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Introduction

Advances in genome engineering — ‘making precise changes to DNA’—announced
a new era of using Biology for Biotechnological applications. Most notably is the
discovery of the CRISPR-Cas system which over the course of the past decade has
facilitated the development of strategies for making drought-resistant crops, tar-
geted antimicrobials, organ transfers from pigs to humans, eradicating malaria
mosquitoes and more. In spite of CRISPR-Cas systems having become a com-
mon tool in many scientific laboratories, their application — especially treating
humans — remains in its infancy due to concerns regarding its precision.
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Figure 1.1: Living organisms inherit traits encoded in their DNA. Making (precise) changes to an organisms genome
is called ‘genome engineering’.

1.1. Genes, Genomes and Genetic Engineering

hat does making a drought resistant crop have in common with treating sickle cell

disease? To answer this question we must first consider what plants, humans, bac-
teria and all other living organisms on Earth have in common. All living organisms consist
of cells (Figure ??). Inside the cell resides its genetic material: DNA. DNA is said to en-
code for ‘genes’, resulting in an organism’s traits such as the color of an apple, or the color
of our eyes. Other traits, such as the corn being drought resistant, or a human having a
hemoglobin mutant leading to sickle cell disease, are also a direct result of the precise
‘gene code’ or ‘genome’. If we could somehow edit (‘engineer’) an organism’s genome,
we should thereby be able to change its traits. In case of our two examples, both traits
(drought resistance in corn, human sickle cell disease) are caused by a single gene, and are
thereby altered just by editing the associated gene. However, what if we by mistake edit
the wrong gene? This could potentially have dire consequences.

In this thesis we are concerned with understanding the most novel genome engineering
tools by means of mathematical and physical modeling. To understand how we go about
translating editing specificity into physical quantities (time, energy, etc.) we must first take
a deeper dive into their Biological origins.

1.2. Beyond the Central Dogma

The cell is the building block of all living tissue. Inside each cell countless of chemical re-
actions take place to make it grow, protect it against an ever changing environment, and
eventually make it divide — giving rise to new life. Virtually all cellular processes are carried
out by molecules called proteins. Orchestrating all chemical reactions requires that the
correct amount of active protein is available at the right time.

One way of achieving this goal is to control the amount of each protein produced in the
first place. The cell encodes these instructions in the form of another kind of molecule:
Deoxyribonucleic acid or DNA for short. Encoding such information is possible since there
are just four forms each monomer constituting one unit of either of the two helical DNA
chains (strands) can take on: Adenosine (A), Thymine (T), Guanine (G) and Cytosine (C),
called nucleotides. Moreover, in forming the double-stranded DNA (dsDNA) of an organ-
ism’s genome every A-nucleotide positions itself opposite to a T-nucleotide. Similarly, a
‘C’ is said "to form a base pair with a G’ (Figure ??). This base pairing property allows the
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Figure 1.2: The Central Dogma of Molecular Biology states that genetic information is stored as DNA, copied dur-
ing replication (cell division) and read out by first transcribing it into RNA and then translating it into an amino acid
sequence. Each of these processes is heavily regulated by the cell. Target searching proteins play important parts
herein: Transcription Factors act on transcription, DNA repair mechanisms safeguard replication. Non-coding
RNA guided nucleases fall into this category as well: CRISPR associated (Cas) proteins prevent replication of viral
elements, while RNAi controls translation levels.

cell to encode information in the DNA's nucleotide sequence, much like a computer stores
information in binary sequences.

Processing of the encoded information, resulting in protein synthesis, happens in a series
of Chemical pathways famously termed ‘the Central Dogma of Biology’ (Figure ??). Dur-
ing cell division each daughter cell acquires an identical copy of the mother cell’s genome
(DNA). As each cell only has a single copy of the genome, before cell division takes place
the DNA gets replicated. To synthesize a protein, the DNA first gets transcribed, resulting
in a precursor molecule, RNA, in which every nucleotide of one of the DNA’s strands is re-
placed by its complement — with the exception of Thymine that gets replaced by Uracil (A
toT, Tto U, Cto G and G to C) (Figure ??). These RNA molecules are now ready to get
translated into a sequence of what are called amino acids that eventually folds into its final
form: a protein. Amazingly, all steps within the Central Dogma — replication, transcription
and translation — are actually carried out by proteins themselves.

Although the Central Dogma in essence details the flow of genetic information from DNA
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Figure 1.3: Double-stranded nucleic acids form ’base pairs’. (left) DNA-DNA pairs, A(denine) complements
T(hymine) and C(ytosine) complements G(uanine). (middle) DNA-RNA pairs, U(racil) replaces T(hymine), thereby
matching A(denine). The DNA’s Thymine still matches the RNA’s Adenine. (right) RNA-RNA pairs, A(denine) com-
plements U(racil). We will refer to any of the shown base pairs as ‘matches’, while any other possible pair (i.e.
A-G) as ‘'mismatches’.

to protein, more detailed control of protein levels is achieved through numerous ‘feed-
back loops’. When DNA damage occurs, a set of proteins involved in DNA repair mech-
anisms must recognize and restore the original sequence to avoid transcribing incorrect
instructions or passing them on during replication. Transcription levels (the amount of
RNA produced by a particular gene) are actively up- or down-regulated by proteins termed
‘transcription factors’ that bind near the gene of interest to either facilitate or repress the
proteins that carry out transcription.

In this thesis we shall focus on a different kind of regulation that uses so called non-coding
RNA molecules. Unlike originally envisioned, RNA molecules are more than merely inter-
mediates between DNA and protein. In fact, large portions of the genome do not even
directly encode for proteins at all — estimated to be more than 95% of the human DNA [?
]. Partially, DNA can encode for RNA that is not meant to be translated: ‘non-coding RNA'.
Instead, making these RNA molecules bind to specific RNA or DNA sequences, using the
base pairing rules mentioned above, can direct proteins to catalyze reactions at desired se-
quences only. Examples can be found throughout all major kingdoms of life. Eukaryotes —
amongst which yeast, plants, animals and humans —make non-coding RNA bind to messen-
ger RNA (mRNA, the coding form of RNA), thereby inhibiting its translation. Prokaryotes —
archaea and bacteria — use these non-coding RNAs to detect invading viral DNA and signal
it for destruction. We shall detail both below.

Taken together, the cell uses DNA to store and read out information. In turn, parts of the
DNA are used to safeguard and regulate the flow of genetic information in an attempt to
prevent mistakes during read out and protect the integrity of the host’ instructions. Recog-
nition of specific DNA/RNA sequences plays a crucial role herein.

The remainder of this chapter briefly reviews some of the different classes of small non-
coding RNA molecules, highlights their technological potential and explains the need for
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physical modelling of the kind used throughout this thesis. The latter parts of this chapter
contain a brief introduction into the relevant theoretical techniques that allow us to couple
the physics to experimental data. Although not needed to understand ‘the why and ‘the
what', that section serves to additionally explain ‘the how of all subsequent chapters.

1.3. Nucleic acid guided, nucleic acid effector complexes
1.3.1. The CRISPR-Cas adaptive immune system

Organisms have evolved various strategies to cope with their ever changing environments.
This too holds true for even the smallest of organisms: Prokaryotes. For bacteria and ar-
chaea such threats are ‘mobile genetic elements’ (MGEs), foreign DNA (or RNA) originating
from either viruses or plasmids. Bacteriophages, viruses that invade bacteria, in essence
consist of no more than a container with their genetic material. They do not possess the
required protein machinery to read out their own DNA. Hence, by themselves, they are
incapable of replicating. For this reason, phages ‘invade’ host bacteria by injecting their
DNA into them, hoping that the bacteria will not recognize it as being foreign and proceed
to transcribe and translate it as if it being part of its own genome. The viral genome will
encode for the proteins of the DNA-containing capsids that make up the body of the phage
particle. If too many of such new phage particles get synthesized inside the host, the inter-
nal pressure can increase to such levels that the bacteria will burst open, setting the new
virus particles free, enabling them to invade new bacteria.

Despite bacteriophages being about ten times more abundant, their prokaryotic hosts are
still one of the most abundant life forms on earth [? ? ? ]. Prokaryotes have, akin to
what we know from humans, evolved immune systems. The centerpiece of this thesis is
an adaptive immune system (meaning it adjusts to the incoming phage as opposed to in-
nate systems that use a generic defense response) discovered in about half of all sequenced
bacteria species and nearly 90% of all archaea [? ? ]. About a decade before its function
became clear, researchers discovered a particular set of non-coding sequences as part of
the bacterial genome. The bacteria encode for an array of partially palindromic, more con-
served, sequences. These ‘repeats’ are separated by highly variable sequences (‘spacers’).
It took until the early 2000’s to realize the origin of these spacer sequences. Pioneering
bioinformatics research found the spacer sequences to be originating predominantly from
MGEs [? ]. Soon after followed the first experiments demonstrating how this is part of an
adaptive immune response [? ]. The authors challenged phage sensitive S. thermophilis
bacteria to new phages. Remarkably, the bacteria were able to survive the new attack. In
addition, bacteria that became immune did indeed incorporate a novel spacer sequence
from the phage into their, as it is now known to be, Clustered Regularly Interspaced Short
Palindromic Repeats (CRISPR) array. Later experiments revealed the roles of a set of pro-
teins, typically co-transcribed with the array, termed CRISPR associated (Cas) in acquiring
the new spacers, processing those spacers into guides and the destruction of the phage’s
DNA (Figure ??).

Upon encounter of a new phage genome, a set of Cas proteins — Cas1 and Cas2 — acquire
the new spacer and incorporate it into the array [? ](step 1 in Figure ??). Together, the
Cas1-Cas2 complex (at least the variant found in E.coli.) adapts a butterfly-like structure
that neatly fits a single spacer sequence. Next, the CRISPR locus gets transcribed, the
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cas genes get translated, while the CRISPR array forms non-coding RNA. Processing of the
array’s transcript results in small RNA fragments that contain the transcript of individual
spacers [? ](step 2). These small RNAs get loaded into either a single or a complex of Cas
protein(s) [? ? ](step 3). Note that after transcription the resulting RNA actually contains
the sequence complementary to the DNA it originates from (see base pairing rules, Figure
??). Therefore, this ‘guide RNA’ (gRNA) is able to direct the Cas protein to the viral DNA
site. Once bound, the loaded Cas protein either possesses or recruits a nuclease (a DNA
cleaving enzyme) to destroy the viral DNA (step 4 in Figure ?2?)[? ? ? ? ].

For the CRISPR system to convey immunity to its host it must do more than effectively
degrade or inactivate the foreign DNA. It must be able to distinguish self- from non-self
(DNA in this case), preventing self-targeting, otherwise called autoimmunity. Partially this
requirement is met by using the spacer sequence to generate the guide RNA. However, by
construction the CRISPR array itself contains a perfect copy of the target. Also, the host’
DNA, by chance, may still contain a sequence similar to the spacer outside of its CRISPR
array. If the bacteria was to target its own DNA, it could kill itself. Most CRISPR systems
prevent this by pre-selecting spacers that are preceded by a short (typically 3-5nt) motif
termed the protospacer adjacent motif (PAM) [? ? ? ]. Only the protospacer (the se-
guence complementary to the spacer on the opposite viral DNA strand) and not the repeat
sequence in the CRISPR array is flanked by the PAM. Direct interactions between the Cas
protein and DNA can determine whether the DNA is foreign and should be marked for de-
struction. A wide diversity of CRISPR-Cas systems have been discovered thus far. Despite
the zoo of different loci (sub-)types — 19 subtypes and still counting — they share a common
architecture (Figure ??). The CRISPR array, the memory of past infections, is co-transcribed
with the cas genes. As mentioned, integration of the novel spacers, adaptation, into the
array requires the proteins Cas1 and Cas2.

To classify the different CRISPR systems a two-step scheme is currently used [? ] (Figure
??). The first step groups the CRISPR loci into one of two major classes. Class | systems use
a multi-subunit protein complex for targeting and degradation of the foreign DNA (inter-
ference), whereas in class Il systems this is carried out by a single Cas protein. The second
layer of classification is based on the presence of signature Cas proteins. Class | type |
systems, the most abundant subtype, use a mixture of the proteins Cas5 through Cas8 to
form a larger protein complex termed Cascade (“CRISPR associated complex for anti-viral
defense”) [? ] that uses the crRNA guide to bind to the viral DNA. Once bound, it recruits
yet another protein: Cas3, the signature protein of type | systems, that is able to unwind
and degrade the phage genome [? ]. Similarly, type Il systems form an interference com-
plex from the proteins Cas5 through Cas7 and their signature protein Cas10.

Class Il systems (types Il, V and VI) are considerably less complicated. Target interference
is carried out by a single Cas protein (see Cas9,12-14 in Figure ??) that possesses nuclease
(‘cleaving’) domains. For this reason, class Il CRISPR systems are particularly interesting
from a technological perspective, as shall be highlighted below.

Even amongst CRISPR systems of the same type (and therefore class), there exist signifi-
cant differences. Such subtypes can vary based on differences in size or function of their
signature gene or contain additional non-signature Cas genes, a prime example being Cas4
which recently has been found to take part in the adaptation process for type I-F systems [?
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Figure 1.4: The CRISPR-Cas system provides immunity against invading bacteriophages. (1) Upon infection novel
spacers are aquired from phage DNA and incorporated in the host’ CRISPR locus. (2) Transcription and further
biogenisis results in CRISPR-RNA (crRNA) guides. (3) Cas nucleases loaded with the crRNA can search the invading
genome for matches to the guide (colored dot) that lie adjacent to a PAM sequence (yellow rectangle). (4) Having
found a proper target, the Cas nuclease binds the DNA stabily and becomes cleavage competent.

]. Moreover, new CRISPR systems are still being discovered, such as the subtypes of type
V that use the protein Cas14 [? ].

In a nutshell, the CRISPR-Cas system uses RNA guided Cas proteins to perform sequence
specific DNA edits.

1.3.2. RNA interference

Gene regulation, tuning the amount of protein produced from a given gene, is essential
to any living organism. Cells partially achieve this by controlling the transcription levels of
every gene. Additionally, post-transcriptional regulation is in place that modulates trans-
lation levels. Over 60% of all the protein encoding mRNA in human cells is subjected to
a type of regulation known as RNA interference (RNAi) [? ]. Eukaryotic systems possess
several RNAi pathways characterized by the form of the non-coding RNA it utilizes (Figure
7?2?21

Mammalian genomes partially encode for non-coding RNA termed pri-microRNA (step 1in
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Figure 1.5: Classification of CRISPR systems. Typical architecture of the CRISPR locus is shown on top: The operon
controls the adaptation and interference machinery as well as the CRISPR array. Below the most important dif-
ferences between different types of CRISPR systems in their adaptation/interference modules are shown. For a
more elaborate list of CRISPR (sub-)types see [? ]. * signature gene, ** multiple copies present on locus.

Figure ??A). These long transcripts are processed inside the nucleus by a protein named
Drosha, resulting in pre-microRNA (step 2). Exporting the pre-microRNA outside the nu-
cleus, into the cytosol, and further processing by the protein Dicer produces the final mi-
croRNA that contains the information needed to silence the translation of a mRNA (step 3).
The microRNA guide molecule gets loaded into a protein termed Argonaute (Ago), form-
ing a RISC (“RNA-induced silencing complex”) (step 4). As discussed above, the CRISPR
system uses the crRNA to guide Cas molecules to their complementary target. Similarly,
a microRNA-loaded Ago protein binds to mRNA at what is termed the 3’ untranslated re-
gion (3’-UTR), which as its name suggests serves as a demarcation of the stopping site of
translation (step 5). By occupying the 3’-UTR, Ago blocks the translation machinery either
directly or by recruiting co-factors that actively degrade the mRNA.

A second RNAi pathway produces small interfering RNA (siRNA) guides from double-stranded
RNA (step 1in Figure ??B). Such dsRNA, originating either from within the cell itself or from
viral elements, reside in cytosol. The siRNA molecules are produced by Dicer (step 1) and
loaded into Argonaute (step 2). The siRNA pathway can either function to inhibit transcrip-
tion, the same way microRNAs are used, or target viral RNA (step 3).

Within the first few years after its initial discovery in 1998 [? ], RNAi based therapeutics
started to emerge in which either the siRNA or microRNA pathway is manually activated
by injecting synthetically designed dsRNA into the cell to target specific mRNAs of interest.
For this reason, its authors, Andrew Z. Fire and Craig C. Mello, received the 2006 Nobel
prize in Physiology and Medicine [? ] less than a decade after their original publication
detailing this programmable RNA targeting system.
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Figure 1.6: RNA interference pathways (in eukaryotes). (A) microRNA pathway:(1) non coding RNA encoded on
the genome. (2) ‘cropping’ by Drosha. (3) Exporting by Exportin 5 and “dicing’ by Dicer. (4) Loading of the guide
into Argonaute. (5) RISC complex silences messenger RNA by binding to the 3’-UTR. (B) siRNA pathway:(1) dsRNA
in cytosol is processed by Dicer into siRNA.(2) Loading of siRNA into Argonaute. (3) RISC can either silence mRNA
or fight-off invading (RNA) virusses.

Peculiarly, Argonaut proteins have also been found in prokaryotes. Due to their similarity
to their eukaryotic counterparts, and the CRISPR systems described previously, these Ago
proteins are speculated to be involved in gene regulation or anti-viral defense. However,
in many such cases, their precise function remains elusive [? ]. Regardless, after variants
have being reported that use DNA guides and/or target DNA [? ? ], researchers have been
interested in exploring also Ago’s potential for genome engineering applications.

1.4. The genome engineering toolbox

What if we could express Cas9 outside of its bacterial host and load it with a guide se-
quence we designed ourselves? Could we thereby target a DNA location of our choice?
Researchers in 2012 have demonstrated exactly this. Type Il CRISPR systems express a
two-part RNA, consisting of what are termed the CRISPR RNA (crRNA) and trans-activating
crRNA (tracrRNA). Jinek et al. [? ] demonstrated that it is indeed possible to perform ed-
its in vitro using a single synthetically designed guide RNA (single guide RNA or sgRNA).
Soon after followed the first demonstration of editing human and mouse genomes [? ? 1.
These studies further utilized that Cas9 also preprocesses its guide from the CRISPR array’s
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transcript (performing step 3 in Figure ??) [? ]. Designing a DNA containing several guides,
separated by repeats to form a ‘synthetic CRISPR array’, the researchers demonstrated the
ability to edit the (human) genome at multiple sites at once [? ].

It is relatively inexpensive and simple to design a DNA guide to target a desired (DNA)
target. Cas9-sgRNA systems readily became commercially available. It therefore did not
take long before researchers would demonstrate CRISPR-Cas9 based genome editing can
be done in virtually any organism of interest, ranging from typical model systems for Bio-
logical experiments as Drosophila (the fruit fly) to technologically relevant E.coli, crops and
plants, livestock and, as mentioned, even human cells. CRISPR-Cas9 has shown the poten-
tial to be applied in numerous applications of which generating drought resistant plants [?
], targeting antibiotic resistant bacteria [? ] and treating genetic disorders [? ] are just a
few.

In essence, gene-editing uses Cas9 to cut an unwanted gene and relies on the DNA repair
machinery to either simply ‘remove’ it or replace it with a sequence supplied externally
(Figure ??). Other than CRISPR-Cas9, the ‘genome engineering toolbox’ is rapidly expand-
ing with other guided DNA nucleases. For instance, Cas12 [? ] and even some bacterial
Ago [? ] also enable DNA editing. Alternatively, nuclease inactive, or ‘dead’ dCas9 still
binds DNA, but is engineered to not cut it. Fusing dCas9 to other (bio-)molecules can di-
rect these to the desired sequence. For instance, fusing dCas9 to transcription factors can
direct them to a gene of interest to ‘interfere’ or ‘activate’ them (CRISPRi/CRISPRa)[? ],
tuning transcription much like RNAi tunes translation (Figure ??). Instead, attaching fluo-
rescent proteins to dCas9 allows one to illuminate a specific part of DNA [? ] (Figure ??). It
is even possible to tie the binding or cleavage by (d)Cas9, or the increasingly popular vari-
ant Cas13, to a visible change of the solution’s color [? ? ? ] (Figure ??). These techniques
allow one to detect small amounts of DNA from infectious diseases or genetic disorders.

1.5. Off-targeting

Unfortunately, RNA guided nucleases (RGNs) are not 100% specific. There are numerous
studies demonstrating CRISPR-Cas9 [? ? ] either binding or cutting target sequences
that do not fully match their guide RNA (DNA-RNA pairs other than those shown in Fig-
ure ??). Given their Biological roles in immune systems, it is actually not that surprising.
Viruses typically mutate extremely fast, meaning that any spacer sequence acquired by
the CRISPR system would rapidly be outdated if it were not to also target slight variations
of the spacer sequence. Moreover, bacterial genomes are about 1000 times shorter than
mammalian genomes, increasing the probability of encountering off-target sites when re-
purposing CRISPR-Cas9 for human cells.

Unintentionally cutting DNA at an unwanted location can cause serious damage to the cell.
In an attempt to counteract off-target activity as much as possible, different strategies have
been demonstrated to work. For instance, one may search for a Cas9 other than that from
the most common host (streptococcus pyogenes (spCas9)), or another CRISPR system alto-
gether, such as Cas12, that naturally appears to exhibit less off-target activity [? ? ]. Other
strategies [? ] include mutating Cas9 to make it light-inducible to limit its dosage , turning
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Figure 1.7: The "genome-engineering toolbox”. CRISPR-Cas9, CRISPR-Cas12, CRISPR-Cas13, and even Argonaute
are utilized in many different ways (see text). From the perspective of our model, the different systems are fairly
similar: a protein loaded with a guide that targets the complementary sequence.

it into a nuclease only for single-stranded DNA (a ‘nickase’) or reducing the length of the
guide RNA [? ]. Using protein engineering even synthetically designed high-specificity Cas9
variants have been made [? ? ? ].

The strategies above have proven to be successful. However, the major challenge reducing
off-target activity faces is actually the detection of off-target activity itself. There is an im-
mense amount of experiments needed to determine all off-targets for all possible guides,
even for a single gene target (Figure ??). On top of that, detecting genome-wide off-targets
for even a single Cas9-sgRNA has proven to be challenging. State-of-the art detection of
genome-wide off-targeting unfortunately suffers from a rather low resolution [? ? ]. The
sequencing techniques used offer a detection limit around 0.1% - meaning 1 in a 1000 se-
quenced DNA must contain a cut. Note that this is still quite high compared to the shear
amount of DNA present in all the cells of an organ(ism) combined. To further advance the
application of CRISPR-Cas9 based gene editing, it is increasingly important to accurately tell
more than these ‘highly probable’ events. Although cutting any particular off-target might
happen infrequently, combining the possible billions of those events that may occur on a
genome makes that some off-targeting is actually highly probable (Figure ??). Moreover,
infrequent off-target events can be enough to cause serious damage or even disease.

Stepping away from genomic target sites, one can design an in vitro experiment that sub-
jects Cas9-sgRNA to a library of off-targets containing a variety of mismatch patterns. Re-
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cent experimental techniques (data used in following chapters) use this to allow for accu-
rately detecting the full range of activity. The hope is the outcome of such experiments
can be translated back to the setting of an application, thereby avoiding the need to re-
peat these experiments for every possible guide of interest. To this end, several computer
models are build based on the available data, with the goal of predicting off-targets.

Cas9-3gRNA

a gingle high-activity on-target 20 nt guide

and many low-activity 2gRNA soquence
off-targets matches target
genome to edit /] \ \

-+ Ny =

: S —

The numbers for the human genome:
=== genome length ~ 10° | on-target cequencele) ~ 100 e off-target cequencee ~ 2 # on/off-target combinationg ~ 108

Figure 1.8: Although Cas9-sgRNA (or any other RGN of choice) predominantly targets the site that matches its
guide (green), it is not perfect. The shear volume of low frequency off-targeting events makes encountering an
off-target more probable. Although not all off-target edits are necessarily harmful (red, as opposed to the black
arrows), a single mistake can have consequences to the cell. Numbers in the inset are upper back-of-the-envelope
estimates assuming a random genome of human length, and are meant to demonstrate the imbalance between
on-target and the vast number of off-targets.

1.5.1. Off-target prediction tools

A guide RNA sequence is only 20nt long. As a result, there are likely multiple different guide
sequences that can be used to target a specific gene (typically thousands of kilobases).
There exist several computer algorithms to decide which guide should be used to disrupt a
particular gene locus (Figure ??). In essence, the user supplies a candidate guide sequence,
the target sequence and the genome to be edited. The computer algorithm will return a list
of (the most highly probable) off-targets. Their workings can be characterized into one of
three types (see Figure ??). Alignment based prediction tools, such as CasOFF-finder [? ],
ChopChop [? ] and E-CRISP [? ], do no more than search for sequences on the genome that
share sequence similarity to the intended target. Other tools use a mathematical model to
score/rank the propensities for off-targets to be cut. The model incorporates empirically
determined scoring schemes in a somewhat ad-hoc fashion. Examples include MIT’s pre-
diction tool [? ], CCtop [? ] and the Cutting Frequency Determination (CFD) score [? ]. A
third, and increasingly popular, category of prediction tools is based on Machine Learning
[? ? ] in which a large amount of data is used to build an Al-based decision tool.

Unfortunately, each of the mentioned prediction tools lacks good performance trying to
predict experimentally determined genomic off-targets [? ]. For this reason, it is becoming
increasingly important to go beyond such ‘data driven prediction’ and better understand
the processes by which RGNs search for and recognize their target site within a genome.
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Figure 1.9: Existing predictions tools allow the user to provide the target gene locus & organism and output a
ranked list of off-targets. Red nucleotides indicate mismatches.

1.6. A physics-based approach

Say, you want to edit a specific human gene. How likely are you to encounter an off-target,
given a particular nuclease and guide? Or, say you want to build a diagnostics tool based on
CRISPR-Cas9 (Figure ??). What is the expected false positive/negative rate of your design?
To answer such questions, we must move beyond the aforementioned scoring schemes and
build a quantitative model. Instead of only asking if a particular sequence will (likely) get
cleaved, we additionally seek to understand why certain sequences are preferred - some-
thing none of the aforementioned prediction tools is capable of doing. More precisely, we
ask:

“What fraction of DNA molecules with sequence X (typically) gets cut (or merely bound) if |
subject my sample to a given concentration of Cas9-sgRNA for a specified time?” With such
information, it becomes possible to use the computer to mimic any technique in which the
RGN is applied to predict its read-out.

To do such we build a physics based model. Restricting our model to be governed by the
laws of physics, as we would believe any experimental data to be, should in principle guar-
antee an accurate performance for both probable and infrequent (off-)targets. This should
not only allow us to train our model using the existing data with highest signal-to-noise
ratio, it should in principle require far less data all together. As shall become clear in later
chapters, this allowed us to use datasets of lesser size, but higher quality, as our training
set. There are several other benefits for using a physical model.

If we are able to pinpoint the correct physical laws governing the target interference, we
should also be able to explain directly what feature in some sequence X makes it suscep-
tible to cleavage, that some other sequence Y is lacking.

As building such a model necessitates a level of abstracting RGN systems (Figure ??), we
will hopefully learn along the way precisely what targeting principles are shared . At the
very least, fairly comparing RGNs (i.e. Cas9 and Cas12) will detail exactly what should be
‘the tool of choice’ for a particular situation (Figure ??).

Unfortunately, constructing a physical model of the target recognition process for a RGN is
the hard part. What are the physical laws that are most important to incorporate and how
to translate those into a mathematical model? The remainder of this thesis presents our
best attempts at answering those questions.
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1.7. Basics of physical modeling techniques

This section presents an overview of the physical theories and concepts used throughout
this thesis. This is not meant as a necessary prerequisite for following any reasoning de-
tailed in subsequent chapters, nor will it be needed to understand any conclusions thereof.
Instead, the collection of topics discussed here form the basis of all mathematical deriva-
tions and simulation techniques used.
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Figure 1.10: A single chemical reaction in which the RGN cleaves its substrate at rate k. (A) Free-energy landscape.
A barrier of height AF - the distance from the bound state’s free-energy (F) to the least favourable intermediate
( the transition state T) - separates the bound from cleaved configurations. (B) Population of cleaved DNA as a
function of time. (C) Reaction time for individual reactions - histogram produced generating many realisations -
are exponentially distributed.

1.7.1. Kinetics 101

The cell can be viewed as a busy chemical factory. Molecules move around, occasionally
colliding into one another, enabling them to exchange chemical bonds, leading to new
chemical species. Technically, any such reaction is thus a result of a multitude of forces
originating from not only from the molecules directly involved, but due to the crowded
nature of the cell’s environment, also other molecules in the surroundings. Fortunately,
keeping track of the exact trajectories of all these particles is not actually needed in order
to extract useful (average) measures of a chemical reaction’s outcome. We have entered
the realm of statistical mechanics, in which we want to know what is most likely to happen
when repeating a chemical reaction many times (as is typical). If molecule A reacts with B
to form species C, what is the concentration of molecule C after a time t? Or say species A
is part of multiple chemical pathways and is capable of reacting either with species B; or
with B,, which is more likely to happen sooner? We shall cover the most important tech-
niques used to tackle such questions.

As an example, let us take a simplified view of an RGN interacting with its target substrate.
The top panel of figure ??A shows a chemical reaction in which a target bound RGN cleaves
its substrate. Below is drawn what is called the free-energy landscape for this reaction. Any
possible set of positions of the RGN, target (or parts thereof) — together this will be referred
to as our ‘system’ —is summarized as one configuration along the horizontal axis in the dia-
gram — essentially starting from an unbound configuration on the left to a cleaved product
on the right. The only number we keep track of is what is called the system’s free-energy
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(F = E-TS)—a combination of its internal energy (E') and conformational entropy (S) at a
fixed temperature (T).

As far as our chemical reaction goes, we are not interested in any intermediate positional
configuration in which the substrate is not cleaved yet or the substrate is not bound yet.
We shall discuss below that a lower free-energy describes a more likely configuration or
‘state’. Hence, we represent the reactants (RGN is bound to substrate) and products (sub-
strate gets cleaved) as local (or global) minima in the free-energy landscape. Completing
the reaction requires the system to first overcome an energetic barrier —the amount of AF
- to take it over the local maximum called the transition state (T). In this thesis we used
what is called ‘kinetic modeling’, in which we assume the time for any single reaction (one
arrow in the diagram) to get completed to be exponentially distributed (Figure ??B and
C). Using p(t) to denote the probability of not having completed the reaction of figure ??
before time t:

d(t) = ke™kt (1.1)
t
1—p(t) = f Pp(t)dt =1 — ekt (1.2)
0
dp
Fri —kp(t) (1.3)

The inverse average time of the reaction, or reaction rate, k, is related to the (free-)energy
barrier of the reaction through the Arrhenius equation:

k oc e~AF (1.4)

Throughout this thesis, we shall measure all energies in units of the thermal energy kgT. A
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Figure 1.11: The RGN binds its substrate at a rate k,,. Before cleaving with rate k,, the RGN can unbind at a
rate ko. (A) Free-energy landscape. Stable states (minima) are denoted by F’s, while transition states between
two configurations are indicated by T’s. (B) Solution to Master equation tracks populations of all the three states
over time.

slightly more complicated reaction is one in which the RGN toggles between being unbound
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and bound to its substrate before it can cleave it (Figure ??). Its corresponding free-energy
landscape is shown in figure ??A. By extension of the previous example, every step within
this reaction scheme is characterized by a minima and a set of transition barriers separating
it from subsequent steps. The Arrhenius equation relates these barriers to reaction rates.
How do we now track the fraction of cleaved DNA? First note that all RGN and substrate
molecules must belong to one of the species described in the chemical reaction pathway.
Their relative fractions, or the probability that any of the molecules belongs to a given
species, can vary over time, but the total is conserved:

Pub () + Pona(t) + pay(t) =1 Vt (1.5)

In this example the number of unbound molecules at a time t decreases by unbound
molecules binding to a substrate. On average, every k! seconds an unbound molecule
binds. For this to happen at time t, there must be an unbound molecule available at time
t to start with. Hence, the rate of change of the unbound population decreases by a fac-
tor of py, (t) X kg, Similarly, when a bound molecule rejects its substrate, the fraction of
unbound molecules increases. Taken together, the set of differential equations describing
the time evolution of all of the different populations, termed the set of Master Equations,
are

dpub

1 = ~KonPun(®) + KofiPona () (1.6)
dPpng
d_tn = +k0npub(t) - (kof'f + kclv)pbnd (t) (1.7)
dpq

G = HhanPona(t) (1.8)

Commonly, one re-writes it in matrix-vector form (I3(t) = [Pub(£), Pong (), P (D]7):

dﬁ . _kon kof‘f 0
FTa =MP(t), M = +kon —(koss+ky,) O (1.9)
0 kclv 0

The solution for this particular problem is plotted in figure ??B. In general, solving the Mas-
ter Equations gives us access to all concentrations of reactants and products for any par-
ticular reaction pathway.

1.7.2. When reactions are fast: Equilibrium Thermodynamics

The reactions described above eventually become irreversible - after the RGN cuts its sub-
strate there is no way back (see Figure ??-??). However, the sub-process of substrate bind-
ing is reversible. If the binding and unbinding happen much faster than cleaving (kq, kKon >
k., see Figure ??A), a (local) equilibrium between bound and unbound states may be
reached prior to cleaving. In other words, the bound and unbound states will essentially
evolve together as if it being a closed system. After the two have saturated (equilibrated)
the fraction of cleaved DNA is still set by the rate k, and the now locally equilibrated frac-
tion of bound molecules (equation ??).
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Figure 1.12: Same reaction as in Figure ??, but now with much higher rates of binding and unbinding. (A) Free-
energy landscape. (B) Solution to Master equation tracks populations of all the three states over time. Dots
indicate equillibrium fractions of bound/unbound DNA calculated using the Detailed balance condition of eq (??).

This trick of separating timescales can greatly simplify the solution to the Master Equa-
tions, since the populations in the equilibrated states are known to satisfy the Boltzmann
distribution, which is time independent.

e Fubb e Fubb

B _ _
Pwp = eFib +eFo 7 (1.10)

with Z commonly referred to as the system’s partition function. Allowing for processes to
locally equilibrate serves as a means to account for the relevant ‘slow’ reaction involving
k¢, and ignore any temporal contributions of the very short times (kg and k ;). Yet, we
did not lose the information that an unbound molecule must first bind before it is able
to cleave - as the stability of the bound state decreases, so does the fraction of bound
molecules.

In case of the molecule being completely incapable of cleaving (ky, — 0 or equivalently
Ty — ©0) the bound and unbound states form a completely closed system. Hence, a
(global) equilibrium will be reached eventually. At the same time, the master equation
approach to determine concentrations of either bound or unbound molecules at shorter
times is still valid. How do we choose the set of rates in the Master Equation to ensure that
the resulting probabilities approach the according values determined by the Boltzmann
distribution? When equilibrated, the probability is stationary, which written in terms of
the Master equations reads as follows:

Pebkon = PengKoft (1.11)

Equation ?? says that the flow of probability out of the (un)bound state equals the flow
into it. Hence, setting the rates according to this 'Detailed balance condition’

pEQ
kott = Kon - = kone™ Fun=Fo) (1.12)
Ppnd
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guarantees that the probabilities will approach their appropriate Boltzmann weights:
Fj
. EQ e ,
lim p;(t) = p;~ = — Vi € [bnd, ub] (1.13)
t—oo YA

In figure ??B, the two dots shown are the equilibrium fractions calculated using (the inverse
of) equation ??. For the more involved reaction pathways considered later in this thesis, the

detailed balance condition is applied for every pair of adjacent states i and j: k;_, /k;_; =
e”ri,
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Figure 1.13: Four examples of first passage problems. In each of the figures (A)- (D) we seek the first time we
arrive at node C, starting from node A. The probability (density) that this occurs at time t is denoted by W 4¢(t).

1.7.3. First Passage Problems of Continuous Time Random Walks
Without solving the Master equations, we can still determine the average time needed to
complete a chemical reaction or its most likely outcome. To do such we pretend the chem-
ical reaction is actually a random walk on a lattice with each intermediate representing a
node. The walker takes a step on the lattice by completing a single reaction, thereby tak-
ing a step along an arrow shown in the diagram. A convenient way of approaching these
problems will be to view them as little ’board games’. Walking on the board is done by
hopping from one node to another, one at the time and only along a direction indicated by
an arrow. Here we focus on some ‘rules of the game’.

The first important rule is that we only record the time in between transitions. Transitions
themselves happen instantaneously. It is as if we are playing a game of ‘speed chess’ in
which we record the times it takes to decide what moves to make, not the time needed to
actually move the piece across the board. More formally, when one considers the move-
ment of a body on an interval x € [a, b], then a simple question one may ask is:”"What
is the time at which the particle passes the boundary at a or b for the first time?”. This
time is called the ’first passage time’. One may also ask: “What is the probability that the
first passage time at boundary a equalst = t,?”. This will be referred to as the first pas-
sage probability. Let W(t)dt denote the probability that the first passage time lies within
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[t, t+dt]. Hence, W(t) is the "first passage probability density’. Within the context of chem-
ical reactions, the first passage time indicates when a reaction gets completed for the first
time. Hence, as mentioned, our random walk will take place on a discretized spatial lattice.
Time, however, remains a continuous variable. In each of the following examples, we will
be after the first passage at node C, starting from node A (¥ (t) 4¢).

As an example, consider the 'board game’ shown in figure ??A. Starting from node 4, our
next move can only take us to a node that neighbors A and for which there is an arrow
pointing in the designated direction. In this case, we have little choice but walking to node
B. Let ¢y (t)’s denote the probability densities of reaction times for individual reactions -
representing exponential distributions (see equation ??) - making a step from X to Y. What
is the probability that one arrives at node C at time t? Given node A is not directly con-
nected to node C, all possible paths that bring us to node C must have first brought us to
node B at some earliertime t < t.

W,e(t) = fo as @O Ppe(t — D)t (1.14)

The above integral reflects that we must sum over all possible ways of ending up at C via
node A - increasing for an increasing number of ways of getting to the designation. In this
case it entails summing over all times at which we arrived at the intermediate node B,
resulting in the convolution of ¢ 45(t) and ¢ (t). If we instead use Laplace transforms of
the probability densities -

Wae(s) = L {Wae (D)} = j Wc(testde (1.15)
0

- such a convolution turns into a simple product in s-space:
lpAC(S) =L {J- ¢AB (T)(l)Bc(t - T)ClT}
0
= f f G ap(T)Ppc(t — T)dre*dt
0 0

- fo fo B s (O Ppc(t — e tdrdt g

= Loo J;)oo ¢AB(T)¢BC(H)6_S(H+T)deu

= [ da@esr [ ppoweau
0 0
= ¢ap(s) X Pppc(s)

The Laplace transformis also a linear operator, which we shall put to practice in the example
shown in figure ??B. In this example there are two distinct types of paths that lead from A
to C. We can walk directly from A to C (¢p4¢) or use node B as an intermediate. Summing
over the distinct paths equals summing over the corresponding Laplace transforms.

Wac(s) = Pap(s)Ppc(s) + Pac(s) (1.17)
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Only for a select set of problems it is possible to directly invert the Laplace transform. For-
tunately, this is not needed in order to obtain the mean first passage time at C starting
from A. For this, consider the derivate of W(s), evaluated at s = 0.

dW .. o de~st
s s=0 0 s s=0

= J —tW 4 (D)e’dt
0

=—(t)

(1.18)

In general, the n*" order moment of the first passage time - the first moment is called
the mean - is obtained by taking the nt" order derivative of the Laplace transform. The
function W(s) is therefore also referred to as the moment generating function.

(ty = (-D)" <w) (1.19)
s=0

ds™

The 0t"order moment has a special interpretation,

P=W¥,:(0) = f W (t)dt (1.20)
0

It equals the probability of completing the specified reaction first. Later in this thesis we
will use exactly this probability to determine if a bound RGN will cleave before it unbinds.
Note that for all the board games shown in figure ??, this probability must equal one as
node C is the only final product possible.

There are two more ‘rules of the game’ that have come in extremely handy in later chap-
ters. First consider the example of figure ??C. The board reveals that node C cannot be
reached within a single step. We must walk to node B first. However, unlike in figure A
there are many ways in which we can get to node C (for the first time). After walking to
node B, we can decide to walk back to point 4, then back to B and finally walk to C. As
a matter of fact, we can decide to walk back and forth between A and B as often as we
want as long as we end by taking a step from A to B and one from B to C. Using both the
convolution property and the linearity of the Laplace transform we find

Wae =1+ (PapPsa) + (PapPra)® + (Dap®pa)® + .| Pasdsc

D @ anbua)"dasbsc (121
n=0

__$andsc
1- ¢AB¢BA

The last line follows from recognizing the geometric series.

