
Delft University of Technology

BAP
EE3L11

Design of a Telehealth System

Authors:
Geert Jan Meppelink (4692810)
Yavuzhan Mercimek (4658582)

June 19, 2020

Abstract

This study proposes a system for constant monitoring of ECG and respiration signals using a wearable. The
proposed system uses capacitively-coupled electrodes for the measuring of the ECG-signal and a resistive strain
sensor for the measuring of the respiration signal. The system applies the strain sensor to the abdomen of a
patient, and integrates the electrodes with the rest of the components into clothing to maximize comfort. A
battery life of at least 12 hours before changing the battery to recharge is estimated. Options for changing the
system or its components to favour certain applications are discussed. A graphical user interface is developed
which includes a login screen based on the SHA-256 hashing algorithm, a patient tab that visualizes stress and
other important features, and a physician tab that also includes the raw data and options for contacting or
adding a patient. The graphical user interface uses pre-measured data stored on a Microsoft Azure server.

Preface

This report was written in the context of the Bachelor Graduation Project to obtain the Electrical Engineering
Bachelor at Delft University of Technology. We would like to thank dr. Carolina Varon Perez for her continuous
help and support throughout the project. We also want to express our sincere gratitude to both dr. Ioan Lager
and dr. Carolina Varon Perez for giving us the opportunity to continue the project amid the Covid-19 situation.
We would also like to thank prof.dr.Leo de Vreede and dr. Francesco Fioranelli for taking the time to be on the
jury for our final assessment.

We would also like to thank our other group members, Talha, Enes, Isar and Bob, who have worked very
hard together with us. Without their contributions, this would not have been possible. We had daily meetings
with the group, which was divided into three subgroups, and biweekly meetings with Carolina. Their insight
has greatly contributed to our progress throughout this project.

- Geert Jan Meppelink
- Yavuzhan Mercimek

1

Contents

1 Introduction 4
1.1 Current technology . 4
1.2 Problem definition . 4
1.3 Paper structure . 5

2 Programme of Requirements 6
2.1 Project limitations . 6

2.1.1 Ethical limitations . 6
2.1.2 Physical limitations . 7

2.2 Project requirements . 7

3 System Design 8
3.1 General overview . 8
3.2 Wearable sensors . 8

3.2.1 ECG measurement . 8
3.2.2 Respiratory measurement . 11
3.2.3 Microcontroller unit & Bluetooth Module . 13
3.2.4 Power supply . 13

3.3 Data processing options . 14
3.3.1 Signal pre-processing and stress detection . 14
3.3.2 Wireless transmission . 15

3.4 Server storage . 15
3.5 Alternative design . 16
3.6 Use of personal information . 16

4 Graphical User Interface: Health2Go 17
4.1 Login Screen . 17

4.1.1 Functionalities . 18
4.2 Patient Graphical User Interface . 18
4.3 Physician Graphical User Interface . 20

5 Results and Discussion 22
5.1 Results . 22

5.1.1 System Design results . 22
5.1.2 Graphical User Interface results . 22

5.2 Discussion . 22

6 Conclusion 24
6.1 Recommendation & Future Work . 24

A MATLAB Code 27
A.1 app1.m . 27
A.2 add2list.m . 47
A.3 ChooseFileButtonPushed.m . 48
A.4 ChoosePatientListBoxValueChanged.m . 48
A.5 ContactPatientButtonPushed.m . 49
A.6 add2list.m . 49

2

A.7 login.m . 50
A.8 LogOutButton_2Pushed.m . 50
A.9 LogOutButtonPushed.m . 51
A.10 mainECGrunner.m . 51
A.11 musicfunc.m . 52
A.12 onlineloginhalen.m . 53
A.13 PasswordfieldValueChanging.m . 53
A.14 soundButtonPushed.m . 53
A.15 PasswordfieldValueChanging.m . 54
A.16 soundButtonPushed.m . 54
A.17 stapregelaar.m . 55
A.18 startupFcn.m . 56
A.19 StressSwitchValueChanged.m . 57
A.20 UIFigureCloseRequest.m . 57
A.21 UploadButtonPushed.m . 57

3

Chapter 1

Introduction

The WHO declared stress as the health epidemic of the 21st century. Everyone has some form of stress during
the day, which can cause serious health issues [1]. Prolonged stress has been associated with a multitude of
health issues, such as psychiatric disorders such as anxiety, depression, and Alzheimer’s [2] and cardiovascular
diseases [3].

Formerly, people had to visit their doctor or physician in person to get their health monitored and to get
an analysis. This requires a lot of time and commuting which is not always necessary. This is why Telehealth
systems have been emerging in the past years, which makes remote health monitoring straightforward. These
systems allow the physicians to view their patient’s important health signals and to give them an analysis with-
out having to meet in person. These systems have also been allowing patients to view their own health related
information which can help them improve their own health. The novel and coming Telehealth systems would
improve on these by integrating a better network for a physician to view the analysis of multiple patients, and
a better visual platform for a patient to monitor their own health.

With this in mind, the goal of this project is to create a Telehealth system, which is capable of detecting
whether a person is stressed using their Electrocardiogram(ECG) signal and their respiratory signal (RS). This
information will then be used to give the users feedback on their stress levels during the day and will be sent to
their physician. This project will combine the knowledge of signal processing, cardiovascular biology, computer
science and psychology to achieve these requirements.

1.1 Current technology
While wearable systems capable of ECG sensing already exist, [4], with some even having an application to
directly monitor the sensor information [5], their use is mostly focused on the detection and prevention of
cardiovascular diseases. Research regarding wearable respiration sensors has also been conducted [6]. Papers
which link respiratory pattern and heart rate variability to stress have been published [7]. However, these papers
do not combine a ECG and RS sensor which is used for real-time stress detection in combination with a suitable
graphical interface.

1.2 Problem definition
The tasks of this project have been divided into three parts:

• Pre-processing [8]: The raw data coming from the wearable is processed by filtering and doing a quality
assessment on the signals. This is done to remove artifacts from the raw data for a clean and reliable
information extraction. The reliability of the signal is indexed based on a three step decision system. The
result of the quality indexing indicates if a signal is good or bad.

• Stress detection [9]: The detection of the stress levels will be done using the pre-processing part and
machine learning, conditioning it to classify and detect stress. Detecting stress is done via features, which
will be extracted from the filtered ECG and respiratory signals provided by the pre-processing group [8].
To obtain the features, signal processing steps, like filtering and the wavelet transform have been used.

4

• System design: The original task of the system design subgroup was to design a whole Telehealth
system, however, due to the COVID-19 pandemic, this goal was redefined. Instead the focus was shifted
to integrating the results of the other subgroups into a intuitive Graphical User Interface(GUI). An
overview of the recording system will be given in addition to a detailed design and implementation of a
software platform.

The problem this thesis will assess is the creation of a coherent system capable of acquiring ECG and respiratory
data as well as displaying relevant information for the assessment of stress, after the necessary calculations are
done by the other two subgroups. This includes all the components in between, such as data transmission and
server storage. Merging these existing technologies mentioned in section 1.1 with additions created during this
project will provide novelties, such as autonomous stress detection and an easy-to-use interface.

1.3 Paper structure
Firstly, in Chapter 2, the requirements and trade-offs of the monitoring system and graphical user interface are
defined. In Chapter 3, the different parts of the system are defined and recommendations for them discussed.
After that, in Chapter 4, the graphical user interface is explicated. The results of the graphical user interface
and design of the system are discussed and compared to the programme of requirements in Chapter 5, and a
conclusion is given in Chapter 6.

5

Chapter 2

Programme of Requirements

In this chapter, the programme of requirements is defined, which serves as a reference for the execution and
achieved results of the project.

2.1 Project limitations

2.1.1 Ethical limitations
Telehealth systems can use a variety of sensors to acquire the data from the user. These sensors collect sensitive
personal information, which needs to be protected. For this reason, there are a number of laws and protections
which every Telehealth system should uphold and will protect your private information from being leaked
[10]. Such as the HIPAA (Health Insurance Portability and Accountability Act) [11], which requires healthcare
providers to follow procedures that will protect patient health information, in the USA. The European equivalent,
the GDPR (General Data Protection Regulation) [12], is a more general data protection regulation not only
exclusive to the healthcare sector. One of the requirements is that no patient will be monitored unless they
know it and agree to it. An agreement is to be signed for this.

Security

Typical security threats for Telehealth systems include [10]:

• Breach of confidentiality during collection of sensitive data or during transmission to the provider’s system.

• Unauthorized access to the wearable of the user

• Untrusted distribution of software and/or hardware to the patient

A number of techniques are used to prevent such risks, with the most notable being Data encryption. Data
encryption secures the data by processing the true data through a complex mathematical algorithm before
storing or transmitting it [10].

Equality

An ethical issue arises when certain populations are deprived of Telehealth service due to their lack of access to
technology, or their lack of technological knowledge [13]. This would cause an unfair distribution of Telehealth
aid. As Telehealth is also needed in remote places with little to no access to modern health care. These places,
however, tend to also be the places with limited access to internet bandwidth, a core necessity of Telehealth [13].

From these statements we can conclude that this system needs to adhere to the following limitations:

• The acquired data must only be used for what is stated, which is to detect if a individual is stressed using
their ECG and respiratory signal.

• User data must be secured and only accessible by someone with specific permission.

• The system should not be limited to advantaged populations, but should be as accesible as possible

6

2.1.2 Physical limitations
In addition to the ethical limitations, designs generally also have some physical bounds. This project is generally
limited by its compatibility and its ease of access. They will help us to determine the boundaries for the physical
part of the system, which will be designed based on these goals. These physical limitations are:

• The system should be wearable and not hinder the daily activities of the user.

• The system should be non obtrusive and non-visible when worn under clothing to protect the patients
privacy.

2.2 Project requirements
Keeping in mind the limitations given in section 2.1, the PoR for this subgroup can be given as:

• The system needs to work as close to real time as possible: ECG data needs to be updated at least every
10 seconds and the respiration data at least every 30 seconds. The stress indicator should be computed
at least within the segment length to ensure real-time visualization. This segment length is taken to be 2
minutes maximum as stated by the stress detection subgroup [9].

• The battery life of the system should be at least 7 days to limit the amount of times the battery has to
be replaced.

• The total weight of the of the complete system should be less than 250 grams. This is about the same
weight as a smartphone on the heavier end of the spectrum, and should be adequate for a wearable system.

• The Graphical User Interface (GUI) needs to have a login screen to restrict the access of personal infor-
mation to those permitted.

• The GUI is to display whether or not a person is stressed, and if so provide a calming exercise and an
option to play a calming song.

• The GUI is to display data retrieved from the ECG and respiration signals, such as the respiratory rate,
heart rate and the processed signals.

• Data must be stored on a server and remotely accessible.

7

Chapter 3

System Design

Would the project not have been hindered by the current corona virus pandemic, a bigger part of the actual
system could have been implemented. This is not possible anymore, but that does not inhibit the task of
designing an actual system that could complete the functionalities of the current project instead. Instead of
pre-measured ECG and respiration data, the data will be measured by sensors that can comfortably be worn by
someone all day long. The system will use the developed pre-processing and stress detection parts to process the
data and display the processed data on both a patient wearable or smartphone and a physician web interface.
The data will have to be shared in between these parts and be stored on a server for later accessing as well. In
this chapter the possibilities for such a system will be discussed. A general overview of such a system is given
and the separate parts are laid out and characterized. The specifications of different options are determined,
and their advantages and shortcomings discussed. Also, the way the data can be handled and transmitted
between the different parts of the system is analyzed.

3.1 General overview
The system consists of four distinctive parts, which can be seen in figure 3.1:

• Wearable sensors, which will collect the ECG and respiratory data from the patient. This part also
includes data transmission to the smartphone/wearable.

• A patient smartphone or wearable, where the patient can view their own data. The smartphone/wearable
is also responsible for relaying data to the server.

• A server that stores the patient and login data.

• A remote computer capable of accessing this data from the server and displaying them for the physician.

Further elaboration of the methodology of the system design can be found in the following sections.

3.2 Wearable sensors
The wearable sensors part of the system is responsible for obtaining the analogue physiological ECG and
respiration rate data, converting it to digital data and transmitting it to a patient wearable/smartphone for
further processing and visualization. One of the main requirements of this part of the system is the comfort for
the wearer, as the system is designed for long-term use. A schematic overview of the designed wearable part
of the system can be seen in Fig. 3.2. The blocks within this system will be elaborated on in the different
subsections of this section.

3.2.1 ECG measurement
An electrocardiogram (ECG) is a graph of voltage versus time of the electrical activity of the heart. This
electrical activity occurs due to continuous depolarization and repolarization of the heart. This polarization
is due to the heart muscles, just like other muscles, being electrically stimulated. The inside of a heart cell
is negatively charged relative to the outside. This means that when the are stimulated, the cells depolarize

8

Figure 3.1: General overview of the system design including stress detection and pre-processing.

Figure 3.2: Schematic representation of the wearable sensor architecture

and the muscles contract. After which they repolarize and the muscles loosen. This electrical activity can be
measured using electrodes and subsequently processed. The sensor system needed to detect the ECG consists
of four parts:

• Electrodes

• Amplifier

• Anti-aliasing low-pass filter (LPF)

• Analog-to-digital converter (ADC)

Electrodes

The electrodes are the heart of the ECG measuring system. In a conventional system, called resistive or wet
ECG, 12 or 15 Ag-AgCl electrodes are attached to different parts of the body using gel to improve conduction.
Even though this kind of system provides high quality signals, they are inconvenient and could cause allergic
reactions or even inflammation due to long-term use of the gel that was being used to attach them [4]. As
stated before, due to the way that the system will be used, the goal is to design a system that hinders the user

9

Figure 3.3: Schematic of the wearable sensors part integrated into a t-shirt

as little as possible. In such systems, the usage of non-contact capacatively-coupled ECG (CC-ECG) sensors
are preferred. In contrary to the standard twelve-electrode ECG, a three-electrode ECG system is used. Even
though it is desirable to have as few electrodes as possible to reduce size and weight, the removal of the third
electrode is challenging, as two-electrode acquisition systems have significantly higher electromagnetic inter-
ference (EMI) and lower signal-to-noise ratio (SNR) [14]. These sensors are not placed directly on the body.
Instead, a layer of insulator is placed between the skin and the metal electrode. Normal clothing can be used as
an insulator to improve the wearability for the patient. This provides a good option for integrating the sensors
to minimize their inconvenience. A schematic overview of the recommended way of incorporating the sensors
into a t-shirt is shown in Fig. 3.3. Nevertheless, to maximize the working, the material of the clothing should
have a high dielectric constant and be very thin. The use of cotton cloth as an insulator produces comparable
ECG signals to wet ECG systems, while for example wool disturbs the signal [4]. The electrodes, skin and
insulators form capacitances. Two of these electrodes, placed on the upper body, are used to measure a body
surface’s potential difference. The third electrode is used as a low-impedance path for noise reduction. Used
this way, a three-electrode ECG system provides sufficient sensitivity [14].

This method has several advantages over the wet (resistive) ECG method. Apart from the added comfort
of not having a dozen electrodes attached to you, the sensors can be installed in other objects, like furniture for
example, to monitor a patient without them having to wear the sensors. One way to implement such sensors is
to attach them to clothes that can be worn by the patient. This way, the patient can wear them with minimal
discomfort. But, these sensors do not only have advantages. They have some shortcomings when compared to
resistive systems. The signal quality is not as good as with ECG-systems connected to the skin, because there
is a significantly higher impedance between the signal sensor and the source. The system can also generate high
unwanted currents that can overwhelm the ECG current due to movement artefacts. When the position of the
electrodes changes, so does the capacitance. This will generate an unwanted current that may overwhelm the
ECG signal. And lastly, due to the high impedance, the electrodes suffer from power-line contamination due to
capacitive coupling.

There are a few constraints on the kind of electrode that will be used. The impedance between the skin
and the electrode should not be too high, so, the electrode should be large enough to ensure this, but small
enough to fit comfortably in a piece of clothing. The characteristics of the piece of clothing that the electrode is
attached to are important as well. To minimise artefacts due to movement, the electrodes should stay at their
relative positions as much as possible. Therefore, it is recommended to incorporate them into a piece of more
tight clothing, like to a bra, a tight undershirt or even a halter designed for such systems.

