Delft University of Technology, Bachelor Seminar of Computer Science and Engineering

Using frequency information to improve accuracy of object
detectors

Petar Ulev, Attila Lengyel, Silvia Pintea

TU Delft

June 27, 2021

Abstract

This research paper analyses the effect that using frequency information can have in object
detectors. The latter are complex networks that learn information about objects from images and
are then able to predict the location of these objects in new, unseen images. There are, however,
certain datasets that are hard to learn on, partly because the environment in which images are
taken is diverse and complex, and also because the objects to detect can appear in fairly different
shapes. The dataset considered in this paper is called the Global Wheat Head Dataset (GWHD,
provided by a Kaggle competition). An object detector is run on the original GWHD images
and then the performance is compared to running the detector on a frequency filtered version of
the images. A mathematical transform called Fourier Transform is used to map images from their
spatial (pixel) domain to a new domain called the frequency domain, where certain non-informative
frequencies are filtered out and then the images are mapped back to their spatial domain. Two
experiments were conducted and results show that with this specific filtering methodology, no
improvement is found on the GWHD dataset using an object detector called YoloV5. A pipeline
was developed which allows for custom filtering strategy implementations and customs datasets.
Similar work has shown that images in their frequency domain can speed up computational time
and also increase the accuracy of an object detector, so this paper also gives the opportunity for
further experiments with the created pipeline.

1 Introduction

Deep learning has gained a lot of popularity in recent years because of the large increase in computing
power and information. Many industries make use of, directly or indirectly, machine learning (ML)
and data analysis algorithms. A subfield of ML that is vastly used in the industry is computer vision
(CV). Object detection is a CV technique that is used to locate objects in images and videos and
surround them with bounding boxes. It is used in iris verification in mobile phones, face recognition
and detection, medical imaging, self-driving cars - detect lanes, surrounding cars, recognize signs,
and then communicate with other software to make decision for optimal action, and others. Object
detection can also be used in the wheat industry. A Kaggle competition called Global Wheat Detection
offers the challenging task to accurately locate wheat heads in images. It provides a labeled dataset
that can be used to train an object detector, and there are also images on which the trained model can
be tested on. The dataset provided is called the Global Whead Head Dataset (GWHD). The GWHD
is difficult to predict on given that there are different environments in which images are taken, and the
wheat heads are often crossing each other making it difficult for a network to learn and predict. In this
work, we investigate whether prior knowledge from the frequency domain can be used to improve the
performance of an object detector on such a difficult task. Representing images in frequency domain
can be done using a mathematical transform called Fourier Transform (FT), then remove certain
frequencies from the images that are considered noisy or non-informative, and map back to spatial
(pixel) domain. This technique will be used together with an object detector to analyse the impact
that Fourier Transform has on the accuracy of the object detector that is otherwise run on normal,
unfiltered images.

The FT has immense application in signal processing. For example, Shazam relies on FT[1] to remove
background noise when making a prediction for a song. The transform maps functions of spatial or
time domain into functions depending on frequencies of these domains[2]. When applied on image, the
input is the spatial domain - formed out of pixels, and the output is the frequency domain. Having an
object into its frequency domain can be used for solely analyzing what specific frequencies compose
the original signal, but also filter out some of them.

Frequency filtered images can be interpreted by any object detector. To be able to predict objects in
an image or video, the object detector first needs to be trained on a dataset that consists of the objects
to be predicted in some environment with their coordinates. The model is then trained and knows how
to predict the coordinates of new, unseen images with objects. Some datasets may be harder to learn
on if, for example, they are more diverse and contain object with complex shapes, as does the GWHD,
which is exactly what makes it an appropriate dataset to use frequency analysis on, because filtering
unnecessary frequencies in the noisy and diverse images can create a new, cleaner dataset that may
be easier interpreted by detectors. Using FT, each image is mapped to its frequency spatial domain,
frequencies that are not so prominent in the wheat heads are filtered, and then the image is mapped
back to the spatial domain. Since the image spatial domain is finite, Discrete Fourier Transform can
be used. An efficient implementation of the Discrete Fourier Transform called Fast Fourier Transform
is used to increase speed. Additional low-pass, high-pass, and band-pass filters are used to eliminate
too low and too high frequencies. After eliminating certain frequencies that are far from the ones in
the wheat heads, the object detector may be more efficient and capable of capturing patterns and
information in the heads. The aim is to decrease the degree to which the model is confused by the
background frequencies and mostly focus on analyzing the frequencies on the wheat heads.