Let us turn to one final example, figure ??D. Before to walking to C, we may walk back
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and forth between A and B several times. Similarly, we are allowed to walk back and
forth between A and D as often as we like. We can even walk along the path A-D-A-B-
A-D-A-B-C, or any other combination in which we toggle between the nodes A,B and
D before making it to C. The previous example demonstrated that dealing with a single
"two-way-arrow’ - one reversible reaction - results in a sum of terms of the form ¢ 4554
or ¢apPpa- At first glance, one may expect the solution to this problem to be ¥ =
Y, (Pasds)" X X, (bapdpa)™. Although any valid path from A to C is indeed rep-
resented by a term in the sum, we are not accounting for the fact that many paths are now
represented by one and the same contribution. A first passage for which there are more
paths leading to it should become more likely. We are therefore still missing a combinato-
rial factor describing the number of ways the pairs for ¢ 45 P4 and ¢ 4p pp4 can commute.
Instead of doing explicit combinatorics, counting every possible path by hand, we will still
approach the problem in a similar fashion as we did in the previous example. Before, we
characterized a particular path by the number of times one stepped back and forth, using
node B in figure ??C. Let us do the same, now using the board game of figure D. Say we
walked back and forth twice, without knowing whether we used node B or D any of the
following paths could have been taken:

e Use node B twice, walk A-B-A-B-A(-B-C): (P apPpa)?
e Use node D twice, walk A-D-A-D-A(-B-C):(¢ ap Ppa)®
e First use B, then use D. walk A-B-A-D-A(-B-C): ¢ 45Ppa X PapPpa
e First use D, then use B. walk A-D-A-B-A(-B-C): ¢ apPpa X PapPra

Taken together, ¥ 4, must gather a term equal to:

(PapPpa)® + 2(PapPpa®ap®pa) + (Pap®pa)® = (PapPpa + Papdra)® (1.22)

Generalizing this example shows that walking back and forth a total of n times contributes
aterm of (papPpa + PapPpa)™ to Wac(s).

Wyc(s) = Z(¢AD¢DA + PapPpa)™ X PapPrc (1.23)

1.7.4. Decision making: The ’splitting probability’
As a final piece of theory - tying together the first passage problems and the master equa-
tion approaches - consider a bound RGN that can partake in one of two irreversible reac-
tions: unbinding (ignore (re-)binding) at a rate k. and cleavage at a rate k.,. When we
speak of the "total outgoing rate’ from the bound state we are referring to k = k., + kg
Note that the conditional waiting time(s) are distributed as follows:

¢; = kjeXxkx vi, x € [ub,clv] (1.24)

This is the generalisation of equation ??. Hence, if one tracks the number of bound molecules,
this number will decrease exponentially at a total rate of k, irrespective if a molecule
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cleaves or rejects the substrate. To know if the RGN is more likely to cleave before it un-
binds, or vice versa, we take a look at the zeroth order moment of its Laplace transform.

i

i(8) = ———— 1.25
¢L( ) s + Zx kx ( )
For sake of illustration, we use the Laplace transform even though the corresponding inte-
gral in the temporal domain is easy to compute. Taking any of these two approaches,

(1.26)

This is commonly referred to as the ’splitting probability’ of reaction path i.

1.7.5. Connection to experimental data

Throughout this thesis validating our model predictions against experimental data forms
a crucial part of the research presented. Bulk biochemical assays may report on the frac-
tion of cleaved molecules after some fixed time. We can either use the master equation to
obtain this same quatity, or work within limmits wherin it should be well approximated by
the ratio in reaction rates for the different off-target molecules (inverse average times), or
the (splitting) probability for cleaving. Other assays use fluorescent labels to track popula-
tions of substrates and RGNs over time, thereby directly reporting on the solution to the
corresponding Master Equation. Finally, single-molecule experiments enable one to track
individual guide-loaded RGN complexes, which allows one to directly measure (mean) first
passage times or the time distributions ¢ (t) - or the total distribution of W(t) in case of a
more complex chemical pathway.

1.8. In this thesis

This thesis is an account of modeling efforts aimed towards understanding the kinetics un-
derlying (off-)targeting by RNA/DNA guided nucleic acid effector complexes.

Part I: Target recognition and off-target prediction quantifies what types of off-targets
lead to cleavage before rejection, with a particular focus on the position of mismatches
within the guide-target hybrid.

Chapter ?? introduces a kinetic model for the off-target binding and cleavage by CRISPR-
Cas, Argonaute, and similar RNA guided nucleases (RGNs). Previous literature revealed
such RGNs bind their substrate and aid the formation of the guide-target hybrid in sequen-
tial fashion. Using a minimalistic view of target recognition, we say the addition of a match
to the hybrid is energetically (and kinetically) favorable, whereas a mismatch biases the
system towards rejection of the off-target. Working out the mathematics purely dictated
by the targeting process being sequential, allows us to give a physical explanation for a mul-
titude of empirically derived ‘off-targeting rules’ — a set of ‘rules of thumb’ experimenters
adhere to when designing their RGN-based assay.

In Chapter ?? we built upon this model by expanding the parameterization to include posi-
tion dependent (mis-)match biases. Using a series of high-throughput biophysical datasets
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we elucidate the free-energy landscape that underlies Streptococcus pyogenes Cas9 (sp-
Cas9) target recognition. Previous reports showed catalytically ‘dead’ Cas9 (dCas9) binds
many more (genomic) off-targets than active Cas9 cleaves. The presented free-energy land-
scape not only unifies those observations, but explains exactly what off-targets lead to sta-
ble binding, apparently without getting cut. In particular, our model allows one to calculate
how much off-target binding by dCas9 or cleavage by Cas9 is to be expected given the nu-
clease concentration and reaction time used in an experiment. Finally, the free-energy
landscape further reveals Cas9’s major conformational change, in which it repositions its
nuclease domains to enable cleavage, directly couples to the entire hybrid formation pro-
cess.

Thus far, we have been treating the selection/rejection of isolated off-targets. Part Il: Tar-
get search focuses on how sequence specific binding proteins locate their cognate target
site amongst a pool of potential off-targets. Apart from diffusing through solution until the
protein randomly collides with a target, proteins are found to enhance their reaction rates
by binding non-specifically and diffusing laterally along the DNA/RNA.

Chapter ?? uses the example of hAgo2 to review existing target search literature and hy-
pothesizes that a coupling of the protein’s structural changes to the hybrid formation —
much like the kind found for spCas9 in Chapter ?? — balances search time and specificity.

Typically, the target search is further complicated as large portions of cellular RNA/DNA
are occupied by other proteins. Moreover, the RNA/DNA is highly compacted, adopting a
conformation that severely deviates from being linear, even on the scale of the searching
protein. In Chapter ?? we used a prokaryotic Argonaute as a model system to investigate if
and how lateral diffusion can proceed in the presence of either structural or protein obsta-
cles. The presented single-molecule FRET experiments (a collaboration with T.J.Cui from
the lab of dr. Chirlmin Joo) demonstrate cbAgo can bypass both a secondary DNA struc-
ture (a 'Y-fork’) and a bound protein - covering DNA sites at (nearly) the same rates as on
bare DNA. Using kinetic modeling allowed us to further demonstrate that the secondary
structure does not hinder the lateral sliding motion, while the bulkier protein barrier does
- necessitating some form of dissociation from the DNA in order to ‘skip’ over the obstacle
in order to proceed searching.

Motivated by these observations, we ask whether a laterally diffusing protein must inter-
rogate all (off-)targets along its path in Chapter ??. We set up a rather generic model that
allows for the protein to interrogate only a fraction of all sites enclosed within its lateral
excursion. Using single-molecule FRET experiments performed on both a bacterial Ago and
hAgo2, our model shows both systems indeed only interrogate a relatively small fraction
of all DNA/RNA sites. Surprisingly, despite essentially “being blind” to a significant portion
of the target pool, we show how this can actually help to find the cognate site faster.
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Hybridization kinetics explains
CRISPR-Cas off-targeting rules

Due to their specificity, efficiency, and ease of programming, CRISPR associated
nucleases are popular tools for genome editing. On the genomic scale, these nu-
cleases still show considerable off-target activity though, posing a serious obsta-
cle to the development of therapies. Off-targeting is often minimized by choosing
especially high-specificity guide sequences, based on algorithms that codify em-
pirically determined off-targeting rules. A lack of mechanistic understanding
of these rules has so far necessitated their ad hoc implementation, likely con-
tributing to the limited precision of present algorithms. To understand the tar-
geting rules, we kinetically model the physics of guide-target hybrid formation.
Using only four parameters, our model elucidates the kinetic origin of the ex-
perimentally observed off-targeting rules, thereby rationalizing the results from
both binding and cleavage assays. We favorably compare our model to published
data from CRISPR-Cas9, CRISPR-Cpf1, CRISPR-Cascade, as well as the hu-
man Argonaute 2 system.

This chapter has been published as: M.Klein, B.Eslami-Mossallam, D.Gonzalez Arroyo and M.Depken. Hybridiza-
tion kinetics explains CRISPR-Cas off-targeting rules. Cell Reports 22 1413-1423 (2018)
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2.1. Introduction

NA guided nucleases (RGNs) target nucleic-acid sequences based on complementar-
R ity to any guide RNA (gRNA) loaded into the complex. This versatility, together with
the ability to design synthetic gRNA complementary to any target of choice, holds great
promise for gene editing and gene silencing applications [? ? ]. Among the known RGNs,
the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) associated (Cas)
nucleases Cas9 [? ? ? ? ] and Cpfl [? ] are of special interest, as they are comparatively
simple single-subunit enzymes.

Cas nucleases originate from the CRISPR-Cas adaptive immune system, which many prokary-
otes use to fight off foreign genetic elements. In vivo, the Cas protein (complex) is pro-
grammed by loading RNA transcribed from a CRISPR locus in the host genome. The tran-
scribed sequence includes sections referred to as spacers, which were acquired during past
encounters with foreign genetic elements [? ]. Once programmed, the Cas nuclease is
able to target and degrade genetic elements with the same sequence as the stored spacer,
and so offers protection against repeat invasions. An autoimmune response to sequences
stored at the CRISPR locus is prevented through the additional requirement of a protein-
mediated recognition of a short protospacer-adjacent motif (PAM) sequence present in the
foreign genome, but not incorporated into the CRISPR locus with the spacer [? ? ].

As viruses evolve in response to the selective pressure induced by the CRISPR-Cas immune
system, the host is in turn under pressure to attack slightly mutated target sequences in
addition to the target. It is therefore not surprising that Cas nucleases exhibit considerable

Such off-targeting presents a severe problem for therapeutics, as DNA breaks introduced
at the wrong site could lead to loss-of-function mutations in a well-functioning gene, or the
improper repair of a disease causing gene [? ].

To shed light on the determinants of off-target activity, a recent flurry of experiments has
probed the level of binding and/or cleavage on mutated target sequences: high-throughput

into the mechanics of targeting. To date, a number of rather peculiar targeting rules have
been empirically established for Cas nucleases: (i) seed region: single mismatches within
a PAM proximal seed region can completely disrupt interference [? ? ], while PAM distal
mismatches have much lessof aneffect [? 2 2 2 2 2 22222222222 °?](i
mismatch spread: when mismatches are outside the seed region, off-targets with spread
out mismatches are targeted most strongly [? ? ? ? ]; (iii) Differential binding vs. differen-

specificity-efficiency decoupling: weakened protein-DNA interactions can improve target
selectivity while still maintaining efficiency [? ? ? ? ]. Although these experimental obser-

vations have already aided the development of strategies to improve the specificity of the

selectivity is still lacking, and our ability to predict off-targets remains limited [? ? ? ? ].
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Current off-target prediction algorithms are often based on sequence alignment with the
target, and discard potential targets if they have more than some (user-defined) threshold
number of mismatches [? ? ? ? ]. To recover the mismatch-position dependence observed
as seed regions (rule (i)) and their cooperativity (rule (ii)), such scoring schemes must be
supplemented with ad hoc rules that penalize seed and closely spaced mismatches more
than non-seed mismatches [? ? ]. To move beyond ad hoc scoring schemes, we here
use biophysical modelling to incorporate knowledge of the underlying targeting process.
With this aim, it would be attractive to assume that the binding dynamics has had time
to equilibrate before DNA degradation [? ? ], as this would allow us to use simple bind-
ing/hybridization energetics to predict cleavage activity. Though attractive, this approach
has recently been questioned by Bisaria et al. by noting that off-rates are generally not
found to be much faster than cleavage rates [? ], as would be required for establishing a
binding equilibrium before cleavage. In addition, the authors show how abandoning the
equilibration assumption directly explains the specificity increase observed with shortened
gRNA[? ].

Inspired by these observations, we go beyond binding energetics to build a biophysical
model capturing the kinetics of guide-target hybrid formation. We show that the target-
ing rules (i)-(iv) can be seen as simple consequences of kinetics. The targeting rules are
captured by four parameters that pertain to transition barriers between metastable states
of the nuclease-guide-target complex, and we translate these into four experimentally ob-
servable quantities: the length of the seed region, the width of the transition region from
seed to non-seed, the maximum amount of cleavage on single-mismatch off-targets, and
the minimal distance between mismatches outside the seed region that allows for the
cleavage of targets with multiple mismatches. By tying microscopic properties to biological
and technological function we here open the door to refined and rational reengineering of
the CRISPR-Cas system to further its use in therapeutic applications.

Though we frame our considerations in terms of the well-studied and technologically im-
portant Cas9, our approach applies to any RGN that displays a progressive matching be-
tween guide and target before cleavage (Figure ??A). To demonstrate the generality and
power of our approach, we present fits to targeting data from Argonaute 2 (hAgo2), as well
as type |, Il and V CRISPR systems.

2.2. Results

At the start of target recognition, Cas nucleases bind to dsDNA from solution. The sub-
sequent recognition of a PAM sequence triggers the DNA duplex to open up (Figure 2?A),
exposing the PAM proximal nucleotides to base pairing interactions with the guide [? ? 1.
From here, an R-loop is formed, expanding the guide-target hybrid in the PAM distal direc-

DNA strands is triggered [? ].

To establish the determinants of off- vs. on-target cleavage, we construct a biophysical
model of sequential target recognition in the unsaturated binding regime (see Methods).
Using this model, we can calculate the rate of cleavage for off-targets, given the guide. To
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Figure 2.1: Kinetic model of RGN target recognition. (A) The RGN initially binds its’ substrate at the PAM site,
from which it can either unbind with rate k, (0), or initiate R-loop formation with rate k:(0). A partially formed
R-loop of length n grows to length n + 1 with rate k¢(n), or shrinks to length n — 1 with rate k,(n). Eventually,
the RGN will either cleave its substrate with rate k:(N) or reject the substrate and unbind with rate k,(N). In
the special case of a RGN that does not utilize PAM binding, it is assumed to bind straight into the initial state of
R-loop formation. (B) The transition landscape of our minimal model. In the left panel, we illustrate a PAM bound
enzyme kinetically biased toward R-loop formation by different amounts (black, grey, and light grey curves). The
kinetic bias for the canonical PAM shown as Apay. In the middle panel we illustrate two kinetic biases toward R-
loop extension (black and grey curves), with the larger bias indicated as A¢. In the same panel we further illustrate
two kinetic biases against R-loop extension (grey and light grey curves) at mismatches (red vertical lines), with the
largest bias shown as A;. Once the complete R-loop is formed, the system is kinetically biased against cleavage
by Ag'}’l = Acy F Ay, as dictated by the nature of the terminal base pairing. See Figure ?? for complete energy
landscapes.

incorporate the mechanics of hybrid formation, we envision the changing extension of the
R-loop as a diffusion through a free-energy landscape, eventually ending in either unbind-
ing from, or degradation of, the targeted sequence (Figure ??A-B). Our model is parame-
terized by the free-energy of transition states surrounding the metastable states of PAM
binding and the different progressions of R-loop formation (see Methods and section ??).
When in a metastable state, the RGN will be biased towards transitioning to the neighbor-
ing state with the lowest intervening barrier. The difference in heights of the surrounding
barriers thus encodes the directions in which the system is most likely to progress, and we
therefore refer to these differences as kinetic biases (Figure ??C). The balance between
eventual unbinding or cleavage can be calculated with reference to kinetic biases alone,
and visualized by a ‘transition landscape’ tracing out the transition states (Figure ??B, ??
and Methods). In such a landscape, the R-loop typically grows whenever the forward bar-
rier is lower than the backward barrier; that is, whenever the transition landscape ftilts
downward. To facilitate the discussion of our exact results, we appropriate a rule-of-thumb
from the limit of large biases (Methods): after binding the PAM, Cas9 is most likely to un-
bind before cleavage if the highest barrier to cleavage is greater than the highest barrier
to unbinding, and vice versa (Figure ??A-B).

Though we treat the general scenario in the Methods section, we here further limit our-
selves to a minimal description with only four effective microscopic parameters, pertaining
to the average kinetic bias for: R-loop initiation after PAM binding (Apanm), R-loop extension
past a correctly matched (A¢) and mismatched (4,) base pairs, and additional bias against
cleavage once the R-loop is fully formed (A, ) (for definitions see Figure ??B and Meth-
ods). The parameter A, is chosen such that the forward barrier after R-loop completion
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is independent of the nature of the terminal base (Methods), setting the final bias against
cleavage to ‘é'}’, = A¢y + A, (Figure ??B). Using this approach, we investigate to what
extent our minimal model explains the four empirical targeting rules deduced from exper-
iments.

A effect of single mismatch C
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Figure 2.2: Rule (i) — seed region. (A) The relative-to-wildtype cleavage probability of a target with a single
mismatch. Our model predicts a sigmoidal curve, with maximum off-target activity pyax, seed length ngeeq, and
width of the seed to non-seed transition ~ 1/Ac. See figure ?? for parametric sweeps. (B) Transition landscapes
illustrating that the placement of a single mismatch (fltr: before, exactly at, beyond the seed’s border) influences
the cleavage probability. (C) Increasing the kinetic bias against cleavage can suppress cleavage of off-targets with
a PAM distal mismatch (compare right panel to right panel in (B)), while still maintaining a high on-target activity
(left panel).

2.2.1. Rule (i): Seed region

Following PAM binding, base pairing between guide and target is attempted (Figure ??B;
middle panel). To establish if the above mentioned dependence of the cleavage propen-
sity on the position of mismatches within the guide-target hybrid could originate from the
kinetics of the targeting process, we calculate the relative cleavage probability on a se-
quence with a single mismatch at position , compared to the cleavage probability on the
target sequence. In section ?? we show that this relative cleavage probability is in general
sigmoidal

pmax

1+ exp [_(n - nseed)AC] '

Pav(n) = (2.1)
with ngeeq giving the position where the cleavage probability is half that of its maximum
Pmax (Figure ??A), and the biases are measured in units of kgT. We identify ng..q as the
length of the kinetic seed region, beyond which a mismatch will no longer strongly suppress
cleavage (Figure ??A). From Equation ?? we see that the width of the transition from seed
to non-seed region directly reports on the (average) correct-match bias (Ac, see section
??), becoming narrower as the bias increases (Figure ??A and Figure ??A).
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The emergence of a seed-like region can be understood from considering the rule-of-thumb
that the fate of the enzyme is dictated by the largest barrier: when a mismatch is placed at
Ngeeq (Figure ??B; right panel), the highest barrier to cleavage matches the barrier towards
unbinding, guaranteeing a near equal probability for cleavage and unbinding. Placing the
mismatch closer to the PAM increases the highest barrier towards cleavage (compare high-
est node to first node in Figure ??B; left panel), increasing the probability of rejecting such
off-targets. Moving the mismatch distally from the PAM will gradually lower the highest
barrier towards cleavage (Figure ??B; middle panel), increasing the probability of accept-
ing such off-targets. Though the exact form of the parameters of Equation 1 are given in
the Supplemental Information, it is informative to here give the kinetic seed length in the
large-bias limit (Methods, ??),
A —A
Nseed ~ % +1 (2.2)
C

From this we see that PAM bias and the base pairing biases all contribute to setting the
extent of the seed region (Figure ??A, ??B). Weakening the PAM or correct-match bias ex-
tends the seed region, while weakening the bias for incorrect matches shrinks it.
After PAM recognition and R-loop formation, cleavage completes a successful targeting
process (Figure ??B; right panel). Tuning the final transition state allows us to toggle be-
tween different regimes of minimal single-mutation specificity. Targets with a PAM distal
mismatch get cleaved with near unity probability (pmax = 1) only if all transition states
towards cleavage (including the cleavage step) lie well below the transition state to un-
binding (Figure ??C; left panel, Figure ??C). For slow enough enzymatic activity, the final
barrier towards cleavage might not go far below the barrier to unbinding, limiting the max-
imal cleavage compared to the perfect match (p.x < 1)(Figure ??C; right panel). Conse-
guently, there can be a noticeable effect on off-target activity also when the mismatch is
outside the seed region (Figure ??A, ??C). Reversing this logic implies that a p, < 11is
indicative of a relatively slow cleavage reaction.

2.2.2. Rule (i1): Mismatch spread

Considering more complex mismatch patterns, we start by addressing all possible dinu-
cleotide mismatches (Figure ??A and ??B). The overall cleavage and binding patterns ob-
tained strongly resemble experimental observations [? ? ? ]. As expected, placing both
mismatches within the seed disrupts cleavage (Figure ??A). However, moving the mis-
matches outside the seed does not necessarily restore cleavage activity.With the first mis-
match outside the seed region, a second mismatch only abolishes cleavage if it is situated
before ngeeq + Npair (Figure 2?B), with
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Figure 2.3: Rule (ii) — mismatch spread. (A) The relative-to-wildtype probability to cleave a target with two
mismatches for a system with Apay = 3.5kgT,A| = 4kgT,Ac = 1kgT and A, = 1kgT. The seed length Ngeeq
is indicated with dashed lines, and Ngeeq + M pajy is indicated with dotted lines. (B) Schematic of the probability to
cleave a target with two mismatches. The target is typically rejected in both blue regions and rejected in the red.
(C) Probability to cleave a target with a block of B mismatches as a function of the location of the last mismatch.
Also see ??. (D) Spreading out blocked mismatches (left panel) around their average position significantly lessens
the barrier to cleavage (right panel).

A
Npair = A +1, (2.3)
C

in the large-bias limit (Methods and section ??). The general form of the two-mismatch
seed region is shown in Figure 3B, where only off-targets in the red region lead to cleav-
age. In the dark blue region, off-targets are rejected due to the first mismatch, and in the
light blue region they are rejected due to the second mismatch. The single- and double-
mismatch rules can now be unified and generalized (see Figure ??D; right panel) into a
single rule for any number of mismatches: “Off-targets will typically be rejected if any mis-
match, say the m™" mismatch, is positioned closer than Ngeeq + (M — Dnpair to the PAM..
Note that for systems not requiring PAM recognition,Ngeeq = Mpair- The above rule also
captures the extreme case of a ‘block’ of consecutive mismatches, which has also been
investigated experimentally [? ? ? ? ]. Placing such a block effectively acts as placing a
single mismatch with the bias A, scaled by the size of the block (Figure ??C-D and Figure
??), giving a block-seed region of size Ngeeq + (B — 1)Npair- Hence, a block of mismatches
leads to less off-targeting compared to spread out mismatches (Figs 3C-D). Given the cor-
respondence of these predictions with literature, our model seems to automatically and
correctly capture the non-multiplicative cleavage suppression by multiple mismatches, in
sharp contrast to the ad hoc scoring schemes employed in current prediction algorithms [?

1.
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2.2.3. Rule (iii): Differential binding vs. differential cleavage
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Figure 2.4: Rule (iii) - Differential binding versus differential cleavage. (A) Transition landscapes illustrating the
difference between active Cas9 (grey curves) and dCas9 (black curves) when encountering either the cognate site
(left panel) or an off-target with a mismatch within the seed (right panel). (B) The dissociation constant for targets
with any combination of two mismatches for energetic biases dpay = 7.5kpT,8c = 1kgT and 6, = 8kgT. The
end of the seed region is indicated with dashed lines. See figure ??for single-mismatched off-targets. (C) Transition
landscape for an active Cas9 bound to an off-target possessing a block of mismatches placed at the PAM distal
end. Even though cleavage is unlikely, unbinding takes a long time.

Catalytically dead systems (for example dCas9 [? ] or Cascade without Cas3) bind

order to explain this effect, we model inactive systems with a very large cleavage barrier
(gray in Figure ??B; right panel, Methods). In agreement with experimental observations
[? ], our model predicts a dissociation constant that is higher when a mismatch is placed
closer to the PAM (Figure ??B and ??).

In general, the gene editing (Cas9) and gene silencing (dCas9) capabilities should be seen
as two related but separate properties of the RGN. For example, the most stable config-
uration of the RGN on the mismatched target shown in the right panel of Figure ??A is a
bound state with a partial R-loop (purple). However, a catalytic active variant will most
likely eventually reject this off-target (gray) as the barrier to cleavage is higher than to un-
binding. Hence, even though cleavage sites are strong binders (Figure ??A; left panel),
observing a long binding time on an off-target site should not be taken to imply that this
site will also display substantial off-target cleavage (Figure ??A; right panel).

Active Cas9 variants also strongly bind to sites they are incapable of cleaving, especially
those containing multiple PAM-distal mismatches [? ? ]. Such a series of mismatches
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induces a large barrier that opposes, and thereby likely prevents, cleavage (Figure ??C).
Although we are yet to extract temporal information from our model, it is clear that the
state right before the first mismatch (purple) might be stably bound over experimental
timescales.
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Figure 2.5: Rule (iv) — specificity-efficiency decoupling. (A) The cleavage probability on a fully cognate target
but with a mismatched PAM, compared to one with the correct PAM, as a function of the average and difference
in the kinetic bias of the correct and incorrect PAM. Independent of the sequence following both PAMs, one can
identify three regimes (Supplemental Information). Only in regime a is the RGN'’s specificity improved through a
decrease in the average PAM bias toward R-loop initiation. (B) On-target efficiency for the target with the correct
PAM. In regime a, the RGN’s efficiency is not compromised, allowing for simultaneous maintenance of on-target
efficiency and specificity. (C) The cognate protospacer flanked by either a canonical PAM (black) or incorrect PAM
sequence (grey) is bound by a WT (top panel) or engineered RGN (panel). (D) A matched/mismatched protospacer
(black/grey) bound by wildtype/engineered RGN (top/bottom panel).

2.2.4. Rule (iv): Specificity-efficiency decoupling
R-loop formation is preceded by PAM recognition. Although PAM mismatches often com-
pletely abolish interactions with the target [? ? ? ], binding to (and interference with)
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targets flanked by non-canonical PAM sequences has been observed [? ]. Since PAM mis-
matches will shift the entire free-energy landscape upwards from the bound PAM state
onwards (Figure ??B; left panel), these always increase the highest barrier to cleavage,
thereby reducing the cleavage efficiency on any sequence. For increased specificity, we
thus need the cleavage efficiency for the off-targets to be reduced more than for the tar-
get itself.

Protein reengineering approaches most easily affect the overall strength of PAM inter-
actions, influencing the kinetic bias for both the correct PAM (Apay) and incorrect PAM
(Apam))- In Figure ??A we show the relative cleavage efficiency between protospacers
flaked by incorrect and correct PAMs, and in Figure ??B we show the cleavage efficiency
with the correct PAM — both as functions of the average kinetic bias ((Apam + Apan)/2)
and the kinetic bias difference (Apap — Apan)- As long as the system operates in region A
(Figure 2?A), it is possible to increase the specificity by lowering the average kinetic bias
toward R-loop formation without changing the kinetic-bias difference (section ??). Out-
side this region, the system either does not discriminate between PAMs (region C) or is
insensitive to the average kinetic bias (region B). Interestingly, it is only in region B that
lowering the average bias also leads to a lower on-target efficiency (Figure ??B), and con-
sequently the wild type (wt) nuclease can only be improved if brought into region A, where
it is possible to engineer specificity increases with limited costs in the on-target efficiency.
The transition-state diagrams shown in the top panel of Figure ??C show a situation where
the barrier to cleavage (right most node) is substantially lower than the barrier to unbind-
ing (leftmost node) for two different PAM biases, both resulting in near unit-probability to
cleave, and corresponding to region C in Figure ??A. Reengineering the nuclease to have
overall weaker PAM binding (Figure ??C, bottom panel) brings the system into region B,
where the cleavage probability for the correct PAM (black) remains close to unity, while
the probability of cleaving with the incorrect PAM (gray) is drastically lowered. The above
scenario might explain how PAM mutant Cas9s are able to outperform their wildtype coun-
terparts [? ? ] on specificity without significant loss in efficiency.

Another approach to gain specificity is to weaken the protein-DNA interactions effecting
the bias for R-loop extension [? ? ]. In Figure 5D we show how engineering the PAM-bound
nuclease in this way, inducing a lower gain for correct base pairing, can render previously
cleaved off-targets (gray line in top panel) rejected (gray line in bottom panel). We further
see how we can retain on-target specificity if the highest transition state towards cleavage
(rightmost node of black line) remains substantially lower than the transition state to un-
binding (leftmost node of black line). The above scenario might explain how mutant Cas9s
could have an extended seed, while having negligible reduction in on-target cleavage ac-
tivity [? ? ].

2.2.5. Comparison to experimental data for a broad class of RNA
guided nucleases

To test our model, we acquired published datasets from different RGN systems, and fitted

Equation ?? to singly mismatched targets and blocks of mismatches. The fitted sigmoid has

only three effective fit parameters (pmax 0 KD max, Nseed aNd Ac), so we can unfortunately

not get an estimate for all microscopic parameters from the single-mismatch datasets (sec-
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Figure 2.6: Comparison to experimental data. Fit of sigmoid (equation ??) to experimental data from: (A)
spCas9 [? ]. (B) LbCpfl [? ]. (C) AsCpfl [? ]. (D) Human Argonaute 2 [? ]. (E) E. coli Cascade complex [? ]. Values
reported in (A)-(D) correspond to the median of 1000 bootstrap replicates, and the confidence intervals in the
text correspond to 68%. See Figure ?? for additional fits.

tions ?? and ??)—for this, further experiments are required, as outlined below. Details of
the fitting procedure and additional fits can be found in section ??.

Perhaps the best characterized RGN system is the Type-Il CRISPR associated Streptococcus
Pyogenes Cas9 (spCas9). Among the systems we estimate parameters for, the dataset from
Anderson et al. [? ] traces out the sigmoidal trend particularly well. For this data set we fit
out a kinetic seed of about 11.3 [11.0,11.4] nt (68% confidence interval between 11.0 and
11.4), and an average bias per correct base pair of about A¢c = 1.70[1.15,4.0]kgT (Figure
??A). This positive bias indicates that association with the RGN stabilizes the hybrid, which
is in line with recent studies demonstrating that the protein has a strong contribution to
the energetics of the resulting bound complex [? ? ? ]. The relative cleavage probability
levels-off around pax = 0.74[0.72,0.77], indicating that spCas9 retains some specificity
even against errors that are outside the seed. We performed additional fits using a second
target site from the dataset of Anderson et al. and data obtained from Pattanayak et al. [?
], which produced results that do not significantly differ (Figures S5A-C).

Recently, the type V CRISPR associated enzyme Cpfl has been characterized as another
single-subunit RGN [? ]. Kleinstiver et al. [? ] performed in vivo (human cells) cleavage
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assays using two different variants named LbCpf1 (Figure ??B) and AsCpfl (Figure ??C).
Both variants exhibit quantitatively similar off-targeting, both with seed lengths (ngeeq =
18.9[18.5, 19.2] nt for LbCpf1 vs. 19.1 [18.7,19.3] nt for AsCpf1) and maximum off-target
activity (pnax = 0.84[0.66, 1.0] nt for LbCpf1 vs. 0.83[0.71,1.0] for AsCpfl). Compared to
spCas9, the Cpfls are much more specific as the seed region is significantly larger.

Single-molecule FRET experiments done with hAgo2 [? ] utilized targets with two con-
secutive mismatches. Given that hybrid formation is not preceded by PAM recognition,
and that consecutive mismatches impose a combined penalty (Figures 3C-D), the esti-
mated half-saturation point is approximately twice the kinetic seed length for a single mis-
match ( ngeeq = 10 [9.5,9.9] nt). The hAgo2 data thus suggests a similar seed length as
that of spCas9 (Figure ??D), consistent with the observation that hAgo2 and spCas9 dis-
play structural similarities within their respective seed regions [? ]. Our fits further re-
veal that hAgo2 likely exhibits a substantially lower gain per correctly formed base pair
(Ac = 0.77[0.66,0.92]kgT).

Unlike the aforementioned RGNs, the Type | CRISPR uses a multi-subunit protein complex,
termed Cascade, to target invaders [? ]. Semenova et al. [? ] measured the dissocia-
tion constant in vitro of the E. Coli subtype I-E Cascade. Fitting their data, we find that
mismatches within the first 9 nt of the guide lead to rapid rejection (Figure ??E). Interest-
ingly, the energetic gain for a match again suggests a large contribution of the protein to
the overall stability (energetic bias 6c = 3.7kgT). Structurally, subunits of the Cascade
complex bind to nucleotides 6, 12, 18, 24 and 30 of the guide [? ]. To model this property
we assume that incorporating matches or mismatches at the Cascade-guide binding posi-
tions does not affect affinity. Including this effect mainly reduced the estimated energetic
gain for matches (6c = 1.9kgT, section ?? and Figure ??D), a value more in line to those
obtained for the other CRISPR systems.

2.3. Discussion

We have presented a general description of target recognition by RGNs with a progres-
sive matching between guide and target (Figure ??A), applicable to both CRISPR and Arg-
onaute systems. In its simplest form, our model contains only two parameters to describe
the R-loop formation process: an average kinetic bias towards incorporation beyond a
match (Ac) and an average kinetic bias against extending the R-loop beyond a mismatch
(4,) (Figure ??B; middle panel). Despite the simplifications going into this minimal model,
we can qualitatively understand the targeting rules for these RGNs as resulting from kinet-
ics, as illustrated graphically for: seed region (Figure ??B), mismatch spread (Figure ??D),
the poor match between cleavage propensity and binding propensity (Figure ??A) and the
specificity-efficiency decoupling (Figure ??C-D ). Based on our model we have been able
to establish a general targeting rule: “Off-targets will typically be rejected if any mismatch,
say the m'" mismatch, is positioned closer than ngeeq + (M — Dnpair to the PAM.”

Although Figure 6 shows that our model can already describe experimental data from var-
ious RGNs, the number of microscopic parameters in the physical model (Apapm,Ac ,4, and
Ay, Figure 1B) exceeds the number of fit parameters available from single-mismatch ex-
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periments (Ac,Pmax, aNd Ngeeq)- It is therefore not possible to determine all the microscopic
parameters from single-mismatch experiments alone. However, Figure 3B shows that with
two mismatches, we could also fit out np,;;, and so determine all the microscopic param-
eters. It should be possible to directly extract all four microscopic parameters once such
extended datasets become available.

One should recognize that our minimal model does not capture all the physics of the target-
ing process. Nucleic-acid interactions are explicitly sequence dependent, RGNs are known
to undergo conformational changes prior to cleavage [? ? ? ], and the A we fit out in
Figure 6 technically only reports the matching-bias at the end of the seed, allowing for
variable biases along the R-loop. Although these are all topics that need to be explored for
future improved quantitative predictions, such extensions are not needed to explain the
observed targeting rules, and will not qualitatively alter the trends predicted by our model.
An exception might be the data from Cpf1 (Figure ??B-C), since it shows an increased tol-
erance to mismatches of nucleotides 1,2,8 and 9 compared to our minimal model, with a
second independent study showing the same behavior [? ]. Similarly, deviations from the
sigmoidal trend are observed for Cascade (Figure ??E). Such features could be explained
either through a sequence or position dependence of the kinetic biases.

In conclusion, our model is capable of explaining the observed off-targeting rules of CRISPR
and Argonaute systems in simple kinetic terms. After having established the general utility
of this approach, the next step will be to move beyond our minimal model and gradually
allow for conformational control and sequence effects by letting our parameters depend
on the nature of matches/mismatches as well as their positions. Fitting such a generalized
model against training data would likely improve on present target prediction algorithms
by limiting overfitting, as it captures the basic targeting rules deduced from experiments
while using only a minimal set of physically meaningful parameters.

2.4. Methods

2.4.1. A general model for RGNs with progressive R-loop formation
followed by cleavage

here limit ourselves to the regime where nuclease concentrations are low enough that all
binding sites are unsaturated. The unsaturated regime is also the regime with the highest
specificity, and should therefore be of particular interest in gene-editing applications.

We define the cleavage efficiency P, (s|g) as the fraction of binding events to sequence
s that result in cleavage, given the RGN is loaded with guide sequence g. If we in the un-
saturated regime assume the binding rate to be independent of sequence, we can express
the relative rate of non-target vs. target cleavage as

Py,
Pen(sl9) = % (2.4)

This relative efficiency is a direct measure of specificity, approaching unity for non-specific
targeting (Fy, (s|g) = Fav(919)) and zero for specific targeting (Fy, (s|9) < Fyy(919))-
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In our model, we denote the PAM bound state as and the subsequent R-loop states by
the number of base pairs that are formed in the hybrid. Each of the statesn = 1, .., N are
taken to transition to state n — 1/n + 1 with backward/forward hopping rate k, (n)/k:(n)
(Figure ??A). The ratio between forward and backward rates sets the relative probability of
going forward and backward from any state, and can be parametrized in terms of A(n), the
difference in the free-energy barrier between going backwards and forwards from state n
(Figure ??A),
kf(n) — eA(n).
ky(n)
Here we measure energy in units of kzT for notational convenience, and we will refer to
A(n) as the bias toward cleavage. The model (Figure ??A) is known as a birth-death process
[? ], and the cleavage efficiency is given by the expression (section ??),

(2.5)

1 n
Pa(slg) = AT = )" AGm), (26)
1+ X0 8T =

Here AT (n) represents the free-energy difference between the transition-state to solution
and the forward transition state from position n (Figure ??A-C). For systems like hAgo2,
there is no initial PAM binding [? ? ], and the sums in Equation ?? should omit the PAM
state (n,m = 0).

2.4.2. Building intuition by using the transition landscape (large
bias limit)

Though we will use the exact results of Equation ?? for all calculations, it is useful to build

intuition for the system by considering the case of large biases. In this limit, the term (say

n = n*) with the highest transition-state dominates the sum in Equations ?? and ?? (Figure

??A-B), and the cleavage efficiency can be approximated as

1
Fu(s19) ~ T =armn (2.7)

Based on this we deduce the rule-of-thumb that cleavage dominates (P, > 1/2) if the
first state of the transition landscape is the highest (AT (n*) > 0) (Figure ??A). Conversely,
a potential target is likely rejected (P, < 1/2) if any of the other transition states lies
above the first (AT (n*) < 0) (Figure ??B).

2.4.3. A minimal model for RGNs with progressive R-loop forma-

tion followed by cleavage
Given that the defining feature of RGNs is their ability to target any sequence, we expect
the major targeting mechanisms to depend more strongly on mismatch position than on
the precise nature of the mismatches. With this in mind, we consider a sequence inde-
pendent model with the aim of finding a description that captures the gross, sequence
averaged, features with a minimal number of parameters.
Focusing first on how PAM binding effects the system (Figure ??1; left panel), we see that
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A(0) = Appm controls the kinetic bias between initiating R-loop formation and unbinding.
A canonical PAM (black) promotes R-loop initiation, while a non-canonical PAM lessens
(darker gray) or reverses (lighter gray) the bias towards R-loop formation. Note that PAM
independent systems omit this initial step.

Turning to the bias of R-loop progression, we represent the guide-target hybrid as a se-
quence of matches (C, correct base pairing) and mismatches (I, incorrect base pairing).
Defining the average kinetic bias towards/against extending the R-loop by one correct/incorrect
base pair as Ac/A, (Figure ??B; middle panel), we take A(n) = A¢ or A(n) = —A, depend-
ing on if the base pairing is correct or incorrect (section ??). In the middle panel of Figure 1B
we show a transition landscape with moderate gains for correct base pairings and moder-
ate costs for incorrect base pairings (dark gray). The black transition landscape corresponds
to an increased gain for matches, while the light gray corresponds to an increased penalty
for mismatches.

Lastly, considering the bias between cleavage and unwinding of the R-loop, we assume that
an incorrect base-pair at the terminal position adds the same change in bias as it did in the
interior of the R-loop. Therefore, introducing the cleavage bias A, we take A(N) = AZY
for a correct match and A(N) = —AS" for a mismatch, with Af:'}’l = A/ F A, as bias against
cleavage from the fully hybridized state (Figure ??B; right panel). In the right panel of Fig-
ure ??B, we show examples where the terminal bias ACC'}’l corresponds to a terminal match
(black), terminal mismatch (dark gray), and for a catalytically dead nuclease (light gray).

2.4.4. Dissociation constant for catalytically dead nucleases

Apart from examining cleavage propensity, many experiments have focused on the binding
of catalytically dead Cas9 (dCas9) or other catalytically dead RGNs [? 2 ? ? ? ? ? ]
To be able to relate pure binding experiments to cleavage experiments, we also calculate
the dissociation constant K for our minimal model when describing a catalytically dead
system (A, = o) (Figure ??D) through

[RGN]

Bound = [RGN] +KD_ (2.8)

Here B,oung €quals the probability to bind a substrate in any of the (N) possible R-loop
configurations and follows from Equation ?? (see section ??). Further, [RGN] denotes
the concentration of effector complex. Differences in stability of the bound states now
parameterize our model (Fig S1D).
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2.7. Supplemental Information

2.7.1. A general kinetic model for target recognition

In Figure ??A we illustrate the states of our model. The RGN is described as either being
unbound, bound to the PAM (in case of CRISPR systems), having formed an R-loop of length
n =1, ..., N or having cleaved its target substrate. Let us label these statesasi € [-1, N +
1], with N being the total length of the guide (target) sequence. Each state i € [0, N] has
rates k¢(i) and k(i) associated with it for transitioning to i + 1 and i — 1 respectively.