10

ECG amplification

Amplification of the ECG signal is needed in order to fit the signal to the range of the ADC (-1.65 to +1.65V
[15], see subsection ECG analog-to-Digital conversion). Also, due to the high input impedance (in the range
of 10GΩ [4]) of the ECG sensor, a voltage buffer with high input and low output impedance should be used
in order to match to the low impedance of the amplifier. The amplifier is a big part in reducing the noise in
the system. Common-mode rejection (CMR) is one of the most important performance parameters in an ECG
measuring system. This is due to the large amounts of electromagnetic interference (EMI) that is coupled to
the system. This can be coupled through the patients skin to their body, or via the electrodes or other elements.
This interference, which originates from the 50 Hz (Europe/Asia) power lines, ends up as a common-mode (CM)
noise in the system. Due to mismatches in the system, this interference also results in differential-mode (DM)
noise, which deteriorates the systems CMR performance.

To combat this degradation, different options can be implemented to improve the CMR performance. One
straightforward option is to shield the system to reduce the amount of power-supply interference that enters
the system. This way, other additional environmental noise is also reduced. This could be a good option for
the cables, where mismatches might occur more often. Too much shielding might add too much weight to the
system and reduce the comfort. Therefore, shielding of other parts of the system is not preferred. To help
improve the CMR performance though, the third electrode can be used as a reference input for the voltage
buffers. This is called a driven right leg circuit (DRL), due to the third electrode commonly being applied to
the right leg, farthest away from the heart [16]. The system improves CMR by sensing the input common-mode
voltage at the voltage buffer.

In addition to all these techniques to improve CMR performance, voltage buffers and amplifiers with good
qualities should be chosen. For the voltage buffer, low noise and voltage input offset are desirable, as this
reduces the common-mode noise. The LMC6001 Ultra [17] Would be a suitable amplifier for these reasons. For
the differential amplifier, the INA106 [18] is recommended for its low noise (1µ Vp−p), reasonable gain (60 dB)
and a high CMRR (110 dB).

ECG anti-aliasing low-pass filter

In the pre-processing part of the complete system the required filtering is done digitally to prepare it for stress
detection. However, an anti-aliasing filter is required before feeding the signal to an ADC. According to the
Nyquist theorem, the sampling rate should be at least twice as high as the highest frequency component of the
signal. According to the American Heart Association (AHA), information in the ECG can still be found up to
150 Hz for adults, adolescents and children. It is stated that data sampled at 500 samples per second (sps/Hz)
is needed to correctly convey this information [19]. This- means that a low-pass filter with a cutoff frequency
at 150 Hz with sufficient attenuation at 250 Hz could be used to prevent aliasing. A single-pole passive RC
filter with a -3db frequency of 150 Hz offers enough attenuation (-4,4 dB) at the Nyquist frequency of 250
Hz, and it has the advantage that it does not need any extra power or amplification. Therefore, it will take up
less space and weigh less compared to an active filter. This is the preferred option. If needed, an option could
be to slightly increase the sampling rate to combat any aliasing that might occur from the frequencies in the
transition band. A different option would be to use higher order active filters to improve the roll-off, but this
would be at the expense of having a bigger system that also uses more battery.

ECG analog-to-Digital conversion

For the ADC, the AD7779 [15] is proposed. It has a high signal to noise ratio (108dB) and resolution (24bit), it
has low power consumption (3.37 - 10.75mW), and it has eight ADCs in it, which can be used simultaneously.
This is especially handy as this makes it possible to use it as an ADC for the respiratory signal as well. This
reduces the complexity of the system as well as the costs. The costs of the system will be extensively reviewed
in the additional business plan of the project, which will be issued at the same time as this thesis.

3.2.2 Respiratory measurement
The respiratory rate of a person is the rate at which their breathing happens, usually measured in breaths per
minute. This signal is traditionally measured by using a respiratory flow sensor attached to a face mask. These
medical flow sensors are often not only large and expensive, but they are in no way comfortable if someone
would need to wear it for longer amounts of time. A good wearable sensor system for respiration rate would be
lightweight, flexible, durable and robust to motion artefacts that will appear during normal use.

11

The sensor system for measuring of the respiration consists of three parts.

• Respiratory sensors

• Anti-aliasing low-pass filter (LPF)

• Analog-to-Digital converter (ADC)

Respiratory sensors

Wearable sensors for respiratory monitoring can consist of various types of sensors that can be attached to a
person in numerous ways. They could be worked into clothes, attached to belts or just placed on the skin.
When employing such sensors, it is important to know what type of changes are expected to be registered
during breathing. There will be an airflow in and out of the mouth and nose, the lung volume will increase and
decrease and the concentration of oxygen and carbon dioxide in the blood will change. Different options for
sensors include [20]:

• Pressure sensors

• Acoustic sensors

• Humidity sensors

• Oximetry sensors

• Accelerometers

• Resistive sensors

Due to the constraints of the system, some sensors are clearly more useful for this application than others. The
system should be as lightweight and comfortable as possible. Pressure sensors could, for example, be integrated
in a belt that a person could wear around the chest to measure the expansion during breathing. Another usage
of belts comes in the form of resistive or acceleration sensors. These belts measure the variations in resistance
and position, respectively. However, because such bands are rather bulky and prone to moving, they are not
suitable for systems that require constant daily monitoring without interfering in daily lives [6]. In the proposed
system though, resistive sensors still form a good option for measuring. However, not in the form of belts, but
in the form of small piezo-resistive strain sensors. These small sensors are based on the materials ability to
increase resistance with respect to strain. When applied to a part of the chest that moves during breathing,
such as the ribcage, the variations in resistance can be measured with the use of a voltage divider to produce
a respiration rate signal that can be used by the pre-processing and stress detection parts of the system. The
proposed method of integrating this sensor into the system can be seen in Fig. 3.3, where the strain sensor is
applied to the skin of the abdomen.

Respiratory anti-aliasing low-pass filter

As stated in the anti-aliasing section of the ECG sensors. No filtering of noise due to signal acquisition is
needed, but rather to prevent noise due to aliasing when converting from an analogue signal to a digital one.
According to [21], useful information in the respiration signal can be found up until 0.5 Hz. This is also used by
the pre-processing subgroup [8]. This means that the sample rate of the respiration rate will be way lower than
the sample rate of the ECG-signal.The same idea for a first order low-pass filter can be used, this time with the
cut-off frequency at 0.5 Hz. A first order low-pass filter has a 20 dB/decade roll-off, which equals a 6 dB/octave
roll-off. This means that the signal will be attenuated with 6 dB more at 1 Hz compared to 0.5 Hz . As the
Nyquist theorem states, the sample rate should be twice as high as the highest frequency component. The ADC
sampling rate can be set to any value [15], so the sampling rate can be rather low. A sampling rate of 4 Hz
should already be sufficient, as this is the minimum required for the stress detection algorithm to work properly
[stressdetectiojan]. The sample rate can also be chosen to be marginally higher to improve the quality of the
signal, as this has relatively little effect on the total amount of data that needs to be processed, because the
total data also includes the ECG-data sampled at 500 Hz.

12

Respiratory analog-to-digital conversion

The same ADC that is used for the ECG-sensors part can also be used for the respiratory sensors part, as it
integrates options for sampling multiple analogue signals at once. As stated before, this helps to reduce the size
and cost by using the same element.

3.2.3 Microcontroller unit & Bluetooth Module
The wearable part of the system concludes with a microcontroller unit (MCU) that integrates the processor of
the system with a Bluetooth module for wireless connection to the next stage. The analog-to-digital converters
of both the ECG and respiratory stages are attached to this module. A schematic representation of the wearable
sensor architecture can be seen in Fig. 3.2.

The proposed microcontroller is the MAX32665 [22]. This microcontroller was chosen for its built-in Blue-
tooth Low Energy (BLE) module, its relatively high processing power (up to 96 MHz) and its dynamic voltage
scaling to minimize power consumption. An 8-channel input sigma-delta ADC is also present on the microcon-
troller, but it cannot sample multiple analogue signals simultaneously, so it offers no possibilities for reducing
the amount of ADC’s in the system.

3.2.4 Power supply
As the system will be used for long-term monitoring, it is important that a battery with relatively high capacity
is used to ensure that the batteries do not need to be replaced and recharged often. As the system will work
continuously, using non-rechargeable batteries would result in the usage of a high amount of batteries. Therefore,
a good recommendation would be to use rechargeable batteries in a pair, so that when one battery is being
used, the other can recharge. A higher battery capacity also means a bigger size, so there is a trade-off between
size and weight of the system on one hand, and the time it takes before having to switch the batteries on the
other hand. In the programme of requirements, it is stated that the battery life of the system should be seven
days. However, there is less sense in using way bigger batteries when rechargeable batteries are being used
instead of non-rechargeable ones A better estimate is that the battery pair should keep the system working for
at least one day, so one battery should be able to sustain the system for 12 hours. Relatively small lithium
rechargeable batteries form a good compromise. Two 3.7 V thin and relatively small (33x31x5mm) with a
respectable 500 mAh capacity were chosen. To provide the voltages for the amplifiers a very small low-power
DC/DC voltage converter TPS61040 can be used [23]. This setup could provide the system with approximately
40 mA throughout the day. In the paper of Nemati et al. [4], a current drain of 25mA is measured using
a similar system which only monitors ECG. An estimate of the power consumption using the data-sheets of
the needed components shows that a consumption in the same order of about 25 mA is to be expected. This
assumption was made based on the provided power consumption with the ADC channels sampling at 2 kHz
and the processor in constant transmission.

Protection and isolation

Isolation is important in medical equipment, as the patient is a part of the system and should be protected. The
patient must be protected from electric shock from the system, and the system must be protected from extreme
voltages generated by emergency use of a defibrillator. To ensure this protection, isolation of the power and
signals is required. Isolation of the signals used to be done using optocouplers, which transfers electrical signals
between two isolated circuits using light. However, optocouplers tend to have poor analogue linearity and are
not suitable for direct coupling of precision analogue signals. Using a digital isolator however would negate
these disadvantages, while using less power as well. The proposed digital isolator is the ADuM2400 [24]. This
isolator integrates high presicion data transfer at minimal power (about 1,5 mA at two channels). To seperate
the power of the analogue front end from the rest of the system, another battery could be used. The same 3,7
V/500 mAh battery used for the digital part of the system can be used for the analogue front end. A current
limiting device is needed to keep the current at a safe level. A limit of 10 A rms is defined by the American
College of Cardiologists [25]. Solutions in the form of a resistance placed in the signal path (10s of Kilo-ohms)
or current limiting devices.

13

3.3 Data processing options

3.3.1 Signal pre-processing and stress detection
In the report of the pre-processing [8], and stress detection [9] subgroups, the mean computation time and
standard deviation have been given for their respective parts. These computation times are for segments of
10 seconds for the pre-processing and 80 seconds for the stress detection, their times can be found in Table
3.1. The micro-controlling unit (MCU) chosen for this project is the MAX32665 [22], which has an ARM
Cortex-M4 [26] processor with a clock speed of up to 96MHz, which is considerably slower than the processors
used for the development of the functions. Comparing the performance of different processors is not possible
simply by comparing their clock speeds. This is due to the difference in architecture (ARM versus Kaby Lake
[27]/Broadwell [28]), which gives each processor a different instruction set to work with. The Cortex-M4 was
announced in 2010, while Broadwell was announced in 2014, this is a considerable time difference in terms of
technology and one could expect that the much more powerful and younger processor has a broader instruction
set. It should however be noted that the Cortex-M4 has special instructions included designed for Digital signal
processing, which could make up for the lower clock speed. However, if a comparison were to be made between
the different processors purely based on clock speed, and assuming that clock speed is linear to performance, the
wearable MCU, the MAX32665 is expected to perform the processing within the segment length of 10 seconds.
For example, a comparison can be made between the clock speed of the Cortex-M4 and the i7-5000U, which was
used in one of the tests for the computation time. The ratio, RatioCPU , between the two clock speeds would
be:

RatioCPU =
2.4 × 109

96 × 106
= 25

Which means that with an identical architecture, and thus instruction set, the Intel i7-5000U would be 25
times faster that the Cortex-M4.

For the calculation it is assumed that the time to perform the stress detection is evenly distributed between
the 8 segments of 10 seconds. Also, it is assumed that the computation times are normally distributed, so the
empirical rule of statistics states that 99.73% of all values are between six standard deviations around the mean.
So, the maximum computation is assumed to be within three standard deviations added to the mean:

Maximum computation time = tmax = 0.0379 + 3 × 0.0128 + 0.1278 + 3 × 0.0176 = 0.2569 seconds

Cortex max computation time = RatioCPU × tmax = 25 × 0.2569 = 6.4225 seconds

This is however the maximum computation time, when the MCU has to processing the data as well as check
for stress, which is only done once every 8 segments. During the other segments however, only the processing
of the signals has to be done. The maximum for the standard computation time, tstandard,max is calculated
similarly as to tmax:

tstandard,max = 0.0379 + 3 × 0.0128 = 0.0763 seconds

Cortex standard computation time = RatioCPU × tstandard,max = 25 × 0.0763 = 1.9075 seconds

From this calculation we can conclude that the MAX32665 would be fast enough to do the calculations needed
for the processing and stress detection, if the only variable would be the clock speed. However, as is explained
above, the clock speed is not the only variable. The system should be tested in real life in order to decisively
conclude whether the MAX32665 is indeed powerful enough to do the full computation. It should however be
noted that the calculations for the computation costs were done using data that had sample rates of 1000Hz
for the ECG and 250Hz for the RS. The sample rates that are used in the design for the implemented system
is lower (500Hz and 4Hz respectively). This would improve the computation time.

If however after the research it is concluded that the MCU is not fast enough, it would not prove to be a
problem, as the data processing can be done after the data has been transmitted to the phone, which has a
much stronger processor. Alternatively, the segment length could be made longer, which would give the MCU
enough time to process the data.

14

Mean time (s) Standard deviation (s) CPU used
Pre-processing 0.0379 0.0128 i5-8300H @2.3GHz
Stress detection 0.1278 0.0176 i7-5500U @2.4GHz

Table 3.1: Table with the mean time and variance of the computation on their respective CPU.

3.3.2 Wireless transmission
Data transmission will be executed across multiple devices. For this reason, multiple methods of wireless data
transmission will be needed depending on factors like power consumption, cost, range and bitrate. The two
ways of telecommunication will be through Bluetooth Low Energy (BLE) and WiFi/LTE.

The connection between the sensors and the smartphone should be done using BLE, this is due to the sig-
nificant difference in energy consumption between them: the power consumption of WiFi is approximately
103 − 104 times higher than that of BLE [29]. The power consumption of LTE is even higher than that of
Wifi [30]. Thus, by choosing BLE for the wireless communication between the sensors and the smartphone, the
battery life of the sensors will be significantly longer compared to when other modes of wireless communication
would be used. There are some drawbacks with using BLE, such as the lower bitrate and range. The range
should however not pose a problem as the connection will be between a sensor on the body and a phone, which
is generally held in close proximity.

The data that will be sent are the processed ECG and respiratory signal. A quality indicator, which indi-
cates whether the signal is of bad quality according to the pre-processing subgroup, and the stress indicator. If
a person is indeed stressed, the unfiltered ECG will also be transmitted to the server in order for the physician
to analyze the raw data. There is a trade-off between the amount of patient information sent to the server,
and the power consumption and server storage. One option would be to constantly send all the data to the
server. This would require the most power and server storage. Another implementation could be to only send
the data around the time when stress is detected, or only a scheme of the times of day that a person experiences
stress. Different options can be implemented for different practices. If the system would not be constantly
transmitting, it would reduce the power consumption. Also, fewer data sent means less server storage. Another
option would be to greatly down-sample the processed ECG and respiratory data after the stress detection part
has already taken place. This means that a lot less data has to be sent.

The Data transmission is done via BLE with a bitrate of 1 Mbps and 2 Mbps. Most of the data will be
of the ECG which will be sampled at 500 Hz. Due to the circumstances during this project, no data from the
proposed system is available and thus the actual file sizes can not be given. During the course of this project,
however, ECG data sampled at 1000Hz has been used. By simply dividing the data up as if it were sampled
at 500Hz in segments of 10 seconds, the average file size of a similar ECG sensor sampled at 500Hz has been
determined to be 35Kb. This is small enough to be sent without any delays.