This paper will present the results and analyses of multiple experiments that are run with a pipeline
containing an object detector and a FFT implementation that is run on the wheat head images. The
findings of the conducted analysis of the frequency information of the wheat dataset do not show
improvement in any of the metrics that are normally used to evaluate object detectors. What is
interesting is that, although in some of the filtered images, wheat heads can barely be seen by the
human eye, the detector is able to recognize most of them despite the fact that there is no increase in
any metric. Key contributions of the conducted experiments and analyses are:

e Remove background frequencies from the original images using Fast Fourier Transform algorithm
and run an object detector on the original and filtered images. The difference in the training,
validation, and test dataset accuracy of original and filtered images can then be observed and
conclusions can be drawn about how and why the frequency information is beneficial when used
for the GWHD and suggest further research on similar datasets.

e Suggest other methods for filtering frequencies that could improve the detector’s accuracy. They
require more research and are harder to implement compared to the method described in this
report, but are more sophisticated and can indeed result in improvement for the GWHD and can
be used for other datasets as well.

e Create a generic, usable pipeline that can perform Frequency Information analysis on an arbitrary
dataset that can be interpreted by the YOLOv5 object detector. It also allows for custom
Frequency analysis implementations and aims for easy integration. The aim of the pipeline
is to allow researchers to easily perform frequency analysis experiments and further allow for
integration of novel frequency filter methods.

Using a more sophisticated frequency filter, as suggested in the discussion, may allow for an increase
in all metrics for the current dataset and be tested also on other datasets easily. The rest of the
report is organized as follows: the next section will describe more in detail what object detectors are,
how they work, and why and how frequency information could improve detectors’ accuracy, supported
by literature, section 3 will give an overview of the methods used to perform the whole experiment,
section 4 will expose the experimental details and also the results of the comparisons and the output
of the detector.Section 5 will describe the experiment’s hyperparameters and show that the detector’s
performance is objectively evaluated on completely new, unseen data that has not been neither in the
training nor validation process. In section 6 I put forward an alternative algorithm for filtering out
frequencies, and in the last section I summarise and conclude my work.

2 Related work

Object detection. Object detectors can vary in architecture, training strategy and optimization
function[3]. Some of them focus more on the accuracy, and others more on maintainability, repro-
ducibility and speed. There are generally two types of object detectors. Two-stage object detectors,
that generate regions of interest in the first stage and in the second stage - find the coordinates of
the bounding boxes using regression. These models are usually fast, but rather slow. There are also
one-stage object detectors - these try to directly predict the bounding box coordinates and are usually
faster, but less accurate[4]. An example of a one-stage object detector is YOLO (”You only look
once”)[5]. There have been multiple improvements in the YOLO family, various YOLO detectors have
been created and their main advantage is the speed. An example of a two-stage object detector is
R-CNN. Although it tries to bypass the problem of selecting many regions of interest, it is still rel-
atively slow. To address this problem, Fast-RCNN[6] and Faster-RCNN]7] have been created. They
are faster due to the fact that they encompass convolution operations that are done only once per
image[8]. Still, none of them can compare to the speed of YOLO. Another famous object detector is
EfficientDet. Its ConvNet is built by Google Brain and it performs fast relative to other detectors.
There is no single best object detector, each one has its own benefits and is appropriate for certain
problems. The choice of a detector is highly dependent on the specific use case - in medical imaging, it
is safer to use a more accurate detector since accurate predictions are what is valuable, and in a traffic
observation system it may be more appropriate to use a faster detector because of the large number
of cars that are constantly moving.

