations in the expressions for the
major axes to third-order approximation. It is interesting to note that Poisson himself discussed
the third-order approximation in a paper published in 1816. He ignored, however, several aspects
of the problem and concluded that no secular terms show up. Moreover, he trusted that this was
true for any order of approximation and aimed to find a general proof of this fact. Haretu’s result
may point towards instability and eventual disruption of the solar system, but most experts
conjectured that the third-order secular term is just one of the many other secular terms in the
higher orders, which, all taken together, sum to a periodic function. Using a new analytical
approach, P.J. Message (1931-2008) has shown in 1976 that no secular terms exist in the semi-
major axes to any order. S. Newcomb (1835-1909) has established by 1876 that it is possible, in
the case of the planetary perturbations, to represent the elements by purely periodic functions of
time that formally satisfy the differential equations of motion. If these series were convergent,
the stability of the solar system would be assured; but Poincaré has shown in 1892 that they are
in general divergent. A. Lindstedt (1854-1939) and H. Gyldén (1841-1896) have also succeeded
in integrating the equations of the motion of n bodies in periodic series, which where shown to
be in general divergent. However, more recently, other researchers have shown that if certain
non-resonant conditions are satisfied and if the perturbing masses are small enough, some of the
series are actually convergent and give rise to a rigorous description of solutions of the planetary
problem valid for all time.

In the last decades, J. Laskar (1955-) and others have performed extensive numerical
simulations of the long-term behavior of our solar system. These simulations have indicated that
over the next 5 billion years (5*109 yr), which is a period that is about equal to the present age
of our solar system, the motion of the large planets is very regular; e.g. the escape time of Uranus
was found to be substantially longer than the lifetime of our Sun. However, the change of the
inner planets’ orbits is significantly larger for this period. The results indicate that the orbits of
Venus and Earth may change by more than 0.03 in eccentricity over the next 5 billion years; for
Mars the changes may be about 0.08 in eccentricity. For Mercury the change in eccentricity can
be so large that ejection of this planet out of the solar system due to a close encounter with Venus
is possible in less than 3.5 billion years. Fortunately, this is not fatal to the global stability of the
whole planetary system owing to the small mass of Mercury. It was also found that the Earth
plays a crucial role in the long-term stability of the orbits of the inner planets. In the absence of
Earth the orbits of Venus and Mercury would be heavily exposed to strong destabilizing
resonances with giant planets. The main conclusion from these simulations is that the solar
system seems to be in a state of ‘relative’ stability, in the sense that we should not expect major
changes in the motion of the planets for the next few hundred million years and that strong
instabilities (collision or escape) can only occur on a timescale of some billions of years.
However, the final question of the stability of the solar system remains still unsolved.

In the early stage of the solar system, some extra inner planets may have existed. However,
if this were the case then their existence would have resulted in a much more unstable planetary
system, leading to close encounters or collisions between planets and to the escape of these extra
planets. This then has led to the present much more stable solar system. The organization of the
inner planetary system is thus most probably due to its long-term orbital evolution, and not
uniquely to its relatively rapid (less than 100 million years) formation process. This means that
the solar system at the end of its formation process may have been significantly different from
the present one, and has since then evolved toward the present configuration because of the
gravitational instabilities. It is even quite possible that such quasi-stable planetary systems are
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the natural ‘end product’ in the development of any planetary system from the disk of gas and
dust surrounding a newly born star.

As an example, we will now analyze the stability of a circular orbit in a central force field, which
produces a force (per unit of mass) on the spacecraft that can be expressed by

(5.34)

where " is an arbitrary positive constant and n is also a constant. The minus-sign indicates that
we are dealing with an attractive force. Note that for the Newtonian gravity field " = :, n = -2,
where : is the gravitational parameter defined by (5.4). With (5.34), the equations of motion (5.7)
and (5.10) can be written as

(5.35)

Suppose that the spacecraft is initially moving in a circular orbit with radius r0. In this orbit
 so, according to (5.35-1),

where the index 0 indicates the state in the initial orbit. Combination of this relation and (5.35-2)
yields

(5.36)

Now, assume that the body experiences a small perturbation in the radial direction, for example
due to a small rocket impulsive shot. Just after that impulsive shot the spacecraft’s position has
not changed (Section 1.7), but a radial velocity component has been added to the body’s original
velocity vector; this original velocity vector is directed normal to the position vector (circular
orbit). So, the radial impulsive shot has not affected the spacecraft position and normal velocity
component and thus the body’s angular momentum has not changed by the impulsive shot. When
the angular momentum, the radial position and the position in along-track direction after the
perturbation are indicated by H, r and n, then we can write

(5.37)

where r0 and n0 denote the radial and along-track position components in the unperturbed orbit.
First, the motion in the along-track direction is considered. Combining (5.35-2) and (5.37)

yields

If second- and higher-order terms are neglected (linearization), substitution of (5.37) into this
relation gives

With (5.36), this equation can be written as
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from which, after integration, follows:

Substitution of (5.34) finally yields

(5.38)

This equation shows that for any value of n, a value of )r … 0 will always lead to a linear
increase of *)n* with time. For )r > 0, the spacecraft will be behind the position it would have
had in its original orbit at the same instant of time; for )r < 0 the spacecraft will be ahead of the
corresponding position in its original orbit. So, the motion in the along-track direction is unstable
in the sense that a radial perturbation yields an ever-increasing value of *)n*. For a Newtonian
gravity field with potential -:/r, (5.38) reads

(5.39)

This dynamical instability leads to a numerical instability in orbit computations (Section 10.1).
Now, we will analyze the motion in the radial direction. Substitution of (5.35-2) and (5.37)

into (5.35-1) gives

Substitution of (5.37) and application of a Taylor series expansion:

where FN(r0) is defined as

lead, after linearization, to

Subsequent substitution of (5.36) leads to

(5.40)

This is a well-known type of a second-order differential equations. For
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(5.41)

the solution for )r is a pure harmonic oscillation, which corresponds to stable motion. If the left-
hand side of the inequality (5.41) is larger than zero, the radial motion after the perturbation will
be unstable and *)r* will increase exponentially with time. Substitution of (5.34) into (5.41)
gives as a condition for stable motion:

Since " is a positive constant, this condition leads to the requirement

(5.42)

So, a circular orbit is only ‘geometrically’ stable if n > -3. In Section 5.4 it was mentioned that
J. (Johann) Bernouilli proved that for n = -3 the orbit is a spiral, which certainly is ‘geometri-
cally’ unstable. For a Newtonian gravity field n = -2. Hence, a circular orbit in a Newtonian
gravity field is a stable orbit; however, the motion along this orbit is unstable! In Section 10.1
the topic of orbital stability will be addressed in a more general way. 

5.9. Roche limit

Suppose that a spherical body P2 with mass m2 and radius R2 is moving in a circular orbit about
a spherical body P1 with mass m1 and radius R1, where m2 n m1 (Figure 5.9). Furthermore, assume
that both bodies are rigid and have a radially-symmetric mass distribution. This means that they
do not experience tidal deformations and that, as far as their gravitational attraction is concerned,
they may be considered as point masses (Section 1.5). On the surface of body P2 a point mass P3

with mass m3 n m2 is located on the line connecting the centers of bodies P1 and P2 (Figure 5.9).

Figure 5.9: Definition of the parameters used in the analysis of the Roche limit.

Because of its small mass, P3 has no effect on the motion of P2 about P1. Since we have assumed
that P2 moves in a circular orbit about P1, and m2 n m1, we may write according to (5.4) and
(5.10)

(5.43)

We assume that P3 maintains its position on the line connecting the centers of P1 and P2. This
implies that we assume that P2 completes one revolution about its axis in the same period in
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which it completes one revolution about P1. This is the case for the Moon and for any moon that
is tidally locked to its primary (Section 17.1). So, the angular velocity of P3 about P1 equals the
orbital angular velocity of P2 as expressed by (5.43), and the (rotational) angular velocity of P2

about its axis is also given by (5.43). We now will derive an expression for the radial acceleration
of P3 relative to P2.

For the centrifugal acceleration of P3 due to the rotation of P2 about its axis we may write

 (5.44-1)

At the position of P3 the gravitational attraction by P1 is somewhat less than at the center of P2.
This difference produces a tidal force on P3, as explained in Section 4.2 and Section 17.1. This
force is, for the geometry depicted in Figure 5.9, directed outward. The associated acceleration
can be computed by applying the method discussed in Section 4.2. Now, body k indicated in
Figure 4.2 is P2, body d is P1 and body i is P3. Using the notation from Figure 5.9, we then obtain
for the differential gravitational (tide inducing) acceleration from (4.9) and (4.17):

(5.44-2)

For the acceleration of P3 due to the gravitational attraction between body P2 and point mass P3

we may write

(5.44-3)

For the geometry depicted in Figure 5.9, this acceleration is directed inward. We now define the
relative radial acceleration of P3 with respect to P2 as arel = arot + atide - agrav. Substitution of (5.44)
into this relation yields

(5.45)

If arel < 0, P3 will be pushed against P2 and will remain on the surface of P2. However, if arel > 0,
then the resulting force on P3 will be directed away from the surface of P2. Consequently, when
P3 is e.g. a boulder on the surface of a moon of a planet, arel > 0 means that the boulder may leave
the surface of that moon. Or, in general, when P2 consists of material with little cohesion and
therefore with a low internal tensile strength, this may result in a gradual disintegration of that
body. The transit from ‘stability’ to ‘disintegration’, which is defined as the Roche limit, occurs
at arel = 0. For this Roche limit we find from (5.45)

If the mean densities of bodies P1 and P2 are indicated by D1 and D2, respectively, we find

(5.46)
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This expression was derived using a number of simplifying assumptions. E. Roche (1820-1883)
applied around 1846 a more-complex physical model where body P2 consists of an incompress-
ible fluid with negligible bulk tensile strength. He then arrived at the following expression:

(5.47)

Note that, for a given planet, a moon with a lower mean density will have a larger Roche limit.
If r2 < (r2)Ro, then arel > 0, which means that body P2 is Roche-unstable; if r2 > (r2)Ro, then body
P2 is Roche-stable. The fluid solution (5.47) is appropriate for bodies that are only loosely held
together, such as comets. For instance, comet Shoemaker–Levy 9 was first observed in 1993, and
its orbit indicated that it had been captured by Jupiter a few decades prior. Its decaying orbit
around Jupiter passed within Jupiter’s Roche limit in July 1992, causing it to fragment into a
number of smaller pieces. On its next approach in July 1994 the fragments crashed into the
planet’s atmosphere (Section 18.11). In the Earth-Moon system the bodies may be considered
solid. For this system holds: R1 = 6371 km, D1 = 5515 kg/m3, D2 = 3341 kg/m3, and we find from
(5.46): (r2)Ro = 10,859 km. The Moon is located at an average distance of r2 = 384,401 km; so,
r2 o (r2)Ro and thus the Moon is Roche-stable and will not disintegrate. It turns out that most
moons in the solar system are Roche-stable. Some moons, such as Mars’ moon Phobos, Jupiter’s
moon Amalthea, Saturn’s moon Pan, Uranus’ moon Cordelia and Neptune’s moon Naiad, move
within their Roche limit but are held together because of their tensile strength. Within the Roche
limit, no satellite can coalesce out of smaller particles. Indeed, almost all known planetary rings
are located within their Roche limit; Saturn’s E ring and Phoebe ring being notable exceptions.
They could either be remnants from the planet’s proto-planetary accretion disc that failed to
coalesce into moonlets, or conversely have formed when a moon passed within its Roche limit
and broke apart.

Let us consider a hypothetical spherical space station in orbit about the Earth, tidally locked
to the Earth and with a mass and a volume equal to the mass and volume of the European
Columbus module that forms an essential element of the International Space Station (ISS; Section
15.1). We then find for the mean mass density of that space station: D2 = 180 kg/m3, and obtain
from (5.46) for the Roche limit: (r2)Ro = 28,752 km. This means that only when that space station
would encircle the Earth at a distance larger than 28,752 km from the Earth’s center, loose
objects on that station (and astronauts) would have the tendency to remain near the station. Since
most spacecraft orbit the Earth at much lower altitudes, usually loose objects on spacecraft will
move away from that spacecraft and will become space debris.

5.10. Relativistic effects

According to the general relativity theory, which was formulated by A. Einstein (1879-1955)
around 1905, Newton’s law of gravitation is but a first, although very good, approximation and
the external gravity field of a body k with spherically symmetric mass distribution is described
by the so-called Schwarzschild metric (K. Schwarzschild (1873-1916)). When this metric is used,
we find that, if mi n mk, a good approximation for the relativistic motion of body i about body k
is given by

(5.48)

where u = 1/r, c is the speed of light and H denotes the classical angular momentum of body i.
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This equation only holds when the orbit of body i is not exactly circular. By comparing (5.14)
and (5.48) we conclude that the first-order relativistic effect is expressed by the term 3:u2/c2. The
right-hand side of (5.48) can be written as

where Vn is the normal velocity component of body i. In celestial mechanics, this component is
always much smaller than the speed of light, and we therefore conclude that the relativistic effect
on the motion of planets and spacecraft is always very small. If a quantity ", which is defined as

(5.49)

is introduced, (5.48) can be written as

(5.50)

In contrast to (5.14), this weakly non-linear second-order differential equation cannot be solved
analytically in a closed form. However, it is possible to obtain an approximative solution. In this
Section, we will derive that solution by applying the method of successive approximations that
is often used in celestial mechanics.

A zeroth-order approximation of the solution of (5.50) can be found by neglecting the small
term "u2 with respect to :/H 2. In that case, the solution is the equation for Keplerian motion
(Section 5.2):

(5.51)

which describes a conic section with eccentricity e and argument of pericenter T. Subsequently,
this expression for u is substituted into the right-hand side of (5.50), which yields the differential
equation:

(5.52)

It is emphasized that substitution of (5.51) into the second term on the left-hand side of (5.50) is
not allowed, because that term does not contain a small multiplier. The differential equation
(5.52) can be solved analytically and yields a first-order approximation of the solution of (5.50).
The homogeneous equation associated with (5.52) reads

and has the solution

where c1 and c2 are arbitrary constants. A particular solution of (5.52) is
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Hence, the complete solution of (5.52) is

In case " = 0, this solution, of course, has to be identical to (5.51). With this requirement we can
determine the values of the constants c1 and c2, and find for the first-order approximation of the
solution of (5.50)

(5.53)
If we compare this solution with (5.51) we conclude that the relativistic effect consists of:
S An increase of u by a constant value of ":2(1+e2/2)/H 4.
S A fluctuating term, of which the amplitude continuously increases with increasing values of
n.

S A pure oscillation with a constant amplitude of ":2e2/6H 4.
The first contribution essentially comes down to a change of the scale on which distances are
measured, and will be hardly noticeable, if at all. The third contribution is a pure oscillation with
a small amplitude. The term with the ever-increasing amplitude will therefore dominate the long-
term relativistic effect. So, for an analysis of the long-term relativistic effect we may approximate
(5.53) by

(5.54)

where

(5.55)

In celestial mechanics, the value of $ is always very small (for the planets: $ < 9.6*10-8; for Earth
satellites: $ < 2.1*10-9). So, even for large values of n: $n n 1. For example, if we consider the
planet Mercury then we find that after 48,000 years: $n = 0.1; for a low-altitude Earth satellite
this value is reached after about 1300 years. So, for long periods of time it is allowed to write

and (5.54) can, in good approximation, be written as

(5.56-1)

or

(5.56-2)

This equation demonstrates that the motion of body i about body k may be interpreted as a conic
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section of which the instantaneous argument of pericenter is given by T+$n. Hence, it is a conic
section of which the major axis slowly rotates. This motion resembles a rosette (Figure 5.10).

 

Figure 5.10: Relativistic precession of the orbit’s major axis.

Note that the spatial orientation of the orbital plane, and the size and shape of the orbit in the
orbital plane do not change. After a full revolution of body i in its orbit about body k, i.e. n1 =
n0+2B, the major axis has rotated over an angle of 2$B in the direction of motion of body i.
Hence, the change in the argument of pericenter per revolution can be approximated by

(5.57)

This relation shows that the relativistic effect is larger when the gravity field of body k is stronger
and when the angular momentum of the motion of body i is smaller. For low-eccentricity orbits
we find H  2 . :r, where r is the mean radius of the orbit. In that case, the right-hand side of
(5.57) is about equal to 6B:/(rc2), which shows that for near-circular orbits about body k the
relativistic effect is larger if the mean radius of the orbit of body i is smaller.

The result (5.57) is a famous verification of the correctness of Einstein’s general relativity
theory. If the perturbations of all planets on the motion of Mercury about the Sun are taken into
account according to Newton’s law of gravitation, it is found that the perihelion of Mercury
should precess by an amount of 532O per century. This ‘modern’ value is close to the value of
527O per century that was already determined by U.J.J. Le Verrier (1811-1877) around 1865.
However, it appeared from observation that in reality the perihelion of Mercury precesses 574O
per century; the difference of 42O per century could not be explained by classical mechanics.
When the parameters of the Sun and Mercury are inserted into (5.57), we obtain a value of 43O
per century for the relativistic precession of the perihelion; this is just the difference that could
not be explained by Newtonian mechanics. Such a relativistic precession, of course, also occurs
for the motion of the other planets about the Sun, of natural satellites about planets, and of
satellites about the Earth (Table 5.1). The relativistic precession of e.g. the perihelion of the
Earth’s orbit is equal to 3.8O per century; the relativistic pericenter precession of a satellite with
perigee at 800 km and apogee at 1000 km altitude above the Earth’s surface is 1210O per century,
and of Jupiter’s inner moon Amalthea 2211O per century. Of all natural bodies of the solar
system, Mercury has the largest relativistic pericenter precession per orbital revolution: 0.104O.
Although the relativistic perigee precession for the satellite about the Earth is much larger than
that for Mercury, the relativistic perigee precession of Earth satellites is hardly observable. The
reason is that numerous perturbing forces act on Earth satellites (Chapters 20 to 23) and that these
forces can only be modeled to a limited accuracy. This limited modeling accuracy and the
inherent dynamical instability of Keplerian orbits (Sections 5.8 and 10.1) will result in argument
of perigee errors that are much larger than the relativistic perigee precession.

From these results we conclude that in classical celestial mechanics as well as in satellite 
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Table 5.1: Relativistic pericenter precession for some planets, the Moon and an Earth satellite.
 

Body )T
(O/century)

Body )T
(O/century)

Mercury 42.98 Jupiter 0.062

Venus 8.62 Saturn 0.014

Earth 3.84 Moon 0.06

Mars 1.35 Earth satellite* 1210
* perigee altitude 800 km, apogee altitude 1000 km.

orbit mechanics, the relativistic effect is very small and we can therefore certainly use Newton’s
law of gravitation and his laws of motion to compute the trajectories of these bodies.

5.11. Solar radiation pressure and the Poynting-Robertson effect

An interesting classical problem in celestial mechanics is the motion of a body i moving about
the Sun, under the combined action of the Sun’s gravitational force and the radiation force
produced by sunlight. The starting point for this analysis are again the equations of motion (5.7)
and (5.10):

(5.58)

where on the right-hand side of the equations the two components of the radiation force, ,
acting on the body have been added; * is the angle between this force and the normal to the
radius vector  (Figure 5.11). By using (5.58), it is assumed implicitly that the force  lies in
the plane of motion of body i.

Figure 5.11: Definition of * in the analysis of the Poynting-Robertson effect.

From quantum mechanics, it is known that light may be considered as a stream of photons, each
moving with the speed of light (c = 299,792.5 km/s) and possessing an energy

(5.59)
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where h is Planck’s constant (h = 6.626*10-34 kg m2/s) and < is the frequency of the radiation.
This frequency is related to the wavelength, 8, of the radiation by

The momentum carried by each photon is

or, with (5.59),

(5.60)

Assume that a flat plate with area A is placed perpendicular to a parallel lightbeam and that the
reflected photons also move perpendicular to the plate. Per time interval )t, n photons will hit
the plate and n* photons will be reflected back. The total impulse transferred by the photons to
the plate is then, according to (5.60), given by

(5.61)

where it is assumed that the energy of the photons (wavelength of the radiation) has not changed
by the interaction with the plate. If the radiation flux (also called power density) of the incoming
beam (in W/m2) is expressed by W, the amount of energy transferred to the plate by the incoming
photons in the time interval )t is

In the same way, we find for the energy leaving the plate in the same time interval:

where W* is the radiation flux of the reflected beam. Substitution of these relations into (5.61)
gives

(5.62)

When we define the reflection coefficient, ú, by

(5.63)

we can write (5.62) as

(5.64)

For a perfect black body: ú = 0, while for an ideal reflector: ú = 1.
According to Newton’s second law, we may write for the force experienced by the plate:
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or, with (5.64),

(5.65)

This force is oriented along the Sun-Earth vector. The term (1+ú)W/c is called radiation pressure
The fact that electromagnetic radiation exerts a pressure upon any surface exposed to it was
deduced theoretically by J.C. Maxwell (1831-1879) in 1871 and was proven experimentally by
P.N. Lebedev (1866-1912) in 1900. The radiation pressure produced by sunlight is very feeble
and decreases with the square of the distance from the Sun; at the distance of Mercury from the
Sun and ú = 0 its magnitude is 30 :N/m2, at the distance of the Earth 4.6 :N/m2 and at the
distance of Jupiter 0.17 :N/m2.

Real satellites are no flat plates. However, the outer surface of a satellite can be modeled by
a large number of small flat surface elements. Each element has specific surface properties and
solar radiation reflection characteristics, and the orientation of each element relative to the
incoming solar radiation is known at any time. In principle, it is then possible to compute the
solar radiation force on each surface element and to determine the total force acting on the
satellite by adding the forces on all elements. In this analysis the reflection of solar radiation by
a surface element towards another element, and the shadowing of an element by other elements
have to be taken into account. It is noted that the total force does not necessarily act along the
Sun-Earth vector. This implies the possibility of a solar sail (Section 21.5), where the solar
radiation force is used to propel a spacecraft.

The detailed modeling of the overall solar radiation force is quite complicated and therefore
often a very simple approximative model is used. The satellite is then represented by an
equivalent flat plate perpendicular to the incoming solar radiation and the force is written as

(5.66)

where ú * is the mean reflection coefficient and A* is the effective cross-sectional area of the
satellite, and the force acts along the Sun-Earth vector. This approximation is especially valid
when the satellite is equipped with large solar panels. When we introduce the satellite’s
reflectivity: CR = 1+ú *, we can write (5.66) as

(5.67)

This relation can be used to compute the force produced by any electromagnetic radiation source.
The reflectivity depends on the spectrum of the radiation, the shape of the object and the photon
reflection mechanism (type of surface, roughness of surface, etc.). A value of CR = 0 means that
the object is transparent to the incoming radiation; a value of 1 means that all the radiation is
absorbed (black body), and all the radiation pressure is transferred to the body; a value of 2
means that all the radiation is reflected and twice the radiation pressure is transferred to the body.
The computation of CR for a specified radiation spectrum and a particular body is quite difficult.
This is especially true for satellites with a complex shape, with a constantly changing orientation,
and of which the surface consists of various materials. Often, a value of CR = 1.2 - 1.4 is used,
if no additional information is available.
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Just as the gravitational force, the power density of the Sun’s radiation varies inversely
proportional to the square of the distance from the Sun. We therefore can write (5.67) as

(5.68)

where RS is the Sun’s radius and WS is the radiation flux of sunlight at r = RS. We now assume
that body i is spherical with radius R and mass density D. Then, A* = BR2, m =  4BR3D/3, and we
find for the quantity F/m in (5.58):

(5.69)

The quantity " is a function of parameters of the Sun, and of the reflectivity, radius and density
of body i; for a given body, " is a constant.

When applying (5.58) and (5.69) for analyzing the motion of body i, two phenomena should be
taken into account. First, if the body has a radial velocity component relative to the Sun, then the
frequency < of the incoming sunlight is shifted through the Doppler effect to a frequency <N,
given by

This effect, which was proposed by C.A. Doppler (1803-1853) in 1842, implies that the radiation
flux intercepted by body i becomes

(5.70)

Figure 5.12: Motion of a particle relative to a heliocentric reference frame during the time interval )t
(left) and a visualization of the aberration effect (right).

A second phenomenon is related to the finite speed of light. This means that sunlight intercepted
by body i at t0 is actually emitted by the Sun at t0 - )t. During the time interval )t light travels
the distance c)t, while the body has moved over a distance rn0)t in the direction normal to the
direction to the Sun (Figure 5.12). This leads to the so-called aberration of the incoming sunlight.
Light emitted by the Sun requires about 500 s (8.3 min) to arrive on the Earth, during which time
the Sun moves about the Earth through an angle of about 20O. The arriving sunlight shows us
where the Sun was 8.3 min ago. The true, instantaneous position of the Sun is about 20O ahead
of its visible position. In the same way, star positions are displaced from their yearly average
position by up to 20O, depending on the relative direction of the Earth’s motion around the Sun.
This aberration phenomenon was discovered by J. Bradley (1692-1762) in 1728. Since the
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aberration of sunlight is very small, the aberration angle ( is approximately given by

(5.71)

For the angle * in Figure 5.12 we may write

or, with (5.71),

(5.72)

Combination of (5.69) and (5.70), and subsequent substitution of the result and (5.72) into (5.58)
leads to

Since for all bodies in our solar system we may approximate these equations by

(5.73)

These equations show that the action of sunlight effectively reduces the gravitational attraction
force by the Sun, but also produces an additional term proportional to the circumferential velocity
of the body. Because of the minus-sign, the latter term corresponds to a drag-type force. In
connection with his investigations on radiation pressure, J. H. Poynting (1852-1914) established
the existence of this force in 1903, using non-relativistic physics and Newton’s theory of
gravitation. He found that as a result of this force a spherical particle with a radius of 1 cm and
a density of 5.5 gr/cm3, starting at the Earth’s distance from the Sun and with the Earth’s orbital
velocity, could make at most some 108 revolutions about the Sun before falling into the Sun,
while a particle with the same density but a radius of 10 :m could survive at most some 105

revolutions. These numbers correspond to periods of 39 million years and 39 thousand years,
respectively. For the Earth, this effect shortens the length of the year by about 3*10-8 s per year.
A complete analysis of the effects of solar radiation force on the motion of small bodies was first
performed by H.P. Robertson (1903-1961) in 1937. He re-analyzed the phenomenon discovered
by Poynting, now using Einstein’s special theory of relativity and Newton’s theory of gravitation,
and found that the solar radiation force also leads to an effective reduction of the solar
gravitational attraction acting on the particle. The Newtonian approximation of the expressions
obtained by Robertson are for  identical to (5.73). Below, the general characteristics of the
motion described by (5.73) will be discussed.

With the definition of the angular momentum of motion (per unit of mass, (5.7)), integration
of (5.73-2) leads for a constant value of " to
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(5.74)

where H0 is the angular momentum at t = 0, when n = 0E. This relation confirms that the body
gradually loses angular momentum of motion and by that slowly spirals in towards the Sun and
gains velocity. So, this mechanism leads to a gradual removal of particles from the solar system.
Substitution of the values of all constants in the definition of " ((5.69)), we find

(5.75)

where R should be expressed in meter and D in kilogram per cubic meter to obtain " in cubic
meter per second squared. This means that highly reflective low-density bodies, like ice crystals,
are much more affected than e.g. iron particles, and that small particles are much more affected
than planets.

Equation (5.73-1) can be written as

(5.76)

where $ = "/:. This equation confirms that the radial force acting on the body is the difference
between a gravitational attraction force directed towards the Sun and a radiation force directed
away from the Sun. With (5.75) we conclude that the radiation force is larger for increasing
values of the body’s reflectivity, and for decreasing values of the radius and the density of the
body. If $ < 1, then the spiraling-in effect mentioned above will dominate the motion of the body.
If $ > 1, then the right-hand side of (5.76) will become positive and this repulsive force will
dominate the motion. In that case, the particle will spiral out and will be blown out of the solar
system eventually. So, this second mechanism also leads to a gradual removal of particles from
the solar system. In Figure 5.13 the value of $ is plotted as a function of the particle’s radius, R,
and its mass density, D, for CR = 1.2. Note that for realistic values of D = 400 - 6,000 kg/m3, a
value $ = 1 is reached for R = 0.2 - 2 :m. We know that visible light corresponds to a wavelength
interval of 0.38 - 0.75 :m, and that the Sun radiates 93% of its power in the wavelength band
0.2 - 2 :m and 55% in the band 0.3 - 0.8 :m. So, we conclude that low-density, highly reflective
particles with a dimension of the order of the wavelength of solar visible radiation or smaller are
blown out of the solar system by radiation pressure. It should be realized, however, that for these

 

Figure 5.13: Relative solar radiation pressure as a function of the radius and the mean mass density of
a particle.
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particles " cannot be computed correctly by classical optical methods and that more-complicated
light-scattering computation models must be applied. In fact, the phenomenon described above
indicates that in the long history of the solar system the pressure of sunlight has effectively
eliminated those dust particles that scatter sunlight too much. This means that this phenomenon
is responsible for the fact that we see the Sun as a clear source of illumination and not as a diffuse
(‘misty’) illumination source.

Now, assume that body i moves in the orbit of a planet about the Sun and that this orbit is (about)
circular. In Section 6.2 it will be shown that the velocity of a body moving in a circular orbit in
a Newtonian gravity field is given by

In the case that the body is also subjected to the solar radiation force, it will be clear from (5.73-
1) that the above equation should be modified to

This relation demonstrates that the radiation force reduces the orbital velocity of the body below
that for the purely gravitational case. It was already mentioned that a small body will experience
the effect of solar radiation pressure much stronger than a large body, e.g. a planet. This means
that a particle moving in (about) the same orbit as a planet will have a non-zero circumferential
velocity relative to that planet. Consequently, the planet will gradually clean up its region of
motion from small particles orbiting the Sun. This effect was noted by Poynting in 1912, soon
after the existence of the phenomenon of radiation pressure had been experimentally verified.

Because Poynting and Robertson were the first to analyze in detail all consequences of solar
radiation pressure for the motion of a body about the Sun, the drag-type circumferential force,
the effective reduction of the central gravitational force, and the relative velocity of a small body
moving in the orbit of a planet with respect to that planet are nowadays collectively called the
Poynting-Robertson effect.
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6. ELLIPTICAL AND CIRCULAR ORBITS

In Section 5.3 it was shown that the orbit of body i about body k is a conic section with body k
at a focal point, and that the equation for the orbit is

(6.1)

For elliptical and circular orbits, which will be analyzed and discussed in this Chapter: 0 # e < 1.
From analytical geometry we know a number of characteristic parameters for an ellipse, which
describe its shape and size, and a number of relations between these parameters, which will prove
to be useful for our analysis. These will be briefly discussed in the next Section.

6.1. Geometry, energy and angular momentum

Figure 6.1 shows an ellipse and a number of useful parameters; the line AAN is an axis of
symmetry of the ellipse. This axis is called the major axis of the ellipse and the length AAN is
assigned a value of 2a. The ellipse has a second axis of symmetry, which is perpendicular to AAN
and passes through the middle of AAN. This axis is called the minor axis of the ellipse and the
length BBN is assigned a value of 2b.

Figure 6.1: Geometry of an elliptical orbit.

The angle 2, measured from pericenter in the direction of motion, is the true anomaly, which was
introduced in Section 5.3. From Figure 6.1 follows

or

(6.2)

Substitution of this relation into (6.1) gives

(6.3)

This form of the equation for the orbit will be used frequently. The reason is that in (6.3) the
semi-major axis, a, which indicates the size of the ellipse, and the eccentricity, e, which indicates
the shape or ‘flattening’ of the ellipse, occur separately, while in (6.1) these quantities are com-



Fundamentals of Astrodynamics     SS     Elliptical and circular orbits 158

bined in the parameter p. The polar equation of elliptical motion ((6.3)) probably was first
published by L. Euler (1707-1783) in 1740. In fact, Euler wrote the polar equation as r = (a + b)
(a - b)/(a + b cos2), with a the semi-major axis, b = ea, and 2 the true anomaly. A. Fontaine des
Bertins (1704-1771) in 1739 seems to have arrived at a similar representation of the ellipse,
independent of Euler.

For the pericenter and apocenter distance follows from (6.3):

(6.4)

from which the following relations can be derived:

(6.5)

The distance CF, i.e. the distance between the center of the ellipse and a focal point of the ellipse,
can be written as

(6.6)

The distance of body i from the major axis varies with 2 according to

Differentiation of this equation with respect to 2 and setting the result equal to zero, yields for
the maximum distance and the correspondig value of 2:

(6.7)

So, the crossing points of the orbit and the minor axis are specified by 2 = arccos(-e). In Section
5.6 we have found that at these values of 2 the flight path angle, (, takes its maximum or
minimum value. For the distance FB, we find with (6.6) and (6.7):

or

(6.8)

Combination of (6.6) and (6.8) yields

(6.9)

To conclude, three characteristics of an ellipse are mentioned without proof:
– For the second focal point FN holds CFN = CF.
– If a circle with center C and radius a is drawn around an ellipse, then for each line through a

point P on the ellipse and perpendicular to a (Figure 6.2) holds

(6.10)

! The area enclosed by an ellipse is equal to Bab.

Substitution of (5.21), (5.25) and (5.33) into (6.2) gives



Fundamentals of Astrodynamics     SS     Elliptical and circular orbits 159

Figure 6.2: Projection of a point P on an ellipse onto the circumferential circle.

(6.11)

Since a and : are positive constants:

(6.12)

In Section 5.1 it was shown that the term -:/r indicates the potential energy per unit of mass of
body i. Hence, (5.5) and (6.12) show that for a body in an elliptical orbit:

(6.13)

where õ denotes the total energy per unit of mass of body i. Note that this result is in agreement
with our finding in Section 2.3 that for a stable system the total energy (per unit of mass) is
negative. Elliptical motion satisfies our criterium of stability, in the sense that body i will not
move unboundedly far from body k. In Chapters 7 and 8 we will see that for parabolic and
hyperbolic orbits, where body i does move unboundedly far from body k, the total energy is zero
or positive. Note that the result in Section 2.3 was found for the motion relative to an inertial
reference frame, while in this Section the motion refers to a non-rotating reference frame
connected to body k. However, this difference has been accommodated by the introduction of the
parameter : = G(mk + mi).

Substitution of (6.13) into (6.11) gives

(6.14)

Equation (5.33) can also be written as

Substitution of (5.25) and (6.13) into this relation yields
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(6.15)

As 0 # e < 1, we find

(6.16)

From (5.21), (6.14) and (6.15) we conclude that the parameters a, p and e of the ellipse can be
expressed by the integrals of motion H and õ. The major axis is completely determined by the
orbital energy (per unit of mass) of body i; the larger (less negative) this energy, the larger the
major axis of the orbit. The latus rectum is completely determined by the angular momentum of
the motion; the larger the angular momentum, the larger the value of p. The eccentricity, and thus
the magnitude of the Laplace-Runge-Lenz vector, , introduced in Section 5.7 and pointing
towards pericenter, is a function of both the angular momentum and the orbital energy; the larger
the angular momentum and the larger the orbital energy, the larger the value of e.

6.2. Circular orbit

A special case of elliptical orbits is a circular orbit, in which, of course, the velocity is constant.
That velocity is called the circular velocity, Vc. To find an expression for that velocity, we write
(5.33) as

All terms on the right-hand side of this equation are larger than or equal to zero. This means that
the minimum value of the eccentricity (e = 0) is obtained if

(6.17)

In other words, in a circular orbit the flight path angle is zero and the circular velocity is given
by

(6.18)

We now generalize the concept of circular velocity and consider it as a field parameter; i.e. we
postulate that at any point in space the local circular velocity is defined by (6.18). From this
expression we learn that when we want to launch a satellite in a circular orbit, it is not sufficient
to accelerate the satellite to a velocity equal to the local circular velocity, but the direction of the
velocity vector should also be oriented perpendicular to the radius vector. In Figure 6.3 (left), the
circular velocity is plotted as a function of the altitude above the surface of the Earth, Moon,
Venus, Mars and Jupiter. This Figure shows that satellites moving in (near) circular orbits at low
altitudes above the Earth’s surface have a velocity of about 7.9 km/s or 28,500 km/hr. For a
satellite around Venus the circular velocity at low altitudes is slightly lower; for the Moon and
Mars it is much lower and about 1.7 km/s and 3.5 km/s, respectively. For the giant planet Jupiter
the circular velocity at low altitude is very large and about 42.8 km/s.
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Figure 6.3: Circular velocity as a function of altitude for a number of celestial bodies (left) and the period
of a circular orbit as a function of altitude for the same celestial bodies (right).

The time it takes a satellite to complete one orbital revolution about a planet is called the period
of the orbit. In celestial mechanics, this period is defined in various ways. When it is defined as
the time it takes a spacecraft in a Keplerian orbit to return to the same location with respect to
the (pseudo-)inertial reference frame, then we speak of the sidereal period. The synodic period
is the time that passes between two consecutive transits of the satellite through a certain meridian
(Section 11.1) on the Earth’s surface. In interplanetary spaceflight, the concept of a synodic
period is also in use. There, it indicates the time it takes the Sun, the Earth and another planet to
return to their original relative positions (Section 18.7). For perturbed satellite orbits, there are
still other definitions in use, such as the anomalistic period and the draconic period (Section
23.3). When in this book we speak of the ‘period’ of an orbit, we will always mean the sidereal
period.

For a circular orbit, we find with (6.18) for the period:

(6.19)

This period is plotted in Figure 6.3 (right) as a function of the altitude above the surface of the
Earth, Moon, Venus, Mars and Jupiter. For low-altitude orbits this period is about 1.5 hr for the
Earth, Moon, Venus and Mars; for Jupiter it is about 3 hr. It seems strange that although the
velocities of a satellite in a low-altitude orbit about the Earth, Moon and Mars differ consider-
ably, the period of these orbits does not differ much. There is a simple explanation for this result.
Since the planets and the Moon are approximately spherical, we may write

(6.20)

where G is the universal gravitational constant, M is the mass of the celestial body, D its mean
mass density, and R its radius. Substitution of (6.20) into (6.19) yields for low-altitude orbits (r
. R)
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where C is a constant. Hence, the period of a low-altitude circular orbit is only dependent on the
mean mass density of the celestial body and not, for example, on its radius. The densities of
Earth, Moon, Mercury, Venus and Mars do not differ much (Appendix B) and are 3.3-5.5 gr/cm3.
Consequently, the periods of low-altitude orbits about these planets do not differ much. The giant
planets Jupiter, Saturn, Uranus and Neptune have a considerably lower mean density (0.7-1.6
gr/cm3), which results in a significantly larger value for the orbital period at low altitudes.

When we consider a moon that orbits a planet at a distance equal to its Roche limit (Section
5.9), and substitute (5.47) and (6.20) into (6.19) we find

where TRo is the Roche period, C is a constant, and D2 is the mean mass density of the moon. Note
that TRo is a function of the density of the moon only and not of the characteristics of its primary.
The Moon’s mean mass density is D = 3341 kg/m3, which results in a Roche period of TRo = 6.88
hr. The actual Moon’s orbital period is 27.32 days (Section 11.4), which confirms that the Moon
is Roche-stable, as was already shown in Section 5.9.

Now, consider the situation that a satellite encircles the Earth in an easterly direction, and in an
equatorial orbit with a period of 23h56m4s (mean sidereal day (Section 11.4)). Because in this
period the Earth completes precisely one rotation about its axis, for an observer on the the surface
of the rotating Earth the satellite will appear stationary above a fixed location on the Earth’s
equator. Therefore, such a satellite is called a geostationary satellite. The radius of the
geostationary orbit can be computed from (6.19) and we find r = 42,164 km . 6.6 R, where R is
the mean equatorial radius of the Earth. So, the altitude of this orbit is h = 35,786 km. It will be
shown in Section 23.7 that the actual radius of the geostationary orbit is about 2 km larger, due
to the effect of the J2 zonal harmonic in the model of the Earth’s gravity field (Section 20.1).
However, in this book, except in Chapter 23, we will use the value of 42,164 km. Nowadays, the
geostationary orbit is used for virtually all communication satellites. The primary reason is that
a satellite in such an orbit is continuously visible for ground stations in the satellite Earth
coverage region (footprint) and that it is therefore possible to have an uninterrupted communica-
tion link between these ground stations. Because the distance between the satellite and the Earth
is so large, it is theoretically possible to realize a global telecommunication network using only
three satellites in geostationary orbit, each separated by 120E in longitude. However, in practice,
many more satellites are providing communication services from geostationary orbit. The
geostationary orbit is also used intensively for monitoring the Earth’s surface and atmosphere.
The reason is that satellites in this orbit can observe large parts of the Earth continuously and
thereby can easily detect temporal variations over these regions.

6.3. Velocity and orbital period

From (6.11) we obtain the following relation for the variation of the velocity along an elliptical
orbit:
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(6.21)

This relation is called the vis-viva integral and gives a relation between distance and velocity.
The term ‘vis viva’ (Latin for ‘living force’) was introduced by G.W. von Leibniz (1646-1716)
around 1685 in the context of his now obsolete theory that served as a limited early formulation
of the principle of conservation of energy. Leibniz noticed that in many mechanical systems of
several bodies, each with mass mi and velocity Vi, the quantity  is conserved. He called
this quantity the vis viva of the system. In present-day terminology we would call it twice the
kinetic energy of the system.

In Section 5.6, we have derived (5.26), (5.27) and (5.28), which express the radial and normal
velocity components,  and , and the flight path angle, (, as a function of the true anomaly,
2. From these relations and (6.21) a number of conclusions can be drawn about the variation of
the velocity and its components along an elliptical orbit:
S The velocity reaches a minimum value when the distance is maximum, i.e. at apocenter. Then,

(6.22)

where Vc,a is the circular velocity at apocenter. Hence, at apocenter the velocity is smaller than
the local circular velocity.

S The velocity reaches a maximum value at pericenter:

(6.23)

So, at pericenter the velocity is always larger than the local circular velocity.
S The ratio between the maximum and minimum velocity in an elliptical orbit is given by

(6.24)

This ratio is a function of eccentricity only and not, for example, of a or p. Equation (6.24)
shows that the range of variation of the velocity during an orbital revolution rapidly increases
for increasing values of e. For e = 0.3, the pericenter velocity is already about twice the
apocenter velocity; for e = 0.9, the velocity at apocenter is only about 5% of that at pericenter.

S The velocity is equal in magnitude (not in direction!) to the local circular velocity for a = r.
From the geometry of the ellipse (Section 6.1) follows that the spacecraft is then located on
the minor axis.

S The radial velocity is zero at pericenter and apocenter. It reaches a maximum value at 2 = 90E,
270E; i.e. in the points where the latus rectum intersects the orbit.

S The normal velocity is always positive. It reaches a maximum value at pericenter and a
minimum value at apocenter.

S The flight path angle is zero at pericenter and apocenter. The extreme values of the flight path
angle occur at cos 2 = -e, i.e. at the intersection points of the orbit with the minor axis
(Sections 5.6 and 6.1); these extreme values increase for increasing values of e. For example,
for e = 0.5: (extr= ± 30E; when e approaches 1, (extr approaches ± 90E.

Figure 6.4 gives an impression of the variation of altitude, velocity and flight path angle in a
rather eccentric elliptical orbit about the Earth (e = 0.25) with a perigee altitude of 500 km. Note
that the satellite reaches a maximum altitude of about 5000 km. The maximum radial velocity is,
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even for this high eccentricity, only about 1.5 km/s. As a result, the maximum difference between
the velocity and its normal component is rather small; the flight path angle varies between -15E
and +15E.

Figure 6.4: Variation of altitude, velocity and
flight path angle in an elliptical orbit about the
Earth (hp = 500 km, e = 0.25).

Figure 6.5: Variation of mean angular velocity,
orbital energy, orbital angular momentum, and
orbital period as a function of the initial veloci-
ty of a satellite about the Earth (t = 0: r = 6800
km, ( = 0E).

An expression for the period of an elliptical orbit can be derived from (5.8), when we make use
of the fact that in one orbital revolution body i sweeps out the entire area of the ellipse, which is
given by Bab. So, we may write

where T is the period of the elliptical orbit. Substitution of (5.21), (6.2) and (6.7) into this
expression yields

(6.25)

If the mean angular motion, n, of the satellite in its orbit is defined as

(6.26)

then (6.25) yields

(6.27)
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To gain some insight in the order of magnitude of the quantities H, õ, n and T of a satellite in an
elliptical orbit, these quantities are plotted in Figure 6.5 as a function of the velocity of the
satellite at t = 0. It is assumed that the satellite is then located at a distance of 6800 km from the
center of the Earth (about 425 km altitude) and that at that time ( = 0E. The Figure shows that
the mean angular motion of the satellite has a maximum value for low orbits (V0 = 7.5-8 km/s)
and then equals about 4E/min. The total energy (per unit of mass) in low orbits is approximately
-30 km2/s2. The period of the orbit increases rapidly above V0 . 9 km/s for increasing values of
V0 and is already about 33 hr for V0 = 10.5 km/s. The angular momentum (per unit of mass) varies
between 50,000 and 70,000 km2/s.

6.4. Kepler’s third law

In Chapter 5 we have discussed Kepler’s laws and it was announced that Kepler’s third law
would be proved in this Section. To do that, we start from (6.25) and write

When the definition of : according to (5.2-1): : = G (mk + mi) is substituted into this expression,
we obtain

(6.28)

This is the ‘improved’ version of Kepler’s third law. If mi is negligible with respect to mk, as is
the case for the motion of planets about the Sun as well as to an even higher accuracy for the
motion of satellites about the Earth, (6.28) can be approximated by

(6.29)

which describes Kepler’s third law in its original form (Section 5.4). It states that the ratio
between the cube of the semi-major axis and the square of the orbital period is a constant for all
elliptical orbits in the gravity field of mk. For satellite orbits about the Earth, this constant has a
value of roughly 104 km3/s2.

A useful application of Kepler’s third law is found in astronomy for determining the mass of
a planet. This is an essential parameter for interplanetary spaceflight, because the trajectory of
a spacecraft close to a planet is determined by the gravity field of that planet and in particular by
the gravitational parameter of that planet. The value of that parameter can be computed if the
mass of the planet is known. The classical astronomical method to determine the mass of a planet
uses the observed motion of a natural satellite (moon) about a planet in combination with
Kepler’s third law. When we apply Kepler’s third law to the orbit of the moon, we obtain

where the indices p and m refer to the planet and the moon, respectively. When we apply
Kepler’s third law to the orbit of that planet about the Sun, we obtain
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where the index S refers to the Sun. From these two expressions follows

or, because mm n mp and mp n mS ,

(6.30)

The periods of the orbit of the planet about the Sun and of the orbit of the moon about that planet
can be measured quite easily. By means of standard astronomical measurements we can also
determine the major axis of the planet’s orbit and of the moon’s orbit. Using these data, the ratio
between the mass of the planet and the mass of the Sun can be obtained from (6.30). When we
repeat the analysis for the motion of the Earth about the Sun and of the Moon about the Earth,
we find the ratio of the mass of the Earth and the mass of the Sun. So, we can compute the ratio
of the mass of a planet and the mass of the Earth. If we want to compute the mass of a planet in
kilograms, we have to know the mass of the Earth in kilograms; this can be determined from the
known values of the universal gravitational constant, the dimensions of the Earth, and the
acceleration due to gravity on the Earth’s surface. This method to determine the mass of a planet
can, of course, only be applied if that planet has moons. Therefore, it cannot be applied for the
planets Mercury and Venus.

The mass of a planet can also be determined from the perturbations caused by that planet on
the orbits of the other planets. However, since these perturbations are very small and are complex
in nature, this method yields only a relatively rough estimate of the planet’s mass. A much better
method is to accurately measure from the Earth the Doppler shift of the radio signals transmitted
by a spacecraft that passes a planet at a relatively close distance and to use the measured Doppler
shift to determine the gravitational perturbations of the trajectory of that spacecraft. From these
perturbations the gravitational parameter and mass of the planet can be determined. In this way,
it was possible to quite accurately determine the mass of the planets Mercury, Venus and Mars
using the Mariner series of interplanetary spacecraft, which have flown in the period 1962 to
1973. Spacecraft from the Pioneer and Voyager series, which were launched in the period 1972
to 1977, were used to accurately determine the mass of the planets Jupiter, Saturn, Uranus and
Neptune, and of many of their moons. Observations from later missions have further improved
our knowledge of the masses of planets, moons and other bodies in our solar system.

If (6.21) and (6.29) are combined, we obtain an interesting result. For a satellite with a certain
velocity V at a certain distance r, the value of the semi-major axis can be computed from (6.21).
The direction of the velocity does not affect the value of a. Equation (6.29) shows that only the
size of the major axis determines the period of the orbit. In Figure 6.6 three orbits are drawn, for
which in point P the velocity is equal in magnitude. Hence, these orbits have the same orbital
period. If several spacecraft are inserted at P simultaneously into these different orbits, they will
meet each other again at point P after each revolution in their orbits.
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Figure 6.6: Three orbits with the same values of the major axis and of the orbital period.

6.5. Kepler’s equation

In the previous Sections we have analyzed the variation of position and velocity of a body in an
elliptical orbit as a function of the true anomaly, 2. Now, we will derive expressions for the
relation between position in the orbit and time. In principle, one could start from (5.21) and (6.1)
and write

or

where the integration is performed from 2 = 0E (pericenter) to 2 = 21. This integral has different
types of solutions for e < 1, e = 1 and e > 1, and the structure of the solution is rather complicated
for e < 1 and e > 1. For example, evaluation of the integral for an elliptical orbit (e < 1) yields

where J is the time of pericenter passage (2 = 0E). Because of its complicated form, it is hard to
use this expression for analytical analyses; it is also less suitable for numerical analyses. There
exists a classical method to obtain a much simpler expression for the position-time relation. To
this end, we draw a circle around the ellipse (Figure 6.7). From the position of body i (P), a line
is drawn perpendicularly to the major axis. This line intersects the circle in PN. The angle ACPN
is called the eccentric anomaly, E. From Figure 6.7 we obtain

(6.31)

With the property of an ellipse expressed by (6.10), we find

(6.32)

Squaring (6.31) and (6.32), and subsequent summation of the results yields
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Figure 6.7: Definition of the eccentric anomaly.

The minus-sign has no physical meaning, since e < 1, a > 0, r > 0. So, for the ellipse holds

(6.33)

When we compare (6.3) and (6.33), we note that in (6.33) the angular variable is in the
numerator, while in (6.3) it is in the denominator. The presence of the angular variable in the
numerator makes it possible to find a simple expression for the relation between position in the
orbit (E) and time.

To find a relation between 2 and E, we start with the trigonometric expression

(6.34)

Substitution of (6.31) and (6.33) yields

which, according to (6.34), can be written as

Because for an ellipse , we conclude from (6.32) that if 0E#2/2#90E then
0E#E/2#90E, and if 90E#2/2#180E then 90E#E/2#180E. This means that the angle 2/2 always
lies in the same quadrant as E/2. So, only the plus-sign is valid in the equation above and we
obtain

(6.35)

This relation shows that when body i moves from pericenter to apocenter (0E#2#180E): 2 $ E;
in the interval from apocenter to pericenter (180E#2#360E): 2 # E. At pericenter: 2 = E = 0E,
and at apocenter: 2 = E = 180E.

Differentiation of (6.33) to time yields
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Substitution of (5.21), (5.26) and (6.2) gives

Combination with (6.32) and (6.33) leads, after some algebraic manipulation, to

which can be integrated to

(6.36-1)

where J is an integration constant. The physical meaning of this integration constant becomes
clear when the condition E = 0 is inserted into (6.36-1). We then find t = J, so J is the time of
(last) pericenter passage. With (6.27), (6.36-1) can also be written as

(6.36-2)

We conclude that, while a, e and T determine the size, shape and the orientation of the ellipse
in the orbital plane, the integration constant J is required to compute the position of body i in its
orbit at a specified moment of time. The right-hand side of (6.36-2) is the product of the mean
angular motion of body i and the time elapsed since the last pericenter passage. This quantity has
the dimension of an angle and is called the mean anomaly, M. So, (6.36-2) can also be written
as

(6.36-3)

The equations (6.36) are known as Kepler’s equation that was published by J. Kepler (1571-
1630) around 1618. They give the relation between the angular position of body i in its orbit and
time. In this relation, the angular position is specified through the quantity E, which is linked to
the true anomaly 2 by (6.35). This position-time relation is of a much simpler form than the one
presented for the relation between 2 and t. Note that the mean anomaly changes by 360E during
one orbital revolution but, in contrast to the true and eccentric anomalies, increases uniformly
with time. Instead of specifying the time of perigee passage, J, to describe the orbit, sometimes
the mean anomaly at some reference epoch t0, M0, is used. The mean anomaly at an arbitrary
instant of time can then be found from M = M0 + n(t - t0).

Figure 6.8 presents the variation of altitude and true anomaly of an Earth satellite as a
function of the time elapsed since the last perigee passage, for three (left) and two (right)
elliptical orbits. The orbits have a perigee altitude of 400 km, while the apogee is located at 4000,
40,000 or 200,000 km altitude. From this Figure an important conclusion can be drawn: a satellite
stays in the neighborhood of its apogee for a relatively long period of time. For example, the
satellite in the orbit with an apogee altitude of 200,000 km, stays half of its orbital period
(T = 96.2 hr) between a true anomaly of 170.5E and 189.5E. During this period, it moves within
an altitude range of 165,260 - 200,000 km. For approximately 80% of the orbital period, the
satellite moves within the altitude interval 250 < h/hp < 500 and for only 20% of the orbital period
within the interval 1 < h/hp < 250.
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Figure 6.8: Variation of altitude and true anomaly in elliptical orbits about the Earth as a function of the
time after perigee passage (hp = 400 km).

The structure of Kepler’s equation shows that if one wants to know when the satellite is at a
certain location in its orbit, the solution of (6.36) presents no problem. However, usually one
wants to know where the satellite is located at a certain time, and then a transcendental equation
in E has to be solved. To prove that this transcendental equation has always one real solution, we
consider the function

For a specified value of M, we have

Hence, for each value of M there is always one value of E for which ö(E,M) = 0.
Of course, Kepler was the first to solve (6.36); he did this graphically. I. Newton (1643-

1727), in his Principia, presented a graphical solution based on a cycloid. Afterwards, until mid-
nineteenth century almost all leading mathematicians and astronomers have developed efficient
techniques to solve this transcendental equation and, as a result, dozens of methods are known
today. For us, who have computers at our disposal, a numerical solution of this equation is very
easy, for instance by applying the Newton-Raphson method:

Because e < 1, the very simple iterative method

also results in a converging iteration process. It requires relatively few iterations if e < 0.1; for
larger values of e the Newton-Raphson method is preferable, because the simple method then
requires many iterations. In both iteration schemes Ek = M is an appropriate substitution to start
the iteration process. Of the non-numerical methods, two will be discussed in the next Section:
a simple graphical method and an analytical method that is particularly suited to low-eccentricity
satellite orbits.
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6.6. Graphical and analytical solution of Kepler’s equation

To solve Kepler’s equation in a graphical way, we first draw the function y = sin x (Figure 6.9).
Then, the value of M is marked on the X-axis and the value of M+e on the line y = 1. Subse-
quently, a straight line is drawn through these two points. The intersection of this line with the

Figure 6.9: Graphical solution of Kepler’s equation.

sine-function yields the solution for E. This can be proved as follows. The general equation of
a straight line is

This line should pass through the point x = M, y = 0, and the point x = M+e, y = 1. Substitution
of these conditions in the equation of the line yields

This system of equations has the solution a = 1/e, b = -M/e, and thus the equation of the line can
be written as

For the intersection of the line and the sine-function, we find

or

which proves the correctness of the method.

For the development of an analytical method to solve Kepler’s transcendental equation, we start
with the introduction of a parameter ":

(6.37)

We then may write Kepler’s equation as
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(6.38)

Hence, the value of " is bounded between -e and +e, where e < 1 and in most cases e n 1. Now,
assume that we can find for " a converging power series of the type

(6.39)

where the coefficients "n are functions of M. These functions can be found by equating (6.38) and
(6.39):

(6.40)

Since " is small, we may use standard series expansions for sin" and cos". Substitution of these
series expansions and (6.39) into the right-hand side of (6.40) leads to

So, (6.40) can be written as

Equating the terms with equal powers of e on the left-hand and right-hand sides of this equation
leads to

Substituting these expressions into (6.37) gives

where we have neglected terms of order e4. If we would have expanded the series a little further,
the result would have been:

(6.41)

We can use this Fourier series analytical expression to directly compute E for any given time
(M). A remarkable property of this series expansion is that the order of successive terms can be
expressed by eksinkM, i.e. the order of each coefficient in the Fourier series is equal to the order
of the Fourier component. This property is characteristic for many series expansions in celestial
mechanics and can be used as a rule of thumb to check the correctness of algebraic manipula-
tions. Furthermore, for each Fourier component, successive terms in the series of e always
decrease with a factor of e2. So, a coefficient of a sine-function of an odd argument only contains
odd powers of e; similarly, a sine-function of an even argument only contains even powers of e.
This property was first emphasized by J.B. le Rond d’Alembert (1717-1783). For this reason it
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was called by E.W. Brown (1866-1938) the d’Alembert characteristic. The two properties
mentioned are closely related to the fact that (6.41) can be written as a series of Bessel functions
of the first kind and to the properties of these functions:

where l is the order of the functions. We will not examine this series expansion in Bessel
functions any further; it is only mentioned here that it was just this astronomical application for
which F.W. Bessel (1784-1846) introduced these functions in 1817.

A Fourier series expansion for the true anomaly can be found as follows. First, the derivative
of the true anomaly to the mean anomaly is written as

(6.42)

Subsequently, expressions for d2/dE and dE/dM will be derived, which will then be substituted
into (6.42). From (6.35) follows

or

Substituting (6.31) and (6.33) into this relation leads, after some algebraic manipulation, to

(6.43)

From (6.36-3) follows

(6.44)

Substitution of (6.43) and (6.44) into (6.42) leads to

An expression for the derivative dE/dM in this equation can be obtained by differentiation of
(6.41). Squaring that expression and subsequent multiplication with the series expansion
for  yields, after integration,

(6.45)

To obtain a Fourier series for the distance, we may proceed as follows. Substitution of (6.33)
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into (6.44) gives

Substitution of the series expansion for dE/dM already used above, and subsequently expanding
the negative power results in

(6.46)

P.S. Laplace (1749-1827) proved that the series expansions (6.41), (6.45) and (6.46) converge
for all values of M, if e < 0.663. If e > 0.663, the series may diverge for certain values of M.
Within their range of application, the M-series converge very slowly for larger values of e and
they are in fact useless for e > 0.5. The astronomers of the nineteenth century were lucky insofar
as the planets of the solar system move on small-eccentricity orbits and thus their mean anomaly
expansions did converge in a satisfactory way. The larger eccentricities sometimes met in modern
astrodynamics require the use of other independent variables, which accelerate the convergence
process. Still, for most satellite orbits: e n 0.3, which make these relations very useful indeed.

Equation (6.46) is a good starting point to address the definition of the ‘mean distance’ during
an orbital revolution. Usually, the mean of the perigee and apogee distances, which is just equal
to the semi-major axis, a, is adopted for the mean distance. However, this is only one definition
of the mean distance. Equation (6.46) shows that when we average the distance variation over
time, i.e. over the mean anomaly, M, we find 

where the index m denotes ‘mean’ and the index M indicates that the average is taken over the
mean anomaly. When we average over the eccentric anomaly, E, we find, using (6.33),

When we average over the true anomaly, 2, we find, using (6.33) and (6.43),

where b is the semi-minor axis of the elliptical orbit. Of course, for small eccentricities the
differences between the three definitions of the mean distance are small.

6.7. Lambert’s theorem

To determine the time-of-flight between two points in an elliptical orbit, we could compute the
eccentric anomalies at both points and use Kepler’s equation (6.36) twice. In this Section, a more
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convenient method will be developed. It is based on Lambert’s theorem or Lambert’s equation,
which was discovered by J.H. Lambert (1728-1777) in 1761 using geometric arguments and was
subsequently proved analytically by J.L. Lagrange (1736-1813) in 1778. The theorem, which is
in essence a reformulation of Kepler’s equation, states that the time needed to transverse an
elliptical arc only depends on the semi-major axis of the ellipse, the sum of the distances from
the attraction center to the initial and final points of the arc, and the length of the chord joining
the initial and final points. The theorem plays a crucial role in many applications of astro-
dynamics, ranging from re-entry and rendez-vous missions to interplanetary flights.

Figure 6.10: Geometry used for the derivation of Lambert’s equation for elliptical motion.

Let P1 and P2 be the initial and final points of an elliptical arc (Figure 6.10) and suppose that the
radius vector and eccentric anomaly of P1 and P2 are  and E1, and  and E2, respectively. Then,
according to (6.36-1), the flight time, tf , from P1 to P2 along the elliptical arc is given by

or

(6.47)

We now introduce the auxiliary variables f and g, defined by

(6.48)

Substitution of (6.48) into (6.47) leads to

or, after some trigonometric manipulation,

(6.49)

We now have to express f and g in terms of the semi-major axis, a, chord, c, and r1+r2. Therefore,
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let  be the unit vector pointing towards pericenter and  the unit vector in the plane of
motion, 90E ahead of  in the direction of motion. Then,

where 21 is the true anomaly of P1. According to (6.31) and (6.32), this relation can also be
written as

(6.50-1)

A similar expression can be obtained for the position vector of P2:

(6.50-2)

The length of the chord, c, joining P1 and P2 can be found from

Substitution of (6.50-1) and (6.50-2) into this relation yields

or, using (6.48) and the appropriate trigonometric identities,

(6.51)

From (6.33), we obtain

Substitution of (6.48) into this relations leads, after some trigonometric manipulation, to

(6.52)

Solving (6.51) and (6.52) for cos f and cosg yields

or

(6.53)

Summing (6.51) and (6.52), we find

This equation shows that the shortest semi-major axis, , of a conic section through P1 and P2

occurs at f = 180E and is given by

(6.54)

Further, define a parameter K as
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(6.55)

then (6.53) can be written as

(6.56)

When a, r1, r2 and c are known, formally we can compute from (6.49) and (6.54) to (6.56) the
flight time, tf, which is in essence Lambert’s equation for elliptical motion. However, it is evident
that (6.56) does not give an unambiguous solution of f and g. Therefore, a further analysis is
required.

From the inequalities in (6.48) we conclude that 0E # f < 360E and -180E # g < 180E. Now,
let S be the point where the line through P1 and P2 cuts the major axis (Figure 6.10). The position
vector of an arbitrary point on the line through P1 and P2 with respect to the center C of the
ellipse is given by

(6.57)

This relation, of course, also holds for point S, when The distance s between C and S,
measured positive from C in the direction of the pericenter, can also be determined from the
equation

Substitution of (6.57) with (6.50) into this relation, and solution of the resulting equation for 8
and s, yields, after some algebraic manipulation,

We then find for the distances  and PS, measured positive to the right in Figure 6.10:

or, using (6.48) and the appropriate trigonometric identities,
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(6.58)

Now, sinf/2 and cosg/2 are always positive, while, as we may take E1 between 0E and 360E,
sinE1/2 is positive too. We then may distinguish four cases (Figure 6.11).

Figure 6.11: Four different cases for Lambert’s equation.

Let A be the area bounded by the arc P1 P2 and the chord joining P1 and P2 (Figure 6.10). Then
the following cases exist:
a) If A includes neither F1 nor F2 (Figure 6.11a):

    and we find

(6.59-1)

b) If A does not include F1, but includes F2 (Figure 6.11b):

    and we find

(6.59-2)

c) If A includes F1, but not F2 (Figure 6.11c):

    and we find

(6.59-3)

d) If A includes both foci (Figure 6.11d):
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    and we find

(6.59-4)

When the parameters " and $ are defined as

(6.60)

we find, according to (6.56),

(6.61)

The flight time for the four different cases (Figure 6.11) follows from (6.49) together with (6.59)
to (6.61):
a) If A does not include F1 and F2:

(6.62-1)

b) If A does not include F1, but includes F2:

(6.62-2)

c) If A includes F1, but not F2:

(6.62-3)

d) If A includes both F1 and F2:

(6.62-4)

These relations constitute the ‘operational’ version of Lambert’s equation. The cases a) and b)
correspond to a transfer angle )2 = 22 - 21 of less than 180E, while c) and d) correspond to a
transfer angle )2 of greater than 180E.
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7. PARABOLIC ORBITS

For a parabolic orbit: e = 1, and we find from the general equation for a conic section (5.22):

(7.1)

where p > 0. In spaceflight as well as in classical astronomy a pure parabolic orbit does not exist;
any variation in the value of e, no matter how small, is sufficient to change the orbit into an
ellipse or a hyperbola. Still, the parabolic orbit does not only have a theoretical meaning; in
computations we often approximate an elliptical or a hyperbolic orbit with e . 1 by a parabolic
orbit. The reasons are that we sometimes do not know whether we are dealing with a highly-
eccentric elliptical orbit or a low-eccentricity hyperbolic orbit, and that the computation process
for orbits with e . 1 runs faster when we use the equations for a parabolic orbit. It is clear that
the major axis of a parabola has an infinite length and so it is not appropriate to separate the
parameter p in (7.1) into a and e, as was done in Section 6.1 for an elliptical orbit. For the
pericenter distance holds, according to (7.1),

(7.2)

As at 2 = 90E the radius vector has the length p, we conclude that in the interval 0E# 2 # 90E the
radius vector doubles in length.

7.1. Escape velocity

In Chapter 5, we have derived (5.33) that expresses the relation between the instantaneous
quantities r, V and (, and the eccentricity of the orbit. Since for a parabola e = 1, (5.33) yields

A solution of this equation is

where (5.21) and (5.25) have been used. For , this represents a rectilinear motion through
the center of attraction. Such motion, which was discussed in Section 5.1, has little physical
meaning. Hence, the ‘real’ solution is

(7.3-1)

In other words, for each point in a parabolic orbit the velocity is given by (7.3-1). With the
expression for the local circular velocity, (6.18), we can write (7.3-1) as

This relation shows that if we want to launch a spacecraft into a parabolic orbit, it has to be
accelerated to a velocity equal to  times the local circular velocity. The direction of the
velocity is of no importance; the spacecraft will always describe a parabolic orbit and conse-
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quently recedes infinitely far away from the Earth. We thus may say that the spacecraft ‘escapes’
from the gravity field of the Earth, and the velocity defined by (7.3-1) is therefore called the
escape velocity (Vesc):

(7.3-2)

Combining (7.3-2) with (5.21), (5.24) and (5.27) results in

(7.4)

This relation shows that the size of the parabola that is flown by the spacecraft after it has been
accelerated to escape velocity, is dependent on the direction of the velocity vector ((). Just as we
did for the circular velocity, we now generalize the concept of escape velocity and consider it as
a field parameter; i.e. at any point in space the local escape velocity is defined by (7.3-2).

In Figure 7.1, the escape velocity is plotted as a function of the altitude above the surface of
the Earth, Moon, Mars, Venus and Jupiter. Note that the escape velocity at the Earth’s surface
is approximately 11.2 km/s; for Jupiter, this velocity is about 60.5 km/s. From the surface of the
Moon, a rather small velocity increase of about 2.4 km/s is already sufficient to enter an escape
trajectory. This illustrates the attractiveness of the Moon as a launch base for interplanetary
spaceflight.

 

Figure 7.1: Escape velocity as a function of alti-
tude for a number of celestial bodies.

 
Figure 7.2: Variation of altitude, velocity and
flight path angle in a parabolic orbit about the
Earth (hp = 500 km).

Table 7.1 presents some characteristic parameters of the Sun, a white dwarf, a neutron star and
a black hole. In addition, the escape velocity at the surface of these stars, and the velocity and
orbital period of a body moving about these stars are listed. The velocities are expressed in terms 
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Table 7.1: Comparison of the escape velocity on the surface of the Sun and on the surface of some
degenerated types of stars, and of the velocity and orbital period of a body moving about these stars.

Sun White dwarf Neutron star Black hole

Radius (km) 6.96*105 1.2*104 15 10

Mass (Mu) 1 0.5 1 5

Mean density (kg/m3) 1.4*103 1.4*108 1.4*1017 2.4*1018

Surface escape velocity (c) 2.1*10-3 1.1*10-2 0.44 1.21

Velocity (c)* 1.0*10-3 5.5*10-3 0.22 0.61

Orbital period (s)* 2.8*104 91 2.8*10-3 6.9*10-4

 * For a circular orbit with a radius of twice the radius of the star.

of the speed of light, c. For the black hole the surface escape velocity turns out to be larger than
the speed of light. This was already found by J. Michell (1724-1793), who wrote in 1784 that a
very heavy star can have an escape velocity that is larger than the speed of light. He reasoned that
light particles shooting upward would be pulled back by the star. Hence, the star would not be
visible. P.S. Laplace (1749-1827) repeated this reasoning in 1795 and calculated that a star with
the density of the Earth but with a radius of 250 times the radius of the Sun, would be such a dark
body. We now know that the reasoning by Michell and Laplace is not correct; after all, light is
not slowed down by a gravity field! According to Einstein’s general theory of relativity, mass
influences the local curvature of space; the trajectory of light is deflected by the presence of this
mass. If we consider a spherical body with a very large mass but with a small radius (thus a high
density) that emits light, the so-called Schwarzschild radius (K. Schwarzschild (1873-1916)) can
be defined. If the radius of the body is smaller than the Schwarzschild radius, the deflection of
the light that is emitted by the body is too large for the light to escape that celestial body; in that
case the body is a black hole. It is interesting to mention that the Schwarzschild radius is
precisely equal to the radius of the celestial body (with the same mass) for which, according to
the calculations by Michell and Laplace, the escape velocity at the surface of the celestial body
is precisely equal to the speed of light. So, although their reasoning was wrong, the result of that
reasoning was correct! Table 7.1 also shows that for compact bodies, such as white dwarfs,
neutron stars and black holes, the velocity in a low-altitude circular orbit around the star is very
high and the associated orbital period is extremely short.

7.2. Flight path angle, total energy and velocity

From (5.28) we obtain for e = 1:

For 0E# 2 # 180E, the value of tan (2/2) is positive (or zero). Since, by definition -90E# ( # 90E,
we find for this range of true anomalies 0E# ( # 90E, and hence for 0E# 2 # 180E: ( = 2/2.
Similarly, for 180E< 2 < 360E: ( = -2/2. Hence, the flight path angle increases linearly with 2
and we can write

(7.5)

This result has already been found graphically in Section 5.6.
Substituting (7.3) into (5.5), we find for the total energy per unit of mass:
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(7.6)

So, in a parabolic orbit the total energy of a body is always equal to zero.
To obtain the magnitude of the radial and normal velocity components in a parabolic orbit

we substitute e = 1 into (5.26) and (5.27), and find

(7.7)

(7.8)

From expressions (7.3), (7.7) and (7.8) a number of conclusions can be drawn about the variation
of the velocity along a parabolic orbit:
S The velocity reaches a minimum value of zero when r is maximum; i.e. 2 = ±180E, r = 4. It

reaches a maximum value when r is minimum; i.e. at 2 = 0E. The maximum velocity is given
by

  (7.9)

S At any point along a parabolic orbit the local velocity is equal to  times the local circular
velocity.

S The radial velocity is zero for 2 = 0E, ±180E; i.e. at pericenter and at r = 4. It reaches a
maximum value for 2 = 90E, 270E; i.e. in the point where the latus rectum intersects the
parabola.

S The normal velocity decreases monotonously from a maximum value at pericenter to a
minimum value of zero at 2 = ±180E.

Figure 7.2 gives an impression of the variation of altitude, velocity and flight path angle along
a parabolic orbit with a perigee altitude of 500 km above the Earth’s surface. Note that for
2 > 60E the distance increases rapidly with increasing values of 2.

7.3. Barker’s equation

To obtain a relation between position and time, we start from (5.21) and (7.1) and write

(7.10)

In Section 6.5, we have found a similar expression for the elliptical orbit and decided that because
of the complicated form of the integral we should introduce a new variable E. Here, this is not
necessary; the reason is that the denominator does not contain the eccentricity as was the case for
the elliptical orbit. From trigonometry we know that

Substitution of this relation into (7.10) and subsequent integration yields
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(7.11-1)

where J is an integration constant. The physical interpretation of J becomes clear when 2 = 0E
is inserted into (7.11-1). It then follows that t = J; so, J is the time of (last) pericenter passage.
This equation, which is known as Barker’s equation as a tribute to T. Barker (1722-1809), who
developed the first tables of solutions for parabolic orbits, gives the relation between true
anomaly and time; it is the analogue of Kepler’s equation for elliptical orbits.

Now, an angular velocity  is introduced, defined as

(7.12)

According to (7.10), the orbital angular motion equals this value at 2 = 90E, 270E; i.e. in the
intersections of the parabola with the latus rectum. Substitution of (7.12) into (7.11) gives

(7.11-2)

or, when, somewhat analogous to the discussion on elliptical orbits, a kind of mean anomaly,
is introduced,

(7.11-3)

It is emphasized that, while for an elliptical orbit 0E# M # 360E, for a parabolic orbit - 4 < 
< 4. Figure 7.3 presents the variation of altitude and true anomaly as a function of time along a 

Figure 7.3: Variation of altitude and true anomaly in a parabolic orbit about the Earth as a function of
the time after perigee passage (hp = 400 km).

parabolic orbit with its perigee at 400 km altitude above the Earth’s surface. Note that initially
the true anomaly increases rapidly; so, the spacecraft has a large angular velocity. This rate of
increase decreases strongly during the first hour, until after a few hours the spacecraft moves
almost radially away from the Earth. As a result of the constant decrease in velocity, the rate of
increase of altitude decreases gradually.

The time it takes a body in a parabolic orbit to complete the arc -90E# 2 # 90E, i.e. the part of
the orbit between the two intersections of the parabola with the latus rectum, is according to
(7.11-1)
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This expression can also be written as

(7.13)

where mk is the mass of the central body and mi the mass of the body that moves in the parabolic
orbit about the central body. If mi can be neglected with respect to mk, then:

(7.14)

This equation for parabolic orbits is the analogue of Kepler’s third law for elliptical orbits
((6.29)), and states that, for all parabolic orbits in the gravity field of a central body, the ratio
between the cube of the semi-latus rectum and the square of the flight time from 2 = -90E to
2 = 90E is constant.

Note that Barker’s equation is a third-degree equation in tan(2/2) and can be solved analytically.
To prove that this equation has but one real solution, we consider the function

For a specified value of , we have

which means that the equation has one solution of 2 for any value of
In the classical trigonometric method for solving (7.11-3) a new angular variable x is

introduced, which is defined as

(7.15)

With the trigonometric relation

(7.16)

follows

Substituting these relations into (7.11-3) leads to

If an angle y is defined as

(7.17)
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we obtain

Using (7.16), this equation can be written as

(7.18)

With (7.15), (7.17) and (7.18) we can find the angular position 2 as a function of , and thus of
time. In the computation process the angles y, x and 2/2 take values between -90E and 90E; when 
is negative, y, cot(y/2), x and 2 are negative.

In a more efficient algebraic solution scheme, we first set

(7.19)

and write (7.11-3) as

As shown above, this equation has always one real root, which can be computed analytically:

(7.20)

Taking

(7.21)

we find

and we obtain from (7.20)

(7.22)

Note that y is always positive, regardless of the sign of . With (7.19), (7.21) and (7.22) we can
find 2 as a function of , and thus of time.

7.4. Euler’s equation

To compute the orbit of comets, L. Euler (1707-1783) published in 1743 an equation that may
be considered as a version of Lambert’s theorem (Section 6.7) for parabolic orbits. In this
Section, that equation will be derived.

Consider the positions of a body in a parabolic orbit at the instances t1 and t2 (Figure 7.4). Let the
corresponding radii be r1 and r2, the chord joining their extremities c, and the corresponding true 
anomalies 21 and 22. Then, it follows from (7.11-1) that
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Figure 7.4: Geometry for the derivation of Euler’s equation.

or

(7.23)

where tf = t2 - t1. The equation for the chord is

From this equation, we find

(7.24)

The plus-sign is to be taken before the radical if 22 - 21 < 180E; the minus-sign if 22 - 21 > 180E.
From (7.1) follows

(7.25)

and we obtain

(7.26)

Substitution of (7.25) into the left-hand side of (7.24) yields, after applying some trigonometry,

(7.27)

With (7.26) and (7.27) we write

With
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we finally find

(7.28)

Substitution of (7.27) and (7.28) into (7.23) yields

This equation can be simplified to

or, after some algebraic manipulation,

(7.29)

This equation is known as Euler’s equation and is remarkable in that it does not involve p. It
yields the flight time between the points of the trajectory specified by 22 - 21 directly from the
values of the radii r1 and r2 for these points. As mentioned before, the use of the plus- or minus-
sign depends on the value of 22 - 21. The equation is of great importance in some methods for
determining the elements of a parabolic orbit from (geocentric) observations.

Euler’s equation can also be obtained as a limiting case of Lambert’s equation derived in
Section 6.7 for elliptical orbits. From (6.60) we conclude that if the semi-major axis becomes
very large the angles " and $ become very small, and we then find to first-order approximation:

Substitution of (6.54) and (6.55) into these expressions gives

(7.30)

A series expansion of sin" and sin$ gives first-order approximations for the terms in (6.62):

(7.31)

From Figure 7.4 we conclude that only the cases a) and c) of the four cases identified for
elliptical orbits exist for a 6 4. Substitution of (7.30) and (7.31) into (6.62-1) and (6.62-3) yields

or
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which is, of course, identical to (7.29).
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8. HYPERBOLIC ORBITS

In Section 5.3 it was shown that for e > 1 the orbit of body i about body k is a hyperbola with
body k at focus F (Figure 8.1). It was also shown that the equation for the orbit is

Figure 8.1: Geometry of a hyperbolic orbit.

(8.1)

and that the second branch of the hyperbola (dashed curve in Figure 8.1), which has no physical
meaning for celestial mechanics, is described by

(8.2)

For the important left branch in Figure 8.1, i.e. the branch that represents hyperbolic motion in
a gravity field, the true anomaly is limited to

(8.3)

because distance, r, and semi-latus rectum, p, always have positive values.

8.1. Geometry, energy and angular momentum

For the ellipse, we could easily define the major axis. For a hyperbola, the concept of major axis
is much less obvious. However, to simplify the computations for hyperbolic orbits, we define the
major axis of the hyperbola as the negative value of the distance between the vertices of its two
branches (Figure 8.1). This major axis is assigned a value of 2a, which means that a has a
negative value. This looks strange, but we should keep in mind that the sole purpose of this
definition is to simplify the computation process. With this definition, we can write
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or

(8.4)

Substitution of (8.4) into (8.1) yields for a hyperbolic orbit

(8.5)

Thus, we conclude that because of our special definition of the major axis of a hyperbola, the
equation in polar coordinates for a hyperbola is identical to the corresponding equation for an
ellipse. Therefore, we may apply a number of equations derived for elliptical orbits directly to
hyperbolic orbits. However, we should remember that for a hyperbola 1 - e2 < 0, a < 0; while for
an ellipse 1 - e2 > 0, a > 0.

From analytical geometry we know two characteristics of a hyperbola that will be mentioned
here without prove:
S The two branches of a hyperbola are each others mirror image with respect to the line through

the center of the major axis (C) and perpendicular to the major axis.
S The asymptotes of the hyperbola cross point C and define an angle 2lim = arccos (-1/e) with the

major axis. Since e > 1, this definition yields two solutions for 2lim with 90E < 2lim < 270E. For
both values of 2lim: r = 4.

Just as for an elliptical orbit, we can write for the pericenter distance of a hyperbolic orbit:

(8.6)

According to (6.21), the semi-major axis is given by

Because for a hyperbola the value of a is negative, we find for the total energy per unit of mass:

(8.7)

So, the total energy of a spacecraft in a hyperbolic orbit is always positive. For comparison, in
a parabolic orbit õ = 0; in an elliptical orbit õ < 0. Just as for the elliptical orbit, the relations
between a, e and p and the quantities H and õ are given by

(8.8)

(8.9)

(8.10)
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8.2. Velocity

In Section 5.6 we have derived equations for the radial velocity ((5.26)), normal velocity ((5.27))
and flight path angle ((5.28)) for any Keplerian orbit. In Section 6.3 we have derived an
expression for the velocity ((6.21)) in elliptical orbits. With our definition of the major axis of
a hyperbola, that equation equally applies to hyperbolic orbits. From the relations indicated, a
number of conclusions can be drawn about the variation of the velocity and its components along
a hyperbolic orbit:
S The velocity reaches a maximum value when the distance is minimum; i.e. at pericenter:

(8.11)

S The velocity reaches a minimum value for r = 4:

(8.12)

So, at an infinitely large distance from body k, body i still has a finite velocity with respect to
body k.

S The ratio between the maximum and minimum velocities in a hyperbolic orbit is given by

(8.13)

This ratio is a function of the eccentricity, e, only and not of, e.g. a or p.
S The local velocity in a hyperbolic orbit is always larger than the local escape velocity

(parabolic velocity) and is consequently also always larger than the local circular velocity. For
the ratio between the velocity at pericenter and the circular velocity at pericenter follows

(8.14)

S The radial velocity is only zero at pericenter. It reaches a maximum value for 2 = 90E, 270E;
i.e. at the points of the orbit where the latus rectum intersects the hyperbola.

S The maximum normal velocity occurs at pericenter. The minimum value of the normal
velocity component is zero and occurs at cos2 = -1/e.

S The flight path angle is zero at pericenter. It reaches a maximum value of ± 90E at cos2 = -1/e.
Then, body i is moving radially away from body k or towards body k.

A very interesting equation can be derived by substituting (7.3) and (8.12) into (6.21):

(8.15)

So, at every point along a hyperbolic orbit the instantaneous velocity is completely determined
by the local escape velocity and by the velocity at infinity. This expression is very important for
the analysis of interplanetary trajectories (Chapter 18). As will be explained in that Chapter, for
a given interplanetary mission the value of V4 is known. Then, the required velocity V at the point
where the spacecraft is injected into a hyperbolic escape trajectory can be computed directly from
(8.15). For example, to inject a spacecraft at an altitude of 200 km above the Earth’s surface into
a hyperbolic orbit with V4 = 4 km/s, the spacecraft has to be accelerated to V  = 11.71 km/s
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(Vesc = 11.01 km/s). To inject it into a hyperbolic orbit with V4 twice as large (V4 = 8 km/s), the
spacecraft has to be accelerated to V  = 13.61 km/s; or a velocity that is only 16% higher.

Figure 8.2: Variation of altitude, velocity and
flight path angle in a hyperbolic orbit about the
Earth (hp = 500 km, e = 2).

Figure 8.3: Variation of velocity versus altitude
for two hyperbolic orbits about the Earth (hp =
500 km), and curves for the local circular veloc-
ity and local escape velocity.

Figure 8.2 shows the variation of altitude, velocity and flight path angle along a hyperbolic orbit
about the Earth. The eccentricity is chosen as e = 2 and the perigee height is set at hp = 500 km.
Note that after 2 . 70E, the altitude rapidly increases with increasing values of 2; for 2 = 100E
the altitude is already about 25,000 km. The difference between the velocity and its normal
component increases continuously. At an infinitely large altitude (2lim = 120E), the spacecraft still
has a radial velocity of 7.6 km/s; the maximum radial velocity is approximately 8.8 km/s at
2 = 90E. The flight path angle continuously increases to ( = 90E at 2 = 120E. In Figure 8.3 the
relation between velocity and altitude is presented for two hyperbolic orbits, both with a perigee
altitude of 500 km. Also, curves representing the local circular velocity and the local escape
velocity are plotted as a function of altitude. Note that a small velocity increase above the escape
velocity at an altitude of 500 km causes a rather large value of V4. From this Figure also another
conclusion can be drawn: at an altitude of only about 400,000 km above the Earth’s surface
(approximately the distance to the Moon), the difference between the local velocity of the
spacecraft and its velocity at an infinitely large distance from the Earth is very small. This
property of hyperbolic orbits will turn out to be of fundamental importance for the analysis of
interplanetary trajectories (Chapter 18).

8.3. Relation between position and time

To derive a relation between position and time for a hyperbolic orbit, we could start from (5.21)
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and (8.1) and write

where the integration is performed from 2 = 0E (pericenter) to 2 = 21. However, integration of
this equation leads to the same kind of problems that were found in Chapter 6 for elliptical orbits.
That is why we will follow an alternative method that is very similar to the method applied for
elliptical orbits. To this end, a hyperbolic anomaly, F, defined as

(8.16)

is introduced. Note that this equation contains a hyperbolic function. Because we do not use these
functions very often, a summary of the definitions of a few hyperbolic functions and of their
properties is presented below.

The sinh-, cosh-, and tanh-functions are defined as

(8.17)

where exp(x) denotes the exponential function of x, often indicated by ex. Because the notation
e is already used for the eccentricity of the orbit, the notation exp(x) is used here instead of ex to
avoid any confusion. Sketches of these functions are shown in Figure 8.4; they demonstrate that

Figure 8.4: The hyperbolic functions sinh(x), cosh(x) and tanh(x).

For these hyperbolic functions there exist mutual relations and summation theorems, which show
some similarity to those for trigonometric functions. Two important relations are

(8.18)

From (8.17) we obtain the following expressions for the differential of two hyperbolic functions:
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(8.19)

We have defined the hyperbolic anomaly by means of (8.16). However, we still have to prove
that (8.16) can be used to describe the entire hyperbolic orbit. That can be done as follows. Since
1 # coshF < 4, we conclude that (8.16) describes the distance in the hyperbolic orbit for the
interval a(1 - e) # r < 4, which is just the interval in which r varies for a hyperbola.

For an elliptical orbit, it was possible to directly interpret the eccentric anomaly as a measure
of the angular position in the orbit. The hyperbolic anomaly, however, is not an angle (which is
clear from the fact that F varies from -4 to 4), but may be interpreted as the ratio of two areas.
This is illustrated in Figure 8.5. Note that also the eccentric anomaly should be interpreted as the
ratio of two areas, but this ratio corresponds to an angle due to the properties of a circle.

Figure 8.5: Geometric interpretation of the eccentric anomaly and hyperbolic anomaly.

Equating the right-hand sides of (8.5) and (8.16) yields a relation between the true anomaly and
the hyperbolic anomaly:

or

Substitution of this equation into the trigonometric relation

leads, after some algebraic manipulation, to

Using (8.18-2), we obtain

This expression resembles the relation between the true anomaly and the eccentric anomaly for
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elliptical orbits. Again, the relation is made unambiguous by selecting the plus-sign:

(8.20)

which means that for -90E < 2/2 < 0E (fourth quadrant) F is negative; for 0E # 2/2 < 90E (first
quadrant) F is positive.

To derive a relation between hyperbolic anomaly and time, we write (6.21) as

Using the expression for the angular momentum

this expression can be written as

(8.21)

Differentiation of (8.16) yields

(8.22)

Substitution of (8.16) and (8.22) into (8.21) gives, after some analytical manipulation,

In our notation dF/dt is always positive; furthermore, ecoshF > 1. This means that in the relation
above the plus-sign should be used. Then, integration of the above equation gives

(8.23-1)

where J is an integration constant. For 2 = 0E the spacecraft is at pericenter. According to (8.20),
then F = 0, and according to (8.17) sinhF = 0. Hence, the integration constant J indicates the time
of (last) pericenter passage. If an angular velocity  is defined as

(8.24)

then (8.23-1) can be written as

 (8.23-2)

When, just as we did for parabolic orbits, a kind of mean anomaly  is introduced:

(8.25)

then (8.23-2) can be written as
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(8.23-3)

Note that this equation resembles Kepler’s equation for elliptical orbits. Just as for an elliptical
orbit, to determine when body i is at a certain position in its orbit, is no problem. However, if the
question is asked where body i is at a certain time, a transcendental equation in F has to be
solved. Like for Kepler’s equation, it is not possible to solve this equation analytically in a closed
form. In addition, it is not possible to formulate a series expansion that is applicable for the
complete range of hyperbolic anomalies. This is a direct consequence of the fact that 1 < e < 4
and that the functions sinhF and  are non-periodic. Therefore, one is forced to use graphical
or numerical methods.

It is also possible to derive a version of Lambert’s theorem (Section 6.7) for hyperbolic orbits by
repeating every step in the derivation of that theorem, but now using the relevant expressions for
hyperbolic orbits. This derivation will not be given in this Chapter and only the result is
presented:

where r1 and r2 are the radial distances at t1 and t2, tf = t2 - t1, and c is the chord between the points
where the spacecraft is located at t1 and t2. The plus-sign holds for 22 - 21 < 180E and the minus-
sign holds for 22 - 21 > 180E.

8.4. Numerical and graphical solution of the transcendental equation

To prove that the transcendental equation (8.23) has only one solution for F, we analyze the
function

A series expansion of sinhF reads

These equations show that

Furthermore, dö/dF = ecoshF - 1 > 0. This means that there is only one value of F for which
ö(F, ) = 0 for an arbitrary value of .

To find the solution of (8.23), the simple method of successive approximations according to
the scheme

which was used for elliptical orbits, does not converge for a hyperbolic orbit because e > 1.
Instead, a Newton-Raphson procedure can be used:
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For small values of  we may take F = 0 as starting value for the iteration process. However,
this may lead to a poor convergence of the iteration process and for F > 6 even to computational
problems. Therefore, for a safe and quick convergence an appropriately selected starting value
of F should be used. For relatively small values of F, an appropriate starting value can be found
by using the Taylor series expansion up to order F 7 :

For all values of e > 1 and *F* < 2.7, we may write with an accuracy of better than 30%:

This leads to the third-degree equation

The real root of this equation can be found analytically from

(8.26-1)

where the arcsinh-function can be written as

We can also apply the standard method for solving a third-degree equation and then find the real
root from

(8.26-2)

Note that x - y is negative and so the second cube root yields a negative value.
For *F* > 2.7, an appropriate starting value of F can be found from

For all values of e > 1 and F > 2.7, we may write with an accuracy of better than 37%:

This leads to the expression

(8.27)

Similarly, for F < -2.7 we may write
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(8.28)

However, at the start of the iteration process we do not know the value of F and, consequently,
the criterion for the selection of the expression to be used for the computation of the starting
value of F must be based on the known values of e and . A numerical analysis of (8.23-3), in
combination with (8.26) to (8.28), shows that the quantity  can be used to determine which
expression has to be used to find an appropriate starting value of F for the iterative Newton-
Raphson procedure:

* * # 6 e : F should be computed with (8.26)
   > 6 e : F should be computed with (8.27)
   < -6 e : F should be computed with (8.28).

Various authors have proposed other iteration schemes to solve (8.23-3). These will not be
presented in this book.

It is also possible to find a graphical solution for the transcendental equation (8.23), just like for
elliptical orbits. For that purpose, first the hyperbolic function y = sinhx is drawn (Figure 8.6),
after which the point (- ,0) is marked on the X-axis. Subsequently, the point (- +e,1) is marked
on the line y = 1 and a straight line is drawn through these two points. Since for a hyperbola
e > 1, the slope of this line is always smaller than 45E. The intersection of the curve sinhx and
this line yields the required value of F.

Figure 8.6: Graphical solution of the hyperbolic anomaly.

The correctness of this graphical method can be proved as follows. The general equation of the
line is

This line passes through the points (- ,0) and (- +e,1), so

or a = 1/e, b = /e. As a result, the equation of the line is
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and for the intersection we find

which is identical to (8.23-3).
In Figure 8.7, true anomaly and altitude are plotted as a function of time after perigee passage

for two hyperbolic orbits, both with their perigee at 400 km above the Earth’s surface. Note that
during the first half hour the true anomaly increases rapidly, which means that the spacecraft has
a large angular velocity. After a few hours, the rate of increase of the true anomaly is only very
small and the spacecraft is moving almost radially away from the Earth. The altitude increases
almost linearly with time.

Figure 8.7: Variation of true anomaly and altitude in a hyperbolic orbit about the Earth as a function of
time after perigee passage (hp = 400 km).

8.5. Comparison of the expressions for elliptical and hyperbolic orbits

To conclude, it is interesting to point out that many expressions for elliptical orbits and for
hyperbolic orbits can be derived from each other when the substitution

(8.29)

is applied, where , and E and F are the eccentric and hyperbolic anomalies. This can be
shown as follows.

We know that the following relations hold for trigonometric and hyperbolic functions:

So, we may write with (8.29):
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When these relations are substituted into the expressions for the relation between distance and
hyperbolic anomaly, true anomaly and hyperbolic anomaly, and time and hyperbolic anomaly,
the following expressions result:

From the latter expression follows

So, when we start from the expressions for hyperbolic orbits and substitute F = iE, then the
corresponding expressions for elliptical orbits are obtained. Similarly, from the expressions for
elliptical orbits the corresponding ones for hyperbolic orbits can be derived.

A compilation of some expressions that have been derived for elliptical, parabolic and
hyperbolic orbits is presented in Appendix C.
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9. RELATIVE MOTION OF TWO SATELLITES

When it is assumed that the only force acting on a satellite is the mutual gravitational attraction
between the Earth and the satellite, and that the gravitational potential of the Earth can be
described by the Newton potential, -:/r, then the satellite moves in a Keplerian orbit about the
Earth. In Chapters 5 through 8, these Keplerian orbits have been analyzed. However, sometimes
one is not that much interested in the motion of the satellite relative to a (quasi-)inertial reference
frame with origin at the center of the Earth, but more in the motion of a satellite relative to
another satellite. Examples of such cases are rendez-vous missions (Chapter 15), the analysis of
the motion of a body in the vicinity of the International Space Station, and the analysis of the
motion of a cluster of satellites used for e.g. space interferometry. In addition, the theory of
relative motion can be applied when the actual perturbed motion of a satellite is compared to the
motion of the same satellite in its nominal unperturbed orbit. In that case, one, in fact, considers
the motion of that satellite with respect to a fictitious second satellite.

In this Chapter, a linearized theory will be developed that describes the relative motion of two
satellites for the case that the distance between the satellites will not become too large.

9.1. Clohessy-Wiltshire equations

It is assumed that a satellite (satellite 1) moves in a circular orbit about the Earth and that we
want to analyze the motion of a second satellite (satellite 2) with respect to the first satellite. It
is also assumed that the motion of both satellites is only affected by the gravity field of the Earth,
which is described by the Newton potential, -:/r. In that case, we can use the equations that have
been derived for the motion of the third body in the circular restricted three-body problem
(Section 3.3); the geometry of that problem is shown in Figure 3.4.

Figure 9.1: Geometry of relative motion. The XYZ reference frame rotates with uniform angular velocity
n1 about the .-axis of the (quasi-)inertial reference frame >0.. The origin of both frames coincides with
the Earth’s center of mass; P0 denotes the Earth, P1 and P2 the satellites 1 and 2.

In contrast to the situation in the circular restricted three-body problem, in the present case the
mass of the ‘second main body’, i.e. satellite 1, is also negligible with respect to the mass of the
‘first main body’, i.e. the Earth. So, we can write for the mass ratio : defined by (3.42): : = 0,
and we may assume that the center of mass of the system coincides with the center of the Earth.
The geometry of this problem and the notation used are indicated in Figure 9.1. The Earth is
denoted by P0; the satellites 1 and 2 by P1 and P2 , respectively. The motion of satellite 2 is
described with respect to a rotating reference frame XYZ with its origin at the mass center of the
Earth, and with the Z-axis perpendicular to the orbital plane of satellite 1. The X-axis points
towards satellite 1 and, because that satellite moves in a circular orbit about the Earth, the
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reference frame rotates with constant angular velocity about the .-axis of the inertial reference
frame >0.. The position of satellite 1 is fixed relative to this rotating reference frame and, in the
dimensionless quantities introduced in Section 3.3, the position of satellite 1 is given by x1 = 1,
y1 = z1 = 0. The X-, Y- and Z-axis specify the radial, along-track and cross-track directions of the
motion of satellite 2 with respect to satellite 1. The positive radial direction is outward, the
positive along-track direction is along the direction of motion of satellite 1 and the positive cross-
track direction complements a right-handed reference frame. The motion of satellite 2 is,
according to (3.46) and using the simplifications mentioned above, described by the following
equations:

(9.1)

where x, y, z are the components of the position vector  (Figure 9.1). It is emphasized that (9.1)
is written in the dimensionless quantities introduced in Section 3.3. For the relative coordinates
of satellite 2, we may write

(9.2)

where xr, yr and zr are the components of vector  (Figure 9.1). For the term 1/r3 in (9.1) we
then can write

Now, we assume that the distance between both satellites is at all times small when compared to
the radius of the orbit of satellite 1; i.e. rr n 1. Then, the relation given above may be linearized
and we find

(9.3)

Substitution of (9.2) and (9.3) into (9.1) gives, neglecting terms that are small of the second
order,

(9.4)

For the analysis of the relative motion of two satellites it is preferable to write the equations in
the usual physical units. With the definition of the dimensionless quantities given in Section 3.3,
we then find after some algebraic manipulation

(9.5)
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(9.5)

where n1 is the angular motion ((6.27)) of satellite 1 in its orbit about the Earth. We conclude that
the motion in the ZN-direction is a pure harmonic oscillation that is uncoupled from the motion
in the XN- and YN-direction.

From these equations, an integral of motion can be found. When the three equations are
multiplied by x0r, y0r and z0r respectively, and the results are subsequently added, we find

or

Integration leads to

(9.6)

where Vr is the velocity of satellite 2 relative to satellite 1. Note that 3xr2 - zr2 = C1, where C1 is
an arbitrary constant, represents hyperbolic surfaces. So, (9.6) indicates that at all points where
the relative trajectory intersects such a hyperbolic surface for a particular value of C1, the relative
velocity of satellite 2 has the same value. 

When, in addition to the attracting force described by the Newton gravitational potential, also
another force is acting on the satellite, the equations for the relative motion read

(9.7)

where fxr, fyr, fzr are the components of the additional force, per unit of mass. These equations were
first found by G.W. Hill (1838-1914) around 1878 and are known in celestial mechanics as the
Hill equations. They were re-discovered in the era of spaceflight for the analysis of rendez-vous
missions by W.H. Clohessy (-) and R.S. Wiltshire (-) around 1960 , and are therefore also known
as the Clohessy-Wiltshire equations. The equations describe the linearized motion of satellite 2
with respect to satellite 1, which moves in a circular orbit about the Earth. The terms that contain
the factors x0r and y0r represent Coriolis accelerations, while the terms that contain the factor n1

2

describe centrifugal accelerations. In the following, for simplicity we drop the index r; however,
the quantities x, y and z still indicate relative coordinates. So, in fact, we introduce an XYZ
reference frame centered at satellite 1, with the X-axis directed radially outwards and the Y-axis
directed in the along-track direction. Also the index 1 is left out; however, the quantity n still
indicates the angular velocity of satellite 1 in its orbit about the Earth.

Equations (9.7) can be solved analytically in a closed form, if the (additional) accelerations
on the right-hand side of (9.7) are constant (or zero), or if these accelerations can be expressed
by suitable analytical functions, such as Fourier series. In the following Section, a solution will
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be presented for the case that these accelerations are constant.

9.2. Analytical solution of the Clohessy-Wiltshire equations

We start with the third differential equation of (9.7). The solution of the homogeneous part of this
equation is

and a particular solution is

So, the general solution can be written as

(9.8)

The solutions of the first two differential equations of (9.7) can be found as follows. From the
second equation follows

(9.9)

Substitution of this result into the first equation results in

 

The solution of the homogeneous part of this equation is

and a particular solution is

The general solution then becomes

(9.10)

Substitution of this relation into (9.9) yields

Integration leads to

(9.11)

The constants A1, A2, B1, B2, C2 and D2 in the expressions (9.8), (9.10) and (9.11) can be
determined by substitution of the values of position and velocity at t = 0: x = x0, y = y0, z = z0, x0
= x00, y0 = y00, z0 = z00. This results in the relations
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from which the parameters A1, A2, B1, B2, C2 and D2 can be solved:

Substitution of these relations into (9.8), (9.10) and (9.11) yields, after some algebraic
manipulation,

 (9.12)

where the quantity nt indicates the central angle that satellite 1 has covered in the time interval
0 - t. By differentiation, we obtain for the velocity components

(9.13)
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(9.13)

Equations (9.12) show that, in the absence of the additional force f:
S The period of the periodic terms is equal to the orbital period of satellite 1.
S The motions in radial and cross-track directions are purely harmonic.
S The motion in the along-track direction includes a component that increases linearly with time

(drift), if the values of x0 and y00 are not equal to zero.
S The oscillation in the along-track direction is a quarter period ahead of the oscillation in the

radial direction.
S The amplitude of the along-track oscillation is twice the amplitude of the radial oscillation.
When also the additional force is acting on satellite 2, we find that:
S The component fx yields, in addition to periodic terms, a constant contribution in the radial

direction and a linear drift in the along-track direction.
S The component fy yields, in addition to periodic terms, a linear drift in the radial direction, and

a constant term and a quadratic drift in the along-track direction.
S The component fz yields, in addition to a periodic term, a constant contribution in the cross-

track direction.
For short time intervals, we may write

where terms of the order (nt)3 are neglected. In this case, (9.12) can be simplified to

These relations show that when nt n 1, and when the initial values of the relative position and
velocity components and of the additional force components are sufficiently small, the relative
motion of satellite 2 is in first approximation linear.

Equations (9.12) and (9.13) were, although in another set of coordinates, programmed in the
onboard computer of the manned Gemini capsule for the computation of the first rendez-vous
trajectories (Section 15.1). The rapid developments in computer hardware made it possible for
later missions to numerically integrate the complete set of equations of motion onboard.

It is recalled that the Clohessy-Wiltshire equations are linearized equations of motion relative
to a spacecraft that moves in a circular orbit about the Earth, and therefore only generate accurate
results for relatively short time intervals and relatively small distances between the two satellites.
As rule of thumb, we may use the criterion that the equations are (reasonably) accurate for a
period of up to one revolution of satellite 1 in its orbit about the Earth (nt < 2B) and for
*x*/r1 < 8*10-3, *y*/r1 < 6*10-2, *z*/r1 < 6*10-2, where r1 is the radius of the orbit of satellite 1.
Outside this range, the accuracy of the equations deteriorate rapidly. To increase the accuracy of
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the analytical theory, a number of alternative sets of equations have been developed that contain
higher-order terms. This topic will, however, not be discussed in this Chapter.

9.3. Characteristics of unperturbed relative motion

In case no additional force acts on satellite 2, the equations for the relative motion (9.12) can be
written as

(9.14)

The last equation shows that, as was already mentioned before, the motion in the cross-track
direction is a pure harmonic oscillation, uncoupled from the motions in the radial and along-track
directions. The first two equations (9.14) can be written in a more compact form. With the
notation

(9.15)

they can be written as

Squaring these relations and subsequently adding the resulting relations yields for :

(9.16)

This equation shows that in the XY-plane the motion of satellite 2 with respect to satellite 1 is an
ellipse, where the y-coordinate of the center of the ellipse, C, changes linearly with time. Note
the similarity with the Ptolemaic planetary model discussed in Section 5.5. In that model the
(relative) motion of a planet about the Earth is described by a circle (deferent) with superimposed
a second circle (epicycle). Here, the linearized motion of satellite 2 relative to satellite 1, and
relatively close to satellite 1, is described by a straight line parallel to the Y-axis with super-
imposed an ellipse, while the absolute motion of satellite 1 is a circle about the Earth and of
satellite 2, in general, an ellipse about the Earth. Figure 9.2 shows a sketch of the absolute (left)
and the relative (right) motion of satellite 2 in the XY-plane.

The coordinates of the center of the ellipse, which describes the relative motion, are given
by
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Figure 9.2: Sketch of a characteristic example of the absolute (left) and relative (right) motion of satellite
2 in the XY-plane.

(9.17)

from which follows that the center of the ellipse moves with a constant velocity:

(9.18)

parallel to the Y-axis. The major axis of this ellipse is oriented parallel to the Y-axis; the
magnitude of the semi-major axis is given by

(9.19)

The minor axis is parallel to the X-axis; the magnitude of the semi-minor axis is given by

(9.20)

Combination of (6.7) and (9.20) yields for the eccentricity of the relative elliptical orbit e = ;
this value is independent of the initial conditions.

As an example, Figure 9.3 shows the variations of x and y for the case that satellite 1 moves
in a circular orbit at an altitude of 400 km about the Earth. The period of this orbit is 92.5 min
and the angular velocity is n = 3.892 E/min. For satellite 2 the following initial conditions have
been adopted: x0 = y0 = z0 = 0; x00 = -0.5 m/s, y00 = 0.5 m/s, z00 = 0. Note that the relative motion
consists of a periodic component superimposed on a drift component. Below, we will analyze
three special cases of relative motion.

Concentric coplanar circular orbits
We now consider the case that  If the initial conditions satisfy the
relations
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(9.21)

then , the trigonometric terms in (9.14) are zero, and (9.14) simplifies to

(9.22)

So, for the initial conditions specified by (9.21) satellite 2 moves in a circular orbit about the
Earth; this motion takes place in the XY-plane. When x0 > 0, the radius of this circular orbit is
larger than that of satellite 1, and satellite 2 will gradually lag behind satellite 1 in the along-track
direction. When x0 < 0, the radius of the circular orbit of satellite 2 is smaller than that of satellite
1, and satellite 2 will gradually lead satellite 1 in the along-track direction. In Figure 9.4 the
relative motion of satellite 2 is plotted for the case that satellite 1 moves in a circular orbit at an
altitude of 400 km about the Earth, and x0 = y0 = 1 km, z0 = 0, x00 = z00 = 0, y00 = -1.5 nx0.

Figure 9.3: In-plane motion of satellite 2 rela-
tive to satellite 1 during two orbital revolutions
of satellite 1. Assumptions: h1 = 400 km, x0 = y0

= z0 = 0, x00 = -0.5 m/s, y00 = 0.5 m/s, z00 = 0.

Figure 9.4: In-plane motion of satellite 2 rela-
tive to satellite 1 during one orbital revolution of
satellite 1. Assumptions: h1 = 400 km, x0 = y0 =
1 km, z0 = 0, x00 = z00 = 0, y00 = -1.5nx0. 

Three-dimensional circular relative orbits
According to (9.17), the elliptical relative orbit of satellite 2 in the XY-plane remains centered at
satellite 1 (xC = yC = 0) if the following conditions hold:

(9.23)

which implies C1 = C2 = 0. For these conditions the ‘offset’ and drift terms in (9.14) vanish and
(9.14) simplifies to

(9.24)
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(9.24)

From (9.24), we find for the distance, d, between both satellites

This distance is constant if the coefficient of sin2nt is equal to the coefficient of cos2nt, and if the
coefficient of sinnt cosnt is zero. These requirements can be written as

Multiplication of the second relation by i /  and subsequent summation of the relations
yields

The solution of this equation is

(9.25)

Substitution of (9.25) into (9.24) gives for the relative motion:

(9.26)

To analyze the component of the motion in the XY-plane, we multiply (9.26-1) by 2 and
subsequently square the equation, square (9.26-2), and add both resulting relations. We then
obtain

(9.27)

This equation shows that in the XY-plane the motion is an ellipse, centered at satellite 1, with the
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semi-major axis, a, along the Y-axis and the semi-minor axis, b, along the X-axis, with

(9.28)

where the eccentricity of this ellipse is e = . Combination of (9.26-1) and (9.26-3) gives

(9.29)

From (9.27) and (9.29) we conclude that the three-dimensional circular motion of satellite 2
relative to satellite 1 takes place in a plane that is rotated about the Y-axis over an angle of 60E
or 120E relative to the plane of motion of satellite 1. So, the elliptical relative motion of satellite
2 in the XY-plane is the result of the projection of the three-dimensional circular relative motion
of satellite 2 onto the plane of motion of satellite 1.

Stationary coplanar elliptical relative orbits
If the initial conditions satisfy the relations:

(9.30)

then C1 = 0 and the motion takes place in the XY-plane with, according to (9.18) VyC = 0.
Consequently, the motion of satellite 2 relative to satellite 1 is an ellipse of which the center does
not move relative to satellite 1. For the location of the center of the ellipse, we find from (9.17)

(9.31)

The center of this stationary ellipse is therefore always located along the orbit of satellite 1. For
the semi-major axis and the semi-minor axis of this stationary ellipse, we find with (9.19), (9.20)
and (9.30):

(9.32)

Substitution of (9.30) into (9.14) yields for the relative motion of satellite 2 in the XY-plane

(9.33)

Differentiation of (9.33) yields for the velocity components

(9.34)

The relations (9.33) show that the period of the relative motion of satellite 2 is equal to the period
of the orbit of satellite 1. As an example, in Figure 9.5 the variation of x and y is shown for a
characteristic stationary elliptical relative orbit. It is assumed that satellite 1 moves in a circular
orbit at an altitude of 400 km about the Earth, and that x0 = y0 = 1 km, z0 = 0; x00 = 1 m/s, y00 = -
2nx0, z00 = 0.
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Figure 9.5: In-plane motion of satellite 2 relative to satellite 1 during one orbital revolution of satellite
1. Assumptions: h1 = 400 km, x0 = y0 = 1 km, z0 = 0, x00 = 1 m/s, y00 = -2nx0 , z00 = 0.

When satellite 2 is initially at the position of satellite, then

(9.35)

In that case, we find from (9.30) to (9.32):

(9.36)

and the equations of motion (9.33) become

(9.37)

Obviously, satellite 2 approaches satellite 1 very closely again after each orbital revolution.
When we require that the coordinates of the center of the relative elliptical orbit are xC = 

yC = 0, which means that satellite 2 performs a stationary elliptical orbit centered at satellite 1,
then the initial conditions (9.23) should be satisfied and the equations of relative motion in the
XY-plane read according to (9.24):

(9.38)

These expressions are identical to the expressions derived for the motion in the X- and Y-direction
in the case of three-dimensional circular relative orbits, which was discussed above. Conse-
quently, the semi-major and semi-minor axis of this ellipse are given by (9.28).

9.4. Relative motion after an impulsive shot

The theory developed above can also be applied to analyze the changes in the orbit resulting from
a short rocket thrusting period, i.e. an impulsive shot (Section 1.7). In this Section, we will
analyze the motion of the satellite after an impulsive shot maneuver, relative to the orbit that the
satellite would have followed if no impulsive shot would have been applied. So, in this case
satellite 2 is the satellite that has experienced the impulsive shot and satellite 1 is a fictitious
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satellite that follows the original orbit of satellite 2. Consequently, the state vector components
of satellite 2 just after the impulsive shot are identical to the state vector components of satellite
1 at that time, except for the velocity component in the direction of the impulsive shot. In the
following, three special cases will be analyzed.

Tangential impulsive shot
When the impulsive shot is applied in the direction of motion, i.e. tangential to the orbit (along
track), we have

(9.39)

where )V is the magnitude of the impulsive shot. The equations of motion after the impulsive
shot are found by substituting (9.39) into (9.14):

(9.40)

So, during the motion always x $ 0. The extreme value of x is reached after half an orbital
revolution (nt = B) and equals

From (9.40-2) we conclude that y exhibits a periodic variation superimposed on a linear variation
with time (drift). In the first phase of the motion y $ 0; after which a phase with y < 0 starts. In
that second phase the satellite lags behind its corresponding position in the original orbit. After

Figure 9.6: In-plane motion of a satellite after a
tangential impulsive shot of )V = 0.5 m/s rela-
tive to the fictitious position of that satellite in its
original unperturbed circular orbit at an alti-
tude of 400 km.

Figure 9.7: In-plane motion of a satellite after a
radial impulsive shot of )V = 0.5 m/s relative to
the fictitious position of that satellite in its
original unperturbed circular orbit at an altitude
of 400 km.
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the satellite would have completed a revolution in the nominal orbit (nt = 2B), its along-track
position relative to the nominal along-track position is given by

When the pulse is applied in the opposite direction, we have

and the resulting orbit is a mirror image of the relative orbit discussed above. In Figure 9.6, the
variation of x and y after a tangential impulse in the direction of motion is shown. It is assumed
that the satellite originally moves in a circular orbit at an altitude of 400 km about the Earth and
that the tangential impulsive shot has a magnitude of )V = 0.5 m/s.

Radial impulsive shot
When the impulsive shot is directed radially outward, we have

(9.41)

The equations of motion after the impulsive shot are found by substituting (9.41) into (9.14):

(9.42)

Note that the motion in X- and Y-direction is purely periodic, which means that an impulse in
radial direction results in a closed relative orbit and does not introduce any drift effect. The
extreme values of x and y relative to the satellite’s position in the (nominal) unperturbed orbit are

When the radial pulse is directed inward, we have

and the resulting orbit is the mirror image of the relative orbit discussed above. In Figure 9.7, the
variation of x and y after a outward radial impulsive shot is shown. It is assumed that the satellite
originally moves in a circular orbit at an altitude of 400 km about the Earth and that the radial
impulsive shot has a magnitude of )V = 0.5 m/s.

Normal impulsive shot
When an impulsive shot is applied perpendicular to the orbital plane (cross track) in the +Z-
direction, we have

(9.43)

The equations of motion after the impulsive shot are found by substituting (9.43) into (9.14):

Note that there is no relative motion in the X- and Y-direction and that the relative motion in the
Z-direction is purely periodic. The extreme values of z relative to the satellite’s position in the
unperturbed orbit are
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When the cross-track impulsive shot is applied in the opposite direction, we find

and the resulting orbit is the mirror image of the relative orbit discussed above.
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10. REGULARIZATION

In Chapters 6, 7 and 8 elliptical, parabolic and hyperbolic orbits were analyzed in detail. That are
classical topics, where the only difficulty is the efficient manipulation of the various relevant for-
mulas. In this Chapter, some attention will be paid to the more modern and much more difficult
concept of regularization.

In the discussion on the two-body problem (Chapter 5), it was found that the motion of body
i with respect to a non-rotating reference frame with body k at the origin can be described by

 (10.1)

In reality, other forces will also act on body i. In general, these additional forces are small and
therefore can be considered as perturbing forces. The equation of motion for body i then becomes

 (10.2)

where  is the perturbing force per unit of mass, i.e. the perturbing acceleration. Generally, this
system of three scalar coupled non-linear second-order differential equations cannot be solved
in a closed analytical form, and one is forced to use numerical integration techniques or
approximative analytical methods. The techniques used for the computation of perturbed orbits
will be discussed further in Chapters 20 through 23.

10.1. Singularity and numerical instability

From (10.2) we conclude that the differential equation describing the motion of body i becomes
singular for r 6 0. Of course, in reality r never becomes zero, but one may imagine that this
singularity becomes important when body i approaches body k very closely. Classical celestial
mechanics had not to worry about this, since close approaches of planetary bodies do not occur.
However, in astrodynamics, a close approach often occurs, e.g. in a very-eccentric elliptical orbit.
For a given semi-major axis, (6.2) and (6.4) show that if e81, then p90, rp90 and ra82a, and the
trajectory approaches a so-called rectilinear ellipse (Section 5.1). If we consider an orbit with
perigee at 500 km altitude and apogee at 200,000 km altitude above the Earth’s surface and draw
such an orbit to scale, it turns out to be a very elongated orbit in which the magnitude and
direction of the satellite’s velocity changes quickly near perigee (Figure 10.1). This causes a
number of problems, which are directly related to the technique of numerical integration. For an
understanding of these problems, it is therefore necessary to briefly discuss the essence of
numerical integration processes.

Equation (10.2) can be written as a system of three second-order or six first-order coupled
scalar differential equations. Several methods have been developed to numerically integrate
differential equations. The best-known are those belonging to the Runge-Kutta family and the
methods of Nordsieck, Adams-Bashforth, Gauss-Jackson and Adams-Moulton. When, for
simplicity, we write a first-order differential equation as

(10.3)

then we may state that numerical integration techniques are founded on the application of an
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Figure 10.1: A highly-eccentric elliptical orbit with perigee and apogee at 500 km and 200,000 km
altitude, respectively (left), and the variation of distance, velocity and flight path angle as a function of
the time after apogee passage.

expression of the type

(10.4)

where for each integration technique the structure of the function ö is different. In this
expression, h indicates the stepsize of the integration process, symbolically
indicate a series of function evaluations at xn+h, xn, xn-h, ....., xm. When the value of yn is known,
a value of h is chosen and the function on the right-hand side of (10.3) is evaluated at the selected
evaluation points. Then, from (10.4) follows the value of , with which the process can be
repeated until the end of the integration interval has been reached. It is emphasized that this is
a highly-simplified description of the integration process; however, it is sufficient for the present
discussion.

Because for very-eccentric elliptical orbits velocity and acceleration of body i become large near
perigee (close to the singularity), the accuracy with which the function ö in (10.4) can
approximate the true course of y will decrease in that region. Integration techniques that make
use of a large number of function evaluations in previous integration points, or intermediate
points, will be less susceptible, but this phenomenon will always be present. This leads to the so-
called truncation error in the integration process. Generally, this type of error increases with an
increasing stepsize. Therefore, one would like to decrease the stepsize of the integration process.
However, for a given integration interval this would mean more integration steps, causing the
round-off error to increase. This round-off error is a consequence of the fact that in a computer
a number is represented by a limited amount of significant digits, which is related to the so-called
wordlength used by the computer. Such an error occurs every integration step; it is often
cumulative and the accumulated round-off error thus increases with the number of integration
steps, i.e. with a decreasing stepsize. This discussion not only holds for very-eccentric orbits, but
also for every elliptical orbit, although to a lesser extent.

The occurrence of these two types of integration errors requires a careful selection of the
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stepsize to be applied in order to obtain high-accuracy results. Several techniques are known with
which one can determine the local optimum stepsize to be selected. For a non-circular orbit, the
optimum stepsize near perigee will be (much) smaller than near apogee. This, however, leads to
another problem, namely that most efficient integration techniques lose their efficiency when the
stepsize has to be changed too often during the integration process. To give an impression of the
effect of the applied stepsize on the accuracy of the computed orbit, Figure 10.2 shows some
results of numerical integrations. It was assumed that the satellite moves in a circular orbit 

Figure 10.2: Variation of *)õ* as a function of the number of integration steps per orbital revolution, n,
for a total integration period of 7 days and using a 6th-, 7th- or 8th-order Adams-Bashforth/Adams-Moulton
integration scheme (left); and for integration periods of 1, 4 or 14 days and using an 8th-order Adams-
Bashforth/Adams-Moulton integration scheme (right).

with an altitude of 900 km and an inclination (Section 11.5) of 45E. The orbit is supposed to be
perturbed only by zonal harmonics (Section 20.1) of the Earth’s gravity field. In that case, the
gravity field model is axially-symmetric about the Earth’s polar axis. In Section 23.1, it will be
shown that for such a gravity field the total energy per unit of mass of the satellite, õ, is constant.
This means that if the deviation of the local total energy from its original value, )õ, is computed
at each integration step from the position and velocity vectors at that time, as obtained in the
numerical integration process, the deviation )õ can be attributed to numerical integration errors.
The numerical integration was performed on an IBM 370/158 machine in double precision, which
is equivalent to a wordlength of seventeen significant digits. Only the first twenty zonal
harmonics, i.e. the terms with the coefficients J2 up to J20 (Section 20.1) were taken into account.
The integration was performed with a sixth-, seventh- or eighth-order Adams-Bashforth/Adam-
Moulton (AB/AM) predictor/corrector scheme that is often applied in astrodynamics; this multi-
step integration procedure was started with an eighth-order Runge-Kutta scheme. Figure 10.2
(left) shows the values of *)õ* as a function of the number of integration steps per orbital
revolution for a total integration period of 7 days, and the sixth-, seventh- or eighth-order
integration scheme. This Figure clearly demonstrates that there is an optimum integration
stepsize. For the sixth- and eighth-order methods, the optimum number of integration steps per
revolution is about 300 and 160, respectively, which is for the orbital altitude of 900 km
equivalent to a stepsize of about 20 s and 40 s, respectively. Interesting to note is that for the
larger number of steps per revolution (smaller stepsize) the sixth-order method provides slightly
more-accurate results, but that for stepsizes larger than 25 s the eighth-order method provides
much more accurate results. Figure 10.2 (right) shows the values of *)õ* as a function of the
number of integration steps per revolution, for integration periods of 1, 4 and 14 days, and for
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the eighth-order integration scheme. This Figure shows that the optimum integration stepsize
does not vary much with the total integration period, but that the accuracy of the integrated orbit
certainly degrades with increasing integration periods. For all curves, the increase of *)õ* at
stepsizes smaller than the optimum stepsize is due to the increasing round-off error resulting from
the larger number of steps within the integration period; the increase of *)õ* at stepsizes larger
than the optimum stepsize is due to the increasing truncation error.

As a result of the problems mentioned above, a need was felt to transform (10.2) into a form
that is no longer singular for r 6 0. Such a process is called regularization. The credit for
introducing regularizing variables is usually given to K.F. Sundman (1873-1949). For the
regularization of the two-body problem he used transformations of the independent (time)
variable. It is recognized today that such transformations do not offer the best formulation for
numerical analyses. Transformations involving both the dependent and the independent variables
are preferred to put the equations of motion in their optimum form for numerical integration.
Earlier, L. Euler (1707-1783) used regularization to study the straight-line motion in the problem
of two bodies. T. Levi-Cività (1873-1941) regularized the restricted problem of three bodies in
1903. K. Stumpff (1895-1970) and S. Herrick (1911-1974) used basically the same ideas when
they introduced the concept of universal variables (Section 11.11). The popularity of these
regularization techniques only came after 1968 and presently several regularization techniques
are known. The application of these techniques is even mandatory when one deals with close
approaches of celestial bodies in interplanetary missions (Chapter 18), and, in general, for the
accurate computation of highly-eccentric orbits.

Figure 10.3: Two satellites in circular orbits with slightly different radii.

There is, however, another problem with the differential equation (10.2). That is the fact that even
the unperturbed solution is dynamically unstable. This subject was already mentioned in Section
5.8 for a circular orbit. In the following, a different treatment of this phenomenon will be given.
We consider the case that body i describes a circular orbit about the Earth, where the radius of
the orbit is r0 (Figure 10.3). The angular velocity of body i then is n0 = (:/r0

3)1/2. Now, imagine
that another body j is at t = 0 near body i, but in a circular orbit with a slightly larger radius r1.
The angular velocity of body j is n1 = (:/r1

3)1/2. As a result of the different angular velocities, the
relative angular position, )n, of the bodies i en j will increase after t = 0, according to
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No matter how small *r1 - r0*, the angular distance between the bodies will become large when
(t - t0) is large enough. This implies that when a small error is made in the computation of a
satellite orbit, for instance due to the inevitable round-off and truncation errors related to the
numerical integration of the equations of motion, the computed position of the satellite in its orbit
will show increasing along-track errors. So, although the calculation of the orbit itself is a stable
process, the computation of the position of the satellite in its orbit (along track) shows an
instability. The second advantage of regularization is that a large portion of this dynamic
instability disappears.

From the discussion given above it will be clear that both the singularity and the dynamic instabi-
lity have nothing to do with the perturbing acceleration itself, but are characteristics of the two-
body problem. For an introduction to regularization techniques, we therefore will assume in
Section 10.2 that the orbit is a pure Keplerian one. The method of regularization that will be used
is that of C.A. Burdet (-), which was published in 1968.

10.2. Method of Burdet for a Keplerian orbit

The starting point for the analysis is (5.32), which can be written as

(10.5)

where  is the eccentricity vector or first Laplace vector (Section 5.7). When we subtract the
term  on both sides of (10.1), we obtain

(10.6)

Substitution of (10.5) into the left-hand side of (10.6) yields

Substitution of the classical relation for Keplerian orbits:

(10.7)

results in

(10.8)

Note that we already have made some progress in the process of regularization: the singularity
has weakened, because instead of r3 now r2 appears as the highest power in the denominator.

Subsequently, a fictitious time, s, is introduced, which is defined by

 (10.9)

This relation shows that when a constant stepsize )s is applied, near perigee much smaller steps
in physical time t are taken than near apogee (Figure 10.4). From the discussion in Section 10.1, 
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Figure 10.4: Variation of the stepsize )t in physical time as a function of the time after apogee passage
and for a constant stepsize )s = 0.5 km½ in fictitious time. Orbital perigee and apogee altitudes are 500
km and 200,000 km, respectively.

we conclude that a transformation of the physical time, t, in the differential equation (10.1) to the
independent variable s will already have a positive effect on the accuracy of the numerical
integration process. Therefore, this transformation is always recommended, even when no
regularization is aimed for. Note that the transition to the new time variable s implies that seven
instead of six first-order differential equations have to be integrated for the computation of
position and velocity of a satellite at a certain time t. This is no problem, because in the present
age of high-speed computers, the number of differential equations is not as important as the
stability and the numerical behavior of the system of differential equations.

From (10.9) we obtain

Substitution of these relations into (10.8) yields

(10.10)

in which a and  are constants, which are determined by the initial conditions. The equation of
motion (10.10) can be written as three scalar uncoupled linear second-order differential
equations, which display for r90 no singularity anymore. Comparing this equation with (5.14),
we note that they look somewhat similar. This means that the introduction of u = 1/r may be
considered as some form of smoothing and regularization. However, this concerns only the in-
orbit position, while the regularization technique described in this Section provides a
regularization of the full three-dimensional position vector.

When we consider elliptical orbits, for which 0 < a < 4, then the solution of (10.10) is

(10.11-1)

where  and  are integration constants (vectors), which follow from the initial conditions.
When we assume that at s = 0 the satellite passes perigee, we find from (10.11-1)



Fundamentals of Astrodynamics     SS     Regularization 225

where the index p refers to perigee and  is the velocity at perigee. Since  points towards
perigee, we conclude that  also points towards perigee and that  points along the velocity
vector at perigee and thus is normal to  and . Equation (10.11-1) describes a three-
dimensional harmonic oscillator with a constant frequency  and with its center at .
The frequency is fully determined by the initial conditions; a and  are constants and do not have
to be computed over and over again during the numerical integration process. When it is assumed
that the initial conditions are perfectly known, it is obvious that numerical integration errors have
no influence on the frequency and thus that the computation of the along-track position is
dynamically and numerically stable.

Scalar multiplication of (10.10) by  results, after substitution of (10.5), in

(10.12)

We may write

(10.13)

Substitution of these relations into (10.12) results in a simple differential equation for the
distance:

(10.14)

For an elliptical orbit (0 < a < 4), the general solution of (10.14) is

(10.11-2)

where C and D are integration constants, which vanish both for circular orbits. Substitution of
(10.11-2) into (10.9) yields for the physical time

(10.15)

or

This relation clearly shows that it is important to know the value of a, which is determined by the
initial conditions, very precisely. Any inaccuracy in a generates a continuously growing error in
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the computation of the physical time. So, due to regularization the dynamic instability has been
removed from the equations of motion, but it reappears in the relation for the physical time. It is
logical that the dynamic instability has not disappeared completely; after all, no mathematical
‘trick’ can eliminate a physical reality! However, the advantage of the regularization of the
equations of motion is that during the numerical integration of these equations in fictitious time
no stability problem occurs, resulting in a minimum accumulation of computation errors during
the numerical integration process.

To clarify the physical meaning of the fictitious time, s, we assume that t = 0 at a satellite
perigee passage. So,

Combination of these conditions with (10.11-2) yields C = 0, D = -ae. With these values, (10.11-
2) and (10.15) can be written as

(10.16)

A comparison between (10.16) and the equations for elliptical motion presented in Section 6.5:

shows that the fictitious time, s, is directly related to the eccentric anomaly, E, according to

(10.17)

This suggests that the eccentric anomaly, and thus also the true anomaly, which are the usual
parameters to describe the position of a satellite in an elliptical orbit, are ‘regularizing
parameters’. This may be proved by using equations (5.21), (6.33) and (6.36-2) to derive the
following relations:

(10.18)

Comparing these transformation relations with (10.9), we conclude that the transformation of
time, t, to true anomaly, 2, or eccentric anomaly, E, will have a positive effect on the accuracy
of the computation process. We may even say that the origin of regularization could be
contributed to Kepler. He certainly had no idea of the concept of regularization, especially since
to him calculus and differential equations were not known. Furthermore, Kepler’s interest in the
dynamics of the solar system excluded close approaches. Nevertheless, the use of the eccentric
anomaly introduced in his equation (6.36) does result in a uniform distribution of the local
truncation errors along the orbit, which certainly benefits the integration process (Section 10.3).

10.3. Generalized time transformation

The transformation of the independent variable as given by (10.9) and (10.18) can be generalized
and written as
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(10.19)

where C and m are constants. Note that m = l corresponds to the introduction of the eccentric
anomaly, E, and m = 2 to the introduction of the true anomaly, 2, with proper selection of the
constant A. As already stated in Section 10.2, such a transformation should preferably always be
applied, even if no regularization of the equations of motion is pursued. However, it is pointed
out that there exists an essential difference between the integration of the original equations of
motion and applying (10.19), and regularization. In the latter case, the differential equations are
rewritten in terms of a new independent variable. In the first case, we integrate the original
equations of motion with a variable stepsize in physical time, which does not eliminate the
singularity. Therefore, such a technique must necessarily fail when a near-encounter takes place,
since then the required number of integration steps tends to increase enormously, leading to large
integration errors.

In the period 1968 to 1975 many studies have been performed to determine the optimum
value of m in case a transformation of the type (10.19) is applied to integrate the original (non-
regularized) equations of motion. Various authors (e.g. J. Baumgarte, V.R. Bond, C.A. Burdet,
J.M.A. Danby, T. Feagin, R.P. Mikkilineni, P. Nacozy, C.E. Velez , P. Wong) have published the
results of their analyses. Some of their major conclusions can be summarized as follows:
S Time transformations of the type (10.19) often reduce significantly the overall integration

errors.
S For m = 1, the dynamic instability of a Keplerian orbit is significantly reduced; as m is

increased beyond m = 1, the dynamic instability further decreases. For m = 2, the unperturbed
two-body system is completely stabilized in the Liapunov sense.

S However, as m increases, the numerical instability of the applied integration algorithms may
increase, leading to the possibility of a larger global integration error by overriding the
reduced dynamic instability.

S Transformations of the type (10.19) may provide uniformization of local truncation errors, also
called analytical stepsize regulation. This means that for a proper value of m in (10.19) and
using a constant stepsize, each step will contribute about the same local truncation error. Then,
fixed-stepsize integration methods, which are in many situations more efficient than variable-
stepsize methods, can be used.

S For the unperturbed two-body problem, m = 1 provides approximately uniformization of local
truncation errors throughout the orbit; for a two-body problem with perturbations due to the
second zonal harmonic of the Earth’s gravity field (Sections 20.1 and 21.2), m = 1.5 provides
uniformization.

S Time transformations of the type (10.19) may reduce the local truncation error, allowing a
larger integration step. At perigee, m = 2 provides a smaller local truncation error than m = 1
when a fourth-order Runge-Kutta integration scheme is applied; at apogee, m = 1 is better than
m = 2.

S When a seventh-order Runge-Kutta scheme is applied to integrate an eccentric orbit perturbed
by the Earth’s second zonal harmonic, for a minimum local truncation error at perigee m
should be between 1.5 and 2 and for a minimum error at apogee between 1 and 1.5. In general,
it turns out that in many occasions a best comprise is to use m = 1.5 for the entire orbit.

10.4. Method of Burdet for a perturbed Keplerian orbit

The relations (10.10) and (10.14) are valid for an unperturbed orbit. In a similar way, for a
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perturbed orbit we find

(10.20)

(10.21)

It is emphasized that the parameter a has to be interpreted as the semi-major axis as defined by
(10.7). This means that it is related to the total energy of a Keplerian orbit, in which the potential
energy (per unit of mass) is given by -:/r. These equations are also non-singular for r90.
However, in this case a and  are no longer constants, but have to be computed again after each
integration step. But, they only vary as a result of the perturbing acceleration  and not as a result
of the main central acceleration -:/r2. This means that for perturbed orbits regularization will not
fully eliminate the effects of the dynamic instability on the computation of the along-track
position of a satellite, but these effects will be much smaller than when (10.2) is integrated
directly. Moreover, when one realizes that a is related to the total energy of the motion, it will
be clear that regularization is particularly useful when the total energy can be computed
separately from the integration process, which is the case when the perturbing forces are
described by conservative force fields.