Data transmission from the phone to the servers and vice versa will be done through the connection of the
phone, whether it is connected trough WiFi or via LTE. This due to one reason, which is connectivity. The
simplest and most accessible way to transmit data to the server is via an internet connection. Connection
between the smartphone and the server will be every 10 seconds in order to keep the displayed information as
close to real time as possible.

3.4 Server storage
For this project, data storage has been done using Microsoft Azure [31]. The reason for choosing Azure was
partly that it provides a broad spectrum of services which could be used to further improve the development of
the GUI. The other part is that Azure is relatively simple to connect to MATLAB for basic tasks, such as reading
and writing data to an Azure BLOB-storage [32]. One disadvantage of Azure however is that MATLAB cannot
read ’.mat’ files from Azure, only ’.csv’ and ’.txt’ can be read from the storage without actually downloading
data. For this reason, the file extension used for data storage will be ’.csv’.

One thing that should be noted is that for testing purposes, the data used during this project is stored
in segments of 50 seconds for both the ECG and RS. This is due to not having a complete system which can
continuously send data every 10 seconds.

15

3.5 Alternative design
This design relies on items that could be considered as a luxury: multiple sensors, ADC’s and filters, which
can quickly increase the cost of the system. In addition to this, not everyone has access to the internet. As
explained in section 2.1.1 of chapter 2, new Telehealth systems should be as widely available as possible. For
this reason, an alternative design is proposed. This design will consist of the same components as the original
design, with some features changed. A need for a separate respiratory sensor , for example, is not crucial, as
this could be extracted from the ECG-signal, the cutoff frequencies can be taken at 0.05 and 1 Hz of the ECG
[33], and could be extracted. However, this might worsen the stress detection. Now a cheaper processor can be
used with less processing power. Compromises can also be made on the need for an internet connection. The
user could connect his phone to a physical storage device, like a USB-stick or a personal computer for example,
from which later on the physician could retrieve the data and observe it another time. This can also be used
to do the processing and stress detection, which would have normally been done on the MCU. This further
reduces the need of an MCU with high processing power, making the overall system cheaper. Alternatively, the
memory on the MCU could be increased and the data could be stored internally, from where the physician can
later on download the data locally via Bluetooth.

3.6 Use of personal information
The goal of this project is to create a system in addition to an application, intended for public use, which collects
and processes personal information of its users, it should be noted that the application developed during this
project should adhere to the GDPR before being publicly released. As this design will not be fully physically
realized in the scope of this project, steps will be taken to ensure the protection of personal data according to
the GDPR, but will in no way be sufficient to comply with the GDPR.

16

Chapter 4

Graphical User Interface: Health2Go

The GUI, named Health2Go, is the part that connects the users to the functionalities of the app. There will
be two different GUI tabs, one for the patient and one for the physician. The patient GUI will display the
important signals, such as the filtered and unfiltered respiration rate, and the Heart Rate (HR). It will also be
able to help the patient calm down through a breathing exercise. Besides the signals available on the patient
GUI, the physician GUI will also show the filtered and unfiltered ECG signal, and allows for quick contact
with the patient. As the physician must be able to monitor multiple patients at once, the physician GUI offers
the option to switch between different patients from within the GUI. To ensure the safety of the patient data,
both GUI’s can only be accessed from a login screen with the right username and password combination. The
right combinations can grant access to either the patient or the physician GUI, based on the security access levels.

The GUI presented below has been made using Matlab(R2020a) App Designer and its code can be found
in Appendix A.1

4.1 Login Screen
The login screen is the first and only tab that is visible when the app has just launched. The purpose of the
login screen is very straightforward. Grant access to people with the right login credentials, and forward them
to the corresponding GUI. Of course, when the right credentials are not entered, access will be denied, and they
will stay on the login screen. The appearance of the login screen can be seen in Fig. 4.1.

Figure 4.1: Visual of the login screen

17

4.1.1 Functionalities
The login screen has two visible text fields and one visible button. The first text field is for filling in the user-
name, and the second field for the password. As is traditional for most password fields, the password itself is
replaced with asterisks while typing. The characters are not masked, but changed. If someone were to copy the
password field, they would only get asterisks. The actual password is namely stored somewhere else, and then
together with the username compared to the known combinations. The way this is done is by using a third,
invisible text field. While typing, the characters of the password are changed to asterisks one by one. Every
time before that happens though, the first character that is not an asterisk is copied to the invisible field, and
concatenated with what was already in there (Appendix A.15).

When the enter button is pushed, the combination of username and password are checked to see if there is
access connected to the combination, and if so, which user interface should be displayed. The way this is done is
as follows. The login data is stored on the Microsoft Azure server in a file with three columns. The first column
is the username, the second is the hashed password, and the third is a distinct ID. The hashing of passwords was
done using an SHA-256 hashing mechanism. The SHA-256 mechanism was used for a couple of reasons. Firstly,
due to the way passwords are handled within the system, there is no need for two-way encryption. The entered
password is hashed and then compared to what is stored on the server. SHA-256 is a one-way hashing system,
which is enough for the purpose of this project. It provides better security than similar hashing functions, such
as MD5 and SHA-1 [34]. It should however be noted that using only SHA-256 for password hashing is not
enough as it is still vulnerable to commonly used tactics such as rainbow tables, which are pre-computed tables
with commonly used passwords. The use of SHA-256 in this project was only as a proof-of-concept and a step
in the right direction rather than a true security measurement. The use of a salt for example, would increase
security and prevent unauthorized access to the system.

When enter is pressed, the app will look for the username within the first column of the file. When the
username is located, the hashed password is compared to the entry of the second column of the same row, where
the corresponding hashed password is stored. If this is also equal, the person will be forwarded to their personal
screen based on their ID tag in the third column, which corresponds either to a patient GUI with their own
data, or the physician GUI with all the data available, the code for this can be found in Appendix A.7.

4.2 Patient Graphical User Interface
The Patient tab is meant for personal use only. A patient that is being monitored can access relevant informa-
tion from here.

When a patient opens the application a large green ring and a graph on the left side of the application, as
seen in figure 4.2, will be shown. This green ring will turn red depending on the outcome of the stress detection
algorithm [9]. In the ring, the heart rate of the user will be displayed with a 10 second delay. This delay has
been explained in section 3.3 of this thesis. Below the ring, the respiratory signal of the patient is displayed
(figure 4.3), This graph will be plotted in a scrolling manner in order to simulate a continuous connection,
even though the data is only updated every 10 seconds. Both the heart rate as well as the respiratory signal
displayed have first been processed and calculated by the pre-processing subgroup [8]. The reason for displaying
only the heart rate and respiratory signal instead of both signals and both rates was, aside from clutter on the
screen, that a user understands and knows what a healthy heart rate is supposed to be, but cannot retrieve any
useful information from the ECG signal. On the other hand, a user most likely does not know what a healthy
respiration needs to be. He/She can however intuitively feel when he/she is breathing too fast. By also giving a
visual aide in the form of a graph which shows their breathing pattern, it will help them to better gain control
of their breathing.

18

Figure 4.2: Interface when the patient is not stressed.

When stress is detected for a user by the stress detection subgroup, the green ring will turn red, as seen in figure
4.3 (Appendix A.19). In addition to this, a breathing exercise will be displayed, to help the user calm down.
Feedback will also be given in the text box in the upper right corner to help the user match their breathing with
the exercise: if the breathing rate is not within regular margins, the subject will be encouraged to slow down
or speed up until the desired respiratory rate is reached (Appendix A.6). While the breaths per minute which
the exercise encourages, approximately 6.67 breaths per minute, is lower than normal for a non-respiratory
compromised adult (12-20 breaths per minute [35]), slow breathing exercise have proven to positively influence
relaxation [36]. The user is also given the option to listen to the song ’Miserere Mei’ by Gregio Allegri which
helps reduce stress in patients, according to Myriam V Thoma et al. [37] (Appendix A.11, A.16).

Figure 4.3: Interface when the patient is stressed.

19

4.3 Physician Graphical User Interface
The physician tab is meant for physicians who need to check up on their patients. It provides more detailed
information and an option to contact their patients.

Figure 4.4: Interface for the physician.

Figure 4.4 shows the screen a physician will be shown when logged in. The upper left graph shows both the
processed (red) and unprocessed (blue) ECG signal of the patient. Below, in the lower left corner, the processed
respiratory signal can be seen. These graphs will be plotted in a scrolling manner in order to simulate a
continuous connection, even though the data is only updated every 10 seconds. Next to both graphs the heart
rate, as well as the respiration rate, are displayed (Appendix A.10, A.17). Additionally, a binary quality factor
indicator is displayed. If the quality factor is 0 for three consecutive segments, the signal is of bad quality and
a warning will be displayed to make the physician aware of this (figure 4.5a). The system will also notify the
physician when there is a prolonged period of time (10 seconds) where there are inputs missing from either the
ECG or the respiratory signal, which can be seen in figure 4.5b .

(a) Warning notification when the quality factor is 0.
(b) Error notification when there is missing data

Figure 4.5: Notifications of the system

The ’Contact Patient’ button together with the text box underneath can be used to quickly send a mail to the
patient. The empty text area can be used to fill in a personal message to the patient. A notification will be
displayed when the mail has been sent (figure 4.6)(Appendix A.5). The green disc, next to the ’contact patient’,
button works similarly with the green ring in the patient tab. When it is green, the patient is not stressed, and
when it turns red, it indicates that the patient is stressed.

20

Figure 4.6: Notification for when mail is sent and to whom.

If the physician already has ECG or respiratory data from one of their patients, the data can easily be added
via the upload system on the upper right side of the interface (Appendix A.3). The file uploaded has to be a
.csv file and a warning will be given when the uploaded file does not have the .csv extension. Figure 4.7 shows
all the warnings that will be given depending on the type of error the user makes. Furthermore, the physician
can indicate whether the uploaded file contains ECG or respiratory information and the name of the patient
whom this information belongs to. If the patient does not exist, the new patient will be added to the list below
the upload button from where the physician can now also select him/her and review their data (Appendix A.2).
This data will however only be stored locally in a subfolder accessible by the application.

(a) Notification when no file is selected when pushing the
’upload button’. (b) Notification when the patients name is missing

(c) Notification when a file of the incorrect type is uploaded.

Figure 4.7: Notifications when uploading a file

21

Chapter 5

Results and Discussion

Due to the current circumstances, the whole system design could not be implemented. So, we are not able
to verify some of the design choices that were made based on the programme of requirements, Section 2.
Approximations regarding parameters as weight, battery life and computational power have been made, but
cannot be confirmed.

5.1 Results

5.1.1 System Design results
The goal of the system was to design a non-invasive ECG and respiration monitoring system. The system should
conform to physical as well as electrical attributes to ensure proper working. In the programme of requirements
(PoR) section, Chapter 2, it is stated that the battery life of the system should be at least 7 days. For the final
design, rechargeable batteries are recommended. These batteries offer a good resolution between weight/size
and capacity. Literature and approximations point to the fact that such a battery should be able to sustain
the system for at least 12 hours up to a day before having to be recharged. However, we are not capable of
confirming this. The weight of the system is estimated to be well within the 250 gram maximum set in the PoR.
However, this is also difficult to estimate due to the way it might be implemented, and impossible to confirm
for now.

5.1.2 Graphical User Interface results
The Graphical User Interface (GUI) has actually been made. Such as, a comparison can be made between the
final GUI and the expected goals from the PoR. The GUI needed to have a login screen with personal creden-
tials to prevent unsolicited access to their data. Such a screen was made, with pre-determined username and
password combinations that were hashed using the SHA-256 hashing mechanism. The GUI is able to display
when a person is stressed according to stress detection [9]. A breathing exercise and a calming song are provided
when this occurs. The heart rate of the patient and their filtered respiration rate are visible within the patient
tab. Within the physician tab, the raw and processed ECG and respiration data are also visualized. A way of
contacting the patient directly through the GUI via e-mail was implemented. Also, within the physician tab
there is the option of adding extra local data. The requirement for remote storing and accessing of data is also
met. The data is stored on a Microsoft Azure server [31].

It was stated that the system should be updated within certain time-frames to keep it as close to real time as
possible. The achievements of the stress detection [9] and pre-processing [8] subgroups made this possible. The
segment length was taken to be 80 seconds. So, the stress indicator is able to be updated every 80 seconds, and
the ECG and respiration are updated every 10 seconds.

5.2 Discussion
There are a lot of different systems for the monitoring of ECG or respiration. There are little to no systems
that try to do this at the same time. Every system, ours included has been designed with their respective goals
in mind. Our goal being to try and monitor this data without interfering in the movement of daily lives.

22

Additional changes could be made within the system to further improve comfortability for daily use. For
example, the number of electrodes could be reduced from three to two, but as this would increase the amount of
noise and electromagnetic interference, components could have to be added that negate the benefits of removing
it. It is also possible however that better pre-processing could deal with this amount of extra noise and make
it work. This however would increase the computational costs and might inhibit the system of working on a
wearable. A lot of these trade-offs could be seen when the system was designed. The choices made and com-
ponents proposed are the options that in our eyes could ensure the system to work within the boundaries that
were determined. These boundaries also state that the system should hinder the patient wearing it as little as
possible. We are sure that improvements can be made within that part. The way the respiration strain sensor
is now attached, directly to the skin and not processed into a shirt, definitely lowers the comfort. However, if
the pre-processing and stress-detection parts would be able to recognize and process the respiration data from
the ECG data, this part might be left out completely, to drastically improve the size and wearability of the
system.

The proposed functionalities of the graphical user interface (GUI) are all achieved. Some of the functional-
ities are there as a proof-of-concept rather than a product to be used though. The way the login protection is
achieved now is by using a hashing mechanism (SHA-256) that is not solely used within an actual GUI that han-
dles private data, but in combination with a salt. The other functions are achieved as envisioned, even though
they might not be as good looking as intended. The usage of Matlab App Designer restricts the appearance
and functionalities of the GUI, as it is for example not very well designed for the use of writing to and reading
from online storage.

23

Chapter 6

Conclusion

The designed system uses sensors, components and acquisition systems that are proven to work within the same
applications. The patient should be able to wear the system without too much hinder in their daily lives. The
real world applicability is expected, but to be tested.

The Graphical User Interface was developed and works as according to expectations and requirements. A
login screen based on the SHA-256 hashing algorithm is made, which is good for developing purposes but not
for real world applications. The GUI incorporates a patients heart rate, respiration data, stress indicator and a
breathing exercise and calming song to calm down the patient when stressed. The physician GUI also includes
the raw and filtered ECG data, quality factors, an option for contacting the patient as well as the option for
adding local ECG or respiration data. The system integrates the pre-processing [8] and stress detection [9] parts
well and uses them to process the needed data.

6.1 Recommendation & Future Work
Future work should focus on testing and improving the wearable system. The weight, size and comfort might
need to be improved to maximize its value for the proposed application; constant monitoring without hinder.
The options for extracting respiration data from the ECG to remove certain system parts needs to be looked
into. It is recommended that Matlab App Designer is not to be used for the purpose of creating a visually
pleasing GUI, and also for the reasons that it offers few options for integrating server capabilities.

24

Bibliography

[1] Mika Kivimäki et al. “Work stress and risk of cardiovascular mortality: prospective cohort study of indus-
trial employees”. In: BMJ 325.7369 (2002), p. 857. doi: 10.1136/bmj.325.7369.857.

[2] A-M Bao, G Meynen, and DF Swaab. “The stress system in depression and neurodegeneration: focus on
the human hypothalamus”. In: Brain research reviews 57.2 (2008), pp. 531–553.

[3] Timo Heidt et al. “Chronic variable stress activates hematopoietic stem cells”. In: Nature medicine 20.7
(2014), p. 754.

[4] Ebrahim Nemati, M. Deen, and Tapas Mondal. “A wireless wearable ECG sensor for long-term applica-
tions”. In: IEEE Communications Magazine 50.1 (2012), pp. 36–43. issn: 0163-6804. doi: 10.1109/mcom.
2012.6122530.