Fast Fourier Transform and its application in images In programming, a two-dimensional image
can be represented in various ways depending on a specific use case. For example, an image can be rep-
resented in vector space and this allows for learning techniques in computer vision[9]. Transform-based
representations provide a sparse representation of smooth images and this is beneficial in approxima-
tion and compression[10]. Of course, the classical way to represent an image is a 2D array of pixels,
because it is convenient for storage and processing[11]. The matrix representation of an image can be
used to visualize the whole image (as well as different parts of it), and feed into the machine learning
models where it is also transformed into tensors. FFT can be used to represent an image in the fre-
quency domain[12]. FFT implementations allow for very fast mapping to the frequency domain of an
image. An image represented in its frequency domain can have various computational advantages. For
example, novel blur invariant features that are used for object recognition are shown to be practically
computed faster using the FFT algorithm[13]. Representing an image in its frequency domain also
has use case in Deep Neural Networks (DNNs): a simpler and more lightweight DNN model can be
created, useful information from the images can be extracted, and improvements on the results can
be made. This also rises the question whether DNNs can use a combination of spatial and frequency
features to achieve better performance[14]. Images in the frequency domain can also be efficiently
interpreted by Convolutional Neural Networks (CNNs). Most modern object detectors use ConvNets
in their architectures. They are is a type of Artificial Neural Network (ANN), the main difference
being that the CNN is mainly used for pattern recognition tasks within images[15]. CNNs make use of
filters to detect patterns (edges, shapes, figures). There are more filters located deeper in the network
that detect complex patterns. This network is ideal for object detection since it can detect objects’
shapes and patterns.

It is known that a convolution in the spatial domain in an image becomes multiplication in the fre-
quency domain which means that the images can be processed directly in the frequency spectrum
for efficiency. Although the Fast Fourier Transform method for convolution is not used very much in
practice because of the memory growth of the coefficients storage[16], still an intriguing question would
be: what if a CNN is designed to work specifically on the frequency domain[14]? FFT can be used
to achieve computational advantages when a CNN is directly fed with data that is in the frequency
domain.

Frequency domain and CNNs. An example use case of the frequency domain of the images can
be filtering out certain frequencies to decrease the network overhead while at the same time improve
the accuracy over a classical spatial downsampling approach. The network is directly fed with the
frequency-domain information. It is demonstrated that this technique achieves 1.6% and 0.63% top-
1 accuracy improvement on the ImageNet dataset using ResNet-50 and MobileNetV2, respectively.
Trimming the input size in half also shows an improvement - 1.42% using ResNet-50[17]. The differ-
ence between the method mentioned and the approach of this paper is that in this paper the CNN

is not directly fed with the data in the frequency domain. The images are first transformed to their
respective frequency domains using Fourier Transform, filtering then happens, and then the frequency
domain is mapped back to the respective space domain and then the image is fed into the CNN in
spatial domain. The inputting is not directly done, because object detectors have many preprocessing
steps before feeding into the CNN, but the preprocessing happens on the 2D vector representation of
the images, while the method mentioned in the paper feeds the frequency domain information in the
CNN directly. Similar literature has shown a definite time and accuracy increase of the CNN when
using Fast Fourier Transform-based U-Net. As expected, the image convolution costs are reduced and
the overall computation costs are reduced. This approach was run on the BBBC dataset and achieved
training time between 400 and 500 per step, compared to the non-FFT approach, which previously
was between 600 700 ms per training step. What is interesting is that this approach also improved the
accuracy of the model[18].

3 Methodology

Fast Fourier Transform[19] is an efficient algorithm that computes the discrete Fourier Transform,
which is a Fourier Transform on discrete, uniformly sampled data[20]. An image, which originally is in
the spatial domain, is transformed into its frequency domain, where non-informative frequencies will
be removed. After that, Inverse Fast Fourier Transform is applied to map back to the spatial domain,
where some frequencies have been removed. The removal of these frequencies is relative and problem-
dependent. Below is explained, together with the whole problem-solution process, the methodology
used to filter frequencies.

The Fast Fourier Transform is used to decompose the images into real and imaginary components,
and the image in this representation is said to be in spatial frequency domain. The Inverse Fast
Fourier Transform is used to map the spatial frequency function to the spatial pixel domain. An
intuitive understanding of the Fourier transform and its inverse can be wrapping a specific composite
signal around a circle with a rotating vector with a specific rotation speed. At each point in time, the
vector will have a length equal to the frequency intensity in that point in time. Now define a new point
which will be the center of mass of the vector graph. As the rotation speed of the vector increases,
the center of mass also changes. There is a number of specific rotation speeds for which the center
of mass will be fairly far from the 0 x coordinate, and these rotation speeds are the frequencies that
ultimately compose the final composite frequency[21]. When thinking about circles, it is also useful to
think about the complex plane, and this is where the i complex number is also present in the formula
for calculating the FFT for a signal. The FFT and inverse FFT can be computed using the following
equations[22]:

Flag) = 30 3 flm,nye-(2xn(etiin) "

f(z,y) = 1 Z F(m,n)e(i“x“(z%*y%)) (2)

Here, f(m,n) is a pixel with coordinates (m,n), F'(m,n) represents the image at position (m,n) in
the frequency domain of the M x N image.