In principle, the computation of the quantities a and  can take place by differentiation of
(10.7) and (10.5), which hold for Keplerian orbits, provided that they are written as

(10.22)

Differentiation of (10.22-1) yields

(10.23)

Now, the scalar product of (10.20) and d /ds is taken:

Substitution of (10.22-1) and (10.22-2) into this expression results in

(10.24)

From the relations (10.13) we obtain

(10.25)

Substitution of these relations into (10.24) gives
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(10.26)

Substitution of (10.26) into (10.23) gives

(10.27)

In a similar way, an expression for d /ds can be derived. For that purpose, (10.22-2) is
differentiated and we obtain

Evaluation of this relation, using (10.13) and (10.25), results in

(10.28)

From (10.20) and (10.22-2) follows

From (10.7) follows

which allows the previous relations to be written as

(10.29)

Substitution of (10.26) and (10.29) into (10.28), finally, leads to

(10.30)

When the perturbing acceleration  is known, the set of differential equations (10.9), (10.20),
(10.27) and (10.30) can be integrated numerically to compute the perturbed orbit; this set is of
the order eleven. The equations of motion contain no singularity for r90 and therefore form a
regularized set. In the following Sections, another classical regularization method is discussed.
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10.5. Method of Stiefel for perturbed two-dimensional motion

In this Section, we will first analyze a regularization technique for the motion in a plane, i.e. two-
dimensional motion. The analysis is based on the work of E.L. Stiefel (1909-1987) and G.
Scheifele (1940-) 1, who followed some basic ideas of T. Levi-Cività, who has studied exten-
sively the regularization of elliptical motion in a plane.

The starting point for this analysis is (10.2) and the introduction of a fictitious time, s, now
defined as

(10.31)

From this definition, we find

(10.32)

Substitution of (10.32) into (10.2) yields

To avoid any confusion, in this Section the position vector in physical space will be indicated by
, with components x1, x2, x3. The scalar distance r is indicated by r or , where appropriate.

In this notation, the equation of motion can be written as

(10.33)

Obviously, this equation is still singular for r90.

Levi-Cività noticed that as the eccentricity of an ellipse with a fixed value of the semi-major axis
approaches one, the shape of the orbit degenerates into a straight line segment along which the
moving body oscillates (Section 10.1). In Figure 10.5 (left) this motion is depicted; x1 and x2 are
the components of  in the plane considered. Note that the position vector makes a sharp bend
over an angle 2B at the origin, which corresponds to a singularity for the equation of motion. In
order to remove that singularity, Levi-Cività proposed to map the physical x-plane onto a
parametric u-plane, in such a way that the image of the moving body passes through the origin

Figure 10.5: Sketch of planar elliptical motion if the eccentricity approaches the value 1 at a fixed value
of the semi-major axis, for the physical x-plane (left) and the parametric u-plane (right).

1 E.L. Stiefel and G. Scheifele, Linear and regular celestial mechanics, Springer Verlag, 1971.
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after ‘collision’. Hence, the angle 2B in the physical plane must be transformed to the angle B
in the parametric plane.

This goal can be achieved by the conformal mapping:

(10.34)

where u1 and u2 are the new coordinates in the parametric plane (Figure 10.5, right) and are the
components of the vector . Squaring the transformation relation (10.34) and separating into real
and imaginary parts leads to

(10.35)

or, in matrix notation,

(10.36)

Differentiation of (10.35) yields

(10.37)

where the dot-notation indicates in this Section a differentiation with respect to the fictitious time,
s. The relations (10.37) can be written in matrix notation as

(10.38)

The two-by-two matrix appearing on the right-hand sides of (10.36) and (10.38) is known as the
Levi-Cività matrix, abbreviated in the following as LC-matrix:

(10.39)

Using this matrix, (10.36) and (10.38) can be written as

(10.40)

From (10.35) follows the important relation:

(10.41)

From these expressions we conclude that:
S The mapping of the physical plane onto the parametric plane ((10.34)) results in the square-

root of the original distance from the origin.
S That mapping also yields angles at the origin that are halved when compared to the original

situation.
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Hence, the image of a point (x1, x2) is most easily found by taking the square-root of its original
distance and by halving the original polar angle.

The LC-matrix, , has a number of interesting properties. First, it may be stated that the
matrix is orthogonal, since

(10.42)

where I is the unit matrix (identity matrix). Note that this definition of orthogonality is a
generalization of the definition  that is usually adopted. For the inverse of we may
write

(10.43)

Combination of (10.42) and (10.43) yields

(10.44)

This permits solving  from (10.40):

(10.45)

A second property of the LC-matrix is that its elements are linear and homogeneous functions of
the parameters u1, u2. Therefore, we may write

(10.46)

A third property is that the first column of  is just the position vector .

For the subsequent analysis we need two rules, which are valid for two arbitrary vectors  in
the parametric plane. The first one is

(10.47)

where  denotes the LC-matrix for the components of . This rule may easily be verified,
using (10.39). The second rule is

(10.48)

which can be proved as follows. Multiplication of (10.48) with  and substitution of (10.41)
and (10.44) yields

(10.49)

After some manipulation, the matrix in brackets turns out to be

which means that the left-hand side of (10.49) becomes
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This is identical to the right-hand side of (10.49), which proves the rule (10.48).

We now have all the relations needed to transform the equations of motion (10.33) into the u-
plane. Differentiation of the second of equations (10.40) yields

or, with (10.46),

Substitution of this relation into (10.33) and using (10.41) leads to

Substitution of both equations (10.40) yields

From (10.41) we obtain

Substitution of this relation in the previous one leads to

(10.50)

Equation (10.50) can be simplified by inserting after the first term minus two times the identity
(10.48) applied to the vectors  and We then find

Multiplying this relation with  and using (10.44) reduces it to

Finally, this relation is rewritten as
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(10.51)

We will not discuss this result here, but will first prove in Section 10.6 that the same set of
differential equations also holds for the motion in three-dimensional space, provided that  is
then considered a four-dimensional vector and special measures are taken.

10.6. Method of Stiefel for perturbed three-dimensional motion

The natural approach to extend the method of Stiefel discussed in Section 10.5 to the case of
three-dimensional motion would be to construct a square matrix of three rows and columns
having the characteristic properties of the two-by-two LC-matrix defined by (10.39). However,
it was shown by A. Hurwitz (1859-1919) and published in 1933 that the generalization of Levi-
Cività’s transformation to three dimensions is not possible, but that the transformation may be
extended to four dimensions. P.E. Kustaanheimo (1924-1997) proposed in 1964 to take advantage
of the ideas used in the theory of spinors by employing a pair of complex numbers, thus
generalizing the single complex variable of Levi-Cività’s theory. Working in real variable
analysis, this is equivalent to the introduction of four parameters u1, u2, u3, u4. Such an artificial
increase of the degrees of freedom does, of course, introduce some difficulties. However, they
turn out to be harmless if appropriate measures are taken.

In 1965, Kustaanheimo and Stiefel proposed the following four-by-four matrix:

(10.52)

which is now known as the Kustaanheimo-Stiefel matrix, or shortly the KS-matrix. This matrix,
however, already occurs in a letter by L. Euler to Ch. Goldbach (1690-1764) in 1748 by way of
a special case of the so-called Euler Identity. Note that the LC-matrix appears in the upper-left
corner of the KS-matrix. Bearing in mind the LC transformation, we now define the transforma-
tion of a point in four-dimensional u-space to the corresponding point in three-dimensional x-
space by

(10.53)

where the vector  is augmented by a fourth component that should vanish; i.e. has the value
zero. We will generalize this concept and adopt the convention that any vector in three-
dimensional physical space may be supplemented to a four-dimensional vector by adding a fourth
component of zero value. The transformation (10.53) is called the KS-transformation.
Combination of (10.52) and (10.53) yields the scalar relations

(10.54)

and it is seen that by the appropriate selection of the KS-matrix the fourth component of  does
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indeed automatically vanish.
We may easily verify that also for the KS-matrix holds:

(10.55)

which means that also the KS-matrix is orthogonal. Just as with the LC-matrix, we also find for
the KS-matrix the relation

(10.44)

It will be obvious that the KS-matrix also has the additional two properties found earlier for the
LC-matrix, thus,

(10.46)

and the first column of is just the position vector . It is stressed that the two rules (10.47)
and (10.48) may not be applied unrestrictedly anymore. Applying the definition (10.52) we find
that the first three components of the vectors  and  of (10.47) are identical, but that
the fourth components have opposite signs. That means that we may establish a theorem:
Theorem 1: When two vectors  and  satisfy the relation

(10.56)

then

(10.47)

The relation (10.56) is called the bilinear relation. It plays a fundamental role in the method
described in this Section.

We now formulate a second theorem.
Theorem 2: If two vectors  and  satisfy the bilinear relation (10.56), then

(10.48)

This theorem may be proved by writing (10.48) first in its equivalent form (10.49)

Evaluating the first row of the matrix in brackets and multiplying that with the vector  gives

Using (10.56) this yields

which is the first component of the vector on the right-hand side of (10.49). The analysis for the
remaining three components yields similar results. We thus conclude that the two rules (10.47)
and (10.48) hold both for the motion in a plane and for the motion in space; but in the latter case
only if the bilinear relation (10.56) is satisfied.

In the planar case, discussed in Section 10.5, we proceeded by rewriting the equation of motion
for the vector  into an equation of motion for the vector . However, this direct approach
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cannot be followed in the three-dimensional case analyzed in this Section. The reason is that the
KS-transformation is ambiguous if applied in the direction from  to . There is a whole one-
dimensional set of vectors  corresponding to a given vector . In fact, all points lying on a
given circle about the origin in u-space lead to the same points in physical x-space. The only way
to proceed therefore is to postulate that (10.51) also holds for the three-dimensional case and to
verify that the original equations of motion (10.33) are still satisfied. That proof will be given
below, using a number of auxiliary mathematical theorems originally stated and proven in the
book by Stiefel and Scheifele1.

However, first some comments are needed about the initial conditions of our differential
equations. Assume that the initial values  and  of the functions  and  are given
at the instant s = 0. To construct the corresponding initial values  and  the following
procedure should be followed. Basically,  could be chosen arbitrarily among the vectors
corresponding to  by the KS-transformation (10.54). It is recommended, however, to
compute  from

if x1 $ 0, else (10.57)

In the first case, u1 and u4 should be chosen in such a way that the first relation is satisfied; in the
second case, u2 and u3 should be chosen in such a way that the first relation is satisfied. For
simplicity, we usually select in the first case either u1 = 0 or u1= u4; in the second case either u2

= 0 or u2 = u3. It is emphasized that if at s = 0: r = 0, then also x1 = x2 = x3 = 0, which means that
for this physically very-unrealistic case (10.57) may not be used. Once the vector  has been
defined, and bearing in mind that we are concerned with a generalization of the two-dimensional
Levi-Cevità situation, we use (10.45) to find :

(10.58)

As has already been mentioned above, we now postulate that the motion in three-dimensional
physical space is described by (10.51), where now, of course,  is a four-dimensional vector.

We will now derive a number of relevant theorems.
Theorem 3: Consider any vector  in physical space, which is considered as a four-dimensional
vector with a fourth component of value zero. Define  as

(10.59)

Then, the vectors  and  satisfy the bilinear relation (10.56). This theorem may be proved by
multiplying (10.59) by :

(10.60)

The fourth component of the quantity  is given by
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which is the left-hand side of (10.56). Because the fourth component of  in (10.60) is zero, the
bilinear relation is satisfied.

Theorem 4: The initial vectors  and  satisfy the bilinear relation (10.56):

(10.61)

To prove this theorem we apply Theorem 3 to  and 

Multiplication with  leads to

Evaluating the fourth component of the left-hand side of this equation, and realizing that
, yields (10.61) and proves the theorem.

Theorem 5: The right-hand side of (10.51):

(10.62)

satisfies the bilinear relation

(10.63)

To prove this theorem, we start again from (10.59) and use  and :

Multiplication with  yields

Evaluating the fourth component of the left-hand side of this equation and realizing that f4 = 0
yields (10.63).

We now proceed with the set of differential equations (10.51), where we write the right-hand side
according to (10.62) as

(10.64)

We also write

(10.65)

for the left-hand side of the bilinear relation for . Again, we derive a number of relevant
theorems.
Theorem 6: The function  is a first integral of the differential equation (10.64). This
means that  is constant, provided any solution of (10.64) is inserted. To proof this
theorem, we differentiate (10.65):
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We now insert (10.64) and find

The right-hand side of this equation is according to (10.63) equal to zero, which means that g is
constant.

Theorem 7: The solution  of (10.64), which is subjected to the initial conditions 
stated above, satisfies the bilinear relation

(10.66)

where s takes an arbitrary value. The proof of this theorem is easy. Theorem 6 states that the
function g is constant and therefore takes anywhere the same value as for s = 0. That value is zero
according to Theorem 4. An important consequence of this result is that Theorems 1 and 2 are
applicable to the vectors  and  In particular, it follows from the definition of the KS-
transformation (10.53) and from Theorem 1 that

showing that the Levi-Cevità relation (10.40-2) also holds in three-dimensional space.

Theorem 8: Let  be the solution of (10.64). Its KS-transform (10.53) satisfies the original
equations of motion (10.31) and (10.33) as well as the given initial conditions  and  To
proof this theorem, we start with differentiating (10.41) and (10.40-2):

(10.67)

where (10.46) has been used. After multiplying the left- and right-hand side of (10.33) with r, the
left-hand side may be written as

Substitution of (10.41), (10.53), (10.40-2) and (10.67) leads to

(10.68)

Applying (10.48) to  and  gives

Substituting this relation into (10.68) yields

(10.69)

From (10.64) we obtain

Substituting this relation into (10.69) gives
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or, with (10.62),

or, using the orthogonality of the  matrix (10.55),

which is just the right-hand side of the equations of motion (10.33) after multiplication with
. So, the first part of Theorem 8 has been proven.

Concerning the second part of Theorem 8, i.e. that the KS-transform (10.53) satisfies the
initial conditions  and , we note that from (10.40-2) follows

or, with (10.58),

or, using the orthogonality of  again,

With this final theorem we have proved that the differential equations (10.51) for the parameters
, together with starting rule (10.58), fully describe the three-dimensional motion of

the body.

It is emphasized that (10.51) still contains a singularity for . To eliminate this singularity,
we introduce the total Keplerian energy per unit of mass:

(10.70)

Because a perturbing force acts on the body, the total energy, of course, is not constant but varies
with time. In the parametric space the energy relation reads

or, with (10.31) and (10.40-2),

The term in brackets may be written as

Because  is orthogonal, we may write for this expression according to (10.55):
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and we find for the energy per unit of mass

(10.71)

Substitution of (10.71) into (10.51) yields

(10.72-1)

Using the Keplerian semi-major axis:

(10.73)

we may also write (10.72-1) as

(10.72-2)

where one should realize that the semi-major axis is mathematically defined by (10.73) and
therefore is strictly related to the definition of the potential energy (per unit of mass) by .

Because õ and a vary with time, the numerical integration of (10.72) requires an additional
equation for the time variation of õ or a. To find such an equation, we start from (10.27), which
reads, according to (10.40-2), in parametric u-space:

This relation may also be written as

or

(10.74-1)

From (10.73) we find after differentiation

Substitution of (10.74-1) yields

(10.74-2)

Finally, we write (10.31), using (10.41), as



Fundamentals of Astrodynamics     SS     Regularization 241

(10.75)

We now have all equations available to integrate the regularized equations of motion numerically.
Note that (10.72-1) and (10.72-2) remain regular when , provided that the perturbing

force remains finite. So, with this method we have achieved the goal of regularization. In case
there is no perturbing force , then the equations (10.72-1) and (10.72-2) are reduced to the
equations of a harmonic oscillator centered at :

(10.76)

where õ and a are constants. The constant frequency of the harmonic motion is expressed by
. The equations (10.76) are stable in the sense of Liapunov, in contrast to the

original equations of motion (10.1).

For the method of Burdet (Section 10.2) we have derived a differential equation for the distance
r. We can do the same for the method of Stiefel and start by differentiating the first of (10.67):

Substitution of (10.72-1) into this relation leads to

Substitution of (10.41) and (10.71) yields

(10.77)

Also this equation remains regular when r90, provided that the perturbing force remains finite.
In case , a is constant and (10.77) reduces to

(10.78)

This equation is similar to (10.14), which was obtained with the method of Burdet (Section 10.2).
The only difference is the appearance of the factor 1/: in the first term on the left-hand side of
(10.78), which is a direct result of a different definition of the fictitious time.

After the regularized equations of motion have been integrated until the prescribed end of the
integration interval, a transformation from u1, u2, u3, u4, s to x1, x2, x3, t has to be performed. For
the transformation from the parametric u-space to the physical x-space, we use (10.52), (10.53)
and (10.40-2). The transformation of the fictitious time, s, to the physical time, t, requires the
integration of (10.31). It is emphasized that, as was already stated in Section 10.2, the solution
of (10.31) is unstable, which means that any error in the radius eventually yields arbitrarily large
errors in time. The full equations (10.72-1) and (10.72-2) are of the type of a perturbed harmonic
oscillator with slowly-varying frequency, if the perturbing force is small. As a final remark, it is
noticed that the total set of equations that has to be integrated numerically consists of the four
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second-order differential equations (10.72-1) or (10.72-2), the first-order differential equation
(10.74-1) or (10.74-2), and the first-order differential equation (10.75). So, the order of the
system of differential equations is ten, which is one less than in the Method of Burdet (Section
10.2), but four more than of the original set of equations in the physical space x. In practice, it
is seldom necessary to carry out the KS-transformation during the numerical integration. Thus,
the increase of computational labor produced by expressing the differential equations in four-
dimensional u-space should not be overestimated; it is also in most cases compensated by the fact
that these equations permit a larger stepsize during numerical integration.

In case the perturbing forces can be described partially by a perturbing potential, R, and partially
by a perturbing acceleration, , basically the same regularization scheme may be applied. In that
case, the original equations of motion ((10.33)) read

(10.79)

where  is the gradient of R. Repeating the derivation given in Sections (10.5) and (10.6)
we then find for the regularized equations of motion ((10.72-1) and (10.74-2)):

(10.80)

and similar relations when õ is replaced by a in the regularized equations of motion. In case the
perturbing potential is conservative, i.e. not explicitly depending on time, and no additional
perturbing force is present , (10.80) shows that the energy õ is constant and consequently
the frequency of the oscillator (10.76) is constant. This is an important property of the equations,
e.g. in situations where the orbit is computed under the assumption that only perturbing forces
due to the so-called zonal harmonics of the Earth’s gravity field are acting on the satellite
(Section 21.2 and Chapter 23).
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11. REFERENCE FRAMES, COORDINATES, TIME AND ORBITAL
ELEMENTS

For determining the position and velocity of a spacecraft at a certain moment of time, we require
a reference frame with respect to which position and velocity are described, an appropriately
chosen set of coordinates and a system for time measurement. For computing the spacecraft’s
motion from measurements taken by instruments on Earth, in addition we need a model
describing the rotational motion of the Earth relative to the adopted reference frame, and for very-
precise analyses even a model for the horizontal and vertical motions of the Earth’s surface. In
this context, it is emphasized that, formally, one should distinguish between a ‘reference system’
and a ‘reference frame’. A reference system then is the complete specification of how a celestial
coordinate system is to be formed. Both the origin and the orientation of the fundamental
(reference) planes (or axes) are defined. A reference system also incorporates a specification of
the fundamental models needed to construct the system; that is, the basis for the algorithms used
to transform between observable quantities and reference data in the system. A reference frame,
on the other hand, consists of a set of identifiable fiducial points on the sky along with their
coordinates, which serves as the practical realization of a reference system. In this book, we will,
however, not use this precise terminology, and we simply use the general phrase ‘reference
frame’ to denote a coordinate system; only in Section 11.2 the difference between a reference
frame and a reference system will be addressed again.

The classical concepts and systems applied to define reference frames and time were
developed since the eighteenth century on basis of a consistent system of definitions. The last
decades, major efforts were done to fine-tune the underlying definitions and concepts, and to
operationalize the adopted reference frames and time systems. This has led to the introduction
of quite complicated new concepts and definitions 1. These are, however, beyond the scope of this
book and we will therefore limit ourselves to those ‘classical’ definitions and concepts that are
fundamental to understand the basic aspects of reference frames, Earth’s rotation and time
systems applied in astrodynamics.

11.1. Position on the Earth’s surface

To define a position relative to the Earth’s surface, one usually takes a reference frame that is
based on the Earth’s axis of rotation. The points where this axis crosses the Earth’s surface are
called the north pole and the south pole. For simplicity, we will first assume that the shape of the
Earth is exactly spherical. Then, the great circle on the Earth’s surface halfway between the poles
is the Earth’s equator. The great circles passing through the poles are called meridians; they
intersect the equator at right angles. By convention, we take a meridian to be bisected by the
Earth’s equatorial plane into an upper and lower branch; the upper branch containing an observer
on the northern hemisphere. Henceforth, with a meridian we will always mean its upper branch.
Through any point P (Figure 11.1) on the Earth’s surface, the poles excepted, we can imagine just
one meridian. The geographic longitude, 7, of that point is defined as the arc length measured
along the equator from a reference meridian, called the prime meridian, to the meridian passing
through point P. Historically, various prime meridians have been used. In October 1884, the
meridian passing through the Royal Observatory at Greenwich, England, indicated in Figure 11.1 

1 G.H. Kaplan, The IAU Resolutions on Astronomical Reference Systems, Time Scales and Earth Rotation Models,
U.S. Naval Observatory, Circular No. 179, Washington, D.C., October 2005.
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Figure 11.1: Various concepts used to describe positions on Earth and on the celestial sphere.

by G, was selected at a conference as the official prime meridian due to its popularity; this
meridian was established by G.B. Airy (1801-1892) in 1851. However, French maps continued
to use the Paris prime meridian for several decades. Presently, the International Earth Rotation
and Reference Systems Service (IERS) maintains the International Reference Meridian, that is
often (also in this book) still called the Greenwich meridian, but that actually passes Airy’s
original transit circle about 100 m east. This International Reference Meridian is the one applied
for all present-day analyses and operational navigation purposes. Longitudes are measured either
to the east or west of the Greenwich meridian from 0E to 180E, indicated by E or W. It is more
convenient, however, when longitude is measured positively to the east of Greenwich and
negatively to the west; in that case the indication W or E can be dropped. The geocentric latitude,
N, of P is given by the geocentric angle measured along its meridian, from the equator to P.
Latitudes are measured either to the north or to the south of the equator from 0E to 90E; positively
to the north and negatively to the south of the equator.

Although we have assumed that the Earth is a perfect sphere, we know that this is not the case
and that a better approximation of the Earth’s shape is an ellipsoid of revolution (oblate
spheroid); i.e. an ellipse rotated about its minor axis, where this minor axis coincides with the
Earth’s rotation axis. The best approximation is obtained when the lengths of the minor and major
axes of this ellipsoid are selected such that deviations from the actual Earth’s surface are
minimized. We then arrive at the standard ellipsoid with a semi-major axis, ae, (equatorial radius)
of 6378.137 km and a semi-minor axis, ap, (polar radius) of 6356.752 km. The parameter ae

defines the Earth’s mean equatorial radius, which acts as a scaling factor in many geodetic and
geophysical models. An important parameter related to the shape of this ellipsoid of revolution
is the flattening (also called oblateness), denoted by f and defined as f = (ae - ap)/ae. This
parameter, which is usually given by its reciprocal value, is found to be approximately equal to
1/298.256. It is emphasized that the geoid, which is an equipotential surface accounting for the
Earth’s gravity field and for the Earth’s rotational motion about its axis, in first approximation
also can be described by an ellipsoid of revolution with its minor axis along the Earth’s rotation
axis. This correlation between the shape of the Earth and the shape of the geoid is to a large
extent due to the fact that early in its history the Earth was more elastic than today.
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Figure 11.2: Geocentric and geodetic latitude, and altitude.

The deviation of the standard ellipsoid from a pure sphere has a severe consequence for the
determination of the latitude of a place on Earth and requires the introduction of the concept of
geodetic latitude. In addition, we also know astronomical latitude. The geocentric latitude, N,
of a point P on the surface of the standard ellipsoid is defined as the angle measured perpendicu-
lar to the equatorial plane between the equator and a line connecting the geometric center of the
coordinate system with that point P. The geodetic latitude, Nr, of P (Figure 11.2) is defined as
the angle measured perpendicular to the equatorial plane, between a line normal to the tangent
plane touching the reference ellipsoid at point P and the equatorial plane. It may differ up to an
amount of about 12N from the geocentric latitude at that place (Section 11.6). The astronomical
latitude, Na , finally, is defined as the angle measured perpendicular to the equatorial plane,
between the intersection of the local gravity vector (plumb line) at point P and the equatorial
plane. Since this latitude is a function of the local gravity field, it is affected by the presence of
any gravity anomaly due to mountains, seas, etc. Differences between geodetic and astronomical
latitude are termed station error; differences of 5O are not uncommon, and they occasionally rise
to 40O. The flattening of the Earth also affects the measurement of the altitude, h (Figure 11.2).
Since altitude is measured perpendicular to the surface, the altitude above a point on the ellipsoid
is, in general, not measured along the geocentric radius vector to that point, as it is for a spherical
Earth.

An even better approximation of the shape of the Earth’s surface may be obtained by
superimposing small corrections on the ellipsoid such that a pear shape in north-south direction
and a slightly elliptical equator results. Then, the north polar radius is about 38 m longer than the
south polar radius. The major axis of the equatorial ellipse intersects the Earth’s surface at
longitudes of about 15E W and 165E E, and is about 138 m longer than the minor axis of the
equatorial ellipse.

11.2. Astronomical concepts

In denoting angular positions of celestial objects, it is convenient to use the concept of a fictitious
celestial sphere. This is a sphere with an infinitely large radius, centered at an observer on Earth
or at the mass center of the Earth. The remote stars appear to be set on the inner surface of this
sphere. It will be clear that only for nearby objects, like spacecraft, different angular positions
will be measured on the observer-centered celestial sphere and on the Earth-centered celestial
sphere. For astrodynamic purposes we will mostly use the latter type; this situation is depicted
in Figure 11.1. The celestial poles are defined as the points where the Earth’s rotation axis
intersects the celestial sphere; the north celestial pole corresponds to the Earth’s north pole. This
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celestial north pole presently lies close to a moderately bright star, " Ursae Minoris, called the
pole star or Polaris. The intersection of the Earth’s equatorial plane with the celestial sphere is
the celestial equator. Great circles on the celestial sphere passing through the celestial poles are
called hour circles (Figure 11.1). Again, we consider an hour circle to be limited to its upper
branch.

When the meridian of an observer on Earth is projected onto the celestial sphere, we speak
of the observer’s celestial meridian. This celestial meridian, of course, passes through the
celestial poles and through a point directly above the observer: his zenith. Owing to the Earth’s
rotation, the observer’s celestial meridian continuously sweeps around the celestial sphere. To
put it another way, the observer watches the celestial sphere rotating about the Earth’s spin axis
in a westward direction; celestial objects thereby passing the observer’s stationary celestial
meridian. This is the so-called diurnal motion.

Figure 11.3: Geocentric equatorial and ecliptic systems of coordinates.

If the Sun is observed from the Earth, it is found to possess a second motion in addition to its
diurnal motion. The Sun moves eastward among the stars at a rate of about 1E per day, returning
to its original position on the celestial sphere in one year. The path of the Sun over the celestial
sphere is called the ecliptic. The band of stellar constellations around this great circle on the
celestial sphere is called the zodiac. It is important to realize that seen from the Sun, the ecliptic
is nothing but the intersection of the plane of the Earth’s orbit about the Sun with the celestial
sphere 2. The ecliptic plane is inclined to the equatorial plane at an angle g, referred to as the
obliquity of the ecliptic (Figure 11.3). At the present time g . 23E27N. The axis of the ecliptic,
being the line through the center of the celestial sphere perpendicular to the ecliptic, intersects
the celestial sphere in the ecliptic poles. The angular distance between the celestial north pole and
the ecliptic north pole equals the angle g. Great circles on the celestial sphere through the ecliptic
poles are called circles of celestial longitude. As we did with meridians and hour circles, we will
only consider the upper branch of these great circles. The intersecting line of the equatorial plane
and the ecliptic plane (Figure 11.3) plays a fundamental role in the definition of reference frames.
This line is called the equinox line because when the Sun crosses this line, the Earth’s axis of
rotation is at right angles to the Sun-Earth line and, consequently, day and night have equal
length, everywhere on Earth. This is the case around March 20/21 and September 22/23 each
year. These crossing points are therefore called the vernal equinox and the autumnal equinox,
respectively. They are also referred to as first point of Aries, denoted by m, and Libra, denoted

2 A more precise definition is that the ecliptic is the mean plane of the orbit of the Earth-Moon barycenter around
the barycenter of the solar system.
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by S, respectively. From astronomical observations and the laws of celestial mechanics, we can
determine at any moment of time the position of these points relative to the stars. The times of
maximum (. 23.4E) and minimum (. -23.4E) solar declination are called solstices. This happens
around June 20/21 and December 21/22 each year, and therefore the points are called the summer
solstice and winter solstice, respectively. As an example, in 2013 the equinoxes and solstices
happened on March 20, 11h02m UTC; June 21, 05h04m UTC; September 22, 20h44m UTC; and
December 21, 17h11m UTC 3. Note that the designations vernal and autumnal equinox, and
summer and winter solstice, are somewhat misleading, since for an observer in the southern
hemisphere autumn starts when the Sun crosses the vernal equinox and it is mid-winter when the
Sun is at its summer solstice! 

The point m is actually not fixed between the stars on the celestial sphere, but moves slowly
across the sky because the celestial equator and the ecliptic are continuously in motion. Below,
some major aspects of this motion will be described briefly.

The motion of the equator (or the celestial pole), is primarily due to the gravitational
attraction by the Sun and the Moon on the spinning, oblate and elastic Earth. It consists of two
components: luni-solar precession and luni-solar nutation. Precession is the smooth long-period
motion of the mean celestial north pole around the ecliptic north pole; the mean celestial pole
traces out a circle, about 23.4E in radius, centered on the ecliptic pole, taking about 25,800 years
to complete one circuit. Precession does not change the obliquity of the ecliptic and causes the
point m to move along the ecliptic at a rate of -50O per year; so, in a westward direction. The
discovery of precession is usually attributed to Hipparchos (-190-120 B.C.). Nutation is a
relatively short-period motion of the true celestial pole around the mean celestial pole. The main
nutation component is due to the rotation of the Moon’s orbital plane about an axis perpendicular
to the ecliptic (Section 17.1); this component traces out an ellipse with major and minor axes of
about 18O and 14O, respectively, about the mean celestial pole every 18.60 years. As a
consequence, the obliquity of the ecliptic is varying with an amplitude of 9O and the point m is
undergoing an oscillation with an amplitude of roughly 17O along the ecliptic. Many additional
components are present, such as a semi-annual periodic component with an amplitude of 1.3O and
a semi-monthly component with an amplitude of 0.2O.

The motion of the ecliptic relative to inertial space is due to the gravitational attraction of the
planets on the Earth, which results in a slow rotation of the ecliptic about a slowly-moving
diameter; this motion is known as planetary precession and causes a precession of the point m
of about 12O per century along the celestial equator and a decrease of the obliquity of the ecliptic
of about 47O per century.

Luni-solar precession is about 420 times larger than planetary precession. Since, in addition
to the Sun and the Moon, the gravitational attraction by the planets also cause a small movement
of the Earth’s axis of rotation in inertial space, making the contrast in the terms luni-solar versus
planetary somewhat misleading. Therefore, the International Astronomical Union (IAU)
recommended in 2006 that the dominant component be renamed precession of the equator and
the minor component be renamed precession of the ecliptic; their combination is named general
precession.

Finally, the stars are only at a finite distance, showing some of their own motion on the
celestial sphere. The First Point of Aries, as its name suggests, was some 2000 years ago located
in the constellation Aries (Ram). Presently, it is located in Pisces (Fish) and it is moving into the

3 The concept of UTC (Universal Time Coordinated) will be defined in Section 11.4.



Fundamentals of Astrodynamics     SS     Reference frames, coordinates, time and orbital elements 248

direction of the constellation Aquarius (Water Carrier). That is called in poems and songs the
‘dawn of the age of Aquarius’. The exact moment when it will enter the constellation Aquarius
depends on where we draw the boundaries of the star constellations.

For the definition of a reference frame, the equatorial plane, ecliptic plane and vernal equinox
play a fundamental role. Because of all motions described above, we have to specify which
orientation of the equatorial plane and of the ecliptic plane, and so which location of the point
m, are taken to define the reference frame. Usually, the mean vernal equinox and equator (or
ecliptic) of a reference epoch are selected, whereby ‘mean’ refers to the fact that relatively short-
period motions have been filtered out. In astrodynamics, two choices for the reference epoch are
commonly used: the beginning of the year 2000 or the date for which the computations are
performed. We then speak of the mean equinox of 2000 reference frame or the mean equinox of
date reference frame. However, we have to realize that the very definitions of these planes and
their intersection are problematic for high-precision; there is no way magically to ‘paint’ them
on the celestial sphere at any particular time! Therefore, in practice, a set of fiducial objects with
assigned coordinates is used as the representation of an astronomical reference system. The
scheme is completely analogous to how terrestrial reference systems are established using
geodetic reference points on the Earth’s surface.

Nowadays, the fundamental celestial reference system for astronomical applications is the
International Celestial Reference System (ICRS), which is a space-time coordinate system, within
the framework of general relativity theory, with its origin at the center of mass of the solar system
(barycenter) and axis directions that are fixed with respect to distant objects (quasars and active
galactic nuclei) in the universe, which are observable at radio wavelengths. These radio sources
are assumed to have no observable intrinsic angular motions. Thus, the ICRS is a ‘space-fixed’
system; i.e. a kinematically non-rotating system. The IAU has specified a set of more than 210
extragalactic radio sources, whose adopted coordinates, relative to the ICRS origin at the solar
system barycenter and measured by Very Long Baseline Interferometry (VLBI), effectively
define the directions of the ICRS axes. This ‘realization’ of the ICRS is called the International
Celestial Reference Frame (ICRF). The ICRS is meant to represent the most appropriate
coordinate system currently available for expressing reference data on the positions and motions
of celestial objects, including spacecraft outside the immediate environment of the Earth. The
ICRS axes (as implemented by the ICRF) closely approximate (to within about 0.02O) the axes
that would be defined by the dynamical mean equator and equinox of 2000 reference frame, if
the latter is considered to be a barycentric system. The IAU has adopted a rotation matrix B
containing three very small angular offsets to convert data in the ICRS system to corresponding
data in the mean equinox of 2000 reference frame. Because the ICRS axes are meant to be space
fixed, there is no date associated with the ICRS. Furthermore, since the defining radio sources
are assumed to be so distant that their angular motions, seen from Earth, are negligible, there is
no epoch associated with the ICRF. It will be clear that the same orientation of the ICRS axes can
be used to define a geocentric kinematically non-rotating reference frame, which is generally
called the Geocentric Celestial Reference Frame (GCRF). This is a ‘local’ reference frame that
forms the basis for the definition of an appropriate non-rotating reference system in which
positions and velocities of bodies in the near-Earth environment, e.g. satellites, should be
expressed.

To describe the rotational motion of the Earth relative to the GCRF we have to apply models for
the precession and nutation of the Earth. Over the years, the IAU has adopted models of ever
increasing accuracy. The IAU 2000A precession-nutation model 1 consists of two parts: a preces-
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sion algorithm and a nutation algorithm. The precession algorithm consists of a short polynomial
series for the values of certain angles. The sines and cosines of these angles, in combination, then
define the elements of a precession matrix, P. The nutation algorithm consists of a rather long
series expansion in Fourier terms for the angular offsets of the actual celestial pole from the
precession-only pole (true pole minus mean pole). The sines and cosines of these offsets, in
combination, then define the elements of a nutation matrix, N. Both matrices are applied to the
coordinates of celestial objects to transform them from the equator and equinox of one epoch to
the equator and equinox of another epoch.

It is noted that the theories for precession and nutation hold for a dynamical mean equator
and equinox of date reference frame. Therefore, when we start from positions relative to ICRS
and want to compute coordinates with respect to the mean equinox of date reference frame, we
first have to apply the transformation matrix B to convert ICRS data to the dynamical mean
equator and equinox of 2000 reference frame, and then have to apply a transformation from that
frame to the mean equinox of date reference frame, using the existing precession and nutation
models.

Precession and nutation are motions of the Earth’s rotation axis relative to inertial space. These
motions affect the declination and right ascension of a celestial body and therefore have to be
taken into account in the computation of the positions of celestial bodies. For an observer on
Earth, the pole of the rotation axis moves relative to the Earth’s surface as a result of the non-
collinearity of the Earth’s polar principal axis of inertia and the Earth’s rotation axis. This
phenomenon is called polar motion. Since the position of points on Earth is specified relative to
an Earth-fixed rotating reference frame with its Z-axis pointing to the average position of the
north pole over some time interval, polar motion affects the ‘effective’ latitude and longitude of
points on the Earth’s surface. It should certainly be accounted for when observations from
tracking stations are used for the orbit computation of spacecraft. For completeness, the major
aspects of polar motion will be described briefly.

In essence, polar motion is a free nutation of the Earth. The (instantaneous) rotation axis then
describes a cone about the polar principle axis of inertia. It was first predicted by L. Euler (1707-
1783) in 1765 using a rigid model of the Earth. He found that the true north pole performs a
counterclockwise circular motion about the mean north pole with a period of about 305 days.
However, the Earth is deformable, which complicates the picture. The resulting free nutation,
called the Chandler wobble, is a periodic motion with a mean amplitude of 0.18O (5.5 m on the
Earth’s surface) and a mean period of 433 days. Polar motion is continuously excited by mass
redistribution in the atmosphere, oceans, mantle and core. As a result, the amplitude and period
of the Chandler wobble vary with time, and other periodic variations are introduced. These
include an annual term with a mean amplitude of 0.09O, a periodic term with an amplitude of
0.02-0.03O and a period of about 30 years (Markowitz wobble), and a semi-annual term with an
amplitude of 0.01O. It is emphasized, however, that the amplitudes of these periodic variations
may change considerably over the years. In addition, polar motion includes a secular (non-
periodic) term. Since observations began in 1899, the secular term has moved the north pole in
the direction of Newfoundland (76.1E W) at a mean rate of 0.0033O (10 cm) per year. But in
2005, this drift changed abruptly; the pole began moving eastwards and continues to do so.

Polar motion can hardly be modeled and predicted with a reasonable accuracy and therefore
one has to rely on observations. Information about the actual Earth’s orientation variations, as
determined from observations, is provided by the IERS Earth Orientation Centre at the
Observatoire de Paris, Paris, and the IERS Rapid Service/Prediction Center at the U.S. Naval
Observatory (USNO), Washington, DC.
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In the following, we will assume that the orientation of the equatorial plane and ecliptic, the
position of the vernal equinox and the coordinates of points on Earth are known with sufficient
accuracy at all epochs of interest.

11.3. Topocentric, geocentric and heliocentric reference frames

A measurement on the position and velocity of a satellite (or interplanetary spacecraft) is usually
taken by an observer on the surface of the rotating Earth. This means that such an observation
is taken relative to a rotating topocentric reference frame, where the observer is at the origin of
the coordinate system and the fundamental plane is the local horizontal plane, i.e. the plane
tangent to the standard ellipsoid at the position of the observer (Figure 11.4). The +X-axis is
taken as pointing due north, the +Z-axis is pointing away from the observer’s zenith (so ‘down’),
and the east-pointing +Y-axis completes the right-handed reference frame. The two angles needed
to define the location of an object relative to the observer are the elevation, H, and the azimuth,
R (Figure 11.4). The elevation is the angular position of an object relative to the local horizontal
plane, and is measured from 0E to 90E above the horizontal plane and from 0E to -90E below the
horizontal plane. The azimuth is the angle from the local north to the object’s meridian, measured
in clockwise direction from 0E to 360E in the local horizontal plane. Distance from the observer
to the object is defined as the slant range, D.

Figure 11.4: Position relative to the topocentric reference frame.

For describing the motion of a rocket or satellite with respect to the Earth’s surface, usually a
geocentric rotating reference frame is used. In this frame (Figure 11.1), the +Z-axis is directed
along the Earth’s rotation axis towards the north pole and the +X-axis is in the Earth’s equatorial
plane, crossing the Greenwich meridian. The +Y-axis lies in the equatorial plane, oriented such
as to make the reference frame right-handed. In spherical coordinates, position can be expressed
by the length of the geocentric radius vector, r, the geocentric latitude, N, and the geographic
longitude, 7.

For the description of the motion of satellites about the Earth, of spacecraft in a trajectory to
the Moon, or of spacecraft or planets in their orbits about the Sun, normally a non-rotating
reference frame is chosen that is suitable for the problem considered. For example, when the
motion of a satellite about the Earth or the motion of an interplanetary spacecraft about the Sun
is considered, the origin of the reference frame can be chosen at the center of the Earth or the
Sun, respectively. One should realize that even when the motion of the spacecraft is described



Fundamentals of Astrodynamics     SS     Reference frames, coordinates, time and orbital elements 251

as a pure two-body problem, these reference frames are non-inertial reference frames. After all,
the origin of the reference frame describes a Keplerian orbit about the mass center of the system.
That was precisely the reason why the ICRF (Section 11.2) was introduced.

Usually, the orientation of a non-rotating reference frame is defined by starting with a reference
plane that serves as the XY-plane, in which a fixed reference direction that is determined with
respect to the stationary celestial sphere, serves as the +X-axis. Two obvious choices for the
reference plane can be made. For describing the motion of satellites about the Earth, the XY-plane
of the non-rotating reference frame with its origin at the mass center of the Earth is the equatorial
plane. For the motion of interplanetary spacecraft, the ecliptic plane is used as the reference plane
of the non-rotating reference frame with the Sun at its origin. These reference frames are called
the non-rotating geocentric equatorial reference frame and the non-rotating heliocentric ecliptic
reference frame, respectively, or shortly the geocentric and the heliocentric reference frame.

For the direction of the +Z-axis, which is perpendicular to the reference plane, two options
are still open. For the geocentric reference frame, the +Z-axis is chosen from the center of the
Earth in the direction of the north pole of the Earth. The +Z-axis in the heliocentric reference
frame is chosen such that the angle between this axis and the +Z-axis in the geocentric reference
frame is equal to the obliquity of the ecliptic (g = 23E27N). In both reference frames, the +Z-axis
now defines the north pole (Figure 11.3). One of the obvious choices for the reference direction,
the +X-axis, in the geocentric reference frame is the direction towards the First Point of Aries,
m (Figure 11.1). The +Y-as is chosen in the reference plane, the equatorial plane, in such a way
that the reference frame is right-handed. The point m is also used as reference direction in the
heliocentric reference frame. This is possible because the radius of the celestial sphere is
infinitely large and the lines Earth-m and Sun-m are therefore parallel. Moreover, the line Sun-m
lies in the ecliptic plane, which is a requirement for the X-axis in the heliocentric reference frame.

In the geocentric non-rotating equatorial reference frame the geocentric angle measured along
the hour circle through a celestial object (star, planet, etc., spacecraft), indicated by S in Figure
11.1, from the celestial equator to that object is called the declination, *, of the object. It is
measured from 0E to 90E; positive north of the equator, negative south of it. Declination in this
reference frame is analogous to geocentric latitude on the surface of the Earth. The geocentric
angle measured along the celestial equator, from the point m to the foot of the hour circle through
S is called the right ascension, ", of the object. Right ascension is measured from 0E to 360E
from point m eastward. Declination, right ascension and distance from the Earth’s center describe
the position of a vehicle relative to the geocentric equatorial reference frame. In the geocentric
non-rotating ecliptic reference frame (Figure 11.3), the angular position of the celestial object S
is specified by two quantities, celestial longitude, 8, and celestial latitude, n. The celestial
latitude is defined as the geocentric angular distance measured along the circle of celestial
longitude passing through the object, from the ecliptic to that object. It is taken positive for
objects north and negative for objects south of the ecliptic, and measured from 0E to 90E. The
celestial longitude is defined as the angular distance measured along the ecliptic from point m to
the foot of the circle of celestial longitude through that object. This angle is measured from 0E
to 360E eastward along the ecliptic. In the heliocentric non-rotating ecliptic frame a position can
be described by its heliocentric radius, r, and by its heliocentric longitude and latitude, defined
analogously to celestial longitude and latitude in the geocentric ecliptic reference frame.

In all reference frames, the velocity vector of a rocket, satellite or spacecraft can be described
by the magnitude of the velocity and by two angles determining the direction of the velocity
vector. To this end, we introduce a spacecraft local horizontal coordinate system, where the local
horizontal plane is defined as the plane through the spacecraft perpendicular to the radius vector, 
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Figure 11.5: Spacecraft horizontal plane, flight path angle, (, and flight path azimuth, R.

(Figure 11.5). The local north-south direction is defined by the intersection of the +Z-axis of the
geocentric, heliocentric or planetocentric reference frame with this local horizontal plane (Figure
11.5). The +X-axis of the spacecraft local horizontal coordinate system points due north, the +Z-
axis points in the opposite direction of  (‘down’) and the east-pointing +Y-axis completes the
right-handed reference frame. The flight path angle, (, is the angle between the velocity vector
and the horizontal plane, and was already introduced in Section 5.6 in the analysis of the two-
body problem. This angle varies between -90E and +90E; +90E corresponding with a radially
outward directed velocity. The angle between the local north direction and the projection of the
velocity vector onto the horizontal plane is called the flight path azimuth, R. This azimuth is
measured from local north in a clockwise direction from 0E to 360E. Note the similarity between
this concept of flight path azimuth and the azimuth introduced earlier for the description of a
position in the topocentric reference frame.

11.4. Definition and measurement of time

Man has long held a belief that there is a ‘uniform time’. This concept of uniformity, however,
turns out to lack meaning. We have no master standard of which we are sure that it runs
uniformly. In fact, we even do not need it; all we really need is that our chronometric variable,
if inserted into our physical laws, furnishes reproducible predictions that are in agreement with
our observations. In practice, we take a suitable repetitive physical phenomenon and define
successive periods of repetition to be equal in length. Nowadays, it is felt that the time provided
by an atomic clock should correlate to the highest accuracy with our physical laws, and we take
by definition that this time progresses uniformly. We call this Atomic Time (AT). Though in this
way we can define a unit of time, for the fitting of time in a conventional scale we are committed
to astronomical observations; historically these form the basis for time reckoning systems.

In astronomy, the measurement of time intervals is based on the rotation of the Earth. The
observer’s time is defined as the angular distance covered by a reference object on the celestial
sphere after its last crossing of the (upper branch of the) observer’s celestial meridian. The time
interval between two successive crossings is called a day. Though the actual length of a day will,
in general, depend on the reference object chosen, each type of day is divided into 24 equal parts,
called hours. These hours again are subdivided into 60 minutes and each minute into 60 seconds.
The hour angle, H, of an object (Figure 11.1) is defined as the angular distance measured along
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the celestial equator from the observer’s meridian to the foot of the object’s hour circle. Because
for an observer on Earth, the apparent motion of celestial objects on the celestial sphere is in a
westward direction, the hour angle is measured positively to the west so that the hour angle
increases with time. As an increment in the hour angle of 360E corresponds to a time increment
of exactly one day, time can be defined as the hour angle of the reference object. As reference
object a particular star can be selected, e.g. Antares. When Antares crosses the observer’s
meridian, we may speak of 0h 0m 0s Antares time. Instead of selecting a particular star, it turns out
to be more convenient to use the vernal equinox or the Sun as reference object, resulting in
sidereal time or solar time, respectively. As the hour angle of a given point on the celestial sphere
differs at a certain epoch for observers with a different geographic longitude, both types of time
are local and we therefore speak of local sidereal time and local solar time. From Figure 11.1 we
can make the following observation. If the celestial object S transits the observer’s meridian, the
hour angle of S is zero and the hour angle of the point m is equal to the right ascension of the
object, ". This leads to the important conclusion that a celestial object always transits the
observer’s meridian at a local sidereal time equal to the right ascension of that object.

The sidereal time at Greenwich is called the Greenwich sidereal time, 2G. From our
definitions, we conclude that the observer’s sidereal time, 2, is obtained by adding the longitude
of the observer, 7, to the Greenwich sidereal time:

(11.1)

Sidereal time appears in two forms, mean and apparent, depending on whether the mean or true
(apparent) vernal equinox is the reference point. The difference between apparent and mean
sidereal time is expressed by the equation of the equinoxes, which is a complex periodic function
with a maximum amplitude of about 1.2 s. Apparent sidereal time is more relevant to actual
observations, since it includes the effect of nutation. For astrodynamics, however, we usually
select the mean vernal equinox of date as a reference, leading to Greenwich mean sidereal time,
2GM, and the mean vernal equinox at a reference epoch, e.g. January 1, 2000, to define the mean
equinox of 2000 reference frame. If we apply the concept of right ascension to describe the
position of an observer (or any other point on Earth) relative to the geocentric non-rotating
reference frame, we may write (Figure 11.1)

(11.2)

since both sidereal time and right ascension use the vernal equinox as reference. The value of 2GM

can be obtained from astronomical observations (see below). Once it is known, (11.2) provides
a very important basic linkage between the rotating and non-rotating geocentric reference frames.
We will use (11.2) in Section 17.4 and Section 18.2 to determine the right ascension of a launch
site.

The sidereal day is defined as the interval between two successive passages of the mean
vernal equinox across the observer’s meridian. As the point m moves slowly at a non-uniform rate
on the celestial sphere, the sidereal day will not have a constant length when compared to an
atomic clock, but will vary slightly. The sidereal day, however, is to within 0.01 s equal to the
true period of rotation of the Earth with respect to a fixed point on the celestial sphere. When
periodic fluctuations in the length of a sidereal day are filtered out, we speak of a mean sidereal
day. Sidereal time is very useful to astronomy; our lives and working days, however, are to a
large extent regulated by the Sun. Therefore, it is often desirable to use solar time. A solar day
is defined as the period of the Earth’s rotation with respect to the Sun. As the Sun moves, for an
observer on Earth, at about 0.986E per day along the ecliptic in an eastward direction, it will be
clear from inspection of Figure 11.6 that a solar day is somewhat longer than a sidereal day. After
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Figure 11.6: Difference between a sidereal day and a solar day.

one revolution of the Earth relative to point m, an observer P has still to cover the angle PPN
before his solar time has increased by 24 hours. As it takes the Earth 3m56s to rotate through an
angle of 0.986E, the solar day is about 4 min longer than the sidereal day. Apparent solar time
is related to the hour angle of the Sun. At midday apparent solar time, the Sun passes the upper
branch of the observer’s meridian. It is convenient not to start a solar day at the Sun’s crossing
of the upper branch of the observer’s meridian (noon), but at the crossing of the lower branch
(midnight). Consequently, the elapsed apparent solar time since the beginning of a solar day is
the hour angle of the Sun plus 12 hr. On September 22/23, the Sun passes through the autumnal
equinox. The vernal equinox then passes the meridian of an observer for whom it is midnight. At
that moment, local apparent solar time and local sidereal time are equal for the observer
mentioned. With each succeeding day from then, sidereal time gains about 4 min on solar time,
until just one year later the difference between them is 24 hr.

Owing to the ellipticity of the Earth’s orbit about the Sun, and the fact that the equatorial
plane and the ecliptic plane do not coincide, the apparent motion of the Sun on the celestial
sphere certainly is not ‘uniform’. For that reason, the solar day does not have a constant length.
Therefore, the concept of a fictitious mean Sun was introduced by S. Newcomb (1835-1909) in
1895; this mean Sun is assumed to move at a uniform rate eastward along the celestial equator
(not the ecliptic!), with a sidereal motion equal to the mean sidereal motion of the true Sun at
January 0.5 (i.e. December 31, 12h), 1900. Mathematical relations are available to compute the
position of the mean Sun relative to the true Sun at any time. A mean solar day, or civil day, is
the interval between two successive crossings of the mean Sun through the observer’s meridian,
and mean solar time is defined as the hour angle of the mean Sun plus 12 hr. During the year, the
difference between both kinds of solar time varies between -14 min to +16 min. By definition,
the length of a mean solar second is found by dividing a mean solar day by 86400 (= 24*60*60)
equal parts. In astrodynamics, we often use a standardized mean solar time: the Greenwich mean
solar time, which is usually called Universal Time (UT).

The rotation rate of the Earth is not constant, but shows various types of changes. Solid-Earth
and ocean tides cause the rotation rate,  to decrease secularly at a present rate of about -5.5
*10-22 rad/s2, or  . -2.4*10-10  per year. In addition, the rotation rate shows a number of
variations with different periods. Because of these irregularities in the Earth’s rotation rate, even
the mean solar day varies slightly over the years as compared to atomic time. Over the last four
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centuries the mean solar day has been increasing at a mean value of approximately 1.4 ms per
century. Superimposed on this secular trend, short-term fluctuations of between -3 ms and + 4
ms have occurred on a time scale of decades. For very-precise time determination therefore a new
kind of time was introduced in 1950: Ephemeris Time (ET). This is a time variable that is
consistent with the laws of dynamics, and causes the position of celestial bodies, as predicted
from the dynamical equations of motion, to agree with observation. The fundamental unit of ET
is the ephemeris second, which was chosen such that it equals the length of a mean solar second
at Greenwich mean noon, January 0, 1900. In 1975, ET and UT differed by about 45 s owing to
changes in the Earth’s rotation rate since January 0, 1900; in 1995 this difference had increased
to about 62 s. The use of ET continued until 1984; in 1979 and 1982, Terrestrial Dynamical Time
(TDT) and Barycentric Dynamical Time (Temps Dynamique Barycentrique, TDB) were
introduced to replace ET. These are time variables that are consisted with the laws of dynamics,
including relativistic effects, when the motion of planets is computed relative to a solar system
barycentric reference frame. TDT refers to the Earth’s center, while TDB refers to the solar
system’s barycenter. In 1991, Terrestrial Time (TT) was introduced as the new name for TDT.
It is noted that all dynamical time scales have no relation to the rotation of the Earth! 

We have found that, formally, two definitions of uniform time are in use. In astronomy, ET,
TDT, TDB and TT were devised from the laws of dynamics; in physics, AT was introduced. The
big advantage of atomic time is that it can be measured in a laboratory environment. The epoch
at which atomic time starts is usually set at 1958, January 1, 0h0m0s UT. International Atomic
Time (Temps Atomique International, TAI) is a product of the Bureau International des Poids et
Mesures (BIPM) in Sèvres, France, and is based on the analysis of about 200 frequency standards
maintained by several countries to keep a unit of time as close to the ideal Système International
(SI) second as possible. One SI second on the Earth’s surface at sea level (specifically, the
rotating geoid) equals the duration of 9,192,631,770 cycles of the wavelength associated with the
radiation emitted by the electron transition between two hyperfine levels of the ground state of
cesium-133. This numerical value makes the TAI second to be equal to the ET second as
determined from astronomical observations over the period 1956 to 1965. In January 1972, the
TAI second was adopted for all timing, replacing the ET second. On 1958, January 1, ET and
TAI differed by 32.184 s and assuming that TAI and ET run at an equal rate, presently the
difference is still 32.184 s. By definition, the difference TT - TAI is 32.184 s, which is the best
available estimate of the difference between TDT and TAI on January 1, 1977, 0h0m0s, and
therefore makes TT to preserve continuity with the now obsolete time scales ET and TDT.

The universal time mentioned above (UT) is nowadays known as UT0. Because this time is based
on astronomical observations, the effect of the secular decrease of the rotational velocity of the
Earth has implicitly been taken into account. From this time, several other time indications have
been deducted, which are corrected for known deviations in the orientation of the rotational axis
and in the rotational velocity of the Earth. Polar motion results in variations in the moment of
time at which the mean Sun passes the meridian of Greenwich, and thus in UT. The version of
universal time that is corrected for this effect is called UT1, which makes this time independent
of station location. For an observer at mid-latitudes, differences between UT1 and UT0 are at
most about 0.030 s. When also season-bound variations in the rotational velocity of the Earth are
corrected for, then the universal time is indicated by UT2. The correction from UT1 to UT2 is
at most about 0.035 s. However, the concept of UT2 is nowadays considered obsolete.

Universal Time Coordinated (UTC) is a hybrid standard of time, the progression of which
is determined by TAI and the reference to the Earth’s rotation by UT1. This is the time that is
broadcasted by radio signals of standard radio stations. Due to the fact that UTC is related to
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atomic time, it shows a highly ‘uniform course’. It should be noticed, however, that when UTC
was officially initiated on January 1, 1961, the UTC second was not identical to the TAI second.
This UTC was intended to permit a very close approximation of UT2, within around 0.1 s. To
achieve that goal, synchronization of UTC with UT2 and adjustment of the length of the UTC
second had to be applied quite frequently. This led to practical problems and therefore the
concept of UTC was adapted. Since January 1, 1972, the UTC second is identical to the TAI
second, UTC tracks UT1 rather than UT2, and leap seconds are used to keep the difference
between UT1 and UTC to within ±0.9 s. Theoretically, a negative or positive leap second can be
inserted at any time; a positive leap second corresponds to a decrease of the Earth’s rotation rate
and a negative leap second to an increase of the rotation rate. Up to now, only positive leap
seconds have been inserted on June 30 or December 31 of a particular year. UTC was set exactly
10 s behind TAI on January 1, 1972, 0h0m0s, which was the approximate accumulated difference
between TAI and UT1 since the inception of TAI in 1958. Consequently, )AT = TAI - UTC is
always an integer number of seconds. The first leap second was inserted on June 30, 1972.
Usually, leap seconds were inserted once a year; a major exception is the period January 1, 1999,
to December 31, 2005, when the difference between UTC and UT1 increased slower than usual
and no leap seconds had to be inserted. )AT has changed in steps of 1 s from 0 s on January 1,
1958, via 10 s on January 1, 1972, 25 s on January 1, 1990, 32 s from January 1, 1999, through
December 31, 2005, 33 s from January 1, 2006, through December 31, 2008, 34 s from January
1, 2009, through June 30, 2012, and 35 since then (until at least June 2015).

The satellites of the Global Positioning System (GPS) transmit time signals that are related
to UTC. GPS Time (GPST) is implemented by the atomic clocks in the GPS ground control
stations and the GPS satellites. The difference between UTC and GPST is that GPST is not
corrected to match the rotation of the Earth, so it does not contain leap seconds. GPST was
synchronized with UTC on January 6, 1980, 0h0m0s UTC, when )AT was 19 s, and has been
steered in close synchrony with TAI since then. Therefore, the difference TAI - GPST has always
been 19 s to within 50 ns. Consequently, GPST was ahead of UTC by 13 s during the period
January 1, 1999, to December 31, 2005, by 14 s from January 1, 2006, through December 31,
2008, by 15 s from January 1, 2009, through June 30, 2012, and by 16 s since then; this time
difference is also broadcasted by the GPS satellites. Receivers subtract this offset from GPST to
calculate UTC.

For the user, then, UTC, which is widely available from GPS, radio broadcast services, and
the Internet, is the practical starting point for computing any of the other time scales described
above. We simply add the current value of )AT to UTC to obtain TAI; TT is then just 32.184
seconds ahead of TAI. The theoretical time scales TDB and ET can be obtained from TT using
the appropriate mathematical formulas. For the time scales based on the rotation of the Earth, we
again start with UTC and add the current value of )UT1 to obtain UT1. The various kinds of
sidereal time can then be computed from UT1 using standard formulas.

Around 2008 one began to realize that the occasional insertion of leap seconds into UTC may
create serious difficulties for operational navigation and communication systems. Therefore, the
International Telecommunication Union (ITU) started a study to determine future requirements
for continuous globally-accepted time scales for use both in navigation/telecommunication
systems, and for civil time keeping. The study results should be available by 2015.

Year and month
We have seen that the length of the day is based on the rotation of the Earth. In addition to the
day, we also use the year and the month to describe time intervals. The year is based on the
motion of the Earth about the Sun, while the month is based on the motion of the Moon about the
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Earth. There are various definitions of the year and the month; in this Section we will only
mention the most important ones.

The sidereal year is the time it takes the Earth to complete one revolution about the Sun,
when measured relative to an inertial reference frame; so, it is the orbital period of the Earth
relative to the stars. The average length of the sidereal year is 365d6h9m10s (365.256363 mean
solar days). The anomalistic year, with an average length of 365d6h13m52s (365.259636 mean
solar days), is the period between successive perihelion passages of the Earth. The tropical year
is the time between two successive passages of the Earth through the vernal equinox, and is the
year that is synchronized with the seasons on Earth. The average length of the tropical year is
365d5h48m45s (365.242190 mean solar days). The differences in length of the anomalistic and
tropical years relative to the sidereal year are a result of the fact that the ecliptic, the equatorial
plane and the orientation of the (elliptical) Earth’s orbit in the ecliptic vary with time due to the
gravitational attraction by Sun, Moon and planets. A Besselian year, named after F.W. Bessel
(1784-1846), is a kind of tropical year and refers to one complete revolution in right ascension
of the (fictitious) mean Sun. It starts at the moment when the ecliptic longitude of the mean Sun
is 280E; this value was chosen because it is currently near the beginning of the Gregorian year
(see below). The Besselian year has (about) the same length as the tropical year. Its use has
become obsolete since 1984.

The sidereal month is the time it takes the Moon to complete one revolution about the Earth,
when measured relative to an inertial reference frame; so, it is the orbital period of the Moon
relative to the stars. The average length of the sidereal month is 27d7h43m12s (27.321661 mean
solar days). The anomalistic month is the interval between two successive perigee passages of
the Moon; its average length is 27d13h18m33s (27.554550 mean solar days). The nodal or
draconic (draconitic) month is the interval between two successive passages of the Moon through
its ascending node (ecliptic), its average length is 27d5h5m36s (27.212220 mean solar days). The
tropical month is the time it takes the Moon to return to the same ecliptic longitude; its average
length is 27d7h43m5s (27.321582 mean solar days). The synodic month is the interval between two
successive New Moon’s (a lunation); so, it is the orbital period of the Moon relative to the Sun
and is on average 29d12h44m3s (29.530589 mean solar days). Again, the gravitational attraction
by Sun, Earth and planets are the cause for the differences in length of the anomalistic, nodal and
tropical months relative to the sidereal month. The difference of about 2.2 days between a
synodic month and a sidereal month is a result of the motion of the Earth-Moon system about the
Sun.

An interesting fact is that 223 synodic months is approximately equal to 239 anomalistic
months, which is approximately equal to 242 draconic months, which is approximately equal to
6,585.322 days. This period of 6,585.322 days (18 years plus 10.322 days or 11.322 days,
depending on the number of leap years, which is called today the Saros cycle, has been known
since at least the Babylonians around the fifth century B.C. and was later known to Hipparchos,
Gaius Plinius Secundus (Pliny; 23-79) and Claudius Ptolemy (latin: Ptolemaeus; -85-165) under
different names. The name ‘Saros’ was first given to this cycle by E. Halley (1656-1742) in 1691.
It can be used to predict solar and lunar eclipses. These eclipses can only occur when the Moon
is between the Sun and the Earth (New Moon) or when the Earth is between the Sun and the
Moon (Full Moon), respectively. Suppose that at a certain moment of time an eclipse occurs.
After one Saros cycle, the Earth-Sun-Moon geometry will be nearly identical and a nearly
identical eclipse will occur. A complication is that the period of the Saros cycle is not an integer
number of days, but contains a residual of about 1/3 of a day. Thus, as a result of the Earth’s
rotation, for each successive Saros cycle, an eclipse will occur about 8 hr later in the day. In the
case of an eclipse of the Sun, this means that the region of visibility will shift westward by about
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120E, and the two eclipses will thus not be visible from the same place on Earth. In the case of
an eclipse of the Moon, the next eclipse might still be visible from the same location as long as
the Moon is above the horizon. After three Saros cycles, the local time of day of an eclipse will
be nearly the same. This period of three Saros cycles (19,755.97 days), is known as a Triple
Saros and was already known to the ancient Greek astronomers.

Calendar
The calendar of ancient cultures was based on the synodic month, probably because changes in
the Moon’s phase are so readily apparent. At the simplest level, all lunar calendars are based on
the approximation that 2 lunations last about 59 days. These calendars therefore used a 30 day
full month followed by a 29 day hollow month. However, this system is only marginally accurate
and quickly needs correction by using larger cycles, or the equivalent of leap days. To keep the
lunar calendar (on the long run) synchronized with the seasons, one tried to use a system with an
integer number of months in an integer number of years. The most common solution to this
problem is the Metonic cycle (Meton of Athens; -460-400 B.C.) , which takes advantage of the
fact that 235 lunations are approximately equal to 19 tropical years (6939.6016 days); the
difference is only about 2.083 hours. The still more-accurate Callippic cycle (Callippus of
Cyzicus; -370-310 B.C.) consists of four Metonic cycles, less one day. A Metonic calendar (such
as the Hebrew calendar) will drift against the seasons by about 1 day every 220 years. The
problems of creating reliable lunar calendars may explain why solar calendars were introduced.
These solar calendars, having months which no longer relate to the phase of the Moon, are based
on the motion of the Sun against the sky; they have generally replaced lunar calendars for civil
use.

Since the tropical year, which is synchronized with the seasons, corresponds to 365.242190
mean solar days and one used 29 or 30 days in a lunar calendar, it was quite logical to adopt 12
months in a solar calendar plus some ‘additional’ days. The ancient Egyptians had a calendar that
consisted of 12 months of 30 days each, with 5 days extra set aside at the end of the year for
celebrations. In that way the year had a length of 365 days. The calendar of ancient Rome, the
Roman calendar, originally consisted of 10 months of 30 or 31 days; the calendar year lasted 304
days and there were about 61 days of winter which were not assigned to any month. The Julian
calendar, instituted by the Roman emperor Julius Caesar in 46 BC, had 365 days divided, as we
do today, in 7 months of 31 days, 4 months of 30 days and 1 month of 28 days; every fourth year
there was an additional day at February 24. So, the average length of a Julian year is 365.25 mean
solar days, which is about 11.25 min longer than the tropical year, leading to a discrepancy of
0.781 day per century. By the time that the Julian calendar was adopted on January 1, 45 BC, it
had to be made of 445 days long in order to bring the seasons back on schedule. At the Council
of Christian bishops convened at Nicaea in the year 325 the Julian calendar was ‘calibrated’ such
that the Earth’s passage through the vernal equinox occurred on March 21. By 1582, the
difference between the tropical year and the Julian year since the Council of Nicaea had resulted
in an accumulated difference of about 10 days. So, the date of the Earth’s vernal equinox passage
had retreated from March 21 to March 11. Accordingly, Pope Gregory XIII called upon the
astronomer Clavius to revise the Julian calendar. His solution was to drop 10 days from the
calendar, so that the day following Thursday, October 4, 1582, thereby became Friday, October
15, 1582. To avoid future discrepancies, he introduced the system that century years divisible by
400 do not have 366 days but 365 days. Consequently, the average length of the Gregorian year
is 365.2425 mean solar days. As this values is very close to the length of a tropical year, this
calendar is synchronized with the seasons to about 1 day in 3300 years. The Gregorian calendar,
which is our present civil calendar, was readily adopted by the Catholic countries; Protestants



Fundamentals of Astrodynamics     SS     Reference frames, coordinates, time and orbital elements 259

and Lutherans followed slowly in adopting this calendar. When Great Britain and the American
colonies changed to the Gregorian calendar in 1752, September 2 had to be followed by
September 14, in order to compensate for the discrepancy that had grown to 12 days since 1582.
Early in the twentieth century the last countries in Europe and Asia finally adopted the Gregorian
calendar or one very close to it.

Julian Date
The Julian Date (JD) is based on a system of Julian day numbers that involves a continuous
count of mean solar days, and so provides a simpler way of determining the interval of time
between two dates than by using the conventional calendar. This concept was introduced by J.J.
Scaliger (1540-1609) in 1583. He combined the solar cycle (28 years), the Metonic cycle (19
years), and the Roman Indication (15 years) 4. Scaliger defined the Julian period by multiplying
these three chronological cycles, leading to a period of 7980 Julian years of 365.25 days.
Because the three cycles were already established, he choose the last common point for these
cycles as epoch at which the Julian Date was exactly zero: 4713 BC, January 1, noon at
Alexandria, on the Julian calendar. This epoch pre-dated all historical dates known to Scaliger
and is also close to the one that in medieval times was believed to have marked the creation of
the Earth. Modern astronomy adopted the concept of Julian Date in the late nineteenth century,
but used the meridian of Greenwich instead of Alexandria, after the former was made the Prime
Meridian by an international conference in 1884. As an example, the Julian Date for 1995,
August 1, 18h UTC is 2,449,931.25; for the same time on August 1, 2008, the Julian Date is
2454680.25. In order to avoid those large numbers for indicating dates in our times, it is
convenient to express epochs in Modified Julian Date (MJD), which is related to Julian Date by
MJD = JD - 2,400,00.5. It is emphasized that while a Julian Date starts at Greenwich mean noon,
a Modified Julian Date starts at Greenwich mean midnight, which is more convenient.

Computation of UT1, Julian Date and mean sidereal time
We have seen that the Greenwich mean sidereal time, 2GM, is a crucial parameter to link the
geocentric rotating and non-rotating reference frames. Here, a procedure will be given to compute
2GM at a specific date and time, where that time is expressed in UTC, TAI, TT or GPST. We then
first convert the time variable to UT1 by the following relations:

where all times are in SI seconds. Tables of the differences )UT1 and AT for various dates are
published in the IERS Bulletins A and B mentioned in Section 11.2; both past observations and
predictions are available. When we know the time in UT1, we continue by determining the Julian
Date at the given date and time. A convenient formula that holds for the period March 1, 1900,
to February 28, 2100, is given by D.A. Vallado 5. If yr indicates the year (four digits), mo the
number of the month and d the number of the day, then the Julian Date at 0h0m0s UT1 can be
found from

4 The solar cycle is a period of time under a calendar system during which a leap year day takes place on each of the
seven days of the week. Under the Julian calendar it is a period of 28 years, because leap years occur every four years
and there are seven possible days to start a leap year. The Roman Indication refers to a cycle of agricultural or land
tax reassessment.
5 D.A. Vallado, Fundamentals of Astrodynamics and Applications, Microcosm Press and Kluwer Academic Publish-
ers, 2001.



Fundamentals of Astrodynamics     SS     Reference frames, coordinates, time and orbital elements 260

  

where INT denotes ‘real’ truncation and indicates the integer (floor) value. If h indicates the hour
of the day, min the minute and s the second, then the Julian Date at any other time (UT1) of that
day can be found from

  

The IAU has adopted a convention 6 to determine Greenwich mean sidereal time at 0h0m0s UT1
as a function of JD0:

(11.3-1)

where the number 2,451,545.0 is the Julian Date on January 1, 2000, 0h0m0s UT1, and the value
of 2GM0 is expressed in degree and refers to the mean equinox of 2000 reference frame. The
Greenwich mean sidereal time at any other time (UT1) of that day can be computed from

 (11.3-2)

where  is the Earth’s mean rotation rate expressed in degree per second, and )t is the time in
seconds from midnight UT1. The local mean sidereal time can then be found from (11.1).

11.5. Orbital elements

During the discussion of the two-body problem (Chapter 5) it was found that the orbit of a body
(point mass), with respect to a non-rotating reference frame that is fixed to the center of the other
body, is a conic section, of which the shape, size and orientation with respect to this reference
frame do not change. In that Chapter, the differential equations for the motion in the orbital plane
have been solved, and three integration constants were defined: a, e, and T. The first two
constants (semi-major axis and eccentricity) determine the shape and size of the orbit; the
orientation of the conic section in the orbital plane is determined by the argument of pericenter,
T, which is the angle between a fixed reference direction in the orbital plane (Section 5.2) and
the radius vector from origin to pericenter. A fourth integration constant, the time of pericenter
passage, J, was introduced in Chapters 6, 7 and 8, and is needed to link time and position in the
orbit. Consequently, the orbit and the position of a body in that orbit can be described by the
orbital plane, the above-mentioned four integration constants and time.

The orientation of the orbital plane relative to the reference frame can be determined by two
angles. For this purpose, first the line of intersection of the orbital plane with the reference plane
of the reference frame (equatorial or ecliptic plane) is considered (Figure 11.7). The points where
this line of intersection crosses the orbit of the body are called nodes. Depending on whether the

6 P.K. Seidelmann, B. Guinot, L.E. Dogget, Explanatory Supplement to the Astronomical Almanac, University
Science Books, California, 1992.



Fundamentals of Astrodynamics     SS     Reference frames, coordinates, time and orbital elements 261

Figure 11.7: Definition of the orbital elements i, S, T, and the position of a satellite in spherical
coordinates.

body passes these nodes from south-to-north or from north-to-south, the node is referred to as the
ascending node (A.N.) or descending node. The line that connects these two points, i.e. the line
of intersection of the orbital plane and the reference plane, is called the nodal line. The first angle
used for describing the orientation of the orbital plane is the angle from the reference direction
towards the point m to the ascending node, measured in the reference plane. This angle is
indicated by S (Figure 11.7) and is measured eastward from 0E to 360E. Depending on whether
the reference plane is the ecliptic or the equatorial plane, this angle is called the longitude of the
ascending node or the right ascension of the ascending node, respectively. The second angle is
the angle between the orbital plane and the reference plane: the inclination, i (Figure 11.7). This
angle is measured from the reference plane. To define this angle unambiguously, the convention
is that when one looks from the ascending node to the origin of the reference frame, the angle i
is measured counter-clockwise from the reference plane. An equivalent definition is that the
inclination is the angle between the +Z-axis and the angular momentum vector of the motion of
the body, . From these definitions, we conclude that the value of the inclination may range
from 0E to 180E. Orbits may be categorized as direct or retrograde, based on their inclination.
Direct means easterly; this is the direction in which the Sun, the Earth, and most of the planets
and their moons rotate about their axes, and the direction in which all of the planets revolve
around the Sun. A satellite with an orbital inclination i < 90E moves in a direct orbit and in the
same direction as the Earth rotates about its axis. Satellite orbit inclinations of 90E < i < 180E
imply retrograde orbits, in which the satellite moves in a direction opposite to the Earth’s
rotation. As the fixed reference direction in the orbital plane, which is needed for the definition
of the argument of pericenter, T, the direction of the vector from the origin to the ascending node
is chosen. So, T is measured from the nodal line in the direction of motion of the body in its
orbital plane, from 0E to 360E. It are these angles i, S and T, which were already used in classical
astronomy, that were adopted by Euler for problems in mechanics and later became known as the
(original) Euler angles. The six constants a, e, i, S, T, J are called the classical orbital elements.

When the equations that describe the motion of body i relative to body k would have been
derived using the Hamilton-Jacobi theory that is commonly applied in physics, we would have
obtained a solution that, of course, represents again a Keplerian orbit. This solution contains six
integration constants, which are, for a certain solution method, related to the classical orbital



Fundamentals of Astrodynamics     SS     Reference frames, coordinates, time and orbital elements 262

elements by , , , , , . The
"-constants represent the total energy, the total angular momentum and the component of the
angular momentum about the Z-axis, all per unit of mass, respectively. It is this Hamilton-Jacobi
theory and this set of orbital elements, or another set derived from it (Section 22.2), that form the
basis for modern analytical theories for the analysis of perturbed orbits. However, for the
discussions presented in this book, the Hamilton-Jacobi theory is not needed and the classical
treatment even leads to a better insight into the practical applications of astrodynamics.
Therefore, in the following we will not use this type of elements. Only in Section 22.2 we will
briefly discuss them again.

In summary, the orbit and the instantaneous position of body i in its orbit can be described by six
independent constant parameters: the orbital elements a, e, i, S, T, J, and time. That there are just
six orbital elements is evident when we realize that position and velocity of the body are
determined by the integration of three second-order differential equations. An analytical solution
of this set of differential equations will contain six integration constants. The six classical orbital
elements therefore have to be regarded as a set of cleverly chosen, physically interpretable
integration constants. The angles i, T and S provide a geometric insight into the orientation of
the orbital plane and the orientation of the orbit in the orbital plane. The value of a gives, through
(6.14), information about the total orbital energy and the type of orbit; a and e together determine
the shape and size of the orbit. However, these orbital elements are nothing else than integration
constants in the solution of the equations of motion, and therefore one can compose from these
orbital elements any other set of orbital elements, as long as there exist unambiguous one-to-one
relations between the elements of both sets. An example is the use of the mean anomaly at epoch,
M0, introduced in Section 6.5, instead of the element J. Sometimes, the mean anomaly itself is
considered as an orbital element. Strictly, this is not correct since the mean anomaly varies
linearly with time because of the motion of body i, and therefore should be regarded as an orbital
parameter, just as the true anomaly, 2, and the eccentric anomaly, E, rather than as an orbital
element. However, in this book we will not use this strict definition.

An alternative set of orbital elements has to be used when the classical orbital elements are
not suitable for certain orbits, and then may lead to serious problems, e.g. in the mathematical
treatment of perturbed satellite orbits (Section 22.4). When the orbital inclination is zero, both
elements T and S are undefined. For (near-)equatorial orbits we therefore use the orbital element

, where  is called the longitude of perigee, to describe the location of perigee. This
angle is measured in the equatorial plane from the X-axis to the ascending node and subsequently
in the orbital plane to perigee. For these (near-)equatorial orbits we use the mean longitude

, true longitude , or eccentric longitude  to describe the in-orbit
position of the satellite. When we deal with circular orbits, then the orbital elements T and J, and
the orbital parameters 2 and M, are not defined. For (near-)circular orbits we therefore select the
line of nodes as a reference and use the argument of latitude  to describe the in-orbit
position. For equatorial orbits, of course, u is not defined and we therefore use for (near-)circular,
(near-)equatorial orbits the mean, true or eccentric longitude to describe the in-orbit position of
the satellite. For a parabolic orbit a = 4 and e = 1, which means that both a and e does not allow
us to distinguish one parabolic orbit from another. In that case, we use the orbital element

, which indicates the perigee distance. It is emphasized that in the literature many
other types of orbital elements are introduced, which have advantages for specific cases.

When we consider only the classical orbital elements, we may conclude that position and velocity
of body i can be expressed in at least three ways; i.e. by the following sets of coordinates:
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– rectangular coordinates : x, y, z, x0, y0, z0.
– spherical coordinates : r, ", *, V, (, R.
– orbital elements : a, e, i, S, T, J.
Obviously, there will exist unambiguous relations between these three sets of parameters. The
third set is fundamentally different from the first two. In a Keplerian orbit, both x, y, z, x0, y0, z0 and
r, ", *, V, (, R change continuously; consequently they are functions of time. The orbital ele-
ments a, e, i, S, T, J are constants and retain for every position in the Keplerian orbit the same
value. When one knows at a certain moment of time the position and velocity of body i in, for
example, rectangular coordinates and one wants to compute the position and velocity at another
moment of time, then the standard calculation method is as follows. From the known values of
x, y, z, x0, y0, z0 the orbital elements at that moment of time are computed. For the other moment of
time these elements have the same values and subsequently the values of x, y, z, x0, y0, z0 at that
moment of time can be determined through a reversed transformation. However, while there is
no inherent difficulty in calculating position and velocity from known orbital elements with e and
i close to zero, the reverse task may cause practical and numerical problems. These problems are
due to singularities arising from the definition of some of the classical orbital elements.

In Sections 11.7 through 11.10, a number of important relations between rectangular
coordinates, geodetic coordinates, spherical coordinates and orbital elements will be derived.
When position and velocity are described by using orbital elements, we will use as independent
variable the true anomaly, 2, instead of time. For elliptical orbits, this anomaly is directly related
to time through Kepler’s equation (6.36); for parabolic or hyperbolic through Barker’s equation
(7.11) or (8.23). We will restrict ourselves to elliptical orbits about the Earth; for parabolic and
hyperbolic orbits similar relations can be derived.

11.6. Relation between geocentric and geodetic latitude

Figure 11.8 shows a cross-section of the standard ellipsoid that approximates the true shape of
the Earth, and a circumscribing circle. The flattening of this ellipsoid is defined in Section 11.1
as

(11.4)

In Section 6.1, we have found the following relation between the semi-major and semi-minor

 

Figure 11.8: Cross section of the standard ellipsoid, with geodetic and geocentric latitude and auxiliary
variables.
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axes of an ellipse:

(11.5)

where e is the eccentricity of the ellipse. Combination of (11.4) and (11.5) yields a relation
between the flattening and the eccentricity of an ellipsoid:

(11.6)

According to Appendix B: f = 1/298.25642, e = 0.081818. Below, we will use the parameter e
as a measure of the shape of the ellipsoid.

In Figure 11.8 (left), P denotes the location of an observer on the standard ellipsoid. The
projection of P on the circumscribing circle is indicated by Pr. For this geometry we find

(11.7)

The geocentric latitude, N, can be obtained in terms of $ from

(11.8)

Multiplication of (11.8-2) by and squaring both the resulting relation and (11.8-1) yields

which, upon addition and after taking the square root on both sides, leads to

Substitution of this relation into (11.8-1) and (11.8-2) results in

Substitution of these relations into (11.7) yields

(11.9)
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(11.9)

These relations give the rectangular position components of an observer P on the surface of the
cross section of the adopted Earth’s standard ellipsoid as a function of geocentric latitude, N.

We continue with a similar analysis for the geodetic latitude, Nr, and now use the geometry
indicated in Figure 11.8 (right). Differentiation of 11.7 gives

Therefore,

and

(11.10)

Multiplication of (11.10-1) by , and squaring both the resulting relation and (11.10-2),
gives

Adding these two relations and subsequently taking the square root on both sides leads to

Substitution of this relation into (11.10) gives

Substitution of these relation into (11.7) leads to
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(11.11)

These expressions for the rectangular coordinates of an observer P on the surface of the cross-
section of the standard ellipsoid are similar to the expressions (11.9). However, the variable is
now Nr instead of N in (11.9).

Combination of (11.9) and (11.11) results in

(11.12-1)

or

(11.12-2)

Because e n 1: Nr . N. A relation for the difference between Nr and N can be found as follows.
If ) is defined as

(11.13)

we can write according to (11.12-1):

or

This relation can be written as

(11.14)

Because ) n 1 and e n 1, we may approximate (11.14) by the series expansion:

(11.15)

To determine the values of N for which *)* is a maximum, we write (11.14) as

(11.16)
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Differentiation of this equation leads, after some algebraic manipulation, to

Because e n 1, the denominator in this expression is always positive and setting the numerator
equal to zero yields for the value of N for which *)* takes an extreme value:

(11.17)

From (11.16) and (11.17), and e = 0.081818, we find that ) takes a maximum value of 11.55N at
N = 44.904E and N = 224.904E, and that ) takes a minimum value of -11.55N at N = 135.096E
and N = 315.096E. From (11.16) we find that ) = 0 at N = 0E, 90E, 180E, 270E.

11.7. Transformation from rectangular coordinates to geodetic coordinates

In this Section, it is assumed that at a specified time the position of a satellite is given in the
rectangular coordinates x, y, z. Then, the distance of the satellite from the origin is given by

(11.18)

The declination, *, of the satellite is given by

(11.19)

where -90E # * # 90E. For the satellite’s right ascension, ", we find (Figure 11.7):

(11.20)

These relations uniquely determine ".

Figure 11.9: Position of a satellite in geodetic coordinates and some auxiliary variables.

In Figure 11.9, S is the sub-satellite point; i.e. the point on the standard ellipsoid that is nearest
to the satellite. In this configuration, the satellite transits the meridian through S. With (11.2) and
(11.3-2) we may write for the satellite’s longitude
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(11.21)

where  may be computed from (11.3-1),  is the Earth’s mean rotation rate that may be

computed from (11.3-2), and )t is the time from midnight UT1.
The values of N, Nr and h cannot be obtained in a direct way, but require an iterative solution.

As a first approximation, we assume that the geocentric latitude of the sub-satellite point is equal
to the declination of the satellite, i.e. N = *. Then, we compute rS and Nr from the relations (11.9-
3) and (11.12-2). These equations show that the error in the solution for Nr is of the same order
as the error in N, while the error in the solution of rS is an order of magnitude smaller. We now
write (Figure 11.9)

(11.22)

From the geometry depicted in Figure 11.9, we find

(11.23)

So, we may write (11.22) as 

This relation can also be written as

or

(11.24)

Because h is expressed in terms of Nr-N, the error in h is also one order of magnitude smaller
than the error in N. From the geometry depicted in Figure 11.9 and using (11.23), we find

or

(11.25)

Again, N is expressed in terms of Nr-N, leading to small errors. This value of N is substituted in
(11.12-2) and the iteration loop may be executed again. The iteration process should be continued
until the difference between successive values of N is below a specified limit. We then know the
solutions of N, Nr and h.

11.8. Transformation from orbital elements to rectangular coordinates

In this Section, relations will be derived that express the rectangular coordinates and velocity
components at a certain time in terms of the orbital elements and the true anomaly at that time.
We will apply two different methods; the first method is based on spherical geometry and the
second method on rotation matrices. The reason for discussing these two methods is that it will
introduce two mathematical techniques that are frequently applied in astrodynamics.
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Figure 11.10: A satellite in an elliptical orbit about the Earth, and the geocentric non-rotating >0. refer-
ence frame.

To start with the method of spherical geometry, we first define a rectangular non-rotating
reference frame >0. with its origin at the center of the Earth, the >0-plane coinciding with the
orbital plane and the >-axis pointing towards perigee (Figure 11.10). The direction of the 0-axis
is chosen equal to the direction of the velocity vector at perigee. Then,

(11.26)

When the orbital elements are known, the solution of Kepler’s equation (Section 6.5) for a certain
time t0 provides us with the value of the eccentric anomaly, E, at that time. With the relations
presented in Section 6.5, we then may obtain the value of the true anomaly, 2, at that time. For
the rectangular coordinates relative to the geocentric equatorial reference frame we find (Figure
11.7):

(11.27)

We now consider the angle " as the sum of two angles: (" - S) and S, and rewrite (11.27) as

(11.28)

Equations (11.28) show that if one wants to express x, y, z in orbital elements, then the terms
sin*, cos*cos("-S) and cos* sin("-S) have to be expressed in orbital elements. This can be done
by using classical relations from spherical trigonometry for a right-angle spherical triangle shown
in Figure 11.11.

Figure 11.11: Right-angle spherical triangle in which the rules of spherical trigonometry are applied.
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First cosine rule

Second cosine rule

Sine rule

When we substitute the corresponding orbital parameters, which are also indicated in Figure
11.11, for the quantities a, b, c, and B, we find

(11.29)

Substitution of (11.29) into (11.28) yields

(11.30)

After some trigonometric manipulation, we obtain

These relations can be written as

(11.31-1)

where

(11.32)
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and

(11.33)

The parameters l1, l2, m1, m2, n1, n2 are combinations of constants (orbital elements) and are
therefore constant themselves.

With (11.26) the relations (11.31-1) can also be written as

(11.31-2)

The velocity components x0, y0, z0 can be found by differentiating (11.31-2):

(11.34)

The derivatives  and  can be obtained from (11.26):

(11.35)

In Chapter 5 we have derived expressions for  and  as a function of 2. Substituting (5.26)
and (5.27) into (11.35), we obtain

(11.36)

where the angular momentum, H, is given by

(11.37)

Substitution of (11.36) into (11.34) gives

(11.38)

Relations (11.26), (11.31), (11.32) and (11.38) give the relationships between the orbital elements
and the true anomaly on the one hand, and the rectangular coordinates and velocity components
on the other hand. To find the true anomaly, the equation of Kepler has to be solved.

Obviously, the reverse problem can also be considered, i.e. the determination of the orbital
elements as a function of x, y, z, x0, y0, z0. This will be done in Section 11.10.
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Figure 11.12: Geometry of reference frame rotations.

Now, we will consider the transformation of orbital elements to rectangular coordinates and
velocity components by means of the application of rotation matrices. We start again from the
geocentric non-rotating reference frame >0. (Figure 11.10), of which the +>-axis points towards
perigee, the >0-plane is the orbital plane and the +.-axis is in the direction of the angular
momentum vector. For the transformation from the >0. reference frame to the geocentric
equatorial non-rotating XYZ reference frame (Figure 11.7), three rotations of the reference frame
are required (Figure 11.12). First the >0. reference frame is rotated around the .-axis over an
angle -T, until the >-axis coincides with the line of nodes. This is followed by a rotation over an
angle -i around the line of nodes and finally by a rotation over an angle -S around the Z-axis. We
then obtain the following relations between the coordinates:

(11.39-1)

(11.39-2)

(11.39-3)

Thus,

or

(11.40)

where
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(11.41)

We see that the first six relations are identical to (11.32). The expressions for l3, m3 and n3 appear
because we have considered a general transformation between reference frames, and have not yet
used the condition that the satellite is always in the >0-plane, i.e. . = 0. In that case, we find from
(11.40):

(11.42)

These equations are, of course, identical to (11.31-2). With (11.26) we then find for the position
components the relations (11.31-1). For the rectangular velocity components the relations (11.38)
hold.

From the characteristics of the matrix in (11.40) some relations can be derived that will be used
in Section 11.10 and Section 22.1. Note that the matrix

(11.43)

is composed of three rotation matrices, which are each orthogonal. This means that also the
matrix A is orthogonal and thus

where AT is the transpose of A, and I is the identity matrix (unit matrix). So, we may write

which yields

(11.44)
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(11.44)

These relations will be used in Section 22.1.
Because A is orthogonal:

from which follows that we may write for the reversed transformation from x, y, z to >, 0, .:

(11.45)

With (11.41) we thus obtain the following transformation relations:

(11.46)

where we have used the fact that . = 0. The third relation indicates that the satellite moves in a
plane through the origin of the reference frame. The first two relations will be used in Section
11.10.

11.9. Transformation from spherical coordinates to orbital elements

Another important type of transformation concerns the calculation of orbital elements from the
spherical position and velocity components r, ", *, V, (, R. For this type of transformation, we
can use a number of equations derived in Chapter 5 and Chapter 6. For completeness, these
equations are repeated here. For the semi-major axis and the eccentricity, the following relations
were derived in Section 5.7 and Section 6.1:

(11.47)

(11.48)

In Section 6.5, the following relations were derived:

(11.49)

(11.50)

From (11.49) we obtain
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(11.51-1)

Differentiation of (11.49) to time results in

(11.52)

Substitution of (11.49) and (11.50) into (11.52) yields

(11.51-2)

From (11.51-1) and (11.51-2) E can be determined:

(11.53)

Because, by definition, e $ 0, we can use (11.51-2) to determine in which quadrant E is located,
which means that E can be determined unambiguously.

The true anomaly, 2, follows from

(11.54)

where 2/2 and E/2 are located in the same quadrant (Section 6.5). The time of perigee passage,
J, follows from

(11.55)

where t is the moment of time for which the transformation is executed.
For the determination of the orbital elements i, T, S, we start from the classical relations from

spherical trigonometry, applied in a right-angle spherical triangle, as listed in Section 11.8. Using
these relations for the spherical triangle shown in Figure 11.11, we can derive the following
expressions:

(11.56)

This set is an extension of the set (11.29). From (11.56-2) and (11.56-5) it follows that

(11.57)

Because, by definition, 0E # i < 180E, from this relation i can be solved unambiguously. From
(11.56-3) and (11.56-4) follows
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(11.58-1)

From (11.56-2) and (11.56-4) follows

(11.58-2)

From (11.56-4) follows

(11.59-1)

From (11.56-1) and (11.58-1) follows

(11.59-2)

The orbital elements S and T can be determined unambiguously from the relations (11.58) and
(11.59), respectively.

11.10. Transformation from rectangular coordinates to orbital elements

In this Section, relations will be derived that express the orbital elements in terms of the
rectangular coordinates and velocity components x, y, z, x0, y0, z0 at a certain time. First, the local
distance and velocity of the satellite are computed from

(11.60)

(11.61)

The semi-major axis can now be computed from (11.47). For the flight path angle, (, we have

or

Substitution of this relation into (11.51-2) yields

(11.62)

From (11.51-1) and (11.62) the parameters e and E can be computed unambiguously. Then, using
(11.54) and (11.55), it is possible to compute the parameters 2 and J.

The angular momentum can be computed from (11.37). For the components of the angular
momentum along the X, Y and Z axes we can write according to Figure 11.13:

(11.63)
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Figure 11.13: The angular momentum vector and its components.

(11.63)

From (11.63-1) we obtain

(11.64)

which gives an unambiguous solution for i, since 0E # i < 180E. Subsequently, we write (11.63-2)
and (11.63-3) as

(11.65)

These two relations yield an unambiguous solution for S. From (11.30-3) follows that

(11.66-1)

In order to find an expression for cos(T + 2), we start from (11.46). Multiplying (11.46-1) by
cosT and (11.46-2) by -sinT, and subsequently adding the resulting expressions leads to

Substitution of (11.26) into this relation yields

(11.66-2)

With the expressions (11.66) an unambiguous solution for (T+2) can be obtained, after which,
because 2 is known, the value of T can be determined unambiguously.

In a slightly different way, the values of the angles i, S, T, 2 and u can be obtained from the
following vector relations:

(11.67)
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(11-67)

where  and  are unit vectors in the X- and Z-directions,  is the so-called ascending node

vector, i.e. a vector pointing towards the ascending node, is the component of the

ascending node vector in the Y-direction,  is the eccentricity vector introduced in Section 5.7, 

is the component of the eccentricity vector in the Z-direction, and e is the eccentricity (magnitude
of the eccentricity vector). Don’t confuse the notation e for unit vectors and for the orbital
eccentricity! When applying these relations it is assumed that the arccosine-function returns an
angle between 0E and 180E. The expressions show that if i approaches 0E or 180E, the ascending
node vector, , approaches zero. So, if i = 0E or 180E, then S, T and u are undefined. If e =

0, then T and 2 are undefined. These conclusions were already mentioned in Section 11.5.

11.11.  f- and g-series

In the previous Sections it has been shown that when position and velocity of the spacecraft at
a certain moment of time are known in either rectangular or spherical coordinates, the orbital
elements can be computed. For any other time, position and velocity of the spacecraft can be
computed from the orbital elements and the true anomaly by executing the reverse transforma-
tion. In this computation scheme, one implicitly uses the fact that the orbital elements are
constants and thus have the same value at any moment of time. However, in this scheme we have
to know the type of orbit, because a > 0, e < 1 for an ellipse, a = 4, e = 1 for a parabola, a < 0,
e > 1 for a hyperbola, and because the expression for the relation between 2 and t is different for
an ellipse, parabola or hyperbola. Various attempts has been made to provide sets of universal
variables and formulas that can be used with all kinds of two-body orbital motion, even for the
case of rectilinear motion. Pioneers in this field were K.F. Sundman (1873-1949), K. Stumpff
(1895-1970), W.H. Goodyear (-) and S. Herrick (1911-1974), and some elegant mathematical
formulations have been achieved. However, the esthetic attractions of the universal approach
have to be weighed against a number of computational disadvantages, and in many occasions it
is preferable to stick to the classical expressions for the elliptical, parabolic and hyperbolic orbits.
In those cases where we do not know whether the orbit is a highly eccentric ellipse (e > 0.995)
or a low-eccentricity hyperbola (e < 1.005), we then consider the orbit as a parabola and apply
the relations derived for parabolic orbits. Therefore, in this book we will not present and discuss
the universal parameters and formulations.

If the moment of time for which we want to compute position and velocity of the spacecraft
is reasonably close to the moment of time on which position and velocity are known, then we can
apply an alternative direct method that does not require knowledge about the type of orbit and
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does not require the computation of orbital elements except for the semi-major axis. This is the
method of the so-called f- and g-series, which will be treated in this Section.

Assume that at t0 the position and velocity vectors  and  are known. For the position
vector  at another moment of time, t, we may write with a Taylor series expansion

(11.68)

in which )t = t - t0 , and the indices (3), (4) and (5) indicate third-, fourth- and fifth-order derivatives,
respectively. From Newton’s laws, we know that

(11.69-1)

By repeated differentiation of this equation, the higher-order derivatives in (11.68) can be
computed:

(11.69-2)

(11.69-3)

(11.69-4)
The position and velocity vectors,  and  are known at t0. In order to rewrite (11.68) in terms
of ,  and )t, we first combine two relations found in Section 5.2 and Section 6.3:

and write

(11.70-1)

Differentiation yields

(11.70-2)

Substitution of (11.69-1), (11.69-2) and (11.70) into (11.69-3) and (11.69-4) leads to

(11.71-1)
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(11.71-2)

Substitution of (11.69-1), (11.69-2), (11.71-1) and (11.71-2) into (11.68), and evaluation of the
resulting expression at t0, gives

(11.72)

Because a is solely a function of r and V, and is constant for a Keplerian orbit, a can easily be
computed from (11.47) and the known values r0 and V0. Expression (11.72) can be written as

(11.73)

where the series f and g can be written as

(11.74)

where the coefficients fn , gn are given by

(11.75)
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(11.75)

etc. Equation (11.73) was first used by J.L. Lagrange (1736-1813) in 1869, who gave explicit
expressions for the coefficients fn , gn up to n = 5. Since then, a number of investigators have
given explicit expressions for the coefficients up to order 27 and higher. We conclude from the
relations (11.75) that g3, g4 and g5 can be expressed as functions of f2, f3 and f4. This is a general
property of the fn- and gn-terms: gn can always be expressed as a series of fm-terms, with m = 2,
3, ..., n-1. The f- and g-terms can also be computed by using a recursive algorithm:

(11.76)

where the starting values are given by f0 = 1, g0 = 0. During the differentiation of fn and gn to time,
formally every term has to be considered as a variable. After differentiation the index 0 has to
be added again. The relations (11.76) are known as the recursive formulas of Cipolletti (D.
Cipolletti, 1840-1874) and were discovered by him around 1872. Note that the Cipolletti
formulation is recursive in only a limited sense, because the coefficients of a given order depend
upon the time-derivatives of the coefficients of the previous order and there is no recursive
formulation for these derivatives in Cipolletti’s method. 

Analogous to (11.73), the velocity vector can be written as

(11.77)

where for the series  and  holds

(11.78)

F.R. Moulton (1872-1952) has studied around 1903 the convergence of these series expansions.
The practical usefulness of the series ends, however, when terms higher than f5 and g5 have to be
taken into account, because these higher-order terms are fairly complicated. Roughly, it can be
stated that the f- and g-series are only applicable if

(11.79)

An important advantage of these f- and g-series is that they are universal; i.e. they can be applied
regardless whether the orbit is an ellipse, parabola or hyperbola. When the condition (11.79) is
satisfied, the f- and g-series provide a quick, efficient method for the computation of position and
velocity of the spacecraft, and they are extensively applied in the determination and prediction
of satellite orbits, but also in computing rendez-vous orbits.

An interesting property of the f- and g-series can be found. Because in a Keplerian orbit the
angular momentum of the motion is constant, we have

Substitution of (11.73) and (11.77) into this expression yields
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(11.80)

This relation can be used to verify the expressions derived for higher-order fn- and gn-terms.

It is also possible to derive closed-form expressions for the f- and g-series. We then start by
writing the vectors and  relative to the non-rotating reference frame >0. defined in Section
11.8 (Figure 11.10), where the .-axis is along the angular momentum vector perpendicular to the
orbital plane and the >-axis points towards perigee. Because the satellite is always in the orbital
plane: and

(11.81)

where  and  are unit vectors in the > and 0 directions, respectively. Taking the vector
product of (11.73) and  yields

(11.82)

Substituting (11.81) for  and  on the left-hand side of (11.82), and using the well-known
relation for the orbital angular momentum

where  is the unit vector in the .-direction, we find from (11.82)

(11.83)

Taking the vector product of (11.73) and  yields

(11.84)

Again substituting (11.81) and the relation for the angular momentum, we find from (11.84):

(11.85)

Combination of (6.31), (6.32) and (11.26) results for an elliptical orbit in

(11.86)

Differentiation of (11.86) leads to

(11.87)

Combination of (11.49) and (11.50) yields

(11.88)

Substitution of (11.88) into (11.87) gives
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(11.89)

Substitution of (11.86) and (11.89) into (11.83), and elaboration of the resulting equation leads
to

or, with (6.33),

(11.90)

Substitution of (11.86) into (11.85), and elaboration of the resulting equation leads to

(11.91)

According to (6.36):

(11.92)

Substitution of (11.92) into (11.91), finally, leads to

(11.93)

Differentiation of (11.90) and (11.93) with respect to time yields

or, with (11.88),

(11.94)

(11.95)

If  and  are known, then it is possible to compute the orbital elements a and e, which are a
function of r0, V0 and (0 only (Section 11.9). Then, we solve (6.36) for (E - E0), substitute that
value into (11.90), (11.93) to (11.95) and obtain values of f, g, and  These values may be used
in (11.73) and (11.77) to obtain the position and velocity vectors at another time. These closed-
form expressions find extensive use in preliminary orbit determination procedures. It is
emphasized that the application of the closed-form expressions for f, g,  and  instead of the
series expansions derived earlier, results in a loss of generality; they hold only for an elliptical
orbit while the series expansions do not require any knowledge about the type of Keplerian orbit.
By a similar process, closed-form expressions can also be derived for parabolic and hyperbolic
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orbits.
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12. TRANSFER BETWEEN TWO COPLANAR ORBITS

An important topic in spaceflight is the application of transfer orbits, where satellites are
transferred from a given initial orbit around the Earth to a specified final orbit. The initial and
final orbits can be either circular or elliptical. Obviously, many different transfer orbits can be
flown. Usually, one will be interested in optimum transfer orbits, i.e. transfer orbits that require
a minimum amount of propellant. In this Chapter, several examples of transfer orbits will be
analyzed, where it is assumed that the initial orbit, the final orbit and the transfer orbit are all in
the same plane (coplanar) and that the required maneuvers are executed by impulsive shots
(Section 1.7). So, the analysis holds for maneuvers with traditional chemical rocket propulsion
systems and definitely not for low-thrust electric propulsion systems (Chapter 19). We will apply
an analysis method very similar to the method developed by M. Vertregt (1897-1973) around
1957 to analyze interplanetary trajectories.

A basic assumption in this Chapter, and in some subsequent Chapters, is that the sequence
of maneuvers is accomplished by a single rocket stage using the same rocket engine with a
constant (effective) exhaust velocity. Using Tsiolkovski’s law ((1.49)) for the sequence of
impulsive shots, we then find

where M0,i is the rocket stage mass before the ith impulsive shot, Me,i is the mass after the ith

impulsive shot, Vj is the (effective) exhaust velocity, and ()V)i is the velocity increase produced
by the ith impulsive shot. When it is also assumed that in between successive impulsive shots no
mass is rejected or expelled, we find

(12.1)

where M0 is the stage mass just before the first impulsive shot and Me is the mass after the final
impulsive shot. In Section 1.7 it was shown that, for a given initial mass, M0, and construction
mass, Mc, a maximum payload mass, Ml, corresponds to a minimum value of M0 /Me. From (12.1)
then follows that the payload mass is maximum, and so the propellant consumption is minimum,
when

(12.2)

We will use this criterion to determine the optimum transfer orbit.
When the total transfer maneuver is performed by more than one rocket stage with rocket

engines having different exhaust velocities, and when in between the impulsive shots mass is
rejected (staging) or expelled (residual propellant dump), then criterion (12.2) obviously does not
hold. In that case, an optimization analysis, in which the different exhaust velocities and mass
distributions of the various rocket stages are accounted for, has to be performed in order to find
the maximum payload mass, Ml , for a given initial mass, M0. Such an optimization analysis is,
however, beyond the scope of this book.

12.1. Optimum transfer between two circular orbits

Application of the cosine rule in the velocity vector diagrams indicated in Figure 12.1 results in



Fundamentals of Astrodynamics     SS     Transfer between two coplanar orbits 286

(12.3)

Figure 12.1: Geometry of a transfer orbit between two coplanar circular orbits, and the notation used.

In Chapters 5 and 6 we have derived expressions for V1, Vc1, V2, Vc2, (1 and (2. For instance, in
Chapter 6 we have found

(12.4)

From these expression, we obtain

With the notation

(12.5)

and the relation

we find

(12.6)

Combination of (5.21), (5.25), (6.2) and (6.21) yields
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from which, after substitution of (12.5), we find

(12.7)

Substitution of (12.6) and (12.7) into (12.3) yields

(12.8)

Consequently, for the total impulse required for this transfer flight we find

(12.9)

For an optimum transfer orbit, under the conditions mentioned before, one is obviously interested
in the case that

For any transfer orbit the following conditions must hold:

(12.10)

Substitution of (12.4) and (12.5) into (12.10) results in

(12.11)

Figure 12.2: Region of possible transfer orbits between two coplanar circular orbits in the ez-plane.

Figure 12.2 shows the region in an ez-diagram where transfer orbits are feasible. We conclude
that elliptical (e < 1) as well as parabolic (e = 1) and hyperbolic (e > 1) transfer orbits are
feasible.

From the structure of (12.9) we note that for given values of z and n, the quantity )Vtot /Vc1
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decreases when e decreases. The point in the ez-diagram that, for given values of z and n,
represents a local minimum-energy transfer orbit therefore is located on the lines z = n(1-e) or
z = 1+e. We now examine the conditions on the boundary line z = n(1-e). On this line:

(12.12)

Substitution of this relation into (12.9) leads to

Differentiation of this relation to z gives

(12.13)

Since e $ 0, (12.12) shows that on the line z = n(1-e): z # n. Because the radius of the final orbit
is larger than the radius of the initial orbit: n > 1. Then, (12.13) shows that

(12.14)

So, on the line z = n(1-e) the quantity )Vtot /Vc1 decreases when z increases.
For the other boundary line, we have

(12.15)

Substitution into (12.9) yields

and after differentiation to z we obtain

(12.16)

Since e $ 0, on the line z = 1+e: z $ 1. Because also n > 1, we find from (12.16):

(12.17)

So, on the line z = 1+e the quantity )Vtot /Vc1 increases when z increases.
From (12.14) and (12.17) we conclude that point H in the ez-diagram indicates the transfer

orbit with minimum propellant consumption. Obviously, this orbit is an ellipse with the lowest
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eccentricity of all possible transfer orbits and for which

(12.18)

or

(12.19)

Combination of (12.4) and (12.18) yields

This condition is, according to (6.4), met when r2 is the apogee distance and r1 is the perigee
distance of the elliptical transfer orbit. We thus may conclude that the transfer orbit for which the
propellant consumption is minimum, is an elliptical orbit that touches the initial orbit at perigee
and the final orbit at apogee. For this orbit, the velocity vectors and  are directed
tangentially to the initial and the final orbits. This minimum-energy transfer orbit is called a
Hohmann transfer orbit, after W. Hohmann (1880-1945) who has proposed it for interplanetary
spaceflight (Chapter 18) in 1925. It is noted that Hohmann only conjectured that this orbit is the
minimum-energy impulsive transfer orbit; the rigorous demonstration came some 30 years later!
For a Hohmann transfer orbit, in Figure 12.2 indicated by point H, the values of z and n are given
by (12.19). Observing the structure of (12.9), (12.13) and (12.16) we conclude that when )V2 = 0,
and thus the satellite is not injected into the final orbit, a Hohmann transfer orbit is also the
optimum (minimum propellant consumption) trajectory to reach a distance r2.

Figure 12.3: Curves of constant dimensionless total impulse )Vtot /Vc1  for a transfer between two coplanar
circular orbits, and for n = 1.2 and n = 5.

In Figure 12.3 several lines of constant )Vtot /Vc1 are plotted in the ez-diagram for n = 1.2 (left)
and n = 5 (right). When it is assumed that the altitude of the initial orbit is 250 km, then these
values of n correspond to final circular orbital altitudes of about 1575 km and 26,750 km,
respectively. We observe that, e.g. for n = 1.2 and )Vtot /Vc1 = 1.5, elliptical, parabolic and
hyperbolic transfer orbits are feasible, which all require the same total impulse. The boundary
line z = 1+e represents all orbits that touch the initial orbit ((1 = 0E); the boundary line z = n(1-e)
represents all orbits that touch the final orbit ((2 = 0E). Therefore, for one particular value of
)Vtot /Vc1 larger than the value for the Hohmann transfer orbit, a transfer orbit can be flown either
with (1 = 0E, (2 … 0E or with (1 … 0E, (2 … 0E or with (1 … 0E, (2 = 0E.

For a Hohmann transfer, the required impulsive shots can be computed easily. We then use a
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standard computation scheme that will be used for most analyses of transfer orbits presented in
this and following Chapters. It is based on the application of a number of relations derived in
Sections 6.1 and 6.3 for elliptical orbits:

(12.20)

(12.21)

where Vp and Va are the velocities at perigee and at apogee, and Vcp and Vca are the circular
velocities at perigee and at apogee. For the two impulsive shots we find with (12.20)

Substitution of (12.5) and (12.21) into these equations yields

(12.22)

(12.23)

(12.24)

In Figure 12.4 the impulses and are plotted as a function of n. An
analysis of this Figure and the relations (12.22) through (12.24) shows that:
S For large values of n, asymptotically approaches the value 0.414. This corresponds

with the impulsive shot that is needed to reach the escape velocity: 
S The value of reaches a maximum of 0.19 for n = 5.9. The impulse that is needed to

circularize the orbit at the final altitude therefore is maximum at this altitude.
S The dimensionless total impulse reaches a maximum of 0.54 for n = 15.6.
S For values of n > 3.3, the dimensionless total impulse is larger than We therefore

conclude that, for an initial orbital altitude of 250 km, it requires more propellant to reach a
circular orbit at an altitude of h > 15,488 km than to accelerate from the initial orbit to escape
velocity.

For the flight time in a Hohmann transfer orbit, we find from (6.25)

or, with (12.5),
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Figure 12.4: Required impulses )V1/Vc1 , )V2 /Vc1 , )Vtot /Vc1 as a function of n, for a Hohmann transfer
between two coplanar circular orbits.

(12.25)

where  is the period of the original circular orbit. This equation shows that for large values
of n the flight time in the Hohmann transfer orbit can become very long. For various missions this
long flight time can be unacceptable and we then have to use faster transfer orbits, where it is
accepted that these orbits demand more energy than the Hohmann transfer orbit.

12.2. Faster transfer between two circular orbits

In principle, an infinite number of transfer orbits between two given circular orbits can be flown.
In this Section, only the case of a coplanar elliptical transfer orbit that touches the original
circular orbit (Figure 12.5) and intersects the final circular orbit will be considered. This type of
transfer is a realistic example of faster transfer orbits that do not require too much energy.

For this transfer, the following conditions hold:
S The perigee distance of the transfer orbit is equal to the radius of the initial orbit: 

(12.26)

where a and e are the orbital elements of the transfer orbit. 
S At the intersection of the transfer orbit and the final circular orbit:

where 2t denotes the true anomaly at the point of intersection.
Analytical manipulation of these relations leads to
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Figure 12.5: Geometry of a class of faster elliptical transfer orbits that are tangent to the original circular
orbit.

and, with (12.5),

from which we find

(12.27)

(12.28)

From (12.26) and (12.27) follows

(12.29)

Substitution of (12.27) and (12.28) into (12.9) yields

(12.30)

For a Hohmann transfer between two specified circular orbits, (12.24) yields the value of
()Vtot /Vc1)H. For the percentage increase of the total impulse (loss) required for the faster transfer
orbit, we may write
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(12.31)

For the flight time, tf , in the transfer orbit, we may use (6.36-1) and find

(12.32)

where Et is the eccentric anomaly corresponding to 2t , which is given according to (6.35) by

Substitution of (12.27) results in

(12.33)

Equation (12.32) can also be written as

(12.34)

Figure 12.6: Dimensionless total impulse (top)
and flight time (bottom) for a class of faster
elliptical transfer orbits between two coplanar
circular orbits, as a function of the transfer
angle, 2t , and n.

Figure 12.7: Percentage increase of the total
impulse, L, (top) and the percentage reduction of
the flight time, G, (bottom) for a class of faster
elliptical transfer orbits between two coplanar
circular orbits, as a function of the transfer
angle, 2t , and n.
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Substitution of (12.27) and (12.29) into (12.34) yields

(12.35)

For a Hohmann transfer orbit the flight time follows from (12.25). The percentage shortening
(gain) of the flight time by using a faster transfer orbit may be written as

(12.36)

In Figure 12.6 the values of )Vtot /Vc1 and tf  /Tc1 are plotted as a function of 2t, for different values
of n. For all orbits: e < 1; the values at 2t = 180E hold for the Hohmann transfer. We observe that
for small values of n (n < 2.5) the total impulse only slightly increases when 2t decreases from
180E to 150E. However, the flight time then already decreases significantly. For large values of
n (n > 5) the flight time strongly decreases when 2t decreases from 180E to 150E. In Figure 12.7,
the percentage increase of the required total impulse, L, and the percentage shortening of the
flight time, G, are plotted as a function of 2t, for different values of n; for all orbits: e < 1. We see
that for values of 2t < 120E the percentage increase in the required total impulse, with respect to
the one for a Hohmann transfer orbit, may amount to more than 100%. The percentage shortening
of the flight time is at 2t = 150E already 40-95%, depending on the value of n.

12.3. Multiple Hohmann transfer between two circular orbits

The question may be raised whether, for given initial and final circular orbits, less propellant is
required when instead of one Hohmann transfer orbit multiple Hohmann transfer orbits are flown.
In this Section, we will analyze the case of applying two successive Hohmann transfer orbits
between the circular initial and the circular final orbit. For such a transfer flight three impulsive
shots are required. First, the case will be considered where the apogee distance of the first
transfer orbit is smaller than the radius of the final orbit. Secondly, the case where the apogee
distance of the first transfer orbit is larger than the radius of the final orbit is treated .

Transfer orbit with a low apogee
In principle, there are two options for this case: 1) two successive impulsive shots at perigee of
the two successive Hohmann transfer orbits, followed by a third impulsive shot to enter the final
circular orbit (Figure 12.8), or 2) the second impulse at apogee of the first Hohmann transfer
orbit. Here, we will analyze only the first case; it can be shown easily that the second option
always costs more propellant. When we use the standard computation scheme introduced in
Section 12.1, we can directly write (Figure 12.8):

(12.37)

(12.38)
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Figure 12.8: Geometry of a three-impulses Hohmann transfer trajectory with the apogee distance of the
first Hohmann transfer orbit smaller than the radius of the final circular orbit.

(12.39)

where the index t refers to the first transfer orbit and ra denotes the apogee distance of this
transfer orbit. We now use the relations derived in Chapter 6:

from which follows

Substitution of these relations into (12.37) to (12.39) leads to

(12.40)

(12.41)

(12.42)

or



Fundamentals of Astrodynamics     SS     Transfer between two coplanar orbits 296

With (12.5) we may write this equation as

(12.43)

Note that )Vtot is independent of the apogee altitude of the first transfer orbit and that (12.43) is
identical to (12.24), which expresses the total impulse required for a direct Hohmann transfer.
When we generalize this result, we may conclude that it does not matter how many intermediate
orbits are selected; the total impulse is always the same, as long as ra < r2. This property is often
used in the execution of space missions. Examples are the use of phasing orbits in order to reach
a specific position in the final orbit (Chapter 14) and the application of multiple thrusting periods
when low-thrust chemical rocket engines are used. With these propulsion systems a relatively
long thrusting period is required in order to realize a desired orbit transfer. The thrust program
that has to be applied in order to minimize the propellant consumption will mostly demand that
the thrust vector is directed more or less tangentially to the orbit (Section 1.7 and Section 19.2).
For long thrusting periods this implies that a component of the thrust will be directed oppositely
to the gravitational attraction vector. This leads to a so-called gravity loss (Section 1.7). That loss
can be limited by applying shorter thrusting periods during successive passages of perigee and
reaching the final orbit through multiple intermediate orbits (Figure 12.9). As a result, the thrust
will be directed ‘more perpendicular’ to the radius vector during the subsequent thrusting periods,
causing the gravity losses to be smaller. A similar technique is applied in interplanetary
spaceflight (Chapter 18), but then as a braking maneuver in order to reach lower orbits about a
planet.

Figure 12.9: Application of multiple Hohmann transfer orbits with intermediate apogee altitudes and
successive perigee thrusting periods.

Transfer orbit with a high apogee
Figure 12.10 depicts the situation where the apogee distance of the first transfer orbit (ra) is larger
than the radius of the final circular orbit (r2). In this case, we introduce the new variable

(12.44)

Using the standard computation scheme introduced in Section 12.1, we write

(12.45)
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Figure 12.10: Geometry of a three-impulses Hohmann transfer with the apogee distance of the first
Hohmann transfer orbit larger than the radius of the final circular orbit.

where Va is the velocity at apogee of the first transfer orbit. For the apogee velocity required to
reach the second transfer orbit, we have

(12.46)

So, the magnitude of the second impulsive shot is given by

(12.47)

For the third impulsive shot, we write

(12.48)

Substitution of the eccentricities of the corresponding transfer orbits in the expressions for the
impulsive shots and using (12.5) and (12.44) yields

(12.49)

(12.50)

(12.51)

or, after some algebraic manipulation,
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(12.52)

The transfer with a high apogee distance demands less propellant than the classical Hohmann
transfer with two impulsive shots when

where the indices 2 and 3 indicate a two-impulses and three-impulses Hohmann transfer,
respectively. Substitution of (12.24) and (12.52) results in

(12.53)

In order to determine the values of m and n for which ) < 0, we analyze (12.53) numerically. But
first, we determine two characteristics of this function. For m = n: ) = 0. This result is easy to
understand since for m = n the three-impulses transfer actually is a two-impulses transfer. For
n = 1, m 8 4, we find: ) 8 This corresponds to twice the impulse that is required in the
initial orbit to reach the escape velocity, which is also easy to understand. In Figure 12.11, the
curve )(m,n ) = 0 is plotted along with the line m = n. Since always m > n, the line m = n marks
a boundary in m-n space where three-impulses transfer orbits (with a high apogee) are possible.
The curve ) = 0 marks the separation of the regions in m-n space where either a two-impulses
Hohmann transfer or a three-impulses Hohmann transfer is optimum. A numerical analysis of
(12.53) shows that:
S For n < 11.939, a two-impulses Hohmann transfer is always optimum.
S For 11.939 < n < 15.582, a three-impulses Hohmann transfer is optimum, if m is chosen

sufficiently large.

Figure 12.11: Regions in n-m space where two-
impulses or three-impulses Hohmann transfer
trajectories between two coplanar circular
orbits are optimum.

Figure 12.12: Percentage reduction of the total
impulse, G, when a three-impulses Hohmann
transfer trajectory between two coplanar circu-
lar orbits is flown instead of a two-impulses
Hohmann trajectory, as a function of n and m.
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S For n > 15.582, a three-impulses Hohmann transfer is optimum for any value of m > n.
These results indicate that for certain values of n less propellant is required if the satellite first
climbs from an initial circular orbit through a Hohmann transfer orbit to a high altitude, and then
enters a second Hohmann transfer orbit to descend to the altitude of the final circular orbit. The
advantage of the three-impulses transfer only exists if n > 11.939. This means a final circular
orbit at a very high altitude (h > 72,000 km). In Figure 12.12 the percentage reduction of the total
impulse achieved by using a three-impulses Hohmann transfer is plotted as a function of n for
several values of m. This percentage reduction (gain) is defined as

(12.54)

Note that for m # 50 a total impulse reduction of only 2% or less can be achieved by applying
a three-impulses transfer; for m > 50 this reduction can be 5% or more. When the satellite is
carrying cryogenic propellants, part of this advantage is lost because of the boiling off of
propellant during the extended flight. However, if the satellite is designed for a long operational
lifetime in the final orbit, the longer flight time in the transfer trajectory is not relevant and the
three-impulses transfer is attractive.

12.4. Hohmann transfer from a circular orbit to an elliptical orbit

In this Section it is assumed that a satellite is in a circular orbit and that it has to go into a
coplanar elliptical orbit with perigee distance larger than the radius of the initial orbit (Figure
12.13). Based on the results from Section 12.1, one may expect that a Hohmann type of transfer
will be optimum. This still leaves two options, which are indicated in Figure 12.13 by I and II.
In the following, the required total impulse for both types of transfer will be compared. In the
analysis, the notation a and e will be used for the elements of the final elliptical orbit, and at and
et for the elements of the transfer orbit.

Figure 12.13: Two feasible Hohmann transfer orbits from an initial circular orbit to a coplanar elliptical
final orbit.

 
Case I
From Figure 12.13 we conclude that we may write for the first and second impulsive shot
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(12.55)

(12.56)

With the expressions for the eccentricities and the relations

we find, after some algebraic manipulation, for both impulsive shots

(12.57)

(12.58)

For the required total impulse then follows

(12.59)

Case II
From Figure 12.13 we conclude that we may write for the first and second impulsive shot

(12.60)

(12.61)

With the expressions for the eccentricities and the relations

we find for both impulsive shots:
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(12.62)

(12.63)

For the required total impulse then follows

(12.64)

Figure 12.14: Dimensionless total impulse for transfer orbit II from an initial circular orbit to a coplanar
elliptical final orbit (left) and the percentage increase of the total impulse for transfer orbit I (right), as
a function of the parameters a/r1 and e of the final orbit.

For given values of a and e we can compute the total impulse for both types of transfer orbits
from (12.59) and (12.64). It then turns out that type II transfers are always preferable. So,
injection at apogee of the final elliptical orbit demands less propellant than injection at perigee
of the final elliptical orbit. This result can be verified with Figure 12.14. In the left part of this
Figure, the dimensionless total impulse for transfer orbit II is plotted as a function of a/r1 and e.
In the right part of this Figure, the percentage increase of the dimensionless total impulse that is
required for a type I transfer orbit is plotted. This percentage increase (loss) is defined as

(12.65)

The Figure shows that for values of e = 0 - 0.6, all curves for the total impulse required for type
II transfer orbits reach a maximum for a/r1 = 16 -27. For e < 0.4, up to 20% more impulse is
needed when, instead of type II transfer orbits, type I transfer orbits are flown; for 0.5 < e < 0.8
the percentage increase of the required impulse amounts up to 25 - 45%.

12.5. Hohmann transfer from an elliptical orbit to a circular orbit

In this Section, it is assumed that the satellite is in an elliptical orbit with orbital elements a and
e and that it has to go into a coplanar circular orbit with a radius larger than the apogee distance
of the initial orbit (Figure 12.15). Extrapolating the results of Section 12.1, one may expect that
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Figure 12.15: Two feasible Hohmann transfer orbits from an initial elliptical orbit to a coplanar circular
final orbit.

a Hohmann type of transfer is optimum. This still leaves two possibilities, which are indicated
in Figure 12.15 by I and II. In the following, the required total impulse for both types of transfer
orbits will be compared, where et indicates the eccentricity of the transfer orbit.

Case I
From Figure 12.15, we conclude that we can write for the first impulsive shot

(12.66)

and for the second impulsive shot

(12.67)

With the expressions for the eccentricities and the relations

we find, after some algebraic manipulation, for both impulsive shots:

(12.68)

(12.69)

and for the required total impulse:
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(12.70)

Case II
Now, we can write for the first impulsive shot

(12.71)

and for the second impulsive shot

(12.72)

With the expression for the eccentricity et and the relations

we find, after some algebraic manipulation, for both impulsive shots:

(12.73)

(12.74)

and for the required total impulse:

(12.75)

Figure 12.16: Dimensionless total impulse for transfer orbit I from an initial elliptical orbit to a coplanar
circular final orbit (left) and the percentage increase of the total impulse for transfer orbit II (right), as
a function of the parameters r2 /a and e of the initial orbit.
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An analysis of (12.70) and (12.75) shows that type I transfer orbits, i.e. departure at perigee of
the original elliptical orbit, demand, for any value of r2/a and e, always less total impulse than
type II transfer orbits. In Figure 12.16, the dimensionless total impulse required for a type I
transfer orbit is plotted as a function of r2/a and e. Also plotted is the percentage increase of the
required total impulse when a type II orbit is flown. This percentage increase (loss) is defined as

(12.76)

Note that for a given value of a, the total impulse for a type I transfer orbit decreases when e
increases. For large values of r2 /a and e, the percentage increase in the required total impulse for
type II transfer orbits is large, and may amount up to 100-200%.

12.6. Transfer from a circular orbit to an intersecting elliptical orbit

In this Section, we consider the case that the initial circular orbit and the final elliptical orbit
intersect each other (Figure 12.17). Of the many feasible transfer trajectories, three types will be
analyzed:
S Type I: single-impulse maneuver at the point where the initial and final orbits intersect.
S Type II: two-impulses maneuver with )V2 at apogee of the final elliptical orbit.
S Type III: two-impulses maneuver with )V2 at perigee of the final elliptical orbit.
In the following, the total impulse for these three types of transfer orbits will be determined.

Case I
From the general relations for the impulses required for transfer trajectories ((12.8)), we obtain
for this case

(12.77)

where z and e refer to the final elliptical orbit. For the value of z, we have in this case

Figure 12.17: Transfer from an initial circular orbit to a coplanar crossing elliptical orbit. Shown are
a direct injection maneuver (I) and two types of Hohmann transfer orbits (II and III).
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where a is the semi-major axis of the final elliptical orbit. We then find for the single impulsive
shot

(12.78)

Case II
From Figure 12.17 we conclude that we can write for the first impulsive shot

(12.79)

and for the second impulsive shot

(12.80)

where et denotes the eccentricity of the transfer orbit. With the expressions for the eccentricities
and the relations

we find for the required total impulse:

(12.81)

Case III
From Figure 12.17 we conclude that we can write for the first impulsive shot

(12.82)

and for the second impulsive shot

(12.83)

With the expressions for the eccentricities and the relations
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Figure 12.18: Dimensionless total impulse for the three types of transfer from an initial circular orbit to
a coplanar intersecting elliptical final orbit, as a function of the parameters a/r1 and e of the final orbit.

we find for the required total impulse

(12.84)

In Figure 12.18 the required dimensionless total impulse for the three types of transfer is plotted
as a function of a and e. An analysis of the relations (12.78), (12.81) and (12.84), and an
examination of Figure 12.18, shows that the single-impulse maneuver demands by far the most
energy, and that the type II transfer always requires the least amount of propellant. However, for
small values of e, a type III transfer demands only slightly more impulse (< 5%) than a type II
transfer, while the flight time in a type III transfer is significantly shorter than in a type II
transfer. For a final elliptical orbit with e < 0.2, therefore, one will mostly select a type III
transfer orbit.

12.7. Gravity losses

In the previous Sections, it has been assumed explicitly that the maneuvers required to enter and
leave a transfer orbit are executed by impulsive shots. However, in reality the thrusting time of
rocket engines is not infinitely short, and it has been shown in Section 1.7 that then a gravity loss
may occur. For first-order analyses a classical approach is to assume that this gravity loss has to
be compensated for by an additional )V. That )V has to be added to the )V computed for the
impulsive shot and results in a gross )V, which, when substituted into Tsiolkovski’s law (Section
1.7), yields the actually required amount of propellant for this maneuver. For a given mission,
generally, the thrust vector program will be selected in such a way that the gravity loss is
minimized. The computation of such optimum thrust programs is quite complicated and will not
be discussed in this book. In the following, only a few examples of maneuvers and associated
gravity losses will be given, from which a general picture of the actual level of gravity losses can
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be obtained. These examples are taken from document ESA CR(P) 19101 that contains many
plots from which the gravity losses can be estimated for many different initial and final orbits,
and various thrusting arc characteristics.

For the numerical examples given in this Section, it is assumed that a maneuver is executed to
bring a satellite from a circular orbit into an elliptical, parabolic or hyperbolic orbit with perigee
distance equal to the radius of the initial circular orbit. If this maneuver would be accomplished
by an impulsive shot, then the thrust vector should be oriented perpendicular to the position
vector, which results, according to the discussion in Section 1.7, in a zero gravity loss. For the
real maneuver it is assumed that the magnitude of the thrust and the effective exhaust velocity
of the rocket engine are constant over the thrusting arc and that an optimum thrust angle program
is applied; i.e. that the thrust angle, *, varies such that the gravity loss during the thrusting arc
is minimum. The thrust angle is defined as the angle between the thrust vector and the plane
normal to the position vector (Section 1.7).

In the previously mentioned document, three parameters are defined which characterize the
original orbit and the final orbit:

(12.85)

where õ is the orbital energy, õ* is the normalized orbital energy, both per unit of mass, Vc1 is
the circular velocity in the initial orbit, and the indices 1 and 2 indicate the initial orbit and the
final orbit, respectively. For the assumptions made in this Section, we find

(12.86)

where Vp2 is the perigee velocity in the final orbit. For an elliptical, parabolic or hyperbolic final
orbit we may write

(12.87)

where e is the eccentricity of the final orbit. Substitution of (12.87) into (12.86-2) yields

(12.88)

Note that )õ* < 0.5 refers to an elliptical final orbit, )õ* = 0.5 to a parabolic final orbit, and )õ*

> 0.5 to a hyperbolic final orbit. For an elliptical final orbit the eccentricity can be expressed by
, where ra is the apogee distance. Three other dimensionless parameters

introduced in document ESA CR(P) 1910 are

1 J. Weiss, B. Metzger, M. Gallmeister, Orbit maneuvers with finite thrust, MBB/ERNO, ESA CR(P) 1910, 3
volumes, 1983.
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(12.89)

where F is the thrust, g1 is the acceleration due to gravity at the injection point, M0 is the initial
mass of the spacecraft, : is the gravitational parameter of the Earth, Vj is the (effective) exhaust
velocity of the rocket engine, and T1 is the period of the original circular orbit. The percentage
gravity loss is defined as

(12.90)

Figure 12.19: Percentage gravity loss for an optimum transfer from a circular orbit to a coplanar
elliptical, parabolic or hyperbolic orbit that is tangent to the initial orbit, as a function of )õ * and k2. The
curves hold for Vj = 0.5 Vc1 (top) and Vj = Vc1 (bottom).
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Table 12.1: The values of k2 that correspond to the indices indicated in Figure 12.19.

index k2 index k2 index k2 index k2 index k2

4 0.00040 8 0.0025 12 0.016 16 0.10 20 0.63

5 0.00063 9 0.0040 13 0.025 17 0.16 21 1.0

6 0.0010 10 0.0063 14 0.040 18 0.25 22 1.6

7 0.0016 11 0.010 15 0.063 19 0.40 23 2.5

where )V is the velocity increase that corresponds to the finite thrusting period and ()V)i is the
velocity increase in case the maneuver would have been executed by an impulsive shot:

(12.91)

In the ESA report, many plots are presented for the value of ))V as a function of )õ*, for
specified values of õ1

*, k2 and k3. An example is given in Figure 12.19 for the case that õ1
* = -0.5

(circular initial orbit), and Vj = 0.5 Vc1 or Vj = Vc1. The number indicated at each curve refers to
the applied value of k2; the values of k2 corresponding to these numbers are listed in Table 12.1.
The plots show that for values of )õ* < 0.2 (e < 0.4), the effect of different exhaust velocities (k3)
on the value of the gravity loss is very small. So, the effect of the exhaust velocity only becomes
important for higher values of the eccentricity. For given values of k3 and )õ*, the gravity loss
decreases as k2 increases. This is a trivial result, because for a given mission a larger value of k2

results in a shorter thrusting period. For an escape flight: )õ* = 0.5. When we adopt k3 = 0.5, we
find from Figure 12.19 (top): ))V < 5% if k2 > 0.25; for k2 = 0.10 we find ))V = 25%.

As an example, Figure 12.20 (left) shows, for an optimum maneuver to leave an initial
circular orbit and to enter an elliptical final orbit with ra/r1 = 2.0 (õ2

* = -0.333, )õ* = 0.167,
e = 0.334) that touches the original orbit, the variation of the angle 2 -*, where 2 is the true
anomaly and * is the thrust angle. For this example, the following values hold: F/M0 = 0.05 g1 

Figure 12.20: Variation of the angle 2 -* for an optimum transfer from a circular orbit to a coplanar
elliptical orbit that is tangent to the initial orbit. The plot on the left holds for ra  /r1 = 2.0, e = 0.334, F/M0

= 0.05 g1, Vj = Vc1; the plot on the right for ra/r1 = 1.028, e = 0.014, F/M0 = 0.0123 g1, Vj = 0.388 Vc1.
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(k2 = 0.05) and Vj = Vc1 (k3 = 1). During this flight a prolonged thrusting phase is applied: t . 0.6
T1 (t

* . 3.77) and 2 -* varies between -29E and 21E. Inspection of Figure 12.19 (bottom) yields
for )õ* = 0.167: ))V . 34%. Obviously, this high value is a direct result of the long thrusting
period, during which the thrust angle deviates significantly from zero. In this case, the gravity
loss could have been reduced by applying during the first perigee passage (2 . 0E) a much short-
er thrusting phase, and by applying at each succeeding perigee passage additional short thrusting
phases (Section 12.3). Figure 12.20 (right) shows similar information, but now for an optimum
maneuver with a fairly short thrusting phase of t . 0.095 T1 (t

* = 0.6). In this case the satellite is
transferred from an initial circular orbit to an elliptical final orbit with ra/r1 = 1.028 (õ2

* = -0.493,
)õ* = 0.007, e = 0.014). The applied thrust and the exhaust velocity are given by F/M0 = 0.0123
g1 (k2 = 0.0123) and Vj = 0.388 Vc1 (k3 = 0.388). The angle 2 -* deviates during the entire
propelled flight less than 0.4E from zero and the gravity loss amounts to only about 1.5%.