[5] Ozkan Haydar et al. “A portable wearable tele-ECG monitoring system”. In: IEEE Transactions on In-
strumentation and Measurement 69 (2020), pp. 173–182. doi: 10.1109/TIM.2019.2895484.

[6] Michael Chu et al. “Respiration rate and volume measurements using wearable strain sensors”. In: npj
Digital Medicine 2.1 (2019). issn: 2398-6352. doi: 10.1038/s41746-019-0083-3. url: https://dx.
doi.org/10.1038/s41746-019-0083-3.

[7] Alberto Hernando et al. “Inclusion of Respiratory Frequency Information in Heart Rate Variability Anal-
ysis for Stress Assessment”. In: IEEE Journal of Biomedical and Health Informatics 20 (Apr. 2016),
pp. 1016–1025. doi: 10.1109/JBHI.2016.2553578.

[8] Enes Kinaci and Talha Kuruoglu. “Thesis Pre-processing”. In: (2020).
[9] Isar Meijer and Bob Morssink. “Stress Detection System Using ECG and Respiratory Signals.” In: (2020).
[10] Joseph L. Hall and Deven McGraw. “For Telehealth To Succeed, Privacy And Security Risks Must Be

Identified And Addressed”. In: Healt Affairs (2014). doi: 10.1377/hlthaff.2013.0997.
[11] HIPAA regulations. url: https://www.cdc.gov/phlp/publications/topic/hipaa.html.
[12] GDPR. url: https://gdpr-info.eu/.
[13] Fateme Moghbeli, Mostafa Langarizadeh, and Ali Aliabadi. “Application of Ethics for Providing Telemedicine

Services and Information Technology”. In: Medical Archives 71.5 (2017), pp. 351–355. doi: 10.5455/
medarh.2017.71.351-355.

[14] Branko Babusiak, Stefan Borik, and Maros Smondrk. “Two-Electrode ECG for Ambulatory Monitoring
with Minimal Hardware Complexity”. In: Sensors 20.8 (2020), p. 2386. issn: 1424-8220. doi: 10.3390/
s20082386.

[15] Data Sheet AD7779. url: https://www.analog.com/media/en/technical-documentation/data-
sheets/AD7779.pdf.

[16] Bruce B. Winter and John G. Webster. “Driven-right-leg circuit design”. In: IEEE Transactions on Biomed-
ical Engineering BME-30.1 (1983), pp. 62–66. issn: 0018-9294. doi: 10.1109/tbme.1983.325168.

[17] LMC6001 Ultra, Ultra-Low Input Current Amplifier. url: http://www.ti.com/lit/ds/symlink/
lmc6001.pdf?ts=1591195580653.

[18] INA106, Precision Gain = 10 DIFFERENTIAL AMPLIFIER. url: https://www.ti.com/lit/ds/
symlink/ina106.pdf?ts=1591821972344&ref_url=https://www.ti.com/product/INA106.

[19] Paul Kligfield et al. “Recommendations for the Standardization and Interpretation of the Electrocardio-
gram”. In: Circulation 115.10 (2007), pp. 1306–1324. issn: 0009-7322. doi: 10.1161/circulationaha.
106.180200.

[20] Taisa Daiana Da Costa et al. “Breathing Monitoring and Pattern Recognition with Wearable Sensors”.
In: (2019). doi: 10.5772/intechopen.85460.

25

https://doi.org/10.1136/bmj.325.7369.857
https://doi.org/10.1109/mcom.2012.6122530
https://doi.org/10.1109/mcom.2012.6122530
https://doi.org/10.1109/TIM.2019.2895484
https://doi.org/10.1038/s41746-019-0083-3
https://dx.doi.org/10.1038/s41746-019-0083-3
https://dx.doi.org/10.1038/s41746-019-0083-3
https://doi.org/10.1109/JBHI.2016.2553578
https://doi.org/10.1377/hlthaff.2013.0997
https://www.cdc.gov/phlp/publications/topic/hipaa.html
https://gdpr-info.eu/
https://doi.org/10.5455/medarh.2017.71.351-355
https://doi.org/10.5455/medarh.2017.71.351-355
https://doi.org/10.3390/s20082386
https://doi.org/10.3390/s20082386
https://www.analog.com/media/en/technical-documentation/data-sheets/AD7779.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/AD7779.pdf
https://doi.org/10.1109/tbme.1983.325168
http://www.ti.com/lit/ds/symlink/lmc6001.pdf?ts=1591195580653
http://www.ti.com/lit/ds/symlink/lmc6001.pdf?ts=1591195580653
https://www.ti.com/lit/ds/symlink/ina106.pdf?ts=1591821972344&ref_url=https://www.ti.com/product/INA106
https://www.ti.com/lit/ds/symlink/ina106.pdf?ts=1591821972344&ref_url=https://www.ti.com/product/INA106
https://doi.org/10.1161/circulationaha.106.180200
https://doi.org/10.1161/circulationaha.106.180200
https://doi.org/10.5772/intechopen.85460

[21] Laura Mason. Signal processing methods for non-invasive respiration monitoring. University of Oxford
Oxford, 2002.

[22] Data Sheet MAX32665. url: https://datasheets.maximintegrated.com/en/ds/MAX32665-MAX32668.
pdf.

[23] TPS6104x Low-Power DC-DC Boost Converter in SOT-23 and WSON Packages. url: https://www.ti.
com/lit/ds/symlink/tps61040.pdf?ts=1591976240582&ref_url=https%5C%253A%252F%252Fwww.ti.
com%252Fproduct%252FTPS61040.

[24] Quad-Channel Digital Isolators. url: https://www.analog.com/media/en/technical-documentation/
data-sheets/ADuM2400_2401_2402.pdf.

[25] Bill Crone. “Mitigation Strategies for ECG Design Challenges”. In: Analog Devices (2011).

[26] Cortex-M4 Technical Reference Manual. url: http://infocenter.arm.com/help/topic/com.arm.doc.
ddi0439b/DDI0439B_cortex_m4_r0p0_trm.pdf.

[27] 7th Generation Intel® Processor Family. url: https://cdn.cnetcontent.com/a5/fb/a5fbeb54-3807-
4b86-a1fe-f28a862e0bc7.pdf.

[28] 5th Generation Intel® Core™ Processors Based on the Mobile U-Processor Line. url: https://www.
intel.com/content/www/us/en/design/products-and-solutions/processors-and-chipsets/
broadwell-u-y/technical-library.html?grouping=EMT_Content%5C%20Type&sort=title:asc.

[29] Ali Abedi, Omid Abari, and Tim Brecht. “Wi-LE: Can WiFi Replace Bluetooth?” In: (2019), pp. 117–124.

[30] Junxian Huang et al. “A close examination of performance and power characteristics of 4G LTE networks”.
In: (2012), pp. 225–238.

[31] Adam Boeglin et al. Building a telehealth system on Azure. url: https://docs.microsoft.com/en-
us/azure/architecture/example-scenario/apps/telehealth-system.

[32] Work with Remote Data. url: https://www.mathworks.com/help/matlab/import_export/work-
with-remote-data.html#mw_11daa39e-c1f6-475d-927b-87dc94718b99.

[33] C. Varon et al. “A Comparative Study of ECG-derived Respiration in Ambulatory Monitoring using the
Single-lead ECG”. In: Scientific Reports 10.1 (2020).

[34] Nicolas Sklavos and Odysseas Koufopavlou. “On the hardware implementations of the SHA-2 (256, 384,
512) hash functions”. In: Proceedings of the 2003 International Symposium on Circuits and Systems, 2003.
ISCAS’03. Vol. 5. IEEE. 2003, pp. V–V.

[35] T Flenady, T Dwyer, and J Applegarth. “Accurate respiratory rates count: So should you!” In: Australas
Emerg Nurs J. 20 (2017), pp. 45–47. doi: https://doi.org/10.1016/j.aenj.2016.12.003.

[36] Monika Mourya et al. “Effect of slow-and fast-breathing exercises on autonomic functions in patients with
essential hypertension”. In: The journal of alternative and complementary medicine 15.7 (2009), pp. 711–
717.

[37] Myriam V Thoma et al. “The effect of music on the human stress response”. In: PloS one 8.8 (2013).

26

https://datasheets.maximintegrated.com/en/ds/MAX32665-MAX32668.pdf
https://datasheets.maximintegrated.com/en/ds/MAX32665-MAX32668.pdf
https://www.ti.com/lit/ds/symlink/tps61040.pdf?ts=1591976240582&ref_url=https%5C%253A%252F%252Fwww.ti.com%252Fproduct%252FTPS61040
https://www.ti.com/lit/ds/symlink/tps61040.pdf?ts=1591976240582&ref_url=https%5C%253A%252F%252Fwww.ti.com%252Fproduct%252FTPS61040
https://www.ti.com/lit/ds/symlink/tps61040.pdf?ts=1591976240582&ref_url=https%5C%253A%252F%252Fwww.ti.com%252Fproduct%252FTPS61040
https://www.analog.com/media/en/technical-documentation/data-sheets/ADuM2400_2401_2402.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ADuM2400_2401_2402.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0439b/DDI0439B_cortex_m4_r0p0_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0439b/DDI0439B_cortex_m4_r0p0_trm.pdf
https://cdn.cnetcontent.com/a5/fb/a5fbeb54-3807-4b86-a1fe-f28a862e0bc7.pdf
https://cdn.cnetcontent.com/a5/fb/a5fbeb54-3807-4b86-a1fe-f28a862e0bc7.pdf
https://www.intel.com/content/www/us/en/design/products-and-solutions/processors-and-chipsets/broadwell-u-y/technical-library.html?grouping=EMT_Content%5C%20Type&sort=title:asc
https://www.intel.com/content/www/us/en/design/products-and-solutions/processors-and-chipsets/broadwell-u-y/technical-library.html?grouping=EMT_Content%5C%20Type&sort=title:asc
https://www.intel.com/content/www/us/en/design/products-and-solutions/processors-and-chipsets/broadwell-u-y/technical-library.html?grouping=EMT_Content%5C%20Type&sort=title:asc
https://docs.microsoft.com/en-us/azure/architecture/example-scenario/apps/telehealth-system
https://docs.microsoft.com/en-us/azure/architecture/example-scenario/apps/telehealth-system
https://www.mathworks.com/help/matlab/import_export/work-with-remote-data.html#mw_11daa39e-c1f6-475d-927b-87dc94718b99
https://www.mathworks.com/help/matlab/import_export/work-with-remote-data.html#mw_11daa39e-c1f6-475d-927b-87dc94718b99
https://doi.org/https://doi.org/10.1016/j.aenj.2016.12.003

Appendix A

MATLAB Code

A.1 app1.m
1 classdef app1 < matlab.apps.AppBase
2

3 % Properties that correspond to app components
4 properties (Access = public)
5 UIFigure matlab.ui.Figure
6 VisGroup matlab.ui.container.TabGroup
7 LoginTab matlab.ui.container.Tab
8 GridLayout3 matlab.ui.container.GridLayout
9 UsernameLabel matlab.ui.control.Label

10 Usernamefield matlab.ui.control.EditField
11 Passwordfield matlab.ui.control.EditField
12 EnterButton matlab.ui.control.Button
13 PasswordLabel matlab.ui.control.Label
14 EditFieldLabel matlab.ui.control.Label
15 truepassword matlab.ui.control.EditField
16 Image matlab.ui.control.Image
17 PatientXTab matlab.ui.container.Tab
18 GridLayout matlab.ui.container.GridLayout
19 calmgifje1 matlab.ui.control.Button
20 sound matlab.ui.control.Button
21 stresstext matlab.ui.control.EditField
22 StressSwitch matlab.ui.control.Switch
23 redring matlab.ui.control.Image
24 greenring matlab.ui.control.Image
25 Button matlab.ui.control.Button
26 HRshower matlab.ui.control.EditField
27 BPMtext matlab.ui.control.EditField
28 Repsax matlab.ui.control.UIAxes
29 LogOutButton matlab.ui.control.Button
30 Image2 matlab.ui.control.Image
31 stresstext_2 matlab.ui.control.EditField
32 PhysicianTab matlab.ui.container.Tab
33 GridLayout2 matlab.ui.container.GridLayout
34 Repsax2 matlab.ui.control.UIAxes
35 ECGax matlab.ui.control.UIAxes
36 stressLamp matlab.ui.control.Lamp
37 ContactPatientButton matlab.ui.control.Button
38 HRshower_2 matlab.ui.control.EditField
39 BPMtext_2 matlab.ui.control.EditField
40 ChoosePatientListBoxLabel matlab.ui.control.Label
41 ChoosePatientListBox matlab.ui.control.ListBox

27

42 QFshower matlab.ui.control.EditField
43 BPMtext_3 matlab.ui.control.EditField
44 LogOutButton_2 matlab.ui.control.Button
45 BPMtext_4 matlab.ui.control.EditField
46 RRshower matlab.ui.control.EditField
47 StressLabel matlab.ui.control.Label
48 Image3 matlab.ui.control.Image
49 contacttext matlab.ui.control.EditField
50 ButtonGroup matlab.ui.container.ButtonGroup
51 ECGButton matlab.ui.control.RadioButton
52 RespiratoryButton matlab.ui.control.RadioButton
53 UploadButton matlab.ui.control.Button
54 ChooseFileButton matlab.ui.control.Button
55 PatientNameLabel matlab.ui.control.Label
56 PatientNameEditField matlab.ui.control.EditField
57 filenamepathtext matlab.ui.control.EditField
58 InvGroup matlab.ui.container.TabGroup
59 Tab matlab.ui.container.Tab
60 end
61

62

63 properties (Access = public)
64 % globa variables used troughout the whole system
65 flag
66 totaalgeenpersoonlijkeinformatie
67 trueww2
68 musicval = 1;
69 welkenummerisdit
70 filename
71 path
72 ECGsignal
73 Respsignal
74 fs_resp = 250;
75 fs_ecg = 1000;
76 repscounter
77 stress
78 end
79

80 properties (Access = private)
81 Property % Description
82 player = ''; % initialize music player
83

84 end
85

86 methods (Access = public)
87

88

89

90 function musicfunc(app)
91 try
92 [y,Fs] = audioread('Allegri-Miserere.mp3'); %music which plays
93 app.player =audioplayer(y,Fs);
94 catch
95 end
96 end
97 end
98

99 methods (Access = private)

28

100

101

102

103 function login(app)
104 onlineloginhalen(app); % check online for login data
105 username = app.Usernamefield.Value; %username
106 pw = string(app.truepassword.Value); %password
107 loc = find(strcmp(app.totaalgeenpersoonlijkeinformatie(:,1), username)); %check

for username in database↪→

108 haspw = DataHash(pw, 'SHA-256', 'Base64');
109 if haspw == app.totaalgeenpersoonlijkeinformatie(loc,2) %check if pw is correct
110 ID = str2double(app.totaalgeenpersoonlijkeinformatie(loc,3)); %display

relavent screen depending on logindata↪→

111 if ID == 35 % open physiciantab
112 app.LoginTab.Parent = app.InvGroup;
113 app.PatientXTab.Parent = app.InvGroup;
114 app.PhysicianTab.Parent = app.VisGroup;
115 app.VisGroup.SelectedTab = app.PhysicianTab;
116

117 else % open patient tab
118 app.LoginTab.Parent = app.InvGroup;
119 app.PatientXTab.Parent = app.VisGroup;
120 app.PhysicianTab.Parent = app.InvGroup;
121 app.VisGroup.SelectedTab = app.PatientXTab;
122 app.PatientXTab.Title = string(ID);
123 j = 1;
124 counter = 0;
125 localornot = 1;
126 stapregelaar(app, j, counter, localornot , ID)
127 end
128 else
129 opts = struct('WindowStyle','modal',...
130 'Interpreter','tex');
131 errordlg('Incorrect Username or Password',...
132 'Error', opts);
133 end
134

135 end
136

137 function onlineloginhalen(app)
138 setenv('MW_WASB_SAS_TOKEN',

'?sv=2019-10-10&ss=bfqt&srt=sco&sp=rwdlacupx&se=2020-09-23T21:59:27Z&st=2020-05-11T13:59:27Z&spr=https&sig=O%2FOzzyayONDTgQYG4Bt34bqsxDLvr%2BD%2FDcR6nJpwoCE%3D')↪→