To choose which frequencies to filter out, a frequency spectrum is created that is the subtraction of
the average frequency spectrum of all the images and the average frequency spectrum of the bounding
boxes in all images. The low-pass and high-pass filters are then applied to the difference of the two
spectrums: the high-pass filter removes high frequencies, and the low-pass filter removes the low
frequencies. This combination and the two filters is called a band-pass filter. The obtained mask is
then applied on each image to remove frequencies in all images. The YoloV5 object detector is run on
the original wheat dataset and frequency filtered images and a comparison is made on the two results.

4 Experimental Setup and Results

4.1 Object detector

The object detector that is used is YoloV5 - it is a lot faster than it’s predecessor YoloV4, it also
produces very small weights file with a small accuracy decrease compared to YoloV4[23]. Tt is also
suggested by the authors of Yolo to use v5 if integration time is a concern. Other object detectors, such
as FasterRCNN, EfficientDet and PP-Yolo, can also be used for this experiement. The architecture of
the object detector can be seen in Figure 1[24].

Backbone: CSPDarknet Neck: PANet Head: Yolo Layer

(BotteNeakosPlHL—{ Concat | BottleNeckCSP

|l
i

|l
| Cestinsagsen

I y | |

| BottleNeckCSP
1
1
1
, 1

R | I
CSP Cross Stage Partial Network Convolutional Layer
SEE Spatial Pyramid Pooling Concatenate Function

Figure 1: YoloV5 architecture[25]

4.2 Pipeline description

To make the experiment reproducible, scalable and self-contained, a configurable pipeline was created
that runs all of the necessary methods and computations to achieve the final results. It can be described
as follows:

1. Set up YoloV5, configure parameters, create project architecture. Run a pre-processing step on
the provided Kaggle data, so it can be used by the detector[26].

2. Take a sample of the images and split it into train and test data. Train Yolovb on the train data
and test it on the test data with the learned weights on the train data and save results.

3. Use the mask filter to remove non-informative frequencies in all images

4. Repeat steps 2. and 3. on the filtered images

The pipeline can be configured to run with custom parameters: the YoloV5 can be configured to
run with a specific number of training epochs, batch size and number of images. The low-pass and
high-pass filters can also be customly set.

4.3 Error metrics

This subsection defines the most widely used error metrics in object detection:

Table 1: Metric on the test data in Experiment 1 showing that non-fft method outperforms the fft
method in all metrics

metrics
images labels precision recall mAP_0.5 mAP0.5:.95
non — fft 553 23929 0.943 0.916 0.944 0.56
frt 553 23929 0.939 0.893 0.928 0.539
ANB
e ToU(A, B) = 108

e mAP - mean average precision, it is very often used as an evaluation metric in object detection.
It is the average of the average precision and/or IoU of each class[27].
For example, map@0.5 means the mean Average Precision at IoU = 0.5 is calculated for all
pictures for each category, and then each category is averaged. mAP@0.5:0.95 represents the
mean Average Precision at various IoU thresholds varying from 0.5 to 0.95 at intervals of 0.05[28].

t
e Precision = —p, where tp is a true positive and fp is a false positive.
tp+ fp
tp . .
e Recall = , where fn is false negative
tp+ fn

e Box loss (box_loss) - a loss that measures how tight are the predicted bounding boxes around
the true objects. It is usually a regression loss[29].

4.4 Experiment 1

Now that the error metrics and the pipeline functionality are described, this subsection presents the
results of running the pipeline with the following parameters: low-pass filter: 0.2, high-pass filter: 120,
YOLO training epochs: 200, number of images: 3422. Training and validation data can be seen in
Figures 1 and 2. In Figure 2, subfigures (a) and (b) present a training, labeled image that the detector
trains on. In Figure 3, subfigures (a) and (b) present a validation image to fine tune the detector’s
hyperparameters. In Figure 4 can be seen precision, map and recall metrics on the train set. Figure 5
and table 1 present validation and test results, respectively.