When we adopt the following values as characteristic for realistic maneuvers using chemical
propulsion: e < 0.4 ()õ* < 0.2), k2 > 0.1, k3 = 0.5, then it follows from Figure 12.19 (top) that,
for the kind of maneuvers considered in this Section, the gravity loss is less than 10%. Using
electric propulsion, where very small values of k2 occur, the gravity loss, in particular for large
values of )õ*, will become very large. This topic is more thoroughly discussed in Chapter 19.

When the percentage gravity loss, ))V, is known, then the associated additional amount of
propellant can be computed as follows. From Tsiolkovski’s law (Section 1.7), we find for the
propellant consumption of an impulsive shot (index i) and for a maneuver with finite thrusting
time

(12.92)

where Mp is the required propellant mass and M0 is the initial mass, and ))V is expressed as a
percentage. When the percentage increase of the required amount of propellant for a maneuver
with finite thrusting time is defined as

(12.93)

we find with (12.92)

(12.94)

For a specified total mass, M0, any propellant increase, of course, implies an equivalent decrease
of the payload capability. When we substitute (12.91) into (12.94), we obtain

(12.95)

It is emphasized that ))V is a function of the altitude of the initial circular parking orbit, r1, the
eccentricity of the final orbit, e, the initial thrust acceleration, F/M0, and the exhaust velocity, Vj.
For specified values of r1, the quantities Vc1 and g1 can be computed. Then, for a specified value
of e, the values of ()V)i and )õ* can be computed from (12.88) and (12.91). Subsequently, for
specified values of k2 = F/g1M0 and k3 = Vj/Vc1, the value of ))V can be read from diagrams like
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the ones presented in Figure 12.19. Finally, the value of )Mp can be computed from (12.95). As
an example, Table 12.2 shows the results for an initial circular parking orbit about the Earth at
an altitude of 300 km, e = 0.01, 0.04, 0.2, or 1.0, F/g1M0 = 0.01, 0.04, 0.1, or 0.4, and Vj/Vc1 =
0.5. The series of eccentricities correspond to ()V)i = 0.038 km/s, 0.153 km/s, 0.737 km/s, and
3.200 km/s, respectively. The particular value of Vj was selected because then Figure 12.19 (top)
can be used to read the values of ))V. From this Table, we conclude that for small maneuvers,
leading to elliptical orbits with e < 0.01, the percentage gravity loss and percentage propellant
increase are negligible for all realistic values of the thrust acceleration, F/g1M0. For large
maneuvers, the gravity loss and propellant increase may become significant, in particular for
smaller thrust accelerations, i.e. longer engine burning times. The percentage propellant increase
is always less than the percentage gravity loss; the largest differences occur at the smaller thrust
accelerations. Of course, for larger or smaller values of Vj, and the same values of r1, e and
F/g1M0, the percentage gravity loss and percentage propellant increase will be smaller or larger,
respectively.

Table 12.2: Values of ))V and )Mp, both in percentages, for a transfer from a circular parking orbit at
an altitude of 300 km to an elliptical orbit with perigee altitude of 300 km, for Vj = 0.5Vc1 and specified
values of e and F/g1M0 .

e = 0.01 e = 0.04 e = 0.2 e = 1.0

F/g1M0 ))V )Mp ))V )Mp ))V )Mp ))V )Mp

0.01 1.0 1.0 19.0 18.6 > 50 > 50 > 50 > 50

0.04 < 0.1 < 0.1 1.0 1.0 20.0 17.8 > 50 > 50

0.1 < 0.1 < 0.1 0.1 0.1 3.2 2.9 25.0 14.5

0.4 < 0.1 < 0.1 < 0.1 < 0.1 0.2 0.2 2.1 1.3
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13. TRANSFER BETWEEN TWO ORBITS IN DIFFERENT ORBITAL
PLANES

In Chapter 12, transfers between coplanar circular and elliptical orbits about the Earth have been
discussed. However, in reality the initial and final orbits will mostly not lie in the same plane, and
the impulsive shots have to be applied in such a way that the inclination, i, and/or the right
ascension of the ascending node, S, (also) change. To achieve such a non-coplanar orbit change,
a component of the impulsive shot must be directed perpendicular to the initial orbital plane; after
all, components of the impulsive shot in the orbital plane only change the in-plane orbital
parameters. When the out-of-plane impulsive shot is applied at an arbitrary point along the orbit
both the inclination and the right ascension of the ascending node, and some other orbital
elements, will change. In this Chapter, first a general overview of the geometry of orbital plane
changes will be given, after which a few basic types of three-dimensional maneuvers will be
discussed in some detail. In all cases, it will be assumed that the maneuvers may be considered
as impulsive shots. The additional )V required to compensate for the gravity loss that occurs due
to a non-zero rocket engine burning time can be estimated with the method described in Section
12.7.

13.1. Geometry of orbital plane changes

Figure 13.1 depicts the general case of a maneuver for changing the orbital plane of a satellite
about the Earth. It is assumed that, originally, the satellite is in an elliptical orbit with the
elements a1, e1, i1, S1, T1, J1. At point P in this orbit, which is determined by the argument of
latitude u1, an impulsive shot is applied such that an orbit with the elements a2, e2, i2, S2, T2, J2

results. Consequently, point P is a point where both orbits intersect each other. For simplicity,
it is assumed that the impulsive shot is executed over the northern hemisphere, which implies u1

< 180E, u2 < 180E, and that S2 > S1, i2 > i1. The velocity prior to the impulsive shot is . The
impulsive shot results in the change in velocity , which has a component perpendicular to the
original orbital plane. The velocity just after the impulsive shot is . Now, consider the oblique
spherical triangle shown in Figure 13.1, which is determined by the angles i1, 180E- i2 and A, and
the corresponding (spherical) sides u2, u1 and S2-S1. Note that the curves S1-P and S2-P are the
intersections of the orbital planes with a sphere. The angle " is given by

Figure 13.1: Geometry of a general orbital plane change maneuver.
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For specified initial and final elliptical orbits, the vectors  and  are known and thus the
values of )V and " can be computed. It is emphasized that, in general, " … A. The reason is that
at point P the velocity in both elliptical orbits will, in general, have a radial component, while the
angle A is measured on a sphere. Only when point P is perigee or apogee of both orbits, or when
the orbits are circular: " = A; for low-eccentricity orbits: " . A. Of course, A … 0, since we deal
with with two crossing orbital planes. To simplify our analysis, in this Chapter we will compute
the magnitude of an impulsive shot only for cases where we may substitute " for A. From
spherical trigonometry a whole suite of formulas is known that can be applied for the oblique
spherical triangle indicated in Figure 13.1. For our analysis we only need a subset of these
formulas.

Sine rule

With the definition )S = S2 - S1, this expression can be written as

(13.1)

First cosine rule

(13.2)

Second cosine rule

or

(13.3)

(13.4)

(13.5)

Formula of Napier
One of the formulas derived by J. Napier (or Neper (1550-1617)) reads
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With the definition )i = i2 - i1, this expression can be written as

(13.6)

Figure 13.1 also shows a right-angle spherical triangle with the declination, *, of point P as one
of the right-angle sides. When we apply the sine rule in this spherical triangle, we find

(13.7)

Note that we have assumed that i1 … 0 and i2 … 0, since otherwise )S is not defined.
In Sections 13.2 and 13.3 it will be shown that large changes in i and S cost a large amount

of propellant. Therefore, in all practical situations *)i* < 90E, *)S* < 90E, A < 90E. Now, we
assume that the elements of the initial orbit are known and that we want to compute the values
of A, u1 and u2 that correspond to specified values of )i and )S. These values of A, u1 and u2 can
be computed unambiguously from (13.1) to (13.5). However, since we have assumed that the
impulsive shot is applied over the northern hemisphere: u1 < 180E and u2 < 180E, and therefore
the angles can be computed unambiguously from the reduced set of equations (13.3) to (13.5):

For a numerical example, we assume i1 = 20E, i2 = 40E, )S = 20E. From the relations given
above, we then obtain A = 22.1E, u1 = 35.7E, u2 = 18.1E, * = 11.5E. The magnitude and direction
of the required impulsive shot cannot be determined, because we have not specified the other
parameters of both orbits. It is emphasized that the impulsive shot required to achieve )i and )S
will, in general, also affect other orbital elements. So, generally, multiple impulsive shots are
required to realize a transfer between two specified non-coplanar elliptical orbits. In the
following, three relatively simple three-dimensional transfer maneuvers will be discussed.

13.2. Changing S without changing i

In this Section, we will analyze the case that an impulsive shot is applied to change the right
ascension of the ascending node from S1 to S2, while the inclination is held constant. This
implies that the orbital plane rotates about the polar axis. We then find from (13.1) and (13.6)

(13.8)

From these conditions, we obtain the solution

(13.9)

where , is a function of i1 and )S. So, the values of u1 and u2 are equally spaced on either side
of u = 90E. From (13.4), (13.5) and (13.7) we find for i1 = 90E: , = 0E, u1 = u2 = 90E, * = 90E.
When )S is small, we may, using (13.8), approximate (13.2) by
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which leads with (13.9) to

(13.10)

From (13.10) we conclude that for )S < 20E, which will be the case for most practical situations,
, < 9.9E. For a numerical example, we assume i1 = 45E, )S = 20E. From the relations given
above, we then obtain A = 14.1E, u1 = 97.1E, u2 = 82.9E, , = 7.1E, * = 44.6E, where , is
computed from (13.9). When we compute , from the approximate relation (13.10) we find , =
7.0E.

We now assume that the initial and final orbits are circular. Since they both go through P, the
radii of both orbits are equal, and consequently V2 = V1. Since in this case " = A, we find from
(13.3)

or

(13.11)

When )S is small then " is small, which implies that the angle between  and  will be close
to 90E. According to the geometry depicted in Figure 13.1 we can write for the magnitude of the
required impulse

(13.12)

This expression leads with V2 = V1 and (13.11) to

or

(13.13)

This relation shows that, for prescribed values of V1 and )S, the required impulse depends on
the inclination of the initial orbit; the impulsive shot is maximum for polar orbits. For )S = 60E
and i1 = 90E: )V = V1, which means that the velocity change required for the orbital plane
rotation is equal to the velocity of the satellite just prior to the maneuver. This demonstrates that
it costs very much propellant to produce large plane changes. As (13.13) shows, a change in S
costs less propellant when V1 is smaller. In Figure 13.2, the value of y = )V/sin i1 is plotted as a
function of x = )S for circular orbits with specified orbital altitudes. The Figure shows that the
higher the circular orbit (smaller V1) the lower the impulse required to accomplish a specified
change of the right ascension of the ascending node. For h = 24,300 km and given values of i1

and )S, the required impulse is only about half the impulse required at an altitude of h = 300 km
for the same values of i1 and )S. For small values of )S: )V = V1 sini1)S, which fully agrees
with the results found in Section 22.7.

When sufficient time is available, (part of) the required change in S may be realized by using
the orbit perturbation due to the flattening of the Earth (Section 21.2, Section 23.2). That
perturbation results, without demanding any rocket propellant, in a slow continuous precession
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Figure 13.2: Required impulsive shot for a specified change of the right ascension of the ascending node
or the inclination, as a function of the altitude of the initial circular orbit.

of the ascending node. However, this approach can only be applied if )S < 0 when i1 < 90E, or
if )S > 0 when i1 > 90E (Section 21.2).

13.3. Changing i without changing S

In this Section, we will analyze the case that an impulsive shot is applied to change the
inclination of the orbit from i1 to i2, while the right ascension of the ascending node is held
constant. This implies that the orbital plane rotates about the line of nodes. We then find from
(13.1) and (13.2)

(13.14)

From these conditions, we find the solution

(13.15)

So, the maneuver has to be executed at the ascending or descending node (* = 0E). From (13.3)
we then obtain

(13.16)

We now assume that the initial and final orbits are circular. Since then " = A, V2 = V1, we find
from (13.12) and (13.16)

(13.17)

This equation shows that for )i = 60E: )V = V1. This again demonstrates that it costs very much
propellant to produce large plane changes. Equation (13.17) shows that a change in inclination
costs less propellant when V1 is smaller. Figure 13.2 shows a plot of y = )V versus x = )i. For
circular orbits, the higher the orbit the lower the impulse required to accomplish a specified
change in inclination. Also in this case, for a given value of )i the impulsive shot required at an
altitude of 24,300 km is only about half the impulse required at an altitude of 300 km. For small
values of )i: )V = V1)i, which fully agrees with the results found in Section 22.7.

In Figure 13.3 the geometry of an inclination change maneuver at the ascending node (u1 = 0E)
of two circular orbits with the same orbital radius is depicted. Since V2 = V1, we can write for the
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Figure 13.3: Geometry of an inclination change maneuver between two circular orbits with the same
radius.

angle $, i.e. the direction of the impulsive shot with respect to the initial orbital plane

or

(13.18)

This relation shows that, generally, the required impulsive shot is not directed perpendicular to
the initial orbital plane, but has a component opposite to the direction of the velocity in the initial
orbital plane. This is to guarantee that the requirement V2 = V1 is satisfied. However, for small
values of )i we find that $ . 90E.

13.4. Transfer between two circular orbits with different inclinations

In the previous Sections, we have analyzed maneuvers to change the inclination and/or the right
ascension of the ascending node of a satellite orbit. In reality, orbit change maneuvers will
(mostly) be executed in such a way that several orbital parameters change simultaneously. In this
Section, we will analyze the case of a transfer from an initial low-altitude circular orbit about the
Earth with radius r1 and inclination i1 to a higher circular orbit with radius r2 and inclination i2

(Figure 13.4). Such maneuvers are frequently applied; for instance, when launching a
geostationary satellite from a launch site that is not located on the equator. In Section 16.2, it will
be shown that the latitude of the launch site determines the minimum inclination of the orbital
plane of a satellite launched from that site. Therefore, the launcher usually, first injects the
satellite into a low-altitude circular parking orbit with an inclination (about) equal to the latitude

Figure 13.4: Geometry of a Hohmann transfer maneuver between two circular orbits with different
inclinations.
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of the launch site. At an ascending or descending node of this orbit, the satellite is injected into
a Hohmann-type elliptical transfer orbit to the geostationary orbit (i2 = 0E). Just as in Chapter 12,
it will be assumed that the total maneuver is performed by the same rocket engine and that in
between rocket engine burns no mass is discarded or expelled.

It will be clear that the first impulsive shot, )V1, at a node of the initial circular orbit has to be
applied such that this point becomes the perigee of the transfer orbit; this means that the
impulsive shot should be directed perpendicular to the radius vector. The transfer orbit has an
inclination it and an apogee distance equal to the radius of the final orbit, r2. The second
impulsive shot, )V2, is executed at apogee of this transfer orbit and is directed perpendicular to
the radius vector. This point lies in the equatorial plane and is therefore a node of the final orbit
(if i2 … 0E). In the following analysis, it is assumed that the orbit transfer starts at the ascending
node of the initial orbit.

According to the vector diagrams in Figure 13.4, we may write

(13.19)

With the standard relations for elliptical orbits, we write for the velocities at perigee and apogee

where e is the eccentricity of the transfer orbit, and for the circular velocity at the distance r2

Substitution of these relations into (13.19) and using the parameter n introduced in Chapter 12
(n = r2 /r1), we obtain after some algebraic manipulation

(13.20)

where

(13.21)

Equations (13.20) and (13.21) show that for given values of r1, r2 and )i, the total impulse
)Vtot = )V1 +)V2 is a function of )i*. Generally, there will be an optimum value of )i* for which
)Vtot is minimum. This optimum value, and the corresponding values of )V1 and )V2, can be
determined by means of a numerical analysis of (13.20). In Figure 13.5 the optimum value of )i*

is plotted as a function of n, for several values of the total inclination change, )i. The Figure
shows that the value of )i* is always considerably smaller than the value of )i, and that the
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Figure 13.5: Optimum relative inclination of the transfer orbit, )i*, as a function of n and the total
inclination change, )i.

maximum value of )i* occurs at n < 3. For instance, for )i = 30E the maximum value )i* =
5.225E occurs at n = 1.75. For a transfer from a circular orbit at an altitude of 300 km and with
i1 = 28.5E (launch from Cape Canaveral) to the geostationary orbit, we have n = 6.32, )i = 
-28.5E. Then, it follows from Figure 13.5 that )i* = -2.19E. Because )i* is significantly smaller
than )i, in first-order analyses one usually assumes that the transfer orbit has the same inclination
as the original circular orbit; i.e. )i* = 0. 

Figure 13.6: Dimensionless total impulse for an optimum Hohmann transfer between two inclined circular
orbits (left) and the percentage increase in total impulse if )i*= 0E (right), both as a function of n and the
total inclination change, )i.

In Figure 13.6, the dimensionless total impulse for a transfer from a low-altitude circular orbit
to a higher circular orbit is plotted as a function of n for some values of )i ; the results hold for
the case that the optimum transfer orbital inclination is applied. This Figure shows that for a total
inclination change of about 30E:  independent of the value of n; for n > 5:

 for values of *)i* up to 50E. Also indicated is the percentage increase of the
required impulse for the case that the transfer orbital inclination does not have its optimum value,
but it = i1. This percentage increase (loss) is defined as
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where the index I refers to the total impulse required when the optimum transfer orbital
inclination is applied, and the index II to the total impulse required when the transfer orbit has
the same inclination as the original circular orbit. As Figure 13.6 shows, the percentage increase
is largest for small changes in inclination and then may amount up to 10%. For a transfer from
a circular orbit at an altitude of 300 km and an inclination of 28.5E (launch from Cape Canaveral)
to a geostationary orbit, the percentage increase amounts to about 0.6%.

For the thrust angles $1 and $2, which determine the direction of the thrust vector in a plane
perpendicular to the local radius vector and relative to the orbital plane just prior to the impulsive
shots )V1 and )V2, we can write according to Figure 13.4

Figure 13.7: Dimensionless impulses and thrust angles for an optimum Hohmann transfer between two
inclined circular orbits, as a function of n and the total inclination change, )i.

With the standard relations for elliptical orbits ((12.19) to (12.21)), we can write these equations
as

or



Fundamentals of Astrodynamics     SS     Transfer between two orbits in different orbital planes 322

(13.22)

From (13.20) and (13.21) the optimum inclination of the transfer orbit, and the corresponding
values of )V1 and )V2, can be computed for given values of n and )i. Subsequently, the values
of the thrust angles $1 and $ 2, which hold for the optimum transfer orbit, can be computed with
(13.22). In Figure 13.7 the values of , , $1 and $2 are plotted as a function of n
and )i for transfer orbits with the optimum inclination it. This Figure shows that for n 9 1, the
thrust is directed nearly perpendicular to the orbital plane at both locations where the impulsive
shot is executed. For increasing values of n, the values of $1 and $2 decrease; for a given value
of n, the values of $1 and $2 increase when )i increases. For a transfer from a circular orbit at an
altitude of 300 km and an inclination of 28.5E to the geostationary orbit, we find $1 = 9E and $2

= 50E.

13.5. Inclination change at high altitude

In the previous Sections it has been shown that an orbital plane change is very costly in terms of
)V. A comparison with results presented in Chapter 12 shows that an inclination change of 30E
for a circular orbit at an altitude of 300 km costs as much )V as a coplanar Hohmann transfer to
raise the orbital altitude from 300 km to 44,693 km. If the (effective) exhaust velocity of the
rocket engine is 3 km/s, this )V requires, according to Tsiolkovski’s law (Section 1.7), a propel-
lant mass that is equal to about 74% of the initial vehicle mass. In Section 13.3 we have learned
that the )V required for a plane change maneuver decreases if the maneuver is executed at higher
altitudes. From Figure 12.4 we learn that a transfer from an initial 300 km altitude circular orbit
to a coplanar elliptical orbit with perigee and apogee at 300 km altitude and 44,693 km altitude,
respectively, costs about 64% of the total )V required to reach a circular orbit at an altitude of
44,693 km. These facts suggest that a transfer from a low circular orbit to a higher inclined
circular orbit might be carried out most efficiently if the vehicle is first injected into a coplanar
Hohmann orbit with high apogee, after which the full inclination change is performed at apogee
and the vehicle descents to the final circular orbit along a Hohmann orbit that is coplanar with
the final orbit. In this Section, we will analyze this high-altitude inclination change maneuver in
some detail.

The geometry of the flight profile is depicted in Figure 13.8. For the velocities at perigee and
apogee of the first transfer orbit we write with the standard relations for elliptical orbits

where Vca is the circular velocity at apogee of the first transfer orbit and et1 is the eccentricity of
this orbit. For the velocities at perigee and apogee of the second transfer orbit, we write
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Figure 13.8: Geometry of a three-impulses Hohmann transfer maneuver between two inclined circular
orbits, where the inclination change is executed at high altitude.

where  is the eccentricity of the second transfer orbit. When it is assumed that the total
inclination change )i = i2 - i1 is realized at apogee of the first transfer orbit by an impulsive shot
)V2, we may write for the three impulsive shots (Figure 13.8)

(13.23)

(13.24)

(13.25)

Substitution of the expressions for et1 and et2, of the parameters n = r2/r1 and m = ra/r1 > n, and
of the relations

into (13.23) to (13.25) yields

(13.26)
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(13.26)

Figure 13.9: Total dimensionless impulse re-
quired for a three-impulses Hohmann transfer
between two inclined circular orbits, where the
total inclination change is executed at high
altitude, and the thrust angle $2; both as a
function of the total inclination change, )i, and
the altitude ratios n and m.

Figure 13.10: Percentage decrease of the total
impulse required for a three-impulses Hohmann
transfer between two inclined circular orbits,
where the total inclination change is executed at
high altitude, relative to a direct Hohmann
transfer with an optimum inclination change
distribution over the two impulses, as a function
of the total inclination change, )i, and the
altitude ratios n and m.

and for the total impulse

(13.27)

A numerical analysis of (13.27) shows that, for specified values of n and )i, )Vtot /Vc1 first
increases, decreases or fluctuates at increasing values of m; beyond a certain value of m > n,
)Vtot/Vc1 approaches asymptotically its value at m 6 4. For m 6 4, (13.27) reduces to
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This relation shows that for m 6 4 the inclination change maneuver costs no energy and )Vtot

consists of a component that represents the )V required to leave the initial circular orbit and to
enter a parabolic orbit, and a component that represents the )V required to return from a
parabolic orbit and to enter the final circular orbit. In Figure 13.9 the value of  is plotted
as a function of n and m for two values of )i. This Figure shows that for both values of )i and
a specified value of m, the value of monotonously decreases for increasing values of
n.

For the flight profile that is analyzed in this Section, the required orientation of the impulsive shot
)V2 can be found from the vector diagram in Figure 13.8:

After substitution of a number of relevant relations for elliptical orbits, we find

(13.28)

From (13.26-2) we can compute the value of as a function of )i, n and m. Then, we can
compute from (13.28) the corresponding value of $2. In Figure 13.9, the value of $2 is plotted as
a function of n and m for two values of )i. The Figure shows that for n . 1 the thrust vector is
inclined at an angle $2 = 95E -115E to the original orbital plane; for increasing values of n the
value of $2 decreases monotonously.

The equations (13.20) and (13.21) can be used to compute the minimum value of )Vtot /Vc1

when a direct transfer orbit is used and the total inclination change is divided in an optimum way
over the two impulsive shots. Equation (13.27) yields the value of )Vtot /Vc1 when the flight
profile described in this Section is applied. When the percentage decrease (gain) in the required
)Vtot for this three-impulses profile is indicated by G, which is defined as

where the indices 2 and 3 refer to the optimum two-impulses flight profile and the three-impulses
flight profile, respectively, then G can be computed as a function of )i, n and m. In Figure 13.10
the value of G is plotted as a function of n and m for four values of )i, and for G > 0. The Figure
shows that for small values of )i only a minor percentage decrease in )Vtot may occur and only
for large values of m. For )i = 50E, a )Vtot decrease of the order of 5% may be achieved for small
values of n and a value of m = 2 -10; for n > 5, a )Vtot decrease of 3 -5% may be achieved if m
> 25. The total flight time for such a three-impulses flight profile is, of course, significantly
longer than for a two-impulses profile. For satellites that have to operate for extensive periods
of time in their final orbits, this additional flight time is irrelevant and an inclination change
maneuver at high altitude certainly is an attractive option.
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13.6. Orbital plane changes in practice

In this and previous Chapters it has been assumed that all maneuvers are executed by the same
rocket engine and that no mass is expelled or discarded between successive impulsive shots. So,
it is implicitly assumed that no staging is performed. In practice, however, the various maneuvers
are often executed by two or more rocket stages and parts of the initial vehicle are discarded
between the maneuvers. An example is a geostationary transfer flight where the perigee burn is
executed by the last rocket stage, after which the satellite is separated from that stage, travels
along its geostationary transfer trajectory and, after arriving at geostationary altitude, fires its own
apogee rocket engine. The advantage of such a maneuver is clear: by separating the satellite from
the rocket stage useless mass is discarded and the propulsion system that performs the apogee
burn can be used more efficiently. This is a direct consequence of Tsiolkovski’s law (Section 1.7).
Another example of a real-world strategy for a geostationary mission is the appropriate selection
of the inclination of the initial parking orbit. It will be shown in Chapter 16 that the payload
capability of a rocket is maximum when the rocket injects its payload into an orbit with
inclination equal to the latitude of the launch site. However, depending on the launcher
characteristics, the situation may occur that by selecting a parking orbital inclination that is not
equal to the latitude of the launch site, a larger payload can be placed in geostationary orbit. In
that case, the launcher payload capability loss is less than the gain in payload due to the smaller
orbital plane change to be provided by the satellite’s rocket engine, requiring less propellant on
board of the satellite. So, in reality, the determination of an optimal strategy to launch the
maximum mass into the final orbit by a specific launcher leaving from a specific launch site is
a complicated problem. Important parameters in this optimization procedure are, among others,
the launcher’s payload capability as a function of the inclination of the ascent trajectory, the ratio
between the mass of the satellite and the mass of the last rocket stage, the ratio between the
exhaust velocity of the rocket engine of the satellite and that of the last rocket stage, etc. As an
example, for the modern Atlas V/Centaur family of launchers and for today’s satellite liquid-
propellant apogee rocket engines, it was found that a 27E inclination of the geostationary transfer
orbit is optimum for maximizing the satellite beginning-of-life mass in geostationary orbit, given
an optimally-sized satellite propulsion system and a launch from Cape Canaveral (latitude 28.5E).
The analysis of such optimum launch procedures falls outside the scope of this book. In order to
provide at least some information about real-world maneuvers, two geostationary transfer
schemes and a few specific orbit transfer maneuvers are briefly described below.

With satellites weighing less than the geostationary transfer orbit capability of the launch vehicle,
excess launcher performance can be used to further reduce inclination, raise perigee or both. In
addition, alternative transfer flight schemes can enhance the lifetime of geostationary satellites
that use common sources of liquid propellant for orbit insertion and on-orbit stationkeeping.
These are: supersynchronous transfer and subsynchronous transfer. The supersynchronous
trajectory design is based on an intermediate orbit with apogee altitude significantly higher than
the geostationary altitude. If the apogee altitude capability exceeds the satellite maximum
allowable altitude, excess launch vehicle performance can be used to lower the transfer orbital
inclination. At supersynchronous altitudes, the decreased velocity allows the satellite to make
orbital plane changes more efficiently (Section 13.5), and so offers an opportunity to increase the
amount of satellite beginning-of-life propellants enhancing the satellite’s operational lifetime.
The satellite makes the plane change and raises perigee to geostationary altitude in one or more
apogee burns. It then coasts to perigee and circularizes into the final geostationary orbit. These
supersynchronous transfer trajectories have been flown on many missions, starting with the
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launch of the Eutelsat II F3 satellite by an Atlas II vehicle on December, 7, 1991. In a
subsynchronous transfer scheme, the launch vehicle delivers the satellite with a mass larger than
the launcher’s geostationary transfer capability to an intermediate transfer orbit with apogee
altitude less than the geostationary altitude and with an inclination of about 27E for a launch from
Cape Canaveral. The separated satellite executes a series of engine burns when it passes perigee
of successive revolutions in its transfer orbit, thereby gradually raising the apogee to
geostationary altitude. This series of maneuvers is quite similar to the scheme presented in
Section 12.3. After apogee has reached the geostationary altitude, the satellite fires its rocket
engine during one or more apogee passages to lower the orbital inclination and to circularize the
orbit. Also this mission concept was applied in many missions. By using these alternative transfer
concepts, the operational lifetime of communications satellites with a designed lifetime of 10
years may be extended by up to 6 months.

Many modern geostationary communications satellites are equipped with ion engines for on-
orbit stationkeeping (Section 19.1). These engines have very high exhaust velocities, which make
them very attractive for orbit maneuvers. The satellites use their liquid-propellant orbit
maneuvering engines and ion engines in combination to execute the orbit change maneuvers
required for the supersynchronous and subsynchronous tranfer concepts. By using the ion
engines, as much as 450 kg of chemical propellants may be saved for a communications satellite
with an initial mass of 5200 kg. This mass saving may be applied to increase the revenue-
generating payload mass, to prolong operational service life, or to change to a less-expensive
launch vehicle.

As a first example of specific orbit transfer maneuvers, we consider the launch of the Galaxy
VII communications satellite by an Ariane 42P rocket from the ESA launch site at Kourou,
French Guiana, which is located at 5.2E northern latitude, on October 27, 1992. For this flight
the subsynchronous transfer scheme was used. The Ariane 42P launcher has a payload capability
of 2750 kg for a normal geostationary transfer orbit, which has a perigee altitude of 200 km and
an apogee altitude of 36,000 km. However, in this flight the satellite was filled with a greater
propellant load, which resulted in a geostationary transfer orbit with a lower than normal apogee
altitude: 27,673 km. During a perigee pass of the satellite, the satellite’s own propulsion system
was fired to raise the apogee to 36,000 km. After this, the satellite propulsion system was used
as in normal missions to progressively decrease the inclination and increase the perigee altitude,
thereby circularizing the orbit.

On July 25, 1996, an Atlas II launched from Cape Canaveral the US Navy communications
satellite UHF F7 into a geostationary transfer orbit. The Centaur second stage was fired for 6 min
and 49 s to place the spacecraft in a preliminary parking orbit. This orbit was maintained for only
11 min, before the twin Centaur RL10A engines were ignited again for 91 s. This second burn
was initiated as the vehicle reached the equator off West Africa, was continued until Centaur
propellant depletion and placed the spacecraft in a subsynchronous intermediate transfer orbit of
285 km by 27,320 km and inclined at 27E. Starting July 27, 1996, a series of six maneuvers were
executed with the satellite’s liquid-fueled rocket engine to boost the spacecraft to geostationary
altitude and to bring the inclination down to zero. These maneuvers resulted by early August
1996 in the placement of the satellite near its initial checking position in the geostationary orbit
over the Pacific south of Hawaii.

On July 27, 1997, the Japanese Superbird-C communications satellite was launched by an
Atlas IIAS rocket from Cape Canaveral. The twin RL10A-4-1 engines of the Centaur second
stage were commanded through a two-burn sequence to place the satellite into a
supersynchronous transfer orbit with a 90,000 km apogee altitude, 168 km perigee altitude and
27.55E inclination. The Centaur was fired to propellant depletion to obtain the high apogee.
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Before separation of the spacecraft, the Centaur’s attitude control system was used to spin up the
payload to 5 rpm for initial attitude control stability. Once separation was achieved, the satellite’s
own thrusters increased the spin rate to 10 rpm and a series of burns with the satellite’s 500 N
thrust liquid-propellant apogee rocket engine was executed to reduce the inclination and to
circularize the orbit at geosynchronous altitude. The reduction of inclination was, of course,
performed at the high apogee.

On April 18, 2000, an Ariane 42L rocket launched the Galaxy 4R communications satellite
from Kourou. The launcher injected the satellite into a subsynchronous transfer orbit with perigee
altitude of 199.6 km, apogee altitude of 32,231 km, and inclination of 6.998E. The spacecraft’s
propellant tanks were filled to the brim, and the launcher lifted the satellite to the highest possible
transfer orbit by continuing thrusting until propellant depletion. The satellite then used its own
onboard propulsion system to reach its final geostationary orbit. On this flight, the total payload
mass was 3,737 kg, while the Ariane 42L version offers nominal capacity of only 3,560 kg with
a 99% probability of reaching the targeted geostationary altitude before propellant depletion. By
thrusting until propellant depletion the launcher could aim at an apogee of 33,448 km with over
50% probability of reaching it, while maintaining a 99% probability of reaching an apogee higher
than 29,604 km. The actual apogee altitude of 32,231 km was 2,627 km higher than the minimum
guaranteed altitude, which directly translated into extra propellant on the satellite and therefore
a longer service life.

On the first flight of the Atlas V launch vehicle from Cape Canaveral on August 21, 2002,
Eutelsat’s Hot Bird 6 communications satellite was injected into a supersynchronous transfer
orbit. About 4 min after liftoff, the propellants of the first stage were used up and the engine shut
down. The spent stage was then jettisoned from the Centaur upper stage, and the Centaur’s
RL10A main rocket engine was ignited to continue the push to orbit. This first Centaur burn
lasted for about 11 min, injecting the stage and attached satellite into a temporary parking orbit
about the Earth with perigee at 199 km altitude, apogee at 1482 km altitude and inclination of
27.4E. The duo coasted in that orbit for 9 min until the Centaur fired again for 4 min, accelerating
the satellite into the planned deployment orbit with 315 km perigee altitude, 45,850 km apogee
altitude and inclination of 17.57E. Unlike Centaur missions that see the stage fire until it depletes
its propellants, this launch was a ‘guidance commanded shutdown’ flight, in which the onboard
computer cut off the engine when the desired orbit was reached. The Centaur stage then
performed some maneuvers to orient itself into the proper position to release the satellite at 31.5
min after liftoff. Once flying on its own, Hot Bird 6 performed a series of onboard engine firings
to achieve the geostationary orbit at 13E eastern longitude.

On September 25, 2005, the US Air Force launched a Delta II 7925 rocket carrying the GPS
IIR-14 (M) navigation satellite from Cape Canaveral at a flight path azimuth of 110E. At 4.4 min
after liftoff the first-stage propellants were depleted and the engine cut off. Then, the second
stage separated and the rocket engine of the second stage ignited and burned for about 6.8 min.
This second stage first burn placed the vehicle in an orbit with perigee and apogee altitudes of
174 km and 1113 km, respectively, and an inclination of 37.77E. The second stage restarted at
approximately 20 min after liftoff and burned again for about 7.6 s. After this maneuver the
vehicle was in an orbit with perigee at 190 km altitude, apogee at 1294 km altitude, and
inclination of 37.84E. Then, the third stage was spun up and separated, after which the third stage
rocket engine was ignited for a thrusting period of about 1.4 min, injecting the satellite into a
transfer orbit with perigee at 281 km altitude, apogee at 20,368 km altitude and inclination of
39.5E. Separation of the satellite from the third stage occurred at 24.3 min after liftoff. The
satellite traveled in this transfer orbit and reached apogee at 3 hr, 19.5 min after liftoff. Then, the
onboard solid-propellant rocket kick motor was ignited to insert the satellite into its operational
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circular orbit at an altitude of 20,200 km and with an inclination of 55E.

In this Chapter, orbital plane change maneuvers were analyzed and discussed, where it was
assumed that the satellite flies an elliptical orbit in between successive maneuvers. However, in
practice this assumption is not always valid for transfer orbits with a very high apogee altitude.
For these orbits, the gravitational attraction by the Sun and the Moon may lead to significant orbit
changes from one perigee passage to the next, and the analysis approach presented in this Chapter
breaks down. It can be shown that for such transfer orbits the gravitational perturbations by the
Sun and the Moon can be used to achieve plane changes at reduced )V costs over the classical
approaches. This type of third-body plane-change maneuvers is somewhat comparable to the
classical bi-elliptical plane-change maneuver (Section 13.5) with the apogee plane change
maneuver replaced by the cost-free action of third-body perturbations. The analysis of these
transfer trajectories is beyond the scope of this book.



Fundamentals of Astrodynamics     SS     Transfer between two orbits in different orbital planes 330



Fundamentals of Astrodynamics     SS     Phasing orbits 331

14. PHASING ORBITS

In Chapters 12 and 13 transfers between an initial and a final orbit have been analyzed. Often,
a transfer orbit has to be selected such that not only the satellite will arrive in the chosen final
orbit, but also that it will arrive at a specific position in that orbit. This is, for example, the case
for rendez-vous missions (Chapter 15). In that case, the satellite has to arrive in the orbit of
another satellite and in the direct vicinity of that satellite. Another example is a geostationary
satellite, which not only has to reach the geostationary orbit but also has to be positioned at a
selected geographic longitude in that orbit. In this case, the target is not another satellite but a
specified position in the geostationary orbit.

In most cases, a direct transfer will not bring the satellite to its desired final position and we
have to use phasing orbits. The simplest phasing technique is to wait in the original orbit until
a point in that orbit is reached where injection into the (Hohmann) transfer orbit has to take place
in order to arrive at the desired position in the final orbit. Often, this phasing technique is
inadequate, because of the long waiting time or because of other constraints, and the satellite is
brought into a special interim phasing orbit. For different types of missions many phasing
techniques can be applied. In this Chapter, only some simple scenarios will be analyzed. First,
we will analyze the transfer between two coplanar circular orbits. As a second example, we will
analyze the transfer between two circular orbits with different inclinations. In both cases, it will
be assumed that the radius of the final orbit is larger than that of the initial orbit and that an
elliptical transfer orbit is used. The satellite that is originally in the lower orbit will be indicated
by ‘satellite 1’; the satellite in the higher orbit by ‘satellite 2’. For the phasing orbit, we will
assume that ra # r2; rp $ r1, where r1 and r2 are the radii of the initial and final orbit, respectively,
and ra and rp are the apogee and perigee distances of the phasing orbit, respectively. For the case
that the initial and final orbits are inclined relative to each other, we will assume that the two
ascending nodes coincide. This is a realistic assumption, because we have learned in Chapter 13
that a change of the right ascension of the ascending node costs a lot of propellant. Therefore,
usually the ascending nodes of both orbital planes are made to coincide by an appropriate choice
of the launch time of satellite 1.

In this Chapter, we will not discuss the energy requirement of different phasing strategies.
After all, the results of Chapter 12 have shown that in case the initial and final orbit lie in the
same plane, the energy requirement is independent of the number of intermediate orbits, as long
as ra # r2. From the results of Chapter 13, it can be concluded that, when the initial and final orbit
have different inclinations, the energy requirement is only weakly dependent on the inclination
of the selected intermediate orbit and that always the optimum inclination of that orbit can be
determined. Finally, it is noted that, in practice, the orbits of both satellites are always known
with a limited accuracy. Therefore, in practice, one will always select the transfer and phasing
orbits such that satellite 1 will not arrive at the position of satellite 2 but in a slightly lower orbit
at some distance ‘behind’ satellite 2. As a result of the different angular velocities of both
satellites they will then approach each other gradually (drift orbit). For satellites that have to
reach a specified position in the geostationary orbit, drift techniques are generally applied that
make use of the east-west deviations of the Earth’s gravity field that generate along-track
accelerations (Section 21.7). For all numerical examples in this Chapter, we will assume that the
altitude of the initial circular orbit is 300 km, which corresponds to r1 = 6671 km.
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14.1. Geometric aspects of direct transfer orbits

In this Section, we will analyze some geometric aspects of direct transfer orbits. First, we will
consider a transfer between two coplanar circular orbits and subsequently we will analyze a
transfer between two inclined circular orbits.

Coplanar circular orbits
Assume that at t0 both satellites are located at the points that are indicated in Figure 14.1 by s1,0
and s2,0. In this notation, s1 and s2 indicate the positions of satellite 1 and satellite 2,

 

Figure 14.1: Geometry of a transfer flight between two coplanar circular orbits, with the notation used.

respectively, and the second index indicates the time when the satellite occupies that location.
So, the notation s1,1 indicates the position of satellite 1 at t1. The relative angular position of both
satellites at t0 is given by R0; their relative position at t2 by R2. Assume that satellite 1 first travels
over an angular distance n1 in its orbit, before it is injected at t1 into a Hohmann transfer orbit to
reach the orbit of satellite 2. At t2, satellite 1 arrives in that orbit. When the flight time in the
transfer orbit is indicated by tt, then we find for the total flight time of satellite 1, tt,

(14.1)

where n1 is the angular velocity (mean angular motion) in the low orbit. During this time interval,
satellite 2 travels over an angular distance n2tf, where n2 is the angular velocity in the high orbit.
From Figure 14.1 we obtain

which, after combination with (14.1), leads to

(14.2)

From the theory of elliptical orbits (Chapter 6) we know that the following relations hold:

(14.3)

where : is gravitational parameter of the Earth. Substitution of (14.3) into (14.2) yields
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(14.4)

This expression shows that for given initial and final orbits (r1 and r2) and a given relative
position of the satellites at t0 (R0), the angle R2 is a function of n1 only. For any value of R2 the
required value of n1 follows from (14.4). Therefore, any point in the final orbit can be reached
by an appropriate selection of n1. For rendez-vous missions or interception missions we must
require R2 = 2B. In that case, we obtain from (14.4)

(14.5)

When (14.5) yields a negative value of n1, then injection has to take place before the relative
position angle R0 is reached. A positive value of n1 indicates that satellite 1 has to stay in the low
orbit for some time after the relative position angle reaches the value R0, before injection into the
transfer orbit has to take place.

If we consider the case where )r = r2 - r1 n r1, then we may linearize (14.5) and find

(14.6)

This relation shows that if R0 = 0E: n1 . -B/2 for all )r … 0. So, in this case injection has to take
place when satellite 1 is 90E behind the position for which the relative position angle R0 would
be zero. If R0 … 0E, then the value of n1 is proportional to R0 and inversely proportional to )r.
For very small values of )r, satellite 1 will, in general, have to complete many revolutions in its
initial orbit before injection into the transfer orbit should take place. When r2 o r1, we find from
(14.5) R0 - n1 . 2.031 rad . 116E. This means that injection into the transfer orbit has to take
place at the moment that the geocentric angle between both satellites is about 116E, while
satellite 2 is in the direction of motion ahead of satellite 1. When r2 o r1 and R0 = 0E, we find
n1 = -116E. So, we may conclude that for all values of )r … 0 and R0 = 0E, n1 will vary between
-90E and -116E. For the time it takes satellite 1 to reach the final orbit, we find from (14.1) and
(14.3)

or

(14.7)

where T1 is the period of the low-altitude orbit.
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Figure 14.2: The values of n1 and the flight time for a transfer between two coplanar circular orbits as
a function of R0 and r2 /r1; the flight time holds for r1 = 6671 km.

In Figure 14.2, n1 and tf are plotted as a function of r2/r1 and R0. Note that for small values of )r
and R0 > 90E, satellite 1 has to complete tens to hundreds of revolutions in its low orbit before
it is injected into its transfer orbit, and that the flight time becomes very long. For large values
of )r and the same value of R0, the values of n1 and tf are much smaller. Figure 14.2 (right, top)
demonstrates what we already have found from (14.5), namely that for R0 = 0E: n1 . -90E to
-116E, which corresponds to about a quarter of an orbital revolution. As a result of the scale of
Figure 14.2 (top, left) this is not observable for values of r2 /r1 < 1.01.

Now, it may happen that n1 cannot be chosen freely. For coplanar initial and final orbits, this
may be the case if injection into the transfer orbit has to take place when the satellite is within
the field of view of a ground station. Another example is when the orbital planes of the initial and
the final orbits do not coincide and injection has to take place at a specified point of the initial
orbit (Chapter 13). In the following, we will consider this case of mutually inclined orbits. Then,
injection into the transfer orbit and into the final orbit have to take place when the satellite is at
the intersecting line of the original orbital plane and the final orbital plane. The results that will
be found for this case, of course, also apply for the case that the transfer takes place between two
coplanar orbits but when the value of n1 is prescribed.

Inclined circular orbits
In Chapter 13 it was found that for a transfer between two circular orbits with different
inclinations but equal right ascension of the ascending node, the impulsive shots have to be
applied at the nodes of the orbits. These nodes lie in both orbital planes as well as in the
equatorial plane. In Figure 14.3, the geometry of this problem and the notation used are indicated.
Because the initial and the final orbit are in different planes, the angles are now defined with
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respect to the intersecting line of the planes (line of nodes). In Figure 14.3 this is the line that
connects the point where satellite 1 is injected into the transfer orbit (s1,1) with the point where
this satellite reaches the final orbit (s1,2). The angles R0 and R2 are measured in the orbital plane
of satellite 2. Of course, injection can also take place at the point in the low orbit that is located
diametrically opposite to point s1,1. In that case, the transfer orbit will be an exact mirror image.
For simplicity, it will be assumed in this Chapter that injection always takes place at point s1,1.
Injection of satellite 1 into the transfer orbit is therefore only possible at each successive passage
of point s1,1.

Figure 14.3: Geometry of a transfer flight between two inclined circular orbits, with the notation used.

Now, assume that injection occurs at the moment that satellite 1 passes point s1,1 for the first
time. The relative geocentric angle upon arrival in the orbit of satellite 2 is indicated by R2. When
satellite 1 is injected k revolutions later, then the extra flight time of satellite 1 is

In this period, satellite 2 covers an angular distance of

The relative geocentric angle upon arrival then is

(14.8)

When the difference between the angle R2 after completing k revolutions in the low orbit and the
angle R2 at the first passage of the injection point is indicated by ()R2)k, then we find from (14.3)
and (14.8):

So, (R2)k increases by a discrete amount when satellite 1 completes an additional revolution in
its low orbit before it is injected into the transfer orbit. The interval between two successive
points of arrival in the high final orbit is called the basic interval. This interval is given in angular
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units by

(14.9)

When 2B/" takes an integer value, satellite 1 can only reach the same discrete points in the orbit
of satellite 2 after injection at any passage of point s1,1. The angular distance between successive
points is then equal to ". When 2B/" is not an integer value, satellite 1 can reach any point in the
orbit of satellite 2, if it completes an appropriate number of revolutions in the low orbit. In
general, to reach a given point in the final orbit, many revolutions in the low orbit may be needed
and therefore usually a phasing orbit is introduced. This is an intermediate orbit with such a
period that after a small number of revolutions in the low orbit and a small number of revolutions
in this phasing orbit, an encounter between the two satellites in the high orbit occurs. In the
following Sections, two characteristic types of phasing orbits will be analyzed. These are low
phasing orbits, where rp = r1, r1 < ra < r2, and high phasing orbits, where ra = r2, r1 < rp < r2. Here,
rp and ra are the perigee and apogee distances of the phasing orbit, respectively.

14.2. Geometric aspects of low phasing orbits

Figure 14.4 shows a diagram that indicates how the angle (R2)k varies as a function of the number
of revolutions that satellite 1 completes in the low orbit prior to injection into the transfer orbit.
The position upon arrival in the orbit of satellite 2 is indicated relative to this satellite, causing
satellite 2 to have a fixed position in the diagram.

Figure 14.4: Series of possible relative positions of satellite 1 when it arrives in the orbit of satellite 2.
Point 1 corresponds to injection into the transfer orbit when satellite 1 passes for the first time point s1,1
in Figure 14.3, etc.

It is assumed that when satellite 1 is injected into the transfer orbit during its first passage of
point s1,1, it reaches the orbit of satellite 2 at point 1 of Figure 14.4. When injection takes place
during its second passage of the injection point, the arrival in the high orbit takes place at point
2, etc. Successive points of arrival are separated by an angular distance " (basic interval) and are
shifted oppositely to the direction of motion of satellite 2.

It will be obvious that for the case shown in Figure 14.4, an attractive strategy is to inject satellite
1 during its second passage of point s1,1 into a phasing orbit with rp = r1, r1 < ra < r2, and with
such a period that after one revolution in this orbit a second impulsive shot at s1,1 is applied to
inject that satellite into a transfer orbit with rp = r1, ra = r2, where upon arrival in the high orbit
it encounters satellite 2. Obviously, it is also possible to complete multiple revolutions in the
phasing orbit. In that case, satellite 1 has to be injected into the phasing orbit one or more
revolutions in its initial orbit earlier.

When we limit ourselves to the case that only one revolution in the phasing orbit is
completed and we assume that an arbitrary number of revolutions in the low orbit are completed,
then it follows that any point in the high orbit can be reached when the period of the phasing orbit
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satisfies the condition

(14.10)

where T1 and Tph indicate the period of the low orbit and the phasing orbit, respectively. For these
periods we can write

(14.11)

Combining (14.10) and (14.11), we find

or

(14.12)

Because always ra < r2, this strategy is only applicable if r2/r1 > 2.175. When this condition is not
satisfied, then parts of the high orbit will not be accessible to satellite 1, unless it completes more
revolutions in the phasing orbit.

Figure 14.5: Illustration of the regions in the orbit of satellite 2 that are, for a specified value of r2 /r1 <
2.175, not accessible (shaded area) for satellite 1, if satellite 1 completes only one revolution in the low
phasing orbit.

When only one revolution in the phasing orbit is completed, and when for a given value of r2/r1

< 2.175 the size of the accessible part per basic interval " is indicated by $ (Figure 14.5), then
it follows that

where Tph
* is the period of a phasing orbit with ra = r2 < 2.175 r1. From this relation and (14.11)

we obtain

(14.13)

For 1 < r2 /r1 < 2.175: 0 < $/" < 1. Combination of (14.9) and (14.13) yields for $, expressed in
angular units,



Fundamentals of Astrodynamics     SS     Phasing orbits 338

(14.14)

from which we find for 1 < r2/r1 < 2.175: 0 < $ < 1.959, or in degrees: 0E < $ < 112E. For r2/r1

= 2.175: " = $ = 112E. In case r2/r1 < 2.175, the only possibility for still reaching any point in
the high orbit is to inject the satellite into the phasing orbit one or more revolutions in the low
orbit earlier and to complete this phasing orbit more than once.

Next, the case is considered that r2/r1 > 2.175 and that during the first passage of point s1,1
injection into a phasing orbit takes place such that

(14.15)

In this case, a phasing orbit is applied with an apogee distance larger than 2.175 r1. In Figure
14.6, point 1 indicates the location where satellite 1 reaches the high orbit, if it is injected into
the transfer orbit during its first passage of the injection point.

Figure 14.6: Illustration of the region in the orbit of satellite 2 that is, for specified values of r2 /r1 > ra /r1

> 2.175, accessible (non-shaded region) for satellite 1, if satellite 1 is injected into the low phasing orbit
when it passes point s1,1 for the first time and completes one revolution in the phasing orbit before it is
injected into the transfer orbit.

When, before injection into the transfer orbit, the satellite would have completed one revolution
in a phasing orbit with ra /r1 = 2.175, then satellite 1 would have arrived at point 3; when, before
injection into the transfer orbit, the satellite would have completed one revolution in a phasing
orbit with ra = r2, then satellite 1 would have arrived at point x. From Figure 14.6 we find

where Tph
* is the period of a phasing orbit with ra = r2. Using (14.13) we may write this relation

as

(14.16)

For 2.175 < r2/r1 < 4: 0 < ( < 4. Combination of (14.9) and (14.16) yields for (, expressed in
angular units,

(14.17)

So, for 2.175 < r2 /r1 < 4: 0 < ( < 2.221, or in degrees: 0E < ( < 127E. 
From the results obtained so far, it may be concluded that when for r2/r1 > 2.175 satellite 1
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is injected into a phasing orbit with 1 < ra /r1 < 2.175 at the first passage of the injection point
s1,1, any point in the high final orbit in between the points 2 and 3 can be reached. When during
the first passage of the injection point the satellite is injected into a phasing orbit with
2.175 < ra /r1 < r2/r1, then any point in the region between the points 3 and x can be reached. The
total accessible interval is therefore "+(, measured from point 2. When this interval is indicated
by * (Figure 14.6), then we find from (14.9) and (14.17)

(14.18)

This expression is equal to the expression for $ ((14.14)) that gives the accessible region per
basic interval " when r2/r1 < 2.175. As a numerical example, we consider a transfer to
geostationary orbit, for which r2/r1 = 6.32051. From (14.18) we then find * = 217E.

14.3. Selection of a low phasing orbit

In this Section, we consider the general case where satellite 1, after passing for the first time point
s1,1, completes k revolutions in the low orbit before it is injected into a phasing orbit with rp = r1,
r1 < ra < r2. In this phasing orbit the satellite completes l revolutions, after which it is injected at
point s1,1 into the transfer orbit to reach the high orbit of satellite 2. The geometry of this case
and the notation used are indicated in Figure 14.7. It is emphasized that the angles R0 and Re are
measured in the orbital plane of satellite 2, while angle n0 is measured in the orbital plane of
satellite 1.

Figure 14.7: Geometry of a transfer flight between two inclined circular orbits, using a low phasing orbit,
and the notation used.

For the total flight time of satellite 1, we can write

(14.19)

where T1 and Tph are the periods of the low orbit and the phasing orbit, respectively, and tt is the
flight time in the transfer orbit. In this time interval, satellite 2 covers in its high orbit a
geocentric angle of
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(14.20)

Both satellites meet each other when

(14.21)

The values of the integers k, l, m cover the range

Substitution of (14.19) and (14.21) into (14.20) yields

or

(14.22)

Substitution of (14.3) and (14.11) into (14.22) results, after some algebraic manipulation, in

(14.23)
This relation shows that, for given values of n0, R0 and r2 /r1, in general, a number of
combinations of k, l, m exist that yield a value of ra with r1 < ra < r2. All these combinations
correspond to feasible phasing orbits; each with a different apogee distance.

A special case is a direct transfer without a phasing orbit, for which k = l = 0 ; m = 1. For this
case, (14.23) simplifies to

This equation shows that for given values of n0 and r2/r1, such a transfer is only possible for one
value of the relative position of satellite 2 at injection into the transfer orbit:

(14.24)

For this case, the values of R0 and the total flight time are plotted in Figure 14.8 as a function of
n0 and r2 /r1. Note that for small values of r2/r1 the required value of R0 strongly depends on the
value of n0, but that for large values of r2/r1 the value of R0 is for all values of n0 within the
interval 250E - 300E.

In the following, we will consider again the case l > 0. In Section 14.2 it was found that for
r2/r1 > 2.175 any point in the high orbit can be reached by selecting an appropriate phasing orbit
and by completing that orbit only once (l = 1). In that case, the boundary conditions for the
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Figure 14.8: Values of R0 and the flight time for a direct transfer (k=l=0, m=1) between two inclined
circular orbits as a function of n0 and r2 /r1; the flight time holds for r1 = 6671 km.

apogee distance of the phasing orbit are given by (14.12). That relation can also be written as

Substitution of (14.23) into this relation yields for l = 1:

(14.25)

When a variable q is introduced, which is defined as

(14.26)

then we find from (14.25)

(14.27)

Equation (14.26) shows that for l = 1 the value of q is completely determined by the parameters
n0, R0 and r2/r1, and is independent of k and m. Equation (14.27) shows that for any value of m
and l = 1 there is not more than one value of k that satisfies this inequality. For the values of k
and m, we have k $ 0, m $ 1. The computation scheme for possible phasing orbits is as follows.
For given values of r2 /r1, n0 and R0, the value of q is computed from (14.26). Next, for a series
of selected values of m the corresponding values of k are determined with (14.27). For a set
values of k and m, and l = 1, the required value of ra /r1 follows from (14.23).

In Section 14.2, it was also found that when r2 /r1 < 2.175, in general, multiple revolutions in the
phasing orbit are required in order to reach a given point in the high orbit. Obviously, also for
r2/r1 > 2.175 multiple revolutions in the phasing orbit may be completed and therefore the
following methodology is generally applicable, and the method described above may be regarded
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as a special case of that methodology for l = 1, r2 /r1 > 2.175. Because in the general case:
r1 < ra < r2, combination of (14.23) and (14.26) yields

or

 (14.28)

In this case, the computation scheme for determining the possible phasing orbits is as follows.
For given values of n0, R0 and r2/r1, the value of q is determined from (14.26). Now, a series of
positive integers values of l and m is selected, starting with l = 1, m = 1. Subsequently, from
(14.28) all possible integer values of k $ 0 are determined. Then, for every set of values for k, l,
m, (14.23) yields the corresponding value of ra /r1.

Equation (14.28) shows that, in general, for given values of n0, R0 and r2/r1 and selected
values of l and m, multiple values of k are possible. Only one value of k is possible if

or

(14.29)

So, for l = 1, only one value of k is possible when r2 /r1 < 2.175, which confirms the results
obtained before. For l = 2, 3 and 5, a transfer is possible for only one value of k when r2/r1 is
smaller than 1.621, 1.423 and 1.258, respectively.

For the total flight time of satellite 1, we can write according to (14.20) and (14.21)

(14.30)

where T2 is the period of the orbit of satellite 2. This equation shows that, for given values of R0

and r2, the total flight time of satellite 1 is determined by the value of m only, and not by the
values of k and l. Therefore, generally, a phasing orbit will be selected for which the value of m
is minimum. For this value of m, generally, multiple k,l-combinations are possible and the
selection of k and l is done on basis of mission considerations.

In Table 14.1, possible combinations of k, l, m and the corresponding values of ra/r1 and tf are
listed for a transfer to geostationary orbit (r2 /r1 = 6.3205), with r1 = 6671 km, n0 = R0 = 90E. The
search process has covered the range k = 0-8, l = 0-5, and m = 1-3. The Table shows that for a
given value of m indeed a number of combinations of k and l are possible and that the apogee
distance of the phasing orbit ranges, for these k,l,m-combinations, from 1.174 r1 to 6.241 r1. In
Figure 14.9, possible values of ra /r1 and the corresponding flight time are plotted as a function
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Table 14.1: Characteristics of feasible transfer flights between two inclined circular orbits with r1 = 6671
km and r2 /r1 = 6.3205 (geostationary orbit), and using a low phasing orbit, for n0 = R0 = 90E. The search
process has covered the range k = 0-8, l = 0-5, m = 1-3.

k l m ra / r1 tf (hr) k l m ra / r1 tf (hr)

1 1 1 6.084 17.951 5 3 2 5.739 41.885
2 1 1 5.357 17.951 6 3 2 5.495 41.885
3 1 1 4.585 17.951 7 3 2 5.246 41.885
4 1 1 3.755 17.951 8 3 2 4.992 41.885
5 1 1 2.846 17.951 0 4 2 5.522 41.885
6 1 1 1.811 17.951 1 4 2 5.336 41.885
0 2 1 3.898 17.951 2 4 2 5.148 41.885
1 2 1 3.463 17.951 3 4 2 4.956 41.885
2 2 1 3.004 17.951 4 4 2 4.761 41.885
3 2 1 2.518 17.951 5 4 2 4.563 41.885
4 2 1 1.996 17.951 6 4 2 4.361 41.885
5 2 1 1.423 17.951 7 4 2 4.156 41.885
0 3 1 2.738 17.951 8 4 2 3.946 41.885
1 3 1 2.406 17.951 0 5 2 4.621 41.885
2 3 1 2.056 17.951 1 5 2 4.460 41.885
3 3 1 1.685 17.951 2 5 2 4.298 41.885
4 3 1 1.286 17.951 3 5 2 4.133 41.885
0 4 1 2.086 17.951 4 5 2 3.965 41.885
1 4 1 1.811 17.951 5 5 2 3.794 41.885
2 4 1 1.523 17.951 6 5 2 3.620 41.885
3 4 1 1.216 17.951 7 5 2 3.443 41.885
0 5 1 1.659 17.951 8 5 2 3.262 41.885
1 5 1 1.423 17.951 5 5 3 6.241 65.820
2 5 1 1.174 17.951 6 5 3 6.100 65.820
3 3 2 6.215 41.885 7 5 3 5.958 65.820
4 3 2 5.979 41.885 8 5 3 5.814 65.820

Figure 14.9: Values of ra /r1 and tf  for transfers between two inclined circular orbits, using a low phasing
orbit and r1 = 6671 km, n0 = R0 = 270E, as a function of r2/r1. The search process has covered the range
k = 0-3, l = 0-3, m = 1-3 (left) or the range k = 0-5, l = 0-5, m = 1-5 (right).
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of r2/r1 and for r1 = 6671 km, n0 = R0 = 270E. In the plots on the left, results are shown for all
orbits where the parameters k and l vary between 0 and 3, and m between 1 and 3; in the plots on
the right, results are shown for the case that these parameters vary between 0 and 5, and 1 and
5, respectively. The Figure shows that for a given value of r2 /r1, many combinations of k, l and
m are possible. In Figure 14.10, possible values of ra/r1 and the flight time are shown as a
function of R0, for given values of r2/r1 and n0. Here, all values of k and l between 0 and 3, and
of m between 1 and 3, have been examined. Note that for the larger values of r2/r1, the number
of possible values of R0 and the number of possible combinations of k, l, m are larger than for the
smaller values of r2/r1.

Figure 14.10: Values of ra  /r1 and tf  for transfers between two inclined circular orbits, using a low phasing
orbit, as a function of R0- The results hold for r2/r1 = 1.2 (left) and r2/r1 = 6.3205 (geostationary orbit,
right) and r1 = 6671 km, n0 = 270E. The search process has covered the range k = 0-3, l = 0-3, m = 1-3.

14.4. Geometric aspects of high phasing orbits

In this Section, the case is considered where satellite 1, after it has completed k revolutions in the
low orbit, is injected into a Hohmann transfer orbit to the high final orbit (Figure 14.11) at the
moment it passes the nodal line of the two orbital planes (point s1,1). When the satellite reaches
the high orbit, it is accelerated to a velocity that is somewhat lower than the local circular
velocity. As a result, the satellite enters a phasing orbit with ra = r2, r1 < rp < r2. The perigee
distance of this orbit is selected such that satellite 1 reaches the desired point in the high orbit
after one revolution in the phasing orbit. At that moment, satellite 1 is accelerated to the required
local circular velocity. Because the period of the phasing orbit is shorter than the period of the
high final orbit, it will be clear that at the moment that satellite 1 arrives for the first time in the
high orbit, it will be located ‘behind’ satellite 2. After one revolution in the phasing orbit, satellite
2 has covered slightly less than one revolution in its orbit and both satellites approach each other.
When the situation depicted in Figure 14.4 still holds, where the numbers indicate the position
of arrival in the high orbit when satellite 1 is injected into the Hohmann transfer orbit during the 
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Figure 14.11: Geometry of a transfer flight between two inclined circular orbits, using a high phasing
orbit, and the notation used.

kth time that it passes point s1,1 (k = 1, 2, ...), we conclude that now the strategy is to inject
satellite 1 into a Hohmann transfer orbit when it passes for the fourth time the injection point.
Then, the perigee distance of the phasing orbit has to be selected such that after one revolution
in the phasing orbit satellite 1 approaches satellite 2. Obviously, it is also possible to inject
satellite 1 during the fifth or a later passage of point s1,1 into the transfer orbit and to complete
multiple revolutions in the phasing orbit.

When the case is considered that an arbitrary number of revolutions in the low orbit is
completed, then it follows that any point in the high orbit can be reached, if (Figure 14.5)

(14.31)

where T1, T2 and Tph are the periods of the low orbit, the high orbit and the phasing orbit,
respectively. From this inequality, we find

or, with (14.3) and (14.11),

or

(14.32)

Since rp > r1, the limiting value of r2 /r1 for which any point in the high orbit can be reached
follows from
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A numerical solution of this equation yields r2/r1 = 2.007. So, for

(14.33)

any point in the basic interval between the points 3 and 4 in Figure 14.5 is accessible by
completing one revolution in the high phasing orbit, with r1 < rp < r2. By completing multiple
revolutions in the low orbit, every basic interval is accessible. When the condition (14.33) is not
satisfied, then parts of the high orbit will not be accessible, unless multiple revolutions in the
phasing orbit are completed.

Figure 14.12: Illustration of the regions in the orbit of satellite 2 that are, for a specified value of r2 /r1

< 2.007, not accessible (shaded area) for satellite 1, if satellite 1 completes only one revolution in the high
phasing orbit.

When, for a given value of r2/r1 < 2.007, the size of the accessible part per basic interval " is
indicated by $ (Figure 14.12), then it follows that

where Tph
* is the period of a phasing orbit with rp = r1. We may write this relation as

(14.34)

For 1 < r2 /r1 < 2.007: 0 < $/" < 1. Combination of (14.9) and (14.34) yields for $, expressed in
angular units,

(14.35)

from which we find that for 1 < r2/r1 < 2.007: 0 < $ < 2.209, where the value of $ = 2.209 is
equal to the value of " for r2/r1 = 2.007. In degrees, the limiting value is $ = 127E. The only way
to reach any point in the high orbit for r2/r1 < 2.007 is by completing multiple revolutions in an
appropriately selected phasing orbit.
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14.5. Selection of a high phasing orbit

In this Section, we consider the general case where satellite 1, after passing for the first time point
s1,1, completes k revolutions in the low orbit before it is injected into a Hohmann transfer orbit.
Upon arrival in the high orbit, the satellite is injected into a phasing orbit with r1 < rp < r2, ra = r2,
which is subsequently flown for l revolutions, after which injection into the high orbit takes
place. The geometry of this case and the notation used are indicated in Figure 14.13. At t0, the
position of both satellites is indicated by n0 and R0. At t1, satellite 1 passes for the first time the

Figure 14.13: Geometry of a transfer flight between two inclined circular orbits, using a high phasing
orbit, and the notation used.

injection point. When satellite 1 reaches the high orbit for the first time, satellite 2 has to be
located ‘ahead’ of satellite 1. Now, satellite 1 is injected into the phasing orbit. After having
completed one revolution in this orbit, satellite 2 has completed less than one revolution in its
high orbit. After each revolution in the phasing orbit the geocentric angle between both satellites
becomes smaller, while satellite 2 is at all times ahead of satellite 1. After satellite 1 has
completed l revolutions in the phasing orbit, satellite 2 and satellite 1 approach each other and
satellite 1 is injected into the final orbit.

For the total flight time of satellite 1 until injection into the high circular orbit, we can write

(14.36)

In this time interval, satellite 2 covers in its high orbit a geocentric angle of

(14.37)

where m is the number of revolutions that satellite 2 has completed in its high orbit. For the
values of the integers k, l, m we have again

Both satellites encounter each other when
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(14.38)

Substitution of (14.36) and (14.38) into (14.37) yields

or

(14.39)

These equations are, of course, identical to the ones derived in Section 14.3. Substitution of
(14.3) and (14.11) into (14.39) results, after some algebraic manipulation, in

(14.40)
This relation, which is similar to (14.23), shows that, for given values of n0, R0 and r2/r1, in
general, a number of combinations of k, l, m yield a value r1 < rp < r2.

A direct transfer without a phasing orbit occurs when k = l = 0, m = 1. For this case, (14.40)
simplifies to

This equation is, of course, identical to (14.24) derived in Section 14.3.
In Section 14.4, it was found that when r2/r1 > 2.007 any point in the high orbit can be

reached by selecting an appropriate phasing orbit and by completing that orbit only once (l = 1).
In general, then k > 0. In that case, the boundary conditions for the perigee distance of a phasing
orbit are given by (14. 32). That relation may also be written as

Substitution of (14.40) into this relation yields for l = 1

(14.41)
When a variable q is introduced, which is defined as

(14.42)

then we find from (14.41)
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(14.43)

It is emphasized that the definition of q according to (14.42) strongly resembles the definition of
q according to (14.26) for the low phasing orbit. Again, q is completely determined by n0, R0 and
r2/r1. Equation (14.43) shows that, if l = 1 and r2/r1 > 2.007, for any value of m there cannot exist
more than one value of k that satisfies the inequality. For the values of k and m we obviously have
k $ 0, m $ 1. The computation scheme of possible phasing orbits therefore is as follows. For
given values of n0, R0 and r2/r1, the value of q is computed from (14.42). Subsequently, for a
series of selected values of m the corresponding values of k are determined with (14.43). For any
set of values of k and m, and l = 1, (14.40) yields the required value of rp /r2.

In Section 14.3, it was also found that when r2/r1 < 2.007, in general, multiple revolutions in the
phasing orbit are required in order to reach a given point in the high orbit. Obviously, also for
r2/r1 > 2.007 multiple revolutions in the phasing orbit may be completed. Therefore, the following
methodology is generally applicable and the method described above may be considered as a
special case of that methodology for l = 1, r2/r1 > 2.007. Because in the general case r1 < rp < r2,
combination of (14.40) and (14.42) yields

(14.44)

Then, the computation scheme for determining the possible phasing orbits is as follows. For
given values of n0, R0 and r2/r1, the value of q is determined from (14.42). Now, a series of
positive integer values of l and m is selected, starting with l = 1, m = 1. Then, all possible positive
integer values of k are determined from (14.44). For every k,l,m-combination, (14.40) yields the
corresponding value of rp/r1.

Equation (14.44) shows that, in general, multiple values of k are possible for given values
of n0, R0 and r2/r1, and selected values of l and m. However, there exists only one value for k if

or

(14.45)

From (14.45) we find that for l = 2, 3 and 5, the corresponding values of r2/r1 for which a transfer
is possible for only one value of k are 1.560, 1.391 and 1.245, respectively.

Just as for the case of a low phasing orbit, the total flight time of satellite 1 is solely
determined by the value of m, and not by the values of k and l. From (14.37) and (14.38) we find

(14.46)
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Table 14.2: Characteristics of feasible transfer flights between two inclined circular orbits with r1 = 6671
km and r2 /r1 = 6.3205 (geostationary orbit), and using a high phasing orbit, for n0 = R0 = 90E. The
search process has covered the range k = 0-8, l = 0-5, m = 1-3.

k l m rp / r1 tf (hr) k l m rp / r1 tf (hr)

0 1 1 1.455 17.951 4 3 3 4.055 65.820
8 1 2 6.143 41.885 5 3 3 3.859 65.820
0 2 2 4.033 41.885 6 3 3 3.661 65.820
1 2 2 3.738 41.885 7 3 3 3.461 65.820
2 2 2 3.438 41.885 8 3 3 3.259 65.820
3 2 2 3.134 41.885 0 4 3 2.877 65.820
4 2 2 2.825 41.885 1 4 3 2.721 65.820
5 2 2 2.510 41.885 2 4 3 2.563 65.820
6 2 2 2.190 41.885 3 4 3 2.404 65.820
7 2 2 1.864 41.885 4 4 3 2.244 65.820
8 2 2 1.531 41.885 5 4 3 2.082 65.820
0 3 2 1.581 41.885 6 4 3 1.919 65.820
1 3 2 1.355 41.885 7 4 3 1.754 65.820
2 3 2 1.127 41.885 8 4 3 1.587 65.820
8 2 3 6.232 65.820 0 5 3 1.605 65.820
0 3 3 4.821 65.820 1 5 3 1.471 65.820
1 3 3 4.632 65.820 2 5 3 1.335 65.820
2 3 3 4.441 65.820 3 5 3 1.198 65.820
3 3 3 4.249 65.820 4 5 3 1.060 65.820

Figure 14.14: Values of rp /r1 and tf for transfers between two inclined circular orbits, using a high phasing
orbit and r1 = 6671 km, n0 = R0 = 270E, as a function of r2 /r1. The search process has covered the range k =
0-3, l = 0-3, m = 1-3 (left) or the range k = 0-5, l = 0-5, m = 1-5 (right).

This relation is identical to (14.30) that holds for low phasing orbits and proves the statement that
the flight time is independent of the values of k and l. Again, preferably a phasing orbit is selected
for which the value of m is as small as possible. For this value of m, generally, multiple
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combinations of k and l are possible and the selection of k and l is done on basis of mission
considerations. In Table 14.2, possible k,l,m-combinations and the corresponding values of rp/r1

and tf are listed for a transfer to geostationary orbit (r2/r1 = 6.3205), with r1 = 6671 km,
n0 = R0 = 90E. The search process has covered the range k = 0-8, l = 0-5, m = 1-3. In Figure
14.14 possible values of rp/r1 and the corresponding flight time are shown as a function of r2/r1

and r1 = 6671 km, n0 = R0 = 270E. In this Figure, results are shown for all orbits for which the
parameters k and l vary between 0 and 3, and the parameter m between 1 and 3 (left), or for which
the parameters k and l vary between 0 and 5, and the parameter m between 1 and 5 (right). The
Figure shows that for a given value of r2/r1, many combinations of k, l and m are possible. In
Figure 14.15 possible values of rp/r1 and the flight time are shown as a function of R0, for given
values of r2/r1 and n0. Here, all values of k and l between 0 and 3, and of m between 1 and 3, have
been examined. This Figure shows that for the larger values of r2/r1, the number of possible
values of R0 and the number of possible combinations of k, l, m are larger than for the smaller
values of r2/r1.

Figure 14.15: Values of rp / r1 and tf  for transfers between two inclined circular orbits, using a high phasing
orbit, as a function of R0. The results hold for r2 /r1 = 1.2 (left) and r2/r1 = 6.320 (geostationary orbit, right )
and r1 = 6671 km, n0 = 270E. The search process has covered the range k = 0-3, l = 0-3, m = 1-3.
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15. RENDEZ-VOUS FLIGHTS

A rendez-vous flight is a mission where a spacecraft approaches another spacecraft. In most
cases, such a mission is completed by a docking procedure that results in a firm connection
between the two spacecraft. In this Chapter, we will limit ourselves to rendez-vous missions
involving satellites that move in orbits about the Earth. The satellite that is performing the
approach flight is called the chaser; the satellite that takes a passive role and is approached by
the chaser is called the target. The rendez-vous mission generally starts with a (Hohmann)
transfer (Chapters 12 and 13) that brings the chaser relatively close to the target and in an orbit
somewhat lower than the orbit of the target. Then the real rendez-vous phase starts. When the
chaser is not too far from the target, the motion of the chaser relative to the target may be
described by the Clohessy-Wiltshire equations that have been derived in Chapter 9. These
equations hold for the case that the orbit of the target is circular, which is usually a good
approximation, and when the motion of the chaser is described relative to a target-fixed rotating
reference frame (Figure 15.1). The X-axis of this reference frame is directed radially away from
the Earth, the Y-axis is tangential to the orbit of the target and is directed in the direction of
motion of the target, and the Z-axis completes the right-handed reference frame. So, in this
reference frame the x and y coordinates of the chaser are positive if the chaser is located ‘above’
and ‘ahead of’ the target. Before we start with an analysis of rendez-vous flights, Section 15.1
will first give an overview of the historical development of rendez-vous techniques and of some
general aspects of rendez-vous.

Figure 15.1: Two-dimensional geometry of the motion of the target and the chaser (left), and the reference
frame used for describing the relative motion of the chaser (right).

15.1. General rendez-vous aspects

In the past, the US and the former USSR have gained much experience in rendez-vous and
docking operations during the manned Gemini, Apollo and Skylab programs, and the manned or
unmanned Cosmos, Soyuz and Progress missions.

The Gemini program served as a test bed for the Apollo manned lunar landing program, and
various techniques that were required for the Apollo missions were tested in Earth orbit by
Gemini spacecraft. On the Gemini IV mission (June 3-7, 1965) the first attempt was made to
execute rendez-vous and station keeping maneuvers; in this case with the spent second stage of
the Titan II launch vehicle. A phantom rendez-vous was performed during the Gemini V mission
(August 21-28, 1965), which involved a maneuver sequence equal to part of the maneuver
sequence designed for the Gemini VI-A mission. The first US real rendez-vous mission, without
docking, involved the Gemini VI-A and Gemini VII spacecraft closing to each other to about 0.3
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m in December 1965. The first rendez-vous mission with docking took place in March 1966,
involving the Gemini VIII and the so-called Gemini Agena Target Vehicle (GATV). This GATV
was capable to change the orbit of Gemini VIII. Gemini IX performed a rendez-vous with a
vehicle launched to replace a GATV that was lost. Further and more-complex rendez-vous and
docking operations were performed during the Gemini X, XI and XII missions.

As an example, the rendez-vous maneuvers executed during the Gemini VI-A, VIII and X
missions will be described briefly. The chaser was first injected at perigee of its initial orbit into
an elliptical orbit that was about coplanar with the target’s orbit. The first orbital revolution was
left free of maneuvers to check the chaser’s functions. After one orbital revolution, an apogee
height adjust maneuver was performed at perigee to correct for in-plane insertions errors. At the
second apogee passage, a phase adjust maneuver raised the next perigee to provide the catch-up
rate required for the proper phasing of the terminal phase initiation. That terminal phase occurred
in a darkness period (‘night’) in order to have a good sight of the target; when the maneuver
would have been performed in sunlight the Sun might have blinded the crew. An out-of-plane
correction maneuver was applied at the nodal crossing after the second apogee to correct for the
out-of-plane insertion errors. At the third apogee, a co-elliptical maneuver was performed to
produce an almost constant altitude difference of 15 n.mi. between both spacecraft. The terminal
phase initiation occurred when the chaser was about 40 n.mi. ‘behind’ the target. That phase was
initiated with a velocity change along the line of sight (LOS) towards the target. The necessary
velocity change was calculated by the onboard guidance system. Gravitational effects move the
chaser away from this initial LOS direction (Section 15.4). Therefore, small corrections were
performed by rocket thrust pulses to put the chaser on an interception course. Braking and LOS
rate control were executed by manual operation during the final approach based upon radar and
visual data.

In the Apollo program, rendez-vous and docking operations were carried out in low Earth orbit,
translunar orbit and lunar orbit. In the follow-on Skylab program, the Apollo Command and
Service Module (CSM) served as the chaser vehicle and Skylab as the target. One important
feature of all US rendez-vous and docking missions was that none of these missions took place
fully autonomously; in all missions a human operator in space interfered with the rendez-vous
and docking procedure.

In October 1967, the Cosmos 186 and Cosmos 188 vehicles were the first Soviet spacecraft
that performed rendez-vous and docking. A striking characteristic of this mission was that both
spacecraft were unmanned and that the final phases of this rendez-vous and docking flight took
place fully autonomously outside the field of view of the Soviet ground control center. In
subsequent years, the USSR carried out many rendez-vous and docking operations with and
without a human operator in space interfering. In the Apollo Soyuz Test Project (ASTP) the US
and USSR have collaborated; a manned Apollo and a manned Soyuz spacecraft flew for some
time closely together and docked to each other on July 17, 1975.

With the space station Mir the Soviets have significantly enlarged their experience in rendez-
vous and docking operations; over the years many USSR spacecraft, but also the US Space
Shuttle, have docked with this station. And since December 1998, US (Space Shuttle) and
USSR/Russian spacecraft rendez-vous and dock routinely with the International Space Station
(ISS), bringing crew and materials to this space station and returning crew and materials back to
Earth. In March 2008 the first rendez-vous and docking mission to the ISS was performed by an
unmanned European ATV (Automated Transfer Vehicle) spacecraft (Section 15.6); in September
2009 by a Japanese HTV (H-II Transfer Vehicle) spacecraft; and in October 2012 by a commer-
cial Dragon spacecraft developed and launched by Space Exploration Technologies (SpaceX).
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In the future, many more rendez-vous and docking missions will be flown. Examples are
missions in geostationary orbit for building up a communications platform, in geostationary
transfer orbit between a propulsion module carrying an apogee boost motor and a communication
payload module, and in low Earth orbit between a retrievable carrier and a dedicated test vehicle.

In general, a number of phases may be distinguished during a rendez-vous mission; these will
be briefly described below.

Launch phase
For this phase basically two options exist. The first option is that when the launch site crosses the
orbital plane of the target the chaser is launched directly into an elliptical or circular orbit that
is (about) coplanar with and somewhat lower than the target’s orbit. This enables the chaser to
gradually catch up with the target and to perform a rendez-vous. The disadvantage of this option
is that, depending on the position of the target at the time of launch of the chaser, the rendez-vous
between both satellites can take quite a time as the difference in the orbital angular velocities of
both spacecraft is quite small. An alternative option is that, when the launch site crosses the
orbital plane of the target, the chaser is launched into a low-altitude parking orbit that is (about)
coplanar with the target’s orbit. In this case, the difference in the angular velocities of both
spacecraft is larger, leading to a shorter time interval before rendez-vous can be accomplished.
At the right time, the chaser is injected into a transfer orbit and subsequently into an elliptical or
circular orbit that is (about) coplanar with and somewhat lower than the target’s orbit from which
it accomplishes the rendez-vous.

Mid-course phase
In this phase, the chaser is maneuvered sufficiently close to the target to enable the chaser’s
onboard guidance sensors to acquire the target, i.e. several hundreds of kilometers ‘behind’ and
some tens of kilometers ‘below’ the target. Several maneuvers may be distinguished during this
phase. First, we have the height adjust maneuver, which has to correct for in-plane insertion
errors. This maneuver adjust the apogee altitude of the elliptical trajectory (or the radius of the
circular orbit) to a desired value and can best be applied at perigee (in case of an elliptical orbit)
of the chaser’s orbit in order to minimize the fuel consumption (Section 12.5). A second type of
maneuver is the phase adjust maneuver, which has to adjust the catch-up rate, i.e. the relative
velocity of the chaser towards the target, to a value required for the next phase, i.e. the terminal
phase. The phase angle, R, (Figure 15.1) is defined as the angle between the radius vector of the
chaser and that of the target. This angle must have a certain value to continue with the terminal
phase. These maneuvers are applied at apogee of the chaser’s orbit to minimize the fuel
consumption and raise the perigee altitude. Thus, a height adjust maneuver adjusts the apogee
altitude and a phase adjust maneuver adjusts the perigee altitude of the chaser’s orbit. A third
type of maneuver is the out-of-plane correction maneuver. As stated above, the chaser is
launched into an orbit essentially coplanar with the target. However, due to injection errors the
chaser’s orbital plane may differ, both in inclination and in right ascension of the ascending node,
slightly from the target’s orbital plane. This means that the chaser will have a relative velocity
component perpendicular to the orbital plane of the target: the out-of-plane velocity. The purpose
of out-of-plane corrections is to nullify the relative out-of-plane errors. This maneuver is
performed at a properly selected point along the orbit, dependent on the actual errors in
inclination and right ascension of the ascending node (Chapter 13). The last type of maneuver
is the co-elliptical maneuver, which positions the chaser in an orbit with a constant altitude
difference relative to the orbit of the target. After this maneuver, the catch-up rate has a constant
value and the chaser drifts with a constant relative velocity towards the target. This characteristic
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may be used for the calibration of guidance sensors.

Terminal phase
During this phase, the chaser is brought into an interception course with the target. The terminal
phase starts at the terminal phase initiation point, after a drift period that follows the co-elliptical
maneuver. Visibility aspects, for the crew or for the sensors, determine the position of this point,
i.e. the target must be visible to the crew and/or to the sensors of the chaser. During this phase,
the relative velocity and range of the chaser to the target must be nullified simultaneously in a
controlled way to avoid collision. The main type of guidance technique is forced rectilinear
motion, or rendez-vous along the LOS (Section 15.4). In principal, also a two-impulses elliptical
rendez-vous trajectory may be applied. However, guidance techniques for such impulsive
trajectories are difficult to implement for an autonomous terminal phase. The reason is that for
impulsive trajectories the relative velocity has to be nullified in a short time, whereas with
continuous steering this velocity can be nullified gradually. In addition, because of small
injection errors at the first impulsive shot of the two-impulses trajectory the final approach may
occur from another direction than the desired one, which in case of large space structures may
easily lead to a collision. Another reason for active continuous LOS steering is to obtain a
constant chaser-target configuration, which is attractive to enable the sensors to keep the target
in its field of view.

During the ‘straight line’ approach, a LOS control technique is applied through which the
time-derivative of the angle between the LOS direction and the local horizontal plane is nullified
or kept between certain limits by operating the chaser’s thrusting system perpendicular to the
LOS direction. Braking is applied until the relative velocity has become lower than a specified
value. Often, docking mechanisms only operate satisfactorily if the two rendez-vous spacecraft
still have a small but finite relative velocity difference. This difference then activates the latching
system.

Station keeping and hold points
During the rendez-vous and docking flight usually several hold points are introduced. A hold
point is a time-flexible element of the chaser’s flight to gain time without the chaser markedly
changing its position/range relative to the target. When the target is in a circular orbit, a hold
point should preferably be located in the orbit of the target, since then the angular velocities of
both spacecraft about the Earth are equal. A hold point can be applied nominally or in
contingency cases. Nominally, hold points may serve a number of purposes: verification on the
ground of the performed chaser’s operations, checking the conditions for the next operational
phase, calibration of the onboard guidance sensors, delaying the next operational step to improve
environmental conditions (e.g. illumination), or modifying/updating input parameters for
operational software. In contingency cases, the following purposes can be distinguished: saving
the rendez-vous and docking mission, avoiding collision, gaining time for trouble shooting, etc.

Adopted flight profile
In order to provide more insight in rendez-vous flights, in the next Sections analytical relations
will be derived for three important phases of a rendez-vous flight:
S Phase 1: Flight from an initial distance of more than 1000 km from the target to a distance of

1 - 10 km from the target. It is assumed that two impulsive shots are applied and that at the end
of this phase the chaser is located at the last hold point on the Y-axis, 5 km ‘behind’ the target.

S Phase 2: Flight from this hold point to approximately 200 m away from the target. It is
assumed that two impulsive shots are applied.
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S Phase 3: The chaser approaches the target along the LOS using thrust pulses.
To simplify the analysis, it is assumed that the orbit of the target is circular and that at the end
of phases 1 and 2 both the relative position and the relative velocity of the chaser are equal to
zero. Regarding the velocity, this certainly is the case at the end of phase 1, but in reality needs
not necessarily be the case at the end of phase 2. Regarding the position, the relative position is
in reality certainly not zero at the end of phases 1 and 2. However, because for both phase 1 and
phase 2 the distance between the chaser and the target is at the end of that phase much smaller
than at the start of that phase, this approximation may be applied. In addition, it is assumed that
after phase 1 has finished both spacecraft are moving in the same orbital plane.

Figure 15.2: Typical rendez-vous mission profile.

We may imagine the following mission profile for this rendez-vous flight (Figure 15.2). The
target is moving in a circular orbit at an altitude of 400 km and with a period of Tt = 92.41 min.
The chaser is launched into an orbit with perigee altitude of 250 km and apogee altitude of
350 km. After one orbital revolution of the chaser, the rocket engine is ignited at perigee to raise
the apogee altitude to 380 km. At apogee of this orbit, the engine is ignited again to change the
perigee altitude such that when the chaser passes the apogee of its orbit again it approaches the
target at an appropriate distance. It is assumed that at that moment the chaser is located ‘behind’
the target. Now, the orbit of the chaser is circularized and subsequent maneuvers are performed
to nullify any difference in the right ascension of the ascending node and the inclination of the
two orbital planes. The period of this orbit is Tch = 92.00 min. Since the altitudes of both orbits
differ by 20 km, the phase angle, R, decreases continuously at a rate of approximately 1E/hr. As
soon as this angle is 20E, the first phase of the rendez-vous part of the flight starts. At that
moment the relative position and velocity components of the chaser are x0 = -20 km, y0 = -2358
km, z0 = 0, x00 = z00 = 0, y00 = 11.4 m/s. Note that these initial conditions are selected rather
arbitrarily; they certainly do not correspond to a set of optimum initial conditions. However, the
analysis of this non-optimal rendez-vous flight will show the major characteristics of rendez-vous
trajectories.

15.2. Flight from a large distance to the last hold point

Suppose that the relative position and velocity of the chaser at t0 are given by x0, y0, z0, x00, y00, z00
relative to the target-fixed rotating reference frame, and that the chaser should reach the target
at t2. It is assumed that at t0 an impulsive shot is applied, as a result of which the chaser is injected
into a collision trajectory with the target, and that at t2 a second impulsive shot is given to nullify
the relative velocity of the chaser with respect to the target. The flight time of this intercept
trajectory is tf = t2-t0. In Section 9.3, the following relations were derived for the motion of the
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chaser relative to the target:

(15.1)

where n is the mean angular motion of the target in its orbit about the Earth. These equations
describe the motion of the chaser in between the two impulsive shots of phase 1, where the time
is counted from t0 = 0; so, for the flight time we may write tf = t2. Note that the value of y0 = -
2358 km used for the adopted flight profile is certainly outside the range given in Section 9.2 for
which (15.1) yields accurate results. The numerical results presented in this Section therefore
only provide a qualitative picture of the relative motion. The components of the velocity
immediately after the first impulsive shot (index 1) are indicated by x01, y01, z01. So, the state vector
at the start of phase 1 has the components x0, y0, z0, x01, y01, z01. At t2 the position components should
be zero and we then find from (15.1)

These equations can be rewritten as

Multiplying the first expression by 2(1 - cosnt2) and the second expression by -sinnt2, and
subsequent summation of the resulting expressions gives

(15.2-1)

Multiplying the first expression by (3nt2 - 4sinnt2) and the second expression by -2(1 - cosnt2),
and subsequent summation of the resulting expressions gives

(15.2-2)



Fundamentals of Astrodynamics     SS     Rendez-vous flights 359

The third expression immediately gives

(15.2-3)

Note that when the denominator in (15.2-1) and (15.2-2) becomes zero, the values of x01 and y01

may become infinitely large. Equations (15.2) show that the values of x01 and y01 are functions of
the relative coordinates x0 and y0 and the flight time, tf . So, the singularities are due to
unfavorable values of these parameters. An analysis of the expression in the denominator shows
that within the range nt2 = 0 to nt2 = 5B it has five roots: nt2 = 0, 2B, 2.813B, 4B, 4.891B. When
we use the relation t2 = tf and the relation for the orbital period of the target: Tt = 2B/n, we find
that these roots correspond to flight times of tf = 0, Tt, 1.407Tt, 2Tt, 2.445Tt. For values of nt2

around these roots we may expect large values of both impulsive shots required to execute the
transfer. When we consider the motion of both spacecraft relative to a geocentric non-rotating
reference frame, both trajectories are conic sections about the Earth, which intersect at t2. It will
be clear that there are combinations of x0 and y0 which are favorable to execute a rendez-vous
flight with a relatively short flight time for a small )V0, but that other combinations lead to an
unfavorable geometry and will require a very high, or sometimes even an infinitely large, )V0

to execute the mission in a relatively short flight time. A trivial example is the singularity at t2

= tf = 0. This requires for non-zero values of x0 and y0 infinitely large values of x01, y01 and )V0.
Now that the velocity components just after the first impulsive shot are known, we can

compute the rectangular components of the required velocity change at t0:

(15.3)

and the magnitude of the velocity change due to the impulsive shot at t0 is

(15.4)

The distance between the chaser and the target at t0 is

(15.5)

When  is the position vector of the chaser in the target-centered rotating reference frame at t0,

then  is the position vector from the chaser to the target at t0. For the angle "0 between 

and  we can write

(15.6)

where

Substitution of these relations into (15.6) gives

(15.7)

with 0E # "0 < 180E.
When we differentiate (15.1) with respect to time, substitute for the initial conditions the
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quantities x0, y0, z0, x01, y01, z01 and apply the equations for t2, then we arrive at the following
relations:

Substitution of (15.2) into these equations yields

(15.8)

These equations express the values of the rectangular components of the velocity just before the
second impulsive shot. As the relative velocity has to be nullified by this impulsive shot, its
magnitude is given by

(15.9)

For the total required impulse for this rendez-vous flight, we thus obtain

(15.10)

The expressions given above show that for specified initial conditions x0, y0, z0, x00, y00, z00, the total
required rocket impulse is a function of the flight time in phase 1, i.e. tf = t2. In general, one will
choose an optimal rendez-vous flight, which means that a value of tf will be selected for which
)Vtot is a minimum. An analytical treatment of these optimum rendez-vous flights is quite
complicated, and is beyond the scope of this book.

The amount of rocket propellant needed for this phase of the rendez-vous mission can be
computed as follows. For an impulsive shot, we may use Tsiolkovski’s law (Section 1.7):

(15.11)

where Vj is the (effective) exhaust velocity, M0 is the initial mass of the chaser and Me is the mass
of the chaser after an impulsive shot. If it is assumed that )V0 and )V2 are executed by the same
rocket engine and that no mass is discarded in between both impulsive shots, then we obtain from
(15.11)

(15.12)

where Mp is the total amount of propellant used. In Figure 15.3, the values of )V0, "0, )V2 and
Mp/M0 (in percentage) are plotted as a function of the flight time to the target, for the initial 



Fundamentals of Astrodynamics     SS     Rendez-vous flights 361

Figure 15.3: Variation of )V0 , "0 , )V2 and Mp /M0 as a function of the flight time for a flight from the
initial relative position x0 = -20 km, y0 = -2358 km, z0 = 0 km to the final hold point, and for Vj = 3 km/s.
The targes moves in a 400 km altitude circular orbit; the chaser moves initially in a 380 km altitude
circular orbit.

conditions listed in Section 15.1 and Vj = 3 km/s. This Figure shows that for very short flight
times "0 . 0, and )V0 and )V2 are very large, which was to be expected. A (local) minimum
value of Mp /M0 occurs for tf = 86.22 min. For that flight time: "0 = 134.2E, )V0 = 152 m/s, x01 =
-110 m/s, y01 = -94 m/s, x02 = 4.0 m/s, y02 = -139 m/s, )V2 = 139 m/s, Mp/M0 . 9.3%. Note the large
value of "0. When we consider the trajectory of the chaser again as an orbit about the Earth
relative to a geocentric non-rotating reference frame, then it is interesting to compare that (local)
optimum trajectory with a Hohmann transfer trajectory from the initial orbit of the chaser to the
orbit of the target. For that trajectory we find: )V0 = 5.68 m/s, )V2 = 5.68 m/s, and tf = 46.10 min.
In the Hohmann trajectory the chaser meets the target after half a revolution and this requires the
target to be only slightly ahead of the chaser at t0: y0 . -49 km. In this Section we have assumed
that the chaser is 2358 km behind the target at t0 and the chaser therefore cannot fly a Hohmann-
type of transfer trajectory, but has to fly an orbit about the Earth with a period much shorter of
that of the target’s orbit, and thus with a perigee distance smaller than the radius of the initial
orbit of the chaser, in order to meet the target after about a full revolution at a point in the target’s
orbit about 336E ‘ahead’ of the target’s position at t0. A further analysis shows that this trajectory
leads to an unrealistically low perigee altitude. However, in this Section we do not consider the
various constraints that exist for feasible rendez-vous trajectories. The value of )Vtot is very
dependent on the value of y0; e.g. when y0 = -500 km we find )Vtot = 76 m/s and tf = 78.80 min.
When the chaser is allowed to complete more than one revolution in its rendez-vous trajectory,
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the relative spacecraft geometry becomes somewhat better, leading to a smaller minimum value
of )Vtot and Mp /M0, but the flight time, of course, increases. For example, when the chaser
completes two revolutions about the Earth, the flight time increases from 86.22 min to 176.24
min, but )Vtot decreases from 291 m/s to 154 m/s. For a flight time of 92.41 min (orbital period
of the target), 130.00 min, 184.83 min, 226.00 min, for which the values of nt2 are 2B, 2.813B,
4B, 4.891B, respectively, a very unfavorable relative spacecraft geometry occurs, which results
in very large values of )Vtot and thus of Mp/M0.

15.3. Flight from the last hold point

For the numerical examples presented in this Section, it is assumed that the last hold point is
located on the Y-axis ‘behind’ the target, which moves in a circular 400 km altitude orbit, and that
the initial conditions are x0 = z0 = x00 = y00 = z00 = 0, y0 = -5 km. Two possible cases will be
distinguished: a flight after a rocket pulse in the X-direction (radial) or a flight after a rocket pulse
in the Y-direction (tangential).

Rocket pulse in the radial direction
Immediately after the first impulsive shot )V0 the following conditions hold:

With these conditions, we find from (15.1) for the motion of the chaser after the impulsive shot

(15.13)

By differentiating these equations, we find for the velocity components

(15.14)

If we require that at t2: x2 = y2 = 0, then we obtain from (15.13)

(15.15)

From (15.15-1) we find sin nt2 = 0, which leads to nt2 = 0, B, 2B, ..... We then find from (15.15-2)

So, the ‘real’ solution is

(15.16)

and we conclude that the chaser arrives at the target after half a revolution about the Earth. Note
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that if y0 < 0, which means that the chaser is originally ‘behind’ the target,  should be
directed towards the center of the Earth (negative X-axis); if y0 > 0, then  should be directed
radially outward. If no braking maneuver is applied, both vehicles will approach each other again
after each subsequent full revolution about the Earth. Substitution of nt2 = B, 3B, 5B, .... into
(15.14) gives

So, for the second impulsive shot we obtain

(15.17)

Note that  has the same direction as . From (15.16) and (15.17) we find for the total

velocity change required for this maneuver

(15.18)

An illustration of the relative trajectory for y0 = -5 km is presented in Figure 15.4 as case I. The
(relative) trajectory is an ellipse with eccentricity , as was shown in Section 9.3.

Figure 15.4: Rendez-vous trajectories after a radial impulsive shot in the final hold point at y0 = -5 km.
Case I corresponds to an impulsive shot )V0 = 0.25 ny0; case II to )V0 = 0.5 ny0.

For some missions it may be important that the chaser first arrives on the X-axis some distance
away from the target, and that the final phase starts from this position (Figure 15.4, case II). In
that case, we require that at t2: y2 = x02 = 0 and (15.14-1) leads to

So, a necessary condition is cos nt2 = 0, which leads to nt2 = B/2, 3B/2, 5B/2, .... This means that
the chaser arrives on the X-axis after one quarter, three quarters, five quarters, etc. of an orbital
revolution about the Earth. For these values of nt2, (15.13) and (15.14) give

and we find for the second impulsive shot that is needed to brake on the X-axis

(15.19)

So, the total required velocity change for this maneuver is

(15.20)
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This total impulse is three times the impulse that is needed for the first case. The resulting
relative trajectory for y0 = -5 km and nt2 = B/2 is shown in Figure 15.4 as case II.

Rocket pulse in the along-track direction
In this case, the following conditions hold immediately after the impulsive shot )V0:

and (15.1) yields for the motion of the chaser after the impulsive shot:

(15.21)

Differentiation of these equations gives

(15.22)

If we require that upon arrival at the target x2 = y2 = 0, then we find from (15.21)

(15.23)

From (15.23-1) we find cosnt2 = 1, which leads to nt2 = 0, 2B, 4B, ..... We then find from (15.23-
2)

where N is the number of revolutions that both spacecraft complete about the Earth before a
braking maneuver is executed. Note that )V0 becomes smaller when N is larger. When we
assume that encounter takes place just after one orbital revolution, we obtain for the first
impulsive shot

(15.24)

Note that if y0 < 0, which means that the chaser is originally ‘behind’ the target,  should be
directed in the negative Y-direction; if y0 > 0, then  should be directed in the positive Y-
direction. So, in both cases the impulsive shot is directed away from the target. This is contrary
to what one would expect intuitively! The astronauts of the Gemini IV spacecraft, who
experimented with rendez-vous maneuvers (Section 15.1) were not aware of this phenomenon.
When they fired their thrusters in the direction of the spent rocket stage, they found themselves
moving away and downward. After several tries to get closer and with half their thruster
propellant spent, they gave up.

The physical explanation of this phenomenon is quite simple. Suppose that satellite 2 is
initially ‘behind’ satellite 1 and that the impulsive shot )V0 is given in the -Y-direction. Then the
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point in the orbit of satellite 1 where this impulsive shot is applied becomes apogee of the orbit
of satellite 2 about the Earth. The perigee distance of this orbit is less than the radius of the orbit
of satellite 1, and therefore the period of the orbit is shorter than the period of the orbit of satellite
1. So, after satellite 2 has completed one orbital revolution, and has arrived again in the orbit of
satellite 1, satellite 1 has not yet completed an orbital revolution and, consequently, satellite 2 has
moved in the +Y-direction relative to satellite 1. By selecting an appropriate value of )V0, and
thus of the period of the orbit of satellite 2, satellite 1 arrives just at apogee of the orbit of satellite
2 when that satellite has completed one orbital revolution. For the case that satellite 1 is initially
‘ahead’ of satellite 1 and )V0 is given in the +Y-direction, a similar reasoning shows that then
satellite 2 moves in an elliptical orbit with a period longer than the period of the orbit of satellite
1, and therefore has moved in the -Y-direction relative to satellite 1 when it arrives in the orbit
of satellite 1. Note that this maneuver, in essence, is a high phasing orbit maneuver, which was
discussed in Section 14.4.

For the velocity at t2, we find from (15.22) for nt2 = 0, 2B, 4B, .....: 

This gives for the second impulsive shot

(15.25)

This impulsive shot is also directed away from the target. Combination of (15.24) and (15.25)
yields for the total velocity change required for this maneuver

(15.26)

The resulting relative trajectory for N = 1 is shown in Figure 15.5; the dashed part of the curve
indicates the relative trajectory if the second impulsive shot would not be applied.

Figure 15.5: Rendez-vous trajectory after an along-track impulsive shot )V0 = ny0 /6B in the final hold
point at y0 = -5 km. 

Propellant consumption
For the computation of the amount of propellant, Mp, required for these maneuvers, we start from
(15.12) and substitute the values of the total velocity change for the maneuvers discussed above.
When we assume that both impulsive shots are executed by the same rocket engine, we find for
the two cases considered for pulses in the radial direction:
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(15.27)

For the case of rocket pulses in the along-track direction, we find

(15.28)

As 3NB > 2 for N $ 1, a comparison of (15.27) and (15.28) shows that, for the same values of Vj

and y0, a maneuver with an impulsive shot in the along-track direction is always more efficient
in terms of propellant consumption.

15.4. Last phase of the rendez-vous flight

In the last phase of the rendez-vous flight, the chaser is within a distance of 300 m from the
target. Then, the chaser can ‘observe’ the target and, usually, it approaches the target along a
straight line: the LOS. During the LOS approach, rocket engine thrust pulses are periodically
applied along the LOS in order to reduce the velocity of the chaser relative to the target and to
eventually nullify this relative velocity. As mentioned in Section 15.1, for the last phase this
approach strategy is to be preferred over a two-impulses approach maneuver along a curved
trajectory. In Section 9.3 it has been shown that the true trajectory of the chaser relative to the
target is an ellipse, if no force other than that expressed by a Newton gravity field is acting on
both satellites. Consequently, in general, the chaser will gradually move away from the LOS and
therefore also rocket thrust pulses perpendicular to the LOS are required periodically in order to
keep the chaser near the LOS.

In principle, the chaser may approach the target from all directions, but in practice two
approaches are frequently used: the R-bar approach and the V-bar approach. In the R-bar
approach, the chaser approaches the target along the X-axis, i.e. along the target’s orbital radius
vector In the V-bar approach, the chaser approaches the target along the Y-axis, i.e. along the
axis that is directed along the target’s velocity vector  Below, these two characteristic types
of LOS approach maneuvers will be analyzed. It should be mentioned here that in our definition
R-bar is directed radially outwards, but that in most US literature R-bar is directed towards the
center of the Earth; in both cases V-bar is directed along the velocity vector.

R-bar approach
For this approach flight, the initial conditions are y0 = z0 = y00 = z00 = 0. If there is no thrust acting
on the chaser, the equations of motion (15.1) in the XY-plane simplify to

(15.29)

Equation (15.29-2) shows that for t > 0: y … 0; consequently, the spacecraft will drift away from
the X-axis. So, rocket pulses in the Y-direction are required to keep the chaser near the X-axis.
In between successive rocket pulses, the radial velocity and acceleration of the spacecraft can be
found by differentiation of (15.29-1), which yields
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(15.30)

where x0 and x00 refer to the conditions just after the previous impulsive shot and t is the time
elapsed since that impulse. The interval between successive impulses is relatively short, and
therefore nt n B/2. It is clear that both for the case that the chaser approaches the target from
‘above’ (x0 > 0, x00 < 0) and for the case that the approach is from ‘below’ (x0 < 0, x00 > 0), x0 and
x00 will have opposite signs. We conclude from (15.30-2) that for both cases the radial acceleration
is directed away from the target. This means that the chaser experiences a ‘natural braking
effect’; during the approach this effect has to be counteracted by rocket thrust pulses along the
LOS in the direction to the target. If these thrusters would fail, the ‘natural braking effect’ will
cause the chaser to move away from the target, at least when the approach velocity is not too
large. So, it is a ‘build-in safety mechanism’. The physical explanation for this braking
phenomenon is as follows. If the chaser is (in between successive pulses) moving along the X-
axis and approaches the target from ‘above’, then its velocity in the Y-direction is larger than the
local circular velocity. So, the chaser experiences a relative acceleration in the +X-direction,
which is the ‘braking effect’ mentioned above. If the chaser is moving along the X-axis but
approaches the target from ‘below’, then its velocity is smaller than the local circular velocity and
it will experiences a relative acceleration in the -X-direction, again away from the target.

Because nt n B/2, we may approximate (15.30) by applying series expansions for the sine-
and cosine-terms and retaining only the leading terms of the resulting expressions. We then find
for the motion in between successive pulses

The second term of the expression in brackets in the first equation expresses the ‘natural braking
effect’. These relations shows that to first-order approximation: 1) the variation of x and y is
linearly dependent on the value of x00; 2) the variation of x is linearly dependent on time, while
the variation of y is quadratically dependent on time; 3) for an approach from ‘above’ the chaser
starts to lead the target in the Y-direction, for an approach from ‘below’ the chaser starts to lag
‘behind’ the target in the Y-direction.

As an example, Table 15.1 lists for a realistic R-bar approach from ‘above’ to a target moving
in a circular 400 km altitude orbit about the Earth, the relative position, radial velocity and radial
acceleration at t = 30 s. It was found that the first term on the right-hand side of (15.30-2)
contributes about 99% of the total radial acceleration. The ‘natural braking effect’ was found to

Table 15.1: Position, velocity and acceleration of the chaser at 30 s after the previous thruster impulsive
shot during an R-bar or a V-bar approach of a target moving in a circular orbit at an altitude of 400 km
above the Earth.

R-bar approach
x0 = 200 m; x0 0 = -0.2 m/s

V-bar approach
y0 = -200 m; y00 = 0.2 m/s

x (m) 194 y (m) -194

x0 (m/s) -0.177 y0 (m/s) 0.200

ẍ (m/s2) 7.76*10-4 ÿ (m/s2) -3.08*10-5

y (m) 0.196 x (m) 0.204
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be 7.8*10-4 m/s2.

V-bar approach
In this case, the initial conditions are x0 = z0 = x00 = z00 = 0. If there is no thrust acting on the chaser,
then the equations of motion (15.1) in the XY-plane simplify to

(15.31)

Equation (15.31-1) shows that for t > 0: x … 0; consequently, the chaser has the tendency to drift
away from the Y-axis. So, rocket thrust pulses perpendicular to the Y-axis are needed in order to
keep the chaser near the Y-axis. In between successive rocket pulses, the along-track velocity and
acceleration of the spacecraft can be found by differentiation of (15.31-2), which yields

(15.32)

where y00 denotes the along-track velocity just after the previous impulsive shot and t is the time
elapsed since that impulse. Note that both y0 and ÿ are a function of y00, but not of y0. Again, we
may assume that nt n B/2. Equation (15.32-2) shows that both for the case that the chaser
approaches the target from ‘behind’ (y0 < 0, y00 > 0) and for the case that the chaser approaches
the target from ‘ahead’ (y0 > 0, y00 < 0), the acceleration is directed away from the target. So, also
in this case the chaser experiences a ‘natural braking effect’, which may be considered as a
‘build-in safety mechanism’, at least when the approach velocity is not too large. During the
approach this effect has to be counteracted by rocket thrust pulses along the LOS. In this case,
the physical explanation for the braking phenomenon is as follows. If the chaser is moving along
the Y-axis and approaches the target from ‘behind’, its velocity in the Y-direction is slightly larger
than the local circular velocity. So, the chaser will start to enter a higher orbit and consequently
will move in the +X-direction. This leads to a lower velocity, which corresponds to an
acceleration away from the target. If the chaser is moving along the Y-axis but approaches the
target from ‘ahead’, then its velocity is slightly smaller than the local circular velocity and it will
enter a lower orbit. This leads to a higher velocity, which corresponds again to an acceleration
away from the target. It is emphasized that, in contrast to the situation during an R-bar approach,
in this case the braking effect is an ‘indirect’ effect, because it is produced by a departure of the
chaser from the Y-axis.

Because nt n B/2, we may approximate (15.31) by applying series expansions for the sine-
and cosine-terms and retaining only the leading terms of the resulting expressions. We then find
for the motion in between successive pulses

This relation shows that to first-order approximation: 1) the variation of x and y is linearly
dependent on the value of y00; 2) the variation of x is quadratically dependent on time, while the
variation of y is linearly dependent on time; 3) for an approach from ‘behind’, the chaser starts
to move in the +X-direction; for an approach from ‘ahead’, the chaser starts to move in the -X-
direction.
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As an example, Table 15.1 lists for a realistic V-bar approach from ‘behind’ to a target moving
in a circular 400 km altitude orbit about the Earth, the relative position, velocity and acceleration
in the Y-direction at t = 30 s. In this case, the ‘natural braking effect’ was found to be about
3.1*10-5 m/s2, or only about 4% of the braking effect during the R-bar approach. In fact, this
deceleration is so small that, without additional braking along the Y-axis, in practice the chaser’s
velocity along the Y-axis will not be reduced to zero before the chaser reaches the target. So, we
conclude that the braking effect along a V-bar approach is of little practical value.

15.5. Typical Space Shuttle rendez-vous flight

To provide an overview of a real rendez-vous mission, in this Section a description will be given
of a typical rendez-vous flight of the former Space Shuttle with a target vehicle that is already
in orbit at the time of the Shuttle launch.

The Space Shuttle was a reusable launch system and orbital spacecraft operated by NASA
for human spaceflight missions. The total Space Shuttle system was officially named the Space
Transportation System (STS) and Shuttle flights were indicated by the abbreviation STS followed
by a number. Six airworthy Orbiters were built; the first, Enterprise, was not built for orbital
space flight, and was used only for testing gliding and landing. Enterprise was followed by
Columbia, Challenger, Discovery, Atlantis, and Endeavour. The first flight to space (STS-1) was
performed by the Shuttle Columbia, launched on April 12, 1981; the last flight (STS-135) by the
Shuttle Atlantis, launched on July 8, 2011. In total, the Shuttles were launched 135 times; on 9
missions a docking with the Mir and on 36 missions a docking with the International Space
Station (ISS) was established. Challenger disintegrated 73 s after launch on January 28, 1986,
and Endeavour was built as a replacement for Challenger. Columbia broke apart during reentry
on February 1, 2003. The earliest Shuttle flights had the minimum crew of two; many later
missions a crew of five or seven (commander, pilot, several mission specialists, and rarely a flight
engineer). On two occasions, eight astronauts have flown. Eleven people could be accommodated
in an emergency mission. Major missions have included launching numerous satellites and
interplanetary spacecraft, conducting space science experiments, and servicing and construction
of the Mir and the ISS.

Launch phase
For rendez-vous missions, the Shuttle is launched near the time of day that the Earth’s rotation
brings the target’s orbital plane over the launch site. The launch window around the optimal
launch time mainly depends on the inclination of the target’s orbit; targets with an inclination of
28.5E have rendez-vous launch windows up to one hour long, while targets in higher inclination
orbits can have launch windows less than 5 min in duration. After launch, the Shuttle is steered
to the target’s orbital plane with the main engines using yaw steering. At the time of launch, the
target can be anywhere in its orbital plane. Due to performance limitations and constrained crew
activity timelines, only certain phase angles at launch are permissible for rendez-vous. This phase
window can be anywhere from 10 min long (40E of on-orbit phase angle make-up capability) to
90 min long (360E of phase angle make-up), depending on the target altitude, crew timeline, and
crew day that the actual rendez-vous occurs. The relationship of the phase window to the launch
window changes each day during the launch period and depends on the target’s orbital period and
inclination. More information about the launch phase is presented in Section 16.3.

Orbit adjust phase
The Shuttle enters this flight trajectory regime after the ascent phase. Using the Shuttle Standard
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Insertion (SI) ascent procedure, the Orbital Maneuvering System (OMS) engines are fired
approximately 2 min after Shuttle Main Engine Cut-Off (MECO), which occurs about 8.5 min
after launch, to raise the apogee altitude above 185 km. This maneuver is called the OMS-1 burn.
Approximately 30 min later at apogee, the engines are fired again (OMS-2) to raise perigee to
a safe altitude. For rendez-vous missions, the OMS-2 burn is targeted as a posigrade phasing burn
and is the first on-orbit maneuver to begin the process of rendez-vous. Another available ascent
technique is called Direct Insertion (DI), in which the Shuttle main engine performance is used
to establish a sufficiently high apogee at the time of MECO so that the OMS-1 burn is not
necessary. The first maneuver on orbit is still called OMS-2 and is targeted in the same manner
as for standard insertions. With the completion of OMS-2, the Shuttle is phasing towards the
target. In order to provide maximum flexibility, this mission-unique phase of the rendez-vous is
controlled from the ground.

The Shuttle state vector and attitude information is supplied by the onboard Inertial
Measurement Units (IMUs). To compensate for the drift of these systems, the state vector
information provided by the IMUs is corrected by a ground uplink of orbital parameters. To this
end, the Shuttle is tracked using the Tracking and Data Relay Satellite System (TDRSS) S-band
communication links, and S-band and C-band ground tracking systems. To correct the attitude
information, the Shuttle takes star sightings to keep the error in the attitude below 0.25E. The
target is tracked with S-band ground tracking systems (if the target carries the appropriate
transponder) and C-band systems are used to skin track the target. These C-band tracking systems
have been used on most Shuttle rendez-vous missions when the targets were passive disabled
satellites. Determination of the semi-major axis of each vehicle is the primary concern during
rendez-vous, since errors in the semi-major axis cause secular along-track dispersions (Section
10.1). Generally, the Shuttle’s semi-major axis is known to within 500 m (3-F) and the target’s
semi-major axis is known to better than 30 m (3-F) after two to three orbits of tracking data.
Shuttle semi-major axis knowledge is gradually degraded due to translation effects caused by
attitude maneuvers, attitude dead-banding, Shuttle venting, and translational maneuvering trim
limits.

In the mid 1990s, a five-channel Global Positioning System (GPS) receiver was integrated
into the Shuttle avionics system due to the anticipated start of Tactical Air Control and
Navigation (TACAN) phase-out in the year 2000. The Shuttle used TACAN data during reentry
and the flight to the landing strip. The use of GPS data from a single receiver in parallel with
TACAN during entry was successfully demonstrated during four Shuttle missions in 2006 and
2007. A slip in TACAN phase-out initiation to 2010 allowed the program to continue using
TACAN for operational purposes and to further experiment with GPS. Flight STS-118 on August
8, 2007, was the first Shuttle mission flown with three GPS receivers in place of the three legacy
TACAN units. During later flights the GPS information was also available to the crew during the
orbital phasing and rendez-vous phases. It was used for limited orbital operations but not for
rendez-vous; neither for absolute positioning nor for positioning relative to a target. The reasons
were: 1) the standard navigation concept was accurate enough and fully flight proven; 2) the
Shuttle program had a requirement to rendez-vous with passive targets; 3) the obscuration of GPS
signals by the ISS and signal multi-path by reflections of various ISS structure elements could
pose serious problems for relative GPS in close proximity to the station.

Upon completion of navigation processing, the Rendez-vous Targeting Processor (RTP) in
the Mission Control Center (MCC) in Houston is used to compute the remaining rendez-vous
maneuvers. This processor is a generalized targeting program, which allows flexible scheduling
of maneuvers. Maneuver types include horizontal phasing and altitude adjustments, co-elliptic
maneuvers, plane change maneuvers, and two-impulse Lambert type (Section 6.7) maneuvers.
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Scheduling options include geometric constraints (e.g. node crossing, apogee, elevation angle)
and lighting constraints. Upon completion of the rendez-vous targeting, the results are transferred
into an ephemeris1 maintained in the MCC and the upcoming maneuver is uplinked to the crew.
Onboard support is limited to crew execution of the ground targeted maneuvers using External
Delta-V Guidance (EXDV). The uplinked maneuver is loaded by the crew into the Maneuver
Execute Software (MES). Within 15 s of planned Time of Ignition (TIG), the crew enters an
execute command to allow for automatic execution of the required )V. EXDV guidance is then
used during the burn, which means that accelerometers sense the thrusting every second,
decrement the commanded inertial )V to go, and compute the time to thrust termination. The
engines shut down automatically and the crew then manually trims the maneuver residuals
usually to better than 0.1 m/s.

After each orbit maneuver, ground tracking is used again to update the estimated states of
both vehicles and the navigation-target-burn sequence is recycled. Pre-mission guidance,
navigation and control errors are analyzed in Monte Carlo type of simulations to evaluate
trajectory and propellant dispersions and to determine the frequency of maneuvering. Ground
controllers design the orbit adjust phase to terminate with the Shuttle less than 100 km directly
‘behind’ the target at orbital noon on the morning of the crew day on which the retrieval will be
completed. At this point, onboard sensors can optically detect the target and dedicated crew
rendez-vous operations begin.

Relative navigation phase
When the Shuttle closes to within 100 km of the target, the relative navigation phase starts.
Maneuvers are scheduled closer together, usually less than one revolution apart. The objective
of this phase is to approach to within 2 km of the target, using only passive skin tracking of the
target from the Shuttle by its Ku-band radar system. The Ku-band system is first given the general
location of the space hardware from the Orbiter computer; then the antenna makes a spiral scan
of the area to pinpoint the target. Star trackers onboard the Shuttle can track objects brighter than
the third magnitude. The target attitude profile and reflectance must be such that the Shuttle can
track the target from orbital noon through orbital sunset as the approach continues. Star tracker
angle measurements are made 30 times per second, averaged, and output to the onboard guidance,
navigation and control General Purpose Computers (GPCs).

Onboard, relative navigation software selects data once every 8 s for processing and a
Kalman filter is used to estimate the relative state. The relative state information is combined
with the onboard propagated target inertial state vector to compute the estimated Shuttle inertial
state vector. The output of the rendez-vous navigation software is the current target and Shuttle
estimated inertial states. Typically, the relative state vector converges after the first star tracker
pass to within 2.3 km (3-F) and 0.8 m/s (3-F). The crew then uses the onboard navigation results
to compute two-impulses targeting maneuvers, using the onboard Orbit Targeting Specialist
Function (OTSF). Pre-mission offset points and transfer times are stored in the flight software
data initialization load and are used in the targeting. The maneuver time relative to a reference
time, the transfer time, and the aim point are the components of a target set. The aim point is a
point relative to the target in the target-centered coordinates frame, where the Shuttle is to be at
the end of the transfer. Up to 40 different target sets are defined pre-mission in the data
initialization loads. Additionally, the crew can manually overwrite any of the target sets should 

1 Ephemeris, plural ephemerides, is a table or computer file of values that give the positions of astronomi-
cal objects in the sky at a given time or times.
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Figure 15.6: Lambert conic targeting technique (left) and a correction method (right).

the need arise.
Two different two-impulses targeting algorithms exist in the OTSF. One algorithm uses a

Lambert targeting technique (Section 6.7), in which the current Shuttle and target inertial state
vectors are predicted forward to the maneuver time and the relative state vector is computed and
displayed to the crew (Figure 15.6). The target inertial vector is then predicted forward through
the transfer time, is combined with the aim point and a desired Shuttle inertial position vector is
then constructed. A conic Lambert targeting routine then computes the conic transfer orbit.
Onboard software is limited to less than one revolution transfer times. The resulting transfer orbit
is then predicted forward through the transfer. This results in the predicted Shuttle state at the end
of the transfer, missing the aim point slightly due to the non-conic effects. The aim point is then
automatically adjusted slightly and the cycle is repeated until convergence is reached. Generally,
the convergence criterion for this Lambert targeting technique was 80 m. The other targeting
scheme available is based on the Clohessy-Wiltshire closed-form relative-motion equations
(Section 9.2). Current onboard inertial state vectors are predicted forward to the ignition time and
the relative state is computed. This initial relative state and the desired relative state at the end
of the transfer are used directly to compute the velocity change required at TIG. Again, a
precision prediction scheme is wrapped around the targeting scheme and the aim point miss is
evaluated. If it exceeds the tolerance (one percent of the relative range at the end of the transfer),
the aim point is modified and the process is repeated. The resulting maneuver is again
automatically transferred to the MES and is executed by the crew using EXDV guidance.

A standard trajectory profile has been developed for the relative navigation phase. Ground
controllers place the Shuttle on a relative trajectory that will touch a point 75 km directly
‘behind’ the target at orbital noon. At that point, a ground computed phasing burn is performed
to approach to 15 km ‘behind’ the target in either one or two orbital revolutions (Figure 15.7).
A star tracker pass occurs immediately after the phasing burn and a second star tracker pass one
revolution later, if the mission design uses a two-revolution transfer. After the second star tracker
pass, a Lambert maneuver is targeted onboard to correct for in-plane and out-of-plane trajectory
dispersion observed with the star tracker. Guidance, navigation and control Monte Carlo
simulations should indicate that the Shuttle will miss the 15 km point by less than 1 km (3-F).
After the mid-course correction burn, the Shuttle Ku-band system is used in the rendez-vous radar
mode to track the target. Radar data is incorporated every 8 s and the relative state navigation
uncertainty is reduced to 275 m and 0.5 m/s (3-F) by the time the Shuttle reaches the 15 km
range. The maneuver at the 15 km range is called the Transition Initiation (TI) maneuver. It is
the maneuver where the Shuttle transitions to actually targeting directly for intercept with the
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Figure 15.7: Standard Space Shuttle rendez-vous profile.

target. Just prior to TI, rendez-vous guidance, navigation and control data are evaluated to
determine if the crew is ‘go for TI’. If there is some concern about continuing the rendez-vous,
a new maneuver may be executed at TI to interrupt the sequence and allow for station-keeping
(hold point) to resolve the situation. Upon completion of TI, the Shuttle again uses rendez-vous
radar information to update its knowledge of the relative state and five mid-course maneuvers
are scheduled to correct the trajectory during the next hour. If the radar has failed, the orbital
lighting is such that optical tracking with the star tracker is used immediately following TI.

Proximity operations phase
By the completion of the last mid-course maneuver, orbital sunrise has occurred, the range has
decreased to about 2 km, and the relative rates are under 2 m/s. Additionally, the relative
trajectory has been designed such that the inertial LOS rates to the target are nearly zero at
manual takeover and the Shuttle is ‘below’ the target altitude so that the background view is dark.
The target appears as a bright star frozen against a stellar background. Because of single point
failures possible with the rendez-vous radar, this final rendez-vous phase has been designed to
allow for manual piloting since no relative navigation tracking support can be assured. Two
minutes after the last mid-course maneuver, the crew changes the Orbiter’s automated pointing
mode from target-track to inertial hold. The trajectory control requirements now are to control
range-rate as a function of the decreasing range while maneuvering perpendicular to LOS to keep
the target centered in the Crew Optical Alignment Sight (COAS) mounted on the upper windows.
The V-bar approach is the preferred approach technique. A standard range-rate versus range-
braking schedule has been developed, which minimizes plume impingement on the target and yet
allows the range to decrease to 120 m in 20 min as the Shuttle reaches the V-bar down-track
position. As the Shuttle nears the V-bar, the automated attitude control mode is switched from
inertial to a Shuttle tail-to-Earth pointing mode with its bottom into the flight direction (Figure
15.8, left); the relative rates have now decreased to under 0.2 m/s. When crossing the V-bar,
normal to the LOS rates are nulled to keep the Shuttle on the V-bar and the closing rate is
adjusted through a new braking schedule. As the Shuttle continues the approach, orbital dynamics
require the crew to periodically fire the aft thrusters to maintain a LOS approach along the V-bar
(Section 15.4). Since these engines are canted, incremental braking occurs each time these
engines are fired. The LOS approach to the target continues as orbital sunset occurs. It is
necessary to be within 60 m for optical tracking during the night pass and it is desirable to be
within 20 m at orbital sunset, so that the payload bay floodlights can illuminate the payload for
grappling operations. The rendez-vous radar drops out at a range of 25 m due to transmit/receive
switch-over limitations.
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Figure 15.8: Examples of a Space Shuttle V-bar (left) and R-bar (right) approach.

From an operational point of view, the V-bar approach is desirable, because: 1) it is relatively fuel
efficient; 2) the constant Earth horizon orientation is a good piloting reference; 3) closing rates
can be easily and immediately nulled with subsequent efficient stationkeeping should some
Shuttle or payload system anomaly occur. However, other techniques for final approach have also
been used. For the Long Duration Exposure Facility (LDEF), which has been retrieved in January
1990, a mission was designed in which the inertial approach through the V-bar crossing was
continued for 23 more minutes and subsequently an approach radially down on top of LDEF
(Figure 15.8, right) was performed. The Shuttle yawed as necessary during this approach to set
up the proper geometry for grapple. In November 1994, for the first time maneuvers to rendez-
vous along the R-bar from ‘below’ were tested with the Russian space station Mir, without
actually making contact with Mir. This rendez-vous from ‘below’ with docking was applied for
the first time for the docking of an Orbiter to Mir in November 1995. It has the advantage that
the target is clearly visible against a dark stellar background, while during a rendez-vous from
‘above’ the Earth’s albedo may blind the crew or the onboard sensors. The big advantage of
rendez-vous along the R-bar is that the thrusters facing in the opposite direction of the target have
to be fired to control the closure rate, while orbital mechanics provides a ‘natural braking effect’
(Section 15.4), which seriously decreases the risk of a collision if the thrusters fail. Approaches
along any LOS direction have been proposed to allow even more design flexibility. Retrieval of
targets without the standard Shuttle grapple fixture is also possible through the use of the Manned
Maneuvering Unit (MMU) as demonstrated in a number of satellite retrievals. Unique crew
techniques for arresting target rotation rates and attaching grappling hardware have also been
demonstrated with the US Navy Syncom IV-3 salvage mission on STS-51-I already in early
September 1985. Since then, many more sophisticated rendez-vous, docking and retrieval
maneuvers have been executed.

15.6. Space Shuttle rendez-vous with ISS

The Space Shuttle has performed many rendez-vous and docking missions with/to the ISS,
transferring astronauts and cargo to the ISS and returning astronauts and cargo to Earth. The ISS
is a large research laboratory in the space environment, where crews conduct scientific
experiments each day. Scientists on Earth have a swift access to the crew’s data and can modify
experiments or launch new ones. The presence of a permanent crew affords the ability to monitor,
replenish, repair and replace experiments and components of the spacecraft itself. The assembly
of the ISS began on November 20, 1998, with the launch of the Russian Zarya module by a
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Proton rocket and the launch of the US Unity module on December 4, 1998, by the Space Shuttle.
The launch and docking of the Russian Zvezda service module on July 12, 2000, enabled
permanent habitation of the station. The first resident crew arrived on November 2, 2000, on a
Russian Soyuz spacecraft. Since then, the ISS has been gradually enlarged with new modules,
large solar panels, etc. From November 2, 2000, to August 1, 2014, there have been 55 Progress
(Russia), 39 Soyuz (Russia), 32 Shuttle (USA), 5 ATV (Europe), 4 Dragon (USA), 4 HTV
(Japan), 3 Cygnus (USA) successful flights to the station. The choice of the ISS orbital altitude
is a compromise between a small decay rate due to atmospheric drag, which requires a high orbit,
and a large payload capability of the vehicles that dock to the ISS, which requires a low orbit.
The ISS is maintained in a nearly circular orbit with a minimum altitude of 280 km and a
maximum of 450 km, and an inclination of 51.6E; it needs to be boosted to a higher altitude
several times each year. This boost can be performed by the station’s two main engines on the
Zvezda module, or by a docked Shuttle, Progress or ATV. In April 2011 the ISS orbital altitude
was 347 km; in March 2012 it was 390 km.

On February 1, 2003, the reentry of the Space Shuttle Columbia ended in a disaster. Columbia
had sustained damage to its heat shield due to insulating foam breaking off the external tank and
hitting the shield at liftoff. The damage was too great for the heat shield to protect the Shuttle
from the heat and structural strain of atmospheric reentry, causing it to break apart. For this
reason, the integrity of the heat shield has been a critical concern of NASA ever since and a
special maneuver, called the backflip maneuver, was designed that allowed inspection of the heat
shield from the ISS. For this maneuver the Shuttle approaches the station from ‘below’ along the
R-bar and at a small distance from the ISS, usually around 200 m, the Shuttle performs a slow
360° pitch maneuver, during which it exposes the heat shield on the upper surface and underside
to the ISS. The crew inside the ISS visually inspects and photographs the heat shield to determine
whether or not it has been damaged during liftoff and ascent. This maneuver requires skilled
piloting, as the Shuttle commander must fly very close to the ISS without the station always in
full view. After the maneuver has completed, the Shuttle flies from the R-bar to the V-bar, and
then continues along the V-bar to close in on the ISS and eventually complete the docking. This
maneuver was first performed on Shuttle mission STS-114, launched on July 26, 2005. Below,
the rendez-vous and docking of the Shuttle with/to the ISS on flight STS-120 will be
summarized.

On October 23, 2007, the Shuttle was launched on a flight to the ISS. The main mission goal
was to deliver the Harmony module and to reconfigure a portion of the station in preparation for
future assembly missions. To this end the cargo included four DC-to-DC converter unit racks and
three zero-g storage racks, a power and data grapple fixture for the station’s robot arm, and a
Shuttle power distribution unit. During a two-days chase of the station with periodic rocket
engine firings the Shuttle was gradually brought to about 15 km behind (-Y-axis) the station—
the starting point for the final approach. About 2.5 hr before docking, the Shuttle’s OMS engines
were fired to begin the final phase of the rendez-vous. As the Shuttle moved closer to the ISS,
the Shuttle’s Ku-band rendez-vous radar system tracked the ISS and provided range and closing
rate data to the crew. During the final approach, the Shuttle executed several small correction
burns that placed it about 300 m directly below (-X-axis) the station. From that moment on the
Shuttle commander manually controlled the Shuttle for the remainder of the approach and
docking. The approach was stopped about 180 m below the station to ensure proper lighting for
imagery prior to initiating the 360E backflip maneuver. After some time, the maneuver was
executed and the station crew took as many as 300 digital pictures of the Shuttle’s upper surface
and underside. These pictures had a resolution of up to 3 cm. The photos were taken out of
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windows in the Zvezda service module and were downlinked to Earth for analysis. When the
Shuttle had completed its rotation, its payload bay was facing the station. The commander then
moved the Shuttle to a position about 120 m directly in front of (+Y-axis) the station in
preparation for the final approach to docking to the station’s Destiny docking port. The crew
members operated laptop computers processing the navigational data, the laser ranging system
and the docking mechanism. Using a view from a camera mounted in the center of the Shuttle’s
docking system, the commander precisely matched up the docking ports of the two spacecraft.
The Shuttle homed in at a relative speed of about 3 cm/s, and the docking mechanisms were kept
aligned to within a tolerance of 8 cm. When the Shuttle made contact with the station,
preliminary latches automatically attached the two spacecraft. Immediately thereafter, the
Shuttle’s steering engines were deactivated to reduce the forces acting at the docking interface.
Shock absorber springs in the docking mechanism dampened any relative motion between the
Shuttle and the station. Once the motion between the spacecraft had been stopped, the docking
ring was retracted to close a final set of latches between the two vehicles.

Figure 15.9 shows the last part of the trajectory of a very similar rendez-vous flight of the
Space Shuttle Endeavour with ISS on May 18, 2011. This was the 25th and last flight of the Space
Shuttle Endeavour, the 36th Shuttle flight to ISS, and the last but one flight of the Space Shuttle.

Figure 15.9: The final phase of the Space Shuttle’s rendez-vous flight with the International Space Station
(ISS) during the STS-134 mission in May 2011.

15.7. ATV rendez-vous with ISS

The Automated Transfer Vehicle (ATV) is an expendable, unmanned resupply spacecraft
developed by ESA and designed to supply the ISS with propellant, water, air, payload and
experiments. As soon as cargo is removed from the ATV, solid and liquid waste from the station
is loaded in its place, meaning that the ATV will slowly fill up with waste over the course of
some months. In addition, ATVs can boost the station into a higher orbit. The ATV is designed
to complement the Russian Progress spacecraft, having three times its capacity. It is launched by
a two-stage Ariane 5 ES rocket from the ESA Kourou Space Center in French Guiana (Section
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16.2). After completing its mission, the ATV reenters the Earth’s atmosphere and burns up. The
ATV uses the GPS system for navigation and orbit control, and its docking system includes two
videometers and two telegoniometers. A videometer is based on imaging sensor technology,
where laser pulses are sent to and reflected by retroreflectors on the Zvezda module. The
resulting image is then processed to provide range, LOS angles and attitude relative to the Zvezda
module. A telegoniometer emits laser pulses towards retroreflectors on the Zvezda module. The
travel time of the reflected pulses gives the distance between the two spacecraft. The direction
from the ATV to the Zvezda module is given by the orientation of the telegoniometer’s two built-
in mirrors, which rotate to aim the laser towards the retroreflectors. Visual imagery is provided
by a camera on the Zvezda module. The first ATV was successfully launched on March 9, 2008;
the fifth and last ATV on July 30, 2014. Below, the rendez-vous and docking flight of the second
ATV (ATV-2) will be summarized.