The cleavage probability

The probability to cleave a target site once the substrate is bound (P,,) is equivalent to the
fixation probability of a Birth-Death process with absorbing states being the unbound and
post-cleavage states [? ]. As the derivation is fairly straight forward, we give it here for
completeness. When starting with an R-loop of length n — 1, we calculate the probability
to cleave Py, ,,—1 before reducing the R-loop to a length of n — 2. Counting all paths that
take you fromn — 1 to N + 1 we can construct a recursion relation for Fy, ,,,

RN ke(n) N O)
Favn = ;0 (kb(n D+ k) 1- Pclv,n+1)> mpclv,n+l

_ P @
Yn + Pclv,n+1 ' " kf(n)

or equivalently

1 Yn
=1+ . (52.1)
Pclv,n Pclv,n+1
The boundary probability F,, y, representing the probability to cleave staring with a full

R-loop and without reducing the R-loop’s length, is given by a simple splitting probability
p ey 1
WV R (N) + ko (N) 1y

(S2.2)
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Using equations ?? and ?? we have

N n
1 1 1

=14y = 1+vo+vons = 1+vo+vov1tvov1v2 = .= 1+Z Yir

PcIV,O Pclv,l PcIV,Z Pclv,3 n=0 i=0

from which it follows that
1
Pay = Pyo = ————— (52.3)
1+ X H Vi
n=0i=0

The transition landscape

We assign a free-energy F; to each metastable state i € [0, N], and the transition state
energy T; to the highest free energy point on the reaction path fromitoi + 1, fori €
[—1, N]. Introducing the attempt rate k, we write the associated forward and backward
rates as follows (all energies are measured in units of the thermal energy)

ke(D) = ko exp(=(T;=F)), kp(D) = ko exp(=(Ti-1—F)) = vi = exp(=4y), 4; =T;1~T;.

(52.4)
In terms of transition-state free energies we can write ?? as
n
P ! = ! AT, z A, (S2.5)
v = N = N , n= i .
1+ Y oexp(=Xg4)  1+3,_,exp(—ATy) =

From the above it is clear that the cleavage probability depends only on the transition state
energies, and not on the free energies of the metastable states. If we assume there to be
one dominant minimal bias, say for n = n*, then this can be approximated as

1

Fov ™ I exp(=AT,)" (52.6)

which we will refer to as the large-bias limit.

2.7.2. A minimal kinetic model for target recognition
To understand what constitutes the targeting principles of RGNs, we introduce a simplified
model where: for the PAM state (i = 0) we have Ay = Apay; for a partial R-loop (i €
[1, N—1]) we have A; = A if the i:th base in the R-loop is correctly matched, and A; = —A,
if mismatched; for a completed R-loop (i = N) we have Ay = A — A, if the terminal base
is mismatched, and Ay = —A; — A, if mismatched. An R-loop in which n base pairs are
incorporated, out of which ng(n) are forming correct Watson-Crick pairs, is then described
by

AT, = Appam + nc(M)Ac — (n —nc(M)A = Sy nAyy, n=0,..,N (52.7)

where &, y represents the Kronecker delta: 6,y = 1ifn = N and §,,y = 0 otherwise.
For PAM independent systems, we instead use

AT, = nc(m)Ac — (n —nc(M)A — Sy nldeyy, n=1,..,N.
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The emergence of a seed region

Here we show that when comparing off-targets with a single mismatch to the cognate
sequence, the relative cleavage probability is sigmoidal, irrespective of the values of the
model parameters. Let there be a single mismatch at position nypy, giving

[0, n<nym
nC(n) - { 1, nz= nvmM
Using equation ?? it is then straight forward to show that
P, (single error at nypy) Prmax
n = = , S2.8
pclv( MM) Pclv(no error) 1 + e~ Ac(MMM—Tseed) ( )
where
(1 —efo)eltrm(1 4 AT + 1 — e ARW
Pmax = (1 — e=Bc)eboam (1 + e AT 4 1 — e~2RW
1 ohHAe _ 1 (52.9)
n = — ln ’
seed 7 Ac (1 — e=Bc)ebrm (1 + e‘ATg\lln) +1— e 2R

and we have introduced the R-loop completion bias with a cognate and terminal-mismatch
target respectively

ARG = NAc, AR = (N = DAc — A = AR — (Ac +A)

as well as the total bias toward cleavage of the on-target and on off-target with terminal-
mismatch target respectively

ATY™ = AR® + Apam — Ay, ATE™ = ARE™ + Dppy — Dgy = AT™ — (Ac + A).

Here pmax represents an upper bound on the achievable relative cleavage rate, and ngeeq
marks the transition from a region with no cleavage (the seed region) to a region with
maximal cleavage. Note that our sigmoid function has three parameters ( Pmax, Mseeq aNd
Ac), which is one less than then number of microscopic parameters (Apap, Ac, 4y, and A, ).
Hence, we will not be able to fit out all four microscopic parameters relying on single-
mismatch-data alone. Interestingly, the microscopic parameter A¢ also sets the with of the
transition region from seed to non-seed. To get an estimate of the width of the transition
region, we linearize p, around the point of most rapid increase (nym = Ngeed)

1 1
pclv(nMM) ~ Epmax + meaxAC(nMM - nseed)- (52-10)

This function transitions from no relative cleavage to maximal relative cleavage over the
distance w = 4 /A, giving us an estimate of the width of the transition region.

When dealing with a stretch of mismatches, the relative cleavage probability still fol-
lows the sigmoidal form of equation ??, but with modified ppax and Ngeeq.
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The physiological limit and the large-bias limit

For the correct PAM we expect there to be a considerable PAM bias, and assuming at least
a moderate bias for R-loop extension over correct basepairs, we should be able to take
(1 — eAc)eeam > 1 in equation 2?. Further, we expect the overall bias on an on-target
to be strongly toward cleavage (ATy™ > 1), as well as a large change in total bias when
comparing a correctly and incorrectly matched base pair (4, + Ac > 1). With these as-
sumptions equation ?? becomes

1
pmaX = tm
—AT
L4e ™ N (52.11)
A+ ADc—Bpam . NPy —In(1 —e75¢)  Aj = Apay
Ngeed = + =~ +1,
Ac Ac Ac

From this we see that the maximum cleavage probability is dictated by the total free-energy
bias toward cleavage. The first term after the first approximate equality in the equation for
Ngeeq has a simple interpretation as the point where the barrier to unbinding matches the
barrier toward cleavage. For the physiological cases examined (see Figure ?? and ??), the
values of p,,ax are between 0.7 and 1, and A¢ values are order 1 as well. In this limit the
second term adds a correction term that is only a small fraction of a full nucleotide position
and can therefore be neglected, as done in the last step in the above equation. Equation
?? can also be arrived at through taking the large-bias limit mentioned above.

Generalized targeting rule

As we do not have the experimental data to fit multiple mismatches, we do not here per-
form the exact calculation of the cleavage probability for multiple mismatches. Instead
we start from the fact that the physiological limit of a single mismatch was well described
by the large-bias limit, and so consider also multiple mismatches in the large bias limit. If
the first mismatch is outside the seed, then the second mismatch (sitting say at nypyo) will
dominate and balance cleavage and dissociation when

1 1

Z~ =~ = AT =0
> v (Mvmv2) T+ exp(—ATp) M2

From equation ?? we have (assuming that nype < N),

4

0 = AT, = Apam—248+ (2 —2)Ac = My ® Nseed T Mpairs  Mpair = A_+1’
C

nMM2
which shows that the second mismatch balances cleavage and unbinding when situated a
further distance np,;, out from ngeeq. For each additional mismatch added, it is easy to
show that the balance point shifts a further np,;, bases out.

Effect of PAM recognition on target selectivity
Using equation ?? we can asses how much protection a particular non-canonical PAM site
offers against cleaving the host’s own genome. Letting the canonical PAM have Appy and
the non-canonical PAM have Ap,,,, We can write the relative cleavage probability
1+ e Aeam [1 + ZZ=1 e_AR"] 1 + e~ @eam—A50)

PAM _
Deiv -

= — (52.12)
1+ PRI [1 + 271\11:1 e—ARn] 1+ e_(AlgAM_APAI\tA)
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where we renamed AR, = T,, — T; and introduced the critical PAM bias AZt,

N
A =1n|1 + Z e~8Rn |, (52.13)

n=1

For the case of well separated PAM biases (Apam > Apan), the cleavage probability has
three asymptotic regimes

1, . ASHE & b < Apam,  Region c¢) in Figure ??A-B
pEaM ~ { exp [—(O5am — Dpam)],  Dbam K Afay < Dpaw,  Region a) in Figure ??A-B
exp [—(Aeam — Dpam)],  Abam &K Apam < AGHY,  Region b) in Figure 2?A-B.

A minimal energetic model for target recognition
Now consider a extension of our minimal model where the transition between metastable
state has energy biases (dpam, d¢, 6)) in direct analogy with the kinetic biases (see equation
??)

AFn = F_1 - Fn = 5PA|V| + nc(n)6C - (Tl - nc(n))5| (5214)

Hence, all energies are measured with respect to the solution’s free-energy.

2.7.3. Dissociation constant for catalytically inactive systems
Experiments on inactivated RGNs usually probe the fraction of sites bound at some late
experimental time. Assuming the system has had enough time to equilibrate one typically
calculates the dissociation constant, the concentration at which the bound fraction reaches
half of its maximum value (second equality in Equation ??). This is done in analogy to a
more simple two-state model that only has a bound state and an unbound state. To make
this analogy within our model, we consider all molecules that are not in solution to be
bound.

N
Pp=P, P, = Z P, (52.15)
n=0

The binding rate from solution onto any sequence should be proportional to the concentra-
tion of RGN molecules. We set our §pay Within the context of the minimal model Equation
?? at some reference concentration, at which we also calculate all free energies (AF’s).
Furthermore, in equilibrium Boltzmann statistics is valid:

AE,([RGN]) = AF, —1og([RGN]), P, «x e™4Fn (S2.16)

Taken together, the equilibrium fraction and dissociation constant are given by

N
[RGN] 3. exp [-AF,] (RGN]

[RGN] + Kp

B,([RGNI])

N
1+ [RGN] n2=}0 exp [—AF,] (52.17)

1
Ky

—N .
Y, exp[—AFR,]
n=0
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For our minimal model of equation ??, with a single mismatch is placed at position nyny,
equation ?? results in

K ( ) Kmax e_SPAM (e5c - 1)
n = e ) = —)
D L e ac T eNoc=6 —1 (52.18)
eq _ N6c—6 1 1 1= e~ (Noc=4)
Ngeed = ¢ + 5_C n 1 — e—(Bc+8)

Note that this seed length n:ged does not in general equal its kinetic counterpart ngeeq in
equation ??.

2.7.4. Detalils of fitting procedure

Since comparing relative cleavage (or binding) on constructs containing 1 mismatch (or a
set of consequetive mismatches) leads to a probability/dissociation constant as in equa-
tions ?? and ??, we fit a sigmoidal function to the data. Where replicates were available,
we created 1000 bootstrapped replicates, and for each performed a straight least square
fit by minimizing

N
=) Paiald = Proga (0)° (52.19)
i=1

In Figure ?? and ??A-C, we used the bootstrapped median values for all three parameters,
and report the 68% confidence intervals.

In case of the dataset from [? ] no such replicates were available. In stead, we used the
reported averages and standard deviations to minimize

N-1 2
2 _ Faata (1) — Pnode1 (1)
= ; ( Ttot (1) (52.:20)

where we had to take the finite precision of measurements in to account as some errors
were reported as zero. This was done through taking

Otot = «’o-éTD + Ofound (52.21)

with ogp being the reported statistical error amongst multiple replicates and o ,oung = 0.5
a lower estimate of the error introduced by having a finite precision in the measurement.
Since the most rapid transition out of the seed region that can be recorded is over one base
pair, Wpin = 1, we know the highest measurable A¢ is A7?* (see equation ??). Therefore,
we cannot discriminate amongst A¢ values beyond 4, and we have constrained our fits to
respect this condition.

2.7.5. Cascade binds its guide in sections

After assembly of the Cascade complex onto the guide RNA, every 6" base is flipped out
and does not interact with the target. Incorporating this into the parameterization of our
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model we assume that the kinetic bias does not dependent on the sequence of guide and
target at these positions,

Sc(naip) = —6(nq1ip),  Vnaip € (6,12,18,24,30) (S52.22)

To perform the fit shown in Figure ??D, we chose one particular realization of this condition
with §c(npip) = —6,(naip) = 0. To allow us to fit a continuous curve to the data, data
points at any of the ng;;, positions where not taken into account and the remaining data
points where re-indexed accordingly. The resulting plot shows the piecewise continuous
curve when we re-introduce the flipped out bases by equating the dissociation constant to
its wildtype value at these positions.

A Guide-target match typically cleaved B Guide-target match typically rejected
| |
A transitions state highest A : v
to solution transitions state
N to cleavage >
o2 7o 1 I N O N N N ) A -N Dl gl lof Y I .
2 g
o g 9
B[e ODE ?
E|5 s &
o
Yo}
[=
= T T - Il -
PAM n* n PAM n* o
R-loop extension R-loop extension
C Kinetic forward bias  Kinetic backward bias D Slow cleavage allows for equillibrated model
_____ Vo A

>
Dlal -
............. /5N 5
c =
> ¢
= e
c . =5
o | extend R-loop shrink R-loop 1S
8 \ v S
“ R-loop ext. PAM

R-loop extension

Figure S2.1: General Energy landscapes, related to figure ??. (A) Free-energy landscape underlying the scheme
of figure 1A. Our model is completely determined by the set of transition states (open circles). The largest barrier
opposing cleavage, is given by the point with the highest drawn transition state (smallest AT). In the limmit
of large kinetic biases (see Methods: ‘high bias limit’ ), it is this barrier that dominates the probality to cleave
the target sequence represented. The landscape shown represents a target that is likely cleaved as the largest
barrier is opposing unbinding rather then cleavage, or, in other words, the highest transition state lies below the
unbinding transition (left most circle). (B) On the contrary, a target will likely get rejected if the highest transition
state (placed at n*) lies above the transition state towards solution. In this scenario the largest barrier obstructing
cleavage is larger then the barrier hindering unbinding. (C) Examples of transitions that bias the RGN to extend
the R-loop if the transition state to the right lies below the one to the left (left panel), or to shrink the R-loop
if the transition state to the right lies above the one to the left (right panel). The difference in heights of the
transition states is refered to as a ‘kinetic bias’. (D) Free-Energy landscape as in figure A, in which parameters in
equilibrium limit are indicated. Energetic biases (§(n)) are now set by the stable states within the diagram and
their cumulative gain (AF(n)) is used to calculate the dissociation constant.
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Figure S2.2: Single mismatch off-targets, related to figure ??. (A) Relative probability of cleaving a singly mis-
matched target. Seed length (ngeeq) is kept constant by tuning Ac and A, while ensuring equation 2 of the main
text is satisfied (A, = —100kgT, Appyy = 0.25kgT). (B) The width of the transition region from seed to non-
seed is set by the positive bias for correct base pairs (Ac)(Agy = —100kgT, Apay = 0.25kgT). (C) Tuning the
intrinsic bias against cleavage (A, ) allows for differential targeting of sequences with PAM distal mismatches by
shifting pmax Of equation 1 of the main text (Ac = 3kgT, Apaym = 3kgT, A; = 30kgT).
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Figure S2.3: Block of mismatches, related to figure ??. The probability to cleave a target with B consequetive
mismatches is equal to the probability to cleave a target with a single mismatch (placed at the start of the block)
and with a mismatch bias scaled by the length of the block (A¢c = 1kgT, Appy = 2kgT, Ay = —100kgT).
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Figure S2.4: Dissociation constant for single-mismatch targets, related to figure ??. (A) Dissociation constant
for singly mismatched targets. Fixing &8¢ fixes the width of the curve, the steepness of the transition from seed
to non-seed (8pay = 3k BT, 8c = 1kgT). (B) Fixing the ratio between match and mismatch energies fixes the

seed length (nfe%d through equation ??) (8pam = 3kpT, 6, = 108¢).
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Figure S2.5: Additional comparison to experimental data, related to figure ??

(A) Data from Anderson et al. [? ], PSMD?7 target Confidence interval for fit parameters (68%): Ac[0.43,4.0), Ngeeq
[12.3,14], Pmax[0.53,0.75]. (B) Data from Andersonet al. [? ],global fit to both target sites (VCP2 target is shown
in Figure 6 of main manuscript). Confidence interval for fit parameters (68%): Ac[0.59,4.0), Ngeeq [10.9,13.9],
Pmax[0.50,1.0]. (C) Data from Pattanayak et al. [? ], for each mutation position the median score of all single-
mismatched targets within the library with the mutation at that location was used. Errorbars indicate standard
deviation. Confidence interval for fit parameters (68%): A¢[0.20,4.0), Ngeeq [7.5,14.3], Pmax[0.58,0.98]. (D) Data
from Semenova et al. [? ], fit performed after accounting for the assembly of Cascade onto its guide in sections.
All experimental data shown corresponds to mean = standard deviation.
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Mechanistic modeling explains
dCas9 binding and Cas9
cleavage dynamics

Genome engineering using the RNA guided DNA endonuclease CRISPR-Cas9 is
on the rise. When loaded with a single-guide RNA (sgRNA), the Cas9-sgRNA
binds and cleaves the DNA site complementary to the supplied guide sequence.
Unfortunately, Cas9-sgRNA is known to also cleave DNA sites with non-perfect
complementarity, a phenomenon more commonly known as off-targeting. To-
wards quantifying the risks of its implementation, we model the (off-)target bind-
ing, dsDNA unwinding, and cleavage by Cas9-sgRNA to tell the fraction of cleaved
DNA when subjected to a fixed nuclease concentration for a given time. Within
the same physical model, we also capture the binding dynamics of catalytically
‘dead’ dCas9 and rationalize the large disparity in off-targeting observed with
its active counterpart. Using a series of recent high-throughput biophysical ex-
periments, we extract the microscopic free-energy landscape that underlies the
interactions between Cas9-sgRNA and an (off-)target DNA. We reveal the major
conformational change, which repositions Cas9’s nuclease domains, initiates si-
multaneously with DNA unwinding, only to be completed once a (near) complete
RNA-DNA hybrid is formed. Finally, by direct comparison and using the free-
energy landscape, we rationalize how our kinetic model improves upon existing
thermodynamic models.
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3.1. Introduction

RISPR (clustered regularly interspaced short palindromic repeats)-Cas (CIRPSR associ-
C ated) systems, CRISPR-Cas9 systems in particular, have opened the door to a multitude
of gene editing applications [? ? ]. Cas9 uses two RNA molecules — the CRISPR RNA (cr-
RNA) and trans-activating crRNA (tracrRNA) — as a guide to bind and cleave complementary
(double-stranded) DNA. Most biotechnological applications instead load Cas9 with a syn-
thetic singe-guide RNA (sgRNA) containing a 20 nucleotide (nt) long sequence designed to
be complementarity to the DNA sequence one wishes to target [? ]. The relative ease by
which Cas9-sgRNA can be programmed to bind and cleave any (genomic) DNA sequence
of interest has enabled its use in gene silencing/activation [? ], fluorescent imaging of ge-
nomic loci [? ], RNA or DNA detection [? ? ] and genome editing [? ? ].

Structural [? ? ] and biophysical [? ? ? ] studies indicate that Cas9’s two nuclease domains
(HNH and RuvC) are activated only after binding the DNA target, which is often taken to im-
ply Cas9 is reasonably specific. However, Cas9-sgRNA also targets sites (off-targets) other

targeting can induce unwanted genomic alterations, including point mutations, large-scale
deletions or chromosomal rearrangements [? ]. Due to the high risk of deleterious effects,
such editing errors have impeded a wide-spread implementation of Cas9-sgRNA in human
therapeutics.

Though experiments have demonstrated that the position of mismatches along the guide-
to-target hybrid strongly influences both binding and cleavage activities, the process be-
hind this is not yet quantitatively understood. For example, catalytically inactive (‘dead’)
dCas9 notoriously binds more off-targets sites than Cas9 cleaves [? ? ? ? ], and there is at
present no way of translating binding affinities into cleavage propensities, or vise versa.

Here we unify binding and cleavage of Streptococcus pyogenes Cas9 (spCas9) within a sin-
gle kinetic model. We expect such a physics-based framework to hold several advantages
compared to existing in silico prediction tools that are either based on empirically derived
scoring schemes [? ? | or Machine Learning approaches [? ? ] utilizing scoring schemes
derived and hidden within a “black box” algorithm. First, all our model parameters are
physically interpretable, rates and energies determining the binding/cleavage reactions. As
a result, the model’s output is physically interpretable as well, returning effective reaction
rates for either binding or cleavage reactions under variable experimental conditions. This
allows us to tell more than what off-targets are cleaved most (at steady-state) and answer
the question: “What fraction of my off-target pool is bound or cut at a given nuclease con-
centration and after a given time?” Hence, such a model offers an in silico testing-ground
for future binding or cutting based experiments.

Second, using the language of free-energy landscapes allows us to tie reaction intermedi-
ates (metastable states) to structural data.

Expanding upon our own kinetic modeling efforts (Chapter ??)[? ] we shall use three high-
throughput biophysical datasets to elucidate the free-energy landscape that (d)Cas9-sgRNA
experiences while interacting with (off-)target DNA. First, Boyle et al. [? ] measured the
rate of change in bound DNA fraction at fixed dCas9-sgRNA concentration in the first 1500
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seconds of the reaction for a library of off-targets. Second, Jones et al. [NucleaSeq data
from [? ]] used saturating concentrations of (active) Cas9-sgRNA to determine effective
cleavage rates. Finally, Jones et al. [CHAMP data from [? ]] independently measured the
half-saturating concentrations 10 minutes after introducing (inactive) dCas9-sgRNA. We
demonstrate that our parameterized model is capable of accurately describing all three
quantities. Moreover, we can predict the half-saturating concentrations, while training
the model only with data taken at fixed concentration. To the best of our knowledge, we
thereby present the first physical model capable of quantitatively describing both bind-
ing and cleavage reactions, for both varying (d)Cas9-sgRNA concentrations and incubation
times.

The free-energy landscape we propose, the extracted model parameters, helps us explain
experimental observations in terms of reaction rates for the sub-processes of initial target
binding, (partial) hybrid-formation and inducing the DNA breaks. In particular, the free-
energy landscape helps us understand how Cas9 balances being both an efficient (high
enough activity on on-target) and specific (low enough activity on off-targets) nuclease,
at the cost of binding more promiscuously. We show mismatches come at (nearly) equal
energetic costs throughout the guide-target hybrid, while the free-energy representing in-
teractions with the on-target shows a distinct position dependence. We shall demonstrate
how the previously characterized conformational rearrangements involving Cas9’s two nu-
clease domains [? ? ? ] manifests itself within our proposed Cas9-gRNA free-energy land-
scape. Hence, we thereby unify observations across bulk and single-molecule experiments.

Finally, we demonstrate how both the state-of-the-art prediction tool [? ], as well as the
recently published model by Zhang et al. [? ], can both been seen as a limiting case of our
more general model. By direct comparison of predictions and by showing that we are not
in the required limits, we shall explain exactly how our model improves upon the existing
ones.

3.2. Results
3.2.1. A kinetic model for target recognition by (d)Cas9-sgRNA

The reaction scheme underlying our model is shown in Figure ?2?A. A Cas9-sgRNA from
solution binds a DNA target after first using protein-DNA interactions to recognize a 3nt
‘protospacer adjacent motif’ (PAM) sequence —canonically 5’-NGG-3’ —located on the non-
target DNA strand [? ? ]. Binding to the PAM triggers a conformational change that enables
interactions with the +1 DNA base pair [? ? ] initiating sequential formation of a DNA-Cas9-
sgRNA-DNA ‘sandwich’, called the R-loop [? ? ? ? ]. The R-loop can grow and shrink until
unbinding or reaching completion, after which Cas9 uses its two nuclease domains (HNH
and RuvC) to cleave the target and non-target DNA strands [? ].

While existing theoretical models only incorporate the thermodynamics [? ? ], we (Chapter
??)[? ] and others [? ] have emphasized the importance of incorporating the kinetics of
the PAM binding, hybridization and cleavage reactions to explain several experimental ob-
servations. To build a kinetic model of target recognition by Cas9-sgRNA, we treat every
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Figure 3.1: kinetic model captures both binding and cleavage data. (A) General reaction schema underlying
our kinetic model. A Cas9-sgRNA from the soluble pool (with known concentration) binds the DNA at the PAM
site, sequentially progresses through R-loop formation, and eventually cuts the DNA. The set of forward and
backward rates describing transitions (arrows) between states (images) fully parameterize our model. (B) Fit to
HIiTS-FLIP data [? ]. top: the association rate (k,) is estimated as the slope of a straight line forced through the
origin and fitted to three measurement points (see S.l.). Figure here shows representative calculations using the
extracted model parameters. middle: fit against off-targets with 1 mismatch. Bottom: fit against off-targets with
2 mismatches (data in upper triangle/ model in lower triangle). (C) Fit to NucleaSeq data [? ]. top: the cleavage
rate (k) is estimated by an exponential fit to the fraction of uncut off-target DNA (see S.1.). middle: fit against
off-targets with 1 mismatch. Bottom: fit against off-targets with 2 mismatches (data in upper triangle/ model
in lower triangle). (D) Prediction of CHAMP data [? ]. top: ABA values are the logarithm of the half-saturation
concentration after 10 minutes of dCas9-sgRNA interactions with DNA (see S.l.). middle: prediction of off-targets
with 1 mismatch. Bottom: prediction of off-targets with 2 mismatches (data in upper triangle/ model in lower
triangle).

intermediately sized R-loop (1,2,...,20 nt) as well as the PAM bound and unbound (solution)
configurations as metastable states, and transitions between states as being thermally ac-
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tivated. In general, the model is completely parameterized by the set of forward and back-
ward rates (Figure 1A) for every Cas9-sgRNA-DNA combination.

Though the type of mismatch matters, experimental data also shows consistent trends in
both binding and cleavage activity with respect to the position for any mismatch type (i.e.
the data shown in this work). As a step towards a full sequence dependent model, and to
uncover any sequence independent determinants of targeting activity, we here use a (tar-
get) sequenced averaged parameterization of a specific Cas9-sgRNA combination. In this
scenario, all internal forward reactions represent the same process of removing one DNA-
DNA base pair and forming a new one between the guide RNA and target strand DNA. To
simplify matters, we assume only backward reactions can be dependent on position and
the complementarity between RNA and DNA, thereby carrying all position dependency.
This assumes the transition state encountered when extending the R-loop occurs before
the RNA base interacts with the DNA base (the dsDNA always matches). Hence, apart from
a (concentration dependent) rate of binding from solution onto the PAM (k,,) and the final
rate of inducing the DNA breaks (k..;), a single forward rate (k;) is used to parameterize all
remaining forward reactions (Figure ??A, S.l.). Although no direct evidence that forward
rates must be position independent, we shall show that the current parameterization is
sufficient to capture the trends in the data. Instead of using backward rates as our model
parameters directly, we use the detailed balance condition (ky,(n) = ksefn~Fn1) to relate
every backward rate to the forward rate and the difference in free-energy between con-
secutive states (K, — F,.1, Figure ??A, S.I.). As we assume that placing a mismatch at the
position within the R-loop promotes only the corresponding backward rate, this implies all
free-energies from the position onwards will be raised by the same amount (S.l.).

All in all, a total of 44 independent parameters describe target binding and cleavage of
a fixed Cas9-sgRNA at any DNA target: (1-2) The rate of PAM binding from solution, k,,,
and the free-energy gained/lost in this process, Fpay (both at the (d)Cas9-sgRNA concentra-
tion the data is taken), (3) the forward rate k¢, (4-23) 20 free-energy differences describing
progressing the R-loop when guide and target are matching, (24-43) 20 penalties for mis-
matches within the R-loop that (locally) increase the difference in free-energy, raising the
on-target’s landscape from the position of the mismatch onwards, and (44) the catalytic
rate k.,; which is set to zero when considering nuclease inactive dCas9 [see Figure ??A, S.1.
for details].

As Cas9 is known to interact with the DNA, especially with the non-target strand [? ], the
target recognition process is not fully described by the hybridization energies of the nucleic
acids alone. For this reason, adding a matching base pair to the hybrid does not need to
be energetically favorable, and the parameters corresponding to matches can include any
form of protein-DNA interactions or conformational changes that couple to R-loop progres-
sion. Mismatch penalties are assumed to be positive, as replacing a match with a mismatch
is by definition energetically unfavorable.
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3.2.2. Modeling measurable quantities for both dCas9 and Cas9

We have set it as our goal to quantitatively describe the outcome of both binding and
cleavage experiments within a single physical framework. To this end, three independent
high-throughput biophysical datasets were used to compare against our model.

First, Boyle et al. [? ] used a high-throughput fluorescence microscopy assay (HiTS-FLIP:
‘high-throughput sequencing-fluorescent ligand interaction profiling’) to determine the
rate of change in the bound DNA population (for a large library of off-targets) within the
first 1500 seconds upon introducing dCas9-sgRNA (top panel Figure ??B). We used a master
equation formulation to numerically determine the temporal evolution of the bound frac-
tion at any off-target, which we interpreted as the equivalent of (background corrected)
fluorescence intensities. From here, we extracted the reported (effective) associate rate
(k,) by mimicking the procedure used in the experiments by Boyle et al. (top panel Figure
??B, see S.l. for details). Note this effective association rate does not equal the binding
rate from solution (k,,), but rather is modulated by the rate of rejection from the DNA,
explaining its dependence on mismatch configuration.

A second experiment, the CHAMP (‘chip-hybridized association- mapping platform’) assay
[? ? ], similar to HiTS-FLIP, uses a high-throughput fluorescence setup to determine binding
activities. However, while HiTS-FLIP tracks the bound fraction over time at a fixed dCas9-
sgRNA concentration of 1nM, CHAMP measures the bound fraction after a fixed time of
10 minutes for a series of concentrations. Hence, while both reporting on dCas9 bind-
ing off-targets, the CHAMP and HiTS-FLIP datasets probe the binding activity’s response to
uniquely varying experimental conditions. Using the bound fractions, CHAMP determines
the half-saturation concentrations (effective dissociation constants) after 10 minutes of
dCas9 exposure. Comparing this to a reference of 1 nM, allows one to define an ‘Apparent
Binding Affinity’ (ABA, AABA = ABA — ABA,_target) @s the logarithm of the relative dissoci-
ation constant (Figure 2?D top panel, see S.I. for details).

Finally, Jones et al. also present the NucleaSeq (nuclease digestion and deep sequencing)
technique [? ] to measure the (effective) cleavage rates for a library of off-targets (k)
by monitoring the fraction of uncut DNA over time and fitting this to a single exponential
function (top panel Figure ??C). The S.l. shows how we numerically determined k., for
all off-targets within the experimental library. Note that is not the same as the intrinsic
catalytic rate (k.,:) we have set as a model parameter. Rather, k, < k.., as NucleaSeq
reports the (inverse) average time to bind the target, complete the R-loop and induce the
DNA breaks (which happens at the rate k), explaining how k, can depend on the off-
target sequence.

All three experiments used the same guide sequence derived from A-phage DNA. (CHAMP
and NucleaSeq additionally used the same off-target library), thereby minimizing potential
sequence dependencies that would effect a successful translation between the datasets
by our model.

As a first approach we have fit our model against the HiTS-FLIP data alone, leaving the
others as tests (Figure ??). Figure ??A shows the fit against all library members with a sin-
gle mismatch (top panel), and those with two mismatches (bottom panel), together form-
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ing the entire dataset used to fit. Figure ??B shows that we captured measured values of
CHAMP with high precision (top panel: one mismatch, bottom panel: two mismatches,
combined correlation coefficient: 93%). This strongly indicates that the model’s imple-
mentation of varying nuclease concentration is valid, as this prediction of dCas9 binding
at varying concentrations (CHAMP) is based on model parameters extracted solely from
the HiTS-FLIP data taken at 1 nM. Further, using a ks > 15~ to not make this the rate
limiting step, we predict cleavage rates from NucleaSeq with approximately 84% correla-
tion, again only using dCas9 based information (Figure ??C shows comparison to library
members with one mismatch on top and with two mismatches below). Yet, Figure ??C re-
veals that the model underestimates k., for many off-targets (which cannot be resolved
by a further increase in k). In addition, our stochastic optimization algorithm (see S./.
for details) returned relatively strongly varying parameter sets, while still giving similar fit
qualities (Figure S1D). Figures ??D-F show the parameter set (Figure ??D: on-target free-
energy landscape, Figure ??E: mismatch penalties, Figure ??F: rate parameters) of the best
fit (lowest x2, see S.l.) that was used to produce Figures ??A-C together with parameter
sets belonging to fits that differ less than 5% in their prediction of the fitted HiTS-FLIP data
(see S.1.). We noticed that apart from the on-target’s free-energy at the PAM and 11-12 nt
into the R-loop, most parameters are allowed to vary significantly without apparent loss in
fit quality. Especially the strongly varying mismatch penalties (Figure ??E) and rate param-
eters (Figure ??F) may not affect the resulting association rates (Figure ??A), but strongly
affect the cleavage rates (Figure ??C). In the coming section we shall describe the obtained
parameters in more detail. For now, we note that fitting our model only to association
rates can constraint our model parameters enough to describe CHAMP, but not enough
for NucleaSeq.

We take the heterogeneity of the fit parameters (Figures ??D-F) as a sign that the best fit
represents an overfit to the HiTS-FLIP data, capturing noise, thereby limiting our predictive
power of the NucleaSeq data. In an attempt to combat this, and more confidently report
the underlying kinetic parameters, we proceeded by using a simultaneous fit to HiTS-FLIP
(k,) together with NucleaSeq (k) (Figures ??B-C, see S.l. for details). We reasoned that
as k., values report the time needed for Cas9-sgRNA to make it from the solution state all
the way through the free-energy landscape into the post-cleavage state, the prediction of
the NucleaSeq data should be more sensitive to the value of the mismatch penalties and
forward rates. These parameter values set the placement, height and typical crossing times
of (effective) energetic barriers within the off-target free-energy landscapes. Adding this
information to that coming from HiTS-FLIP, presumably being most sensitive to the stabil-
ity of different states as this determines whether or not binding will be long enough lived
to be observed, should be enough to constraint our model parameters sufficiently. Figure
?? shows fit parameters, in particular the mismatch penalties up until nt 16 (Figure ??B)
and the forward rates (Figure ??C) are now more strongly constrained. The combination
of having typical cleavage times (NucleaSeq) at saturating conditions together with typical
times to reach stable binding (HiTS-FLIP) at a fixed concentration, also strongly constrained
the fitted binding rate (k,,,) (Figure ??C).

More importantly, using this combined fit we see it is possible to quantitatively capture
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both dCas9 binding and Cas9 cleavage dynamics within a single physical framework (Figures
??B and C). Clearly, our model nicely reproduces values for off-targets with one (middle
panel Figure ??B) and two mismatches (bottom panel Figure ??B). Using the fit to library
members with up to two mismatches, we also accurately reproduce measured k,’s for all
off-targets in the library with more mismatches, leading to a combined correlation of 89%
(Figure ??A). Similarly, our model accurately reproduces cleavage rates from NucleaSeq
both for single-mismatched (middle panel Figure ??C) and double-mismatched off-targets
(bottom panel Figure ?2C), with high accuracy (combined correlation of 93%, Figure ??B).
Interestingly, the model recovers that a mismatches between nt 12 and nt 17 can strongly
reduce cleavage activity (Figure ??C, middle panel) while minimally influencing apparent
binding activity (Figure ??B, middle panel). We shall discuss the physics underlying this
below. Finally, without fitting any parameters, we manage to accurately translate from
the temporal sweep of HiTS-FLIP (Figure ??B) to the Cas9-sgRNA concentration sweep of
CHAMP for all given off-targets (95% correlation, Figures ?? and ?2C).

Taken together, we build and parameterized (as we shall discuss using Figure ??) a single
kinetic model (Figure ??A) that explains the dynamics of (d)Cas9-sgRNA-DNA interactions
both at various times and concentrations. Next, we shall take a further look at the physical
properties of Cas9 extracted from the data and describe their consequences.
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3.2.3. Free-energy landscape of (d)Cas9-sgRNA-DNA

From a simultaneous fit (S.l.) to the data shown in Figures ??B and C, we obtain the free-
energy landscape that the Cas9-sgRNA experiences upon interacting with a given DNA
target, for the guide common to both experiments. Figure ??A shows the resulting free-
energy landscape for interacting with the on-target, while Figure ??B shows both the on-
target’s landscape (grey, dashed line) together with an example landscape encountered
at an off-target with mismatches placed at nt 12 and nt 18 (blue, solid line). The latter is
obtained by raising all points from the 12t" position onwards in the on-target’s landscape
by the 12" mismatch penalty, and all points from the 18" position onwards by the 18t
penalty (Figure ??C, S.1.). Figure ??D shows the obtained rate constants.

Remarkably, the on-target free-energy landscape (Figure ??A) shows a distinct position de-
pendence, which we have found to be responsible for many features seen in the dataset(s).
Starting from the PAM bound state, the free-energy strongly increases and remains rela-
tively high for the first 8 nt. Destabilizing the first 8 R-loop associated states results in an
effective barrier that must be bypassed before a stable binding intermediate is reached.
As a result, adding a single mismatch within this region makes the effective barrier nearly
insurmountable within the time of a typical experiment. Hence, we recover what is com-
monly referred to as the ‘seed’ region wherein a single mismatch can completely disrupt
either binding or cleavage [? ? ]. The end of the seed-region contains another (slighter)
increase (see nucleotides 6 to 8). Although no direct evidence, we hypothesize such an
additional barrier reflects the cost of rearranging the guide outside the seed into proper
helical form to enable further hybrid formation [? ].

After the unstable seed, the bound state gradually becomes more stable when forming nt
10-12, reaching a local minimum after the 12" base pair. Interestingly, before reaching
a final cleavage competent state (full R-loop), the free-energy landscape reveals a second
effective barrier after nucleotide 13. Below we shall show the presence of two regions
of unfavorable R-loop progression is consistent with experimentally established conforma-
tional dynamics of Cas9’s nuclease domains.

The mismatch penalties (Figure ??C) remain rather constant (at about 6 + 1kzT) through-
out. Notable exceptions are nucleotides 2, 9 and those from 17 until 19. The lower mis-
match penalty of around 4 kg T at the second R-loop position originates the increased ac-
tivity seen for both dCas9 and Cas9 when muting nt 2 compared to mutating either of its
neighbors (Figures ??B-D). Similarly, as placing the first of two mismatches at the 9t posi-
tion results in a lower cleavage rate compared to placing it at either the 8™ or 10t position,
we fit an increased mismatch penalty of around 9 kzT. Mutating nucleotides 17-19 comes
at a lesser cost of 4 kzT, compared to most of the other positions. This, together with
the on-target target binding being always more stable than initial PAM recognition after
the 17 base pair (Figure ??A), is consistent with a previous reports that have shown Cas9
can indeed cleave substrates that contain mismatches at nucleotides 17-20 with only slight
hindrance [? ? ].

The fitted rate constants of Figure ??D reveal that, at 1nM Cas9-sgRNA, PAM recognition
happens at a rate (k,,) that is 5 orders of magnitude less than the rate of progressing the
R-loop (k¢) and the rate of catalyzing cleavage (k). The large forward rate (k;) results
in similarly high rates for shrinking the R-loop (k,(n) = ksefn~Fr1, see S.1.). Yet, despite
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growing or shrinking the R-loop by one nucleotide happening rather fast, the shear amount
of such steps needed before the full R-loop is formed makes that R-loop formation is still
the rate limiting process to cleavage (and stable binding), thereby governing Cas9’s mis-
match tolerance.

In conclusion, our physical model allows us to the extract the free-energy landscape de-
scribing the interaction between target DNA and a Cas9-sgRNA complex. In what follows,
we shall first in more detail explain how the landscape shown in Figure ??A captures Cas9’s
major conformational change, and show how this results in the pronounced difference be-
tween binding (dCas9) and cleavage (Cas9) activities
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Figure 3.3: Relating free-energy landscape to Cas9’s conformational dynamics. (A) Equilibrium occupancies
(10nM dCas9-gRNA) for all 21 microscopic states, and different off-targets. This mimics the FRET histograms
shown in Figure 1C of [? ] (B) A coarse-grained view of the on-target free-energy landscape (Figure ??A). Using the
nomenclature of [? ] we identify the ‘open’, ‘intermediate’ and ‘closed’ states. Solid colors show the states with
the greatest contribution (the most stable states in every subgroup). (C) A. Fraction of equilibrium occupancies
for each of the three coarse-grained states, shown for off-targets with increasing number of consecutive PAM
distal mismatches.

