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1
Introduction

Advances in genome engineering – ‘making precise changes to DNA’ – announced
a new era of using Biology for Biotechnological applications. Most notably is the
discovery of the CRISPR-Cas systemwhich over the course of the past decade has
facilitated the development of strategies for making drought-resistant crops, tar-
geted antimicrobials, organ transfers from pigs to humans, eradicating malaria
mosquitoes and more. In spite of CRISPR-Cas systems having become a com-
mon tool in many scientific laboratories, their application – especially treating
humans – remains in its infancy due to concerns regarding its precision.

1
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cells DNA/genome
genes

?

genome engineering
human/corn
(organism)

Figure 1.1: Living organisms inherit traits encoded in their DNA.Making (precise) changes to anorganisms genome
is called ’genome engineering’.

1.1. Genes, Genomes and Genetic Engineering

W hat does making a drought resistant crop have in common with treaƟng sickle cell
disease? To answer this quesƟon we must first consider what plants, humans, bac-

teria and all other living organisms on Earth have in common. All living organisms consist
of cells (Figure ??). Inside the cell resides its geneƟc material: DNA. DNA is said to en-
code for ’genes’, resulƟng in an organism’s traits such as the color of an apple, or the color
of our eyes. Other traits, such as the corn being drought resistant, or a human having a
hemoglobin mutant leading to sickle cell disease, are also a direct result of the precise
’gene code’ or ’genome’. If we could somehow edit (’engineer’) an organism’s genome,
we should thereby be able to change its traits. In case of our two examples, both traits
(drought resistance in corn, human sickle cell disease) are caused by a single gene, and are
thereby altered just by ediƟng the associated gene. However, what if we by mistake edit
the wrong gene? This could potenƟally have dire consequences.

In this thesis we are concerned with understanding the most novel genome engineering
tools by means of mathemaƟcal and physical modeling. To understand how we go about
translaƟng ediƟng specificity into physical quanƟƟes (Ɵme, energy, etc.) we must first take
a deeper dive into their Biological origins.

1.2. Beyond the Central Dogma
The cell is the building block of all living Ɵssue. Inside each cell countless of chemical re-
acƟons take place to make it grow, protect it against an ever changing environment, and
eventually make it divide – giving rise to new life. Virtually all cellular processes are carried
out by molecules called proteins. OrchestraƟng all chemical reacƟons requires that the
correct amount of acƟve protein is available at the right Ɵme.
One way of achieving this goal is to control the amount of each protein produced in the
first place. The cell encodes these instrucƟons in the form of another kind of molecule:
Deoxyribonucleic acid or DNA for short. Encoding such informaƟon is possible since there
are just four forms each monomer consƟtuƟng one unit of either of the two helical DNA
chains (strands) can take on: Adenosine (A), Thymine (T), Guanine (G) and Cytosine (C),
called nucleoƟdes. Moreover, in forming the double-stranded DNA (dsDNA) of an organ-
ism’s genome every A-nucleoƟde posiƟons itself opposite to a T-nucleoƟde. Similarly, a
‘C’ is said ’to form a base pair with a G’ (Figure ??). This base pairing property allows the
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Figure 1.2: The Central Dogma of Molecular Biology states that geneƟc informaƟon is stored as DNA, copied dur-
ing replicaƟon (cell division) and read out by first transcribing it into RNA and then translaƟng it into an amino acid
sequence. Each of these processes is heavily regulated by the cell. Target searching proteins play important parts
herein: TranscripƟon Factors act on transcripƟon, DNA repair mechanisms safeguard replicaƟon. Non-coding
RNA guided nucleases fall into this category as well: CRISPR associated (Cas) proteins prevent replicaƟon of viral
elements, while RNAi controls translaƟon levels.

cell to encode informaƟon in the DNA’s nucleoƟde sequence, much like a computer stores
informaƟon in binary sequences.

Processing of the encoded informaƟon, resulƟng in protein synthesis, happens in a series
of Chemical pathways famously termed ‘the Central Dogma of Biology’ (Figure ??). Dur-
ing cell division each daughter cell acquires an idenƟcal copy of the mother cell’s genome
(DNA). As each cell only has a single copy of the genome, before cell division takes place
the DNA gets replicated. To synthesize a protein, the DNA first gets transcribed, resulƟng
in a precursor molecule, RNA, in which every nucleoƟde of one of the DNA’s strands is re-
placed by its complement – with the excepƟon of Thymine that gets replaced by Uracil (A
to T, T to U, C to G and G to C) (Figure ??). These RNA molecules are now ready to get
translated into a sequence of what are called amino acids that eventually folds into its final
form: a protein. Amazingly, all steps within the Central Dogma – replicaƟon, transcripƟon
and translaƟon – are actually carried out by proteins themselves.

Although the Central Dogma in essence details the flow of geneƟc informaƟon from DNA
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A U

U A
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RNA - RNA
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G
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DNA - RNA
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DNA - DNA

Figure 1.3: Double-stranded nucleic acids form ’base pairs’. (leŌ) DNA-DNA pairs, A(denine) complements
T(hymine) and C(ytosine) complements G(uanine). (middle) DNA-RNA pairs, U(racil) replaces T(hymine), thereby
matching A(denine). The DNA’s Thymine sƟll matches the RNA’s Adenine. (right) RNA-RNA pairs, A(denine) com-
plements U(racil). We will refer to any of the shown base pairs as ’matches’, while any other possible pair (i.e.
A-G) as ’mismatches’.

to protein, more detailed control of protein levels is achieved through numerous ‘feed-
back loops’. When DNA damage occurs, a set of proteins involved in DNA repair mech-
anisms must recognize and restore the original sequence to avoid transcribing incorrect
instrucƟons or passing them on during replicaƟon. TranscripƟon levels (the amount of
RNA produced by a parƟcular gene) are acƟvely up- or down-regulated by proteins termed
‘transcripƟon factors’ that bind near the gene of interest to either facilitate or repress the
proteins that carry out transcripƟon.
In this thesis we shall focus on a different kind of regulaƟon that uses so called non-coding
RNA molecules. Unlike originally envisioned, RNA molecules are more than merely inter-
mediates between DNA and protein. In fact, large porƟons of the genome do not even
directly encode for proteins at all – esƟmated to be more than 95% of the human DNA [?
]. ParƟally, DNA can encode for RNA that is not meant to be translated: ‘non-coding RNA’.
Instead, making these RNA molecules bind to specific RNA or DNA sequences, using the
base pairing rules menƟoned above, can direct proteins to catalyze reacƟons at desired se-
quences only. Examples can be found throughout all major kingdoms of life. Eukaryotes –
amongst which yeast, plants, animals and humans –make non-coding RNA bind tomessen-
ger RNA (mRNA, the coding form of RNA), thereby inhibiƟng its translaƟon. Prokaryotes –
archaea and bacteria – use these non-coding RNAs to detect invading viral DNA and signal
it for destrucƟon. We shall detail both below.

Taken together, the cell uses DNA to store and read out informaƟon. In turn, parts of the
DNA are used to safeguard and regulate the flow of geneƟc informaƟon in an aƩempt to
prevent mistakes during read out and protect the integrity of the host’ instrucƟons. Recog-
niƟon of specific DNA/RNA sequences plays a crucial role herein.
The remainder of this chapter briefly reviews some of the different classes of small non-
coding RNA molecules, highlights their technological potenƟal and explains the need for
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physical modelling of the kind used throughout this thesis. The laƩer parts of this chapter
contain a brief introducƟon into the relevant theoreƟcal techniques that allow us to couple
the physics to experimental data. Although not needed to understand ‘the why’ and ‘the
what’, that secƟon serves to addiƟonally explain ‘the how’ of all subsequent chapters.

1.3. Nucleic acid guided, nucleic acid effector complexes
1.3.1. The CRISPR-Cas adaptive immune system
Organisms have evolved various strategies to cope with their ever changing environments.
This too holds true for even the smallest of organisms: Prokaryotes. For bacteria and ar-
chaea such threats are ‘mobile geneƟc elements’ (MGEs), foreign DNA (or RNA) originaƟng
from either viruses or plasmids. Bacteriophages, viruses that invade bacteria, in essence
consist of no more than a container with their geneƟc material. They do not possess the
required protein machinery to read out their own DNA. Hence, by themselves, they are
incapable of replicaƟng. For this reason, phages ‘invade’ host bacteria by injecƟng their
DNA into them, hoping that the bacteria will not recognize it as being foreign and proceed
to transcribe and translate it as if it being part of its own genome. The viral genome will
encode for the proteins of the DNA-containing capsids that make up the body of the phage
parƟcle. If too many of such new phage parƟcles get synthesized inside the host, the inter-
nal pressure can increase to such levels that the bacteria will burst open, seƫng the new
virus parƟcles free, enabling them to invade new bacteria.
Despite bacteriophages being about ten Ɵmes more abundant, their prokaryoƟc hosts are
sƟll one of the most abundant life forms on earth [? ? ? ]. Prokaryotes have, akin to
what we know from humans, evolved immune systems. The centerpiece of this thesis is
an adapƟve immune system (meaning it adjusts to the incoming phage as opposed to in-
nate systems that use a generic defense response) discovered in about half of all sequenced
bacteria species and nearly 90% of all archaea [? ? ]. About a decade before its funcƟon
became clear, researchers discovered a parƟcular set of non-coding sequences as part of
the bacterial genome. The bacteria encode for an array of parƟally palindromic, more con-
served, sequences. These ‘repeats’ are separated by highly variable sequences (‘spacers’).
It took unƟl the early 2000’s to realize the origin of these spacer sequences. Pioneering
bioinformaƟcs research found the spacer sequences to be originaƟng predominantly from
MGEs [? ]. Soon aŌer followed the first experiments demonstraƟng how this is part of an
adapƟve immune response [? ]. The authors challenged phage sensiƟve S. thermophilis
bacteria to new phages. Remarkably, the bacteria were able to survive the new aƩack. In
addiƟon, bacteria that became immune did indeed incorporate a novel spacer sequence
from the phage into their, as it is now known to be, Clustered Regularly Interspaced Short
Palindromic Repeats (CRISPR) array. Later experiments revealed the roles of a set of pro-
teins, typically co-transcribed with the array, termed CRISPR associated (Cas) in acquiring
the new spacers, processing those spacers into guides and the destrucƟon of the phage’s
DNA (Figure ??).
Upon encounter of a new phage genome, a set of Cas proteins – Cas1 and Cas2 – acquire
the new spacer and incorporate it into the array [? ](step 1 in Figure ??). Together, the
Cas1-Cas2 complex (at least the variant found in E.coli.) adapts a buƩerfly-like structure
that neatly fits a single spacer sequence. Next, the CRISPR locus gets transcribed, the
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cas genes get translated, while the CRISPR array forms non-coding RNA. Processing of the
array’s transcript results in small RNA fragments that contain the transcript of individual
spacers [? ](step 2). These small RNAs get loaded into either a single or a complex of Cas
protein(s) [? ? ](step 3). Note that aŌer transcripƟon the resulƟng RNA actually contains
the sequence complementary to the DNA it originates from (see base pairing rules, Figure
??). Therefore, this ‘guide RNA’ (gRNA) is able to direct the Cas protein to the viral DNA
site. Once bound, the loaded Cas protein either possesses or recruits a nuclease (a DNA
cleaving enzyme) to destroy the viral DNA (step 4 in Figure ??) [? ? ? ? ].

For the CRISPR system to convey immunity to its host it must do more than effecƟvely
degrade or inacƟvate the foreign DNA. It must be able to disƟnguish self- from non-self
(DNA in this case), prevenƟng self-targeƟng, otherwise called autoimmunity. ParƟally this
requirement is met by using the spacer sequence to generate the guide RNA. However, by
construcƟon the CRISPR array itself contains a perfect copy of the target. Also, the host’
DNA, by chance, may sƟll contain a sequence similar to the spacer outside of its CRISPR
array. If the bacteria was to target its own DNA, it could kill itself. Most CRISPR systems
prevent this by pre-selecƟng spacers that are preceded by a short (typically 3-5nt) moƟf
termed the protospacer adjacent moƟf (PAM) [? ? ? ]. Only the protospacer (the se-
quence complementary to the spacer on the opposite viral DNA strand) and not the repeat
sequence in the CRISPR array is flanked by the PAM. Direct interacƟons between the Cas
protein and DNA can determine whether the DNA is foreign and should be marked for de-
strucƟon. A wide diversity of CRISPR-Cas systems have been discovered thus far. Despite
the zoo of different loci (sub-)types – 19 subtypes and sƟll counƟng – they share a common
architecture (Figure ??). The CRISPR array, thememory of past infecƟons, is co-transcribed
with the cas genes. As menƟoned, integraƟon of the novel spacers, adaptaƟon, into the
array requires the proteins Cas1 and Cas2.
To classify the different CRISPR systems a two-step scheme is currently used [? ] (Figure
??). The first step groups the CRISPR loci into one of two major classes. Class I systems use
a mulƟ-subunit protein complex for targeƟng and degradaƟon of the foreign DNA (inter-
ference), whereas in class II systems this is carried out by a single Cas protein. The second
layer of classificaƟon is based on the presence of signature Cas proteins. Class I type I
systems, the most abundant subtype, use a mixture of the proteins Cas5 through Cas8 to
form a larger protein complex termed Cascade (“CRISPR associated complex for anƟ-viral
defense”) [? ] that uses the crRNA guide to bind to the viral DNA. Once bound, it recruits
yet another protein: Cas3, the signature protein of type I systems, that is able to unwind
and degrade the phage genome [? ]. Similarly, type III systems form an interference com-
plex from the proteins Cas5 through Cas7 and their signature protein Cas10.
Class II systems (types II, V and VI) are considerably less complicated. Target interference
is carried out by a single Cas protein (see Cas9,12-14 in Figure ??) that possesses nuclease
(‘cleaving’) domains. For this reason, class II CRISPR systems are parƟcularly interesƟng
from a technological perspecƟve, as shall be highlighted below.
Even amongst CRISPR systems of the same type (and therefore class), there exist signifi-
cant differences. Such subtypes can vary based on differences in size or funcƟon of their
signature gene or contain addiƟonal non-signature Cas genes, a prime example being Cas4
which recently has been found to take part in the adaptaƟon process for type I-F systems [?
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Figure 1.4: The CRISPR-Cas system provides immunity against invading bacteriophages. (1) Upon infecƟon novel
spacers are aquired from phage DNA and incorporated in the host’ CRISPR locus. (2) TranscripƟon and further
biogenisis results in CRISPR-RNA (crRNA) guides. (3) Cas nucleases loaded with the crRNA can search the invading
genome for matches to the guide (colored dot) that lie adjacent to a PAM sequence (yellow rectangle). (4) Having
found a proper target, the Cas nuclease binds the DNA stabily and becomes cleavage competent.