Figure 2: YoloV) labelled training image, FFT image has more sharp and prominent frequencies
because of the frequency mask and the environment that the image was taken in

Wheat=1y2UIF At—neaq

wheat—ead

- # wheat—head

(a)

heat—h ¥5IF3t—nedq
wneat—1ead

wheat—head

(b)

Figure 3: YoloV5) labelled validation image in Experiment 1, FFT image has softer and not so dis-
tinctive frequencies in the wheat heads because of the frequency mask and the environment that the

image was taken in

metrics/precision

EEScision

08
0.6
0.4
0.2
0
0 50 100
(a)
metrics/mAP_0.5
I
08 f
;!e
0.6
0.4
0.2
0
0 50 100

()

150

150

epoch

epoch

mAP_0.5:0.95

Fecall

metrics/mAP_0.5:0.95

epach
50 100 150
(b)
metrics/recall
epoch
50 100 150
(d)

Figure 4: YoloV5 learning curve on training data in Experiment 1, fft and non-fft methods have similar

learning curves

val/box_loss, val/obj_loss

] 50 100 150
Figure 5: YoloV5 validation data performance curves are similar in Experiment 1

Table 2: Metric on the test data in Experiment 2 showing that non-FFT method again outperforms
the FFT method in all metrics

metrics

images labels precision recall mAP0.5 mAP_0.5:.95
non — FFT 507 22200 0.947 0.929 0.955 0.578
FFT 507 22200 0.943 0.91 0.939 0.559

The graphs suggest that, for this experiment and specific set of hyperparameters, the network
does not perform better when run on the transformed images. The validation data which is used for
hyperparameter tuning also shows no improvement in the box_loss and obj_loss metrics. Ultimately,
when the trained and tuned network is run on new, unseen test data, the FFT method does not show
any improvement in any of the metrics, as can be seen in Table 1. The results of the two runs show
that the behaviour of the detector is similar on both FFT images and non-FFT images with a slight
decrease in accuracy when FFT method is used. This suggests that YoloV5 does not learn better on
that specific frequency filter and on this specific wheat head dataset. For this specific frequency filter
and dataset, the object detector does not learn better when certain frequencies are filtered out.

4.5 Experiment 2

This experiment is similar to Experiment 1, but with different hyperparameters are used. The param-
eters that are changed for this experiment are: the low-pass filter is set to 0.15 and the high-pass filter
is set to 125, also the number of images considered for the experiment is 3000. Decreasing the low-pass
filter and increasing the high pass filter means that more low and more high frequencies will be allowed,
that is, fewer frequencies will be filtered in total. This means that the combined band-pass filter will
not be so restrictive and a different frequency spectrum will be created than the one in Experiment 1.
The results of this experiment are similar to those shown in Experiment 1 and confirm the theory that
the YoloV5 detector does not improve accuracy when run on frequency filtered images. Figure 6 shows
the learning curves of the both approaches on the train data, and Figure 7 and Table 2 show that the
using FFT does not improve any of the metrics for the validation and test data - although results are
similar, there is no improvement when the frequency filter is applied on the images. This experiment
shows similar results to those in Experiment 1.

5 Responsible Research
5.1 Ethics

All the presented results were obtained by directly running the code on the data. Instructions can be
found below on how to run the code, so you can verify that the results are very similar to the presented
ones (if using the same configuration). It is clear that the results will almost never be exactly the same
- this is due to the non-deterministic nature of neural networks - after all, random weight initialization

metrics/precision metrics/mAP_0.5:0.95

— Experiment 2, FFT = Experiment 2, Non-FFT — Experiment 2, FFT — Experiment 2, Mon-FFT

- \ aanan
0.8 0.5
06 0.4

0.3
0.4

0.2
0.2

0.1

epach

0 50 100 150 0 50 100 150

(a) (b)

metrics/mAP_0.5 metrics/recall
= Experiment 2, FFT = Experiment 2, Non-FFT — Experiment 2, FFT = Experiment 2, Non-FFT
| v = +
| =
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
epoch
0 epoch D
0 50 100 150 o 50 100 150

(©) (d)

Figure 6: YoloV5 learning curve on training data in Experiment 2, FFT and non-FFT methods have similar
learning curves

val/box_loss, val/obj_loss

= Experiment 2, FFT val/box_less =— Experiment 2,
= Experiment 2, FFT valfobj_loss = Experiment 2, Mon-FFT val/obj_lo