ATV-2 was launched atop an Ariane 5 ES rocket from Kourou on February 16, 2011. It had a
total mass of 20,050 kg and carried 7,085 kg cargo, consisting of 4,535 kg propellant for ISS re-
boost and attitude control, 851 kg ISS refuel propellant, 100 kg oxygen gas, and 1,599 kg dry
cargo (food, clothes, equipment). It did not carries any water, as enough water already was on
board of the ISS. ATV-2 separated from the Ariane second stage when it reached a 260 km
circular orbit at the same inclination as the ISS orbit. At that time the ISS moved in a 351 km
altitude orbit. During the next part of the flight, an eight-days phasing period, ATV-2 used the
GPS system for navigation, and the ATV-2 mission was controlled from the ATV Control Center
in Toulouse, France. Data communication between the control center and ATV-2 followed one
of two different paths; either via the NASA TDRSS system or via the ESA Artemis satellite.
ATV-2 controllers commanded spacecraft’s thrusters into a programmed firing sequence to move
the spacecraft to around 35 km behind (-Y-axis) and 4 km below (-X-axis) the ISS, at which point
direct space-to-space communication coverage began and the ISS crew could monitor ATV-2’s
systems. From there, the rendez-vous phase was initiated and the ATV software performed the
guidance, navigation and control functions autonomously. The control center performed health
checks at pre-defined hold points and authorized the go-ahead for the subsequent automatic
approach sequence. During the rendez-vous phase the Zvezda service module transmitted GPS
receiver data via a radio-frequency link to ATV-2. The ATV’s guidance, navigation and control
software calculated the vehicle’s position relative to the ISS, based on at least four GPS satellites
seen by both the ISS and ATV-2. At a distance of 4.5 km, this relative GPS navigation took over
from absolute GPS navigation that was used at a larger distance. The Russian Kurs radio-
frequency system installed on the Zvezda module provided independent range and range-rate
data. A series of maneuvers brought ATV-2 to the first hold point at 3.5 km behind and 100 m
above the ISS. Once authorized to proceed, ATV-2 moved closer to another hold point, at 250
m behind the ISS. At this point, ATV-2 switched over from relative GPS navigation to
videometer and telegoniometer navigation. These systems were used up to the docking. From the
250 m hold point, ATV-2 moved in a straight line towards the ISS with another two hold points
at 19 m and 11 m. The ISS crew began taking distance measurements on ATV-2 once the vehicle
passes inside the 20 m mark. The relative approach velocity was then about 15 cm/s. At each hold
point, the vehicle stopped, allowing time for ground controllers and the ISS crew to assess all
ATV-2 systems and ATV’s behavior before authorizing the next step. For ISS safety reasons, the
crew had the capability and authority to intervene in case of problems. At 1 m distance, the ISS
crew went ‘hands off’ and let ATV-2 perform its final docking sequence. During the rendez-vous
and docking sequence, the station’s solar arrays were placed into a special configuration to
protect for GPS multipathing. In total, the rendez-vous took about 3.5 hr and ATV-2 docked to
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the Zvezda module on February 24. The station has no window facing out in this direction, but
the crew could observe the ATV-2 approaching the ISS via a camera mounted at the end of the
Zvezda module. This camera was aligned with a target on ATV-2, providing the crew with
necessary visual information. The docking phase started as soon as the ATV’s nose probe
touched the inside of the docking cone on the Zvezda module. The docking system automated
sequence controlled this phase, which included the retraction of the probe to bring the two
vehicles close enough to close the hooks, and the connection of fluid, electrical and data
interfaces. The docking occurred at a relative speed of about 7 cm/s. ATV-2 met the docking port
center point with a precision of 10 cm. As soon as all interfaces were established, the hatch was
opened and the crew could enter the pressurized part of ATV-2.

One of the main mission tasks of ATV-2 was to raise the ISS orbit by about 40 km in order
to reduce the atmospheric drag experienced by the station. This stepwise maneuver was
performed using two of the four 490 N main rocket engines, which consumed nearly 4,500 kg
of propellants for the orbit raising. On March 18, 2011, ATV-2’s thrusters were used to increase
the orbital altitude of the ISS by 3.9 km; the engines burnt for 14 min and 42 s. On April 2, ISS
mission controllers used ATV-2’s thrusters to boost the ISS into a 0.8 km higher orbit so as to
avoid any possibility of intercepting a catalogued piece of space debris. Further orbit altitude
boosts were applied in the period May-June 2011. ATV-2 undocked from the station on June 20,
2011. Some hours later, the spacecraft fired its rocket engines for about 10 min to enter an
elliptical orbit. Three hours later the engines were fired for a period of about 14 min. Just before
hitting the outer layers of the atmosphere, Johannes Kepler was commanded to begin a tumbling
to ensure that it would disintegrate in the atmosphere, and would burn up, with its ISS waste, in
the atmosphere. Surviving pieces struck the ocean surface in the south Pacific on June 21, 2011,
at around 21 hr UTC; about 2500 km east of New Zealand, 6000 km west of Chili and 2500 km
south of French Polynesia.
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16. LAUNCHING OF A SATELLITE

Satellites are launched from the Earth’s surface by means of multi-stage rockets. After ignition
of the first-stage rocket engine(s), the launch vehicle ascends vertically from the launch platform.
During this portion of the flight relatively large gravity and drag losses (Section 1.7) occur. After
some seconds to some tens of seconds, depending on the vehicle, a pitch-over maneuver is
executed by gimbaling the rocket engine(s) slightly. This will create a torque on the vehicle,
turning it so that it enters a curved trajectory. Because the pitch over is carried out while the
vertical velocity is still quite small, large aerodynamic loads on the vehicle during the maneuver
are avoided. The rocket’s angle of attack is adjusted to zero, which reduces lateral aerodynamic
loads and produces negligible lift forces during the ascent. This small steering maneuver is the
only time during an ideal so-called gravity turn ascent trajectory, or its more-modern analogue:
a controlled transition trajectory, that thrust must be used for purposes of steering. After the pitch
over is complete, the engines are reset to point straight down along the axis of the rocket again.
The ‘direction’ of the pitch over determines the launch azimuth and so the flight path azimuth.
From a propellant consumption perspective, the optimum ascent trajectory lies in a single plane
that is determined by the center of the Earth, the launch site and the flight path azimuth at the
start of the rocket’s curved trajectory. Ideally, that ascent trajectory plane coincides with the
orbital plane selected for the satellite. Then, no plane change maneuvers, which consume a
significant amount of propellant, have to be executed. If the rocket is a multi-stage system where
stages fire sequentially, the rocket’s ascent burn will not be continuous. Obviously, some time
must be allowed for stage separation and engine ignition between each successive stage, and
many times free-flight periods between successive powered phases, so-called coasting periods,
are required. When the vehicle has reached an altitude where the aerodynamic forces are
negligible, a closed-loop inertial guidance system takes over the control of the vehicle to correct
for trajectory deviations and to attain the desired orbit. The final stage rocket engine(s) cut off
when the vehicle has a predetermined velocity and position.

The determination of the optimum ascent trajectory of a particular launch vehicle for a
prescribed satellite orbit is very complex and beyond the scope of this book. In this Chapter, we
will discuss some general aspects of ascent trajectories. Launch vehicle performance data for
orbital missions will be presented in graphical form. A more-detailed discussion will be given
on the relations between the position and velocity of a satellite at the moment that it is injected
into its orbit and the orbital parameters, and on the orbit deviations due to injection errors.

16.1. Launch vehicle ascent trajectories

Two basic types of satellite launch vehicle ascent trajectories can be distinguished (Figure 16.1):
Direct Ascent (DA) and Hohmann Transfer Ascent (HTA). The DA trajectory is selected such
that its summit point coincides with the required satellite orbit. When the satellite, which in most
cases is still attached to the final rocket stage, approaches this summit altitude, the final-stage
engine is ignited and the satellite is accelerated to the required velocity. In some cases, the rocket
engine required for this acceleration is not the engine of the last stage, but is an integral part of
the satellite itself (apogee engine). In the HTA, the satellite and the last stage first attain a low-
altitude circular parking orbit, just outside the densest part of the atmosphere. Usually, the
altitude of this parking orbit is about 200 km. For preliminary mission and performance analyses,
mostly a parking orbit altitude of 185 km (100 n.mi.) is assumed. Either shortly after parking
orbit injection, or after a coasting period in this parking orbit, the vehicle is injected into a
Hohmann elliptical transfer orbit. At perigee, this transfer ellipse is (about) tangential to the
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parking orbit and at apogee (about) tangential to the required satellite orbit (Section 12.1). When
the satellite is at apogee of the transfer orbit, the last-stage rocket engine, or the satellite’s apogee
engine, is fired to accelerate the satellite into its final orbit.
 

Figure 16.1: Sketch of a Direct Ascent (DA) and a Hohmann Transfer Ascent (HTA) (top), and of a typical
HTA two-stage (bottom left) and three-stage (bottom right) mission profile. MECO = Main Engine Cut
Off; SECO = Second stage Engine Cut Off.

Comparing these two types of ascent trajectories, it can be shown that, generally, an HTA
requires less propellant for ascent to a specified orbit. The main reason is that the ascent
trajectory for a DA is steeper than for an HTA, yielding larger gravity losses (Section 1.7). The
HTA would even be the absolute minimum-energy trajectory, if the altitude of the parking orbit
would be very low, and if the rocket would be launched horizontally. However, as a result of the
presence of the atmosphere and launch site constraints, this trajectory, of course, cannot be flown
and a low-altitude parking orbit has to be used. Only for satellite orbits below 300 km altitude
does a DA sometimes require less propellant. However, it should be realized that apart from
propellant consumption, many operational aspects should be taken into account in the selection
of an ascent trajectory. Obviously, the shorter coasting periods in a DA may be advantageous for
stages with cryogenic propellants or for military missions. Problems of attitude control and other
aspects of vehicle engineering are mostly reduced too when using a DA. In addition, due to the
comparatively steeper DA, the launch vehicle can be tracked longer from the launch site. For the
HTA, a world-wide network of tracking stations is necessary. From the viewpoint of booster
recovery, the shorter horizontal distance traveled by the booster during a DA is advantageous.
Finally, it will be clear, that, in general, the HTA requires the application of restartable rocket
engines. For launch vehicles using only solid propellants, this restart capability is difficult to
provide.

As examples of ascent trajectories, Figure 16.2 shows typical Delta II 7320/7420 (top) and
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Atlas V 552 (bottom) ascent profiles for injecting a satellite into a low Earth orbit, and the history
of some relevant parameters during the ascent flights.

Figure 16.2: Typical Delta II 7320/7420 (top) and Atlas V 552 (bottom) ascent profiles for injecting a
satellite into a low Earth orbit.

16.2. Orbit injection and injection constraints

Whatever ascent trajectory is flown, the satellite, and often also the last stage, will ultimately
reach the position and velocity required to enter a prescribed orbit about the Earth. Usually, then
the satellite is separated from the last stage, e.g. by releasing a compressed-spring mechanism,
and small rocket thrusters on the last stage are fired to move that stage away from the satellite.
For liquid-propellant stages, usually the propellant residuals are also exhausted, without
combustion, through the main engine(s), in order to increase the relative velocity between rocket
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stage and satellite. The time of separation is called the injection epoch; the position and velocity
of the satellite at that epoch constitute the injection parameters. Injection epoch and injection
parameters together completely determine the orbit in which the satellite will move about the
Earth.

We now assume that at injection epoch, t0 , the injection parameters distance, r0, declination,
*0 , right ascension, "0, velocity, V0 , flight path angle, (0, and flight path azimuth, R0 (Chapter
11) are known. The orbit that the satellite will follow can then be computed by using the relations
between spherical coordinates and orbital elements, which were derived in Section 11.9 for
elliptical orbits,

(16.1)

(16.2)

(16.3-1)

(16.3-2)

where the two expressions (16.3) allow an unambiguous determination of E0, and

(16.4)

where 20 /2 and E0 /2 are in the same quadrant, and

(16.5)

(16.6)

(16.7)

where the two equations (16.6) and the two equations (16.7) allow an unambiguous determination
of T and S, and

(16.8)

We may write (16.1) to (16.8) in symbolic form as

(16.9)
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where öj is a known function for each j. For the argument of latitude, u0, true anomaly, 20, and
eccentric anomaly, E0, we have

(16.10)

These relations clearly show that the orbital elements and orbital parameters can be separated into
three groups:
S The orbital elements a, e and J, and the orbital parameters 20 and E0, which are a function of

the in-plane injection parameters r0 , V0 , (0 only.
S The orbital elements i and S, and the orbital parameter u0, which are a function of the out-of-

plane injection parameters "0 , *0 , R0 only.
S The orbital element T, which is a function of the in-plane as well as of the out-of-plane

injection parameters.

From (16.5) a number of interesting conclusions can be drawn:
S For a given declination of the injection point, we obtain

For example, if *0 = 20E then 20E # i # 160E. So, we conclude that, for a specified launch site,
the inclination of the orbit cannot be chosen arbitrarily.

S For a given injection point, the minimum inclination (i = **0*) is reached when R0 = 90E; i.e.
an injection due east. The maximum inclination (i = B-**0)*) is reached for an injection due
west: R0 = 270E.

S If a satellite has to enter an equatorial orbit (i = 0E), we must require *0 = 0E, R0 = 90E.
If the required inclination of the orbit is within one of the ranges 0 < i < **0* or B-**0* < i < B,
the launch site will never cross the orbital plane and, consequently, the plane of the ascent
trajectory cannot coincide with the orbital plane. In these cases, a plane change has to be
executed during the ascent trajectory, at orbit injection or at a certain position along the orbit. In
Section 13.3 it was shown that for a satellite that is already in orbit an inclination change
maneuver should be executed at the satellite’s ascending or descending node. These maneuvers
are performed at relatively high velocities and are very expensive in terms of propellant
consumption. For launching satellites into low-inclination orbits, therefore an equatorial launch
site is very attractive. Two near-equatorial sites exist: the Italian San Marco platform in the
Indian Ocean off the coast of Kenya, and the French/European site Kourou in French Guiana
(Table 16.1). In 1988 the last rocket was launched from the San Marco platform. Presently, it is
only used for satellite communications. Ariane rockets are launched on a routine basis from
Kourou. The first Ariane 1 rocket was launched in December 1979; in February 2011 the 200th

flight of an Ariane family vehicle took place. In October 2011 the first Soyuz-2 rocket was
launched from Kourou; in February 2012 the first Vega rocket was launched from this site. The
three US launch sites, located north of the equator, are Western Test Range (Vandenberg Air
Force Base) in California, Eastern Test Range (Cape Canaveral) in Florida and Wallops Island
in Virginia. The western and eastern test ranges are used on a routine basis for a large variety of
satellite and planetary missions. Wallops Island is in operation since 1945 and from this range
smaller orbital-class rockets are launched. Another US launch site is the Sea Launch platform,
a self-propelled converted oil-drilling platform that is loaded with a three-stage Zenit launcher
and a satellite in a port at Long Beach, California. The platform and its accompanying Assembly
and Command Ship then sail to the launch location at 154E W on the equator, south of the
Hawaiian Islands. From this platform launches to all inclinations can be executed. In the period
1999 to 2009 thirty rockets have been launched. In 2009, the provider of the launch services ran



Fundamentals of Astrodynamics     SS     Launching of a satellite 384

into financial problems and a Russian corporation is presently the majority owner of the
reorganized entity. The launching of satellites from this platform was resumed in September
2011. The three Russian launch sites listed in Table 16.1, Plesetsk, Kapustin Yar and Baikonur,
are located at fairly high latitudes of over 45E N; the Indian launch site Sriharikota at a fairly low
latitude of about 14E N; the Chinese launch sites Shuang and Xichang at latitudes of about 40E
N and 28E N; the Japanese launch site Kagoshima (also called Uchinoura) at about 31E N.

Table 16.1: Permitted range of launch azimuth and corresponding orbital inclination for various launch
sites. [coordinates and launch azimuth constraints were taken from D.A. Vallado, Fundamentals of Astro-
dynamics and Applications, Kluwer Academic Publishers, 2001.]

Site Location
(E)

Azimuth
(E)

Inclination
(E)

Cape Canaveral (ETR) 28.5 N, 80.6 W  37 - 112 28 - 58

Vandenberg (WTR) 34.6 N, 120.6 W 147 - 201 63 - 107

Wallops Island 37.8 N, 75.5 W  30 - 125 38 - 67

San Marco Platform  2.9 S, 40.2 E  50 - 150  3 - 60

Kourou  5.2 N, 52.8 W -20 - 100  5 - 110

Plesetsk 62.8 N, 40.6 E -30 - 90 63 - 103

Kapustin Yar 48.4 N, 45.8 E -10 - 90 48 - 97

Baikonur 45.6 N, 63.4 E -20 - 90 46 - 104

Sriharikota 13.7 N, 80.2 E 100 - 290 17 - 166

Shuang 40.4 N, 99.8 E -10 - 120 40 - 98

Xichang 28.2 N, 102.2 E 94 - 105 28 - 32

Kagoshima 31.2 N, 131.1 E 20 - 150 31 - 73

For all launch sites, the allowed launch azimuth is restricted by safety aspects and the availability
of tracking stations. For example, for a launch from the Eastern Test Range (ETR) the launch
azimuth, generally, must be within the range 37E -112E; for a launch from the Western Test
Range (WTR) a launch azimuth between 147E and 201E is generally acceptable. Therefore, the
Eastern Test Range is used primarily for launches into a more or less eastward direction, which
employ the rotation of the Earth to increase effectively the inertial velocity of the vehicle, thereby
improving the launch vehicle’s payload capability. In Table 16.1 the permitted range of launch
azimuths and the range of orbital inclinations are listed for the various launch sites. The Table
shows that polar orbits can be reached when launching from Vandenberg, Kourou, Plesetsk,
Kapustin Yar, Baikonur, Sriharikota, and Shuang. For Vandenberg and Sriharikota, the launch
must then be in southern direction; for Kourou, Plesetsk, Kapustin Yar, Baikonur and Shuang,
in northern direction.

Sometimes, the required orbital inclination is, for a given launch site, outside the range of
inclinations that can be achieved for a launch azimuth within the launch safety constraints. In that
case, a so-called dogleg maneuver is executed, where the launch vehicle first flies a trajectory
within the permitted range of flight azimuths. During its climb to orbital altitude an out-of-plane
maneuver is executed with the rocket’s main propulsion system, and sometimes with additional
vernier rocket engines, to change the plane of the ascent trajectory such that the required
inclination can be reached. In some cases two dogleg maneuvers are executed; one when the first
stage is operating and another when the second stage is operating. Usually, a dogleg maneuver
lasts for 30-60 s. Of course, a dogleg maneuver can only be executed if the range of permitted
flight azimuths during that part of the flight is wider than at launch. It is emphasized that such



Fundamentals of Astrodynamics     SS     Launching of a satellite 385

a maneuver costs a relative large amount of propellant and can therefore only be applied for
relatively small inclination changes. On the other hand, since it is executed at a time when the
velocity is significantly lower than when the vehicle has reached orbital altitude, this maneuver
may be preferable over an inclination change maneuver when the spacecraft enters orbit or is
already in orbit. This last type of plane change maneuver, which is often also called a dogleg
maneuver, is discussed in Chapter 13.

If **0* < i < B - **0*, then the launch site will cross the selected orbital plane twice a day.
Because of the constraints on launch azimuth, generally, only one of these crossings can be used
to launch a satellite into its orbit along a coplanar ascent trajectory. If small plane change
maneuvers are accepted, the satellite can be launched within a short period around the orbital
plane crossing time, constituting the so-called daily launch window. We now meet another
advantage of using a parking orbit. For a given launch time and a DA trajectory that is prescribed
by the launch vehicle capabilities, the point where the satellite enters its orbit is completely
determined. Often, such as, for instance, in rendez-vous missions or for applications satellites,
the satellite has to enter its orbit at a specified location. Then, a coplanar launch within the launch
window is mostly impossible. The best alternative to long periods of inaccessibility or expensive
non-planar transfers is using a parking orbit in combination with an HTA. By carefully selecting
the point of departure from this parking orbit, it is possible to reach any point in the final satellite
orbit. If the satellite has to reach a specific location in the final orbit at a specified time, then,
generally, an intermediate phasing orbit is required (Chapter 14).

16.3. Launching of the Space Shuttle

To give an impression of the complexity of launching a spacecraft and of the processes that take
place during launch, in this Section a description will be given of the mission plan for the first
launch of the Space Shuttle Columbia on April 12, 1981, from Cape Canaveral (Space
Transportation System flight STS-1). During this flight the Shuttle was injected into a 40E
inclination orbit at an altitude of 240 km.

At 3.5 s before launch time, which is indicated in this Section by T, the three main engines
of the Orbiter are ignited within 120 ms of each other. Since the resulting thrust vector does not
pass through the points on which the Shuttle rests on the launch platform, after ignition of the
main engines a rotation about the center of mass occurs. As a result, the cockpit that houses the
astronauts moves about 50 cm. At T+0.24 s the engines should be at 90% of their nominal thrust
level. If this is the case, at T+3 s the two Solid Rocket Booster (SRB) engines are ignited. The
five rocket engines together produce a thrust of 31 MN. With a total mass of the Shuttle of about
2040 ton, this results in an initial upward acceleration of the Shuttle of about 5 m/s2, or about half
the gravitational acceleration on Earth. Immediately after lift-off, a maneuver is performed to
make the thrust vector to pass through the center of mass of the vehicle. This maneuver and the
entire control during launch are performed by pivoting the nozzles of the three main engines as
well as of the two solid rockets. The acoustic load during launch is considerable. Without
precautions, the sound level during launch would be more than 168 dB in the cargo bay of the
Shuttle. This sound level would lead to an acoustic load on the payload that is too high.
Therefore, special precautions are taken. The cooling system that protects the bottom of the
launch tower against excessive heating is especially designed to also reduce the sound level. For
this purpose, more than 3.4 million liters of water per minute are poured out over the base of the
launch platform during the first phase of the launch; this reduces the sound level by 8 dB.

At T+8 s the Shuttle has gained an altitude where the nozzles of the boosters are about 10 m
above the top of the launch tower. At that moment, a maneuver is performed (Figure 16.3) that 
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Figure 16.3: Characteristic Space Shuttle ascent trajectory.

is aimed to change the vertical trajectory of the vehicle into a curved trajectory in a plane that is
determined by the desired inclination of the final orbit around the Earth. During the first flight
the launch azimuth is 60.2E, which results in an inclination of 40.3E. At T+20 s this maneuver
is completed; the vehicle has performed a rotation about its longitudinal axis and the longitudinal
axis is at an angle of 78E with the horizon. The Orbiter now flies upside down. This orientation
guarantees, together with the selected ascent trajectory, that the aerodynamic loads on the entire
launch vehicle do not become excessive. The aerodynamic control surfaces located on the
Orbiter’s wings and horizontal stabilizer are constantly kept in such a position that the loads on
the connecting elements between the Orbiter, the boosters and the external tank do not become
too large and that these elements are kept under tensile loading. At T+32 s the Shuttle reaches an
altitude of 2.4 km and a velocity of 740 km/hr. The thrust of the three main engines is then
reduces by 10% per second until 65% of their initial value to limit the aerodynamic forces that
act on the launch vehicle when it breaks the sound barrier (Mach number (M) = 1) and when the
maximum so-called dynamic pressure is reached. At T+52 s, at an altitude of 7.3 km, the local
speed of sound is exceeded. The thrust program of the solid rocket boosters is designed in such
a way that about 55 s after launch the thrust of each engine decreases from 12.9 MN to 9.5 MN,
to limit the loads on the launch vehicle when the maximum dynamic pressure is reached. At
T+69 s the period of maximum dynamic pressure has passed and the thrust of the main engines
of the Orbiter is returned to its initial level. At an altitude of 36.6 km a velocity of M = 3 is
reached. From that moment on the crew can no longer use the ejection seats in case of an
emergency. At T+132 s, when the Shuttle has reached an altitude of 50 km and a velocity of
M = 4.5, the empty boosters are separated from the launch vehicle. Small auxiliary thrusters are
used to move the boosters away from the Orbiter and the boosters fall in a ballistic trajectory
back to Earth. At an altitude of about 5 km parachutes are deployed, after which the boosters fall
into the Atlantic Ocean at about 275 km from the launch site. There they are picked up by two
specially designed ships and taken back to Cape Canaveral for refurbishment.

Until booster separation, the flight is performed using open-loop control. This means that the
roll, pitch and yaw commands are programmed as a function of velocity, and that the control
system only executes these programmed commands. In the computer the control programs for
both a nominal flight and the flight in case of an engine failure are stored. If this happens, the
computer automatically switches over to the appropriate control program. Four seconds after
booster separation, control is switched to closed-loop control. That means that the computer
calculates the trajectory that the vehicle must follow, starting from the known conditions when
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closed-loop control is initialized, to reach the required condition at the time of Main Engine Cut-
Off (MECO) with minimum propellant consumption. These MECO conditions are stored in the
computer memory before the flight in the form of four parameters: velocity, flight path angle,
distance from the center of the Earth, and inclination. These MECO conditions are chosen in such
a way that an appropriate point of impact of the external tank can be guaranteed. In the first phase
of the flight under closed-loop control, a rather steep trajectory is flown to let the vehicle gain
altitude fast. This is necessary to reach a situation that, in case of an engine failure, an emergency
landing can be performed after one orbit about the Earth. At an altitude of 116 km and a velocity
of M = 6.4, approximately 4 min after launch, this situation is achieved. Then, the second phase
of the closed-loop control is started. Under computer control the vehicle now switches to a
trajectory that requires a minimum amount of propellant for three working engines. For this
purpose, the attitude of the Orbiter is changed such that the nose, which first pointed 19E above
the horizon, now points 4E below the horizon. In this phase, the altitude first still increases to
130 km, after which the Orbiter enters a slow dive in which the altitude decreases to 117 km,
while the velocity increases more and more. At T+390 s, the Orbiter reaches an altitude of
130 km and a velocity of M = 15. From that moment on, even if two main engines would fail, a
successful reentry into the atmosphere and a landing on a specially reserved runway would be
possible. After T+420 s it is even possible to reach the desired orbit if two main engines fail. At
this stage of the flight, the acceleration of the Orbiter and the external tank increases to 3 g, i.e.
three times the acceleration due to gravity on Earth. To prevent higher accelerations, the third
phase of the closed-loop control is started. During this phase the thrust is continuously decreased
such that the acceleration does not exceed 3 g. If the Orbiter is carrying much cargo, or if the
three main engines do not reach their nominal performance, it may be possible that this third
phase is never entered. If during this period an engine fails, the computer immediately switches
back to the second control phase.

At 7 s before MECO, which occurs 8.5 min after launch, the thrust of the three main engines
is reduces to 65% of their initial thrust. About 6.5 s after that, when the Orbiter has reached a
velocity of M = 25, the three main engines are stopped. The Orbiter and the external tank now
have a velocity of 7.82 km/s, a radial velocity of 67 m/s and have entered an Earth orbit with
perigee at 24 km and apogee at 150 km altitude. Approximately 20 s later, the external tank
separates. The thrusters of the Reaction Control System (RCS) fire for 24 s to move the Orbiter
away from the tank with a relative velocity of 1.2 m/s. The tank now falls in a ballistic trajectory
back to Earth. At an altitude of about 80 km it will break up into pieces and partially burn up,
after which the debris will fall into the Indian Ocean.

Two minutes after MECO, the two engines of the Orbital Maneuvering System (OMS) ignite;
this OMS is located at the back of the Orbiter above the three main engines. These engines fire
for 87 s, as a result of which the Orbiter is injected into an orbit with perigee at 105 km and
apogee at 240 km altitude. If one of the OMS engines would fail, the engines of the RCS can also
be used to perform this maneuver. During this powered phase, also the 2.5 ton of liquid hydrogen
and oxygen that is still in the pipelines to the main engines, is dumped. The liquid oxygen flows
away through a nozzle, the liquid hydrogen is removed to space via special valves. When the
Orbiter passes the apogee of its orbit about half an hour later, the two OMS engines are ignited
for the second time, now for 75 s, to circularize the orbit of the Orbiter at an altitude of 240 km.
This completes the launch 45 minutes after leaving Cape Canaveral.

16.4. Performance of launch vehicles

To select a nominal orbit for a specific satellite mission, the performances of available launch
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vehicles have to be known. After all, one has to know which rocket can launch the satellite into
the desired orbit. For first-order analyses, a method based on the concept of the mission
characteristic velocity, Vchar

* , is generally used. This quantity is defined as the sum of all velocity
increments, which are needed to inject a payload from a 100 n.mi. (185 km) altitude, 28.5E
inclination parking orbit into the desired orbit; the velocity of the satellite in its parking orbit
(Vc = 7.80 km/s) has to be added. The choice of the reference inclination of 28.5E refers to a
launch due east from Cape Canaveral (Eastern Test Range). Figure 16.4 illustrates the concept 

Figure 16.4: Mission characteristic velocity for various final orbits about the Earth.

of mission characteristic velocity. The dashed curve indicates the sum of the initial velocity of
the satellite in its parking orbit and the velocity increase )V1 required in the parking orbit to enter
a coplanar Hohmann transfer orbit with apogee altitude equal to a desired final orbit altitude
(Chapter 12). To circularize the orbit at apogee, a velocity increase )V2 has to be applied. The
sum of )V1 and )V2 is also indicated in Figure 16.4 (solid curve for 0E inclination change). The
particular shape of this curve is discussed in Section 12.1. The mission characteristic velocity for
a three-dimensional Hohmann transfer (Chapter 13) to a final circular orbit at a particular altitude
is also indicated for three values of the inclination change. For this three-dimensional transfer,
it is assumed that when the vehicle crosses the equatorial plane it is injected into a coplanar
Hohmann transfer trajectory. At apogee of this trajectory, which also coincides with an equatorial
crossing, an impulsive shot is applied such that the required plane change is effectuated and the
orbit is circularized simultaneously. This mission profile is discussed in Section 13.4. From
Figure 16.4 we conclude that for most missions the mission characteristic velocity, Vchar

* , falls in
the range of 9-13 km/s.

The performance of a launch vehicle can also be expressed in a type of characteristic velocity.
This launch vehicle characteristic velocity, Vchar , is defined as the total velocity to which a
payload can be accelerated by a particular launch vehicle from an altitude of 100 n.mi. after a
launch due east from Cape Canaveral, plus the velocity of the vehicle in its parking orbit
(Vc = 7.80 km/s). Of course, for a given mission always a launch vehicle has to be selected that
can provide a launch vehicle characteristic velocity larger than the mission characteristic velocity.
As an example, Figure 16.5 shows the payload capability, Ml , as a function of the launch vehicle
characteristic velocity for a series of launchers. Although many of the launchers included are
historical and not available anymore, and the Saturn 5/Centaur has only existed on the drawing
table, this Figure is valuable for understanding the character of the Ml - Vchar curves. The curves
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for launchers that are optimized for launching payloads into low-Earth orbits fall off at relatively
low values of Vchar , while the curves for launchers with kick stages, which are optimized for high-
energy missions (e.g. planetary missions), show significant payload capabilities at higher values
of Vchar . When the launch azimuth is not equal to 90E, and thus the initial parking orbit has an
inclination larger than 28.5E, or when the spacecraft is launched from another launch site, a Vchar

correction has to be applied. Figure 16.6 shows this )Vchar penalty for a launch from Cape
Canaveral (Eastern Test Range) but using a parking orbit with an inclination larger than 28.5E
(left), and for a launch from Vandenberg (Western Test Range) and using a parking orbit with

Figure 16.5: Launch vehicle payload capability as a function of the launch vehicle characteristic velocity.

Figure 16.6: Launch site and launch azimuth characteristic velocity penalties.
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an inclination between 80E and 140E (right). This corrected value of Vchar should be used when
the payload capability of a specific launch vehicle is read from Figure 16.5. In this Figure typical
values of the required mission characteristic velocity for six missions are indicated. These are a
satellite in a circular orbit at an altitude of 185 km: Vchar

*  = 7.8 km/s; a geostationary satellite:
Vchar

*  = 11.7 km/s; and a flyby mission to the Moon, Venus, Mars and Jupiter (Chapter 18). For
a favorable position of the planets and for a minimum-energy direct trajectory (Chapters 17 and
18) to the Moon, Venus, Mars and Jupiter, the corresponding Vchar

* -values are about 10.9 km/s,
11.3 km/s, 11.4 km/s and 14.1 km/s, respectively. From this Figure we conclude that a Saturn 1B
rocket can deliver a payload of approximately 15 ton into a low satellite orbit and that the
payload capacity of the Atlas/Centaur and Scout D rockets is for the same orbit approximately
5200 kg and 225 kg, respectively. A geostationary mission can neither be executed by the Scout
nor by the large Saturn 1B rocket; the Atlas/Centaur can deliver about 500 kg of payload into the

Figure 16.7: Earth-orbital performance of some satellite launch vehicles.
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geostationary orbit. A mission to Jupiter can only be flown by the Saturn 5, Titan 3D/Centaur and
Atlas/Centaur/TE364 launchers.

Most launch vehicles are constrained with regard to the number of times a rocket engine can be
restarted, the permitted time between two thrusting phases (coasting period), etc. As a result, it
may not be possible to accelerate the payload at the desired times. For a more precise mission
planning, therefore a different type of performance diagram has to be used. Such a diagram gives
the launch vehicle payload capability, Ml, as a function of perigee and apogee altitudes for a
given launch site and specified orbital inclination. Figure 16.7 presents examples of such
diagrams for Scout D, Delta, Atlas/Centaur and Titan rockets. A comparison of the performance
of the Scout for a launch from Wallops Island (WI) or from the Western Test Range (WTR)
shows the benefit of launching in an easterly direction. In that case, the Earth’s rotational velocity
at the Earth’s surface reduces the )V that the launch vehicle has to deliver for a certain mission.
This results in a significantly larger launch vehicle payload capability for that mission. Since the
rotational velocity at the Earth’s surface is largest at the equator (. 0.46 km/s), it is clear that a
launch site on or near the equator, from which satellites can be launched in an
easterly direction, is very attractive.

Figure 16.8 presents the payload capability of a few more-modern launch vehicles as a

Figure 16.8: Launch vehicle performance for launches due east into a circular orbit. [copied from W.J.
Larson and J.R. Wertz (eds.), Space Mission Analysis and Design, second edition, Kluwer Academic
Publishers, 1997.]

Figure 16.9: Space Shuttle payload capability for delivery missions from ETR and WTR.
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function of the altitude of a circular orbit in which the payload is injected after a launch due east
from Cape Canaveral (US launchers), Kourou (Ariane), Baikonur (Proton) and Xichang (Long
March (LM)). The modern heavy-lift launchers Delta 4050H-19 and Atlas V 552 (not included
in Figure 16.8) can inject payloads of about 22,500 kg and about 18,100 kg, respectively, into a
800 km altitude circular orbit after a launch due east from Cape Canaveral; for an orbital altitude
of 2000 km, the corresponding values are about 19,300 kg and 14,600 kg, respectively. These
launchers can also inject payloads of about 10,700 kg and 8,980 kg, respectively, into a standard
geostationary transfer orbit. Nowadays, the launchers Ariane 5, Soyuz-2 and Vega (also not
included in Figure 16.8) are operational at Kourou. From this launch site, Ariane 5 ECA can
inject payloads of 17,000 kg into a Sun-synchronous (Section 23.7) 800 km altitude orbit, and
a payload of 10,500 kg into a standard geosynchronous transfer orbit; for Soyuz 2-1b the
corresponding values are 4750 kg and 3060 kg, respectively. Vega can inject a payload of 1350
kg into a Sun-synchronous 800 km altitude orbit. Figure 16.9 gives an impression of the payload
capability of the (former) Space Shuttle for circular orbits. Note that this vehicle could deliver
about 29,000 kg of payload into a low orbit with an inclination of 28.5E when launched from
Cape Canaveral (ETR). When launched from Vandenberg (WTR), this vehicle could deliver only

Figure 16.10: Sketch of some launch vehicles.
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about 18,000 kg of payload into a low polar orbit. The Figure clearly shows that the Space
Shuttle was designed for missions to relatively low Earth orbits; the payload capacity becomes
zero for an orbital altitude of approximately 1200 km. When performance diagrams such as the
ones presented in Figures 16.7 to 16.9 are used, it should be realized that operational constraints
imposed by the launch vehicle are already taken into account. This means that the performance
curves should never be extrapolated outside the areas indicated in the diagrams.

Figure 16.10 presents sketches of some launch vehicles, showing the relative size of each
vehicle. For reference: a Solid Rocket Booster (SRB) of the Space Shuttle is 45.5 m long.

16.5. Effects of variations in the in-plane injection parameters

The effects of variations in the injection parameters on the satellite’s orbit can be investigated
with (16.1) to (16.8). In practice, perigee and apogee distances, true anomaly of the injection
point, and the difference between time of injection and time of perigee passage, t0 -J, are
important parameters. Perigee and apogee distances are functions of a and e: rp = a(1-e),
ra = a(1+e). In Section 16.2 it was found that the orbital elements a and e, the true anomaly of
the injection point, 20, and the time difference t0-J are functions of the in-plane injection
parameters r0 , V0, (0 only. Therefore, in this Section we will analyze the variations of the
parameters a, e, rp, ra, 20 and t0 -J as a function of the injection parameters r0, V0, (0.

We first derive expressions for 20 as a function of r0 , V0 and (0. In Section 5.6 the following
relations were found:

from which we obtain

(16.11)

For the circular velocity at the injection point, we have

with which the term r0V0
2/: in (16.11) can be written as

(16.12)

Note that k0 > 1 means that the injection velocity is higher than the local circular velocity, and
that k0 < 1 means that the injection velocity is lower than the local circular velocity. When we
substitute k0 for the term r0V0

2/: in (16.1), (16.2) and (16.11), we find

(16.13)
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(16.13)

From (16.13-3) and (16.13-4) the value of 20 can be determined unambiguously. As the injection
point is known, the parameter 20 determines the position of the perigee of the orbit relative to the
injection point.

Substitution of (16.12) and (16.13-1) into (16.3) leads to

(16.14)

From these equations the value of E0 can be determined unambiguously. For the time difference
t0 -J we may write with (16.8) and (6.25)

(16.15)

where T is the orbital period, which is a function of the orbital element a.
For the perigee or apogee distance we can write

where  denotes the perigee or apogee distance, and the plus-sign corresponds to apogee and the
minus-sign to perigee. This expression can also be written as

Substitution of (16.13-1) and (16.13-2) into this relation leads to

(16.16)

This equation has, for given values of (0 and k0 (r0 and V0), in general two solutions for : the
perigee and apogee distances.

From the expressions given above we conclude that the quantities a, e, 20, (t0 -J)/T and
/r0 are fully determined by only two parameters: k0 and (0, where, of course, k0 is a function of

r0 and V0. In Figure 16.11 the values of e, 20,  and (t0 -J)/T are shown as a function of k0 and
(0. From this Figure we conclude that:
S The curves for the variation of the eccentricity are symmetric about (0 = 0E. Identical curves

hold for k0 = 0.25 and k0 = 1.75, k0 = 0.50 and k0 = 1.50, etc.
S For a given value of k0 , the eccentricity is minimum at (0 = 0E.
S For near-circular orbits (k0 . 1), small variations of (0 around (0 = 0E cause large variations

of the eccentricity.
S For all values of k0 > 1 and (0 = 0E: 2 0 = 0E, indicating that the injection point coincides with
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Figure 16.11: Values of some orbital parameters as a function of the injection parameters.

perigee. For all values of k0 < 1 and (0 = 0E: 20 = 180E, indicating that the injection point
coincides with apogee. If k0 is varied between 0 and 2, the position of perigee changes
discontinuously by an amount of 180E at k0 = 1.

S For a circular orbit (k0 = 1, (0 = 0E), the location of perigee is undetermined. For near-circular
orbits (k0 . 1), small variations of (0 about (0 = 0E cause large changes in the location of
perigee.

S For given values of r0 and k0 , the perigee distance is maximum and the apogee distance is
minimum at (0 = 0E.

S For all values of k0 < 1, the apogee distance at (0 = 0E is equal to r0 ; for all values of k0 > 1,
the perigee distance at (0 = 0E is equal to r0.

S For k0 > 1 and given values of (0 and r0, variations of k0 lead to relatively small changes in
perigee distance; in the apogee distance large changes occur. So, the apogee distance is
sensitive to the injection velocity, in particular for highly eccentric orbits (k0 . 2).

S The plot for the variation of (t0 -J)/T with variations in k0 and (0 is a kind of mirror image of
the plot for the variation of 20. However, note the difference in the legend of ‘similar’ curves
in both plots.

Since the density of the atmosphere decreases approximately exponentially with increasing
altitude, it is in particular the perigee altitude that determines the orbital lifetime of a satellite.
The injection point will always be chosen as low as possible to maximize the launcher payload
capability. For the selected injection altitude the perigee altitude should be as high as possible
to maximize the orbital lifetime. Furthermore, it is important that variations in perigee altitude
due to injection errors will be as small as possible. Figure 16.11 shows that both requirements
are satisfied if (0 = 0E at injection. To give an example of the required accuracy of the injection
parameters, we consider an injection at ( = 0E into an orbit with nominal perigee and apogee
altitudes of 500 km and 600 km, respectively. The magnitude of the nominal injection velocity
is V0 = 7.642 km/s. Figure 16.12 shows the range of variations in the values of r0, V0 and (0 that
lead to satellite orbits with perigee and apogee altitudes between 425 km and 675 km, or between
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350 km and 750 km. This corresponds to significant orbit deviations of 75 km and 150 km,
respectively. Note that for both cases the flight path angle, (0 , may deviate less 1.5E from its
nominal value of (0 = 0E; the magnitude of the injection velocity may deviate less than 70 m/s,
the injection altitude less than 80 km. In reality, the orbit has to meet more-stringent require-
ments, which lead to much smaller permitted deviations in r0, V0, (0.

Figure 16.12: Range of acceptable in-plane injection parameter deviations for specified maximum
departures in perigee and apogee altitude. Nominal orbit: (0 = 0E, hp = 500 km, ha = 600 km.

16.6. Effects of injection errors

As a compromise between the desired satellite mission characteristics and the payload capability
of available launch vehicles, a nominal orbit is selected. The true orbit of the satellite, however,
will always deviate from the nominal orbit as a result of unavoidable launch trajectory errors and
orbit injection errors. Both types of errors manifest themselves in deviations of the position of
the injection point and of the velocity at that point: injection errors. It are these injection errors,
which, although their numerical values may look small at first glance, may cause considerable
deviations from the nominal orbit. Therefore, in the selection of a nominal orbit one always has
to check whether the possible orbit deviations due to injection errors are acceptable. As an
example, Figure 16.13 shows the 1-F value (standard deviation) of a number of injection
parameters for the (historical) Scout D launcher as a function of injection altitude. It was assumed
that the errors in each injection parameter show a normal (Gaussian) distribution with zero mean.
From statistics we know that the 1-F value then corresponds to a probability of 68.3% that the
absolute value of the error in a parameter is less than the 1-F value of that parameter. So, Figure
16.13 should be read as follows: when a satellite is injected at an altitude of 400 n.mi. (740 km)
by a Scout D into a low-eccentricity orbit, then there is a 68% probability that the absolute value
of the errors in injection velocity, injection altitude, injection azimuth and injection flight path
angle are smaller than 25.6 m/s, 8.1 km, 0.625E and 0.52E, respectively. To modern standards,
Scout D had a poor guidance system. But even for this launcher the injections errors are relatively
small; the 1-F value of the injection velocity is only 25.6 m/s compared to an injection velocity
of about 7.5 km/s; so, the error is about 0.3% of the nominal value.

Figure 16.14 (left) shows for nominal circular orbits the 1-F values of the difference between
apogee altitude and perigee altitude ()h) and of the inclination due to injection errors of a Delta
3E launcher as a function of the nominal orbital altitude. Figure 16.14 (right) shows for the same
launcher and for elliptical orbits with a perigee altitude of 100 n.mi. the 1-F values of apogee
altitude and inclination as a function of the nominal apogee altitude. Note that even for launch
vehicles with a relatively good guidance system as the Delta 3E rocket, apogee altitude errors of
several hundreds of kilometers could occur for highly eccentric orbits. For more-modern
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Figure 16.13: Standard deviation of some injection parameters for a Scout D launcher.

Figure 16.14: Standard deviation of the difference between apogee and perigee altitude for circular orbits
(left) or of apogee altitude for elliptical orbits (right), and of the inclination, for an injection by a Delta
3E launcher.

launchers, like Delta II, Atlas/Centaur, Soyuz and Ariane 4, the injection errors are definitely
smaller, leading to smaller orbit errors. For low Earth orbits, characteristic 3-F values of the
errors in a, e, i, S are then 10 km, 0.002, 0.1E, 0.1E, respectively; for a standard geosynchronous
transfer orbit, characteristic 3-F values of the errors in i, T, S, hp, ha are 0.05E, 0.2E, 0.2E, 5 km,
100 km, respectively. For the modern Delta IV launcher, the 3-F values of the injection errors
in hp, ha, i are 7.4 km, 7.4 km, 0.04E when injecting the spacecraft into a circular 500 km altitude
polar orbit, and 5.6 km, 93 km, 0.03E when injecting the spacecraft into a standard geosynchro-
nous transfer orbit. For the current Ariane 5 and Soyuz-2 launchers and a standard geosynchro-
nous transfer orbit from Kourou, the 1-F values of the injection errors in i, T, S, hp, ha are 0.02E,
0.2E, 0.2E, 1.3 km, 80 km, and 0.05E, 0.08E, 0.08E, 6.6 km, 40 km, respectively. For these
launchers, the 1-F values of the injection errors in a, e, i, S after a launch from Kourou into a
Sun-synchronous 800 km altitude circular orbit are 2.5 km, 0.0004, 0.04E, 0.03E, and 3.3 km,
0.0007, 0.03E, 0.05E, respectively.

To illustrate the effects of injection errors in more detail, we consider the launch of the
Astronomical Netherlands Satellite (ANS), which was launched on August 30, 1974, by a Scout
D from the Western Test Range. Nominal perigee and apogee altitudes were 510 km and 560 km,
respectively. The nominal values of the injection parameters and the corresponding orbital
elements at injection are listed in Table 16.2. With (11.58) we can compute the right ascension
of the injection point: "0 = 63.56E. The (Keplerian) orbital period is 95.34 min. Now, we assume
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Table 16.2: Nominal injection parameters and orbital elements of ANS.

t0 = August 27, 1974; 14h 9m 41s UTC

r0 = 6887.92 km a = 6913.078 km

*0 = 13.917E e = 0.003640

70 = -125.540E i = 97.801E

V0 = 7.6211 km/s T = 167.329E

(0 = - 0.005E S = 241.618E

R0 = 188.038E ti - J = 94.975 min

Actual launch took place on August 30, 1974; 14h 7m 40s UTC.

that all injection parameters but V0 and (0 have their nominal values. From Figure 16.13 we find
the following 1-F values for these parameters at the nominal injection altitude: )V0 = 25 m/s,
)(0 = 0.48E. For a numerical example, we assume that errors in V0 and (0 well within these 1-F
limits occur: )V0 = -10 to 10 m/s, )(0 = -0.4E to 0.4E. With the equations given in Section 16.2,
we can compute the deviations of the orbital parameters due to errors in V0 and (0. For the orbital
parameters e, T, J, hp and ha the results are shown in Figure 16.15. This Figure shows that the
eccentricity may vary between 0.001 and 0.009 as a result of injection errors; the apogee altitude

Figure 16.15: Deviation of ANS orbital parameters due to injection errors within their 1-F limits.

may deviate up to about +60 km or -35 km; the perigee altitude up to about -50 km; the argument
of perigee up to about ± 90E from its nominal value. It is emphasized that this Figure shows the
effects of individual injection errors on the orbit of ANS separately. In reality, errors in all
components of the injection state vector will occur simultaneously, while for each component a
certain probability distribution holds. Through Monte Carlo simulations we can compute a large
series of perigee and apogee altitude deviations when the values of the injection parameters are
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varied according to their known probability distributions. Figure 16.6 shows contours which
contain 75%, 95% and 99.5% of all computed combinations of perigee and apogee altitude
deviations, for a satellite that is injected at an altitude of 300 n.mi. (560 km) by a Scout D rocket
into its orbit. This Figure should be read as follows. If a satellite is injected into a circular orbit
(left) at an altitude of 300 n.mi. then there is a 95% probability (2-F value) that combinations of
deviations in perigee altitude and apogee altitude occur that falls within the 0.95-contour. This
includes the following combinations: )hp = -120 n.mi., )ha = 0 n.mi. and )hp = 0 n.mi.,
)ha = 120 n.mi. Of course, the first combination would be disastrous for the orbital lifetime of
the satellite. Figure 16.16 (right) shows that if the satellite is injected at the same altitude but with
a higher velocity, i.e. into an orbit with a higher apogee altitude (550 n.mi.), the influence of
injection errors on the perigee altitude is statistically considerably smaller, but the deviation in
apogee altitude increases. However, this is generally less of a problem, because it is in particular
the perigee altitude that determines the satellite’s orbital lifetime. So, when lifetime is a critical
factor, one will prefer an injection with a velocity higher than the (local) circular velocity to
minimize possible negative perigee altitude deviations due to injection errors.

Figure 16.16: Probability contours of simultaneous deviations in perigee and apogee altitude due to
injection errors of a Scout D launcher, for a nominal circular orbit (left) and a nominal elliptical orbit
(right). In both cases injection takes place at an altitude of 300 n.mi.

When we limit ourselves to small injection errors, we can derive analytical expressions for the
sensitivity of orbital parameters to injection errors. For this purpose, we consider the relations
between the injection parameters r0, *0, "0, V0, (0, R0 and the orbital elements a, e, i, T, S and
the orbital parameters ra and rp, as given in Section 16.2. The orbital element J is omitted,
because for this element we would get quite complicated expressions and, moreover, because in
this Chapter we are more interested in the orbit than in the relation between time and position of
the satellite in the orbit. If x denotes one of the orbital elements or orbital parameters, then we
may approximate the deviation ()x) of an orbital element or parameter from its nominal value
(x0) as a result of injection errors by a Taylor series expansion:
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(16.17)
where the partial derivatives have to be evaluated for the nominal conditions. This implies that
in the expressions for the partial derivatives the orbital elements have their nominal values. We
now limit ourselves to small deviations in the injection parameters, so that second-order terms,
indicated in (16.17) by O()2), may be neglected. The partial derivatives can be found by partial
differentiation of the relevant expressions given in Section 16.2 and by using (16.12). As an
example, we will derive an expression for the partial derivative of e to (. From (16.2) we find

or, with (16.12),

In a similar way, we can derive expressions for the other partial derivatives and finally obtain

(16.18)
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(16.18)

where we have omitted for simplicity the index 0 at each partial derivative. In these expressions 
denotes perigee or apogee distance, and the plus-sign in the expressions for M /Mr, M /M( and
M /MV corresponds to apogee distance and the minus-sign to perigee distance.

If we now consider the case that injection occurs at perigee of the nominal orbit, we have
(0 = 0E, k0 > 1, and (16.13-2) simplifies to

(16.19)

Substitution of (16.13-1) and (16.19) into (16.18) leads for the partial derivatives to

(16.20)
where, again, the index 0 has been omitted at each partial derivative. Note that the value of some
partial derivatives approaches infinity, and consequently the linearized series expansion (16.17)
becomes invalid, if e 6 0 (k0 6 1), i 6 0 or V0/Vc0 6 %2& (k0 6 2). In these cases the argument of
perigee is undefined, or the right ascension of the ascending node and the argument of perigee
are undefined, or the orbit of the spacecraft is no longer an ellipse but a parabola. These situations
are a consequence of the chosen set of orbital elements; in such situations other sets of orbital
parameters should be used (Sections 11.5 and 22.4).

From the expressions (16.20) we conclude that when a satellite is injected at perigee of its
nominal orbit, in first approximation:
S The semi-major axis and the eccentricity are insensitive to errors in *0, "0, (0, R0.
S The error in the semi-major axis due to errors in r0 and V0 increases with increasing values of

k0. So, for highly eccentric orbits large deviations in a may occur.
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S The inclination is insensitive to errors in r0, "0, V0 and (0.
S The argument of perigee is only affected by errors in *0 , (0 and R0.
S For near-circular orbits large deviations in the argument of perigee due to errors in (0 may

occur.
S The right ascension of the ascending node is only affected by errors in *0, "0 and R0.
S Perigee distance is only affected by errors in r0; apogee distance is only affected by errors in

r0 and V0. The error in the perigee distance is just equal to the error in the injection distance.
S The error in the apogee distance increases with increasing values of k0. So, for highly eccentric

orbits large deviations in ra may occur.
When, as a numerical example, the ANS satellite is considered again and the nominal injection
parameters are taken from Table 16.2, then the values of the partial derivatives at injection can
be computed by substituting these injection parameters into the expressions (16.20). We then
assume that injection takes place at perigee with (0 = 0E, which is close to the nominal mission
plan. The results are listed in Table 16.3, from which we conclude that in particular the influence
of ( on T is very large.

Table 16.3: Partial derivatives of the orbital parameters to the injection parameters of ANS.

Ma/Mr = 2.015 km/km Ma/MV = 1.828 km/m.s-1

Me/Mr = 1.457*10-4 /km Me/MV = 2.634*10-4 /m.s-1

Mi/M* = -0.0339 E/E Mi/MR = 0.970 E/E

MT/M* = -1.0088 E/E MT/M( = -274 E/E MT/MR = -0.0333 E/E

MS/M* = -0.137 E/E MS/M" = 1 E/E MS/MR = -0.245 E/E

Mrp /Mr = 1 km/km

Mra /Mr = 3.029 km/km Mra /MV = 3.655 km/m.s-1

   All other partial derivatives are zero.

We have found that for injection at perigee, the apogee distance is only a function of r0 and V0.
We thus may write according to (16.17)

Substitution of the relevant expressions for the partial derivatives leads to

Assuming a spherical Earth and using h = r - R, where h is altitude and R is the Earth radius, and
(16.19), we find

(16.21)

Since the injection point coincides with perigee, we may write  and thus (16.21)
can be written as
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(16.22)

For injection into a low-eccentricity orbit with e < 0.02, we may approximate this relation by

(16.23)

Usually, injection takes place at h0 = 200-400 km. Then, the term 1 + R/h0 is always larger than
16. So, (16.22) shows that an error )h leads to a deviation )ha that is more than three times as
large, and that the apogee altitude is very sensitive to errors in )V. As an example, we consider
the injection of a satellite at perigee of an orbit with nominal injection altitude of 300 km and
nominal apogee altitude of 2000 km by a modern launcher that achieves 3-F injection errors of
)h . 2 km and )V . 3 m/s. We then find e = 0.113, )h/h0 = 0.67%, and )V/Vc0 = 0.039%. From
(16.23) we obtain for the contribution of )h to the apogee altitude deviation: )ha = 8.17 km and
)ha /h0  = 2.72%, and for the contribution of )V: )ha = 13.91 km and )ha/h0 = 4.64%. So, the
adopted error of 2 km in injection altitude leads to about four times that error in apogee altitude,
while the adopted error of 3 m/s in injection velocity yields an error of about 14 km in apogee
altitude.

It is emphasized that the discussion in this Section refers to the ‘normal’ case, where the errors
in the injection parameters show a Gaussian distribution with zero mean. However, in practice
much larger injection errors, or even injection failures, may occur. As an example, we consider
again the launch of ANS. During the powered flight an error occurred in the control of the rocket
that led to large deviations of the injection parameters. As a result, the satellite entered an orbit
with perigee altitude of 266 km and apogee altitude of 1175 km; these values differed
considerably from the nominal values of 510 km and 560 km, respectively. The very different
orbit severely affected the satellite’s observation program and its operational lifetime. The
satellite reentered the atmosphere over the Indonesian archipelago on June 14, 1977, at about 2h

UTC.
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17. LUNAR FLIGHTS

From ancient times down to the time of Newton’s work in the seventeenth century, lunar theories
were composed mainly with the help of geometric ideas, inspired more or less directly by long
series of positional observations of the Moon. From the mid-seventeenth century, the Moon has
played a significant role in assisting the progress of celestial mechanics. The first explanation of
the irregularities in the motion of the Moon was given by I. Newton (1643-1727) in his Principia.
He nevertheless regarded the lunar theory as very difficult and confined to E. Halley (1656-1742)
that it “made his head ache and kept him awake so often that he would think of it no more”. In
the eighteenth to the early twentieth centuries, lunar theory was developed analytically by L.
Euler (1707-1783), A.C. Clairaut (1713-1765), J.B. le Rond d’Alembert (1717-1783), J.L.
Lagrange (1736-1813), P.S. Laplace (1749-1827), P.A. Hansen (1795-1874), C.E. Delaunay
(1816-1872), S. Newcomb (1835-1909), G.W. Hill (1838-1914), E.W. Brown (1866-1938), and
others. Laplace brought his special form of mathematical elegance to the solution of the Moon’s
motion. He used the true longitude as the independent variable in the equations of motion. He
explained the secular acceleration of the true longitude; it depends on the eccentricity of the
Earth’s orbit, which changes over time. Hansen restructured much of Laplace’s work and
developed tables that were used from 1862 to about 1922. Delaunay’s theory was accurate
enough to predict the Moon’s motion to one radius over a period of 20 years. Newcomb worked
on improving ephemerides for navigation. He made some empirical corrections to Hansen’s
tables, and his modified results were used after 1883. A more-exact theory, using the theory of
infinite matrices, was published by Hill in 1878. Brown published very accurate tables, based on
a lunar theory consisting of more than 1500 terms, in 1908. They replaced Hansen’s tables in
about 1923 and were used for decades afterwards.

Since the 1960s, lunar theory has been further developed in a somewhat different way. This
has been stimulated by the availability of high-speed computers and modern high-precision
observations. W.J. Eckert (1902-1971) and colleagues used early computers to expand Brown’s
lunar theory by 6000 terms in 1964. Most significant has been the record of lunar laser ranging
measurements, obtained using lasers on Earth and retro-reflectors placed on the surface of the
Moon. The time-of-flight of a pulse of laser light to one of the reflectors and back gives a
measure of the Moon’s distance at that time. The first of four reflectors, which are still
operational today, was taken to the Moon in the Apollo 11 spacecraft in July 1969. The lunar
theory, as developed numerically to fine precision using these modern measures, is based on a
larger range of considerations than the classical theories; it takes account not only of gravitational
forces (with relativistic corrections) but also of many tidal and geophysical effects and a greatly
extended theory of lunar librations. A leading position in these developments was taken by the
NASA Jet Propulsion Laboratory (JPL), and names particularly associated with the transition
from classical lunar theories towards the modern state of the art include those of J.D. Mulholland
(1934-2008) and J.G. Williams (-). In parallel with these developments, a new class of analytical
lunar theories has also been developed since the 1960s. Using computer-assisted algebra, the
analytical developments have been taken further than previously could be done by the classical
analysts working manually. A leading scientist from this period is A. Deprit (1926-2006), who
reproduced Delaunay’s lunar theory with computers and symbolic manipulation around 1970.
He found several errors in Delaunay’s theory and therefore improved its accuracy significantly.
Also, some of these new analytical theories have been fitted to the numerical lunar ephemerides
previously developed at JPL. The main aims of these advanced analytical theories, in contrast to
the aims of the classical theories of past centuries, have not been to generate improved positional
data for current dates; rather, their aims have included the study of further aspects of the motion,
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such as long-term properties, which may not so easily be apparent from the modern numerical
theories themselves.

Since the 1960s, the Moon is an important target for manned and unmanned space missions,
and presently concrete plans exist to build a permanent manned lunar basis and to use the Moon
as a starting point for a manned mission to Mars. In the next Section of this Chapter1, we will
briefly describe the Earth-Moon system, together with some of the irregularities of the Moon’s
motion. In subsequent Sections, we will analyze the launching of a spacecraft from the Earth to
the Moon.

The first spacecraft to the Moon was launched by the former USSR in January 1959: Luna 1. This
spacecraft passed the surface of the Moon at an altitude of about 6000 km. The first US
spacecraft that passed the Moon was Pioneer 4, which was launched in March 1959. It passed the
Moon at a distance of about 60,000 km, which was much too far to provide any useful
measurements. Since then, both the USA and the USSR/Russia have launched many spacecraft
towards the Moon. In January 1966, the USSR launched Luna 9, which became the first
spacecraft to soft land on the Moon. Equipped with a camera, Luna 9 provided a panoramic view
of the lunar surface surrounding its landing site. In April 1966, the USSR launched Luna 10,
which became the first spacecraft to orbit another celestial body. Upon arrival, Luna 10
conducted multiple spectral, gravitational, solar plasma and meteorite detection studies.

As a prelude to the US manned Apollo program, the USA have sent a series of Ranger,
Surveyor and Lunar Orbiter spacecraft to the Moon. In the period April 1962 to March 1965, five
Ranger spacecraft have impacted on the Moon. During the last part of their approach, three
spacecraft made a series of pictures of the surface of the Moon at ever decreasing altitudes and
increasing velocities, and transmitted these immediately to the Earth. They gave a good
impression of what astronauts could expect on the surface of the Moon. In the period May 1966
to January 1968, five Surveyor spacecraft made a soft landing on the Moon, and have sent series
of pictures to the Earth. In addition, these spacecraft have measured a number of physical and
mechanical parameters of the lunar soil. In the period August 1966 to August 1967, a total of five
Lunar Orbiters were injected into an orbit about the Moon. They have taken a large number of
high-quality photo’s, from which an almost complete photographic map of the lunar surface
could be produced and many potential Apollo landing sites were photographed in detail. The first
three missions were flown in low-inclination low-altitude orbits; the last two missions were flown
in high-altitude polar orbits, in which the altitude ranged from 45 km over the near side of the
Moon to 6000 km over the far side of the Moon. The first manned flight towards the Moon
(Section 3.11) took place in December 1968, and Apollo 8 entered on December 24 an orbit
about the Moon at an altitude of about 113 km. After ten orbits about the Moon, the rocket engine
fired again for the return to Earth. The first man setting foot on the Moon was Neil Armstrong,
one of the three astronauts of the Apollo 11 mission, who landed, together with Edwin Aldrin,
on the Moon on July 20, 1969. The astronauts collected and returned almost 22 kg of lunar rock
and soil for scientists to study on Earth. After this flight, six more Apollo flights to the Moon
have taken place; the last one was Apollo 17 that landed on the Moon on December 11, 1972. In
total, twelve US astronauts have spent 12 days and 12 hrs on the Moon, and the astronauts have
walked for 3 days and 8 hrs on the Moon. In September 1970, the USSR landed Luna 16 on the
Moon, which included an ascent vehicle. After a sample of the surface of the Moon was
retrieved, the ascent vehicle launched itself to Earth and a capsule with the sample landed safely

1 This Chapter is partly based on Chapter 7 of: R.R. Bate, D.D. Mueller, J.E. White, Fundamentals of Astrody-
namics, Dover Publications, New York, 1971.
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on Earth. In November 1970, the USSR successfully sent a lander/rover to the Moon: Luna
17/Lunokhod 1. The rover was equipped with four television cameras and special extendable
devices to impact the lunar soil for soil density and mechanical properties tests. On December
14, 2013, China became the third nation that has successfully soft-landed a spacecraft on the
Moon: Chang'e 3, with a landing mass of 1200 kg. On the same day, a 140 kg rover, named Yutu,
separated from the lander. Both spacecraft carried a suite of scientific instruments and cameras;
the rover carried a ground-penetrating radar, allowing for the first direct measurement of the
structure of the lunar soil down to a depth of 30 m. Below, some lunar missions will be described
in more detail.

On January 24, 1990, the Japanese Muses-A spacecraft was launched; after its successful
launch, the spacecraft was renamed Hiten. It was launched into a highly eccentric orbit about the
Earth with an apogee altitude of 290,000 km. Using its propulsion system, the apogee was
gradually raised and ten lunar swingby’s (Section 18.11) were performed. The mission of this
spacecraft is described in some detail in Section 17.5.

On January 25, 1994, the 227 kg Clementine spacecraft was launched from Vandenberg
(Western Test Range) by a Titan 23G into a 260 km by 300 km altitude orbit with inclination of
67E. It was a joint project between the Strategic Defense Initiative Organization and NASA.
Clementine was the first US spacecraft launched to the Moon since Explorer 49 in June 1973.
The objective of the mission was to test advanced sensors and spacecraft components, and to
make scientific observations of the Moon and the near-Earth asteroid 1620 Geographos. The
observations included imaging in the ultraviolet, visible and infrared parts of the spectrum, laser
altimetry, and charged particle measurements. The spacecraft remained in low-Earth orbit until
February 3, 1994, when a solid-propellant rocket ignited to send the spacecraft into a very
eccentric orbit with apogee distance somewhat less than lunar distance. After two successive
Earth perigee passages on February 5 and February 15, the spacecraft’s rocket engine fired and
put Clementine successfully into a highly elliptical polar orbit about the Moon on February 21.
This orbit had a period of 5 days and a perilune altitude of 400 km. A second engine burn,
performed one day later, placed the spacecraft in its polar mapping orbit. This orbit had a period
of 4h58m, a perilune altitude of 429 km, and an apolune altitude of 2924 km. Initially, the mapping
orbit had its argument of perilune 30E below the lunar equator; after one month a maneuver was
executed to move the argument of perilune to 30E above the lunar equator. From its orbit,
Clementine transmitted about 1.6 million digital images of the lunar surface. After completing
its mission goals over 297 orbits around the Moon, Clementine’s thrusters were fired on 5 May,
1994, to inject the spacecraft into a trajectory that would lead to a rendez-vous with the asteroid
1620 Geographos in August 1994. However, due to a computer problem on May 7, which caused
a thruster to fire for 11 min and use up all propellant, the spacecraft was put into an
uncontrollable tumble at about 80 rpm with no spin control. This made the planned flyby of the
asteroid impossible. The spacecraft remained in geocentric orbit and continued testing the
spacecraft components until the mission was terminated in June 1994, when falling power supply
levels no longer allowed sufficient telemetry exchange.

Following launch on January 7, 1998, aboard a three-stage Athena II rocket from Cape
Canaveral, the NASA 296 kg Lunar Prospector entered a 185 km altitude, 29.2E inclination,
circular parking orbit about the Earth. About 42 min later, a STAR 37FM rocket engine was fired
to deliver a )V of 3.142 km/s over the course of a 64 s burn. The spacecraft then entered a 105
hr transfer orbit to the Moon with semi-major axis of 200,240 km, eccentricity of 0.9672, and
inclination of 29.18E. The spacecraft passed the Moon at a closest distance of 1819 km on
January 11. Then, the spacecraft’s rocket engine was fired for about 30 min to inject the
spacecraft into an 11.63 hr period orbit about the Moon with inclination of 89.8E relative to the
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Moon’s equator. After 24 hours, Lunar Prospector was inserted into a 3.52 hr period intermediate
orbit, followed 24 hours later, on January 13, by a transfer into a 92 km by 153 km altitude 2.00
hr period preliminary mapping orbit, and then on January 16 by insertion into the near-circular
100 km altitude nominal lunar polar mapping orbit with an inclination of 90.55E and a period of
117.9 min. The objective of the mission was to map the surface composition and possible polar
ice deposits, to measure the magnetic and gravity fields, and to study lunar outgassing events.
The data collection from this orbit was periodically interrupted for orbital maintenance burns to
re-circularize the orbit whenever the perilune or apolune altitude was more than 20 km from the
100 km nominal orbit, about once a month. On December 19, 1998, a maneuver lowered the orbit
to 40 km altitude to perform higher-resolution studies. The orbit was altered again on January 28,
1999, to a 15 km by 45 km altitude orbit. In this orbit, Lunar Prospector has passed as low as 8
km over lunar mountains in the southern polar and farside regions. This extended mission phase
of six months has enabled the spacecraft to obtain science data up to three orders of magnitude
better than at the primary mapping orbit. The mission ended on July 31, 1999, when Lunar
Prospector deliberately impacted in a permanently shadowed area of the Shoemaker crater near
the lunar south pole. It was hoped that the impact would liberate water vapor from the suspected
ice deposits in the crater and that the plume would be detectable from Earth; however, no such
plume was observed.

The ESA SMART-1 spacecraft was launched by an Ariane 5 rocket, together with a
communications satellite, into a geostationary transfer orbit on September 27, 2003. The small
thrust produced by its onboard ion propulsion system (Section 19.1) made the spacecraft to spiral
out over a fourteen months period until being captured by the Moon on November 14, 2004. The
mission of this spacecraft is described in some detail in Section 17.5

The 2885 kg Japanese Kaguya spacecraft (also known as SELENE) was launched on
September 14, 2007, by an H-IIA rocket from Tanegashima Space Center. The primary
objectives of this lunar mission were a global survey of the Moon, obtaining data on elemental
abundance, mineralogical composition, topography, geology, gravity and magnetic fields, lunar
and solar-terrestrial plasma environments, and the development of critical technologies for future
lunar exploration. The spacecraft consisted of three satellites; an orbiter containing most of the
scientific equipment, and two almost identical 50 kg subsatellites: Ouna and Okina. Both
subsatellites had no propulsion systems and carried an X-band and three S-band radio
transmitters. The spacecraft was injected into an orbit with perigee and apogee altitudes of 281
km and 232,805 km, respectively. An apogee maneuver raised perigee altitude to 924 km. During
its second passage of this orbit’s perigee the spacecraft’s propulsion system was fired to inject
the spacecraft into a lunar transfer trajectory. The lunar orbit injection maneuver was executed
on October 3, and the spacecraft entered a lunar orbit with perilune and apolune altitudes of 101
km and 11,741 km, respectively. Over a two-week period a series of deceleration maneuvers
around perilune were executed, which brought the orbiter in its polar science orbit, with perilune
and apolune altitudes of 80 km and 128 km, respectively, on October 19. During the transition
to this science orbit, the data-relay subsatellite Okina was released into a 100 km by 2400 km
altitude polar orbit on October 9 and Ouna was released into a 100 by 800 km altitude orbit on
October 12. Normal operations for the Kaguya spacecraft started in early November 2007. Ouna,
in conjunction with Okina, has enabled differential Very-Long Baseline Interferometry (VLBI)
observations from the ground to determine the satellites positions very accurately. Okina has
relayed four-way doppler ranging signals between a ground station and the orbiter for the
determination of the far side lunar gravity field. By the end of October 2008, Kaguya completed
the planned operation, and entered an extended operational phase. It was planned to continue
through March 2009, then lower the orbit to a 50 km altitude circular orbit, then to a 20 km by
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100 km altitude elliptical orbit, and to let it impact on the Moon by August 2009. However, due
to the degraded performance of a reaction wheel the plan was changed so that from February 1,
2009, the orbit was lowered to an altitude of 50 km and the lunar surface impact occurred on June
10, 2009, on the lunar near side at 80.4E E, 65.5E S. This impact has been successfully captured
by at least one observatory in Australia. Okina ended its mission on February 12, 2009, when it
impacted into the lunar far side.

Chandrayaan-1, India’s first spacecraft to the Moon, was launched on October 22, 2008, by
an PSLV-C11 rocket from India’s Space Center at Sriharikota. The 1380 kg spacecraft carried
eleven scientific instruments, and a bi-propellant integrated propulsion system. This system
consisted of one 440 N engine and eight 22 N thrusters. Two tanks stored 390 liters of fuel and
oxidizer. The mission was controlled from a spacecraft control center at Bangalore, using India’s
Deep Space Network at Byalalu. The launcher placed the spacecraft in an elliptical orbit with
perigee altitude of 255 km, apogee altitude of 22,860 km, and inclination of 17.9E. Over a period
of two weeks, the spacecraft’s liquid-propellant rocket engine has been fired five times to
increase the apogee altitude, first to 37,900 km, then to 74,715 km, later to 164,600 km, after that
to 267,000 km and finally to 380,000 km. To execute these maneuvers, the 440 N rocket engine
was fired for 18 min, 16 min, 9.5 min, 3 min and 2.5 min, respectively. On November 8, 2008,
Chandrayaan-1’s rocket engine was fired for 817 s when the spacecraft passed at a distance of
about 500 km from the Moon to reduce its velocity such that it entered an orbit around the Moon.
This was an elliptical orbit that passed over the polar regions of the Moon; the perilune altitude
was 504 km and the apolune altitude 7502 km; the orbital period was about 11 hr. Subsequently,
the altitude of the orbit was reduced in steps to achieve a final polar orbit at an altitude of about
100 km. At this time, the spacecraft’s mass had decreased to about 600 kg. On November 14,
2008, the 34 kg Moon Impact Probe (MIP) was released from the spacecraft. A retrorocket was
fired to decrease its velocity and this started a free fall to the lunar surface. As it fell, it kept
sending information back to Chandrayaan-1, which, in turn, beamed the information back to
Earth. When the MIP was close to the surface, rockets were fired to slow down its speed and to
soften impact. It crash-landed near the crater Shackleton at the south pole. Following the
successful deployment of MIP, the other scientific instruments were turned on one-by-one
starting the next phase of the two-year mission. On May 19, 2009, the orbit was raised to 200 km
altitude. This higher altitude enables further studies on orbit perturbations and lunar gravity field
variations, and made it possible to image the lunar surface with a wider swath. After 312 days
in orbit, contact with the spacecraft was lost on August 28, 2009.

The computation of precise lunar trajectories can only be done by numerical integration of the
equations of motion, taking into account the gravitational attraction by the Earth, Sun and Moon,
solar radiation pressure, etc. Because of the complex motion of the Moon (Section 17.1), actual
mission planning places heavy reliance on an existing lunar ephemeris. The general procedure
is to select the initial conditions,  and , of the spacecraft at the injection point in Earth orbit

and then use a numerical integration method to determine the subsequent trajectory. Depending
on the selected initial conditions, the spacecraft may hit the Moon or miss it entirely. The idea
is to adjust the injection conditions by some iterative method, until a suitable lunar trajectory is
found. Even on modern high-speed computers this procedure can take many hours of
computation time for a single launch date. If we have to explore a large number of launch dates
and a variety of injection conditions, some approximate analytical method is needed to narrow
down the choice of launch time and injection conditions. That analytical method should in any
case retain the predominant features of the actual problem.

The first option for an approximative analytical method is to consider the lunar trajectory to
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be shaped only by the gravity field of the Earth and to neglect the effects of the lunar gravita-
tional attraction. It will be clear that this two-body approach (Chapter 5), which will be discussed
in Section 17.2, can provide only some crude first-order information about the characteristics of
lunar trajectories. As a much better approximation, we may assume that a lunar trajectory is
shaped by the gravity fields of the Earth and the Moon, and that the gravity fields of the Sun and
the planets produce only perturbations on this trajectory. The physical reason for this is the fact
that the sphere of influence (Section 4.3) of the Moon is relatively small and falls completely
within the sphere of influence of the Earth (Sections 4.3 and 17.3). This is in contrast to the
situation for interplanetary trajectories (Chapter 18), where the sphere of influence of the target
planet falls completely outside the sphere of influence of the Earth. Within the sphere of
influence of the Earth or the Moon, the trajectory is considered as a conic section (two-body
problem) about the respective celestial body. So, if we use the patched-conic approach (Section
17.3) to approximate a particular Earth-Moon trajectory, two two-body trajectories have to be
patched, while an interplanetary trajectory requires the patching of at least three two-body
trajectories.

17.1. Earth-Moon system

The radius of the Moon is about 1737 km; the radius of the Earth about 6371 km. Earth and
Moon revolve about their common center of mass: the barycenter. The mean distance between
the center of the Earth and the center of the Moon is 384,401 km. From this distance and the fact
that the mass of the Earth is about 81.30 times the mass of the Moon, we find that the barycenter
is located at 4671 km from the center of the Earth or about three-quarters of an Earth radius from
the center of the Earth. It is common to draw the trajectory of the Earth from the point of view
of the Sun, and the trajectory of the Moon from the point of view of the Earth. This could give
the impression that the Moon circles around the Earth in such a way that sometimes it goes
backwards when viewed from the Sun’s perspective. However, since the orbital velocity of the
Moon about the Earth is small (. 1 km/s) compared to the orbital velocity of the Earth about the
Sun (. 30 km/s), this actually never occurs.

The barycenter revolves around the Sun once a year. In fact, this period is the definition of
the tropical year (Section 11.4). Earth and Moon revolve about their barycenter (relative to
inertial space) once in 27.32 days. As a result, the longitude of e.g. the Sun or a near-by planet
exhibits fluctuations with a period of 27.32 days, arising from the fact that we observe it from the
Earth and not from the center of mass of the Earth-Moon system. These periodic fluctuations in
longitude were the most reliable source for determining the Moon’s mass, until Ranger 5 flew
within 725 km of the surface of the Moon in October 1962. The perturbations produced by the
Moon’s gravity field on the trajectory of Ranger 5 could be used to determine the mass of the
Moon with an, for that time, unprecedented accuracy.

When viewed from the center of the Earth, the Moon’s motion may be described by the six
classical orbital elements. Primarily due to the perturbing effect of the Sun, the orbital elements
are constantly changing with time; their value at any particular time can be obtained from a lunar
ephemeris, such as published in the American Ephemeris and Nautical Almanac2. In order to

2 The first Nautical Almanac and Astronomical Ephemeris was published in the UK in 1766. The US Nautical
Almanac Office was established in 1849 and the first American Ephemeris and Nautical Almanac was published in
1852. In 1960 the title of the UK almanac changed to The Astronomical Ephemeris, and the UK and US almanacs
became identical in content. In 1981 both publication were combined under the title The Astronomical Almanac. In
the 1970s, NASA JPL made use of high precision radar, laser and spacecraft observations to develop a complete new
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illustrate the complexity, some of the characteristics and principal perturbations of the Moon’s
motion will be summarized.

The mean value of the semi-major axis is 384,401 km and the average time for the Moon to
complete one revolution about the Earth relative to the stars (sidereal month) is 27.32166 days
(Section 11.4). Solar gravitational perturbations yield periodic variations of the sidereal month
by as much as 7 hr; its mean value, however, remains steady over many centuries to within one
second. The mean eccentricity of the Moon’s orbit is 0.054900489. Periodic changes in the
orbital eccentricity occur at intervals of 31.81 days. This effect, known as the evection, was
discovered more than 2000 years ago by Hipparchos (-190-120 B.C.) and is due to solar
gravitational attraction.

Figure 17.1: Geometry of the Moon’s orbit, the equator and the ecliptic, and the precession of the Moon
orbit’s line of nodes.

Unlike most satellites of other planets, the Moon orbits near the ecliptic and not near the Earth’s
equatorial plane (Figure 17.1). The orientation of the orbital plane and of the major axis in the
orbital plane are not fixed in space, but precess over time. The major axis rotates counterclock-
wise in the orbital plane (same direction as the Moon itself), and completes a full revolution in
8.8504 years (3,233 days). Newton tried to explain this effect in his Principia, but his prediction
accounted only for about half of the observed rotation. In 1749, A.C. Clairaut was able to derive
the correct result from theory, but more than a century later, in 1872, the correct calculations
were also discovered among Newton’s unpublished papers. This indicates that Newton had
detected his own error, but had never bothered to correct it in print. When viewed from celestial
north, the orbital plane itself rotates clockwise about an axis perpendicular to the ecliptic. So, the
line of nodes (in the ecliptic, Figure 17.1) precesses with time, completing one revolution in
18.5996 years (6,793.5 days). This period is close to the period of the Saros cycle, which was

set of orbit calculations for the Moon and planets. These were introduced in The Astronomical Almanac for 1984.
In the 1970s, the offices began exploring means for presenting astronomical data in computerized formats. The first
effort was the Almanac for Computers; it was published annually for the years 1977 through 1991. The Floppy
Almanac, an almanac program for early personal computers, was produced for the years 1986 through 1996. By the
late 1980s, evolving computer technology created the demand for a new computer almanac. This has resulted in the
Multiyear Interactive Computer Almanac (MICA) that was first released in 1993. The reference for the definitions
of models and transformations is the Explanatory Supplement to The Astronomical Almanac, P. K. Seidelmann (ed.),
University Science Books, 1992.
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discussed in Section 11.4. The inclination of the Moon’s orbit with respect to the ecliptic varies
between 4.99E and 5.30E; its mean value is 5.145396°. Both the slight variation in inclination
relative to the ecliptic and the regression of the line of nodes were first observed by J. Flamsteed
(1646-1719) in about 1670. The lunar axis of rotation maintains an inclination of 1.5424° with
respect to the normal to the ecliptic plane, and the lunar equator is inclined to its orbital plane by
a constant value of 6.6878° (obliquity). One might be tempted to think that as a result of the
precession of the Moon’s orbital plane, the angle between the lunar equator and the ecliptic
would vary between the sum (11.8332°) and difference (1.5424°) of the inclination and the
obliquity. However, as was discovered by J. Cassini (1677-1756) in 1721, the rotation axis of the
Moon precesses with the same rate as the Moon’s orbital plane, but is 180° out of phase. So,
although the rotation axis of the Moon is not fixed with respect to the stars, the angle between
the ecliptic and the lunar equator is always 1.5424°. So, during a full rotation of the orbital plane,
the inclination with respect to the Earth’s equator, which is itself inclined at 23.44° to the ecliptic,
varies between 23.44°+5.14° = 28.58° and 23.44°-5.14° = 18.30°. Simultaneously, the axis of
lunar rotation sees its tilt with respect to the Moon’s orbital plane vary between 5.14°+1.54° =
6.68° and 5.14°-1.54° = 3.60°. Note that the Earth’s rotation axis reacts to this process and itself
varies by 0.00256° on either side of its mean value; this is the nutation discussed in Section 11.2.
Once every 18.5996 years, the declination of the Moon reaches a maximum of 28.5847E. Some
exact times for the occurrence of this maximum declination are: March 29, 1969, 02h45m UTC;
November 8, 1987, 11h45m UTC; June 19, 2006, 20h48m UTC; January 29, 2025, 05h56m UTC.

The Moon’s gravity field raises tides on Earth displacing the Earth’s water outward by about 1
m in the open oceans and by as high as 18 m in some coastal waters, like the Bay of Fundy; it
also raises tides in the Earth’s solid surface by about 30 cm. The tidal bulges are dragged along
with the Earth’s surface and since the Earth spins faster about its axis than the Moon moves
around the Earth, the bulges are not along the Earth-Moon line but are displaced somewhat ‘in
front of’ the Moon. As a result, the tidal bulges generate a gravitational force on the Moon with
a component along the lunar orbit in the Moon’s ‘forward’ direction; the same force acts on the
Earth and has a component in an direction opposite to the Earth’s rotation. Because the force on
the Moon acts in its direction of motion, the Moon moves to a higher orbit resulting in a decrease
of its mean angular motion about the Earth. Measurements reveal that the Moon’s distance to the
Earth presently increases by 38.4 mm/yr, leading to a secular deceleration of the Moon of
25.858O/century2 in ecliptic longitude. The Earth’s rotation rate is gradually decreasing; the
present rate is about -5.5*10-22 rad/s2 (Section 11.4), leading to a lengthening of the day by about
23 µs every year. From historical records over the past 2700 years an average value of 17 :s/yr
for the lengthening of the day is found. The difference in both values can be explained largely
by changes in the Earth’s moments of inertia due to the so-called post-glacial rebound. The
present lengthening of the day would make each Earth day one minute (current length of minute)
longer every three million years. Looking back and adopting the historical value of 17:s/yr, the
day was a mere 23.5 hr in length when the dinosaurs roamed the Earth 100 million years ago and
the terrestrial day was approximately 20 hr about 850 million years ago. The tidal bulges on the
Moon, generated by the Earth, produce a decrease of the Moon’s rotation rate. This has lead to
the present situation where the Moon presents only one face toward the Earth. Most significant
moons in the solar system are tidally locked with their primaries, since they orbit quite closely
their planets. Notable exceptions are the irregular outer moons of the giant outer planets, which
orbit much further away than the large moons of these planets. Eventually, the Earth and the
Moon would become caught up in what is called a spin-orbit resonance, in which the Moon
would encircle the Earth in about 47 days, and both Moon and Earth would rotate around their
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axes in the same time, always facing each other with the same side. However, long before this
would happen the Sun will evolve into a red giant and will destroy both the Earth and the Moon.
Pluto and Charon are already tidally locked in spin-orbit resonance.

If the Moon’s orbit were circular and if its axis of rotation were perpendicular to its orbit, we
would see exactly half of the Moon’s surface. Actually, we see, at one time or another, about
59% of the lunar surface from the Earth, because of a phenomenon known as geometric lunar
libration. This libration has three causes. The geometric libration in latitude occurs because the
Moon’s equator is inclined 6.7E to the plane of its orbit. At one time during the month the
Moon’s north pole is tipped toward the Earth and half a month later the south pole is tipped
toward the Earth, allowing us to see slightly beyond each pole. The geometric libration in
longitude is due to the eccentricity of the orbit. The rotation of the Moon about its axis is
uniform, but the angular velocity around its orbit is not, since the Moon moves faster near perigee
and slower near apogee. This permits us to see about 6.3E around each limb of the Moon. The
third type of geometric libration has to do with the fact that an observer’s location on Earth will
change his perspective. An observer far north sees more of the Moon’s northern part, while one
observing the Moon at moonrise sees more of the leading limb. This effect alters the coordinates
of the apparent center by up to about ±1E. In addition to these types of geometric librations, there
is an actual libration called physical libration. This phenomenon, with a maximum amplitude of
about 0.03E, is caused by the attraction of the Earth on the non-spherical Moon.

17.2. Two-body lunar trajectories

As mentioned before, the simplest approach to analyze a lunar flight is to neglect the gravitational
attraction by the Moon and to consider the trajectory as a conic section about the Earth that
intersects the lunar orbit. This approach is only useful to gain some insight into the problem of
selecting optimum launch dates and approximate injection conditions, and to estimate the flight

Figure 17.2: Geometry of a two-body lunar trajectory and a definition of various parameters.
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times involved in lunar missions. For this simplified case, we assume that the Moon’s orbit is
circular with a radius of 384,401 km and that the lunar trajectory of the spacecraft is coplanar
with the Moon’s orbit. It is emphasized that in a precision trajectory computation the launch time
is selected such that this coplanarity is approximately true in order to minimize the )V required
for the mission, since plane changes are expensive in terms of propellant consumption (Chapter
13). A sketch of the conic trajectory is shown in Figure 17.2, where it has been assumed that the
mission starts from a circular parking orbit with radius r0 about the Earth. The Figure also defines
some parameters that are used in the following analysis. In Section 17.3, we will extend the
analysis by taking into account the terminal attraction by the Moon, although we will still
consider the motion as two-dimensional.

In the following, we will use the index 1 to denote the conditions at the start of the lunar
trajectory, just after injection into this trajectory. As the injection is considered as an impulsive
shot: r1 = r0. To compute the orbit for adopted values of r1, V1, (1, we apply a series of relations
derived in Chapters 5 and 6. The energy and angular momentum of the spacecraft, both per unit
of mass, follow from

(17.1)

(17.2)

where : is the gravitational parameter of the Earth. The semi-latus rectum, semi-major axis and
eccentricity of the trajectory may then be obtained from

(17.3)

(17.4)

(17.5)

Solving the equation of a conic section for the true anomaly, we get

(17.6)

When we substitute r1 for r in this equation, we can solve for 21; when we substitute the radius
of the Moon’s orbit, rM, for r, we can find the true anomaly upon arrival at the Moon’s orbit, 22.
It is emphasized that, in general, (17.6) has two solutions for a given value of r, corresponding
to different flight times along the same trajectory. Usually, for an actual mission 90E < 
22 # 180E. We now have enough information to determine the time-of-flight, tf, from Earth to
Moon for any set of injection conditions using the equations derived in Section 6.5 for elliptical
orbits, Section 7.3 for parabolic orbits or Section 8.3 for hyperbolic orbits. As an example, only
the computation for the case of an elliptical orbit will be given below.

We first compute the eccentric anomalies at departure, E1, and arrival, E2, from
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where we substitute 21 for 2 to obtain E1, and 22 for 2 to obtain E2. The values of E1 and E2 may
be determined uniquely by requiring that 2/2 and E/2 lie in the same quadrant (Section 6.5). The
time-of-flight then is obtained from

(17.7)

Figure 17.3: Flight time in a two-body lunar trajectory versus injection velocity, for r1 = 6695 km and
(1 = 0E.

In Figure 17.3, tf is plotted as a function of the injection velocity, V1, for an injection altitude of
320 km above the Earth and an initial flight path angle of (1 = 0E. Actually, for small flight path
angles the curve is nearly independent of the flight path angle at injection. Note that in this Figure
the maximum flight time is 100 hr, and that a significant reduction in flight time is possible with
only a modest increase in V1. For manned missions, the life-support requirements increase with
mission duration, so the slightly higher injection velocities required to achieve a shorter flight
time pays for itself up to a point. Requirements on the arrival conditions may also ask for faster
transfer orbits. It is interesting to note that the flight time (between lunar trajectory injection and
insertion into lunar orbit) chosen for the first Apollo lunar landing mission (Apollo 11) was 73.1
hr; for later flights trajectories with flight times between 71.9 hr (Apollo 16) and 83.0 hr (Apollo
17) were flown. Luna-1, the first mission to the Moon, flew a 34 hr transfer in January 1959;
Luna 9, the first spacecraft to perform a soft landing on the Moon on February 3, 1966, used a
79 hr transfer; Lunar Prospector flew a 105 hr transfer in January 1998. In order to expand the
launch window, several missions have flown added phasing loops (Chapter 14) before the final
transfer from the Earth to the Moon was initiated. These phasing loops also allow for lower )V
corrections, since many corrections can be applied at apogee. Clementine (January 1994) e.g.
used 2.5 phasing loops, which could be adjusted in orbital period with perigee maneuvers to
allow for more launch days per month while maintaining the same arrival day to meet specified
lunar lighting conditions.

If we assume that injection into the lunar trajectory occurs at perigee, i.e. 21 = (1 = 0E, then
the minimum-energy lunar trajectory is a Hohmann trajectory (Section 12.1), which is at apogee
tangent to the Moon’s orbit. This Hohmann transfer orbit requires the minimum injection V1 and
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yields the maximum time-of-flight. For an injection altitude of 320 km, this minimum injection
velocity is 10.82 km/s; the maximum time-of-flight is 7172 min, or about 119 hr. The eccentricity
of the minimum-energy trajectory is 0.966 and represents the minimum eccentricity for an
elliptical orbit that reaches as far as the Moon, for the given injection altitude. Assuming no lunar
gravity field, the velocity upon arrival at the Moon’s orbit along the minimum-energy trajectory
is 0.188 km/s. Since the Moon’s orbital velocity is about 1.02 km/s, the Moon would literally run
into our spacecraft from ‘behind’, resulting in an impact on the ‘leading edge’ (western limb) of
the Moon. Spacecraft with a higher arrival speed would have (2 > 0E and would tend to impact
somewhere on the side of the Moon facing us. The angle traversed by the vehicle in its lunar
transfer trajectory, which is called the geocentric transfer angle, )2 = 22 -21 (Figure 17.2), is a
function of the injection velocity for a fixed injection altitude and flight path angle. An increase
in )2 (up to 180E) corresponds to a decrease in injection velocity. Therefore, if we are trying to
minimize injection velocity, as is usually the case, we should try to select a trajectory that has a
transfer angle of nearly 180E. We will use this general principle later in this Chapter.

In trying for a direct hit on the Moon, we should time the launch such that the spacecraft
crosses the Moon’s orbit just at the time the Moon is at the crossing point. Using our simplified
model, we may obtain some idea of how much we will miss the center of the Moon if, due to
guidance errors or other factors, the injection conditions are not exactly as specified. In such a
case, both the geocentric transfer angle and the time-of-flight will differ from their nominal
values and the trajectory of the spacecraft will cross the Moon’s orbit at a different point and time
than predicted. In the case of a direct (eastward) launch, the effects of such injection errors tend
to cancel, as may be concluded from Figure 17.4. If, for example, the initial velocity is too high,
the geocentric transfer angle will be smaller than predicted; i.e. the spacecraft will cross the
Moon’s orbit east of the predicted point by some small amount. But, the time-of-flight will be
shorter, so the Moon will be east of the predicted interception point. Neglecting the effects of the
lunar gravity field, the angular miss distance along the Moon’s orbit is the difference of the two
opposite effects. It may be demonstrated that for an injection velocity of about 11 km/s, which
results in a transfer angle of about 160E, the effects of errors in injection altitude and velocity
exactly cancel and, for all practical purposes, the miss distance at the Moon is a function only of
errors in the flight path angle. For this condition, an error of 1E in flight path angle produces a
miss distance of about 1300 km. It is interesting to note that the effect of lunar gravity is to
reduce this miss distance.

Figure 17.4: Effects of injection errors tend to cancel.
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17.3. Patched-conic two-dimensional lunar trajectories

While it is acceptable to neglect lunar gravitational attraction when we only are interested in
determining approximate injection conditions that result in particular conditions at lunar arrival,
it is necessary to account for the terminal attraction of the Moon if we want to predict the lunar
arrival conditions more precisely. We may take lunar gravitational attraction into account and
still use two-body orbital mechanics by the simple expedient of considering the spacecraft to be
under the gravitational attraction by the Earth alone until it enters the sphere of influence (Section
4.3) of the Moon and assuming that within this sphere it moves only under the gravitational
attraction by the Moon. It should be clear that this process still is an approximation. The
transition from geocentric motion to selenocentric motion actually is a gradual process, which
takes place over a finite arc of the trajectory where both Earth and Moon affect the trajectory.
However, the simple strategy of patching two conics together at the edge of the Moon’s sphere
of influence turns out to be a sufficiently good approximation for preliminary mission analyses.
On the other hand, it should be kept in mind that this patched-conic analysis is certainly not good
enough for the computation of the precise perilune altitude and the trajectory after leaving the
Moon’s sphere of influence again. For the analysis that follows, we will adopt the definition of
the sphere of influence as suggested by P.S. Laplace (Section 4.3), which leads to a value of
Rs.i = 66,183 km for the radius of the Moon’s sphere of influence. This is about one-sixth of the
distance from the Moon to the Earth. Given the fact that the radius of the Earth’s sphere of
influence is about 106 km (Section 4.3), we conclude that the Moon’s sphere of influence falls
completely within the sphere of influence of the Earth, as was already mentioned before.

Figure 17.5: Geometry of a patched-conic lunar trajectory and the definition of various parameters.

Figure 17.5 shows the geometry of the geocentric departure trajectory. Just as in the previous
Section, we assume that the lunar flight starts from a circular parking orbit about the Earth, with
radius r0, and that the spacecraft’s lunar transfer trajectory is coplanar with the Moon’s orbit. As
the injection is considered as an impulsive shot, the geocentric distance of the spacecraft just after
the impulsive shot, r1, is equal to r0. The four quantities that completely specify the geocentric
phase of the trajectory are r1, V1, (1 and R1, where R1 is the lunar relative position angle at
departure; this angle is generally called the lunar phase angle at departure. It defines the moment
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of time when the impulsive shot is applied. The difficulty with these four quantities as
independent variables is that the determination of the point where the geocentric trajectory
crosses the sphere of influence of the Moon involves an iterative procedure in which the time-of-
flight must be computed during each iteration. Therefore, it is more convenient to select three
initial conditions and one arrival condition as the independent variables. A particularly
convenient set is r1, )V0, *0, 82, where )V0 is the magnitude of the impulsive shot in the parking
orbit about the Earth, *0 is the thrust angle (angle between  and the normal to  (Figure
17.2)), and 82 specifies the point where the geocentric trajectory crosses the Moon’s sphere of
influence. Given these four quantities, we can compute the remaining arrival conditions on the
Moon’s sphere of influence: r2, V2, (2 and $2. We assume that, in case the geocentric trajectory
is elliptical, lunar arrival occurs prior to apogee of the transfer trajectory; so, 22 < 180E.

The relations between the initial conditions in the transfer trajectory and the parameters
defining the applied impulsive shot in the parking orbit, )V0 and *0, are (Figure 17.2)

(17.8)

where V0 is the velocity in the circular parking orbit. For a selected set of initial conditions, (17.8)
yields the values of V1 and (1. In determining the value of (1, it should be realized that if *0 > 0E:
(1 > 0E, and if *0 < 0E: (1 < 0E. The energy, õ, and angular momentum, H, of the trajectory, both
per unit of mass, can then be determined from (17.1) and (17.2). From the law of cosines, the
distance r2 at arrival on the Moon’s sphere of influence is given by (Figure 17.5)

(17.9)

where rM is the (mean) distance between the center of the Earth and the center of the Moon
(radius of the Moon’s orbit). The velocity and flight path angle at arrival on the sphere of
influence then follow from the conservation of energy and angular momentum:

(17.10)

where (2 is known to lie between 0E and 90E since we have assumed that arrival occurs prior to
apogee passage. In that case, (17.10-2) yields a unique solution for (2. According to (17.9), the
geocentric distance at arrival, r2, is completely determined by 82. It may happen that the
trajectory is not sufficiently energetic to reach the specified point on the sphere of influence as
determined by 82. If so, the quantity under the square-root sign in (17.10) will be negative and
the computation process fails. Finally, from geometry (Figure 17.5) we find

(17.11)

We now have the conditions at arrival on the Moon’s sphere of influence for the chosen values
of r1, )V0, *0 and 82. These arrival conditions determine the trajectory within the sphere of
influence, and we will proceed with the analysis of that part of the flight.

In Figure 17.6 the geometry at arrival on the Moon’s sphere of influence is shown in detail. Note
that , generally, is not perpendicular to , as the Figure seems to suggest. If we use the
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Figure 17.6: Geometry of the arrival on the Moon’s sphere of influence and a definition of various
parameters.

subscript 3 to indicate the initial conditions relative to a non-rotating reference frame centered
at the Moon, then the selenocentric distance at the entrance of the sphere of influence is given
by r3 = Rs.i . The velocity of the spacecraft at that moment relative to the Moon-centered reference
frame is given by

where  is the velocity of the Moon relative to a non-rotating Earth-centered reference frame.
For our simplified Earth-Moon model, the orbital velocity of the Moon is VM = 1.018 km/s. The
magnitude of the selenocentric arrival velocity, V3, may be obtained by applying the law of
cosines to the vector triangle in Figure 17.6:

(17.12)

The angle g3 in Figure 17.6 defines the direction of  relative to the line connecting the
spacecraft when entering the Moon’s sphere of influence and the Moon’s center. A detailed
analysis of the geometry indicated in Figure 17.6 shows that we may write for the component of 
perpendicular to 

from which we find

(17.13)

According to the definition of g3 in Figure 17.6, the spacecraft will move about the Moon in an
anti-clockwise direction if g3 > 0E; if g3 < 0E the spacecraft’s motion about the Moon will be
clockwise; for a dead-center hit on the Moon, g3 should be zero.

Now that the selenocentric initial conditions r3, V3 and g3 are known, we can compute the
conditions at any other point along the selenocentric trajectory, including the point of impact on
the Moon or the point of closest approach: perilune. Three important classes of lunar missions
can be discerned:
S Lunar impact, in which case the perilune distance, rp, is less than the radius of the Moon, RM ,

and we may wish to compute the spacecraft’s velocity at impact.
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S Lunar orbit, in which case we may wish to compute the )V needed to enter a circular lunar
orbit at perilune altitude.

S Circumlunar flight, in which case we probably would want to compute both the perilune
conditions and the conditions upon exit from the Moon’s sphere of influence.

In general, the conditions at perilune will be certainly of interest, and we will continue with the
computation of these parameters.

The energy and angular momentum relative to the Moon-centered reference frame, both per
unit of mass, are given by

(17.14)

where :M is the gravitational parameter of the Moon. The semi-latus rectum and the eccentricity
of the selenocentric orbit can then be computed from (Sections 5.3 and 6.1)

(17.15)

The conditions at perilune are then obtained from

(17.16)

and the deceleration impulsive shot, )Vp, to enter a circular orbit about the Moon with radius
equal to the perilune distance of the approach trajectory from

(17.17)

If the adopted injection conditions do not result in a satisfactory lunar approach trajectory, we
have to adjust the values of r1, )V0, *0 and 82 in a systematic search procedure.

If the arrival conditions are satisfactory, we proceed by computing the values of p, a and e
of the geocentric trajectory from (17.3) to (17.5). Then, we determine the values of 21 and 22

from (17.6), where we assume -90E < 21 < 90E, 22 < 180E. Note that for determining the value
of 22, the value of r2, i.e. the geocentric distance upon entering the Moon’s sphere of influence,
has to be substituted in (17.6). We then apply the classical relations between time and position
in the trajectory, as given in Section 6.5 for elliptical orbits, in Section 7.3 for parabolic orbits,
and in Section 8.3 for hyperbolic orbits, to determination the time-of-flight, tf = t2- t1, from
injection to arrival on the sphere of influence.

The semi-major axis of the hyperbolic selenocentric trajectory can be computed from (17.5)
by substituting the values of p and e obtained from (17.15). From (17.6) we find

where 23 is the true anomaly in the selenocentric trajectory at entrance of the sphere of influence
and 2p is the true anomaly at perilune. With (8.20), we compute the hyperbolic anomaly at
entrance of the sphere of influence, F3, from 23; the hyperbolic anomaly at perilune is zero. Then,
we compute the time-of-flight from entering the sphere of influence to passing perilune from
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(8.23):

(17.18)

The total flight time, from departure in the parking orbit about the Earth to arrival at perilune, is
given by

 (17.19)

The Moon moves through an angle nMtf between injection and arrival on the Moon’s sphere of
influence, where nM is the angular velocity of the Moon in its orbit about the Earth. The lunar
phase angle at departure, R1, can then be determined from (Figures 17.2 and 17.5)

(17.20)

To get an impression of the general characteristics of such two-dimensional lunar trajectories,
a numerical experiment was performed, where the values of rM , :M and nM were taken from
Appendix B or computed from relevant data in Appendix B. It was assumed that the lunar flight
starts in a circular parking orbit about the Earth at an altitude of 200 km. The value of )V0 was
varied from 3 km/s to 5 km/s in steps of 10 m/s; the value of *0 was varied from -20E to 20E in
steps of 0.1E; the value of 82 was varied from 0E to 90E in steps of 0.1E. The reason for selecting
only positive values of 82 is that geometric considerations show that 82 < 0E may only occur for
very high values of )V0. Of all about 72.4 million trajectories thus computed, only those with a
perilune altitude between 499.5 km and 500.5 km were stored. It was found that 1177 trajectories
satisfied this constraint, and that all but 99 of the possible geocentric trajectories are hyperbolic;
elliptical orbits only occur for )V0 # 3.31 km/s. Figure 17.7 shows for these 1177 trajectories the
Moon’s sphere of influence crossing angle, 82 , lunar transfer trajectory eccentricity, e, geocentric
transfer angle, )2, deceleration impulsive shot, )Vp, and total flight time, tf,tot , as a function of
the injection impulsive shot, )V0; and the injection impulsive shot, )V0, sphere of influence
crossing angle, 82, geocentric transfer angle, )2, and total flight time, tf,tot , as a function of the
lunar phase angle at departure, R1. The plots for 82 versus )V0 and 82 versus R1 clearly show two
bands for )V0 > 3.3 km/s and R1 < 130E, respectively. The upper band corresponds to orbits of
spacecraft that move in a clockwise direction about the Moon (g3 < 0E) and the lower band to
orbits of spacecraft that move in an anti-clockwise direction about the Moon (g3 > 0E). It was
found that only solutions exist for 3.7E < 82 < 79.1E. For all solutions, )2 varies between 115E
and 188E; the total flight time, tf,tot , from 15.3 hr to 125.1 hr. The flight time to the moment of
entrance into the Moon’s sphere of influence, tf, was found to vary from 12.6 to 105.6 hr; the
flight time within the sphere of influence, tfM , from 2.7 to 19.6 hr; the selenocentric velocity at
entrance of the sphere of influence, V3, from 0.81 to 6.67 km/s; the angle g3 from ±2.0 to ±5.3E.
The perilune velocity, Vp, was found to vary from 2.21 to 6.98 km/s; the deceleration impulsive
shot, )Vp, from 0.73 to 5.50 km/s.

Many interesting conclusions can be drawn from these plots; here only a few are given:
S For )V0 > 3.5 km/s, the spacecraft enters the Moon’s sphere of influence at 82 < 18E; for

smaller values of )V0 the value of 82 increases up to 82 = 79.1E.
S The eccentricity of the geocentric trajectory increases about linearly with increasing injection

impulse, )V0.
S For )V0 > 4.5 km/s, the geocentric transfer angle, )2, ranges from 113E to 145E; for )V0 < 3.5

km/s, this angle ranges from 143E to 188E.
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Figure 17.7: Dependence of various parameters of two-dimensional lunar trajectories that start from a
200 km altitude circular parking orbit about the Earth and approach the Moon at a perilune altitude
between 499.5 km and 500.5 km, as a function of the injection impulsive shot, )V0, and the lunar phase
angle at departure, R1.

S The partial derivative MVp /MV0 is always larger than one, which means that at increasing values
of the departure impulsive shot, )V0, the deceleration impulsive shot, )Vp, increases faster.

S Launch should occur at a lunar phase angle at departure, R1, of 100-150E; for higher injection
impulsive shots the value of R1, generally, is smaller.

S The plots for the variation of )V0, 82, )2, and tf,tot versus launch time, expressed through the
angle R1, show an interesting ‘curved band’ structure, indicating that multiple solutions exist
for a particular value of R1.

From this numerical experiment it was found that the injection conditions leading to the smallest
value of )V0 are )V0 = 3.13 km/s, *0 = ± 0.1-0.3E, R1 = 113-120E. To find the true minimum-
energy transfer trajectory, a refined numerical searching procedure was performed by
systematically varying the values of the independent variables )V0 , *0 , 82 in steps of 1 m/s for
)V0, and in steps of 0.05E for *0 and 82. The minimum value of )V0 was found to be 3.130 km/s.
A total of six different trajectories for this minimum )V0 were found to exist; they all cross the
Moon’s sphere of influence at 82 = 75.6-76.4E and they all yield a total flight time of 119.7-
120.8 hr. It is interesting to note that this total flight time is close to the flight time of the
simplified direct Hohmann trajectory discussed in Section 17.2. The parameters of one of these
minimum-energy trajectories are listed in Table 17.1.
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Table 17.1: Parameters of a two-dimensional minimum-energy trajectory from departure in a 200 km
altitude circular parking orbit about the Earth to injection into a 500 km altitude circular orbit about the
Moon. Listed are the parameters of the transfer trajectory to interception of the Moon’s sphere of
influence, and the parameters of the trajectory within that sphere of influence.

Injection parameters: )V0 = 3.130 km/s, *0 = 0.30E, R1 = 113.21E

Transfer trajectory Trajectory about Moon

a = 192,582 km
e = 0.96584

V1 = 10.914 km/s
(1 = 0.09E
21 = 0.18E
22 = 178.32E
82 = 76.10E

V2 = 0.248 km/s
(2 = 39.28E 
tf = 100.7 hr

a = -9605 km
e = 1.23299

V3 = 0.811 km/s
g3 = 5.28E
23 = 138.58E
hp = 499.8 km

Vp = 2.212 km/s
)Vp = 0.732 km/s

tfM = 19.6 hr

If the spacecraft would not be decelerated when passing perilune, the spacecraft would continue
its motion along its selenocentric hyperbolic trajectory. When it crosses the Moon’s sphere of
influence again, its velocity relative to the Moon has again the magnitude V3, but the direction
of this velocity vector will, generally, differ from the direction of the velocity vector at entrance
of the Moon’s sphere of influence. Consequently, the velocity of the spacecraft relative to the
Earth-centered reference frame at the point where it leaves the Moon’s sphere of influence will
differ from the velocity relative to the Earth-centered reference frame at the point where it enters
the sphere of influence. In other words: passing the Moon at a relatively short distance will
change the orbital energy of the spacecraft relative to the Earth-centered reference frame. This
is an example of the so-called gravity-assist or swingby effect that will be discussed in Section
18.11.

17.4. Three-dimensional lunar trajectories

The preceding analysis was based on the assumption that the lunar trajectory lies in the plane of
the Moon’s orbit. As was already mentioned, the inclination of the Moon’s orbit relative to the
Earth’s equator varies between about 18.3E and 28.6E over a period of 18.6 years. So, the orbital
plane of a lunar transfer trajectory originating from Cape Canaveral (ETR) at a latitude of 28.5E,
can, without executing dogleg maneuvers (Section 16.2), only be coplanar with the Moon’s
orbital plane if the inclination of the Moon’s orbit is at its maximum value. Then, the required
launch azimuth is 90E and the launcher’s payload capability is maximum. This has occurred in
March 1969, November 1987, and in June 2006; it will occur again in January 2025. In this
Section, we will investigate the general characteristics of non-coplanar lunar trajectories and we
will describe a method for selecting acceptable launch dates and injection conditions. In that
analysis, we again consider the trajectory as a conic section about the Earth that intersects the
lunar orbit. If we want to include the effect of the lunar gravity field on the trajectory, we have
to extend the analysis by incorporating the methodology presented in Section 17.3. We first
assume that the ascent trajectory lies in the plane of the lunar transfer trajectory, which means
that no dogleg maneuvers have to be applied.
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If there are no restrictions on the launch conditions or on the conditions at lunar approach, then
there are no limitations on the time of the lunar month at which the spacecraft can approach the
Moon. Practical considerations, such as launch site location, launch range safety, accuracy
tolerances, and the limited range of attainable injection conditions, impose restrictions on the
lunar intercept declination which can be accommodated. A typical design restriction for lunar
missions is the specification of the lighting conditions on the surface of the Moon as determined
by the phase of the Moon. For a particular year, the declination of the Moon at a given phase
varies between maximum and minimum values, which correspond approximately to plus and
minus the mean inclination of the Moon’s orbit for that year. Another typical restriction concerns
the permissible direction of launch from a particular site. In the following analysis, the launch
site is assumed to be Cape Canaveral. The launch azimuth, Rl, must then lie between 37E and
112E, as specified by the Eastern Test Range safety requirements (Table 16.1); a launch azimuth
of 90E will result in an orbital inclination of 28.5E.

We first analyze the case that the spacecraft intercepts the lunar orbit, without checking
whether the Moon is at the interception point or not. An important parameter of the transfer orbit
is the geocentric transfer angle, )2 = 22 -21 from launch to lunar orbit intercept. The total transfer
angle, )2t, consists of the free-flight transfer angle, )2ff , from injection to intercept, plus the
transfer angle from launch to injection, )2c. Depending on the launch technique applied, )2c

may be simply the rocket engine burning arc for a direct-ascent launch or it may be the burning
arc plus the angular distance traveled during a coasting period prior to injection. While the angle
)2c may be selected arbitrarily, the free-flight transfer angle, )2ff , is determined by the injection
conditions r1, V1 and (1. The value of )2ff at given injection conditions can be computed from
the equations in Sections 17.2 and 17.3. In Figure 17.8, the free-flight transfer angle, )2ff , is
plotted versus the initial velocity, V1, and for several values of (1 and a fixed injection altitude
of 320 km. Lunar intercept is assumed to occur at a distance of 384,401 km.

Figure 17.8: Free-flight transfer angle, )2ff , versus injection velocity, V1, and flight path angle, (1, for
an injection altitude of 320 km.

If we arbitrarily select )2c, we obtain the total transfer angle from

(17.21)

Since the latitude of the launch site is known (Nl = *l = 28.5E), we may determine the declination
of the spacecraft after it has traveled an arc )2t, *i, if we know the launch azimuth Rl, or we may
determine Rl if *i is known. This is essentially a problem of spherical geometry and is illustrated
in Figure 17.9. When we consider the spherical triangle containing the angles Rl and )", and the
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Figure 17.9: Lunar orbit interception angular relationships.

side )2t, we obtain from the first cosine rule for an oblique spherical triangle (Section 13.1)

or

(17.22)

Figure 17.10: Interception declination, *i , versus the total transfer angle, )2t , for a launch from Cape
Canaveral and a launch azimuth, R1, between 40E and 115E. Note that these boundary values differ
slightly from the launch azimuth boundary values of 37E and 112E listed in Table 16.1.

In Figure 17.10, *i, as computed from (17.22), is plotted versus total transfer angle, )2t, for
launch azimuths between 40E and 115E, and for a launch from Cape Canaveral. The Figure
shows white regions that hold for the early part of 1969, the last part of 1987, mid 2006 and the
early part of 2025, when the Moon’s orbital inclination relative to the Earth’s equator is 28.6E
and, consequently, the Moon’s declination at intercept is limited between +28.6E and -28.6E. The
shaded region of the graph indicates the impossible launch conditions for those years, because
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of the lunar declination limits at intercept and the launch site safety restrictions. There are several
interesting features of the Figure worth noting. Perhaps the most interesting is the fact that a
transfer angle of 180E is possible only if we intercept the Moon at its maximum southern
declination of -28.6E. For this condition, any launch azimuth (within the range of allowable
azimuths) is feasible. Free-flight transfer angles of less than about 120E require high injection
velocities, which is undesirable. As a result, if we are interested in minimizing injection velocity,
we must intercept the Moon when it is near its maximum southern declination for direct ascent
launches or launches where the coasting period is small enough to keep )2t less than 180E.
However, if we add a coasting arc, )2c, large enough to make )2t greater than 180E, we can
intercept the Moon at any point along its orbit. It is emphasized that these conclusions only hold
for launches in the years indicated. For other years, the white regions in Figure 17.10 are
different, which leads to other conclusions about the declination of feasible and optimum
interception points.

If lunar declination at intercept is specified, then launch azimuth, Rl, can be computed from
(17.22). The next step is to search through a lunar ephemeris to find a time when the Moon is at
the correct declination. If lighting conditions are important, we must find a time when both
declination and phase are simultaneously correct. In the past, the American Ephemeris and
Nautical Almanac (Section 17.1) was frequently used for these purpose; nowadays we search
through computer files. Now, suppose that we have selected a time ti for lunar intercept that
meets all constraints. The right ascension of the Moon at ti is then extracted from the ephemeris
computer file; this angle "i is indicated in Figure 17.9. The difference in right ascension between
launch and intercept, )" = "i-"l, is fixed by the geometry of Figure 17.9. Considering again the
spherical triangle containing the angles Rl and )", and the side )2t, we obtain from the first
cosine rule for an oblique spherical triangle (Section 13.1)

or

(17.23)

The next step is to establish the exact time of launch, tl, and the right ascension of the launch site,
"l, at this launch time. To establish tl, we need to compute the total flight time from launch to
intercept. This consists of the free-flight time from injection to intercept, tff , which can be
computed from the injection conditions, plus the time to traverse the engine-burning arc and
coasting arc, tc. Thus, the total flight time, tf,tot , is

(17.24)

The launch time, tl, may then be obtained from

(17.25)

The right ascension of the launch site, "l, may be obtained from (11.2)

(17.26)

where 7l is the geographic longitude of the launch site and 2GM is the Greenwich mean sidereal
time at launch (Section 11.4). It would be sheer coincidence if the difference "i-"l, where "l is
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now computed from (17.26), would have the same value as )" computed from (17.23). Since the
right ascension of the Moon changes slowly, whereas the right ascension of the launch site
changes by nearly 360E in a day, it is possible to adjust ti slightly and recompute tl and "l until
"i-"l and the required )" from (17.23) agree. The lunar declination at intercept will change very
slightly as ti is adjusted and it may be necessary to go back to (17.22) and redetermine the launch
azimuth Rl. We now know the injection conditions r1, V1, (1, Rl , and the exact day and time of
launch and of lunar intercept that will satisfy all of the constraints set forth earlier. These launch
conditions should provide us with sufficiently accurate initial conditions to begin the computation
of a precision lunar trajectory using extensive numerical methods.

If a specified lunar declination at intercept requires a launch azimuth that falls outside the launch
site safety restrictions, then the ascent trajectory cannot be coplanar with the lunar transfer
trajectory and dogleg maneuvers are required. However, as explained in Sections 13.2 and 13.3,
large plane change maneuvers are very costly in terms of propellant consumption. Therefore, if
the lunar flight occurs on a date when large plane changes are required, it is better to use another
strategy. One example is to launch the spacecraft due east into an orbit with inclination equal to
the latitude of the launch site and with an apogee distance of about 106 km. This adds only about
72 m/s to the required injection )V compared with a transfer orbit apogee distance equal to the
Moon’s distance. At apogee, the spacecraft’s velocity is very small and a relatively small )V of
about 0.3 km/s is enough to change the orbital plane such that the orbit’s return leg meets the
Moon at the specified lunar declination. This bi-elliptical transfer (Section 13.5) reduces the cost
of the plane change considerably. However, the transfer flight time extends to 50 days. Arrival
conditions at the Moon are comparable to those of a direct transfer, but the spacecraft now arrives
around perigee of the transfer orbit, while in a ‘classical’ transfer it approaches the Moon around
apogee of the lunar transfer orbit. Since its velocity is now higher as compared to the ‘classical’
transfer, the relative velocity with respect to the Moon is lower and therefore the )V needed for
insertion into an orbit about the Moon is also lower. Additional burns may be required to position
the perilune, for example, above the lunar south pole. These long transfers, though more complex,
make lunar missions less dependent on appropriate launch windows.

The total )V required for a lunar orbiter or lander mission can be further reduced by injecting
the spacecraft such that it flies a so-called non-Hohmann low-energy transfer trajectory. This type
of flights will be discussed in Section 17.5.

Figure 17.11 shows an example of a ‘classical’ trajectory to the Moon and back to Earth. The plot
on the left shows a projection of the trajectory, relative to a non-rotating geocentric reference
frame, onto the Earth’s equatorial plane, where the X-axis points towards the vernal equinox. The
plot on the right shows a projection of the trajectory, relative to a rotating geocentric reference
frame, onto the Moon’s orbital plane, with the X-axis along the Earth-Moon line. Figures 17.12
and 17.13 show cartoons of the lunar and return flight in the manned Apollo program, and the
lunar trajectory of the Chandrayaan-1 spacecraft, respectively, while Table 17.2 presents
numerical details of the flight of Apollo spacecraft to the Moon.
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Figure 17.11: Example of a lunar trajectory. The plot on the left shows a projection of the trajectory
relative to a non-rotating geocentric reference frame onto the Earth’s equatorial plane; the plot on the
right shows a projection of the trajectory relative to a rotating geocentric reference frame onto the
Moon’s orbital plane.

Figure 17.12: Cartoon of the lunar and return flight in the manned Apollo mission.

Figure 17.13: Cartoon of the lunar trajectory flown by the Chandrayaan-1 spacecraft.
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Table 17.2: Apollo lunar trajectory data; compiled from NASA Apollo mission evaluation reports.
 

Apollo 8 Apollo 10 Apollo 11 Apollo 12 Apollo 13 Apollo 14 Apollo 15 Apollo 16 Apollo 17

Launch
Date (day/month/year) 21/12/1968 18/05/1969 16/07/1969 14/11/1969 11/04/1970 31/01/1971 26/07/1971 16/04/1972 07/12/1972
Time (hr:min:s UTC) 12:51:00 16:49:00 13:32:00 16:22:00 19:13:00 21:03:02 13:34:00 17:54:00 05:33:00

Earth orbit insertion          
Mission time (s) 695.0 713.8 709.3 703.9 759.8 710.6 704.7 716.2 712.6
Altitude (km) 191.36 191.37 191.08 190.91 191.63 190.92 172.63 172.93 170.49
Velocity (km/s) 7.7928 7.7931 7.7931 7.7925 7.7925 7.7925 7.8037 7.8044 7.8041
Latitude (E) 32.474 32.530 32.503 31.513 32.525 31.081 29.205 32.526 24.538
Longitude (E) 306.708 307.474 307.306 306.869 309.510 307.017 306.919 307.470 306.189
Flight path angle (E) 0.0006 -0.0049 0.012 -0.014 0.005 -0.003 0.015 0.001 0.003
Flight path azimuth (E) 88.532 89.933 88.848 88.580 90.148 91.656 95.531 88.932 105.021
Apogee (km) 185.28 185.89 186.04 185.48 185.86 185.48 169.55 169.18 167.33
Perigee (km) 184.50 184.76 183.26 181.22 184.00 183.26 166.03 166.77 166.77
Period (min) 88.19 88.20 88.18 88.16 88.19 88.18 87.84 87.85 87.83
Inclination (E) 32.509 32.546 32.521 32.540 32.547 31.120 29.679 32.542 28.526
R.A. descending node (E) 42.415 123.132 123.088 123.126 123.084 117.455 109.314 123.123 86.978

Translunar injection          
Mission time (hr:min:s) 2:50:37 2:39:21 2:44:16 2:53:14 2:41:47 2:34:33 2:56:04 2:33:37 3:12:38
Altitude (km) 346.92 333.39 334.62 368.79 338.07 332.69 321.83 317.31 313.90
Velocity (km/s) 10.8220 10.8396 10.8343 10.7868 10.8321 10.8239 10.8445 10.8406 10.8373
Latitude (E) 21.3460 -13.5435 9.9204 16.0791 -3.8635 -19.4388 24.8341 -11.9117 4.6824
Longitude (E) 216.0758 159.9201 195.1627 205.7202 167.2074 141.7312 217.8705 162.4820 306.8810
Flight path angle (E) 7.897 7.379 7.367 8.584 7.635 7.480 7.430 7.461 7.379
Flight path azimuth (E) 67.494 61.065 60.073 63.902 59.318 65.583 73.173 59.524 118.110
Eccentricity 0.97553 0.97834 0.97696 0.96966 0.9772 0.9722 0.9760 0.9741 0.9722
Inclination (E) 30.636 31.698 31.383 30.555 31.817 30.834 29.696 32.511 28.466
R.A. descending node (E) 38.983 123.515 121.847 120.388 122.997 117.394 108.439 122.463 86.042

Lunar orbit insertion
Mission time (hr:min:s) 69:08:20 75:55:54 75:49:50 83:25:23 ---- 81:56:41 78:31:46 74:28:28 86:14:23

Mission time is zero at launch; R.A. = right ascension.
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17.5. Non-Hohmann low-energy transfer trajectories

In Section 17.3 we have found that an optimum two-dimensional classical two-impulses transfer
from a 200 km altitude circular parking orbit about the Earth to a 500 km altitude circular orbit
about the Moon requires an injection impulsive shot of )V0 = 3.130 km/s and a braking impulsive
shot of )Vp = 0.732 km/s (Table 17.1). At entrance of the Moon’s sphere of influence the velocity
of the spacecraft relative to the Moon is V3 = 0.811 km/s. The total travel time is 120.3 hr, or 5
days. Note that an escape flight would have required an injection impulsive shot of )V0 = 3.224
km/s; so only 0.1 km/s more than a flight to the Moon. These values may be considered as
representative for the full three-dimensional case. Over the years, many studies have been
performed to determine multi-impulses (three-dimensional) transfer trajectories which require
less propellant. In these studies, the transfer was considered as a (circular) restricted three-body
(Earth-Moon-spacecraft) or even four-body (Sun-Earth-Moon-spacecraft) problem. These studies
have indicated that some gain in the required total )V can be realized. However, a real
breakthrough came around 1987 when E.A. Belbruno (1951-) described a method to obtain
transfer trajectories with only a very small hyperbolic excess velocity upon arrival at the Moon
(Section 3.12). These trajectories require a slightly higher injection velocity to reach an apogee
distance of about 1.5*106 km, but the total mission )V is about 350 m/s less than for an optimum
classical two-impulses transfer, leading to a significantly larger spacecraft payload capability.
The travel time is, however, more than ten times longer than for a Hohmann transfer. For the
design of these special non-Hohmann low-energy lunar transfer trajectories extensive use is made
of the concepts of ballistic capture, weak stability boundary and invariant manifold, which were
introduced in Section 3.12.

For these low-energy transfers, the dynamics of the spacecraft are very complicated, because
the combined simultaneous gravitational attractions by the Sun, the Earth, and the Moon have
to be taken into account. This is in contrast to a relatively fast direct (Hohmann-type) transfer,
for which the effect of the gravitational attraction by the Sun is rather small, and the attraction
by the Moon becomes dominant only for the last part of the trajectory. Since the flight time of
a non-Hohmann low-energy transfer is significantly longer, all these gravitational attractions are
subtly acting for a long time, affecting the entire trajectory substantially. Therefore, for these
low-energy trajectories conic sections are not good approximations anymore. Consequently, the
elegant patched-conic method (Section 17.3) does not apply and a different approach must be
developed for the design and optimization of these trajectories. Dynamical systems theory
(Section 3.12) has provided many of the methodologies that allow mission designers to divide
such low-energy missions into manageable pieces, to optimize those pieces, and then to combine
each trajectory piece again. This theory may be applied in the Earth-Moon-spacecraft three-body
system, where the Sun acts as a perturbing body. In more-advanced analysis methods, the Sun-
Earth-Moon-spacecraft system is considered as a superposition of two three-body systems: Sun-
Earth-spacecraft system and Earth-Moon-spacecraft system. The rotating reference frame applied
for the analysis of the motion in the Earth-Moon-spacecraft system, of course, rotates relative to
the rotating reference frame applied for the analysis of the motion in the Sun-Earth-spacecraft
system (Figure 3.9), and this time-varying geometry has to be taken into account. Using our
understanding of the invariant manifold tube structures (Section 3.12) associated with the
Lagrange points L1 and L2, the initial part of the transfer trajectory is designed such that the
spacecraft crosses the region where the associated manifold structure of the Sun-Earth L points
interacts with the manifold structure of the Earth-Moon L points. Then, the sensitivity of the
‘twisting’ of trajectories near the invariant manifold tubes in the Sun-Earth L points region is
used to find a propellant-efficient transfer from the Sun-Earth system to the Earth-Moon system.
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The manifold tubes of the Earth-Moon system provide the dynamical channels in phase space that
enable ballistic capture of the spacecraft by the Moon.

Such a low-energy lunar mission may begin in any low-altitude Earth parking orbit. A
specific transfer trajectory has a narrow launch window, but in the event of a delayed launch a
nearby transfer may be easily found with similar properties to open a new launch window.
Alternatively, a small maneuver ‘en route’ may be applied to correct the trajectory to reach the
proper lunar transfer orbit. After the spacecraft leaves its low-altitude Earth parking orbit, it
travels toward the region around e.g. the Earth-Sun L2 point (Figure 17.14, top) at a distance of
about 1.5*106 km from Earth. We will describe the spacecraft’s motion both from a two-body
perspective and from a three-body perspective, since both perspectives help to paint the full
picture. From a two-body perspective, the spacecraft begins by transferring from its low Earth
orbit onto a highly eccentric orbit with apogee far beyond the Moon’s orbital radius. As the
spacecraft approaches and traverses the apogee region of this orbit, it lingers long enough to give
the Sun a large amount of time to perturb the orbit. For certain positions of the Sun relative to the
transfer trajectory, the Sun’s gravitational attraction may change the spacecraft’s orbit such that,
by the time the spacecraft has begun to return back to its perigee, the perigee distance has
increased to about the radius of the Moon’s orbit about the Earth. During its flight from apogee

Figure 17.14: (top) Sun-perturbed Earth-Moon low-energy transfer trajectory with ballistic capture
involving weak stability boundaries. The plot on the left shows the trajectory relative to an inertial
reference frame; the plot on the right the trajectory relative to a rotating reference frame with the X-axis
coinciding with the Sun-Earth line. (bottom) The same trajectory relative to the rotating reference frame
together with a Sun-Earth L2 Lyapunov orbit, the associated invariant manifolds, the maneuver to transfer
to an Earth-Moon manifold, and the capture by the Moon (schematic). [copied from W.S. Koon et al.,
Dynamical Systems and Space Mission Design, presentation at California Institute of Technology,
Pasadena, June 2000.]
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to the Moon’s orbit, the continuously acting solar gravitational attraction may also change the
velocity of the spacecraft such that when the spacecraft approaches perigee its velocity is about
equal to the velocity of the Moon about the Earth. From a three-body perspective, the spacecraft
begins by transferring from its low-altitude Earth parking orbit onto a trajectory that shadows the
stable manifold of the Sun-Earth L2 point. The spacecraft approaches a periodic orbit, but does
not enter it (Figure 17.14, bottom). The spacecraft then transfers to a trajectory that shadows the
unstable manifold of the Sun-Earth L2 point. This trajectory takes the spacecraft to the lunar
encounter. As the spacecraft approaches the Moon, it arrives onto the stable manifold of the
Earth-Moon L1 or L2 point. As it follows this stable manifold, it asymptotically approaches its
final orbit about the Earth-Moon L1 or L2 points. The orbit is typically chosen to either meet
certain mission requirements or to be used as a transitional orbit before transferring to a final
lunar orbit or to the surface of the Moon itself.

As was mentioned above, the trajectory can be designed such that upon arrival at a point
close to the Moon the spacecraft’s velocity is about equal to the velocity of the Moon about the
Earth. When the spacecraft crosses the weak stability boundary around the Moon for that velocity
it can be ballistically captured (Section 3.12) by the Moon. This capture process is gradual and
extends over a period of about two weeks prior to the spacecraft’s closest approach to the Moon.

The first lunar spacecraft that has utilized the concept of weak stability boundaries transfer was
the Japanese Hiten spacecraft (originally named Muses-A), which was designed to test and verify
technologies for future lunar and planetary missions. Hiten was launched into a highly eccentric
Earth orbit on a Mu-3SII-5 rocket from Kagoshima Space Center in Japan on January 24, 1990.
The actual injection velocity was 50 m/s less than the nominal value, resulting in an apogee
altitude of only 290,000 km compared to the planned 476,000 km. Using its onboard propulsion
system, a number of trajectory correction maneuvers were performed and Hiten was put back in
its nominal orbit. On March 18, 1990, as Hiten approached its first lunar flyby, the small
Hagoromo satellite was released. This satellite was planned to go into an orbit about the Moon
with the Hiten spacecraft remaining in its eccentric Earth orbit as a communications relay
satellite. However, the S-band transmitter aboard Hagoromo had failed on February 21, 1990, and
therefore its mission essentially was a failure. Hiten completed seven more lunar swingbys by
March 4, 1991, and then started the aerobraking portion of its mission. On March 19, 1991, Hiten
flew into the Earth’s upper atmosphere at an altitude of 125.5 km over the Pacific at 11.0 km/s.
Atmospheric drag reduced the velocity by 1.7 m/s and the apogee altitude by 8665 km. This was
the first time aerobraking was used to modify a spacecraft orbit at close to escape velocity.
Another aerobraking maneuver was performed on March 30, 1991, at 120 km altitude, reducing
velocity by 2.8 m/s and apogee by 14,000 km. This concluded the primary mission and the
extended mission phase started.

The goal of that follow-on phase was to bring Hiten in an orbit about the Moon. Because the
spacecraft did not carry enough propellant to execute the required maneuver, a low-energy
transfer using the weak stability boundary concept described in Section 3.12 was designed by
Belbruno in 1990. Hiten left its eccentric orbit about the Earth on April 24, 1991, with a tiny
maneuver. It went out to roughly 1.5*106 km from the Earth, taking about 45 days. A ninth lunar
swingby was used to increase the apogee distance to 1.532*106 km, where it crossed the unstable
region around the Sun-Earth L2 point with a low apogee velocity. Then, Hiten executed a tiny
maneuver to enter an orbit back to the Moon, and reached a weak stability boundary around the
Moon, corresponding to its relatively high velocity at that time, in October 1991. It turned out
that the sum of the maneuver to leave its eccentric orbit about the Earth and the second maneuver
at its very high altitude was only 48 m/s. On October 2, a small maneuver was executed to
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achieve temporarily lunar capture. Some time later, Hiten was put into a looping orbit that passed
through the Earth-Moon L4 and L5 stable libration points to look for trapped dust particles. No
increase of the particle density was found. On February 15, 1992, at a closest lunar approach of
422 km, most of Hiten’s remaining fuel was used to put it into a highly eccentric orbit about the
Moon with a period of about 3.5 days. After almost 13 months in this orbit, the very last fuel was
used to have the spacecraft purposely crashed into the lunar surface on April 10, 1993, at 55.6E
E, 34.3E S.