139 setenv('MW_WASB_SECRET_KEY',
'+bp+3xekejItpGtJaw5e5g4ZkV1kuGL9XC2sqrbTlq8jd7eSUqw5MFg1bBRI9/4uaE/KeRo97gSPmdO9IrAV3Q==')
%server keys to acces data

↪→

↪→

140 loc = 'wasbs://werk@inloggegevens.blob.core.windows.net/'; %location of data
141 loc = append(loc, 'xxx2.csv'); %reorganize data
142 ds = tabularTextDatastore(loc,'FileExtensions',{'.csv'});
143 pf = read(ds);
144

145 A = string(table2cell(pf));
146

147 A(:,3) = append('0',A(:,3));
148

149

150 app.totaalgeenpersoonlijkeinformatie = A;
151 end
152

29

153

154

155

156

157 function mainECGrunner(app, processed_signal, g, c, ~) %plot graphs
158 %This function displays the ECG signal, heart rate, Respiratory signal and
159 % respiratory rate depending on which screen is accessed. It also handles
160 % errors which rise from NaN's and from the quality factors.
161

162 ecgsignali = transpose(processed_signal{1,1}); %raw ECG signal
163 ecgsignalf =transpose(processed_signal{3,1}); %filtered ECG signal
164

165 respsignalf = transpose(processed_signal{9,1}); %filtered Reps signal
166 s = 50;
167 if app.VisGroup.SelectedTab == app.PhysicianTab
168 try
169

170 nananan = isnan(processed_signal{1,1}); % checks for NaNs
171 nananan2 = find(nananan == 1);
172

173 app.RRshower.Value = string(60*(processed_signal{8,1})); %print HR
174 app.HRshower_2.Value = string(round(processed_signal{6,1}));
175 app.QFshower.Value = string(processed_signal{4,1});
176 if processed_signal{4,1} < 0.5 && app.VisGroup.SelectedTab ==

app.PhysicianTab↪→

177 opts = struct('WindowStyle','modal',...
178 'Interpreter','tex');
179 warndlg('The QUALITY FACTOR seems to be low. Please be

advised.',...↪→

180 'Quality Factor Warning', opts);
181 end
182 if length(nananan2) > 100 && app.VisGroup.SelectedTab ==

app.PhysicianTab↪→

183 opts = struct('WindowStyle','modal',...
184 'Interpreter','tex');
185 errordlg('There seems to be a problem with the sensor, check

connectio',...↪→

186 'Critical system failure', opts);
187

188 end
189

190 for i = 0 : s : 10*app.fs_resp -1
191 j = 4 *i;
192

193

194 if g == 0 && c== 0
195

196 xecg = -20 : 1/app.fs_ecg : -10 -1/app.fs_ecg;
197 yecgi = ecgsignali(1+ j : j+10*app.fs_ecg);
198 yecgf = ecgsignalf(1+ j : j+10*app.fs_ecg);
199

200

201 else
202 xecg = -20 : 1/app.fs_ecg : -10 - 1/app.fs_ecg;
203 yecgi = ecgsignali(1+ j : j+10*app.fs_ecg);
204 yecgf = ecgsignalf(1+ j : j+10*app.fs_ecg);
205

206 end

30

207

208 xreps = -40 : 1/app.fs_resp: -10 -1/app.fs_resp;
209 yrepsf = respsignalf(1+i : i + 30*app.fs_resp);
210

211

212 plot(app.ECGax, xecg, yecgi, xecg, yecgf)
213 plot(app.Repsax2, xreps, yrepsf);
214

215

216 pause(s/app.fs_resp)
217

218

219 end
220

221

222 catch
223 end
224 elseif app.VisGroup.SelectedTab == app.PatientXTab
225 app.HRshower.Value = string(round(processed_signal{6,1}));
226 feedbackloop(app, processed_signal)
227 for i = 0 : s : 10*app.fs_resp -1
228 xreps = -40 : 1/app.fs_resp: -10 -1/app.fs_resp;
229 yrepsf = respsignalf(1+i : i + 30*app.fs_resp);
230 plot(app.Repsax, xreps, yrepsf);
231

232 pause(s/app.fs_resp)
233 end
234 end
235

236

237

238 end
239

240

241

242 function add2list(app) %adds uploaded patient info to patientlist in the pysician
tab↪→

243

244 try
245 x2 = dir('extraECG');
246 x = dir('extrareps');
247

248 t1 = transpose(struct2cell(x));
249 t2 = transpose(struct2cell(x2));
250 try
251 t1 = strrep(string(t1), '.csv','');
252 t1 = strrep(t1, 'Resp_','');
253 t1 = cellstr(t1);
254

255 t2 = strrep(string(t2), '.csv','');
256 t2 = strrep(t2, 'ECG_','');
257 t2 = cellstr(t2);
258 catch
259 end
260

261 xl = length(x2) -2 ;
262 diffecg = setdiff(t1(:,1) , t2(:,1)) ;
263

31

264 f = app.ChoosePatientListBox.Items;
265 f2 = app.ChoosePatientListBox.ItemsData;
266

267 i = 0; %#ok<NASGU>
268 k = 0; %#ok<NASGU>
269 for i = 1 : xl +1
270 if i < xl+1
271 f2(34+i) = t2(i+2,1);
272 f(34+i) = t2(i+2,1);
273 elseif i == xl +1
274 f2(i+34) = cellstr(blanks(1));
275 end
276 end
277

278 if isempty(diffecg) == 0
279 diffl1 = length(diffecg);
280 for k = 1 : diffl1 +1
281 if k < diffl1+1
282 f2(33 + i +k) =diffecg(k,1);
283 f(33+i +k) = diffecg(k,1);
284 elseif k == diffl1 + 1
285 f2(i + k +33) = cellstr(blanks(1));
286 end
287 end
288

289 end
290 f = strrep(f, '.csv','');
291 f = strrep(f, 'ECG_','');
292 f = strrep(f, 'Resp_','');
293 app.ChoosePatientListBox.Items = f;
294 app.ChoosePatientListBox.ItemsData = f2;
295

296 catch
297 end
298 end
299

300

301

302

303 function stapregelaar(app, j, counter, localornot , patient)
304 % this code checks which data needs to be downloaded from the
305 % server for, dowloads it and sends the revelant part to
306 % MainECGrunner to be displayed, after it has been processed in MainECG. IF the

data is locally↪→

307 % availabe,nothing will be downloaded and will be processed
308 % from the main storage directly
309 %NOTE: when fully realized, either this function needs to be
310 %redone, or the way data is read from the server needs to be
311 %according to how it is read here.
312 if localornot == 1
313

314 app.ECGsignal = downloadECG(patient, j);
315 app.Respsignal = downloadreps(patient, j);
316

317

318 end
319 try

32

320 while app.VisGroup.SelectedTab == app.PhysicianTab |
app.VisGroup.SelectedTab == app.PatientXTab %#ok<OR2>↪→

321

322 g = app.fs_ecg* 50 * (j-1); %50 sec of ecg steps
323 c = app.fs_ecg * 10 * counter; % 10 sec sub steps ecg
324

325 r = app.fs_resp*50*(j-1); %50sec resp steps
326 eps = app.fs_resp*10*(counter+1);
327

328 if g == 0 && c == 0
329 ECGred = app.ECGsignal(g+ c + 1 : g+c+app.fs_ecg*20, :);
330 else
331 ECGred = app.ECGsignal(g+ c -app.fs_ecg*10 + 1 : g+c+app.fs_ecg*10,

:);↪→

332 end
333

334 if j == 1 && counter < 2 && localornot == 1
335 Repsred = app.Respsignal(r + eps +1 : r + eps + app.fs_resp*10);
336 else
337 Repsred = app.Respsignal(r + eps - app.fs_resp*30 +1 : r + eps +

app.fs_resp*10);↪→

338

339 end
340

341

342 processedsignal = MainECG(0 , ECGred, length(ECGred), length(Repsred),
Repsred);↪→

343

344 mainECGrunner(app, processedsignal, g, c, localornot)
345 counter = counter + 1;
346

347

348 if counter == 3 && localornot == 1
349 t = j + 1;
350

351 ecg = downloadECG(patient, t);
352 ecgcomb = cat(1, app.ECGsignal , ecg);
353 app.ECGsignal = ecgcomb;
354

355 reps = downloadreps(patient , t);
356 repscomb = cat(1, app.Respsignal, reps);
357 app.Respsignal = repscomb;
358 elseif counter == 5
359 counter = 0;
360 j = j + 1;
361 end
362

363 if mod(5*j + c, 8) == 0
364 app.stress = randi(2)-1;
365 pause(2)
366 end
367

368

369

370 end
371 catch
372 end
373 end

33

374

375 function feedbackloop(app, processed_signal)
376 %Gives feedback on the breathing pattern of the patient
377 %depending on how fast he is breathing.
378 if app.stress == 1
379 if (processed_signal{8,1}) < 0.9*(1/9)
380 app.stresstext_2 = 'You are breathing too slow. You are probably going

to die.....';↪→

381 elseif (processed_signal{8,1}) >= 0.9*(1/9) && (processed_signal{8,1}) <=
2*(1/9)↪→

382 app.stresstext_2 = 'You breathing is excellent! Keep up the pace!';
383 elseif (processed_signal{8,1}) > 2*(1/9) && (processed_signal{8,1}) <=

2.5*(1/9)↪→

384 app.stresstext_2 = 'You are still breathing a little bit too fast, maybe
listening to a song will help you calm down a bit more?';↪→

385 elseif (processed_signal{8,1}) > 2.5*(1/9)
386 app.stresstext_2 = 'You are breathing too fast. Try matching you breaths

with the exercise shown below';↪→

387 end
388 else
389 app.stresstext_2 = '';
390 end
391 end
392 end
393

394

395

396

397 % Callbacks that handle component events
398 methods (Access = private)
399

400 % Code that executes after component creation
401 function startupFcn(app)
402 %everything that needs to be initialized in the beginning can be
403 %found here, such as server keys, folder locations etc.
404

405 if isempty(gcp('nocreate'))
406 parpool('local');
407 end
408 setenv('MW_WASB_SAS_TOKEN',

'?sv=2019-10-10&ss=bfqt&srt=sco&sp=rwdlacupx&se=2020-09-23T21:59:27Z&st=2020-05-11T13:59:27Z&spr=https&sig=O%2FOzzyayONDTgQYG4Bt34bqsxDLvr%2BD%2FDcR6nJpwoCE%3D')↪→

409 setenv('MW_WASB_SECRET_KEY',
'+bp+3xekejItpGtJaw5e5g4ZkV1kuGL9XC2sqrbTlq8jd7eSUqw5MFg1bBRI9/4uaE/KeRo97gSPmdO9IrAV3Q==')↪→

410

411

412 addpath('ECG_preprocess')
413 addpath('extraECG')
414 addpath('extrareps')
415 app.LoginTab.Parent = app.VisGroup;
416 app.PatientXTab.Parent = app.InvGroup;
417 app.PhysicianTab.Parent = app.InvGroup;
418 app.VisGroup.SelectedTab = app.LoginTab;
419

420 musicfunc(app);
421 app.flag = 0;
422 set(app.greenring,'visible','on')
423 set(app.redring,'visible','off')
424 app.stresstext.Value = ['You are not stressed!' ...

34

425 ' Keep it up!'];
426 set(app.calmgifje1, 'visible', 'off')
427 set(app.sound, 'visible', 'off')
428

429 app.stress = 0;
430 end
431

432 % Value changed function: StressSwitch
433 function StressSwitchValueChanged(app, event)
434 value = string(app.StressSwitch.Value);
435 app.stress = 1;
436 if value == 'On' %#ok<BDSCA>
437 set(app.redring,'visible','on')
438 set(app.greenring,'visible','off')
439 app.stresstext.Value = ['You appear to be stressed!' ...
440 ' Maybe this will help'];
441 set(app.calmgifje1, 'visible', 'on')
442 set(app.sound, 'visible', 'on')
443 else
444 set(app.greenring,'visible','on')
445 set(app.redring,'visible','off')
446 app.stresstext.Value = ['You are not stressed!' ...
447 ' Keep it up!'];
448 set(app.calmgifje1, 'visible', 'off')
449 set(app.sound, 'visible', 'off')
450 end
451

452

453 end
454

455 % Button pushed function: sound
456 function soundButtonPushed(app, event)
457 % plays the music when the sound button is pushed
458 if app.flag == 0
459 if isplaying(app.player) == false
460 play(app.player)
461 app.flag = 0;
462 else
463 pause(app.player)
464 app.flag = 1;
465 end
466 else
467 resume(app.player)
468 app.flag = 0;
469 end
470 end
471

472 % Value changed function: ChoosePatientListBox
473 function ChoosePatientListBoxValueChanged(app, event)
474 %changes the patient information that is displayed, downloads
475 %it when needed, or when it is local information just retrieves
476 %it from the relavent folder
477 app.ECGax.cla;
478 app.Repsax2.cla;
479 j = 1;
480 counter = 0;
481 app.repscounter = 0;
482 app.contacttext.Value = '';

35

483 id = (app.ChoosePatientListBox.Value);
484 if str2double(id) < 35
485 localornot = 1;
486 counter = 0;
487 j = 1;
488

489 elseif isnan(str2double(id))
490 idecg = append('ECG_', id, '.csv');
491 idresp = append('Resp_', id, '.csv');
492 % cd extraECG
493 try
494 app.ECGsignal = csvread(idecg);
495 catch
496 warndlg('No ECG signal can be found for this patient',...
497 'No signal');
498 app.ECGsignal = zeros(100000, 1);
499 end
500 % cd ..\
501 % cd extrareps
502 try
503 app.Respsignal = csvread(idresp);
504

505 catch
506 warndlg('No respiratory signal can be found for this patient',...
507 'No signal');
508 app.Respsignal = zeros(1000000, 1);
509 end
510 % cd ..\
511 localornot = 0;
512

513

514 end
515

516 stapregelaar(app, j, counter, localornot, id)
517

518 end
519

520 % Button pushed function: ContactPatientButton
521 function ContactPatientButtonPushed(app, event)
522 % when the button is pushed, a mail will be send to the patient
523 % with a personalizable text
524 mail = 'dontdiefromstress@gmail.com'; %Your GMail email address
525 password = 'Ugoodm8?'; %Your GMail password
526 setpref('Internet','SMTP_Server','smtp.gmail.com');
527 setpref('Internet','E_mail', mail);
528 setpref('Internet','SMTP_Username', mail);
529 setpref('Internet','SMTP_Password', password);
530 props = java.lang.System.getProperties;
531 props.setProperty('mail.smtp.auth','true');
532 props.setProperty('mail.smtp.socketFactory.class',

'javax.net.ssl.SSLSocketFactory');↪→

533 props.setProperty('mail.smtp.socketFactory.port','465');
534 n = app.ChoosePatientListBox.Value;
535 nn = 'Dear patient #';
536 nnn = strcat(nn, n);
537 nnnn = string(app.contacttext.Value);
538 sendmail('yavuzhanmercimek@gmail.com',nnn, nnnn)
539 message = strcat('Mail sent to Patient #', n);

36

540 msgbox(message)
541 end
542

543 % Button pushed function: LogOutButton
544 function LogOutButtonPushed(app, event)
545 % return to loginscreen when pushed
546 app.LoginTab.Parent = app.VisGroup;
547 app.PatientXTab.Parent = app.InvGroup;
548 app.PhysicianTab.Parent = app.InvGroup;
549 app.VisGroup.SelectedTab = app.LoginTab;
550 app.Passwordfield.Value = '';
551 app.truepassword.Value = '';
552 app.trueww2 = '';
553

554 end
555

556 % Button pushed function: LogOutButton_2
557 function LogOutButton_2Pushed(app, event)
558 % return to loginscreen when pushed
559 app.LoginTab.Parent = app.VisGroup;
560 app.PatientXTab.Parent = app.InvGroup;
561 app.PhysicianTab.Parent = app.InvGroup;
562 app.VisGroup.SelectedTab = app.LoginTab;
563 app.Passwordfield.Value = '';
564 app.truepassword.Value = '';
565

566 end
567

568 % Button pushed function: EnterButton
569 function EnterButtonPushed(app, event)
570 % runs these functions when pushed
571 login(app)
572 add2list(app)
573 end
574