3.2.4. Conformational change of Cas9’s HNH domain couples to R-
loop formation

Figure ??A reveals that although forming a complete R-loop with the on-target (at 1nM) is

energetically favorable, reaching this cleavage competent state is preceded by surpassing

two regions of significant instability. This is surprising, given we have previously showed
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(Chapter 2?)[? ] that the sequential nature of the R-loop formation process in itself dic-
tates clear mismatch position dependent unbinding/cleavage rates at off-targets. Even with
a constant gain for every match added to the R-loop, the placement of a mismatch still
modulates the barrier opposing rejection of the off-target. As the free-energy landscape
of Figure ??A clearly deviates from one with a constant downward slope, it must be the
result of structural properties of the Cas9 protein that couple to hybrid formation.

A comparison of guide-bound and target-bound structures revealed Cas9 undergoes a con-
formational change in which the active sites of its HNH and RuvC nuclease domains are
repositioned favorably for cleavage [? ? ? ]. A bulk FRET experiment, in which two of
dCas9’s (initially distant from each other) amino-acids are fluorescently labelled, confirmed
the HNH domain rearranges itself prior to cleavage, and showed the RuvC domain move-
ment is strictly coupled to that of the HNH domain [? ]. More recently, single-molecule
FRET studies have shown the existence of two dominant bound configurations of Cas9-
sgRNA [? ? ? ]. As the HNH domain moves, the distance between the fluorescent dyes
changes, resulting in an altered FRET efficiency. By collecting the FRET efficiency traces
of many molecules, observed for long enough time, one obtains an estimate of the equi-
librium occupation in the state space along the FRET coordinate, the position of the HNH
domain.

Given the free-energy landscapes for both on-target and off-targets (Figure ??), we can di-
rectly calculate the equilibrium dCas9 occupation in each state according to the Boltzmann
distribution (S.l.), which is what the FRET efficiency histograms attempt to estimate. Fig-
ure ??A displays equilibrium distributions for various amounts of PAM distal mismatches,
thereby directly mimicking the experiment performed by Dagdas et al. (see Figure 1Cin [?
1). Inline with the authors’ findings, we confirm dCas9-sgRNA-DNA is mainly found in one of
three states (conformations) (indicated by different colors in Figure ??B). When subjected
to on-target DNA, nearly all bound molecules are cleavage competent (occupying the final
state). Introducing mismatches causes dCas9-sgRNA-DNA to get trapped in an interme-
diate configuration (the orange colored peak around nt 12 in Figure ??A). Four or more
terminal mismatches is sufficient to effectively deplete the final state (blue bars in Figure
??A). As the target contains more mismatches, the initial (bound) state (the peak seen for
the solution and PAM states in Figure ??A) becomes more favorable. Figure ??C shows the
fractions of molecules occupying each of the three ‘coarse-grained states’ (defined in Fig-
ure ??B) as a function of the number of consecutively placed PAM distal mismatches. Using
the terminology introduced by Yang et al. [? ], we identify an ‘open’ HNH conformation
(roughly corresponding to the microscopic states up until the 8™ base pair in Figure ??A),
a ‘closed’ configuration (roughly corresponding states 17-20 in Figure ??A), as well as an
‘intermediate’ configuration (states 9-16 in Figure ??A). In agreement with the study of
Dagdas et al. [? ], the system gradually switches from mainly occupying the closed state,
to the open state as more mismatches are introduced, transiting via the intermediate state
in the process. We note the smFRET studies probe the reaction coordinate along the HNH
conformational change, whereas our model’s reaction coordinate indicates targeting pro-
gression (PAM binding + R-loop formation). The similarity between our model and the data
discussed here thus reveals a likely equivalence of these two point of views. We conclude
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that Cas9’s nuclease domains must rearrange themselves in order for the R-loop to extend.
Moreover, Figure ??B shows that the conformational change is split over two major barri-
ers, with the first barrier being encountered straight after binding to the PAM.
Furthermore, Yang et al. mention that although three main FRET values were observed
on any (off-)target, the value of the intermediate state depends on the number of mis-
matches introduced — signifying the HNH domain adopted a (slightly) different configura-
tion. Indeed, Figure ??A shows that with 7 PAM distal mismatches the R-loop is unlikely
to progress passed the 12" base pair, while the likelihood of observing a partial R-loop
of length 16 is many times higher with only 4 mismatches, both corresponding to what
we identify as ‘the intermediate HNH state’ in Figure ??B. The reported shift in FRET value
upon introduction of more mismatches is consistent with our model’s prediction that Cas9-
sgRNA-DNA occupies different microscopic states. This is in line with our finding that the
conformational change happens throughout the hybrid formation process.

Finally, we note that only the closed state is found to be cleavage competent [? ], also con-
sistent with our model. We conclude that the free-energy landscape (Figure ??) obtained
by fitting bulk data (Figure ??) is not only consistent with, but complements structural and
single-molecule data on (d)Cas9.
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3.2.5. Promiscuous binding helps Cas9 to be both a specific and an
efficient nuclease

With the free-energy landscape in hand, we can now explain what off-target sequences
typically lead to binding without cleavage. Figure ??A overlays the data from Nucleaseq
(orange squares) and HiTS-FLIP (purple triangles) experiments for singly-mismatched off-
targets, both normalized to their respective on-target values. Clearly, placing just a single
mismatch within approximately 8 nucleotides from the PAM significantly slows down both
binding and cleavage. Figure ??B shows the free-energy landscape for a target with a mis-
match at the second nucleotide. To cleave either the on-target (grey, dashed line) and the
off-target (blue, solid line), the largest energetic penalty comes from making it passed the
‘seed’ (nt 8). The off-target has raised this barrier (from the grey horizontal line to the
blue horizontal line) by an amount equal to the second mismatch penalty seen in Figure
??C. The increased barrier exponentially suppresses the corresponding off-target (effec-
tive) cleavage rate. Given cleavage implies binding, also the effective association rate is
exponentially suppressed. Placing the mismatch further down the hybrid, for example at
nt 10, we see both binding and cleavage rates have recovered partially from their values in
the seed (Figure ??A). The corresponding landscape in Figure ??C shows that the seed still
imposes the largest barrier against cleavage, and thereby also against binding. Although
raising the energy, and the barrier against R-loop completion, the energy for the off-target,
also after nt 10, remains almost at the same height as the on-target landscape’s height in
seed (compare the grey and blue horizontal lines). In other words, the mismatch therefore
only minimally raises the effective barrier opposing R-loop completion. Hence, both dCas9
and Cas9 can complete R-loop formation at rates closer to that of completing the R-loop
for the on-target.

Interestingly, placing a mismatch between nt 12—-17 significantly reduces the cleavage rate,
while only minimally impacting the association rate (Figure ??A). Figure ??D, displaying a
landscape with a mismatch at nt 15, reveals that although binding (making it into any long-
lived bound state) is limited mainly by the seed, cleavage necessitates proceeding past the
second large barrier — now of similar height — seen beyond the 13t base pair. Hence,
(d)Cas9 will bind such a target at a rate comparable to the on-target and get trapped in a
configuration with a partial R-loop (the ‘intermediate state’ referred to above, Figures ??A-
B). Eventually, Cas9 escapes from this intermediate, either through unbinding or cleavage,
both requiring it to overcome a second large energetic barrier, thereby leading to relatively
low cleavage rates at such off-targets, diverging from the relative association rate.

Besides providing Cas9 the ability to swiftly reject off-targets without matching seeds, the
associated energetic barrier (between the ‘open’ and ‘intermediate’ configurations dis-
cussed above) significantly opposes cleavage of even the on-target. Raising this barrier
further as a means to gain specificity, definitely reduces the efficiency at which Cas9 cleaves
the on-target. The introduction of the second barrier separating the intermediate and
closed states in the on-target free-energy landscape (Figures ??A and ??B) allows Cas9 to
reject an additional set of off-targets, without having to sacrifice the rate at which it can
cut the on-target — preventing the first barrier from becoming of insurmountable height.
Therefore, the promiscuous binding of Cas9 can be seen as a price to pay in order to be
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both a (sufficiently) fast and specific nuclease.
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Figure 3.5: Comparison to thermodynamics based models. (A) Upper half shows NucleaSeq data for double
mismatched off-targets, normalized to the on-target’s rate. Bottom half uses single-mismatch data from Figure
??A as a naive Bayes classifier to predict the double-mismatch data. For every set of two mismatch positions,
the lower half shows the product of the corresponding data points from Figure ??A. (B) Sequenced averaged CFD
score compared to NucleaSeq data for off-targets with one mismatch (Figure ??A). (C) Sequenced averaged CFD
score compared to NucleaSeq data for off-targets with two-mismatches (upper half Figure ??B) (D) Sequenced
averaged UCRISPR score (normalized to on-target) compared to NucleaSeq data for off-targets with one mismatch.
(E) Sequenced averaged uCRISPR score (normalized to on-target) compared to NucleaSeq data for off-targets with
two-mismatches.

3.2.6. Existing off-target prediction models can be seen as a limit-

ing case of ours
Currently, state-of-the-art off-target prediction [? ] is based mainly on the ‘Cutting Fre-
quency Determination’ (CFD) score [? ] — a ‘naive Bayes classification’ scheme [? ] as-
suming mismatches affect the relative cleavage rate independent of the distance between
them. More recently, Zhang et al. report their ‘unified CRISPR’ (uCRISPR) score [? 1], in
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which cleavage probabilities are evaluated as the Boltzmann weight corresponding to the
cleavage competent state (see S.l.), outperforms the CFD score.

In the S.I. we show that both models can be seen as a limiting case of ours. To reduce
our model to theirs, we must assume target-binding equilibrates prior to cleavage and that
all bound states are unstable compared to solution (independent of nuclease concentra-
tion) (see S.l1.). Within this limit, the relative rate of cleaving a multi-mismatched off-target
versus the on-target equals the product of the corresponding relative rates of cleaving the
set of singly mismatched off-targets (see S.I. for details). For example, if an off-target has
mismatches at positions 5 and 7, its corresponding relative rate equals the product of the
relative rates for cleaving the off-targets with one mismatch at nt 5 and the one with a
mismatch at nt 7, all compared to the on-target cleavage rate. As this is exactly how the
CFD score has been constructed using their own set of experiments [? ], a special case of
the mechanistic model presented here produces a score equal to the CFD score — despite
the construction of the CFD score not being motivated by physics. Furthermore, our model
directly reduces to the uCRISPR score within these same limits (S.l.).

The physical regime wherein CFD and uCRISPR could ever produce accurate predictions
corresponds to all bound states, including the cleavage competent state being energeti-
cally unfavorable compared to solution, no matter the nuclease concentration. This regime
clearly does not comply with free-energy estimates, even at 1nM (d)Cas9-sgRNA (Figure
??A). We take the quantitative agreement between our model and the bulk experimental
data (Figure ??), and its consistency with single-molecule data (Figure ??), to imply the
physical regime suggested by our model parameters to be valid.

As assuming no cooperative effect of mismatches (as done in by the mentioned equilibrium
based models) is an attractive approach due to its simplicity, it is informative to see exactly
where it fails. To test whether a naive Bayes classifier can be used as an accurate predictor
of the NucleaSeq data for the given sgRNA, we first test whether products of relative k,
values for singly mismatched off-targets in the NucleaSeq dataset are a good predictor of
the corresponding measurements at off-targets containing two mismatches (Figure ??A).
Figure ??A shows the NucleaSeq data normalized to the on-target cleavage rate. While the
upper half displays the normalized data directly, the bottom half is constructed by using
products of the measured single-mismatch values (Figure ??A). Clearly, assuming no coop-
erative effect of mismatches does not result in the measured (relative) cleavage rates. In
particular, the cleavage rate is severely overestimated when both mismatches are placed
outside the seed (beyond nt 8), but before nt 16. That is, when the mismatches are placed
in between the ‘intermediate’ and ‘closed’ states (Figure ??B), which is exactly the set of
off-targets that tend to lead to a divergence between apparent binding and cleavage rates
(Figure ??).

Next, directly comparing the CFD score (Figures ??B,C) and the uCRISPR score (Figures
??D,E) to the (normalized) Nucleaseq data, we see both methods seem to be plagued
by this same underestimation due to the non-additive nature of mismatches. The CFD
score completely fails to produce even qualitatively similar relative rates (Figures ??B,C).
Note that the method used in Figure ??A represents an equivalent CFD score, had the
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authors’ used the Nucleaseq assay to produce their data, thereby showing it is the under-
lying assumptions of the CFD score rather than the training data that leads to inaccurate
predictions. Furthermore, the uCRISPR score produces a single-mismatch profile similar to
the Nucleaseq data (Figure ??D). Therefore, as mismatches also act independently within
uCRISPR (see S.l.), this leads to a two-mismatch profile nearly identical to the one shown
in Figure ??A, despite the large difference in absolute values compared to the data. Hence,
even though the uCRISPR model has introduced an additional energetic penalty for placing
consecutive mismatches (see supplement of [? ]), it still ranks off-targets almost identical
to a model that assumes mismatches each effect the cleavage rate independently.

Taken together, the more general kinetic model presented in this work correctly treats
how multiple mismatches alter cleavage rates, and how binding does not imply cleavage,
while the equilibrium based CFD and uCRISPR fail to do such.

3.2.7. Measuring relative rates at various concentrations

Thus far we have presented a physical model capable of explaining experimental data of
various forms (Figures ?? and ??), and demonstrated the added benefit of incorporating
the kinetics of the targeting process (Figures ?? and ??). In what remains, we shall use our
model to predict cleavage rates under various experimental conditions.

Figures ??A and B show cleavage rates, normalized to on-target values, for several Cas9-
sgRNA concentrations. First, we note that as the concentration is decreased, the ratio of
cleavage rates (symbols in Figure ??A) approaches the ratio in probabilities for a (PAM)
bound Cas9-sgRNA to cleave the DNA prior to rejecting it (pink line). This cleavage proba-
bility is the central quantity of Chapter ?? [? | and we here confirm its validity in the low
concentration regime.

Interestingly, varying the concentration mainly effects the relative cleavage rate at off-
targets with PAM distal mismatches. Figure ?? shows that by lowering the concentration
the height of the effective barrier separating the open and intermediate states increases
relative to the one separating intermediate and closed configurations. Hence, at low con-
centrations the contribution of this second transition to the cleavage rate is reduced, which
manifests itself in an increase in the rates of cleaving correspondingly mismatched off-
targets (a less sever ‘dip’ between positions 13 and 17) (Figure ??A). A similar signature
is seen when comparing mismatches with two mismatches at 0.01nM and 100nM Cas9-
sgRNA (Figure ??B). Lowering the concentration causes the effective cleavage rate to be-
come limited by the rate of binding a DNA sequence from solution, multiplied by the prob-
ability to cleave once bound (ky, = konPey, @s kon becomes rate limiting at low concentra-
tions, Figure ?? and Chapter ??).

3.2.8. Measuring relative fractions of cut DNA after various incu-
bation times

Other than the concentration, the exposure time of the DNA to Cas9-sgRNA can be var-

ied experimentally. Figures ??C and D show the relative probability of cleaving off-targets

(compared to on-target) for different incubation times. When considering off-targets with

a single mismatch, placing a mismatch directly adjacent to the PAM results in the lowest

cleavage rate. If the experiment runs for a time exceeding the inverse of this rate (the
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Figure 3.6: Measuring cleavage activity under varying experimental conditions. (A) Cleavage rates, normalized
to on-target, for various nuclease concentrations (symbols). Solid line (pink) shows the probability that a PAM
bound Cas9-sgRNA cuts the DNA before unbinding (relative to on-target) (Equation ??). (B) Relative cleavage
rates for 0.01nM Cas9-sgRNA (upper half) and 100nM (lower half) Cas9-sgRNA. (C) Probability of a DNA target

being cut, relative to on-target, after a fixed time (different symbols) and 1nM Cas9-sgRNA. t'™™ represents kc_lv1

for the off-target with a mismatch adjacent to the PAM, which is the off-target with the lowest cleavage rate
amongst all off-targets with a single mismatch. Solid link (pink) shows ratio between cleavage rates (off-target vs.
on-target). (D) t>™™ represents kc'lv1 for the off-target with mismatches at the first two positions adjacent to the
PAM, which is the off-target with the lowest cleavage rate amongst all off-targets with two mismatches. Upper
half t = 1075¢2™™ = .1t°™ "8t |ower half shows t = 100t2™™.

maximum kc'h,1 denoted by t!™™ in Figure ??C), essentially any off-target (with a single)

mismatch will get cut. Hence, no difference between off-targets and on-target will be ob-
served when counting the relative fractions of cleaved DNA (light blue diamonds in Fig-
ure ?2C). Similarly, using t>™™ to denote the inverse cleavage rate for the off-target with
mismatches at the first two R-loop nucleotides, all measured cleavage rates approach the
off-target rates for incubation times exceeding t>™™ (Figure ??D). Performing this same
experiment after much shorter incubation times (dark green squares), we see that for mis-
matches in the seed, these relative counts are well approximated by the relative cleavage
rates at the corresponding nuclease concentration (pink line in Figure ??C or the curve for
1 nMin 2?A). In the S.l. we show this implies the cleavage probability is well approximated
by a single-exponential process. Placing the mismatch between intermediate and closed
states increases the time to surpass the intervening barrier. When the time to transition
into the closed state becomes comparable to the time to transition into the intermediate



74 3. Explaining dCas9 binding and Cas9 cleavage

state from PAM, we expect the probability to cleave a DNA not anymore to follow a single
exponential curve. For this reason the ratio in the cleavage rates does not anymore match
the ratio in counted cleaved molecules when a mismatch is placed between positions 11
and 16 (Figure ??C). In conclusion, the incubation time greatly influences the relative frac-
tions of cut DNA, both for PAM proximal as well as PAM distal mismatches (Figures ??C and
D).

3.3. Discussion

The increasing popularity of the CRISPR-Cas9 system as a genome-editing tool calls for a
guantitative understanding of its risks. Here, we presented a single mechanistic model
(Figure ??A) to describe the kinetics of off-targeting by Cas9-sgRNA, as well as binding
by the nuclease inactive dCas9-sgRNA. Using a (target) sequence averaged approach, we
demonstrated our model accurately describes experimental association rates (Figure ??B),
cleavage rates (Figure ??C) and dissociation constants (Figure ??D). The free-energy land-
scape(s) describing interactions between (d)Cas9-sgRNA with on-target (Figures ??A and D)
and off-target DNA (Figures ??B-D) serve as our model parameters. Hence, using the bulk
data (Figure ??B and C), we extracted the microscopic thermodynamic and kinetic proper-
ties of Cas9-sgRNA (Figure ??). The particular free-energy landscape obtained shows signa-
tures consistent with Cas9’s major conformational change, rearrangement of its nuclease
domains, observed in structural and single-molecule experiments (Figure ??). Moreover,
the barriers opposing this conformational change directly explains how Cas9’s promiscu-
ity when it comes to off-target binding is the price to pay for it to balance on-target and
off-target cleavage activities (Figure ??). Further, the free-energy landscape implies Cas9
operates far from the regime in which existing prediction models operate. As a result, only
our model quantitatively describes the difference between Cas9 and dCas9 specificities
(Figure ??). Finally, we showed how varying nuclease concentrations and incubation times
strongly influence, not only the quantitative, but also the qualitative specificity profiles
(Figure ??).

3.3.1. Comment on translation to other guide RNA sequences (‘short-
cut’ to redoing measurement for every guide)

In Figures ??A-C, we display target sequence averaged cleavage activities (w.r.t on-target)
from datasets across the literature [? ? ? ], including the data used to construct the CFD
score (Figures ??B,C). Different curves correspond to different guide sequences. Also, Fig-
ure ??D shows a second NucleaSeq dataset (together with the data shown in Figure 22C)
[? ]. Clearly, the cleavage rate is strongly dependent on the guide sequence used.

As a future improvement to our model parameterization, incorporating (guide) sequence
dependencies seems the most logical way forward. However re-training our model against
equivalent datasets (HiTS-FLIP + NucleaSeq ) [? ? ] for every guide sequence of interest
would require an immense amount of experimental effort.

For this reason, developing a translation between guides, using the current parameter set
could be an attractive approach. Figure ?? showed our model is capable of producing a
wide range of specificity profiles by varying the experimental conditions. This variation
appears to be similar to that caused by the guide sequence shown in Figure ??. For ex-
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ample, Figure ??A shows data belonging to six guides from Doench et al. [? ]. A transla-
tion from the lower three curves (pink, orange, yellow) to the upper three curves (purple,
green, blue) seems to be achievable within our model by a combination of lowering the
concentration (Figure ??A) and increasing the incubation time (Figure ??C). This similarity
between Figures ?? and ?? leads us to believe a less experimentally (as well as computation-
ally) intensive scheme may exist to predict off-targeting for different guides. Differences
in sequence manifest themselves in the energetics (Figures ??A-C), altering (effective) bar-
rier heights separating states. Figure ?? demonstrated the same can be achieved through
varying the Cas9-sgRNA concentration. Alternatively, increasing the incubation time in-
creases the probability of exceeding the typical time needed to reach states further down
the landscape (Figure ??A). We hypothesize that varying the guide sequence could possi-
bly be modeled by an altered ‘effective nuclease concentration’ and ‘effective experimental
time’, while keeping the same model parameters (Figure ??) as determined for the guide
used in this work. In this manner, sequence dependencies can possibly be derived from
experiments performed for a limited set of guides.

3.3.2. Move to other guided nucleases (generality of approach)

Cas9-sgRNA is by far not the only RNA guided nuclease system utilized in biotechnological
applications. Other CRISPR associated nucleases, such as CRISPR-Cas12a, CRISPR-Cas13
and CRISPR-Cas14 offer a diversified ‘genome-engineering toolkit’ to complement Cas9 [?

driven the development of several strategies to improve Cas9’s cleavage specificity, with
the use of either engineered [? ? ? ] or natural variants (such as N. meningitides Cas9)
[? ] becoming increasingly popular. The general model presented in this work (Figure
??A) should be applicable to any RNA guided nuclease whose target binding happens in
a sequential fashion. High-throughput measurements using different nuclease systems
(preferably similar to HiTS-FLIP, CHAMP and/or NucleaSeq, i.e. [? ? ? ? ]), will allow us to
also decipher their microscopic free-energy landscape underlying target interference and
can point towards the relevant structure-function relations (as done here for Streptococcus
pyogenes Cas9).

3.3.3. Test against genome-wide off-target data/prediction tools will
follow

predict experimental measurements, but rather to rank off-targets according to their ac-
tivity (w.r.t on-target). Typically, the performance is assessed using either of two methods.
Either the rank correlation between modeled scores and measurements is used as a per-
formance measure [? ? ]. Alternatively, prediction tools are tested for their capability to
separate the ‘cut’ from ‘uncut’ genomic DNA sites [? ]. Although our physical model offers
more than such a classification scheme, we nevertheless are working towards performing
tests against identified genomic off-targets [? ? ] in order to directly compare our model
to other bioinformatics or machine learning based predictors.
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3.5. Supplemental Information
3.5.1. Kinetic model for Target Recognition

We here explain in more precise mathematical terms how we have built the model put
forth in the main text and in Figure ??A. To incorporate the concentration of Cas9-sgRNA
present in solution (’sol’), we shall take the viewpoint of a single DNA target sequence, ei-
ther on- or off-target. After one of the Cas9-sgRNA binds the DNA at its PAM site, R-loop
formation (Cas9 mediated strand exchange between gRNA and DNA) is modeled as a se-
quential process. That is, the gRNA-DNA hybrid grows or shrinks with single-nucleotide
increments, allowing for hybrids of intermediate lengths (1-20 bp formed). Cleavage ('clv’)
can follow complete R-loop formation (20 nucleotides in case of Cas9). Together, we model
the entire target recognition process as a random walk on the linear state-space, n €
[sol,PAM, 1, 2, ...,, 20, clv]. Knowing the probability of a Cas9-sgRNA-DNA to be found in
each of the states after a time t gives access to any measurable quantity of interest (see be-
low for examples). Letting P, (t) denote the occupancy of state n at time t, and k¢(n)/k, (n)
the rates (inverse average times) for ‘forward’(n —» n + 1)/’backward’(n - n — 1) transi-
tions, the occupancies evolve according to the following set of Master Equations

aPsol - —k
24 = —ky(s0)Poi(€) + ki (PAM) Bopaa (£) (53.)
dp,
25 = ki = DR (©) = (ki) + ky()R(0) 532)
+ kp(n+ DR (0) vn € [PAM, 1,2, ..., 19]
dP,
=2 = ki(19Po(6) = (k(20) + kp (20))Pro () (533)
From here on we interchangeably usen = —1 = sol,n = 0 = PAMand n = 21 = clv.

Given any DNA is either unbound, bound or cleaved, the fraction of cleaved DNA (for active
Cas9) is set by Py, (t) = 1 — Y PB,(t). Defining the vector P(t) = [Pg(t), Bam(t),

n#clv
Pi(t),.....P5(t)]", the solution to Equations ?? and ?? can be written as

B(t) = e XtB(0), (S3.4)
with the (tri-diagonal) rate matrix K’s elements given by
—ki(n—-1) n=m+1
ki(n) + k,(n) n=m
K = S3.5
um —k,(n+1) n=m-1 ( )
0 else
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In general, we recognize the system is completely determined by the set of forward and
backward rates for every Cas9-sgRNA-DNA of interest. To extract information from the ex-
perimental data, we now proceed to show the particular parameterization used through-
out this work.

As mentioned in the main text, we have chosen a DNA sequence averaged parameteriza-
tion. Adding any nucleotide to the R-loop is assumed to happen at the same rate (denoted
by k:, as opposed to the general position dependent forward rate k¢(n)). Further, the rate
of binding from solution onto the DNA (transitioning from sol (n = —1) to PAM (n = 0)) is
assumed to grow linearly with concentration, k,, = k,([Cas9-sgRNA],s) X [Cas9-sgRNA],
resulting in the binding rate at our chosen reference concentration [Cas9-sgRNA]es = 1nM
being a free-parameter. Finally, catalyzing the reaction to induce the DNA breaks is as-
signed a separate rate of k.. Taken together, forward transitions are assigned the follow-
ing rates

kon([Cas9-sgRNA]) n = PAM

ki(n) =< k¢ nell2,.,19] (S3.6)
kot n=20

Backward rates (unbinding, shrinking the R-loop) are set by requiring the convergence of
P, (t) to the Boltzmann Distribution when equilibrated.

e~ Fn

PnEQ -

oF Vn € [sol, PAM, 1..., 20] (53.7)

me([sol,PAM,1..,20]

Given all occupancies are time-independent in this limit (g—i = 0), Equations ??-?? result
in the ‘detailed balance condition’

PEQ _
ky(n) = ke(n — 1)% = ki(n — Defr=Fr1 vn € [PAM, 1, ., 20] (53.8)

Differences in free-energy (F,’s, measured in units of k5 T) between consecutive states for
a particular Cas9-sgRNA-DNA are modeled as (F,, = 0 as reference state)

Foam([Cas9-sgRNA]) n = PAM
F,—F.1=1€m) match atn € [1, 2,...20] (S3.9)
ec(n) + € (n) mismatch atn € [1,2,...20]

If the nt" base of the target is complementary to the corresponding base of the guide, the
Cas9-sgRNA-DNA ternary complex gains/loses € (n) kgT in incorporating the basepair into
the R-loop. The Cas9 protein is known to interact with the (non-target strand) DNA, as well
as undergo conformational changes, during the process of R-loop formation. For this rea-
son, €-(n)’s can either be negative (signifying an energetic benefit) or positive (penalizing
progression of the R-loop). If the nt" base of the target does not match the guide’s base,
the ternary complex gets penalized €;(n) = 0 for incorporating the mismatch into the
R-loop. All subsequent free-energy states are therefore also raised by this same amount
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(Figure ??B), thereby only locally increasing the backward rate (Equation ??).

The energy of the PAM bound configuration is modeled as a concentration dependent free-
energy, Foam([Cas9-sgRNA]) = Fpan([Cas9-sgRNA]r) — log([Cas9-sgRNA]), becoming
more stable with increasing nuclease concentration. Note that using the concentration
dependencies of both Foay and k,,,, via Equation ??, leads to a concentration independent
rate to return to solution k, (PAM).

In conclusion, we have built a general kinetic model (Equation ??), and used a DNA se-
guence averaged parameterization to reduce our parameter space to the following 44 pa-
rameters: (1) Foam ([Cas9-sgRNA] er), (2-21) 20x €-(n)’s, (21-41) 20x €;(n)’s,

(42) ko, ([Cas9-sgRNA] er), (43) ks, and (44) k.5:. When considering dCas9 cleavage is un-
able to occur, which is simply modeled by setting k.,; = 0 (leaving 43 free-parameters).

3.5.2. Calculating (effective) association rates (HiT'S-FLIP)

To predict measured association rates, we assume equivalence between the solution to
the Master Equations (Equation ??) and the fluorescence signal obtained in the HiTS-FLIP
experiment [? ]. Experiments are performed at 1nM dCas9-sgRNA, which we thereby set
as our reference concentration. Given the experiment uses dCas9, all molecules are either
in solution or bound to DNA (P,, = 0). Here we follow the procedure detailed in Boyle et
al. [? ]. First, we determine the fraction of bound DNA molecules,

Byng(t) = Z P, (t) =1—Pgy(b) (53.10)
ne{PAM,1,..20}

at three specified time points t; = 500s, t, = 1000s and t; = 1500s, starting with all
DNA molecules being unbound at t, = 0s (P,,;(0) = 1, P,(0) = 0 Vn # sol). Next,
the effective association rate (k,) is defined as the coefficient of a linear fit to the three
occupancies, forced to go through the origin,

pi = kati Vi € [0, 1, 2, 3] (5311)

Equation ?? is the approximate solution for B,,4(t) for t < k31, if one would assume the
system not to consist of 21 possible bound states (as done here), but just by a single one.
Namely, in this simplified two-state system (n € [sol, bnd])

0B,ng
at

=k, Po(t) = Bpg(t) =1 —e ket =~ ket ift < k! (s3.12)

Using least-squares optimization (linear regression),

tipi
k, = (53.13)

11 wo

[y

1M w
o~
—N
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3.5.3. Calculating (effective) cleavage rates (NucleaSeq)

Next, we show how we instead can use the solution to the Master Equations (Equation
??) to mimic the NucleaSeq experiment [? ]. NucleaSeq is performed at saturating con-
centrations of Cas9-sgRNA, which we model by setting Foapy < 0kgT (we chose Fopyy =
—1000kgT), k,,, = . As done in the original experiment, the fraction of DNA not cleaved,

Poav(®) =1—=F, () = Z B (1) (53.14)

n#clv

is evaluated at the time points t, through tg as 05,12 5,605,180 5,600 5,1800 s,6000 s,18000
s, and 60000 s (using the initial condition of everything being unbound at t, = 0s, which
due to the high nuclease concentration results in (near) instantaneous occupation of the
DNA). Similarly to Boyle et al., Jones et al. assume the system to consist of just a single
bound state, for which the fraction of cleaved DNA under saturating conditions (no un-
bound DNA) follows

aPcIv
at

= KevPro v (t) = Pioan(8) = e~ kant (S3.15)

Hence, we obtain the effective cleavage rate (k. (t)) by fitting a line (forced through origin)
to the logarithm of the occupancies,

log(p;) = —kuyt; Vi €[0,1,2,..,9], (S3.16)
Using linear regression,
E: tilog(p)
kgy =—-1x% lzlg— (3.17)

3.5.4. Calculating apparent binding affinities (CHAMP)

A third quantity used throughout this work are ‘Apparent Binding Affinities’ (ABA) obtained
from the CHAMP experiment [? ]. CHAMP experiments are performed using dCas9, at
varying nuclease concentrations, rather than varying incubation times. Using the fitted
binding rate at 1nM,

[Cas9-sgRNA]

ko, ([Cas9-sgRNA]) = kiM ]

(S3.18)
The experiment consists of determining the fraction of bound DNA, Equation ??, at t =
10 minutes, for the concentrations ([Cas9-sgRNA]) 0.1 nM,0.3 nM,1 nM,3 nM,10 nM,30
nM,100 nM and 300 nM. Assuming the system has had sufficient time to equilibrate within
these 10 minutes, the series of occupancies should follow the Hill Equation (using ¢ =
[Cas9-sgRNA] /[1nm] to denote the relative concentration)

H= (53.19)

K
1+ 50
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A fit of Equation ?? to the series of occupancies (for the specified concentrations), results
in the apparent half-saturation concentration, or apparent dissociation constant K, for the
(off-)target of interest. The ABA is defined as the logarithm of K5, which has units of free-
energy. The quantity shown are what are termed, AABA’s, which are ABA differences w.r.t.
the on-target

AABA = ABA st target — ABAon-target (53.20)

3.5.5. Simulated Annealing fitting

All fits are performed using a custom written Simulated Annealing (SA) algorithm to mini-
mize the y? (least-squares optimization). Prior to fitting, the data (k, and k., values) are
converted to sequence averaged values for every unique mismatch pattern, weighted by
the square of their corresponding measurement errors (o (sequence)),

kiy/a(mm pattern) = Z Wikclv/a'i , W= Ut/§ oj (S3.21)

the same mme-pattern:i

The sums in Equation ?? run over all off-target sequences in the library that have the
same mismatch pattern. This particular weighted average is chosen as one can prove
that it represent the best possible sequence averaged model - it is the global optimal x?
when allowing one to assign exactly one model value to every possible mismatch pattern.
Hence, a good fit to the weighted averaged data represents a good fit to the raw data. The
corresponding measurement error in the weighted averaged rates ('standard error in the
weighted mean’) follows

6(mm pattern) = Z wio?, (S3.22)

the same mme-pattern:i

Furthermore, in our experience we obtained more accurate predictions of the lower val-
ued kg,’s in the NucleaSeq experiment when fitting not to the k,’s, but to the log(k,)
values in stead. For consistency we therefore also fitted against log(k,) values (in case
of the simultaneous fit). To construct a global y? for both association and cleavage rate
experiments, the individual y?’s are added together after dividing each by the number of
different sequences with the identical mismatch pattern in the respective libraries. For
both libraries, each member sequence contains more than the 20 nucleotides + 3 PAM nu-
cleotides that are important for targeting. Hence, multiple members would be considered
to be an on-target (also because of the first nucleotide in the NGG PAM that is allowed to
vary). Similarly, more than 3 off-targets are present with a single mismatch at one of the
20 R-loop positions. Using i to iterate over unique mismatch patterns, we let N; denote
the number of library members with pattern i. Further, their simply are more unique mis-
match patterns with two mismatches (20%19/2 = 190 in total) than with a single mismatch
(20 in total). To not over represent the influence of sequences with two mismatches, com-
pared to single mismatches (and on-targets), the y? is further divided into individual terms
with fixed total number of mismatches, dividing by the total number of unique mismatch
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Here, k®Periment and ¢ values are given by Equations ?? and ??. The model’s values k®*Periment
are determined using Equations ?? and ??.

The SA algorithm [? ] is commonly used for high-dimensional optimization problems, such
as the fit presented here, and we here highlight the specific adjustments made to suit our
problem. In brlef the SA algorithm finds the (presumably) global minimum of the objec-
tive function y (X) a function of the set of parameter values X by assuming equivalence
to the potential energy of a physical system. In every iteration, the parameter vector is
updated according to (letting U(—4, §) denote the uniform distribution from —§ to §)

-

X->X+U(-606) (S3.24)
)?I

We shall refer to § as the step size. After the update, the new parameter set ()?’) is accepted
if it lowers the objective function ()(2()?’) < )(2()?)) or with a probability proportional to
its corresponding Boltzmann weight when )(2()?’) = )(2()?). The resulting ‘acceptance
probability’ is known as the Metropolis condition,

_2%!
e X &xXyT

Pacc = min[1, ] (53.25)

e~ X*&yr
In the SA algorlthm the ‘temperature’ (T) is reduced iteratively to blas the system (pa-
rameter vector X) to occupy its ‘ground state’ (global minimum of y? (X) We start from
an initial temperature (T,) as the temperature at which the initially supplied step size (§)
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results in an acceptance ratio between 40% and 60% (evaluated every 1000 iteration).

Next, X is reset, and § is adapted every 1000 iterations to ensure an acceptance ratio of
40-60% at the current temperature, before moving on to the next temperature after one
more set of 1000 iterations. In analogy with statistical mechanics, we thereby let the sys-
tem equilibrate at every temperature before moving onwards [? ]. Here, we used an ex-
ponential cooling scheme with a 1% cooling rate for which the temperatures are defined
by the series

T, = 0.99%T, (S3.26)

The algorithm is stopped, minimum has been found, when both: (i) the temperature has
fallen below 1% of its initial value T < 0.01T,, and (ii) the relative change in average
x? (after equilibration), induced by reducing the temperature from T}, to T, has fallen
below the user-defined threshold (1073 for all reported fits)

) e = X iegn |
(x?),,

<10°° (53.27)

with ()(Z)k denoting the average x? at temperature T}, (determined in the 1000 steps after
‘equilibration’ as been reached, acceptance ratio of 40-60%). To be more confident that
our presented solution represents the global optimum of y?, we repeat our SA fit several
times, Figures ?? and ?? presents the best solution amongst the different replica.

In Figures ??D-F we post-selected the final results from the individual runs of the algo-
rithm by requiring that the resulting k, values (the only quantity fitted in this figure) on
average differ < 5% from those corresponding to the best fit. That is, the runs shown in
Figures S1D-F satisfy

est

1 Z ko — ks
_— — " < 0.05, (53.28)
# mm-patterns kafi-‘St

mme-pattern:i
which we take to be ‘equally valid’ solutions, as we now have filtered out fits clearly frozen
into sub-optimal minima. For the simultaneous fit of Figure ??, no such selection was
needed as all runs satisfied the equivalent of Equation ?? with both k, and k.

3.5.6. Translation to models assuming individual mismatches act
additively

Here we show in what limits our kinetic model corresponds to existing state-of-the-art
(model-based) prediction tools, in particular CFD [? ] and uCRISPR [? ]. Although no direct
comparison with our model has been given, we also discuss how the model of Farasat and
Salis can be rationalized from ours [? ]. Despite the different parameterizations, said mod-
els treat mismatches along the R-loop in quite similar fashion. To get the probability (rela-
tive rate) to cleave an off-target (compared to the on-target), the individual contributions
of separate mismatches are either added together in energy-space (UCRISPR) or multiplied
together in terms of their provabilities (CFD). From our physical model, we can understand
what assumptions have (implicitly) been made in their construction, and therefore must
hold in order to produce an accurate prediction.
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As has been done explicitly when constructing uCRISPR, we start by assuming the PAM
recognition and R-loop formation processes equilibrate prior to cleavage. In this limit, the
effective rate of cleaving an off-target equals the fraction of Cas9-sgRNA-DNA that is in the
cleavage competent state, multiplied by the bare catalytic rate,

E
kay ~ ket PES (53.29)

When our sequential model equilibrates, occupancies follow the Boltzmann distribution,

—Fy

PEQ = eT (53.30)
1+ Y efn

n=PAM
The Boltzmann factor (e ~F20) alone explains how straight addition of free-energy mismatch
penalties lead to multiplication of probabilities. However, as seen in Equation ??, the Boltz-
mann factor merely describes the numerator and to calculate the probability one must first
evaluate the partition function which is the denominator. Existing models used different
versions of the partition function. First, Farasat and Salis, only account for the solution
and cleavage competent states (state '20’). Within the context of our microscopic model,
this implies all but the final state’s energy are much greater than the solution state’s free-

energy,

e F2o
1+ e Fo
This is the core of the model used by Farasat and Salis ([? ]), in which F,q includes both se-
guence and position dependent mismatch penalties. In effect, both uCRISPR and CFD have
further assumed also the cleavage competent state is unstable (compared to solution),

F,» 1kyT Vn € [PAM,1..19] = PEQ ~ (53.31)

Fo » 1kgT, (3.32)
which reduces the occupation to al but its corresponding Boltzmann weight
P} ~ e~Fao, (53.33)

The uCRISPR model uses Equation ?? to determine (relative) cleavage rates (Equation ??),
using a set of sequence and position dependent energies. To partially correct for their
model’s inability of naturally explaining the non-additive nature multiple mismatches have,
the authors used a set of additional energetic penalties for incorporating consecutive mis-
matches.

We note that Equation ?? also describes the CFD model. CFD uses a set of measured proba-
bilities to cleave singly mismatched off-targets w.r.t the on-target, which according to Equa-
tion ?? amounts to measuring relative rates.

PZ%Q(lx mm)
%o - (on-target)

(S3.34)

The probability to cleave an off-target containing multiple mismatches, say at locations
mm1 and mm2, is obtained by multiplying the individual probabilities for the off-targets
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containing either of the mismatches. To see that our general model also returns multipli-
cations of probabilities in the limit where Equation ?? is valid, we denote the free-energy
of the off-targets (applying Equation ??)

Fg(2x mm) = €;(mm 1) + €;(mm 2) + Fo(on-target) (S3.35)
Next, using the approximations (Equations ?? and ??) leading up to Equation ??,

PQ%Q (2x mm) e ~F20(2xmm)

PzEOQ(on-target) e
— e—(EI(mm 1)+€e;(mm 2))

—F,o(on-target)

— e—e,(mm 1) X e—el(mm 2)
e e_FZO(mm 2) (5336)
e—on(on—target) X e—FZO(on—target)
Py Y(mm 1) Py Y(mm 2)
= TEQ X —q
By)y*(on-target) Py~ (on-target)
=p1XDp;

—F20 (mm 1)

Note that Equation ?? represents the defining assumption of any 'naive Bayes classifier’
used to predict cleavage activities [? ].