The ESA SMART-1 spacecraft also utilized a non-Hohmann low-energy trajectory to the Moon.
However, the trajectory design was completely different and was based on interior low-energy
transfer (Section 3.12). The purpose of this mission was the testing and proving of an ion engine
and miniaturized instruments, along with investigations of lunar surface chemistry and a search
for ice at the lunar south pole. The spacecraft was launched on September 27, 2003, from
Kourou, French Guiana, as passenger on an Ariane 5G rocket that carried two large
communications satellites as its primary payload. It was put into a geostationary transfer orbit
with perigee and apogee altitudes of 655 km and 35,890 km, respectively, and inclined at 6.9E
to the equator. The total mass of the spacecraft was 367 kg at launch, including 82.5 kg of xenon
propellant for its primary Hall-effect ion propulsion system (Section 19.1). This system provided
a thrust of about 70 mN at an exhaust velocity of about 16 km/s. The electrical power for the
propulsion system was delivered by two solar arrays producing 1850 W at the start of the
mission. Powered by its ion engine, SMART-1 gradually spiraled away from Earth. The
particular trajectory initially required thrusting for about one-third to one-half of every orbital
revolution, in the perigee part of the orbit. Up to mid September 2004 these thrusting arcs
resulted in an increase of the apogee distance to about 300,000 km. Subsequently, thrusting arcs
around the apogee region increased the perigee distance to about 170,000 km. These apogee
thrusting arcs also increased the inclination of the orbit to 12E. From an apogee distance of
200,000 km onwards, the Moon’s gravitational attraction started to significantly perturb the orbit
and helped to widen the spiral orbit. The spacecraft utilized three lunar resonance phases on
August 19, September 15 and October 12, while the spacecraft was at apogee. At these times the
apogee distances were about 230,000 km, 290,000 km and 324,000 km, respectively, and the
ratio of the spacecraft’s orbital period and the Moon’s orbital period was 5:1, 4:1, and 3:1,
respectively. During such a resonance phase, the Moon’s gravitational attraction produces a
relatively large change of the spacecraft’s orbit. Its final continuous thrusting maneuver took
place over a period of 100 hr from October 10 to 14. Then, the ion engine was shut off and the
spacecraft coasted to a point in space in the region of the Earth-Moon L1 Lagrange point. Lunar
orbit capture occurred on November 14, at a distance of about 60,000 km from the lunar surface.
The capture itself costed no propellant! Up to that moment, the electric propulsion system had
started 288 times, had accumulated 3652 hours of firing time, and had consumed about 59 kg of
xenon propellant. The first orbit about the Moon had a perilune distance of 6704 km, apolune
distance of 53,208 km, inclination of 81.1E, and period of 129.23 hr. On November 15, the
electric propulsion system began firing again, now continuously, for a period of 4.5 days to enter
a stable lunar orbit and to begin the lunar descent phase. When the propulsion system would not
have been functioning at that time, the spacecraft would have escaped from the Moon around
December 18. It took until February 28, 2005, using its ion engine, to reach the final operational
orbit about the Moon. To achieve this, an additional 236 thrusting arcs were executed, adding
another 953 hours to the cumulative thrusting time. The operational polar orbit had perilune
(close to the south pole) and apolune altitudes of 465 km and 2865 km, respectively, and an
inclination of about 90E; the total flight time to reach this orbit was about 1.5 year.
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From this operational orbit, SMART-1 has made many scientific observations. The orbital
elements varied during the operational period under the effect of the Earth gravity field
perturbations. The perilune altitude slowly decreased to about 300 km and the apolune altitude
increased to about 3000 km. On August 2, 2005, the electric propulsion system was restarted to
re-boost the spacecraft orbit. It was fired repeatedly until September 17, when virtually all xenon
propellant was spent. The end of the re-boost phase therefore also marked the end of the electric
propulsion system’s active live. In total, the propulsion system had been fired for 4,958.3 hr.
SMART-1 was left in a natural orbit determined by lunar gravity and perturbations caused by the
gravity fields of the Earth and the Sun. That would have resulted in an impact of the spacecraft
on the far side of the Moon on August 17, 2006. Using the hydrazine attitude control thrusters
a series of orbit trim maneuvers was executed in the period June 19 to July 3, 2006, to increase
the perilune altitude and by that to adjust the time and place of the impact on the Moon, such that
the impact could be observed from Earth. The spacecraft impacted on the near side of the Moon
at a speed of about 2 km/s on September 3, 2006, at 46.1E W, 34.2E S. The impact flash was
captured by several telescopes on Earth.

On September 10, 2011, the two NASA GRAIL spacecraft were launched by a Delta II 7920H-
10C two-stage rocket with nine strap-on solid rocket motors from Cape Canaveral on a mission
to the Moon. The spacecraft were nearly identical; each with a total mass of 307 kg, including
105 kg of propellant. They were initially called GRAIL A and GRAIL B, but were renamed Ebb
and Flow in March 2012. Each spacecraft carried two solar panels and a lithium ion battery; each
solar panel was capable of producing 700 W at the end of the mission. Each battery had a
capacity of 30 Ah, and was used to provide power when the spacecraft was in the Moon’s
shadow. Each spacecraft had a 22 N liquid hydrazine catalytic thruster for lunar orbit insertion
and trajectory changes, and a hydrazine warm-gas system with eight 0.9 N thrusters for attitude
control and other small maneuvers. Ebb was separated from the launcher about nine minutes after
the upper stage engine cut off; Flow followed about eight minutes later. The two spacecraft
carried a single science package, consisting of an ultra-stable oscillator, microwave assembly,
time transfer assembly, and gravity recovery processor assembly. The ultra-stable oscillator
provided a steady reference signal that was used by all the instrument subsystems. The
microwave assembly converted the oscillator’s reference signal to the Ka-band frequency, which
was transmitted to the other orbiter. During the science phase of the mission, the radio-frequency
system measured the rate of change of the distance between both spacecraft very precisely. The
time transfer assembly provided a two-way time transfer link between the spacecraft to both
synchronize and measure the offset between the clocks aboard the two spacecraft. The gravity
recovery processor assembly combined all the inputs received to produce the radiometric data
that was downlinked to the ground. These data were translated into a high-resolution map of the
Moon’s gravity field. In addition, each spacecraft carried a small camera, called MoonKAM
(Moon Knowledge Acquired by Middle school students). Thousands of students have selected
target areas on the lunar surface and have sent requests for study to the MoonKAM Mission
Operations Center in San Diego.

The two GRAIL spacecraft were injected into nearly identical Earth-departure orbits from
a low Earth parking orbit, much like conventional direct lunar transfers. However, they were
injected at a somewhat higher velocity such that their initial orbits had apogees far beyond the
Moon. Both spacecraft flew a low-energy trajectory, which allowed them to efficiently venture
from Earth to the Moon via the unstable region around the Sun-Earth L1 Lagrange point. As each
spacecraft traversed its orbit’s apogee, the Sun’s gravity pulled on the spacecraft and raised its
orbit’s perigee altitude. By the time each spacecraft fell back towards the Earth, its perigee
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altitude had risen high enough such that the spacecraft encountered the Moon and could
immediately perform a lunar orbit insertion. On September 30, the rocket engine of Ebb (GRAIL
A) burned for 127 s and imparted a velocity change of 14 m/s on the spacecraft, while expending
1.9 kg of propellant. On October 5, the rocket engine of Flow (GRAIL B) burned for 234 s and
imparted a velocity change of 25 m/s, while expending 3.7 kg of propellant. These burns were
designed to begin distancing Ebb’s and Flow’s arrival times at the Moon by approximately one
day and to insert them into the desired lunar approach trajectories. Figure 17.15 shows an
overview of the spacecraft trajectories relative to the Sun-Earth rotating reference frame. On
December 28, Ebb was at a distance of 106,000 km from the Moon and closing at a speed of 333
m/s. Flow was then at a distance of 128,000 km from the Moon and closing at a speed of 341 m/s.
During their final approaches to the Moon, both orbiters moved toward it from the south, flying
nearly directly over the lunar south pole. The lunar insertion burn for Ebb occurred on December
31; it took approximately 40 min and changed the spacecraft’s velocity by about 191 m/s; the
spacecraft entered a near-polar orbit of 90 km by 8363 km altitude and with a period of about
11.5 hr. Flow’s insertion burn occurred about 25 hr later, lasted about 39 min and changed the
spacecraft’s velocity by 192 m/s; it entered almost the same orbit. From there they performed a
series of maneuvers during a period of five weeks to transition into their science orbit. The orbital
period for Flow was targeted to be approximately three minutes longer than the period for Ebb.
This difference in period meant that Ebb, flying below Flow, would lap Flow once every three
days. A series of maneuvers was performed in this phase to achieve the desired initial separation
distance and ensure that Flow was ahead of Ebb in the formation. At the start of the science phase
on March 6, 2012, the two GRAIL spacecraft were in a near-polar, near-circular orbit at an
average altitude of about 55 km. This orbit was selected such that no orbit maintenance maneuver
was required during the science data collection phase. This phase, which ended on May 29, 2012,
was divided into three 27.3-day mapping cycles; each mapping cycle corresponded to one
rotation of the Moon underneath the GRAIL orbit. During the first mapping cycle the mean
separation distance between the two spacecraft increased from approximately 100 km to 225 km.
A small orbit trim maneuver executed near the end of this mapping cycle produced a change of
the separation drift rate. After this maneuver, the mean separation distance decreased from 225
km to approximately 65 km at the end of the third mapping cycle. These changes in separation
distance were required to meet the GRAIL science objectives. Because the spacecraft were still
in an excellent condition, an extended mission phase started on August 30, 2012, while the two
spacecraft were 30 km above the Moon. During the science phase of the extended mission, which

Figure 17.15: Trajectory of the GRAIL spacecraft relative to the rotating Sun-Earth reference frame.
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ended on December 3, the average orbital altitude was decreased to 23 km, which placed the
spacecraft within 8 km of some of the Moon's higher surface features. On December 14, 2012,
the spacecraft each completed a thruster burn that brought them lower and lower over the Moon’s
surface and would result in an impact on December 17 on the southern face of an approximately
2.5 km tall mountain near the Goldschmidt crater, near the Moon’s north pole. On December 17,
the final maneuvers began when Ebb fired its main engines for 56 s, changing its orbital velocity
by 4.6 m/s. Sixteen seconds later, Flow executing a 55 s burn with a resulting velocity change
of 4.6 m/s. The satellites hit the lunar surface as planned at 22h28m UTC at a speed of 1.7 km/s.
Fifty minutes prior to impact, the spacecraft fired their engines until the propellant was depleted;
Ebb fired its engines for about 4 min and Flow fired its engine for about 5 min.
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18. INTERPLANETARY FLIGHTS

For planetary missions a spacecraft is launched from the Earth and accelerated to a velocity
higher than the local escape velocity. The spacecraft will then recede from Earth along a
hyperbolic trajectory. While its distance from the Earth increases, the solar gravitational
attraction will gradually become more important until, ultimately, it will become the dominating
force and the spacecraft will enter a heliocentric orbit. The trajectory is chosen such that the
spacecraft can perform a specified mission. When the spacecraft has to pass a target planet at a
relatively small distance, we speak of a flyby mission; when the spacecraft has to be decelerated
by a rocket engine and, if applicable, by atmospheric drag to enter an orbit about that planet, we
call it an orbiter mission. For a lander mission, the final velocity of the spacecraft relative to the
planet’s surface has to be reduced to a very small value by means of atmospheric braking and/or
rocket engine deceleration.

The first successful interplanetary mission was that of the US Mariner 2 spacecraft, which
has flown by Venus at a minimum distance of 34,773 km on December 14, 1962. On July 14,
1965, the US Mariner 4 spacecraft became the first spacecraft to successfully fly by Mars at a
minimum distance of 9,846 km. On October 18, 1967, the Venera 4 spacecraft, launched by the
former Soviet Union (USSR), entered the Venusian atmosphere and transmitted back to Earth
data about Venus’ atmosphere. Contact was lost when the spacecraft reached an altitude of about
25 km. In December 1970, the Venera 7 spacecraft made a soft landing on Venus and transmitted
signals for 23 min from Venus’ surface. The first soft landing on Mars was performed by the
Mars 3 spacecraft, launched by the USSR in December 1971. However, after 20 s, data return
was terminated. In July and September 1976, the US Viking 1 and 2 spacecraft soft landed on
Mars and performed extensive measurement programs. Since then, many interplanetary
spacecraft have been launched by the USSR/Russia, USA, Europe (ESA) and Japan to perform
flyby missions to all planets, flybys of comets, asteroids, and moons of planets, landings on Mars,
Venus, Titan and asteroids, and an impact on a comet.

Until the early 1970s, the concept of interplanetary spaceflight was based on the application of
direct-transfer trajectories achieved by a chemical rocket engine injection maneuver directly
after launch of the spacecraft from Earth or after a period in an Earth parking orbit. In comparison
with Earth satellite missions, these interplanetary trajectories require a much higher propulsive
energy level and result in long flight times, which range from several months to some tens of
years. For such types of missions, the trajectory that requires the least amount of propulsive
energy is the Hohmann transfer trajectory (Section 18.4). But even for this minimum-energy
trajectory, the relatively low energy density and exhaust velocity of chemical propellants only
allow the launch of relatively small payloads, in particular to the more distant planets. Therefore,
one had to accept that only a small fraction of the solar system could ever be reached and
explored by instrumented spacecraft, or one had to develop more powerful propulsion systems,
such as thermal-nuclear or nuclear-electric (Chapter 19) propulsion systems. Although the USA
and the USSR have put a large effort over many years, beginning in the 1950s, in trying to solve
the technical problems associated with the development of these advanced propulsion systems,
the problems experienced were simply too difficult to surmount. When this conclusion became
an undeniable fact in the mid-1960s, it appeared that much of the solar system would indeed
remain unknown for a long period of time.

However, in the early 1960s a fundamental new concept of space travel was developed by
M.A. Minovitch (1935-), then a graduate mathematics student, working at NASA’s Jet Propul-
sion Laboratory (JPL): the swingby concept, also known as the gravity-assist or slingshot concept
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(Section 18.11). The idea is to launch a spacecraft to an easy-to-reach nearby planet using a
chemical rocket propulsion system, and to pass that planet on a precise trajectory such that the
planet’s gravity field would change the vehicle’s orbital energy relative to the Sun and catapult
it to another more distant planet, where its gravity field could then be used to catapult it to
another planet, etc. In fact, this is an application of what was found in Section 2.1 for the n-body
problem, namely that a close approach of two bodies leads to a high velocity of at least one of
the bodies. Because the planet is much more massive than the spacecraft, it is, of course, the
spacecraft that is accelerated to the high velocity. In this concept, the energy required for explor-
ing the solar system is taken from the solar system itself! The ‘propulsive force’ automatically
increases in direct proportion to the mass of the spacecraft. Hence, after the spacecraft is injected
onto the first ‘leg’ of its interplanetary trajectory, the acceleration experienced by the spacecraft
in a swingby maneuver is independent of its mass. No other propulsion system has this unique
operating characteristic! By using these swingby maneuvers, existing launch vehicles can send
relatively large spacecraft to distant planets.

The first spacecraft that has experienced a substantial gravity assist was NASA’s Pioneer 10,
which was launched on March 3, 1972, by an Atlas/Centaur/TE364-4 rocket. In December 1973,
it approached Jupiter, traveling at 9.8 km/s. The spacecraft passed Jupiter at a minimum altitude
of 130,350 km on December 3, 1973, and, as a result of this passage, it sped off into deep space
at 22.4 km/s. On January 23, 2003, the last, very weak, signal from Pioneer 10 was received. On
December 30, 2005, the spacecraft was 89.7 AU 1 away from the Sun, heading in the direction
of the star Aldebaran in the constellation Taurus at roughly 2.6 AU per year. If Aldebaran had
zero relative velocity, it would take Pioneer about 2 million years to reach it. The US Mariner
10 spacecraft, which was launched on November 3, 1973, towards Mercury and performed a
flyby of this planet at a minimum altitude of 704 km on March 29, 1974, was the first spacecraft
to use the swingby effect to reach another planet; it passed Venus on February 5, 1974, at a
closest distance of 5768 km. In its orbit about the Sun the spacecraft made two additional
encounters with Mercury: on September 21, 1974, it passed Mercury at an altitude of 48,069 km
and on March 16, 1975, at an altitude of 327 km. Since then, this swingby technique has been
applied for nearly all interplanetary missions and this was the reason that most of the solar system
could already be explored, including regions close to the Sun, regions far above and below the
ecliptic (Section 11.2) and deep space far beyond the orbit of Pluto 2.

The main practical limit to the use of the swingby concept is that planets are not always in
the right places to help a voyage to a particular destination. For example, the Voyager missions,
which started in the late 1970s, were made possible by the ‘Grand Tour’ alignment of Jupiter,
Saturn, Uranus and Neptune. A similar alignment will not occur again until the middle of the
twenty-second century. That is an extreme case, but even for less ambitious missions there are
years when the planets are not in places that make swingbys useful. Another limitation is caused
by the atmosphere of the available planet. The closer the spacecraft can get, the more boost it gets
from the gravitational field. However, if a spacecraft gets too far into the atmosphere, the energy
lost to friction can exceed that gained from the planet or the spacecraft can even burn up in the
atmosphere.

Although the introduction of the swingby concept in interplanetary spaceflight was an
enormous step forward, we should realize that it is not the ultimate solution to the realization of
fast interplanetary space travel. The swingby technique requires that the spacecraft passes one
or more other planet(s) on its travel to the target planet. So, in general, its overall trajectory is
much longer than that of a direct-transfer mission. This means that, although the passing of the

1 AU = Astronomical Unit. This is the mean distance between the Sun and the Earth; 1 AU . 149.6*106 km.
2 As already stated in Section 4.2, in this book Pluto is considered as a planet.
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intermediate planet(s) will, in general, increase the spacecraft’s velocity relative to the Sun
considerably, in most cases the application of the swingby technique will lead to long total flight
times. To execute real fast direct interplanetary transfer missions, high-energy thermal-nuclear
or nuclear-electric propulsion systems have to be developed. Without succeeding in the
development of such advanced propulsion systems, the possibilities for fast interplanetary travel,
which is essential in particular for manned missions, will remain rather limited.

Since the 1980s a completely new type of non-Hohmann low-energy trajectories has been
studied and applied for interplanetary missions. The design of these trajectories is based on the
characteristics of the invariant manifolds of the Sun-planet systems (Section 3.12). Examples of
missions based on this kind of low-energy trajectories are given in Section 18.12; the main part
of this Chapter, however, is devoted to the analysis of ‘classical’ interplanetary trajectories.

18.1. General aspects of an interplanetary trajectory

It will be clear that for the precise computation of an interplanetary trajectory, the motion of the
spacecraft must be considered as a many-body problem. Apart from the gravitational attractions
by the Earth, the Sun and the target planet, the attractions by the Moon and a number of planets
also have to be taken into account. In addition, solar radiation pressure may substantially affect
the trajectory and should be accounted for. Because the spacecraft’s mass is completely
negligible relative to that of the Earth, Moon, Sun and planets, we may assume that the orbits of
the Moon and the planets will not be affected by the gravitational forces between each of these
bodies and the spacecraft. Consequently, for the orbits of the Moon and the planets we may use
the ephemerides provided by e.g. NASA JPL or by the digital almanacs released by the US and
UK Almanac Office (Section 17.1). These files contain precise ephemerides of the Sun, Moon,
planets and their satellites, and sometimes minor planets, asteroids and comets, together with data
relating to Earth orientation, coordinate systems and time scales.

For high-precision computations generally one of the planetary and lunar ephemerides
released by NASA JPL under the name Development Ephemeris (DE) are used. Such an
ephemeris contains Chebyshev polynomial coefficients from which the three-dimensional
positions and velocities of the Sun, Moon and nine planets can be recovered as a function of
Barycentric Dynamical Time (TDB), which is a relativistic coordinate time scale (Section 11.4).
The ephemeris holds for a range of dates, usually both in the past and the future, and the
recovered positions and velocities are relative to a rectangular barycentric non-rotating reference
frame. There is a set of coefficients for each coordinate component of position and velocity for
each object; each set covers a time span of several days. An ephemeris is the result of a numerical
integration of an n-body system. The equations of motion used for generating the recent
ephemerides include contributions from Newtonian gravitational point mass interactions among
the Moon, planets and Sun; general relativity (isotropic, parameterized post-Newtonian metric);
Newtonian gravitational perturbations from more than 300 selected asteroids; action upon the
figure of the Earth by the Moon and Sun; action upon the figure of the Moon by the Earth and
Sun; physical libration of the Moon; effect upon the Moon’s motion caused by tides raised upon
the Earth by the Moon and Sun. The orbit of the Sun is not integrated in the same way as the
orbits of the planets. Instead, the position and velocity of the Sun are derived at each integration
time step to keep the solar system barycenter at the origin of the coordinate system. The most
advanced physical models for the various bodies are used in the numerical integration process.
The initial conditions are adjusted in an iterative process such that the resulting orbits fit all
available observations as good as possible. These observations include classical optical ground-
based measurements of the Sun, Moon, planets and asteroids; ground-based radar ranging
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measurements of the planets; ground-based lunar laser ranging measurements; spacecraft range,
range-rate and VLBI measurements; among others.

Over the years, the reference frame to which the ephemeris refers has been tied to very distant
celestial objects with ever increasing precision. The first widely-used ephemeris is DE118 that
was released in 1981 and that refers to a non-rotating equatorial reference frame defined by the
mean orientation of the Earth’s equator and ecliptic at the beginning of the Besselian year 1950
(Section 11.4). Another widely used ephemeris is DE200, released in 1982, which basically is
DE118 rotated into the mean equinox of 2000 reference frame (Section 11.2). DE200 has been
the basis for the calculation of Astronomical Almanac planetary tables since 1984. Since then,
a number of improved ephemerides have been developed, in particular for missions to the outer
planets, based on more-accurate observations and improved dynamical models. From 2003
onward the Astronomical Almanac has been based on JPL ephemeris DE405 that was released
in 1998. In this ephemeris the positions of the celestial bodies are relative to the International
Celestial Reference Frame (ICRF, Section 11.2). One of the more recent ephemerides is DE421
that was released in 2009. With this ephemeris, where the solar system body positions also refer
to the ICRF, the orbits of Venus, Earth and Mars can be recovered with an accuracy of better than
a few hundreds of meters; the orbit of Mercury with an accuracy of a few kilometers; the orbits
of Jupiter and Saturn with an accuracy of some tens of kilometers; the orbits of Uranus, Neptune
and Pluto with an accuracy of some hundreds to thousands of kilometers.

For less accurate first-order analyses, usually the orbital elements of the planets (or other
solar system bodies) are used in combination with the Keplerian formulas given in Section 11.8
to compute from the orbital elements the position and velocity of the planets relative to a non-
rotating heliocentric reference frame. It must be noted that the orbital elements refer to an
elliptical orbit that best fits the true orbit of the planet. Since the true orbit is perturbed by the
gravitational attraction of the other planets and by other forces, any set of orbital elements is only
valid for a given time or time span. In Table B5 of Appendix B the orbital elements of the
planets, describing an elliptical orbit with the center of the Sun at a focal point (heliocentric
reference frame), are listed for the epoch noon January 1, 2000; they hold with respect to the
mean ecliptic and equinox of that epoch.

Even when the positions and velocities of the planets are known, the analyses of interplane-
tary trajectories is quite complex. For, one has to determine the spacecraft’s injection conditions
such that the spacecraft intercepts a target planet in its orbit about the Sun at the right time and
with the right velocity relative to that planet. The search for the required interplanetary trajectory
can only be made in an iterative way. The first step in that process is to assume that the
interplanetary trajectory is part of a heliocentric conic section between the centers of the Earth
and of the target planet. After a range of feasible trajectories has been determined, the
computations are extended assuming that the interplanetary trajectory can be divided into three
Keplerian trajectories. Within the sphere of influence (Section 4.3) of the Earth, the trajectory is
considered as a geocentric hyperbola that is solely determined by the gravity field of the Earth;
within the sphere of influence of the target planet the trajectory is considered as a planetocentric
hyperbola that is solely determined by the gravity field of that planet; the interplanetary part of
the trajectory is considered to be a heliocentric conic section that is solely determined by the
Sun’s gravity field. This method is known as the patched-conic method, which was introduced
in Section 17.3 for the computation of trajectories towards the Moon. The main difference is that
for lunar trajectories the sphere of influence of the Moon lies fully within the sphere of influence
of the Earth, while for interplanetary trajectories the spheres of influence of the Earth and of the
other planets do not overlap. Consequently, while for lunar trajectories the patched-conic approx-
imation involves two Keplerian segments, in interplanetary missions at least three Keplerian
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segments are involved. After a series of feasible trajectories has been obtained, the patched-conic
approximation is replaced by a numerical integration analysis, which continuously accounts for
the attraction by the Sun, the Moon and the planets on the spacecraft.

In the patched-conic approach, one implicitly uses a property of hyperbolic orbits that was
discussed in Section 8.2, namely that the geocentric velocity of a spacecraft in a hyperbolic orbit
about the Earth is at a distance of a few hundreds of thousands of kilometers about equal to the
velocity that the spacecraft would have at an infinitely large distance from the Earth, V4e . The
velocity V4e is often called the hyperbolic excess velocity. This means that we may assume that
the spacecraft has a velocity V4e with respect to the Earth when it crosses the Earth’s sphere of
influence. In Section 4.3, the radius of the Earth’s sphere of influence relative to the Sun was
found to be about 106 km. A similar assumption can be made for the velocity of a spacecraft in
a hyperbolic orbit about another planet when it crosses that planet’s sphere of influence.
Although the radius of a planetary sphere of influence is quite large, both in an absolute sense
and in relation to the radius of that planet, the radius of the sphere of influence is always small
when measured on the scale of the solar system. Table 4.3 shows that for all planets this radius
is less than 6.2% of the value of the semi-major axis of that planet’s orbit about the Sun; for most
planets it is less than 2% and for the Earth even only about 0.6%. This means that when measured
on the scale of the solar system, the spacecraft reaches the velocity V4e very close to the Earth.
So, at the moment that the interplanetary spacecraft leaves the sphere of influence of the Earth,
its position is about that of the Earth when measured on the scale of the solar system, while it has
a velocity V4e relative to the Earth.

The direction of the velocity vector  with respect to the velocity vector of the Earth
relative to the Sun, , depends on the time of launch from the Earth’s surface, or, in case the
spacecraft is injected into its interplanetary trajectory from a parking orbit about the Earth, on the
position in the parking orbit where injection takes place (Figure 18.1). The velocity of the
spacecraft relative to the Sun at the moment that it leaves the Earth’s sphere of influence, , is
found by adding  and  vectorially. This velocity and the position of the Earth relative
to the Sun at that time determine the heliocentric trajectory of the spacecraft. When the spacecraft
enters the sphere of influence of the target planet, the same computation scheme can be applied:
the velocity of the spacecraft relative to the target planet, , is found by subtracting the velocity
of the target planet relative to the Sun, , vectorially from the velocity of the spacecraft relative
to the Sun, . The hyperbolic trajectory of the spacecraft within the sphere of influence of the
target planet is completely determined by the point where the sphere of influence is entered and

Figure 18.1: Matching of ascent trajectory, coasting phase and escape hyperbola for an interplanetary
flight.
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by the magnitude and direction of .

18.2. Launching of interplanetary spacecraft

The launch date, time of the day, and selected interplanetary trajectory fully determine the
required hyperbolic excess velocity, , relative to a heliocentric reference frame. By applying
the usual transformation relations, we can find  with respect to a non-rotating geocentric
equatorial reference frame. Implicit in the method outlined in Section 18.1 is that this  may
be considered as a vector passing through the center of the Earth. This vector determines the
direction of the outgoing radial (Figure 18.1). Because the radius of the Earth’s sphere of
influence is very large as compared to the radius of the Earth, we may assume that the outgoing
asymptote of an escape hyperbola is parallel to the outgoing radial and that both the outgoing
radial and outgoing asymptote ‘pierce’ the sphere of influence at a point with the geocentric
coordinates: declination, *as , and right ascension, "as . The values of *as and "as required for a par-
ticular mission strongly influence the selection of the ascent trajectory to be flown.

In order to prevent excessive dogleg maneuvers (Section 16.2) prior to injection, the launch
vehicle ascent trajectory should lie preferably in the plane of the escape hyperbola. Then, the
plane in which the motion within the sphere of influence of the Earth takes place is uniquely
determined by the center of the Earth, the launch site and the outgoing asymptote. All American
interplanetary missions start from Cape Canaveral (Eastern Test Range, ETR). For this launch
site, a launch azimuth range from 90E to 115E 3 is most desirable for interplanetary missions to
take full advantage of the Earth’s eastward rotational velocity and of existing tracking facilities.
According to (11.57) and (11.58), we may write for a coplanar launch

(18.1)

where R denotes the flight path azimuth and the index l refers to the launch conditions. Because
by definition 0E # i < 180E, i can be solved unambiguously if cosi is known. From (18.1-1)
follows

From Figure 18.2, where this inequality is plotted for a launch from Cape Canaveral (*l = 28.5E),
we note that, for a launch from Cape Canaveral without applying a dogleg maneuver, values of
*as within the range -35E to 35E can be reached. For a particular launch site, *l is known. When
values of Rl and *as are selected, (18.1-1) yields the values of i and Ras , (18.1-2) the value of "l -
S and (18.1-3) the value of "as - S. So, for a specified launch site, we may compute from (18.1)
the dependence of Rl and *as on the difference in right ascension "as -"l. These results are de-
picted in Figure 18.3 for a launch from Cape Canaveral. The shaded areas represent the range of

3 Just as in Section 17.4, here a boundary value of 115E is adopted that differs slightly from the boundary value of
112E listed in Table 16.1.
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Figure 18.2: Permissible region of the declination of the outgoing asymptote for the launch of an
interplanetary mission from Cape Canaveral (*l = 28.5E).

Figure 18.3: Launch azimuth and right ascension of the launch site versus declination and right ascension
of the outgoing asymptote for a launch from Cape Canaveral.

preferable launch azimuths. During a given launch day and for a specified interplanetary mission,
 is almost independent of the location of the launch site and of the time of launch. Owing to

the rotation of the Earth, however, "l varies linearly with launch time, and we may write with
(11.2) and (11.3-2):

(18.2)

where 2GM0 is the Greenwich mean sidereal time (Section 11.4) at 0 hr UT1 of the launch day,
7l is the geographic longitude of the launch site,  is the Earth’s mean rotation rate, and tl is the
time of launch from midnight on the launch day (UT1). Therefore, the time of launch is
determined solely by Rl , *as and "as. Note from Figure 18.3 that, generally, for specified values
of *as and "as ( ), and of Rl, two launch times are possible each day.

Usually, a parking orbit coasting period is required to match the launch vehicle ascent trajectory
and the required hyperbolic escape trajectory. The launch vehicle ascent trajectory is chosen such
that, within the constraints of that vehicle, a maximum payload can be placed in the parking orbit.
This ascent trajectory determines the altitude of the parking orbit and the position where the
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spacecraft enters that parking orbit. Final injection takes place near perigee of the escape
hyperbola. For a given , the location of this injection point in the parking orbit is fully
determined. Thus, the spacecraft moves in its parking orbit until it reaches the point where the
final burn has to be executed (Figure 18.1). We found that, generally, two launch times are
possible each day. The required parking orbit coasting period and the location of the final
injection point relative to the Earth’s surface (tracking network) differ for these two cases. The
launch time yielding the more favorable launch conditions will be selected.

From the viewpoint of launch vehicle reliability, tracking and telemetry coverage, a Direct
Ascent (Section 16.1), without the application of a parking orbit, is very attractive. However, such
an ascent flight can only be used if at the end of the powered phase the launch vehicle can inject
the spacecraft near perigee of a hyperbola satisfying the prescribed direction of the outgoing
asymptote. Generally, it is found that for Cape Canaveral a combination of a northeast launch and
an outward radial declination of less than -15E result in feasible direct ascent trajectories for
planetary missions.

For a specified interplanetary trajectory, there will be one instant of time for which the launch
of a spacecraft requires a minimum amount of propellant. But because of the complexity of both
launch vehicle and spacecraft, a launch exactly at that optimum moment is most unlikely, and an
adequate firing window must be available around the optimum instant of time: the daily launch
window (Section 16.2). Generally, a launch window of about one hour is available. As launch
time varies within this launch window, both launch azimuth and parking orbit coasting time must
be adapted continuously.

18.3. Assumptions and approximations

For the analyses presented in this Chapter, it will be assumed that the interplanetary flight starts
from a circular parking orbit about the Earth and that a flight to an outer planet is considered. The
same methods, however, can be applied for a direct ascent flight and for a flight to an inner
planet. For the numerical examples presented in this Chapter, the physical and orbital parameters
of the planets listed in Appendix B are used. To simplify the analysis, four approximations are
introduced.

In the first part of this Chapter, it is assumed that the planetary orbits are circular and coin-
cide with the plane in which the Earth moves about the Sun (ecliptic). In that case, the interplan-
etary trajectory and the planes of the circular parking orbit about the Earth and, if applicable, of
the final orbit about the target planet should preferably also coincide with the ecliptic; this leads

Table 18.1: Basic data on the orbits of the planets.

Planet a
(AU)

e i
(deg)

ra

(AU)
rp

(AU)
Va

(km/s)
Vp

(km/s)
T

(sid.yr)

Mercury 0.38710 0.20564 7.005 0.4667 0.3075 38.858 58.977 0.241

Venus 0.72334 0.00678 3.395 0.7282 0.7184 34.784 35.259 0.615

Earth 1.00000 0.01671 0.000 1.0167 0.9833 29.291 30.287 1.000

Mars 1.52371 0.09339 1.850 1.6660 1.3814 21.972 26.498 1.881

Jupiter 5.20289 0.04839 1.304 5.4546 4.9511 12.441 13.706 11.87

Saturn 9.53668 0.05386 2.486 10.050 9.0230 9.1386 10.179 29.45

Uranus 19.1892 0.04726 0.773 20.096 18.282 6.4852 7.1286 84.06

Neptune 30.0699 0.00859 1.770 30.328 29.812 5.3851 5.4784 164.9

Pluto 39.4821 0.24883 17.14 49.306 29.658 3.6763 6.1119 248.1
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to so-called two-dimensional transfer trajectories. Table 18.1 summarizes some characteristics
of the orbits of the planets of our solar system; it is emphasized that all planets move in the same
direction about the Sun. The values of the semi-major axis, eccentricity and inclination are copied
from the data given in Appendix B. The other values are computed, using the standard relations
for elliptical trajectories. Note that for all planets, except for Mercury and Pluto, the orbital
eccentricity and inclination (relative to the ecliptic) are small, which justifies the approximations
mentioned above.

As a second approximation, it is assumed that the thrusting time of a rocket engine is
negligibly short compared to the time that the spacecraft moves within the sphere of influence
of a planet. Then, the concept of impulsive shot (Section 1.7) can be applied. We then assume that
a thrusting period results in a discontinuous velocity change  of the spacecraft, while its
position remains unchanged. The objective of the escape flight from the Earth is to increase the
orbital energy of the spacecraft using a minimum amount of propellant. For, the rocket stage that
has to produce the  is launched together with the spacecraft in the parking orbit. If less
propellant is required for the acceleration of the spacecraft, then the mass of the spacecraft can
be larger or the applied launcher can be smaller and cheaper. If the spacecraft has to be
decelerated at the target planet, also this maneuver has to be accomplished for the smallest
amount of propellant. For an impulsive shot the minimum propellant requirement simplifies to
the question: “How should the impulsive shot be applied such that the change of the spacecraft’s
kinetic energy (per unit of mass) is maximum for a given magnitude of the total ?”

As a third approximation, it is assumed that the spacecraft is accelerated from an initial
parking orbit about the Earth to the required velocity. For this maneuver, the question formulated
above has been answered in Section 1.7. There, it was found that for a given magnitude of 
the increase of the spacecraft’s energy (per unit of mass) is maximum if the maneuver is executed
at perigee of the parking orbit and if  is directed tangentially to the orbit and in the direction
of the orbital velocity at perigee. To inject with a given launcher the largest possible spacecraft
mass into a parking orbit, one will always select a circular parking orbit at the lowest possible
altitude. Then, there is no preference for the point of injection and  should be directed
perpendicular to the local radius vector. For the deceleration maneuver at the target planet, it was
found in Section 1.7 that  should be applied at the point in the flyby trajectory where the
velocity is maximum, and in a direction opposite to the spacecraft’s velocity vector at that point;
i.e. at pericenter of the flyby trajectory and perpendicular to the local radius vector.

As a fourth approximation, a hybrid model will be used to compute the interplanetary
trajectory. The trajectory geometry is computed as if the trajectory is a heliocentric conic section
between the centers of the Earth and of the target planet, while the )V’s required to leave the
parking orbit about the Earth and to enter an orbit about the target planet are computed by using
the patched-conic model. The justification for using this hybrid model is the fact that the radius
of a planetary sphere of influence is small when measured on the scale of the solar system.

A comparison with the results of detailed numerical computations shows that the results of
this approximative method are reasonably accurate and that this method is well suited to first-
order mission analyses.

Because  is oriented tangentially to the circular parking orbit about the Earth, the point where
)V is applied (injection point) becomes the perigee of the hyperbolic escape trajectory. If the
index 0 refers to the conditions at this injection point, the velocity of the spacecraft just after the
impulsive shot, V0, is given by

(18.3)
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where Vc0 is the circular velocity at the injection point and )V0 is the magnitude of the impulsive
shot applied at the injection point. For given values of r0 and )V0, the shape of the hyperbolic
escape trajectory is completely determined and so the angle between  and the radius vector
to the pericenter of the hyperbola (Figure 18.1) is fully determined. For this angle we find from
(8.3) and (8.14)

(18.4)

Consequently, the angle between  and  is, for given values of r0 and )V0, determined by
the point in the (circular) parking orbit where  is applied. This shows an important aspect of
the application of a parking orbit: within one revolution about the Earth (. 1.5 hr) any angle
between  and  can be realized by applying the impulsive shot at the right time. For a launch
directly from the surface of the Earth (Direct Ascent), a specified angle between  and  can
be realized only once a day.

To compute the velocity to which the spacecraft has to be accelerated in order to reach a
specified value of V4e, (8.15) can be applied:

(18.5)

where Vesc0 is the escape velocity at the injection point and V4e is given by (8.12):

(18.6)

where a is the semi-major axis of the hyperbolic escape trajectory and : is the gravitational
parameter of the Earth. The total energy of the spacecraft (per unit of mass) is given by (8.8)

(18.7)

In the literature on interplanetary spaceflight often the injection energy, C3, is used, which is
defined as

(18.8)

Because  is oriented tangentially to the circular parking orbit, the magnitude of )V0 required
to reach a specified value of V4e can be obtained from (18.5):

(18.9)

For flyby missions, where the spacecraft is not decelerated when it arrives at the target planet, one
will be interested in interplanetary trajectories for which )V0 = minimum.

When the spacecraft has to land on the target planet, or has to be injected into an orbit about
that planet, then it has to be decelerated. Here, we assume that the spacecraft has to enter a
parking orbit about the target planet and that the deceleration maneuver is executed at pericenter
of the hyperbolic trajectory of the spacecraft about the planet. Suppose that the deceleration
maneuver occurs at a distance r3 from the center of the planet and that after deceleration the
spacecraft has a velocity Vpar3 relative to the planet. Of course, , where : is the
gravitational parameter of that planet; for  the spacecraft enters a circular orbit about
that planet. For the magnitude of the deceleration impulse, we find
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(18.10)

where Vc3 is the circular velocity at the point of deceleration. For this type of missions, one will
be interested in that interplanetary trajectory for which, for a specified total initial mass, the final
mass of the spacecraft will be maximum. It is emphasized that only for the case that a single
rocket engine delivers both the impulsive shot )V0 and the impulsive shot )V3, and no mass is
expelled or rejected between both impulses, the optimization criterion is )V0+)V3 = minimum
(Chapter 12). However, these conditions are not realistic. In interplanetary flights, the rocket
stage that delivers the impulsive shot )V0 is separated after depletion of the propellants, the
rocket engine that delivers the impulsive shot )V3 has different characteristics then the rocket
engine that delivers the impulsive shot )V0, and sometimes the spacecraft that has to enter an
orbit about the planet separates from the ‘mother’ spacecraft when it approaches the target planet.
For these reasons, in Section 18.4 only the criterion )V0 = minimum will be used. In fact, this
means that the escape maneuver and the deceleration maneuver are optimized separately, which,
generally, is a good approximation of the situation in a real planetary mission.

18.4. Optimum two-dimensional direct-transfer trajectories

When the simplifying approximations introduced in Section 18.3 are applied, then the analysis
of determining the optimum interplanetary transfer trajectory shows a great similarity with the
analysis of determining the optimum transfer trajectory between two circular coplanar orbits
about the Earth, as discussed in Section 12.1. Therefore, in this Section a number of relevant
equations are copied from Section 12.1, without repeating their derivation.

A necessary condition for a feasible interplanetary transfer trajectory is

where re and rt are the radius of the orbit of the Earth and of the target planet about the Sun,
respectively, and ra and rp are the apohelion and perihelion distance of the interplanetary transfer
trajectory, respectively. When the notation

(18.11)

is introduced, we can, just as we did in Section 12.1, derive from these relations the necessary
conditions for an interplanetary transfer trajectory:

(18.12)

Figure 18.4 shows the range of feasible interplanetary trajectories to Mars (n = 1.524) in the ez-
diagram, according to the conditions (18.12). In this Figure the region of elliptical trajectories
(e < 1), the line representing parabolic trajectories (e = 1) and the region of hyperbolic
trajectories (e > 1) are indicated. The trajectory with the lowest value of the eccentricity is 
indicated by H. For that trajectory, we find from (18.12)

(18.13)
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Figure 18.4: Constant )V0 contours in the ez-diagram for two-dimensional trajectories to Mars. Assump-
tions: orbits of Earth and Mars are circular; 185 km altitude circular initial parking orbit.

Figure 18.5: Geometry of two-dimensional interplanetary trajectories.

Figure 18.5 shows the geometry of a heliocentric interplanetary trajectory and the notations used
for the analyses. Application of the cosine rule in the velocity diagrams indicated in this Figure
results in

(18.14)

Because the planets are assumed to move in circular orbits about the Sun, we have

(18.15)

Expressions for the parameters V1, V2, (1 and (2 of the heliocentric Keplerian transfer trajectory
can be found in a way similar to the one applied in Section 12.1, and we find

(18.16)
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(18.16)

Substitution of (18.15) and (18.16) into (18.14) yields, after some algebraic manipulation,

(18.17)

According to the criterion set in Section 18.3, the optimum transfer trajectory is characterized by
the condition )V0/Ve = minimum. With (18.9) we may write

For a specified initial parking orbit about the Earth, the values of the parameters Vc0 en Vesc0 are
known, and thus we may write with (18.17)

(18.18)

where c1 = (Vc0 /Ve)
2. Figure 18.4 shows some curves of constant )V0 /Ve as a function of z en e,

for a flight to Mars that starts from an initial circular parking orbit about the Earth at an altitude
of 185 km (c1 = 6.85*10-2).

Equation (18.18) is very similar to the first term on the right-hand side of (12.9), except for
the appearance of c1 in (18.18). Therefore, basically the same analysis as given in Section 12.1
can be applied to determine the optimum interplanetary transfer trajectory. We then arrive at the
conclusion that point H in the ez-diagram indicates the optimum transfer trajectory. So, the
heliocentric trajectory that requires a minimum )V0 is an ellipse of which the values of e and z
are given by (18.13); the apohelion distance of this ellipse is equal to rt and the perihelion
distance is equal to re (for a flight to an outer planet). This optimum interplanetary trajectory is
tangent both to the orbit of the Earth and to the orbit of the target planet. This means that the
velocity vectors  and  are also tangent to the orbits of both planets about the Sun, and we
may write for a flight to an outer planet

(18.19-1)

and for a flight to an inner planet

(18.19-2)

This minimum-energy trajectory is called a Hohmann trajectory (Section 12.1), in honor of W.
Hohmann (1880-1945) who has proposed this trajectory for interplanetary spaceflight in 1925.

Substitution of (18.13) into (18.17) and (18.18) yields for a Hohmann transfer trajectory

(18.20)
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(18.20)

For a given planetary mission (specified n) and a given parking orbit about the Earth (specified
c1), the values of V4e , V4t and )V0 corresponding to a Hohmann transfer trajectory can be
computed from (18.20). If the parking orbit about the target planet is known, then the value of
)V3 can be computed from (18.10).

Some parameters of Hohmann trajectories to the planets are listed in Table 18.2. Because the
planetary orbits are assumed to be circular (and coplanar), the value of n is set equal to the ratio
between the semi-major axis of the orbit of the target planet and that of the orbit of the Earth.
Note that for the outer planets the transfer trajectory has a high eccentricity. An important
conclusion that can be drawn from this Table is that the flight time, tf, to the outer planets is very
long. For this reason, Hohmann trajectories to these planets are not very practical and faster 
direct-transfer trajectories are needed, although they require more propellant, or swingby
trajectories (Section 18.11) have to be flown. The parameters Tsyn , R1, R2 and D will be discussed
later. This Table also presents a survey of the characteristic velocities and impulsive shots
associated with Hohmann transfer trajectories to the planets. For the computation of the
impulsive shots it has been assumed that: 1) the spacecraft departs from a circular parking orbit
at an altitude of 185 km above the Earth; 2) the spacecraft approaches the target planet along a

Table 18.2: Parameters of Hohmann transfer trajectories from the Earth to the planets. The orbits of the
planets are assumed to be circular and coplanar. The velocity data refer to a departure from a 185 km
altitude circular parking orbit about the Earth and a final circular parking orbit with a radius of 1.1 times
the planet radius.

Target
planet

n a
(AU)

e tf

(yr)
Tsyn

(yr)
R1

(deg)
R2

(deg)
D

(AU)

Mercury 0.3871 0.6935 0.4419 0.2888 0.317 108.3 76.0 0.981

Venus 0.7233 0.8617 0.1605 0.3999 1.599 306.0 36.0 0.594

Mars 1.5237 1.2618 0.2075 0.7087 2.135 44.3 284.8 1.594

Jupiter 5.2029 3.1014 0.6776 2.7310 1.092 97.2 276.8 5.180

Saturn 9.5367 5.2683 0.8102 6.0462 1.035 106.1 163.4 10.50

Uranus 19.189 10.095 0.9009 16.036 1.012 111.3 166.9 20.16

Neptune 30.070 15.535 0.9356 30.615 1.006 113.2 318.6 29.33

Pluto 39.482 20.241 0.9506 45.532 1.004 113.9 348.4 38.50

Target
planet

Ve

(km/s)
V1

(km/s)
V4 e

(km/s)
Vt

(km/s)
V2

(km/s)
V4t

(km/s)
)V0

(km/s)
)V3

(km/s)

Mercury 29.78 22.25 7.53 47.87 57.48 9.61 5.56 7.56

Venus 29.78 27.29 2.49 35.02 37.73 2.71 3.51 3.26

Mars 29.78 32.73 2.94 24.13 21.48 2.65 3.61 2.09

Jupiter 29.78 38.58 8.79 13.06 7.41 5.64 6.31 16.90

Saturn 29.78 40.07 10.29 9.64 4.20 5.44 7.28 10.34

Uranus 29.78 41.06 11.28 6.80 2.14 4.66 7.98 6.47

Neptune 29.78 41.44 11.65 5.43 1.38 4.05 8.25 6.92

Pluto 29.78 41.60 11.81 4.74 1.05 3.69 8.36 3.04
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hyperbolic trajectory with a minimum distance of r3 = 1.1R, where R is the (equatorial) radius of
the planet 4, and is then decelerated to enter a circular orbit with a radius of 1.1R about that planet.
From this Table a number of conclusions can be drawn, e.g.:
S The required )V0 is minimum for a mission to Venus; then follow flyby missions to Mars,

Mercury, Jupiter and the outer planets.
S The required )V3 to enter a circular orbit with a radius of 1.1R about a target planet is

minimum for a mission to Mars. For the giant planets Jupiter and Saturn )V3 is very large.
S If )V0 = 8.74 km/s, then V4e = 12.34 km/s and V1 = 42.12 km/s, which is just the escape

velocity from the Sun’s gravity field at the (mean) distance of the Earth from the Sun. So, for
this )V0 the spacecraft will escape from the solar system. Note that this )V0 is only 6% larger
than the )V0 required to reach the planet Neptune along a Hohmann trajectory.

S Except for the planets Venus and Mars, it costs less propellant to escape from the solar system
than to fly along a Hohmann trajectory to a planet and to enter a circular orbit with radius 1.1R
about that planet.

The modern heavy-lift launchers Delta 4050H-19 and Atlas 551 can inject a payload of about
2900 kg and 2250 kg, respectively, into an escape trajectory with V4e = 7.5 km/s after a launch
due east from Cape Canaveral; this velocity corresponds to V0 = 13.3 km/s and )V0 = 5.5 km/s
when injection takes place at 185 km altitude. The Ariane 5 ECA launcher can inject a payload
of about 4100 kg into an escape trajectory with V4e = 3.5 km/s after a launch due east from
Kourou; this velocity corresponds to V0 = 11.6 km/s and )V0 = 3.8 km/s when injection takes
place at 185 km altitude. Comparing these values with the ones listed in Table 18.2, we conclude
that even these heavy-lift launchers cannot launch a payload with a mass of more than 2 ton to
Jupiter and beyond along a minimum-energy Hohmann trajectory. So, additional so-called kick
stages, more-powerful launchers or swingby techniques (Section 18.11) are needed to launch
appreciable payloads to the outer planets.

18.5. Insertion into an orbit about the target planet

A deceleration maneuver to enter an orbit about the target planet, generally, has to satisfy various
requirements. In this context, it is noted that the initial parking orbit about the Earth always is
(near-)circular and at a low altitude. Any higher circular orbit or elliptical orbit costs more
propellant. This argument does not hold for the final orbit about a target planet. There, the
requirement of low propellant consumption leads to a highly eccentric parking orbit. If the orbit
about the planet is specified, then it is most efficient to apply the impulsive shot at pericenter of
this orbit and perpendicular to the radius vector (Section 1.7). By applying small maneuvers
during the interplanetary flight (mid-course corrections), the pericenter distance, r3, of the
hyperbolic flyby trajectory can be adjusted such that it equals the pericenter distance of the
desired orbit about the planet, while the value of V4t remains about constant. After the
deceleration maneuver the velocity should be smaller than the local escape velocity, and we find
for the magnitude of the deceleration impulsive shot from (18.10)

(18.21)

where : is the gravitational parameter of the target planet and V4t follows from the interplanetary
trajectory flown. For increasing values of )V3, the eccentricity of the parking orbit, of course,

4 For simplicity, in this Chapter we neglect the eventual existence of a planetary atmosphere or, where appropriate,
assume that the radius R includes the appreciable part of the atmosphere.
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decreases. The lowest eccentricity is reached if the velocity after deceleration is just equal to the
local circular velocity, which requires a deceleration impulsive shot with magnitude

(18.22)

For the numerical examples presented in this Section, we assume that V4t is 10% higher than the
value of V4t corresponding to a Hohmann transfer trajectory to a particular planet, which is listed
in Table 18.2. We then find for a Mars orbiter mission with r3 = 3746 km (h3 = 350 km):
)V3 > 0.82 km/s; for )V3 = 2.22 km/s the spacecraft will enter a circular orbit at an altitude of
350 km about Mars. These values provide some feeling for the sensitivity of the orbit on the
magnitude of the deceleration impulsive shot.

In general, the orbit about the target planet has to satisfy certain mission criteria. Below, a
few special cases will be analyzed in some detail and expressions for the required deceleration
impulse will be given. In all cases, it is assumed that the deceleration maneuver is applied at
pericenter of the final orbit about the planet.

Orbits with specified eccentricity
In Section 6.3 we have derived an expression ((6.23)) for the velocity at pericenter of an elliptical
orbit, Vp. With the notation used in this Chapter, that expression reads for an orbit about the target
planet:

Substitution of this expression into (18.10) yields

(18.23)

Note that for any value of r3 and V4t , )V3 decreases when e increases. So, )V3 is, for specified
values of r3 and V4t , minimum if the parking orbit is almost parabolic. To investigate whether
there exists an optimum pericenter distance, r3, for which )V3 is minimum for specified values
of V4t and e, we differentiate (18.23) partially with respect to r3 and find

A numerical analysis of this expression shows that, for any value of V4t and e < 1, the expression
on the right-hand side has one root and runs from negative to positive over the range 0 < r3 < Rs.i ,
where Rs.i is the radius of the sphere of influence. This implies that )V3 is minimum when
M)V3/Mr3 = 0, and that )V3 keeps increasing at increasing values of r3 larger than the optimum
value of r3 for which )V3 is minimum. Setting the expression on the right-hand side equal to zero,
we obtain for the optimum value of r3

(18.24)
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where

is the escape velocity at the surface of the planet. Of course, this optimum only has a physical
meaning if (r3/R)opt $ 1. For the limiting case (r3/R)opt = 1, we find from (18.24)

So, two cases can be distinguished, depending on the value of e. For these cases, we find with
(18.23)

(18.25)

Note that for e < elim the optimum value of r3/R decreases with increasing values of e and
increasing values of V4t ; for e $ elim the optimum value of r3/R is always one. The value of
()V3)min decreases with increasing values of e and decreasing values of V4t. With the assumption
about the value of V4t mentioned above, we find for the planets Venus, Mars and Jupiter:
elim = 0.847, elim = 0.496 and elim = 0.978, respectively. For an orbit with e.g. e = 0.7, we find from
(18.25) for Venus: (r3 /R)opt = 2.13, ()V3)min = 1.15 km/s; for Mars: (r3 /R)opt = 1, ()V3)min = 1.18
km/s; and for Jupiter: (r3 /R)opt = 16.25, ()V3)min = 2.40 km/s.

The absolute minimum value of )V3 is obtained when e . 1, so for an almost parabolic
parking orbit. For the limiting case e = 1 we find from (18.25-2)

(18.26)

It is noted that r3/R = 1 implies a zero pericenter altitude, which is impossible, and the minimum
pericenter altitude is determined by the acceptable level of atmospheric drag acting on the
spacecraft and by the acceptable level of charged particles radiation in the planet’s radiation belts.
However, the analysis shows that the absolute minimum value of )V3 corresponds to an orbit
about the planet that has a very low pericenter altitude and a very high eccentricity (e < 1). When
we consider, as an example, missions to Venus, Mars and Jupiter, we find, with the assumption
about V4t mentioned above, from (18.26): ()V3)min,abs = 0.42 km/s, 0.78 km/s, and 0.32 km/s,
respectively.

For many planetary orbiters a circular orbit is very attractive because of the constant
observation altitude. For this case e = 0, and (18.25-1) simplifies to

(18.27)
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When we substitute the respective values of V4t into (18.27), we find for Mercury and Pluto:
(r3 /R)opt < 1; for all other planets, except Mars: (r3 /R)opt > 12, which means that for these planets
optimum circular orbits are of little practical value. For Mars, we find: (r3 /R)opt = 2.97, h3 = 6691
km, ()V3)min = 2.06 km/s. To give an impression of the variation of )V3 in the region around the
optimum altitude, we conclude from (18.27) that for the optimum value of r3: )V3 = 0.71 V4t.
When we substitute e = 0, r3 /R = 2(r3 /R)opt into (18.23) we find: )V3 = 0.72 V4t; for e = 0,
r3 /R = 0.5(r3 /R)opt we find: )V3 = 0.73 V4t. So, we conclude that although there exists an optimum
value of r3, the variation of )V3 is quite ‘flat’ when r3 varies over a significant range about its
optimum value.

Orbits with specified semi-major axis
The semi-major axis determines the period of the orbit about the planet and therefore governs the
observation program that can be executed by the spacecraft. It is emphasized that for a specified
value of a, the apocenter distance decreases if the pericenter distance, r3, increases, while for a
specified value of e, which case was discussed before, the apocenter distance increases if r3

increases. Using the vis-viva integral (6.21), (18.10) may be rewritten as

(18.28)

To investigate whether there exists an optimum pericenter distance for which )V3 is a minimum
for specified values of V4t and a, we differentiate (18.28) partially with respect to r3 and find

Since a > 0, this expression shows that M)V3/Mr3 > 0 for all values of r3, which means that )V3

will increase continuously for increasing values of r3. So, the minimum deceleration impulse )V3

is required if the deceleration altitude (pericenter of orbit) is as low as possible. When, for
simplicity, we again assume that the minimum value of r3 is equal to R, we find from (18.28)

(18.29)

Note that the value of ()V3)min increases if V4t increases or a decreases. An elementary analysis
shows that the apocenter altitude and eccentricity of the resulting orbit are then given by ha = 2(a
- R), e = 1 - R/a. The absolute minimum deceleration impulsive shot corresponds to the case that
after deceleration the orbit is a parabola, for which a = 4. In that case, (18.29) becomes identical
to (18.26), as could be expected.

With the expression for the orbital period, T, of an elliptical orbit ((6.25)), (18.28) can be
written as

(18.30)

When we consider orbits about Mars with a pericenter altitude of 350 km and an orbital period
of 5 hr, 10 hr, 50 hr, and 300 hr, we find: )V3 = 1.50 km/s, 1.24 km/s, 0.96 km/s, and 0.86 km/s,
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respectively. A special case is a Mars surface synchronous orbit, which is the Martian equivalent
of a geosynchronous orbit. Since the rotation period of Mars is 24.623 hr, we find from (6.25):
a = 20,427 km. From (18.30) we find for a pericenter altitude of 350 km: )V3 = 1.04 km/s. For
a circular surface synchronous orbit (‘Mars-stationary’ orbit): r3 = 20,427 km = 6.01 R, )V3 =
2.11 km/s. Note that the ratio r3/R for this orbit is reasonably close to the value of r/R = 6.61 for
a circular geosynchronous orbit (geostationary orbit).

Aerobraking
If the target planet has an appreciable atmosphere, atmospheric drag generated by the spacecraft’s
motion through that atmosphere can be used to decelerate the spacecraft, thereby reducing the
)V to be delivered by the spacecraft’s thrusters, which saves mass.

The concept of aerobraking can be described as follows. By applying appropriate mid-course
maneuvers, the spacecraft enters the planet’s sphere of influence at the right position and with
the right velocity, leading to a selected value of the pericenter distance of the flyby hyperbola.
When the spacecraft passes pericenter, a rocket engine is ignited and a deceleration maneuver is
applied that brings the spacecraft into a highly eccentric elliptical orbit about that planet. After
check-out of the spacecraft’s health, the walk-in period, which lasts about a week, starts. During
this period, the spacecraft’s thrusters are fired at successive apocenter passages to slightly
decelerate the spacecraft and thereby gradually lower the pericenter from its original orbit
insertion altitude to its aerobraking altitude. This phase is used as a calibration period to improve
the models that describe the effects of the atmosphere on the spacecraft in the aerobraking region.
Once the orbiter has reached its operational ‘drag orbit’ pericenter altitude, the main phase of
aerobraking begins. During this phase, which lasts about half a year, the apocenter altitude
continuously decreases due to the drag experienced at the pericenter region. It will be clear that
aerobraking is an extremely sensitive technique. The pericenter altitude should be low enough
to generate an appreciable drag, but not too low in order to limit the forces acting on the
spacecraft, and in particular on its fragile solar panels, and the heat dissipated to the spacecraft.
Therefore, small propulsive maneuvers at apocenter are occasionally required to raise or lower
the pericenter altitude somewhat, depending on the actual atmospheric density at the pericenter
region. When the apocenter altitude has decreased to a value close to its desired final value, the
walk-out phase starts, which lasts about a week. Thrusters are fired at apocenter to slightly
accelerate the spacecraft and thereby gradually increase the pericenter altitude, causing the orbit
to shrink more slowly. When the apocenter has reached the desired altitude, thruster firings at
apocenter raise the pericenter altitude out of the atmosphere to the desired altitude and the
aerobraking maneuver is completed. A few additional small maneuvers are required to fine tune
the final orbit.

The aerobraking technique was first applied in the Magellan mission (launch May 4, 1989)
to Venus, and then in the Mars Global Surveyor mission (launch November 7, 1996), the Mars
Odyssey mission (launch April 7, 2001), and the Mars Reconnaissance Orbiter mission (launch
August 12, 2005). During these missions, the pericenter altitude in the main phase of aerobraking
was as low as about 140 km for the mission to Venus and about 100 km for the missions to Mars.
The Mars Climate Orbiter, launched on December 11, 1998, also aimed for the application of
aerobraking. However, when the spacecraft approached Mars on September 23, 1999, a mix-up
of English and metric units in the transmission of commands for the preparation of the orbit
insertion maneuver actually brought the pericenter at an altitude of only 57 km instead of the
planned 140-150 km altitude. At this low altitude, the atmospheric density was much too high,
resulting in a disintegration and burn up of the spacecraft in the Martian atmosphere. As an
example of a successful mission, the aerobraking maneuver of the Mars Reconnaissance Orbiter
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will be described in some detail.
Mars Reconnaissance Orbiter arrived at Mars on March 10, 2006. Its interplanetary trajectory

made it to pass under the southern hemisphere at an altitude of about 300 km, traveling at about
3 km/s. The desired final orbit was an elliptical one with pericenter over the south pole at an
altitude of 255 km and apocenter over the north pole with an altitude of 320 km; the period of
that orbit is 1 hr 53 min. When the spacecraft passed the pericenter of its hyperbolic trajectory,
the six 170 N thrusters of the spacecraft’s orbit maneuvering system were fired for about 25 min
to slow down the spacecraft by about 1 km/s and to put it into a highly eccentric orbit with
pericenter and apocenter altitudes of 300 km and 45,000 km, respectively; the period of this orbit
is about 35 hr. Aerobraking started on April 5, 2006, by firing the thrusters at apocenter (in the
direction opposite to the spacecraft’s velocity vector) to initiate a 5-day walk-in phase, during
which thruster burns near apocenter incrementally lowered the pericenter distance enough for the
spacecraft to begin encountering atmospheric drag. Once the pericenter was lowered to the
altitude where the optimum amount of atmospheric drag was found, the main phase of
aerobraking began. In this phase, more than 500 carefully calculated aerobraking dips into the
upper atmosphere occurred over the course of about six months; during this phase, the pericenter
altitude ranged from 98 to 110 km. Experience gained from earlier US Mars orbiters, plus
constant monitoring of the realized orbit changes, has aided calculations of how low to bring the
pericenter from day to day. In its configuration for aerobraking, the orbiter presented a frontal
area of 37.5 m2, including the back surfaces of the solar panels and high-gain antenna, to the
incoming gas flow. The more compact and massive main structure of the spacecraft was out in
front of these larger surfaces in the direction of motion. This configuration gives the spacecraft
a self-righting stability. The latitude of the pericenter started near 65E S, moved southward past
the winter pole and was almost back to the equator when the walk-out phase started in the last
week of August. When the apocenter altitude had been reduced to 450 km, an exit maneuver on
August 30 ended aerobraking. Three subsequent propulsive orbit adjustment maneuvers then
established the spacecraft’s final orbit. By using this aerobraking technique, the project saved
carrying 600 kg of additional propellant for the spacecraft’s thrusters system to Mars.

18.6. Faster two-dimensional direct-transfer trajectories

If the spacecraft is accelerated along its escape trajectory from the Earth to a velocity somewhat
high er than required to enter a Hohmann transfer trajectory, then the spacecraft moves, in
general, along a segment of a heliocentric ellipse that intersects both the orbit of the Earth and
that of the target planet at two points (Figure 18.6). This implies that for a heliocentric elliptical
trajectory with specified values of e and z, theoretically four different missions can be flown
where different segments of the same ellipse are traversed (sketches a) to d)); these four missions
require the same amount of propellant. Obviously, the flight indicated by sketch a) leads to the
shortest flight time. It is emphasized that in all cases the spacecraft moves in the same direction 

Figure 18.6: Four ways of reaching the target planet along the same elliptical trajectory.
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as the planets about the Sun. When the spacecraft is accelerated in its parking orbit about the
Earth to a velocity higher than the local escape velocity with respect to the solar gravity field
(V1 . 42.1 km/s), then the heliocentric trajectory will be a hyperbola. In that case, of course, only
the flights indicate by sketches a) and c) are feasible.

When for these faster trajectories the impulse )V0 is applied in such a way that  coincides
with , which requires (1 = 0E, then the perihelion distance of the heliocentric transfer
trajectory is re. In other words: the line z = 1 + e in Figure 18.4 represents the collection of all
heliocentric transfer trajectories that touch the orbit of the Earth. Likewise, the line z = n(1 -e)
in Figure 18.4 represents the collection of all heliocentric transfer trajectories that touch the orbit
of the target planet ((2 = 0E). So, it may be concluded from Figure 18.4 that for a specified value
of )V0 larger than the value required for the Hohmann trajectory, an interplanetary transfer
trajectory can be flown with (1 = 0E, (2 … 0E; (1 … 0E, (2 = 0E; (1 … 0E, (2 … 0E. Another
conclusion is that there exist hyperbolic transfer trajectories that touch the orbit of the Earth,
which require less energy than elliptical transfer trajectories that touch the orbit of the target
planet. For all trajectories with the same value of )V0, the arrival conditions at the target planet
and the flight time to the target planet will, generally, be different. Which trajectory is chosen,
depends on the requirements set for the flight time, distance between target planet and Earth upon
arrival at the target planet, direction and magnitude of , etc.

In order to prevent the flight times to become unrealistically long, the spacecraft should be
injected with not too small a )V0. However, the possibilities are limited by the performance of
available launchers. Figure 16.5 shows a diagram of the launch vehicle payload capability versus
the launch vehicle characteristic velocity, Vchar , (Section 16.4) for some launch vehicles. This
Figure shows that, for a reasonable payload capability, a characteristic velocity of about 16 km/s
may be considered as an upper limit, even for the most-powerful launchers. Only the Saturn
V/Centaur four-stage launcher, which has only existed on the drawing table, would have achieved
a higher Vchar. A characteristic velocity of 16 km/s corresponds to a )V0 of about 8 km/s. Table
18.2 shows that even a Hohmann transfer trajectory to the planets Uranus, Neptune or Pluto
requires a )V0 of 8.0-8.4 km/s. So, the limited capabilities of the present launchers with their
chemical propulsion systems seriously constrain the execution of fast direct interplanetary
missions. This is precisely the reason why swingby flights (Section 18.11) are chosen nowadays
for most planetary missions.

We now consider the case of transfer trajectories that touch the orbit of the Earth ((1 = 0E,
21 = 0E) and assume that the flight of the spacecraft corresponds to sketch a) of Figure 18.6; for
this case: 0E < (2 # 90E, 22 < 180E. These trajectories form a characteristic class of faster
interplanetary trajectories. In Figure 18.4, these trajectories all lie on the line z = 1+e.
Substitution of this relation and (18.15) into (18.16) and (18.17) yields

(18.31)

The heliocentric transfer angle covered by the spacecraft during its motion about the Sun is found
by substitution of r = rt, 2 = 22, e = z - 1, and (18.11) into the equation of a conic section (5.22).
We then find
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(18.32)

The flight time to the target planet can be found by applying the relations between 2 and time that
hold for elliptical, parabolic or hyperbolic trajectories (Section 6.5, 7.3 or 8.3). For example, if
the interplanetary transfer trajectory is an ellipse, then

(18.33)

where :S is the gravitational parameter of the Sun and E2 is the eccentric anomaly upon arrival
at the target planet. Using the relations e = z -1, (6.2) and (18.11), we find

(18.34)

For the angle E2 we write according to (6.34) and (6.35):

(18.35)

where

(18.36)

Substitution of e = z -1, (18.32) and (18.36) into (18.35) yields

(18.37)

The relations (18.33), (18.34) and (18.37) yield the flight time as a function of z and n. Some
important conclusions concerning this class of transfer trajectories can be drawn from (18.11),
(18.31) to (18.33). Because V1 increases at increasing values of )V0, (18.31-1) shows that
consequently also the value of z increases at increasing values of )V0. So, the equations show that
for a specified target planet (n fixed) and increasing values of )V0 (increasing values of z):
S The velocity V2 and the flight path angle (2 increase.
S The velocity V4t increases. Consequently, also the velocity V3 increases for a fixed value of r3.

This implies that faster interplanetary trajectories require larger deceleration impulses to enter
a specified orbit about the target planet.

S The semi-major axis and eccentricity of the transfer trajectory increase.
S The heliocentric transfer angle, )2 = 22, and the flight time, tf, decrease.
Some parameters of two-dimensional trajectories with (1 = 0E to Mars and Jupiter are plotted as
a function of )V0 in Figure 18.7. It was assumed that the missions start from a 185 km altitude
parking orbit about the Earth and that the (minimum) flyby distance is 2R, where R is the planet’s
(equatorial) radius. From this Figure, it can be concluded that even a small increase of )V0 above
the value required for a Hohmann transfer trajectory leads to a significantly shorter flight time.
For a Hohmann transfer to Mars the flight time is 259 days and the required )V0 is 3.61 km/s,
leading to a mission characteristic velocity, Vchar

* , of 11.42 km/s (.37,600 ft/s). Decreasing the
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flight time by 50% requires a )V0 increase of only 0.7 km/s (.19%), leading to a Vchar
*  of 12.12

km/s (.39,700 ft/s). According to Figure 16.5, an Atlas/Centaur/TE 364 launcher can inject a
payload of 1900 lb (860 kg) into this faster trajectory, compared to a payload of about 2600 lb
(1180 kg) for the Hohmann flight. So, halving the flight time corresponds to a reduction of 27%
in the payload capability. From Figure 18.7 we conclude that for flight times of less than 70 days
to Mars, the transfer trajectory is a hyperbola and the heliocentric transfer angle, )2, is less than
75E. These transfers would require an impulsive shot in the parking orbit of )V0 > 8.6 km/s or
Vchar

*  > 16.4 km/s, which would lead even for the most powerful launchers to a payload mass of
less than 400 kg (Figure 16.5). A characteristic phenomenon, in particular for flights to Venus
and Mars, is the fast increase of the flyby velocity for a given value of r3 at decreasing flight
times. If the spacecraft has to enter a specified orbit about the target planet, one will aim at a
relatively small value of V3, in order to limit the amount of propellant needed for the deceleration
maneuver. Therefore, for planetary orbiter missions direct transfer trajectories that are relatively
close to a Hohmann transfer trajectory are preferable.

Figure 18.7: Parameters of two-dimensional trajectories with (1 = 0E to Mars (left) and Jupiter (right)
as a function of )V0 . Assumptions: orbits of the planets are circular; 185 km altitude initial parking orbit;
minimum flyby distance: 2 R.

18.7. Launch opportunities

A necessary condition for an interplanetary trajectory is that when the spacecraft crosses the orbit
of the target planet about the Sun, the planet is at that position in its orbit. For a particular
interplanetary transfer trajectory and flight time, this requirement defines the launch time. For
a two-dimensional transfer, we conclude from Figure 18.5 that the geometric configuration of
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Earth and target planet at the time of launch should satisfy the relation

(18.38)

where nt is the (mean) angular (orbital) motion of the target planet in its orbit about the Sun and
tf is the flight time. For a specified interplanetary transfer trajectory, the parameters 21, 22 and
tf are known. Then, the required configuration of Earth and target planet at launch, and thus the
time of launch, can be determined from (18.38). According to Figure 18.5, the planetary
configuration at the time of arrival at the target planet should satisfy the relation

(18.39)

where ne is the (mean) angular (orbital) motion of the Earth in its orbit about the Sun. From this
relation, the configuration of Earth and target planet upon arrival at the target planet can be
computed. The parameters R1 and R2 are called the planet phase angle at departure and the
planet phase angle at arrival, respectively. As a special case, we now consider a Hohmann
transfer trajectory to an outer planet, for which 21H = 0E, 22H = 180E. We then obtain from (18.38)
and (18.39)

(18.40)

The values of these angles are listed in Table 18.2 for all target planets.
The angle R2 is an important parameter in the selection of suitable interplanetary trajectories.

When for a flight to an inner or outer planet R2 . 180E, then the Sun is between the spacecraft
and the Earth when the spacecraft arrives at the target planet. This will block or at least seriously
hamper the receipt of signals transmitted by the spacecraft, because the ground antenna will then
‘look’ at the Sun and will also receive the solar emission at radio-frequency wavelengths. In
addition, then the communication distance, D, between spacecraft and Earth is very large, which
requires a high-power transmitter on the spacecraft. For a flight to an outer planet, R2 . 0E is
attractive because of the short communication distance. However, then the spacecraft will ‘look’
at the Sun leading to the same type of communication problems. When for a flight to an inner
planet R2 . 0E, then the Sun is ‘behind’ the target planet when the spacecraft arrives at the target
planet. Again, this will seriously hamper the receipt of signals transmitted by the spacecraft. In
general, a Sun-Earth-spacecraft angle of larger than 3E is pursued so that the spacecraft stays
outside the region where solar interference degrades spacecraft communication with Earth ground
stations. The communication distance, D, can be determined from the relation (Figure 18.5)

or, with (18.11),

(18.41)

For a Hohmann transfer trajectory, substitution of (18.40) into (18.41) gives

(18.42)

This value of (D/re)H is also listed in Table 18.2 for all target planets.
When, at a certain time t0, the relative configuration of Earth and target planet is indicated
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by the angle R1,0 , then at a time t > t0 the angle R1 will differ from R1,0 due to the different angular
motions of the Earth and the target planet in their orbits about the Sun. After a certain period,
which is called the synodic period, Tsyn , the relative configuration of Earth and target planet is
*R1 - R1,0* = 2B. So, when at a certain time t0 the configuration of Earth and target planet is ideal
to fly a specified transfer trajectory to the target planet, for instance a Hohmann trajectory, then
we have to wait for a time Tsyn before the planet can be reached along a similar transfer trajectory.
Thus, the planetary phase angle R1 defines the launch time for a selected transfer trajectory within
each synodic period. From Figure 18.5 we may derive the following relation:

(18.43)

For t - t0 = Tsyn : *R1 - R1,0* = 2B. Substitution of these relations into (18.43) gives

or, with ne = 2B/Te and nt = 2B/Tt, where Te and Tt are the periods of the Earth and the target
planet in their orbits about the Sun,

(18.44)

For the outer planets, Tt o Te . So, for a flight to the outer planets we find from (18.44):
Tsyn . Te = 1 year, which means that every year a spacecraft can be launched along a minimum-
energy transfer trajectory to an outer planet. In Table 18.2, the synodic periods are listed for all
target planets. Note that Mercury can be reached three times a year along a Hohmann transfer
trajectory. A flight along a Hohmann transfer trajectory to Mars can only be executed once every
2.14 years. This result is clearly observable in the launch dates of actual missions to Mars; e.g.
Mars Observer (September 1992), Mars Global Surveyor (November 1996), Mars 96 (November
1996), Mars Pathfinder (December 1996), Mars Climate Orbiter (December 1998), Mars Polar
Lander (January 1999), Mars Odyssey (April 2001), Mars Express (June 2003), Mars Exploration
rover Spirit (June 2003), Mars Exploration rover Opportunity (July 2003), Mars Reconnaissance
Orbiter (August 2005), Phoenix (August 2007), Phobos Grunt (November 2011), Mars Science
Laboratory rover Curiosity (November 2011), Mangalyaan (November 2013), MAVEN
(November 2013).

In Section 18.4, the ez-diagram (Figure 18.4) was used to determine the optimum interplanetary
transfer trajectory. We may also use it for the selection of feasible faster transfer trajectories.
With an analysis similar to the one presented in Section 18.6, but not using anymore the condition
e = z -1, we can derive expressions for V1, V4e , V2, V4t , (1, (2, 21, 22, tf ,  R1, R2 and D as a function
of e and z for arbitrary two-dimensional transfer trajectories to a specific planet. These
expressions can be used to draw in an ez-diagram curves of constant values of these parameters.
By superimposing the various diagrams, it is possible to perform all kinds of quick analyses. As
an example, Figure 18.8 shows curves of constant tf and R1 for a two-dimensional flight to Venus
(n = 0.723). Consider a hypothetical flight to Venus that starts on a date when R1 = -10E and with
a flight time of 30 days. From Figure 18.8 we then obtain for the values of e and z of this transfer
trajectory: e = 0.508, z = 0.864. With these values of e and z, we can read from the ez-diagrams
with the contours for the other parameters the values of those parameters for the selected
trajectory. Of course, these can also be computed by substituting the values of e and z into the
relevant relations derived in Sections 18.4 and 18.6, and using a number of classical relations for
Keplerian trajectories. We find for this example of transfer trajectory and an initial parking orbit



Fundamentals of Astrodynamics     SS     Interplanetary flights 462

 

Figure 18.8: Curves of constant flight time, tf , or constant planetary phase angle at departure, R1, in the
ez-plane, for two-dimensional trajectories to Venus.

altitude of 200 km:
ra = 1.755 AU   ;   rp = 0.573 AU   ;   D = 0.304 AU
21 = 254.5E   ;   22 = 292.5E   ;   R2 = -8.5E
V1 = 31.8 km/s   ;   (1 = -29.5E   ;   V2 = 41.1 km/s   ;   (2 = -21.4E
V4e = 15.8 km/s   ;   V4t = 15.4 km/s   ;   )V0 = 11.5 km/s

With the present chemical propulsion systems this fast transfer trajectory is, however, beyond our
capabilities.

Much more interesting, however, are diagrams in which contours of constant injection energy
are plotted versus flight time, tf, and planet phase angle at departure, R1. For this purpose, we
write (18.18) as

Squaring this equation leads, after some algebraic manipulation, to

(18.45)

For a specified initial parking orbit about the Earth and for a selected value of )V0/Ve, (18.45)
can be used to compute the value of e for any value of z. As mentioned before, then the values
of R1 and tf can be computed. In this way, it is possible to compute in a closed analytical way
curves of constant )V0/Ve and to draw them in a R1tf -diagram. Such a diagram is shown for a
(hypothetical) two-dimensional flight to Mars in Figure 18.9 (top). This kind of contour plots are
sometimes called ‘porkchop plots’. Also indicated in this Figure is a line for which
)2 = 22 -21 = 180E. Trajectories with )2 < 180E are called Type 1 transfer trajectories. The
dashed part of the curves, for which )2 > 180E, represents Type 2 transfer trajectories. This kind
of plots is very useful for determining the minimum )V0 for a flight to a planet at a specified
launch time (specified R1), and for determining the launch window, as will be shown in Section
18.8.
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Figure 18.9: (top) Flight time, tf , versus planetary phase angle at departure, R1 , for two-dimensional
constant )V0 trajectories to Mars. Assumptions: orbits of the planets are circular; 185 km altitude initial
parking orbit. (bottom) Contours of constant departure hyperbolic excess velocity, V4e , for missions to
Mars; (bottom left) coplanar elliptical planetary orbits, (bottom right) mutually inclined elliptical
planetary orbits; values at the curves refer to the ratio V4e /Ve.

18.8. Three-dimensional direct-transfer trajectories

Until now, all analyses were based on the assumption that the planetary orbits are circular, that
their orbital planes coincide with the plane of the Earth’s orbit (ecliptic), and that the transfer
trajectory lies in the ecliptic. However, in reality the planetary orbits are elliptical and mutually
inclined, and transfer trajectories are three-dimensional. The computation of these three-
dimensional transfer trajectories is quite complicated. An additional problem is that the relative
configuration of the Earth and the target planet will not repeat every synodic period, due to the
eccentricity and inclination of the planetary orbits. Consequently, although during each synodic
period there exists a minimum-energy transfer trajectory, the injection energy required for that
trajectory differs for each synodic period. In the following, a general outline will be given of the
basic scheme to compute three-dimensional interplanetary trajectories.

We assume that the transfer trajectory is an elliptical heliocentric orbit from the center of the
Earth to the center of the target planet, but a similar methodology may be applied for parabolic



Fundamentals of Astrodynamics     SS     Interplanetary flights 464

and hyperbolic transfer trajectories. It is supposed that the basic variables in the computation
process are the time of departure from the Earth, t1, and the flight time, tf .  Then, the time of
arrival at the target planet, t2, is known. At t1, the coordinates of the Earth relative to a non-
rotating heliocentric ecliptic reference frame can be computed approximately by using the Earth’s
mean orbital elements, or can be extracted from planetary ephemerides computer files. The
heliocentric ecliptic coordinates of the target planet at t2 can be found in the same way.

The heliocentric transfer trajectory of the spacecraft lies, excluding mid-course plane
changes, in the plane through the Sun, the Earth at time of departure and the target planet at time
of arrival. The heliocentric transfer angle, )2, traversed by the spacecraft is given by

(18.46)

where  and  are the heliocentric position vectors of the Earth at departure and of the target
planet on arrival. The value of )2 may be determined uniquely by realizing that sin)2 must have
the same sign as , where  is the unit vector along the Z-axis; i.e. pointing to the
ecliptic north pole. The chord, c, joining Earth at departure and target planet on arrival is found
from

(18.47)

Now that the radii re and rt, and the chord c are known, Lambert’s equation (Section 6.7) can be
solved iteratively for the specified flight time to yield the semi-major axis, a, of the transfer
trajectory. Of course, the four cases of Lambert’s equation should be investigated separately.
Then, the heliocentric velocities V1 and V2 may be computed from

(18.48)

For the computation of the flight path angles (1 and (2 we need two well-known geometric
characteristics of conic sections. In Figure 18.10 the geometry of an elliptical interplanetary
trajectory is shown for one of the four cases of Lambert’s equation. In addition to the usual
triangle through the attraction center F1 (Sun), a second triangle through the empty focal point
F2 is indicated. The first characteristic of an ellipse that will be used is that the sum of the
distances of a point on the ellipse to the two focal points equals 2a. In fact, this characteristic is
one way of defining an ellipse. This relation allows the determination of the lengths of the sides
in the second triangle. The second characteristic that will be used is that the normal at a point on

Figure 18.10: Geometry for the determination of the flight path angle (1.
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the ellipse bisects the angle between the lines to both focal points. So, for (1 we may write

(18.49)

Application of the first characteristic and the cosine rule gives

(18.50)

As re, rt, a and c are known, solution of (18.50) and subsequent substitution into (18.49) yields
(1. It is emphasized that for each of the four cases of Lambert’s equation the quadrants of the
angles $1 and $2 should be determined and that the functional relation (18.49) is slightly different
for the other three cases. A similar analysis yields the value of (2.

Once the flight path angles are known, we proceed by computing the semi-latus rectum of
the interplanetary trajectory:

(18.51)

The eccentricity can be obtained from

(18.52)

The heliocentric true anomaly at the time of departure from the Earth follows from

(18.53)

The value of 21 is uniquely determined, as for 0E # 21 # 180E: (1 $ 0E, and for 180E # 2 # 360E:
(1 # 0E. The heliocentric true anomaly on arrival is found from

(18.54)

where )2 is given by (18.46). The inclination of the trajectory with respect to the ecliptic is
found from

(18.55)

where  is the unit vector normal to the orbital plane:

(18.56)

Now that the inclination of the orbital plane is known, we may apply spherical geometry to
determine the three-dimensional directions of  and  of which the magnitudes are given by
(18.48). The hyperbolic excess velocities  and  are given by

(18.57)

where  is the Earth’s heliocentric velocity at departure and  the target planet’s heliocentric
velocity on arrival.
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A very instructive discussion on the effects of the eccentricity and inclination of the planetary
orbits is given by J.V. Breakwell (1917-1991) et al.5, from which Figure 18.9 (bottom) is taken.
In that publication a flyby mission to Mars is considered and contours of constant V4e /Ve are
plotted as a function of launch date in 1960/1961 and flight time. For the circular coplanar case,
curves similar to Figure 18.9 (top) were obtained, where the optimum transfer is a Hohmann
transfer. Introducing the planetary orbital eccentricities, the minimum departure excess velocity
trajectory for that period now involves a transfer angle )2 = 210E and a longer flight time
(Figure 18.9, bottom left). After introducing also the planetary orbital inclination, we see in
Figure 18.9 (bottom right) that the original Hohmann trajectory has bifurcated into two local
minimum-energy trajectories with two different flight times. The two groups of closed contours
represent the Type 1 and Type 2 trajectories already mentioned in Section 18.7. Note that two
trajectories usually exist for a given type, V4e and launch date. Trajectories corresponding to the
lower parts of each contour are designated as Class 1 trajectories and yield shorter flight times
and smaller transfer angles; trajectories corresponding to the upper part of the contours are
designated as Class 2 trajectories. For a given launch date and V4e , the Type 1 Class 1 trajectory
has the shortest flight time and the Type 2 Class 2 trajectory has the longest flight time.

If the heliocentric transfer angle is about 180E, the plane determined by Sun, Earth and target
planet will, as a result of the planetary inclination, generally, be highly inclined to the ecliptic.
This implies excessively high values of )V0, and for orbiter missions also of )V3. The required
high values of )V0 are reflected by the very narrow spacing of the curves in Figure 18.9 (bottom
right) near the bifurcation region. These problems may be circumvented by applying mid-course
plane changes. One possibility is to depart in the plane of the Earth’s motion and to apply a mid-
course impulsive shot at the intersection of the orbital planes of the Earth and the target planet.
This would rotate the transfer orbital plane through the small angle between the planes of the
spacecraft trajectory and the target planet’s orbit. Such a maneuver requires only a modest
propulsive capability during the mid-course phase of the trip. However, it is generally even more
advantageous to perform the mid-course plane change at a point somewhat removed from the line
of intersection of the two orbital planes, and also to depart from the Earth and arrive at the target
planet in planes which are slightly inclined to the planetary motions (Figure 18.11). An optimiza-
tion procedure is needed to determine that position of the mid-course maneuver and those values
of the inclination of both branches of the transfer orbit that yield the minimum overall mission

Figure 18.11: Mid-course maneuver leading to a broken-plane transfer trajectory.

5 J.V. Breakwell, R.W. Gillespie, S. Ross, Researches in interplanetary transfer, A.R.S. Journal, Vol. 31, p. 201-208,
1961.
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propellant requirement. It is emphasized that in practice these near-180E transfer angle
trajectories are avoided for a number of operational aspects, and that mid-course maneuvers are
mainly executed to eliminate trajectory errors and to guarantee the planetary encounter to be as
accurate as possible.

Figure 18.12: Contours of constant injection energy, C3 , plotted versus launch date in 1964 and flight
time, tf; numbers at the curves refer to the value of C3 in km2/s2.

Figure 18.12 shows, for the Mariner 4 flight to Mars in 1964, a diagram in which the flight time
is plotted versus the time of launch from Earth and in which contours of constant injection energy
C3 (= ) are drawn. We recognize the two sets of contours discussed before; each set leading
to a minimum-energy trajectory:

Minimum for Type 2 trajectories
Launch date: November 14, 1964, C3 = 8.843 km2/s2, V4e = 2.974 km/s, tf = 305 day

Minimum for Type 1 trajectories
Launch date: November 18, 1964, C3 = 8.972 km2/s2, V4e = 2.995 km/s, tf = 245 day

When these numbers are compared to those for a two-dimensional Hohmann transfer trajectory
between coplanar circular planetary orbits: V4e = 2.94 km/s, tf = 259 days, we conclude that the
required injection energy compares reasonably well and that also the flight time does not differ
very much. Figure 18.12 shows that a Type 1 trajectory was selected for Mariner 4; the injection
energy of this trajectory (V4e = 3.11 km/s) differs very little from the minimum injection energy
for Type 1 trajectories in this period. For both types of trajectories the local minimum-energy
trajectory at a specific launch date can be determined by adding vertical tangents to the injection
energy contours in Figure 18.12. The minimum injection energy thus obtained can be plotted
versus the launch date and compared to the maximum injection energy that can be provided by
a particular launch vehicle to the spacecraft. In that way, the so-called launch window, during
which injection of that spacecraft by that rocket into an interplanetary transfer trajectory can take
place, can be determined. The selection of the nominal transfer trajectory for a particular mission
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is a complex problem, in which a trade off has to be made between the required injection energy,
i.e. the launcher payload capability, and operational constraints, such as communication distance
upon arrival, geometric configuration of Earth and target planet upon arrival, direction and
magnitude of planetary approach velocity, etc. The large majority of planetary spacecraft have
flown Type 1 trajectories. One of the few exceptions was the Phoenix spacecraft that traveled
along a Type II trajectory to Mars.

Figure 18.13: Interplanetary trajectory of the NASA Mars Odyssey spacecraft (left), and the spacecraft’s
approach of Mars and deceleration maneuver to enter an orbit about Mars (right).

In Figure 18.13 (left) the trajectory flown by the Mars Odyssey spacecraft is plotted relative to
a non-rotating heliocentric reference frame. The spacecraft was launched on April 7, 2001, by
a Delta II rocket, and arrived at Mars, after a flight of 200 days along a Type 1 trajectory, on
October 24, 2001. During the flight, five trajectory correction maneuvers (TCM) were executed.
Figure 18.13 (right) shows the spacecraft’s approach trajectory to Mars and the deceleration
maneuver to enter an orbit about Mars. Note that the deceleration burn lasted for 19 min and that
the burn ended 11 min before the spacecraft emerged from behind Mars when viewed from Earth.

Figure 18.14 shows the mission characteristic velocity, Vchar
* , for flights to Venus and Mars via

minimum-energy transfer trajectories for the period 1975-1990. For each launch opportunity, the
minimum characteristic velocity and the characteristic velocity for a 30-days launch window are
indicated. For comparison, the mission characteristic velocity for a two-dimensional Hohmann

Figure 18.14: Yearly variation of the mission characteristic velocity for minimum-energy flights to Venus
and Mars.
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transfer trajectory is also indicated, for the case that Earth, Venus and Mars would move in
circular coplanar orbits about the Sun. The Figure shows that for flyby missions to Mars a launch
in the years 1982, 1984 and 1986 was very attractive. However, in these years no US spacecraft
were sent to Mars.

18.9. Gravity losses

Until now, it has been assumed that thrusting periods during an interplanetary mission may be
considered as impulsive shots (Section 1.7). In reality, the rocket engines will have a non-zero
thrusting time and consequently gravity losses (Section 1.7) will occur, unless the thrust vector
is continuously oriented perpendicular to the position vector. Of course, the largest gravity losses
will occur during injection into the interplanetary trajectory and during the deceleration maneuver
after arrival at the target planet. In Section 12.7 it was shown how the information provided by
ESA CR(P) 1910 can be used to estimate the magnitude of the gravity loss for an optimum
transfer from a circular orbit to an elliptical orbit with perigee distance equal to the radius of the
initial circular orbit. There, it was assumed that the magnitude of the thrust and the (effective)
exhaust velocity are constant, and that the optimum history of the thrust angle, *, is applied. The
methodology presented in that ESA report may also be applied to estimate the gravity loss for
a transfer from a circular parking orbit about the Earth to a specified hyperbolic orbit (escape
from Earth), and for a transfer from a hyperbolic orbit about a target planet to an elliptical or
circular orbit about that target planet. In this Section, for both cases a numerical example will be
presented.

Escape from a parking orbit about the Earth
In Section 12.7, a number of dimensionless parameters were introduced, which read in the
notation applied in this Chapter:

(18.58)

where õ is the orbital energy, õ* is the normalized orbital energy, both per unit of mass, r0 is the
radius of the initial circular parking orbit, Vc0 is the circular velocity in this parking orbit, F is the
thrust, g0 is the acceleration due to gravity in the parking orbit, M0 is the initial mass of the
spacecraft, : is the gravitational parameter of the Earth, Vj is the (effective) exhaust velocity of
the rocket engine, and T0 is the period of the parking orbit. The notation 0,1 and 0,2 indicate the
conditions just before and just after the thrusting period in the parking orbit, respectively. The
percentage gravity loss is defined as

(18.59)

where )V is the actual impulse transferred to the spacecraft during the finite thrusting period and
()V)i is the impulse in case the maneuver would have been executed by an impulsive shot. In the
ESA report, many plots are presented for the value of ))V as a function of )õ*, for specified
values of õ0,1

* , k2 and k3. Because the initial parking orbit is circular, the following relations hold
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according to Section 12.7:

(18.60)

Figure 18.15: Powered part of a hyperbolic escape trajectory (left) for a mission to Mars and the optimum
variation of the angle 2 -* (right) during the powered flight for õ0,1

* = -0.5, õ0,2
* =0.5, k2=0.5, k3=0.5.

Figure 18.15 shows, as an example, the history of the optimum variation of the angle 2 -*, where
2 is the true anomaly and * is the thrust angle, for a thrusting period of t . 0.1034 T0 (t

* = 0.65)
and õ0,1

*  = -0.5, õ0,2
*  = 0.5, e = 2 ()õ* = 1.0), F/M0 = 0.5g0 (k2 = 0.5), Vj = 0.5Vc0 (k3 = 0.5). So,

this case concerns a transfer from an initial circular orbit to a hyperbolic orbit with e = 2.
According to (18.4) this value of e corresponds to V0 = %3&Vc0, which leads for a hyperbolic
trajectory perigee altitude of 300 km to V0 = 13.38 km/s and, according to (18.5), to V4e = 7.73
km/s. Inspection of Table 12.1 and Figure 12.19 (top) shows that for this escape flight:
))V . 2%.

Insertion into an orbit about the target planet
As an example of an orbit insertion maneuver at a target planet, we consider a transfer from a
hyperbolic trajectory with õ3,1

*  = 0.567 about Mars to an elliptical orbit with õ3,2
*  = -0.179 about

Mars. Here, the index 3 refers to the conditions at pericenter of the elliptical orbit, and the indices
3,1 and 3,2 refer to the conditions just before and just after the thrusting period. For this case, we
can derive the following expressions:

(18.61)

where e1 and e2 are the eccentricities of the initial hyperbolic orbit and of the final elliptical orbit,
respectively. From these relations, and the specified values of õ3,1

*  and õ3,2
* , we obtain e1 = 2.134,

e2 = 0.642. The value of e2 yields a value of 4.59 for the ratio between the apocenter and
pericenter distances of the final elliptical orbit. If we assume a pericenter altitude of 350 km, then
we obtain from (6.19), (18.5), (6.23) and (8.11): T3 = 1.934 hr, V4M = 3.60 km/s, V3,1 = 5.98 km/s,
V3,2 = 4.33 km/s. So, the rocket engine thrusting period has resulted in a velocity decrease of
)V3 = 1.65 km/s. Figure 18.16 shows the history of the optimum variation of the angle 2-* for
two values of the thrust: F/M0 = 2.0373g3 (k2 = 2.0373) and F/M0 = 0.20373g3 (k2 = 0.20373); for
both cases: Vj = 0.9608Vc3 (k3 = 0.9608). The engine burning time is for the higher thrust level:
t . 0.03 T3 (t

* = 0.188), and for the lower thrust level: t . 0.318 T3 (t
* = 2.0). When we use from

the ESA report the appropriate plot similar to Figure 12.19, we find for the gravity loss at the
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higher thrust level: ))V . 0.15% and at the lower thrust level: ))V . 9.2%. We conclude that
for the lower thrust level and corresponding extended burning time, the percentage gravity loss
is quite significant.

Figure 18.16: Transfer from a hyperbolic approach trajectory to an elliptical orbit about Mars and the
optimum variation of the angle 2-* during the powered flight for õ3,1

* =0.567, õ3,2
* = -0.179, k3=0.9608,

and k2=2.0373 (left) or k2=0.20373 (right).

18.10. Approach and flyby of a planet

During the approach of a planet the influence of the gravity field of that planet on the heliocentric
trajectory of the spacecraft will gradually increase. Ultimately, the gravitational attraction of the
planet will become the dominating force acting on the spacecraft. In the patched-conic approach,
we assume that when the spacecraft enters the sphere of influence of the planet appropriate
coordinate and velocity transformations are applied and from then on the hyperbolic trajectory
about the planet is described relative to a planetocentric non-rotating reference frame. Because
the radius of the sphere of influence is small relative to the distance of the planet from the Sun
(Table 4.3), in first approximation it may be assumed that, if the planet would not influence the
trajectory of the spacecraft, the heliocentric velocity of the spacecraft would hardly change in
magnitude and direction over a distance corresponding to the diameter of the sphere of influence.
Therefore, we may assume that the velocity and flight path angle at the moment of entrance into
the sphere of influence are given by V2 and (2, independent of the location of the point of
entrance. The location of the point of entrance into the sphere of influence can be influenced by
adapting the launch time and the selected interplanetary trajectory, and by applying mid-course
corrections. Figure 18.17 shows, for the case that the planes of the spacecraft’s trajectory and the
planet’s orbit coincide, the effect of the location of the point of entrance on the spacecraft’s tra-
jectory about the planet. In this Figure, the intersection of the heliocentric trajectory with two
instantaneous positions of the (moving) sphere of influence is sketched. Depending on the
position of the spacecraft along its heliocentric trajectory, it will enter the sphere of influence at
t0 or t1 and will fly for both cases entirely different trajectories about the planet. In the case that
the spacecraft enters the sphere of influence at t0 it will move in a counter-clockwise direction
about the planet; in the case that it enters the sphere of influence at t1 it will move in a clockwise
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direction about the planet. By applying small mid-course trajectory corrections, the time of
entrance into the sphere of influence is tuned such that the hyperbolic trajectory about the planet
precisely satisfies the mission requirements.

Figure 18.17: Sketch of the heliocentric trajectory of a spacecraft when it passes close to a planet, for two
relative positions of that planet and for the case that the spacecraft and the planet move in the same plane.

For a specified time of launch, interplanetary trajectory and position of the spacecraft along its
trajectory, the time when and location where the spacecraft enters the planet’s sphere of influence
and the spacecraft’s hyperbolic excess velocity with respect to the target planet, , are fixed.
These parameters determine the hyperbolic trajectory of the spacecraft within the sphere of
influence. An important parameter of that trajectory is the impact parameter, . To define this
impact parameter, we first introduce a non-rotating planetocentric coordinate frame RST (Figure
18.18). The S-axis is parallel to the incoming asymptote of the approach hyperbola; its positive
direction is the direction of . The T-axis is parallel to the ecliptic plane; its positive direction
is defined by

where  and  are unit vectors along the S- and T-axis, and  is the unit vector pointing
towards the ecliptic north pole. The R-axis completes the right-handed orthogonal coordinate
frame. So, the RT-plane is normal to the incoming asymptote. The vector , which specifies the
aiming point, is a vector from the center of the planet to the point where the incoming asymptote
pierces the RT-plane. Usually, the aiming point is defined by its two components q  and q .
Spacecraft engineering requirements and scientific experiment considerations, or the swingby
mission (Section 18.11) requirements, impose numerous constraints on the selection of the
aiming point. Once the aiming point is selected, it is the goal of mid-course maneuvers to nullify
any error in the trajectory such that the incoming asymptote pierces the RT-plane as close to the
aiming point as possible. For this, an accurate tracking of the spacecraft during its interplanetary
flight is indispensable.

The plane of the planetocentric hyperbola is determined by  and . This plane is oriented
perpendicular to the RT-plane. We now consider the motion of the spacecraft in its orbital plane
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Figure 18.18: Encounter geometry and aiming point reference frame.

for the case that the spacecraft is passing ‘behind’ the swingby planet; this motion is illustrated
in Figure 18.19. For a passage ‘ahead of’ the swingby planet a similar methodology can be
developed. The velocity  indicated in this Figure is the projection of the target planet’s
heliocentric velocity vector, , on this plane. It is important to realize that The
state vector of the spacecraft when it enters the sphere of influence is determined by four scalar
parameters: the position of the spacecraft by Rs.i and *, and the velocity of the spacecraft by V4t

and n2. For a specified interplanetary trajectory, *, V4t and n2 are known; these parameters
determine the hyperbolic trajectory flown by the spacecraft about the planet. In practice, the
application of the three variables B, V4t , $ instead of the set *, V4t , n2 is preferable. Of course,
we then first have to prove that there exist unique relations between both sets of variables.

 

Figure 18.19: The in-plane geometry of hyperbolic encounter trajectories.

From Figure 18.19 we obtain

(18.62)
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Because the angular momentum of motion is constant for the entire trajectory about the planet,
we can write

(18.63)

where the index 3 denotes the conditions at pericenter. With (18.15) we write

where : is the gravitational parameter of the planet. Substitution of this expression into (18.63)
gives

Squaring this relation yields for the pericenter distance of the hyperbolic trajectory about the
planet

(18.64)

Substitution of (18.64) into (18.63) gives for the velocity at pericenter

(18.65)

In Chapter 8 we have found the following relations for hyperbolic trajectories:

(18.66)

From these relations we find for the asymptotic deflection angle, " (Figure 18.19),

(18.67)

Substitution of (18.64) into this relation gives

(18.68)

For the angle $ in Figure 18.19 we can write

or, with (18.68),

(18.69)
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Expressions (18.62) and (18.69) constitute unique relations between the set of variables *, V4t and
n2 and the set of variables B, V4t , $. For the discussions below, the set of variables B, V4t , $ will
be used; the values of these parameters follow, just as the values of the variables *, V4t and n2,
from the interplanetary trajectory flown by the spacecraft. The parameters B and $ can be adapted
by applying mid-course maneuvers, which is crucial for the execution of swingby flights; the
parameter V4t is much less sensitive to mid-course maneuvers. It follows from (18.64), (18.65)
and (18.68) that, for specified values of B and V4t , a larger planet (larger value of :) yields a
smaller value of r3, a larger value of V3, and a larger value of ". The values of r3, V3 and " are
independent of the value of $. It also follows from these expressions that at increasing values of
B the value of r3 increases, the value of V3 decreases and the value of " decreases.

When the pericenter distance, r3, is smaller than the radius of the planet, R, then the spacecraft
will impact somewhere on the planet. So, according to (18.64), the condition for impact is

or

(18.70)

As an example, we assume, just as we did in Section 18.5, that the spacecraft approaches Mars
with a velocity V4t that is 10% higher than the value of V4t corresponding to a Hohmann transfer
trajectory (Table 18.2). We then find that the spacecraft impacts on Mars if B < 2.0 R. So, for an
impact on Mars it is not necessary that the incoming asymptote of the spacecraft’s planetocentric
trajectory intersects the surface of Mars; it is sufficient that this asymptote intersects a sphere
about Mars with a radius of 2R. Obviously, the Martian gravity field has a ‘focusing effect’ on
the trajectory. This radius is sometimes called the capture radius. Of course, if one wants to
execute a landing on the planet, then the spacecraft has to be decelerated by some means such
that the velocity just above the surface is reduced to a very small value. In practice, one will
require that the spacecraft lands in a certain region, which poses, for a given value of V4t , narrow
constraints on the admissible value of B. In addition, if we wish to take advantage of atmospheric
braking, then the aiming point B should lie within a thin annulus about the planet and the
atmosphere should be entered under a predetermined flight path angle (reentry corridor).

Figure 18.20 shows the minimum distance, r3, and the asymptotic deflection angle, ", as a
function of B/R and a series of realistic values of V4t for a flyby of Jupiter. Note that, for the V4t -
interval considered, the maximum deflection angle is 110-150E. The maximum deflection angle
can be determined analytically by substituting r3 = R into (18.67):

(18.71)

where Vc,surf is the circular velocity at the surface of the planet. This maximum deflection angle
is shown in Figure 18.21 (left) as a function of V4t for the various planets. Clearly visible is the
increase of "max at increasing values of : and decreasing values of V4t.
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Figure 18.20: Distance at closest approach (left) and asymptotic deflection angle (right) of Jupiter flyby
missions for several values of V4t .

Figure 18.21: Maximum asymptotic deflection angle (left) and maximum heliocentric orbital energy
increase (right) for swingby missions. For the energy increase, it has been assumed that VtN = Vt .

18.11. Swingby flights

Figure 18.19 shows that the direction of  is different from the direction of . Consequently,
the spacecraft’s heliocentric velocity at the moment that it leaves again the planet’s sphere of
influence, , differs from the heliocentric velocity at the moment that the spacecraft enters the
sphere of influence, . So, the result of passing a planet at a short distance is that the kinetic
energy of the spacecraft in its heliocentric trajectory changes without using a rocket engine and
expelling propellants. This, in essence, is the swingby effect. Because the dimension of the
planet’s sphere of influence is small on the scale of the solar system, the potential energy of the
spacecraft in the gravity field of the Sun hardly changes over a distance corresponding to the
diameter of the planet’s sphere of influence. Consequently, we conclude that, when viewed on
the scale of the solar system, the passage of a planet produces a discontinuous change of the total
energy of the spacecraft’s heliocentric trajectory. This is an illustration of the fact that in a many-
body system the total energy of a particular body is not constant (Section 2.1). Of course, the
change of the spacecraft’s total orbital energy has to be compensated by a minute change in the
orbit of the swingby planet. So, the spacecraft’s orbital energy change comes from the planet’s
motion about the Sun. Generally, the swingby technique is used to increase a spacecraft’s
velocity and propel it outward in the solar system. However, the swingby effect can also be used
to decrease a spacecraft’s orbital energy or to change the inclination of the trajectory, which
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would require a large amount of propellant if this would be performed by rocket thrust (Section
13.3). The swingby concept can also be used to increase the payload mass that can be carried by
a launcher for a specific target planet. To illustrate this, the following example may serve.
Consider a mission to Saturn, but assume that the spacecraft is so massive that the selected
launcher can only inject it into a heliocentric trajectory with apohelion between the orbits of
Jupiter and Saturn. Then, the spacecraft cannot reach the surroundings of Saturn. But if the
trajectory is selected such that the spacecraft passes Jupiter at a close distance, then the swingby
effect can produce an increase of the semi-major axis (total orbital energy) of the heliocentric
trajectory that results in an apohelion beyond the orbit of Saturn, which allows the spacecraft to
reach the surroundings of Saturn. The swingby effect can also be used for entering an (elliptical)
orbit around another planet. In that case, which is called gravity-assisted capture, the gravity field
of a moon of that planet is used to reduce, sometimes in combination with a rocket engine
thrusting period, the energy of the hyperbolic orbit of the spacecraft about the planet so that it
enters an orbit about that planet.

The application of the swingby effect is well known in the interplanetary space programs
since the 1960s. Many swingby missions have already been flown, involving (a) single or multi-
planet flyby(s). Examples are: Earth-Venus-Mercury-Mercury-Mercury (Mariner 10), Earth-
Jupiter-interstellar (Pioneer 10), Earth-Jupiter-Saturn-interstellar (Pioneer 11), Earth-Jupiter-
Saturn-interstellar (Voyager 1), Earth-Jupiter-Saturn-Uranus-Neptune-interstellar (Voyager 2),
Earth-Jupiter-out of ecliptic (Ulysses), Earth-Venus-Earth-Earth-Jupiter (Galileo), Earth-Venus-
Venus-Earth-Jupiter-Saturn (Cassini), Earth-Earth-Mars-Earth-Earth-comet (Rosetta), Earth-
Earth-Venus-Venus-Mercury-Mercury-Mercury-Mercury (Messenger). Our own Moon has also
been used for the same purpose, although it is a poor accelerator.

It should be remarked that the basic principles of the gravity-assist concept have been well known
by astronomers for at least about 150 years in relation to the effects of Jupiter’s gravitational
attraction on the motion of comets. It is clear, for instance, that U.J.J. Le Verrier (1811-1877)
understood the gravity-assist mechanism and that several astronomers have repeatedly derived
the basic formulas, which are now finding such important applications in space missions. They,
however, never proposed the application of this mechanism to make the solar system accessible
to spacecraft launched from the Earth. As an illustration, we consider the motion of a comet that
passes Jupiter at a close distance, but the same methodology can be applied for an asteroid and
a flyby of any other giant outer planet.

When we consider the motion of the comet as a swingby flight, then we view the trajectory
of the comet before it arrives in the surroundings of Jupiter as a Keplerian orbit about the Sun,
and after it has passed Jupiter again as a Keplerian trajectory about the Sun. During the
intermediate period the gravity field of Jupiter perturbs the orbit significantly. Many times, this
leads to the question whether a comet that is detected when it moves close to the Sun is the same
comet that was detected in deep space before it approached Jupiter. To analyze that problem, we
consider the trajectory of the comet partly as a patched-conic problem (Section 18.1) and partly
as a circular restricted three-body problem (Section 3.3), where the two main bodies are the Sun
and Jupiter, and the body with negligible mass is the comet. Note that in the three-body model,
there is no sphere of influence and the gravitational forces of Sun and Jupiter act continuously
on the comet. In the discussion on the circular restricted three-body problem, we have derived
equation (3.57), which expresses Jacobi’s integral in terms of position and velocity relative to a
barycentric inertial (non-rotating) reference frame. The various terms in that equation are
expressed in the non-dimensional units introduced in Section 3.3. When we write that equation
in the usual physical units and apply the resulting expression for the Sun-Jupiter system, we find
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(18.72)

where V is the velocity of the comet relative to the non-rotating barycentric (inertial) reference
frame defined in Figure 3.4, mS and mJ are the masses of the Sun and Jupiter, respectively, r1 and
r2 are the distances of the comet from the Sun and Jupiter, respectively, nJ is the mean (angular)
motion of Jupiter in its orbit about the Sun, > and 0 are coordinates relative to the barycentric
reference frame, rJ is the radius of Jupiter’s orbit about the Sun, and C is the constant introduced
in (3.53). Because mS o mJ, the origin of the reference frame is close to the center of mass of the
Sun. Therefore, we may use the following approximations: the barycentric distance r (r . r1) and
V indicate the position and velocity of the comet relative to a non-rotating heliocentric reference
frame, and the term  describes the component of the comet’s orbital angular
momentum about the Sun and perpendicular to Jupiter’s orbital plane, H.. Because in the
restricted circular three-body problem Jupiter moves in a circular orbit about the Sun:

where :S is the gravitational parameter of the Sun (:S = GmS). With this relation and the
approximations mentioned above, (18.72) can be written as

(18.73)

Before and after the passage of Jupiter, when the comet is far from Jupiter, we may approximate
the comet’s trajectory by a Keplerian orbit about the Sun. So, for both parts of the trajectory the
classical relations for Keplerian orbits hold:

(18.74)

where a, e, and i are the semi-major axis, eccentricity, and inclination (relative to the orbital
plane of Jupiter) of the comet’s trajectory. Substitution of (18.74) into (18.73) yields

(18.75)

Since mJ /mS n 1, we may conclude that far from Jupiter the second part of the term in brackets
is much smaller than one and therefore may be neglected. For both parts of the trajectory,
generally, the values of a, e and i will be different. Substitution of (18.74) into (18.75) then yields

(18.76)

where the indices 2 and 4 indicate the situation before and after the swingby about Jupiter,
respectively. It is remarkable that the gravitational parameter of the Sun does not appear in this
equation. Expression (18.76) is known as the criterion of Tisserand; it was derived by F.F.
Tisserand (1845-1896) in 1889. The value of the expression on either side of the equal-sign in
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(18.76) is called the Tisserand parameter. As mentioned before, in classical astronomy this
criterion is used to verify whether a comet of which the orbit has been determined before it made
a flyby of an outer planet really is the same body as a comet of which the orbit has been
determined when it moves relatively close to the Sun. If for both orbits substitution of the values
of the semi-major axis, eccentricity and inclination into (18.76) leads to the same Tisserand
parameter, then it is quite likely that it is the same body, and only then laborious calculations are
started to follow the entire trajectory in detail. Nowadays, Tisserand’s criterion is used to help
clarify the physical processes involved in the origin of short-period comets. It has also found
application in the computation of trajectories of interplanetary spacecraft; for example, to obtain
some physical insight in the characteristics of swingby trajectories, or to check the accuracy of
a numerical integration of the spacecraft’s trajectory. It is emphasized that in the application of
Tisserand’s criterion to swingby trajectory design, the procedure used for the classical
astronomical application is reversed. Transfer trajectories from the Earth to the swingby planet
and from the swingby planet to the target planet are computed using Lambert’s theorem (Section
6.7) or equivalent relations for parabolic and hyperbolic trajectories. These trajectories are then
matched at the swingby planet based on Tisserand’s criterion to identify viable launch and
encounter opportunities.

We now return to the analysis of swingby trajectories of interplanetary spacecraft, and will
investigate some characteristics of these types of flights.

The interplanetary trajectory before the approach of a swingby planet, and the position of the
spacecraft along this trajectory, determines the point of entry into the swingby planet’s sphere
of influence and the planetocentric hyperbolic excess velocity, , at that moment. These
parameters determine the flyby trajectory about the swingby planet, the point of exit of the
swingby planet’s sphere of influence and the planetocentric hyperbolic excess velocity vector,

, at that moment. These parameters in turn determine the spacecraft’s heliocentric trajectory
after the swingby maneuver. If the swingby planet approach trajectory lies in the orbital plane
of the swingby planet, and if the planet’s gravity field is described by that of a point mass, then
the plane of the swingby trajectory and that of the spacecraft’s heliocentric trajectory after
leaving the swingby planet’s sphere of influence also coincide with the orbital plane of the
swingby planet. However, in general, we deliberately select the three successive orbital planes
of the spacecraft not to coincide. By selecting appropriate values of the ‘latitude’ and ‘longitude’
of the point of entrance into the swingby planet’s sphere of influence, which requires a certain
inclination of the approach trajectory relative to the planet’s orbital plane, and the magnitude and
direction of , the flyby trajectory (including its inclination) and the heliocentric trajectory
after the spacecraft has left the swingby planet’s sphere of influence will satisfy the mission
requirements. The computation of the transitions from one section of the entire trajectory to the
next one, and of the corresponding inclinations of the three orbital planes, is in essence a

Figure 18.22: Diagram of the velocity vectors that characterize the swingby maneuver.
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geometric problem, which will not be discussed in the Chapter. Here, we will only discuss some
characteristics of the motion in the orbital plane of the swingby trajectory. For the heliocentric
velocities of the spacecraft before and after the swingby flight we may write

(18.77)

Figure 18.22 shows the geometry of the vectors  and , together with the relevant angles
" and $, and the projection of the swingby planet’s heliocentric velocity on the spacecraft’s
orbital plane, . These vectors constitute the plane of the swingby trajectory. As was already
mentioned before: * * = * *. For the change in the velocity of the spacecraft due to the
passage of the planet we can write with (18.77)

From this relation, we obtain

Elaboration of the scalar product and using the geometry depicted in Figure 18.22, we obtain

or

(18.78)

This velocity change can be decomposed into a radial component, )Vr, and a normal component,
)Vn; both components lie in the plane of the swingby trajectory. For these components we can
write with (18.77)

where  and  are unit vectors along the Sun-planet vector and along the planet’s velocity
vector, respectively. Using the geometry depicted in Figure 18.22, we may write these
expressions as

or, after some trigonometric manipulation,

(18.79)

Because the radius of the sphere of influence is very small compared to the scale of the solar
system, the change of the spacecraft’s heliocentric potential energy (per unit of mass) over a
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distance corresponding to the diameter of the sphere of influence may be neglected. Then, we can
write for the change of the total energy of the spacecraft (per unit of mass) due to the passage of
the planet

Substitution of the expressions (18.77) and elaboration of the scalar product leads to

where we have used the fact that the scalar products of the component of the planet’s velocity
vector perpendicular to the plane of the swingby trajectory and the hyperbolic excess velocities
are zero. Using the angles indicated in Figure 18.22, we may write this expression as

or, after some trigonometric manipulation,

(18.80)

We can compute the change of the semi-major axis of the spacecraft’s interplanetary trajectory
due to a swingby flight by starting from the classical relation

From this relation we obtain

Substitution of (18.80) into this relation gives

(18.81)

This equation is written in the parameter 1/a, because a swingby may result in a transition from
an elliptical trajectory to a hyperbolic trajectory. In that case, the semi-major axis shows a
discontinuity and goes through infinity at an eccentricity equal to one, while the inverse semi-
major axis then goes through zero and changes smoothly from positive to negative values.

With (18.68) the relations (18.78) to (18.81) may also be written in terms of the selected set
of independent parameters B, V4t, $:

(18.82)
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(18.82)

From these expressions a number of interesting conclusions can be drawn:
S )V is independent of $. For specified values of V4t and $, the quantities )V, *)Vr*, *)Vn*,

*)õ* and *)(1/a)* increase at decreasing values of B.
S When the spacecraft passes ‘ahead’ of the planet (90E < $ < 270E; Figure 18.19) the

trajectory’s total energy will decrease. This decrease is maximum at $ = 180E; then the major
axis of the flyby hyperbola coincides with the velocity vector .

S In most cases, one aims for an increase of õ. This requires the spacecraft to pass ‘behind’ the
planet (-90E < $ < 90E). The energy increase is maximum at $ = 0E; then the major axis of the
flyby hyperbola coincides with the velocity vector .

S For the change of the radial and normal velocity components the following relations hold. If
0E < $ < 180E, then )Vr < 0; if 180E < $ < 360E, then )Vr > 0. For $ = 0E, 180E: )Vr = 0. If
-90E < $ < 90E, then )Vn > 0; if 90E < $ < 270E, then )Vn < 0. For $ = 90E, 270E: )Vn = 0.

S For specified values of B, V4t , $, and :, *)õ* is maximum when VtN is maximum; i.e. if the
plane of the swingby trajectory coincides with the orbital plane of the swingby planet (VtN =
Vt). )õ = 0 when the plane of the swingby trajectory is perpendicular to Vt (VtN = 0).

S When the angle between the plane of the swingby trajectory and the orbital plane of the
swingby planet is relatively small: VtN . Vt. Then, two planetary parameters, Vt and :, affect
the change of õ; *)õ* increases when Vt and : increase. In practice, these are conflicting
requirements: for the inner planets : is small and Vt is large, while for the giant outer planets
: is large and Vt is (relatively) small.

S If -90E < $ < 90E, then )(1/a) < 0 and )a > 0, both for elliptical trajectories (a > 0) and for
hyperbolic trajectories (a < 0). If 90E < $ < 270E, then )(1/a) > 0 and )a < 0. If $ = 90E,
270E, then )(1/a) = 0 and )a = 0.

S When the plane of the swingby trajectory is perpendicular to Vt, then )(1/a) = 0 and )a = 0. 

Using (18.64) and (6.18), we can write (18.82-4) as

(18.83)

where Vc3 is the circular velocity at the pericenter distance, r3, of the flyby trajectory. Note that
the smaller r3, and consequently the larger Vc3, the larger *)õ*. As already mentioned in Section
18.10, the interplanetary trajectory flown before reaching the swingby planet determines the
values of the parameters V4t , $ and B, and so of r3; the values of r3 and $ can be adjusted by
executing mid-course corrections. In order to achieve a maximum positive )õ, we must require,
according to (18.83) $ = 0E; r3 = R, and we find

(18.84)

where Vc,surf  is the circular velocity at the surface of the planet. For a maximum negative )õ, the
requirements are $ = 180E; r3 = R, and we find, except for the minus-sign, again (18.84). For the
)V associated with a maximum value of *)õ*, we find from (18.82-1)
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(18.85)

The value of the maximum positive energy increase, )õmax , is plotted in Figure 18.21 (right) as
a function of V4t. Here, it was assumed that the plane of the swingby trajectory coincides with the
plane in which the planet moves about the Sun (VtN = Vt). Note that for small values of V4t the
planets Venus and Mars generate reasonably large values of )õmax. Therefore, for a mission to
Mercury it is attractive to perform a swingby about Venus. For missions to Jupiter, Mars is a
‘reasonable’ swingby planet; for flights to the outer planets, Jupiter is an ideal swingby planet,
in particular for larger values of V4t, with Saturn in second place.

The value of V4t for which the absolute maximum positive )õmax is achieved and the corre-
sponding value of )õmax can be found analytically by partial differentiation of (18.84) to V4t and
by setting the result equal to zero. We then find for VtN = Vt

(18.86)

For such a flight, we find from Figure 18.19 and with (6.23), (18.64), (18.65), (18.68) to (18.70),
(18.78), (18.79) and (18.81)

So, for the case of an absolute maximum positive )õ: )V = V4t,opt . For a swingby about Jupiter
we find from (18.86) that the absolute maximum value of )õ = 550 km2/s2 occurs at V4t = 42.1
km/s. For a swingby about Mars, the corresponding values are )õ = 85.68 km2/s2 and V4t = 3.55
km/s. Of course, these examples are unrealistic since for these flights r3 = R, which is impossible
because of the presence of planet topographic features and an atmosphere, and for Jupiter the
presence of high-energy particles radiation belts. In addition, the optimum hyperbolic excess
velocity for the approach of Jupiter requires an unrealistically high spacecraft heliocentric
approach velocity. If the spacecraft is first injected into an orbit about the Sun in such a way that
it passes the Earth after some time, a swingby about the Earth can also increase the spacecraft’s
heliocentric orbital energy. From (18.86) we find that for an Earth swingby the absolute
maximum value of )õ = 235 km2/s2 occurs at V4t = 7.91 km/s. These values are quite close to the
absolute maximum value of )õ = 257 km2/s2 and the optimum value of V4t = 7.33 km/s for a
Venus swingby.

For specified values of V4t , $ and B, the direction and magnitude of the heliocentric velocity of
the spacecraft after the swingby maneuver (V4, (4) are fixed. These values determine the flight
time from the swingby planet to the next swingby planet or to the final target planet. Note that
there are two conflicting effects: a large positive value of )õ results in a large value of V4, which
tends to decrease the flight time to the next planet, but it also results in a large value of ", so a
small value of Vr and thus of (4, which tends to increase the flight time to the next planet. We
have to rely on numerical search processes to determine, for a specified overall flight time to the
target planet, the minimum injection impulsive shot, )V0, and the optimum injection conditions
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and mid-course corrections to be applied, such that the spacecraft’s arrival conditions at the
swingby planet generate an appropriate swingby maneuver that sets the spacecraft on the right
course to the next planet. When we consider, for example, Jupiter swingby missions with a total
flight time of three to four years to Saturn, we generally find for minimum )V0 trajectories the
following characteristic values:

Earth: )V0 = 6.6 - 7.1 km/s   ;   (1 = 0 - 1E
Jupiter: r3 = 10 - 11 RJ  ;  (4 - (2 = -23E to -29E  ;  )õ = 155 - 165 km2/s2

Saturn: V4 = 11.5 - 14.5 km/s

Figure 18.23: Mission characteristic velocity, Vchar
* , and target planet hyperbolic excess velocity, V4S ,

versus flight time, tf , for a direct flight to Saturn and a flight that includes a Jupiter swingby (left), and
an example of a swingby trajectory to Saturn (right).

Figure 18.23 (left) shows the decrease in mission characteristic velocity, Vchar
* , for a flight to

Saturn if a Jupiter swingby is applied, or stated differently: the reduction of the overall flight time
to Saturn for the same mission characteristic velocity. This Figure also shows that the hyperbolic
excess velocity relative to Saturn, V4S , increases significantly due to the Jupiter swingby. This
means that if the spacecraft has to enter an orbit about Saturn, a much larger deceleration impulse
has to be delivered than without a Jupiter swingby. Figure 18.23 (right) depicts a fast trajectory
to Saturn with a swingby at Jupiter and a total flight time of 2.9 year. The characteristic velocity
of this mission is about 15.1 km/s; the minimum distance to Jupiter is 4RJ, which results in an
increase of the heliocentric velocity of the spacecraft to about 18.5 km/s. Figure 18.24 shows the
mission characteristic velocity, Vchar

* , of direct and swingby flights to Mercury and Uranus, where
for a specified overall flight time, tf, the optimum swingby maneuver about a swingby planet is
executed. Note that for very short flight times to Mercury, a direct flight is more attractive than
a Venus swingby flight. For missions to Uranus, a Jupiter swingby, or to a somewhat lesser
extent a Saturn swingby, results in a significant saving of rocket engine propellants for a
specified overall flight time, or in a significant reduction of the overall flight time for the same 
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Figure 18.24: Mission characteristic velocity, Vchar
* , versus flight time, tf , for a direct and a Venus-swingby

flight to Mercury (left), and for a direct, Jupiter- or Saturn-swingby flight to Uranus (right).

value of )V0.
A way to get even more energy from a swingby is to fire a rocket engine near the pericenter

of a flyby trajectory to increase the spacecraft’s velocity. For a given vehicle, a specified rocket
engine impulsive shot always provides the same change in velocity ()V), but the change in
kinetic energy is proportional to the vehicle’s velocity at the time of the burn. Equation (1.55)
shows that to get the most additional kinetic energy from the burn, it must occur at the vehicle’s
maximum velocity, i.e. at pericenter, and the thrust has to act along the velocity vector. In that
case, (1.55) gives

where the index thr is used to indicate that )V and )õ are produced by rocket thrust. This ma-
neuver is known as the Oberth maneuver after H.J. Oberth (1894-1989), one of the founders of
spaceflight, who first described it in 1929. The effect of thrusting can be large; for a Jupiter flyby
at a pericenter distance of 6R, V4t = 7.5 km/s, and $ = 0E, we find from (18.82) a maximum value
of )õ = 164 km2/s2. With (18.5) we find V3 = 25.4 km/s and thus a rocket engine thrusting period
producing )Vthr = 2 km/s results in an additional )õthr = 53 km2/s2.

As already mentioned before, on a single interplanetary mission multiple swingby maneuvers can
be performed. The flight then may be considered as a ‘cosmic billiard’, where the spacecraft is
catapulted from one planet to the next planet and so on. In principle, many planetary combina-
tions are possible. For instance, when the target planet is Saturn, it is possible that the spacecraft
is launched from the Earth towards the inner planet Venus, performs a swingby maneuver at
Venus, returns to the Earth, performs a swingby maneuver about the Earth, flies back to Venus
for a second swingby about that planet, which accelerates the spacecraft towards Jupiter for the
last swingby on its route to Saturn. The design of these multiple swingby trajectories involves
detailed numerical search procedures that start from accurate three-dimensional planetary orbits.
From these orbits, the instantaneous positions and velocities of the planets can be computed. For
a series of launch times within a certain period and a selected sequence of swingby planets, it can
be investigated whether feasible multi-swingby trajectories towards the target planet exist. To
enter the sphere of influence of each swingby planet in an appropriate way, small trajectory
corrections that require only small amounts of rocket propellant may be executed when the
spacecraft has left the sphere of influence of a planet and is on its way to the next planet. Of all
possible solutions found, then the trajectory is selected that best satisfies the mission constraints,
e.g. low injection energy, suitable arrival conditions at the target planet, etc.
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As examples of multiple swingby missions, some trajectory information for the Voyager-1 and
-2, Galileo, Ulysses, Cassini and Rosetta missions is presented.

The two (almost) identical 722 kg NASA Voyager spacecraft provide a classical example of
utilizing swingbys to reach the outer planets (Figure 18.25). They were launched aboard Titan-
III/Centaur rockets from Cape Canaveral with destinations of Saturn and beyond. But their launch
vehicles could provide only enough energy to get them to Jupiter and therefore they needed the
swingby effect to increase their orbital energy. Voyager 1 was launched on September 5, 1977,
and is the most distant human-made object in existence. Around August 2012, the spacecraft left
the heliosphere and entered interstellar space. As of September 19, 2014, Voyager 1 was at a
distance of 19.31*109 km (129.1 AU) from the Sun, and was traveling at 17.03 km/s (3.6 AU per
year) relative to the Sun. It gained the energy to escape the Sun’s gravity completely by perform-
ing swingby maneuvers around Jupiter and Saturn. It passed these planets on March 5, 1979, and
November 12, 1980, at a minimum distance of 348,900 km and 184,300 km, respectively, from
the center of the planet, and left the ecliptic plane at an angle of about 35E. In 40,000 years, it
should pass within 1.6 light-year the star Gliese 445 in the Camelopardalis (Giraffe)
constellation. The Voyager 2 mission started on August 20, 1977; so, slightly before Voyager 1.
During this mission four outer planets (Jupiter (July 9, 1979), Saturn (August 26, 1981), Uranus
(January 24, 1986), Neptune (August 25, 1989)) were passed at a minimum distance of 721,700
km, 161,000 km, 107,000 km, and 29,200 km, respectively, from the center of the planet. The
passage of Jupiter resulted in a change of the spacecraft’s velocity relative to the Sun from about
10 km/s to about 27 km/s. When the spacecraft arrived at Saturn, its heliocentric velocity had
decreased to about 16 km/s. The passage of Saturn resulted in an increase of the heliocentric
velocity to about 34 km/s. The spacecraft was able to undertake this ‘Grand Tour’ along the
planets because of the particular way the outer planets were lined up in the late 1970s; this
situation repeats every 176 years. After conclusion of the Neptune encounter, Voyager 2 left the
ecliptic plane at an angle of about -45E. As of September 19, 2014, Voyager 2 was in the
outermost layer of the heliosphere at a distance of about 15.85*109 km (105.9 AU) from the Sun,
escaping the solar system at a speed of about 15.41 km/s (3.2 AU per year). In 40,000 years, it
should pass within 1.7 light-years the star Ross 248 in the Andromeda constellation.

Figure 18.25: Interplanetary trajectories of the NASA Voyager-1 and Voyager-2 spacecraft.

The 2223 kg NASA Galileo spacecraft (including 925 kg of propellant) and its two-stage Inertial
Upper Stage were launched on October 18, 1989, by the Space Shuttle from Cape Canaveral. The
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two-stage upper stage accelerated the spacecraft out of Earth orbit towards the planet Venus
(Figure 18.26, left) for the first of three planetary gravity assists designed to boost Galileo toward
Jupiter. The spacecraft executed swingby maneuvers about Venus (February 10,1990), Earth
(December 8, 1990) and again Earth (December 8, 1992), with minimum flyby altitudes of
16,000 km, 960 km, and 303 km, respectively, before it arrived at Jupiter (December 7, 1995),
where it used a gravity-assist flyby in front of Jupiter’s largest moon, Io. In this way, it was
possible for Galileo to decrease the amount of rocket engine propellant needed to insert into an
orbit about Jupiter. On July 12, 1995, Galileo’s descent probe, which has been carried aboard the
spacecraft, was released and began a five-month journey to Jupiter. The probe had no thrusters,
so its flight path was established by pointing of the spacecraft and spinning it up to 10.5 rpm
before the spin-stabilized probe was released. When Galileo reached Jupiter on December 7,
1995, and while the probe was still approaching the planet, the spacecraft flew by two of Jupiter’s
major moons. It passed Europa at an altitude of about 33,000 km and Io at an altitude of about
900 km. About four hours after leaving Io, the spacecraft started receiving data from the descent
probe (Figure 18.26, right), which slammed into the top of the Jovian atmosphere at a flight path
angle of about -9E and at a speed of about 47.8 km/s. During entry it experienced temperatures
of over 14,000 K and decelerations of over 300 g. Two minutes after entry a drogue parachute
was released and the aft cover removed; somewhat later the main parachute deployed and the
heat shield dropped off. The probe floated down under its parachute about 180 km through the
clouds, transmitting information about the atmospheric conditions to the spacecraft. Fifty-eight
minutes into its descent, high temperatures (130E C) and pressures (20 bar) silenced the probe’s
transmitters. An hour after receiving the last transmission from the probe, at an altitude of about
210,000 km above the planet, the Galileo spacecraft fired its 400 N thrust main engine for about
47 min to brake into orbit about Jupiter. During its primary mission orbital tour, Galileo
performed four flybys of Jupiter’s moon Ganymede, three of Callisto and three of Europa. The
extended mission, called the ‘Galileo Europa Mission’, started in November 1997 and included
eight consecutive close encounters of Europa. The flyby altitudes ranged from 201 km to 3580
km. This phase also provided the opportunity to make two additional flybys of Io and four addi-

Figure 18.26: Interplanetary trajectory of the NASA Galileo spacecraft to Jupiter (left), and the trajectory
of the orbiter and probe at Jupiter arrival (right).
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tional flybys of Callisto. The follow-on mission extension, called the ‘Galileo Millenium
Mission’, added another year of operation, including more flybys of Io and Ganymede. On
Galileo’s first trip through the asteroid belt, the spacecraft made a flyby of the asteroid Gaspra
at a minimum distance of 1601 km and a relative speed of about 8 km/s on October 29, 1991, and
took detailed images of the asteroid; this was the first close approach to an asteroid. On a second
pass through the asteroid belt, Galileo made a flyby of asteroid Ida on August 28, 1993, at a
minimum distance of 2400 km, and discovered a miniature moon orbiting this asteroid. In July
1994, Galileo was perfectly positioned to watch the fragments of comet Shoemaker-Levy 9 crash
into Jupiter within the period July 16 -22. The impacts took place on the side of Jupiter hidden
from Earth, and Galileo, then at a distance of 1.6 AU from the planet, could see the impacts as
they occurred. Earth-based telescopes had to wait to see the impact sites as they rotated into view.
The spacecraft’s fourteen years odyssey came to an end on September 21, 2003, when the
spacecraft entered the giant planet’s atmosphere at about 0.2E south of Jupiter’s equator. Galileo
crossed the altitude of the cloud tops at a flight path angle of about -22E and a relative velocity
of 48.2 km/s, and disintegrated in Jupiter’s dense atmosphere somewhat later.