575 % Value changing function: Passwordfield
576 function PasswordfieldValueChanging(app, event)
577 %Swaps the entered characters with *, and places them
578 %characters in a invisible text box, from it will be read later
579 %on.
580 value = event.Value;
581

582 newStr = erase(value,'*');
583 l = length(value);
584 n = '';
585 for i = 0 : l-1
586

587 n = strcat(n,'*');
588 end
589 app.Passwordfield.Value = n;
590 if l == 1
591 trueww = '';
592 app.trueww2 = strcat(trueww, newStr);
593 else
594 app.trueww2 =strcat(app.trueww2, newStr);
595 end
596

597 app.truepassword.Value = app.trueww2;

37

598

599

600 end
601

602 % Button pushed function: ChooseFileButton
603 function ChooseFileButtonPushed(app, event)
604 %Opens explorer to select a file
605 [app.filename, app.path] = uigetfile;
606 app.filenamepathtext.Value = app.filename;
607

608

609 end
610

611 % Button pushed function: UploadButton
612 function UploadButtonPushed(app, event)
613 %Places files in a folder depending on the type of information
614 %in the file. Will give error if incorrect file type is
615 %given.
616 try
617 [~, ~ , fExt] = fileparts(app.filename);
618 catch
619 end
620

621 name = app.PatientNameEditField.Value;
622 if isempty(fExt) == 1
623 errordlg('No file was selected.',...
624 'No file');
625 elseif convertCharsToStrings(fExt) == '.csv' %#ok<BDSCA>
626

627 if app.ECGButton.Value == 1 && app.RespiratoryButton.Value == 0
628 namecat = strcat('ECG_', name, '.csv');
629 z = append(app.path, app.filename);
630 copyfile(z , 'extraECG')
631 cd 'extraECG'
632 elseif app.RespiratoryButton.Value == 1 && app.ECGButton.Value == 0
633 namecat = strcat('Resp_', name, '.csv');
634 z = append(app.path, app.filename);
635 copyfile(z , 'extrareps')
636 cd 'extrareps'
637 end
638

639

640 if isempty(name) == 1
641 errordlg('Fill in the patients name!',...
642 'No name');
643 elseif strcmp(app.filename, namecat) == 0
644 copyfile(app.filename, namecat)
645 delete(app.filename)
646 end
647

648

649 else
650 errordlg('Upload only ''.csv'' files!',...
651 'Wrong file type');
652 end
653

654 app.filenamepathtext.Value = '';
655 app.PatientNameEditField.Value = '';

38

656 cd ..\
657 add2list(app)
658 end
659

660 % Close request function: UIFigure
661 function UIFigureCloseRequest(app, event)
662 %closes parallel loop when closing the window
663 delete(gcp('nocreate'))
664 delete(app)
665

666 end
667 end
668

669 % Component initialization
670 methods (Access = private)
671

672 % Create UIFigure and components
673 function createComponents(app)
674

675 % Create UIFigure and hide until all components are created
676 app.UIFigure = uifigure('Visible', 'off');
677 app.UIFigure.Position = [100 100 1238 739];
678 app.UIFigure.Name = 'MATLAB App';
679 app.UIFigure.CloseRequestFcn = createCallbackFcn(app, @UIFigureCloseRequest,

true);↪→

680

681 % Create VisGroup
682 app.VisGroup = uitabgroup(app.UIFigure);
683 app.VisGroup.Position = [1 0 1238 740];
684

685 % Create LoginTab
686 app.LoginTab = uitab(app.VisGroup);
687 app.LoginTab.Title = 'Login';
688

689 % Create GridLayout3
690 app.GridLayout3 = uigridlayout(app.LoginTab);
691 app.GridLayout3.ColumnWidth = {'2x', '1x', '1x', '1x', '2x'};
692 app.GridLayout3.RowHeight = {'10x', '1x', '1x', '1.5x', '1.5x', '1x', '10x'};
693 app.GridLayout3.ColumnSpacing = 12;
694 app.GridLayout3.Padding = [12 10 12 10];
695

696 % Create UsernameLabel
697 app.UsernameLabel = uilabel(app.GridLayout3);
698 app.UsernameLabel.HorizontalAlignment = 'right';
699 app.UsernameLabel.Layout.Row = 4;
700 app.UsernameLabel.Layout.Column = 2;
701 app.UsernameLabel.Text = 'Username';
702

703 % Create Usernamefield
704 app.Usernamefield = uieditfield(app.GridLayout3, 'text');
705 app.Usernamefield.Layout.Row = 4;
706 app.Usernamefield.Layout.Column = 3;
707

708 % Create Passwordfield
709 app.Passwordfield = uieditfield(app.GridLayout3, 'text');
710 app.Passwordfield.ValueChangingFcn = createCallbackFcn(app,

@PasswordfieldValueChanging, true);↪→

711 app.Passwordfield.Layout.Row = 5;

39

712 app.Passwordfield.Layout.Column = 3;
713

714 % Create EnterButton
715 app.EnterButton = uibutton(app.GridLayout3, 'push');
716 app.EnterButton.ButtonPushedFcn = createCallbackFcn(app, @EnterButtonPushed,

true);↪→

717 app.EnterButton.Layout.Row = 5;
718 app.EnterButton.Layout.Column = 4;
719 app.EnterButton.Text = 'Enter';
720

721 % Create PasswordLabel
722 app.PasswordLabel = uilabel(app.GridLayout3);
723 app.PasswordLabel.HorizontalAlignment = 'right';
724 app.PasswordLabel.Layout.Row = 5;
725 app.PasswordLabel.Layout.Column = 2;
726 app.PasswordLabel.Text = 'Password';
727

728 % Create EditFieldLabel
729 app.EditFieldLabel = uilabel(app.GridLayout3);
730 app.EditFieldLabel.HorizontalAlignment = 'right';
731 app.EditFieldLabel.Visible = 'off';
732 app.EditFieldLabel.Layout.Row = 7;
733 app.EditFieldLabel.Layout.Column = 1;
734 app.EditFieldLabel.Text = 'Edit Field';
735

736 % Create truepassword
737 app.truepassword = uieditfield(app.GridLayout3, 'text');
738 app.truepassword.Editable = 'off';
739 app.truepassword.Visible = 'off';
740 app.truepassword.Layout.Row = 7;
741 app.truepassword.Layout.Column = 3;
742

743 % Create Image
744 app.Image = uiimage(app.GridLayout3);
745 app.Image.Layout.Row = 1;
746 app.Image.Layout.Column = 1;
747 app.Image.ImageSource = 'Health2Go-01.png';
748

749 % Create PatientXTab
750 app.PatientXTab = uitab(app.VisGroup);
751 app.PatientXTab.Title = 'Patient X';
752

753 % Create GridLayout
754 app.GridLayout = uigridlayout(app.PatientXTab);
755 app.GridLayout.ColumnWidth = {42, 61, 60, 60, 60, 61, '1x', '1.2x', 70, 100, 70,

'1.2x'};↪→

756 app.GridLayout.RowHeight = {22, 46, 54, 45, 74, 23, 63, 59, 74, '1x', 22,
'2.51x'};↪→

757 app.GridLayout.ColumnSpacing = 10.3076923076923;
758 app.GridLayout.RowSpacing = 4.30769230769231;
759 app.GridLayout.Padding = [10.3076923076923 4.30769230769231 10.3076923076923

4.30769230769231];↪→

760

761 % Create calmgifje1
762 app.calmgifje1 = uibutton(app.GridLayout, 'push');
763 app.calmgifje1.Icon = 'calmgifje1.gif';
764 app.calmgifje1.IconAlignment = 'center';
765 app.calmgifje1.Layout.Row = [5 9];

40

766 app.calmgifje1.Layout.Column = [9 11];
767 app.calmgifje1.Text = '';
768

769 % Create sound
770 app.sound = uibutton(app.GridLayout, 'push');
771 app.sound.ButtonPushedFcn = createCallbackFcn(app, @soundButtonPushed, true);
772 app.sound.Icon = 'playpauseicon.png';
773 app.sound.FontWeight = 'bold';
774 app.sound.Layout.Row = 11;
775 app.sound.Layout.Column = 10;
776 app.sound.Text = 'Play/Pause';
777

778 % Create stresstext
779 app.stresstext = uieditfield(app.GridLayout, 'text');
780 app.stresstext.Editable = 'off';
781 app.stresstext.FontSize = 30;
782 app.stresstext.FontWeight = 'bold';
783 app.stresstext.BackgroundColor = [0.9412 0.9412 0.9412];
784 app.stresstext.Layout.Row = [1 2];
785 app.stresstext.Layout.Column = [8 12];
786

787 % Create StressSwitch
788 app.StressSwitch = uiswitch(app.GridLayout, 'slider');
789 app.StressSwitch.ValueChangedFcn = createCallbackFcn(app,

@StressSwitchValueChanged, true);↪→

790 app.StressSwitch.Layout.Row = 1;
791 app.StressSwitch.Layout.Column = [3 4];
792

793 % Create redring
794 app.redring = uiimage(app.GridLayout);
795 app.redring.Layout.Row = [2 7];
796 app.redring.Layout.Column = [2 6];
797 app.redring.ImageSource = 'redring.png';
798

799 % Create greenring
800 app.greenring = uiimage(app.GridLayout);
801 app.greenring.Layout.Row = [2 7];
802 app.greenring.Layout.Column = [2 6];
803 app.greenring.ImageSource = 'greenring (2).png';
804

805 % Create Button
806 app.Button = uibutton(app.GridLayout, 'push');
807 app.Button.Icon = 'giphy.gif';
808 app.Button.IconAlignment = 'center';
809 app.Button.Layout.Row = 3;
810 app.Button.Layout.Column = 4;
811 app.Button.Text = '';
812

813 % Create HRshower
814 app.HRshower = uieditfield(app.GridLayout, 'text');
815 app.HRshower.Editable = 'off';
816 app.HRshower.HorizontalAlignment = 'center';
817 app.HRshower.FontSize = 100;
818 app.HRshower.FontWeight = 'bold';
819 app.HRshower.BackgroundColor = [0.9412 0.9412 0.9412];
820 app.HRshower.Layout.Row = [4 5];
821 app.HRshower.Layout.Column = [3 5];
822

41

823 % Create BPMtext
824 app.BPMtext = uieditfield(app.GridLayout, 'text');
825 app.BPMtext.Editable = 'off';
826 app.BPMtext.HorizontalAlignment = 'center';
827 app.BPMtext.FontWeight = 'bold';
828 app.BPMtext.BackgroundColor = [0.9412 0.9412 0.9412];
829 app.BPMtext.Layout.Row = 6;
830 app.BPMtext.Layout.Column = 4;
831 app.BPMtext.Value = 'BPM';
832

833 % Create Repsax
834 app.Repsax = uiaxes(app.GridLayout);
835 title(app.Repsax, 'Respiratory signal')
836 xlabel(app.Repsax, 'Time (s)')
837 ylabel(app.Repsax, 'Magnitude')
838 app.Repsax.PlotBoxAspectRatio = [2.32167832167832 1 1];
839 app.Repsax.XLim = [-40 -10];
840 app.Repsax.YTick = [];
841 app.Repsax.YGrid = 'on';
842 app.Repsax.Layout.Row = [9 12];
843 app.Repsax.Layout.Column = [1 7];
844

845 % Create LogOutButton
846 app.LogOutButton = uibutton(app.GridLayout, 'push');
847 app.LogOutButton.ButtonPushedFcn = createCallbackFcn(app, @LogOutButtonPushed,

true);↪→

848 app.LogOutButton.Layout.Row = 1;
849 app.LogOutButton.Layout.Column = [1 2];
850 app.LogOutButton.Text = 'Log Out';
851

852 % Create Image2
853 app.Image2 = uiimage(app.GridLayout);
854 app.Image2.Layout.Row = 12;
855 app.Image2.Layout.Column = 12;
856 app.Image2.ImageSource = 'Health2Go-01.png';
857

858 % Create stresstext_2
859 app.stresstext_2 = uieditfield(app.GridLayout, 'text');
860 app.stresstext_2.Editable = 'off';
861 app.stresstext_2.FontSize = 30;
862 app.stresstext_2.FontWeight = 'bold';
863 app.stresstext_2.BackgroundColor = [0.9412 0.9412 0.9412];
864 app.stresstext_2.Layout.Row = 3;
865 app.stresstext_2.Layout.Column = [8 12];
866

867 % Create PhysicianTab
868 app.PhysicianTab = uitab(app.VisGroup);
869 app.PhysicianTab.Title = 'Physician';
870

871 % Create GridLayout2
872 app.GridLayout2 = uigridlayout(app.PhysicianTab);
873 app.GridLayout2.ColumnWidth = {43, '1.33x', 100, '1x', 130, '1.12x', 79, 60, 79,

104, 93, '1x', 68, 20, 29, 41};↪→

874 app.GridLayout2.RowHeight = {22, '1.5x', 17, 28, '1.88x', 69, 69, 39, '2.5x',
'1.31x', 40, '1x', 22, 14, 43, 50, 18};↪→

875 app.GridLayout2.ColumnSpacing = 4.22222222222222;
876 app.GridLayout2.RowSpacing = 7.13333333333333;

42

877 app.GridLayout2.Padding = [4.22222222222222 7.13333333333333 4.22222222222222
7.13333333333333];↪→

878

879 % Create Repsax2
880 app.Repsax2 = uiaxes(app.GridLayout2);
881 title(app.Repsax2, 'Respiratory signal')
882 xlabel(app.Repsax2, 'Time (s)')
883 ylabel(app.Repsax2, 'Magnitude')
884 app.Repsax2.PlotBoxAspectRatio = [1.87458745874587 1 1];
885 app.Repsax2.XLim = [-40 -10];
886 app.Repsax2.YTick = [];
887 app.Repsax2.YGrid = 'on';
888 app.Repsax2.Layout.Row = [10 17];
889 app.Repsax2.Layout.Column = [1 5];
890

891 % Create ECGax
892 app.ECGax = uiaxes(app.GridLayout2);
893 title(app.ECGax, 'ECG signal')
894 xlabel(app.ECGax, 'Time (s)')
895 ylabel(app.ECGax, 'Magnitude')
896 app.ECGax.PlotBoxAspectRatio = [1.85947712418301 1 1];
897 app.ECGax.XLim = [-20 -10];
898 app.ECGax.YTick = [];
899 app.ECGax.YGrid = 'on';
900 app.ECGax.Layout.Row = [3 8];
901 app.ECGax.Layout.Column = [1 5];
902

903 % Create stressLamp
904 app.stressLamp = uilamp(app.GridLayout2);
905 app.stressLamp.Layout.Row = [10 12];
906 app.stressLamp.Layout.Column = [13 16];
907

908 % Create ContactPatientButton
909 app.ContactPatientButton = uibutton(app.GridLayout2, 'push');
910 app.ContactPatientButton.ButtonPushedFcn = createCallbackFcn(app,

@ContactPatientButtonPushed, true);↪→

911 app.ContactPatientButton.BackgroundColor = [0.9412 0.9412 0.9412];
912 app.ContactPatientButton.FontSize = 26;
913 app.ContactPatientButton.FontWeight = 'bold';
914 app.ContactPatientButton.FontColor = [1 0 0];
915 app.ContactPatientButton.Layout.Row = [10 11];
916 app.ContactPatientButton.Layout.Column = [10 12];
917 app.ContactPatientButton.Text = 'Contact Patient';
918

919 % Create HRshower_2
920 app.HRshower_2 = uieditfield(app.GridLayout2, 'text');
921 app.HRshower_2.Editable = 'off';
922 app.HRshower_2.HorizontalAlignment = 'center';
923 app.HRshower_2.FontSize = 100;
924 app.HRshower_2.FontWeight = 'bold';
925 app.HRshower_2.BackgroundColor = [0.9412 0.9412 0.9412];
926 app.HRshower_2.Layout.Row = [5 6];
927 app.HRshower_2.Layout.Column = [6 8];
928

929 % Create BPMtext_2
930 app.BPMtext_2 = uieditfield(app.GridLayout2, 'text');
931 app.BPMtext_2.Editable = 'off';
932 app.BPMtext_2.HorizontalAlignment = 'center';