In conclusion, the models discussed here are only ever expected to produce accurate (rela-
tive) cleavage rates if any bound state is unstable, independent of Cas9-sgRNA concentra-
tion - an assumption that contradicts our model’s parameterization (Figure ??).

3.5.7. At short times, relative counts equal relative rates

After exposing the DNA to Cas9-sgRNA for a time t, the number of DNA molecules cut
equals the probability of any molecule being cleaved, P, (t) given by Equations ?? and ??,
multiplied by the total number of copies in the original pool of molecules (N o). Assuming
the same copy number of every off-target tested in the experiment, letting P51 "8 (t)
denote the probability of a on-target DNA molecule being cleaved, the number of cleaved
copies of an off-target compared to the number of cut on-targets equals

Py _ 1— e Fant t-0 1—(1—kgt) _ ke

on—target _pon—target, on—target,y ~ ;on—target
Pclv 1—e ke t 1-(1- kclv t) kclv

(S3.37)

, if the system can be approximated by the simpler Equation ??. We thus see that for
short experiments, the fraction of cut DNA molecules can approach the fraction to the
corresponding effective cleavage rates.
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A HiTS-FLIP (Boyle et al. 2017) B NucleaSeq (Jones et al. 2019) C CHAMP (Jones et al. 2019)
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Figure S3.1: related to Figure ??. Fit only to dCas9 data from HiTS-FLIP (Boyle et al.) (A) Comparison of model
to HiTS-FLIP data. top: fit against off-targets with 1 mismatch. bottom: fit against off-targets with 2 mismatches
(data in upper triangle/ model in lower triangle). (B) Comparison of model to CHAMP data. top: prediction of
off-targets with 1 mismatch. bottom: prediction of off-targets with 2 mismatches (data in upper triangle/ model
in lower triangle). (C) Comparison of model to NucleaSeq data. top: prediction of off-targets with 1 mismatch.
bottom: prediction of off-targets with 2 mismatches (data in upper triangle/ model in lower triangle). (D) Free-
energy landscape for 1nM sgCas9-RNA interaction with on-target DNA. Green curves represent fit results from
individual runs of our Simulated Annealing optimization algorithm whose resulting values differ less than 5% from
the best-solution’s outcomes (figure A) (see S.1.). Black shows median to guide the eye. Pink shows best solution,
used to produce figures A-C. (E) Mismatch penalties as a function of position along the RNA-DNA hybrid. Blue
dots show individual fit results (after selection). Black shows median to guide the eye. Pink shows best solution,
used to produce figures A-C. (F) Forward rate parameters. Green dots show individual fit results (after selection).
Black shows median to guide the eye. Pink shows best solution, used to produce figures A-C.
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Figure S3.2: related to Figures ?? and ??. Simultaneous fit to HiTS-FLIP and NucleaSeq data. (A) Free-energy
landscape for 1nM sgCas9-RNA interaction with on-target DNA. Green curves represent fit results from individual
runs of our Simulated Annealing optimization algorithm whose resulting values differ less than 5% from the best-
solution’s outcomes (Figures ??A-B) (see S.l.). Black shows median to guide the eye. Pink shows best solution,
used to produce Figures ??A-C. (B) Mismatch penalties as a function of position along the RNA-DNA hybrid. Blue
dots show individual fit results (after selection). Black shows median to guide the eye. Pink shows best solu-
tion, used to produce Figures ??A-C. (C) Forward rate parameters. Green dots show individual fit results (after
selection). Black shows median to guide the eye. Pink shows best solution, used to produce ??A-C.
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Figure S3.3: related to Figure ??. Correlation plots and additional test data.

last mismatch

(A) Correlation of model values

(fit+prediction) to HiTS-FLIP data. After making a 2D histogram of the data points, each is assigned a color accord-
ing to the histogram’s bin wherein they lie. Darker color indicates a higher density of data points. Dashed line
indicates perfect correlation. Both data fitted against (up until 2 mismatches) and the remainder of the library (>2
mismatches) are included. The latter therefore serves as a test. (B) Correlation of model values (fit) to NucleaSeq
data. Orange/Purple indicates a higher/lower density of data points. (C) Correlation of model values (prediction)
to CHAMP data. Darker color indicates a higher density of data points. (D) CHAMP data for off-targets with con-
secutive mismatches. Values on the vertical/horizontal axis indicate the first/final mismatch in the stretch. (E)
Model prediction of the data shown in figure D.
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Figure S3.4: related to Figure ??. Free-energy landscapes at varying nuclease concentrations. Free-energy
landscape for 0.001nM (blue) and 100nM (grey) Cas9-sgRNA interacting with on-target DNA. The height of the
first effective barrier is modulated by nuclease concentration, while the height of the second remains constant.
Hence, at higher nuclease concentrations, the difference between dCas9 binding and Cas9 cleavage rates is more

pronounced.
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A Doench et al. (Nature Biotechnology 2016), data CFD score B Hsu et al. (Nature Biotechnology 2013)
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Figure S3.5: related to Figure ??. comparing single-mismatch profiles for various guides (data taken across the
literature). (A) Cleavage activity w.r.t on-target, for different guides. Data from Doench et al. [? ] (processed
dataset from Zhang et al. [? ]). (B) Cleavage activity w.r.t on-target, for different guides. Data from Hsu et al. [?
] (processed dataset from Zhang et al. [? ]). (C) Cleavage activity w.r.t on-target, for different guides. Data from
Pattanayak et al. [? ]. (D) NucleaSeq data for guide used throughout this study (orange triangles) and a second
guide (green squares).
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Target search






Why Argonaute is needed to
make microRNA target search
fast and reliable

MicroRNA (miRNA) interferes with the translation of cognate messenger RNA
(mRNA) by finding, preferentially binding, and marking it for degradation.
To facilitate the search process, Argonaute (Ago) proteins come together with
miRNA, forming a dynamic search complex. In this review we use the language
of free-energy landscapes to discuss recent single-molecule and high-resolution
structural data in the light of theoretical work appropriated from the study of
transcription-factor search. We suggest that experimentally observed internal
states of the Ago-miRNA search complex may have the explicit biological func-
tion of speeding up search while maintaining specificity.

This chapter has been published as: M.Klein*, S.D.Chandradoss*, M.Depken and C.Joo. Why Argonaute is needed
to make microRNA target search fast and reliable. Seminars in Cell and Developmental Biology 65 20-28 (2017)
(*co-first authors)
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4.1. Introduction
E ukaryotes regulate gene expression post-transcriptionally through the RNA interfer-
ence (RNAI) pathway. This pathway begins with the transcription of non-coding RNA
and its subsequent maturation into microRNA (miRNA). To facilitate search and suppres-
sion of target messenger RNA (mRNA), Argonaute (Ago) proteins join together with the
miRNA molecule, forming an efficient search complex [? ? ]. In the pool of cellular RNA,
the search complex finds mRNA cognate to its miRNA and primes its degradation. As the
search relies on thermal motion, the functioning of the search complex can be understood
in terms of diffusion and the binding-energy landscape of mMRNA-Ago-miRNA interactions.
In this Review, we discuss recent single-molecule and structural data on Ago, and borrow
free-energy considerations and theory from transcription-factor search, highlighting how
several of the observed Ago conformations could function to speed up the search process.

1D hopping

1D sliding

Intersegmental
transfer

L mm—

14

3D diffusion

2

Figure 4.1: Facilitated diffusion. Four different modes of search can in principle be distinguished. 1) 3D search:
An Argonaute protein probes a new sequence by first unbinding, then diffusing through the cytosol, and finally
binding to probe a new uncorrelated site. 2) Sliding: A non- specifically bound protein laterally diffuses along the
MRNA to probe a new site, probing every potential intermediate site from the start to the new site. 3) Hopping:
A non-specifically bound protein unbinds, but quickly rebinds again to a site close by (along the RNA) from where
it unbound, but not necessarily probing every site in between. 4) Intersegmental transfer: a hopping mechanism
where unbinding and binding positions are correlated in 3D space, but far apart along the RNA. This is possible
due to the coiled conformation RNA adapts in vivo. binding

4.2. Target search in 1D and 3D

Ever since the initial observations of an astonishingly high association rate of the E. coli Lac
repressor to the lac operon [? ], researchers have been trying to understand general mech-
anisms that could speed up target search on nucleic-acid templates. In their seminal work
[? ], Berg, Winter and von Hippel proposed a facilitated diffusion mechanism by which the
protein combines three-dimensional diffusion through the cytoplasm with lateral diffusion
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along the DNA (see Fig.??) [? ]. We here qualitatively summarize the theoretical argu-
ments behind this suggestion and review the experimental evidence for lateral diffusion
by various search complexes.

4.2.1. Facilitated diffusion enables rapid target search of miRNA

Though facilitated diffusion was originally aimed at transcription-factor search on DNA, the
same arguments apply to any searcher along a nucleic acid sequence, including Ago-miRNA
search on RNA. The benefit of employing both 3D and 1D search can be qualitatively un-
derstood as follows: To find the next sequence to probe, it will always be faster to diffuse a
short distance laterally along the RNA (through hopping and sliding; Fig. ??) than to diffuse
a long distance through the cytosol. As lateral diffusion brings you to close-by sites, there
exists a point beyond which the search complex starts predominantly probing sites already
visited. At this point it becomes favorable to move to an unprobed RNA neighborhood by
diffusing through the cytosol. Minimizing redundancy of the one-dimensional (1D) search
thus comes at the cost of employing the slower 3D search, and there exists an optimum

4.2.2. Experimental evidence for lateral diffusion during target search

Single-molecule fluorescence studies brought direct evidence of lateral diffusion during
molecular target search, including sliding of transcription factors [? ? ], DNA repair proteins
[? ? ? ] zinc-finger proteins [? ], and the DNA recombination protein RecA [? ]. Like
Argonaute, RecA makes a nucleoprotein complex (a RecA—single-stranded DNA filament)
that is ready to basepair for target search [? ? ? ? ? ]. In order to investigate lateral
diffusion of Ago-miRNA on RNA, we adopted an in vitro single-molecule FRET assay that
was developed for studying RecA-mediated target search [? ]. We placed two identical
binding sites on a single target RNA strand, each of which led to a different FRET efficiency
with Ago-miRNA bound [? ]. We observed that a substantial fraction of the binding events
(> 50%) shuttled between two strong binding positions via rapid lateral diffusion. When
using a volume-occupying reagent (PEG) to mimic physiological conditions, most binding
events (> 90%) displayed shuttling by the same Ago-miRNA complex. This suggests that
lateral diffusion could also be important for in vivo microRNA search.

4.3. Multiple protein configurations for fast lateral dif-
fusion and stable target recognition

While target search is sped up by facilitated diffusion, Slutsky and Mirny [? ? ] argued that
it is not possible to have both fast lateral diffusion and stable/preferential binding to the
target using a single nucleoprotein conformation. The more stable binding to the target is,
the more stable binding to similar sequences also becomes, and the lateral diffusion slows
down as it gets increasingly trapped at non-target sites. To understand what is needed
for the resolution of this apparent paradox, we now follow Slutsky and Mirny [? ? ] and
consider the statistical variation of binding energies along the substrate (which for us is
MRNA).
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Figure 4.2: Search-stability paradox. (A) Energies of the binding sites are shown as short black horizontal mark-
ers. Being a sum of base pairing energies, binding energies are (approximately) Gaussian distributed with a stan-
dard deviation o. The target site is separated from the other binding sites by an energy of about AE. When
diffusing laterally, the minimal barrier towards diffusion is set by the energetic difference between neighbouring
sites (AET). In reality there are intervening barriers, as depicted by the dashed line. With little loss of generality,
we will ignore these additional contributions to the barriers and focus on the best-case scenario. (B) Recognition
mode - Stable binding, but slow search: A larger difference between target and non-target energies comes at
the cost of having larger barriers towards diffusion. The right panel shows the complete distribution of energetic
states (standard deviation o) of which a subset is plotted in the left panel. The typical (minimal) barrier towards
diffusion (AEE) and differential binding energy (AER) are indicated. (C) Search mode - Fast search, but no sta-
ble binding: Decreasing the barriers also decreases the difference between target and non-target energy, which
hampers the ability of the search complex to selectively bind to the target. The right panel shows the complete
distribution of energetic states (standard deviation og) of which a subset is plotted in the left panel. The typ-
ical (minimal) barrier towards diffusion (AE'sr) and differential binding energy (AEg) are indicated. (D) Search
+ Recognition - Fast search and stable binding: If the search complex posesses (at least) two distinct binding
modes, it becomes possible to combine the landscapes of figures B (blue) and C (green) to enable rapid diffusion
(AET = AEg) towards the target without loss of selectivity (AE =~ AER) (orange).

4.3.1. Resolving the speed-stability paradox by utilizing multiple
binding modes

Apart from the target, the sequences being searched through can be considered as essen-
tially random and uncorrelated [? ? ]. A substantially preferential binding to the target
requires that a correct match has a considerable energetic difference (AE, for definition
see Fig. ??A) to all partial matches. Slutsky and Mirny assume that the search complex
has a binding energy roughly proportional to the degree of sequence homology between
probed and target sequence. Under the assumption that the binding energy comes only
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from individual nucleotide-basepairing energies, a large energetic difference between tar-
get and non-target positions can only be achieved by large differences in pairing for each
nucleotide. A general increase of basepairing energies results in a larger standard deviation
among binding energies at different positions (compare gy of the “recognition” landscape
and og of the “search” landscape in Fig. ??B and C respectively), and the diffusion constant
along the mRNA can be shown to decrease sharply [? ? ]. In Fig. ??B we illustrate how a
large recognition energy will generally imply large barriers to lateral diffusion (AET, for def-
inition see Fig. ??A),resulting in a slow search process. Reversely, in Fig. 2?C we illustrate
how small barriers to diffusion implies poor recognition. Slutsky and Mirny proposed that
the coupling between recognition energy and diffusion barrier (AE* being proportional to
AE) can be broken if the search complex can stochastically switch between two internal
modes with different binding energy strength (Fig. ??D):

1. A search (S) mode: small affinity differences and fast diffusion (65 £ 2kgT ; Ref. [?

1)

2. A recognition (R) mode: large affinity differences and slow diffusion (6g & 5kgT ;
Ref. [? ])

An efficient searcher must have evolved the ability to combine the search and recognition
modes. Thereby, the non-specific (average) energies (dashed lines in Fig. ??B-D) are ar-
ranged such that all energies of the search mode lie between the energies of all non-target
sites and the target in the recognition mode (see Fig. ??D). Such systems predominantly
move according to the search mode when not at the target site, but predominantly oc-
cupy the recognition mode once at the target (see states with orange dots in Fig. ??D). The
effective search barriers are now set by the search mode (AET = AEg) while the recog-
nition energies are set by the recognition mode (AE =~ AER). Both fast search and stable
recognition is thus in principle possible if the searching protein possesses at least two dis-
tinct binding modes, and the above case represents the theoretical ideal scenario (for more

4.3.2. Experimental evidence for two initial binding modes of Ago-
miRNA

Both recent structural and single-molecule data of eukaryotic Ago proteins suggest that the
hybridization between guide and target is gradual and is coupled to structural changes in
the search complex. We here discuss these studies in the light of a search-stability paradox
for Ago-miRNA.

Biochemical, structural and computational analyses suggest that Argonaute divides its miRNA
guides into five functional domains (5’anchor, seed, mid region, 3’ supplementary region,
and the tail region) (Fig. ??). The seed region (nt 2—-8) is crucial for gene suppression [?

an A-form-helix that exposes nt 2—4 (or 2-5) for base paring with the target (Fig. ??A) [?
]. Based on this observation, Schirle et al [? ] proposed a step-wise target recognition for
human Argonaute-2 (hAgo2), in which the initial recognition of the target occurs in the 5’
part of the miRNA. Two subsequent single-molecule studies showed that Ago-miRNA in-
deed uses this so-called sub-seed for the initial weak recognition. Solomon et al designed
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Figure 4.3: Structural and domain overview of hAgo2 and miRNA. (A) The binary structure of hAgo2-miRNA
showing four well conserved domains among Argonaute proteins (snapshot of the structure 4W5N taken in pymol)
(B) Argonaute proteins divide miRNA(orange) in to several domains. The 5’ phosphate and nt 1 of miRNA (anchor)
is bound to the pocket in the MID domain. The nt 2—8 are known as seed sequence, as they are crucial for initial
targeting. The nt 9-10 have the least significant role in target recognition and are known as the mid region. The
3’ supplementary region is comprised of nt 13—16, they also have considerable role in stabilizing miRNA-target
interaction. The nucleotides beyond the 16th do not base pair with the target and are called the tail region. The
3’ OH is bound to the binding pocket in PAZ domain making it as a 3’ anchor. The t1 Adenosine (t1A) in the target
RNA (pink) binds to the binding pocket in MID domain..

di-nucleotide mutation constructs for mouse Ago-miRNA and measured the unbinding rate
from the target RNA [? ]. We have also shown that, when the paired region was gradually
shrunk from the full seed (nt 2-8) to only the first three nucleotides (nt 2-4), no difference
in the binding rate was noticeable [? ]. These two results showed that it is only the first
three nucleotides of the seed that are used to maintain weak interaction during the initial
search.

The two single-molecule works also suggested that Ago-miRNA exhibits a sharp increase
in the binding affinity when the number of paired nucleotides changes from6to 7 [? ? ].
Comparison of crystal structures suggests that this property originates from the fact that
Argonaute makes the guide kink away from the A-form stacked structure in several places
[? ? ? ? ]. The most prominent kink disrupting the helical arrangement of the guide is
between nt 6 and 7 (Fig. ??B). Base paring to the target, therefore, requires a shift of the
helix-7 that clashes with the incoming target. After pairing of nt 2-4, hAgo2 undergoes a
conformational change leading to a 4A displacement of the helix-7 loop and allowing base
pairing of nt 6-8 (Fig. ?2?C). It was hypothesized that the sharp increase in the time bound
between having 6 and 7 nt matching is caused by the conformational change of the helix-7
motif [? ]. We here suggest that Ago makes a change from a weak binding (search) mode
using nt 2- 4 to a strong binding (recognition) mode using a full seed through the confor-
mational change of the helix-7.
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Figure 4.4: Seed of miRNA and hAgo2-helix7. (A) Nucleotides 2—4 (green) of the guide RNA are well exposed
by residues in the PIWI domain (golden surface) possibly for initial target recognition (snapshot of the structure
4WS5N taken in pymol). (B) (B) The access to nt 5-7 of the guide (green) is blocked by the helix-7 motif (red).
The base paring of target to guide nt 5-7 would require displacement of helix-7 (snapshot of the structure 4W5N
taken in pymol). (C) Upon base paring with the target (grey) the helix-7 motif is displaced by 4 A compared to
guide-only structure. The displacement of helix-7 removes the constraints from nt 6 and 7 (yellow) compared to
guide only structure (green) making nt 6 and 7 available for base paring (see the close-up view in the right panel).
(snapshot of the structures 4W5N (guide only) and 4W50 (guide and target) taken in pymol).

4.3.3. The experimental evidence for additional binding modes of
Ago-miRNA
In addition to the helix-7 movement, more conformational changes take place after seed
pairing is achieved, and before the bound Ago-miRNA complex becomes cleavage compe-
tent. First, binding of the supplementary region (nt 13-16) ensuing the seed pairing en-
hances the binding stability of Ago-miRNA [? ]. But the pairing beyond nt 8 is restricted by
a physical constraint [? ](Fig. ??A). Widening up of a channel between PAZ and N-terminus
domains allows for a rearrangement of the disordered supplementary region (nt 13-16) of
the miRNA into a helical A-form, preparing it for pairing with the target RNA (Fig. ??B)[? ].
It remains to be seen whether target recognition is enhanced by this additional checkpoint.
Second, biochemical and single-molecule studies have shown that the base paring in the
mid region is necessary for cleavage of target RNA [? ? ]. But Jo et al also observed that a
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Figure 4.5: Cleavage competent state. (A) Structure showing the base pairing between a guide strand (green)
and a target strand (red). The base pairing beyond nt 8(g8) is blocked by a residue F811 in a helix of the PIWI
domain (snapshot of the structure 4W50 taken in pymol). (B) A binary structure of hAgo2-miRNA showing the
disordered 3’ supplementary region of guide RNA (green) passing through a channel between N domain (blue)
and PAZ domain (purple) (snapshot of the structure 4W5N taken in pymol). (C) A ternary structure of hAgo2-
miRNA and its target showing an A-form helical arrangement of the 3’ supplementary region of guide (green) in
ternary structure (snapshot of the structure 4W50 taken in pymol). sites

significant portion of Ago-miRNAs were not able to cleave the target RNAs in spite of their
perfect complementarity [? ? ]. The unsuccessful cleavage of perfect complementary
target might be the resultant of a failure to induce an additional conformational change
needed for cleavage that involves positioning of Ago’s catalytic residues residing near nt
9-10 of the miRNA.

Third, Ago uses its PAZ domain to preclude miRNA from being tightly associated with target
RNA. An earlier biochemical study reported that bare RNA as short as 12bp is long enough
for stable hybridization ( a year of life time) [? ]. But it was observed that Ago-miRNA (or
Ago-guide DNA) often dissociated from its target within seconds to minutes after binding
[? 1. This reversible binding, which is speculated to reduce off-targeting [? ], is possible be-
cause the 3’ end of guide RNA is anchored to the PAZ domain and this lowers the binding

In addition to the complex interactions between Ago and a guide strand, a direct inter-
action between Ago and target RNA also contributes to the target selection. Schirle et al
[? ] showed that hAgo2 interacts with the adenine nucleotide of the target when it is op-
posite to the 1st nucleotide of the guide. Through a water network, the residues in the
MID domain (Fig. ??A) specifically recognize the t1A anchoring the Ago-miRNA complex to
the target. Using a single-molecule assay they showed that t1A does not influences initial
target recognition but increases the residence time of Ago-miRNA on to the target RNA,
which might enhance its cleavage efficiency [? ].
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4.4. Energy landscape of miRNA target search

Having discussed the evidence that a series of conformational changes are needed to ini-
tiate stable binding and cleavage of target mRNA, we now discuss how conformational
changes effect the binding-energy landscape. When Ago initially scans the target RNA it
exposes only nucleotides 2-4 of the miRNA, termed the sub-seed. In this search mode it
does not discriminate strongly based on RNA sequence, and lateral diffusion is likely rapid.
A complete match of the sub-seed stabilizes a conformational change that exposes the re-
mainder of the seed (nt 2-8) for base pairing, and, once paired, it slows down the diffusion
in this recognition mode (Fig. ??A). Upon encountering a sequence bearing complemen-
tarity to the entire seed, the helix-7 is displaced to allow miRNA to fully pair with the target,
and the Ago-miRNA complex arrives in this more stable recognition state (Fig. ??A and B).
We suggest that the function of these various states is analogous to the function of internal
states in transcription-factor search (Fig. ??D).

In figure ??B we sketch a free-energy landscape of the dominant configuration at varying
degrees of base pairing for a perfect match. Transitions requiring conformational changes
cost energy, increasing barriers to further base pairing. We construct a sketch of the land-
scape based on a single-molecule study that reported the existence of various pathways
even when the full sequence of miRNA matches with a target [? ]: a significant fraction
of the population showed transient binding ( 10%) and stable binding with no cleavage
( 30%). Assuming that the largest barrier to further basepairing originates from the re-
quired movement of helix-7, the substantial fraction of transiently binding proteins indi-
cates that this barrier must come close to the barrier to unbind. Further, the even larger
fraction of stable but non-cleaving complexes indicates that the average binding energy
past helix-7 is strong, and that the cleavage rate is slow compared to experimental times,
but fast compared to unbinding.

With these general considerations, we conclude that the free-energy landscape of Fig. ??B
captures at least one search mode (pre-seed pairing) and at least one recognition mode
(post-seed pairing). These two modes could be further split up, e.g. the seed pairing
into sub-seed and full seed pairing. Still, the general principle behind resolving the speed-
stability paradox should apply. To determine the quantitative effects of this energy land-
scape will require additional theoretical work accounting for gradual base pairing and a
series of conformational changes. Using single-molecule techniques and high resolution
structural studies, it will also be possible to test the effect of Ago’s conformational changes
on target search by analysing mutated proteins or directly observe conformational switch-
ing (for instance by using FRET such as done for Cas9 in [? ]).

4.5. Outlook

We have reviewed the principles behind facilitated diffusion and the speed-stability para-

dox in general target search processes, as well as the experimental evidence for facilitated
diffusion in miRNA target search. We further discussed the evidence for multiple search
states in the Ago-miRNA search complex, which could help resolve the speed-stability paradox—
simultaneously enabling the search to be fast and the binding to the target to be strong.
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Figure 4.6: Target search process by hAgo2. (A)A model summarizing conformational changes during target
search by hAgo2-miRNA. In light of the search-stability paradox discussed in Fig. ?? we identify a two search modes
(pink + green) and a recognition mode (blue). Alternating between search and recognition modes is enabled
through the movement of the helix-7 motif (orange). (B) Schematic free-energy diagram for Ago-microRNA target
recognition. Forming bonds between target and guide (horizontal axis) makes the complex more stable (vertical
axis). In light of the search-stability paradox, as proposed by Slutsky and Mirny and discussed in Fig. ??, we identify
at least 1 search mode (pre-seed pairing, green arrow) and at least one recognition mode (post-seed pairing, blue
arrow). To resolve the paradox, Argonaute can use the movement of its helix-7 motif to switch between search
and recognition modes (orange arrow). Potentially, additional modes can be distinguished, such as sub-seed

pairing (pink arrow).
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4.5.1. Further insight into Ago-miRNA target search can improve

microRNA target prediction algorithms
Due to the complex nature of the mRNA targeting process, it is far from straightforward
to predict what genes are silenced by a particular miRNA. Experimentally, mRNA targets
have been found by analysing the effect of miRNA expression on protein production or by
performing binding assays [? ]. For such approaches to work, one needs to know what tar-
get gene should be considered from the outset. Using bioinformatics algorithms, potential
target sites are scored, and high scoring targets are subsequently tested in experiment.
Simple sequence homology between the mRNA to the guiding miRNA does not by itself
give an accurate prediction of targets. Presently, typical prediction algorithms are largely
phenomenological in nature, for example, assigning higher scores to sequences that fully
match the seed of the miRNA and/or are evolutionary conserved. Additionally, account-
ing for the secondary structure of mRNA and the sequence outside of the targeted 3’-UTR
further improves predictions [? ? ]. A recent combined bioinformatics and in vivo study
showed that there are at least 14 additional sequence features (for example the length 3’-
UTR region and the predicted structural accessibility of the RNA) of the mRNA that improve
microRNA target prediction algorithms [? ]. Yet, despite much effort, prediction algorithms
often point to many target sites that cannot be validated experimentally or fail to pick out
targets that have been previously validated. Single-molecule studies allow one to study
how Ago-miRNA’s interaction with RNA binding proteins effects target affinity. Synthe-
sising such molecular level understanding into the free-energy landscapes that we have
discussed in this review should help improving the scoring functions of target prediction
algorithms by taking the non-equilibrium features of the system into account. Additionally,
prediction algorithms can potentially be improved by taking sequences neighbouring the
target into account [? ? ? ? ]. Chandradoss et al. showed that, when two identical targets
are neighbouring each other, the total retention time was substantially larger than what
can be expected on theoretical grounds for two non-interacting targets [? ]. This synergistic
effect might also be observed when a target is neighboured by sub-seed sequences. It will
be interesting to determine whether this putative effect exists in vivo. Possibly, modelling
the physical interaction with neighbouring sites, and accordingly assigning higher scores
to those mRNA sequences with a high-density of sub-seed sequences, could then improve
target prediction algorithms.

4.5.2. Implications for other target search systems

Inthe cell, multiple nucleic acid-mediated target search processes take place. Amongthem,
RecA-mediated target search is the most thoroughly studied system. Qi et al. [? ] se-
lectively observed stable interactions between a RecA-ssDNA homologue and DNA in a
DNA curtain experiment, in which single-molecule signals were only observed when ss-
DNA and dsDNA matched with each other for at least 8 nucleotides. Furthermore, using
singlemolecule FRET, Ragunathan et al. [? ] observed short-lived interactions (1-10 s)
between RecA-ssDNA and target DNA that had 5-7 matching nucleotides. The difference
between having 7 or 8 matches suggests there exists a rate limiting step hampering RecA-
ssDNA filaments to extend base pairing beyond the 7th nucleotide (similar to the barrier
representing the movement of the helix-7 motif in Figure ??B).
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Recently, great attention has been brought to the CRISPR/Cas system, an adaptive im-
mune system in bacteria, which uses RNA as a guide to target foreign DNA or RNA [? ].
CRISPR’s target search involves a protein- DNA interaction (recognition of a 3-nt sequence,
so-called PAM sequence) and RNA-DNA interactions. Biochemical studies suggested that
it is the PAM recognition that occurs prior to the seed recognition [? ? ? ]. Recently, a
structural study showed that the first 8 nucleotides of Cas9’s guide are pre-organized in a
helical Aform, similar to the seed sequence of microRNA in Argonaute [? ]. A recent FRET
study indicated that there is another mode that follows binding of the seed recognition
[? 1. The authors showed that only when the guide RNA of Cas9 makes extensive base
pairing ( 16nt out of the 20nt guide), a nuclease domain (HNH) migrates towards the target
DNA. Altogether, the findings imply that CRISPR/Cas9, similar to Argonaute, uses more than
two binding modes to overcome the speed-stability paradox (‘PAM only’ to ‘PAM+seed’ to
‘cleavage competent’). Whereas a DNA curtain assay ruled out long distance lateral dif-
fusion, it will be interesting to find out whether the CRISPR-Cas system makes any local
lateral excursions when searching for the PAM sequence. Similarly, no large scale lateral
diffusion has been observed for RecA/Rad51 systems using DNA curtain assays (>100nm
resolution) [? ], while short-range lateral diffusion was observed in single-molecule FRET
experiments (nanometer resolution) [? ] .

Finally, it will be interesting to find out how much the search mechanism of human Argonaute-
2 is shared with other target search systems such as those mentioned in this review and
different classes of Ago proteins that use DNA to target DNA [? ? ] and RNA to target DNA
[? ] as well as PIWI proteins [? ].
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Argonaute bypasses cellular
obstacles without hindrance
during target search

Argonaute (Ago) proteins are key players in both gene regulation (eukaryotes) and
host defense (prokaryotes). Acting on single-stranded nucleic-acid substrates,
Ago relies on base pairing between a small nucleic-acid guide and its comple-
mentary target sequences for specificity. To efficiently scan nucleic-acid chains
for targets, Ago diffuses laterally along the substrate and must bypass secondary
structures as well as protein barriers. Using single-molecule FRET in conjunc-
tion with kinetic modelling, we reveal that target scanning is mediated through
loose protein-nucleic acid interactions, allowing Ago to slide short distances over
secondary structures, as well as to bypass protein barriers via intersegmental
jumps. Our combined single-molecule experiment and kinetic modelling ap-
proach may serve as a novel platform to dissect search process and study the
effect of sequence on search kinetics for other nucleic acid-guided proteins.

This chapter has been published as: Cui, T.J., Klein, M., Hegge, J.W., Chandradoss, S.D., van der Oost, J., Depken,
M., and Joo, C. Argonaute bypasses cellular obstacles without hindrance during target search. Nature Communi-
cations 10-4390 (2019)
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5.1. Introduction

Target recognition by oligonucleotide guides is essential in cellular development, differen-
tiation and immunity [? ? ]. Argonaute (Ago) proteins are key mediators of the target
interference process, utilizing short oligo-nucleotides ( 20-30 nt) as guides for finding com-
plementary target sequences [? ? ]. The guide-target interaction initiates at the 5’ end of
the guide, and progresses through Watson-Crick base pairing at the “seed” segment, which
propagates along the guide, resulting in target interference upon completion [? ]. While
eukaryotic Argonautes use RNA guides to target RNA, prokaryotic Agos (pAgo) have been
demonstrated to use a variety of guides and targets [? ? ? ]. Depending on the pAgo type,
it uses either DNA or RNA guides to target single-stranded (ss) DNA, ssRNA or both2. The
ability of pAgos to cleave ssDNA but not double stranded DNA (dsDNA) suggests a physi-
ological role as a host defense system against ss mobile genetic elements6—8. Recently, a
new family of CRISPR-Cas systems that targets ssDNA—not dsDNA—have been discovered
in archaea, suggesting that these defense systems may be more widespread than previ-
ously thought [? ]. The number of potential targets encoded in cellular DNA/RNA is vast
[? ?2 ? ] and Ago needs to search long stretches of polymer before finding a canonical
target. Single-molecule studies have shown that a mixture of excursions into solution and
one-dimensional movements results in a search that is orders of magnitude more efficient
than is possible without lateral diffusion [? ? ]. In a previous biophysical study we sug-
gested that human Argonaute 2 (hAGO2) uses lateral diffusion along RNA for target search
[? ]. Yet, the degree of lateral diffusion remains unclear, as excessive usage of 1D diffusion
would lead to redundant re-sampling of potential target sites and to problems at various
roadblocks present on the target nucleic acids [? ? ]. In addition to complete dissociation
into solution, intersegmental jumping, in which a protein transfers between two spatially
close-by segments, has been shown to occur for DNA binding proteins such as restriction
enzyme EcoRV [? ]. After binding to DNA non-specifically from solution, the protein diffu-
sively scans only a limited section [? ? ? ? ], and dissociates into solution before rebinding
to a new section. Use of such a mechanism would lead to reduced sampling redundancy,
and the possibility to circumvent obstructions when proteins search for their targets.

Previous studies have shown that certain DNA/RNA-guided proteins interact with DNA
through non-specific electrostatic interactions [? ? ? ], but the strength of these inter-
actions and their behaviour on roadblocks and secondary structures is not understood.
Since these interactions are typically short-ranged [? ? ? ] and short-lived [? ? ? ? ? ?
? ], a method offering high spatio-temporal resolution is required to study these interac-
tions. Here we make use of single molecule Forster Resonance Energy Transfer (FRET) to
elucidate the mechanism of ssDNA target search by a mesophilic Ago from the bacterium
Clostridium butyricum (CbAgo). We show that CbAgo does not remain in tight contact
with the DNA backbone, enabling it to bypass secondary structures along the nucleic-acid
chain—all while retaining the ability to recognize its target. After sliding locally, the protein
is able to reach distant sites (>100 nt) along the DNA through intersegmental jumps and
then resumes sliding. These different modes of facilitated diffusion allow Ago to rapidly
search through nucleic acid segments, as well as to bypass substantial obstacles during
target scanning.
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5.2. Results
5.2.1. Single-molecule kinetics of CbAgo binding

To elucidate the complexity of the target search mechanism, we made use of the high spa-
tial sensitivity of single-molecule FRET. We studied a minimal Argonaute complex that con-
sists of CbAgo, loaded with a 22-nt DNA guide (small interfering DNA, siDNA) [? ]. By us-
ing total internal reflection fluorescence (TIRF) microscopy, we recorded the interactions
of CbAgo-siDNA with target DNA. Target DNA was immobilized on a PEG-coated quartz
surface in a microfluidic chamber through biotin-streptavidin conjugation. Guide-loaded
CbAgo was introduced to the microfluidic chamber by flow. The target was embedded
within a poly-thymine sequence and labelled with an acceptor dye (Cy5) (Figure ??a). The
guide construct was labelled at nt 9 from the 5’-end with a donor dye (Cy3) (Figure ??b).
A 532-nm laser excitation resulted in donor excitation when the protein loaded with the
guide DNA interacted with the target DNA. Once the CbAgo-siDNA complex became bound
to the target, the proximity of the donor dye to the acceptor dye on the target resulted in
high FRET efficiency. This was followed by a sudden disappearance of the signal, indicating
that the complex dissociated from the target and diffused into the free solution. Freely
diffusing molecules move too rapidly (~ us) in and out of the evanescent field for the cur-
rent time resolution of the experimental setup (100 ms) and were therefore not recorded.
We found that CbAgo is not able to target dsDNA directly (Figure ??a-b). Likewise, when
a ssDNA target with one base pair complementarity to the seed motif of the guide was
used, only transient interactions (~0.45 s) were detected (Figure ??c-d), and no accurate
binding profile could be extracted from the FRET histogram (Figure ??e). To observe target
search that involves intrinsically transient interactions, we determined the optimal target
motif for recording binding events. The optimal motif should provide binding events longer
than our detection limit of 100 ms, but still lead to dissociation events within the time of
our measurement (200 s). To determine the optimal motif, the complementarity between
guide and target was incrementally extended from nt 2 to 8 of the guide, showing a gradu-
ally increasing dwell time of the Ago-siDNA complex. We found that increasing the number
of complementary base pairs above 6 resulted in stable binding beyond the photobleach-
ing time (Figure ??c). To maintain weak interactions, we continued our experiments using
a siDNA with three-base complementarity (N=3) with the target (nt 2-4) (Figure ??f). This
gives a well-defined FRET population in the FRET histogram (Figure ??h), unlike one base-
pair complementarity. Our estimation of the photobleaching rate (1.4 x 1073 s~1) (Figure
??d) was an order of magnitude lower than the dissociation rate (2.7 x 10~2 s~1) (Figure
??g), indicating that photobleaching does not affect our estimation of the dissociation rate.

5.2.2. Lateral diffusion of CbAgo

It was previously shown that an Ago-guide complex does not directly bind a specific target
site from solution, but rather binds non-specifically to random positions along a surfaced-
immobilized nucleic acid construct [? ]. Such non-specific interactions of CbAgo-siDNA
along target DNA are too short-lived to resolve in the absence of a canonical target motif
(Figure ??c), and in the presence of such a motif there was still no lateral diffusion visible
(Figure ??f). As we were unable to resolve lateral diffusion by CbAgo from non-specifically
bound regions to the target, we questioned whether the observed stable signal for three
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Figure 5.1: Single molecule imaging of target binding by siDNA:CbAgo complex. a, Immobilization scheme of the
Argonaute-guide DNA complex. ssDNA is immobilized on a PEGylated quartz slide surface. Presence of the Ago-
siDNA complex is detected by specific binding to target site (light yellow) resulting in high FRET. b, Sequences of
guide (green) and target DNA. Guide is labelled on the 9th nucleotide position from the 5’ side. c, Representative
FRET trace of a single molecule experiment at 100 mM NaCl showing a transient interaction between CbAgo and
a poly-T strand. Time resolution is 100 ms. d, Dwell time distribution of the Argonaute in absence of target motif.
e, FRET values of the transient interactions of (d). f, Representative FRET trace of a single molecule experiment
showing the interaction between CbAgo and a 2-4 nt (N=3) motif. g, Dwell time distribution Dwell time distribution
of N=3 binding events with the mean dwell time of 37 s. h, FRET histogram of binding events, showing a single
FRET population for N=3 at E=0.78.

complementary base pairs is due to stable binding to the target or contains lateral excur-
sions away from the target but below our time resolution. In case of the latter, measured
apparent dwell times (Figure ??g) would consist of the combined dwell times of many tar-
get escapes through lateral diffusion, each followed by rapid recapture below the detection
limit, before CbAgo eventually unbinds from the DNA (Figure ??g). We show that such a
process of repeated recapture would result in an exponential distribution of apparent dwell
times, in accordance with Figure ??g (see S.l.). To overcome the temporal resolution limit,
we adopted a tandem target assay [? ? ]. While lateral diffusive excursions from a trap are
too short-lived to be resolved in the presence of only a single target, a second target can
trap an excursion for long enough to be observed. We placed two identical optimal targets
(site 1 and site 2) separated by 22 nt (Figure ??a) along the DNA construct. Both targets
base pair only with the first three nucleotides (nt 2-4) of the guide bound by CbAgo. As
the second target is located further away from the acceptor dye, binding the second tar-
get results in a lower FRET efficiency than binding the first target. This difference in FRET
values allows us to determine which of the two targets CbAgo-siDNA is bound to (Figure
??b). The respective distance and FRET efficiency between the first binding site (site 1)
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and the acceptor dye (Cy5) remained the same as for the single target assay (E 0.78), while
an additional peak appeared at a lower FRET efficiency for the second target (E 0.43, Fig-
ure ??2c). After binding to one of the target sites, a majority of the binding events (87.8%)
resulted in CbAgo-siDNA shuttling to the other target without loss of FRET signal. Under
our standard experimental condition (100 mM NaCl), an average of 13.5 shuttling events
occur per binding event (Figure ??d). When the experiment was repeated for guides and
targets with complementary increased to N=6 (nt 2-7), only 15.1% of the traces showed
the shuttling signature within our time window (Figure ??f). This shows that the shuttling
signature is controlled by interactions between CbAgo-ssDNA and the target motif. With a
6-nt match, the target is strongly bound, and we are less likely to observe a shuttling event
within our observation window.

Interestingly, the average dwell time of the first target (Figure ??g) decreased from 37 s
to 1.7 and 1.8 s after adding a second target in its vicinity (Figure ??e). This observation
is in agreement with our lateral diffusion model, since with close-by targets, each sub-
resolution diffusive excursion has some probability to be caught at the opposing target.
To further test our claim that the transition between targets occur through lateral diffu-
sion, we use single-molecule analysis software [? ] to extract the average time between
shuttling events (Atgp, 1) from traces (Figure ??).