S epochs

] 50 100 150

Figure 7: YoloV5 validation data performance curves are similar in Experiment 2

is created in the beginning, so there will probably almost always be a small offset of difference, but the
metrics will not be very different from a run to run. Note that in the experiments, the dataset is split
in three subsets - training set, validation set and test set. The training set is used to train the model,
the validation set is used to observe the accuracy of the model after a specific training period and then
fine-tune the hyper parameters of the model to increase the accuracy, and the test set is unseen data
by the model that is purely used to evaluate the performance of the model. The wheat head images
are responsibly and randomly split into all three of the mentioned subsets randomly - there is no bias
in the splitting, and each time that an experiment is run results are shown for all of the three sets and
analysis can be done accordingly. For the current analysis, the following split was used: 70% for the
training dataset, 20% for the validation dataset and 10% for the test dataset. This is a reasonable split
in this case since 10% of 3000 images is 300 test images. Considering the fact that there are usually
many wheat heads in the images, 300 of them is enough for an objective evaluation of the model.

5.2 Reproducibility

All the code used to create this experiment is available on https://gitlab.ewi.tudelft.nl/cse3000/2020-
2021 /rp-group-50/rp-group-50-common/- /tree/yolov5_and_wheat_preprocessing . Before running the
code, it is recommended to install WanDB with pip or pip3, then create an account in the https://wandb.ai/
website. Lastly, the command wandb login should be run in the project root directory to connect to
your remote newly created WanDB account. Having set up WanDB, you can check all of the results

of your experiments represented in a visual manner, but also check the logs of the program. To start
the program, run pythond main.py. The program will start with the default values of the parameters
that are described below:

Arguments

e n_images: number of images to sample, default value: 50
e batch: training batch size for YoloVh, default value: 1

e epochs: number of training epochs, default value: 15

threshold: FFT the low-pass filter, default value: 0.2
e exclude: FFT high-pass filter, default value: 120

It is recommended to use higher number of images and epochs for a better accuracy. An example is:
python3 main.py —n_images 2500 —batch 16 —epochs 200 —threshold 0.2 —exclude 120
The documentation can also be found in the main.py method and also in the README.txt file.

6 Discussion

Object detectors have a really large use case - one of them being self-driving cars, for example. Such
an example makes it clear how important it is to have a very accurate network that can predict the
best possible move in each possible situation - people’s lives depend on that software. This is just to
underline the importance of having a decent object detector. In many cases, it is not possible to create
a great detector because of the nature of the training data. The wheat head data set is such a data set
- its variety makes it so hard to generalize to new data. That’s why it’s important to discover a way
to efficiently extract the most useful frequencies in the images so that the detectors can detect where
that frequency information is present and detect the object at that position.

A possible, better frequency filtering technique would be using an additional dataset containing only
the objects of interest without any background. This can be achieved by either manually cutting of
the objects out of images, or using instance segmentation or semantic segmentation for this task. It
is important to note that both methods have their cons - manually preparing such dataset would be
cumbersome and slow, objects could be missed and this solution is not scalable. Semantic segmentation
deals with this problem well, but it also prone to mistakes. Having the raw objects as a separate dataset,
the current (or another) FFT method can be run only on the objects of interest. This will eliminate
any background information that the bounding boxes usually contain.

Further investigating frequency filtering techniques, a potential approach would be to run a gradient

10

descent optimization on the low-pass and high-pass filters, on one or more evaluation metrics. This
method would be slow, since running the FFT algorithm and the object detector both take a lot of
time. This option can be viable if using a machine with a strong GPU or Multi-GPU architecture.
Most object detectors are implemented to run on the GPU.

7 Conclusions and Future Work

Deep learning techniques are being employed more and more since the advances in computing power
have made it possible to run complex algorithms on big data. Object detectors, as such, can be very
useful in the industry because they allow for automation, scalability and mainainability of a system.
Complex datasets, such as the wheat head dataset, make it harder to achieve a high accuracy and thus
new methods should be considered that facilitate the object detectors’ interpretation of the complex
images. Using frequency information is known to have benefits in computation and accuracy in image
recognition, and it gives a foundation of the experiments in this report. The Fourier Transform allows to
represent images in their frequency domain, where certain frequencies that are considered as noisy can
be removed, then images are mapped back to the spatial domain using the Inverse Fourier Transform,
so that an object detector can only consider the most prominent and important frequencies that are
in the wheat heads. For the experiments conducted in this work, the object detector YoloV5 does
not show improvement in accuracy when run on frequency filtered images of the Global Wheat Head
Dataset neither in the training, validation nor test datasets. This result may be due to the specific
frequency filter method or the GWHD. A dedicated customizable pipeline in Python was created that
allows for easy integration of custom frequency filter implementations and datasets. It can be used for
further research on this topic.