43

933 app.BPMtext_2.FontWeight = 'bold';
934 app.BPMtext_2.BackgroundColor = [0.9412 0.9412 0.9412];
935 app.BPMtext_2.Layout.Row = 4;
936 app.BPMtext_2.Layout.Column = [6 8];
937 app.BPMtext_2.Value = 'BPM';
938

939 % Create ChoosePatientListBoxLabel
940 app.ChoosePatientListBoxLabel = uilabel(app.GridLayout2);
941 app.ChoosePatientListBoxLabel.HorizontalAlignment = 'right';
942 app.ChoosePatientListBoxLabel.FontWeight = 'bold';
943 app.ChoosePatientListBoxLabel.Layout.Row = 5;
944 app.ChoosePatientListBoxLabel.Layout.Column = 11;
945 app.ChoosePatientListBoxLabel.Text = 'Choose Patient';
946

947 % Create ChoosePatientListBox
948 app.ChoosePatientListBox = uilistbox(app.GridLayout2);
949 app.ChoosePatientListBox.Items = {' Patient 1', ' Patient 2', ' Patient 3', '

Patient 4', ' Patient 5', ' Patient 6', ' Patient 7', ' Patient 8', '
Patient 9', ' Patient 10', ' Patient 11', ' Patient 12', ' Patient 13', '
Patient 14', ' Patient 15', ' Patient 16', ' Patient 17', ' Patient 18', '
Patient 19', ' Patient 20', ' Patient 21', 'Patient 22', 'Patient 23',
'Patient 24', 'Patient 25', 'Patient 26', 'Patient 27', 'Patient 28',
'Patient 29', 'Patient 30', 'Patient 31', 'Patient 32', 'Patient 33',
'Patient 34'};

↪→

↪→

↪→

↪→

↪→

↪→

↪→

950 app.ChoosePatientListBox.ItemsData = {'1', '2', '3', '4', '5', '6', '7', '8',
'9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21',
'22', '23', '24', '25', '26', '27', '28', '29', '30', '31', '32', '33',
'34', ''};

↪→

↪→

↪→

951 app.ChoosePatientListBox.ValueChangedFcn = createCallbackFcn(app,
@ChoosePatientListBoxValueChanged, true);↪→

952 app.ChoosePatientListBox.Layout.Row = [5 7];
953 app.ChoosePatientListBox.Layout.Column = [12 15];
954 app.ChoosePatientListBox.Value = '1';
955

956 % Create QFshower
957 app.QFshower = uieditfield(app.GridLayout2, 'text');
958 app.QFshower.Editable = 'off';
959 app.QFshower.HorizontalAlignment = 'center';
960 app.QFshower.FontSize = 80;
961 app.QFshower.FontWeight = 'bold';
962 app.QFshower.BackgroundColor = [0.9412 0.9412 0.9412];
963 app.QFshower.Layout.Row = [5 6];
964 app.QFshower.Layout.Column = 9;
965

966 % Create BPMtext_3
967 app.BPMtext_3 = uieditfield(app.GridLayout2, 'text');
968 app.BPMtext_3.Editable = 'off';
969 app.BPMtext_3.HorizontalAlignment = 'center';
970 app.BPMtext_3.FontWeight = 'bold';
971 app.BPMtext_3.BackgroundColor = [0.9412 0.9412 0.9412];
972 app.BPMtext_3.Layout.Row = 4;
973 app.BPMtext_3.Layout.Column = 9;
974 app.BPMtext_3.Value = 'QF';
975

976 % Create LogOutButton_2
977 app.LogOutButton_2 = uibutton(app.GridLayout2, 'push');
978 app.LogOutButton_2.ButtonPushedFcn = createCallbackFcn(app,

@LogOutButton_2Pushed, true);↪→

44

979 app.LogOutButton_2.Layout.Row = 1;
980 app.LogOutButton_2.Layout.Column = 2;
981 app.LogOutButton_2.Text = 'Log Out';
982

983 % Create BPMtext_4
984 app.BPMtext_4 = uieditfield(app.GridLayout2, 'text');
985 app.BPMtext_4.Editable = 'off';
986 app.BPMtext_4.HorizontalAlignment = 'center';
987 app.BPMtext_4.FontWeight = 'bold';
988 app.BPMtext_4.BackgroundColor = [0.9412 0.9412 0.9412];
989 app.BPMtext_4.Layout.Row = 11;
990 app.BPMtext_4.Layout.Column = [6 8];
991 app.BPMtext_4.Value = 'RPM';
992

993 % Create RRshower
994 app.RRshower = uieditfield(app.GridLayout2, 'text');
995 app.RRshower.Editable = 'off';
996 app.RRshower.HorizontalAlignment = 'center';
997 app.RRshower.FontSize = 92;
998 app.RRshower.FontWeight = 'bold';
999 app.RRshower.BackgroundColor = [0.9412 0.9412 0.9412];

1000 app.RRshower.Layout.Row = [12 15];
1001 app.RRshower.Layout.Column = [6 8];
1002

1003 % Create StressLabel
1004 app.StressLabel = uilabel(app.GridLayout2);
1005 app.StressLabel.HorizontalAlignment = 'center';
1006 app.StressLabel.FontSize = 36;
1007 app.StressLabel.FontWeight = 'bold';
1008 app.StressLabel.Layout.Row = [8 9];
1009 app.StressLabel.Layout.Column = [13 16];
1010 app.StressLabel.Text = 'Stress?';
1011

1012 % Create Image3
1013 app.Image3 = uiimage(app.GridLayout2);
1014 app.Image3.Layout.Row = [15 17];
1015 app.Image3.Layout.Column = [13 16];
1016 app.Image3.ImageSource = 'Health2Go-01.png';
1017

1018 % Create contacttext
1019 app.contacttext = uieditfield(app.GridLayout2, 'text');
1020 app.contacttext.Layout.Row = [12 16];
1021 app.contacttext.Layout.Column = [10 12];
1022

1023 % Create ButtonGroup
1024 app.ButtonGroup = uibuttongroup(app.GridLayout2);
1025 app.ButtonGroup.Layout.Row = [1 4];
1026 app.ButtonGroup.Layout.Column = [11 16];
1027

1028 % Create ECGButton
1029 app.ECGButton = uiradiobutton(app.ButtonGroup);
1030 app.ECGButton.Text = 'ECG';
1031 app.ECGButton.Position = [254 87 58 22];
1032 app.ECGButton.Value = true;
1033

1034 % Create RespiratoryButton
1035 app.RespiratoryButton = uiradiobutton(app.ButtonGroup);
1036 app.RespiratoryButton.Text = 'Respiratory';

45

1037 app.RespiratoryButton.Position = [254 66 83 22];
1038

1039 % Create UploadButton
1040 app.UploadButton = uibutton(app.ButtonGroup, 'push');
1041 app.UploadButton.ButtonPushedFcn = createCallbackFcn(app, @UploadButtonPushed,

true);↪→

1042 app.UploadButton.Position = [242 21 79 22];
1043 app.UploadButton.Text = 'Upload';
1044

1045 % Create ChooseFileButton
1046 app.ChooseFileButton = uibutton(app.ButtonGroup, 'push');
1047 app.ChooseFileButton.ButtonPushedFcn = createCallbackFcn(app,

@ChooseFileButtonPushed, true);↪→

1048 app.ChooseFileButton.Position = [11 87 82 22];
1049 app.ChooseFileButton.Text = 'Choose File';
1050

1051 % Create PatientNameLabel
1052 app.PatientNameLabel = uilabel(app.ButtonGroup);
1053 app.PatientNameLabel.HorizontalAlignment = 'center';
1054 app.PatientNameLabel.Position = [11 47 80.0918851435706 22];
1055 app.PatientNameLabel.Text = 'Patient Name';
1056

1057 % Create PatientNameEditField
1058 app.PatientNameEditField = uieditfield(app.ButtonGroup, 'text');
1059 app.PatientNameEditField.Position = [107 47 87 22];
1060

1061 % Create filenamepathtext
1062 app.filenamepathtext = uieditfield(app.ButtonGroup, 'text');
1063 app.filenamepathtext.Editable = 'off';
1064 app.filenamepathtext.BackgroundColor = [0.9412 0.9412 0.9412];
1065 app.filenamepathtext.Position = [107 87 86 22];
1066

1067 % Create InvGroup
1068 app.InvGroup = uitabgroup(app.UIFigure);
1069 app.InvGroup.Position = [470 -124 100 30];
1070

1071 % Create Tab
1072 app.Tab = uitab(app.InvGroup);
1073 app.Tab.Title = 'Tab';
1074

1075 % Show the figure after all components are created
1076 app.UIFigure.Visible = 'on';
1077 end
1078 end
1079

1080 % App creation and deletion
1081 methods (Access = public)
1082

1083 % Construct app
1084 function app = app1
1085

1086 % Create UIFigure and components
1087 createComponents(app)
1088

1089 % Register the app with App Designer
1090 registerApp(app, app.UIFigure)
1091

1092 % Execute the startup function

46

1093 runStartupFcn(app, @startupFcn)
1094

1095 if nargout == 0
1096 clear app
1097 end
1098 end
1099

1100 % Code that executes before app deletion
1101 function delete(app)
1102

1103 % Delete UIFigure when app is deleted
1104 delete(app.UIFigure)
1105 end
1106 end
1107 end

A.2 add2list.m
1 function add2list(app) %adds uploaded patient info to patientlist in the pysician tab
2

3 try
4 x2 = dir('extraECG');
5 x = dir('extrareps');
6

7 t1 = transpose(struct2cell(x));
8 t2 = transpose(struct2cell(x2));
9 try

10 t1 = strrep(string(t1), '.csv','');
11 t1 = strrep(t1, 'Resp_','');
12 t1 = cellstr(t1);
13

14 t2 = strrep(string(t2), '.csv','');
15 t2 = strrep(t2, 'ECG_','');
16 t2 = cellstr(t2);
17 catch
18 end
19

20 xl = length(x2) -2 ;
21 diffecg = setdiff(t1(:,1) , t2(:,1)) ;
22

23 f = app.ChoosePatientListBox.Items;
24 f2 = app.ChoosePatientListBox.ItemsData;
25

26 i = 0; %#ok<NASGU>
27 k = 0; %#ok<NASGU>
28 for i = 1 : xl +1
29 if i < xl+1
30 f2(34+i) = t2(i+2,1);
31 f(34+i) = t2(i+2,1);
32 elseif i == xl +1
33 f2(i+34) = cellstr(blanks(1));
34 end
35 end
36

37 if isempty(diffecg) == 0
38 diffl1 = length(diffecg);
39 for k = 1 : diffl1 +1
40 if k < diffl1+1

47

41 f2(33 + i +k) =diffecg(k,1);
42 f(33+i +k) = diffecg(k,1);
43 elseif k == diffl1 + 1
44 f2(i + k +33) = cellstr(blanks(1));
45 end
46 end
47

48 end
49 f = strrep(f, '.csv','');
50 f = strrep(f, 'ECG_','');
51 f = strrep(f, 'Resp_','');
52 app.ChoosePatientListBox.Items = f;
53 app.ChoosePatientListBox.ItemsData = f2;
54

55 catch
56 end
57 end

A.3 ChooseFileButtonPushed.m
1 function ChooseFileButtonPushed(app, event)
2 %Opens explorer to select a file
3 [app.filename, app.path] = uigetfile;
4 app.filenamepathtext.Value = app.filename;
5

6

7 end

A.4 ChoosePatientListBoxValueChanged.m
1 function ChoosePatientListBoxValueChanged(app, event)
2 %changes the patient information that is displayed, downloads
3 %it when needed, or when it is local information just retrieves
4 %it from the relavent folder
5 app.ECGax.cla;
6 app.Repsax2.cla;
7 j = 1;
8 counter = 0;
9 app.repscounter = 0;

10 app.contacttext.Value = '';
11 id = (app.ChoosePatientListBox.Value);
12 if str2double(id) < 35
13 localornot = 1;
14 counter = 0;
15 j = 1;
16

17 elseif isnan(str2double(id))
18 idecg = append('ECG_', id, '.csv');
19 idresp = append('Resp_', id, '.csv');
20 % cd extraECG
21 try
22 app.ECGsignal = csvread(idecg);
23 catch
24 warndlg('No ECG signal can be found for this patient',...
25 'No signal');
26 app.ECGsignal = zeros(100000, 1);
27 end

48

28 % cd ..\
29 % cd extrareps
30 try
31 app.Respsignal = csvread(idresp);
32

33 catch
34 warndlg('No respiratory signal can be found for this patient',...
35 'No signal');
36 app.Respsignal = zeros(1000000, 1);
37 end
38 % cd ..\
39 localornot = 0;
40

41

42 end
43

44 stapregelaar(app, j, counter, localornot, id)
45

46 end

A.5 ContactPatientButtonPushed.m
1 function ContactPatientButtonPushed(app, event)
2 % when the button is pushed, a mail will be send to the patient
3 % with a personalizable text
4 mail = 'dontdiefromstress@gmail.com'; %Your GMail email address
5 password = 'Ugoodm8?'; %Your GMail password
6 setpref('Internet','SMTP_Server','smtp.gmail.com');
7 setpref('Internet','E_mail', mail);
8 setpref('Internet','SMTP_Username', mail);
9 setpref('Internet','SMTP_Password', password);

10 props = java.lang.System.getProperties;
11 props.setProperty('mail.smtp.auth','true');
12 props.setProperty('mail.smtp.socketFactory.class', 'javax.net.ssl.SSLSocketFactory');
13 props.setProperty('mail.smtp.socketFactory.port','465');
14 n = app.ChoosePatientListBox.Value;
15 nn = 'Dear patient #';
16 nnn = strcat(nn, n);
17 nnnn = string(app.contacttext.Value);
18 sendmail('yavuzhanmercimek@gmail.com',nnn, nnnn)
19 message = strcat('Mail sent to Patient #', n);
20 msgbox(message)
21 end

A.6 add2list.m
1 function feedbackloop(app, processed_signal)
2 %Gives feedback on the breathing pattern of the patient
3 %depending on how fast he is breathing.
4 if app.stress == 1
5 if (processed_signal{8,1}) < 0.9*(1/9)
6 app.stresstext_2 = 'You are breathing too slow. You are probably going to die.....';
7 elseif (processed_signal{8,1}) >= 0.9*(1/9) && (processed_signal{8,1}) <= 2*(1/9)
8 app.stresstext_2 = 'You breathing is excellent! Keep up the pace!';
9 elseif (processed_signal{8,1}) > 2*(1/9) && (processed_signal{8,1}) <= 2.5*(1/9)

10 app.stresstext_2 = 'You are still breathing a little bit too fast, maybe listening
to a song will help you calm down a bit more?';↪→

49

11 elseif (processed_signal{8,1}) > 2.5*(1/9)
12 app.stresstext_2 = 'You are breathing too fast. Try matching you breaths with the

exercise shown below';↪→

13 end
14 else
15 app.stresstext_2 = '';
16 end
17 end
18 end

A.7 login.m
1 function login(app)
2 onlineloginhalen(app); % check online for login data
3 username = app.Usernamefield.Value; %username
4 pw = string(app.truepassword.Value); %password
5 loc = find(strcmp(app.totaalgeenpersoonlijkeinformatie(:,1), username)); %check for username

in database↪→

6 haspw = DataHash(pw, 'SHA-256', 'Base64');
7 if haspw == app.totaalgeenpersoonlijkeinformatie(loc,2) %check if pw is correct
8 ID = str2double(app.totaalgeenpersoonlijkeinformatie(loc,3)); %display relavent screen

depending on logindata↪→

9 if ID == 35 % open physiciantab
10 app.LoginTab.Parent = app.InvGroup;
11 app.PatientXTab.Parent = app.InvGroup;
12 app.PhysicianTab.Parent = app.VisGroup;
13 app.VisGroup.SelectedTab = app.PhysicianTab;
14

15 else % open patient tab
16 app.LoginTab.Parent = app.InvGroup;
17 app.PatientXTab.Parent = app.VisGroup;
18 app.PhysicianTab.Parent = app.InvGroup;
19 app.VisGroup.SelectedTab = app.PatientXTab;
20 app.PatientXTab.Title = string(ID);
21 j = 1;
22 counter = 0;
23 localornot = 1;
24 stapregelaar(app, j, counter, localornot , ID)
25 end
26 else
27 opts = struct('WindowStyle','modal',...
28 'Interpreter','tex');
29 errordlg('Incorrect Username or Password',...
30 'Error', opts);
31 end
32