]. Moreover, new CRISPR systems are sƟll being discovered, such as the subtypes of type
V that use the protein Cas14 [? ].
In a nutshell, the CRISPR-Cas system uses RNA guided Cas proteins to perform sequence
specific DNA edits.

1.3.2. RNA interference
Gene regulaƟon, tuning the amount of protein produced from a given gene, is essenƟal
to any living organism. Cells parƟally achieve this by controlling the transcripƟon levels of
every gene. AddiƟonally, post-transcripƟonal regulaƟon is in place that modulates trans-
laƟon levels. Over 60% of all the protein encoding mRNA in human cells is subjected to
a type of regulaƟon known as RNA interference (RNAi) [? ]. EukaryoƟc systems possess
several RNAi pathways characterized by the form of the non-coding RNA it uƟlizes (Figure
??) [? ? ? ? ].
Mammalian genomes parƟally encode for non-coding RNA termed pri-microRNA (step 1 in
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Figure 1.5: ClassificaƟon of CRISPR systems. Typical architecture of the CRISPR locus is shown on top: The operon
controls the adaptaƟon and interference machinery as well as the CRISPR array. Below the most important dif-
ferences between different types of CRISPR systems in their adaptaƟon/interference modules are shown. For a
more elaborate list of CRISPR (sub-)types see [? ]. * signature gene, ** mulƟple copies present on locus.

Figure ??A). These long transcripts are processed inside the nucleus by a protein named
Drosha, resulƟng in pre-microRNA (step 2). ExporƟng the pre-microRNA outside the nu-
cleus, into the cytosol, and further processing by the protein Dicer produces the final mi-
croRNA that contains the informaƟon needed to silence the translaƟon of amRNA (step 3).
The microRNA guide molecule gets loaded into a protein termed Argonaute (Ago), form-
ing a RISC (“RNA-induced silencing complex”) (step 4). As discussed above, the CRISPR
system uses the crRNA to guide Cas molecules to their complementary target. Similarly,
a microRNA-loaded Ago protein binds to mRNA at what is termed the 3’ untranslated re-
gion (3’-UTR), which as its name suggests serves as a demarcaƟon of the stopping site of
translaƟon (step 5). By occupying the 3’-UTR, Ago blocks the translaƟon machinery either
directly or by recruiƟng co-factors that acƟvely degrade the mRNA.
A secondRNAi pathwayproduces small interfering RNA (siRNA) guides fromdouble-stranded
RNA (step 1 in Figure ??B). Such dsRNA, originaƟng either fromwithin the cell itself or from
viral elements, reside in cytosol. The siRNA molecules are produced by Dicer (step 1) and
loaded into Argonaute (step 2). The siRNA pathway can either funcƟon to inhibit transcrip-
Ɵon, the same way microRNAs are used, or target viral RNA (step 3).

Within the first few years aŌer its iniƟal discovery in 1998 [? ], RNAi based therapeuƟcs
started to emerge in which either the siRNA or microRNA pathway is manually acƟvated
by injecƟng syntheƟcally designed dsRNA into the cell to target specific mRNAs of interest.
For this reason, its authors, Andrew Z. Fire and Craig C. Mello, received the 2006 Nobel
prize in Physiology and Medicine [? ] less than a decade aŌer their original publicaƟon
detailing this programmable RNA targeƟng system.
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Figure 1.6: RNA interference pathways (in eukaryotes). (A) microRNA pathway:(1) non coding RNA encoded on
the genome. (2) ’cropping’ by Drosha. (3) ExporƟng by ExporƟn 5 and ’dicing’ by Dicer. (4) Loading of the guide
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Peculiarly, Argonaut proteins have also been found in prokaryotes. Due to their similarity
to their eukaryoƟc counterparts, and the CRISPR systems described previously, these Ago
proteins are speculated to be involved in gene regulaƟon or anƟ-viral defense. However,
in many such cases, their precise funcƟon remains elusive [? ]. Regardless, aŌer variants
have being reported that use DNA guides and/or target DNA [? ? ], researchers have been
interested in exploring also Ago’s potenƟal for genome engineering applicaƟons.

1.4. The genome engineering toolbox
What if we could express Cas9 outside of its bacterial host and load it with a guide se-
quence we designed ourselves? Could we thereby target a DNA locaƟon of our choice?
Researchers in 2012 have demonstrated exactly this. Type II CRISPR systems express a
two-part RNA, consisƟng of what are termed the CRISPR RNA (crRNA) and trans-acƟvaƟng
crRNA (tracrRNA). Jinek et al. [? ] demonstrated that it is indeed possible to perform ed-
its in vitro using a single syntheƟcally designed guide RNA (single guide RNA or sgRNA).
Soon aŌer followed the first demonstraƟon of ediƟng human and mouse genomes [? ? ].
These studies further uƟlized that Cas9 also preprocesses its guide from the CRISPR array’s
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transcript (performing step 3 in Figure ??) [? ]. Designing a DNA containing several guides,
separated by repeats to form a ’syntheƟc CRISPR array’, the researchers demonstrated the
ability to edit the (human) genome at mulƟple sites at once [? ].

It is relaƟvely inexpensive and simple to design a DNA guide to target a desired (DNA)
target. Cas9-sgRNA systems readily became commercially available. It therefore did not
take long before researchers would demonstrate CRISPR-Cas9 based genome ediƟng can
be done in virtually any organism of interest, ranging from typical model systems for Bio-
logical experiments as Drosophila (the fruit fly) to technologically relevant E.coli, crops and
plants, livestock and, as menƟoned, even human cells. CRISPR-Cas9 has shown the poten-
Ɵal to be applied in numerous applicaƟons of which generaƟng drought resistant plants [?
], targeƟng anƟbioƟc resistant bacteria [? ] and treaƟng geneƟc disorders [? ] are just a
few.

In essence, gene-ediƟng uses Cas9 to cut an unwanted gene and relies on the DNA repair
machinery to either simply ‘remove’ it or replace it with a sequence supplied externally
(Figure ??). Other than CRISPR-Cas9, the ‘genome engineering toolbox’ is rapidly expand-
ing with other guided DNA nucleases. For instance, Cas12 [? ] and even some bacterial
Ago [? ] also enable DNA ediƟng. AlternaƟvely, nuclease inacƟve, or ‘dead’ dCas9 sƟll
binds DNA, but is engineered to not cut it. Fusing dCas9 to other (bio-)molecules can di-
rect these to the desired sequence. For instance, fusing dCas9 to transcripƟon factors can
direct them to a gene of interest to ‘interfere’ or ‘acƟvate’ them (CRISPRi/CRISPRa)[? ],
tuning transcripƟon much like RNAi tunes translaƟon (Figure ??). Instead, aƩaching fluo-
rescent proteins to dCas9 allows one to illuminate a specific part of DNA [? ] (Figure ??). It
is even possible to Ɵe the binding or cleavage by (d)Cas9, or the increasingly popular vari-
ant Cas13, to a visible change of the soluƟon’s color [? ? ? ] (Figure ??). These techniques
allow one to detect small amounts of DNA from infecƟous diseases or geneƟc disorders.

1.5. Off-targeting
Unfortunately, RNA guided nucleases (RGNs) are not 100% specific. There are numerous
studies demonstraƟng CRISPR-Cas9 [? ? ] either binding or cuƫng target sequences
that do not fully match their guide RNA (DNA-RNA pairs other than those shown in Fig-
ure ??). Given their Biological roles in immune systems, it is actually not that surprising.
Viruses typically mutate extremely fast, meaning that any spacer sequence acquired by
the CRISPR system would rapidly be outdated if it were not to also target slight variaƟons
of the spacer sequence. Moreover, bacterial genomes are about 1000 Ɵmes shorter than
mammalian genomes, increasing the probability of encountering off-target sites when re-
purposing CRISPR-Cas9 for human cells.

UnintenƟonally cuƫng DNA at an unwanted locaƟon can cause serious damage to the cell.
In an aƩempt to counteract off-target acƟvity asmuch as possible, different strategies have
been demonstrated to work. For instance, one may search for a Cas9 other than that from
themost common host (streptococcus pyogenes (spCas9)), or another CRISPR system alto-
gether, such as Cas12, that naturally appears to exhibit less off-target acƟvity [? ? ]. Other
strategies [? ] include mutaƟng Cas9 to make it light-inducible to limit its dosage , turning
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Figure 1.7: The ”genome-engineering toolbox”. CRISPR-Cas9, CRISPR-Cas12, CRISPR-Cas13, and even Argonaute
are uƟlized in many different ways (see text). From the perspecƟve of our model, the different systems are fairly
similar: a protein loaded with a guide that targets the complementary sequence.

it into a nuclease only for single-stranded DNA (a ‘nickase’) or reducing the length of the
guide RNA [? ]. Using protein engineering even syntheƟcally designed high-specificity Cas9
variants have been made [? ? ? ].

The strategies above have proven to be successful. However, the major challenge reducing
off-target acƟvity faces is actually the detecƟon of off-target acƟvity itself. There is an im-
mense amount of experiments needed to determine all off-targets for all possible guides,
even for a single gene target (Figure ??). On top of that, detecƟng genome-wide off-targets
for even a single Cas9-sgRNA has proven to be challenging. State-of-the art detecƟon of
genome-wide off-targeƟng unfortunately suffers from a rather low resoluƟon [? ? ]. The
sequencing techniques used offer a detecƟon limit around 0.1% - meaning 1 in a 1000 se-
quenced DNA must contain a cut. Note that this is sƟll quite high compared to the shear
amount of DNA present in all the cells of an organ(ism) combined. To further advance the
applicaƟon of CRISPR-Cas9 based gene ediƟng, it is increasingly important to accurately tell
more than these ‘highly probable’ events. Although cuƫng any parƟcular off-target might
happen infrequently, combining the possible billions of those events that may occur on a
genome makes that some off-targeƟng is actually highly probable (Figure ??). Moreover,
infrequent off-target events can be enough to cause serious damage or even disease.

Stepping away from genomic target sites, one can design an in vitro experiment that sub-
jects Cas9-sgRNA to a library of off-targets containing a variety of mismatch paƩerns. Re-
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cent experimental techniques (data used in following chapters) use this to allow for accu-
rately detecƟng the full range of acƟvity. The hope is the outcome of such experiments
can be translated back to the seƫng of an applicaƟon, thereby avoiding the need to re-
peat these experiments for every possible guide of interest. To this end, several computer
models are build based on the available data, with the goal of predicƟng off-targets.

# on/off-target combinations ~ 1018

The numbers for the human genome:
genome length ~ 109 off-target sequences ~ ?on-target sequence(s) ~ 100

Cas9-sgRNA
sgRNA

genome to edit

a single high-activity on-target
and many low-activity
off-targets

20 nt guide 
sequence
(matches target) 

Figure 1.8: Although Cas9-sgRNA (or any other RGN of choice) predominantly targets the site that matches its
guide (green), it is not perfect. The shear volume of low frequency off-targeƟng events makes encountering an
off-target more probable. Although not all off-target edits are necessarily harmful (red, as opposed to the black
arrows), a singlemistake can have consequences to the cell. Numbers in the inset are upper back-of-the-envelope
esƟmates assuming a random genome of human length, and are meant to demonstrate the imbalance between
on-target and the vast number of off-targets.

1.5.1. Off-target prediction tools
A guide RNA sequence is only 20nt long. As a result, there are likelymulƟple different guide
sequences that can be used to target a specific gene (typically thousands of kilobases).
There exist several computer algorithms to decide which guide should be used to disrupt a
parƟcular gene locus (Figure ??). In essence, the user supplies a candidate guide sequence,
the target sequence and the genome to be edited. The computer algorithmwill return a list
of (the most highly probable) off-targets. Their workings can be characterized into one of
three types (see Figure ??). Alignment based predicƟon tools, such as CasOFF-finder [? ],
ChopChop [? ] and E-CRISP [? ], do nomore than search for sequences on the genome that
share sequence similarity to the intended target. Other tools use a mathemaƟcal model to
score/rank the propensiƟes for off-targets to be cut. The model incorporates empirically
determined scoring schemes in a somewhat ad-hoc fashion. Examples include MIT’s pre-
dicƟon tool [? ], CCtop [? ] and the Cuƫng Frequency DeterminaƟon (CFD) score [? ]. A
third, and increasingly popular, category of predicƟon tools is based on Machine Learning
[? ? ] in which a large amount of data is used to build an AI-based decision tool.