On October 6, 1990, the ESA/NASA 371 kg Ulysses spacecraft was launched by the Space
Shuttle to study the polar regions of the Sun; places that are hidden from any observing location
on Earth. To move to an orbit passing over the poles of the Sun, the spacecraft would have to
eliminate the 30 km/s speed it inherited from the Earth’s orbital motion around the Sun and gain
the speed needed to orbit the Sun in the pole-to-pole plane—tasks which are impossible with
current spacecraft propulsion systems. Therefore, the spacecraft was sent towards Jupiter, aimed
to arrive at a point in space just ‘in front of’ and ‘below’ the planet. The spacecraft then used a
gravity assist to change the trajectory’s (ecliptic) inclination by about 80E. When separated from
the Space Shuttle, the spacecraft consisted of Ulysses and a three-stage booster, consisting of a
two-stage Boeing Inertial Upper Stage plus a McDonnell Douglas Payload Assist Module, to
boost the spacecraft to the required high velocity. In February 1992, the spacecraft arrived at
Jupiter; the closest approach to Jupiter occurred on February 8 at a distance of 6.3 Jovian radii
or about 4.5*105 km from the center of the planet. This encounter changed the semi-major axis,
eccentricity and inclination (relative to the ecliptic) of the spacecraft’s heliocentric orbit from
8.99 AU, 0.8892, 1.99E, respectively, to 3.37 AU, 0.6031, 79.13E, respectively. Before the
encounter, the orbit’s perihelion and aphelion distances were about 1.0 AU and 17.0 AU; after
the Jupiter encounter 1.34 AU and 5.41 AU. This post-encounter orbit has a period of 6.2 years,
while the orbital period of Jupiter is about 11.9 years. So, about twelve years after the Jupiter
encounter the spacecraft approached Jupiter again. This approach occurred on February 4, 2004,
at a closest distance of about 1683 Jupiter radii (120*106 km). Because of this large distance, the
orbit was now not significantly changed by Jupiter’s gravity field. After its first encounter with
Jupiter, Ulysses reached a maximum southern heliocentric latitude of 80.2E on September 13,
1994. On March 13, 1995, it passed perpendicular through the ecliptic plane up to its
northernmost heliocentric latitude of 80.2E on July 31, 1995. On May 1, 1996, the spacecraft
unexpectedly crossed the ion tail of comet Hyakutake, revealing the tail to be at least 3.8 AU in
length. Encounter with a comet tail happened again on February 5 - 9, 2007, when the spacecraft
passed through the tail of comet McNaught at a distance of about 1.7 AU (254*106 km) from the
nucleus. During these passes valuable information about comets was obtained. On January 14,
2008, the spacecraft reached maximum solar northern latitude on its third orbit about the Sun.
Around that time the power supply of the X-band transmitter onboard the spacecraft could not
be switched on again following what was planned to be a temporary switch off. This has left the
mission with only S-band communication. This communication link can be used for playback of
recorded data for very limited periods only, and since then the majority of the spacecraft data was
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received in real-time during a tracking pass. The temporary switch off of the X-band transmitter
was part of a plan to manage the naturally decreasing amount of power generated by the
spacecraft’s solar array after, at that time, more than seventeen years of operations. Due to that
power generation degradation, the spacecraft no longer had enough power to run all of its
communication, heating and scientific equipment simultaneously. As a result of the failure to
switch on the X-band transmitter again, the heat input into the spacecraft has decreased
considerably, which may result in hydrazine propellant freezing in the propellant pipework in the
lower spacecraft and consequently to a loss of the spacecraft’s attitude control. Analyses made
shortly after the X-band transmitter switch on failure predicted the end of the spacecraft’s
operational life by July 2008. However, this prediction has proved to be too pessimistic. This is
largely due to the introduction of the ‘fuel bleeding’ strategy, whereby two oppositely directed
thrusters are fired simultaneously every two hours, causing the hydrazine to move through a short
length of pipework where propellant is likely to freeze. This strategy has proven to be very
successful; it kept the spacecraft operational for almost another year. On June 30, 2009, the
mission was ended because the overall return of scientific data had decreased to a level where
it was hard to justify the cost of keeping the spacecraft in operation. A command was sent to the
spacecraft to switch the onboard communications system into the receive-only mode; no further
contact with Ulysses is planned.

The NASA/ESA/ASI Cassini mission (Figure 18.27) aimed at studying the Saturnian system.
The spacecraft was launched by a Titan IVB/Centaur rocket from Cape Canaveral on October 15,
1997. Its mass at launch was about 5700 kg (more than half was propellant) and no existing
launch vehicle could have sent this massive spacecraft directly to Saturn. Therefore, four swingby
maneuvers were applied: the spacecraft passed by Venus twice (April 26, 1998; June 24, 1999),
then Earth (August 18, 1999), and finally Jupiter (December 30, 2000) on the way to Saturn at
flyby distances of 284 km, 603 km, 1173 km, and 9.72*106 km, respectively. The 6.7 years transit
was longer than the 6.05 years needed for a Hohmann transfer, but reduced the required injection
velocity such that available launchers could launch the heavy Cassini probe on a journey to
Saturn. During the first swingby about Venus the minimum flyby altitude was 287 km; this
maneuver gave the spacecraft a boost in speed of about 7 km/s. Leaving Venus, Cassini was then
moving at more than 39.2 km/s relative to the Sun. The second flyby took it within 600 km of the
planet. Subsequently, the spacecraft successfully completed a highly accurate flyby of Earth on
August 18, 1999. It flew past Earth at an minimum altitude of about 1171 km, above the eastern
South Pacific at -23.5E latitude and 231.5E longitude. This flyby gave Cassini a 5.5 km/s boost

Figure 18.27: Interplanetary trajectory of the NASA Cassini spacecraft to Saturn.
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in speed. The final gravity assist was from Jupiter; it flew by this planet at a minimum altitude
of about 9.7*106 km on December 30, 2000, accelerated the spacecraft by about 2 km/s and gave
Cassini the final thrust of energy it needed to reach its ultimate destination, Saturn. On arrival at
Saturn, Cassini made a close approach to the planet, passing only 20,000 km above the cloud
tops. Cassini fired one of its two redundant 445 N rocket engines on July 1, 2004, for 96 min to
slow down by 622 m/s for Saturn orbit insertion; this maneuver has consumed 830 kg of
propellant. The spacecraft entered an elliptical orbit about Saturn with pericenter and apocenter
distances of 1.33 and 178 Saturn radii, respectively, with an orbital inclination of 16.8E relative
to Saturn’s equatorial plane and an orbital period of 148 days. Thirteen days after apocenter
passage on the first orbit, a 50 min 335 m/s burn raised the pericenter distance to 8.2 Saturn radii
in order to target the Orbiter for the first Titan encounter on October 26. A second Titan flyby
at an altitude of 1,200 km on December 13 placed the Cassini-Huygens spacecraft on a trajectory
that, if uncorrected, would lead to a subsequent flyby at an altitude of 4600 km. A probe targeting
maneuver was executed on December 17 and placed the spacecraft on a direct impact trajectory
with Titan during the next encounter. On December 25, the spring-loaded Huygens separation
mechanism provided a velocity increment relative to the Cassini spacecraft of 35 cm/s. It also
imparted to the lander an anti-clockwise spin of 7.5 rpm (when viewed from the orbiter). This
provided inertial stability during the ballistic trajectory and atmospheric entry. After the
separation of Huygens, Cassini performed a deflection maneuver, so that it would not crash into
Titan, and an additional maneuver for final adjustment of its trajectory. These were on December
28, 2004, and January 3, 2005, respectively, and placed Cassini on the correct trajectory for
receiving data from Huygens during its descent. Following its release from Cassini, Huygens
reached Titan’s outer atmosphere after 20 days. The probe entered the upper layers of Titan’s
atmosphere at an altitude of about 1000 km with a velocity of 6.1 km/s and flight path angle of
-65.4E on January 14, 2005. The entry phase lasted about 3 min, during which the aeroshell
surrounding the descent module reduced the probe’s velocity to about 400 m/s, and a peak
deceleration of about 20 g was experienced. Three parachutes were used during the probe’s
descent. At a velocity of Mach 1.5 near the end of the entry deceleration phase at an altitude of
about 190 km, a 2 m diameter pilot parachute deployed, pulling off the aft cover. This was
followed immediately by the deployment of a 8.3 m diameter main parachute. About 30 s after
deployment of this parachute, the probe’s velocity dropped from Mach 1.5 to Mach 0.6. The front
heat shield was then released, and from an altitude of about 170 km the probe descended slowly
below the main parachute for about 15 min. The main parachute then separated from the probe,
at an altitude of about 140 km, and released a smaller 3 m diameter drogue parachute, which
allowed the probe to descend faster, and ensured it would reach the surface before the batteries
would expire. It arrived at the surface in 2.5 hr, with an impact velocity of about 6 m/s. The
lander operated successfully for another 1 hr 10 min on the surface. Throughout the parachute
descent to the surface and the subsequent active period on the surface Huygens has measured the
chemical, meteorological, dynamical and physical properties of the Titan atmosphere and surface.
Throughout this time, Cassini was oriented to receive the two incoming radio signals from the
probe by continuously pointing its high gain antenna to the predicted Huygens landing point.
After listening for the longest possible duration of the Huygens probe’s visibility, the orbiter was
commanded to re-point its high gain antenna to Earth for transmission of the stored Huygens
telemetry data. At that time, Cassini was at a distance of 8.07 AU from the Earth. The orbiter kept
examining Saturn’s fascinating realm as it repeatedly looped around the planet, and performed
a long series of swingby flights about many Saturnian moons and made observations of these
moons. In its four-years nominal mission, Cassini made nine close targeted flybys of Enceladus
(4), Phoebe, Hyperion, Dione, Rhea and Iapetus, with flyby altitudes ranging from 55 km to
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125,000 km. Many distant flybys were made of other major moons. Originally, the mission was
scheduled to end in July 2008. However, because of its great success, NASA and ESA decided
in April 2008 to extend the mission for two more years. During this extended phase, Cassini
performed several close and distant flybys of Saturn’s moons. The encounters included 26 Titan
flybys, 7 of Enceladus, 6 of Mimas, 8 of Tethys, and one flyby each of Dione, Rhea and Helene.
A second mission extension was approved in February 2010. It will see Cassini orbiting Saturn
155 more times, conducting 54 additional flybys of Titan and 11 more of Enceladus. The chosen
mission ending is a series of close Saturn passes, passing inside the rings, then a plunge into the
Saturn atmosphere in 2017, to destroy the spacecraft.

ESA’s Rosetta mission began on March 2, 2004, when an Ariane 5G launch vehicle lifted
off from the ESA launch site at Kourou with on board the 3005 kg Rosetta spacecraft. The goal
of the mission is to rendezvous with comet 67P/Churyumov-Gerasimenko in summer 2014. The
spacecraft consists of an orbiter, which features twelve instruments, and the 108 kg Philae robotic
lander with an additional nine instruments. The spacecraft carries a bi-propellant propulsion
system capable of providing both attitude control and orbit control and maneuvering; the
propellant load is 1670 kg. The system consists of 24 thrusters, each producing 10 N of thrust and
running on monomethyl hydrazine as fuel and nitrogen tetroxide as oxidizer. On May 10, 2004,
a deep-space maneuver was carried out to bring the spacecraft on a course in which it would
perform a swingby about the Earth. Four of the spacecraft’s thrusters were fired for more than
3.5 hr, to achieve a velocity change of 153 m/s. Two more small trajectory corrections were
executed in November 2004 and February 2005. The swingby about the Earth occurred on March
4, 2005. At closest approach, Rosetta passed above the Pacific Ocean just west of Mexico at an
altitude of 1954 km and a velocity relative to the Earth of 10.6 km/s. On July 4, 2005, the
imaging instruments on board observed the collision between comet Temple 1 and the impactor
of the NASA Deep Impact spacecraft. At that time Rosetta was about 0.53 AU (79*106 km) from
the comet; the comet was then about 0.89 AU (133*106 km) from the Earth. On February 25,
2007, the spacecraft made a swingby maneuver about Mars, passing before the planet at a
minimum altitude of 250 km and reducing the spacecraft’s velocity by about 2.2 km/s, relative
to the Sun, such that a second Earth swingby maneuver would occur. On November 13, 2007,
Rosetta performed this flyby. It passed the Earth at a minimum altitude of 5301 km above a
region of the Pacific Ocean, just off the coast of Chile; its velocity relative to Earth was about
12.5 km/s. Rosetta passed asteroid 2867/Steins at a minimum distance of 803 km and a relative
velocity of about 8.6 km/s on September 5, 2008. A third and final swingby maneuver about the
Earth has taken place on November 13, 2009, when Rosetta passed the Earth at a minimum
altitude of 2481 km above the Indian Ocean just south of the island of Java. At that time, the
spacecraft had a velocity of about 13.3 km/s relative to the Earth; the swingby maneuver provided
a velocity increase of 3.6 km/s. On July 10, 2010, when the spacecraft was 454*106 km from
Earth, it flew past the asteroid 21/Lutetia at a minimum distance of 3,168 km and a relative
velocity of about 15 km/s. In the period January 18 - 25, 2011, Rosetta’s four 10 N thrusters were
ignited during five thrusting periods to produce a )V of 0.79 km/s. This major deep-space
maneuver placed the spacecraft onto an interception trajectory with comet Churyumov-
Gerasimenko. On June 8, 2011, when the spacecraft was 549*106 km from the Earth and about
670*106 km from the Sun, the spacecraft was commanded to put itself into a hibernation mode
during which all instruments and almost all control systems were turned off; only the computer
and several heaters remained active. On January 20, 2014, when Rosetta’s orbit has brought the
spacecraft back to within 673*106 km from the Sun, the solar radiation intensity was sufficient
again to power the spacecraft fully and a timer has woken up the spacecraft. After warming up
its key navigation instruments, coming out of a stabilizing spin, and aiming its main radio
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antenna at Earth, Rosetta sent a signal to let mission operators know it had survived the most
distant part of its journey. From May 7 to August 6, 2014, a series of ten maneuvers was executed
in order to reduce the distance and relative velocity between Rosetta and the target comet. Three
major maneuvers were executed on May 21, June 4 and June 18. On May 21, when the spacecraft
was at a distance of about 106 km from the comet and had a velocity of 754 m/s relative to the
comet, four 10 N thrusters were switched on for 7h21m to reduce the speed relative to the comet
by 290 m/s; on June 4 the thrusters were fired for 6h45m to reduce the speed by 270 m/s; on June
18 the thrusters were fired for 2h20m to further reduce the speed by 91 m/s. During these maneu-
vers about 215 kg, 190 kg and 65 kg of propellant was used. The last of the series of ten maneu-
vers was executed on August 6, when the spacecraft was at a distance of about 100 km from the
comet. After the thrusters were fired for 6m26s, the relative velocity of the spacecraft was reduced
to less than 1 m/s. In the next weeks a number of small maneuvers were executed until the
spacecraft entered an orbit about the comet. A detailed mapping of the comet’s surface was
conducted and a landing site was selected for Philae. The lander was dropped from an altitude
of about 22 km on November 12, and touched the nucleus about 7 hr later at a speed of the order
of 1 m/s. Because the anchoring harpoons did not fire, Philae bounced off the surface and flew
up to an altitude of about 1 km. About 2 hr after first contact, it again touched down. After a
second bounce, Philae finally landed about 7 min later, becoming the first spacecraft to soft-land
on a comet. However, at that site there was insufficient illumination of the lander’s solar panels.
Consequently, the lander ran out of battery power about 58 hr after the landing. During this
period it has sent high-resolution pictures as well as information about the upper crust of the
nucleus to the orbiter; these data were relayed to Earth by the orbiter. The orbiter will continue
observations of the comet’s nucleus, and will monitor the ‘awakening’ of the comet’s activity as
it comes closer to the Sun and reaches the perihelion of its orbit in October 2015.

18.12. Non-Hohmann low-energy transfer trajectories

In the previous Sections, it was assumed that interplanetary trajectories may, to first-order
approximation, be computed by the patched conic approach (Section 17.3). It consists in dividing
the trajectory in phases and studying the motion as a two-body problem during each phase. These
phases are separated at a planet’s sphere of influence, which yields some discontinuities in the
model. The conic arcs resulting by this analysis are then patched together to obtain an
approximation of the whole transfer trajectory. This simplification was used for designing the
trajectories for many interplanetary missions, including e.g. NASA’s multiple-planet flyby
missions, such as Voyager and Galileo. The trajectory computed in this way could be used as an
initial guess for a numerical procedure that produced the fully-integrated n-body system solution.
But as space missions have become more demanding, other approaches have become necessary.
For example, the ISEE-3, Genesis, and outer-planet multi-moon orbiter trajectories resemble
solutions of the restricted three- and four-body problems much more than of two-body problems.
In fact, methods based on a patched-conic approximation would be inappropriate to find these
complicated trajectories, and a three-body decomposition of the solar system is absolutely
necessary.

In the patched three-body approximation we consider a restricted four-body problem wherein
a spacecraft moves under the influence of three massive bodies whose motion is prescribed. For
planetary missions, these bodies are Sun, Earth, planet and spacecraft, or Sun, planet, moon and
spacecraft. When the spacecraft is relatively close to one of the planets or moons, the motion is
governed by the three-body dynamics of the corresponding Sun-planet system or planet-moon
system, and the full trajectory is obtained by patching together the three-body trajectories. This
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approach still considers some model discontinuities along the whole trajectory, but the dynamics
are modeled more accurately during the different mission phases. One of the key ideas of this
analysis approach is that the competing gravitational attractions between celestial bodies creates
a vast array of passageways that wind around the Sun, planets and moons (Section 3.12). The
boundaries of these passageways are realized geometrically as invariant manifolds attached to
the collinear Lagrange points and periodic orbits in interlinked three-body problems. The success
of this approach depends greatly on the configuration of the four bodies of interest. To enable
low-energy transfers, the manifold tubes of the two three-body systems must intersect within a
reasonable time; otherwise, the transfer may require an impractically long time of flight. For the
Sun-Earth-Moon-spacecraft case, this is not a problem. The overlap of these tube structures
provides many opportunities for low-energy transfers between the Earth and the Moon (Section
17.5). For interplanetary trajectories, this is, however, not the case and we sometimes have to
wait for a long time before the rotating tube structures, which form an interplanetary transport
network, intersect.

Figure 18.28: Trajectory of ISEE-3 after it left its halo trajectory about the Sun-Earth L1 point on June
10, 1982, plotted relative to the rotating Sun-Earth reference frame and viewed from the ecliptic north.

The first mission that has used this kind of low-energy non-Hohmann transfer trajectories was
ISEE-3. In Section 3.13, the first part of this mission, where the spacecraft was inserted into a
halo orbit about the Sun-Earth L1 point, was discussed. Here, a short description of the extended
mission is presented. In 1982, ISEE-3 began the magnetotail and comet encounter phases of its
mission. A maneuver was conducted on June 10, 1982, to remove the spacecraft from its halo
orbit and to place it on an unstable Sun-Earth manifold transfer trajectory involving a series of
passages between the Earth and the Sun-Earth L2 point (Figure 18.28). After several passes
through the Earth’s magnetotail, with gravity assists from lunar flybys on March 30, April 23,
September 27 and October 21, 1983, a final close lunar flyby (119.4 km altitude) on December
22, 1983, ejected the spacecraft out of the Earth-Moon system and into a heliocentric orbit ahead
of the Earth, on a trajectory intercepting that of comet Giacobini-Zinner. At that time, the
spacecraft was renamed International Cometary Explorer (ICE). The primary scientific objective
of ICE was to study the interaction between the solar wind and a cometary atmosphere. In 1985,
three trajectory correction maneuvers were performed totaling a )V of 42 m/s, and the spacecraft
traversed the plasma tail of the comet on September 11, 1985, at a distance of about 7800 km and
made in situ measurements of particles, fields, and waves. It also transited between the Sun and
comet Halley in late March 1986, when other spacecraft (Giotto, Planet-A, Sakigake, VEGA-1,
VEGA-2) were in the vicinity of comet Halley on their early March comet rendez-vous missions.
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In 1991, NASA defined a heliospheric mission extension for ICE, consisting of investigations
of solar coronal mass ejections in coordination with ground-based observations, continued cosmic
ray studies, and special period observations such as when ICE and Ulysses were on the same
solar radial line. As of January 1990, ICE is in a 355 days period heliocentric orbit with
apohelion distance of 1.03 AU, perihelion distance of 0.93 AU, and inclination of 0.1E. This will
bring it back to the vicinity of the Earth-Moon system in August, 2014. On May 5, 1997,
operation of ICE was terminated.

Another mission that has used this type of trajectories was Genesis, which was launched by a
Delta II 7326 rocket from Cape Canaveral on August 8, 2001, and has swept up specks of the
Sun—individual atoms of the solar wind—on five collector arrays and in an ion concentrator.
The goal was to return these solar wind particles safely to Earth for study into the origins of the

Figure 18.29: Trajectory of Genesis from Earth to the Sun-Earth L1 point, along a halo orbit about this
point, to the region of the Sun-Earth L2 point, and back to Earth, plotted relative to the rotating Sun-Earth
reference frame and viewed from the ecliptic north.

solar system. Its sample-return capsule arrived back on Earth on September 8, 2004. This sample
would be the first extraterrestrial material brought back to Earth from beyond the Moon’s orbit.
For this spacecraft a mission was designed that used non-Hohmann low-energy transfer
trajectories. Figure 18.29 shows a sketch of the Genesis trajectory, projected onto the ecliptic and
relative to the rotating Sun-Earth reference frame. The spacecraft was launched along a low-
energy trajectory to the Sun-Earth L1 point. On November 16, 2001, it entered a halo orbit about
this L1 point and completed five orbits around this point collecting samples for about two years.
The y-amplitude (perpendicular to the Sun-Earth line) of this halo orbit was about 780,000 km;
this is about twice the radius of the orbit of the Moon. On April 22, 2004, the spacecraft fired its
thrusters to leave this orbit and to begin its journey back toward its home planet. Because of the
position of the landing site—the U.S. Air Force Utah Testing and Training Range—and the
unique geometry of Genesis’ flight path, the spacecraft could not make a direct approach and still
make a daytime landing. In order to allow the Genesis helicopter crews an opportunity to capture
the return capsule in daylight in the air, Genesis mission navigators designed an orbital detour
along a low-energy trajectory toward the Sun-Earth L2 point. After completing one loop around
this point, the spacecraft was set up for a daytime return to Earth on September 8. In dynamical
systems theory, this motion between the L1 and L2 points is called a heteroclinic connection
between the L1 and L2 regions. The stable manifold, which winds onto the halo orbit about the
L1 point, was used to design the transfer trajectory of the Genesis spacecraft from launch to
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insertion into this halo orbit. The unstable manifold, which winds off of the halo orbit, was used
to design the return trajectory which brought the spacecraft and its precious samples back to
Earth via the nearly-heteroclinic connection. However, when the spacecraft arrived on September
8, 2004, at the Earth and the return capsule entered the Earth’s atmosphere, the parachute failed
to open and the capsule slammed into the Utah desert. Still, some science objectives of the
mission could be met by analyzing the interior of the heavenly damaged capsule. For instance,
it was found that the Sun is relatively richer than Earth in the isotope oxygen-16.

Figure 18.30: Non-Hohmann low-energy transfer along the Jovian moons Ganymede and Europa. (a) The
accessible region (schematic) of the Jupiter-Europa three-body system. (b) The four-body system
approximated as two nested three-body systems. c) Intersection (schematic) between the tube associated
with Ganymede’s L1 periodic orbit unstable manifold and the tube associated with Europa’s L2 periodic
orbit stable manifold. [copied from: G. Gómez et al., Connecting orbits and invariant manifolds in the
spatial restricted three-body problem, Nonlinearity, Vol. 17, 2004.]

Using low-energy passageways is in no way limited to the inner solar system. For example,
consider a spacecraft in the gravity field of Jupiter and its many moons. It is then possible to
design a mission through Jupiter’s many-moon system, in which a single spacecraft orbits
subsequently several moons for any desired duration, allowing long-duration observations instead
of flybys lasting only minutes. For example, a multi-moon orbiter could orbit each of the Galilean
moons—Callisto, Ganymede, Europa, and Io—one after the other, using a reasonable amount of
propellant. Figure 18.30 shows a low-energy non-Hohmann transfer trajectory from an initial
Jovian insertion trajectory to Ganymede. After one orbit around Ganymede including a close
approach, the spacecraft heads onward to Europa, ending in a high-inclination orbit around this
icy moon. Figure 18.30a schematically shows the region in the Jupiter-Europa system where the
spacecraft’s motion is possible for a particular value of Jacobi’s constant ((3.53)); note the
opening near Europa, permitting capture and escape. Figure 18.30b shows the four-body system
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approximated as two nested three-body systems; this picture is only a schematic, as the space-
craft’s motion conserves Jacobi’s integral in only one system at a time. Figure 18.30c schemati-
cally shows the intersection between the tube associated with Ganymede’s L1 periodic orbit
unstable manifold and the tube corresponding to Europa’s L2 periodic orbit stable manifold.
Integration forward and backward from the patch point (with a )V to take into account a velocity
discontinuity) yields the desired transfer trajectory between the moons Europa and Ganymede.
It was found that for this tour from Ganymede to Europa, the propellant consumption for
impulsive burns, as measured by the total )V, to be less than half the corresponding Hohmann
transfer value. This kind of cleverly designed low-energy transfers will undoubtedly be applied
for many more future interplanetary missions.
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19. LOW-THRUST TRAJECTORIES

In the previous Chapters we have discussed spacecraft trajectories that are shaped by
gravitational forces. If, for a short period of time, a rocket thrust was acting on the spacecraft, we
assumed that this powered phase could be considered as an impulsive shot. According to this
approximation, the position of the spacecraft does not change during the powered phase and the
spacecraft only experiences a discontinuous change in velocity. This approximation is admissible
for propulsion systems with a relatively short thrusting time. This is the case for the chemical
rocket propulsion system that was and is applied for all launch vehicles and for most maneuvers
in space. For this type of systems, characteristic values for a powered phase in an orbit about the
Earth are: F/M0 = 2 -200 m/s2, tb = 0.1 - 20 min, where F is the thrust, M0 the initial mass of the
spacecraft, and tb the burning time of the rocket engine. To limit the amount of propellants needed
for a certain maneuver, the rocket engine exhaust velocity should be as high as possible. The
highest-performance propellants combination that is used today is liquid hydrogen and liquid
oxygen, which yields maximum exhaust velocities of up to 4.5 km/s when high-pressure
combustion chambers are used. Theoretically, maximum exhaust velocities of up to 6 km/s are
possible for exotic chemical propellant combinations.

With a thermal solid-core nuclear-fission propulsion system, where the heat produced by a
nuclear-fission reactor is transferred to the hydrogen propellant via a heat exchanger, higher
exhaust velocities of up to 10 km/s are achievable. However, the additional mass of the nuclear
reactor reduces the advantage gained from the higher exhaust velocity. During the period 1959-
1968, in the USA ground-based experiments have been performed with solid-core nuclear-fission
reactors for rocket engines and with complete nuclear engines, but they were never launched. The
first nuclear rocket reactor test was conducted in the Nevada desert in July 1959. This test
reached a maximum temperature of 2683 K and a thermal power level of 70 MW. Subsequently,
a number of other tests have been performed. The most powerful reactor for a nuclear rocket
engine ever constructed, with a design thermal power level of 5000 MW, was tested in June
1968. It was run at a level of 4000 MW for 12.5 min at temperatures of up to 2310 K. The last
tests with a complete nuclear rocket engine were conducted in March 1968 with a 1100 MW
reactor that accumulated a total of 28 start cycles for a total of 115 min of operations. In the series
of tests with this engine, thrust levels of up to 930 kN and exhaust velocities of up to 8.2 km/s
have been reached; at the highest thrust level a minimum reactor specific mass of 2.3 kg/MW was
achieved. The US nuclear rocket engine development program was terminated in 1972. Since
then, only design studies and technology developments have taken place. At present, NASA is
studying various advanced solid-core nuclear fission engine concepts, including a 75 MW engine
with a thrust of 14 kN and a total mass of 170 kg. This system would heat the hydrogen
propellant to 3000 K, leading to an exhaust velocity of 9 km/s. Also, the design of a gas-core
nuclear-fission reactor is studied, where radiant energy is transferred from a high-temperature
fissioning plasma to the hydrogen propellant. In this concept, the propellant temperature can be
significantly higher than the engine structural temperature, yielding exhaust velocities of 30 km/s
or higher. In general, with thermal nuclear-fission propulsion systems somewhat longer thrusting
periods are applied (10 -40 min), but these are still short compared to the total flight time. As a
result, the concept of the impulsive shot is still applicable to first-order trajectory analyses.

A completely different type of rocket propulsion is electric propulsion, where the thrust is
very low but the exhaust velocity can reach almost unlimited values. Although this Chapter does
not cover the concepts and technologies of these propulsion systems but only the trajectories of
electrically propelled spacecraft, we will start with a survey of some characteristic aspects of this
kind of propulsion system.
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19.1. Electric propulsion systems and missions

Unlike a chemical propulsion system, where the propellants are both the power source and the
exhaust medium, an electric propulsion system includes a separate power source and power
conversion unit to impart the propulsive energy to the propellant. This power plant may comprise
a solar array or a solid-core nuclear-fission reactor. Until now, solar arrays were and are the
power source for nearly all electrically propelled spacecraft, but in the future, when higher power
levels will be required and regions of space far from the Sun will be traversed, electric propulsion
systems will be powered by nuclear-fission reactors.

Nearly all current electric propulsion systems can be grouped into three categories:
S Electrothermal propulsion. These systems include resistojets and arcjets, where the

propellant is heated electrically and the hot gas is thermodynamically expanded and
accelerated through an exhaust nozzle. Resistojets operate by electrically heating high-
resistance metal parts, which heat the propellant flowing over them. Arcjets operate by heating
the propellant gas flow by passing it directly through an electric arc discharge.

S Electrostatic propulsion. These systems include the Kaufman thruster, the Radiofrequency
Ion Thruster (RIT) and the Field Emission Electric Propulsion (FEEP) thruster. In the
Kaufman and RIT thrusters, the propellant atoms are ionized by electron bombardment. These
energetic electrons can be provided from a hot cathode filament and accelerated in the
electrical field of the cathode fall to the anode (Kaufman thruster), or can be produced and
accelerated by the oscillating electrical field induced by an alternating magnetic field of a coil,
which results in a self-sustaining discharge and eliminates the need for a cathode (RIT
thruster). In the FEEP thruster, the propellant passes an extremely thin slit in an emitter. An
electrical field applied between the emitter and an accelerator ring causes the propellant atoms
to become unstable and to ionize. In all three systems, the positive ions are accelerated to high
velocity by an electrical field established between the ion source and one or more accelerating
electrode(s). After acceleration, the ion beam is electrically neutralized by injecting a stream
of electrons into the exhaust beam.

S Electromagnetic propulsion. In these systems a highly-ionized propellant plasma is generated
and the ions are accelerated by the interaction of electrical and magnetic fields on the plasma.
After the acceleration, the ions pick up the electrons to neutralize the beam after the thruster.
Stationary plasma thrusters (Hall thrusters) use the Hall effect to set up an electrostatic field,
which accelerates the propellant ions. Magnetoplasmadynamic thrusters use an electric arc
discharge, like an arcjet. In this case, the propellant plasma is accelerated by the interaction
of the arc and self-induced and applied magnetic fields. Pulsed plasma thrusters accelerate the
propellant plasma by interaction of an electric arc current with a self-induced magnetic field.
Pulsed inductive thrusters accelerate the propellant plasma by the interaction of a generalized
azimuthal current with a magnetic field from a coil current.

Usually, the Kaufman, RIT, FEEP and Hall thrusters are referred to as members of the family of
ion propulsion systems. The Hall truster was studied independently in the USA and the former
USSR in the 1950s and 1960s. However, the concept was only developed into an efficient
propulsion device in the USSR, whereas in the USA scientists focused instead on developing the
Kaufman thruster. The RIT and FEEP thrusters were primarily developed in Japan and Europe.
Electrothermal propulsion is mainly used for attitude control and stationkeeping of satellites, and
to a limited extent for orbit change maneuvers. Up to now, ion propulsion is primarily used for
orbit maintenance, correction and transfer maneuvers and for planetary missions, because of the
high exhaust velocities achievable, the good exhaust power over mass ratio, and the maturity of
these systems. Therefore, in this Section we will focus on ion propulsion systems; in the next
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Sections the motion of a spacecraft with a general low-thrust electric propulsion system will be
analyzed and discussed.

In ion propulsion systems, electrical power that is generated by solar panels, or by a nuclear
reactor and its associated electrical generator, is used to ionize the propellant and to subsequently
accelerate the ions by an electrostatic field. So, the electrical energy is converted to directed
kinetic energy of the exhausted particles. From the law of conservation of energy and the
expression for the thrust of a rocket engine: F =  m0Vj ((1.10)), we find that for this propulsion
system the following relation holds:

(19.1)

where P is the electrical power that is generated by the solar panels or nuclear reactor and
provided to the propulsion system, Pj is the power of the exhaust jet, g is the power conversion
efficiency,  is the exhausted mass per unit of time (mass flow), Vj is the (effective) exhaustm
velocity and F is the thrust. For a given engineering design of the propulsion system, g is
primarily a function of the exhaust velocity; its value generally drops to low values for low values
of the exhaust velocity. With present-day technology, a value of g = 0.7 is achieved for large ion
engines. It is emphasized that an electric propulsion system is not limited by a maximum exhaust
velocity, but by the maximum power that the powerplant can provide. At this maximum power,
the exhaust velocity can be chosen freely. However, according to (19.1), an increase in exhaust
velocity means a decrease in thrust. In the past, mercury and cesium were primarily used as
propellant for ion propulsion systems, but mercury is toxic and tended to contaminate the
spacecraft with the metal, and cesium is very toxic and corrosive. Many current designs use
xenon as propellant because of its low ionization energy, reasonably high atomic mass and inert
nature. For tests, the most practical propellant is argon, which is a relatively abundant and cheap
gas. Other propellants for application in future ion engines are presently being studied.

From (19.1) we find, after elimination of Vj and substitution of the (instantaneous) thrust
acceleration, f = F/M,

where M is the (instantaneous) mass of the spacecraft. With , this equation can be
written as

which, when integrated from the time of engine ignition, t0, to the time that the engine stops
thrusting, te, leads to

(19.2)

The initial mass of an electrically propelled spacecraft, M0, may be assumed to consist of four
components: the mass of the construction (including the rocket engines and propellant tanks), Mc,
the mass of the payload, Ml , the mass of the powerplant, Mpp, and the mass of the propellants, Mp .
So, M0 = Mc + Ml + Mpp + Mp . For the mass at te, when all propellants have been consumed, we
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may write Me = Mc + Ml + Mpp. From these expressions we obtain

(19.3)

This relation shows that, for given values of M0, Mpp /M0 and Mc /M0 , a maximum payload ratio,
Ml /M0, corresponds to a minimum value of (1/Me - 1/M0), which requires a minimum value of the
integral on the right-hand side of (19.2). Electric propulsion systems operate most efficiently at
a constant electrical power, P. For planetary missions using solar panels as power source, the
power produced will vary with the distance from the Sun. Then we have two alternatives: 1) let
the electric propulsion system operate at a variable power level, or 2) let the electric propulsion
system operate at the power level corresponding to the largest distance from the Sun reached
during the mission and dissipate the excess solar panel power generated at shorter distances from
the Sun. We will not analyze this aspect further in this Chapter. If we assume that Mpp /M0, Mc/M0

and P are specified, then we conclude from (19.2) and (19.3) that the payload ratio, Ml /M0, is
maximum if

(19.4)

The value of this integral depends upon the flight time, the mission involved, by which is meant
the specification of the kinematic conditions of the spacecraft at t0 and t = te (and at any other
time which might be necessary), the force field in which the spacecraft moves, the thrust program
applied, and, finally, the engineering design of the system as characterized by the quantity g.
Comparison of (19.4) with (1.48) shows that for a chemical or thermal-nuclear propulsion system
the integral to be minimized contains the thrust acceleration to the first power, while for an
electric propulsion system the corresponding integral contains the thrust acceleration to the
second power. To find the optimum thrust program (magnitude and direction of the thrust), we
have to integrate the equations of motion for specified initial conditions and required final
conditions (including the flight time), and use (19.4) as a minimization criterion. In this book, we
will not address the computation of such optimum trajectories. 

The computation of the optimum thrust program will generally result in a large variation of
the magnitude of the thrust, and consequently of the exhaust velocity, along the trajectory. Such
variation is beyond the capability of most thruster concepts, and may introduce unwanted system
complexity in those systems that can be designed to change exhaust velocity and thrust.
Therefore, the next best option is to use a system with constant power and constant magnitude
of the thrust, and consequently constant exhaust velocity. The computation of such trajectories
is even a greater numerical challenge than the variable thrust trajectories, because now coasting
arcs have to be introduced to the analysis. For a given mission and a specified constant thrust
level, there exists an optimum exhaust velocity and consequently optimum power level that
results in a maximum payload ratio Ml/M0. This may be explained as follows. From the
perspective of propellant mass consumption, a high exhaust velocity would be preferable.
However, according to (19.1), an increase of the exhaust velocity leads, for a given thrust level,
to an increase of the required electrical power level. The mass of the powerplant will depend on
the electrical power that it has to produce, and we may generally write Mpp = "P. So, a higher
electrical power means a larger mass of the powerplant and consequently a lower payload mass
for the same spacecraft initial mass. These two opposite effects lead to an optimum exhaust
velocity for which the sum of propellant mass and powerplant mass is a minimum. For state-of-
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the-art large solar panels at the distance of the Earth from the Sun: " = 5.5 kg/kW can be
achieved initially, i.e. before degradation due to solar radiation and high-energy particles has
occurred. For missions that require a nuclear powerplant, the critical issue is the development of
a suitable nuclear reactor that yields " < 4 kg/kW. With present-day nuclear reactor technology,
values of " = 6.5 kg/kW seem realizable. To limit the flight time, future electrically propelled
spacecraft will fly with powerplants producing 2 -10 MW; for a value of " = 4 kg/kW this leads
to a powerplant mass of 8 -40 ton.

Optimization studies for future large planetary missions generally yield optimum values of
the thrust, exhaust velocity, initial thrust acceleration, and propellant consumption within the
ranges F = 1 -100 N, Vj = 25 - 100 km/s, f0 = 10-4 -10-2 m/s2, and m0  = 0.01 -4 g/s. This example
shows that thrust, exhaust velocity and propellant consumption are of a different order of
magnitude than for chemical propulsion systems. Because electric propulsion systems provide
an acceleration that is much smaller than the gravitational acceleration on Earth, electrically
propelled spacecraft can not leave the Earth’s surface, but first have to be injected into a parking
orbit about the Earth (or directly into an escape trajectory) by chemical (or nuclear) rockets. After
the electric propulsion system is activated in Earth orbit, the spacecraft will gradually move away
from its parking orbit. The performance of these propulsion systems, expressed in the payload
ratio Ml /M0 of the spacecraft, can be considerably better than will ever be possible for chemical
propulsion, or even for thermal-nuclear propulsion. The main reason is that the low thrust can be
maintained for a long period of time.

Table 19.1 presents some information about the ion propulsion system of a number of spacecraft;
this information includes the maximum thrust and exhaust velocity per thruster. The first US
flight experiment with an ion propulsion system was onboard a suborbital launch on December
18, 1962. Due to a number of electrical problems, engine thrusting was not accomplished in this
test. The first successful ion propulsion system flight test was SERT I that was launched by a
Scout rocket on July 20, 1964. The spacecraft was equipped with two different ion engines. One
engine used mercury as propellant; this ion engine was operated at 1.4 kW electrical power with
28 mN of thrust at an exhaust velocity of 48 km/s. It was successfully operated for 31 min. The
other engine used cesium as propellant. It was operated at an electrical power of 0.6 kW and was
designed to produce a thrust of 5.6 mN at an exhaust velocity of 79 km/s. However, the engine
could not be started in space because of a high-voltage electrical short circuit. Two US additional
suborbital test flights were subsequently executed. On April 3, 1965, a SNAP-10A nuclear-
fission reactor power system was launched onboard the SNAPSHOT satellite into a 1300 km
altitude orbit with an ion engine as secondary payload. The SNAP system operated successfully
at an electrical power of 500 W for about 43 days, but the ion engine operated at a thrust of 8.5
mN only for a period of less than 1 hour before being commanded off permanently. The reason
was that high-voltage breakdowns in the ion engine induced false horizon sensor signals, which
created severe attitude control problems of the spacecraft. The first US successful orbital test of
an ion engine was on the ATS-4 spacecraft that was launched on August 10, 1968, and was
targeted for a geostationary orbit. The launch was a partial failure and the spacecraft did not reach
its nominal orbit; it re-entered the Earth’s atmosphere on October 17, 1968. The spacecraft
carried two ion engines that were each designed to operate at 20 W and provide 0.09 mN at an
exhaust velocity of 66 km/s. Both engines operated according to specifications for about 10 hours
over a 55 days period. The first long-term operation of an ion engine was accomplished on the
SERT II spacecraft that was launched on February 3, 1970, into a 1000 km altitude orbit. The
spacecraft carried two identical ion engines. Each thruster was designed to operate at a maximum
electrical power level of 850 W, and to provide 28 mN thrust at an exhaust velocity of 41 km/s.
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Table 19.1: Ion propulsion system data for a number of spacecraft.

Spacecraft Sponsor Launch
date

Orbit
altitude

(km)

Propel-
lant

Thrust

(mN)

Exh.
velocity
(km/s)

SERT I (2) NASA 20/07/64 suborbital mercury 28 48
cesium 5.6 79

Program 661A, B(1) USAF 29/08/64 suborbital cesium 8.9 73
SNAPSHOT (1) USAF 03/04/65 1300 cesium 8.5 50
ATS-5 (2) USAF/NASA 12/08/69 36,000 cesium 0.089 66
SERT II (2) NASA 03/02/70 1000 mercury 28 41
ATS-6 (2) NASA 30/05/74 36,000 cesium 4.5 25
SCATHA P78-2 (1) USAF/NASA 30/01/79 27-43*103 xenon 0.14 3.4
ETS-3 (2) JAXA 03/09/82 1100 mercury 2 21
EURECA-1 (1) ESA 31/07/92 510 xenon 10 30
ETS-6 (4) JAXA 28/08/94 8-39*103 xenon 24 28
PAS-5 (4) PanAmSat 27/08/97 36,000 xenon 18 25
ASTRA-2A (4) SES 29/08/98 36,000 xenon 18 25
Deep Space 1 (1) NASA 24/10/98 orbits Sun xenon 92 30
PAS-6B (4) PanAmSat 21/12/98 36,000 xenon 18 25
XM-2 Rock (4) XM 18/03/01 36,000 xenon 165 37
ARTEMIS (4) ESA 12/07/01 36,000 xenon

xenon
15
18

34
33

Hayabusa (4) JAXA 09/05/03 orbits Sun xenon 8 31
SMART-1 (1) ESA 27/09/03 to Moon xenon 68 16
Dawn (3) NASA 27/09/07 orbits Sun xenon 92 30
GOCE (2) ESA 17/03/09 270 xenon 20 40

Data listed are per thruster and correspond to maximum values; (..) number of thrusters; SES: SES
Global S.A.; XM: XM Satellite Radio Inc.

The engines were operated for 2011 hours and 3781 hours, respectively.
Between the early 1970s and 2005, more than 120 satellites with electric propulsion have

been launched by the former USSR. For these satellites, electric propulsion was used for attitude
control, stationkeeping and orbit correction. Many American military satellites have used and still
use electric propulsion systems for attitude control, stationkeeping and orbit correction purposes.
Electric propulsion entered its era of commercial application in the early 1980s. In the early
1990s, electric propulsion was adopted for stationkeeping of many communications satellites in
geostationary orbit. In 1997, a new era of ion propulsion began with the deployment of
communications satellites using ion propulsion for auxiliary propulsion. PanAmSat’s PAS-5
communications satellite, launched on August 27, 1997, was the first successful operational
geostationary communications satellite employing ion propulsion. Since then, many more
communications satellites using ion propulsion systems have followed. XM-2 Rock, owned by
XM Satellite Radio and launched on March 18, 2001, is one out of the series of very-large
Boeing model 702 communications satellites. The solar array of these satellites provide a
beginning-of-life electrical power of 15 kW or more. The satellite flies four ion thrusters, each
operating at 2.2 or 4.5 kW and producing 79 or 165 mN of thrust, to perform all stationkeeping
and spacecraft momentum control. Only two of the four thrusters are required to perform the
entire on-orbit mission maneuvers with a series of four daily burns. For these communications
satellites, the electric propulsion system is also used in the geostationary transfer trajectory for
apogee raising maneuvers, for decreasing the orbital inclination, to circularize the orbit and to
position the satellite in its final orbit. In this way, larger payloads can be accommodated with
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greater flexibility in the choice and use of a launch vehicle. In total, the number of electrically
propelled spacecraft has gone from single digits in the 1960s to double digits in the 1970s and
1980s and has reached the triple-digit mark in the late 1990s. Many more electric propulsion
systems on many more communications satellites are planned. These advanced commercial
thrusters operate in the 0.4 -5 kW range at exhaust velocities of 20 -40 km/s and have typical
required service life of 5000 to 15,000 hours.

A unique application of electric propulsion was the ESA GOCE satellite, which was launched
by a Russian Rockot from Plesetsk on March 17, 2009, into a near-circular orbit at a mean
altitude of 284 km and an inclination of 96.7E. The satellite, with an initial total mass of 1050 kg,
carried a gradiometer that measured the gradient of the Earth’s gravity field. From these data the
spatial and temporal variations of the gravity field can be determined with extreme accuracy. To
obtain the strongest possible gravity field signal, the orbit of the satellite should be as low as
possible. However, then the atmosphere produces a deceleration of the satellite that would disturb
the functioning of the gradiometer. Therefore, the satellite was equipped with a throttleable ion
propulsion system, which was powered by solar panels on the satellite body producing 1.3 kW
of electrical power. About 600 W was available to the ion propulsion system. This system
consisted of two redundant Kaufman type of ion engines with 40 kg of xenon as propellant,
generating an exhaust velocity of 40 km/s, and producing a thrust of 1 - 20 mN adjustable in steps
of as low as 12 :N; only one ion engine operated at a time. The accelerometers of the
gradiometer measured the deceleration of the satellite due to the atmospheric drag and a control
system produced continuously the right amount of thrust to achieve a ‘drag-free’ trajectory. In
this way, the gradiometer measures the ‘clean’ signal of the Earth’s gravity field. The satellite’s
arrow shape and aerodynamic fins helped keeping GOCE stable as it flew through the upper
atmosphere. In its initial orbit, the altitude decayed by about 190 m per day. During the
commissioning and calibration phase, both ion engines were ignited for a short time on March
31 and April 2 to check their performance. On September 13, 2009, the satellite reached its
operational altitude of 255 km 1. Then, one of the ion engines was ignited and the drag-free part
of the mission started. When a telemetry problem was discovered in July 2010, operators raised
GOCE’s orbital altitude to 263 km. After the telemetry problem was resolved in September 2010,
the mean orbital altitude was reduced again to 255 km. Because of the unusually low solar
activity in 2010, GOCE used less propellant for its ion engines than predicted. Therefore, the
gravity field mission could be extended beyond the originally planned 2.5 years. Starting on
August 1, 2012, maneuvers were executed to lower the GOCE orbit by about 230 m/day. After
coming down by 9 km in 40 days, the satellite’s performance and new environment were
assessed. Starting on November 6, the GOCE orbit was again gradually being lowered and
reached a mean altitude of 239 km on December 2 while continuing its gravity mapping. Starting
on February 3, 2013, the orbit was further being lowered to reach a mean altitude of 234 km by
February 16, and on May 21 again to reach a mean altitude of 224 km by May 29. On October
21, 2013, all xenon propellant had been consumed and the mission came to an end. The orbit
altitude then gradually decreased and the satellite re-entered the atmosphere over the South
Atlantic Ocean, near the Falkland Islands, on November 11, 2013.

The main promise of electric propulsion systems, however, is in their application as primary
propulsion systems for lunar, interplanetary or even interstellar flights. Deep Space 1, launched
on October 24, 1998, by a Delta II 7326 Star 37FM rocket from Cape Canaveral into an orbit

1 Here, altitude is defined as the difference between the orbit’s mean semi-major axis (Section 23.3) and the Earth’s
mean equatorial radius.
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about the Sun, was the first deep-space mission with a primary ion propulsion system. The
spacecraft had an initial total mass of 486 kg and carried an ion engine that operated over a 0.5-
2.3 kW electrical power range, providing thrust from 19 mN to 92 mN; the exhaust velocity
ranged from 19 km/s at 0.5 kW to 30 km/s at 2.3 kW. It also carried a hydrazine attitude control
and maneuvering system. A total of 82 kg of xenon propellant and 31 kg of hydrazine propellant
was loaded for the flight. The spacecraft was equipped with an autonomous navigation system
that enabled the spacecraft to determine its relative position by optically tracking two or more
asteroids, of which the orbits are known, across the star background. The ion engine was started
on November 10, 1998; it operated for about 4.5 min and then switched automatically to a
standby mode. It is believed that the unplanned termination of the thrusting was the result of a
contamination within the engine. Thermal cycling during the subsequent two weeks removed the
contaminant and when the engine was commanded on again on November 24, 1998, it operated
as desired and continued thrusting at a moderate level for two weeks uninterrupted. From
November 24 through November 30, throttle levels were commanded up in various steps to reach
maximum thrust. Then, the engine was shut down and turned back on on December 11. On
January 5, 1999, the autonomous navigation system turned off the ion engine, completing the first
thrust segment of the Deep Space 1 mission. During that period, the engine accumulated more
than 850 operating hours. On March 15, the engine was turned on again and on April 27, Deep
Space 1 completed a six-weeks period of thrusting with its ion propulsion system. It took less
than 5 kg of xenon to provide the steady push for this six-weeks period, during which the
spacecraft’s speed was increased by nearly 300 m/s. By June 30, 1999, the ion engine had
operated for nearly 1800 hours; the propellant consumption was 11.4 kg, and the total velocity
increase about 700 m/s. On July 29, 1999, the spacecraft conducted an encounter with asteroid
9969/Braille at a distance of 1.334 AU from the Sun. This 2 km by 1 km by 1 km asteroid moves
about the Sun in an orbit with perihelion and apohelion distances of 1.334 AU and 3.356 AU.
Deep Space 1 was intended to perform the flyby with a relative velocity of 15.6 km/s at only 240
m from the asteroid’s surface. Due to technical difficulties the spacecraft instead passed Braille
at a closest distance of 25 km. On September 22, 2001, it passed comet 19P/Borrelly at a closest
distance of 2171 km and with a relative velocity of 16.6 km/s. This comet, 4 km wide and 8 km
long, moves in a 1.35 AU by 5.83 AU orbit about the Sun. This flyby returned extremely detailed
images of the comet’s surface. Despite the absence of a debris shield, the spacecraft survived the
comet passage intact. Because of limited NASA resources, it was decided to end the spacecraft
operations on December 18, 2001. During the course of the flight, the ion propulsion system
accumulated 16,265 hours of operation and expended 73 kg of xenon.

On May 9, 2003, the JAXA Muses-C spacecraft was launched by a Japanese M-5 rocket from
Uchinoura into an orbit about the Sun. After launch, the spacecraft was renamed as Hayabusa.
In addition to a nitrogen tetroxide and hydrazine propulsion system with a peak thrust of 22 mN
for maneuvering, the spacecraft was equipped with an electric propulsion system, consisting of
four ion engines of which three were operated together and the fourth was a spare. Each ion
engine used xenon propellant, was operated at a power level of 380 W and produced a thrust of
8 mN at an exhaust velocity of 31 km/s. The launch mass was 510 kg, including 50 kg of
chemical propellant and 65 kg of xenon. The ion engines started on May 27, 2003; full power
operation started on June 25, 2003. On March 31, 2004, the ion thruster operation was stopped
to prepare for an Earth swingby flight (Section 18.11). This swingby occurred on May 19, when
the spacecraft reached a minimum altitude of 3725 above the Earth. The ion thruster operation
was resumed on May 27. The force generated by this almost continuously operating propulsion
system gradually changed the orbit such that the spacecraft encountered on September 12, 2005,
the asteroid 1998SF36 /Itokawa. This asteroid measures 535 m by 294 m by 209 m and orbits the
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Sun in a 0.953 AU by 1.695 AU orbit. On August 28, the spacecraft had switched over from its
ion engines to the chemical bi-propellant 22 mN thrusters for maneuvering. The ion engines had
then consumed 22 kg of xenon and had operated for 25,800 hours. In the middle of September
the spacecraft moved into a stationary position relative to the asteroid at a distance of 20 km from
the asteroid. From this stationary position, various measurements were taken on the asteroid. On
November 3, the spacecraft took position 3 km from the asteroid. It then began a descent, planned
to include delivery of a target marker, and release of the 0.59 kg Minerva mini-lander. Due to a
number of anomalies, this maneuver was stopped. In the period November 7 to 12, a series of
partial descents was performed. On November 12, the spacecraft began a full descent from 1.4
km altitude at 3 cm/s to an altitude of 55 m. The Minerva lander was deployed but, unfortunately,
Hayabusa had at that time already started an automatic ascent; so, the release was at a higher
altitude than planned. Contact with the lander was lost and it is believed that Minerva floated off
into space without landing. On November 19, Hayabusa landed on the asteroid on 20h40m UTC
with a velocity of roughly 10 cm/s. Due to this relatively high velocity it bounced up; it bounced
again at 21h10m UTC and then landed at 21h30m UTC. At 21h58m UTC, it was commanded to
make an emergency ascent. Unfortunately, the sampling of surface material did not progress well,
but it was believed that some dust may have whirled up into the sampling horn when it touched
the asteroid. On November 25, a second landing attempt was performed. It was first thought that
the spacecraft had collected a sample during this attempt, but subsequent data seemed to indicate
that it had not. During the fly away after this second touching down on the asteroid, a leak in the
chemical propulsion system was detected. The ground team managed to stop the leak, but on
December 8 the spacecraft suffered from a significant torque disturbance apparently caused by
the out-gassing of vapor generated by the evaporation of leaked propellant. Due to the resulting
attitude changes of the spacecraft, ground contact was lost. On January 23, 2006, contact with
the spacecraft could be reestablished. On March 6, Hayabusa’s position was established at about
1300 km ahead of Itokawa in the orbit of the asteroid with a relative velocity of about 3 m/s. On
June 1, 2006, it was confirmed that two out of the four ion engines worked normally, which is
sufficient for the return journey. On August 29, 2007, a third ion engine was successfully re-
ignited. On February 4, 2009, JAXA reported that all required trajectory maneuvers were
successfully executed. Sufficient xenon propellant was available to bring the spacecraft back to
Earth by June 2010, three years later than originally planned. On March 27, 2010, Hayabusa was
on a trajectory which would pass the Earth at a distance of 20,000 km. After a series of orbit
trajectory maneuvers a trajectory was realized that would lead to a landing of the reentry capsule
at the Australian Woomera Test Range. The reentry capsule was separated from the spacecraft
on June 13 and about 3 hr later the reentry capsule and the spacecraft reentered the Earth’s
atmosphere. The heat-shielded capsule made a parachute landing in the Woomera desert, while
the spacecraft broke up and incinerated in a large fireball. The capsule was successfully retrieved
on June 14; the two parts of the heat shield, which were jettisoned during the descent, were also
found. On November 16, 2010, JAXA confirmed that approximately 1500 particles found in one
of the two compartments inside the capsule came from Itokawa. Their size was mostly less than
10 :m.

The first ESA spacecraft using electric propulsion as the primary propulsion system was
SMART-1, which was launched on September 27, 2003, together with two communications
satellites, by an Ariane 5G rocket from Kourou into a geostationary transfer orbit. Details about
the trajectory flown by this spacecraft are given in Section 17.5. The 367 kg spacecraft was
equipped with a Hall ion engine that was powered by a 1.85 kW (beginning of life) solar array.
The engine was designed to run on an electrical power of 1.19 kW at beginning of life and to
produce then a nominal thrust of 68 mN at an exhaust velocity of 16 km/s. The spacecraft carried
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82.5 kg of xenon propellant. The particular trajectory taken by SMART-1 to the Moon required
thrusting for about one-third to one-half of every orbit on the perigee part of the orbit. The ion
engine was used over a period of 14 months to elongate the orbit to reach the Moon. On October
26, 2004, the ion engine had accumulated a total on-time of nearly 3,648 hours out of a total
flight time of 8,000 hours. At that time, the orbit perigee and apogee distances were 179,718 km
and 305,214 km, and the inclination was 20.59E; the spacecraft had then consumed about 59 kg
of xenon. Lunar capture occurred on November 14, 2004, at an altitude of 60,000 km above the
lunar surface. The ion engine was powered on again on November 15 for a planned burn of 4.5
days to enter fully into lunar orbit. Subsequently, the ion engine was used to lower the orbit to
reach a 300 km by 3000 km lunar polar orbit to conduct lunar science. The ion engine was shut
down in September 2005 after exhausting its xenon fuel supply. Then, it had operated for almost
5,000 hours and underwent 843 starts and stops. SMART-1 ended its mission by being
deliberately crashed onto the Moon’s surface on September 3, 2006.

On September 27, 2007, the NASA 1220 kg (740 kg dry) Dawn spacecraft was launched by
a Delta II 7925H rocket from Cape Canaveral. The Delta upper stage boosted the spacecraft and
a PAM-D third stage into a 185 km by 6,835 km altitude orbit. About one hour later, the PAM-D
fired and released Dawn after accelerating it to 11.46 km/s and sending it into a 1.00 AU by 1.62
AU orbit about the Sun, inclined at 0.5E to the ecliptic. This was the start of an eight-year mission
to the asteroid Vesta and the dwarf planet Ceres (Figure 19.1). These bodies are part of the
asteroid belt; a region between the orbits of Mars and Jupiter where matter was prevented from
coalescing into planets by the gravitational perturbations of Jupiter. The principal dimensions of
Vesta are 578 km by 560 km by 458 km; it orbits the Sun with perihelion and apohelion distances
of 2.15 AU and 2.57 AU in a plane that is inclined at 7.1E to the ecliptic. Ceres is a dwarf planet,
whose mass comprises about one-third of the total mass of all bodies in the asteroid belt. It is a
round, smooth world with a mean equatorial radius of 487 km and mean polar radius of 455 km,
displaying signs of water ice on its surface. It moves in an orbit with perihelion and apohelion
distances of 2.55 AU and 2.99 AU; its orbital plane is inclined at 10.6E to the ecliptic. Dawn
carries three science instruments: a visible-light camera, a visible-light and infrared mapping

Figure 19.1: Trajectory of the Dawn spacecraft.
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spectrometer, and a gamma-ray and neutron spectrometer. In addition to these instruments,
radiometric and optical navigation data will provide data about the gravity field and thus of the
bulk properties and internal structures of the two bodies. Shortly after launch, Dawn unfolded its
two solar panels, each with an area of 18 m2 and together providing 10.3 kW of electrical power
at the start of the mission and 1.3 kW at the end of life at 3 AU. The main propulsion system of
the spacecraft consists of three 30 cm diameter ion thrusters; only one engine is thrusting the
spacecraft at a time. The thrust of the engines is throttleable between 19 mN and 92 mN, with a
corresponding input power of 0.5 kW and 2.6 kW, and an exhaust velocity of 19 km/s and 30
km/s. Dawn carries a total of 425 kg of xenon propellant, which it will use over more than 2,100
days of thruster operation time. In addition, the spacecraft has a hydrazine reaction control system
with two sets of six 0.9 N thrusters and 45 kg of propellant (at start). The ion engines were
ignited on October 6, 2007. After initial checkout of all systems and calibrating the thrust levels
of the ion engines, during which the engines accumulated more than 11 days of thrust, Dawn
began its first long propulsion phase on December 17, 2007. During this first thrusting phase, the
ion engine was running for 270 days, or about 85% of the time. In that period it has expended less
than 72 kg of xenon propellant. This first electric propulsion phase ended on October 31, 2008,
after which the spacecraft coasted to Mars to perform a swingby flight. On November 20, 2008,
Dawn performed its first trajectory correction maneuver, firing one of its ion engines for 2 hr 11
min. Dawn made its closest approach of 549 km altitude to Mars on February 17, 2009; this
swingby increased the spacecraft’s heliocentric velocity by 2.6 km/s and changed the orbital
inclination by 5.2E. The ion engine was ignited again on June 8, 2009, and, after a flight of about
2 years, Dawn approached Vesta on June 12, 2011. By that time the electric propulsion system
had accumulated about 1,100 days of operation. The ion engine was then used to reduce the
spacecraft’s velocity relative to Vesta in preparation for its insertion into orbit around Vesta. On
July 15, as Dawn continued thrusting, it was gently captured in orbit by Vesta. Note that Figure
19.1 refers to the pre-flight trajectory design and indicates slightly different times for some
mission milestones. On August 2, the thrusting needed to reach the circular polar first science
observations orbit, at a mean altitude of about 2700 km and with a period of about 69 hr, was
completed. From this orbit the entire surface of Vesta, which rotates once in about 5 hr about its
polar axis, could be observed within a short period. On August 11, Dawn began its observations
program from this orbit. During seven orbital revolutions, the instruments acquired images and
spectra when the spacecraft passed over the day side of Vesta and transmitted the results to Earth
when the spacecraft was over the night side. On August 31, the ion engine thrusting was resumed,
forcing the spacecraft to spiral down to the next science orbit. On September 29, Dawn began its
new phase of Vesta observations, circling Vesta every 12.3 hr at an average altitude of 680 km.
On October 31, Dawn completed the final mapping cycle in this orbit. It spent another two days
transmitting to Earth the last of the science data it had gathered. On November 2, the ion
propulsion system began thrusting again and on December 8 Dawn entered the next science orbit,
which had an average altitude of 210 km and a period of about 4 hr. Science observations in this
orbit began on December 12. After this observation period was completed on May 1, 2012, the
ion propulsion system was activated again and Dawn spiraled out to conduct additional
observations from a 680 km altitude orbit. The observation mission at Vesta was completed on
July 25, 2012, when the propulsion system was ignited again to let the spacecraft spiral out and
escape from Vesta’s gravity field. It reached the escape velocity at a distance of 17,200 km and
a velocity of 33 m/s relative to Vesta on September 4. Its ion engines will propel it along a
trajectory where it will spend nearly three years en route to Ceres, making about three-fourth of
an orbital revolution about the Sun as it spirals outward toward the dwarf planet (Figure 19.1).
After arrival in February 2015, Dawn will use its ion propulsion system to make a slow approach
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and to enter an orbit around Ceres in March 2015. As at Vesta, the spacecraft will fly a series of
orbits about the dwarf planet that will allow studying nearly its entire surface. The orbital
altitudes will range from 5900 km to 500 km. The mission is planned to end in July 2015. The
spacecraft will then be placed in a quarantine orbit about Ceres at an altitude of 700 km. This
orbit ensures that the decommissioned spacecraft would not impact Ceres for 50 years, suppos-
edly allowing enough time for action in case some kind of life on Ceres was detected. During the
entire mission the three ion propulsion engines will fire cumulatively for about 2,100 days; well
in excess of the 678 days for the ion propulsion system of the Deep Space 1 mission.

At present, NASA studies both planetary missions requiring ten to hundred times the power
of today’s electric propulsion systems and systems providing micro-Newton thrust levels for
applications in precision formation-flying missions. For deep-space applications the engine
performance goals include a 1 -7 kW power throttling envelope, an exhaust velocity capability
of over 40 km/s and a 70% efficiency. NASA is presently also studying nuclear-electric options
for deep-space missions. An advanced ion engine has been designed for a 15 years life, a 20 kW
power level and a 75 km/s exhaust velocity. In ground tests, it has been operated at up to 27 kW
electrical power at an exhaust velocity of up to 85 km/s.

19.2. Equations of motion

In this Chapter, we will analyze the trajectory of an electrically propelled spacecraft after its
departure from a circular initial orbit. This is characteristic for a mission where an electric
propulsion system is used to raise the orbit of a spacecraft after it has been injected into a low-
Earth parking orbit. In the 1960s and 1970s, one imagined that interplanetary missions with
electric propulsion would also start from an initial parking orbit about the Earth. However, up
to now all electrically propelled deep space spacecraft were injected by a traditional (chemical)
launcher into an escape trajectory, after which the electric propulsion system took over. For those
missions we may state that the electric propulsion part of the mission starts, outside the Earth’s
sphere of influence (Section 4.3), in the Earth’s orbit about the Sun. In that case, the velocity of
the spacecraft at ignition of the electric propulsion thruster(s) is about tangential to the Earth’s
orbit, but differs in magnitude somewhat from the Earth’s orbital velocity. Nevertheless, the
results obtained for a mission that starts in a circular initial orbit about the Sun also provide some
insight in the trajectory of a deep space spacecraft that ignites its electric propulsion system in
the orbit of the Earth outside the Earth’s sphere of influence. Undoubtedly, in the future large
interplanetary spacecraft with advanced electric propulsion systems will be assembled in low-
Earth orbit, after which they will be propelled out of that orbit and into powered interplanetary
transfer trajectories by their electric propulsion system. For these missions, the analyses
presented in this Chapter apply very well.

In our analyses we will pay special attention to the phase of the flight between departure from
the initial circular orbit and the moment that the spacecraft reaches the local escape velocity. We
will assumed that the gravity field in which the spacecraft is moving, may be described by a
Newton central force field, for which the potential is given by U = -:/r, and that only this
gravitational force and the thrust, , produced by an electric propulsion system act on the
spacecraft. Then, the equations of motion may be written as (Chapter 10)

(19.5)

where  and M denotes the instantaneous mass of the spacecraft.
To simplify the analysis, the following dimensionless parameters are introduced:
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(19.6)

where the index 0 corresponds to the time that the engine is activated, r0 is the radius of the initial
circular orbit, g0 is the gravitational acceleration in that orbit (g0 = :/r0

2), Vc0 is the velocity in that
orbit, n0 is the mean angular motion in that orbit, and Tc0 is the period of that orbit. The local
circular velocity and local escape velocity at any point along the spacecraft’s trajectory may,
according to (6.18), (7.3) and (19.6), be written in dimensionless parameters as

(19.7)

With (19.6) we may write for the left-hand side of (19.5):

Substitution of this expression and (19.6) into (19.5) gives

(19.8)

Vectorial multiplication of (19.8) by  and scalar multiplication of (19.8) by  yield

 (19.9)

Using the method described in Section 5.1, we may write (19.9) as

(19.10)

where  is the velocity vector of the spacecraft;  and õ are the orbital angular
momentum vector and the orbital energy of the spacecraft, both per unit of mass and in
dimensionless parameters. We now assume that the thrust vector, , acts continuously in the
initial plane of motion. In that case, the motion of the spacecraft about the Earth is two-
dimensional. So, the very interesting application of using electric propulsion to change the orbital
plane is not discussed here. Using the flight path angle, (, and the thrust angle, *, as defined in
Figure 1.5, (19.10) can be written as
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(19.11)

Note that the instantaneous rate of change of the orbital energy is maximum if * = (, i.e. if the
thrust is acting tangentially to the trajectory. The time-derivative of the orbital angular
momentum is maximum if * = 0E, i.e. if the thrust is directed perpendicular to the radius vector.
Sometimes, it is concluded from (19.11-2) that for an optimum escape trajectory from a low-
altitude Earth orbit the thrust should be directed continuously along the instantaneous velocity
vector, i.e. * = (. This conclusion is, however, in general not correct, since a minimum total
propellant consumption for an escape mission does not necessarily require a maximum
instantaneous energy change. The computation of optimum thrust profiles is a difficult topic that
is beyond the scope of this book. Many studies have, however, revealed that, when the thrust is
small with respect to the acceleration due to gravity, a tangential thrust of constant magnitude is
close to the optimum thrust profile for escape trajectories. In Section 19.4, it will be shown that
the trajectory then is a spiral with continuously increasing distance between its windings. This
implies that the flight path angle gradually increases. For orbit raising missions the spacecraft’s
flight path angle should eventually become small (or zero) and therefore a component of the
thrust should be oriented radially inwards during the last part of the transfer. But also in that case,
a tangential thrust profile during the larger part of the mission is a valuable first-order
approximation of the true thrust profile. The condition of a relatively small thrust is certainly
satisfied in a parking orbit about the Earth. With present-day technology (Table 19.1) we find
f0 = 10-5 -10-3 m/s2 and Vj = 15 -50 km/s, which corresponds for low orbits about the Earth to
a0 = 10-6 -10-4 and wj = 2 -7. When the same spacecraft moves in interplanetary space, we get a
somewhat different picture. For example, at the distance of the Earth from the Sun, the
acceleration due to the gravitational attraction by the Sun is approximately 5.9*10-3 m/s2. Then,
we find for the same range of values for f0 and Vj: a0 = 2*10-3 -2*10-1 and wj = 0.5 -2; so, the
dimensionless acceleration is significantly larger and the dimensionless exhaust velocity is
smaller. Still, the optimum trajectories for such vehicles resemble a spiral with relatively large
distances between its windings, as is illustrated by Figure 19.1.

For first-order analyses of escape flights in the Earth’s gravity field and of missions to
planets, asteroids or comets the trajectory is sometimes approximated by an appropriately
selected analytical function, such as an exponential sinusoid or another type of spiral generating
function. Such a function is then used as an approximative solution of the equations of motion.
By selecting appropriate values for the various parameters occurring in that analytical function,
it is possible to let the trajectory satisfy the specified initial and required final conditions. The
analytical expression for the trajectory then can be used to compute the instantaneous values of
the required direction and magnitude of the thrust, the velocity of the spacecraft, the flight path
angle, etc.

Future more-powerful electric propulsion systems will definitely provide higher thrust levels,
which will produce accelerations of interplanetary spacecraft that will not be small anymore
relative to the acceleration due to solar gravity. These spacecraft, with characteristic values of
f0 = 10-3 -10-1 m/s2 and Vj = 30 -100 km/s will fly different types of trajectories that will not be
discussed in this Chapter. We will also not discuss optimum powered trajectories for spacecraft
that have to encounter another spacecraft or celestial body with a specified velocity.

For our analysis, we assume that the magnitudes of the thrust and of the exhaust velocity, and
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consequently also propellant mass consumption per unit of time, are constant. In that case, we
find with (1.10) for the dimensionless thrust acceleration

or, with (19.6),

(19.12)

With the standard rocket engine equation  we conclude that , where
Mp (t) is the mass of propellant consumed until time t. Note that for a constant thrust and exhaust
velocity, the thrust acceleration slowly increases with time. If the spacecraft’s initial state vector
and mass, and the exhaust velocity are known, then the spacecraft trajectory can be computed for
any profile of the thrust, , by numerical integration of (19.8).

To gain some qualitative insight, in the following Sections two special cases will be
considered for which the equations of motion can partly be solved analytically. These are the
cases of radial thrust and of tangential thrust.

19.3. Trajectories with radial thrust

The motion of a spacecraft with a thrust acting continuously in the radial direction was first
studied by H.S. Tsien (1911-2009) around 1953. If we assume that the thrust is directed radially
outward (* = 90E), then (19.11) simplifies to

(19.13)

Thus, the angular momentum per unit of mass is constant during the powered flight, just as it is
for a Keplerian orbit. From (19.13-1) we find with :

where the notation · indicates a differentiation to J, n is the angular position of the spacecraft
measured from the point of engine ignition, and c is an integration constant. When we assume
that the spacecraft starts in a circular orbit, the value of c can be determined from the initial
conditions: D = 1, n0 = w/D = 1, resulting in c = 1. So, for the entire propelled flight:

(19.14)

Substitution of

(19.15)

and (19.14) into (19.10-2) gives
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(19.16)

This differential equation can be integrated analytically for a = constant = a0, which, according
to (19.12), means that the exhaust velocity is assumed to be infinitely large. We then find

The integration constant c can be determined from the initial conditions: D = 1, D0 = 0, resulting
in c = -(1+2a0). After substitution of this relation, we find

(19.17)

Although we cannot find an analytical solution for the trajectory of the spacecraft, (19.17) can
be used to determine the boundaries of the space that is accessible to the spacecraft. Differentia-
tion of (19.17) with respect to J yields

So, we may write for the radial acceleration of the spacecraft

(19.18)

except for the boundaries of the region accessible to the spacecraft, where D0 = 0. Since the radial
acceleration D̈ cannot be discontinuous, the acceleration at the boundaries can be found by taking
the limit of the acceleration given by (19.18) for D 6 Di, where the index i denotes a boundary in
space where D0 = 0.

According to (19.17), the radial velocity of the spacecraft equals zero, if

This equation has three roots:

(19.19)

The first root, of course, corresponds to the initial circular orbit. The second solution only yields
real roots for D2 and D3 if a0 # 1/8. This means that for a0 > 1/8 the radial velocity will only be
zero in the initial orbit; in any other point of the trajectory the radial velocity is positive. When
we consider a spacecraft starting in a circular parking orbit about the Earth, this means that for
a0 > 1/8 the spacecraft will continuously move away from the Earth and will eventually escape
from the gravity field of the Earth, if the thrust can be maintained long enough. For a0 < 1/8, we
find that if the root D2 corresponds to the plus-sign in (19.19) and D3 to the minus-sign:
D1 < D3 < D2. A numerical analysis of (19.17) shows that D02 < 0 for D3 < D < D2, which, of course,
is physically impossible; and that D02 > 0 for D1 < D < D3 or D > D2. As we find from (19.18) D̈ > 0
at D = D1 and D̈ < 0 at D = D3, we conclude that if a0 < 1/8 the spacecraft’s distance will
continuously vary between D1 and D3. If a0 = 1/8, the distances D2 and D3 are equal and D̈ at that
distance is zero. In that case, the spacecraft will asymptotically approach a circular orbit with 
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Figure 19.2: Examples of trajectories of spacecraft with a constant radial thrust acceleration of a0 = 0.1,
0.125, 0.25 and 1.

radius D = 2. According to (19.7) and (19.14), the velocity of the spacecraft in that circular orbit
is one-half of its value in the initial parking orbit, and ½%2& times the local circular velocity. As
an example, Figure 19.2 shows the trajectory of a spacecraft with a constant radial thrust
acceleration of a0 = 0.1, 0.125, 0.25 and 1. We clearly see the oscillating character of the
trajectory for a0 = 0.1; in the trajectories with a0 = 0.25 and 1, the flight path angle will
continuously increase and the trajectory will asymptotically approach the radial outward
direction.

The variation of velocity with distance can be found by substitution of (19.14) and (19.17) into
(19.15):

(19.20)

In Figure 19.3 the value of w is plotted as a function of D for some values of a0 $ 1/8; the Figure
also shows curves that represent the variation of the local circular velocity, wc , and of the local
escape velocity, wesc, as a function of D. We note that if a0 < 1, the velocity of the spacecraft first

Figure 19.3: Velocity versus distance for a spacecraft with a constant radial thrust acceleration, and
curves for the local circular velocity and local escape velocity.
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decreases to a minimum value and for a0 > 1/8 increases again at larger distances. For a0 $ 1/2,
the velocity is always higher than the local circular velocity. The distance at which the spacecraft
reaches the local escape velocity (for a0 > 1/8) follows by substitution of (19.7-2) into (19.20):

(19.21)

This equation shows that the escape velocity is reached at a distance Desc < 5.
For a numerical example, let we take for the initial thrust acceleration a value of f0 = 9.8*10-4

m/s2; this is a large value for present-day technology. For a spacecraft that starts in a low parking
orbit about the Earth, we then find a0 = 10-4 < 1/8. So, this spacecraft cannot escape from the
Earth’s gravity field and its distance from the Earth will oscillate between D = 1 and D = 1.0002.
If the same spacecraft would start in the orbit of the Earth about the Sun, we find a0 = 1.66*10-1

> 1/8. So, if there is sufficient propellant onboard, the spacecraft will escape from the solar
gravity field and will, according to (19.21), reach the local escape velocity at D = 4.0; between
the orbits of Mars and Jupiter.

Though radial thrust may be of some interest for certain orbit maneuvers, it will certainly not play
a significant role for orbit raising maneuvers or for lunar and planetary missions. The reasons are
that the value of a0 > 1/8, which is needed to escape from the Earth’s gravity field, cannot be
realized with present-day technology, and that e.g. tangential thrust yields shorter flight times and
a lower propellant consumption for these missions.

19.4. Trajectories with tangential thrust

In this Section, the case of a continuous constant tangential thrust in the direction of motion
(* = () is considered. Then, (19.11) can be written as

(19.22)

For the radial velocity and angular position rate of change we may write

(19.23-1)

(19.23-2)

where n is the angular position of the spacecraft measured from the point of engine ignition.
From (19.10-2) and (19.22-2) we obtain

Substitution of (19.23-1) into this relation gives
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(19.23-3)

From (19.22-1) follows, after substitution of (19.23-2),

Evaluation of this relation leads to

Substitution of (19.23-1) and (19.23-3) into this relation yields

(19.23-4)

The set of equations of motion (19.23) cannot be solved analytically. However, it can be used to
obtain a qualitative insight into the character of the motion. When we assume that the spacecraft
starts in a circular parking orbit about the Earth, the initial conditions are D = 1, n = 0E, w = 1,
( = 0E. Equations (19.23-3) and (19.23-1) show that the velocity w will initially increase, while
the distance D will initially remain constant. Consequently, according to (19.23-4) the flight path
angle ( will initially increase. When the flight path angle has reached a non-zero value, the
velocity will, according to (19.23-3), increase less rapidly. If a > 1, the velocity will keep
increasing. However, if the thrust acceleration is sufficiently small, which in practice is the case
for spacecraft that start in a circular orbit about the Earth, then the value of dw/dJ will change
sign. From that moment on, the velocity of the spacecraft will decrease. When the distance
becomes large enough, a will become larger than sin(/D2 and the value of dw/dJ will become
positive again, which means that the velocity will increase again. When we consider the flight
of a deep-space spacecraft that starts its propelled flight in the orbit of the Earth about the Sun,
outside the Earth’s sphere of influence, the situation is very similar. Then, the initial conditions
are D . 1, n = 0E, w > 1, ( . 0E, while a is, for the same electric propulsion system, significantly
larger than for a propelled flight about the Earth. According to (19.23-4), ( will immediately
increase and, according to (19.23-1), D will also start increasing if ( > 0E. If ( > 5E then, for most
interplanetary missions with state-of-the-art electric propulsion systems, sin(/D2 > a, which
means, according to (19.23-3), that the velocity of the spacecraft will start decreasing.

In Figure 19.4, distance, position angle, velocity and flight path angle are plotted as a function
of time for one orbital revolution. These parameters were computed by numerical integration of
(19.23) with a0 = 10-3 and wj = 10. The notation ) stands for the difference between the actual
value of a parameter and its value at J = 0. Because in the initial circular orbit the position angle
increases linearly with time, the quantity n -J is plotted to indicate the variation of n due to the
thrust. We see that in the first part of the trajectory the velocity increases, as was already
concluded above on basis of a qualitative analysis. After about one-third of a revolution, the
velocity falls below the circular velocity at departure, and there is a gain of potential energy at
the expense of kinetic energy; the velocity oscillates about a decreasing mean value. We thus
have the apparent contradiction that a thrust acting in the direction of motion yields a decreasing
velocity! In this context, it is interesting to mention that for atmospheric drag acting on a satellite
(Section 21.4) we have the opposite situation. The drag, opposing the direction of motion, leads
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Figure 19.4: Variation of trajectory parameters during the first revolution of a trajectory with constant
tangential thrust, and a0 = 10-3, wj = 10.

Figure 19.5: Variation of trajectory parameters during two escape flights with constant tangential thrust.

to a decreasing orbital altitude and an increasing velocity! The quantity n -J first slightly
increases, but starts decreasing after about one-fifth of a revolution. The flight path angle
oscillates and reaches a maximum value after about half a revolution; after one complete
revolution, it has a small positive value.

The variation of position and velocity over a long period of time are shown in Figure 19.5
for two values of a0 and for wj = 10. In this case, the number of revolutions, N, defined as
N = n/2B, is plotted instead of the position angle, n. Also indicated in the plots is the point where
the escape velocity (õ = 0) is reached. It should be realized that on the scale applied, the
oscillations shown in Figure 19.4 are not visible. Aside from the oscillations, we note that the
velocity decreases until some time before escape takes place. This is a major difference with
trajectories of spacecraft with chemical propulsion, where the thrust yields an immediate velocity
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increase. Electric propulsion systems lead to an increase of the distance and a decrease of the
velocity for a significant part of the spiral-shaped trajectory. The escape velocity is reached at
a large distance and after the spacecraft has completed many revolutions. Another important fact
shown in Figure 19.5 is that the flight path angle remains close to zero (< 5E) for a long period
of time, but then increases rapidly to ( = 90E.

Table 19.2 lists the values of the orbital parameters at the moment that the spacecraft reaches
the escape velocity, and the ratio between the mass of propellant used until escape and the initial
mass, Mp /M0, for three values of a0. This Table clearly shows that the propellant consumption for
escape flights is less than 9% of the initial mass of the spacecraft. This low propellant
consumption, which is characteristic for electric propulsion, will be discussed in Section 19.6.
As an example, we consider an escape flight where the electric propulsion system starts in a 500
km altitude orbit about the Earth, with a0 = 10-4 and wj = 10. Note that the value taken for the
thrust acceleration is large for present-day technology. From the values listed in Table 19.2 we
then find Jesc = 91.6 day and resc . 576,812 km or about 1.5 times the distance to the Moon. As
a second example, we consider an escape flight where the electric propulsion system starts in the
Earth’s orbit about the Sun, with a0 = 10-2 and wj = 10. Note that in this case wj is unrealistically
large. From the values listed in Table 19.2 we find tesc . 11.4 year and resc . 8.5 AU, which
corresponds to a distance between the orbits of Jupiter and Saturn. Figure 19.6 shows an example
of an escape trajectory for a0 = 10-3 and wj = 10. Note the increasing distance between the
windings of the spiral. Because the inner windings are very close together, only the last few
revolutions are shown.

Table 19.2: Trajectory data at the moment of escape for constant tangential thrust and wj = 10.

a0 10 -4 10 -3 10 -2

J 8765 818.0 71.50

D 83.9 26.6 8.5

N (rev) 390.2 39.12 4.02

w 0.154 0.274 0.485

( (E) 39.2 39.1 38.8

Mp/M0 0.088 0.083 0.072

Figure 19.6: Example of an escape trajectory with constant tangential thrust for a0 = 10-3, wj = 10.
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19.5. Initial part of a trajectory with tangential thrust

In this Section, we will analyze the initial part of a trajectory with constant tangential thrust, just
after the electric engine has been ignited in the original circular orbit. That initial orbit will be
considered as the reference orbit, relative to which orbit deviations are measured. In this part of
the trajectory the deviations from the circular orbit are small and we may apply small-
perturbation theory. Since we consider a short time interval, we may assume a = a0. For the
virtual position of the spacecraft in the reference orbit at a certain time, we may write D* = 1,
n* = J, w* = 1, (* = 0. Using these reference values, the deviations ()) in distance, position angle,
velocity and flight path angle in the true orbit may be written as

(19.24)

Substitution of (19.24) into (19.23), and subsequent linearization of the resulting expressions,
leads to

(19.25)

We now omit for simplicity the index *; the angle n, however, still indicates the virtual position
that the spacecraft would have had in the reference orbit at the same moment of time. Summation
of (19.25-1) and (19.25-3) gives

Integration of this equation results in

The integration constant c can be determined from the initial conditions n = 0, )D = 0, )w = 0,
which yields c = 0. So, we obtain

(19.26)

Differentiation of (19.25-1) with respect to n yields

Substitution of (19.25-4) and (19.26) into this relation gives
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The solution of this differential equation is

The integration constants c1 and c2 can be determined from the initial conditions n = 0, )D = 0,
)( = 0, and (19.25-1). This yields c1 = -2a0, c2 = 0. Substitution of these values gives

(19.27-1)

Substitution of this relation into (19.26) gives

(19.27-2)

Substitution of (19.27-1) and (19.27-2) into (19.25-2) leads to

which, after integration, gives

The integration constant c can be determined from the initial conditions n = 0, )n = 0, which
yields c = 4a0. So, we obtain

(19.27-3)

Substitution of (19.27-1) and (19.27-2) into (19.25-4) leads to

which, after integration, gives

The value of the integration constant c follows from the initial conditions n = 0, )( = 0, which
yield c = 2a0. So, we obtain

(19.27-4)

Equations (19.27) describe a first-order approximation of the deviations of the powered trajectory
from the initial circular orbit as a function of the spacecraft’s virtual position angle in that
reference orbit. When we analyze the expressions (19.27) for 0E < n < 360E we may draw some
interesting conclusions:
S The variations of )D, )n, )w and )( are proportional to the dimensionless thrust acceleration

a0 and show an oscillatory character.
S )D is always positive and increases continuously; )n increases until n . 73E, after which it

starts decreasing and becomes negative at n . 105E; )w increases until n . 60E, then starts
decreasing and becomes negative at n . 109E, and starts increasing again at n = 300E; )( is
always positive, increases until n = 180E and then starts decreasing.

Comparing these results with the results from a numerical integration of the equations of motion
((19.23)) as shown in Figure 19.4, we conclude that the approximative expressions (19.27) quite
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accurately describe the initial part of the trajectory.

19.6. Approximate solution of an escape trajectory with tangential thrust

In this Section we will focus on an escape trajectory with constant tangential thrust, starting from
a circular parking orbit about the Earth. In Figure 19.7, the values of D and w, as obtained from
the numerical integration procedure mentioned in Section 19.4, are plotted versus each other 

Figure 19.7: Velocity versus distance for trajectories with constant tangential thrust.

for the entire trajectory. Curves for the local circular velocity, wc, and the local escape velocity,
wesc, are also shown. Note that for a small dimensionless thrust acceleration (a0 < 10-3), the
velocity of the spacecraft is close to the local circular velocity for a large part of the escape
trajectory. Since for present-day technology: a0 = 10-6 -10-4, we conclude that w . wc is a realistic
approximation for almost the entire trajectory. Only during the last couple of revolutions before
escape, the velocity deviates considerably from the local circular velocity. Consequently, for the
largest part of the escape trajectory: 1) the radial velocity component may be neglected with
respect to the normal velocity component; 2) the windings of the spiral trajectory are very close
to each other. For larger values of a0, as is the case for deep space missions where the trajectory
is spiraling out about the Sun, the condition w . wc is certainly not valid for the entire escape
trajectory but does approximately hold for the initial part of the trajectory (Figure 19.7), in
particular for missions with a0 < 10-2. That property is very attractive for missions to solar system
bodies moving about the Sun in low-eccentricity orbits at distances of up to Jupiter’s distance
from the Sun. It means that a spacecraft with electric propulsion approaches that body with a
heliocentric velocity that differs little from the body’s velocity. This is in sharp contrast to
trajectories flown by spacecraft with high-thrust chemical propulsion systems, where the
spacecraft’s heliocentric velocity upon arrival at the target differs considerably from the velocity
of that body, and a large )V has to be applied to enter the orbit of that body about the Sun or an
orbit about that body.

Returning to the case of an escape trajectory in the Earth’s gravity field, it must be noted that
the above mentioned properties of the trajectory form the basis of an approximative analytical
theory for the escape trajectory of a spacecraft with a small (constant) tangential thrust. This
theory is based on the explicit assumption that the velocity of the spacecraft is anywhere (about)
equal to the local circular velocity: w2 = 1/D. In that case, (19.22-2) leads to

(19.28)

and we can write for the total orbital energy (per unit of mass):
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(19.29)

Differentiation of (19.29) with respect to J and subsequently substitution of (19.28) yields

or, with (19.12),

(19.30)

This expression may also be written as

which, after integration, gives

The integration constant c can be determined from the initial conditions J = 0, D = 1, which gives
c = 1. So, we obtain

(19.31)

This equation shows that the distance D will initially increase only very slowly.
Table 19.2 and Figure 19.7 show that for present-day technology values of a0 # 10-4 and wj

= 10, escape will take place at D > 80. According to (19.31), this means that at the time of escape:
 When we approximate this relation by 

which corresponds to Desc = 4, then we obtain

(19.32)

According to this expression, the escape time is inversely proportional to the initial thrust
acceleration, a0. For a given value of a0, the escape time increases at increasing values of the
exhaust velocity, wj. This can be explained as follows. A higher exhaust velocity at a given value
of a0 implies a decrease of the mass flow rate, , and thus a larger mass of the spacecraft at a
given time, and consequently a lower thrust acceleration at that time and thus an increase of the
time it takes to reach the escape velocity. Equation (19.32), of course, gives a somewhat too high
value of the escape time. The actual escape time can be expressed by

(19.33)

where $ is a correction factor, which is a function of a0 , that can be found from a comparison
with the results of a numerical integration of the equations of motion. The truncation of the series
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Figure 19.8: The correction factor $ as a function of the initial tangential thrust acceleration, a0 .

expansion gives a reasonable accurate result if wj > 2. Figure 19.8 shows the value of $ as a
function of a0 . Note that, for the range of interest for spacecraft with electric propulsion systems
escaping from the Earth’s gravity field, i.e. a0 = 10-6 - 10-3: $ = 0.85 - 0.95. The distance at the time
of escape can be found by substitution of (19.33) into (19.31):

(19.34)
This relation has a poor accuracy, since it is the result of the assumption that the spacecraft’s
velocity is always (about) equal to the local circular velocity. Note that according to (19.34) Desc

is not a direct function of a0 ; it is only indirectly dependent on a0 through the value of $. For wj

= 10 and values of a0 = 10-2 - 10-5 a good approximation of the true distance at escape is found by
multiplying the value of Desc obtained from (19.34) by a factor 0.58.

A relation between position angle, n, and distance, D, may be obtained by using the fact that
during the major part of the escape trajectory the radial velocity of the spacecraft can be
neglected with respect to the normal velocity. So, we may write to first-order approximation

(19.35)

Substitution of (19.30) and (19.35) into

yields

Using the assumption that the velocity is (about) equal to the local circular velocity ((19.7-1)),
we find

Combination of this relation and (19.31) gives
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(19.36)

If the notation

(19.37)

is introduced, we find

With these expressions, (19.36) can be written as

 

This equation can be integrated to

 

The integration constant c can be determined from the initial conditions D = 1, x = 1, n = 0, which
yields

 

So, we finally obtain

(19.38) 

Equations (19.37) and (19.38) describe the relation between n and D, for given values of a0 and
wj.

We know that when the spacecraft reaches the escape velocity: D o 1, x n 1. Substitution of
the series expansion for exp[(x - 1)/wj] into (19.38), and evaluating the resulting expression for
x 6 0 leads to

(19.39)

Since for Earth escape trajectories: wj > 2, we find to first-order approximation .
The number of revolutions that the spacecraft completes about the Earth before escaping from
the Earth’s gravity field, is then given by
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(19.40)

or to first-order approximation: . Note that nesc , Nesc and Jesc are inversely propor-
tional to a0. So, for a small value of a0 the values of nesc , Nesc and Jesc will be very large.

Because thrust and exhaust velocity are assumed to be constant, the mass of propellant
consumed during the escape flight follows from (19.32) and (19.34)

(19.41)

or, to first-order approximation: (Mp/M0)esc . $/wj. As shown in Figure 19.8, the correction factor
$ is for small thrust accelerations only weakly dependent on the initial thrust acceleration, a0. So,
(19.41) shows that the propellant consumption during the escape flight is to first-order approxi-
mation inversely proportional to the exhaust velocity. This conclusion is confirmed by Figure
19.9, where the propellant mass fraction required for escape, as obtained from numerical integra-
tion of the equations of motion, is plotted as a function of a0 for two values of wj. Note that for
wj = 10 (Vj . 77 km/s), the required propellant mass is less than 9% of the initial mass of the
spacecraft.

Figure 19.9: Propellant mass fraction for an escape flight with constant tangential thrust as a function
of the dimensionless thrust acceleration and exhaust velocity.

As an example, we consider a spacecraft with a0 = 10-4 and wj = 10. From Figure 19.8 we read
the corresponding value $ = 0.919. We then compute from (19.7), (19.33), (19.34), (19.39),
(19.40), (19.41): Desc = 139, nesc = 2,450 rad, Nesc = 390, Jesc = 8,745, wesc = 0.120 and (Mp/M0)esc

= 0.0873. A comparison of these values and the corresponding values obtained from numerical
integration of the equations of motion as listed in Table 19.2, shows that the escape time, the
number of revolutions until escape, and the propellant consumption until escape can be computed
accurately by using the approximative relations. However, the values of the velocity at escape
differ about 22% and the values of the escape distance (without applying the correction factor
0.58 given above) even about 66%. This is a direct result of the fact that in the last part of the
trajectory before the escape velocity is reached, the approximation w = wc is not valid anymore
and that in this part of the trajectory the radial velocity is quite large (Figure 19.5).

From the viewpoint of propellant consumption, it is interesting to compare an escape flight of a
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spacecraft with a low-thrust electric propulsion system and that of a spacecraft with a hypotheti-
cal high-thrust rocket engine with the same high exhaust velocity as the low-thrust engine. We
assume that the spacecraft with this hypothetical rocket engine departs from the same circular
parking orbit about the Earth and that the (large) thrust is (also) acting tangentially to the trajec-
tory. For the spacecraft with the high-thrust engine the impulsive shot concept may be used.
Then, the impulsive velocity increase that is required to reach the escape velocity is, according
to (7.3-2), given by

or, in the dimensionless notation used in this Chapter,

The mass consumption then follows from Tsiolkovski’s law ((1-49)):

For a high exhaust velocity, we may approximate this expression by

(19.42)

As an example, we find for wj = 10: (Mp/M0)esc = 0.041. Note that this value compares very well
with the values indicated in Figure 19.9 by the curve for wj = 10 at high thrust levels (a0 = 1 - 10).
Equation (19.41) gives the value of (Mp/M0)esc for a spacecraft with a low-thrust engine (electric
propulsion). When we compare the propellant consumption of the spacecraft with the high-thrust
engine and that of the spacecraft with the low-thrust engine, for the case that both engines have
the same high exhaust velocity, we find from (19.41) and (19.42)

where the index ‘cont’ refers to the continuous thrusting electric propulsion system and the index
‘imp’ to the impulsive-shot high-thrust system. So, we conclude that the low-thrust propulsion
system requires, for the same exhaust velocity and initial mass, approximately twice the
propellant required by the high-thrust system to reach the escape velocity. This is a direct
consequence of the gravity loss (Section 1.7) experienced during the low-thrust flight. During
the long thrusting period of the low-thrust system, the propellant that will be expelled later in the
mission is transported away from the Earth, against the action of gravity, which costs energy that
has to be provided by the propulsion system.

As a more-realistic example, let we compare the escape flight of a spacecraft with an electric
propulsion system with a0 = 10-4, wj = 10, and of a spacecraft with a chemical propulsion system
with a0 = 1, wj = 0.6. We have already found that for the electric propulsion system the propellant
mass required to achieve the escape velocity is only about 9% of the spacecraft’s initial mass,
despite the unfavorable low acceleration level. From Figure 19.9 we read that for the chemical
propulsion system the required propellant mass is about 40% of the spacecraft’s initial mass,
despite the favorable high acceleration level. A high-thrust propulsion system with wj = 10
would, according to Figure 19.9, have a propellant consumption of only about 4% of the initial



Fundamentals of Astrodynamics     SS     Low-thrust trajectories 526

mass. However, at present, this comparison is not realistic. There is no choice between a high-
thrust and a low-thrust system with the same high exhaust velocity. We can only reach a high
thrust by chemical or solid-core thermal nuclear fission propulsion with their inherently relatively
low exhaust velocities. Nowadays, high exhaust velocities can only be achieved by low-thrust
electric propulsion systems. Hopefully, in the future other space propulsion systems that combine
a high thrust and a high exhaust velocity will become available; such systems will probably be
based on nuclear fusion. Only then, short-duration spaceflight with a relatively low propellant
consumption may become feasible.
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20. PERTURBING FORCES AND PERTURBED SATELLITE ORBITS

The orbit of a satellite about the Earth and the orbit of an interplanetary spacecraft about the Sun
are primarily determined by the gravity field of the Earth, respectively by that of the Sun. In
Chapter 5 it was proved that when the mass distribution of the primary body (Earth or Sun) is
radially symmetric, then the orbit is a conic section that is called a Keplerian orbit. In reality, the
mass distribution of celestial bodies is not perfectly radially symmetric and also other forces act
on the spacecraft. These additional forces, including those that are the result of the non-radially-
symmetric part of the mass distribution of the primary body, cause the orbit of the spacecraft to
deviate from a Keplerian orbit. That these deviations are quite small is obvious, for we know that
a Keplerian orbit is a good approximation of the actual orbit of a satellite about the Earth, or of
a planet or spacecraft about the Sun. After all, Kepler has found from observations of the (true)
motion of the planets that the orbit of a planet can be described by a conic section with the Sun
at a focal point (Section 5.4). Therefore, these additional forces are called perturbing forces and
one speaks of perturbed Keplerian orbits.

In classical celestial mechanics, where primarily the motion of planets about the Sun is
considered, the attraction force between an individual planet and the other planets is the only
important perturbation. As a result of the enormous distances between planets, they may be
considered as point masses, allowing their gravitational potential to be described by -:/r. Earth
satellites, however, move relatively close to the Earth and the actual mass distribution of the
Earth produces significant perturbing forces on a satellite. Many satellites orbit the Earth at low
altitudes and this leads to a noticeable effect of the atmosphere on the orbit of those satellites. In
addition, there are other perturbing forces acting on a satellite, such as gravitational attraction by
other celestial bodies, and in particular by the Sun and the Moon; radiation pressure produced by
direct sunlight, sunlight reflected by the Earth (albedo) and Earth’s infrared radiation; and
electromagnetic forces. Which perturbing forces have to be included in the orbit computation
process is determined by the accuracy required for the computed orbit. Generally, one will
include only those perturbing forces that have a magnitude above some chosen threshold.
However, it is emphasized that one always has to be careful and verify whether resonance
phenomena occur. Then, very small forces may have large effects. In the following, the most
important perturbing forces will be discussed.

20.1. Earth’s gravitational force

In Section 1.6, we have derived expressions for the external gravitational potential of an arbitrary
body with finite dimensions. We have found that the external potential of a body with a mass
distribution that is axially symmetric about the body’s rotation axis can, to first-order
approximation, be described by (1.45). In this Section, we consider the general case of a body
with arbitrary shape and internal mass density distribution and assume that this body is the Earth.
We also assume that the external potential is static, and thus neglect the effects of solid-Earth,
ocean and pole tides. General potential theory shows that the gravitational potential of the Earth
(geopotential) at a point outside the Earth may be written as

(20.1-1)

where r, N, 7 are the spherical coordinates of the point that is considered, relative to the
geocentric rotating reference frame; r is the distance from the mass center of the Earth, N is the
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geocentric latitude, and 7 is the geographic longitude (Section 11.1). The quantity : is the
Earth’s gravitational parameter, R is the mean equatorial Earth radius, and the parameters Cn,m

and Sn,m are (constant) model parameters. The terms Pn,m (sinN) are associated Legendre functions
of the first kind of degree n and order m. In order to prevent that in computer calculations very
large and very small numbers appear together, often normalized Legendre functions, and normal-
ized coefficients  are used. In this book, we will not apply any normalization and will
not discuss this topic.

When we separate the terms with m = 0 from the terms with m … 0, (20.1-1) can be written
as

When we define

(20.1-2)

the expression for the gravitational potential can be written as

(20.1-3)

where the terms Pn(sinN) are Legendre polynomials of degree n, and Jn,m and 7n,m replace the
model parameters Cn,m and Sn,m. The definition Jn / -Cn,0 is merely to make J2 positive; so, it is a
matter of convention. When we compare (1.45-1) and (20.1-3), we note that (1.45-1) represents
the first term of the first series of perturbing terms in (20.1-3). For the Legendre polynomials and
associated Legendre function of the first kind the following expressions hold:

(20.2-1)

Equations (20.1) only hold when r is larger than the maximum radius of the body (external
gravity field). The summation index n begins at two, because, by definition, the center of the
coordinate system coincides with the Earth’s center of mass; then, the coefficients C1,0, C1,1, S1,1,
J1, and J1,1 are all zero. The coefficients C2,1, S2,1, J2,1 would vanish if the Z-axis would be aligned
with the Earth’s main axis of inertia. A gravity model, e.g. developed by processing satellite
tracking data, essentially consists of the values of the Cn,m and Sn,m coefficients, together with
adopted values of : and R. We then can compute the values of Jn,m and 7n,m from
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where the signs of Cn,m and Sn,m determine the quadrant of 7n,m. Note that the coefficients Jn,m are
all positive. Modern gravity models contain coefficients up to degree and order 2150, and some
even up to higher degree and order. However, for most applications in astrodynamics truncated
versions of these models are used, retaining only terms that contribute significant orbit
perturbations. In geodesy, geophysics and advanced astrodynamics, generally, (20.1-1) is used.
In this book, we will mostly use (20.1-3); only in Section 23.5 we will use the Cn,m and Sn,m

coefficients as gravity model parameters.

Figure 20.1: Zonal harmonics (n … 0, m = 0; left), sectorial harmonics (m = n … 0; center), and tesseral
harmonics (m … n … 0; right). White areas represent elevation above and black areas represent elevation
below a mean spherical surface.

Table 20.1: Some coefficients of the GRACE GGM02C Earth gravity field model1.

n m Jn,m (10 -6) 7n,m (E) n m Jn,m (10 -6) 7n,m (E)

Zonal harmonics

2 0 1082.6357 ----- 6 0 0.5406168 -----

3 0 -2.5324737 ----- 7 0 -0.3505229 -----

4 0 -1.6199743 ----- 8 0 -0.2040168 -----

5 0 -0.2279051 ----- 9 0 -0.1221502 -----

Tesseral and sectorial harmonics

2 1 0.0018225 98.3325 5 2 0.1177945 -13.1874

2 2 1.8155628 -14.9287 5 3 0.0165311 -51.5184

3 1 2.2094849 6.9684 5 4 0.0023321 42.6063

3 2 0.3744510 -17.1887 5 5 0.0017034 -15.0730

3 3 0.2213884 20.9932 6 1 0.0632600 160.7431

4 1 0.6786576 -138.5480 6 2 0.0468934 -41.2906

4 2 0.1675835 31.0578 6 3 0.0012011 2.9578

4 3 0.0604207 -3.8219 6 4 0.0018140 -25.0853

4 4 0.0076442 30.3487 6 5 0.0004837 -23.2946

5 1 0.0971238 -123.6853 6 6 0.0000554 -14.6194
Associated constants: : = 398600.4415 km3/s2; R = 6378.1363 km.

1 B. Tapley, J. Ries, S. Bettadpur, D. Chambers, M. Cheng, F. Condi, B. Gunter, Z. Kang, P. Nagel, R. Pastor, T.
Pekker, S. Poole, F. Wang, GGM02 - An improved Earth gravity field model from GRACE, Journal of Geodesy, Vol.
79, No. 8, November 2005, pp. 467-478.
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The first term in (20.1-3) represents the gravitational potential of a spherical body with radially
symmetric mass density distribution: the Newton potential, while the second term represents the
influence of deviations of the shape and mass density distribution in north-south direction (zonal
harmonics) and the third term represents the influence of deviations of the shape and mass
density distribution in north-south and east-west direction (tesseral and sectorial harmonics). For
the tesseral harmonics holds m … n; for the sectorial harmonics m = n, but frequently the name
tesseral harmonics is used to include all m … 0 harmonics, irrespective of their order. When
projected onto a sphere, the tesseral harmonics have zeros along n-m parallels of latitude and
along 2m meridians (Figure 20.1). As may be expected, (20.1) shows that the effect of the non-
radially-symmetric mass distribution of the Earth on the orbit of a satellite is larger when the
satellite is closer to the Earth. The value of the coefficient of the first perturbing term is
J2 = 1.083*10-3, while all other J-coefficients are smaller than 2.6*10-6 (Table 20.1). So, the first
perturbing term produces by far the largest perturbing force.

In practice, the values of the Legendre polynomials and functions are not computed from (20.2-
1), but from recurrence relations that yield these values for all values of n and m (m # n):

(20.2-2)

with the starting values P0,0 (x) = 1, P1,0 (x) = x . Successively, the first of these expressions yields
the values of all zonal harmonics polynomials, the second one the values of all sectorial
harmonics functions, and the third and fourth ones the values of all tesseral harmonics functions.

The perturbing acceleration  is given by

(20.3)

As an example, expressions for the perturbing acceleration will be derived for the cases that only
the J2-term or the J2,2-term of the gravitational potential is taken into account.

When we consider only the J2-term, we may write

(20.4)

From (20.2) we find

Substitution of this relation into (20.4) leads to

(20.5)
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With sinN = z/r, (20.5) becomes

From this relation, we obtain for the rectangular components of the perturbative acceleration

(20.6)

We also can express the perturbing acceleration in spherical coordinates by taking the relevant
partial derivatives of (20.5). We then find

(20.7)

From (20.7) we find that

Figure 20.2: Diagrams for the direction of the J2-accelerations in the meridional plane (top) and for the
direction of the J2,2-accelerations in the equatorial plane (bottom). Points where an acceleration compo-
nent is zero are indicated by C. The direction to the Greenwich meridian is indicated by G.
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Since J2 > 0 (Table 20.1), we conclude that fr is positive if N > 39.2E or N < -39.2E; fr is negative
if -39.2E < N < 39.2E. The latitudinal acceleration, fN , is negative if 0E < N < 90E and positive
if -90E < N < 0E. The direction of the perturbative accelerations is shown in Figure 20.2 (top).
The diagrams suggest that the J2-effect may be visualized as the gravitational effect of an
additional ring of mass around the Earth’s equator and a shortage of mass at the polar regions.
However, this conclusion is, in general, not correct, since (20.1) does not describe the shape of
the Earth but the Earth’s gravitational potential. So, (20.7) would also hold for a purely spherical
Earth with a band of higher internal mass densities around the equator!

For a specified distance, r, the maximum values of the perturbing acceleration components
are

For a satellite at an altitude of 250 km, we find: *fr*max = 2*fN*max = 2.73 cm/s2, which is about
0.3% of the local gravitational acceleration (9.08 m/s2). For higher altitudes, the perturbing
accelerations are smaller both in an absolute and in a relative sense. For a geostationary satellite
(i = 0E, r = 42,164 km), the J2-term produces a constant acceleration of -8.33*10-6 m/s2 in radial
direction, which is about 0.004% of the local gravitational acceleration (22 cm/s2). This
acceleration has the same effect on the orbit as a slight increase of the value of : would have and
consequently ((6.19)) increases the value of the true geostationary radius by about 2 km (Section
23.7).

The Earth completes one revolution about its axis in one day, while the orbital plane of a satellite
keeps (in first approximation) a fixed orientation in space. As a result, in most cases the effects
of deviations in the shape and mass density distribution in east-west direction will largely average
out over periods longer than a day, and we may then neglect the effects of the Jn,m-terms for many
applications. An important exception to this rule is a geostationary satellite. This satellite is
continuously located above the same point on the Earth’s equator and its orbit is therefore
strongly perturbed by Jn,m-terms. However, because for a geostationary satellite R/r . 0.15, in
most cases only the first few Jn,m-terms have to be taken into account.

As an example, we will derive expressions for the perturbing accelerations due to the J2,2-
term; for geostationary satellites this is the dominant term of the series of tesseral and sectorial
harmonics. We may write according to (20.1-3) and (20.3):

(20.8)

From (20.2), we find

Substitution of this relation into (20.8) leads to
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(20.9)

We obtain the disturbing accelerations in spherical coordinates by taking the relevant partial
derivatives of (20.9), and find

(20.10)

We now confine ourselves to equatorial satellites, i.e. N = 0E. In that case (20.10) shows that

Since J2,2 > 0 (Table 20.1), we conclude that the radial component, fr, is negative if -45E < 7-
72,2 < 45E and 135E < 7-72,2 < 225E; and positive if 45E < 7-72,2 < 135E and 225E < 7-
72,2 < 315E. The longitudinal component, f7, is negative if 0E < 7-72,2 < 90E and 180E < 7-
72,2 < 270E; and positive if 90E < 7-72,2 < 180E and 270E < 7-72,2 < 360E. The direction of the
perturbative accelerations is shown in Figure 20.2 (bottom).

From (20.10) we find for the maximum values of the perturbing acceleration components for
a circular equatorial orbit with a specified radius:

For a satellite at an altitude of 250 km, we find *fr*max  =  1.5 *f7*max  = 138 :m/s2, which is about
1.5*10-5 of the local gravitational acceleration (9.08 m/s2). For a geostationary satellite, the values
of the maximum acceleration components are*fr*max  = 1.5 *f7*max  = 0.084 :m/s2, which is about
3.8*10-7 of the local gravitational acceleration (22 cm/s2). From (20.7-1) and (20.10-1) we find
that for a satellite in a circular equatorial orbit the ratio between the maximum radial acceleration
due to the J2,2-term and the radial acceleration due to the J2-term is given by

independent of altitude.
For most equatorial satellites, the satellite’s orbital angular velocity differs significantly from

the Earth’s rotational velocity and therefore the satellite will traverse the full equatorial force
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field produced by the J2,2-term. As mentioned before, an exception is a geostationary satellite,
which rotates about the Earth at the same angular velocity as the Earth rotates about its axis.
Therefore, a geostationary satellite keeps (almost) a fixed position above the equator relative to
the rotating gravity field. In that case, the J2,2-effect produces an almost constant force on the
satellite for an extended period of time, which results in orbital resonance and leads to significant
orbit perturbations. Resonance orbit perturbations may occur for any orbital altitude; the
phenomenon will be discussed in some detail in Section 23.5. In essence, orbital gravity field
resonance occurs when two frequencies in the disturbing acceleration—those associated with the
Earth’s rotation and with the orbital period—are nearly commensurate; i.e. if their ratio is the
ratio of two integers. This causes the satellite to sample a particular aspect of the Earth’s gravity
field over and over, causing dynamical effects that build up over time. The result is a variation
in the satellite’s motion with very long periods. These periods may range from weeks for shallow
resonance to months or even years for deep resonance (Section 23.5). The amplitudes range from
meters to tens or hundreds of kilometers, depending on the orbit.

Because J2 is about a thousand times larger than the other Jn- and Jn,m-coefficients, for first-order
orbit computations of non-geostationary satellites only the J2-term has to be included in the
computations. Table 20.1 shows that for n $ 3 the magnitude of the Jn- and Jn,m-coefficients is not
always very small compared to the magnitude of J3. For satellites in low orbits, for which R/r . 1,
it is therefore not sufficient to add only the J3-term if one wants to compute the orbit more
accurately, but one has to include a series of Jn- and Jn,m-terms. This is a major reason why an
accurate orbit computation of satellites below 800 km altitude is so complicated.

20.2. Atmospheric drag

In analogy with common practice in aeronautics, we write for the acceleration of a satellite due
to atmospheric drag

(20.11)

Here, D is the atmospheric density,  is the velocity of the satellite relative to the (rotating)
Earth’s atmosphere, M is the mass of the satellite and CD is the drag coefficient related to a
reference surface A. The satellite’s ballistic coefficient is defined as In general, the
motion through the upper atmosphere will also generate a force component perpendicular to the
velocity vector. In most cases, this component is small when compared to the drag component
and we will therefore neglect it. The mass of the satellite is, of course, known accurately. When
certain assumptions are made about the rotation of the atmosphere and about the speed and
direction of (horizontal) winds high in the atmosphere, then also the velocity of the satellite with
respect to the atmosphere can be determined. The determination of the values of the parameters
CD, A and D, however, introduces serious problems.

At altitudes above 180 km, the molecular mean free path is larger than 120 m and one may
therefore state that in the altitude range where satellites move about the Earth, the aerodynamic
flow around the satellite is of the free molecular flow type. When we know the shape and attitude
of the satellite, then, in principle, we can derive the orientation of each surface element of the
satellite relative to the incoming flow of atmospheric particles at every instant of time. For high-
accuracy analyses such detailed satellite models are used, where each surface element has
specific surface characteristics, to compute the atmospheric forces on each surface element. An
additional problem is that for complicated shapes individual particles may hit the satellite more
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than once. From the atmospheric forces on all surface elements, it is possible to compute the
atmospheric drag, lift and torque on a spacecraft of arbitrary complexity. In most cases, however,
the analysis is simplified by taking the cross-sectional area of the satellite perpendicular to the
velocity vector as a reference surface. For non-spherical satellites, this reference surface will,
generally, vary with time. The drag coefficient is primarily dependent on the kind of atmospheric
particles that strike the satellite, the kinetic energy of these particles, the velocity of the satellite,
the kind and characteristics of the surface (elements) of the satellite, and the temperature of this
surface. When all these aspects are taken into account, we can theoretically compute the drag
coefficient for different shapes of a satellite and we then usually obtain a value of CD = 2 -3;
where for lower altitudes CD tends to be closer to 2 and for higher altitudes closer to 3. The value
of the atmospheric density has to be taken from an atmospheric model.

At altitudes below 90 km the atmosphere is well mixed; i.e. the concentrations of the major
species are independent of height and location and the atmosphere consists of about 78% N2, 21%
O2, and 1% Ar. At altitudes above 100 km molecular collisions are much less frequent and the
atmospheric constituents can separate through gaseous diffusion more rapidly than they are
mixed by turbulence. As a result, the composition of the atmosphere starts to change with alti-
tude, where the mean molecular weight of the atmospheric constituents decreases with altitude.
In the thermosphere, which extends from about 90 km altitude to about 500 km altitude, the
(kinetic gas) temperature is increasing asymptotically with altitude due to the absorption of solar
extreme UV and X-ray radiation. At altitudes above about 500 km (exosphere) atmospheric
particles may escape from the atmosphere. The region above about 600 km altitude is called the
magnetosphere; it extends several tens of thousands of kilometers into space. In this region the
atmosphere is practically completely ionized and the motion of the charged particles is primarily
controlled by the Earth’s magnetic field.

The first observations of satellite orbit perturbations in the late 1950s paved the way for the
first generation of empirical density models in the 1960s and early 1970s. Well known is the
series of Jacchia models (L.G. Jacchia, 1911-1996) developed at the US Smithsonian
Astrophysical Observatory. The Jacchia-71 model was adopted as the Committee on Space
Research (COSPAR) International Reference Atmosphere (CIRA) in 1972, and is therefore also
known as the CIRA-72 reference atmosphere. Over the years, the Jacchia models have been
improved and this has eventually resulted in the Jacchia-Bowman 2006 and 2008 models. In
France, the first of a series of DTM (Drag Temperature Model) atmospheric models was
developed at the Groupe de Recherche de Géodésie Spatiale, in 1978. Like the Jacchia models,
the early DTM models were based solely on observations of satellite drag and neutral
atmospheric temperatures. A major update, named DTM-94, was published in 1998. The database
for this model included satellite mass spectrometer data and accelerometer data measured by the
CACTUS accelerometer on board the Castor satellite. The DTM-2009 model, published in 2012,
also incorporated accelerometer data acquired by the CHAMP and GRACE satellites. The
problem with this kind of atmospheric models is that the observed orbit perturbations or onboard
accelerometer data basically provide information about the product In the construction
of the atmospheric model certain assumptions about S and CD of each satellite of which the
measurements are used in the construction of that model have been made. Traditionally, a
constant reference surface perpendicular to the satellite’s velocity vector relative to the rotating
atmosphere and a certain profile of CD versus altitude were adopted. This profile was selected in
such a way that for altitudes below 400 km: CD . 2.2, while for higher altitudes CD gradually
increases and at 800 km altitude asymptotically approaches a specific value, e.g. 2.6. When one
uses such an atmospheric model in the computation of satellite orbit perturbations due to
atmospheric forces, then it is important that the same definition of the reference surface and the
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same CD -h profile are used and not, e.g. a value of CD computed from theoretical gas dynamics
models.

Starting in the late 1970s, a new class of atmospheric density models, named MSIS, was
developed at the NASA Goddard Space Flight Center. These models were based solely on
satellite mass spectrometer data and ground-based incoherent scatter radar observations. The
main advantage of these models over the drag-derived density models is that they provide
observations of both temperature and number densities for the atmospheric constituents
independent of assumptions on the values of CD and S. The MSIS-86 model replaced the Jacchia-
71 model as the COSPAR International Reference Atmosphere, and is therefore also known as
the CIRA-86 model. An extension of this model was published as MSIS-90. At the end of the
1990s, the development of MSIS-class models was continued at the US Naval Research
Laboratory (NRL). The resulting NRLMSISE-00 model, published in 2002, includes additional
mass spectrometer and incoherent scatter radar data, as well as satellite accelerometer data and
the DTM and Jacchia satellite orbit decay databases. The CIRA-2012 model is a state-of-the-art
model based on updated versions of all relevant empirical models that have been developed by
means of the considerable advances in direct measurements by appropriate space-based
instrumentation of the 1980s, 1990s and early-mid 2000s.

The atmosphere is a highly dynamical system that is driven by the solar heat input, and we may
recognize various types of variations in the density at a location with specified latitude, longitude
and height. Examples are the diurnal variation due to the rotation of the Earth relative to the
direction of the solar heat input; the 27-day variation (actually 26-30 days) due to the rotation
of the Sun about its axis and resulting in a fluctuation that is correlated to the radiation produced
by active regions on the Sun; the 11-year solar activity cycle, which is related to the sunspot
cycle (actually, it is a 22-year variation); the semi-annual variation, which is related to the
varying distance of the Earth from the Sun and to the variation of the Sun’s declination during
a year. In addition, there are various types of (semi-)regular and irregular variations. As a result,
the conditions in the higher atmosphere are, apart from being a function of altitude, also
dependent on the local time of the day, the period in the year (season) and the solar activity.
These variables lead to variations in the heating of the atmosphere. A larger heat input results in
an expansion of the atmosphere, causing the atmospheric density at a certain altitude to increase.
Each of the variations mentioned has been found to be related to one or more observable
parameters, and empirical formulas have been constructed to compute the so-called exospheric
temperature, T4 , i.e. the kinetic gas temperature at altitudes above 500 km. Once the exospheric
temperature has been computed, atmospheric composition, density and related quantities can be
found for any altitude above 150 km. Of the three types of variations, solar activity yields the
largest effect on atmospheric density for altitudes higher than 300 km. This solar activity is
connected to processes in the Sun, which show a cycle of 11 years. During an active period,
regions of the Sun radiate a considerably larger amount of UV, X-ray and corpuscular radiation.
If this radiation hits the Earth, then a large part of the additional radiation is absorbed in the
higher atmosphere and leads there to an additional heating of the atmosphere. Since the Sun is
a gaseous body, it does not rotate rigidly like the solid planets and moons do. The time for a fixed
feature on the Sun to rotate to the same apparent position as viewed from Earth varies from 26
days for a feature at the equator to more than 30 days for a feature near the poles. Because of this
solar rotation, the additional heating of the Earth’s atmosphere produced by a long-living feature
on the Sun may show a variation with a period of 26 to 30 days. The level of solar activity can
be correlated to the values of two parameters that can be measured on Earth: the solar 10.7-cm
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radiation flux (F10.7) in units of 10-22 Wm-2 Hz-1 (1 sfu or 104 Jy) 2, which serves as a measure of
UV and X-ray radiation entering the atmosphere, and the 3-hour geomagnetic index (ap) in units
of nanotesla 3, which serves as a measure of corpuscular radiation entering the atmosphere. The
F10.7 flux is measured at the Dominion Radio Astrophysical Observatory in British Columbia,
while the ap index is derived from geomagnetic field measurements made at several locations
around the world. Traditionally, only these two parameters were used to model the fluctuations
in the solar heat input. Nowadays, however, also satellite observations in the (extreme) UV and
X-ray part of the spectrum are used to better model the heat input from specific solar irradiance
sources to major thermospheric layers. The radiation at these wavelengths does not penetrate to
the Earth’s surface and measurements on the intensity of this radiation can only be provided by
satellites. In addition to the ap index, also a parameter is used that is an indicator of the strength
of the storm-time ring current in the inner magnetosphere generated by high-energy solar
particles entering the atmosphere. This current produces Joule heating in which the drift energy
of ions turns into thermal and kinetic energy of neutral particles. This current produces magnetic
field perturbations, which are measured by four observatories.

For illustration, Figure 20.3 (top panel) shows the atmospheric density derived from the drag
experienced by the Explorer 9 satellite during the period June to October, 1961, and reduced to
an altitude of 730 km. This was a period of medium solar activity. The satellite was launched on
February 16, 1961, by a Scout-X1 rocket into a 38.6E inclination orbit with perigee and apogee
altitudes of 634 km and 2583 km, respectively. The satellite was in fact a 3.7 m diameter balloon
used for atmospheric density studies. The drag was determined from precise satellite position
measurement on photographs taken with Baker-Nunn cameras. The second panel from top shows
the variation of the exospheric temperature, T4 , derived from the atmospheric density. In the other

Figure 20.3: Effect of solar activity on atmospheric density at an altitude of 730 km, as deduced from the
tracking of Explorer 9 in 1961. Initial orbit: hp = 634 km, ha = 2583 km, i = 38.6E. [copied from US
Standard Atmosphere Supplements, 1966, US Government Printing Office, 1966.]

2 1 solar flux unit (sfu) = 10-22 W m-2 Hz-1; 1 Jansky (Jy) = 10-26 W m-2 Hz-1. 
3 1 tesla (T) = 1 Wb m-2 = 1 V m-2 s = 1 N A-1 m-1.
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two panels the actual variations of F10.7 and ap are plotted. Note the strong correlation of the
variations of atmospheric density and exospheric temperature with the variations of F10.7 and ap.

Solar radiation at ultraviolet and shorter wavelengths leads to dissociation of atmospheric gas
molecules into atoms and to ionization of these atoms. Already at an altitude of 80 km free
electrons and ions can exist for some period of time. Figure 20.4 shows the number density of
individual atmospheric constituents as a function of altitude, for a low level (T4 = 600 K) and a
high level (T4 = 2000 K) of solar activity. This Figure clearly shows that at high altitudes the
atmosphere primarily consists of gasses with a low atomic mass. Figure 20.5 shows the variation
of atmospheric pressure, density and mean molecular weight as a function of altitude for a
minimum and a maximum solar activity level. Note that in periods of maximum solar activity the
atmospheric density at a given altitude above 500 km can be more than two hundred times the
atmospheric density at that altitude in periods of minimum solar activity. The Figure also shows
the decrease of the mean molecular weight with altitude, which is a result of the dominance of
atmospheric constituents with a low atomic mass at high altitudes (Figure 20.4).

Figure 20.4: Number density of individual atmospheric constituents as a function of altitude for two solar
activity levels. T4 = 600 K corresponds to a low solar activity level; T4 =2000 K to a high solar activity
level. [copied from L.G. Jacchia, Thermospheric temperature, density, and composition: New models,
SAO Special Report No.375, 1977.]

Figure 20.5: Variation of pressure, density and mean molecular weight with altitude, according to the
CIRA 1972 Reference Atmosphere (Committee on Space Research, International Council of Scientific
Unions, Akademie-Verlag, 1972).
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As an example of the effects of atmospheric forces, Figure 20.6 shows the history of three mean
orbital elements 4 of the Astronomical Netherlands Satellite (ANS; Section 16.6) over a period
of about 700 days, as obtained from tracking data. The decrease of the semi-major axis, a, and
eccentricity, e, are caused by atmospheric drag; the decrease of the inclination, i, is the result of
a force generated by the rotation of the atmosphere. The oscillation superimposed on the steadily
decreasing eccentricity is caused primarily by the J3-term of the Earth’s gravity field (Section

Figure 20.6: Evolution of three mean orbital elements of ANS. Initial orbit: hp = 266 km, ha = 1175 km,
i = 98.0E.

20.1), while the peculiar variation of the inclination between MJD 42750 and MJD 42880 is a
result of orbital resonance produced by gravity field model terms of order 15 (Section 20.1,
Section 23.5). For a numerical example of the relative magnitude of atmospheric drag, let we
consider a satellite in a circular orbit at 160 km altitude. Then, the average atmospheric density
is D . 1.24*10-9 kg/m3 and the satellite’s velocity is 7.81 km/s. For a balloon-type satellite with
a very large area-to-mass ratio, A/M, we may adopt a value of CDA /2M . 13 m2/kg. This leads
to fD . 0.98 m/s2, while the central gravitational acceleration is 9.33 m/s2. So, the ratio between
the perturbing acceleration and the main acceleration is about 0.1; this ratio will be (much)
smaller for ‘ordinary’ satellites with (much) smaller values of A/M or for satellites at higher
altitudes. In fact, atmospheric drag is the most important perturbing force below 200 km altitude,
and can, in most cases, completely be neglected at altitudes above 1000 km. Atmospheric drag
is the cause of the decay of Earth satellites. Through the friction with the atmosphere, they
dissipate their orbital energy and their orbital altitude decreases, through which they enter denser
parts of the atmosphere, where the drag becomes larger and larger. Ultimately, they burn up in

4 The concept of mean orbital elements is introduced in Section 23.3; the concept of Modified Julian Date (MJD)
in Section 11.4.
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the low Earth’s atmosphere. Sometimes, parts of the satellite survive the reentry and impact on
the Earth’s surface.

20.3. Gravitational attraction by other celestial bodies

The presence of other celestial bodies, and in particular of the Sun and the Moon, will also lead
to a perturbing force that affects the orbit of a satellite about the Earth. In the discussion on
relative motion in the many-body problem (Chapter 4) it was found that the perturbing potential
expressing the gravitational perturbations of a number of bodies j on the motion of body i relative
to a non-rotating reference frame fixed at body k may be written as ((4.6))

(20.12)

where  and  are the position vectors from body k to body i and from body k to the perturbing
body j, respectively; rij is the distance between body i and body j. The parameter G denotes the
universal gravitational constant and mj is the mass of the perturbing body. Now, assume that body
k is the Earth, body i is a satellite moving about the Earth, and body j is a single perturbing body
(Sun, Moon, planet). Then, the perturbing acceleration of the satellite caused by the gravitational
attraction between the satellite and the perturbing body may be written as

(20.13)

where . With

we find from (20.13) for the rectangular components of the perturbing acceleration:

(20.14)

The components of the perturbing acceleration can be computed if the positions of the satellite
and the disturbing body, both relative to a non-rotating reference frame with origin at the center
of the Earth, are known. For the maximum value of the ratio between the magnitude of the
perturbing acceleration and the magnitude of the acceleration due to the central force field of the
Earth, we may write according to (4.17) with our present notation:

(20.15)

where fd and fE are the accelerations due to the gravitational attraction by the perturbing body and
by the Earth, respectively, and md and mE are the masses of the perturbing body and of the Earth,
respectively. Note that the relative perturbing acceleration increases with increasing orbital
altitude of the satellite, causing the attractions by Sun and Moon to become the most important
perturbing forces above the geostationary altitude.

In Table 4.2, the maximum relative perturbing accelerations of a geostationary satellite are
listed for a number of perturbing bodies. The magnitude of the maximum relative perturbing
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acceleration due to solar attraction is, according to (20.15), for a satellite at an altitude of 400 km
and for a geostationary satellite 6.2*10-8 and 1.5*10-5, respectively. For the corresponding values
of the maximum perturbing acceleration we then find 0.54 :m/s2 and 3.3 :m/s2, respectively. In
certain cases, the attractions by the Sun and the Moon lead to very severe orbit perturbations.
Figure 20.7 shows the evolution of the perigee distance of Explorer 28 as a result of primarily
the perturbing forces by Sun and Moon. This satellite was launched by a Delta 31 rocket on May
25, 1965, into a 33.9E inclination orbit with perigee and apogee altitudes of 202 km and 263,900
km, respectively. Both the modeled perigee distance variation as obtained by accounting for all
orbit perturbations and the actual variation as determined from tracking data are shown. Due to
the perturbing forces, the perigee altitude first increased to about 35,600 km and then decreased
again such that the satellite entered the Earth’s atmosphere already after only about 3 years.

Figure 20.7: Evolution of the perigee distance of Explorer 28. Initial orbit: hp = 202 km, ha = 263,900
km, i = 33.9E.

20.4. Radiation force

An Earth satellite will, in general, experience a radiation force produced by direct sunlight,
sunlight reflected by the Earth (albedo radiation), and thermal infrared radiation emitted by the
Earth (sometimes called terrestrial radiation). In addition, radiation from the Sun, Earth and
internal sources will heat the exposed portions of a spacecraft, and any imbalance in the
reradiated heat pattern will generates a photon thrust. However, for most satellites the
uncertainties of atmospheric drag and solar radiation force tend to mask the effects of this
unbalanced thermal radiation force and we will therefore not discuss it further.

In Section 5.11 it was mentioned that the solar radiation force is very difficult to model
accurately for satellites with complex shapes. In that Section we have derived the following
approximative expression ((5.67)) for the direct solar radiation force acting on a satellite:

where W is the energy flux (sometimes called power density) of the incoming solar radiation, A
is the effective cross-sectional area of the satellite, c is the speed of light, CR is the satellite’s
reflectivity, and CRW/c is the radiation pressure. For the acceleration of the satellite due to solar
radiation we then write
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(20.16)

where M is the mass of the satellite and  is the unit vector from the satellite to the Sun. So, the
force acts along the Sun-satellite vector. The solar constant is defined as the incoming solar
electromagnetic radiation flux (at all wavelengths) at a distance of 1 AU (the mean distance of
the Earth from the Sun). Its long-term average value was thought to be 1366 W/m2, but an
analysis of recalibrations of relevant satellite observations has shown in 2011 that a value of 1361
W/m2 is more realistic. The solar constant has varied by approximately 0.1% over the last three
11-year sunspot cycles. The actual direct solar irradiance close to the Earth, and above the top
of the atmosphere, WS , fluctuates during a year due to the Earth’s varying distance from the Sun;
from 1408 W/m2 at perihelion to 1317 W/m2 at apohelion. This variation can be modeled by

where Dap is the number of days from when the Earth is at apohelion. This apohelion crossing
occurs in the period July 3 to July 7 each year; for instance, in the year 2010 it occurred on July
6, 12h UTC.

Albedo radiation is produced by reflection and scattering of incident solar radiation on the
daylight side of the Earth’s atmosphere and surface. This type of radiation has essentially the
same spectral distribution as direct solar radiation, and is mostly diffusive reflection with only
about 1 - 10% of the radiation reflected specularly by the oceans. Its intensity varies widely due
to spatial and temporal variations of the reflection and scattering characteristics of the Earth’s
surface and cloud cover. In fact, the local albedo can vary from 95 W/m2 over a cloudless ocean
to 1250 W/m2 over large and thick cumulonimbus clouds. The albedo radiation flux near the
satellite is also dependent on the Sun-Earth-satellite angle and the altitude of the satellite. Often,
a very simple model is used where it is assumed that 32% of the solar radiation is reflected by
the Earth, that the albedo radiation is diffusive, that the energy flux just above the clouds (on the
daylight side) has a yearly global average value of 435 W/m2, and that the flux falls off
approximately quadratically with altitude. In contrast to albedo radiation, the Earth’s infrared
radiation is a near isotropic re-emission of direct solar radiation absorbed by the Earth and its
atmosphere. The spectrum of the global average thermal radiation approximates that of a black
body with an effective temperature of -18E C (255 K), leading to an average energy flux of 240
W/m2. It is noted that the Earth’s global average surface temperature is about 14E C (287 K); the
mechanism that produces the higher surface temperature is due to the atmosphere and is known
as the greenhouse effect. A temperature of -18E C actually occurs at an altitude of about 5 km in
the atmosphere. The local infrared energy flux can vary between 150 W/m2 and 350 W/m2 due
to spatial and temporal variations of the emission characteristics of the Earth’s surface and cloud
cover. However, its variation across the globe is less than that of albedo radiation. Often, a simple
model is used where it is assumed that the effective Earth’s infrared radiation flux just above the
cloud cover is 240 W/m2, and that the flux falls off approximately quadratically with altitude.

We conclude that the energy flux of direct solar radiation is at least three times the flux of
albedo and infrared radiation, and that the albedo and infrared radiation flux decreases with
increasing altitude. To compute the albedo and infrared radiation forces acting on a satellite, the
method mentioned in Section 5.11 for the computation of the direct solar radiation force may be
used. However, it is noticed that the satellite’s effective cross-sectional area, A, will, generally,
be different for direct solar radiation, albedo radiation and thermal infrared radiation, and that the
satellite’s reflectivity, CR, for infrared radiation will be different from the reflectivity for direct
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solar radiation and albedo radiation. In this book we will not discuss the albedo and infrared
radiation forces any further.

The solar radiation force may produce significant orbit perturbations for very large and light
satellites, such as balloon-type satellites like Echo I (1960-I1). This was an aluminized 30.5 m
diameter balloon satellite that was launched by a Delta rocket on August 12, 1960, into a 47.2E
inclination orbit with perigee and apogee altitudes of 1528 km and 1687 km, respectively. When
we adopt for this satellite the values A/M = 12 m2/kg, CR = 1.9, we find for the acceleration due
to direct solar radiation f = 0.10 mm/s2. This value corresponds to 1.5*10-5 times the local
gravitational acceleration (6.3 m/s2) at the orbital altitude of Echo I. Figure 20.8 shows that the
perigee altitude of Echo I decreased about 600 km in 140 days, primarily as a result of solar
radiation pressure, and thereafter increased again. Both the modeled perigee altitude variation
when accounting for all perturbing forces and the actual variation as determined from tracking
data are shown.