33 end

A.8 LogOutButton_2Pushed.m

1 function LogOutButton_2Pushed(app, event)
2 % return to loginscreen when pushed
3 app.LoginTab.Parent = app.VisGroup;
4 app.PatientXTab.Parent = app.InvGroup;
5 app.PhysicianTab.Parent = app.InvGroup;
6 app.VisGroup.SelectedTab = app.LoginTab;
7 app.Passwordfield.Value = '';

50

8 app.truepassword.Value = '';
9

10 end

A.9 LogOutButtonPushed.m
1 function LogOutButtonPushed(app, event)
2 % return to loginscreen when pushed
3 app.LoginTab.Parent = app.VisGroup;
4 app.PatientXTab.Parent = app.InvGroup;
5 app.PhysicianTab.Parent = app.InvGroup;
6 app.VisGroup.SelectedTab = app.LoginTab;
7 app.Passwordfield.Value = '';
8 app.truepassword.Value = '';
9 app.trueww2 = '';

10

11 end

A.10 mainECGrunner.m
1 function mainECGrunner(app, processed_signal, g, c, ~) %plot graphs
2 %This function displays the ECG signal, heart rate, Respiratory signal and
3 % respiratory rate depending on which screen is accessed. It also handles
4 % errors which rise from NaN's and from the quality factors.
5

6 ecgsignali = transpose(processed_signal{1,1}); %raw ECG signal
7 ecgsignalf =transpose(processed_signal{3,1}); %filtered ECG signal
8

9 respsignalf = transpose(processed_signal{9,1}); %filtered Reps signal
10 s = 50;
11 if app.VisGroup.SelectedTab == app.PhysicianTab
12 try
13

14 nananan = isnan(processed_signal{1,1}); % checks for NaNs
15 nananan2 = find(nananan == 1);
16

17 app.RRshower.Value = string(60*(processed_signal{8,1})); %print HR
18 app.HRshower_2.Value = string(round(processed_signal{6,1}));
19 app.QFshower.Value = string(processed_signal{4,1});
20 if processed_signal{4,1} < 0.5 && app.VisGroup.SelectedTab == app.PhysicianTab
21 opts = struct('WindowStyle','modal',...
22 'Interpreter','tex');
23 warndlg('The QUALITY FACTOR seems to be low. Please be advised.',...
24 'Quality Factor Warning', opts);
25 end
26 if length(nananan2) > 100 && app.VisGroup.SelectedTab == app.PhysicianTab
27 opts = struct('WindowStyle','modal',...
28 'Interpreter','tex');
29 errordlg('There seems to be a problem with the sensor, check connectio',...
30 'Critical system failure', opts);
31

32 end
33

34 for i = 0 : s : 10*app.fs_resp -1
35 j = 4 *i;
36

37

51

38 if g == 0 && c== 0
39

40 xecg = -20 : 1/app.fs_ecg : -10 -1/app.fs_ecg;
41 yecgi = ecgsignali(1+ j : j+10*app.fs_ecg);
42 yecgf = ecgsignalf(1+ j : j+10*app.fs_ecg);
43

44

45 else
46 xecg = -20 : 1/app.fs_ecg : -10 - 1/app.fs_ecg;
47 yecgi = ecgsignali(1+ j : j+10*app.fs_ecg);
48 yecgf = ecgsignalf(1+ j : j+10*app.fs_ecg);
49

50 end
51

52 xreps = -40 : 1/app.fs_resp: -10 -1/app.fs_resp;
53 yrepsf = respsignalf(1+i : i + 30*app.fs_resp);
54

55

56 plot(app.ECGax, xecg, yecgi, xecg, yecgf)
57 plot(app.Repsax2, xreps, yrepsf);
58

59

60 pause(s/app.fs_resp)
61

62

63 end
64

65

66 catch
67 end
68 elseif app.VisGroup.SelectedTab == app.PatientXTab
69 app.HRshower.Value = string(round(processed_signal{6,1}));
70 feedbackloop(app, processed_signal)
71 for i = 0 : s : 10*app.fs_resp -1
72 xreps = -40 : 1/app.fs_resp: -10 -1/app.fs_resp;
73 yrepsf = respsignalf(1+i : i + 30*app.fs_resp);
74 plot(app.Repsax, xreps, yrepsf);
75

76 pause(s/app.fs_resp)
77 end
78 end
79

80

81

82 end

A.11 musicfunc.m
1 function musicfunc(app)
2 try
3 [y,Fs] = audioread('Allegri-Miserere.mp3'); %music which plays
4 app.player =audioplayer(y,Fs);
5 catch
6 end
7 end
8 end

52

A.12 onlineloginhalen.m
1 function onlineloginhalen(app)
2 setenv('MW_WASB_SAS_TOKEN',

'?sv=2019-10-10&ss=bfqt&srt=sco&sp=rwdlacupx&se=2020-09-23T21:59:27Z&st=2020-05-11T13:59:27Z&spr=https&sig=O%2FOzzyayONDTgQYG4Bt34bqsxDLvr%2BD%2FDcR6nJpwoCE%3D')↪→

3 setenv('MW_WASB_SECRET_KEY',
'+bp+3xekejItpGtJaw5e5g4ZkV1kuGL9XC2sqrbTlq8jd7eSUqw5MFg1bBRI9/4uaE/KeRo97gSPmdO9IrAV3Q==')
%server keys to acces data

↪→

↪→

4 loc = 'wasbs://werk@inloggegevens.blob.core.windows.net/'; %location of data
5 loc = append(loc, 'xxx2.csv'); %reorganize data
6 ds = tabularTextDatastore(loc,'FileExtensions',{'.csv'});
7 pf = read(ds);
8

9 A = string(table2cell(pf));
10

11 A(:,3) = append('0',A(:,3));
12

13

14 app.totaalgeenpersoonlijkeinformatie = A;
15 end

A.13 PasswordfieldValueChanging.m
1 function PasswordfieldValueChanging(app, event)
2 %Swaps the entered characters with *, and places them
3 %characters in a invisible text box, from it will be read later
4 %on.
5 value = event.Value;
6

7 newStr = erase(value,'*');
8 l = length(value);
9 n = '';

10 for i = 0 : l-1
11

12 n = strcat(n,'*');
13 end
14 app.Passwordfield.Value = n;
15 if l == 1
16 trueww = '';
17 app.trueww2 = strcat(trueww, newStr);
18 else
19 app.trueww2 =strcat(app.trueww2, newStr);
20 end
21

22 app.truepassword.Value = app.trueww2;
23

24

25 end

A.14 soundButtonPushed.m
1 function soundButtonPushed(app, event)
2 % plays the music when the sound button is pushed
3 if app.flag == 0
4 if isplaying(app.player) == false
5 play(app.player)
6 app.flag = 0;

53

7 else
8 pause(app.player)
9 app.flag = 1;

10 end
11 else
12 resume(app.player)
13 app.flag = 0;
14 end
15 end

A.15 PasswordfieldValueChanging.m
1 function PasswordfieldValueChanging(app, event)
2 %Swaps the entered characters with *, and places them
3 %characters in a invisible text box, from it will be read later
4 %on.
5 value = event.Value;
6

7 newStr = erase(value,'*');
8 l = length(value);
9 n = '';

10 for i = 0 : l-1
11

12 n = strcat(n,'*');
13 end
14 app.Passwordfield.Value = n;
15 if l == 1
16 trueww = '';
17 app.trueww2 = strcat(trueww, newStr);
18 else
19 app.trueww2 =strcat(app.trueww2, newStr);
20 end
21

22 app.truepassword.Value = app.trueww2;
23

24

25 end

A.16 soundButtonPushed.m
1 function soundButtonPushed(app, event)
2 % plays the music when the sound button is pushed
3 if app.flag == 0
4 if isplaying(app.player) == false
5 play(app.player)
6 app.flag = 0;
7 else
8 pause(app.player)
9 app.flag = 1;

10 end
11 else
12 resume(app.player)
13 app.flag = 0;
14 end
15 end

54

A.17 stapregelaar.m
1 function stapregelaar(app, j, counter, localornot , patient)
2 % this code checks which data needs to be downloaded from the
3 % server for, dowloads it and sends the revelant part to
4 % MainECGrunner to be displayed, after it has been processed in MainECG. IF the data is

locally↪→

5 % availabe,nothing will be downloaded and will be processed
6 % from the main storage directly
7 %NOTE: when fully realized, either this function needs to be
8 %redone, or the way data is read from the server needs to be
9 %according to how it is read here.

10 if localornot == 1
11

12 app.ECGsignal = downloadECG(patient, j);
13 app.Respsignal = downloadreps(patient, j);
14

15

16 end
17 try
18 while app.VisGroup.SelectedTab == app.PhysicianTab | app.VisGroup.SelectedTab ==

app.PatientXTab %#ok<OR2>↪→

19

20 g = app.fs_ecg* 50 * (j-1); %50 sec of ecg steps
21 c = app.fs_ecg * 10 * counter; % 10 sec sub steps ecg
22

23 r = app.fs_resp*50*(j-1); %50sec resp steps
24 eps = app.fs_resp*10*(counter+1);
25

26 if g == 0 && c == 0
27 ECGred = app.ECGsignal(g+ c + 1 : g+c+app.fs_ecg*20, :);
28 else
29 ECGred = app.ECGsignal(g+ c -app.fs_ecg*10 + 1 : g+c+app.fs_ecg*10, :);
30 end
31

32 if j == 1 && counter < 2 && localornot == 1
33 Repsred = app.Respsignal(r + eps +1 : r + eps + app.fs_resp*10);
34 else
35 Repsred = app.Respsignal(r + eps - app.fs_resp*30 +1 : r + eps +

app.fs_resp*10);↪→

36

37 end
38

39

40 processedsignal = MainECG(0 , ECGred, length(ECGred), length(Repsred), Repsred);
41

42 mainECGrunner(app, processedsignal, g, c, localornot)
43 counter = counter + 1;
44

45

46 if counter == 3 && localornot == 1
47 t = j + 1;
48

49 ecg = downloadECG(patient, t);
50 ecgcomb = cat(1, app.ECGsignal , ecg);
51 app.ECGsignal = ecgcomb;
52

53 reps = downloadreps(patient , t);

55

54 repscomb = cat(1, app.Respsignal, reps);
55 app.Respsignal = repscomb;
56 elseif counter == 5
57 counter = 0;
58 j = j + 1;
59 end
60

61 if mod(5*j + c, 8) == 0
62 app.stress = randi(2)-1;
63 pause(2)
64 end
65

66

67

68 end
69 catch
70 end
71 end

A.18 startupFcn.m
1 function startupFcn(app)
2 %everything that needs to be initialized in the beginning can be
3 %found here, such as server keys, folder locations etc.
4

5 if isempty(gcp('nocreate'))
6 parpool('local');
7 end
8 setenv('MW_WASB_SAS_TOKEN',

'?sv=2019-10-10&ss=bfqt&srt=sco&sp=rwdlacupx&se=2020-09-23T21:59:27Z&st=2020-05-11T13:59:27Z&spr=https&sig=O%2FOzzyayONDTgQYG4Bt34bqsxDLvr%2BD%2FDcR6nJpwoCE%3D')↪→

9 setenv('MW_WASB_SECRET_KEY',
'+bp+3xekejItpGtJaw5e5g4ZkV1kuGL9XC2sqrbTlq8jd7eSUqw5MFg1bBRI9/4uaE/KeRo97gSPmdO9IrAV3Q==')↪→

10

11

12 addpath('ECG_preprocess')
13 addpath('extraECG')
14 addpath('extrareps')
15 app.LoginTab.Parent = app.VisGroup;
16 app.PatientXTab.Parent = app.InvGroup;
17 app.PhysicianTab.Parent = app.InvGroup;
18 app.VisGroup.SelectedTab = app.LoginTab;
19

20 musicfunc(app);
21 app.flag = 0;
22 set(app.greenring,'visible','on')
23 set(app.redring,'visible','off')
24 app.stresstext.Value = ['You are not stressed!' ...
25 ' Keep it up!'];
26 set(app.calmgifje1, 'visible', 'off')
27 set(app.sound, 'visible', 'off')
28

29 app.stress = 0;
30 end

56

A.19 StressSwitchValueChanged.m
1 function StressSwitchValueChanged(app, event)
2 value = string(app.StressSwitch.Value);
3 app.stress = 1;
4 if value == 'On' %#ok<BDSCA>
5 set(app.redring,'visible','on')
6 set(app.greenring,'visible','off')
7 app.stresstext.Value = ['You appear to be stressed!' ...
8 ' Maybe this will help'];
9 set(app.calmgifje1, 'visible', 'on')

10 set(app.sound, 'visible', 'on')
11 else
12 set(app.greenring,'visible','on')
13 set(app.redring,'visible','off')
14 app.stresstext.Value = ['You are not stressed!' ...
15 ' Keep it up!'];
16 set(app.calmgifje1, 'visible', 'off')
17 set(app.sound, 'visible', 'off')
18 end
19

20

21 end

A.20 UIFigureCloseRequest.m
1 function UIFigureCloseRequest(app, event)
2 %closes parallel loop when closing the window
3 delete(gcp('nocreate'))
4 delete(app)
5

6 end

A.21 UploadButtonPushed.m
1 function UploadButtonPushed(app, event)
2 %Places files in a folder depending on the type of information
3 %in the file. Will give error if incorrect file type is
4 %given.
5 try
6 [~, ~ , fExt] = fileparts(app.filename);
7 catch
8 end
9

10 name = app.PatientNameEditField.Value;
11 if isempty(fExt) == 1
12 errordlg('No file was selected.',...
13 'No file');
14 elseif convertCharsToStrings(fExt) == '.csv' %#ok<BDSCA>
15

16 if app.ECGButton.Value == 1 && app.RespiratoryButton.Value == 0
17 namecat = strcat('ECG_', name, '.csv');
18 z = append(app.path, app.filename);
19 copyfile(z , 'extraECG')
20 cd 'extraECG'
21 elseif app.RespiratoryButton.Value == 1 && app.ECGButton.Value == 0
22 namecat = strcat('Resp_', name, '.csv');

57

23 z = append(app.path, app.filename);
24 copyfile(z , 'extrareps')
25 cd 'extrareps'
26 end
27

28

29 if isempty(name) == 1
30 errordlg('Fill in the patients name!',...
31 'No name');
32 elseif strcmp(app.filename, namecat) == 0
33 copyfile(app.filename, namecat)
34 delete(app.filename)
35 end
36

37

38 else
39 errordlg('Upload only ''.csv'' files!',...
40 'Wrong file type');
41 end
42

43 app.filenamepathtext.Value = '';
44 app.PatientNameEditField.Value = '';
45 cd ..\
46 add2list(app)
47 end

58

	Introduction
	Current technology
	Problem definition
	Paper structure

	Programme of Requirements
	Project limitations
	Ethical limitations
	Physical limitations

	Project requirements

	System Design
	General overview
	Wearable sensors
	ECG measurement
	Respiratory measurement
	Microcontroller unit & Bluetooth Module
	Power supply

	Data processing options
	Signal pre-processing and stress detection
	Wireless transmission

	Server storage
	Alternative design
	Use of personal information

	Graphical User Interface: Health2Go
	Login Screen
	Functionalities

	Patient Graphical User Interface
	Physician Graphical User Interface

	Results and Discussion
	Results
	System Design results
	Graphical User Interface results

	Discussion

	Conclusion
	Recommendation & Future Work

	MATLAB Code
	app1.m
	add2list.m
	ChooseFileButtonPushed.m
	ChoosePatientListBoxValueChanged.m
	ContactPatientButtonPushed.m
	add2list.m
	login.m
	LogOutButton_2Pushed.m
	LogOutButtonPushed.m
	mainECGrunner.m
	musicfunc.m
	onlineloginhalen.m
	PasswordfieldValueChanging.m
	soundButtonPushed.m
	PasswordfieldValueChanging.m
	soundButtonPushed.m
	stapregelaar.m
	startupFcn.m
	StressSwitchValueChanged.m
	UIFigureCloseRequest.m
	UploadButtonPushed.m