Unfortunately, each of the menƟoned predicƟon tools lacks good performance trying to
predict experimentally determined genomic off-targets [? ]. For this reason, it is becoming
increasingly important to go beyond such ’data driven predicƟon’ and beƩer understand
the processes by which RGNs search for and recognize their target site within a genome.



1.6. A physics-based approach

1

13

Ad-hoc model.
(i.e.CFD, MIT, CCTop) 

Homology Search
(i.e. Cas OFF-finder, ChopChop, E-CRISP) 

Machine Learning
(i.e. Elevation (Microsoft) ) 

 Organism / Genome 
    & 
 Target sequene/ gene:
 GAGTCCGAGCAGAAGAAGAA

off-target         score
GAGTCCGAGCAGAAGAAGAC  106
GAGTCCGAGCAGAAGAAGGA  64
GAGTCCGAGCGGAAGACGAA  47
GAGTCCGCGCAGGGGAAGAT    42
GAGTCCGAGCAGCAGAAGAA  3
    ...
   ...
GGGTCCGGGCCGCTGGCGCC  1

Figure 1.9: ExisƟng predicƟons tools allow the user to provide the target gene locus & organism and output a
ranked list of off-targets. Red nucleoƟdes indicate mismatches.

1.6. A physics-based approach

Say, you want to edit a specific human gene. How likely are you to encounter an off-target,
given a parƟcular nuclease and guide? Or, say youwant to build a diagnosƟcs tool based on
CRISPR-Cas9 (Figure ??). What is the expected false posiƟve/negaƟve rate of your design?
To answer such quesƟons, wemustmove beyond the aforemenƟoned scoring schemes and
build a quanƟtaƟve model. Instead of only asking if a parƟcular sequence will (likely) get
cleaved, we addiƟonally seek to understand why certain sequences are preferred - some-
thing none of the aforemenƟoned predicƟon tools is capable of doing. More precisely, we
ask:
”What fracƟon of DNAmolecules with sequence𝑋 (typically) gets cut (or merely bound) if I
subject my sample to a given concentraƟon of Cas9-sgRNA for a specified Ɵme?”With such
informaƟon, it becomes possible to use the computer to mimic any technique in which the
RGN is applied to predict its read-out.
To do such we build a physics based model. RestricƟng our model to be governed by the
laws of physics, as we would believe any experimental data to be, should in principle guar-
antee an accurate performance for both probable and infrequent (off-)targets. This should
not only allow us to train our model using the exisƟng data with highest signal-to-noise
raƟo, it should in principle require far less data all together. As shall become clear in later
chapters, this allowed us to use datasets of lesser size, but higher quality, as our training
set. There are several other benefits for using a physical model.
If we are able to pinpoint the correct physical laws governing the target interference, we
should also be able to explain directly what feature in some sequence 𝑋 makes it suscep-
Ɵble to cleavage, that some other sequence 𝑌 is lacking.
As building such a model necessitates a level of abstracƟng RGN systems (Figure ??), we
will hopefully learn along the way precisely what targeƟng principles are shared . At the
very least, fairly comparing RGNs (i.e. Cas9 and Cas12) will detail exactly what should be
‘the tool of choice’ for a parƟcular situaƟon (Figure ??).

Unfortunately, construcƟng a physical model of the target recogniƟon process for a RGN is
the hard part. What are the physical laws that are most important to incorporate and how
to translate those into a mathemaƟcal model? The remainder of this thesis presents our
best aƩempts at answering those quesƟons.
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1.7. Basics of physical modeling techniques
This secƟon presents an overview of the physical theories and concepts used throughout
this thesis. This is not meant as a necessary prerequisite for following any reasoning de-
tailed in subsequent chapters, nor will it be needed to understand any conclusions thereof.
Instead, the collecƟon of topics discussed here form the basis of all mathemaƟcal deriva-
Ɵons and simulaƟon techniques used.
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Figure 1.10: A single chemical reacƟon inwhich the RGN cleaves its substrate at rate፤. (A) Free-energy landscape.
A barrier of height ጂፅ - the distance from the bound state’s free-energy (ፅ) to the least favourable intermediate
( the transiƟon state ፓ) - separates the bound from cleaved configuraƟons. (B) PopulaƟon of cleaved DNA as a
funcƟon of Ɵme. (C) ReacƟon Ɵme for individual reacƟons - histogram produced generaƟng many realisaƟons -
are exponenƟally distributed.

1.7.1. Kinetics 101
The cell can be viewed as a busy chemical factory. Molecules move around, occasionally
colliding into one another, enabling them to exchange chemical bonds, leading to new
chemical species. Technically, any such reacƟon is thus a result of a mulƟtude of forces
originaƟng from not only from the molecules directly involved, but due to the crowded
nature of the cell’s environment, also other molecules in the surroundings. Fortunately,
keeping track of the exact trajectories of all these parƟcles is not actually needed in order
to extract useful (average) measures of a chemical reacƟon’s outcome. We have entered
the realm of staƟsƟcal mechanics, in which we want to know what is most likely to happen
when repeaƟng a chemical reacƟon many Ɵmes (as is typical). If molecule 𝐴 reacts with 𝐵
to form species 𝐶, what is the concentraƟon of molecule 𝐶 aŌer a Ɵme 𝑡? Or say species 𝐴
is part of mulƟple chemical pathways and is capable of reacƟng either with species 𝐵ኻ or
with 𝐵ኼ, which is more likely to happen sooner? We shall cover the most important tech-
niques used to tackle such quesƟons.

As an example, let us take a simplified view of an RGN interacƟng with its target substrate.
The top panel of figure ??A shows a chemical reacƟon in which a target bound RGN cleaves
its substrate. Below is drawnwhat is called the free-energy landscape for this reacƟon. Any
possible set of posiƟons of the RGN, target (or parts thereof) – together this will be referred
to as our ‘system’ – is summarized as one configuraƟon along the horizontal axis in the dia-
gram – essenƟally starƟng from an unbound configuraƟon on the leŌ to a cleaved product
on the right. The only number we keep track of is what is called the system’s free-energy
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(𝐹 = 𝐸–𝑇𝑆) – a combinaƟon of its internal energy (𝐸) and conformaƟonal entropy (𝑆) at a
fixed temperature (𝑇).
As far as our chemical reacƟon goes, we are not interested in any intermediate posiƟonal
configuraƟon in which the substrate is not cleaved yet or the substrate is not bound yet.
We shall discuss below that a lower free-energy describes a more likely configuraƟon or
’state’. Hence, we represent the reactants (RGN is bound to substrate) and products (sub-
strate gets cleaved) as local (or global) minima in the free-energy landscape. CompleƟng
the reacƟon requires the system to first overcome an energeƟc barrier – the amount of Δ𝐹
- to take it over the local maximum called the transiƟon state (𝑇). In this thesis we used
what is called ‘kineƟc modeling’, in which we assume the Ɵme for any single reacƟon (one
arrow in the diagram) to get completed to be exponenƟally distributed (Figure ??B and
C). Using 𝑝(𝑡) to denote the probability of not having completed the reacƟon of figure ??
before Ɵme 𝑡:

𝜙(𝑡) = 𝑘𝑒ዅ፤፭ (1.1)

1 − 𝑝(𝑡) = ∫
፭

ኺ
𝜙(𝑡)d𝑡 = 1 − 𝑒ዅ፤፭ (1.2)

d𝑝
d𝑡 = −𝑘𝑝(𝑡) (1.3)

The inverse average Ɵme of the reacƟon, or reacƟon rate, 𝑘, is related to the (free-)energy
barrier of the reacƟon through the Arrhenius equaƟon:

𝑘 ∝ 𝑒ዅጂፅ (1.4)

Throughout this thesis, we shall measure all energies in units of the thermal energy 𝑘ፁ𝑇. A
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Figure 1.11: The RGN binds its substrate at a rate ፤on. Before cleaving with rate ፤clv, the RGN can unbind at a
rate ፤off. (A) Free-energy landscape. Stable states (minima) are denoted by ፅ’s, while transiƟon states between
two configuraƟons are indicated by ፓ’s. (B) SoluƟon to Master equaƟon tracks populaƟons of all the three states
over Ɵme.

slightlymore complicated reacƟon is one inwhich the RGN toggles betweenbeing unbound
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and bound to its substrate before it can cleave it (Figure ??). Its corresponding free-energy
landscape is shown in figure ??A. By extension of the previous example, every step within
this reacƟon scheme is characterized by aminima and a set of transiƟon barriers separaƟng
it from subsequent steps. The Arrhenius equaƟon relates these barriers to reacƟon rates.
How do we now track the fracƟon of cleaved DNA? First note that all RGN and substrate
molecules must belong to one of the species described in the chemical reacƟon pathway.
Their relaƟve fracƟons, or the probability that any of the molecules belongs to a given
species, can vary over Ɵme, but the total is conserved:

𝑝ub(𝑡) + 𝑝bnd(𝑡) + 𝑝clv(𝑡) = 1 ∀𝑡 (1.5)

In this example the number of unbound molecules at a Ɵme 𝑡 decreases by unbound
molecules binding to a substrate. On average, every 𝑘ዅኻon seconds an unbound molecule
binds. For this to happen at Ɵme 𝑡, there must be an unbound molecule available at Ɵme
𝑡 to start with. Hence, the rate of change of the unbound populaƟon decreases by a fac-
tor of 𝑝ub(𝑡) × 𝑘on. Similarly, when a bound molecule rejects its substrate, the fracƟon of
unbound molecules increases. Taken together, the set of differenƟal equaƟons describing
the Ɵme evoluƟon of all of the different populaƟons, termed the set of Master EquaƟons,
are

d𝑝ub
d𝑡 = −𝑘on𝑝ub(𝑡) + 𝑘off𝑝bnd(𝑡) (1.6)

d𝑝bnd
d𝑡 = +𝑘on𝑝ub(𝑡) − (𝑘off + 𝑘clv)𝑝bnd(𝑡) (1.7)

d𝑝clv
d𝑡 = +𝑘clv𝑝bnd(𝑡) (1.8)

Commonly, one re-writes it in matrix-vector form (�⃗�(𝑡) = [𝑝ub(𝑡), 𝑝bnd(𝑡), 𝑝clv(𝑡)]ፓ):

d�⃗�
d𝑡 = 𝑀�⃗�(𝑡) , 𝑀 = (

−𝑘on 𝑘off 0
+𝑘on −(𝑘off + 𝑘clv) 0
0 𝑘clv 0

) (1.9)

The soluƟon for this parƟcular problem is ploƩed in figure ??B. In general, solving theMas-
ter EquaƟons gives us access to all concentraƟons of reactants and products for any par-
Ɵcular reacƟon pathway.

1.7.2.When reactions are fast: Equilibrium Thermodynamics
The reacƟons described above eventually become irreversible - aŌer the RGN cuts its sub-
strate there is no way back (see Figure ??-??). However, the sub-process of substrate bind-
ing is reversible. If the binding and unbinding happenmuch faster than cleaving (𝑘off, 𝑘on ≫
𝑘clv, see Figure ??A), a (local) equilibrium between bound and unbound states may be
reached prior to cleaving. In other words, the bound and unbound states will essenƟally
evolve together as if it being a closed system. AŌer the two have saturated (equilibrated)
the fracƟon of cleaved DNA is sƟll set by the rate 𝑘clv and the now locally equilibrated frac-
Ɵon of bound molecules (equaƟon ??).
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Figure 1.12: Same reacƟon as in Figure ??, but now with much higher rates of binding and unbinding. (A) Free-
energy landscape. (B) SoluƟon to Master equaƟon tracks populaƟons of all the three states over Ɵme. Dots
indicate equillibrium fracƟons of bound/unbound DNA calculated using the Detailed balance condiƟon of eq (??).

This trick of separaƟng Ɵmescales can greatly simplify the soluƟon to the Master Equa-
Ɵons, since the populaƟons in the equilibrated states are known to saƟsfy the Boltzmann
distribuƟon, which is Ɵme independent.

𝑝EQub,b =
𝑒ዅፅub,b

𝑒ዅፅub + 𝑒ዅፅb ≡
𝑒ዅፅub,b
𝑍 (1.10)

with 𝑍 commonly referred to as the system’s parƟƟon funcƟon. Allowing for processes to
locally equilibrate serves as a means to account for the relevant ’slow’ reacƟon involving
𝑘clv and ignore any temporal contribuƟons of the very short Ɵmes (𝑘ዅኻon and 𝑘ዅኻoff ). Yet, we
did not lose the informaƟon that an unbound molecule must first bind before it is able
to cleave - as the stability of the bound state decreases, so does the fracƟon of bound
molecules.

In case of the molecule being completely incapable of cleaving (𝑘clv → 0 or equivalently
𝑇clv → ∞) the bound and unbound states form a completely closed system. Hence, a
(global) equilibrium will be reached eventually. At the same Ɵme, the master equaƟon
approach to determine concentraƟons of either bound or unbound molecules at shorter
Ɵmes is sƟll valid. How do we choose the set of rates in theMaster EquaƟon to ensure that
the resulƟng probabiliƟes approach the according values determined by the Boltzmann
distribuƟon? When equilibrated, the probability is staƟonary, which wriƩen in terms of
the Master equaƟons reads as follows:

𝑝EQub 𝑘on = 𝑝EQbnd𝑘off (1.11)

EquaƟon ?? says that the flow of probability out of the (un)bound state equals the flow
into it. Hence, seƫng the rates according to this ’Detailed balance condiƟon’

𝑘off = 𝑘on
𝑝EQub
𝑝EQbnd

= 𝑘on𝑒ዅ(ፅubዅፅb) (1.12)



1

18 1. Introduction

guarantees that the probabiliƟes will approach their appropriate Boltzmann weights:

lim
፭→ጼ

𝑝i(𝑡) = 𝑝EQi = 𝑒ፅi
𝑍 ∀𝑖 ∈ [bnd, ub] (1.13)

In figure ??B, the two dots shown are the equilibrium fracƟons calculated using (the inverse
of) equaƟon ??. For themore involved reacƟonpathways considered later in this thesis, the
detailed balance condiƟon is applied for every pair of adjacent states 𝑖 and 𝑗: 𝑘።→፣/𝑘፣→። =
𝑒ጂፅij .