5.2.3. Kinetic modelling of lateral diffusion

To determine how lateral diffusion contributes to the shuttling, we kinetically model how
Aty e depends on the distance between traps. The DNA construct is modelled as a series
of binding sites along which CbAgo will perform an unbiased random walk by stepping to
neighboring nucleotides. The rate of stepping away from the target is k... in both direc-
tions, while at non-specific sites (poly-T), stepping is assumed to be near instantaneous—an
approximation justified by the fact that lateral excursions are never resolved in the exper-
iments. The time needed for FRET transitions to occur (named “shuttling time”, Aty uie)
is equivalent to the apparent dwell time at a single FRET state. In the S.l. we construct a
diffusive model capturing the effect of Ago’s repeated retrapping before shuttling to the
other trap. The model shows that the shuttling time from the target grows linearly with
the separation Xzt between the targets

Xtarget

kesc

ATghuttie (xtarget) = (5.1)

The linear dependence of the shuttling time with trap separation might seem puzzling at
first, given that diffusive timescales usually show a quadratic dependence on distances.
Here though, it is not the diffusive steps themselves that directly contributes to the shut-
tling time, but rather the changing probability to getting retrapped before shuttling. In
support of this model, we observed that the apparent shuttling time Atnyie (Xtarget) in-
creases approximately linearly when the distance between the targets increases through
11, 15, 18 and 22 nt (Figure ??). A fit to Equation 1 reveals that CbAgo-siDNA complexes
escape the target site at a rate of 15.8 times per second (k. = 15.8571) in either direc-
tion.
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Figure 5.2: Shuttling signature of CbAgo appears in presence of two targets. a, In the top right corner the DNA
sequence of guide and target for 22 nt separation between targets. Here the distance is defined as the distance
from beginning of a target to the beginning of the next target. The placement of the second target (site 2) results
in the appearance of an additional FRET signal, with lower FRET efficiency. b, (Top) Representative shuttling trace
of a 22 nt separation tandem target at 100 mM NaCl for N=3. (Bottom) The corresponding FRET states (blue) with
the fitted HMM trace on top (red). (Right) FRET histogram of the respective time trace. Time resolution is 100 ms.
¢, FRET histograms of respective states, with peaks at 0.43 and 0.78. d, Shuttling event distribution for the same
conditions (n=309). Bin size = 10. On average 13.5 shuttling events take place before dissociation. The grey bar
(n=33) marks binding events followed by dissociation (no shuttling). e, Dwell time distributions of respectively
the transitions from low FRET state to high FRET state (top) and vice versa (bottom).

5.2.4. Ago probes for targets during lateral diffusion

Next, we placed a third target on the tandem construct (Figure ??a), keeping the distance
between each set of neighboring targets well within the regime for which we find good
agreement to Equation 1 using the assay discussed above (i.e. at 11 nt trap separation,
see Figure ??). We observed three different FRET levels, corresponding to CbAgo get-
ting trapped at the three different targets (Figure ??b). Using Hidden Markov Modelling
(HMM), states can be assigned (Figure ??b) and transition probabilities can be extracted
(Figure ??c). If CbAgo returns to solution between binding targets, transitions between
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Figure 5.3: CbAgo shuttling behaviour differs across short and large distances Shuttling time is plotted versus
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its 95% confidence interval. The blue region indicates where the shuttling time follows lateral diffusion theory.
This theory breaks down for larger distances (green).

any pair of targets will be equally probable, resulting in equal effective rates between all
targets. However, if lateral diffusion dominates, transitions between adjacent sites will be
favored. The transition probabilities (Figure ??c) indicate that over 90% of the transitions
between the two outer targets (from state A to C, or from C to A) proceed through the
intermediate target site (state B). The rate to transfer from B to C and B to A is twice as
much as that of the opposite path (A to B or C to B). Using the fitted escape rate from
above, k.. = 15.8571, we predict similar shuttling times based on our theoretical model
for lateral diffusion (Figure ??d, S.l.). With no more free-parameters remaining for this
prediction, we take this experimental agreement with our prediction as further evidence
of lateral diffusion. It is noteworthy that there are about 10% direct transitions from A
to C and C to A without any intervening dissociation. The exponential distribution of the
dwell times (Figure ??b) suggests that at our current time resolution this 10% may be either
due to missed events or due to the existence of an additional translocation mode through
which Ago is able to bypass the intermediate target.

5.2.5. Ago target search is unhindered by structural and protein

barriers
Secondary structures are commonly found in mRNA and are also predicted to exist in sin-
gle stranded viruses [? ? ]. It is not known whether CbAgo is able to bypass the numerous
junctions it encounters upon scanning a DNA segment. To examine this, a Y-fork structure
(DNA junction) was introduced as a road block between two targets (Figure ??a), while
keeping their separation (11 nt) the same as in the tandem target variant (Figure ??f). The
construct was designed such that the labelled target was partially annealed at the stem
with a biotinylated target, thus only annealed constructs were observable on the surface
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Figure 5.4: CbAgo undergoes short range diffusion through correlated steps. a, Models for target translocation at
shortrange. In the 3D diffusion model, target dissociation occurs from A followed by random 3D diffusion through
solution. In effect, the neighboring two targets (B and C) will compete for binding. In the lateral diffusion model,
the CbAgo complex will have to bypass the adjacent target B before binding to target C. b, Representative FRET
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Bottom: FRET trace (blue) and HMM assigned states (red). Right: The fitted states from this data trace with dark
blue: state C, pink: state B and purple state A. ¢, Transition probabilities from state A to B,C (left), from state C to
A and B (middle) and from state B to A or C (right). d, Experimental values of the shuttling time of the three target
construct were compared against the parameter-free theoretical model that only uses the ke = 15.85~ 1 from
Figure 3. Error bars indicate the 95% confidence interval acquired from 10° bootstraps.

of the microfluidic device. When CbAgo binds to either of the two targets, it can reach the
other target only by crossing the junction. Our measurement showed that there was no
significant difference in shuttling time between the standard tandem-target construct and
the Y-fork construct (Figure ??b-c), indicating that the Y-fork does not impede any of the lat-
eral diffusion modes present. We have previously observed that the CbAgo-siDNA complex
is not able to stably bind to dsDNA31, demonstrating that the protein cannot simply track
the backbone of dsDNA (Figure ??a-b). Thus, our result suggests that the Ago-siDNA com-
plex does not maintain tight contact with DNA during lateral diffusion. Maintaining a weak
interaction with the DNA molecule allows CbAgo-siDNA to move past the junction. Next,
we questioned whether CbAgo is also able to overcome larger barriers, such as proteins
which cannot reasonably be traversable through sliding alone. Lin28, a sequence-specific
inhibitor of let-7 miRNA biogenesis, has been found to associate sequence specifically to
RNA and DNA [? ]. His-tagged Lin28 was immobilized on the surface of the microfluidic
chamber (Figure ??d) after which a fluorescent ssDNA fragment was added containing a
central Lin28 binding motif and an Ago target motif on either side (Figure ??d & Figure
??g). The presence of the protein blockade did not preclude Ago from reaching the dis-
tal site (Figure ??e) but noticeably broadened the FRET peak (Figure ??f), possibly due to
protein-protein interactions. Although the shuttling rate was lowered from 0.60s™?! to
0.27s~1 (Figure ??g & Figure ??e), Ago is able to bypass the obstacle. Since short-range
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lateral movement is now blocked by the protein barrier, Ago’s ability to move between tar-
gets demonstrates that the target search process also allows for intersegmental jumps, in
accordance with our observation that the middle target is sometimes skipped when tran-
sitioning between the outer targets in Figure ??c.

5.2.6. Ago relies on flexibility of DNA segments of bypassing block-
ades

Since Ago was observed to be able to bypass junctions and proteins, we questioned whether
Ago could bypass other large-profile barriers. Previously, we observed that Ago only inter-
acts transiently with dsDNA (Figure ??a-b) and thus we repurposed dsDNA as an extended
blockade. We made a construct analogous to the tandem target construct used in Fig-
ure ??a, but the targets were separated by 36 nt and complementary strands of 17 nt, 21
nt, and 25 nt were annealed to the region in between the targets (Figure ??h-i). For the
construct with a 17-nt blockade we observed a large number of shuttling events (shuttling
probability 65.3% upon binding) indicating that a dsDNA blockade does not prohibit CbAgo
from reaching the other site (Figure ??j and Figure ??| black squares). Upon extending the
length of the dsDNA blockade, to 21 nt and 25 nt, we noticed a drop in the percentage of
shuttling events (63.1% and 40.4% respectively) although shuttling still persisted (Supple-
mentary Fig ??). Since the stiff segment of dsDNA decreases the shuttling probability, we
conclude that Ago relies on the flexibility of segments for lateral diffusion. To further inves-
tigate the contribution of DNA flexibility, we used another construct which was shortened
(by 15 nt from 19 nt) from the 5’ side (Figure ??h bottom sequence). Here, ssDNA coiling
was no longer possible from the 5’ side of the DNA construct (Figure ??k). We measured a
significant decrease ( 50%) in shuttling probability for all three blockades compared to the
untruncated construct (Figure ??1), which supports that Ago relies on the flexibility of DNA
segments when transferring between them.

5.2.7. Ago uses hops to access distant DNA segments

Sliding is not expected to dominate across large distances, as the linear increase in shuttling
time (Equation ??) would render the search process prohibitively slow. However, when
CbAgo was studied with tandem targets that were separated 36 nt or more, we observed
that the shuttling still persisted across larger distances (Figure ??, green region, Supple-
mentary Table 1 and Figure ??). Together with the evidence of intersegmental jumping
above, and the fact that the ssDNA can easily be coiled back to bring the second target
close to the Ago protein [? ], we speculate that there is a second mechanism of lateral
diffusion: after local scanning for the target through sliding, the CbAgo complex jumps to a
different part of the segment that has looped back into proximity of the complex. From this
point on, we refer to these hops as intersegmental transfers in accordance with the current
literature (Figure ??) [? ? ]. This intersegmental jumping mechanism would enable CbAgo
to travel to new sites without fully dissociating, and rescanning of the same sections would
be minimized [? ? ]. Based on the dependence of the single-target off-rate on the ionic
strength (Figure 2?f), we expect the rate of the intersegmental jumps to also be dependent
on salt concentration, while sliding should only be moderately effected since it has no net
effect on the ion condensation along the substrate. In order to test the hypothesis that
short-ranged lateral diffusion is governed by sliding and long-range diffusion is governed
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Figure 5.5: Argonaute can overcome structural and protein barriers. a, Schematic drawing tandem target assay
(left) and the Y-fork assay (right) with 11 nt separation between targets. b, Representative shuttling traces of the
tandem target assay (top) and Y-fork assay. ¢, The shuttling time of the Y-fork junction (blue bar) compared with
the tandem assay (white bar). The experimental data of both sets were taken on the same days. Error bars indicate
the 95% confidence interval acquired from 105 bootstraps d, Schematic drawing of the His-Lin28b blockade assay,
where targets are separated by 64 nt. Immobilization happens through a biotin-anti-His antibody. e, Example of a
shuttling trace with Lin28b located in between two targets. Exposure time is 100 ms. f, FRET histogram (molecules
n = 46) fit with two Gaussian functions (E=0.64 for red fit and E=0.95 for dark blue fit). g, The shuttling time of the
Lin28 assay compared with the tandem target assay for 64 nt separation between targets. h, Sequences used for
the dsDNA block assay, indicating the base pairing between a 17 nt, 21 nt and a 25 nt long blockade and the target
strand. The dsDNA block construct has a 19 nt flank on the 5’ side, whereas the “truncated flank” has a 4 nt flank.
i, Schematic of a dsDNA block assay, where the CTC targets are highlighted with orange. j, Representative trace of
binding and shuttling of CbAgo on a 17 bp blockade DNA construct. k, (left) Schematic of dsDNA block construct
with full length flanks. (right) schematic of the truncated version where the flank on the 5’ side is removed. The
thickness of the arrows indicate the observed shuttling probability. |, The probability of shuttling upon binding to
a CTC target plotted versus the blockade length (none, 17 nt, 21 nt and 25 nt) for full length flanks (black squares)
and for the truncated flanks (red circles). Error bars are given by the 95% confidence interval acquired from 10°

bootstraps
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by intersegmental jumps, we altered the ionic strength of the buffer solution from 10 mM
NaCl to 200 mM NaCl. Here, we expect the degree of DNA coiling not to be significantly
affected by the change in salt concentration, since the persistence length is only expected
to vary between 20 and 14 when exchanging the buffers, and in both buffers it is smaller
than the contour length of the constructs [? ]. We used dual-target constructs with 15-nt
separation and 64-nt separation (Figure ??), taken from the two different regions in Figure
?? (indicated by blue and green shading). At a separation of 64 nt, we observed a 13-fold
increase of the shuttling rate when increasing the salt concentration from 10 mM NaCl
to 200 mM NacCl. In contrast, we observed that for the dual-target construct with 15-nt
separation, the shuttling time changed roughly only two-fold for the same change in ionic
strength (Figure ??)—a modest change compared to 13-fold of the dual-target constructs
with 64-nt separation. We take the relative ionic-strength insensitivity of shuttling times for
15-nt trap separation as evidence of translocation being dominate by sliding over short dis-
tances. In contrast, given the relative ionic-strength sensitivity for the 64-nt construct, the
Ago complex is here unlikely to first reach the distal site through sliding only, and requires
partial dissociation from the DNA strand. In conclusion, lateral diffusion during CbAgo tar-
get search is governed by two distinct modes. For short distances, lateral diffusion takes
place through a sliding process characterized by loose contact with the DNA strand. This
allows the protein to “glide” past secondary structures. To traverse larger distances, CbAgo
is able to take advantage of the fact that the softness of the substrate allows it to bend back
on itself to enable frequent intersegmental jumps between nearby segments (Figure ??).

5.3. Discussion

Within a vast number of potential targets, Ago-guide complexes have to minimize the time
spent unproductively diffusing through solution or redundantly checking off-targets, as
timely regulation is crucial for both cell development and host defense [? ]. Our single-
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molecule study shows that Argonaute from C. butryicum (CbAgo) uses a loose sliding mode
to bypass junctions and relies on intersegmental jumps to cover larger distances and to by-
pass substantial barriers.

We have shown that bacterial Ago binds DNA loosely and slides along the DNA to locally
scan for complementary targets. While such sliding mechanism has been characterized
for several proteins [? ? ? ? ], little was previously known for DNA/RNA-guided target
searchers like Ago. Proteins searching along nucleic acids with secondary structures may
be blocked from sliding further. However, this does not seem to be true for Ago. Instead,
the loose interaction with the substrate allows the protein to slide past junctions while still
probing potential target sequence through base pairing. To the best of our knowledge, this
mode of loose-contact sliding has not been reported for any nucleic-acid guided proteins.
In addition, we show that the loose binding further allows Ago to move to a new segment
via intersegmental jumps, reducing redundant scanning of the same segment and allowing
Ago to bypass large-profile roadblocks.

The ability of CbAgo to target specifically ssDNA but not dsDNA [? ] (Figure ??a-b) suggests
arole as host defense against mobile genetic elements and ssDNA viruses. In environments
where ssDNA viruses can be abundant, such as in sea water, fresh water, sediment, terres-
trial, extreme, metazoan-associated and marine microbial mats [? ? ? ], pAgo’s targeting
ssDNA would be very beneficial for the host. Upon entry in the infected cell, ssDNA binding
and recombination proteins may associate with the invading nucleic acid, and DNA poly-
merase will start to generate the second strand. In addition, it is anticipated that secondary
structures will be formed in the ssDNA viral genome [? ]. This will generate road blocks
that may affect scanning by defense systems such as restriction enzymes but—as shown
here—not Argonaute. Likewise, insertion of transposons in prokaryotes often proceeds
via a ssDNA-intermediate state [? ? ? ], and pAgos may here encounter the same type of
obstacles. In case of ssRNA, both in prokaryotes and in eukaryotes, it is well known that
complex secondary structures can be formed by base pairing different anti-parallel RNA
segments [? ? ? ? ]. The presence of secondary structures suggests that it is necessary
for Agos to “glide” —the type of loosely bound sliding we report—past such roadblocks to
enable search along ssRNA. Based on the functional and structural similarities of prokary-
otic Agos and eukaryotic Agos [? ? ], we expect eAgo to also slide past RNA secondary
structures, minimizing time spent trapped at such structures.

The effect of lateral diffusion on the total target search time is dependent on the rough-
ness of the energy landscape that the DNA binding protein encounters once it binds non-
specifically. We have shown how to determine the escape time for a 3-nt complementary
target. This can be extended to estimate the escape time for any complementarity and
consequently the diffusion constant on DNA with any base composition [? ]. Here we have
inferred a 15.8 s™! escape rate from the 3-nt CTC guide sequence (Figure ??), indicating
that if a target strand were to consists only of GA in repeating order, the effective diffu-

2 2
sion D = 2% = M = nt’k,, = 15.8%-. Changing the number of base-paring
nucleotides as well as the identity of nucleotides in the guide/target could provide insights
into how sequence variation would affect the rate of diffusion for other nucleic acid pro-
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teins. Since the guide strand only provides the specificity needed for accurate targeting, lat-
eral diffusion could be reliant on the non-specific surface interactions with the protein. We
envision that the positive surface charge distribution inside the Ago cleft could orient Ago
with the guide towards the negatively charged nucleic acid strand (Figure ??), thereby pro-
moting target interrogation while traveling along the target strand. It is unknown whether
Ago is able to scan each base during this process or whether it skips over nucleotides. For
our triple-target construct, we have observed that 90% of the time the middle target traps
Ago. It will be of interest to investigate whether this level of effective target trapping is
achieved by a low trapping efficiency offset by repeated passes over the target.

For alonger range target search, we have observed that at distances >100 nt separation, the
shuttling time remains well below what would be expected for sliding (Figure ??). We show
that coiling of the ssDNA (persistence length ~ 1 nm) may bring distant segments in close
proximity, allowing intersegmental jumps over longer distances (beyond 30 nt target sepa-
ration), and so speeding up lateral diffusion. Interestingly, Ago cannot use intersegmental
jumps to cover shorter distances, as implied by the sudden increase in shuttling time when
the trap separation goes below 30 nt (Figure ??). Experimentally, one could further in-
vestigate the nature of intersegmental jumps through a combined tweezer-fluorescence
single-molecule assay, where forces strong enough to pull on entropically coiled ssDNA
can be applied [? ? ]. Furthermore, theoretical modelling and additional experiments are
required in order to establish to what extent partitioning the search modes on different
length scales will allow nucleic acid guided proteins to optimize the search process [? ? ?
] since the absence of cooperative binding was recentley reported for another Ago system

(2]

We hypothesize that similar target search strategies may be used by Agos from different
families, which are structurally and functionally similar [? ]. For example, in RNA induced
transcriptional silencing (RITS), guide-loaded AGO1 binds to a transcript after which other
proteins are recruited for heterochromatin assembly [? ? ]. Similarly, in the piRNA path-
way PIWI proteins associate with piRNA in germline cells to bind and cleave transposon
transcripts in the cytoplasm [? ? ? ] or to nascent RNA in the nucleus in order to in-
duce heterochromatin formation [? ]. In each of these functions, the reliance on guide-
complementary for sequential target search likely necessitates the usage of facilitated dif-
fusion strategies to optimize the search time for proper regulation of cell development or
gene stability.

5.4. Methods

5.4.1. Purification of CbAgo

The CbAgo gene was codon harmonized for E.coli BI21 (DE3) and inserted into a pET-His6
MBP TEV cloning vector (Addgene plasmid # 29656) using ligation independent cloning.
The CbAgo protein was expressed in E.coli BI21(DE3) Rosetta™ 2 (Novagen). Cultures were
grown at 37 °C in LB medium containing 50ug ml-1 kanamycin and 34ug ml-1 chloram-
phenicol till an OD600nm of 0.7 was reached. CbAgo expression was induced by addition
of isopropyl -D-1-thiogalactopyranoside (IPTG) to a final concentration of 0.1mM. Dur-
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ing the expression cells were incubated at 18C for 16 hours with continues shaking. Cells
were harvested by centrifugation and lysed, through sonication (Bandelin, Sonopuls. 30%
power, 1s on/2s off for 5min) in lysis buffer containing 20mM Tris-HCl pH 7.5, 250mM NaCl,
5mM imidazole, supplemented with a EDTA free protease inhibitor cocktail tablet (Roche).
The soluble fraction of the lysate was loaded on a nickel column (HisTrap Hp, GE health-
care). The column was extensively washed with wash buffer containing 20mM Tris-HCI pH
7.5, 250mM NacCl and 30mM imidazole. Bound protein was eluted by increasing the con-
centration of imidazole in the wash buffer to 250mM. The eluted protein was dialysed at
40C overnight against 20mM HEPES pH 7.5, 250mM KCI, and 1mM dithiothreitol (DTT) in
the presence of 1mg TEV protease (expressed and purified according to Tropea et al.63)
to cleave of the His6-MBP tag. Next the cleaved protein was diluted in 20mM HEPES pH
7.5 to lower the final salt concentration to 125mM KCI. The diluted protein was applied to
a heparin column (HiTrap Heparin HP, GE Healthcare), washed with 20mM HEPES pH 7.5,
125mM KCI and eluted with a linear gradient of 0.125-2M KCI. Next, the eluted protein
was loaded onto a size exclusion column (Superdex 200 16/600 column, GE Healthcare)
and eluted with 20mM HEPES pH 7.5, 500mM KCIl and 1mM DTT. Purified CbAgo protein
was diluted in size exclusion buffer to a final concentration of 5uM. Aliquots were flash
frozen in liquid nitrogen and stored at -80°C.

5.4.2. Purification of His-tagged Lin28b

The protein was prepared following the protocol of Yeom et al. [? ].Briefly, recombinant
Lin28b was prepared by subcloning cDNA with BamHI and Xhol into pET28-a vector (No-
vagen). Subsequently, the strain was transformed to E. coli BL21-RIL strain. The expression
and purification of recombinant Lin28b was performed according to the manufacturer’s
protocol.

5.4.3. Single molecule experimental setup

Single molecule FRET experiments were performed with an inverted microscope (IX73,
Olympus) with prism-based total internal reflection. Excitation of the donor dye Cy3 is
done by illuminating with a 532nm diode laser (Compass 215M/50mW, Coherent). A 60X
water immersion objective (UPLSAPO60XW, Olympus) was used for collection of photons
from the Cy3 and Cy5 dyes on the surface, after which a 532 nm long pass filter (LDPO1-
532RU-25, Semrock) blocks the excitation light. A dichroic mirror (635 dcxr, Chroma) sep-
arates the fluorescence signal which is then projected onto an EM-CCD camera (iXon Ultra,
DU-897U-CSO-#BV, Andor Technology). All experiments were performed at an exposure
time of 0.1 s at room temperature (22 £ 0.1 °C)

5.4.4. Fluorescent dye labeling of nucleic acid constructs

All DNA constructs were ordered from ELLA Biotech. Nucleic acid constructs that have an
internal amino modification were labeled with fluorescent dyes based on the CSHL protocol
65.1 uL of 1 mM of DNA/RNA dissolved in MilliQ H20 is added to 5 uL labeling buffer of
(freshly prepared) sodiumbicarbonate (84 mg/10mL, pH 8.5). 1 uL of 20 mM dye (1 mgin
56 uL DMSO) is added and incubated overnight at 4°C in the dark, followed by washing and
ethanol precipitation. Concentration of nucleic acid and labeling efficiency was determined
with a Nanodrop spectrophotometer.
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5.4.5. Single molecule chamber preparation

Quartz slides were coated with a polyethylene-glycol through the use of amino-silane chem-
istry. This is followed by assembly of microfluidic chambers with the use of double sided
scotchtape. For a detailed protocol, we refer to 66. Further improvement of surface qual-
ity occurs through 15 min incubation of T50 and 5% Tween20 67 after which the channel
is rinsed with 100 uL T50 buffer. Streptavidin (5 mg/mL) was diluted in T50 to 0.1 mg/mL.
50 ul of this solution is then flowed inside the chamber. This is followed by incubation for
1 min followed by rinsing with approximately 10-fold the volume of the chamber with T50
(10 mM Tris-HCI [pH 8.0], 50 mM NacCl). 100 pM of DNA/RNA target with biotin construct is
then flushed in the chamber, followed by 1 min incubation. This is followed subsequently
by rinsing with T50. The chamber is subsequently flushed with CbAgo buffer, containing
50 mM Tris-HCl [pH 8.0], 1 mM Trolox, 1 mM MnCl2, 100 mM NaCl. Guide-loading of apo-
CbAGO occurs by incubation of the protein (10 nM) with 1 nM guide construct in a buffer
containing 50 mM Tris-HCl [pH 8.0], 1 mM Trolox, 1 mM MnCl2, 100 mM NaCl, 0.8% glucose
at 37°C for 30 min. Following incubation, glucose oxidase and catalase is added (0.1 mg/mL
glucose oxidase) after which the sample is flushed in the microfluidic chamber containing
the DNA targets.

5.4.6. Lin28 assay

Immobilization of Lin28b occurred in the following way: 50 ul of streptavidin (0.1 mg/mL)
in T50 is flowed inside the chamber and incubated for 1 minute. After this, the chamber
is rinsed with approximately 100 uL of T50. 1 ul of Anti-6X His tag® antibody (Biotin) di-
luted 100-fold in T50 and subsequently flowed inside the chamber. After 5 minutes, the
chamber is rinsed with 100 uL of T50. Stock of Lin28b (100 uM) is diluted to 100 nM and
incubated with the target DNA (10 nM) and 10 mM MgCI2 for 5 minutes, after which the so-
lution is flushed inside the chamber, followed by incubation of 5 minutes. Lastly, the CbAgo
buffer is flushed inside the chamber. Guide-loading of apo-CbAgo occurs in the same way
as described above (Single molecule chamber preparation) after which the CbAgo:siDNA
complex is also flushed inside the chamber.

5.4.7. QUANTIFICATION AND STATISTICAL ANALYSIS
Fluorescence signals are collected at 0.1-s exposure time unless otherwise specified. For
7-nt target separation, 30-ms exposure time is used. Time traces were subsequently ex-
tracted through IDL software using a custom script. Prior to data collection, the location of
targets (Cy5 labeled) are found by illuminating the sample with the 637nm laser. Through
a mapping file, it subsequently collects the individual intensity hotspots in both the donor
and acceptor channel and pairs them up through the mapping file, after which the traces
are extracted. During the acquisition of the movie, the green laser is used. Only at the end,
the red laser is turned on once more to check for photobleaching of the red dye. Traces
containing the fluorescence intensity from the donor and acceptor signal are manually pre-
selected occurs through the use of MATLAB (Mathworks), disregarding artefacts caused by
non-specific binding, additional binding to neighboring regions and photobleaching.
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Figure S5.1: Single molecule interactions of CbAgo:siDNA (2-4 nt) at different conditions. (a) Representative
trace single-molecule interaction of CbAgo-siDNA (let7) with full target dsDNA target immobilized on the surface
(300 per FoV). Exposure time is 100 ms. (b) Dwelltime distribution of CbAgo-guide 3-dsDNA target interactions.
Number of molecules recorded n = 540. Number of datapoints n = 12 (c) Average dwell time of protein bound
to target versus guide length for N=1 to N=8. The error bars are taken from the 95% confidence interval of boot-
strapped dwelltimes (20,000 empirical bootstraps). The striped red line indicates the observation time, limited
by photobleaching. (d) Survival plot of donor only (Cy3) constructs in standard experimental conditions (100 mM
NaCl, 50 mM Tris-HCI pH 8.0). Mean donor bleaching time was obtained by a single exponential fit to the survival
probability plot. (e) Binding rate for different salt concentrations for N=3 (nt 2-4) between guide and single tar-
get. (f) Dwell time of CbAgo and a single-stranded single target DNA construct (N=3) at 10, 50, 100, 150 and 200
mM NaCl concentration. Total measurement time = 250 s. Error bars are indicating the 95% percentile of 20,000
empirical bootstraps of the mean dwell time. (G) Schematic image indicating the dynamic escape and recapture
events of CbAgo.
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Figure S5.2: Single-molecule interactions of CbAgo with guide 4, 5, 6 and tandem target (22 nt separation). (a)
Representative trace of binding events by CbAgo with guide 4 (nt 2-5). Duration of observation 200s. (b) Shuttling
event distribution for guide 4 (nt 2-5). Bin size = 5. The white bar represents binding (no shuttling) events followed
by dissociation. N = 317. (c) Representative trace of binding events by CbAgo with guide 5 (2-6). (d) Shuttling
event distribution for guide 5 (2-6 nt). Bin size = 10. The white bar represents events that consists of single
molecule binding followed by dissociation. n = 550. (e) Representative trace of guide 6 (2-7 nt) interaction.(f)
Shuttling event distribution for guide 6. The white bar represents events that consists of single molecule binding
followed by dissociation. n = 621.
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Figure S5.3: Example of HMM software applied to data trace. (Top) An example shuttling trace of CbAgo in the
user interface of ebFRET. The donor and acceptor intensities plotted versus time. The donor intensity is enhanced
artificially in absence of any signal, resulting in an extra zero FRET state (upper subfigure). (Bottom) The donor,
acceptor and FRET intensities overlaid with states resulting from the Hidden Markov Modeling. The HMM analysis
program recognizes the unbound state as an extra state (light blue), while low FRET and high FRET are respectively
assigned dark blue and purple.
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Figure S5.4: Triple target assay, Y-fork assay and Lin28 assay. (a) FRET histogram of three-target assay. n = 168
molecules (b) Dwell time histograms for respectively the low FRET, mid FRET and high FRET state of the three
target assay. (c) Shuttling rate of Y-fork constructs (blue) compared to tandem target assay (white) for 11 nt, 36
nt, 50 nt and 92 nt target separation. The error bars indicate the 95% percentile of 20,000 bootstrapped mean
dwell times. (d) An EMCCD image of the acceptor channel. (Left) In absence of Lin28 protein and antibody with
Cy5 labeled DNA. (Middle) In absence of antibody, but in presence of Lin28 protein and Cy5 labeled DNA. (Right)
In presence of antibody, Lin28 protein and Cy5 labeled DNA. (e) Individual dwell times from low FRET state to
high FRET state (left) and vice versa (right). (f) Sequence schematic for the Y-fork 11 nt, indicating the target sites
and their respective distances to the junction. (g) Sequence schematic for the Lin28 blockade assay, indicating
the target sites and their respective distances to the junction/protein.
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Figure S5.5: Interactions of CbAgo with the dsDNA block construct. (a) Representative trace of CbAgo interacting
with a 21 bp DNA blockade construct. (b) Representative trace of CbAgo interacting with a 25 bp DNA blockade

construct.
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Figure S5.6: Example shuttling traces for 11 nt, 15 nt, 18 nt, 22 nt, 29 nt, 36 nt, 50 nt and 120 nt target separation.
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Figure S5.7: Cartoon representation of target search mechanisms. Sliding: Proteins that undergo sliding make
a well-correlated movement along the contour of the nucleic acid substrate. There is no net displacement of
counterions (grey circles). Hopping: Proteins alternate quickly between a bound and unbound state with respect
to DNA and there is counterion condensation upon dissociation of the protein. The method of diffusion is similar
to 3D search, but its movements are correlated along the contour of the strand. Intersegmental transfer: This
mechanism is a specialized form of hopping where segments appear transiently close by allow the protein to
transfer to this new segment.
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Figure S5.8: Cartoon representation of Ago search model. The Ago complex utilizes short transient interactions
with nucleic acid strands to rapidly sample the adjacent (tens of nucleotides away) sites for possible targets. Loose
interaction with the nucleic acid strand persists. Obstacles can be overcome through intersegmental jumps.
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Figure S5.9: Coulombic surface coloring of Clostridium butyricum Argonaute (CbAgo). The crystal structure of
CbAgo (PDB 6qzk) (3.23 A resolution) reveals the charge distribution. The cleft that contains the guide DNA and
the target DNA is highly positively charged (blue).
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5.5.1. Binding times single-target including recapture events fol-

low single-exponential distribution
We here build a kinetic model for the lateral diffusion by CbAgo. Since Argonaute can in
principle bind to any sequence along the DNA, we imagine the binding sites to be located
a nucleotide apart. Further, we shall here only explicitly take sliding into account, which
is represented as an unbiased random walk with unit step length. Assuming sliding should
be a good approximation when considering only short distances traveled. If the protein
is bound at the designed 3-nt sub-seed 'target’ it can move to either of its neighbors at
a rate of ke or unbind from the ssDNA at a rate of k,,. When bound elsewhere move-
ment and dissociation are assumed to happen instantaneously. To establish the manner in
which these undetectable movements contribute to the observed dwell time distribution
(Ppound (At)) we count all possible paths that the protein can take to dissociate follow-
ing initial association to the sub-seed. In Laplace space the unbinding-time distribution,
P (s) = L{Pyouna(At)}, can be calculated as a product of the distributions of individ-
ual transitions (rather than their convolutions), summed over the possible paths towards
unbinding. With an exponential distribution of stepping/escape times from the sub-seed
trap,

Pesc(s) = S — ($5.1)
ese S+ 2kese + kup
, an unbinding time distribution from the trap
kup
Pub(5) = - ($5.2)

S+ Zkesc + kub

and a probability to return, get recaptured at the trap, from either flank without unbinding
Betrap We can write

Pub(s) Z (pesc(s)Pretrap)m [pub(s) + pesc(s)(l - Pretrap)]
m=0

(S5.3)
kub + 2kesc(l - Pretrap)

s+ kub + 2kesc(1 - Pretrap)

The sum on the left hand side of Equation ?? therefore accounts for the protein escap-
ing from, and getting recaptured at the target an arbitrary amount of times (see Figure ??
below). The two terms outside the sum represent the probability distributions to unbind
from either the target directly or after having escaped one final time respectively (Figure
?? below). Taking the inverse Laplace transform, we derive the observed dwell time distri-
bution.

kub + 2kesc(1 B P|~etrap)
Phound (AL) = L71 {
oun s+ kyp + 2kes (1 — P|—etrap)

= (kub + Zkesc(l — Pretrap))e_(kub+2kesc(1_Pretrap))At

(55.4)

Hence, despite the multitude of possible bound states along the DNA the protein can reside
in, the observed distribution remains single-exponential. The apparent dissociation rate
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solution state (unbound)

1 — Pretrap

Pretrap Publ  pesc

N
7

\

sub-seed

free-energy

AN
7
position (nt)

Figure $5.10: This figure illustrates how to construct Equation ??. Starting from the sub-seed, Ago can either
unbind directly (probability p,) or slide onto the non-specific binding sites flanking the trap (probability pesc)-
When non-specifically bound, Ago can either laterally diffuse back into the sub-seed (probability Petrap), OF un-
bind (probability 1 — P etrap)

follows
kSL)served = kup + 2kesc(1 — Pretrap) (55.5)

Given the assay selects for events that get (re-)captured, the observed rate is greater than
its intrinsic value.

5.5.2. Shuttling rate due to sliding alone

We seek to explain to what extend sliding contributes to the observed shuttling rate from
the tandem-target assay. Given under the current experimental conditions about 13 shuttle
events occur prior to unbinding, we shall ignore unbinding in the following analysis (k, <
kesc)- To get the distribution of shuttle times (p (Atgputtie)) We count all possible paths that
lead the protein from one sub-seed to the other. If the two 3-nt nucleotide long sub-seeds
are separated by x,,1,_1 thymine nucleotides, the shuttle times are distributed as (setting
Xtarget = Xpoly—T T 3 = 3) (see Figure ?? below).

- 1 1 "
Ps,huttle(sr xtarget) = Z (pesc(s) (E X1+ E X PR(xtarget)>> pesc(s)PS(xtarget)
m=0
_ kescPS (xtarget)
s+ kescPS(xtaI‘get)

(S5.6)
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5.5.3. Shuttling rate triple-target construct
For the assay using three sub-seed targets, we can now predict both the time needed to
slide from any of the outer ones to the inner (C — B) and the average time needed to slide
along the opposite path (B — C). The former is equal to the time measured on the tandem
target construct, denoted above as Aty uite (Equation ??, Ateg = Atghuttle). We obtain
Atge, via the distribution of lifetimes in the middle trap

P(leave B)(t)

P(leave Blarrive at C)(t) = P(arrive at C (and not A)) (S5.7)

Using that the distance between A and B is equal to that in between B and C, in Laplace
space, the time spent at target B is distributed as (B (t) = P(leave B)(t))

o

1 ™1
PB(S, xtarget’ kesc) = Z (Epesc(s) X2 X PR(xtarget)> Epesc(S)PS(xtarget) (55-8)

m=0

The sum accounts for all paths that return to target B. Given the equal distances between
all targets on the construct the probability to not make it across to either A or C are equal,
which gives rise to the factor of two. The factor outside the sum accounts for the fact that
the protein must eventually leave B and make it across to either A or C. Using the same
technique as shown above, the average time spent in B equals

xtarget
TB(xtarget) = T (55-9)
esc

Using that half of the times the protein arrives at A4, rather than C, results in the average
dwelltime/shuttling time conditioned on moving from B to C (using eq. ??):

xtarget
2k esc

Atpc (xtarget) = ZTB(xtarget) = (S5.10)

5.5.4. error estimates using bootstrapping

Fitting the data from the tandem target assay to Equation ?? provides the estimate of k..
We bootstrapped the dwell time distributions acquired using the original tandem target
assay (distances of 11nt, 15nt, 18nt and 22nt). For each of the 10° bootstrap samples we
calculated new values for the associated Aty ii1e’S and repeated the fit to Equation ?? to
obtain an error estimate in the fitted value of the escape rate.

After using the data from the tandem target assay to estimate k... there are no more free
parameters remaining when predicting the data for the triple-target assay. Performing the
bootstrap procedure for k.., and using Equations ?? and ?? results in the 95% confidence
intervals shown in figure 4D in the main manuscript.

An error estimate for the experimental values of Atgc and At were obtained using 10°
bootstrap samples of the dwell time distributions measured using the triple-target assay.
All analysis was performed with a custom code written in Python. The two terms within the
sum shown above represent recapture events at the initial trap via either the the flanking
sequence (from which it always returns) or the poly-T stretch in between the traps (from
which it returns with a probability B (Xtarget) Without shuttling) (Figure ?? shown below).
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Finally, the term outside the sum accounts for successful shuttling events (which occurs
with probability A (Xarget) = 1 — Fr(Xtarget))- Once the protein has left the initial trap
Py(x) and P;(x) denote the distributions for either returning back to the initial trap or
shuttling/making it across to the other, if the two traps are x nucleotides apart (see Figure
?? below)). Inverting the Laplace transformation of Equation ?? we obtain

kescPs (Xtarget)
p(Atg, 1)=L_1{
shuttle s+ kescPS (xtarget)

— kesc PS (xtarget) e~ (kescPs (xtarget)Atshuttle)

(S5.11)

Hence, the observed dwell time distributions are indeed single exponential. In terms of
the microscopic model the average time is set by the escape rate from the trap modified
by the probability to make it across once outside of it (% (xtarget))-

The probabilities F; and &, for a given inter-trap distance Xi,.g¢t follow (see Figure ?? be-
low)

> (1 ™9
PR(xtarget) = Z EPR(xtarget -1) 2 (5.12)
m=0
(1 ™9
Ps(xtarget) = Z EPR(xtarget -1 EPS(xtarget -1 (55.13)
m=0
- from which we can write the recurrence relation
PS(xtarget) =R (xtarget)PS(xtarget -1 (S5.14)
Using (A (Xtarget) = 1 — Pr(Xtarget)) the above can be re-written as
B (Xtarget — 1)
K (xtarget) = e (S5.15)

Ps(xtarget - 1) +1

which subjected to the boundary condition P;(1) = 1 - signifying that if the traps are
placed adjacent to each other, the shuttle is complete once the protein escaped the initial
trap - has the simple solution

1
PS(xtarget) = (S5.16)
xtarget
Taken together, the observed shuttling time equals
1 xtarget
At huttle — = (5517)
shurte kescPS(xtarget) kesc

Note that X¢aget = 3, as the two sub-seeds cannot overlap. A fit of Equation ?? to the ex-
perimental data for Xia,ge Of 11nt, 15nt, 18nt and 22nt in Figure ?? of the main manuscript
were used to estimate the value of k.. for CbAgo.



5.5. Supplementary Information 139

always return

m 1/2 X pesc(S) PS (ITargct)
< N N 4
flank w

PR(J/‘Target) =1-Fs (-’L’Target)

sub-seed 1 \sub-seed 2

free-energy

position (nt)

Figure S5.11: This figure illustrates how to construct Equation ??. Ago slides to either of its neighboring sites with
equal probability. Every shuttle event starts with Ago bound to one of the sub-seed sequences. After residing
there for a time distributed as pesc(s), half of the times Ago moves onto the flank (from which it always returns
by assumption), while the other half of the times the protein slid onto the poly-T sequence in between the two
sub-seeds. All movements along these intermediate sites occur too fast to observe, which is why we only take
into account to probability Ps(Xtarget) Of completing the shuttle event when X,,gct Sites separate Ago from the

second sub-seed.