Figure 20.8: Evolution of the perigee altitude of Echo I. Initial orbit: hp = 1520 km, ha = 1695 km,
i = 47.2E.

The Sun produces a shadow cone ‘behind’ the Earth with its axis along the Sun-Earth line. A
simple geometric analysis, based on the radii of Sun and Earth and the distance between Sun and
Earth, shows that this cone extends to a distance of 1.383*106 km from the Earth ‘above’ the dark
side of the Earth. Beyond this distance, there is no umbra (full shadow) of the Earth and an
observer would see the Sun partially obscured by the Earth. This is called the penumbra (partial
shadow) region. The sub-region of the penumbra from which the Earth appears entirely contained
within the disc of the Sun is called the antumbra region; an observer in this region experiences
an annular eclipse. The Sun-Earth L2 point (Section 3.7) is located at a distance of about
1.508*106 km from the Earth; at that point the radius of the penumbra region perpendicular to the
Sun-Earth line is about 13,446 km. So, a spacecraft positioned at that L2 point is outside the
umbra region but inside the antumbra region; the spacecraft ‘sees’ 84% of the solar disk obscured
by the Earth. However, a spacecraft that moves about that point at a distance of more than 13,446
km and in a plane perpendicular to the Sun-Earth line would ‘see’ the full solar disk
continuously, which is very useful for the satellite’s power generation. So, it is possible to fly
Lissajous or halo orbits (Section 3.10) about the L2 point for which the spacecraft is continuously
in full sunlight.

The Earth’s shadow cone has a top angle of only 0.53E. To simplify the analysis it is
therefore often assumed that, for the entire range of Earth satellite orbital altitudes, the solar
radiation field can be approximated by a parallel beam of sunlight along the Sun-Earth line with
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a constant energy flux (power density), and that the Sun produces a shadow cylinder behind the
Earth with a radius equal to the radius of the Earth. When computing the effect of solar radiation
pressure on a satellite orbit, we have, of course, to account for the fact that the satellite may
periodically pass through the Earth’s shadow where the solar radiation force is absent (Section
21.5). It is noted that in our simplified model the entrance into and exit out of the shadow of the
Earth are discontinuous processes, while in reality these processes are more gradual due to the
existence of a penumbra region.

When we compare the expressions for the satellite’s accelerations due to atmospheric drag and
due to solar radiation force, we conclude that we may write for the ratio of the magnitudes of
both accelerations:

where Arad and Aatm are the effective cross-sectional areas for the radiation force and the
atmospheric drag, respectively. When we assume that Arad = Aatm , which is e.g. the case for a
spherical satellite, and that the satellite moves in a circular orbit with radius r, we can write the
relation given above as

where : is the gravitational parameter of the Earth. The parameters W, c and : are constants,
while the values of CR and CD are known for a particular satellite. At altitudes below 300 km
frad /fatm n 1. Since the value of D decreases with increasing altitude (Figure 20.6), we conclude
that the ratio frad /fatm increases with increasing orbital altitude. In fact, frad becomes larger than fatm

for orbital altitudes of more than 400-1600 km, depending on the level of solar activity and the
precise values of CD and CR.

20.5. Electromagnetic force

At high altitudes the Earth’s atmosphere is partly ionized. Because at a particular altitude the
mean thermal velocity of electrons (.200 km/s at 1000 km altitude) is much larger than the mean
thermal velocity of ions (.1 km/s at 1000 km altitude), the satellite’s surface will acquire a
negative electrical potential of several volts to several tens of volts with respect to its plasma
environment. But there are also other electric charging mechanisms. In sunlight, high-energy
photons strike the satellite’s surface and this may lead to surface degradation resulting in a
positive electrical surface potential of several tens of volts. When a satellite crosses atmospheric
regions of high concentrations of high-energy positively or negatively charged particles its
surface may be charged to positive or negative potentials of several tens to thousands of volts.
If the satellite structure is electrically conductive, the entire satellite will be charged to the same
potential. Finally, there is internal charging, i.e. the buildup of charge on and within dielectric
materials or on insulated floating conductors inside the satellite. All these effect together may
result is an overall positive or negative potential of the satellite, which potential may vary
significantly during an orbital revolution. An electrically charged satellite interacts with the
Earth’s magnetic field, which results in a Lorentz force (H.A. Lorentz; 1853-1928) acting on the
satellite. This force can be expressed by
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(20.17)

where q is the electric charge of the satellite,  is the satellite’s velocity relative to the magnetic
field, and  is the magnetic induction (also called magnetic field, magnetic field vector or
magnetic flux density) of the geomagnetic field. So, the Lorentz force is always directed
perpendicular to both the velocity of the satellite and the magnetic field vector.

Already in 1600, W. Gilbert (also: Gilberde or Gylberde; 1544-1603) recognized that the
Earth’s magnetic field is similar to that of a dipole. C.F. Gauss (1777-1855) studied the magnetic
field in detail and proved in 1838 that 95% of the geomagnetic field is of internal origin.
Nowadays, we know that the geomagnetic field extends from the Earth’s inner core to where it
meets the solar plasma, a stream of energetic charged particles emanating from the Sun and called
the solar wind. During quiet solar activity periods the point where the solar wind dynamic
pressure and the pressure exerted by the Earth’s magnetic field are in balance is at about 12 Earth
radii in the sunward direction along the Earth-Sun line; during high solar activity levels this
distance may decrease to about 9 Earth radii. The geomagnetic field forms a cavity in the shape
of a blunt body with its ‘nose’ at this position and an extended ‘tail’; this region of the atmo-
sphere is called the magnetosphere. The cavity flares to about 15 Earth radii on either side of the
Earth above the dawn-dusk terminator, and the solar wind stretches the terrestrial magnetic field
for perhaps 1000 Earth radii in the antisolar direction. In the magnetosphere there exist various
regions of high concentrations of energetic charged particles and the motion of these particles is
governed by the magnetic field.

The geomagnetic field consists of three components: 1) main magnetic field that is generated
by electric currents in the Earth’s outer core due to the motion of molten iron alloys in the outer
core; 2) external magnetic field that is produced by the motion of ionized particles and electrons
in the upper atmosphere; 3) crustal magnetic field that is the result of permanent magnetization
of rocks (and other magnetic materials) in the Earth’s crust and upper mantle or by magnetization
of those rocks induced by the main field and the external field. The main magnetic field, with an
intensity at the Earth’s surface ranging from about 24,000 nT over Brazil to maxima of about
65,000 nT over northern Canada, Siberia and the coast of Antarctica south of Australia, is steady
on time scales of days, but is variable over time scales of years. The intensity of the crustal field
at the Earth’s surface is generally less than 200 nT and may be regarded as essentially constant,
but there are locations where much larger intensities exist. The external field is highly variable;
during solar storms field intensity variations at the Earth’s surface of more than 1,000 nT on time
scales of seconds to hours may occur. Although irregular, the external field variations exhibit a
correlation with the 11-year solar cycle and with the 27-day recurrence of some solar storms
related to the 27-day rotation period of the Sun as seen from Earth. In addition, the external field
shows smaller and more-regular diurnal and seasonal variations associated with variations of the
position of the Sun relative to a particular geographic location. Below, we will only consider the
main magnetic field.

The magnetic poles, also called dip poles, are defined as positions on the Earth’s surface
where the magnetic field is vertical, i.e. perpendicular to the (mean) surface of the Earth; these
poles are not necessarily antipodal. The intensity of the main magnetic field at a particular
location and the locations of the magnetic poles slowly vary; the geomagnetic intensity has
declined over the last 2,000 years almost continuously from a maximum of 35% above the
current value. Over the last 400 years the intensity has monotonically decreased by about 20%;
over the last 150 years it has decreased by 10 - 15%, and this decrease has further accelerated in
the past several years. The Earth’s magnetic north pole was drifting from northern Canada
towards Siberia at a rate of 10 km/yr at the beginning of the twentieth century, 40 km/yr in 2003



Fundamentals of Astrodynamics     SS     Perturbing forces and perturbed satellite orbits 546

and 55 km/yr in 2009. In 2010, the magnetic north pole was situated at 85E N, 133E W; the
magnetic south pole was situated at 64E S, 137E E. Moreover, the poles periodically reverse their
orientation in a process called geomagnetic reversal. Reversals occur at intervals ranging from
less than 0.1 million years to as much as 50 million years; a reversal happens over hundreds or
thousands of years and is certainly not exactly a clean ‘back flip’. The most recent reversal
occurred about 780,000 years ago. Today, the magnetic pole that is in the northern hemisphere
actually is a south pole; it attracts the north pole of a magnet.

The main magnetic field is connected to the Earth’s interior and rotates with the Earth. So,
it can very well be described relative to the geocentric rotating reference frame that we also have
used for describing the Earth’s gravity field (Section 20.1). In magnetic models the local mag-
netic induction (magnetic field), , above the Earth’s surface is written as the negative gradient
of a geomagnetic potential, which is expressed by a spherical harmonics series expansion similar
to the series expansion used for describing the gravity field,

(20.18)

where r is the distance from the center of the Earth, 7 is the geographic longitude measured
eastward from the Greenwich meridian, N is the geocentric latitude, Pn,m (sinN) is the Schmidt
semi-normalized associated Legendre function of degree n and order m with argument sinN, and
gn,m and hn,m are the Gauss geomagnetic coefficients. It is noticed that most authors use cosM as
the argument of the associated Legendre functions, where M is the geocentric co-latitude. This
angle is measured along a meridian from the north pole; at the north pole M = 0E, at the equator
M = 90E, at the south pole M = 180E. Since M = 90E - N, we find cosM = sinN, which justifies
the use of sinN as argument of the associated Legendre functions in (20.18). It is emphasized that
for the geomagnetic field we usually take the mean Earth radius (R = 6371.2 km) as scaling
factor, while for the Earth’s gravity field we take the mean equatorial Earth radius (R = 6378.14
km) as scaling factor. The values of B, gn,m and hn,m are generally reported in nanotesla. Because
the main magnetic field slowly varies, the values of the Gauss geomagnetic coefficients also
slowly change with time. However, over a period of less than five years, these coefficients may
be considered as ‘semi-constant’. Therefore, geomagnetic models often provide the values of the
coefficients per five-year interval. Modern geomagnetic field models contain about 200 Gauss
coefficients.

The absolute value of the first Gauss coefficient, g1,0 , is at least six times the absolute value
of all other coefficients. This means that in first approximation the magnetic field can be
described by a dipole field. The coefficients g1,0 , g1,1 and h1,1 together determine the orientation
of the dipole axis in the Earth-fixed reference frame. Therefore, in first approximation, the main
geomagnetic field can be modeled as a dipole, placed at the center of the Earth and with its axis
tilted with respect to the Earth’s axis of rotation. This dipole approximation is reasonably
accurate up to an altitude of about 20,000 km; above that altitude the geomagnetic field is
significantly distorted by the interaction with the magnetized plasma flowing from the Sun. The
poles defined by the dipole model are generally called geomagnetic poles; the geomagnetic poles
are antipodal. The co-latitude of the geomagnetic north pole has varied from a low of 3.1E in
1550 to 11.5E - 11.8E in the period 1880-1960, and is since then decreasing again at a rate of
about 0.025E per year. In 2010, the geomagnetic north pole was situated at 80.1E N, 72.2E W;
so, its co-latitude was 9.9E. For our analyses, we further simplify the dipole model by ignoring
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the tilt and thus assume that the dipole is oriented along the Earth’s rotation axis. Then, the
geomagnetic field is axially symmetric about the Earth’s rotation axis, and g1,0 . -29,496 nT
(2010) is the only non-zero Gauss coefficient. For n = 1, m = 0, the Schmidt semi-normalized
associated Legendre function is identical to the non-normalized associated Legendre function and
we then find from (20.2-1): P1 ,0 (sinN) = sinN. So, the geomagnetic potential of the non-tilted
dipole field can be expressed as

(20.19)

From this relation we find for the radial and latitudinal components of , and for the magnitude
of :

From these expressions we conclude that: 1) the magnetic dipole field falls off as the cube of the
distance from the Earth’s center; 2) BN = 0 at the north and south poles; 3)  is directed
downward (inward) at the north pole and upward (outward) at the south pole; 4) Br = 0 at the
equator; 5) at the equator  is directed parallel to the vector from the Earth’s center to the north
pole; 6) for a particular altitude the magnetic field at the poles is twice as strong as at the equator.
On the Earth’s surface (r = R), the dipole field at the equator was 29,496 nT and at the poles
58,992 nT in 2010.

Combination of (20.17) to (20.19) gives for the acceleration of the satellite due to the Lorentz
force:

 (20.20)

where M is the mass of the satellite. The vector , obviously, depends on the position and
velocity of the satellite in its motion about the Earth. For an order-of-magnitude analysis, we now
assume that the satellite moves in a circular equatorial orbit with radius r < 8,000 km. Then,
< . Vc , where Vc is the circular velocity relative to the geocentric non-rotating reference frame.
In that case, (20.20) can be written approximately as

(20.21)

where  is the unit vector in the radial direction. Realizing that g1,0 < 0, we conclude that for a
satellite with a negative electrical potential the Lorentz force is pointing continuously towards
the center of the Earth, and for a satellite with a positive potential always radially away from the
center of the Earth. Now, we may write

(20.22)

where U * is the electrical potential difference between the satellite and the surrounding plasma,
and C is the satellite’s capacitance. The capacitance of a spherical conducting satellite is given
by
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(20.23)

where C is expressed in farad (F) 5, ,0 . 8.854*10-12 F/m is the electric constant (also called
permittivity of free space) and Rs is the satellite radius. Substitution of (6.18), (20.22) and (20.23)
into (20.21) then leads to

(20.24)

where : is the gravitational parameter of the Earth. With the classical relation for the local
gravitational acceleration, g = :/r2, we find for the magnitude of the relative acceleration from
(20.24):

(20.25)

Note that, for a given satellite with a given electrical potential, both the perturbing acceleration
and the relative perturbing acceleration decrease with increasing altitude; the acceleration
decreases with distance by a factor of r7/2, the relative acceleration by a factor of r3/2. When we
adopt a rather large value of Rs /M = 0.3 m/kg and U* = ±100 V, we obtain from (20.24) and
(20.25) for an orbital altitude of 500 km:  = 6.0*10-10 m/s2 and  = 7.1*10-11. These
numbers demonstrate that, under normal conditions, electromagnetic forces produce only very
small orbit perturbations. 

Figure 20.9: Sketch of the magnitude of some types of perturbing forces, as a function of the orbital
radius.

In addition to the forces mentioned above, there are other perturbing forces acting on a satellite;
however, these will not be discussed here. Figure 20.9 presents a schematic picture of the
magnitude of the acceleration due to the most important perturbing forces as a function of the

5 1 farad (F) = 1 C V-1 = 1 A V-1 s = 1 N-1 A2 m-1 s2.
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orbital radius. Note that for low orbits only the perturbations due to the J2-term in the Earth’s
gravitational potential and atmospheric drag play an important role. For geostationary satellites,
the attracting forces of Sun and Moon, and possibly also the direct solar radiation force, become
very significant.

It is emphasized that the character of the perturbing accelerations produced by the Earth’s
gravity field and by the Sun and the Moon differs significantly from the character of the
perturbing accelerations produced by the atmospheric, radiation and electromagnetic forces. The
accelerations due to gravitational forces are independent of the mass of the satellite, while the
accelerations resulting from the last three forces mentioned are inversely proportional to the
satellite’s mass. As a consequence, the Earth and an Earth satellite experience almost the same
acceleration due to the gravitational attraction by the Sun and the Moon, and it is the differential
acceleration that counts for the perturbed motion of the satellite about the Earth (Section 4.1).
However, for the perturbed motion of a satellite due to solar radiation pressure we may neglect
the acceleration of the Earth due to this radiation force. The reason is that the term A/M in (20.16)
is for the Earth about 2*10-11 m2/kg, which is many orders of magnitude smaller than for a
satellite.

In the following, we will assume that the perturbing forces acting on a satellite are known and
we will discuss some methods that can be used to compute their effects on the orbit of the
satellite.
 
20.6. Special and general perturbations methods

When the motion of a satellite is described relative to a non-rotating geocentric reference frame
and perturbing forces are taken into account, then the equation of motion can be written in the
form (Chapter 10)

(20.26)

where R, the perturbing or disturbing potential, describes all perturbing forces that can be

expressed by a potential function, and stands for all perturbing forces that cannot be written as
the gradient of a scalar function of the satellite’s coordinates. In general, (20.26) cannot be solved
analytically and we have to resort to numerical integration techniques or to approximative
analytical methods. In the first case, we speak of special perturbations methods; in the second
case, we deal with general perturbations methods.

Special perturbations methods generate just one special trajectory for a particular satellite,
given specific initial conditions. The computation of the orbit is done by means of a numerical
step-by-step integration process. The various methods of special perturbations are usually
classified according to the formulation of the equations to be integrated. The three classical
methods are known as Cowell’s method, Encke’s method and the method of variation of orbital
elements. These methods will be described below. An important topic in special perturbations
methods is the choice of the most suitable numerical integration technique. This highly special-
ized subject is, however, beyond the scope of this book.

General perturbations methods cover analytical methods in which the perturbing accelerations
are expanded into series and integrated analytically term by term. In practice, only a limited
number of terms of the series is taken into account. The solution of the differential equations of
motion is obtained in the form of analytical expressions, describing the approximate change of
the orbit as a function of time for a particular perturbing force. These methods thus yield solu-
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tions that are generally applicable to all satellites for all initial conditions. The most important
classical general perturbations method is the method of variation of orbital elements, which was
already mentioned in connection with special perturbations methods. For the analytical
integration, many techniques are known; for example: the method of successive approximations
(Section 5.10), Taylor series expansions, multi-variable asymptotic expansions and averaging
(Section 23.3). The main problem of all general perturbations methods always was the
tremendous amount of analytical labor involved, especially when higher-order approximations
are required. Nowadays, most of the analysis associated with the development of higher-order
theories can be performed by a computer.

The reader should be aware that, in addition to the special and general perturbations methods
mentioned, there exist numerous other specialized, and in most cases very complicated, methods.
Comparing the special and general perturbations methods, some remarks can be made about their
advantages and disadvantages. Obviously, the methods of special perturbations are directly
applicable to any orbit and to any perturbing force. As these are purely numerical methods, we
have the problem of accumulated integration errors (Section 10.1) and these methods are not well
suited to long-term orbit predictions. Moreover, these methods require the computation of the
coordinates and velocity components of the satellite at all intermediate epochs prior to the epoch
of interest, leading to long integration times. An advantage of general perturbations methods is
that once the analytical expressions that describe the effects of the perturbing force are available,
the computation of a perturbed orbit for various initial conditions is much faster. Their main
advantage, however, is that general perturbations methods, in particular the method of variation
of orbital elements, reveal the source of perturbation from orbital data. Major achievements of
the methods of general perturbations were the discovery of the planet Neptune in 1846 by J.G.
Galle (1812-1910) at the position predicted by U.J.J. Le Verrier (1811-1877) on basis of his
analysis of the observed orbit perturbations of Uranus; and the demonstration of the Earth’s pear
shape in 1959, through the analysis of the observed orbit perturbations of the Vanguard 1
satellite, by J.A. O’Keefe (1916-2000).

Method of Cowell
The simplest method for the computation of perturbed satellite orbits is the method of Cowell.
Although this name originally refers to a certain integration scheme in rectangular coordinates,
it nowadays refers to all direct numerical integration procedures for the equations of motion of
celestial bodies. In this method, we write these equations in the form

(20.27)

where the total acceleration, , is given by (20.26)

(20.28)

This technique was developed by P.H. Cowell (1870-1949) at the beginning of the twentieth
century in order to compute the orbit of the eighth satellite of Jupiter. Later, it was applied by
Cowell and A.C. de la Cherois Crommelin (1865-1939) to compute the periodic return of the
comet of Halley during the period 1759 through 1910. It is obvious that this method can always
be applied, even when  is not a perturbing acceleration, but, for instance, is the result of a large
force produced by a rocket engine. This method has the important advantage that, because of the
simple formulas, it can easily be programmed and it always works; no ‘clever’ assumptions and
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approximations have been made and used, which, in certain cases, may lead to problems.
However, the method has a fundamental drawback: one does not make use of the fact that one
knows that  and  are perturbing accelerations, which means that the orbit, in first approxima-
tion, resembles a conic section. Because in this method the integration has to account for both
the variation of the satellite’s state vector components produced by the central Newtonian gravity
field (Keplerian orbit) and the orbit perturbations produced by the various perturbing forces,
small integration steps have to be applied in the numerical integration process. This implies long
computation times and a steadily growing numerical integration error (Section 10.1).

Method of Encke
The method of Encke, which was introduced by J.F. Encke (1791-1865) in 1852, eliminates some
drawbacks of Cowell’s method. It makes use of a reference orbit and only the deviations from
that orbit are integrated numerically. For simplicity, we will assume that this reference orbit is
a Keplerian one, but this restriction is by no means a necessity. For the analysis we start from
(20.26), and write for the Keplerian reference orbit

(20.29)

where  denotes the position vector of the satellite if the satellite would follow the unperturbed
reference orbit. We now assume that at some instant of time the following conditions hold:

Because the reference orbit is a Keplerian one, we may solve (20.29) analytically to obtain
position and velocity in the reference orbit at any time. For the deviation of the actual trajectory
from the reference orbit at a time t, we write

(20.30)

By differentiating this relation twice with respect to time and subsequent substitution of (20.26)
and (20.29), we obtain

(20.31)

Integration of this equation leads to the deviations of position and velocity relative to their values
in the reference orbit. The latter are computed analytically, and the actual position and velocity
at a time t are obtained by adding  and  and  and  respectively. 

A practical numerical difficulty arises from the form of the first term on the right-hand side
of (20.31). This term is the difference of two nearly equal and small quantities, which is always
undesirable in numerical computations. Therefore, (20.31) is mostly written in another form.
First, we transform this equation into

(20.32)

We then write
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(20.33)

Defining a quantity q as

(20.34)

(20.33) may also be written as

(20.35)

Using this relation, we find

(20.36)

where ö(q) indicates that ö is a function of q. The term ö(q) can be expanded into a binomial
series, as was first done by Encke:

(20.37)

but it can also be written in a closed form

(20.38)

As, according to (20.35), q is small, we conclude that ö(q) . 3q. By substituting (20.30) and
(20.36) into (20.32), we finally obtain

(20.39)

where the term ö(q) should be computed either from (20.37) or from (20.38). This form of the
equation of relative motion is mostly used when Encke’s method is applied.

As in Encke’s method only the perturbing accelerations are integrated numerically to obtain
deviations from a reference orbit, usually the integration step can be chosen larger than in
Cowell’s method. However, at each integration step Encke’s method involves more computing
time. Nevertheless, for small but strongly varying perturbing forces Encke’s method yields in
most cases a more-efficient computing process than the method of Cowell. If the perturbations
accumulate, eventually  may become large and the Encke formulation loses its advantage over
the simpler Cowell formulation. Then, the reference orbit should be rectified; i.e. a new reference
orbit must be selected, such that at the instant of rectification again  = 0 and  = 0. As
a very rough criterion for rectification we may use q = 0.01. This need for rectification is a
drawback of Encke’s method.

Variation of orbital elements
A third method for the computation of perturbed satellite orbits is the method of variation of
orbital elements, which was published by J.L. Lagrange (1736-1813) in 1808. In this method,
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which is also called the method of variation of parameters or the method of variation of
constants, the actual perturbed orbit is regarded as a continuous sequence of Keplerian orbits,
each of which is at a certain point of the perturbed orbit tangent to that orbit. This very important
method will be treated in Chapter 22.

20.7. Historical development of the theory of orbit perturbations

The theory of orbit perturbations, as applied to lunar motion, was developed from a geometric
standpoint by I. Newton (1643-1727). The memoirs of A.C. Clairaut (1713-1765) and J.B. le
Rond d’Alembert (1717-1783) contain important advances, making the solutions depend upon
the integration of the differential equations in series. Clairaut soon had occasion to apply his
processes of integration to the orbit perturbations of Halley’s comet by the planets Jupiter and
Saturn. This comet had been observed in 1531, 1607 and 1682. If its period were constant, it
would pass its perihelion again about the middle of 1759. Clairaut computed the perturbations
of the comet’s trajectory and found that the perihelion passage would be April 13, 1759. He
remarked that the time was uncertain to the extent of a month, because of the uncertainties in the
masses of Jupiter and Saturn and the possibility of perturbations from unknown planets beyond
these two. The comet passed its perihelion by March 13, giving a striking proof of the value of
Clairaut’s method.

The theory of the perturbations of the motion of planets was begun by L. Euler (1707-1783),
whose memoirs on the mutual perturbations of Jupiter and Saturn gained the prizes of the French
Academy of Sciences in 1748 and 1752. In these memoirs the first analytical development of the
method of variation of orbital elements (Chapter 22) was given. The equations were not entirely
general, as he had not considered the elements as being all simultaneously variables. The first
steps in the development of the perturbing function were also given by Euler. Lagrange wrote his
first memoir in 1766 on the perturbations of Jupiter and Saturn. In this work he developed still
further the method of variation of orbital elements, leaving his final equations, however, still
incorrect by regarding the major axis and the epoch of perihelion passage as constants in deriving
the equations for the variations. The equations for the inclination, longitude of the node, and
longitude of the perihelion from the node were correct. In the expressions for the mean longitudes
of the planets there were terms proportional to the first- and second-order powers of time. These
were entirely due to the imperfections of the method, their true form being that of long-period
terms, as was shown by P.S. Laplace (1749-1827) in 1784 by considering terms of the third order
in the eccentricities. The method of variation of orbital elements was completely developed for
the first time in 1782 by Lagrange in a prize memoir on the perturbations of comets moving in
elliptical orbits. By far the most extensive use of this method is due to C.E. Delaunay (1816-
1872), whose lunar theory is essentially a long succession of the application of the process, each
step of it removing a term from the perturbation function. J.C.F. Gauss (1777-1855), P.A. Hansen
(1795-1874), G.B. Airy (1801-1892), U.J.J. Le Verrier, J.C. Adams (1819-1892), S. Newcomb
(1835-1909), G.W. Hill (1838-1914), and many others have made further important contributions
to the theory of planetary motion. Adams and Le Verrier are noteworthy for having computed in
1843 and 1846, independently of each other, the existence and apparent position of Neptune from
the unexplained irregularities in the motion of Uranus. It should be mentioned here that Le
Verrier predicted the position of Neptune much more accurate than Adams did. J.H. Poincaré
(1854-1912) applied to the problem all the resources of modern mathematics with unrivaled
genius; he brought into the investigation such a wealth of ideas, and he devised methods of such
immense power that the subject in its theoretical aspects has been entirely revolutionized in his
hands.
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The method of variation of orbital elements was commonly applied by astronomers up to the
middle of the nineteenth century for the computation of perturbed planetary orbits. In the
nineteenth century, more and more planetoids were discovered for which the orbits had to be
computed, and the need arose for a simpler method that could also be used by non-astronomers
lacking specialized knowledge. As a result, the complex method of variation of orbital elements
lost ground to the method of Encke and later to the very simple method of Cowell. After the
introduction of the computer, especially the method of Cowell became popular, because it is by
far the easiest one to be programmed on a computer. This method is still popular for the
computation of perturbed orbits of spacecraft over not too long time intervals, because it does not
demand information about an approximated orbit. Since the 1960s, the developments in the
computation of perturbed orbits of Earth satellites got well under way and for the first time one
encountered new types of perturbing forces, such as the ones that are generated by the spatial
variations of the Earth’s gravity field (Section 20.1) and by atmospheric drag (Section 20.2).
Moreover, the magnitude and direction of these forces change relatively fast, contrary to the
classical perturbing forces in celestial mechanics: the attracting forces by other planets. After all,
within about 95 min a satellite traverses the complete perturbing force field; this means that the
stepsize during the numerical integration of satellite orbits usually has to be of the order of 1E -
10E along the orbit. For intermediate- and long-term orbit computations, where one considers
hundreds to several thousands of revolutions about the Earth, a numerical integration procedure
is usually not suited, because of the long computation times and the associated accumulating
integration errors. Then, one has to resort to the general perturbations methods, of which
Lagrange’s method of variation of orbital elements, which will be treated in Chapter 22, is the
classical example.
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21. ELEMENTARY ANALYSIS OF ORBIT PERTURBATIONS

The major perturbing forces acting on a satellite were introduced and discussed in Chapter 20.
This Chapter presents an elementary analysis of some characteristic orbital effects of these forces.
For simplicity, we will restrict ourselves to orbits that would be circular if the perturbing force
would not act on the satellite.

21.1. Basic equations

The equation of motion of a satellite relative to a non-rotating geocentric equatorial reference
frame can, according to (20.26), be written as

(21.1)

where  is the position vector of the satellite, : is the gravitational parameter of the Earth and 
is the acceleration due to all perturbing forces acting on the satellite. Just as we did in Section 5.1
and Section 19.2, we now take the scalar product of (21.1) and  and the vector product of
(21.1) and  We then obtain in our present notation:

(21.2)

where  is the velocity vector of the satellite, and õ and  are the orbital energy and
orbital angular momentum of the satellite, both per unit of mass. According to (6.14), we may
write

   (21.3)

where a is the semi-major axis of the orbit. Differentiation of (21.3) to time yields

(21.4)

Substitution of this relation into (21.2-1) leads with (21.2-2) to the set of equations:

(21.5)

These relations show that for a perturbed orbit the semi-major axis and angular momentum are,
generally, not constant. The rate of change of a or  is zero when the perturbing force is directed
perpendicular to the velocity vector or along the radius vector, respectively. The rates are
maximum when the force is directed along the velocity vector or perpendicular to the radius
vector, respectively. These results were already found in Section 1.7 and Section 19.2.
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Equations (21.5) form the basis for the analysis in this Chapter. The position vector, , and the
velocity vector, , are functions of the true (perturbed) orbital elements; the acceleration, , is,
in general, a function of the true (perturbed) position and velocity of the satellite, and so of the
true (perturbed) orbital elements. As a first-order approximation, we will express ,  and  in
terms of the elements of the unperturbed orbit and of the unperturbed position angle of the
satellite in this orbit, and we will substitute for a on the right-hand side of (21.5-1) its unper-
turbed value. The errors in the computed orbit perturbations thus committed are obviously small,
as long as the perturbing accelerations themselves are sufficiently small. This technique is widely
used in astrodynamics and is described in more detail in Sections 22.6 and 23.2.

Figure 21.1: Unperturbed and perturbed orbital planes and orbital angular momentum vectors. The
unperturbed true anomaly is measured in the unperturbed orbital plane.

Figure 21.1 shows the unperturbed orbital plane and the unperturbed angular momentum vector,
, relative to the non-rotating geocentric equatorial reference frame. For simplicity, the right

ascension of the ascending node of the initial orbital plane is chosen zero, i.e. S0 = 0E. As a
consequence,  lies in the YZ-plane. Also shown are the perturbed orbital plane and the
perturbed angular momentum vector, . We now select the line of nodes of the unperturbed orbit
as the reference line from which the unperturbed satellite position angle is measured. This angle
is the argument of latitude, u (Section 11.5), and we can write for the unperturbed circular orbit:

(21.6)

where n0 is the unperturbed mean motion of the satellite and r0 is the radius of the unperturbed
circular orbit. With (21.6) we can write (21.5) as

(21.7)

or
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For the integration of these equations we need expressions for  and  in terms of the elements
of the unperturbed orbit. For the position components we have

(21.8)

or

(21.9)

where   and  are unit vectors along the axes of the reference frame and i0 is the inclin-
ation of the unperturbed orbit. Differentiation of (21.9) to time leads, with (21.6), to

(21.10)

Now, it will be shown that the rectangular components of  provide information about the
changes in inclination, right ascension of the ascending node, and magnitude of the angular
momentum. As is shown in Figure 21.1, the angle between  and  is equal to i. Further, the
vector  is perpendicular to  and , and consequently is oriented along the line of nodes
and points towards the ascending node of the perturbed orbit. So, we may write

(21.11)
where i and S are elements of the perturbed orbit. For a given  with components )Hx, )Hy ,
)Hz along the axes of the reference frame, we may write for the adopted geometry:

(21.12)

We now write

(21.13)

If the perturbing force is small, we may assume that also the orbit perturbations )i, )S and )H
are small. Substitution of (21.12) and (21.13) into (21.11), and carrying out the vector operations,
lead, after neglecting terms which are small of the second order, to

From these relations, we obtain

(21.14)



Fundamentals of Astrodynamics     SS     Elementary analysis of orbit perturbations 558

(21.14)

with, for the adopted unperturbed circular orbit,

(21.15)

Note that the expression for )S becomes singular for i0 = 0E. This does not introduce a problem
since at i0 = 0E the ascending node is not defined. The equations (21.7), (21.9), (21.10) and
(21.14) form the basis for our analysis. In Sections 21.2 to 21.7, we will derive expressions for 
and  for a particular perturbing force. Substitution of these expressions into (21.7) and
subsequent integration, for example from u = 0 to u = 2B, yields for that force expressions for )a,
)Hx, )Hy, )Hz. Substitution of the latter three expressions into (21.14) yields expressions for )i,
)S, )H.

21.2. Perturbations due to the J2-term of the gravity field

In Section 20.1 we have found the following expressions for the accelerations in the X-, Y- and
Z-directions due to the -term of the Earth’s (static) gravitational potential:

(21.16)

where R is the mean equatorial Earth radius and J2 is the second-degree zonal harmonic
coefficient.

To illustrate the computation process, the derivation of an expression for )a will be given
in full detail. Substitution of (21.8) into (21.16) gives

(21.17)

From (21.10) and (21.17) we obtain
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or

or

(21.18)

Substitution of (21.18) into (21.7-1) leads with (21.6) to

(21.19)

Integration from u = 0 to u = ue yields

(21.20)

Note that )a is independent of : and is always negative (J2 > 0) or zero. We conclude that *)a*
decreases with decreasing inclination and decreases inversely proportionally to the orbital radius.
We also conclude that )a shows a periodic variation with a period of half the orbital period. In
astrodynamics, variations of orbital parameters with periods of the order of the orbital period are
called short-period variations. Variations that show a linear, quadratic, etc., dependence on time
are called secular variations. In Section 23.2 these variations, and the so-called long-period
variations, will be discussed in more detail. Equation (21.20) shows that )a = 0 if ue = kB, where
k is an integer. This means that, to first-order approximation, )a does not show a long-term trend.
So, the -term of the rotating Earth’s gravity field does not produce a secular or long-period
change of the satellite’s orbital energy. 

For a given orbit, the maximum value of *)a*over an orbital revolution is, according to
(21.20), given by

(21.21)

and occurs at ue = 90E, 270E; so, at points where the satellite reaches a maximum or minimum
declination. For a satellite at an altitude of 500 km and an inclination of 90E, we find for the
maximum and mean values of )a over an orbital revolution:
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Similarly, we find for a satellite at geostationary altitude (h = 35,786 km) and i = 90E:

For the determination of )i, )S and )H, we start from (21.7-2). Substitution of (21.9) and
(21.17) into (21.7-2) gives after some algebraic manipulation:

(21.22)

Integration from u = 0 to u = ue results in

(21.23)

The third relation shows that the J2-term does not affect the component of the angular momentum
about the Z-axis. In Section 23.1, it will be shown that this characteristic holds for any term of
the series expansion for the potential of a gravity field that is rotationally symmetric about the
Z-axis.

Substitution of (21.23) into (21.14) leads with (21.15) to

(21.24)

We conclude that )i and )S are negative if i0 < 90E and positive if i0 > 90E, that )H is negative
if i0 … 0E, and that *)i* and *)S* decrease inversely proportionally to the square of the orbital
radius . We also conclude that, for a specified orbit, )i varies periodically along the orbit with
a maximum value of

(21.25)

The absolute maximum value of )i occurs at i0 = 45E, 135E. The parameter )S shows a secular
trend and superimposed on it a short-period variation. The maximum value of the periodic
variation in S is given by
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(21.26)

For a satellite at an altitude of 500 km and an inclination of 45E, we find for these maximum
values and for the mean values of )i and )H:

Similarly, we find for a satellite at geostationary altitude and for i0 = 45E:

For a specified inclination, the values of )i and )H are, according to (21.24), zero when ue = kB,
where k is an integer. So, i and H do not show secular variations. However, S does show a
secular variation, which is called the regression of the nodes. According to (21.24-2), the value
of )S after one orbital revolution of the satellite (ue = 2B) is given by

(21.27)

So, )2BS < 0 if 0E < i < 90E and )2BS > 0 if 90E < i < 180E. The mean rate of this regression is
given by

(21.28)

where T is the period of the unperturbed orbit:

(21.29)

Substitution of (21.27) and (21.29) into (21.28) gives

(21.30)

For a satellite at an altitude of 500 km and an inclination of 45E, we find = -0.23E/hr; for
a satellite at geostationary altitude and the same inclination:  = -34O/day. 

In Chapter 23 we will treat the orbital effects of the J2-term in the Earth’s gravitational
potential in more detail. 

21.3. Perturbations due to lunar and solar attraction

In Section 20.3 we have found the following expressions for the accelerations in the X-, Y- and
Z-direction due to the gravitational attraction by a third body, e.g. the Moon or the Sun:

(21.31)
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(21.31)

where we have used a slightly different notation: :d is the gravitational parameter of the
perturbing body (d),  is the position vector of the satellite (s) relative to the non-rotating
geocentric reference frame,  is the position vector of the perturbing body relative to the non-
rotating geocentric reference frame, and  is the vector from the satellite to the perturbing body.
Elaboration of (21.31-1) leads to

or

When the perturbing body is the Sun, then rs/rd  n 1 for all satellite orbital altitudes; when the
perturbing body is the Moon, then rs/rd n 1 if rs < 45,000 km. Realizing that the large majority
of Earth satellites have orbital radii of much less than 45,000 km, for those satellites we may
approximate the above equation, both for the perturbations due to solar attraction and for the
perturbations due to lunar attraction, to

(21.32)

where we have omitted the index s. For the other two position components, we obtain similar
approximative relations:

(21.32)

It is evident that the perturbing effects depend on the position of the perturbing body relative to
the satellite’s orbital plane. To simplify the analysis, we choose zd = 0, i.e. we assume that the
perturbing body is situated in the equatorial plane. In reality, the Sun moves about the Earth in
the ecliptic, which is inclined by 23.4E to the equatorial plane and the inclination of the Moon’s
orbital plane relative to the equator varies between 18.3E and 28.6E (Section 17.1). To compen-
sate for these non-zero inclinations of the orbits of the perturbing bodies, one may use a corrected
value of the inclination of the satellite orbits. We will not address that aspect in the following
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analysis.

Figure 21.2: Geometry used for the analysis of luni-solar attraction perturbations, and the initial orbital
plane and the position vector of the perturbing body.

According to Figure 21.2:

(21.33)

where " is the right ascension of the perturbing body. Substitution of (21.8) and (21.33) into
(21.32) leads, after some algebraic manipulation, to

(21.34)

From (21.10) and (21.34) we obtain, after some algebraic manipulation,

(21.35)

Substitution of this relation and (21.6) into (21.7-1) yields

(21.36)

We now assume that the position of Sun and Moon may be considered stationary during an
orbital revolution of the satellite. This assumption is quite realistic for low-altitude satellites;
even for a satellite at an altitude of 5000 km the right ascensions of Moon and Sun change only
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by 1.8E and 0.14E, respectively, during an orbital revolution of that satellite. The assumption is
less accurate for the analysis of lunar attraction perturbations of high-altitude satellites; e.g. for
a geostationary satellite we find that the right ascensions of the Moon changes by 13E during an
orbital revolution of the satellite. With the assumption " = "0, where "0 indicates the value of "
at u = 0E, integration of (21.36) from u = 0 to u = ue yields

(21.37)

We conclude that *)a* increases proportionally to the fourth power of the orbital radius. Note
that )a varies periodically over an orbital revolution of the satellite and that )a is zero if ue = kB,
where k is an integer. So, when the satellite has completed an orbital revolution, i.e. ue = 2B:

. This implies that a fixed (‘not moving’) celestial body will not produce any long-term
change in the total orbital energy of the satellite. The change in energy produced by swingby
maneuvers (Section 18.11), therefore is produced by the ‘motion’ of the gravity field of the
swingby planet in its orbit about the Sun!

If the position vector of the perturbing body is perpendicular to the orbital plane of the
satellite, i.e. and (S0 = 0E), we find from (21.37): )a = 0, which could be
expected. To find the inclination for which the maximum and minimum values of )a occur, we
differentiate (21.37) partially with respect to i0:

So, M)a/Mi0 = 0 if

Since we are only interested in solutions that hold for any value of ue , only the first solution is
relevant. For i0 = 0E, (21.37) simplifies to

(21.38)

Note that )a is maximum if ue = ½B+2kB and 2"0-ue = ½B+2kB, where k is an integer. These
conditions can also be written as ue -"0 = kB. This means that the maximum value of )a occurs
when the satellite crosses the line connecting the Earth and the disturbing body (Sun or Moon).
In a similar way, we find that the minimum value of )a occurs when ue-"0 = ½B+kB; so, if the
satellite is 90E ahead or behind the line connecting the Earth and the disturbing body. We also
find that )a = 0 if ue = kB or ue = 2"0+kB. When "0 = kB, the product of the two sine-terms on
the right-hand side of (21.38) can be written as -sin2ue; for "0 = ¼B+kB as ½sin2ue; for "0 =
½B+kB as sin2ue; for "0 = ¾B+kB as -½sin2ue. So, when "0 = kB then )a # 0; when "0 = ½B+kB
then )a $ 0; when "0 = ¼B+kB or "0 = ¾B+kB then )a can be positive and negative. In all cases,
)a experiences a periodic variation with a period equal to ½T, where T is the (unperturbed)
orbital period of the satellite.

For our simplified analysis we have assumed that the perturbing body is stationary during an
orbital revolution of the satellite. In reality, this is not the case and the angular positions of Sun
and Moon in their orbital planes change (almost linearly) with time. In our model, where the
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perturbing body is assumed to move in the equatorial plane, this implies that the right ascensions
of Sun and Moon increase about linearly with time. To account for this change in right ascension,
we may, to first-order approximation, assume that for each subsequent revolution "0 increases
discontinuously by an amount of ndT, where nd is the mean angular motion of the perturbing body
about the Earth. An analysis of (21.38) then shows that )a experiences a short-period variation
with amplitude, A, and period, P:

(21.39)

superimposed on a long-period variation with amplitude and period:

(21.40)

Note that the period of the long-period variation is just half the orbital period of the perturbing
body in its motion about the Earth; so, half a year for the Sun as perturbing body and half a
month for the Moon as perturbing body. The long-term average of )a is zero, so there is no
secular variation of )a. It is recalled that this analysis only holds for the case that i0 = 0E; i.e. for
the case that the perturbing body is situated in the satellite’s orbital plane. The separation of orbit
perturbations into short-period, long-period, and secular components will be discussed further
in Section 23.2.

In the equations given above, the disturbing body is characterized by the ratio :d/rd
3. For the

Sun (index S) and the Moon (index M), we find

(21.41)

This relation shows that for the same values of "0 and ue, the magnitude of the solar effect is
about half that of the lunar effect (Section 4.2). For a satellite at an altitude of 500 km and i0 =
0E or a geostationary satellite, we find, to first-order approximation, for the amplitude and period
of the variation of )a due to lunar attraction:

Note that for low-altitude orbits )a is relatively small, but that for geostationary satellites lunar
and solar attraction lead to major orbit perturbations.

In principle, we can apply the same methodology to analyze the long-period variations of the
other orbital element. However, it is emphasized that the analysis presented for the long-period
variation of )a only served to indicate some major features of this type of variation, and that it
is only of limited practical value. The reason is that we have assumed that the elements of the
satellite orbit are constant and that the perturbing body moves in the equatorial plane. As
mentioned before, in reality, Sun and Moon move in planes inclined to the equatorial plane, and
the satellite’s orbital elements, in particular the right ascension of the ascending node, change
continuously due to various orbit perturbations. These orbital changes become significant over
periods comparable to the period of the long-period variations.
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We now continue with the computation of )i, )S and )H. Combination of (21.9) and (21.34)
yields for the components of the vector product :

(21.42)

Substitution into (21.7-2) and subsequent integration from u = 0 to u = 2B leads to

(21.43)

Substitution of (21.6), (21.15) and (21.43) into (21.14) yields

(21.44)

We conclude that *)2Bi* and *)2BS* increase proportionally to the cube of the orbital radius. Note
that according to (21.44-1) the inclination change after an orbital revolution is zero when the
perturbing body lies in the plane of the satellite orbit (i0 = 0E). If i0 … 0E, the inclination decreases
when "0 lies in the first or third quadrant, and increases when "0 lies in the second or fourth
quadrant. Since in reality the perturbing body moves about the Earth and consequently, on the
long run, "0 will take all values between zero and 2B, the changes in inclination will cancel over
long intervals of time. So, the inclination will show only short-period and long-period variations.
On the other hand, (21.44-2) shows that the right ascension of the ascending node changes
without limit, unless i0 = 90E. Averaging sin2"0 over the range "0 = 0 to "0 = 2B yields for the
long-term mean rate of precession
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(21.45)

Equation (21.44-3) shows that a perturbing body does not produce any secular or long-periodic
effect in the magnitude of the orbital angular momentum.

For a satellite at an altitude of 500 km and i0 = 10E, we find for the maximum effects of the
lunar attraction and for the resulting mean rate of precession:

Similarly, we find for a satellite at geostationary altitude and i0 = 10E:

When we compare these values of  with the values obtained in Section 21.2 for the
perturbations due to the J2-term of the Earth’s gravity field, and ignore the fact that the values
presented in Section 21.2 hold for a different inclination, we conclude that for a 500 km altitude
orbit the orbital mean rate of precession produced by lunar attraction is much smaller than that
produced by the J2-term, but that at geostationary altitude both rates of precession are of similar
magnitude.

21.4. Perturbations due to atmospheric drag

In Section 20.2, we have used the following expression for the acceleration of the satellite due
to atmospheric drag:

(21.46)

where D is the atmospheric density,  is the velocity of the satellite relative to the rotating
Earth’s atmosphere, M is the mass of the satellite, and CD is the drag coefficient related to a
reference surface A. When  denotes the inertial velocity of the satellite and  the local
atmospheric inertial velocity, we have

(21.47)

When we assume that the atmosphere rotates with the same angular velocity as the Earth, , we
can write

(21.48)

where * is the declination of the satellite and Va is directed due east. For the components of 
we write according to Figure 21.3:

(21.49)

where " is the right ascension of the satellite. For the orbit geometry selected in this Chapter
(S0 = 0E) and using the first and second cosine rule of spherical geometry (Section 11.8), we may
write
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Figure 21.3: Geometry used for the analysis of atmospheric drag perturbations, and the initial orbital
plane and satellite inertial velocity vector (left), and the atmospheric inertial velocity vector and its
components (right).

(21.50)

Substitution of (21.10) and (21.50) into (21.47) gives for the relative velocity

(21.51)

From this expression, we find for the magnitude of the relative velocity

(21.52)

Since for orbital altitudes where atmospheric drag yields an important orbit perturbation:
, we may linearize (21.52) and obtain

(21.53)

Substitution of (21.51) and (21.53) into (21.46), and neglecting terms of the second order in
 leads to the following relations for the components of the drag acceleration:

(21.54)

Combination of (21.10) and (21.54) results in
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(21.55)

Substitution of (21.55) into (21.7-1) results in

(21.56)

Now, as a first-order approximation, we assume that D is constant (D0) during an orbital revolu-
tion and that  is constant too. We then conclude from (21.56) that da /du is constant and
thus that the semi-major axis decreases linearly during an orbital revolution. Integration of
(21.56) from u = 0 to u = 2B then yields

(21.57)

To first-order approximation, the atmospheric density falls off about exponentially with
increasing altitude:

(21.58)

where h is the altitude above the surface of the Earth and H is a scaling factor that is called the
density scale height. The value of this scaling factor increases with increasing altitude and is a
function of the exospheric temperature (Section 20.2). It ranges from 30 km to 150 km at
altitudes between 200 km and 600 km, which is the altitude range where atmospheric drag yields
significant orbit perturbations. We now consider two successive orbital revolutions. For the first
one the initial conditions are indicated by the index 0; for the second one by the index 1. At the
end of the first revolution the semi-major axis has decreased by an amount specified by (21.57).
Consequently, for the second revolution: D1 > D0, but r1 < r0. If we assume that all other
parameters in (21.57) are constant, realize that for the region of interest (h0 - h1)/H, h0 /R and h1 /R
are (rather) small quantities, and linearize the expressions for the terms exp((h0 - h1) /H) and
((R+h1) /(R+h0))

2, we find

Since 2/R < 1/H, we conclude that the right-hand side of this equation is larger than one, which
means that after the second revolution the decrease of the semi-major axis is larger than after the
first revolution. When we repeat this analysis for successive revolutions, this results in the well-
known spiral decay of orbits that are subjected to atmospheric drag. It is emphasized that in
reality in reality the situation is much more complicated, since: 1) the atmosphere is oblate and
the atmospheric density therefore varies with the declination of the satellite; 2) the atmospheric
density at a specific location exhibits a diurnal variation because of the heating of the atmosphere
by solar radiation; 3) the density varies explicitly with time as a result of solar activity (Section
20.2).

We now continue with the computation of )i, )S and )H. Combination of (21.9) and (21.54)
gives for the components of the vector product :
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(21.59)

Substitution into (21.7-2) and integration from u = 0 to u = 2B leads, for constant values of the
density and CDA/M, to

(21.60)

Substitution of these relations and (21.15) into (21.14) gives

(21.61)

Note that: 1) if the rotation rate of the atmosphere would be zero then )2Bi is zero, while )2Ba and
)2BH are non-zero; 2) the inclination change is linearly dependent on the rotation rate of the
atmosphere. This is the reason why the history of )i values as obtained from tracking data can
be used, in combination with an atmospheric density model, to determine the rotation rate of the
atmosphere at a particular altitude. The change in the right ascension ascension of the ascending
node is zero, and the change in the magnitude of the angular momentum is only weakly
dependent on the inclination.

For a satellite at an altitude of 300 km, we may assume an average atmospheric density of 2*10-11

kg/m3 at a high level of solar activity. Adopting CDA/M = 0.5 m2/kg and i0 = 45E, we find for the
orbital change after one orbital revolution:

For an orbital altitude of 500 km and the same high level of solar activity, we may assume an
average density of 10-12 kg/m3 and find for the same satellite:
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Note the large increase in )a when the orbital altitude decreases from 500 km to 300 km.

21.5. Perturbations due to the solar radiation force

In Section 20.4, we have found the following expression for the acceleration of a satellite due to
the solar radiation force:

(21.62)

where W is the power density of the solar radiation near the Earth (about 1360 W/m2), which is
for Earth satellites practically independent of orbital altitude, M is the mass of the satellite, c is
the speed of light (in vacuum), A is the effective cross-sectional area of the satellite, CR is the
satellite’s reflectivity, and  is a unit vector from the satellite to the Sun. The quantity CRW/c
is the solar radiation pressure. We can write (21.62) as

(21.63)

Because the distance to the Sun is much larger than the orbital altitude of the satellite, the vector 
is (about) parallel to the vector from the Earth to the Sun. When the satellite crosses the shadow
cylinder (Section 20.4) produced by the Earth’s interception of solar radiation (Figure 21.4), the 

Figure 21.4: Geometry of an eclipse when the Sun is in the satellite’s orbital plane.

satellite experiences an eclipse and = 0. In general, the value of A, and so of f, will change with
the satellite’s position in its orbit, because of the changing geometry of the satellite when viewed
from the Sun. However, for the analysis given below we assume that, if the satellite is in sunlight,
the value of f is constant during an orbital revolution. When we assume for simplicity that the Sun
lies in the XY-plane and use the geometry depicted in Figure 21.4, we may write for the
components of the acceleration:

(21.64)

where " is the right ascension of the Sun (Figure 21.2). To allow for the shadow effect (Figure
21.4), we assume that the satellite enters an eclipse at u = u1 and emerges into sunlight again at
u = u2.

From (21.10) and (21.64) we obtain
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(21.65)

Substitution of this relation into (21.7-1) gives

(21.66)

For satellites below the geostationary altitude, the right ascension of the Sun hardly varies during
an orbital revolution of the satellite (Section 21.3). Then, we may write " = "0, where "0 is the
value of " at u = 0. Integration of (21.66) from u = 0 to u = u1 and from u = u2 to u = 2B results
in

(21.67)

We conclude that *)2Ba* increases proportionally to the cube of the orbital radius.

We now continue with the computation of )i, )S and )H. Combination of (21.9) and (21.64)
yields, with " = "0 , for the components of the vector product :

(21.68)

Substitution into (21.7-2) and integration from u = 0 to u = u1 and from u = u2 to u = 2B yields

(21.69)

Substitution of these relations and (21.15) into (21.14) gives

(21.70)
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Note that *)2Bi* and *)2BS* increase proportionally to the square of the orbital radius. From (21-
67) and (21.70) we conclude that when the satellite does not experience an eclipse during an
orbital revolution, i.e. u2 = u1,

(21.71)

So, the change of the orbital parameters after an orbital revolution is zero when the satellite is in
sunlight continuously. This implies that these parameters then only show a short-period variation
due to solar radiation pressure.

To analyze the short-period variations, we consider the case that the satellite is in sunlight during
an entire orbital revolution. It is emphasized that this happens only for a particular range of
values of " and i0. An elementary analysis of the geometry shown in Figure 21.2 reveals that for
a satellite orbital altitude of 500 km and i0 = 90E the satellite is continuously in sunlight if 68.0E
< " < 112.0E or 248.0E < " < 292.0E; for the same orbital altitude and " = 90E the satellite is
continuously in sunlight if 68.0E < i0 < 112.0E. For an orbit at geostationary altitude and i0 = 90E
the constraints are 8.7E < " < 171.3E or 188.7E < " < 351.3E, and for " = 90E the constraint is
8.7E < i0 < 171.3E. To simplify the analysis, we now assume that i0 = 90E. Substituting again
" = "0 and integrating (21.66) from u = 0 to u = ue then yields

(21.72)

Substitution of (21.68) into (21.7-2), and integration from u = 0 to u = ue yields

(21.73)

Substitution of these expressions into (21.14) gives

(21.74)

Note that (1 - cosue) $ 0 and that this expression has a mean value of one over an orbital
revolution. From (21.72) and (21.74) we find that for a specified value of "0 and i0 = 90E the
extreme values of the short-period variations during an orbital revolution are given by
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(21.75)

These expressions show that when the Earth-Sun vector is perpendicular to the satellite’s orbital
plane, i.e. "0 = 90E, 270E, the parameters a and H do not show a short-period variation, while the
short-period variations of the orbital elements i and S are maximum.

For a numerical example, we adopt A/M = 0.2 m2/kg, W = 1360 W/m2, and CR = 1.8, which
yields with (21.63) f = 1.63*10-6 m/s2. When we assume "0 = 70E, we find from (21.6) and
(21.75) for the maximum values of the short-period variations for a circular orbit at an altitude
of 500 km:

and for a circular orbit at geostationary altitude:

Just as we did for the orbit perturbations due to solar gravitational attraction (Section 21.3),
we can use (21.72) and (21.74) to analyze the long-period variation of the orbital parameters.
However, such an analysis is only valid for a limited period of time, because the variation of "
will lead to a situation where the satellite experiences an eclipse again. An exception is a Sun-
synchronous orbit, which will be discussed in Section 23.7. For that type of orbit, the inclination
is selected such that the gravitational perturbation due to the J2-term of the Earth’s gravity field
(Section 21.2) makes the orbit’s right ascension of the ascending node to increase at the same rate
as the angular motion of the Sun about the Earth. As will be shown in Section 23.7, a satellite in
such an orbit may remain in sunlight for several months.

We now return to the analysis of the orbital changes after an orbital revolution and assume that
the satellite experiences an eclipse during that revolution. To simplify the analysis, we assume
that the inclination of the orbital plane is very small (i0 . 0E). As the Sun is assumed to be in the
XY-plane, this implies that we assume the Sun to move in the satellite’s orbital plane, but that the
right ascension of the ascending node of the satellite orbit is still defined. Then, we find from
Figure 21.4:

(21.76)

From these relations we find

(21.77)

From Figure 21.4 we find

where R is the radius of the Earth. Substitution of this relation into (21.77) leads to
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(21.78)

Substitution of (21.78) into (21.67) and (21.70) then yields

(21.79)

So, for this eclipse geometry the semi-major axis, inclination and angular momentum do not
experience a change after an orbital revolution of the satellite, as could be expected. The
maximum value of )2BS occurs for "0 = 90E, 270E and amounts

(21.80)

Assuming again f = 1.63*10-6 m/s2, we find for an orbital altitude of 500 km: ()2BS)max = 0.07O
and for the geostationary altitude: ()2BS)max = 0.45O.

The very fact that solar radiation produces changes in the orbit of a satellite has led to the concept
of solar sailing. For such missions, the spacecraft is equipped with a very large lightweight
highly reflective solar sail, of which the orientation is modulated as a function of time in such a
way that the appropriate time-varying solar radiation force is generated to achieve prescribed
changes of the spacecraft’s orbital elements, without spending any propellant. The idea was
proposed as early as 1924 by F. Zander (1887-1933). The Japanese space agency JAXA has
successfully unfurled a solar sail in space with the IKAROS mission. This 307 kg spacecraft was
launched on May 21, 2010, aboard a Japanese H-IIA rocket, together with Akatsuki (Venus
Climate Orbiter), into a trajectory towards Venus. The 14 kg solar sail consisted of four trapezoid
petals of a highly-reflective aluminized polyimide membrane only 7.5 :m thick. When expanded
it formed a square shape measuring 20 m along the diagonal. Thin-film solar cells were attached
to about 5% of the solar sail surface, capable of generating about 500 W of electrical power.
Attached on the edge of the solar sail were a series of thin film optical devices of which the
reflectance could be varied by applying an appropriate voltage to the electrodes. This system was
used to fine-tune the attitude control of the solar sail. The sail was deployed by spinning the
spacecraft at up to 20 rpm and using four 0.5 kg tip masses; once unfurled the sail was held flat
by the spacecraft’s spinning motion. IKAROS finished unfurling its sail on June 11, 2010. On
July 9, JAXA confirmed that IKAROS was accelerated by its solar sail, and on July 23 JAXA
announced successful attitude control. IKAROS continued to spin at approximately 2 rpm,
requiring the variable reflectance devices to be cycled at that rate for attitude control. On
December 8, 2010, IKAROS passed by Venus at a distance of about 80,800 km, completing the
planned mission successfully.

21.6. Perturbations due to the electromagnetic force

In Section 20.5 we have found the following first-order expression for the perturbing acceleration
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of an electrically charged satellite due to its motion through the Earth’s magnetic field:

(21.81)

where q is the electric charge of the satellite, M is the mass of the satellite, g1,0 is the first Gauss
geomagnetic coefficient, R is the mean radius of the Earth, < is the satellite’s velocity relative to
the rotating geomagnetic field, N is the satellite’s latitude and r is the distance of the satellite
from the center of the Earth. With * = N, where * is the satellite’s declination, and (11.19), we
find

(21.82)

When we define a parameter ( as

(21.83)

assume that the value of q is (about) constant during an orbital revolution, substitute (21.51),
(21.82) and (21.83) into (21.81), perform the vector operation, and use (21.8), we find:

(21.84)

where  is the Earth’s (mean) rotation rate. As an illustration of the direction of the perturbing
acceleration (Lorentz force), we consider the cases that the satellite moves in a circular low-
altitude equatorial or polar orbit and we neglect the rotation of the geomagnetic field about the
polar axis. We then find from (21.84):

Note that these results hold for the assumption made in this Chapter that the right ascension of
the ascending node of the orbit is zero. Remembering that g1,0 < 0 (Section 20.5), we conclude
from (21.83) that ( > 0 when q > 0 and that ( < 0 when q < 0. So, for the equatorial orbit the
perturbing acceleration is always acting in the radial outward direction if the satellite has a
positive potential and in the radial inward direction if the satellite has a negative potential. We
already have found that result in Section 20.5. For the polar satellite the perturbing acceleration
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is zero when the satellite passes the ascending and descending nodes, is at all other points along
the orbit acting perpendicular to the orbital plane, is maximum when the satellite passes over the
poles, and is pointing in opposite directions over the north pole and over the south pole.

From (21.10) and (21.84) we obtain

(21.85)

which leads with (21.7-1) and (21.83), and after integration from u = 0 to u = ue, to

(21.86)

We conclude that *)a* increases proportionally to the orbital radius, and that a shows a short-
period variation during an orbital revolution.

We now continue with the computation of )i, )S and )H. Combination of (21.9) and (21.84)
yields for the components of the vector product :

(21.87)

Note that in the last expression no term with  occurs. Substitution of (21.87) into (21.7-2) and
integration from u = 0 to u = ue yields

(21.88)

Substitution of these relations, (21.15) and (21.83) into (21.14) results in

(21.89)
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(21.89)

Note that a and H only change because of the rotation of the geomagnetic field, while i and S
would also change if the magnetic field would not rotate. Since g1,0 < 0, we find that: 1) for q <
0, )a and )H are always positive (or zero), while )i and )S are always negative (or zero); 2)
for q > 0, )a and )H are always negative (or zero), while )i and )S are always positive (or
zero). Equations (21.86) and (21.89) show that the variations in a, i and H are zero for i0 = 0E.
The value of )S is, generally, non-zero at i0 = 0E, but it should be realized that S is undefined
at i0 = 0E. When we consider a spherical conducting satellite that moves in a circular 500 km
altitude orbit with i = 45E, apply (20.22) and (20.23), and adopt the values U* = -100 V,
Rs /M = 0.1 m/kg, we find for the maximum values of )a, )i, and )H during an orbital
revolution:

This demonstrates that the orbital perturbations due to the geomagnetic field are extremely small.
From (21.86) and (21.89) we find that after an orbital revolution (ue = 2B):

(21.90)

So, for our simplified geomagnetic field model, only the satellite orbit’s right ascension of the
ascending node shows a secular perturbation, which is only weakly dependent on the orbital
inclination. For a satellite in a circular 500 km altitude orbit at i0 = 45E, and U* = -100 V,
Rs/M = 0.1 m/kg, we find )2BS = -2.9*10-5 O. For a geostationary satellite , and
thus )2BS = 0. The physical explanation is that this satellite is stationary with respect to the
rotating geomagnetic field and thus does not generate a Lorentz force.

The very fact that the Lorentz force produces changes in the orbit of a satellite has led to the
concept of a Lorentz spacecraft. In such a spacecraft the electrostatic charge of a capacitor is
modulated as a function of time in such a way that an appropriate time-varying Lorentz force is
generated to achieve prescribed changes of the orbital elements without spending any propellant.
To realize an appreciable Lorentz force, of course, high levels of the electric charge are required.

21.7. Perturbations due to the J2,2-term of the gravity field

In Section 20.1 we have found the following expressions for the radial, latitudinal and
longitudinal components of the acceleration of a satellite due to the J2,2-term of the Earth’s
gravity field potential:
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(21.91)

Figure 21.5: Relation between Greenwich mean sidereal time, 2GM, longitude, 7, and right ascension, ".

where : is the Earth’s gravitational parameter, J2,2 = 1.82*10-6 and 72,2 = -14.9E (Table 20.1) are
constants specifying the J2,2 sectorial harmonic of the geopotential, and R is the mean equatorial
radius of the Earth. The position of a satellite relative to the geocentric non-rotating reference
frame can be described by its radial distance, r, declination, *, and right ascension, " (Figure
21.3). Now, we may write * = N, and, according to Figure 21.5 and (11.2),

(21.92)

where 2GM is the Greenwich mean sidereal time (Section 11.4), which can be calculated as a
function of time from

(21.93)

where  is the (mean) angular (rotational) velocity of the Earth, 2GM0 is the Greenwich mean
sidereal time at 0h0m0s UT1, and t is counted from midnight UT1. Since  = 360.985647 E/day,
the longitude of a hypothetical observer at a fixed position in inertial space (above the Earth’s
surface) would decrease at a rate of 15.04E/hr and the observer would experience a J2,2-force field
that varies explicitly with time. A satellite encircling the Earth will experience a second time
variation of the force field, because of the variation of the satellite’s right ascension, ", and
declination, *, during an orbital revolution. It is emphasized that, in contrast to the analysis of
luni-solar attraction and solar radiation pressure perturbations, the explicit time variation of the
J2,2-force field can in first approximation not be neglected during an orbital period of the satellite.
The reason is that even for a low-altitude satellite the rotation of the Earth during an orbital
revolution of the satellite is at least 22E and for higher orbital altitudes this rotation angle further
increases. It is the occurrence of these two different periods, i.e. the orbital period of the satellite
and the period of the rotation of the Earth about its axis, that makes the analysis of orbit
perturbations due to tesseral and sectorial harmonics in the model of the Earth’s gravity field
quite complicated. A linearized analysis is presented in Section 23.6. A detailed analysis is
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beyond the scope of this book. Note that in our analysis of the orbital perturbations due to the J2-
term of the geopotential, atmospheric drag and the geomagnetic field, this complication did not
occur because the models which we have used to describe these forces are rotationally symmetric
about the Earth’s rotation axis.

However, for a geostationary satellite (r = 42,164 km) a simplified analysis of the effects of
the J2,2-term can be made due to the fact that such a satellite keeps an almost fixed position above
the equator relative to the (rotating) Earth. In general, a geostationary satellite has to remain
within a deadband of 0.4E or less, centered at its nominal longitude, 70. The main reason for a
precise position allocation is that nowadays the geostationary orbit houses a few hundred
satellites and one does not want that satellites approach each other too closely. At the
geostationary altitude, the width of a 0.4E deadband corresponds to an along-track distance of
294 km. It is the task of the thrusters of the satellite’s orbit control system to counteract any
position drift outside the deadband due to initial position and velocity errors, and perturbing
forces. This requires rocket engine pulses when the spacecraft tends to cross one of the
boundaries of the deadband. When electric propulsion systems are used, these pulses, of course,
are replaced by finite-time engine operations. The smaller the deadband, generally, the more
frequently stationkeeping maneuvers must be performed. So, for a geostationary satellite we may
assume that 7 -70 and * are very small and that the acceleration due to the J2,2-term is about
constant for a considerable period of time; the magnitude and direction of this acceleration
depends on the satellite’s nominal position.

 

Figure 21.6: The reference frame >0. that is centered at a geostationary satellite.

In the following, we assume that a fictitious ‘ideal’ geostationary satellite is located at the
position 7 = 70, * = 0E, and that the ‘true’ geostationary satellite is always close to the ‘ideal’
one. When we adopt the relative coordinates >, 0, . for the position of the ‘true’ satellite relative
to the ‘ideal’ satellite (Figure 21.6), where > is measured in the radial direction, 0 in the along-
track (longitudinal) direction and . in the cross-track (latitudinal) direction, we can approximate
the J2,2-acceleration components according to (21.91) by

(21.94)
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(21.94)

For the maximum values of  and we find from (21.94):

which confirms the results found in Section 20.1. Since the accelerations given by (21.94) are
constant, we may apply the theory for relative motion presented in Section 9.2, and write (9.12)
as

(21.95)

where we have used the fact that the mean motion of the ‘ideal’ satellite is equal to , and where
t is the time since t0 for which the initial conditions are . According to
Section 9.2, these relations provide accurate results over a period of one day (  # 2B) and if the
relative position components satisfy the following conditions: *>*/r0 < 8*10-3, *0*/r0 < 6*10-2,
*.*/r0 < 6*10-2. For the geostationary orbit these relative motion requirements correspond to 337
km, 2530 km and 2530 km, respectively. Expressions for the velocity components can be
obtained by differentiation of (21.95).

The last expression of (21.95) shows that . performs a pure harmonic oscillation with a
period of one day and an amplitude that is determined by the initial conditions .0 and . The
first two equations can be written as

(21.96)

Note that these expressions for the relative motion of the satellite contain constant terms, periodic
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terms and secular terms. The periodic terms have a period of one day and amplitudes that are a
function of the initial relative position and velocity components and of the J2,2-acceleration
components. The factors *f>*/ 2

@ 2 and *f0*/2
@ 2 are always smaller than 16 m and 11 m, respectively,

which means that in most cases the contribution of the J2,2-acceleration components to the
amplitude of the periodic terms is small. When the satellite crosses a boundary of the deadband,
the appropriate thrusters are activated to reverse the direction of the satellite’s relative velocity.
The resulting relative position and velocity components after the impulse should be taken as the
new initial conditions when using (21.96) again.

For the secular change of the radial and along-track position components we find from
(21.96):

(21.97)

We conclude that the secular change of the radial position component is linear, while the secular
change of the along-track position component also includes a quadratic term. If the satellite is
positioned at a point where f0 is positive, (21.97-1) shows that the linear radial displacement is
in the positive direction. At a higher altitude the mean angular motion of the satellite is lower
than the rotational velocity of the Earth. This results in an along-track displacement component
in the negative direction, which is expressed by the second term on the right-hand side of (21.97-
2).

The value of f0, of course, varies along the equator and it is interesting to determine the direction
of the radial and along-track secular motions induced by f0 as a function of the longitudinal
position of the satellite. In Section 20.1, we have analyzed the directions of the radial and along-
track accelerations along the equator (Figure 20.2, bottom). In the two plots at the top of Figure
21.7 these results have been reproduced, using the notation applied in this Section. Note that f0
is positive if 90E < 7 -72,2 < 180E and 270E < 7 -72,2 < 360E; and negative if 0E < 7 -72,2 < 90E
and 180E < 7 -72,2 < 270E. Substitution of these results for f0 into (21.97) leads to

These results are depicted in the two plots at the bottom of Figure 21.7. We conclude that the
points 7 = 90E+72,2 . 75.1E and 7 = 270E+72,2 . 255.1E are stable equilibrium points for the
along-track acceleration due to the J2,2-term, while the points 7 = 72,2 . -14.9E and 7 =
90E+72,2 . 104.9E are unstable equilibrium points. The location of these equilibrium points
changes slightly when the effects of all sectorial and tesseral harmonics are taken into account.
At the stable equilibrium points any small longitude deviation from that position would induce
a drift back towards the stable point. A geostationary spacecraft at any other longitude is
accelerated towards the nearest of the two stable equilibrium points. If no stationkeeping
maneuvers are executed, the longitude of the satellite would eventually swing back and forth
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Figure 21.7: Diagrams for the direction of the J2,2-acceleration components f> and f0 in the equatorial
plane (top) and of the f0-induced secular motion components in the > and 0 directions, in the equatorial
plane (bottom). Points where an acceleration component is zero are indicated by C. The direction to the
Greenwich meridian is indicated by G.

symmetrically around this stable equilibrium point with a period of more than two years. Since
there is no damping, the swing will continue indefinitely with constant amplitude. For
geostationary satellites that have to stay within a specified deadband, the effects of the J2,2-term
require periodic thruster firings when the satellite reaches the east-boundary of the deadband if
0E < 7 -72,2 < 90E or 180E < 7 -72,2 < 270E, or the west-boundary of the deadband if 90E < 7 -
72,2 < 180E or 270E < 7 -72,2 < 360E.

To get an impression of the evolution of the position deviations of a geostationary satellite, these
deviations were computed from (21.96) for a period of one day. For this analysis, it was assumed
that the satellite’s nominal position is at 30E E, which is very close to the position where the
longitudinal acceleration due to the J2,2-term is a maximum and the radial acceleration due to the
J2,2-term is zero. For the initial position and velocity deviations quite arbitrary values of +100 m
and +1 cm/s were adopted. According to (21.97-2), the initial position deviation >0 and the initial
velocity deviation  yield a negative linear secular variation ()0)s , the perturbing acceleration
f> (which is negative at 30E E) yields a positive linear secular variation ()0)s , and the perturbing
acceleration f0 (which is also negative at 30E E) yields a positive quadratic secular variation
()0)s. According to (21.97-1), the perturbing acceleration f0 yields a negative linear secular
variation ()>)s. Superimposed upon these secular variations are the periodic variations expressed
by (21.96). Table 21.1 lists the minimum and maximum values of )> and )0 during that day for
a few combinations of the initial position and velocity deviations. We conclude that the J2,2-term
produces a maximum value of 626 m in the along-track direction and a minimum value of -132
m in the radial direction. Although this is a significant orbit perturbation, we conclude that the
effects of deviations in the initial conditions lead to even larger positions deviations. This
illustrates that the orbit control of geostationary satellites has to be performed very accurately.
An extended analysis of the motion of the satellite over some days, for the case that the initial
position and velocity deviations have values of +100 m and +1 cm/s, has shown that: 1) the radial
position deviation grows during the first 12 hours to about 1.2 km due to the initial position and
velocity deviations; 2) after about 1 day the radial position deviation starts decreasing due to the
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Table 21.1: Range of radial (>) and longitudinal (0) position deviations of a geostationary satellite posi-
tioned at 30E E for a period of 1 day, due to initial position and velocity deviations and the J2,2-term of
the Earth’s gravity field.

Initial deviations Position deviations within 1 day (km)

>0,00 (m) , (cm/s) ()>)min ()>)max ()0)min ()0)max

0 0 -0.132 0 -0.004 0.626

100 0 -0.032 0.637 -3.159 0.100

0 1 -0.164 0.536 -2.455 0.027

100 1 -0.048 1.210 -5.916 0.123

acceleration by the f0-term in the -0 direction; 3) for the first five days the longitudinal position
deviation grows to about -20 km due to the initial position and velocity deviations; 4) in the long
run, the westward acceleration due to the f0-term forces the spacecraft to start moving in the
eastward direction. Of course, in reality, other perturbations act on the satellite, which will affect
the evolution of position deviations. An important perturbation is produced by the gravitational
attraction of Sun and Moon. These attractions cause north-south perturbations, which, if not
corrected, would make the inclination of a geostationary satellite to vary over a range of about
15E with a period of about 55 years. Therefore, north-south stationkeeping is necessary and
thrusters have to be fired when the spacecraft crosses the boundaries of a north-south deadband.
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22. METHOD OF VARIATION OF ORBITAL ELEMENTS

In the discussion on Keplerian orbits and the introduction of the concept of orbital elements
(Section 11.5) it was found that when at a certain moment of time position and velocity of a
satellite are known, then the orbit is completely determined and is specified by the orbital ele-
ments a, e, i, T, S and J. These orbital elements are constants of motion; i.e. for every point
along the orbit they have the same numerical value. In this Chapter we deal with the computation
of perturbed elliptical satellite orbits. We then could apply the same transformation relations from
Chapter 11 in order to compute from the momentary position and velocity the orbital elements
of a fictitious momentary Keplerian elliptical orbit. This is the orbit that the satellite would follow
if from that moment on no perturbation would act anymore on the satellite. This Keplerian orbit
touches (‘osculates’) the true (perturbed) orbit of the satellite at that moment of time, t, and we
speak of the osculating Keplerian orbit for that moment of time. In the point of contact of both
orbits, position and velocity are identical for both orbits. Because perturbing forces act on the
satellite, another osculating ellipse will be found for another moment of time, t +)t.

Figure 22.1: The true orbit and two osculating orbits.

Figure 22.1 shows a cartoon of two osculating Keplerian orbits touching the true (perturbed) orbit
in points A and B. We now generalize this ‘model’ and consider the motion of the satellite as a
continuous transition from one osculating Keplerian orbit to another osculating Keplerian orbit.
So, the true, perturbed, satellite orbit is viewed as a sequence of small parts of a series of
osculating Keplerian orbits, of which the orbital elements vary continuously. This concept forms
the basis of the method of variation of orbital elements, also called the method of variation of
constants or the method of variation of parameters, which yields a set of first-order differential
equations for the variation of the osculating Keplerian orbital elements with time. Integration of
these equations yields the values of the osculating orbital elements at any moment of time, from
which we can determine the instantaneous position and velocity of the satellite in the perturbed
orbit by using the transformations that hold for the pure Keplerian orbit (Section 11.8). When we
numerically integrate the differential equations, then, in fact, we only integrate the differences
between the perturbed orbit and a Keplerian reference orbit. So, the approach is similar to the
method of Encke discussed in Section 20.6. However, the advantage of the method of variation
of orbital elements is that the variation of the orbital elements provides a much clearer picture
of the geometric/physical characteristics of the orbit perturbations than the variation of the
rectangular position and velocity components. In addition, the method is very convenient for
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obtaining approximative analytical solutions of the differential equations.

22.1. Lagrange’s planetary equations

In this Section, we will limit ourselves to perturbing forces that can be described by a perturbing
potential, R. The main force is expressed by the Newton potential

(22.1)

In perturbation theory, we usually work with so-called force functions, which are defined as

(22.2)

For the motion of the satellite under the influence of forces described by the potentials U and R,
we then may write

(22.3)

When no perturbations would occur ( = 0), then the solution of (22.3) is a pure Keplerian orbit,
for which

(22.4)

where "i indicates an arbitrary (constant) orbital element. The relations (22.4) are known
analytical expressions that have been derived in Section 11.8. Since for the unperturbed
Keplerian orbit the orbital elements are constant, we may write

(22.5)

In that case, (22.3) can be written as

(22.6)

For the perturbed orbit the problem can be formulated as: “How can the equations of motion
(22.3) be satisfied, while using the relations (22.4) that hold for the (unperturbed) Keplerian
orbit?” It will be clear that then the orbital elements in (22.4) can no longer be constant, but have
to vary with time. The question then is: “How do the orbital elements have to vary with time?”
In the following, that question will be addressed.

Differentiation of (22.4) with respect to time yields for the perturbed orbit

(22.7)

We now use the fact that the instantaneous osculating orbit is a Keplerian one. Consequently,
(22.4) and (22.5) apply to the instantaneous osculating orbit and a comparison between (22.5) and
(22.7) shows that the following relation must hold for the osculating orbit:
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(22.8)

This is sometimes called the Lagrange constraint (J.A. Lagrange; 1736-1813). Differentiation
of (22.5) to time results in

(22.9)

From this equation we conclude that, contrary to the velocities, the accelerations in the perturbed
orbit and the osculating orbit are not equal at the point of osculation. Substitution of (22.9) into
(22.3) yields

Because the osculating orbit is a Keplerian one, for which (22.6) holds, the osculating orbit must
satisfy the following condition:

(22.10)

The relations (22.8) and (22.10) represent six scalar first-order differential equations in the six
osculating orbital elements. This set of six equations is, in fact, equivalent to the original set of
three second-order differential equations (22.3). Only a transformation of the time-derivatives
of to the time-derivatives of "i has taken place. In passing, it is remarked that the introduction
of the Lagrange constraint is basically arbitrary. In principle, the right-hand side of (22.8) may
be an arbitrary function of "i, d"i/dt and t, although the calculations then become much more
complicated. The use of such functions results in a type of non-osculating orbital elements, which
can be attractive for the analysis of orbit perturbations. In this book, we will, however, follow the
classical Lagrange approach.

The form of the relations (22.8) and (22.10) is rather inconvenient; it is a set of six linear
equations for the six terms d"i /dt. It would be more convenient to have explicit relations for each
of the terms d"i /dt. Langrange has developed around 1780 a method to achieve that goal. In that
method, we start by forming the scalar product of (22.8) and , and the scalar product
of (22.10) and where "j is an arbitrary orbital element. We then obtain

(22.11)

When (22.11-1) is subtracted from (22.11-2), we find

(22.12)

The term within brackets is called the Lagrange bracket ["j , "i]:
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(22.13)

with which (22.12) may be written as

(22.14)

Since the partial derivative  is computed from the relations that hold for an unperturbed
Keplerian orbit, we may write

So, (22.14) can be written as

(22.15)

Since there are six orbital elements, (22.15) represents a set of six linear equations for the six
unknowns d"i /dt. The Lagrange brackets ["j , "i] have to be computed for each combination of
"i and "j . This means that in total thirty-six brackets have to be computed.

The computation of these brackets can be simplified significantly, if we use three properties
of Lagrange brackets. Two properties follow directly from the definition of the Lagrange bracket:

(22.16)

By using these properties, only fifteen brackets remain to be computed. A third property of a
Lagrange bracket is that the partial derivative of a bracket to time is equal to zero. To prove this
property, we differentiate (22.13) to time and find

(22.17)

For the unperturbed Keplerian orbit we may write according to (22.1), (22.2) and (22.6)

Substitution of this relation into (22.17) yields

This expression can also be written as

After evaluation of the scalar products we find
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(22.18)

This relation shows that a Lagrange bracket does not explicitly depend on time. This is a very
important property for computing the remaining fifteen brackets efficiently. Because the partial
derivative of a bracket to time is zero, we may compute the bracket at any point along the
instantaneous osculating Keplerian orbit. The easiest way to compute a Lagrange bracket is to
express all elements of that bracket as a function of the orbital elements, "i, and the eccentric
anomaly, E. Subsequently, the relations obtained are evaluated at pericenter, where E = 0 and
t = J, after which the results are substituted in (22.13). There exists a number of other analytical
techniques, which partially date back to F.F. Tisserand (1845-1896), to further reduce the amount
of computational effort needed to find expressions for the Lagrange brackets. However, these will
not be treated in this Chapter.

To compute the brackets, we start from the relations between x, y, z, x0, y0, z0 and the orbital
elements, derived in Section 11.8, and write

(22.19)

in which

(22.20)

In Section 11.8, we have found that the following relations hold:

(22.21)
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(22.21)

In Section 6.5, we have derived for an elliptical orbit the following expressions:

(22.22)

Substitution of these relations into (22.19) yields

(22.23)

By using the relations (22.20) to (22.23) we can derive expressions for all Lagrange brackets.

As an example, we will now evaluate the bracket [a , J]. For simplicity, we will divide this
bracket into three parts: [a , J]x , [a , J]y, [a , J]z, where

(22.24)

So, we have to determine expressions for the partial derivatives .
From (22.23-1) we find

(22.25)
From (22.22-4) we find

(22.26)

Substitution of this relation into (22.25) and subsequently substituting E = 0, t = J yields
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(22.27)

From (22.23-4) we find

Substitution of (22.26) into this equation and evaluation of the result for E = 0, t = J yields

(22.28)

From (22.23-1) we find

(22.29)

From (22.22-4) we find

(22.30)

Substitution of this relation into (22.29) and evaluation of the result for E = 0 leads to

(22.31)

From (22.23-4) we find

Substitution of (22.30) into this relation and evaluation of the result for E = 0 gives

(22.32)

Substitution of (22.27), (22.28), (22.31) and (22.32) into (22.24) yields
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Similarly, we obtain

With (22.21) we finally obtain the very simple relation

In the same way, the other fourteen Lagrange brackets can be determined. We then find

(22.33)
Note that nine of these fifteen Lagrange brackets have the value zero.

When these expressions are substituted into the set of linear equations (22.15), then the following
equations are obtained:

(22.34)
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(22.34)
From this set of equations, explicit expressions for d"i /dt can be obtained. From (22.34-6), we
directly find a relation for da/dt. Substitution of that relation into (22.34-4) yields an expression
for de/dt. Substitution of these expressions into (22.34-5) yields an expression for di/dt, etc. In
this way, we finally obtain the following relations:

(22.35)

So, our goal has been achieved: we have obtained six simultaneous first-order differential
equations that express the effect of a perturbing force on each of the osculating orbital elements.
These differential equations are called Lagrange’s planetary equations. Note that the right-hand
sides of these equations contain the orbital elements a, e, i, and the partial derivatives of  to all
orbital elements. Also note that we have derived these equations for elliptical orbits. For
hyperbolic trajectories a similar set of planetary equations can be derived; we then find that in
these equations  is replaced by  and that some terms have an opposite sign when
compared to the same terms in the equations for elliptical motion. In this book we will not discuss
the set of equations for hyperbolic motion.

It is interesting to note that in the derivation of (22.35) it was nowhere assumed that the
perturbing force has to be small. These equations are therefore generally valid. However, when
the perturbing accelerations are in magnitude comparable to the main acceleration (:/r2), then
the orbital elements will show large variations over an orbital revolution and the method of
Lagrange will lose its advantage over the much simpler method of Cowell.

When the perturbing function  is known as a function of x, y, z, then the partial derivative 

in (22.35) can be obtained from
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(22.36)

With this equation, the set of differential equations (22.35) can be solved numerically and the
osculating orbital elements can be computed as a function of time. Then, with the Keplerian
transformation relations between position and velocity on the one hand and orbital elements on
the other hand, the instantaneous position and velocity of the satellite in its perturbed orbit can
be computed. Although the equations that have to be integrated are more complicated than, for
instance, the equations in the method of Encke, a numerical integration of Lagrange’s planetary
equations has a number of advantages. Often, it turns out that the variation of the osculating
orbital elements with time is somewhat smoother than the variation of )x, )y, )z, which allows
larger integration steps and therefore a faster computation process. The variation of the osculating
orbital elements also provides a better physical insight into the nature of the perturbations. In
addition, no rectification process is needed; we may also say that in the method of variation of
orbital elements the orbit is rectified continuously.

In general, the set (22.35) cannot be solved in a closed analytical way. However, if we deal
with small perturbations, we can obtain an approximative analytical solution for these equations,
because the orbital elements only experience a rather small variation if the perturbing force is
small. In Section 22.6, a method to find an approximative analytical solution will be discussed
in some detail.

22.2. Canonic form of the planetary equations

Lagrange’s planetary equations express the change of the osculating classical orbital elements
as a result of perturbing forces. In principle, one may derive such equations for any other set of
six parameters that describe a Keplerian orbit, as long as these parameters form a set of six
independent combinations of the classical orbital elements. Examples of such sets of parameters
are already given in Section 11.5 and will be given in Section 22.4. In astrodynamics, also the
following independent set of orbital constants is frequently used:

(22.37)

These variables were first used by C.E. Delaunay (1816-1872) in his studies on the motion of the
Moon. The parameter L is directly linked to the semi-major axis and thus to the total orbital
energy per unit of mass, while the parameters G and H represent the orbital angular momentum
and the component of the orbital angular momentum about the Z-axis, both per unit of mass.
When the orbit is described by these elements, the Lagrange brackets have a very simple form:

(22.38)

while all other brackets are zero. This characteristic simplifies the construction of perturbation
solutions. Then, Lagrange’s planetary equations take an exceptionally simple form:
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(22.39)

where

(22.39)

The set of orbital parameters (22.37) is called a canonical set and (22.39) represents the
canonical form or Hamilton form of the planetary equations. Note that the Hamiltonian , equals
minus the total orbital energy per unit of mass (:2/2L2 = :/2a) of a Keplerian orbit plus the
perturbing force function, which may also be called the perturbing Hamiltonian, and that this
force function, of course, has to be expressed in terms of the canonical elements. The Delaunay
elements can be considered as the canonical counterpart of the classical orbital elements. As such,
they contain singularities for small values of eccentricity and inclination. There are many more
canonical sets of orbital elements known. Some of them, like the set of Poincaré elements (J.H.
Poincaré, 1854-1912), are non-singular and may well be applied for small eccentricities and
inclinations. These sets may therefore be considered as the canonical counterpart of equinoctial
elements that will be introduced in Section 22.4.

W.R. Hamilton (1805-1865) developed the canonical form of the equations of motion and
showed that if the parameters used to represent the motion are canonical, the equations of motion
for a conservative force become particularly simple. His canonical form of the equations of
motion can be extended for non-conservative perturbations. The application of canonical
variables to perturbed motion is embedded in the generalized approach to classical mechanics,
which originates with Lagrange’s work in analytical dynamics and his use of generalized
coordinates and momenta. The canonical form of the planetary equations is widely used for
computing higher-order effects of perturbing forces and therefore it forms the basis of what could
be called ‘advanced orbit perturbation methods’. We will not discuss this topic further.

22.3. Use of the mean anomaly

The equation for dJ/dt introduces a serious problem. As (22.35) shows, the equation for dJ/dt is
the only one for which  has to be computed. This means that one has to determine Mx/Ma,
My/Ma and Mz/Ma, and thus one has to compute ME/Ma. From (22.26) and (6.36-1) we obtain

The appearance of E outside trigonometric arguments results in a complicated expression for
, which complicates the numerical integration (special perturbations techniques) of the

planetary equations. For general perturbations techniques, the situation is even worse. We then
end up with integrals of the kind
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for which in most cases no closed-form analytical solutions exist. However, there exists a classi-
cal method with which these problems can be circumvented.

In that method, we start by rewriting (22.35-6) as

(22.40)

where the relation between n and a is given by  From this relation we obtain

(22.41)

We now consider n(a) as a separate variable and write

(22.42)

where  signifies that the derivative has to be taken with respect to a without considering
the dependence of n on a. From the definition of the mean anomaly, M,

 (22.43)

we find

or

(22.44)

Differentiation of (22.43) to time yields

Substitution of (22.35-1), (22.40), (22.41), (22.42) and (22.44) into this relation results in

(22.45)

This equation, which replaces the equation for dJ/dt ((22.35-6)), has the important property that
, and so ME/Ma, has to be evaluated without considering the dependence of n on a. In that

case we find from (22.22-4): (ME/Ma)n = 0. This means that we do not get anymore expressions
in which E appears outside a trigonometric argument. This is the reason why for the computation
of perturbed satellite orbits we mostly use (22.45) instead of (22.35-6). It is then logical to
replace the expression  in the planetary equations for a and e by
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(22.46)

It is emphasized that, as already stated in Section 11.5, the orbital parameter M varies linearly
with time in an unperturbed Keplerian orbit, while the orbital elements a, e, i, T, S, J are
constants for such an orbit.

22.4 Singularities of the planetary equations

Inspection of the relations (22.35) and (22.45) reveals that a problem arises if e = 0 or sin i = 0,
unless the corresponding term  contains factors with e or sin i in the numerator. Then,
singularities will occur, causing the time-derivatives of some orbital elements to become
infinitely large. Also, when e and i are very small, problems will arise. Then, the time-derivatives
of some orbital elements may become so large that an analytical solution of the equations (22.35)
and (22.45) is not possible. It is emphasized that these problems have nothing to do with the
Lagrange method itself, but are a consequence of the selection of the set of constants that
describe the orbit: the orbital elements. This can be illustrated as follows. Consider an elliptical
orbit with a very small eccentricity and assume that a hypothetical perturbing force tends to
shorten the major axis and to elongate the minor axis. At a certain moment, the eccentricity goes
through zero and the ‘old’ major axis becomes the ‘new’ minor axis. At that moment, the
argument of perigee, T, changes discontinuously by 90E and also the orbital element J changes
discontinuously. This makes the time-derivative of these orbital elements to become infinitely
large. A similar problem occurs when at i . 0E a perturbing force tends to decrease the inclina-
tion and let it pass through zero; this will result in a discontinuous change of i, S and T. One
should realize that this kind of problems can always be prevented by using another set of
appropriately selected elements to describe the orbit.

For example, let we consider a (near-)circular orbit. Then, (22.35) shows that the expressions
for de/dt, dT/dt and dJ/dt may become (nearly) singular. When we replace the elements e, T, J
by three other elements:

(22.47-1)

develop expressions for dl/dt, dm/dt, dP/dt to replace the expressions for de/dt, dT/dt, dJ/dt, and
write the right-hand sides of (22.35) in terms of the elements a, l, m, i, S, P, we obtain

(22.48)
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(22.48)
Note that the elements l and m are the projections (in the orbital plane) of the eccentricity vector
introduced in Section 5.7 on the line of nodes and normal to the line of nodes, respectively. We
conclude that the variation of these orbital elements due to a perturbing force expressed by  can
be evaluated without difficulty, because there is no singularity if . Note that these
expressions should not be used if , i 9 0E, or i 8 180E, since then the equations
will exhibit singularities.

For orbits that are both (near-)circular and (near-)equatorial, the set of classical orbital
elements may be replaced by the set

(22.47-2)

where the elements S and T, of course, are measured in different planes, and M0 is the mean
anomaly at epoch. This set does not lead to singularities in the planetary equations for any
elliptical orbit, including orbits with i = 0E and e = 0, except for virtually non-existent orbits with
i = 180E, and was proposed by R.A. Broucke (1932-2005) and P.J. Cefola (-) in 1972. Several
other closely related sets of non-singular elements have been studied in the literature. These types
of elements were named equinoctial elements by J.L. Arsenault (-) in 1970, but there are
indications that S. Herrick (1911-1974) has first suggested the name prior to 1967. Unfortunately,
the benefits of the equinoctial orbital elements do not come without a price. Working with these
elements can quickly become very complicated mathematically. Various authors have proposed
alternative sets of elements for which the Lagrange planetary equations do not contain
singularities. We will not discuss this issue any further. In the following, we will only use the set
of classical orbital elements.

22.5. Gauss’ form of the planetary equations

Lagrange’s planetary equations (22.35) and (22.45) can only be used for perturbing forces that
can be expressed by a perturbing potential. However, the only place in the derivation of these
equations where this assumption has been used, is when we applied in Section 22.1 the relation

We may interpret the substitution of  for the three terms on the left-hand side of this
equation as a kind of shorthand notation. When this notation would not have been applied, then
in the right-hand sides of (22.15) the following terms would have appeared:
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Figure 22.2: Geometry of the fS  fN  fW acceleration frame relative to the orbit and to the inertial reference
frame.

Figure 22.3: Geometry of the acceleration frames rotations.

where fx , fy , fz are the components of the perturbing acceleration, regardless whether these can
be derived or not from a potential function. The partial derivatives Mx/M"j, My/M"j, Mz/M"j can be
elaborated further. J.C.F. Gauss (1777-1855) has done this around 1813 for the first time, when
he computed the perturbations that Jupiter exerts on the orbit of the asteroid Pallas. He
decomposed the three components of the perturbing acceleration into three other orthogonal
directions: a radial component, fS, a component in the orbital plane perpendicular to the radius
vector, fN , and a component perpendicular to the orbital plane, fW. The component fN points in the
direction of motion; the component fW in the direction of the orbital angular momentum vector.
Figure 22.2 shows the geometry of these acceleration components in inertial space. To express
fx , fy, fz in terms of fS , fN , fW , we can apply the method of rotation matrices. First, we rotate the
frame fS fN fW about the fW-axis over an angle -(T+2), then we apply a rotation about the line of
nodes over an angle -i, and finally we apply a rotation about the Z-axis over an angle -S. These
rotations are indicated in Figure 22.3. We then can write for the relations between the coordi-
nates:
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Multiplication of the rotation matrices leads to

or, using the relations (11.41),

(22.49)

where l1, l2, l3, m1, m2, m3, n1, n2, n3 are functions of i, S, T only ((11.41)).
As an example, we now derive an expression for  in terms of the perturbing

accelerations fS, fN , fW. We start from (22.36) and write

(22.50)

From (22.19-1) we find

(22.51)

From the relation for a Keplerian orbit:

we find
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Substitution of this relation into (22.51) yields

In the same way, we can derive

After substitution of these relations and (22.49) into (22.50), and using the relations (22.21), we
obtain after some algebraic manipulation

Similarly, we can derive expressions for the other partial derivatives of . With these
expressions, we obtain from (22.35) and (22.45) after some algebraic manipulation the so-called
Gauss’ form of Lagrange’s planetary equations:

(22.52)

These differential equations contain components of the perturbing accelerations and are therefore
applicable to the computation of orbits that are perturbed by forces which cannot be expressed
through a perturbing potential, such as atmospheric drag. They lend themselves very well to
numerical integration and have been used extensively for computing by numerical integration
perturbations in the elements of comets and asteroids.

The expressions (22.52), of course, suffer from the same singularities as Lagrange’s form of
the planetary equations in the classical orbital elements. For small values of e and/or i the Gauss’
form of the planetary equations should therefore be written in terms of non-singular elements.
As an example, we conclude that only (22.52-4) and (22.52-6) are singular for e = 0. Again, this
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is the result of the fact that perigee is not defined for circular orbits and that therefore the pa-
rameters T and M are then inappropriate for describing the satellite’s position. When we use for
e 9 0 the relation du/dt = dT/dt + d2/dt . dT/dt + dM/dt, substitute (22.52-4) and (22.52-6), and
neglect terms of order e, we find

 (22.52)

Clearly, the use of the argument of latitude, u, which describes the angular position of the satellite
along its orbit relative to the ascending node, leads to a non-singular differential equation for e
9 0, as could be expected.

Equation (22.52-1) may be written in another form. To that end, we first write (22.52-1) as

(22.53)

From (16.11) we obtain

where  is the angular momentum (per unit of mass), V is the velocity and ( is the flight
path angle. Substitution of these relations into (22.53) yields

Inspection of Figure 1.5 shows that the term in brackets is just the acceleration in the along-track
direction (along the velocity vector), fT, and thus we can write

(22.52)

The set of first-order differential equations (22.52) can be used very well for a qualitative
analysis of perturbed orbits. For instance, we conclude that the semi-major axis of an orbit can
be changed most effectively by an impulse that is tangentially to the orbit, and that the impulse
has to be applied at perigee of the orbit, where the velocity is maximum. This result was already
found in Section 1.7 and Section 12.1 through different analyses. If we assume that the
atmospheric force on a satellite is directed oppositely to the velocity vector of the satellite with
respect to the atmosphere (atmospheric drag) and if we neglect atmospheric rotation, then (22.52)
shows that all orbital elements except i and S will exhibit changes. Only the rotation of the
atmosphere and the possible occurrence of out-of-plane lift forces may induce changes in i and
S. When we again neglect atmospheric rotation and consider the orbital effects of atmospheric
drag (fW = 0) at perigee and apogee, where fS = 0 and fN < 0, we conclude from (22.53) and (22.52-
2) that at perigee (2 = E = 0E): da/dt < 0 and de/dt < 0, while at apogee (2 = E = 180E): da/dt <
0 and de/dt > 0. So, the drag experienced at perigee will lead to a decrease of the semi-major axis
and eccentricity, while the drag experienced at apogee will lead to a decrease of the semi-major
axis, but to an increase of the eccentricity. Because the atmospheric density at apogee is (much)
smaller than the density at perigee, the increase of the eccentricity at apogee will be (much)
smaller than the decrease of the eccentricity at perigee, which leads to a net decrease of the
eccentricity after an orbital revolution.
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22.6. Approximate analytical solution of the planetary equations

Lagrange’s planetary equations can be solved numerically to obtain the orbit perturbations due
to a specific perturbing force. They are, however, particularly suited to generate approximate
analytical expressions for the effects of perturbing forces on the orbit. For such a general pertur-
bations approach (Section 20.6), we may use various analytical techniques. In the following, we
will apply the method of successive approximations. This simple technique, which we have also
used in Section 5.10 for the analysis of relativistic effects on Keplerian orbits, suffices to explain
the essentials of the derivation of approximative analytical solutions of the planetary equations.

First of all, it is emphasized that the planetary equations for the orbital elements a, e, i, T, S
may be written in the following symbolical form:

where g is a small factor that indicates the order of magnitude of the perturbing acceleration.
Integration of this relation yields

(22.54)

where "i0 is the value of "i at t = 0. It is assumed that when the magnitude of a perturbing
acceleration is small with respect to :/r2, then also the effect of that perturbing acceleration over
not too long a period of time will be small. Then, for a first-order solution of (22.54) it is allowed
to substitute for the orbital elements in the integral their initial values:

(22.55)

For a given perturbing force this integral can be evaluated and we obtain an analytical expression
for the first-order approximation of the variation of "i with time. When such expressions for the
first-order variation of the orbital elements are substituted into the integral in (22.54), we find to
second-order approximation:

(22.56)

In a similar way, we may obtain higher-order analytical approximations. Obviously, it is assumed
that the higher the order of the approximation the closer it approximates the true solution of the
differential equations.

The differential equation for M, (22.45), introduces a problem. This relation may be written
symbolically as

from which we find after integration:

(22.57)

The second term on the right-hand side of this equation does not contain a small multiplicative
factor. For this reason, it is not justified to substitute the initial value of n into the integral in
order to obtain a first-order solution for this term. Instead, we have to substitute the first-order
variation of n and write
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(22.58)

For the second term on the right-hand side of (22.57) we may write

(22.59)

To first-order approximation, we may write

(22.60)

Substitution of (22.59) and (22.60) into (22.58) results in

(22.61)

where the initial values of the elements "j have to be substituted into the expression for da/dt.
This method can also be used to obtain higher-order approximations of M(t). Note that the price
we have to pay for replacing the expression for dJ/dt by the expression for dM/dt is that we have
to evaluate a double integral in (22.61).

A serious problem for the approximate analytical solution of Lagrange’s planetary equations is
that, in practice, a number of perturbing forces act simultaneously on the satellite. Generally, it
is impossible to take these multiple perturbing forces into account simultaneously when
evaluating the integral in (22.54) and (22.61) analytically. Therefore, one usually computes the
effect of each perturbing force on the orbit over a certain time interval separately and these orbit
perturbations are subsequently added. It is emphasized that this approach is theoretically not
correct, since a perturbing force will lead to a change of the position and velocity of the satellite
relative to their values for the (unperturbed) Keplerian orbit. These deviations will affect the
computation of another perturbing force, because, in general, this force is a function of the
instantaneous position and velocity of the satellite. However, it is clear that the effect of an orbit
deviation on the magnitude of a computed perturbing force will be small of the second or higher
order as long as the orbit deviations are small. But when one starts working with higher-order
approximations of (22.54) and (22.61), this type of effects has to be taken into account, which
makes the evaluation of the integral in (22.54) and (22.61) even more difficult.

22.7. Application of Gauss’ equations to orbit maneuvers 

The Gauss’ form of Lagrange’s planetary equations can very well be applied to the analysis of
small orbit maneuvers. In this Section, we restrict ourselves to the case of small impulsive shot
maneuvers (Section 1.7) executed by the satellite’s onboard rocket propulsion system. We will
consider only the effects of a maneuver on the orbital elements a, e, i, T and S, which means that
we will only consider changes of the shape and orientation of the orbit, and changes of the orbital
plane.

The change of an orbital element due to a small impulsive shot can be found by integration



Fundamentals of Astrodynamics     SS     Method of variation of orbital elements 605

of (22.52), where the orbital parameters on the right-hand side of the equations may, in first-order
approximation, be kept constant, and

where the index i refers to any of the indices S, N, W in the equations. We then find from (22.52-
1) to (22.52-5), after substituting a series of classical expressions for Keplerian orbits,

(22.62)
where )VS, )VN and )VW are small impulsive shots in the S, N and W directions. It is important
to realize that (22.62) are linearized relations between small impulsive shots and the resulting
small changes of the elements of the original orbit.

Equations (22.62) show that each of the impulsive shots )VS , )VN, )VW , in general, produces
changes in three orbital elements simultaneously. From (22.62) we can determine the relation
between an impulsive shot in each of the S, N and W directions and the resulting change of an
orbital element, and thus the magnitude of the )V in that direction required for a prescribed
change of the orbital element:

(22.63)



Fundamentals of Astrodynamics     SS     Method of variation of orbital elements 606

(22.63)

Note that the right-hand side of (22.63-3) and (22.63-6) is zero if e = 0, and that the right-hand
side of (22.63-8) and (22.63-9) is zero if i = 0E. This is a consequence of the fact that T is
undefined for e = 0, and that T and S are undefined for i = 0E. As was shown in Section 22.4,
this kind of problems can be prevented by selecting other, more appropriate, orbital elements to
describe the orbit. In the following, we will assume that e … 0, i … 0E, and that the linearized
expressions (22.63) are accurate enough for small values of e and i.

We conclude from (22.63-1) and (22.63-2) that an impulsive shot in the S direction yields for
any value of 2 a simultaneous change in a and e, where

and from (22.63-8) and (22.63-9) that an impulsive shot in the W direction yields for any value
of 2 a simultaneous change in T and S, where

Note that the right-hand side of this equation expresses the change in T due to the change in the
line of nodes, which is the reference for measuring T. So, it is impossible to apply an impulsive
shot in the S direction to change only a or e, or an impulsive shot in the W direction to change
only T or S; in both cases the two orbital elements will always change simultaneously.

The equations (22.63) show that, for given values of the orbital elements, the )V required to
produce a prescribed change of an orbital element depends on the position along the orbit where
the impulsive shot is executed. They also show that a prescribed change of the orbital elements
a, e and T can be effectuated by impulsive shots in different directions. Therefore, an important
question is: “What is the most efficient way to produce a prescribed change of an orbital element
and where along the orbit should the impulse be applied?” To answer this question, we will
analyze each of the equations (22.63) separately in order to determine the minimum value of )V
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required to produce a specified change in an orbital element. In our analysis we will focus on
low-eccentricity orbits with e < 0.01. We will assume that the impulsive shot is acting in one of
the directions S, N or W and do not consider the possibility of an impulsive shot in any other
direction.

Semi-major axis
A change of the semi-major axis can be realized by an impulsive shot in the S or N direction. For
the optimum location and the minimum magnitude of these impulsive shots we find from (22.63-
1) and (22.63-4)

From the first expression we conclude that when e is small, a specified value of )a requires a
very large )VS. This means that for low-eccentricity orbits a small impulse )VS hardly affects the
orbit’s semi-major axis. Comparing both expressions for )V, we find that for a specified )a the
following relation holds: *)VS*min = (1+e)*)VN*min /e. Since (1+e)/e > 2 for e < 1, the optimum
maneuver )VN is more efficient than the optimum maneuver )VS, for any value of e. The
optimum maneuver )VN has to be executed at perigee, which means that it is oriented along the
satellite’s local velocity vector. Using (6.23) we then may write

where Vp is the velocity at perigee. These results fully agree with the results obtained in Section
1.7 and Section 22.5. For e < 0.01, we may write

Eccentricity
A change of the eccentricity can be realized by an impulsive shot in the S or N direction. For the
optimum location and minimum magnitude of these impulsive shots we find from (22.63-2) and
(22.63-5)

We conclude that the optimum maneuver )VN is twice as efficient as the optimum maneuver )VS ,
and that the maneuver )VN has to be executed at perigee or apogee. For e < 0.1, we may write
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Inclination
A change of the inclination can only be realized by an impulsive shot in the W direction. From
(22.63-7) we find that the location where *)VW* reaches a (local) minimum value is given by

This expression yields two solutions for 2, which depend on the eccentricity and argument of
perigee of the orbit. Substitution of these values into (22.63-7) yields two values of *)VW*. The
smaller one corresponds to the absolute minimum *)VW*, and the associated value of 2 corre-
sponds to the optimum location. For e < 0.01, the two values of *)VW* are nearly identical and
we find

So, the maneuver has to be executed at (near) the ascending (u = T+2 = 0E) or the descending
(u = 180E) node. If we could freely choose the value of T, (22.63-7) shows that, for any value
of e, the optimum location of the impulsive shot and the absolute minimum value of *)VW* are

So, the maneuver )VW has to be executed at the ascending or descending node, and at apogee.
In that case, we may write with (6.22)

where Va is the satellite’s velocity at apogee. These results fully agree with the results obtained
in Section 13.3.

Argument of perigee
The argument of perigee can be changed by applying an impulsive shot in the S, N or W direction.
For the optimum )VS maneuver, we find from (22.63-3)

So, the maneuver has to be executed at perigee or apogee. For a particular )T, *)VS*min decreases
with decreasing values of e.

For the )VN maneuver, we find from (22.63-6) for the location where *)VN* reaches a (local)
minimum value the following condition:

A numerical analysis shows that this expression has one negative (real) root for cos2, and thus
two roots for 2, for arbitrary values of e. For e < 0.3, these roots lie within the ranges 90E < 2 <
99E and 261E < 2 < 270E; for smaller values of e the roots are closer to 90E and 270E. Substitu-
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tion of these values into (22.63-6) yields two equal values of *)VN*. For e < 0.01 we find

For a particular )T, *)VN*min decreases with decreasing values of e.
For the )VW maneuver, we find from (22.63-8) for the location where *)VW* reaches a (local)

minimum value the following condition:

This expression yields two solutions for 2, which depend on the eccentricity and argument of
perigee of the orbit. Substitution of these values into (22.63-8) yields two values of *)VW*. The
smaller one corresponds to the absolute minimum *)VW* and the associated value of 2
corresponds to the optimum location. For e < 0.01 the two values of *)VW* are nearly identical
and we find

So, the maneuver has to be executed at (near) u = 90E, 270E. For a particular )T, *)VW*min

increases for decreasing values of *90E - i*.
When we compare the results for e < 0.01, we find that an optimum )VN maneuver is twice

as efficient as an optimum )VS maneuver, and that, unless the inclination is very small (*tani*
< ½ e), an optimum )VN maneuver is more efficient than an optimum )VW maneuver. If we could
freely choose the value of T, (22.63-8) shows that, for any value of e, the optimum location of
an impulsive shot )VW and the absolute minimum value of *)VW* are

or, with (6.22),

where Va is the satellite’s velocity at apogee.

Right ascension of the ascending node
A change of the right ascension of the ascending node can only be realized by a maneuver )VW.
For the location where *)VW* reaches a (local) minimum value, we find from (22.63-9)

This expression yields two solutions for 2, which depend on the eccentricity and argument of
perigee of the orbit. Substitution of these values into (22.63-9) yields two values of *)VW*. The
smaller one corresponds to the absolute minimum *)VW*, and the associated value of 2
corresponds to the optimum location. For e < 0.01 the two values of *)VW* are nearly identical
and we find
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So, the maneuver has to be executed at (near) u = 90E, 270E. For a particular )S, *)VW*min

increases for decreasing values of *90E - i*. If we could freely choose the value of T, (22.63-9)
shows that, for any value of e, the optimum location of an impulsive shot )VW and the absolute
minimum value of *)VW* are

So, the maneuver )VW has to be executed at u = 90E, 270E and at apogee. In that case, we may
write with (6.22)

These results fully agree with the results obtained in Section 13.2.

From the results given above, we conclude that a )VS maneuver is always less efficient than a
)VN maneuver. This is the reason why radial impulsive shots are hardly applied for satellite
maneuvers. We also conclude that the magnitude of an impulsive shot executed to change a
particular orbital element by a specified amount decreases for increasing values of the semi-major
axis. As an example, Table 22.1 lists the direction and magnitude of the optimum impulsive shot
to produce a specified change of an orbital element, and the (approximate) location along the
orbit where this impulsive shot has to be applied. For this example, it has been assumed that the
satellite’s initial orbital elements are: a = 7000 km, e = 0.005, i = 80E.

Table 22.1: Location, direction and magnitude of the optimum impulsive shot to produce a specified
change of an orbital element. Initial orbit: a = 7000 km, e = 0.005, i = 80E.

Orbit change Optimum impulsive shot

location direction )V (m/s)

)a = 2 km 2 = 0 N 1.07

)e = 0.001 2 = 0, B N 3.78

)i = 0.1E u = 0, B W 13.1

)T = 10E 2 = B/2, 3B/2 N 3.29

)S = 0.1E u = B/2, 3B/2 W 12.9

We have analyzed the case of optimum maneuvers by impulsive shots in the S, N or W direction.
In reality, these cannot always be applied. For instance, we already have concluded that an
impulsive shot of given direction and magnitude, generally, will produce specific changes of
three orbital elements simultaneously. In general, this is an undesirable situation; instead we often
wish that an impulsive shot in a particular direction produces prescribed changes in two selected
orbital elements simultaneously, using an acceptably small amount of propellant. Below, we will
analyze a few elementary aspects of this kind of maneuvers.

First, we will address the question: “Is it possible to execute an impulsive shot )VS , )VN or )VW

such that (instead of three orbital elements) only one or two orbital elements will change?” To
answer this question, we may determine the value of 2 for which the denominator of the right-
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hand side of each of the equations (22.63) is zero. In that case, a prescribed change of an orbital
element would require an infinitely large )V, which means that the particular orbital element is
practically insensitive to a small )V. This implies that if a maneuver is executed at such a point
along the orbit, the impulsive shot only affects one or two other orbital element(s). Of course,
such a maneuver will be non-optimal for a particular orbital element in terms of fuel consump-
tion. Inspection of (22.63) shows that a particular orbital element is not affected by an impulsive
shot in the S, N or W direction, if that shot is applied at the true anomaly listed in Table 22.2.

Table 22.2: Positions along the orbit where an impulsive shot in the S, N or W direction does not affect
a particular orbital element. The position is specified by its true anomaly.

Orbit change Position of the impulsive shot

)VS )VN )VW

)a = 0 0, B never ---

)e = 0 0, B ---

)i = 0 --- --- B/2 -T, 3B/2 -T

)T = 0 B/2, 3B/2 0, B -T, B -T

)S = 0 --- --- -T, B -T

Note that for e < 0.3, the expression  can be approximated by arccos(-
e/2) and for e < 0.01 by B/2, 3B/2. From this Table we conclude that if )VS is applied at 2 = 0E,
180E, the elements a and e will not change, but the element T will change; if )VS is applied at
2 = 90E, 270E, then T will not change, but a and e will change. It is not possible to apply )VS

such that a will change but e not, and vice versa. This was already found before. We also
conclude that )VN will always lead to a change of a, whatever the value of 2, and that it is
possible to apply )VN such that either e or T will change. For the )VW impulse we conclude that
it is possible to apply that impulse such that either i or T and S will change. It is not possible to
apply the impulse such that T will change but not S, and vice versa. This was also already found
before.

Another question is: “Is it possible to execute an impulsive shot )VS , )VN or )VW such that two
or three orbital elements will change simultaneously, each by a prescribed amount?” Of course,
such a maneuver will be non-optimal for a particular orbital element. To answer this question,
we set the three expressions for )VS, )VN or )VW in (22.63) equal to each other and analyze the
results obtained. We then find:
S It is impossible to change three orbital elements by a specified amount simultaneously through

a single impulsive shot in the S, N or W direction.
S An impulsive shot in the S direction yields simultaneous changes of prescribed magnitude in

a and T, or e and T, if the impulse is applied at a point along the orbit with the true anomaly

These expressions yield a solution of 2 for any value of )a, )e and )T. A )VS maneuver
cannot produce simultaneous changes of prescribed magnitude in a and e. Instead, as already
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stated before, the simultaneous changes )a and )e have a constant ratio for any value of 2.
S An impulsive shot in the W direction yields simultaneous changes of prescribed magnitude in

i and T, or i and S, if the impulse is applied at a point with the true anomaly

These expressions yield a solution of 2 for any value of )i, )T and )S. A )VW maneuver
cannot produce simultaneous changes of prescribed magnitude in T and S. Instead, as already
stated before, the simultaneous changes )T and )S have a constant ratio for any value of 2.

S An impulsive shot in the N direction yields simultaneous changes of prescribed magnitude in
e and T, if the impulse is applied at a point with the true anomaly

This expression yields a solution of 2 for any value of )e and )T. The analytical analysis of
a )VN maneuver that yields simultaneous changes of prescribed magnitude in a and e, or a and
T, is quite complicated. A numerical analysis of the relevant expressions shows that a solution
of 2 only exists for certain ranges of the values of a, e, )a, )e and )T. Outside these ranges,
it is impossible to produce changes of prescribed magnitude in a and e, or a and T,
simultaneously. As an example, for an orbit with a = 7000 km, e = 0.005, we find that
solutions of 2 only exist if )a > 4 km, )e < 0.0005, )T < 5E.

In all cases, the corresponding magnitude of the required impulsive shot can be found by
substituting the particular value of 2 in the relevant expression of (22.63).
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23. ORBIT PERTURBATIONS DUE TO THE EARTH’S GRAVITY FIELD

As an application of Lagrange’s planetary equations, which have been derived and discussed in
Chapter 22, in this Chapter we will derive approximative analytical solutions for the orbit pertur-
bations due to the non-radially-symmetric mass distribution of the Earth and we will discuss this
class of orbit perturbations.

In Section 20.1 we have found that to first-order approximation the (static) gravitational
potential of the Earth (geopotential) can be written as

(23.1)

where r is the distance and N is the geocentric latitude of the satellite, : is the Earth’s gravita-
tional parameter, R is the mean equatorial Earth radius, and J2 is a coefficient of the series
expansion for the Earth’s gravity field (Table 20.1). When we compute the orbit of a satellite
relative to a geocentric equatorial reference frame, then * = N, where * is the declination of the
satellite. In Section 11.9, we have found

where i is the inclination, T the argument of perigee, 2 the true anomaly, and u the argument of
latitude. So, we may write for the perturbing force function, , (Section 22.1) that describes the
first-order perturbing term in the expression for the gravity field

(23.2)

The equations (23.1) and (23.2) describe an axially-symmetric gravity field that accounts for the
first-order J2-term. Now, we will first derive two conservation laws that hold for any axially-
symmetric gravity field.

23.1. Application of conservation laws

For an axially-symmetric gravity field,  is a function of r and N (= *) but not of the geographic
longitude, 7. So, at a fixed position in space, relative to a non-rotating geocentric equatorial
reference frame, the gravitational potential is constant although the Earth rotates. We may
therefore conclude that the potential of this gravity field is not explicitly dependent on time. Since
such a force field is conservative (Section 1.4), the sum of kinetic and potential energy (per unit
of mass) of the satellite is constant:

(23.3)

or, with (6.21),

(23.4)

We will apply this result for the gravity field described by (23.1).
For a near-circular orbit, the energy integral can be evaluated in a simple manner. When we

use the index 0 to denote the (osculating) orbital parameters at the moment that the satellite
passes the ascending node (u = 0E), we obtain from (23.2) and (23.4)
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where a, r and i denote the (osculating) semi-major axis, distance and inclination at the argument
of latitude u. Realizing that J2 . 10-3 and writing a = a0 +)a, r = r0 +)r, i = i0 +)i, where )a n a0,
)r n r0 , )i n i0 , linearization of this equation gives

(23.5)

This equation is in agreement with (21.20) derived in Section 21.2, and shows that )a is always
negative or zero. The maximum value of a occurs at the nodal crossing points and the minimum
value occurs when the satellite reaches its maximum or minimum declination.

From (23.2) and (23.3) we obtain

where V denotes the velocity of the satellite at the argument of latitude u, and V0 at the passage
through the ascending node. With V = V0 +)V, )V n V0, and the notation given above, lineariza-
tion of this equation leads to

For a near-circular orbit :/V0
2r0 . 1, and the expression simplifies to

(23.6)

Note that )V is always positive or zero. The minimum value of V occurs at the nodal crossing
points and the maximum value occurs when the satellite reaches its maximum or minimum
declination. Equations (23.5) and (23.6) show that for near-circular orbits the semi-major axis
and the velocity of the satellite exhibit a variation with a period equal to half the orbital period.
The maximum values of *)a* and )V increase with increasing orbital inclination. When, as an
example, we consider a polar circular orbit at an altitude of 500 km, we find for the maximum
value of *)a* and )V over an orbital revolution: *)a* = 19.2 km, )V = 10.6 m/s. The value of
*)a* agrees with the result obtained in Section 21.2.

A second integral of motion can be found as follows. According to (22.37), the component of the
angular momentum about the Z-axis is given by

From this relation we find

Substitution of (22.35-1) to (22.35-3) into this equation gives
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(23.7)

For any axially-symmetric gravity field,  is not a function of S. So, = 0 and we find
from (23.7)

(23.8)

This is a generalization of the result found in Section 21.2. The other two components of the
angular momentum vector, in general, do vary with time for an axially-symmetric gravity field.

Also this integral can be evaluated in a simple manner for near-circular orbits. From (23.8)
we find to first-order approximation

Linearization leads to

Substitution of (23.5) into this equation yields

(23.9)

This equation, which is identical to (21.24-1), shows that also the inclination exhibits a variation
with a period of half the orbital period. The maximum value of *)i* occurs at u = 90E, 270E and
i = 45E, 135E. In Section 21.2, we have found that the maximum value of *)i* is 2.4N for an orbit
with an altitude of 500 km and inclination of 45E. Although this value is rather small, it certainly
is not negligible.

23.2. Characteristics of the variation of the orbital elements

In the previous Section, we have analyzed some general aspects of the effects of the J2-term in
the expression for the geopotential on a near-circular satellite orbit. We have found that the
orbital elements a and i show variations with a period of half the orbital period; these are the so-
called short-period variations introduced in Section 21.2. The J2-term of the gravity field also
leads to secular and long-period variations of the orbital elements. To demonstrate that, we will
analyze in this Section the behavior of the orbital elements S and T during an orbital revolution,
starting from (22.35-4) and (22.35-5), and applying the method of successive approximations
(Section 22.6).

We start with the analysis of the effect of the J2-term on the orbital element S. We then need,
according to (22.35-5), an expression for the partial derivative of  to i. To obtain that
expression, we rewrite (23.2) in the form

(23.10)

As r and u are not a function of i, we immediately find from (23.10):
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(23.11)

Substitution of this relation into (22.35-5) and using

(23.12)

where n is the mean angular (orbital) motion, yields

(23.13)

To find a first-order solution of this differential equation, we apply the method described in
Section 22.6 and consider all orbital elements on the right-hand side of (23.13) as constants. Note
that what makes this a first-order approximation is not the appearance of the first-order geopoten-
tial term J2 , but rather the holding of the orbital elements as constants; i.e. at their initial values.
For the analysis, it is convenient to change from t to the argument of latitude, u, as independent
variable. Therefore, we write

and

where 2 is the satellite’s true anomaly. It is emphasized that, because we consider T as a
constant, the parameter u denotes the unperturbed argument of latitude, corresponding to pure
Keplerian motion. With these relations and (23.12), we can write (23.13) as

Substitution of

yields

(23.14)

To compute the change of S from u = 0 to u = ue, we have to integrate the three terms in brackets
in (23.14). We then find
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Integration of (23.14), substitution of the results listed above, and some trigonometric
manipulation leads to

(23.15)

where the orbital elements on the right-hand side are considered as constants, and ) denotes the
difference relative to the value of S at u = 0E. It is emphasized that, because u is the unperturbed
argument of latitude, u = 2B will, in general, not correspond to an ascending node crossing of the
satellite in its perturbed orbit.

For the analysis of the effect of the J2-term on the orbital element T we need, according to
(22.35-4), in addition to the expression for the partial derivative of  to i, also an expression for
the partial derivative of  to e. This expression can be obtained from (23-10) and we find

(23.16)

Substitution of (23.11) and (23.16) into (22.35-4) and using the same methodology as described
above for the derivation of (23.14), we find

(23.17)
which, after integration from u = 0 to u = ue and considerable analytical manipulation, yields

(23.18)
where ) denotes the difference relative to the value of T at u = 0E. Equation (23.15), which is
identical to (21.24-2) for e = 0, shows that )S exhibits various types of variations. First, there
is a linear term in the argument of latitude. This kind of terms correspond to ever-increasing or
ever-decreasing changes from the epoch values, and are called secular variations (Section 21.2).
Secondly, there are periodic variations expressed by trigonometric functions of the argument of
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latitude. These terms have periods equal to 1/k times the orbital period, where k is an integer
value, and express the so-called short-period variations. Equation (23.18) shows that )T also
exhibits a secular variation. This linearly changing value of T will result in a long-period
variation of S. Because this long-period variation is induced by the secular variation of T that
is produced by the J2-term of the geopotential, it may be considered as a ‘second-order’ effect
of the J2-term. Since J2 is of order 10-3 and subsequent zonal harmonics coefficients are of order
10-6 or smaller (Table 20.1), a ‘second-order’ effect of the J2-term (Section 23.3) may have the
same magnitude as ‘first-order’ effects of the J3-term, J4-term, etc. This implies that when
analyzing long-period perturbations the effects of additional zonal harmonics have to be included
in the analysis. The period of the long-period variations is 1/m times the time it takes perigee to
complete one rotation about the Earth, where m is an integer value. In Section 23.3, an expression
for the secular variation of the argument of perigee will be derived ((23.35-3)). From that
expression, it may be concluded that for near-circular orbits at altitudes between 500 km and
1000 km, the period of the long-period variations is about 25 days for low-inclination orbits and
about 100 days for polar orbits; for i . 63E, 117E this period becomes very long. From (23.18)
we conclude that T also experiences short- and long-period variations. Note that for this orbital
element a series of short- and long-period terms are multiplied by the term 1/e. This means that
for low-eccentricity orbits (e90) these short- and long-period terms will have large amplitudes.
This phenomenon is a direct result of the fact that for circular orbits (e = 0) the argument of
perigee is not defined. If for low-eccentricity orbits an appropriate set of other orbital elements
(Section 22.4) is used, then the amplitudes of the short- and long-period terms will remain small.

The separation of orbit perturbations into secular and various periodic terms may be applied for
all orbital elements, although a particular element does not necessarily exhibits all types of
variations. To visualize the overall variation of an orbital element, Figure 23.1 may serve. The
secular change of a generic orbital element, ", is depicted by the straight line. It is emphasized,

Figure 23.1: Secular, long-period and short-period variations of an orbital element.

however, that the term ‘secular’ by no means is limited to a linear change. In general, secular
variations are associated with a steady, non-oscillatory type, continuous increasing deviation of
an orbital element from its epoch value. The long-period variations are bounded fluctuations
about the secular-variation curve. As already mentioned above, these long-period variations are
caused by the secular change of T. The short-period variations, which are superimposed on the
long-period variations, are caused by the secular change of 2 (or M). Various analytical orbit
perturbation theories are available which yield expressions for the secular, long-period and short-
period variations of the orbital elements due to specific terms of the gravitational potential. For
operational orbit analyses the variations of the orbital elements are usually written as
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(23.19)

where the indices s, l en sh denote secular, long-period and short-period, respectively, and 
and  denote specific, sometimes very complicated, analytical expressions for a particular
orbital element. Values of the parameters "s, "0 s, "̈s, .... are distributed by organizations like
NASA, US Air Force Space Command1 and ESA, where these parameters are computed on basis
of the actual orbit of the satellite as determined from tracking data. The value of an osculating
orbital element at any moment of time is then found from

(23.20)

It is emphasized that this approach is somewhat ‘artificial’, because the basic quantities in the
theory are the secularly changing ‘averaged’ orbital elements, while the tracking data on the
position and velocity of the satellite, of course, correspond to the osculating orbital elements. So,
with these methods usually some type of iterative searching procedure has to be applied to deter-
mine the secularly changing averaged elements at epoch from the osculating elements at epoch.

The various analytical orbit perturbations theories do not always give identical results and
differ subtly in the way they separate secular, short-period, and long-period variations. This is
of little consequence within a theory, but if we mix formulas from different theories, as is often
done, their varying assumptions may lead to unintended results. Today, often semi-analytical
theories are applied for modeling the orbital perturbations due to a variety of perturbing forces.
These theories combine the best features of analytical and numerical techniques. The underlying
approach is to separate the short-period contributions from the long-period and secular effects,
and to propagate the secular and long-period variations due to all kinds of perturbing forces
numerically. This is desirable because the short-period contributions seriously constrain the
integrator step size; their separation from the long-period and secular effects allows us to
numerically integrate the equations of motion governing the long-period and secular effects with
large step sizes. The short-period contributions are then modeled analytically. They are recovered
at the integrator’s step-size times and then combined with the secular and long-period
contributions. If the short-period variations are needed at times other than the integrator times,
an interpolation scheme is used.

23.3. First-order secular variation of the orbital elements

In the previous Section, we have derived expressions for the variation of the osculating orbital
elements S and T, relative to their values at a passage of the ascending node (u = 0E). In practice,
we are often primarily interested in the averaged long-term evolution of the orbit and then we
want to know the secular variations of the orbital elements. The reason is that these represent the
major long-term variations, while the long-period and short-period variations are bounded
fluctuations about the secular changes. Therefore, these secular variations lead to a type of orbital
elements that may be considered as doubly-averaged or mean-mean orbital elements, where the

1 The well-known ‘two-line orbital elements’ are distributed by Space Track, US Air Force Space Command,
Colorado Springs, USA.
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long- and short-period variations have been averaged out. The sum of the secular and long-period
variations leads to a type of orbital elements which are usually called averaged or mean orbital
elements. It is emphasized that the term ‘mean element’ does not refer to any numerical average
(i.e. mean) of a sampling of the variation of an osculating element and is not related to statistics
at all. Mean and mean-mean orbital elements theory began with the work of J.L. Lagrange (1736-
1813) and has been developed further by many experts over many years. In essence, it is a
mathematical technique for approximating motion by separating the effects of fast variations
from those that are more slowly varying. In order to sort out such terms, we should remember that
short-period perturbations result from the variation of 2 around the orbit, while the long-period
perturbations arise from the secular variation of T, caused by e.g. the J2-term of the geopotential.

A traditional method in celestial mechanics and astrodynamics is to apply Lagrange’s
planetary equations ((22-35), (22-45)), which have been derived to compute the variation of the
osculating orbital elements, also for the propagation of mean or mean-mean orbital elements from
their initial values and for a particular perturbing force function, . Of course, the orbital
elements on the right-hand side of these equations should then be considered as mean or mean-
mean orbital elements, and for the derivations of the partial derivatives of  to the orbital
elements only those parts of the perturbing force function should be taken which lead to the long-
period or secular orbit perturbations. In this Section, we will only consider the perturbations due
to the J2-term of the gravity field. Then,  is given by (23.10) and, using the relation u = T+2,
may also be written as:

The true anomaly, 2, is easily transformed to the mean anomaly, M (Section 6.5), which itself
is a linear function of time in unperturbed motion. The quantities a/r and 2 in the perturbing force
function are then functions of e and M only (Section 6.5) and are periodic with respect to M. With
this in mind, we conclude from the expression for  that terms depending neither on M nor on
T lead to secular variations of the orbital elements, terms depending on T but not on M lead to
long-period variations of the elements, and terms depending on M lead to short-period variations
of the elements. So, when we want to derive expressions for the long-period variations of the
orbital elements, we take the mean value of  with respect to M, where we use the time-averaged
value of (a/r)3 and retain only terms of the expression in square brackets which are dependent
on T. We then find that this averaged  is zero, but this is certainly not the case when we would
have considered odd-degree zonal harmonics (Section 23.7). When we want to derive expressions
for the secular variations of the orbital elements, we average  with respect to M, where we use
the time-averaged value of (a/r)3 and retain only terms of the expression in square brackets which
are dependent neither on M nor on T. Various authors have exploited the method of averaging
in order to derive analytical expressions for higher-order secular and periodic variations of the
orbital elements. However, the derivation of these expressions is often rather vaguely formulated
and then lacks a rigorous mathematical foundation. Some authors have even misused the method
and some results of their higher-order analyses are wrong as the consequence of that misuse.

We now assume that the mean-mean orbital elements at a certain time (epoch) are known and
that we want to compute the first-order secular variations of the orbital elements due to the J2-
term. As explained above, we then should start from the following averaged form of the
perturbing force function:
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(23.21)

where (a /r)3
mm is the time-averaged value of (a /r)3 over an orbital revolution. Note that  is

a function of the doubly-averaged (mean-mean) orbital elements a, e and i only. So, only the
partial derivatives of  to a, e and i are non-zero. Inspection of Lagrange’s planetary equations
(22.35) and (22.45) reveals that the elements a, e and i therefore will not undergo a secular
variation; only the elements T, S and M (or J) will exhibit secular variations. Now:

(23.22)

From (6.3), (6.33), (6.36-3) and (6.43) we find

Substitution of these relations into (23.22) yields, since e does not show a secular variation,

Substitution of this relation into (23.21) gives

(23.23)

To compute the secular variations of T, S and M, the partial derivatives of  with respect
to a, e and i have to be determined. From (23.23) we find

(23.24)

Equations (22.35) and (22.45) show that the Lagrange planetary equations for T, S, J and M
contain terms with e and/or sini in the denominator, and in Section 22.4 it was mentioned that
this may lead to problems for small values of e and i, unless the associated partial derivatives of
the perturbing force function  and  contain factors with e or sin i in the numerator.
From (23.24) we conclude that this is indeed the case for the doubly-averaged force function that
describes the secular J2-perturbations. Starting with the Lagrange planetary equation (22.45), we
write, after substitution of (23.24-1) and (23.24-2),



Fundamentals of Astrodynamics     SS     Orbit perturbations due to the Earth’s gravity field 622

where n is given by (23.12). Because we want to find a first-order analytical solution for the
secular variation of the orbital elements, all (mean-mean) orbital elements on the right-hand side
of this expression should be considered as constants. Substitution of (23.12) then yields for the
first-order secular variation of M:

(23.25)

We now define

(23.26)

where  is the perturbed mean motion, that is related to the unperturbed (constant) mean motion,
n, through

(23.27)

Note that  is a function of a, e and i, while n is a function of a only. Since a, e, and i do not
exhibit a secular variation,  is also constant. Adopting some convenient epoch t = t0, where M
= M0, the integral of (23.25) can be written as

(23.28)
This equation may also be written as

The first two terms on the right-hand side express the variation of M in an unperturbed orbit
corresponding to the mean-mean orbital elements at epoch; the third term expresses the
perturbation in M due to the J2-term.