A B C

A B C

A B C

A B C

D

A

C

B

D

Figure 1.13: Four examples of first passage problems. In each of the figures (A)- (D) we seek the first Ɵme we
arrive at node ፂ, starƟng from node ፀ. The probability (density) that this occurs at Ɵme ፭ is denoted byጕᐸᐺ(፭).

1.7.3. First Passage Problems of Continuous Time RandomWalks
Without solving the Master equaƟons, we can sƟll determine the average Ɵme needed to
complete a chemical reacƟon or its most likely outcome. To do such we pretend the chem-
ical reacƟon is actually a random walk on a laƫce with each intermediate represenƟng a
node. The walker takes a step on the laƫce by compleƟng a single reacƟon, thereby tak-
ing a step along an arrow shown in the diagram. A convenient way of approaching these
problems will be to view them as liƩle ’board games’. Walking on the board is done by
hopping from one node to another, one at the Ɵme and only along a direcƟon indicated by
an arrow. Here we focus on some ’rules of the game’.

The first important rule is that we only record the Ɵme in between transiƟons. TransiƟons
themselves happen instantaneously. It is as if we are playing a game of ’speed chess’ in
which we record the Ɵmes it takes to decide what moves to make, not the Ɵme needed to
actually move the piece across the board. More formally, when one considers the move-
ment of a body on an interval 𝑥 ∈ [𝑎, 𝑏], then a simple quesƟon one may ask is:”What
is the Ɵme at which the parƟcle passes the boundary at 𝑎 or 𝑏 for the first Ɵme?”. This
Ɵme is called the ’first passage Ɵme’. One may also ask: ”What is the probability that the
first passage Ɵme at boundary a equals 𝑡 = 𝑡ፚ?”. This will be referred to as the first pas-
sage probability. Let Ψ(𝑡)d𝑡 denote the probability that the first passage Ɵme lies within
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[𝑡, 𝑡+d𝑡]. Hence,Ψ(𝑡) is the ’first passage probability density’. Within the context of chem-
ical reacƟons, the first passage Ɵme indicates when a reacƟon gets completed for the first
Ɵme. Hence, as menƟoned, our randomwalk will take place on a discreƟzed spaƟal laƫce.
Time, however, remains a conƟnuous variable. In each of the following examples, we will
be aŌer the first passage at node 𝐶, starƟng from node 𝐴 (Ψ(𝑡)ፀፂ).

As an example, consider the ’board game’ shown in figure ??A. StarƟng from node 𝐴, our
next move can only take us to a node that neighbors 𝐴 and for which there is an arrow
poinƟng in the designated direcƟon. In this case, we have liƩle choice but walking to node
𝐵. Let𝜙ፗፘ(𝑡)’s denote the probability densiƟes of reacƟon Ɵmes for individual reacƟons -
represenƟng exponenƟal distribuƟons (see equaƟon ??) - making a step from𝑋 to 𝑌. What
is the probability that one arrives at node 𝐶 at Ɵme 𝑡? Given node 𝐴 is not directly con-
nected to node 𝐶, all possible paths that bring us to node 𝐶 must have first brought us to
node 𝐵 at some earlier Ɵme 𝜏 < 𝑡.

Ψፀፂ(𝑡) = ∫
ጼ

ኺ
𝜙ፀፁ(𝜏)𝜙ፁፂ(𝑡 − 𝜏)d𝜏 (1.14)

The above integral reflects that we must sum over all possible ways of ending up at 𝐶 via
node 𝐴 - increasing for an increasing number of ways of geƫng to the designaƟon. In this
case it entails summing over all Ɵmes at which we arrived at the intermediate node 𝐵,
resulƟng in the convoluƟon of𝜙ፀፁ(𝑡) and𝜙ፁፂ(𝑡). If we instead use Laplace transforms of
the probability densiƟes -

Ψፀፂ(𝑠) = ℒ {Ψፀፂ(𝑡)} = ∫
ጼ

ኺ
Ψፀፂ(𝑡)𝑒ዅ፬፭d𝑡 (1.15)

- such a convoluƟon turns into a simple product in 𝑠-space:

Ψፀፂ(𝑠) = ℒ {∫
ጼ

ኺ
𝜙ፀፁ(𝜏)𝜙ፁፂ(𝑡 − 𝜏)d𝜏}

= ∫
ጼ

ኺ
∫
ጼ

ኺ
𝜙ፀፁ(𝜏)𝜙ፁፂ(𝑡 − 𝜏)d𝜏𝑒ዅ፬፭d𝑡

= ∫
ጼ

ኺ
∫
ጼ

ኺ
𝜙ፀፁ(𝜏)𝜙ፁፂ(𝑡 − 𝜏)𝑒ዅ፬፭d𝜏d𝑡

≡ ∫
ጼ

ኺ
∫
ጼ

ኺ
𝜙ፀፁ(𝜏)𝜙ፁፂ(𝑢)𝑒ዅ፬(፮ዄᎡ)d𝜏d𝑢

= ∫
ጼ

ኺ
𝜙ፀፁ(𝜏)𝑒ዅ፬Ꭱd𝜏∫

ጼ

ኺ
𝜙ፁፂ(𝑢)𝑒ዅ፬፮d𝑢

= 𝜙ፀፁ(𝑠) × 𝜙ፁፂ(𝑠)

(1.16)

The Laplace transform is also a linear operator, whichwe shall put to pracƟce in the example
shown in figure ??B. In this example there are two disƟnct types of paths that lead from 𝐴
to 𝐶. We can walk directly from 𝐴 to 𝐶 (𝜙ፀፂ) or use node 𝐵 as an intermediate. Summing
over the disƟnct paths equals summing over the corresponding Laplace transforms.

Ψፀፂ(𝑠) = 𝜙ፀፁ(𝑠)𝜙ፁፂ(𝑠) + 𝜙ፀፂ(𝑠) (1.17)
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Only for a select set of problems it is possible to directly invert the Laplace transform. For-
tunately, this is not needed in order to obtain the mean first passage Ɵme at 𝐶 starƟng
from 𝐴. For this, consider the derivate ofΨ(𝑠), evaluated at 𝑠 = 0.

(dΨፀፂ
d𝑠 )

፬዆ኺ
= (∫

ጼ

ኺ
Ψፀፂ(𝑡)

d𝑒ዅ፬፭
d𝑠 d𝑡)

፬዆ኺ

= ∫
ጼ

ኺ
−𝑡Ψፀፂ(𝑡)𝑒ኺd𝑡

≡ − ⟨𝑡⟩

(1.18)

In general, the 𝑛፭፡ order moment of the first passage Ɵme - the first moment is called
the mean - is obtained by taking the 𝑛፭፡ order derivaƟve of the Laplace transform. The
funcƟonΨ(𝑠) is therefore also referred to as the moment generaƟng funcƟon.

⟨𝑡፧⟩ = (−1)፧ (d
፧Ψፀፂ
d𝑠፧ )

፬዆ኺ
(1.19)

The 0፭፡order moment has a special interpretaƟon,

𝑃 ≡ Ψፀፂ(0) = ∫
ጼ

ኺ
Ψፀፂ(𝑡)d𝑡 (1.20)

It equals the probability of compleƟng the specified reacƟon first. Later in this thesis we
will use exactly this probability to determine if a bound RGN will cleave before it unbinds.
Note that for all the board games shown in figure ??, this probability must equal one as
node 𝐶 is the only final product possible.

There are two more ’rules of the game’ that have come in extremely handy in later chap-
ters. First consider the example of figure ??C. The board reveals that node 𝐶 cannot be
reached within a single step. We must walk to node 𝐵 first. However, unlike in figure A
there are many ways in which we can get to node 𝐶 (for the first Ɵme). AŌer walking to
node 𝐵, we can decide to walk back to point 𝐴, then back to 𝐵 and finally walk to 𝐶. As
a maƩer of fact, we can decide to walk back and forth between 𝐴 and 𝐵 as oŌen as we
want as long as we end by taking a step from 𝐴 to 𝐵 and one from 𝐵 to 𝐶. Using both the
convoluƟon property and the linearity of the Laplace transform we find

Ψፀፂ = [1 + (𝜙ፀፁ𝜙ፁፀ) + (𝜙ፀፁ𝜙ፁፀ)ኼ + (𝜙ፀፁ𝜙ፁፀ)ኽ + ...] 𝜙ፀፁ𝜙ፁፂ

=
ጼ

∑
፧዆ኺ
(𝜙ፀፁ𝜙ፁፀ)፧]𝜙ፀፁ𝜙ፁፂ

= 𝜙ፀፁ𝜙ፁፂ
1 − 𝜙ፀፁ𝜙ፁፀ

(1.21)

The last line follows from recognizing the geometric series.

Let us turn to one final example, figure ??D. Before to walking to 𝐶, we may walk back
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and forth between 𝐴 and 𝐵 several Ɵmes. Similarly, we are allowed to walk back and
forth between 𝐴 and 𝐷 as oŌen as we like. We can even walk along the path 𝐴-𝐷-𝐴-𝐵-
𝐴-𝐷-𝐴-𝐵-𝐶, or any other combinaƟon in which we toggle between the nodes 𝐴,𝐵 and
𝐷 before making it to 𝐶. The previous example demonstrated that dealing with a single
’two-way-arrow’ - one reversible reacƟon - results in a sum of terms of the form 𝜙ፀፁ𝜙ፁፀ
or 𝜙ፀፃ𝜙ፃፀ. At first glance, one may expect the soluƟon to this problem to be Ψ =
∑፧ (𝜙ፀፁ𝜙ፁፀ)

፧ × ∑፦ (𝜙ፀፃ𝜙ፃፀ)
፦. Although any valid path from 𝐴 to 𝐶 is indeed rep-

resented by a term in the sum, we are not accounƟng for the fact that many paths are now
represented by one and the same contribuƟon. A first passage for which there are more
paths leading to it should become more likely. We are therefore sƟll missing a combinato-
rial factor describing the number of ways the pairs for𝜙ፀፁ𝜙ፁፀ and𝜙ፀፃ𝜙ፃፀ can commute.
Instead of doing explicit combinatorics, counƟng every possible path by hand, we will sƟll
approach the problem in a similar fashion as we did in the previous example. Before, we
characterized a parƟcular path by the number of Ɵmes one stepped back and forth, using
node 𝐵 in figure ??C. Let us do the same, now using the board game of figure D. Say we
walked back and forth twice, without knowing whether we used node B or D any of the
following paths could have been taken:

• Use node 𝐵 twice, walk 𝐴-𝐵-𝐴-𝐵-𝐴(-𝐵-𝐶): (𝜙ፀፁ𝜙ፁፀ)ኼ

• Use node 𝐷 twice, walk 𝐴-𝐷-𝐴-𝐷-𝐴(-𝐵-𝐶):(𝜙ፀፃ𝜙ፃፀ)ኼ

• First use 𝐵, then use 𝐷. walk 𝐴-𝐵-𝐴-𝐷-𝐴(-𝐵-𝐶): 𝜙ፀፁ𝜙ፁፀ × 𝜙ፀፃ𝜙ፃፀ
• First use 𝐷, then use 𝐵. walk 𝐴-𝐷-𝐴-𝐵-𝐴(-𝐵-𝐶): 𝜙ፀፃ𝜙ፃፀ × 𝜙ፀፁ𝜙ፁፀ

Taken together,Ψፀፂ , must gather a term equal to:

(𝜙ፀፁ𝜙ፁፀ)ኼ + 2(𝜙ፀፃ𝜙ፃፀ𝜙ፀፁ𝜙ፁፀ) + (𝜙ፀፃ𝜙ፃፀ)ኼ = (𝜙ፀፃ𝜙ፃፀ + 𝜙ፀፁ𝜙ፁፀ)ኼ (1.22)

Generalizing this example shows that walking back and forth a total of 𝑛 Ɵmes contributes
a term of (𝜙ፀፃ𝜙ፃፀ + 𝜙ፀፁ𝜙ፁፀ)፧ toΨፀፂ(𝑠).

Ψፀፂ(𝑠) =∑
፧
(𝜙ፀፃ𝜙ፃፀ + 𝜙ፀፁ𝜙ፁፀ)፧ × 𝜙ፀፁ𝜙ፁፂ (1.23)

1.7.4. Decision making: The ’splitting probability’
As a final piece of theory - tying together the first passage problems and the master equa-
Ɵon approaches - consider a bound RGN that can partake in one of two irreversible reac-
Ɵons: unbinding (ignore (re-)binding) at a rate 𝑘off and cleavage at a rate 𝑘clv. When we
speak of the ’total outgoing rate’ from the bound state we are referring to 𝑘 = 𝑘ub + 𝑘clv.
Note that the condiƟonal waiƟng Ɵme(s) are distributed as follows:

𝜙። = 𝑘i𝑒∑ᑩ ፤ᑩ ∀𝑖, 𝑥 ∈ [ub, clv] (1.24)

This is the generalisaƟonof equaƟon ??. Hence, if one tracks the number of boundmolecules,
this number will decrease exponenƟally at a total rate of 𝑘, irrespecƟve if a molecule
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cleaves or rejects the substrate. To know if the RGN is more likely to cleave before it un-
binds, or vice versa, we take a look at the zeroth order moment of its Laplace transform.