1MZ/R

[Ise
- ~
sub-seed 1 1 sub-seed 2

position (nt)

free-energy

Figure S5.12: This figure illustrates how to construct Equations ?? and ??. Let Ps(x) denote the probability to
complete the shuttle when x sites separate Ago from the second sub-seed. Ago walks to either of its neighboring
sites with equal probability. Therefore, when situated next to the first sub-seed, Ago gets recaptured half of the
times it makes a move, while the other half has a probability of Ps(x — 1) to result in a completed shuttle event.
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5.5.5. Supplementary Tables

Table S1: Dwell times of different two target DNA constructs for several distances. The upper bound and lower
bound are estimated through 20000 bootstraps of the acquired dwell times.

Target distance (nt) | Lifetime (sec) | Lower bound lifetime (sec) | Upper bound lifetime (sec) | Shuttling rate (sec-1) | Lower bound shuttling rate (sec-1) | Upper bound shuttling rate (sec-1)
11 0.47 0.46 0.49 211 2.04 2.19
15 083 081 087 119 115 1.24
18 117 111 1.24 0.85 0.81 0.90
2 179 174 186 056 054 057
29 1.36 1.30 1.42 0.73 0.7 0.77
36 119 116 123 084 081 0.86
50 1.52 1.46 157 0.66 0.64 0.68
64 1.65 1.59 1.71 0.61 0.59 0.63
92 1.94 1.85 2.02 0.52 0.49 0.54
120 2.11 2.03 2.19 0.47 0.46 0.49

Table S2: Oligonucleotides used for this study

Name Oligo Sequence 5’->3’ Length (nt)
GUIDE

5- /5Phos/CGA GTA TT/iAmMC6T/ TTT TTT TTT TTT

Guide 3nt (2-4) T_3 22
5’-/5Phos/CGA GGA TT/iAmMC6T/ TTTTTTTTTTTT
Guide 4nt (2-5) T-/3’ os/ /AmMCGT/ 22
Guide 5nt (2-6) 5- /SPhc,>s/CGA GGT TT/iAmMC6T/ TTT TTTTTT 22
TITT-3

) 5'- /5Phos/CGA GGT AT/iAmMC6ET/ TTT TTT TTT

Guide 6nt (2-7) TTTT-3 22
. 5’- /5Phos/CGA GGT AGA /iAmMC6T/TT TTT

Guide 7nt (2-8) TITTITT-3 22
. 5’- /5Phos/ CGA GGT AG/iAmMC6T/ TTT TTT TTT

Guide 8nt (2-9) TTTT-3" 22
TARGET

. 5 -TTTTITTITTTITTITTTT CTCTTT TCT CT/iAmMC6T/
8nt tandem target 7nt separation 58

TITTITTITTITTITTITTIT TTT TTT T/biotin/ -3’
5 -TTTTITTITTITTITTITCTCTITTTTTTCT

8nt tandem target 11nt separation CT/iIAmMCET/ TTTTTTTTTTTITTITTTITTTITTTT 62

TTT T/biotin/ -3’

5 -TTTTITTTT TTT TACTACCTCTTT TTT TA CTA CCT

8nt tandem target 15nt separation CT/iIAmMCET/ TTTTITTITTITTITTITTTT 66

TTT TTT T/biotin/ -3’

5 -TTTTTTTTITTTITTACTACCTCTTTTTT TTT TA CTA

8nt tandem target 18nt separation CCT CT/iAmMCET/ TTT TTT TTITTTITTTITTTT 69

TTTTTT TTT T/biotin/ -3’

5 -TTTTITTITTTIT TACTACCTC TTT TTT /iAmMC6T/TT

8nt tandem target 22nt separation | TTTTTACTACCTCTTTTTTTITTTITTTITTTITTITTTT 73

TTT TTT T/biotin/ -3’

5 —TTTTTTTTITTITTACTACCTCTTTTTTT

8nt tandem target 29nt separation | TT/IAmMMC6T/ TTTTTT TTT TTACTACCT CTT TTTTTT TTT 81

TITTTTTTTTTIT TTT TTT TT/biotin/-3’

5 —-TTTTTTTITTITTTACTACCTCTTTTTTTITTTITTTT

8nt double target 36nt separation | TT/IAmMC6T/ TTTTTT TTT TTACTACCT CTTTTT 89

TITTTITTTITTTITTITTTIT TTT TTT TT/biotin dT//Phos/-3’
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5 —TTTTITTITTITTTACTACCTCTTTITTITTITTTT
TITTITTTTTT TTT TT/iIAmMC6T/ TTT TTT TTT TTA CTA

17nt block

8 nt tandem target 50nt separation |t or tp7 1T TTT TTT TTT 71T TTT TTT TIT 104
TT/biotin dT//Phos/-3’
5 —TTTTTT TTT TTT TTA CTA CCT CTT TTT TTT TTT 11T
& nt tandem target 64 nt separation | LLT.TT 1T TTTTTT TITTTTTTTTTT T/AMMCST/TTTT |~
TTTTTT TTT ACT ACC TCT TTT TTT TTT TTT TTT TTT
TTT TTT TTT TT/biotin-dT/ /Phos/-3’
S —TTTTTT TTT TTT TTA CTA CCT CTT TTT TTT TTT TTT
TITTITTIT TIT TIT TIT T TTT TIT TIT TIT TIT 1T
8 nt tandem target 92 nt separation | TTTTTTTTT TTT TTT TTT TTT T/iIAmMC6T/TTTT TTTTTT | 145
T ACT ACC TCT TTT TTT TTT TTT TTT TTT TTT TTT TTT
TT/biotin-dT/ /Phos/-3’
5 TTTTTT TTT TTT TTA CTA CCT CTT TTT TTT TTT 1777
TITTIT TIT TTT TTT TTT TIT TIT TTIT TTIT TTT 77T 77T
8nt double target 120nt separation | TTITTTTTTTTITTITTITTTITTTITTITTTITTTITTITTTT 171
TTT TTT TT/iAmMC6T/ TTT TTT TTT TTA CTA CCT CTT TTT
TTT TTT TTT 77T TTT TTT TTT TTT TT/biotin dT//Phos/-3’
S —TTTTTT* TTT TTT TTT 77T 77T TTT CTC TT TGG CGA
Lint v-fork CGG CAG CGA GGC -3’ 47
- 5’ - /biotin/GCC TCG CTG CCG TCG CCA TTT TTT CTC TTT
11nt Y-fork biotin TTTTIT=3 36
50nt S-TTTTTT TTT TTT* TTT TTT TAC TAC CTC TTT TTT TTT
Y-fork TTTTTT TT TTT TGG CGA CGG CAG CGA GGC — 3 &5
5’ — /biotin/GCC TCG CTG CCG TCG CCA TTT TTT
Y-fork stem (not for Y11) TTT TTT TTT TTT TTT TAC TAC CTC TTT TTT TTT - 3’ >
S —TTTTTTTTT TTT T TA CTA C CTC T CGG ACC AAC
36nt dsDNA target AGC GGG /T-biotin/AC GGC TGT GC TA CTA CCT CTT 78
TITTIT TIT TIT TTT 777 - 3
S —TTTTTT TTT TTT T TA CTA C CTC T CGG ACC AAC AGC
A GGG TAC GGC TGT GC TA CTA CCT CTT TTT TTT TTT
36nt dsDNA block v2 3’ biotin TTT TTT TTT TTT TTT TTT 91
TT/biotin dT/- 3’
5 —CTA C CTC T CGG ACC AAC AGC GGG TAC GGC TGT GC
36nt dsDNA block 5’end truncated | TA CTA CCT CTT TTT TTT TTT TTT TTT TTT TTT TTT TTT 75
TT/biotin dT/- 3’
sent 5’ - TA GC ACA GCC GT* A CCC GCT GTT GGT- 3’ 25
25nt block
36nt 5'- GC ACA GCC )1
21nt block GT* A CCC GCT GTT G- 3’
36ént
5’ -ACA GCC GT* A CCC GCT GT- 3’ 17
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5 —T/iIAmMC6T/ TTT TTT TTT TACCTC TTT TTTACCTCT TTT
Triple target TTACCTCTTTTITTITTTITTITTITTTITTITTIT 69
TTT/biotin/ -3’

S-TTTTITTITTITTITTITTTT TTT TTT /iAmMCET/TT
No target DNA TITTITTITTITTITTITTITTITTITTITTITTIT 90
TTTTTT TGG CGA CGG CAG CGA GGC -3’

5 -TTTTITTTITTTITTITTITTTITTITTTT

8nt single target SIAMMCET/TTTTTTTACTACCTCTTTTTTITTTT TTT TTT 73
TTTTTITTTT TTT T/biotin/-3’
3’ biotin stem 5’ - GCC TCG CTG CCG TCG CCA biotin — 3’ 18

S_TTTTITTTIT TTIT TTT 11T
TAC TAC CTC TTT TTT TTT TTT TTT TTT TTG CGC TAT GCG
, GTT GTA TAG TTT TAG GGT CAC ACC CAC CAC TGG GAG
Lin28 double target | xr\ ACT ATA CAA TCG CAT AGC GCT TTT TITTTTTTTTIT | 174
TTT TTT T/iAmMC6T/T TTT TTT TTA CTA CCT CTT TTT

TITTTITTITTTT-3’
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Optimal DNA/RNA target
search using frequent
skip-n-slides

The timed action of target searching proteins at specific DNA or RNA sequences
plays a vital role in the cell. A special class of such target searchers, amongst
which Argonaute and CRISPR-Cas9, use small RNA or DNA guides to define
their target site. These guides can readily be synthesized, enabling the repur-
posing of the target searching proteins for genome engineering. Here we employ
a combination of single-molecule FRET and theoretical modeling to understand
the microscopic kinetics underlying the target search. We show both a prokary-
otic and an eukaryotic Argonaute only sparsely interrogate their ssDNA /mRNA
substrates, using a mixture of sliding to neighboring sites and frequent skipping
to interrogate distant sites. Next, we show such a mixture minimizes the time
needed to locate the target. Hence, we suggest Argonaute seems to operate at
near optimal conditions using a mechanism likely applicable to other (guided
and non-guided) target searchers.
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6.1. Introduction

multitude of cellular processes, including gene regulation, DNA repair, and immune re-
A sponse rely on proteins binding to specific DNA or RNA sequences. Even if the protein
interacts only with the correct target sequence, the sheer size of the intracellular volume
restricts the rate at which it can be found through diffusive collisions alone [? ? ? ? ].
Still, measured search speeds can exceed the upper limit for diffusive collisions with up
to two orders of magnitude [? ]. To reach the observed speeds, target searching proteins
can reduce the effective size of their search space by spending some fraction of time non-
specifically associated and diffusively sliding along the DNA—partially replacing excursions
into the solution (3D motion) as a means of reaching new sites to interrogate [? ? ? ? ].
Theoretical work [? ] showed that an equal split of time spent sliding along the DNA and dif-
fusing through solution would minimize the search time. While experiments have indeed
confirmed such facilitated diffusion (a mix of 1D and 3D motion) for a variety of proteins

more than half the time associated to DNA [? ? ].

Repeated transfer between 1D sliding motion and 3D diffusion through solution and re-
binding at an uncorrelated site is beneficial, as the sliding motion by itself will inevitably
double back on itself and wastes time interrogating sites already visited. Early theoretical
work recognized that this scanning redundancy could be further reduced if the non-specific
interactions allow for intersegmental transfers [? ? ? ? ], where the protein quickly moves
between close by DNA segments without fully returning to the solution state [? ? ? ].
If the search process is optimized for time, and the total time spent transferring between
segments is assumed negligible, we expect intersegmental transfers to minimize search re-
dundancy (and so search time) by occurring as frequently as the geometry of the substrate
allows. It has been shown theoretically that allowing for a (small) fixed amount of rapid in-
tersegmental transfers shifts the optimal partitioning between 1D and 3D diffusion toward
spending more time associated with the DNA [? ].

However, when such transfers occur frequently the total time spent transitioning between
segments cannot be neglected. For instance, we expect this to be the case for proteins
searching along single-stranded (ss) RNA or DNA with persistence lengths on the order of
one nucleotide (nt) [? ]. We may expect similar behavior for proteins that bind genomic
targets, due to the strongly compacted double-stranded (ds) DNA within the nucleus or
bacterial nucleoid. Furthermore, cellular RNA or DNA is typically occupied by various other
(non-)specific binding proteins [? ? ], or can form secondary structures (i.e. plectonemes
on dsDNA, or hairpins on ssRNA), all forming roadblocks along the target searcher’s path.
Bypassing such obstacles is often impossible through sliding, thereby necessitating the fre-
quent use of some form of base-skipping, such as intersegmental transfers in case of suffi-
ciently flexible substrates. Irrespective of the particular mechanism used, bases along the
substrate are not interrogated, and we will simply refer to this process as ‘skipping’. Little
is known of the effect the frequent skips have on the search time.

Here we use Argonaute (Ago) as a model system for searches along flexible ss substrates.
Ago belongs to a particular class of target searchers that pair with a small non-coding RNA
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(or DNA) guide, and then targets its complementary sequence [? ]. The common usage of
the CRISPR-Cas9 and CRISPR-Cas12a as next-generation genome editing tools [? ], further
highlights the importance of understanding also how such guided target searchers operate

(CbAgo) uses a ssDNA guide to cleave ssDNA or dsDNA at moderate temperatures (~ 37
°C) [? 1, making it a suitable candidate as a genome-editing tool. In a previous study [?
] (Chapter ??) we demonstrated CbAgo can bypass roadblocks while diffusing along its
substrate. Here, we start by establishing the generality of this base-skipping behavior by
confirming its existence also for the eukaryotic human Argonaute 2 (hAgo2), using single-
molecule (sm) Forster resonance energy transfer (FRET).

Next, we ask under what conditions skips can speed-up the target search process. To this
end, we draw inspiration from established models [? ? ? ? ] and consider the search
as consisting of three parts, but crucially allow all parts to take a finite time to complete:
(i) interrogation of off-targets through sliding, (ii) base skipping, and (iii) diffusion through
solution, followed by rebinding at an uncorrelated site. Through our modeling we discover
the existence of two optimal partitioning between the three search modes: one coinciding
with the known optimum of an equal time-split between 1D and 3D diffusion through so-
lution when no skipping is allowed [? ], and one novel optimum where skipping and sliding
coexist during lateral diffusion. We fully characterize the search optima, and show that as
a general rule, the system can never spend more time in solution than on the substrate
when optimized, in accordance with experimental results [? ? ].

Using the presented smFRET data, we conclude by arguing that Ago operates far from the
sliding-only optimum, and that its search characteristics are consistent with the skip-and-
slide optimum. Our work suggests that any search involving many skips soon becomes ben-
eficial over using only sliding, and thus raises the question whether skip-and-slide search
could also be the preferred search mode for other searchers.

6.2. Results
6.2.1. Single-molecule FRET assay to probe lateral diffusion

Diffusive motion is often characterized by measuring the mean square displacement as a
function of time [? 2 ? ? 2 ? ? ? ]. Even in the best of scenarios, when considering
a stretched and uncoiled substrate, direct observation of lateral diffusion would require
us to track target searchers over several hundreds of nucleotides. Such long trajectories
would imply very redundant scanning by Ago, and might therefore not be performed by

utilized the high spatial resolution of smFRET [? ].

The experimental procedure has been described in detail elsewhere [? ? ], and we here re-
state only the core components. To trap any diffusive excursions for long enough to detect
it (>100 ms), and have it complete before photobleaching (<700s), we design ss thymine
(CbAgo [? ]) and uracil (hAgo2, present study) repeats that contain two 3-nt targets and two
4-nt targets respectively (Figures ??A and ??). In order to accurately determine whether
the protein is binding to one target as opposed to the other, one of the traps is labeled
with an acceptor fluorophore (Cy5), while the guide is labeled with the donor fluorophore
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Figure 6.1: Single-molecule FRET experiment to probe lateral diffusion. (A) Schematic of assay. DNA/RNA con-
structs, containing the two trapping sequences (shown in red) are passivated to the microscope slide via a 3’
biotin-streptavadin linker and are labelled with the acceptor die. The Ago-guide complex is labelled with the
donor die. (B) Representative trace for hAgo2 at a trap separation of 50nt. Top shows donor (green) and acceptor
(red) signals. Bottom shows corresponding FRET efficiency and side panel shows histogram of all FRET efficiency
values obtained for the population of molecules. (C) Shuttling time versus trapping distance (average * sem) for
CbAgo. Solid lines represent linear fits to data points at 11 nt,15 nt,18 nt,22 nt (initial slope) and 64 nt ,92 nt,120
nt (final slope). Shaded regions represent 95% confidence interval obtained using bootstrapping (see Methods).
(D) Same as C for hAgo2. Data points at 7 nt,11nt,15 nt (initial slope) and 80 nt ,120 nt,160 nt (final slope) are
used for linear fits.

(Cy3) (Figures ??A and ??). High FRET efficiency is observed when the protein binds to the
site in close proximity of the acceptor dye, whereas lower FRET efficiency is obtained when
Ago is trapped at the target far away from the dye (Figure ??B). To reduce the background
fluorescence, traces were recorded using total internal reflection (TIRF) microscopy.

6.2.2. Ago slides over short distances

As shown in Figure ??B, the FRET efficiency shifts almost instantaneously between those
corresponding to the two trap locations. Though smFRET solves the problem of spatial res-
olution, the total time spent diffusing now seems to have fallen below our time resolution
(30-100ms). In a recent paper [? ] we showed both experimentally and theoretically that
for small trap separations, the average shuttling time is directly proportional to the trap
separation

Tshuttle(dtrap < 25nt) ~ dtrathrap (6-1)

with rt_,;p being the one-sided escape rate from the trapping sequence. The linear increase
in shuttling time with trap separation is consistent with Ago performing rapid lateral diffu-
sion (undetected), with numerous escape and re-trapping events before eventually making
it across to the other trap (Figure ??A). In Figure ??C we show data for CbAgo [? ], and in
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Figure 6.2: Modeling skip-and-slide search (shuttling events). (A) Schematic of shuttling event. Starting from
the leftmost trap, the protein uses a combination of single-nucleotide steps (sliding) and larger steps (skipping)
to reach the opposite trap after possibly getting recaptured at the initial traps several times. (B) single-step distri-
bution of random walk defining our model. The protein either slides to a neighboring site or skips to sites located
at +(Ugip £ Tkip)- (C) Distribution of visited sites conditioned on skips. (top) The protein covers a rms distance
ljide between consecutive skips. (middle) The first skip takes the protein ug, away (in either direction) with an
uncertainty of o, in the landing site. (bottom) Repeated skip-and-slide (sNs) cycles result in a distribution that
resembles a simple random walk (top panel) with an adjusted effective step length of l,\s. (D) Representative nu-
merical solutions (S.l.) for shuttling time versus trapping distance. (E) Final slope versus scanning density. Inset
shows equivalent versus skipping length (see S.I. for values in parameter sweep).

Figure ??D we confirm that the initial proportionality (Equation ??) reported for CbAgo also
holds for hAgo2 (new data).

6.2.3. Ago uses a mixture of skipping and sliding over larger dis-
tances

As the distance between traps grows beyond the initial linear regime, the shuttling time

drops, before it eventually settles into a gentler linear increase over large trap separations

(Figures ??C and D). The drop in shuttling time suggests that a new avenue for traversing

the gap between traps has opened up, while the shuttling time’s eventual linearity with re-

gard to trap separation suggests that also this avenue is governed by lateral diffusion and
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repeated re-trapping to the original trap, before reaching the second trap.To explain the
linear long-range behavior, we consider the fact that CbAgo has previously been shown to
bypass both protein roadblocks and secondary structures [? ]. Exactly how such obstacles
are traversed is not fully understood, but it is clear that bases would be skipped (i.e. not
interrogated) in any process able to bypass roadblocks, and we will therefore simply refer
to this process as skipping.

In Figure ??A we show a schematic of the skip-and-slide dynamics, and in Figure ??B we
show the single step distribution such a random walker has within our model. In Figure ??C
we show the cumulative step distribution conditioned on skipping. Measuring all lengths
in nucleotides, Ago has diffused the average root-mean square (rms) distance [l ;4. after
taking 12,4, sliding steps between consecutive skips (see S.1. for derivation). After having
slid the ljide steps, Ago skips on average [iy;, nucleotides away in either direction, with a
standard deviation of g, nucleotides in the length of every skip (Figures ??B and C). In the
S.1. we calculate the average shuttling time for such a system numerically using a master-
equation formulation. In Figure ??D we show the resulting shuttling time for a fixed sliding
length Li4e = 12nt, while the average skip distance and its standard deviation is either
Uskip = 36nt and o, = Ont (green curve) or g, = 36nt and pg;, = Ont (orange curve).

Both have the same rms skipping length, Iy, = fuszkip + 05, = 36nt, withthe g, = Ont

case representing skips of definite length that take the protein to a location not reachable
in a single round of sliding (L, > Lgige). Contrarily, the protein may (likely) skip to a site
already interrogated when pig;, = Ont — depleting the ‘gap’ shown in the middle panel
of Figure ??C causes the distributions shown in the middle panel to overlap with that of
the top panel. We note a clear resemblance of our numerical solutions to the empirical
curves (Figures ??C and D), including the possibility of non-monotonic behavior when the
skip length distribution is tight enough that there is a central gap in the cumulative step
distribution just after the first skip (middle panel Figure ??C).

From the central-limit theorem it follows that the distribution of Ago positions after re-
peated skip-and-slide (sNs) cycles will approach that of simple diffusive motion with aver-

age mean squared step length lyys = [1540 + lszkip between each unbinding cycle (bottom

panel Figure ?2C), where lszkip = ,uszkip+a§kip is the variance added to the cumulative translo-
cation by one skip. In the S.I. we use a description conditioned on skips to construct scaling
arguments showing that for large trap separations (Figure ??D)

Tshuttle (dtrap > lst) ~ const. + pszcanTtrapdtrap with Pscan = ls'ide/lst (6.2)

Here we have introduced the scanning density p,.., as the fraction of unique bases inter-
rogated by Ago within a single skip-and-slide cycle. Having used our numerical approach
to obtain Tyhyrie (dirap) curves for a wide range of Lyjige, Hskip @and Op (S.1.), the resulting
final slopes from those curves indeed coincide with the derivative of Equation ??, thereby
validating our scaling arguments (Figure ??E).
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6.2.4. Ago skips straight into the second trap for intermediate trap
separations

In between the two linear regimes, the shuttling time varies non-monotonically (Figures
??C,D and ??D). At short distances, when only sliding, the protein’s motion is well described
by a simple random walk, with consecutive steps being uncorrelated (Equation ??). Using
the scaling arguments leading up to Equation ??, a similar uncorrelated motion over seg-
ments of length L is expected at large trap separations. Although we expect said scaling
arguments to fail (i.e. ignoring the constant in Equation ??) within the intermediate (non-
monotonic) regime, preventing us from estimating the corresponding shuttling times, we
can still estimate the trap separation at which we expect a local minimum shuttling time.
If the trap is not the outermost sequence on the construct, as is the case in our experiment
(Figure 2?), the initial sliding induces no average shift in position, and it stands to reason
that the local minimum in shuttling times appears at a trap separation pi,, from where
Ago typically slides straight into the second trap after the first skip. Below, we shall use this
reasoning to estimate Lgige and g, from the data. Note that our numerical calculations
have been performed for traps placed as the most outer sequence on the construct. For
such a system Ago drifts an approximate distance 4. towards the other trap before skip-
ping, which is why Figure ??D shows a curve with its minimum around a trap separation of
Uskip + Lsiige = 48nt (orange curve).

6.2.5. Ago skips over two thirds of all bases

Applying the above arguments to our experimental data, we estimate the trapping time
Tirap bY fitting Equation ?? to the initial linear part of the shuttling time dependence on
trap distance (left most line in Figures ??C and D, Ty, = 0.062 + 0.003s for CbAgo and
Tirap = 0.057 + 0.002sfor hAgo2)(see Methods). Next, we can determine the scanning
density p..a, by fitting Equation ?? to the final linear part of the data (right most line in
Figures ??C and D). The resulting scanning densities (ps.,, = 0.38 + 0.03 for CbAgo and
Pscan = 0.31 £ 0.04 for hAgo2) indicate that only approximately one in three bases are
checked by Ago while moving along its substrate.

We can further give rough estimates of the sliding distance and skip length as follows.
As we see a dip in the shuttling time we know that skipping can only be a viable avenue
of translocation above a certain trap separation, and thus there should be a gap in the
position distribution of a skip-and-slide cycle just after the first skip (middle panel Figure
??C). For there to be a substantial gap in this distribution we need a clear separation be-
tween the distributions shown in the first two panels of Figure ??C. In mathematical terms,
Olip T+ Ldige < U, implying that Liys = Ly, = Uskip, and that the dip visible in the shut-
tling time (Figures ??C and D) essentially reports on this quantity. With a dip for both sys-
tems occurring around trap-separations of 30 nt, this implies a skipping distance of around
lip = 30nt. With a scanning density of a third, this skip distance in turn suggests that
both sliding distances are around [;4e = 10nt, or equivalently, Ago takes around 100 slid-
ing steps between skips.
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Figure 6.3: Optimal search times. (A) Schematic single search round. In search of the unique target, the protein
uses a combination of skipping and sliding along the substrate before it unbinds into solution and must perform
3D diffusion before it can return. Only sites slid past (at least once) are interrogated (green), resulting in a prob-
ability pcheck to interrogate a particular site. (B) Comparison of pepeck (X) (solid line, Equation 3) to Monte Carlo
simulations (symbols) (details given in Methods). Dashed lines indicate Argonauts (ps.an = 0.3) that typically skip
once (light grey), 10 (dark grey), and 100 times (black) before unbinding. (C) Search time versus Njge and Nyip-
Region above the solid line represents sparse scanning (pPscan < 0.5), while the region below it represents dense

scanning (pgcan > 0.5). (D) Phase-diagram showing when TSNS, | < T:!g';;ﬁ Dashed line represents the constant

scanning density of 0.3 (approx. the value estimated for both Ago). Arrows represent directions of increasing
Lsip, Protein copy number (concentration) and substrate persistence length.

6.2.6. The total search time

Having shown that both hAgo2 and CbAgo skip over a significant number of bases—about
double the number of bases it actually scans in any skip-and-slide cycle—we now turn to
the question why both Argonaute — from different kingdoms of life — behave so similarly.
Under what conditions does skipping speed up a protein’s search for a single target in the
genome or mRNA pool? To answer this question, we now theoretically consider what com-
binations of the number and length of skipping and sliding steps — and thereby scanning
density — lead to minimal overall search times.

We consider a target searcher that after diffusing through solution, binds its substrate ran-
domly and non-specifically to perform a lateral excursion consisting of both skipping and
sliding before unbinding (or finding the target). In a lateral excursion that ends with unbind-
ing, we take the protein to undergo an average of N, skips, and N4e slides. Note that
Nige does not equal the previously defined [3,., as the latter is the number of sliding steps
between consecutive skips, while the former equals lﬁide multiplied by the number of skips
prior to unbinding (see S.l.). To estimate the total time to find the target, we first deter-

mine the average number N4 of search rounds (‘rnd’) (binding-skip-and-slide-unbinding)
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needed before the target is found, and then the average time T,,4 of each search round [?
? ? ]. In what follows, we express both N,,4 and T4 for target searchers using a mixture
of skipping and sliding corresponding to a scanning density p,.,,, after which we shall pro-
ceed to minimize the search time in terms of the frequency of skipping and sliding steps
taken. To properly model the skip-and-slide process between unbinding events, we must
cover the scenario presented in Figure ??A: even though the target sits in between the
binding and unbinding locations, it might still be skipped over. In the S.l. we show that
the average fraction of bases checked at least once over the rms lateral diffusion distance
lip = / Ngiplsns between binding and unbinding can be estimated using the scanning den-
sity and the typical number of skips prior to unbinding as (see Figures ??A and B)

log (1 + 2x
Deheck(X) =1 — %f with x = lfivlvskip (6.3)
pscan

The total number of checked sites at a fixed scanning density increases with increasing
number of skips per binding event. The logic being that an increased number of skips al-
lows for repeated rescanning of the same region of DNA sites, with the protein every time
interrogating about p,, of these sites. Figure ??B shows that if the Argonaute proteins
(pscan = 0.3) are to skip on average 100 times before unbinding, they still interrogate only
about 60% of all sites spanned within its lateral excursion (dashed lines). Hence, after cor-
recting for repeated scanning due to skipping, Ago likely still leaves a significant portion
of the RNA/DNA unseen. We validated Equation ?? (solid line in Figure ??B) using Monte
Carlo simulations (colored data points, Methods).
Each lateral diffusion event checks on average pehecklip distinct bases, and with a single
target on a substrate of L nucleotides, it will take on average N,,q = L/pcheclin Cycles be-
fore the target is found.

Each search round can be split between base interrogation through 1D lateral diffusion
and 3D diffusion through solution. The 1D lateral diffusion time 71p = Tgjge + Tip can fur-
ther be split into the total time spent interrogating off-targets after a sliding step Tyjige =
NjigeTsiide, @and the total time spent completing skips and interrogating the landing site
Toip = NokipTskip- The timescales for interrogating off-targets after a sliding event g,
executing skips T, (including the time to interrogating the site of arrival), and executing
excursions into solution t3p (including the time to interrogating the site of binding), to-
gether with the average number of rounds to find the target, leads us to the total search
time

T1D L
Tsearch = TrndNend = (NgiideTslide + Nskistkip +T3D)l (6.4)
—_— — 1DPcheck
Tlide Tskip

We will seek the minima of the search time, but before proceeding we must consider what
variables evolution could act upon to create a balance between skipping, sliding, and un-
binding.

From the definition of the microscopic timescales we immediately have g, T3p > Tgjige aS
the sliding motion itself costs negligible time by assumption, and both skipping and excur-
sions into solution are ended by interrogating the base at arrival (74;4c). Further, we only
ever expect to find an optimum with a balance between skipping and unbinding when the
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time to complete a skip is shorter than the time to return from solution. If returning from
solution would be faster than completing a skip, skipping would always be eliminated and
unbinding favored because it has both lower redundancy and is completed quicker. Fur-
ther, decreasing any of the microscopic timescales associated with different search modes
will clearly speed it up. Therefore, we assume these times to already be reduced as far as
possible, and ordered as T3p > Tgip > Tolide-

Apart from the three microscopic timescales, there are three more independent parame-
ters evolution could act upon. These are the total number N, of skips N, in one search
round, the number N4, Of off-targets checked after sliding in one search round, and the
rms skip distance Iy, (or equivalently Ny, Ngjige and pscan, See S.I.). Increasing only the
rms skipping distance Iy, will always reduce the scanning redundancy, and so will always
reduce the search time. Since we observe skips of finite length, we also assume these to
be externally limited, and take also Iy, to be fixed. We are left with two independent pa-
rameters, and in Figure ??C we plot the search time as a function of N, and Nj4e when
Liip = 30nt and 735 = 10744, = 1007gge.

Minimization of the search time over our remaining two independent variables — the num-
ber of skips N, and the scanning density pq,, (defined in Equation ??) — results in two
conditions that need to be satisfied at any optimum (see S.l.). We present the general con-
ditions in the S.1., and here present solutions valid in regimes of both high and low scanning
densities to determine when skip-and-slide search, of the kind observed for Ago, is favored.

6.2.7. Sliding is optimal for scanning densities above 1/
One local minimum exists in the densely scanned region (1 — p,.an << 1/2) and corresponds
to the protein using sliding as its only lateral diffusion mode, eliminating skips entirely. The
minimum is defined by, pirar® = 1, and (see S.1.)

T3p

. . 1
lid lid
Nzklipmg =0, N:Iildalang = Teng = Tige = ETrnd (6.5)
slide

This minimum corresponds to the known minimum when a priori assuming that there are
no skips [? ? ]. Namely, the protein spends half its time diffusing through solution and
the other half of the time sliding (the rightmost identity in Equation ?? is equivalent to
T1p = Tap). The search time at this minimum equals (see S.1.)

lidi
Tsse;rI:hg = 2L+/Tgjige T3p (6.6)

The non-skip minimum is the only minimum in the densely scanned regime (p¢c.n > 1/2)
(Figure ??C, minimum coinciding with horizontal axis), suggesting that it might be hard to
evolve away from the it by incremental steps.

6.2.8. A mix of skipping and sliding is optimal for scanning densi-
ties below 1/2
For the skipping to be beneficial, skips must be large enough (I, > Lgige OF equivalently
Dscan K 1/2) to get the system beyond the barrier visible in Figure ??C. In the S.l. we show
that after recognizing
Tslow = Tslidelszkip (6-7)
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as the time needed to traverse the length of a skip purely through sliding (diffusion with 1
nt steps) —a measure of the added benefit of using skipping — we obtain the location of the

Ns < 0.5,

skip-n-slide optimum corresponding to a scanning density of pSNs, = N;I,:‘ge/Nsklp

sk|p
with (see S.1.)

1 1

T3p [ Tsiow \° T3p Tlow \° 1

N;I’?Ic?e = ( = ’ N?lt‘.; = 1+ . = Tskip = _Trnd (6-8)
Telide \ T3D Tokip T3p 2

Note the final identity shown in Equation ?? says that at the skip-and-slide optimum, the
protein spends half of its time skipping, and the other half on a combination of sliding and
diffusing through solution. In agreement with experimental studies [? ? ], this indicates
the protein spends more time diffusing along the DNA then it does through solution (t,p >
T3p). The search time at this skip-and-slide optimum equals (see S.l.)

Tst

search —

(6.9)

6.2.9. Global optimal search strategy

As there are local minima in both the sparsely and densely scanned regions (Equations ??
and ??), the global optimal search strategy is defined by which of these two minima have
the smallest search time. The condition for the slip-and-slide minimum being the global
minimum (TSRS < T19M8) can be written as (see S.1.)

search search
2
2 Tslow ) 3
Tskip Dcheck <( T3p ) )
<

1

Tslow 1+(T5|ﬂ)3

73D

<1 (6.10)

Figure ??D shows the corresponding phase diagram —in {‘rsbw, thi;}—space—showing when
the skip-and-slide minimum is the global minimum. We previously argued that if 735 <
Tekip there will be no skip-and-slide minimum. Now we see that for 755 > 74, We can al-
ways find an Iy, long enough that the skip-and-slide optimum is also the global optimum
(upward arrow in Figure ??D). Logically, the skip-and-slide optimum is only preferred over
the sliding-only one for 7y, > T, indicating the typical return time of a skip may not
exceed the time needed to cover the same distance by just sliding, and Equation ?? gives

the more stringent condition that must be satisfied.

We conclude by noting both of the Argonaute proteins considered above have p,.,, = 0.3
(yellow dashed line in Figure ??D), putting the system above the line separating the sparse
and dense scanning regimes (Figure ??C). Certainly, hAgo2 and CbAgo operate far from the
sliding-only optimum, and, as we shall discuss further below, are working in the regime
where the skip-and-slide optimum is found (crossing point Figure ??D).
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6.3. Discussion

Site-specific DNA or RNA binding proteins must find a single sequence amongst megabase
(prokaryotes) to gigabase (eukaryotes) pools of off-targets. Here we have shown that facil-
itated diffusion with a mixture of sliding (single-nucleotide steps) with frequent and large
skips (multi-nucleotide steps) is capable of reducing the overall search time beyond using
sliding by itself. Interestingly, pure sliding is a possible optimal strategy, and the search
time for skips shorter than the sliding length is minimal only after eliminating skips entirely
as their temporal cost is no longer accompanied by the benefit of visiting off-targets not
encountered before (Figure ??C). Contrarily, skips greater than the sliding length reduce
the probability of redundantly sampling off-targets, and we find another optimum where
the search time is minimal if skips are used so frequently that the system spends half of
the time skipping. We further showed how single-molecule FRET experiments (Figure ??)
can be used to extract what we termed the scanning density, a measure of the fraction
of bases directly interrogated during a skip-and-slide cycle (Figure ??). Our experiments
performed on a prokaryotic (CbAgo) and eukaryotic (hAgo2) Argonaute revealed both to
have scanning densities around 0.3 (Figures ??C and ??D)—well within the sparse scanning
regime (Figure 22C).

As shown in Figure ??C, the scanning densities of the Argonaute proteins are consistent
with having skip-n-slide search as an optimal strategy. However, according to Figure ??D
it appears at this the system just touches the separating line determining the global op-
timum. One might speculate what other factor, not taken into account in our modeling,
could have driven Ago away from the sliding only optimum. As shown in reference [? ],
skips are needed to surpass roadblocks present on any physiological substrate. Typical 3’-
UTR substrates are 40-80% with proteins [? ] and about one protein for every 30-100 nt is
bound to cellular DNA [? ? ]. We therefore hypothesize that if one limits the sliding length
to be less than the typical separation between other (high affinity) binding proteins it to
always be beneficial to include skips (TSNS, < T=19ne)

Based on our results, for a low scanning density to be preferred, the binding rate from
solution should not exceed the return rate after skipping (Figure ??D). As binding rates
scale linearly with concentrations (before reaching saturating levels), we thus expect bind-
ing proteins present at lower copy numbers to be prone to use more frequent skips (arrow
in Figure ??D). For example, E.coli cells express about 1-10 copies of the lac repressor [? ]
and experiments have indeed seen signatures of a skipping-and-sliding mixture [? ].
Instead of increasing (reducing copy number), a reduction in 7, is to be expected on more
flexible substrates, such as single-stranded DNA or RNA. We therefore deem it likely that
skip-n-slide search to also be used by sequence specific single-stranded binding proteins
other than Argonaute, such as ribosomes searching for the transcription start site. We
hope to motivate future experiments utilizing different DNA binding proteins to investi-
gate whether they belong to the “sliding only” (pscan > 1/2) or the “skipping-and-sliding”
(Pscan K %) class (Figure 22C).

Within our analysis of the total search time we have decoupled the return time from a skip
(Tskip) from the average length thereof (I, ). Hence, fixing the time, there is no penalty for
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ever increasing skipping distances. In fact, for large enough skipping distances we can al-
ways reach a situation where the skip-and-slide optimum is the global optimum (provided
Tskip < T3p)(Figure 2?D). In our previous work [? | we demonstrated the duration of skips
to be limited by the time needed to escape the bound site — rather than the time needed
to find the distant location — justifying our assumption for Argonaute. However, skips lim-
ited by the rate of rebinding — for instance through diffusion — couple T, to L, and we
expect an optimal [, to exist. As we here focused on the coupling between search time
and the experimentally measurable p,.,,, we deem such an analysis beyond the scope of
the presented research, but an interesting future direction.

A previous study [? ] has pointed out that speeding up the lateral diffusion — by reduc-
ing the variation in binding strengths along the genome — comes at the cost of reducing
the protein’s specificity. The authors proposed that in order to overcome this apparent
‘search-stability paradox’ the protein must switch between two conformations — one with
higher affinity (for specificity) and one with a lower one (for speed) — and detail the tight
constrains on the binding energies for such a solution to exist [? ? ](Chapter ??). Se-

adopt multiple conformations during target interrogation [? ? ? ]. The necessity for two
protein conformations, however, arises from assuming the protein is only capable of slid-
ing, thereby forcing the protein to sample every site along the genome. We hypothesize
that using the different skip-and-slide scheme described here could provide a complemen-
tary/alternative route to being both fast and specific —allowing for wider spreads in binding
energies — especially for proteins that are not known to exhibit multiple conformations.

The experiments performed here — together with our theoretical analysis — are in principle
applicable to other DNA binding proteins. Proteins not guided by non-coding DNA/RNA
should be labeled with the donor dye directly. Moreover, both Ago proteins examined
here bind single-stranded nucleic acids, which have close to nucleotide persistent lengths
[? ] and thereby offer a clear possible mechanism of introducing frequent skips — Ago can
skip to distant sequences as they can come close together in space. Yet, the presented
analysis and experiment do not rely on such, and proteins binding double-stranded DNA —
persistence lengths ~50 nt— can similarly be investigated for the presence of (presumably
larger and less frequent) skips, without prior knowledge of a possible microscopic mecha-
nism for skipping.

In conclusion, a search strategy combining skipping and sliding can significantly increase
the rate of association to the cognate target — which is of critical importance for proper
functioning of the cell — and Argonaute proteins adopt scanning densities consistent with
their mixture being optimal.

6.4. Methods

6.4.1. Monte Carlo simulations for validating P,

To test the validity of Equation ??, we set up Monte Carlo simulations (code written in
Python). The proteins are assigned a unity step rate to either side, as well as an unbinding
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rate u. Hence in every move, the protein diffuses to one of its neighboring site with a
probability 1/2+u and unbinds with a probability ¥/2+u. Before every move, the protein
interrogates the site currently located at with a fixed probability of p,.,,. Each of the 1000
runs ends when the protein unbinds. The corresponding value of x is evaluated using the
distance between binding and unbinding sites (see definition of x above Equation ??). We
estimate the value of p.heck as the fraction of sites visited that are interrogated. Error barsin
Figure ??B show 95% confidence intervals for both x and p¢pec- Simulations we repeated
for in [1071°, 107°,1078,...,1072, 0.9,0.8,...0.1], and u in [1073,...,1072] as indicated in
Figure ??B.