References

[1] G. Palmirotta. A study of Shazam’s Audio Recognition. Dec. 2016.
[2] Fourier transform. June 2021. URL: https://en.wikipedia.org/wiki/Fourier_transform.

[3] Z.-Q.Zhao, P. Zheng, S.-t. Xu, and X. Wu. “Object Detection with Deep Learning: A Review”. In:
CoRR abs/1807.05511 (2018). arXiv: 1807.05511. URL: http://arxiv.org/abs/1807.05511.

[4] P. Soviany and R. T. Ionescu. “Optimizing the Trade-off between Single-Stage and Two-Stage
Object Detectors using Image Difficulty Prediction”. In: CoRR abs/1803.08707 (2018). arXiv:
1803.08707. URL: http://arxiv.org/abs/1803.08707.

[5] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi. “You Only Look Once: Unified, Real-
Time Object Detection”. In: CoRR abs/1506.02640 (2015). arXiv: 1506 . 02640. URL: http:
//arxiv.org/abs/1506.02640.

[6] R. Girshick. “Fast R-CNN”. In: 2015 IEEE International Conference on Computer Vision (ICCV).
2015, pp. 1440-1448.

[7] S.Ren, K. He, R. B. Girshick, and J. Sun. “Faster R-CNN: Towards Real-Time Object Detection
with Region Proposal Networks”. In: CoRR abs/1506.01497 (2015). arXiv: 1506 .01497. URL:
http://arxiv.org/abs/1506.01497.

[8] R. Gandhi. July 2018. URL: https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-
r-cnn-yolo-object-detection-algorithms-36d453571365e.

[9] D. Beymer and T. Poggio. “Image Representations for Visual Learning”. In: Science (New York,
N.Y.) 272 (July 1996), pp. 1905-9.

[10] V. Velisavljevic, B. Beferull-Lozano, M. Vetterli, and P. Dragotti. “Image representation and
compression using directionlets - art. no. 67010N”. In: (Oct. 2007).

[11] R. Navarro, A. Tabernero, G. Cristobal, E. Peter, and W. Hawkes. “Image Representation With
Gabor Wavelets And Its”. In: (June 1999).

[12] N. M. Singh, J. E. Iglesias, E. Adalsteinsson, A. V. Dalca, and P. Golland. “Joint Frequency-
and Image-Space Learning for Fourier Imaging”. In: CoRR abs/2007.01441 (2020). arXiv: 2007.
01441. URL: https://arxiv.org/abs/2007.01441.

11

https://en.wikipedia.org/wiki/Fourier_transform
https://arxiv.org/abs/1807.05511
http://arxiv.org/abs/1807.05511
https://arxiv.org/abs/1803.08707
http://arxiv.org/abs/1803.08707
https://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1506.01497
https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e
https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e
https://arxiv.org/abs/2007.01441
https://arxiv.org/abs/2007.01441
https://arxiv.org/abs/2007.01441

[13]
[14]
[15]

[16]

V. Ojansivu and J. Heikkil. “Object Recognition Using Frequency Domain Blur Invariant Fea-
tures”. In: ().

J. A. Stuchi, L. Boccato, and R. Attux. “Frequency learning for image classification”. In: CoRR
abs/2006.15476 (2020). arXiv: 2006.15476. URL: https://arxiv.org/abs/2006.15476.

K. O’Shea and R. Nash. “An Introduction to Convolutional Neural Networks”. In: CoRR abs/1511.08458
(2015). arXiv: 1511.08458. URL: http://arxiv.org/abs/1511.08458.

M. Mody, C. Ghone, M. Mathew, and J. Jones. “Efficient frequency domain CNN algorithm”. In:

2017 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia). 2017, pp. 22—

25.

K. Xu, M. Qin, F. Sun, Y. Wang, Y.-K. Chen, and F. Ren. “Learning in the Frequency Domain”.
In: CoRR abs/2002.12416 (2020). arXiv: 2002 .12416. URL: https://arxiv.org/abs/2002.
12416.

V. Nair, M. Chatterjee, N. Tavakoli, A. S. Namin, and C. Snoeyink. “Fast Fourier Transformation
for Optimizing Convolutional Neural Networks in Object Recognition”. In: CoRR abs/2010.04257
(2020). arXiv: 2010.04257. URL: https://arxiv.org/abs/2010.04257.