𝜙።(𝑠) =
𝑘።

𝑠 + ∑፱ 𝑘፱
(1.25)

For sake of illustraƟon, we use the Laplace transform even though the corresponding inte-
gral in the temporal domain is easy to compute. Taking any of these two approaches,

𝑃። =
𝑘i

∑፱ 𝑘፱
(1.26)

This is commonly referred to as the ’spliƫng probability’ of reacƟon path 𝑖.

1.7.5. Connection to experimental data
Throughout this thesis validaƟng our model predicƟons against experimental data forms
a crucial part of the research presented. Bulk biochemical assays may report on the frac-
Ɵon of cleaved molecules aŌer some fixed Ɵme. We can either use the master equaƟon to
obtain this same quaƟty, or work within limmits wherin it should be well approximated by
the raƟo in reacƟon rates for the different off-target molecules (inverse average Ɵmes), or
the (spliƫng) probability for cleaving. Other assays use fluorescent labels to track popula-
Ɵons of substrates and RGNs over Ɵme, thereby directly reporƟng on the soluƟon to the
corresponding Master EquaƟon. Finally, single-molecule experiments enable one to track
individual guide-loaded RGN complexes, which allows one to directly measure (mean) first
passage Ɵmes or the Ɵme distribuƟons 𝜙(𝑡) - or the total distribuƟon ofΨ(𝑡) in case of a
more complex chemical pathway.

1.8. In this thesis
This thesis is an account of modeling efforts aimed towards understanding the kineƟcs un-
derlying (off-)targeƟng by RNA/DNA guided nucleic acid effector complexes.

Part I: Target recogniƟon and off-target predicƟon quanƟfies what types of off-targets
lead to cleavage before rejecƟon, with a parƟcular focus on the posiƟon of mismatches
within the guide-target hybrid.
Chapter ?? introduces a kineƟc model for the off-target binding and cleavage by CRISPR-
Cas, Argonaute, and similar RNA guided nucleases (RGNs). Previous literature revealed
such RGNs bind their substrate and aid the formaƟon of the guide-target hybrid in sequen-
Ɵal fashion. Using a minimalisƟc view of target recogniƟon, we say the addiƟon of a match
to the hybrid is energeƟcally (and kineƟcally) favorable, whereas a mismatch biases the
system towards rejecƟon of the off-target. Working out the mathemaƟcs purely dictated
by the targeƟng process being sequenƟal, allows us to give a physical explanaƟon for amul-
Ɵtude of empirically derived ‘off-targeƟng rules’ – a set of ‘rules of thumb’ experimenters
adhere to when designing their RGN-based assay.
In Chapter ??we built upon this model by expanding the parameterizaƟon to include posi-
Ɵon dependent (mis-)match biases. Using a series of high-throughput biophysical datasets



1.8. In this thesis

1

23

we elucidate the free-energy landscape that underlies Streptococcus pyogenes Cas9 (sp-
Cas9) target recogniƟon. Previous reports showed catalyƟcally ‘dead’ Cas9 (dCas9) binds
manymore (genomic) off-targets than acƟveCas9 cleaves. The presented free-energy land-
scape not only unifies those observaƟons, but explains exactly what off-targets lead to sta-
ble binding, apparently without geƫng cut. In parƟcular, ourmodel allows one to calculate
how much off-target binding by dCas9 or cleavage by Cas9 is to be expected given the nu-
clease concentraƟon and reacƟon Ɵme used in an experiment. Finally, the free-energy
landscape further reveals Cas9’s major conformaƟonal change, in which it reposiƟons its
nuclease domains to enable cleavage, directly couples to the enƟre hybrid formaƟon pro-
cess.

Thus far, we have been treaƟng the selecƟon/rejecƟon of isolated off-targets. Part II: Tar-
get search focuses on how sequence specific binding proteins locate their cognate target
site amongst a pool of potenƟal off-targets. Apart from diffusing through soluƟon unƟl the
protein randomly collides with a target, proteins are found to enhance their reacƟon rates
by binding non-specifically and diffusing laterally along the DNA/RNA.
Chapter ?? uses the example of hAgo2 to review exisƟng target search literature and hy-
pothesizes that a coupling of the protein’s structural changes to the hybrid formaƟon –
much like the kind found for spCas9 in Chapter ?? – balances search Ɵme and specificity.

Typically, the target search is further complicated as large porƟons of cellular RNA/DNA
are occupied by other proteins. Moreover, the RNA/DNA is highly compacted, adopƟng a
conformaƟon that severely deviates from being linear, even on the scale of the searching
protein. In Chapter ??we used a prokaryoƟc Argonaute as a model system to invesƟgate if
and how lateral diffusion can proceed in the presence of either structural or protein obsta-
cles. The presented single-molecule FRET experiments (a collaboraƟon with T.J.Cui from
the lab of dr. Chirlmin Joo) demonstrate cbAgo can bypass both a secondary DNA struc-
ture (a ’Y-fork’) and a bound protein - covering DNA sites at (nearly) the same rates as on
bare DNA. Using kineƟc modeling allowed us to further demonstrate that the secondary
structure does not hinder the lateral sliding moƟon, while the bulkier protein barrier does
- necessitaƟng some form of dissociaƟon from the DNA in order to ’skip’ over the obstacle
in order to proceed searching.
MoƟvated by these observaƟons, we ask whether a laterally diffusing protein must inter-
rogate all (off-)targets along its path in Chapter ??. We set up a rather generic model that
allows for the protein to interrogate only a fracƟon of all sites enclosed within its lateral
excursion. Using single-molecule FRET experiments performed on both a bacterial Ago and
hAgo2, our model shows both systems indeed only interrogate a relaƟvely small fracƟon
of all DNA/RNA sites. Surprisingly, despite essenƟally “being blind” to a significant porƟon
of the target pool, we show how this can actually help to find the cognate site faster.



1

24 References

References

[] E. S. L. Lander, L. M. Birren, B. Nusbaum, C. Zody,
M. C. Baldwin, J. Devon, K. Dewar, K. Doyle,
M. FitzHugh, W. Funke, R. Gage, D. Harris,
K. Heaford, A. Howland, J. Kann, L. Lehoczky,
J. LeVine, R. McEwan, and P. McKernanKevin.,
IniƟal sequencing and analysis of the human
genome, Nature 409, 860 (2001).

[] Ø. Bergh, K. Y. Børsheim, G. Bratbak, and M. Hel-
dal, High abundance of viruses found in aquaƟc
environments, Nature 340, 467 (1989).

[] M. Breitbart and F. Rohwer, Here a virus, there a
virus, everywhere the same virus? Trends in Mi-
crobiology 13, 278 (2005).

[] A. Stern and R. Sorek, The phage-host arms race:
Shaping the evoluƟon of microbes, BioEssays 33,
43 (2011).

[] R. Sorek, C. M. Lawrence, and B. WiedenheŌ,
CRISPR-Mediated AdapƟve Immune Systems in
Bacteria and Archaea, Annual Review of Bio-
chemistry 82, 237 (2013).

[] B. WiedenheŌ, S. H. Sternberg, and J. A. Doudna,
RNA-guided geneƟc silencing systems in bacteria
and archaea, Nature 482, 331 (2012), arXiv:37 .

[] F. J. Mojica, C. Díez-Villaseñor, J. García-Marơnez,
and E. Soria, Intervening sequences of regularly
spaced prokaryoƟc repeats derive from foreign
geneƟc elements, Journal of Molecular EvoluƟon
60, 174 (2005).

[] R. Barrangou, C. Fremaux, H. Deveau,
M. Richards, P. Boyaval, S. Moineau, D. A.
Romero, and P. Horvath, CRISPR pro-
vides acquired resistance against viruses
in prokaryotes, Science 315, 1709 (2007),
arXiv:arXiv:1011.1669v3 .

[] J. K. Nuñez, P. J. Kranzusch, J. Noeske, A. V.
Wright, C. W. Davies, and J. A. Doudna, Cas1-
Cas2 complex formaƟon mediates spacer acqui-
siƟon during CRISPR-Cas adapƟve immunity, Na-
ture Structural and Molecular Biology 21, 528
(2014).

[] S. J. Brouns, M. M. Jore, M. Lundgren, E. R. Wes-
tra, R. J. Slijkhuis, A. P. Snijders, M. J. Dickman,
K. S. Makarova, E. V. Koonin, and J. Van Der
Oost, Small Crispr Rnas Guide AnƟviral Defense in
Prokaryotes, Science 321, 960 (2008), arXiv:20 .

[] G. Gasiunas, R. Barrangou, P. Horvath, and
V. Siksnys, Cas9-crRNA ribonucleoprotein com-
plex mediates specific DNA cleavage for adap-
Ɵve immunity in bacteria, Proceedings of the Na-
Ɵonal Academy of Sciences 109, E2579 (2012),
arXiv:arXiv:1408.1149 .

[] J. E. Garneau, M. È. Dupuis, M. Villion, D. A.
Romero, R. Barrangou, P. Boyaval, C. Fremaux,
P. Horvath, A. H. Magadán, and S. Moineau,

The CRISPR/cas bacterial immune system cleaves
bacteriophage and plasmid DNA, Nature 468, 67
(2010).

[] M. Jinek, K. Chylinski, I. Fonfara, M. Hauer, J. A.
Doudna, and E. CharpenƟer, A Programmable
Dual-RNA – Guided, Science 337, 816 (2012),
arXiv:38 .

[] R. T. Leenay, K. R. Maksimchuk, R. A. Slotkowski,
R. N. Agrawal, A. A. Gomaa, A. E. Briner, R. Barran-
gou, and C. L. Beisel, IdenƟfying and Visualizing
FuncƟonal PAM Diversity across CRISPR-Cas Sys-
tems,Molecular Cell 62, 137 (2016).

[] D. G. Sashital, B. WiedenheŌ, and J. A. Doudna,
Mechanism of Foreign DNA SelecƟon in a Bacte-
rial AdapƟve Immune System, Molecular Cell 46,
606 (2012).

[] E. R. Westra, E. Semenova, K. A. Datsenko, R. N.
Jackson, B. WiedenheŌ, K. Severinov, and S. J.
Brouns, Type I-E CRISPR-Cas Systems Discrimi-
nate Target from Non-Target DNA through Base
Pairing-Independent PAM RecogniƟon, PLoS Ge-
neƟcs 9 (2013), 10.1371/journal.pgen.1003742.

[] K. S. Makarova, Y. I. Wolf, O. S. Alkhnbashi,
F. Costa, S. A. Shah, S. J. Saunders, R. Barrangou,
S. J. Brouns, E. CharpenƟer, D. H. HaŌ, P. Hor-
vath, S. Moineau, F. J. Mojica, R. M. Terns, M. P.
Terns, M. F. White, A. F. Yakunin, R. A. GarreƩ,
J. Van Der Oost, R. Backofen, and E. V. Koonin, An
updated evoluƟonary classificaƟon of CRISPR-Cas
systems, Nature Reviews Microbiology 13, 722
(2015), arXiv:9809069v1 [arXiv:gr-qc] .

[] T. Sinkunas, G. Gasiunas, C. Fremaux, R. Barran-
gou, P. Horvath, and V. Siksnys, Cas3 is a single-
stranded DNA nuclease and ATP-dependent he-
licase in the CRISPR/Cas immune system, EMBO
Journal 30, 1335 (2011).

[] S. N. Kieper, C. Almendros, J. Behler, R. E. McKen-
zie, F. L. Nobrega, A. C. Haagsma, J. N. Vink, W. R.
Hess, and S. J. Brouns, Cas4 Facilitates PAM-
CompaƟble Spacer SelecƟon during CRISPRAdap-
taƟon, Cell Reports 22, 3377 (2018).

[] L. B. Harrington, J. S. Chen, E. Ma, I. P. WiƩe, J. C.
Cofsky, J. A. Doudna, D. Burstein, J. F. Banfield,
D. Paez-Espino, and N. C. Kyrpides, Programmed
DNA destrucƟon by miniature CRISPR-Cas14 en-
zymes, Science 362, 839 (2018).

[] R. C. Friedman, K. K. H. Farh, C. B. Burge, and D. P.
Bartel, Most mammalian mRNAs are conserved
targets of microRNAs, Genome Research 19, 92
(2009).

[] D. P. Bartel, MicroRNAs: Target RecogniƟon
and Regulatory FuncƟons, Cell 136, 215 (2009),
arXiv:0208024 [gr-qc] .