6.4.2. Bootstrapping for error estimation and based on smFRET
data

Fitting the data from the tandem target assay to Equation ?? provides the estimate of Ty,,.
We bootstrapped the dwell time distributions acquired using the original tandem target
assay (distances of 11 nt, 15 nt, 18 nt and 22 nt (CbAgo) and 7 nt, 11 nt, and 15 nt (hAgo2)).
For each of the 10° bootstrap samples we calculated new values for the associated T, e’
and repeated the fit to Equation ?? to obtain an error estimate in the fitted value of the
escape rate. In similar fashion, we used Equation ??, together with the estimate of 7.,
from the original dataset, to determine p,,, (distances of 64 nt, 92 nt and 120 nt (CbAgo)
and 80 nt, 120 nt, 160 nt (hAgo2)). All analysis was performed with a custom code written
in Python. Shaded areas in Figures ??C and D represent 95% confidence intervals.

6.4.3. protein purification

CbAgo was purified according to Hegge et al, 2019 [? ]. hAgo2 was purified according to
Chandradoss et al, 2015 [? ].

6.4.4. Nucleic acid preparation

RNA constructs with a single amine-Cé6-uridine modification were ordered from STPharm.
After labelling with Cy5 according to [? ], the constructs were precipitated. The RNA con-
structs were subsequently annealed to a DNA splint (specific for RNA and U40 mer), a sec-
ond DNA splint (for ligating U40 mers) and a U40 mer (in the ratio 1:2:3:3). After ligation
with T4 RNA ligase Il (NEB), the ligated constructs were run on a 10% PAGE. Different ligated
populations are created through this process (for example, TGT- U40 or TGT-U40-U40 etc)
and these are then excised from the gel and concentrated through ethanol precipitation.
The concentrated and ligated RNA constructs were again annealed to a DNA construct and
an RNA target with biotin on the 3’ end. Ligation was again performed with T4 RNA ligase II.
DNA oligos with a single amine-C6-thymine modification were ordered from ELLA Biotech
GmbH and labeled in the same way as the RNA.

6.4.5. Sample preparation

Quartz slides were prepared according to [? ]. Briefly, quartz slides were cleaned with
detergent, sonicated and treated with acetone and subsequently KOH. Coverslips were di-
rectly sonicated with KOH. Piranha cleaning was done followed by treatment with methanol
and incubation of (3-Aminopropyl)triethoxysilane (APTES) for both coverslips and quartz
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slides. PEGylation took place overnight and slides and coverslips were stored at -20 °C. Be-
fore single-molecule experiments, an extra round of PEGylation took place with MSPEG-4.
The quartz slide was then assembled with scotch tape and epoxy glue and the chamber
is flushed in T50 and 1% Tween-20 for >10min to further improve the surface quality of
the single-molecule chambers [? ]. Channels were thoroughly washed with T50 before
adding in streptavidin (0.1 mg/mL) for 1 min. Subsequently, DNA or RNA was immobilized
on the surface through biotin-streptavidin conjugation. 10 nM CbAgo or hAgo2 was incu-
bated with 1 nM guide in (100 mM NaCl for CbAgo, 50 mM NaCl for hAgo2), 50 mM Tris, 1
mM Trolox, 0.8% glucose for 30 min. Lastly, glucose oxidase (0.1 mg/mL final conc.) and
catalase (17 pg/mL final conc.) were added and introduced in the chamber.

6.4.6. Experimental setup

Single-molecule experiments were performed on a custom built inverted microscope (1X73,
Olympus) using prism-TIRF and a 60X water immersion objective (UPLSAPO60XW, Olym-
pus). The Cy3 dye was excited using a 532 nm diode laser Compass 215M/50mW, Coher-
ent) and the Cy5 dye was excited using a 637 nm diode laser (OBIS 637 nm LX 140 mW).
The scattered light was blocked by a 532 nm notch filter (NFO3-532E-25, Semrock) and a
633 nm notch filter (NFO3-633E-25, Semrock) after which the remaining signal from the
fluophores was separated into two separate channels. Lastly, the light is projected on a
EM-CCD camera (iXon Ultra, DU-897U-CSO-# BV, Andor Technology). Before each experi-
ment, a reference movie was taken with the red laser to excite the Cy5 dyes on the nucleic
acid molecules of interest. After that, a movie is taken with the green laser. The single-
molecule experiments were taken at room temperature (20 + 0.1 °C).

6.4.7. Analysis of raw data

The raw data was analysed using custom written code in IDL, where the reference movie
is used to take into account only the regions of interest (i.e. the regions that contain a
Cy5). The resulting time traces where further analysed in MATLAB (Mathworks) where the
shuttling rates were extracted through the use of Hidden Markov software called ebFRET
(http://ebfret.github.io/) and custom written code in Matlab.
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6.7. Supplemental Information

6.7.1. Determining shuttling times using a mixture of skipping
and sliding

We here build a kinetic model for the lateral diffusion by target searching proteins capable

of explaining the experimental data shown in Figure ??.

modeling skipping-and-sliding lateral diffusion

Given the protein canin principle (attempt to) bind any sequence along the DNA or RNA, we
imagine binding sites to be a nucleotide apart. When bound to site i, the protein diffuses
away (in either direction) at a rate

ks attrap

kmove (1) = (S6.1)

k.s  at non-specific site
We assume the binding energy at the trap is significantly greater than at any non-specific
site, with both still being significantly more stable than the unbound state. As a result,
the (average) shuttling time measured in our in vitro experiments - the system contains
two stronger binding traps and a limited amount of remaining off-targets - is governed by
movements from the trap.

Kns > Kerap (56.2)

Ignoring any temporal contribution from the non-specific sites reflects the lack of any di-
rectly observable FRET signal corresponding to the protein being at these locations (Figure
??). Furthermore, given the TIRF microscopy assay ensures we are tracking laterally diffus-
ing proteins that did not unbind - proteins diffusing through solution move in and out of
the evanescent field too fast to be detected - we shall ignore the protein’s intrinsic unbind-
ing rate at all sites for now - an assumption that is further justified by noting that typically
more than 10 shuttle events occur prior to unbinding.

In every move, taking an average time of k3., the protein can either slide - step to its
neighbors - or skip - step furtherWe let the rate to step away from site i still be set by
Equation ?? and assign a probability that such a step is of definite length |[| (in nucleotides).
Letting &, ,, denote the Kronecker delta,

Nglide (lslide)
1+ nslide(lslide) 1+ nslide(lslide)

,with}, _ . P(n) = 1. The weight of a skip of length |{| as a function of the typical skipping
length Ly, is denoted by s(|1], lyp). Further, ngqe is the typical number of sliding steps
taken between two consecutive skips. Given a sliding step displaces the protein by a sin-
gle nucleotide, the stochastic variable An; representing the number of nucleotides moved
during one such step follows

P, Lyjige, lskip) = 5|l|‘1 +

(1L, Lip) (S6.3)

_|+1int p=1/2

Ans
i —1Int 1-p=1/)2

(S6.4)
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Hence, the mean squared displacement after ng;y. of such steps equals

2
Nslide

(1nt)* e = z An; | ')
i=1

= Z Z (AniAle>
=1 j=1 (56.5)
Nslide

= D (@M + ) (an) (on)
i=1 i#]

= Nglige X <(An1)2)

= Nglide (1 nt)z

, where in the third line we have used the independence of individual steps. We define
the ’sliding length’, l5ige = +/TMgiige, @s the typical number of nucleotides covered sliding
between two consecutive skips - the rms displacement of a simple random walk with ngj;ge
steps. Rewritten in terms of the now defined sliding length [4., the probability of taking
a step of length |n| reads

2 1
P(n, Lgjiges Lskip) = L"E% 1+ ———s(nl, Lip) (56.6)
1+ lslide ' 1+ lslide

The (effective) rate from i to j then equals

K(iljllslidel lskip) = kmove(i)P(li _jlﬂ lslide' lskip) (S6.7)

As we will show below, the behavior of the resulting shuttling times both at short and long
distances is independent of the choice of the distribution s. Yet, all numerical results are
obtained using

n+1/2

s(n, :uskip' Gskip) = f [G(nlﬂskip' Uskip) + G(nl - :uskip' Uskip)] dn (56-8)
n-1/2
with
1 —(xz—:zskip)z
e Z7skip (56.9)

G(x: Hskip» askip) = T
/Znaszkip

denoting the Gaussian distribution with average pg, and standard deviation o,. Hence,
the length of each skip is normally distributed, with a typical (rms) skipping length of

Lyip = ,fﬂszkip + Uszkip (56.10)
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numerical method to solve for shuttling time

Every shuttling event starts with the protein bound at one of the two trapping sites (t = 0)
and ends the first time it reaches the other (t = Tyyue), located dy,, sites away. Using the
transition rates of Equation ??, letting B(t) denote the probability for the protein to reside
at site i at time t, and defining the vector

Bt) = [P, P(D), Pdtrap_l(t)]T (56.11)

(for ease of notation we omit the sites flanking either trap i < 1 and i > dy,,, but note
the approach mentioned here is applicable also if the traps are not the outermost sites on
the construct)

the following set of Master Equations determine the evolution of the occupancies at every
site during a shuttling event with the first trap at site 1 and the second at dy,.

-

oF _ KP(t $6.12

with the elements in rate matrix K given by

_K(lj - ilr lslide: lskip) Vi 7':]'

K;j = o . (56.13)

Y Zi¢j K(ll _]lrlslide: lskip) Vi =]

The shuttle event starts with the protein located at the first trap,
P(0)=1 PRO)=0Vi*1 (56.14)

, and ends when the second trap is reached, whose corresponding outgoing rates are set
to zero (j = dy,p in Equation ??). The probability of completing a shuttle within the time
interval [T, T+At] should be proportional to the change in occupancy at the destination trap
(Pa,trap (t+At) — Py, (7)). Letting pehuttie (T) denote the probability density of completing
the shuttle at time t, (pshuwe (T) At = P, (T+A) — P, (1), for small enough At. Taking
At — 0, we recognize the rate of change of the second trap’s occupancy (%ltﬂ)
as the instantaneous probability that the shuttling time equals T (Psputtie (7). Denoting the

basis vectors p; as py = [1,0,0, ..... O]T, P, =10,1,0,... O]T, P>, =10,0,1,.. O]T and so on,
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the shuttle times are distributed as

0Py, (1) |
at t=t
op;(t) |
ot t=1

Dshuttie (T) =

j*dtrap

7 9P (t)
- Z R e I (56.15)

J#dtrap

+ Z B KB (1)
j*dtrap

_ Z BT Ke K7B(0)

J#dirap

In the second line we have used that any additional occupancy at the trap must come from
somewhere else on the RNA/DNA (Pdtrap(t) =1- Zjidtrap B). The next lines makes use of

Equation ?? together with the basis vectors to write the elements of P asits projections,
and the Master Equation, Equation ??, to work in the rate matrix K and its matrix expo-
nential.The desired average shuttling time (T, wie) is the first moment of the distribution

Dshuttle (T),

[o2]

Tshuttle(dtrap) =f Tpshuttle(T)dT
0
Y Z 57 Ke~KTB(0)dr
O j#duap
r o . (S6.16)
= B <f rKe‘KTdT>P(O)
J#dtap 0
>T 113
= B, K~'P(0)
j¢dtrap

Using the values of Lyige, Uskip and agp (thereby knowing g, via Equation ??) and the
distance between traps dp, We construct the rates in Equation ??, build the matrix K,
invert it and compute Tyyutie (dirap) as the inner product shown in Equation ??. Note that
if the trap located at dy,, is not the outermost binding site on the construct, Equation ??
is still valid after substituting matrix K for the sub-matrix with its dy,,-th row and column
removed.

6.7.2. Shuttling times scales with square of scanning density at

large trap separations
Given movements along the non-specific parts of the substrate occurred too fast to be ob-
served, Ty,uiie Should be proportional to the time needed to escape the initial trap towards
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the region in between traps (Tyy,, = kt_ralp) multiplied by the number of re-trapping events.

Tshuttle(dtrap) = nreturnTtrap (56-17)

After sufficient rounds of skipping and sliding, the protein’s excursion is well described by
a random walk with basic step length (Figure ??, 'sNs’:’skip-N-slide’):

st \/lshde + lSkIp \/lshde + Hsklp + Usklp (56'18)

The protein slides - covering [ 4. Nucleotides - before skipping to the next segment of
length L. For this coarse-grained system, we once again expect the escaping of the trap
to be rate limiting, resulting again in a linear increase of the shuttling time with inter-trap
distance, similar to the case of diffusion purely by sliding (Equation ??),

Tshuttle(dtrap) = const. + ﬁreturnTtrap (56-19)

Here we are concerned only with Tg e (dirap)’s scaling with dy,p,, for which it is only the
term proportional to T,, that has to be taken into account. In the coarse-grained system

Areturn = (# returns to segment that contains the first trap)
X (# returns to trap when in first segment) (56.20)

= nsegment X nretrap

To get the average number of re-entries to the first segment we must derive its correspond-
ing probability. First, given a skip translocates the protein to an adjacent segment of s
nucleotides, and 12, steps are taken within each segment

Ly Ly
Decan = slide — slide (56.21)

l
N l + lszkip

slide

denotes the typical fraction of interrogated sites along the substrate, or ‘scanning density’.
In other words, any particular site within a l;y,-long region of DNA/RNA has a probability
of ps.an to be interrogated prior to the protein moving beyond this segment. Equivalently,
the protein visits a segment without checking (all) the sites within it with a probablllty
of 1 — pyan. Next, let Py,ue(d) denote the probability of traversing/shuttling across d
segments without entering the previous segment. We shall derive Py, e (d) below. Having
entered the first of the ﬁtrap = duap/1\s SEgMents that lie between the traps, the probability
of returning to the segment that contains the initially bound trap equals (Figure ??).

Psegment - (1 shuttle(dtrap))

+ Pshuttle(dtrap) Z ((1 - pscan) (1 - Pshuttle))m (1 - pscan) Pshuttle(dtrap)

m=0

(S6.22)
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The first term is the probability of immediately going back to the segment the protein
started from, while the sum accounts for the probability of all paths that reach the seg-
ment that contains the second trap, do not get captured by it, and eventually return back
to the first trap (Figure S2). For instance, the m = 0 term (Ppuitie (1 — Pscan) Bohuttie) reP-
resents the path that walks to the opposite side of the construct, does not interrogate the
final trap and walks back across the construct to arrive back at the segment with the ini-
tially bound trap.

Using a similar type of ‘path counting’, we find the probabilities Pyywie and Pig shuttle =
1 — Ppywie, for a given inter-trap distance dy,, to equal (Figure ??)

\ > (1 \ ™9
Pno shuttle(dtrap) = Z <E (1 - Pshuttle(dtrap - 1))) E (56-23)

Pshuttle(d’\trap) = Z < (1 shuttle(dtrap 1))) shuttle(dtrap 1) (56-24)

m=

- from which we can write the recurrence relation

Rshuttle(dAtrap) = Pno shuttle(dAtrap)Pshuttle(&trap - 1) (56-25)

The above can be re-written as

Pshuttle (&trap - 1)
Pshuttle(dtrap - 1) +1

Pshuttle(atrap) = (56.26)

, which subjected to the boundary condition P, e (1) = 1 - signifying that if the traps are
placed in adjacent segments, the shuttle is complete once the protein escaped the trap for
the first time - has the simple solution

1
shuttle(dtrap) =5 (56.27)
dtrap

Given the probability of re-entering the first segment, the average number of times this
occurs prior to eventually shuttling across equals

Psegment

nsegment - Z segment Psegment) = 1 (56.28)

- Psegment

Using Equation ?? we find that the protein on average re-enters the segment with the initial
trap
dtrap lst

-2 (56.29)

Nsegment = 1 I
sNs slide

times prior to completing the shuttling event. Once arrived back within the first segment,
we must count the (average) number of times the protein gets recaptured by the actual trap
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(Aretrap)- Assuming sufficient ‘skip-and-slide cycles” have taken place, the protein’s position
is uniformly spread throughout the [\,-long segment (Figure ??C). Hence, every step taken
within the segment has a probability of 1/i, to lead to the trap. Given there are typically
Ngige = 54 Steps taken prior to a skip (that moves the protein outside of the Lys-long
region),
~ Nglide lszlide
Nretrap = =7 (56.30)
lst lst

Taken together, Equations ?? and ?? - by virtue of Equation ??:

2 2
lslide % [dtrap + lst

14
- 2] = const. + %dtrap (56.31)
sNs

nreturn -

lst lst lslide

Hence, when placed sufficiently far apart, the shuttling time (Equation ??),

1
1+(;;%)2

grows linearly with a slope that scales quadratically with the scanning density (Equation
??) from which we obtain the ratio between sliding and skipping lengths.

Tshuttle(dtrap) = const. + pszcanTtrapdtrap = dtrap (56.32)

6.7.3. parameter sweep and estimation of slopes

To construct Figure 2E, we evaluate Equation ?? for [ ;4. € [1 nt, 6 nt, 12 nt, 18 nt, 24 nt,
30 nt, 36 nt, 42 nt], pgp, € [0 nt,6 nt, 12 nt, 18 nt, 24 nt, 30 nt, 36 nt, 42 nt] and o, €
[0.01 nt, 6 nt, 12 nt, 18 nt, 24 nt, 30 nt, 36 nt, 42 nt]. The distance between traps varied
from 1-250 nt. The values of Lgjge, Uskip and Ogyip Where chosen such that at the largest trap
separation of 250 nt the system is always in the regime for which we expect Equation ??
to hold.

For every Tyyuie VS dirap CUrve, we use the first two points (1 nt, 2 nt) to estimate Ty,
(Equation ??) and the final two points (249 nt, 250 nt), together with the estimate of Ty,
to estimate p,.,;n (Equation ??).

6.7.4. Search time using skipping and sliding shows two optima
Here we connect the scanning density (p,.;n) that we can extract from experiments to the
time needed for a protein to locate a single target embedded within a larger pool of L
binding sites. Following [? ],

Tsearch = NrndTrnd (56-33)

with T,,4 the (average) time each round of facilitated diffusion takes and N,,q the number
of such rounds ('rnd’) needed to find the target. As mentioned in the main text, we seek to
find the minimum search time with respect to the number skips (N,) and slides (Njige)
within every round (binding - lateral diffusion - unbinding).

The length of a skip (lyp), as well as the times to interrogate (slide past) a binding site
(Tsige), €xecute a skip and interrogate the landing site (7,), and the time spent on 3D
diffusion and interrogating the landing site (73p) are all kept constant. The time per round
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consists of the time spent on the DNA performing lateral diffusion and the time spent in
solution performing 3D diffusion.

de =T1p + T3p (5634)

We further write the time spent on lateral diffusion as the time spent interrogating off-
targets either by sliding or skipping,

T1p = Tolige + Tskip (56.35)

For ease of calculation, we define the following variables with respect to which we have
minimized the search time

x = 1'0&,/NSkip (56.36)

— Pscan

y = _Pscan (56.37)

1- Pscan
Written in terms of x and y (Equations ?? and ??), the total times spent either on sliding
or skipping become

Tyide = NsiideTsiide = (X81)*Tgjige (56.38)
2
Tskip = Nskistkip = (x/y) Tskip (56'39)

lskip

J1+2y

To complete Equation ?? we need the average number of search rounds (binding-lateral
diffusion-unbinding) needed to locate a single target amongst L potential binding/target
sites,

Here we have introduced the variable §1 = Ly — Ljige = for ease of notation.

L

llecheck(x)
In here, we set the typical length of a lateral excursion to span [y sites, out of which a frac-
tion Pepeck (x) have been interrogated (slid past) at least once prior to unbinding (derivation
shown below) (see Figure 3A). Further, [ represents the (rms) distance between binding
and unbinding sites

(S6.40)

rnd

llD = [Ngjige + Nskiplszkip

= \/Nskipnslide + Ngip Lo

(56.41)
= JNskiplszlide + NSkiPlszkip

y+1
= Nskiplst: T x61

Inthe second line of Equation ?? we have rewritten the total number of sites visited through
sliding as the product of the number of skip-n-slide cycles (Ng,) and the number of slid-
ing steps between two skips (ng;qe). The latter is related to the sliding length as we have
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defined it above (I3, = Ngige, Equation ??). In the last line, we recognize the rms length

covered in a skip-n-slide cycle (lys = /ljide + lszkip). We note that [;j is what can be deter-

mined experimentally as the span of a lateral excursion, which is not equal to the variable
L ige - €ven when the protein only performs sliding. Namely, as we have defined [y, to
be the rms between consecutive skips, this quantity becomes much greater than [ if on
average less than a skip occurs per search round (ngjige > 1 when N, < 1).

Taken together, the search time can be written as
Tsearch = NrndTrnd = de [Tslide + TSkip + T3D]
2
(X5l)2Ts|ide + (/)" Tokip + T30 (56.42)

(1 + ¥)xPeheck (¥)51(Y)

In what follows, we shall first derive pcheck, @and proceed to show Tye,cn, has minima
both for large scanning densities (sliding only) and low scanning densities (skip-n-slide).

=LX

Probability to interrogate all sites within a given section of sequence space

As discussed in the derivation leading up to Equation ??, after sufficient ‘skip-and-slide cy-
cles’ the protein’s motion is approximately described by a simple random walk with basic
step length L\ and a probability pg.,, to check all the bases within each segment per visit.
Here, we derive an approximate equation for ppecc for which we used Monte Carlo sim-
ulations to show it has the correct scaling with the model parameters (see main text and
Figure ??) - thereby validating our analysis of the search time done below.

Let the protein bind to the DNA at segment 1 and leave it at ilD = lp/iy,. Towards calcu-
lating the probability to check all sites along its path at least once, we first pick a segment
[ between start- and endpoints and determine the probability to visit/interrogate all sites
in this segment at least once prior to making it to segment im for the first time (Figure
??A). Assuming the protein does not visit any other segments outside the interval [1, ilD],
the probability to reach im after having checked the sites within iequals the probability of
making it from [ to iw,

P(1 = Ijp|check ) = P(1 = I) x P(I - [;p|check 1) = P(I = I;p|check ]), (56.43)

as the protein will always return from the first segment to the intermediate (with or without
checking sites in between) (P(1 — [) = 1). The probability of making it from 1 to [;4
without checking the intermediate site equals (Figure ??A)

P(i - ilD|no check i)

1 A o
5(1 - pscan)Pno shuttle(llD - l)

(o)

1 X X X X m
Z (5(1 - pscan) [Pno shuttle(l) + Pshuttle (l) + Pno shuttle(llD - l)])

m=0

X

1

1+ 2nCiocd)
(S6.44)
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with Py (d) given by Equation ??. The common term in Equation ?? represents the
path that leads directly from segment [ to the final one at iw without having checked the
intermediate site. The first set of terms within the sum are all paths that attempt to reach
segment 1, but do not make it (Figure ??A). The middle terms within the sum count all
paths that do make it to the first segment and return with unit probability. The final term
within the sum represents all paths that attempt to walk to the final segment, but do not
make it across. From this we derive

P(l = Ip|check ) =1 —P(I = [;p|no check [) = — (b = ?_ (56.45)
oo~ D+ 5

As this holds for any segment within [1, ilD], we get the probability of interrogating all
sites/segments by averaging over all positions of [,

lip
1 aoa RN
Peheck (Pscan lip) = 7 f P(l - lip|check 1)dl
P (56.46)
=1— 1 = pscan 1 [1 + 2Pscanlw/lst] ’
2pscanllD/lst 1 — Pscan

N o .,
for which we assumed large enough distances [;p such that li Y. P(l - lip|check) =
1D j=1

1 ilD n n N n z\lD ~ ~ ~ A
= [ P(l - lyplcheck DAl ~ = [ P(l - lyp|check D)dL.

lip 7 lip
We can rewrite Equation ?? using x = ;1—’515’% (which is equal to Equation ??, by virtue
of Equation ??),

log(1 + 2x —3x2 x«1
g(—) ~ X*—3 (56.47)
2x 1 x> 1

Peheck(x) =1 —
Conditions for optimal search time
We now proceed to find the optima of Equation ?? in terms of x and y. Its derivative with
respect to x equals

2 T1ip 1
ax 10g Tsearch = ; Tip + T3 - ; - ax 10g Pcheck (56'48)
D D

Setting it equal to zero results in the following condition

211p

—— =1+4+x0d,1o (56.49)
Tip + T3p x 108 Pcheck

Similarly, setting d,, 10g Tsearch €qual to zero results in

y Tslide + Tskip =1+ y _ y
1+ 2y T Tind 1+2y 1+y

(S6.50)
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In what follows it is our goal to prove the existence of (at least) two minima - sets of co-
ordinates in {Nsnde, Nskip}-space, or equivalently {x, y}-space, that simultaneously satisfy
Equations ?? and ??.

high scanning densities: sliding-only optimum

Here, we seek a local minimum of Equation ?? - - satisfying both Equations ?? and ?? - in the
‘densely scanned’ regime (ps.an > 0.5). For sufficiently large scanning densities, y > 1,
for which Equations ?? and ?? make the second term on the left hand side of Equation ??

vanish, and we are left with
1
Tgiige = ETrnd (56.51)
If we additionally assume (close to) no skipping takes place (N, — 0), ory > x (Equation

??), this condition simplifies further to
TlD = T3D (5652)

We see that at (close to) unit scanning density it is most beneficial to spend half of the time
searching laterally along the substrate and the other half using excursions through solutions
to reach distant sites. This result was obtained by Slutsky and Mirny [Slutsky and Mirny,
Biophysical Journal 2004], whose model does not allow for skips to take place. Hence, our
model coincides with theirs when shutting down skipping. Using Equation ?? in ?? yields

XO0xDcheck = 0 (56.53)

As this equation is satisfied both for x > 1 (Equation ??), and for x = 0 (using the x < 1
case in Equation ??), we identify the sliding-only case,

N3O - 0, NG = =2, [5508 > 50", piian® - 1, (56.54)
Tslide
as a (local) optimal search strategy. Recognizing that l;p = / Njige for Ny, = 0 (Equation

??), and using Equations ??, ?? and ?? results in a search time (Equation ??) at the "sliding-
only” optimum of

Tsseliad::ﬁ = 2L+\/Tgide T3p (56.55)
Hence, the search time can be minimized by eliminating skips altogether and adopting a
scanning density of 1 (Lgjige > Lsip)-

low scanning densities: skipping-and-sliding optimum

Next, we seek to find an optimal search strategy that involves (frequent) skips. Returning to
the y-derivative shown in Equation ??, we now explore the opposite limit of low scanning
densities (Pscan K 0.5, Ljige K lgip), ¥ K 1, for which

1
Tokip = ETrnd (56.56)

We see that at low scanning densities, it is most beneficial for the protein to spent half of
its time interrogating sites following skips. Before proceeding, we introduce

Tslow = Tslidelszkip (56.57)
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as the time required to travel a full skipping length purely through sliding. That s, Tskip /70, <
1 indicates, after having taken into account the temporal cost of performing the skip, it
remains beneficial to skip instead of just using sliding to reach the same region of the
DNA/RNA. Having defined this variable, Equation ?? results in

Nsy 2 sNs
oy = e O, (T o)’ (6.58)
Toow ()% + Tslow 1+ (xSNS x )2
vE X2

where we have introduced x, and y, for notational convenience. Using this y-coordinate
reduces Equation ?? into a condition for the x-coordinate only

2
xSNs X
%05 108 Peneck | x=xshs = Q (S6.59)

1+ (/%)

Both sides of Equation ?? are monotonic functions in x (Figure ??B). Hence, there is an

optimal TXs , at {x*N¢, y*N*} corresponding to small scanning densities (pscan < 0.5).

To obtain the corresponding value of the search time (T=hs ), we proceed to solve Equa-

tion ??. Although we are unable to solve Equation ?? for general x, we can however obtain
an approximate solution by assuming x < 1, for which (using Equation ?? to simplify the
left hand side of Equation ??)

(stS)S 3
+ o = — (S6.60)
2x3 8
If we further assume 2x3 <« 1, or equivalently, T3p < Tgow,
1/3 1/3
3 T
xNs (—) xP ~xlP = ( 30 ) (56.61)
4 Tslow

To demonstrate the validity of this assumption we compared the numerical solution to
Equation ?? to the above approximation thereof (Equation ??). Figure ??C shows these
to differ less than a factor 3 over a range in %sp/zy,, that spans 20 orders of magnitude.
We therefore deem Equation ?? to be valid also outside the %30/, << 1 taken to obtain it
initially (further allowing us to ignore the factor of (3/4)¥® ~ 0.91). Using the x-coordinate,
we obtain the following y-coordinate (Equation ??)

yN =y ! (56.62)
1 '

Next, using that §1 ~ I, for y < 1 (the limit already taken), we find the following number
of skipping and sliding steps taken in every search round (Equations ?? and ??)

1/3

sNs 4/3 _ T3p [ Tslow /

Nslide - lSkIp Ty T3p (56-63)
slide

1
NsNs — x4/3 (1 + 2/3) _D 1+ —TSIOW : S6.64
skip — yO T ( . )

skip T3p
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Combining Equations ?? and ?? together with the skip-n-slide optimum set by Equations
??,2?,?? and ??, results in a search time (Equation ??)

1/3
ﬁ 1+ (Tslow)
skip 3D 73D

TSNS =2
lskip pcheck(xSNs)

search —

(S6.65)

In conclusion, the search time is minimized both at a maximum scanning density of 1

PISNE ~ 1) - with a search time of T2\9"8 (Equation ??) - and at a lower scanning density
(piten = ﬁ Niige/N3e < 0.5) - with a search time T, (Equation ??).

Global Optimum
Having found two local optima, the more favorable search strategy is the one correspond-
ing to the lowest search time. Hence, a combination of skipping and sliding is preferred

(over just sliding) when TSNS, < T jsing Equations 2? and ??

Tslow
Torch _ | Tskip 1 +( 73D )
sliding — sNs <1 (56.66)
Tsearch Tslow pcheck(x )
This can be rewritten as 5 N
Tl SNS
oo PeheacX ) g (56.67)
Folow 4 (T )1/ :
73D

The second inequality (’less than 1’) follows from noticing that peheck (x) < 1foranyxasitis
1/3
a probability, and (TS"’W) > 0 as all T’s are positive, together making the middle identity

always less than 1. As expected, Slk"’ < 1, for skipping to be beneficial. However, Equation
?? refines this statement and gives the exact boundary shown in the phase diagram of
Figure 3D.
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I
3’-biotin - U, CUC CAU CAU UUU UUU U U CUC CAU CAU UUU UUU UU - 5’

(NN
3’-biotin - U, CUC CAU CAU UUU UUU U U CUC CAU CAU UUU UUU UU - 5’

Figure S6.1: related to Figure ??. construct design hAgo2. ssRNA constructs (red) are passivated to the micro-
scope slide using a 3’-biotin-streptavadin linkage. The two trapping sequences, 4 nt sequences that are comple-
mentary to the corresponding guide nucleotides (green), are highlighted in yellow. Top figure represents the ‘high
FRET’ configuration, while the bottom figure displays Ago bound to the trap resulting in ‘low FRET’. The distance
between traps is varied by adding Uracil nucleotides (Ux reads: ‘x times a U’). To embed the traps within the
sequence, as opposed to them being the outermost sites, poly-U sequences flank both traps.
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Figure S6.2: related to Figure ??. path counting to derive scaling of shuttling time with distance. A graphical
explanation of Equation ??. Subsequent figures will only show the equivalent of the bottom shown here.




6.7. Supplemental Information 177

1/ /2 shuttle
m /\
wpno shuttle(d - 1)

\ N~ I 28 -~

~
trap 1 d—1 trap 2

Figure $6.3: related to Figure ??. Shuttling time simple diffusion scales linearly with d,,. lllustration of recur-
sion relation dictating probability to shuttle Py, e (Or get recaptured Ppg shuttie) in terms of number of binding
sites separating the two traps. Relates to Equations ?? and ??.
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Figure S6.4: related to Figure ??.derivation of search time at given scanning density. (A) lllustration of paths (and
corresponding probabilities) that lead the protein from segment 1 to ilD (size Lgys) without having interrogated
all binding sites within segment {. Relates to Equation ??. (B) At low scanning densities, the search time exhibits
a unique minimum. Colored lines show right hand side of Equation ?? for varying values of 730/z,, and black line
shows the left hand side. Intersections (red dots) our found numerically and —together with Equation ?? -indicate
the location in {x, y}-space the skip-and-slide optimum can be found at (Equation ??). (C) Approximate location
of skip-and-slide optimum (x-codrdinate) from Equation ?? versus numerical solution to Equation ??.
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Summary

The past decade has witnessed a revolution in genome-engineering. Using CRISPR-Cas9
DNA sequences can be marked, detected and cleaved. Rewriting life’s instructions in such
a fashion paves the way towards numerous scientific, agricultural and medical applications.
Without proper quantification of the associated risks we face the danger of applying treat-
ments without knowing its consequences. Most notable concern lies in Cas9’s specificity.
Although Cas9 targets DNA complementary to any designed 20nt guide RNA, it notoriously
also acts on non-fully matching sequences. This thesis describes work towards a physical
understanding of how Cas9 and similar RNA/DNA guided systems locate and recognize their
target. Chapter 1 introduces the reader to life’s most important molecules (DNA, RNA and
protein) as well as to the RNA guided CRISPR and Argonaute (Ago) systems. The chapter
also provides an introduction to the main modeling techniques used in subsequent chap-
ters.

In Chapters 2 and 3 we model the physics governing target selection. Our current under-
standing of binding and cleavage specificity is reflected in a set of rules of thumb used to
design the 20nt target. Chapter 2 shows said rules are a direct consequence of having a
unidirectional binding process, as assumed to be the case for both Cas9 and Argonaute.
At the core of the presented model lies the free-energy landscape underlying the protein-
guide-target interactions. Chapter 2 uses a simple landscape in which the addition of a
matching base pair to the guide-target hybrid kinetically (as well as energetically) favors
cleavage, while a mismatch makes rejection of the (off-)target more likely. With a single
gain/penalty for every match/mismatch between guide and target we highlight the bene-
fit of using a kinetic modeling approach. In Chapter 3, the parameterization is expanded
to allow for position dependent (mis-)match biases, which are extracted from a series of
high-throughput experimental datasets to elucidate in more detail the free-energy land-
scape of spCas9-sgRNA-DNA. The determined landscape directly explains what off-target
sites are expected to lead to stable binding on timescales much shorter than cleavage, ex-
plaining the previously reported discrepancy between binding and cleavage specificities.
Moreover, the free-energy landscape is consistent with single-molecule fluorescence ex-
periments probing the conformational dynamics of Cas9 during target binding, thereby
showing how Cas9’s major conformational change couples to the hybrid-formation pro-
cess. Finally, this chapter demonstrates how our kinetic model improves upon existing
target prediction tools.

Chapters 4-6 describe a protein’s search for a single target site embedded within the genome.
Chapter 4 reviews literature describing how target searching proteins use a combination
of three-dimensional diffusion through solution with (effective) one-dimensional diffusion
along the contour of the DNA. Furthermore, using the human Argonaute 2 protein as an
example, Chapter 4 hypothesizes how coupling structural changes to hybrid formation, as
we also show for spCas9 in Chapter 3, can balance search time and specificity. Chapters
5 and 6 present a collaboration with experimentalist from the lab of Chirlmin Joo. First,
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Chapter 5 shows a prokaryotic Argonaute can bypass other DNA bound proteins when lat-
erally scanning the DNA. As a model in which Ago is forced to interrogate all binding sites
during a lateral excursion cannot account for the measured diffusion rates, bases must have
been skipped when moving past the protein blockades. Next Chapter 6 describes a model
allowing for such base skipping, resulting in only a fraction of the DNA enclosed within
a lateral excursion being interrogated. Additional single-molecule experiments show that
also human Ago uses such base-skipping. Although both Ago only interrogate all DNA after
many repeated rounds of lateral diffusion, we show such a mechanism helps to speed up
the search for the cognate target.



Samenvatting

In het afgelopen decennium heeft zich een revolutie in de genoombewerkingstechnolo-
gie voltrokken. Gebruikmakend van CRISPR-Cas9 kan DNA worden opgespoord en geknipt,
waarmee verschillende wetenschappelijke, agrarische en medische toepassingen een stap
dichterbij zijn. Als de mogelijke risico’s van deze krachtige techniek niet worden gekwantifi-
ceerd bestaat de angst dat medische behandelingen plaatsvinden zonder dat alle mogelijke
gevolgen bekend zijn. Het grootste risico zit in de specificiteit van Cas9. In principe wordt
Cas9 geprogrammeerd om DNA te knippen met een sequentie van 20nt complementair
aan een aan de proteine meegegeven ‘gids’ RNA. Helaas knipt Cas9 ook DNA-sequenties
die niet compleet complementair zijn aan de gids. Het werk omschreven in dit proefschrift
draagt bij aan fysisch inzicht in de manier waarop Cas9, en soortgelijke RNA/DNA gepro-
grammeerde systemen, hun doelwit DNA vinden en herkennen. Hoofdstuk 1 maakt de
lezer bekent met de meest belangrijke biomoleculen (DNA, RNA en eiwitten) en de CRISPR
en Argonaute (Ago) systemen die in dit proefschrift uitvoerig bestudeerd zijn. Tevens be-
vat dit hoofdstuk een introductie tot de wiskundige technieken die gebruikt zijn voor het
opstellen van de modellen verderop in het proefschrift.

Hoofdstukken 2 en 3 presenteren een fysisch model dat omschrijft hoe Cas9 en Ago hun
doelwit herkennen. Ons huidig begrip van de specificiteit van dit soort systemen kan wor-
den samengevat met een aantal vuistregels die in acht worden genomen bij het ontwerpen
van het gis RNA. Hoofdstuk 2 laat zien dat deze regels een direct gevolg zijn van een bin-
dingsproces dat aan een kant van de gids begint, zoals aangenomen wordt het geval te
zijn voor zowel Cas9 als Ago. In het model staat het vrije-energielandschap dat interac-
ties tussen gids RNA, doelwit DNA en het eiwit omschrijft centraal. In Hoofdstuk 2 wordt
er een simpel landschap gebruikt waarin de toevoeging van een complementair basepaar
aan de gids-doelwit hybride een kinetisch (alsmede een energetisch) voordeel oplevert.
De toevoeging van een non-complementair basepaar verhoogt de waarschijnlijkheid dat
de proteine ontbindt. Dit simpele landschap, met een enkel voordeel/nadeel voor een
correct/incorrect basepaar belicht het voordeel van het gebruik van een kinetisch model.
In Hoofdstuk 3 wordt de parameterizatie uitgebreid. Gebruikmakend van experimentele
datasets, worden de positieafthankelijke voordelen/nadelen voor correcte/incorrecte base-
paren geéxtraheerd, waaruit een meer gedetailleerd vrije-energielandschap van spCas9-
sgRNA-DNA volgt. Dit landschap verklaard hoe bij sommige non-complementaire DNA
doelwitten Cas9-gids stabiel bindt, lang voordat er geknipt wordt. Hiermee geven wij een
verklaring voor het verschil in de schijnbare specificiteit van het binden van inactief Cas9 en
het knippen van actief/inactief Cas9. Het vrije-energielandschap is tevens consistent met
fluorescentie experimenten die de eiwitconformatie van Cas9 tijdens het bindingsproces
bestuderen, waardoor het gepresenteerde landschap direct laat zien hoe de grootste ver-
andering van conformatie koppelt aan het bindingsproces tussen gids en DNA. Ten slotte
laat dit hoofdstuk zien hoe ons kinetisch model een verbetering over bestaande modellen
biedt.
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Hoofdstukken 4-6 beschrijven de zoektocht van een eiwit naar een enkel correct doelwit
binnen een vele malen groter genoom. Hoofdstuk 4 biedt een beschouwing van de li-
teratuur waarin beschreven wordt dat eiwitten hun doelwit vinden doormiddel van een
combinatie van driedimensionale diffusie door oplossing en (effectieve) eendimensionale
diffusie langs de contour van het DNA. Hoofdstuk 4 brengt tevens het idee naar voren dat
een koppeling tussen eiwitconformatie en het bindingsproces gebruikt kan worden om het
doelwit zowel snel als specifiek te herkennen. Het hoofdstuk gebruikt het menselijke Ar-
gonaute 2 als zo een systeem met een dergelijke koppeling, net als Hoofdstuk 3 eenzelfde
soort koppeling suggereert voor Cas9.

Hoofdstukken 5 en 6 zijn uitgevoerd in samenwerking met experimentalisten uit het lab
van Chirlmin Joo. Hoofdstuk 5 laat zien dat een prokaryotische Argonaute andere aan het
DNA gebonden eiwitten kan omzeilen. De experimenten laten zien dat Ago sneller langs
het DNA diffundeert, dan een model waarin Ago iedere sequentie langs het DNA verge-
lijkt met zijn gids voorspelt. Hieruit concluderen we dat Ago sequenties langs het DNA
overslaat om zo obstakels langs het DNA te vermijden. Hoofdstuk 6 bouwt hierop voort
door een model op te stellen waarin Ago ook sequenties kan overslaan, waardoor slechts
een fractie van het DNA waarlangs diffundeert wordt daadwerkelijk vergeleken wordt met
de gids. Aanvullende enkel-molecuul experimenten laten zien dat ook het menselijke Ago
DNA sequenties overslaat. Ondanks dat vele rondes van laterale diffusie nodig zijn alvo-
rens Ago alle mogelijke DNA sequenties kan hebben vergelijken met de gids, laat dit laatste
hoofdstuk zien dat dit eigenlijk helpt om het correcte doelwit sneller te vinden.
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