In astrodynamics, often the semi-major axis, a, and the mean angular motion, n, are used
together. If osculating orbital elements were used, there would be no difficulty; n would even not
be necessary as a separate parameter and is given by the relation for Keplerian orbits (23.12):

. However, when using mean-mean orbital elements, the physically appropriate
definition of the relation between a and n requires attention. It should be realized that the semi-
major axis does not experience a secular nor a long-period variation (Section 21.2) and we thus
may write a = as +)ash , where a is the osculating value, as the (constant) mean-mean value and
)ash the short-period contribution. It is immediately apparent that the split in as and )ash is not
uniquely defined; the origin of as is essentially arbitrary as long as the sum of as and )ash equals
the value of the osculating semi-major axis. Instead of the mean-mean semi-major axis, a, we
may define a modified mean-mean semi-major axis, , by a relation similar to the one for a
Keplerian orbit: . Substitution of (23.27) and subsequent linearization, retaining only
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terms of the first order in J2, then leads to

(23.29)

Note that for 54.7E < i < 125.3E: , and that for other values of i: . In the literature,
another modified mean-mean semi-major axis, introduced by Y. Kozai (1928-) in 1959, is often
used:

(23.30)

which leads, with (23.27) and after linearization, to

(23.31)

Note that in this case the expressions in brackets for  and  are identical. It is emphasized
that the distance, r, is a function of the orbital elements a and e and the in-orbit position angle
(2 or E), and that the mean value of the short-period variation of r is not necessarily zero. As will
be shown in Section 23.4, Kozai added an approximate expression for the mean value of the
short-period variation of r over an orbital revolution to the (constant) ‘classical’ mean-mean
(mean) semi-major axis. In this way he obtained the expression for his modified mean-mean
semi-major axis, which is nearly equal to the mean value of the geocentric distance of the satellite
in a J2-perturbed orbit. In astronomy this has been a conventional definition of the semi-major
axis adopted for natural satellites. For orbital altitudes between 300 km and 1000 km, the
difference between Kozai’s mean-mean semi-major axis and the ‘classical’ mean-mean semi-
major axis varies from about -10 km at i = 0E to about 5 km for i = 90E; this difference is zero
for i = 54.74E, 125.26E.

For the first-order secular variation of S, we start from the Lagrange planetary equation (22.35-
5), substitute (23.12), (23.24-3) and , and find

(23.32)

For the integration of this expression, the (mean-mean) orbital elements on the right-hand side
of (23.32) should be considered as constants. Then, there is a subtle problem with the mean
(angular) motion, n. This parameter is linked to the unperturbed semi-major axis through (23.12),
while in the secularly changing orbit the perturbed mean motion, , is linked to the mean
anomaly, M, which describes the true perturbed along-track position of the satellite. Therefore,
traditionally, most authors replace n by  in (23.32). Mathematically, this replacement is not
necessary, because the difference between  and n is of order J2 and n or  in (23.32) is
multiplied by a term that is of order J2. So the difference in the value of S -S0 obtained from
(23.32) by using n or  is of order J2

2, which is negligible since (23-32) provides a first-order
solution of the secular change of S. Most modern authors therefore do not replace n by . In this
Section, however, we do replace n by , because this is more consistent with our method of
deriving expressions for the secular change of the orbital elements. Integration of (23-32) then
gives
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(23.33)

In an analogous fashion, the expression for the first-order secular change of T may be obtained:

(23.34)

From (23.28), (23.33) and (23.34) we find for the secular rate of change of the orbital
parameter M, S and T:

(23.35)

These secular rates of the orbital parameters M, S, T play an important role in the selection of
an appropriate satellite orbit for a particular mission; this issue is discussed in Section 23.7. In
Section 23.5, it will be shown that only the even zonal harmonics terms of the Earth’s gravity
field will produce secular variations in M, S, T. In practice, often the contributions of a limited
number of low-degree even zonal harmonics terms, in addition to the J2-term, are included to
obtain accurate expressions for the secular variations of M, S, T. However, if we do so we have
to realize that J2 is of order 10-3, and that J4, J6, etc. are of order 10-6 or smaller (Table 20.1).
When we derive, for instance by applying the method of successive approximations discussed
in Section 22.6, expressions for the second-order contributions of the J2-term we find that these
expressions contains a coefficient J2

2, which is of order 10-6. This means that the second-order
contribution of the J2-term is of the same order of magnitude as the first-order contributions of
the higher-degree zonal harmonics terms and thus has to be included. For the analysis presented
in this book we will, however, use (23.35) to describe the secular variations of M, S, T.

For pure Keplerian motion, we have found that the orbital period can be expressed by

For perturbed orbits there are various definitions for the orbital period, where the expression
derived for a particular definition often depends on the analytical theory adopted and on the type
of orbital elements involved; i.e. osculating, mean or mean-mean elements. The anomalistic
period, TA, is defined as the period between two successive passages through perigee; i.e. the
time to advance 2B in mean anomaly. Expression (23.26) shows that, according to the analytical
theory used in the Section, we thus can write for the mean-mean anomalistic period:

(23.36)

With this relation we find for the secular change of an orbital element after one anomalistic
period:
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(23.37)

When we compare the secular term in (23.18) with (23.37-3) we note that the secular change of
T after an orbital revolution differs for both equations. In (23.18) the secular change is
proportional to the factor (3 - 4sin2i); in (23.37-3) this change is proportional to the factor
(5cos2i - 1). This difference is a result of the fact that both equations hold for different conditions.
In (23.18) the orbital elements are osculating ones, their variation is expressed as a function of
the unperturbed argument of latitude, and an orbital revolution is defined as the time it takes the
satellite to move from u = 0 to u = 2B; in (23.37) the orbital elements are secular ones, their
variation is a function of time, and an orbital revolution is defined as the time it takes the satellite
to move from perigee passage to the next perigee passage. Note that this difference in modeling
the secular change of S after an orbital revolution does not lead to differences between (23.15)
and (23.37-2).

Inspection of (23.37-2) reveals that for i … 90E the orbital plane shows a secular rotation
about the polar axis. That means a motion of the line of nodes in the equatorial plane. For i < 90E,
the line of nodes rotates in a westerly direction; for i > 90E, in an easterly direction. Equation
(23.37-3) shows that, unless i = 63.435E or i = 116.565E (critical inclinations), the argument of
perigee exhibits a secular variation. This is equivalent to a rotation of the major axis in the orbital
plane. For 0E # i < 63.435E and 116.565E < i < 180E, the major axis rotates in the direction of
motion of the satellite; for 63.435E < i < 116.565E, the rotation of the major axis is in the
opposite direction. In Figure 23.2 the secular rate of change of S and of T are plotted as a
function of i and p/R for i # 90E. Note that the changes in the elements are at maximum about one
degree per revolution at i . 0E, and that, for a particular inclination, the changes are larger for

Figure 23.2: Secular rate of change of the right ascension of the ascending node (left) and of the argu-
ment of perigee (right), as a function of the orbital inclination and semi-latus rectum.
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satellites at lower altitudes. For 90E < i < 180E, the curves for the secular changes of S and T are
a mirror image of the ones shown in Figure 23.2.

In the literature, many discussions are devoted to the physical meaning and consequences of
the existence of the critical inclinations. We have found that in the expression for the first-order
secular change of T ((23.34)) the factor (5cos2 i -1) occurs in the numerator, but in analytical
theories for the long-period variations of the orbital elements due to zonal harmonics this term
often appears in the denominator. This seems to indicate that the orbit experiences extremely
large perturbations around the critical inclinations. However, this is not true! The troubles in the
analysis of orbits at, or close to, the critical inclinations only emerge in some analytical ap-
proaches, whereas there are no difficulties in the numerical integration of orbits at the critical
inclinations. It is only a mathematical misapplication of perturbations theory that leads to the
appearance of infinities in the analytical expressions for the orbit perturbations, and the small
denominator problem can be avoided by using special ways for handling the critical terms. It has
been shown by A. Deprit (1926-2006) and his colleagues around 1983 that the critical inclina-
tions are associated with unstable equilibria in the phase space of J2-perturbed satellite dynamics.
It is noted that the second-order contribution of the J2-term and the first-order contributions of
other even zonal harmonics to the secular variation of S are also zero at i = 90E. These additional
terms also affect the values of the critical inclinations. As an example, when the effects of the J2-,
J2

2-, J4-, and J6-terms are accounted for the critical inclinations are 63.441E and 116.559E when
a = 6800 km and e < 0.01; for a = 7400 km and e < 0.01 the critical inclinations are 63.438E and
116.562E. For a = 6800 -7400 km and e < 0.1, the secular variation of T due to the J2

2-, J4- or J6-
term is larger than 10% of the secular variation of T due to the J2-term when i = 63.2E-63.7E and
i = 116.3E-116.8E. So, within these ranges of inclinations the first-order analysis accounting for
the J2-term only does not produce accurate results.

In addition to the (mean-mean) anomalistic period defined above, in astrodynamics the draconic
(draconitic) period or nodal period is often used. This period is defined as the time interval
between two successive passages through the ascending node, so the period it takes to travel from
u = 0 to u = 2B. In orbit computations its is often more convenient to use the nodal period then
the anomalistic period. Disadvantages of the anomalistic period are that the perigee location
changes with time, and that for near-circular orbits perigee is hard to define from observations.
Use of the nodal period eliminates these two disadvantages, since the equator crossing is a well-
defined point even in (near-)circular satellite orbits. The mean-mean nodal period can be
expressed by , where  denotes the secular variation of the argument of latitude, u. Now,

, where  also denote secular variations. Equation (6.45) presents an expression
for 2 as a function of e and M. When we apply that expression for the mean-mean orbital
parameters, differentiate it with respect to time, realize that e does not experience a secular
variation, and average the resulting expression with respect to M, we find for the relation between
the secular variations of  and : . We then find for the mean-mean nodal period

(23.38)

Substitution of (23.27) into (23.36), and of (23.27) and (23.35-2) into (23.38), yields the
following approximative expressions for the mean-mean anomalistic and nodal periods of near-
circular orbits:
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(23.39)

where  is the period of the (unperturbed) Keplerian orbit. When we use (23.30) to write
the expressions (23.39) as a function of Kozai’s mean-mean semi-major axis, , we find the
following approximate relations:

where  is the period of a Keplerian orbit with semi-major axis . In the literature both
sets of expressions are found. In this Chapter we will use the expressions (23.39). Note that the
expression for the nodal period contains the factor (4cos2i - 1). This factor may also be written
as (3 - 4sin2i), which is just the factor that is present in the secular term of (23.18). This confirms
the conclusion reached above about the difference in the definitions of the secular terms in (23-
18) and (23.37-3). From the approximative relations for TA and TN given in (23.39) we obtain:

(23.39)

Equations (23.39) show that, for a specified value of a, the anomalistic period is equal to the
Keplerian period if cos2i = 1/3, or i = 54.7o and i = 125.3o. For i < 54.7E and i > 125.3E, the
anomalistic period is shorter than the Keplerian period; for 54.7E < i < 125.3E, the anomalistic
period is longer than the Keplerian period. Equations (23.39) also show that the nodal period is
equal to the Keplerian period if cos2i = 1/4, or i = 60o and i = 120o. For i < 60E and i > 120E, the
nodal period is shorter than the Keplerian period; in the intermediate interval, the nodal period
is longer than the Keplerian period. The anomalistic period is, for a specified value of a, equal
to the nodal period if cos2i = 1/5. This is just the case at the critical inclinations (i = 63.435E,
116.565E), as could be expected. Note that the differences between the anomalistic or nodal
period and the Keplerian period are largest for low-altitude near-equatorial orbits. For an orbital
altitude of 300 - 1000 km and an inclination of about 0E, the differences between the anomalistic
or nodal period and the Keplerian period are about -8 s and -24 s, respectively; for an inclination
of 90E the corresponding values are 4 s and 8 s.

In addition to the anomalistic and nodal orbital periods discussed above, the (mean-mean)
nodal period of Greenwich, T2G, or (mean-mean) nodal day is often used in astrodynamics. This
quantity is defined as

(23.40)

where  is the Earth’s mean (sidereal) rotation rate. The nodal day is the time it takes the Earth
to complete one revolution about its axis relative to the precessing orbital plane, or, specified
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more accurately, relative to the line of nodes. A first-order approximation of  is given by
(23.35-2). If i < 90E:  < 0 and thus T2G <  where  is the length of a sidereal day
(Section 11.4). If i > 90E:  > 0 and thus T2G >  For a circular orbit at an altitude of more
than 300 km, the difference between a nodal day and a sidereal day is less than 35 min,
depending on the orbital inclination; for near-polar orbits with 80E < i < 100E, this difference is
less than 5.9 min. For a particular inclination the difference between a nodal day and a sidereal
day decreases with increasing orbital altitude; for i = 90E the difference is zero for all orbital
altitudes.

23.4. Periodic variations of the orbital elements

In this Section we start with some examples of short- and long-period variations of orbital
elements due to zonal harmonics (Section 20.1) of the geopotential. For clarity, the parameters
describing the mean orbit will be indicated as where " is an arbitrary orbital parameter. Figure
23.3 shows the effects of the J2-term of the gravitational potential of the Earth on the osculating
elements a, e, i, T and S of the nominal orbit of the ANS satellite (Section 16.6) during 1.5
orbital revolution. The variations shown refer to a nominal orbit that differs slightly from the
nominal orbit listed in Table 16.2. The difference is in particular noticeable in the eccentricity,
which is about 0.008 in this case and about 0.003 in Table 16.2. In this Chapter we consider the
orbit with an eccentricity of about 0.008 as the nominal one. Figure 23.3 shows that all five
orbital elements exhibit a short-period variation during an orbital revolution. The amplitude of
the oscillation in a is about 9 km; e varies between 0.0067 and 0.0091; i shows an oscillation with
an amplitude of about 0.005E; and T varies between 153E and 179E. In Section 23.3 it was shown
that the orbital elements T and S also experience a secular variation. As a result of the applied
scale, this secular variation is only visible for S in Figure 23.3. The plot also shows that the
amplitude of the short-period variation of S is small with respect to the secular change of S after
an orbital revolution. The amplitude of the short-period variation of T is much larger than the
secular change of T after an orbital revolution,which is a direct result of the small value of the
nominal eccentricity, as was mentioned in Section 23.2. Figure 23.4 shows similar plots for the

Figure 23.3: Variation of the osculating elements of the nominal ANS orbit during 1½ orbital revolution,
due to the J2-term of the Earth’s gravitational potential.
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Figure 23.4: Variation of the TD-1A osculating orbital elements due to the J2-term of the Earth’s gravita-
tional potential, during the 392nd orbital revolution of the satellite.

short-period variation of the orbital elements of the ESA satellite TD-1A. This satellite was
launched by a Thor-Delta rocket from the Western Test Range on March 12, 1972, and was
injected into a near-circular orbit at an altitude of about 540 km, and with an inclination of 97.6E.
Due to the very small value of the eccentricity of this orbit, the amplitude of the short-period
variation of T is even larger than that of the ANS orbit.

Figure 23.5 shows the effects of a number of higher-degree zonal harmonics on the osculating
semi-major axis of the nominal ANS orbit during an orbital revolution. Note that the J3-term
gives rise to short-period oscillations with an amplitude of about 25 m; the J4-term produces a
variation of the order of 10 m. Together, the J3- through J7-term and J9-term produce a variation
with a maximum of about 40 m. Figure 23.6 shows the history of the nominal mean orbital
elements ,  and  of the ANS satellite over a period of 200 days. Here, the effects of the J2-
through J9-term of the gravitational potential have been taken into account. Note that these
elements show a long-period oscillation with a period of about 105 days, which corresponds to
the period it takes perigee to complete one revolution about the Earth. Figure 23.7 (left) shows
the variation of the mean eccentricity of the orbit of the TD-1A satellite. The solid curve
represents the predicted variation due to the J2- to J9-term of the gravitational potential. The
symbol ¬ indicates the values of the eccentricity as computed from actual tracking data. Figure
23.7 (right) shows the variation of the mean eccentricity of the (true) orbit of the ANS satellite
as computed from tracking data. As mentioned in Section 16.6, this satellite was injected into an
elliptical orbit with perigee and apogee altitude of 266 km and 1175 km, respectively. Due to the
low perigee altitude, the atmospheric drag led to a continuous decrease of the mean eccentricity.
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Figure 23.5: Variation of the osculating semi-
major axis of the nominal ANS orbit during an
orbital revolution, due to the J3-term (top), J4-
term (center), and J3- to J7- plus J9-term (bot-
tom) of the Earth’s gravitational potential.

Figure 23.6: Variation of the mean elements of
the nominal ANS orbit over a period of 200
days, due to the J2- to J9-term of the Earth’s
gravitational potential.

Figure 23.7: Variation of the mean eccentricity of the TD-1A (left) and ANS (right) orbits.

When the mean orbital elements are known, the osculating orbital elements can be obtained by
adding the short-period variations. For the computation of these short-period variations, a number
of analytical theories is available. As an example, Figure 23.8 (left) shows for an orbit with the
mean orbital parameters the short-period varia-
tion of the orbital elements i and S, and of the argument of latitude, u = T+2, as computed
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Figure 23.8: Short-period variation of the argument of latitude, u, and of the orbital elements i and S
(left), and of the radial (>), normal (0) and cross-track (.) satellite position components (right) during
an orbital revolution, due to the J2- to J4-term of the Earth’s gravitational potential, according to Kozai’s
analytical theory. The mean orbital parameters are 7500 km, 0.001, 45E, 0E

from the analytical theory of Y. Kozai 2. Both the variations due to the J2-term only, and the
variations due to the second-order effect of the J2-term (J2

2) and of the first-order effect of the J3-
term and of the J4-term are depicted. The variations of )i and )S shown for the J2-term are in
good agreement with the short-period variations that can be computed from (23.9) and (23.15).
One has to realize that orbital elements are only auxiliary quantities, which are used for the
computation of the position and velocity of the satellite. Figure 23.8 (right) shows the short-
period variation of the components of the satellite position vector in the radial direction (>), in
the normal direction (in the orbital plane and perpendicular to the radial direction, 0) and in the
direction perpendicular to the orbital plane (cross-track, .). For this case, the position of the
satellite was computed in two ways. First, the orbit was computed from the mean orbital elements
that experience secular and long-period variation during an orbital revolution. Then, the orbit was
recomputed, but now on basis of the osculating orbital elements. The differences between the
position vectors obtained from both orbits, decomposed into the three orthogonal components,
are depicted in Figure 23.8 (right), where the orbit described by the mean orbital elements served
as reference. Note that the short-period variation due to the J2-term produces a component in the
cross-track direction with an amplitude of about 2 km; the amplitudes in the radial and normal
directions are less than 1 km. The short-period variations due to the second-order effect of the
J2-term, the J3-term and J4-term together yield perturbations of up to 20 m. From (23.5) we find
that the amplitude of the short-period variation of the semi-major axis due to the J2-term is for
this orbit about 4.4 km. So, the amplitude of the short-period variation of the semi-major axis due

2 Y. Kozai, Second-order solution of artificial satellite theory without air drag, The Astronomical Journal, Vol. 67,
No. 7, pp. 446-461, 1962.
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to the J2-term is significantly larger than the amplitude of the short-period variations of the posi-
tion components due to the J2-term. The reason is that the distance, r, of the satellite is a function
of the semi-major axis and the eccentricity of the orbit, and that the short-period variations in
both elements counteract each other to a large extent. This phenomenon is characteristic for low-
eccentricity orbits.

An efficient first-order method to compute the osculating orbital elements from the mean orbital
elements is given by J.H. Kwok3 and is based on the analytical theories of Y. Kozai, D. Brouwer
(1902-1966), and I.G. Izsák (1929-1965). This method, which accounts only for the effects of the
J2-term in the gravitational potential of the Earth, avoids problems that occur for , and
circumvents numerical difficulties in situations where the perturbations of the semi-major axis
are large. In this method, a special set of orbital parameters is used and the short-period variation
of these parameters is expressed by

(23.41)
where all parameters have their usual meaning. The osculating orbital elements may then be
computed from

(23.42)

3 J.H. Kwok, The long-term orbit predictor (LOP), JPL report EM 312/86-151, Jet Propulsion Laboratory, Pasadena,
30 June 1986.



Fundamentals of Astrodynamics     SS     Orbit perturbations due to the Earth’s gravity field 633

(23.42)

Note that in this method the short-period variations are expressed as a function of the true
anomaly, 2, while for the analyses in Sections 21.2, 23.1 and 23.2 the argument of latitude,
u = 2+T, was used as the independent variable. For near-circular orbits, we may neglect all
terms that are proportional to  and  in (23.41), and we may substitute  (Section 6.6).
Then, we arrive at the expressions

(23.43)

These expressions show that, for given values of  and the short-period variations of the orbital
parameters have, except for )rsh , a zero mean value over an orbital revolution. The extreme
values of )ish and )psh occur at  = 0E, 90E, 180E, 270E; the extreme values of )S,  and
)ush occur at  = 45E, 135E, 225E, 315E. The mean value (index m) of the variation of )rsh over
an orbital revolution is given by

This mean value is zero if  = 54.7E, 125.3E. If 0E #  < 54.7E or 125.3E <  # 180E, then the
mean value of )rsh is negative; if 54.7E <  < 125.3E, then the mean value is positive. When we
compare these results with the results obtained in Section 23.3, we conclude that these cases
correspond to the cases where the anomalistic orbital period is equal to, shorter than, or longer
than the Keplerian orbital period, respectively. Note that the expression for ()rsh)m is, for circular
orbits, just equal to the correction applied by Kozai to the ‘classical’ mean-mean semi-major axis,
as expressed by (23.30). So, we may write (23.30) as , where  is Kozai’s mean-
mean semi-major axis and a is the ‘classical’ mean-mean semi-major axis. Since a does not
exhibit a long-period variation and in a Keplerian orbit the time-averaged distance of a satellite
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during an orbital revolution is, for near-circular orbits, nearly equal to a (Section 6.6),  closely
approximates the mean distance of a satellite in a J2-perturbed orbit. For a (near-)circular orbit
at an altitude of 500 km and with an inclination of 45E, we find for the extreme values
)ish = ±1.2N, )psh = ±4.8 km, )Ssh = ±1.7N,  = ±1.8 m/s, )ush = ±1.0N. For the mean value of
)rsh we find a value of -2.4 km, and for the extreme values of )rsh we find -1.6 km and -3.2 km.
For a circular equatorial orbit at an altitude of 500 km, we find for all values of : )rsh = -9.6 km,

 = 0. So, in this case the short-period variation of r degenerates to a constant decrease of the
orbital radius by 9.6 km.

In Section 21.2, we have derived expressions for the variation of the inclination and right
ascension of the ascending node of circular orbits during an orbital revolution due to the J2-term
of the Earth’s gravitational potential, and it is interesting to compare those expressions with the
expressions derived in this Section. We then should realize that (21.24-1) and (21.24-2) express
the change of the osculating inclination and right ascension of the ascending node relative to their
values at the ascending node; consequently, (21.24-2) accounts for the secular variation of S. The
equations (23.43-1) and (23.43-3) express the short-period perturbations of i and S relative to the
instantaneous values of the mean inclination and mean right ascension of the ascending node.
When we account for these differences in definition, we conclude that both equations for )i and
both equations for )S fully agree.

23.5 Full spectrum of orbit perturbations

In the previous Sections, we have discussed some elementary aspects of the variation of orbital
elements due to a few zonal harmonics of the geopotential, and we have found that the orbital
elements show secular, long-period and short-period variations. In reality, each harmonic of the
geopotential will contribute to the variation of orbital elements and these elements show a rich
spectrum of perturbations with many different frequencies. W.M. Kaula (1926-2000) has devel-
oped around 1961 an analytical linear perturbations theory 4 to determine the effects of individual
harmonics of the geopotential on a satellite orbit. His theory is quite complicated and the deriva-
tion of the relevant expressions is beyond the scope of this book. Nevertheless, below some
aspects of his theory will be presented, and we will apply it in Section 23.6 for four characteristic
classes of orbit perturbations. We will concentrate our analysis on low- to medium-altitude (h <
5000 km) nearly circular orbits. 

Equation (20.1-1) describes the gravitational potential as a function of the satellite’s position
components r, N, and 7. Kaula used the relations between spherical coordinates and orbital
elements (Section 11.9) to obtain an expression for the perturbing force function (Section 22.1)
of the geopotential in terms of orbital elements:

(23.44)

where

(23.44)

with the phase angle

4 W.M. Kaula, Theory of Satellite Geodesy, Dover Publications, Mineola, New York, 2000.
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(23.45)

The parameters a, e, i, T, S and M are the osculating orbital elements, 2GM is the Greenwich
mean sidereal time (Section 11.4), : and R are the gravitational parameter and mean equatorial
radius of the Earth, respectively, n and m are the degree and order of the spherical harmonic,
respectively, and Cn,m and Sn,m are gravity field model coefficients (Section 20.1). For a specified
orbit and time, a particular set of {n,m,p,q} determines the value of 1n,m,p,q .

Each Fn,m,p(i) is a finite series of trigonometric functions of the inclination. An important
characteristic of Fn,m,p(i) for zonal harmonics (m = 0) is

Each Gn,p,q (e) is an infinite power series of the eccentricity. These eccentricity series represent
a subset of the Hansen coefficients (P.A. Hansen, 1795-1874) and were published in 1855. Each
term Gn,p,q(e) is of the order of the *q* power of the eccentricity (e*q*), except for the terms
G2,0,-2 (e) and G2,2,2 (e) which have the value zero. Consequently, while the summation over q
ranges in theory from -4 to +4, for near-circular orbits only a few terms need to be included in
the summation. For high-eccentricity orbits, many terms have to be included and the convergence
of the function is then very slow. An important characteristic of Gn,p,q (e) is

For nearly circular orbits we may use the approximate relations

where the notation O stands for ‘order of’.
From (23.44) we may derive the partial derivatives of  with respect to the orbital elements.

These expressions can be substituted into the right-hand sides of the Lagrange planetary
equations ((22.35), (22.45)). For a first-order solution of these equations, it is assumed that the
orbital elements a, e, and i in (23.44) and on the right-hand sides of (22.35) and (22.45) are
constant, that the orbital elements T, S, and M in the expressions for the partial derivatives of 
exhibit the first-order secular variations according to (23.27) and (23.35), and that the Greenwich
mean sidereal time, 2GM , varies linearly with time. With these assumptions, integration of (22.35)
and (22.45) leads, for each combination {n,m,p,q} in (23.44), to first-order expressions for the
perturbations of the orbital elements. Noteworthy is that the time-dependent parameters T, S, M
and 2GM  are all contained in the argument 1n,m,p,q, which significantly eases the integration of the
Lagrange planetary equations. Kaula found the following expressions for the perturbations of the
orbital elements:

(23.46)
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(23.46)
where " is a generic orbital element,  is the integral of Zn,m,p,q with respect to its argument:

(23.47)

and

(23.47)

where  is the Earth’s mean (sidereal) rotation rate. As a result of the assumptions made, (23.46)
describes, for each combination {n,m,p,q}, the orbit perturbations relative to a slowly rotating
ellipse. This rotating reference ellipse corresponds to the evolution of the secularly changing, or
mean-mean, orbital elements introduced in Section 23.3. Therefore, the orbital elements on the
right-hand sides of (23.46) are mean-mean elements, and the addition of all terms )"n,m,p,q to the
mean-mean elements yields the osculating elements. From (23.46) we conclude that the change
of an orbital element due to a particular term of the perturbing force function, so a specific
combination {n,m,p,q}, is a function of: 1) the orbital elements a, e, and i; 2) the phase angle
1n,m,p,q , which is a function of the orbital elements T, S, M and time; 3) the frequency

which is a function of  and of the (constant) secular rates of T, S and M; 4) the
coefficients Cn,m and Sn,m , and the constants : and R, which specify the gravity field. The period
of an orbit perturbation produced by a particular combination {n,m,p,q} is given by Pn,m,p,q

= 2B/
Equation (23.47) shows that the frequencies of the perturbations of a given orbit are also

dependent on the values of n-2p, n -2p+q, and m. Thus, for any m there are many combinations
of n, p and q that produce orbit perturbations with the same frequency . For example, the terms
{3,2,1,0} and {11,2,5,0} both yield the frequency  This means that the
gravity field model coefficient pairs C3,2 , S3,2 and C11,2 , S11,2 create orbit perturbations that overlap
in frequency. In general, there is a complete family of combinations {n,m,p,q} that produce the
same frequency. The gravity field model coefficients that fall under this family are called lumped



Fundamentals of Astrodynamics     SS     Orbit perturbations due to the Earth’s gravity field 637

coefficients. The consequence is that when we use tracking data of a satellite to determine a
certain frequency in the satellite orbit perturbations, it is not directly possible to pinpoint which
gravity field model coefficient is responsible for that perturbation frequency. We can only figure
out which set of lumped coefficients produce that frequency. By using tracking data from many
satellites in different orbits, we can combine various sets of lumped coefficients, separate the
effects of individual coefficients and determine the value of those coefficients.

Note that in the expression for )en,m,p,q the term in brackets reduces to .q for nearly circular
orbits, and that for near-polar orbits the term in brackets in the expression for )in,m,p,q reduces to
.m. The latter result implies that zonal harmonics (m = 0) do not produce inclination
perturbations for polar orbits; this result is in agreement with (21.24) and (23.9). The expressions
for )"n,m,p,q , except for " = a, contain terms with the eccentricity and/or the term sin i in the
denominator, and we therefore may expect that these terms lead to very large perturbations for
low-eccentricity or low-inclination orbits. However, in the expression for )en,m,p,q the term
Gn,p,q (e) constitutes for *q* = 1 a power series of e that compensates for the e in the denominator.
If q = 0 the term in square brackets produces a power series of e that compensates for the e in the
denominator. When we consider only zonal harmonics, it turns out that the sin i term in the
denominator of the expression for )in,m,p,q is mostly compensated for by sin i terms in the series
Fn,m,p (i), and that for those values of n and p where this is not the case the term in square brackets
is zero, leading to )in,m,p,q = 0. So, the problem of having e and/or sin i in the denominator may
occur only in the expressions for )Tn,m,p,q , )Sn,m,p,q , )Mn,m,p,q , and for tesseral harmonics also in
the expression for )in,m,p,q . It is emphasized that this kind of problems is a direct result of the fact
that perigee is not defined for circular orbits and that the ascending node is not defined for zero-
inclination orbits, and thus that the orbital elements T, S, M are not appropriate to describe the
position of satellites in low-eccentricity or low-inclination perturbed orbits (Section 22.4). Of
course, Kaula’s linear perturbations theory is not valid anymore when the orbit perturbations
become unrealistically large.

From (23.46) we obtain, neglecting terms of order e2 relative to one, the following expres-
sions:

These expressions can be used to partially check the correctness of the expressions for )"n,m,p,q

derived from (23.46) for near-circular orbits and for a particular combination {n,m,p,q}. Note that
the right-hand sides of these expressions do not contain e and/or sin i in the denominator
anymore. Further note that the right-hand side of the first expression is zero if m = 0, and that the
expression can then be written as

Remembering that the component of the orbital angular momentum along the Z-axis, Hz, is given
by , the above expression can be written as , when we
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neglect terms of order e2. This result fully agrees with our finding in Section 23.1 that for an
axially-symmetric gravity field, which requires m = 0, Hz is constant. For q = 0: Gn,p,q (e) =
1 + O(e2), e MGn,p,q (e) /Me = O(e2). In that case, we may substitute Gn,p,q (e) = 1 and may neglect the
term e MGn,p,q (e) /Me on the right-hand side of the second expression.

For the orbit perturbations analysis to remain ‘manageable’, it is important that the perturbing
influence of successive terms of the perturbing force function, , converges with increasing
degree n. This convergence is ensured by a combination of characteristics of both the perturbing
force function and the perturbations equations (23.46). First, the factor (R/a)n decreases with
increasing n, albeit slowly for low-altitude satellites. Secondly, the gravity field coefficients
themselves have the tendency to decrease slowly with increasing n according to an empirically
observed rule, known as Kaula’s rule:

A third contribution to the convergence results from the frequency  in the denominator
of the orbit perturbations equations (23.46). For large values of n and m many high-frequency
perturbations occur (see below) and, generally, the higher the frequency the smaller the amplitude
of a perturbation. So, many terms may be neglected in practice. In this respect, the satellite may
be viewed as a ‘low pass filter’ that makes the orbit only sensitive to perturbing components with
longer, and in particular very long, periods.

From (23.46) we conclude that, for a particular orbit, the smaller the value of  the larger
the associated perturbation components in the orbital elements. This first-order analysis breaks
down when  approaches or equals zero. This occurs: 1) for the secular perturbations due
to zonal harmonics (see below); 2) for the long-period perturbations due to zonal harmonics (see
below) when the orbital inclination approaches the critical inclination (Section 23.3) or when the
satellite moves in a so-called frozen orbit (Section 23.7); 3) when the satellite’s orbit is in
resonance with the Earth’s gravity field. In these cases, long-period, large-amplitude pertur-
bations occur in elements other than the angular variables what makes the integration of the
Lagrange planetary equations more complex. The case of orbital resonance will be discusses
below separately.

Since the parameter  controls the frequency, and thus the type and even the magnitude,
of the perturbation, it is interesting to study the characteristics of (23.47). From (23.27), (23.35),
and (11.3-2), we find for a satellite in a nearly circular orbit at an altitude of less than 5000 km:

depending on the altitude and inclination of the orbit. So,  This clear
distinction in angular rates makes it possible to identify various classes of perturbations, such as
short-period variations, long-period variations and orbital resonance. In general, the smaller the
rate of change of a particular variable, the larger will be the amplitude of the perturbation that it
produces. So, long-period variations, which originate from , will, generally, have larger
amplitudes than short-period variations, which originate from . Resonance, and in particular
deep resonance, produces even larger effects than the long-period terms do. A strict separation
in different classes of perturbation frequencies is, of course, a simplification of the true situation.
Each type of periodic variation will occur in frequency bands. For low degrees and orders, the
three frequency bands associated with  and  are essentially disjoint. Band overlapping
starts to occur at values of m approximately equal to the number of orbital revolutions per day.
Although this complicates the appearance of the spectrum, it has, of course, no effect on the
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amplitudes of the individual perturbations. A useful categorization of the various classes of
perturbations on basis of the values of individual terms in (23.47) is given by D. A. Vallado5. The
following description is partly based on his analysis.

Zonal harmonics (m = 0)
Secular 

In Section 23.3 it was shown that the elements a, e, and i do not show a secular variation. This
is confirmed by the presence of the terms n - 2p = 0 and n - 2p + q = 0 in (23.46-2) to (23.46-4).
Since p = n/2 and both p and n are integers, n must be even and we conclude that the secular
variations in S, T, and M result from even zonal harmonics. Note that Kaula’s method breaks
down for secular perturbations, because of the occurrence of  in the denominator of
(23.46). However, this is not a problem, because we already know the (first-order) secular
variation of the orbital elements T, S and M ((23.35)) and the availability of these expressions,
in fact, forms an essential element of Kaula’s theory.

Long-period

From these conditions we conclude that odd zonal harmonics produce the major long-period
variations with *q* = 1. Even zonal harmonics contribute smaller long-period variations with *q*
$ 2. The long-period variations are driven by the apsidal rotation rate and the fundamental period
of the long-period variations is 2B/  which corresponds for a satellite below 5000 km altitude
to 20 -1600 days, depending on the orbital altitude and inclination, if the inclination stays more
than 5E from the critical inclination and if the satellite’s orbit is non-frozen. The variation of the
mean eccentricity of the ANS orbit shown in Figure 23.6 is a clear example of a long-period
variation due to odd zonal harmonics. Close to the critical inclination and for frozen orbits 
goes to zero and, consequently, the period goes to infinity; then the first-order expressions
(23.46) are not valid anymore. Harmonics of the fundamental period exist at 1/2, 1/3, .... of this
period for *q* = 2, 3, .... . These harmonics have arguments 2T, 3T, .... ; their amplitudes are
smaller than the amplitude for *q* = 1. The semi-major axis does not exhibit a long-period
variation, since the expression for )an,m,p,q in (23.46) contains the term (n -2p+q) = 0 as a
multiplicative factor.

Short-period

The expressions for this class of perturbations contain sine- and cosine-terms with argument qM
and are therefore ‘pure’ short-period variations. Since p = n/2, and n and p are integers, these
variations are caused only by even zonal harmonics. The main term (*q* = 1) leads to a funda-
mental period of the perturbations equal to the anomalistic orbital period: 2B/ ; additional
harmonics with periods of 2B/(*q* ), *q* = 2, 3, .... exist. From (23.46) we conclude that the
inclination does not show a pure short-period variation, since the expression for )in,m,p,q contains
the term (n - 2p) = 0 as a multiplicative factor.

5 D.A. Vallado, Fundamentals of Astrodynamics and Applications, Microcosm Press and Kluwer Academic
Publishers, 2001.
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Long-period/short-period

This component of the motion is caused by the interaction of short-period and long-period
variations, and is produced by all zonal harmonics. The expressions for this class of perturbations
contain sine- and cosine-terms with the argument (n-2p)T+ (n-2p+q)M. Since , the
period of this class of perturbations may be approximated by  or

 times the anomalistic orbital period. This leads to a variety of perturbation
periods. Since short-period variations are only produced by even zonal harmonics, the
contributions of the odd zonal harmonics to the variation of the semi-major axis of the ANS orbit
that are plotted in Figure 23.5 do not belong to the class of ‘pure’ short-period perturbations, but
to the class of long-period/short-period perturbations. Similarly, as the inclination does not show
a pure short-period variation, the variation of the inclinations of the ANS and TD-1A orbits that
are plotted in Figure 23.3 and 23.4 also belong to the class of long-period/short-period pertur-
bations. However, we should realize that the separation of orbit perturbations into a class of
‘pure’ short-period variations and a class of long-period/short-period variations is somewhat
artificial. This separation was introduced in this Section; in the foregoing Sections we called both
classes of variations simply ‘short-period variations’.

Tesseral and sectorial harmonics (m … 0)
m-daily

This component of the motion is caused by the interaction of the rotation of the Earth’s gravity
field and the secular variation of the orbit’s right ascension of the ascending node. Since both n
and p are integers, only even values of n apply, with all values of m # n. Since , the
period of this class of perturbations may be approximated by 2B/m  = 1/m day. So, all terms of
even degree n and of order m = 1 contribute oscillations with a period of about 24 hr, whereas
all m = 2 terms contribute 12 hr oscillations, and so on. Higher-order harmonics (e.g. m = 14)
contribute oscillations with periods roughly the same as of the basic zonal harmonics short-period
variations for low-altitude satellites. Thus, there is little distinction between the short-period
variations from the zonal harmonics and the m-daily variations from higher-order tesseral and
sectorial terms. From (23.46) we conclude that the semi-major axis and eccentricity do not show
m-daily perturbations.

Long-period/m-daily

This class of perturbations is produced by all terms of even and odd degree n, with all values of
m # n. For low-eccentricity orbits the major perturbations are associated with *q* = 1 and p =
(n ± 1)/2. Since n and p are integers, these major perturbations are produced by terms with odd
values of n. From (23.46) we conclude that the semi-major axis does not show long-period/m-
daily perturbations. Since  the period of the major perturbations is approximately
given by 2B/m  = 1/m day. The source of this component of the motion is the interaction
between the secular variation of the argument of perigee, which leads to long-period variations,
the rotation of the gravity field, and the secular variation of the right ascension of the ascending
node.
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m-daily/short-period

Since both n and p are integers, only even values of n apply, with all values of m # n. Since
 the period of the perturbations is approximately given by  For low-

eccentricity orbits, only terms with 0 < *q* # 2 are significant. If m is small the period is
approximately given by where T is the anomalistic orbital period. If m is large
(> 7 - 15) then  may become (almost) zero and the perturbation period may become very
large, which corresponds to resonance. For very large values of m (> 50) the period is about 1/m
day.

Long-period/m-daily/short-period

For q = 0, the period of the perturbations is approximately given by  If
 then the period is about 1/m day; if  then the period is about

T/*(n-2p)*; if  then resonance will occur and the period becomes very large. In
other cases, all kinds of periods may occur. The long-period/m-daily/short-period terms are the
most common (numerous) ones in (23.46). They represent the interaction between all fundamen-
tal periods in (23.47).

Resonance
When  approaches zero and, consequently, Pn,m,p,q becomes very large, the satellite’s orbit
is in resonance with the gravity field and large orbit perturbations will occur. Theoretically,
certain combinations {n,m,p,q} and orbital elements may even yield  and Pn,m,p,q = 4,
which corresponds to exact resonance. However, in practice this situation will never occur,
because it requires very specific values of the orbital elements a, e, and i; any deviation from
these values will result in deep resonance or shallow resonance. Deep resonance corresponds to
very small values of , which cause large-amplitude oscillations with very long periods;
shallow resonance corresponds to somewhat larger values of , which lead to oscillations
with smaller amplitudes and shorter periods. When resonance occurs, the first-order Kaula theory
for the orbit perturbations is not valid anymore, but we still can use (23.47) to determine the
occurrence of resonance perturbations. In this book, we define deep resonance as resonance for
which < 4*10-7 rad/s, corresponding to resonance periods of longer than 6 months; we
define shallow resonance as resonance for which 4*10-7 rad/s < < 5*10-6 rad/s, corre-
sponding to resonance periods of 15 days to 6 months.

According to (23.47), the condition for orbital resonance is

(23.48)

Now,  is known, and the first-order expressions for  are functions of the orbital
elements a, e, and i. For a given orbit, we can evaluate (23.47) numerically in order to determine
whether there are combinations {n,m,p,q} that lead to orbital resonance. As stated before, for
nearly circular orbits the largest perturbations occur for *q* = 0, 1. From (23.48) we can identify
a number of special classes of orbital resonance; the two most important classes will be discussed
below.

Repeat ground track resonance
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For this class, we find from (23.48)

(23.49)

Because  and , and m > 0 : p < n/2. The left-hand side of this
expression is the ratio of the nodal day ((23.40)) and the nodal or draconic (draconitic) orbital
period ((23.38)); the right-hand side is the ratio of two integers. So, this kind of resonance occurs
when the satellite completes " nodal revolutions in $ nodal days, where " and $ are positive
mutually prime integers; i.e. the ratio "/$ must be irreducible. The source of the resonance are
those terms in the Kaula perturbing force function of which the values of {n,m,p} satisfy the
condition m = j", n-2p = j$, j = 1, 2, 3, .... . This class of resonance arises when successive
ground tracks 6 (Section 23.7) of the satellite are separated by an interval in longitude equal to
the wavelength of the geopotential harmonics, so that after m (or 2m, 3m, ....) orbital revolutions
of the satellite the ground track sequence repeats itself exactly. Therefore, this class is called
repeat ground track resonance . In this orbit, the satellite will cross about the same position in
the (rotating) gravity field after $ nodal days, and the satellite’s trajectory through the gravity
field (almost) repeats every $ nodal days. Consequently, the satellite’s motion is perturbed in an
identical manner every $ nodal days, enhancing the earlier perturbation. The amplitude of the
orbital resonance perturbations will, generally, be larger if $ is smaller; major perturbations in
the orbital elements may be expected if $ < 5.

A special case is a geostationary satellite, for which  " = $ = 1. For this orbit
resonance occurs primarily when m = n - 2p, and the main resonance term is {n,m,p,q} = 2,2,0,0.
Further resonances occur with all coefficients for which n - m is even (e.g. {n,m,p,q} = 3,1,1,0;
4,2,1,0; 6,2,2,0; etc.), but because of the attenuation factor (R/a)n in the perturbing force function,
the higher-degree resonances will be of lesser importance. For satellites in lower altitude orbits
resonance occurs at higher degrees. For example, for orbital altitudes below 5000 km, appreciable
resonance will occur if the satellite completes 8 - 15 orbital revolutions in 1 day, 15 - 29
revolutions in 2 days, or 22 - 46 revolutions in 3 days, where the larger the number of days the
smaller the resonance perturbation amplitude. This implies that, for this range of orbital altitudes,
appreciable resonance effects require m = 8 - 46, n - 2p = 1 - 3. For a satellite orbiting the Earth
at e.g. about 1260 km altitude, such that rev/day, "= 13, $= 1 and major resonances occur
when {n,m,p,q} = 13,13,6,0; 15,13,7,0; 17,13,8,0; .... .

Anomalistic resonance

Since p = n/2 and both p and n are integers, this class of resonance is produced by terms with
even n and all m # n. From (23.48) we find

The left-hand side of this expression is the ratio of the nodal day ((23.40)) and the anomalistic
orbital period ((23.36)); the right-hand side is the ratio of two integers. This class is called
anomalistic resonance and occurs if the satellite performs (about) " anomalistic revolutions in

6 Sub-satellite point: the point on the Earth’s surface directly between the satellite and the center of the Earth.
Ground track: the path of the sub-satellite point on the Earth’s surface.
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$ nodal days. Those values of {m,q} that satisfy the condition m = j", q = j$, j = 1, 2, 3, ....
identify the terms of the Kaula perturbing force function which are the source of this kind of
resonance. Because q … 0,  , and m > 0, only terms with q = +1, +2 produce
appreciable effects for nearly circular orbits. So, significant anomalistic resonance occurs when
the satellite performs " anomalistic revolutions per day or per 12 hr. However, these resonance
amplitudes will, generally, be smaller than those for repeat ground track resonance, since no
terms with q = 0 are present. Because the ratio  varies from 7 to 16 for altitudes of up
to 5000 km, but is as low as 1 or 2 for geosynchronous or 12 hr orbits, the lowest resonance order
may vary from m = 1 to m = 16, depending on the satellite orbit.

In the discussion above we have found that significant cases of resonance occur if the ratio of ,
or a linear combination of  and , and a linear combination of  and  (about) equals the
ratio of two integers. It is emphasized that the ratio of these linear combinations can always be
written as the ratio of two integers, because the computed rates of the parameters involved have
a finite decimal representation. However, this usually results in the ratio of two large integers,
which does not identify a resonance contribution of real significance since it will be associated
with large values of n and m. The high-degree and high-order harmonics have smaller gravity
field coefficients, making their contributions less significant. In addition, the factor (R/a)n in
(23.46) will significantly attenuate the amplitude of the orbit perturbation.

To get an impression of the various classes of perturbations a numerical analysis was performed
for one of the orbits flown by the ESA ERS-1 satellite that was launched by an Ariane-4 rocket
from Kourou on July 17, 1991. This satellite has flown a number of ground track repeat orbits
(Section 23.7); for our example we consider the orbit in which ERS-1 completed 43 nodal
revolutions in 3 nodal days ("/$ = 43/3). In Section 23.7 the corresponding values of semi-major
axis, eccentricity and inclination are given: a = 7153.14 km, e = 0.00106, i = 98.523E. For this
numerical experiment, the maximum value of the degree, n, in the gravity field series expansion
was set at 50. All perturbations for *q* = 0, 1 were analyzed. For the Earth’s gravitational
parameter, mean equatorial Earth radius and J2-coefficient of the Earth’s gravity field, the
following values were adopted: : = 398600.44 km3/s2, R = 6378.136 km, J2 = 1082.636*10-6. The
secular rates of T, S, and M were computed from (23.27) and (23.35). The results are listed in
Table 23.1 in the order of decreasing periods of the perturbation component, and for periods
longer than 12 hr. To limit the number of cases, for a particular perturbation period only the
results for the term with the lowest value of *q* and, for that value of q, the lowest values of n
and m are listed. Note that repeat ground track deep resonance leads to orbit perturbations with
a period of 5991 days (16.4 yr). The other classes of orbit perturbations have periods within
bands around 120, 3, 1.5, 1.0, 0.75, 0.60, and 0.50 days, with various classes of perturbations
overlapping per band.

As a second example, a numerical search process was executed to find the value of the semi-
major axis of the 43/3 ERS-1 orbit for which exact resonance would have occurred. The semi-
major axis was varied from 7148 km to 7158 km, in steps of 0.1 m, the eccentricity and incli-
nation were kept at their nominal values, and the computation was performed for *q* = 0, 1.
Three cases of exact resonance were found in this semi-major axis band; Table 23.2 lists the
results. The case with q = 0 corresponds to exact repeat ground track resonance, while the two
cases with *q* = 1 correspond to side-bands of exact resonance; the case with q = 0 will lead to
the largest orbit perturbations. From this Table it may be concluded that the value of a = 7153.14
km listed above is close to the value for which exact repeat ground track resonance would have
occurred: a = 7153.1584 km. It was found that deep resonance will occur if the semi-major axis
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satisfies the condition 7151.6 km < a < 7154.7 km.

Table 23.1: Examples of ERS-1 orbit perturbations with periods longer than 12 hr and *q* = 0, 1. Results
are listed for the 43/3 ground track repeat orbit and in the order of decreasing periods. Per perturbation
period only the results for the lowest value of *q*, and, for that value of q, the lowest values of n and m,
are listed. 

Pn,m,p,q (day) n m p q Type

4 2 0 1 0 secular

5991 43 43 20 0 repeat ground track resonance

123.8 44 43 20 -1 long-period/m-daily/short-period

121.3 3 0 1 -1 long-period

118.9 44 43 21 1 long-period/m-daily/short-period

3.08 14 14 6 -1 long-period/m-daily/short-period

3 15 14 7 0 long-period/m-daily/short-period

2.93 14 14 7 1 m-daily/short-period

1.52 16 15 8 1 m-daily/short-period

1.5 15 15 7 0 long-period/m-daily/short-period

1.48 16 15 7 -1 long-period/m-daily/short-period

1.01 3 1 2 1 long-period/m-daily

1 2 1 1 0 m-daily

0.99 3 1 1 -1 long-period/m-daily

0.75 13 13 6 0 long-period/m-daily/short-period

0.74 14 13 7 1 m-daily/short-period

0.6 17 16 8 0 long-period/m-daily/short-period

0.5 2 2 1 0 m-daily

Table 23.2: Three cases of exact orbital resonance for the 43/3 ERS-1 ground track repeat orbit with
adjusted values of the semi-major axis, and for *q* = 0, 1.

a (km) n m p q n - 2p n - 2p + q

7152.2486 44,46,48,50 43 20,21,22,23 -1 4 3

7153.1584 43,45,47,49 43 20,21,22,23 0 3 3

7154.0678 44,46,48,50 43 21,22,23,24 1 2 3

For most satellites the resonance orbit perturbations will not fully build up. Satellites with a
perigee altitude of less than 600 km experience substantial atmospheric drag, which leads to a
steadily decreasing semi-major axis. Consequently, the satellite passes through the narrow
altitude region for which a case of (deep) resonance occurs, before the resonance perturbations
in the orbital elements fully develop. Satellites in higher orbits may experience significant luni-
solar gravitational attraction perturbations, which also drive the orbital parameters outside the
range of resonance. Satellites for geodetic and oceanographic research are sometimes deliberately
kept in an orbit of which the altitude and inclination maintain specified values (Section 23.7).
These orbits may be in resonance with the rotating Earth’s gravity field, but the periodic firings
of the satellite’s thrusters to keep the semi-major axis and inclination at their nominal values
destroy the development of resonance perturbations in the orbital elements.
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23.6. Application of Kaula’s theory

To illustrate the characteristics of some important classes of orbit perturbations, we will apply
Kaula’s theory to derive first-order linearized analytical expressions for the effects of some
selected terms of the gravity field series expansion on the orbital elements of a satellite in a near-
circular orbit. We will only consider terms with *q* = 0, 1 and will assume again that the orbital
altitude is less than 5000 km, which means that we may use the condition 
In the analytical developments we will neglect terms of order e2 and of order J2 relative to one.
Numerical results will be presented for a satellite in an orbit with the following (mean-mean)
orbital parameters: h = 500 km, e = 0.005, i = T = S = 45E, M = 30E.

J2 short-period variations
Since the conditions for this class of orbital element variations are n = 2, m = 0, n - 2p = 0, n - 2p
+ q … 0, only two terms {2,0,p,q) contribute: {2,0,1,-1} and {2,0,1,1}. When we substitute the
relevant values of n, m, p, q into (23.44), (23.45) and (23.47), subsequently substitute -J2 = C2,0

((20.1-2)), and use (23.27) and (23.35), we obtain

where the notation O stands for ‘order of’. For both terms the following expressions hold 7:

Inspection of (23.46) shows that, when applying the relevant expressions for the terms {2,0,1,1}
and {2,0,1,-1}, for a generic orbital element ": )"2,0,1,1 = )"2,0,1,-1. When we evaluate the six
equations (23.46) for the term {2,0,1,1}, linearize the resulting expressions by neglecting terms
of order e2 or of order J2 relative to one, and multiply the then resulting expressions by a factor
two, we obtain

(23.50)

7 The expressions for Fn,m,p(i) and Gn,p,q(e) were taken from: W.M. Kaula, Theory of Satellite Geodesy, Dover
Publications, Mineola, New York, 2000.
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(23.50)

The orbital elements experience an oscillation with a period equal to the anomalistic orbital
period. Variations in a, e, T and M are zero for i = 54.7E, 125.3E; these values correspond to the
situation where the anomalistic orbital period is equal to the Keplerian period (Section 23.3). The
variation in S is zero for i = 90E. The amplitudes of the variations are proportional to the term
J2(R/a)2 , except for the semi-major axis for which the amplitude is proportional to the term
J2R2/a. The amplitudes of the variation of a and S are also proportional to e, which means that
these amplitudes are very small for near-circular orbits; the amplitudes of the variation of T and
M are proportional to 1/e, indicating that these variations become very large for e 9 0. However,
then the expressions lose their validity since in a first-order theory the values of )" should not
become unrealistically large. This phenomenon is a direct result of the fact that the parameters
T and M are inappropriate to describe the position of a satellite in a near-circular orbit (Section
22.4), as the location of perigee is not defined in a circular orbit. According to (6.45): 2 6 M if
e 9 0, which means that then for the argument of latitude, u, can be written u = T+2 . T+ M.
The argument of latitude describes the position of the satellite without any reference to the
location of perigee. Indeed, when we combine (23.50-4) and (23.50-6) we find that the
perturbation )T2,0 +)M2,0 is zero; in fact, a more-detailed analysis, keeping more terms in the
expressions for )T2,0 and )M2,0 , shows that the perturbation )T2,0 +)M2,0 actually is of order e.
For the satellite orbit specified before, we find )a2,0 = 20.8 m, )e2,0 = 3.02*10-4, )T2,0 = 2.00E,
)S2,0 = -1.53O, )M2,0 = -2.00E. The period of the perturbations is 1.576 hr.

J2 long-period/short-period variations
Since the conditions for this class of orbital element variations are n = 2, m = 0, n - 2p … 0, n - 2p
+ q … 0, a total of six terms {2,0,p,q) contribute: {2,0,0,-1}, {2,0,0,0}, {2,0,0,1}, {2,0,2,-1},
{2,0,2,0}, {2,0,2,1}. When we substitute the relevant values of n, m, p, q into (23.44), (23.45) and
(23.47), subsequently substitute -J2 = C2,0 ((20.1-2)), and use (23.27) and (23.35), we obtain
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Inspection of (23.46) shows that, when applying the relevant expressions for all six terms, for a
generic orbital element ": )"2,0,0,0 = )"2,0,2,0 , )"2,0,0,-1 = )"2,0,2,1 , )"2,0,0,1 = )"2,0,2,-1. So, we have
to determine )" for only three cases. When we evaluate the six equations (23.46) for these three
cases, linearize the resulting expressions by neglecting terms of order e2 or of order J2 relative
to one, add the expressions for each particular orbital element, and multiply the then resulting
expressions by a factor two, we obtain

(23.51)
The expressions contain sine- and cosine-terms with the arguments 2T+ jM, where j = 1, 2, 3.
Since we have assumed that T, S and M vary linearly with time, these arguments can be written
as . So, the period of the sine- and cosine-terms is  With the first-
order expressions (23.27) and (23.35) we then find

For h > 250 km, e < 0.03, and any value of i: , , and
. So, the term in square brackets is slightly larger or slightly smaller than

1. Consequently, the period of the sine- and cosine-terms in (23.51) is about 1/j times the
anomalistic orbital period. The variations in a, e, i, M are zero for i = 0E; the variation in S is
zero for i = 90E. Just as for the class of short-period variations, the amplitudes of the variations
are proportional to the term J2(R/a)2 or J2R

2/a. Again, the terms with the factor 1/e in the
expressions for )T2,0 and )M2,0 cancel when we consider the perturbation )T2,0 +)M2,0 :

For the satellite orbit specified before, we find )a2,0 = -4.24 km, )e2,0 = -4.94*10-4, )i2,0 = -1.05N,
)T2,0 = -1.767E, )S2,0 = 0.841N, )M2,0 = 1.772E. The periods of the perturbations are 1.573 hr,
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0.787 hr, and 0.525 hr. Note that the value of )a is much larger than for the pure J2 short-period
variation.

J3 long-period variations
Since the conditions for this class of orbital element variations are n = 3, m = 0, n - 2p … 0, n - 2p
+ q = 0, only two terms {3,0,p,q} contribute: {3,0,1,-1) and {3,0,2,1}. When we apply the same
methodology as described above for the analysis of the other classes of orbit perturbations, we
obtain

Inspection of (23.46) shows that, when applying the relevant expressions for the terms {3,0,1,-1}
and {3,0,2,1}, for a generic orbital element ": )"3,0,1,-1 = )"3,0,2,1. When we evaluate the six
equations (23.46) for the term {3,0,1,-1}, linearize the resulting expressions by neglecting terms
of order e2 or of order J2 relative to one, and multiply the then resulting expressions by a factor
two, we obtain

(23.52)

The value of J2 is of order 10-3, while the value of J3 is of order 10-6 (Table 20.1). This means that
the value of J3 /J2 is of order 10-3, i.e. is of the same order of magnitude as J2. The attenuation of
the magnitude of the perturbations with increasing altitude is less than for the perturbations
produced by the J2-term, since in this case the ratio R/a occurs to the first power while in the
expressions for the perturbations produced by the J2-term it appears to the second power. The
variations in the orbital elements have a period equal to the time it takes perigee to complete one
revolution about the Earth (Section 23.3). The variations of e, T and M are zero for i = 0E, while
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the variations of i and S are zero for i = 90E; the variation of S is also zero for i = 31.1E, 148.9E.
Note that the expression for S contains the terms sin i and (5cos2i - 1) in the denominator. This
would lead to a singularity if i = 63.435E, 116.565E; i.e. at the critical inclinations (Section 23.3),
and if i = 0E. However, as stated before, Kaula’s theory is not valid for inclinations close to the
critical inclinations because these inclinations lead to a resonance phenomenon, and S is not
defined for i = 0E. A numerical analysis shows that for e < 0.03 the absolute value of the term ef(i)
in the expression for S is larger than 100 if 0E < i < 0.0172E, 63.417E < i < 63.453E, 116.547E
< i < 116.583E, 179.982E < i < 180E. So, outside these narrow ranges of forbidden inclinations,
we may apply the expression for S. The variations of i and S are very small for near-circular
orbits. Just as we have found for the J2 short-period variations of T and M, and for two
components of the J2 long-period/short-period variations of T and M, the amplitudes of the J3

long-period variation of T and M are proportional to 1/e, which leads to large amplitudes for
near-circular orbits. Again, we conclude that this is due to the fact that the parameters T and M
are inappropriate to describe the position of a satellite in a near-circular orbit. When we add
(23.52-4) and (23.52-6), we find that the perturbation )T3,0 +)M3,0 is zero; in fact, a more-
detailed analysis shows that the perturbation )T3,0 +)M3,0 actually is of order e. For the satellite
orbit specified before, we find )e3,0 = 5.42*10-4, )i3,0 = -0.559O, )T3,0 = 6.21E, )S3,0 = -1.85O,
)M3,0 = -6.21E. The period of the perturbations is 62.71 day.

J2,2 m-daily variations
Since the conditions for this class of orbital element variations are n = 2, m = 2, n - 2p = 0, n - 2p
+ q = 0, only one term contributes: {2,2,1,0}. When we apply the same methodology as described
above for the analysis of the other classes of orbit perturbations, we obtain

where 72,2 is a constant. When we apply (11.2) to the orbit’s ascending node, we conclude that
the following relation holds (Figure 21.5):

where 7S is the geographic longitude of the ascending node, i.e. the position of the ascending
node relative to the location of Greenwich. As the Earth rotates and the orbital plane precesses,
7S varies linearly with time. When we substitute these expressions into the six equations (23.46),
linearize the resulting expressions by neglecting terms of order e2 relative to one, we obtain

(22.53)
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(23.53)

The amplitudes of the variations are proportional to the term J2,2 (R/a)2. Since J2,2 . 1.7*10-3 J2,
generally, we may expect rather small perturbations when compared to the perturbations
associated with the J2 zonal harmonics term. Note that the orbital eccentricity does not appear in
the expressions; it only enters through , which is a weak function of the eccentricity. Also note
that the elements a and e do not experience any variation. The variations in i and M are zero for
i = 0E, while the variation in S is zero for i = 90E, and the variation in T is zero for i = 39.2E,
140.8E. The variation of T, S and M is zero for 7S -72,2 = 0E, 90E, 180E, 270E; the variation of
i is zero for 7S -72,2 = 45E, 135E, 225E, 315E. When we add (23.53-3) and (23.53-5), we find

Now, for h > 250 km, e < 0.03 and any value of i: < 1.76*10-6 rad/s, while  . 7.29*10-5

rad/s. Since : , where n is the mean angular (orbital) motion of the
satellite. For satellites in orbits with an altitude of up to 5000 km, the ratio  varies from 7 to
16. For a geosynchronous satellite the ratio  would be equal to one, but this case corresponds
to orbital resonance and, as stated before, then Kaula’s linear theory is not valid.

Since J2,2 is positive, we find for an equatorial orbit (i = 0E) that )T2,2 +)M2,2 > 0 for 0E <
7S -72,2 < 90E and 180E < 7S -72,2 < 270E, and that )T2,2 +)M2,2 < 0 for 90E < 7S -72,2 < 180E
and 270E < 7S -72,2 < 360E. These results agree with what we have found in Section 21.7 for the
secular variation of the along-track position component. However, it is noted that the analysis in
Section 21.7 holds for a geostationary orbit, while the analysis in this Section is not valid for a
geostationary orbit. Since 72,2 is a constant and S and 2GM are assumed to vary linearly with time,
we can write for the argument of the sine- and cosine-functions: . So, for the
period of these functions we may write with (23.27) and (23.35-2)

For the given range of  and the known value of  we find that the ratio  < 2.42*10-2,
and thus  is slightly larger or slightly smaller than one. Consequently, the period of the
sine-and cosine-terms in (23.53) is close to half a day. For the satellite in the orbit specified
before and 7S = 10E, we find )i2,2 = 3.29O, )T2,2 = -1.38O, )S2,2 = -3.90O, )M2,2 = -4.14O. The
period of the perturbations is 11.790 hr.

23.7. Specialized orbits

In the design of satellite missions appropriate orbits have to be selected. For such specialized
orbits, the effects of specific orbit perturbations are often exploited explicitly. In this Section, a
few examples of such orbits will be presented and discussed.



Fundamentals of Astrodynamics     SS     Orbit perturbations due to the Earth’s gravity field 651

Up to this point, we have made a clear distinction between osculating, mean and mean-mean
orbital elements. However, it should be realized that the relations between these types of elements
are mathematically only defined for a particular mathematical model and analysis scheme. For
instance, when we considered in Section 23.6 the effect of the J3-term of the Earth’s gravity field,
we have derived analytical expressions for the long-period variations, which link the mean-mean
to the mean elements for that particular perturbing force and according to Kaula’s computation
scheme. However, in reality, many perturbing forces act on a satellite simultaneously and the
mathematical definition of mean and mean-mean elements becomes a serious problem, and is also
somewhat dependent on the computation scheme applied. In addition, the question can be raised
“how do we obtain the values of the orbital elements for a particular satellite?”. The answer is
that these elements are derived from tracking data acquired on the motion of that satellite. If we
would have a measuring concept that would provide us with an accurate measurement of the six
components of the satellite’s state vector at a single moment of time, we could easily derive the
osculating orbital elements of that satellite at that time. However, such a measurement concept
does not exist and information about the satellite orbit is derived from a series of measurements
on the satellite’s motion taken during some period of time. Most modern orbit computation
programs integrate the satellite’s equations of motion numerically, accounting for many pertur-
bing forces and applying precise geometric and observation models. The observations are used
to estimate the satellite’s state vector at epoch such that the observations fit the computed orbit
as good as possible. The output of such computer programs are satellite state vectors at selected
times. From these state vectors the instantaneous osculating orbital elements can be derived
(Section 11.10). However, for satellite mission analyses one is particularly interested in the long-
term smoothed variation of the orbital elements and then deliberately filters out all kinds of short-
period variations, with periods of some tens of minutes to a few days, of these elements. This can
be done by applying some type of numerical filtering method or an analytical averaging
technique based on an orbit dynamics theory. This results in a kind of ‘operational’ mean orbital
elements; i.e. osculating elements minus short-period variations. These mean elements represent
the secular and long-period variations due to all perturbing forces acting on a satellite. In this
Section, we will analyze the variations of these mean orbital elements. For simplicity, we will
indicate a generic mean orbital element by " and not by  as we did before.

For satellites at altitudes between 200 km and 15,000 km the Earth gravity field produces the
largest orbit perturbations. Because the absolute value of the J2-coefficient of the Earth gravity
field is more than 480 times the absolute value of the other even zonal harmonics coefficients and
of all tesseral harmonics coefficients, and the absolute value of the J3-coefficient is more than
seven times the absolute value of the other odd zonal harmonics coefficients (Table 20.1), the J2-
term of the geopotential produces the dominant secular perturbations and the J3-term produces
the dominant long-period perturbations. Therefore, in the following analyses we will approximate
the true long-term averaged variation of an orbital element by the secular variation due to the J2-
term of the gravity field model, and by the long-period variation due to the J3-term of the gravity
field model. Based on the analyses given in Sections 23.3 and 23.5, it may then be stated that
only the elements M, S, T show secular variations and that the element a does not show a long-
period variation. For low-eccentricity orbits it may be further stated that: 1) the long-period
variations of i and S are very small, because the relevant expressions contain a factor eJ3/J2; 2)
the long-period variations of T and M may be relatively large, because the relevant expressions
contain a factor J3/(J2 e); 3) the long-period variation of e may be of the same order of magnitude
as the mean-mean eccentricity.
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Earth observation orbits
Most Earth observation satellites encircle the Earth in near-circular orbits at altitudes of 500 km
to 2000 km and at orbital inclinations of 70E to 110E. This guarantees both a world coverage and
a high resolution of the observations. Exceptions are geostationary satellites which have the
advantage of observing continuously the same region on Earth. As a satellite orbits the Earth, the
Earth spins beneath it in an eastward direction, and the satellite will pass over the equator at a
different longitude on each of its orbits. During a 12-hour period, the satellite can observe the
entire Earth’s surface, provided that its instruments have a sufficiently wide field of view. For
an inclination of exactly 90E, (23.35-2) shows that, to first-order approximation, the secular rate
of change of the right ascension of the ascending node is zero. In fact, for i = 90E all zonal
harmonics secular and periodic terms in S and i vanish, indicating that the orbital plane remains
fixed in inertial space, while the Earth rotates underneath and revolves about the Sun. This causes
the nature of the illumination at the sub-satellite point to vary, through its range, over a three-
month period. So, the same region can be observed every six months under the same lighting
conditions. The fact that the satellite observes any spot on the Earth’s surface under continuously
changing solar lighting conditions can be disadvantageous for the observation instruments and
for the interpretation of the acquired observations. Therefore, these satellites often fly so-called
Sun-synchronous orbits, which are also very attractive for the satellite power supply. This type
of orbits is described below.

It should be realized that, in general, the altitude of a satellite in its orbit varies both locally
and globally. The primary causes of these variations are: 1) the oblate ellipsoidal shape of the
Earth, which results in a variable altitude even for a circular orbit; 2) the eccentricity of the
nominal orbit; 3) the short-period variation of the orbital semi-major axis due to the even zonal
harmonics of the Earth’s gravity field; 4) the long-period variation of the orbital eccentricity
primarily due to odd zonal harmonics; 5) the precession of the argument of perigee, which results
in a variable configuration of the elliptical orbit relative to the oblate ellipsoid. The overall
altitude variation for a near-circular high-inclination orbit may be as large as 50 km or more.

Sun-synchronous orbits
As shown in Section 23.2, but also by (23.52-5), the amplitude of the long-period variation in S
is, in particular for near-circular orbits, quite small. Consequently, the secular variation of S, as
produced by the J2-term of the geopotential, describes the long-term variation of the mean orbital
element S very well. The secular rate of change of S is given by (23.35-2), which can also be
written as

(23.54)

where we have neglected terms of order J2
2. The orbital elements on the right-hand side of this

expression formally are mean-mean orbital elements. However, for the near-circular orbits that
we consider in this Section, we may also substitute the mean orbital elements, because: 1) a does
not show a long-period variation; 2) the long-period variation of i is negligible; 3) e2 may be
neglected relative to one. It is possible to select, for given values of a and e, the inclination such
that the line of nodes rotates at the same rate, and in the same direction, as the Sun in its motion
about the Earth. These orbits are called Sun-synchronous orbits. The Earth completes one
revolution about the Sun (relative to the stars) in one sidereal year. Consequently, the mean
motion of the Sun about the Earth, when viewed from the center of the Earth, is nS =
0.98565E/day, or 1.99107*10-7 rad/s, in an eastward direction. Substitution of nS for  in (23.54)
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leads to

(23.55)

After substitution of the numerical values of nS , :, R and J2 into (23.55), and evaluation of that
expression for nearly circular orbits, we find for the Sun-synchronous inclination, iSs ,

(23.56)

where r . a. Of course, other even zonal harmonics of the Earth’s geopotential will also affect
the secular change of S and should be taken into account for a more-accurate computation of iSs.
From (23.56) we conclude that the Sun-synchronous inclination is always larger than 90E, and
that its value increases at increasing orbital altitudes. We also conclude that Sun-synchronous
orbits only exist if . So, the maximum orbital altitude for which a Sun-synchro-
nous orbits exists is hmax = 5975 km; where iSs = 180E. However, this is a purely theoretical case.
The real value of Sun-synchronism shows up for low-altitude orbits, where r/R . 1 and conse-
quently iSs . 95E - 100E.

The fact that low-altitude, near-circular, Sun-synchronous orbits are quasi-polar forms the
basis of an important application of these orbits. By selecting an appropriate launch time, one can
create a situation where the vector Earth-Sun is (about) perpendicular to the line of nodes of the
satellite orbit. Because in this situation the satellite passes the nodes around 6 a.m. and 6 p.m.
local solar time, this orbit is called a twilight orbit or dawn/dusk orbit. Since the orbit is Sun-
synchronous, the Earth-Sun vector will remain (about) perpendicular to the line of nodes during
the entire flight of the satellite. As the orbit is nearly polar and the declination of the Sun only
varies between 23.5E and -23.5E, it is then possible to create a situation in which the satellite does
not enter the Earth’s shadow cone for several months, which is ideal for the satellite power
supply through solar cell arrays. In Figure 23.9, four configurations of a Sun-synchronous twi-

Figure 23.9: Four configurations of a Sun-synchronous twilight orbit.
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light orbit are shown schematically. In the graphs the Earth is ‘behind’ the velocity vectors indi-
cated. Note that the terms spring and autumn in this Figure hold for an observer in the northern
hemisphere. For the upper two graphs, the local solar time at the ascending node is about 6 p.m.;
for the lower two graphs about 6 a.m. It will be clear that when launch takes place in such a way
that just after launch the geometry indicated in the configurations b) or c) occurs, then the
satellite will be continuously illuminated by the Sun for a long period of time (long eclipse-free
period); in configurations a) or d) the satellite may soon enter the Earth’s shadow cone over the
south pole or north pole, respectively.

Many Earth observation missions benefit from the characteristics of Sun-synchronous orbits,
although the line of nodes does not always need to be about perpendicular to the Earth-Sun
vector. By choosing a particular value of the angle between the projection of the Earth-Sun vector
on the equatorial plane and the line of nodes, it is possible to reach a situation in which the
satellite passes over a specific area always at the same local solar time. Then, the sensors on
board observe that area every time under the same lighting conditions, which is very attractive
for the interpretation of the measurements. An example is the ERS-1 satellite for which a Sun-
synchronous near-circular orbit with perigee and apogee altitudes of about 770 km and 785 km
was selected. Equation (23.56) then yields for the required inclination i = 98.504E. The value of
S, in combination with the launch time, was selected such that for moderate northern latitudes
the northbound ERS-1 overflights took place at about 22.5 hr local solar time and the southbound
passes at about 10.5 hr local solar time.

Since for a Sun-synchronous orbit the secular rate of change of the right ascension of the
ascending node, , is equal to the angular motion of the Sun as viewed from the Earth, the
satellite’s orbit is in deep resonance with respect to the Sun. This leads to a slowly growing
oscillation in the orbital inclination. So, the solar gravitational attraction affects in an indirect
way the secular rate of change of the ascending node ((23.54)) and thus the Sun-synchronism of
the orbit. Ignoring the effects of changes in a and e, we may write

where we have neglected terms of order ()i)2. With (23.35-2) and (23.54) this relation may be
written as

So, a change in i will lead to an unwanted drift of the angle between the (projection of the) Sun-
Earth line and the satellite orbit’s line of nodes. If the effect of )i on , and so on S, becomes
too large, an orbit maintenance maneuver has to be applied. A possibility is (Section 22.7) to
apply a )VW impulsive shot (perpendicular to the orbital plane) at u = 90E or 270E to correct the
ascending node back to its nominal position, and a )VW impulsive shot at u = 0E or 180E to
correct the inclination back to its nominal value. However, a more desirable approach is to take
advantage of the fact that )i causes the change of the nodal drift. Assume that an impulsive shot
with magnitude ()VW)0 executed at u = 0E or 180E leads to a correction of i and so of  back to
their nominal values. Then, an impulsive shot with magnitude 2()VW)0 , applied at the same
position and in the same direction, will result in an ‘over-corrected’ value of i, but also of , and
thus in a drift of S towards its nominal value. Due to the continuous acting solar gravitational
attraction, the values of i and  will gradually change again, resulting in a drift of S away from
its nominal value, and a similar maneuver has to be applied periodically to keep the value of S
within accepted limits. This maintenance strategy allows to adjust only the inclination and is
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more efficient than the previously mentioned dual-impulse maneuver.

Frozen orbits
In general, the major axis of a satellite orbit will precess under the influence of the J2 zonal
harmonic of the Earth’s gravity field. In Section 23.3, it was found that if the orbital inclination
is equal to one of the critical inclinations (63.435E, 116.565E), this J2-induced precession is zero
for an arbitrary orbital eccentricity and so the location of the argument of perigee will be
stationary. This means that the satellite will always pass over a certain region of the Earth at the
same altitude, which is attractive for various types of Earth observation missions, in particular
when the satellite acquires radar measurements. However, there is another possibility to keep the
location of the argument of perigee stationary at an arbitrary orbital inclination; this is the so-
called frozen orbit. This type of orbit is realized through the balancing of the secular perturba-
tions due to the even zonal harmonics with the long-period perturbations due to the odd zonal
harmonics of the Earth’s gravity field, resulting in a cancellation of the rates of change of the
mean eccentricity and mean argument of perigee. From a more abstract perspective, frozen orbits
arise from bifurcations or singularities in the relevant system of differential equations. In this
Section, we will perform a first-order analysis and only account for the first-order effects of the
J2- and J3-term of the Earth’s gravity field potential. It will be shown that a frozen orbit is nearly
circular (e # 0.001).

We start from the Lagrange planetary equations (Section 22.1) for the osculating orbital
elements e and T to derive expressions for the time derivatives of the mean orbital elements e and
T. These time derivatives include a secular contribution due to the J2-term and a long-period
contribution due to the J3-term. In Section 23.3 an expression for the perturbing force function,

, that accounts for the J2-term is given. From (20.1-3) we can derive an expression for the
perturbing force function that account for the J3-term. When we combine both expressions we
find

(23.57)

In Section (23.3) we have derived (23.23), which represents the averaged form of the first part
of (23.57) that accounts for the secular variations of the orbital elements due to the J2-term. Using
the method described in Section 23.3, we should take the mean value of the second part of
(23.57) with respect to M, where we substitute the time-averaged value of (a/r)4, and retain only
terms of the expression in square brackets which are dependent on T, to obtain an expression that
accounts for the long-period variations of the orbital elements due to the J3-term. We then need
the following expressions:

where the index m refers to the time-average (average with respect to M) over an orbital revo-
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lution. These expressions can be derived by the computation scheme given in Section 23.3. We
then find for the relevant averaged perturbing force function

(23.58)

The Lagrange planetary equations for the eccentricity and the argument of perigee contain the
partial derivatives of  with respect to a, e, i, J (M). When we derive from (23.58) expressions
for the partial derivatives of  with respect to these elements, substitute these expressions into
(22.35-2) and (22.35-4), and neglect terms of order e2 relative to one, we find after some
algebraic manipulation for the two averaged Lagrange planetary equations

where the orbital elements, formally, are mean elements. Note that at the critical inclinations,
where 5cos2 i = 1, dT/dt … 0 due to the J3-term. As already stated in Section 23.2, J3 is of order
10-6 while J2 of order 10-3. Therefore, formally, we should include the second-order contribution
of the J2-term in the expression for dT/dt, which would lead to a J2

2-term (Section 23.3). For
simplicity, we will neglect this J2

2-term because it produces an argument of perigee rate that is
of order J2

2, while the J3 contribution is much larger and is of order J3 /e.
We now divide part of the expression for dT/dt by sin i and (5cos2i -1). This is allowed

since: 1) i = 0E, 180E is excluded from our analysis because then T is not defined; 2) we are not
looking for the critical inclinations solution. We then obtain

(23.59)
Note that the absolute value of the last term in (23.59-2), e2 f(i), can become large relative to one
when i . 0E, 63.435E, 116.565E, 180E, even for small values of e. Equation (23.59-2) shows that,
in addition to the already discussed case of the critical inclinations, the location of the mean
argument of perigee is also stationary when the term in square brackets is zero; this is the
requirement for a frozen orbit. From this requirement, the eccentricity of a frozen orbit can be
computed for specified values of R/a, T and i. According to (23.59-1), e will generally change
with time, unless cosT = 0E, i.e. T = 90E, 270E. Because J2 > 0 and J3 < 0 (Table 20.1), we conc-
lude from (23.59-2) that only T = 90E satisfies the requirement e $ 0. A numerical analysis of
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the term in square brackets shows that, generally, for T = 90E, R/a = 0.75 - 0.95 (h . 340 - 2120
km): e < 0.0012. So, a frozen orbit is a nearly circular orbit indeed! Only for i = 0E, 180E, and
inclinations within narrow bands of less than 4*10-4E centered at the critical inclinations, e
becomes (much) larger than 0.0012, which leads to orbits that are not suited for Earth observation
missions. The numerical analysis also shows that, for R/a = 0.75 - 0.95 and inclinations outside
the bands 0E < i < 0.573E, 63.432E < i < 63.438E, 116.562E < i < 116.568E, 179.427E < i < 180E,
the term in round brackets differs less than 0.01 from one. Consequently, outside these narrow
bands of forbidden inclinations and for T = 90E, we may approximate (23.59-2) by

(23.60)

and the conditions for a frozen orbit are

(23.61)

For orbital inclinations between 64E and 116E, which corresponds to the range of inclinations
used for Earth observation missions, and orbital altitudes of 340 - 2120 km, we find e = 0.00079 -
0.00111. A frozen orbit is surprisingly stable, suffering little decay due to other natural
perturbations—even drag. However, special care must be taken to avoid that the usual orbit
maintenance impulsive shots disrupt the frozen-orbit geometry.

The frozen orbit phenomenon was first pointed out by Y. Kozai in 1959 as a peculiarity for
small eccentricity orbits and without discussion of its significance for mission planning and
operations. The term ‘frozen orbit’ was probably first used in the literature in the mid 1970s in
connection with mission analysis studies for SEASAT, a NASA satellite for ocean studies that
was launched by an Atlas-Agena rocket from Vandenberg on June 26, 1978, into a non-Sun-
synchronous near-circular orbit. Since then, a frozen orbit has been applied for numerous other
Earth-orbiting satellites, as well as for Martian, Venusian, and lunar orbiters.

As an example, we consider the orbit selected for SEASAT. Its mission asked for a frozen
orbit with a = 7172.3 km, i = 108.0E. Equation (23.61) then yields e = 0.000988. In reality, the
satellite flew a near-frozen orbit with a = 7172.3 km, e = 0.0008, i = 108.02E. For that orbit, the
perigee librates in the (e , T) phase plane (Figure 23.10, top); the instantaneous values of e and
T move over a closed contour in this Figure in a counter-clockwise direction at the apsidal period
(210 days for SEASAT). The other perturbing forces acting on the satellite make the actual
motion of e versus T to deviate somewhat from this pure libration, but the curve remains nearly
closed. For orbits with a value of e that differs more from its frozen-orbit value the trajectories
in the (e , T) phase plane become wider and ultimately they appear as sinusoidal waves. This is
of little concern though because orbit adjust maneuvers can restore the frozen-orbit geometry
long before any significant decay has occurred.

The frozen orbit geometry minimizes both the local and global altitude variation. The global
variation is diminished because the long-period motion in the mean eccentricity is damped out.
The local variation is diminished because the motion of the mean argument of perigee is damped
out. Furthermore, all sub-satellite points at a given latitude have the same altitude variation.
Adoption of a frozen orbit eccentricity results in a global altitude variation of about 35 km, most
of this due to the Earth’s flattening. Figure 23.10 (bottom) shows that for a SEASAT-type of orbit
but with a slightly higher eccentricity, the variation of the orbital altitude over the northern
hemisphere is small. This is characteristic for frozen orbits and is attractive for satellites that
carry a radar altimeter or a Synthetic Aperture Radar (SAR).
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Figure 23.10: Libration of the mean argument of perigee in the (e,T) phase plane for near-frozen orbits
(top), and the variation of altitude (bottom left) and altitude rate (bottom right) as a function of latitude
over an orbital revolution for a SEASAT-type of frozen orbit. [copied from: E. Cutting, G.H. Born, J.C.
Frautnick, Orbit Analysis for SEASAT-A, The Journal of the Astronautical Sciences, Vol. XXVI, No. 4,
pp. 315-342, December 1978.]

As a second example, the orbit of the US/French TOPEX/Poseidon satellite may serve. This
oceanography satellite was launched on August 10, 1992, by an Ariane-42P rocket from Kourou.
The mission asked for a non-Sun-synchronous frozen orbit with a = 7714.429 km and i =
66.041E. From (23.61) we obtain e = 0.000884. However, this value holds for the case that we
only account for the effects of the J2 and J3 zonal harmonics. Close to the critical inclination a
frozen orbit is very sensitive to higher-degree zonal harmonics and to tesseral and sectorial har-
monics of the Earth’s geopotential (Section 20.1). To illustrate this, it is noted that when, instead
of only the J2 and J3 zonal harmonics, the J2 to J9 zonal harmonics would have been taken into
account, the inclination bands where e > 0.0012 would have broadened from less than 4*10-4E
to 57.1E < i < 65.6E and 114.4E < i < 122.9E. So, these broad bands should be avoided for Earth
observation missions. When we take the additional gravitational perturbations into account, we
find that the value of T should be either 90E or 270E, depending on the gravity field terms
included in the analysis. It can be shown that when for TOPEX/Poseidon only terms up to
n,m = 7 are accounted for, its frozen orbit requires T = 90E; when terms up to n,m = 11 are
accounted for, its frozen orbit requires T = 270E; and when terms up to n,m = 180 are accounted
for, its frozen orbit again requires T = 90E. For the latter case, the value of the mean eccentricity
turns out to be e = 0.000095. The conditions actually achieved by the orbit acquisition maneuvers
were e = 0.000143 and T = 90.6E.

Ground track repeat orbits
A satellite ground track is defined as the curve on the Earth’s surface that connects successive
crossing points of the satellite’s geocentric position vector and the Earth’s surface (Section 3.5).
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In general, the satellite’s ground track will gradually fill all longitudes within the latitude range
that is determined by the orbital inclination. Note that the angle at which the ground track
intersects the equator is not equal to the inclination, because the Earth is rotating under the orbit.
For some missions it is required that the ground track exactly repeats after a certain period of
time: the repeat period, Prep. All repeat ground tracks are characterized by a set of fixed equator
crossing points, which ‘tie’ the ground tracks to the Earth. For our analysis we will consider only
ascending equator crossing points. An important parameter in the analysis of repeat ground tracks
is the precession of the orbital plane. Equation (23.15) shows that the amplitude of the long-
period variation in S is, in particular for near-circular orbits, much smaller than the secular
variation of S. Consequently, the secular variation of S, as produced by the J2-term of the
geopotential, describes the long-term precession of the orbital plane very well.

If the orbital plane would be fixed in space, the longitude of a consecutive crossing of the
ascending node would be shifted over an angle where TN is the nodal period (Section 23.3)
and  = 7.29212*10-5 rad/s is the mean (sidereal) rotational velocity of the Earth, towards the
west relative to the longitude of the previous crossing of the ascending node. When the secular
precession of the orbital plane is accounted for, the geocentric angle (longitude difference)
between consecutive crossings of the ascending node is  where S is the funda-
mental interval. Now, suppose that the satellite completes precisely " nodal revolutions while
the Earth rotates exactly $ times relative to the precessing orbital plane. Then, the ground track
will repeat after " nodal revolutions of the satellite and we may write

or

(23.62)

where " and $ are positive irreducible integers. The quantity 2B/( ) defines the nodal day
introduced in Section 23.3. So, (23.62) indicates that the satellite completes " nodal revolutions
in $ nodal days, and the repeat period, Prep , is given by

(23.63)

Substitution of (23.38) into (23.62) yields

or

(23.64)

where  ((23.35)). As we have assumed that only the J2-term of the gravity field produces
the secular variations of the mean orbital elements,  and  are given by (23.27) and (23.35).
In reality, also other zonal harmonics of the Earth’s gravity field and the gravitational attraction
of the Sun and the Moon contribute to  (Section 21.3). However, the contributions by the other
zonal harmonics is much smaller than the contribution by the J2-term, and, generally, luni-solar
perturbations may be ignored for first-order analyses.
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During a repeat period, a complete grid of ground tracks will be produced. On each day,
ground tracks will be laid down at evenly spaced intervals (fundamental interval) toward the
west; ground tracks on successive days will fill in the intervals between the tracks laid down the
first day. It will be clear that for a repeat orbit the equatorial longitudinal distance between
consecutive ground tracks is 2BR$/", where R is the (mean) equatorial radius of the Earth; the
equatorial distance between adjacent ground tracks then is 2BR/".

Note that (23.64) is identical to the condition given in Section 23.5 for repeat ground track
resonance. Consequently, ground track repeat orbits are subject to large-amplitude resonance
perturbations that might become unacceptable to the mission profile and therefore need periodic
orbit maintenance maneuvers. Comparing (23.49) and (23.64) we find m = " and n - 2p = $,
where n and m are the degree and order of a harmonic of the Earth’s gravity field, respectively,
and p is a coefficient defined in Section 23.5. Most Earth observation satellites circle the Earth
at altitudes between 500 km and 2000 km, and these satellites complete 11.3 - 15.2 revolutions
about the Earth per day. As an example, let us consider again the ERS-1 satellite. It was
mentioned in Section 23.5 that one of the ground track repeat orbits flown by this satellite had
a semi-major axis, eccentricity and inclination of 7153.14 km, 0.00106 and 98.523E, respectively,
and that the satellite completed in this orbit 43 nodal revolutions in 3 nodal days; so, "/$ = 43/3
(.14.33). With the theory developed in Section 23.5 we find that for this orbit the major
resonance-producing terms of the gravity field are {43,43,20,0}, {45,43,21,0}, {47,43,22,0}, etc.,
where the notation introduced in Section 23.5 is used. It is emphasized that the larger the values
of $, the weaker the resonance effects (Section 23.5). So, polar circular orbits for which e.g. "/$
= 127/10 (h . 1360 km), 501/35 (h . 770 km), 2411/168 (h . 755 km) will experience a milder
resonance than a polar circular orbit for which "/$ = 43/3 (h . 760 km). The most intense
resonance perturbations may be expected for satellites in orbits for which "/$ = 2/1 or 1/1.
However, for near-circular orbits this situation occurs only when r/R . 4.2 or r/R . 6.6,
respectively, and then the term (R/a)n in the expressions for the orbit perturbations due to the
Earth’s gravity field leads to a weakening of the resonance perturbations in the orbital elements.

Substitution of (23.12), (23.27) and (23.35) into (23.64) yields

Because the term "/$ may be quite large, we do not evaluate the product of both terms in square
brackets and subsequently retain only terms of the first order of J2, but rewrite the expression as

(23.65)

Note that when "/$, e and i are specified, this equation can be used to solve for a in an iterative
way. As a zeroth-order approximation, we may use
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(23.66)

Substitution of this value in the terms in brackets on the right-hand side of (23.65) yields an
improved value of the mean semi-major axis, a, which we substitute on the right-hand side of
(23.65), and so on. If the orbit also has to be Sun-synchronous, we have to solve (23.54) and
(23.65) simultaneously, which yields the required values of a and i for a specified value of "/$
and e.

In reality, various perturbing forces will cause the actual ground track to drift from that generated
by the reference orbit (nominal ground track), which will require periodic orbit adjustment
maneuvers. Such deviations are, for example, caused by the long-period variation of the mean
orbital elements due to odd zonal harmonics of the Earth’s gravity field, by a nodal drift due to
the gravitational attraction by the Sun and the Moon, and by a decay of the semi-major axis due
to atmospheric drag. The first effect leads to small periodic deviations of the ground track, the
second effect is quite small, although it does grow over time and eventually causes an unac-
ceptable error in the repeat ground track pattern. The third effect can be significant for low-Earth
orbits. For that reason we will discuss it briefly.

Although TN depends on a, e, and i, the primary dependence is on the semi-major axis,
through the mean motion, n. Basically, a change in the nodal period, )TN , will cause a change
in the ground track shift, )S, per revolution of

(23.67)

The last term on the right-hand side is really a higher-order effect and can be ignored for a first-
order analysis. The change in TN due to a decaying semi-major axis is to first-order approximation
equal to the change in the Keplerian period and can be found from (6.25):

Substitution of this relation into (23.67) gives

Consequently, a decay in the semi-major axis causes the nodal period to decrease, which means
that the satellite crosses the ascending node sooner than desired. This results in an eastward shift
of the ground track, which continues to grow as the semi-major axis decays. In fact, the ground
track shift grows quadratically with the number of revolutions. Consequently, periodic orbit
adjustment burns have to be made to restore the semi-major axis. To maximize the interval
between such ground track maintenance maneuvers, we take advantage of a margin (deadband)
on each side of the nominal ground track pattern; when the actual ground tracks stay within this
deadband, the mission is considered successful. When the actual ground track pattern nears the
eastern deadband boundary, an impulsive shot in the orbital plane and perpendicular to the
position vector is executed at perigee (Section 22.7) to increase the value of the semi-major axis
and to reverse the ground track drift. The value of )a is chosen such that by the time the ground
track has drifted to the western deadband boundary, the effect of drag has reduced a to its
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nominal value for the repeat ground track, and the ground track drift stops. As the decay effects
continue, the ground track will start again to drift in the eastward direction and eventually the
next maintenance maneuver at the eastern deadband boundary has to be executed.

Oceanography satellite orbits
Oceanography satellites require near-circular orbits of which the ground track repeats itself after
some time within a deadband of about 1 km. This requirement guarantees that measurements are
made repeatedly at the same geographic location, which e.g. is crucial to monitor variations in
sea level through satellite altimetry. Then, a series of sea-level height observations at the same
geographic location is obtained and all kinds of geographically-correlated errors that are present
in the models applied for the processing of the altimeter data cancel. The period in between
successive measurements at a certain location, the ground track repeat period, may range from
days to months, depending on the type of features to be sampled. A dense grid of ground tracks
provides a good spatial sampling of the ocean surface, but inevitably leads to a long repeat
period. This means that it takes a long time before the same geographic location is measured
again, which leads to a bad temporal sampling of ocean phenomena. So, for processes that do not,
or only very slowly, change with time, a long repeat period (dense ground track pattern) can be
chosen, while for observing fast changing ocean phenomena one has to select a short repeat
period and consequently a wide ground track pattern. In practice, the selection of the orbit repeat
period is a trade-off between various requirements.

SEASAT originally flew in a 17-days near-repeat orbit, which was adjusted to a 3-days repeat
frozen orbit during the last month of its 3-months mission. In that orbit the satellite completed
43 nodal revolutions in 3 nodal days: "/$ = 43/3. Using this value, we find from (23.66):
a(0) = 7145.7 km; using the values of e = 0.0008 and i = 108E given before, we find from (23.65)
after a number of iterations: a = 7169.0 km. This value is close to the value a = 7172.3 km given
before. From (23.27), (23.35) and (23.63) we find that the repeat period is 3.0088 (mean solar)
days. ERS-1 has flown in a number of different Sun-synchronous repeat orbits for which the
following "/$-combinations held: 43/3, 501/35, 2411/168. It will be clear that the last combi-
nation resulted in a very dense pattern of ground tracks; however, in this orbit it took 168 nodal
days before the same geographic location was passed over again. Figure 23.11 shows the ERS-1
ground track for the 43/3 orbit, while Figure 23.12 shows the ERS-1 ground track over the North
Atlantic both for the 43/3 (left) and 501/35 (right) orbit. Clearly visible is the much denser pattern
for the 501/35 orbit; the equatorial spacing between adjacent ground tracks is 932 km for the 43/3
orbit and 80 km for the 501/35 orbit. For TOPEX/Poseidon an orbit with "/$ = 127/10 was selec-

Figure 23.11: ERS-1 ground track for its 43/3 repeat orbit.



Fundamentals of Astrodynamics     SS     Orbit perturbations due to the Earth’s gravity field 663

Figure 23.12: ERS-1 ground track over the North Atlantic for its 43/3 (left) and 501/35 (right) repeat
orbits.

ted, which means that after 10 nodal days, when the satellite has encircled the Earth 127 times,
the same geographic location was passed over again. Using "/$ = 127/10 and the values of e and
i given before: e = 0.000883, i = 66.041E, we find from (23.27), (23.35), (23.63), (23.65) and
(23.66): a = 7714.4 km, Prep = 9.9156 day; the equatorial spacing between adjacent ground tracks
is 316 km.

It is remarkable that during the mission of a satellite various "/$-combinations can be
realized by executing only small orbit maneuvers. This can be illustrated by comparing two orbits
selected for the ERS-1 mission. For the 43/3 orbit, the mean semi-major axis, inclination, and
eccentricity have the values 7153.16 km, 98.523E, and 0.00106, respectively. For the 501/35
orbit, the mean elements have the values 7159.51 km, 98.549E, and 0.00106, respectively. So,
the semi-major axes of these two orbits differ by only 6.4 km and the inclination by only 0.026E.
These small orbit changes can easily be realized by the satellite’s onboard propulsion system and
therefore ERS-1 could be maneuvered into different repeat orbits during its operational life.

GPS orbits
The GPS satellite navigation system originally called for 24 satellites in circular orbits in six
orbital planes, with four satellites in each plane. The six orbital planes have an inclination of 55°
and are separated in the right ascension of the ascending node by 60°. The objective was that at
least six satellites are always within line of sight from almost everywhere on the Earth's surface,
allowing an accurate position determination globally. The result of this objective is that the four
satellites are not evenly spaced apart within each orbital plane; the angular distance between the
satellites in each plane is 30E, 105E, 120E, and 105E. The orbital altitude is approximately 20,200
km; the orbital period is about 11h58m. This means that a satellite completes about two
revolutions each sidereal day, approximately repeating the same ground track each day. As of
April 2014, there are 30 actively broadcasting satellites in the GPS constellation. With the
increased number of satellites, the constellation was changed to a non-uniform arrangement. Such
an arrangement was shown to improve reliability and availability of the system, relative to a
uniform system, when multiple satellites fail. In this arrangement about eight satellites are visible
from any point on the ground at any one time. When we substitute "/$ = 2/1, e = 0 and i = 55E
into (23.27), (23.35), (23.63), (23.65) and (23.66) we find a = 26,560.4 km, Prep = 23h55m55s.
Figure 23.13 shows a typical GPS ground track; the tick marks indicate time intervals of 30 min.
As mentioned before, the near-repeat ground track leads to near resonance with those terms of
the Earth’s gravity field for which m = j", n - 2p = j$, j = 1, 2, 3, .... . Realizing that, in particular
for high-altitude orbits, the largest perturbation amplitudes are produced by terms with the lowest
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value of n, we find that the dominant resonance term is {3,2,1,0}; here the notation introduced
in Section (23.5) is used.

 

Figure 23.13: Ground track of a GPS repeat orbit.

Molniya orbits
In Section 23.3 the concept of the critical inclination was introduced; i.e. the inclination for
which the secular variation of the mean argument of perigee vanishes, if we account only for the
effect of the J2-term of the Earth’s gravitational potential. It was found that the value of the
critical inclination is 63.435E or 116.565E. For that inclination, the orientation of an elliptical
orbit in its orbital plane is stationary, while the orbital plane itself rotates about the polar axis.
This can be an attractive characteristic for certain missions, such as the USSR/Russian Molniya
satellite communications system. In the west, the geostationary orbit has been broadly adopted
for satellite communications systems. This was possible because the USA, and later ESA, have
a launch site at (fairly) low latitudes (Cape Canaveral, 28.5E N; Kourou, 5.2E N). The Soviet
Union, however, did not have the disposal of a low-latitude launch site (Table 16.1) and, in the
early days of spaceflight, did not have rockets powerful enough to launch communications
satellites from their launch sites into geostationary orbit. Therefore, they used a system of
Molniya communications satellites, which move about the Earth in an eccentric orbit with an
argument of perigee T = 270E and of which the ground track repeats itself after 1 nodal day when
the satellite has completed 2 nodal revolutions about the Earth. This means that the orbital period
is close to 12 hr. The orbit geometry is such that once every two revolutions the apogee is over
Russia. The early satellite orbits had an eccentricity e . 0.74. When we substitute "/$ = 2/1,
e = 0.74 and i = 63.435E into (23.27), (23.35), (23.63), (23.65) and (23.66) we find a = 26,561.8
km, Prep = 23h55m29s. The resulting perigee and apogee altitudes are 526 km and 39,825 km,
respectively. Since the satellite moves very slowly at its high apogee (Section 6.5) it appears to
‘hover’ for hours at a time over northern latitudes. The elevation of the spacecraft is over 5° from
all points north of latitude 49.2° N for a period of 6 hr centered at apogee. As the whole of Russia
is located above 42E N, an appropriate selection of the orbit’s right ascension of the ascending
node guarantees that the satellite is visible during this period from most locations within Russia.
If four satellites are used, which are appropriately phased in similar orbits but in four orbital
planes with the right ascension of the ascending nodes separated by 90E, the satellite system may
provide continuous communication links between Russian ground stations. Each satellite is then
active for a period of 6 hours. In practice, for operational reasons a system with more satellites
in more orbital planes, but all with i = 63.435E, was used. Of course, perturbing forces acting on
the satellites gradually move the orbital elements away from their nominal values. Therefore, the
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spacecraft are equipped with an orbit correction propulsion system, which is periodically
activated to correct the orbital elements. Nowadays, the Russian launchers are powerful enough
to bring large telecommunications satellites into geostationary orbit and Russia frequently uses
their geostationary satellites for national and international communications. These satellites are
visible at elevations above 5E at latitudes below 76.3E. So, they cover almost the entire Russian
territory, although, for a major part of this territory they are visible at low elevations. This means
that their signals may easily be obstructed by buildings and irregular terrain topography, while
the signals from the Molniya satellites reach the user at higher elevations.

The first operational Molniya satellite was launched in April 1965 and since then more than
160 satellites have been launched, in three series of increasing communications performance, to
replace old or failed satellites and to replenish the configuration. Figure 23.14 shows the ground
track of a typical Molniya orbit; in this example the apogee is over Finland and over Alaska. The
tick marks indicate time intervals of 30 min and clearly show that the satellite is most of the time
over northern latitudes. As for the Molniya orbits the same value of "/$ holds as for the GPS
orbits, also for these orbits the dominant resonance term is {3,2,1,0}. The low perigee altitude
of about 526 km of the early Molniya satellites made them vulnerable to the deleterious effect
of the Van Allen radiation belts. Therefore, later generations of Molniya satellites flew in orbits
with the same inclination, argument of perigee and semi-major axis, but with an eccentricity of
about 0.72, resulting in perigee and apogee altitudes of 1057 km and 39,295 km, respectively.
The last successful launch of a Molniya satellite occurred in February 2004. In the period
December 2006 to August 2014 five Russian Meridian military communications satellites have
been launched in Molniya-type orbits.

Figure 23.14: Ground track of a Molniya repeat orbit.

Tundra orbits
A Tundra orbit is a modern variant of the Molniya orbit. The ground track repeats itself after 1
nodal day when the satellite has completed 1 nodal revolution ("/$ = 1/1), which leads to an
orbital period of about 24 hr (geosynchronous satellite); the inclination of the orbit is equal to the
critical inclination (63.435E), the eccentricity is about 0.3, and the argument of perigee is 90E or
270E. When we substitute "/$ = 1/1, e = 0.3, and i = 63.435E into (23.27), (23.35), (23.63),
(23.65) and (23.66) we find a = 42,163.4 km, Prep = 23h56m2s. Figure 23.15 (left) shows the
ground track of a Tundra orbit with apogee over Canada. Again, the tick marks indicate time
intervals of 30 min. For a "/$ = 1 repeat ground track those terms of the Earth’s gravity field for
which m = j, n - 2p = j, j = 1, 2, 3, .... lead to resonance. Realizing that the largest perturbation
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Figure 23.15: Ground track of a Tundra repeat orbit (left) and of a circular geosynchronous orbit with
an inclination of 30E (right).

amplitudes are produced by terms with the lowest value of n, we find for the dominant resonance
term {2,2,0,0}. Typically, a Tundra orbits constellation consists of two satellites in each of three
orbital planes; all orbits have the same semi-major axis, eccentricity and inclination. The
selection of a larger orbital eccentricity would result in a higher apogee, which is attractive for
an extended communications period, but would also lead to a lower perigee, which would bring
the satellite periodically in the Van Allan belts and would shorten the lifetime of the satellite.
Therefore, generally, the value of about e = 0.3 is applied that yields, in combination with
"/$ = 1/1, perigee and apogee altitudes of 23,140 km and 48,440 km, respectively. The high
apogee in combination with the 24 hr period guarantee a visibility for more than 12 hr under the
apogee. This type of orbit has many attractive features to commercial communications operators.
The geosynchronous period of the orbit allows each satellite to maintain its ‘visible’ position over
the same region of the world, allowing operators to tailor their services to a specific market
region. The high inclination is attractive because major dense population centers of the world are
located at higher latitudes, and allows the satellite to broadcast with higher elevation angles into
that desired region, when compared to geostationary satellites. As the satellite travels into the
higher latitudes, the signals are received on the ground from overhead rather than from a low
elevation angle. This feature mitigates the ‘urban jungle’ effect in large cities as well as providing
coverage into remote mountainous or heavily forested regions.

Geosynchronous orbits
As a last example, we consider the cases of a circular geosynchronous orbit with i = 30E (Figure
23.15, right) and a geostationary orbit. For both orbits: "/$ = 1/1. When we substitute e = 0,
i = 30E, "/$ = 1/1 into (23.27), (23.35), (23.63), (23.65) and (23.66), we find a = 42,165.4 km,
Prep = 23h56m1s. Note that the mean semi-major axis is about 1.2 km larger than the value
computed on basis of pure Keplerian motion (Section 6.2). Again, the tick marks in Figure 23.15
(right) are plotted at 30 min time intervals. When we substitute e = 0, i = 0, "/$ = 1/1 into
(23.27), (23.35), (23.63), (23.65) and (23.66), we find a = 42,166.3 km, Prep =  23h56m1s. For this
geostationary orbit the mean semi-major axis is about 2.1 km larger than the value of 42,164.2
km computed on basis of pure Keplerian motion. As for a geosynchronous orbit the same value
of "/$ holds as for a Tundra orbit, also for this type of orbit the dominant resonance term is
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{2,2,0,0}. A satellite in a geostationary orbit will appear motionless to an observer on Earth with
no change of elevation or azimuth during the day. Therefore, this orbit is attractive for global
communications satellites, because it eliminates the need for tracking mechanisms so that
communication with the satellite can be maintained with a fixed antenna on Earth.
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APPENDIX B: ASTRONOMICAL AND GEOPHYSICAL CONSTANTS 
AND PARAMETERS 1 

 
Table B.1: Selected astronomical constants and parameters. 

  
Mean solar day = msd 24h 00m 00s = 86,400 s 
Mean sidereal day 23h 56m 4.091s = 86,164.091 s 
Synodic month (msd) (new Moon to new Moon) 29.530589 
Tropical month (msd) (equinox to equinox) 27.321582 
Sidereal month (msd) (fixed star to fixed star) 27.321661 
Anomalistic month (msd) (perigee to perigee) 27.554550 
Draconic month (msd) (node to node) 27.212220 
Tropical year (msd) (equinox to equinox) 365.242190 
Sidereal year (msd) (fixed star to fixed star) 365.256363 
Anomalistic year (msd) (perihelion to perihelion) 365.259636 
Julian year (msd) (based on Julian calendar) 365.25 
Gregorian year (msd) (based on Gregorian calendar) 365.2425 
Universal gravitational constant (km3/(kg s2)) 6.67428  10-20 
Speed of light (km/s) 2.99792458  105 
Light-year (km) = ly 9.460730473  1012 
Mass Sun (kg) 1.9886  1030 
Mean radius Sun (km) 6.95508  105 
Solar luminosity (W) 3.839  1026

Distance Sun from galactic center (ly) 27,000 
Velocity Sun about galactic center (km/s) 220 
Orbital period Sun about galactic center (yr) 240  106

Distance Sun-Earth (km) 147.10  106 - 152.10  106 
Astronomical Unit (km) = AU 149.597870700  106 
Solar constant (W/m2) 1361 
Inclination invariable plane of Laplace to ecliptic (deg) 1.5786944 
Obliquity of the ecliptic (J2000, deg) 23.439279 
Sun/Earth mass ratio 3.329460487  105  
Mass Earth (kg) = M  5.9736  1024 
Mean radius Earth (km) 6371.00 
Earth/Moon mass ratio  81.30059 
Mass Moon (kg) 7.348  1022

Mean radius Moon (km) 1737.1 
Distance Earth-Moon (km) 363,100 - 405,700 
Mean distance Earth-Moon (km) 384,401 
Mean dist. Earth-Moon barycenter from center Earth (km) 4671 
Mean inclination lunar orbit to ecliptic (deg) 5.145396 
Inclination lunar equator to lunar orbit (deg) 6.6878 
Total mass entire planetary system (M ) 446.7 
Total mass of planets (M ) 446.6 
Total angular momentum of planetary system (kg km2/s) 3.148  1037

Total translational kinetic energy of planetary system (J) 1.99  1035

Total rotational energy of planets (J) 0.7  1035

                                                 
1 Data taken from: A.N. Cox (ed.), Allen’s Astrophysical Quantities, Springer Verlag, New York, 1999; NASA 
National Space Science Data Center (NSSDC), http://nssdc.gsfc.nasa.gov; NASA JPL Solar System Dynamics 
(SSD), http://ssd.jpl.nasa.gov; The Astronomical Almanac Online, 2014, http://asa.usno.navy.mil. Last updated: 
February 5, 2010; minor corrections: August 2014. 
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Table B.2: Physical parameters of the Earth. 

 
Mass of layers 
Core (kg) 1.93  1024

Mantle (kg) 4.04  1024

Oceans (kg) 1.4  1021

Atmosphere (kg) 5.1  1018

Surface area   
Land area (km2) 1.48  108

Sea area (km2) 3.62  108

Reference ellipsoid  
Mean equatorial radius, ae (km) 6378.1366 
Polar radius, ap (km) 6356.7519 
Mean radius (km) = (ae

2ap)
1/3 6371.00 

Flattening = (ae - ap)/ae 1/298.2570 
Eccentricity = (ae

2 - ap
2)1/2/ae 0.081819 

Moments of inertia  
About rotation axis, C (kg km2) 8.0358  1031 
Largest about equatorial axis, B (kg km2) 8.0096  1031 
Smallest about equatorial axis, A (kg km2) 8.0094  1031 
Dynamical flattening = {C - (A + B)/2}/C  0.00327285 
Mantle about rotation axis (kg km2) 7.0400  1031 
Mantle about equatorial axis (kg km2)  7.0165  1031 
Core dynamical flattening 0.002646 
Rotation  
Rotational period with respect to fixed stars (s) 86,164.091 
Mean angular rotational velocity (rad/s) 7.292115  10-5 
Equatorial rotational velocity (km/s) 0.46510 
Centrifugal acceleration at equator (m/s2) 3.39157  10-2 
Angular momentum (km2 kg/s)  5.8598  1027 
Rotational energy (J) 2.1365  1029 
Chandler period (msd) 433.1 
Free core nutation period (msd) 430.2 
Gravity   
Gravitational parameter (km3/s2) 398,600.4418 
Equatorial gravity on reference ellipsoid (m/s2) 9.78033 
Polar gravity on reference ellipsoid (m/s2) 9.83219 
Atmosphere at surface  
Standard temperature (K) 273.15 
Standard pressure (Pa) 1.013250  105 
Mass density (kg/m3) 1.2928 
Molecular weight (kg/mole) 28.964  10-3 
Molecular rms velocity (m/s) 4.850  102

Specific heat at constant pressure, cp (J/(kg K)) 1005 
Specific heat at constant volume, cv (J/(kg K))  717.6 
Speed of sound (m/s) 3.313  102
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Table B.3: Ratio of the mass of the Sun and the mass of a planetary system. 

 
Mercury 6023600 
Venus 408523.71  
Earth + Moon 328900.5614 
Mars system 3098708 
Jupiter system 1047.3486 
Saturn system 3497.898 
Uranus system 22902.98  
Neptune system 19412.24 
Pluto system 1.366 × 108 

 
 
 
 

Table B.4: Comparison of physical parameters of the Sun, Earth and Moon. 
 
 Sun Earth Moon 
Mean radius (km) 695,508 6371.00 1737.1 
Mass (kg) 1.9886  1030 5.9736  1024 7.348  1022 
Mean density (gr/cm3) 1.408 5.5151 3.341 
Gravitational parameter (km3/s2) 1.327124421  1011 398,600.4418 4902.801 
Rotational period (msd) 25.38 0.997270 27.321661 
Equatorial rotational velocity (km/s) 1.9874 0.4651 0.00464 
Surface equatorial gravity (m/s2) 274.0 9.7803 1.622 
Escape velocity at equator (km/s) 617.8 11.18 2.376 
Solar rotational period refers to 26° N latitude. 

 
 

 
 
Table B.5: Planetary orbital elements. They refer to the mean ecliptic and equinox of January 
1, 2000, and describe an ellipse with the Sun at a focal point (heliocentric reference frame). 
 

Planet a 
(AU) 

e i 
(deg) 

S 
(deg) 

T 
(deg) 

M 
(deg) 

Mercury 0.387099 0.205636 7.0050 48.3308 29.1270 174.7925 
Venus 0.723336 0.006777 3.3947 76.6798 54.9223 50.3766 
Earth 1.000000 0.016710 0.0000 348.7393 114.2078 357.5171 
Mars 1.523710 0.093394 1.8497 49.5595 286.4968 19.3902 
Jupiter 5.202887 0.048386 1.3044 100.4739 274.2545 19.6680 
Saturn 9.536676 0.053862 2.4860 113.6624 338.9364 317.3553 
Uranus 19.189165 0.047257 0.7726 74.0169 96.9373 142.2838 
Neptune 30.069923 0.008590 1.7700 131.7842 273.1805 259.9152 
Pluto 39.482117 0.248827 17.1400 110.3039 113.7649 14.8601 
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Table B.6: Planetary orbital and physical parameters. 
 
 Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto 
Apohelion distance (AU) 0.46670 0.72824 1.01671 1.66601 5.45463 10.0503 20.0960 30.3282 49.3063 
Perihelion distance (AU)   0.30750 0.71843 0.98329 1.38140 4.95114 9.02301 18.2823 29.8116 29.6579 
Orbital period (sidereal year) 0.24084 0.61519 1 1.88085 11.8677 29.4507 84.0591 164.892 248.085 
Mean orbital velocity (km/s) 47.872 35.021 29.785 24.129 13.058 9.645 6.799 5.432 4.740 
Equatorial radius (km) 2439.7 6051.9 6378.14 3396.2 71,492 60,268 25,559 24,764 1195 
Oblateness 0.00000 0.00000 0.00335 0.00589 0.06487 0.09796 0.02293 0.01708 0.00000 
Mass (M) 0.055274 0.81500 1 0.10744 317.83 95.152 14.536 17.147 0.00219 
Mean density (gr/cm3) 5.427 5.204 5.5151 3.934 1.326 0.687 1.270 1.638 2.03 
Gravity acceleration at equator (g) 0.378 0.905 1 0.379 2.530 1.066 0.905 1.137 0.0674 
Equatorial escape velocity (km/s) 4.25 10.36 11.18 5.02 59.53 35.48 21.29 23.49 1.23 
Rotation period (msd) 58.6462 -243.0185 0.99727 1.02596 0.41354 0.44402 -0.71833 0.67125 -6.38723 
Length of day (hr)  4221.6 2803.2 24 24.6597 9.9259 10.656 17.24 16.11 153.2820 
Inclin. equator to orbit plane (deg) 0.01 177.3 23.44 25.19 3.13 26.73 97.77 29.58 119.59 
Number of moons 0 0 1 2 65 62 27 14 5 
Ring system no No No no yes yes yes yes No 
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Table B.7: Planetary satellite parameters 2. 
 
Satellite a 

(103 km) 
E i 

(deg) 
T 

(msd) 
R 

(km) 
M/Mpl ρ 

(gr/cm3) 
Earth        
Moon 384.401 0.0554 18.29-

28.58 
27.3216 1737.1 1.23010-2 3.341 

Mars        
Phobos 9.376 0.0151 1.075 0.3189 NS13.4 1.65110-8 1.872 
Deimos 23.458 0.0002 1.788 1.2624 NS7.5 3.73910-9 1.471 
Jupiter        
Io   421.8 0.0041 0.036 1.76914 NS1830 4.7010-5 3.528 
Europa 671.1 0.0094 0.466 3.5512 1561 2.5310-5 3.013 
Ganymede 1070.4 0.0013 0.177 7.1545 2632 7.8010-5 1.936 
Callisto 1882.7 0.0074 0.192 16.689 2410 5.6710-5 1.834 
Amalthea 181.4 0.0032 0.380 0.4982 NS131 1.0910-9 0.849 
Himalia 11461 0.1623 27.496 250.56 85 3.5510-9 2.6 
Elara 11741 0.2174 26.627 259.64 43 4.610-10 2.6 
Pasiphae 23624 0.4090 151.431 R743.63 30 1.610-10 2.6 
Sinope 23939 0.2495 158.109 R758.90 19 3.910-11 2.6 
Lysithea 11717 0.1124 28.302 259.20 18 3.310-11 2.6 
Carme 23404 0.2533 164.907 R734.17 23 6.910-11 2.6 
Ananke 21276 0.2435 148.889 R629.77 14 1.610-11 2.6 
Leda 11165 0.1636 27.457 240.92 10 5.810-12 2.6 
Thebe 221.9 0.0176 1.080 0.6745 NS55 7.910-10 3.0 
Adrastea 129.0 0.0018 0.054 0.2983 NS13 410-12 3.0 
Metis 128.0 0.0012 0.019 0.2948 21 610-11 3.0 
Saturn        
Mimas 185.539 0.0196 1.574 0.9424 NS209 6.6010-8 1.150 
Enceladus 238.037 0.0047 0.009 1.3702 NS256 1.9010-7 1.608 
Tethys 294.672 0.0001 1.091 1.8878 NS536 1.0910-6 1.15 
Dione 377.415 0.0022 0.028 2.7369 562 1.9310-6 1.476 
Rhea 527.068 0.0010 0.333 4.5175 764 4.0610-6 1.233 
Titan 1221.86 0.0288 0.312 15.9454 2576 2.3710-4 1.880 
Hyperion 1500.93 0.0232 0.615 21.2766 NS185 9.8310-9 0.542 
Iapetus 3560.85 0.0293 8.313 79.3302 736 3.1810-6 1.083 
Phoebe 12947.9 0.1634 175.243 R550.30 107 1.4610-8 1.634 
Janus 151.460 0.0068 0.163 0.6945 NS97 3.3410-9 0.634 
Epimetheus 151.410 0.0098 0.351 0.6942 NS69 9.2610-10 0.689 
Helene 377.420 0.0071 0.213 2.7369 NS18 4.510-11 1.5 
Telesto 294.710 0.0002 1.180 1.8878 NS15 1.310-11 1.0 
Calypso 294.710 0.0005 1.499 1.8878 NS15 6.310-12 1.0 
Atlas 137.670 0.0012 0.003 0.6019 NS18 1.210-11 0.437 
Prometheus 139.380 0.0022 0.008 0.6130 NS74 2.810-10 0.475 
Pandora 141.720 0.0042 0.050 0.6285 NS55 2.410-10 0.500 
Pan 133.580 0.0000 0.001 0.5750 15 8.710-12 0.360 
Uranus        
Ariel 190.900 0.0012 0.041 2.5204 NS581 1.4910-5 1.592 
Umbriel 266.000 0.0039 0.128 4.1442 585 1.4110-5 1.459 

                                                 
2 For Jupiter to Neptune only a selected set of satellites is included. 
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Titania 436.300 0.0011 0.079 8.7059 789 4.8710-5 1.662 
Oberon 583.500 0.0014 0.068 13.4632 761 3.3210-5 1.559 
Miranda 129.900 0.0013 4.338 1.4135 NS240 7.610-7 1.214 
Cordelia 49.80 0.0003 0.085 0.3350 20 5.210-10 1.3 
Ophelia 53.80 0.0099 0.104 0.3764 21 6.210-10 1.3 
Bianca 59.17 0.0009 0.193 0.4346 26 1.110-9 1.3 
Cressida 61.78 0.0004 0.006 0.4636 40 3.9510-9 1.3 
Desdemona 62.68 0.0001 0.113 0.4736 32 2.0510-9 1.3 
Juliet 64.35 0.0007 0.065 0.4931 47 6.4210-9 1.3 
Portia 66.09 0.0001 0.059 0.5132 68 1.9410-8 1.3 
Rosalind 69.94 0.0001 0.279 0.5585 36 2.9310-9 1.3 
Belinda 75.26 0.0001 0.031 0.6235 40 4.1110-9 1.3 
Puck 86.01 0.0001 0.319 0.7618 81 3.3310-8 1.3 
Caliban 7231.1 0.1812 141.53 R579.73 36 3.410-9 1.5 
Sycorax 12179.4 0.5219 159.42 R1288.38 75 3.110-8 1.5 
Neptune        
Triton 354.759 0.0000 156.865 R5.8768 1352.6 2.0910-4 2.061 
Nereid 5513.82 0.7507 7.090 360.136 170 3.0110-7 1.5 
Naiad 48.227 0.0003 4.691 0.2944 NS48 1.910-9 1.3 
Thalassa 50.074 0.0002 0.135 0.3115 NS54 3.610-9 1.3 
Despina 52.526 0.0002 0.068 0.3347 NS90 2.010-8 1.3 
Galatea 61.953 0.0001 0.034 0.4287 NS102 3.710-8 1.3 
Larissa 73.548 0.0014 0.205 0.5546 NS108 4.810-8 1.3 
Proteus 117.646 0.0005 0.075 1.1223 NS220 4.910-7 1.3 
Pluto        
Charon 17.536 0.0022 0.001 6.3872 604 1.3010-1 1.68 
Nix 48.708 0.0030 0.195 24.856 44 710-6 -- 
Hydra 64.749 0.0051 0.212 38.206 36 710-6 -- 
Kerberos 59 0 0 32.1 15 -- -- 
Styx 42 0 0 20.2 10 -- -- 
R before the orbital period indicates a retrograde orbit. 
NS before the radius indicates that the satellite is known to be non-spherical; the largest radius is listed. 
 

 
 
 

Table B.8: Parameters of five dwarf planets. 
 

 a 
 (AU) 

e i 
 (deg) 

T 
 (year) 

R 
 (km) 

ρ 
 (gr/cm3) 

Ceres 2.766 0.0789 10.587 4.599 476 2.08 
Pluto 39.482 0.2488 17.140 247.921 1148 2.0 
Haumea 43.132 0.1950 28.22 283.3 650 2.6 
Makemake 45.792 0.159 28.96 309.9 750 2.0 
Eris 67.668 0.4418 44.187 557 1163 2.25 
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Table B.9: Parameters of the 45 largest asteroids. 
 

Name No. Yr. disc. D 
(km) 

a 
(AU) 

e i 
(deg) 

P 
(hr) 

Ceres 3 1 1801 975 2.766 0.0789 10.587 9.074 
Pallas 2 1802 582 2.773 0.2310 34.840 7.811 
Vesta 4 1807 578 2.362 0.0887 7.134 5.342 
Hygiea 10 1849 530 3.140 0.1169 3.841 18.4 
Sylvia 87 1866 385 3.485 0.0812 10.858 5.183 
Hektor 624 1907 370 5.237 0.0223 18.182 6.921 
Europa 52 1858 360 3.096 0.1062 7.482 5.631 
Eunomia 15 1851 357 2.642 0.1881 11.739 6.083 
Davida 511 1903 357 3.167 0.1861 15.937 5.13 
Interamnia 704 1910 350 3.061 0.1508 17.290 8.727 
Juno 3 1804 320 2.670 0.2550 12.982 7.210 
Eugenia 45 1857 305 2.720 0.0813 6.610 5.699 
Cybele 65 1861 302 3.434 0.1082 3.562 6.07 
Camilla 107 1868 285 3.478 0.0768 10.050 4.84 
Chariklo 10199 1997 258 15.778 0.1710 23.377 -- 
Euphrosyne 31 1854 256 3.150 0.2248 26.310 5.531 
Themis 24 1853 249 3.129 0.1313 0.759 8.38 
Iris 7 1847 240 2.387 0.2309 5.523 7.139 
Psyche 16 1852 240 2.923 0.1384 3.099 4.196 
Amphitrite 29 1854 233 2.554 0.0733 6.097 5.39 
Chiron 2060 1977 233 13.704 0.3788 6.930 5.9 
Thisbe 88 1866 232 2.768 0.1655 5.215 6.042 
Bamberga 324 1892 229 2.684 0.3371 11.108 29.43 
Fortuna 19 1852 225 2.442 0.1576 1.573 7.445 
Aurora 94 1867 225 3.161 0.0883 7.965 7.22 
Patientia 451 1899 225 3.059 0.0775 15.223 9.727 
Doris 48 1857 222 3.107 0.0750 6.556 11.89 
Herculina 532 1904 222 2.772 0.1781 16.312 9.405 
Egeria 13 1850 217 2.576 0.0858 16.544 7.045 
Hermione 121 1872 217 3.445 0.1355 7.599 6.1 
Ursula 375 1893 216 3.123 0.1074 15.950 16.83 
Diotima 423 1896 209 3.066 0.0397 11.233 4.622 
Alauda 702 1910 202 3.193 0.0213 20.611 8.36 
Palma 372 1893 195 3.144 0.2618 23.864 6.58 
Nemesis 128 1872 194 2.750 0.1247 6.249 39 
Hebe 6 1847 192 2.425 0.2025 14.754 7.274 
Bertha 154 1875 192 3.188 0.0832 21.033 5.11 
Freia 76 1862 190 3.416 0.1632 2.117 9.98 
Elektra 130 1873 189 3.123 0.2090 22.873 5.225 
Kalliope 22 1852 187 2.909 0.1024 13.707 4.147 
Aletheia 259 1886 185 3.143 0.1242 10.801 15 
Berbericia 776 1914 183 2.934 0.1615 18.245 7.672 
Daphne 41 1856 182 2.764 0.2732 15.788 5.988 
Metis 9 1848 179 2.387 0.1222 5.574 5.078 
Lachesis 120 1872 178 3.116 0.0584 6.954 -- 
D: diameter; for non-spherical objects the largest diameter is listed. 
P: rotational period. 

                                                 
3 Since 2006, Ceres is classified as a dwarf planet (Table B.8). 
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Table B.10: Parameters of 45 near-Earth asteroids. 
 

Name No. D 
(km) 

a 
(AU) 

e rp 
(AU) 

i 
(deg) 

Eros 433 23 1.458 0.2228 1.133 10.829 
Albert 719 2 2.627 0.5528 1.175 11.561 
Alinda 887 4 2.479 0.5669 1.074 9.353 
Ganymed 1036 38 2.665 0.5340 1.242 26.686 
Amor 1221 1 1.920 0.4343 1.086 11.877 
Icarus 1566 1.3 1.078 0.8269 0.187 22.837 
Betulia 1580 4.6 2.196 0.4877 1.125 52.092 
Geographos 1620 3 1.246 0.3355 0.828 13.338 
Ivar 1627 9 1.863 0.3969 1.124 8.448 
Toro 1685 3 1.367 0.4358 0.771 9.379 
Apollo 1862 1.4 1.470 0.5599 0.647 6.353 
Antinous 1863 2 2.259 0.6066 0.889 18.401 
Daedalus 1864 3 1.461 0.6146 0.563 22.200 
Cerberus 1865 1 1.080 0.4670 0.576 16.094 
Sisyphus 1866 9 1.894 0.5386 0.873 41.183 
Quetzalcoatl 1915 0.4 2.542 0.5716 1.089 20.417 
Boreas 1916 3 2.274 0.4491 1.253 12.877 
Cuyo 1917 5 2.151 0.5042 1.066 23.940 
Anteros 1943 2 1.430 0.2559 1.064 8.704 
Tezcatlipoca 1980 7 1.710 0.3649 1.086 26.858 
Midas 1981 2 1.776 0.6500 0.622 39.838 
Baboquivari 2059 3 2.644 0.5300 1.243 11.039 
Anza 2061 2 2.265 0.5373 1.048 3.772 
Aten 2062 1 0.967 0.1826 0.790 18.933 
Bacchus 2063 1 1.078 0.3495 0.701 9.433 
Ra-Shalom 2100 2.3 0.832 0.4365 0.469 15.759 
Adonis 2101 1 1.874 0.7640 0.442 1.334 
Tantalus 2102 3 1.290 0.2990 0.904 64.006 
Aristaeus 2135 1 1.599 0.5033 0.794 23.057 
Oljato 2201 2 2.175 0.7132 0.624 2.514 
Pele 2202 1 2.290 0.5120 1.118 8.742 
Hephaistos 2212 3 2.167 0.8338 0.360 11.736 
Orthos 2329 4 2.404 0.6575 0.823 24.436 
Hathor 2340 0.3 0.844 0.4497 0.464 5.855 
Beltrovata 2368 2.3 2.105 0.4138 1.234 5.236 
Seneca 2608 1 2.504 0.5762 1.061 14.991 
Krok 3102 1.6 2.151 0.4485 1.186 8.420 
Eger 3103 2.5 1.405 0.3544 0.907 20.933 
Florence 3122 2.5 1.768 0.4229 1.020 22.165 
Nefertiti 3199 2 1.574 0.2840 1.127 32.971 
Phaethon 3200 5 1.271 0.8899 0.140 22.183 
Ul 3271 2 2.102 0.3957 1.270 25.040 
Seleucus 3288 3 2.032 0.4575 1.102 5.934 
McAuliffe 3352 2 1.878 0.3696 1.184 4.774 
Syrinx 3360 2 2.467 0.7438 0.632 21.416 

  D: diameter; for non-spherical objects the mean diameter is listed. 
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Table B.11: Parameters of 45 selected comets having more than one known apparition. 
 
Name No. J 

(ymd) 
T 

(year)
rp 

(AU) 
e 
 

T 
(deg) 

S 
(deg) 

i 
(deg) 

Encke 2P 19970524 3.28 0.33 0.849 186.4 334.7 11.9 
Wilson-Harrington 107P 20091022 4.29 0.99 0.624 91.2 270.6 2.8 
Grigg-Skjellerup 26P 19970830 5.10 1.00 0.664 359.3 213.3 21.1 
du Toit-Hartley 79P 20030215 5.21 1.23 0.594 253.1 308.0 2.9 
Machholz 96P 20020109 5.24 0.12 0.959 14.6 94.6 60.2 
Schwassmann-Wachmann 3 73P 19950923 5.35 0.93 0.695 198.8 69.9 11.4 
Tuttle-Giacobini-Kresak 41P 20010107 5.46 1.05 0.659 62.2 141.1 9.2 
Tempel 2 10P 19990908 5.48 1.48 0.523 195.0 118.2 12.0 
Tempel 1 9P 20050705 5.50 1.51 0.517 178.9 68.9 10.5 
Howell 88P 19930226 5.58 1.41 0.552 234.8 57.7 4.4 
Tempel-Swift-LINEAR 11P 20011231 6.37 1.58 0.539 163.6 240.7 13.5 
Russell 1 83P 19850705 6.10 1.61 0.517 0.4 230.8 22.7 
Forbes 37P 20050802 6.13 1.57 0.541 329.3 315.1 9.0 
Hartley 2 103P 19971222 6.26 1.03 0.700 180.7 219.9 13.6 
Wild 2 81P 19970507 6.37 1.58 0.540 41.8 136.1 3.2 
d'Arrest 6P 20020204 6.51 1.35 0.613 178.1 138.9 19.5 
West-Kohoutek-Ikemura 76P 20061120 6.41 1.60 0.538 0.1 84.1 30.5 
Kopff 22P 20021212 6.46 1.58 0.543 162.8 120.9 4.7 
Giacobini-Zinner 21P 19981121 6.61 1.03 0.706 172.5 195.4 31.9 
Kohoutek 75P 19940630 6.65 1.78 0.496 175.8 269.7 5.9 
Arend-Rigaux 49P 19980713 6.82 1.37 0.611 330.6 121.7 18.3 
Gunn 65P 20100302 6.84 2.44 0.319 196.6 68.4 10.4 
Borrelly 19P 20010915 6.86 1.36 0.624 353.4 75.4 30.3 
Wild 3 86P 19940721 6.91 2.30 0.366 179.3 72.6 15.5 
Longmore 77P 20020905 7.00 2.31 0.358 196.4 15.0 24.4 
Shoemaker 1 102P 20060607 7.26 1.97 0.472 18.5 339.9 26.2 
Russell 2 89P 19941027 7.38 2.28 0.400 249.2 42.5 12.0 
Shajn-Schaldach 61P 20010509 7.49 2.33 0.389 216.6 166.9 6.1 
Harrington-Abell 52P 19990128 7.59 1.76 0.543 138.9 337.3 10.2 
Gehrels 2 78P 20041027 7.22 2.01 0.462 193.0 210.5 6.2 
Whipple 36P 20030707 8.53 3.09 0.259 202.2 182.4 9.9 
Denning-Fujikawa 72P 19781002 9.01 0.78 0.820 334.3 41.5 8.6 
Swift-Gehrels 64P 20090614 9.21 1.38 0.690 96.3 300.7 9.0 
Gale 34D 19380618 11.0 1.18 0.761 209.2 67.9 11.7 
Wild 1 63P 19991227 13.3 1.96 0.650 167.9 358.5 19.9 
Schwassmann-Wachmann 1 29P 20040630 14.6 5.72 0.045 48.2 312.6 9.4 
du Toit 66P 20030828 14.7 1.27 0.788 257.2 22.2 18.7 
Neujmin 1 28P 20021227 18.2 1.55 0.775 346.9 347.0 14.2 
Crommelin 27P 19840220 27.4 0.73 0.919 195.8 250.9 29.1 
Tempel-Tuttle 55P 19980228 32.9 0.98 0.906 172.5 235.3 162.5 
Westphal 20D 19131127 61.9 1.25 0.920 57.1 348.0 40.9 
Olbers 13P 19560619 69.6 1.18 0.930 64.6 86.1 44.6 
Halley 1P 19860206 76.0 0.59 0.967 111.3 58.4 162.3 
Swift-Tuttle 109P 19921212 135 0.96 0.963 153.0 139.4 113.4 
Herschel-Rigollet 35P 19390809 155 0.75 0.974 29.3 356.0 64.2 

 J is the perihelion date; first 4 digits indicate the year, next 2 digits the month, last 2 digits the day. 
 T and S are the longitude of perihelion and the longitude of the ascending node, respectively. 
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APPENDIX C: COMPILATION OF SOME EXPRESSIONS FOR ELLIPTI-
CAL, PARABOLIC AND HYPERBOLIC ORBITS.

Ellipse Parabola Hyperbola

r

e

a

n

rmin

rmax 4 4

2

(

V 2

Vmin 0

Vmax

õ õ < 0 õ = 0 õ  > 0

E, F ––

r ––

t



Fundamentals of Astrodynamics     SS     Expressions for elliptical, parabolic and hyperbolic orbits 682