[] G. Hutvagner and M. J. Simard, Argonaute pro-

www.nature.com
http://dx.doi.org/ 10.1038/340467a0
http://dx.doi.org/ 10.1016/j.tim.2005.04.003
http://dx.doi.org/ 10.1016/j.tim.2005.04.003
http://dx.doi.org/ 10.1002/bies.201000071
http://dx.doi.org/ 10.1002/bies.201000071
http://dx.doi.org/ 10.1146/annurev-biochem-072911-172315
http://dx.doi.org/ 10.1146/annurev-biochem-072911-172315
http://dx.doi.org/ 10.1038/nature10886
http://arxiv.org/abs/37
http://dx.doi.org/ 10.1007/s00239-004-0046-3
http://dx.doi.org/ 10.1007/s00239-004-0046-3
http://dx.doi.org/10.1126/science.1138140
http://arxiv.org/abs/arXiv:1011.1669v3
http://dx.doi.org/ 10.1038/nsmb.2820
http://dx.doi.org/ 10.1038/nsmb.2820
http://dx.doi.org/ 10.1038/nsmb.2820
http://dx.doi.org/10.1126/science.1159689
http://arxiv.org/abs/20
http://dx.doi.org/10.1073/pnas.1208507109
http://dx.doi.org/10.1073/pnas.1208507109
http://arxiv.org/abs/arXiv:1408.1149
http://dx.doi.org/10.1038/nature09523
http://dx.doi.org/10.1038/nature09523
http://dx.doi.org/10.1126/science.1225829
http://arxiv.org/abs/38
http://dx.doi.org/ 10.1016/j.molcel.2016.02.031
http://dx.doi.org/10.1016/j.molcel.2012.03.020
http://dx.doi.org/10.1016/j.molcel.2012.03.020
http://dx.doi.org/10.1371/journal.pgen.1003742
http://dx.doi.org/10.1371/journal.pgen.1003742
http://dx.doi.org/10.1038/nrmicro3569
http://dx.doi.org/10.1038/nrmicro3569
http://arxiv.org/abs/9809069v1
http://dx.doi.org/ 10.1038/emboj.2011.41
http://dx.doi.org/ 10.1038/emboj.2011.41
http://dx.doi.org/10.1016/j.celrep.2018.02.103
http://dx.doi.org/10.1126/science.aav4294
http://dx.doi.org/10.1101/gr.082701.108
http://dx.doi.org/10.1101/gr.082701.108
http://dx.doi.org/ 10.1016/j.cell.2009.01.002
http://arxiv.org/abs/0208024


References

1

25

teins: Key players in RNA silencing, Nature Re-
views Molecular Cell Biology 9, 22 (2008).

[] T. Kawamata and Y. Tomari, Making RISC, Trends
in Biochemical Sciences 35, 368 (2010).

[] G. Meister, Argonaute proteins: FuncƟonal in-
sights and emerging roles,Nature Reviews Genet-
ics 14, 447 (2013).

[] A. Z. Fire, X. SiQun, M. K. Montgomery, S. A.
Kostas, S. E. Driver, and C. C. Mello, Potent and
specific geneƟc interference by double-stranded
RNA in CaenorhabdiƟs elegans, Nature 391, 806
(1998).

[] hƩps://www.nobelprize.org/prizes/medicine
/2006/press-release, .

[] D. C. Swarts, K. Makarova, Y. Wang, K. Nakanishi,
R. F. Keƫng, E. V. Koonin, D. J. Patel, and J. Van
Der Oost, The evoluƟonary journey of Argonaute
proteins,Nature Structural andMolecular Biology
21, 743 (2014).

[] J. W. Hegge, D. C. Swarts, S. D. Chandra-
doss, T. J. Cui, J. Kneppers, M. Jinek, C. Joo,
and J. van der Oost, DNA-guided DNA cleavage
at moderate temperatures by Clostridium bu-
tyricum Argonaute, Nucleic Acids Research 47,
5809 (2019).

[] E. Kaya, K. W. Doxzen, K. R. Knoll, R. C. Wil-
son, S. C. StruƩ, P. J. Kranzusch, and J. A.
Doudna, A bacterial Argonaute with noncanoni-
cal guide RNA specificity, Proceedings of the Na-
Ɵonal Academy of Sciences 113, 4057 (2016),
arXiv:arXiv:1408.1149 .

[] L. Cong, F. A. Ran, D. Cox, S. Lin, R. BarreƩo,
N. Habib, P. D. Hsu, X. Wu, W. Jiang, L. A. Marraf-
fini, and F. Zhang, MulƟplex genome engineer-
ing using CRISPR/Cas systems, Science 339, 819
(2013), arXiv:20 .

[] P. Mali, L. Yang, K. M. Esvelt, J. Aach, M. Guell,
J. E. DiCarlo, J. E. Norville, and G.M. Church, RNA-
guided human genome engineering via Cas9, Sci-
ence 339, 823 (2013).

[] E. Deltcheva, K. Chylinski, C. M. Sharma, K. Gon-
zales, Y. Chao, Z. A. Pirzada, M. R. Eckert, J. Vogel,
and E. CharpenƟer, CRISPR RNA maturaƟon by
trans-encoded small RNA and host factor RNase
III, Nature 471, 602 (2011).

[] J. Shi, H. Gao, H. Wang, H. R. LafiƩe, R. L.
Archibald, M. Yang, S. M. Hakimi, H. Mo, and
J. E. Habben, ARGOS8 variants generated by
CRISPR-Cas9 improve maize grain yield under
field drought stress condiƟons, Plant Biotechnol-
ogy Journal 15, 207 (2017).

[] D. Bikard, C. W. Euler, W. Jiang, P. M. Nussen-
zweig, G. W. Goldberg, X. Duportet, V. A. Fis-
cheƫ, and L. A. Marraffini, ExploiƟng CRISPR-cas
nucleases to produce sequence-specific anƟmi-
crobials, Nature Biotechnology 32, 1146 (2014),
arXiv:NIHMS150003 .

[] L. Amoasii, H. Li, E. Sanchez-OrƟz, A. Mireault,
D. Caballero, R. Bassel-Duby, E. N. Olson, J. C.
Hildyard, R. Harron, C. Massey, R. J. Piercy, T.-R.
Stathopoulou, and J. M. Shelton, Gene ediƟng
restores dystrophin expression in a canine model
of Duchennemuscular dystrophy, Science 362, 86
(2018).

[] B. Zetsche, J. S. Gootenberg, O. O. Abudayyeh,
I. M. Slaymaker, K. S. Makarova, P. Essletzbich-
ler, S. E. Volz, J. Joung, J. Van Der Oost, A. Regev,
E. V. Koonin, and F. Zhang, Cpf1 Is a Single RNA-
Guided Endonuclease of a Class 2 CRISPR-Cas Sys-
tem, Cell 163, 759 (2015), NIHMS150003 .

[] L. A. Gilbert, M. H. Larson, L. Morsut, Z. Liu, G. A.
Brar, S. E. Torres, N. Stern-Ginossar, O. Brandman,
E. H. Whitehead, J. A. Doudna, W. A. Lim, J. S.
Weissman, and L. S. Qi, CRISPR-mediated modu-
lar RNA-guided regulaƟon of transcripƟon in eu-
karyotes, Cell 154, 442 (2013).

[] B. Chen, L. A. Gilbert, B. A. Cimini, J. Schnitzbauer,
W. Zhang, G. W. Li, J. Park, E. H. Blackburn, J. S.
Weissman, L. S. Qi, and B. Huang, Dynamic imag-
ing of genomic loci in living human cells by an op-
Ɵmized CRISPR/Cas system,Cell 155, 1479 (2013).

[] J. S. Gootenberg, O. O. Abudayyeh, J. W. Lee,
P. Essletzbichler, A. J. Dy, J. Joung, V. Ver-
dine, N. Donghia, N. M. Daringer, C. A. Freije,
C. Myhrvold, R. P. BhaƩacharyya, J. Livny,
A. Regev, E. V. Koonin, D. T. Hung, P. C. Sa-
beƟ, J. J. Collins, and F. Zhang, Nucleic acid de-
tecƟon with CRISPR-Cas13a/C2c2. Science (New
York, N.Y.) 356, 438 (2017), arXiv:15334406 .

[] W. K. Spoelstra, J. M. Jacques, F. L. Nobrega, A. C.
Haagsma, M. Dogterom, T. Idema, S. J. Brouns,
and L. Reese, CRISPR-based DNA and RNA de-
tecƟon with liquid phase separaƟon, Bioarxiv , 1
(2018).

[] X. Wang, E. Xiong, T. Tian, M. Cheng, W. Lin, and
J. Sun, CASLFA : CRISPR / Cas9-mediated lateral
flow nucleic acid assay, Bioarxiv (2019).

[] D. Kim, K. Luk, S. A. Wolfe, and J.-S. Kim, Eval-
uaƟng and Enhancing Target Specificity of Gene-
EdiƟng Nucleases and Deaminases, Annual Re-
view of Biochemistry , 1 (2019).

[] S. Q. Tsai and J. K. Joung, Defining and improving
the genome-wide specificiƟes of CRISPR-Cas9 nu-
cleases, Nature Reviews GeneƟcs 17, 300 (2016).

[] N. Amrani, X. D. Gao, P. Liu, A. Edraki, A. Mir,
R. Ibraheim, A. Gupta, K. E. Sasaki, T. Wu, P. D.
Donohoue, A. H. SeƩle, A. M. Lied, K. McGovern,
C. K. Fuller, P. Cameron, T. G. Fazzio, L. J. Zhu,
S. A. Wolfe, and E. J. Sontheimer, NmeCas9 is
an intrinsically high-fidelity genome-ediƟng plat-
form Jin-Soo Kim, Genome Biology 19, 1 (2018).

[] B. P. KleinsƟver, S. Q. Tsai, M. S. Prew, N. T.
Nguyen, M. M. Welch, J. M. Lopez, Z. R. Mc-
Caw, M. J. Aryee, and J. K. Joung, Genome-wide

http://dx.doi.org/10.1038/nrm2321
http://dx.doi.org/10.1038/nrm2321
http://dx.doi.org/10.1016/j.tibs.2010.03.009
http://dx.doi.org/10.1016/j.tibs.2010.03.009
http://dx.doi.org/ 10.1038/nrg3462
http://dx.doi.org/ 10.1038/nrg3462
http://dx.doi.org/10.1038/nsmb.2879
http://dx.doi.org/10.1038/nsmb.2879
http://dx.doi.org/10.1093/nar/gkz306
http://dx.doi.org/10.1093/nar/gkz306
http://dx.doi.org/10.1073/pnas.1524385113
http://dx.doi.org/10.1073/pnas.1524385113
http://arxiv.org/abs/arXiv:1408.1149
http://dx.doi.org/10.1126/science.1231143
http://dx.doi.org/10.1126/science.1231143
http://arxiv.org/abs/20
http://dx.doi.org/ 10.1126/science.1232033
http://dx.doi.org/ 10.1126/science.1232033
http://dx.doi.org/10.1038/nature09886
http://dx.doi.org/10.1111/pbi.12603
http://dx.doi.org/10.1111/pbi.12603
http://dx.doi.org/10.1038/nbt.3043
http://arxiv.org/abs/NIHMS150003
http://dx.doi.org/10.1126/science.aau1549
http://dx.doi.org/10.1126/science.aau1549
http://dx.doi.org/10.1016/j.cell.2015.09.038
http://arxiv.org/abs/NIHMS150003
http://dx.doi.org/10.1016/j.cell.2013.06.044
http://dx.doi.org/10.1016/j.cell.2013.12.001
http://dx.doi.org/10.1126/science.aam9321
http://dx.doi.org/10.1126/science.aam9321
http://arxiv.org/abs/15334406
http://dx.doi.org/ 10.1146/annurev-biochem-013118-111730
http://dx.doi.org/ 10.1146/annurev-biochem-013118-111730
http://dx.doi.org/10.1038/nrg.2016.28
http://dx.doi.org/10.1186/s13059-018-1591-1


1

26 References

specificiƟes of CRISPR-Cas Cpf1 nucleases in hu-
man cells, Nature Biotechnology 34, 869 (2016),
arXiv:15334406 .

[] H. Wang, M. La Russa, and L. S. Qi, CRISPR/Cas9
in Genome EdiƟng and Beyond, Annual Review of
Biochemistry 85, 227 (2016).

[] Y. Fu, J. D. Sander, D. Reyon, V. M. Cascio, and J. K.
Joung, Improving CRISPR-Cas nuclease specificity
using truncated guide RNAs, Nature Biotechnol-
ogy 32, 279 (2014), arXiv:29 .

[] J. S. Chen, Y. S. Dagdas, B. P. KleinsƟver, M. M.
Welch, A. A. Sousa, L. B. Harrington, S. H. Stern-
berg, J. K. Joung, A. Yildiz, and J. A. Doudna,
Enhanced proofreading governs CRISPR-Cas9 tar-
geƟng accuracy, Nature 550, 407 (2017).

[] B. P. KleinsƟver, V. PaƩanayak, M. S. Prew, S. Q.
Tsai, N. T. Nguyen, Z. Zheng, and J. K. Joung,High-
fidelity CRISPR-Cas9 nucleaseswith no detectable
genome-wide off-target effects, Nature 529, 490
(2016), arXiv:9605103 [cs] .

[] I. M. Slaymaker, L. Gao, B. Zetsche, D. A. ScoƩ,
W. X. Yan, and F. Zhang, RaƟonally engineered
Cas9 nucleases with improved specificity, Science
351, 84 (2016), arXiv:NIHMS150003 .

[] S. Bae, J. Park, and J. S. Kim, Cas-OFFinder: A fast
and versaƟle algorithm that searches for poten-
Ɵal off-target sites of Cas9 RNA-guided endonu-
cleases, BioinformaƟcs 30, 1473 (2014).

[] K. Labun, T. G. Montague, J. A. Gagnon, S. B.
Thyme, and E. Valen, CHOPCHOP v2: a web tool
for the next generaƟon of CRISPR genome engi-
neering, Nucleic acids research 44, W272 (2016).

[] F. Heigwer, G. Kerr, and M. Boutros, E-CRISP: Fast
CRISPR target site idenƟficaƟon, Nature Methods
11, 122 (2014).

[] P. D. Hsu, D. A. ScoƩ, J. A. Weinstein, F. A. Ran,
S. Konermann, V. Agarwala, Y. Li, E. J. Fine, X. Wu,
O. Shalem, T. J. Cradick, L. A. Marraffini, G. Bao,
and F. Zhang, DNA targeƟng specificity of RNA-
guided Cas9 nucleases, Nature Biotechnology 31,
827 (2013), arXiv:NIHMS150003 .