Fast Fourier transform. May 2021. URL: https://en.wikipedia.org/wiki/Fast_Fourier_
transform.

Discrete Fourier transform. May 2021. URL: https://en.wikipedia.org/wiki/Discrete_
Fourier_transform.

3BluelBrown. But what is the Fourier Transform? A wvisual introduction. Youtube. 2018. URL:
https://www.youtube.com/watch?v=spUNpyF58BY&t=339s.

V. Nair, M. Chatterjee, N. Tavakoli, A. S. Namin, and C. Snoeyink. “Fast Fourier Transformation
for Optimizing Convolutional Neural Networks in Object Recognition”. In: CoRR abs/2010.04257
(2020). arXiv: 2010.04257. URL: https://arxiv.org/abs/2010.04257.

C. Supeshala. YOLO v4 or YOLO v5 or PP-YOLO? Aug. 2020. URL: https://towardsdatascience.
com/yolo-v4-or-yolo-vb-or-pp-yolo-dad8e40£7109.

R. Xu, H. Lin, K. Lu, L. Cao, and Y. Liu. “A Forest Fire Detection System Based on Ensemble
Learning”. In: Forests 12 (Feb. 2021), p. 217.

Y. Ding, Z. Li, and D. Yastremsky. Real-time Face Mask Detection in Video Data. May 2021.

V. Balakrishna Kumar. Yolo-V5 Object Detection on a Custom Dataset. URL: https://deepscopy.
com/Yolo-V5_0Object_Detection_on_a_Custom_Dataset?fbclid=IwAR1QtH272v2ec77ptRnlOMp7qaT97mEAVOWORY

T. C. Arlen. Understanding the mAP Evaluation Metric for Object Detection. Mar. 2018. URL:
https://medium.com/@timothycarlen/understanding-the-map-evaluation-metric-for-
object-detection-a07fe6962cf3.

The meaning of mAP@0.5 and mAP@0.5:0.95, YOLO - Programmer Sought. URL: https://
www . programmersought . com/article/84866344358/.

R.-R. 59377. Obj loss. URL: https://stackoverflow.com/questions/54977311/what-is-
loss-cls-and-loss-bbox-and-why-are-they-always-zero-in-training.

12

https://arxiv.org/abs/2006.15476
https://arxiv.org/abs/2006.15476
https://arxiv.org/abs/1511.08458
http://arxiv.org/abs/1511.08458
https://arxiv.org/abs/2002.12416
https://arxiv.org/abs/2002.12416
https://arxiv.org/abs/2002.12416
https://arxiv.org/abs/2010.04257
https://arxiv.org/abs/2010.04257
https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://www.youtube.com/watch?v=spUNpyF58BY&t=339s
https://arxiv.org/abs/2010.04257
https://arxiv.org/abs/2010.04257
https://towardsdatascience.com/yolo-v4-or-yolo-v5-or-pp-yolo-dad8e40f7109
https://towardsdatascience.com/yolo-v4-or-yolo-v5-or-pp-yolo-dad8e40f7109
https://deepscopy.com/Yolo-V5_Object_Detection_on_a_Custom_Dataset?fbclid=IwAR1QtH272v2ec77ptRnl9Mp7qaT97mEAVOWORYhJkvLevLV9AESHMDjkg9Y
https://deepscopy.com/Yolo-V5_Object_Detection_on_a_Custom_Dataset?fbclid=IwAR1QtH272v2ec77ptRnl9Mp7qaT97mEAVOWORYhJkvLevLV9AESHMDjkg9Y
https://medium.com/@timothycarlen/understanding-the-map-evaluation-metric-for-object-detection-a07fe6962cf3
https://medium.com/@timothycarlen/understanding-the-map-evaluation-metric-for-object-detection-a07fe6962cf3
https://www.programmersought.com/article/84866344358/
https://www.programmersought.com/article/84866344358/
https://stackoverflow.com/questions/54977311/what-is-loss-cls-and-loss-bbox-and-why-are-they-always-zero-in-training
https://stackoverflow.com/questions/54977311/what-is-loss-cls-and-loss-bbox-and-why-are-they-always-zero-in-training

	Introduction
	Related work
	Methodology
	Experimental Setup and Results
	Object detector
	Pipeline description
	Error metrics
	Experiment 1
	Experiment 2

	Responsible Research
	Ethics
	Reproducibility

	Discussion
	Conclusions and Future Work