[] M. Stemmer, T. Thumberger, M. Del Sol Keyer,
J. WiƩbrodt, and J. L. Mateo, CCTop: An intu-
iƟve, flexible and reliable CRISPR/Cas9 target pre-
dicƟon tool, PLoS ONE 10, 1 (2015).

[] J. G. Doench, N. Fusi, M. Sullender, M. Hegde,
E. W. Vaimberg, K. F. Donovan, I. Smith,
Z. Tothova, C. Wilen, R. Orchard, H. W. Virgin,
J. Listgarten, and D. E. Root,OpƟmized sgRNA de-
sign to maximize acƟvity and minimize off-target
effects of CRISPR-Cas9, Nature Biotechnology 34,
184 (2016), arXiv:15334406 .

[] G. Chuai, H. Ma, J. Yan, M. Chen, N. Hong, D. Xue,
C. Zhou, C. Zhu, K. Chen, B. Duan, F. Gu, S. Qu,
D. Huang, J. Wei, and Q. Liu, DeepCRISPR: OpƟ-
mized CRISPR guide RNA design by deep learning,
Genome Biology 19, 1 (2018).

[] J. Listgarten, M. Weinstein, B. P. KleinsƟver, A. A.
Sousa, J. K. Joung, J. Crawford, K. Gao, L. Hoang,
M. Elibol, J. G. Doench, and N. Fusi, PredicƟon of
off-target acƟviƟes for the end-to-end design of
CRISPR guide RNAs, Nature Biomedical Engineer-
ing 2, 38 (2018).

[] M. Haeussler, K. Schönig, H. Eckert, A. Eschstruth,
J. Mianné, J. B. Renaud, S. Schneider-Maunoury,
A. Shkumatava, L. Teboul, J. Kent, J. S. Joly, and
J. P. Concordet, EvaluaƟon of off-target and on-
target scoring algorithms and integraƟon into the
guide RNA selecƟon tool CRISPOR, Genome Biol-
ogy 17, 1 (2016).

http://dx.doi.org/10.1038/nbt.3620
http://arxiv.org/abs/15334406
http://dx.doi.org/ 10.1146/annurev-biochem-060815-014607
http://dx.doi.org/ 10.1146/annurev-biochem-060815-014607
http://dx.doi.org/10.1038/nbt.2808
http://dx.doi.org/10.1038/nbt.2808
http://arxiv.org/abs/29
http://dx.doi.org/10.1038/nature24268
http://dx.doi.org/10.1038/nature16526
http://dx.doi.org/10.1038/nature16526
http://arxiv.org/abs/9605103
http://dx.doi.org/10.1126/science.aad5227
http://dx.doi.org/10.1126/science.aad5227
http://arxiv.org/abs/NIHMS150003
http://dx.doi.org/10.1093/bioinformatics/btu048
http://dx.doi.org/10.1093/nar/gkw398
http://dx.doi.org/10.1038/nmeth.2812
http://dx.doi.org/10.1038/nmeth.2812
http://dx.doi.org/10.1038/nbt.2647
http://dx.doi.org/10.1038/nbt.2647
http://arxiv.org/abs/NIHMS150003
http://dx.doi.org/ 10.1371/journal.pone.0124633
http://dx.doi.org/10.1038/nbt.3437
http://dx.doi.org/10.1038/nbt.3437
http://arxiv.org/abs/15334406
http://dx.doi.org/10.1186/s13059-018-1459-4
http://dx.doi.org/10.1038/s41551-017-0178-6
http://dx.doi.org/10.1038/s41551-017-0178-6
http://dx.doi.org/ 10.1186/s13059-016-1012-2
http://dx.doi.org/ 10.1186/s13059-016-1012-2


I
Target recognition and

off-target prediction

27





2
Hybridization kinetics explains
CRISPR-Cas off-targeting rules

Due to their specificity, efficiency, and ease of programming, CRISPR associated
nucleases are popular tools for genome editing. On the genomic scale, these nu-
cleases still show considerable off-target activity though, posing a serious obsta-
cle to the development of therapies. Off-targeting is often minimized by choosing
especially high-specificity guide sequences, based on algorithms that codify em-
pirically determined off-targeting rules. A lack of mechanistic understanding
of these rules has so far necessitated their ad hoc implementation, likely con-
tributing to the limited precision of present algorithms. To understand the tar-
geting rules, we kinetically model the physics of guide-target hybrid formation.
Using only four parameters, our model elucidates the kinetic origin of the ex-
perimentally observed off-targeting rules, thereby rationalizing the results from
both binding and cleavage assays. We favorably compare our model to published
data from CRISPR-Cas9, CRISPR-Cpf1, CRISPR-Cascade, as well as the hu-
man Argonaute 2 system.

This chapter has been published as: M.Klein, B.Eslami-Mossallam, D.Gonzalez Arroyo and M.Depken. Hybridiza-
Ɵon kineƟcs explains CRISPR-Cas off-targeƟng rules. Cell Reports 22 1413–1423 (2018)
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2.1. Introduction

R NA guided nucleases (RGNs) target nucleic-acid sequences based on complementar-
ity to any guide RNA (gRNA) loaded into the complex. This versaƟlity, together with

the ability to design syntheƟc gRNA complementary to any target of choice, holds great
promise for gene ediƟng and gene silencing applicaƟons [? ? ]. Among the known RGNs,
the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) associated (Cas)
nucleases Cas9 [? ? ? ? ] and Cpf1 [? ] are of special interest, as they are comparaƟvely
simple single-subunit enzymes.

Cas nucleases originate from theCRISPR-Cas adapƟve immune system,whichmanyprokary-
otes use to fight off foreign geneƟc elements. In vivo, the Cas protein (complex) is pro-
grammed by loading RNA transcribed from a CRISPR locus in the host genome. The tran-
scribed sequence includes secƟons referred to as spacers, which were acquired during past
encounters with foreign geneƟc elements [? ]. Once programmed, the Cas nuclease is
able to target and degrade geneƟc elements with the same sequence as the stored spacer,
and so offers protecƟon against repeat invasions. An autoimmune response to sequences
stored at the CRISPR locus is prevented through the addiƟonal requirement of a protein-
mediated recogniƟon of a short protospacer-adjacentmoƟf (PAM) sequence present in the
foreign genome, but not incorporated into the CRISPR locus with the spacer [? ? ].

As viruses evolve in response to the selecƟve pressure induced by the CRISPR-Cas immune
system, the host is in turn under pressure to aƩack slightly mutated target sequences in
addiƟon to the target. It is therefore not surprising that Cas nucleases exhibit considerable
off-target acƟvity on sequences similar to the intended target [? ? ? ? ? ? ? ? ? ? ? ].
Such off-targeƟng presents a severe problem for therapeuƟcs, as DNA breaks introduced
at the wrong site could lead to loss-of-funcƟonmutaƟons in a well-funcƟoning gene, or the
improper repair of a disease causing gene [? ].

To shed light on the determinants of off-target acƟvity, a recent flurry of experiments has
probed the level of binding and/or cleavage onmutated target sequences: high-throughput
screens of large libraries of off-targets [? ? ? ? ? ? ], genome-wide idenƟficaƟon [? ? ?
? ? ? ? ? ? ], systemaƟc biochemical studies [? ? ? ? ? ? ? ? ? ], structural studies [?
? ? ? ? ? ? ], and single-molecule biophysical studies [? ? ? ? ? ? ? ] providing insights
into the mechanics of targeƟng. To date, a number of rather peculiar targeƟng rules have
been empirically established for Cas nucleases: (i) seed region: single mismatches within
a PAM proximal seed region can completely disrupt interference [? ? ], while PAM distal
mismatches have much less of an effect [? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ]; (ii)
mismatch spread: when mismatches are outside the seed region, off-targets with spread
out mismatches are targeted most strongly [? ? ? ? ]; (iii) DifferenƟal binding vs. differen-
Ɵal cleavage: binding is more tolerant to mismatches then cleavage [? ? ? ? ? ? ? ]. (iv)
specificity-efficiency decoupling: weakened protein-DNA interacƟons can improve target
selecƟvity while sƟll maintaining efficiency [? ? ? ? ]. Although these experimental obser-
vaƟons have already aided the development of strategies to improve the specificity of the
CRISPR-Cas9 system [? ? ? ? ? ], an understanding of the mechanisƟc origin behind target
selecƟvity is sƟll lacking, and our ability to predict off-targets remains limited [? ? ? ? ].
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Current off-target predicƟon algorithms are oŌen based on sequence alignment with the
target, and discard potenƟal targets if they have more than some (user-defined) threshold
number of mismatches [? ? ? ? ]. To recover themismatch-posiƟon dependence observed
as seed regions (rule (i)) and their cooperaƟvity (rule (ii)), such scoring schemes must be
supplemented with ad hoc rules that penalize seed and closely spaced mismatches more
than non-seed mismatches [? ? ]. To move beyond ad hoc scoring schemes, we here
use biophysical modelling to incorporate knowledge of the underlying targeƟng process.
With this aim, it would be aƩracƟve to assume that the binding dynamics has had Ɵme
to equilibrate before DNA degradaƟon [? ? ], as this would allow us to use simple bind-
ing/hybridizaƟon energeƟcs to predict cleavage acƟvity. Though aƩracƟve, this approach
has recently been quesƟoned by Bisaria et al. by noƟng that off-rates are generally not
found to be much faster than cleavage rates [? ], as would be required for establishing a
binding equilibrium before cleavage. In addiƟon, the authors show how abandoning the
equilibraƟon assumpƟon directly explains the specificity increase observedwith shortened
gRNA [? ].

Inspired by these observaƟons, we go beyond binding energeƟcs to build a biophysical
model capturing the kineƟcs of guide-target hybrid formaƟon. We show that the target-
ing rules (i)-(iv) can be seen as simple consequences of kineƟcs. The targeƟng rules are
captured by four parameters that pertain to transiƟon barriers between metastable states
of the nuclease-guide-target complex, and we translate these into four experimentally ob-
servable quanƟƟes: the length of the seed region, the width of the transiƟon region from
seed to non-seed, the maximum amount of cleavage on single-mismatch off-targets, and
the minimal distance between mismatches outside the seed region that allows for the
cleavage of targets withmulƟplemismatches. By tyingmicroscopic properƟes to biological
and technological funcƟon we here open the door to refined and raƟonal reengineering of
the CRISPR-Cas system to further its use in therapeuƟc applicaƟons.

Though we frame our consideraƟons in terms of the well-studied and technologically im-
portant Cas9, our approach applies to any RGN that displays a progressive matching be-
tween guide and target before cleavage (Figure ??A). To demonstrate the generality and
power of our approach, we present fits to targeƟng data from Argonaute 2 (hAgo2), as well
as type I, II and V CRISPR systems.

2.2. Results
At the start of target recogniƟon, Cas nucleases bind to dsDNA from soluƟon. The sub-
sequent recogniƟon of a PAM sequence triggers the DNA duplex to open up (Figure ??A),
exposing the PAM proximal nucleoƟdes to base pairing interacƟons with the guide [? ? ].
From here, an R-loop is formed, expanding the guide-target hybrid in the PAM distal direc-
Ɵon [? ? ? ? ? ? ]. If the target and guide reach (near-) full pairing, cleavage of the two
DNA strands is triggered [? ].
To establish the determinants of off- vs. on-target cleavage, we construct a biophysical
model of sequenƟal target recogniƟon in the unsaturated binding regime (see Methods).
Using this model, we can calculate the rate of cleavage for off-targets, given the guide. To
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Figure 2.1: KineƟc model of RGN target recogniƟon. (A) The RGN iniƟally binds its’ substrate at the PAM site,
from which it can either unbind with rate ፤b(ኺ), or iniƟate R-loop formaƟon with rate ፤f(ኺ). A parƟally formed
R-loop of length ፧ grows to length ፧ ዄ ኻ with rate ፤f(፧), or shrinks to length ፧ ዅ ኻ with rate ፤b(፧). Eventually,
the RGN will either cleave its substrate with rate ፤f(ፍ) or reject the substrate and unbind with rate ፤b(ፍ). In
the special case of a RGN that does not uƟlize PAM binding, it is assumed to bind straight into the iniƟal state of
R-loop formaƟon. (B) The transiƟon landscape of our minimal model. In the leŌ panel, we illustrate a PAM bound
enzyme kineƟcally biased toward R-loop formaƟon by different amounts (black, grey, and light grey curves). The
kineƟc bias for the canonical PAM shown as ጂPAM. In the middle panel we illustrate two kineƟc biases toward R-
loop extension (black and grey curves), with the larger bias indicated asጂC. In the same panel we further illustrate
two kineƟc biases against R-loop extension (grey and light grey curves) at mismatches (red verƟcal lines), with the
largest bias shown as ጂI. Once the complete R-loop is formed, the system is kineƟcally biased against cleavage
by ጂclv

C/I ዆ ጂC/I ∓ ጂclv, as dictated by the nature of the terminal base pairing. See Figure ?? for complete energy
landscapes.

incorporate the mechanics of hybrid formaƟon, we envision the changing extension of the
R-loop as a diffusion through a free-energy landscape, eventually ending in either unbind-
ing from, or degradaƟon of, the targeted sequence (Figure ??A-B). Our model is parame-
terized by the free-energy of transiƟon states surrounding the metastable states of PAM
binding and the different progressions of R-loop formaƟon (see Methods and secƟon ??).
When in a metastable state, the RGN will be biased towards transiƟoning to the neighbor-
ing state with the lowest intervening barrier. The difference in heights of the surrounding
barriers thus encodes the direcƟons in which the system is most likely to progress, and we
therefore refer to these differences as kineƟc biases (Figure ??C). The balance between
eventual unbinding or cleavage can be calculated with reference to kineƟc biases alone,
and visualized by a ‘transiƟon landscape’ tracing out the transiƟon states (Figure ??B, ??
and Methods). In such a landscape, the R-loop typically grows whenever the forward bar-
rier is lower than the backward barrier; that is, whenever the transiƟon landscape Ɵlts
downward. To facilitate the discussion of our exact results, we appropriate a rule-of-thumb
from the limit of large biases (Methods): aŌer binding the PAM, Cas9 is most likely to un-
bind before cleavage if the highest barrier to cleavage is greater than the highest barrier
to unbinding, and vice versa (Figure ??A-B).
Though we treat the general scenario in the Methods secƟon, we here further limit our-
selves to a minimal descripƟon with only four effecƟvemicroscopic parameters, pertaining
to the average kineƟc bias for: R-loop iniƟaƟon aŌer PAM binding (ΔPAM), R-loop extension
past a correctly matched (ΔC) and mismatched (ΔI) base pairs, and addiƟonal bias against
cleavage once the R-loop is fully formed (Δclv) (for definiƟons see Figure ??B and Meth-
ods). The parameter Δclv is chosen such that the forward barrier aŌer R-loop compleƟon
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is independent of the nature of the terminal base (Methods), seƫng the final bias against
cleavage to ΔclvC/I = ΔC/I ∓ Δclv (Figure ??B). Using this approach, we invesƟgate to what
extent our minimal model explains the four empirical targeƟng rules deduced from exper-
iments.

Figure 2.2: Rule (i) – seed region. (A) The relaƟve-to-wildtype cleavage probability of a target with a single
mismatch. Our model predicts a sigmoidal curve, with maximum off-target acƟvity ፩max, seed length ፧seed, and
width of the seed to non-seed transiƟon ∼ ኻ/ጂC. See figure ?? for parametric sweeps. (B) TransiƟon landscapes
illustraƟng that the placement of a single mismatch (fltr: before, exactly at, beyond the seed’s border) influences
the cleavage probability. (C) Increasing the kineƟc bias against cleavage can suppress cleavage of off-targets with
a PAM distal mismatch (compare right panel to right panel in (B)), while sƟll maintaining a high on-target acƟvity
(leŌ panel).

2.2.1. Rule (i): Seed region
Following PAM binding, base pairing between guide and target is aƩempted (Figure ??B;
middle panel). To establish if the above menƟoned dependence of the cleavage propen-
sity on the posiƟon of mismatches within the guide-target hybrid could originate from the
kineƟcs of the targeƟng process, we calculate the relaƟve cleavage probability on a se-
quence with a single mismatch at posiƟon , compared to the cleavage probability on the
target sequence. In secƟon ?? we show that this relaƟve cleavage probability is in general
sigmoidal

𝑝clv(𝑛) =
𝑝max

1 + exp [−(𝑛 − 𝑛seed)ΔC]
, (2.1)

with 𝑛seed giving the posiƟon where the cleavage probability is half that of its maximum
𝑝max (Figure ??A), and the biases are measured in units of 𝑘ፁ𝑇. We idenƟfy 𝑛seed as the
length of the kineƟc seed region, beyondwhich amismatchwill no longer strongly suppress
cleavage (Figure ??A). From EquaƟon ?? we see that the width of the transiƟon from seed
to non-seed region directly reports on the (average) correct-match bias (ΔC, see secƟon
??), becoming narrower as the bias increases (Figure ??A and Figure ??A).
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The emergence of a seed-like region can be understood fromconsidering the rule-of-thumb
that the fate of the enzyme is dictated by the largest barrier: when a mismatch is placed at
𝑛seed (Figure ??B; right panel), the highest barrier to cleavage matches the barrier towards
unbinding, guaranteeing a near equal probability for cleavage and unbinding. Placing the
mismatch closer to the PAM increases the highest barrier towards cleavage (compare high-
est node to first node in Figure ??B; leŌ panel), increasing the probability of rejecƟng such
off-targets. Moving the mismatch distally from the PAM will gradually lower the highest
barrier towards cleavage (Figure ??B; middle panel), increasing the probability of accept-
ing such off-targets. Though the exact form of the parameters of EquaƟon 1 are given in
the Supplemental InformaƟon, it is informaƟve to here give the kineƟc seed length in the
large-bias limit (Methods, ??),

𝑛seed ≈
ΔI − ΔPAM

ΔC
+ 1 (2.2)

From this we see that PAM bias and the base pairing biases all contribute to seƫng the
extent of the seed region (Figure ??A, ??B). Weakening the PAM or correct-match bias ex-
tends the seed region, while weakening the bias for incorrect matches shrinks it.
AŌer PAM recogniƟon and R-loop formaƟon, cleavage completes a successful targeƟng
process (Figure ??B; right panel). Tuning the final transiƟon state allows us to toggle be-
tween different regimes of minimal single-mutaƟon specificity. Targets with a PAM distal
mismatch get cleaved with near unity probability (𝑝max ≈ 1) only if all transiƟon states
towards cleavage (including the cleavage step) lie well below the transiƟon state to un-
binding (Figure ??C; leŌ panel, Figure ??C). For slow enough enzymaƟc acƟvity, the final
barrier towards cleavagemight not go far below the barrier to unbinding, limiƟng themax-
imal cleavage compared to the perfect match (𝑝max < 1)(Figure ??C; right panel). Conse-
quently, there can be a noƟceable effect on off-target acƟvity also when the mismatch is
outside the seed region (Figure ??A, ??C). Reversing this logic implies that a 𝑝max < 1 is
indicaƟve of a relaƟvely slow cleavage reacƟon.

2.2.2. Rule (ii): Mismatch spread
Considering more complex mismatch paƩerns, we start by addressing all possible dinu-
cleoƟde mismatches (Figure ??A and ??B). The overall cleavage and binding paƩerns ob-
tained strongly resemble experimental observaƟons [? ? ? ]. As expected, placing both
mismatches within the seed disrupts cleavage (Figure ??A). However, moving the mis-
matches outside the seed does not necessarily restore cleavage acƟvity.With the first mis-
match outside the seed region, a second mismatch only abolishes cleavage if it is situated
before 𝑛seed + 𝑛pair (Figure ??B), with
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Figure 2.3: Rule (ii) – mismatch spread. (A) The relaƟve-to-wildtype probability to cleave a target with two
mismatches for a systemwithጂPAM ዆ ኽ.኿፤ᐹፓ,ጂI ዆ ኾ፤ᐹፓ,ጂC ዆ ኻ፤ᐹፓ andጂclv ዆ ኻ፤ᐹፓ. The seed length ፧seed
is indicated with dashed lines, and ፧seedዄ፧pair is indicated with doƩed lines. (B) SchemaƟc of the probability to
cleave a target with two mismatches. The target is typically rejected in both blue regions and rejected in the red.
(C) Probability to cleave a target with a block of ፁ mismatches as a funcƟon of the locaƟon of the last mismatch.
Also see ??. (D) Spreading out blocked mismatches (leŌ panel) around their average posiƟon significantly lessens
the barrier to cleavage (right panel).

𝑛pair ≈
ΔI
ΔC
+ 1, (2.3)

in the large-bias limit (Methods and secƟon ??). The general form of the two-mismatch
seed region is shown in Figure 3B, where only off-targets in the red region lead to cleav-
age. In the dark blue region, off-targets are rejected due to the first mismatch, and in the
light blue region they are rejected due to the second mismatch. The single- and double-
mismatch rules can now be unified and generalized (see Figure ??D; right panel) into a
single rule for any number of mismatches: ”Off-targets will typically be rejected if any mis-
match, say the mth mismatch, is posiƟoned closer than 𝑛seed+(𝑚−1)𝑛pair to the PAM.”.
Note that for systems not requiring PAM recogniƟon,𝑛seed = 𝑛pair. The above rule also
captures the extreme case of a ‘block’ of consecuƟve mismatches, which has also been
invesƟgated experimentally [? ? ? ? ]. Placing such a block effecƟvely acts as placing a
single mismatch with the bias ΔI scaled by the size of the block (Figure ??C-D and Figure
??), giving a block-seed region of size 𝑛seed + (𝐵 − 1)𝑛pair. Hence, a block of mismatches
leads to less off-targeƟng compared to spread out mismatches (Figs 3C-D). Given the cor-
respondence of these predicƟons with literature, our model seems to automaƟcally and
correctly capture the non-mulƟplicaƟve cleavage suppression by mulƟple mismatches, in
sharp contrast to the ad hoc scoring schemes employed in current predicƟon algorithms [?
].
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2.2.3. Rule (iii): Differential binding vs. differential cleavage

Figure 2.4: Rule (iii) - DifferenƟal binding versus differenƟal cleavage. (A) TransiƟon landscapes illustraƟng the
difference between acƟve Cas9 (grey curves) and dCas9 (black curves) when encountering either the cognate site
(leŌ panel) or an off-target with amismatch within the seed (right panel). (B) The dissociaƟon constant for targets
with any combinaƟon of two mismatches for energeƟc biases ᎑PAM ዆ ዁.኿፤ᐹፓ,᎑C ዆ ኻ፤ᐹፓ and ᎑I ዆ ዂ፤ᐹፓ. The
endof the seed region is indicatedwith dashed lines. See figure ??for single-mismatchedoff-targets. (C) TransiƟon
landscape for an acƟve Cas9 bound to an off-target possessing a block of mismatches placed at the PAM distal
end. Even though cleavage is unlikely, unbinding takes a long Ɵme.

CatalyƟcally dead systems (for example dCas9 [? ] or Cascade without Cas3) bind
strongly to sites that their catalyƟcally acƟve counterparts do not cleave [? ? ? ? ? ? ]. In
order to explain this effect, we model inacƟve systems with a very large cleavage barrier
(gray in Figure ??B; right panel, Methods). In agreement with experimental observaƟons
[? ], our model predicts a dissociaƟon constant that is higher when a mismatch is placed
closer to the PAM (Figure ??B and ??).
In general, the gene ediƟng (Cas9) and gene silencing (dCas9) capabiliƟes should be seen
as two related but separate properƟes of the RGN. For example, the most stable config-
uraƟon of the RGN on the mismatched target shown in the right panel of Figure ??A is a
bound state with a parƟal R-loop (purple). However, a catalyƟc acƟve variant will most
likely eventually reject this off-target (gray) as the barrier to cleavage is higher than to un-
binding. Hence, even though cleavage sites are strong binders (Figure ??A; leŌ panel),
observing a long binding Ɵme on an off-target site should not be taken to imply that this
site will also display substanƟal off-target cleavage (Figure ??A; right panel).
AcƟve Cas9 variants also strongly bind to sites they are incapable of cleaving, especially
those containing mulƟple PAM-distal mismatches [? ? ]. Such a series of mismatches
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induces a large barrier that opposes, and thereby likely prevents, cleavage (Figure ??C).
Although we are yet to extract temporal informaƟon from our model, it is clear that the
state right before the first mismatch (purple) might be stably bound over experimental
Ɵmescales.

Figure 2.5: Rule (iv) – specificity-efficiency decoupling. (A) The cleavage probability on a fully cognate target
but with a mismatched PAM, compared to one with the correct PAM, as a funcƟon of the average and difference
in the kineƟc bias of the correct and incorrect PAM. Independent of the sequence following both PAMs, one can
idenƟfy three regimes (Supplemental InformaƟon). Only in regime a is the RGN’s specificity improved through a
decrease in the average PAM bias toward R-loop iniƟaƟon. (B) On-target efficiency for the target with the correct
PAM. In regime a, the RGN’s efficiency is not compromised, allowing for simultaneous maintenance of on-target
efficiency and specificity. (C) The cognate protospacer flanked by either a canonical PAM (black) or incorrect PAM
sequence (grey) is bound by aWT (top panel) or engineered RGN (panel). (D)Amatched/mismatched protospacer
(black/grey) bound by wildtype/engineered RGN (top/boƩom panel).

2.2.4. Rule (iv): Specificity-efficiency decoupling
R-loop formaƟon is preceded by PAM recogniƟon. Although PAM mismatches oŌen com-
pletely abolish interacƟons with the target [? ? ? ], binding to (and interference with)
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targets flanked by non-canonical PAM sequences has been observed [? ]. Since PAM mis-
matches will shiŌ the enƟre free-energy landscape upwards from the bound PAM state
onwards (Figure ??B; leŌ panel), these always increase the highest barrier to cleavage,
thereby reducing the cleavage efficiency on any sequence. For increased specificity, we
thus need the cleavage efficiency for the off-targets to be reduced more than for the tar-
get itself.
Protein reengineering approaches most easily affect the overall strength of PAM inter-
acƟons, influencing the kineƟc bias for both the correct PAM (ΔPAM) and incorrect PAM
(ΔᖣPAM)). In Figure ??A we show the relaƟve cleavage efficiency between protospacers
flaked by incorrect and correct PAMs, and in Figure ??B we show the cleavage efficiency
with the correct PAM — both as funcƟons of the average kineƟc bias ((ΔPAM + ΔᖣPAM)/2)
and the kineƟc bias difference (ΔPAM − ΔᖣPAM). As long as the system operates in region A
(Figure ??A), it is possible to increase the specificity by lowering the average kineƟc bias
toward R-loop formaƟon without changing the kineƟc-bias difference (secƟon ??). Out-
side this region, the system either does not discriminate between PAMs (region C) or is
insensiƟve to the average kineƟc bias (region B). InteresƟngly, it is only in region B that
lowering the average bias also leads to a lower on-target efficiency (Figure ??B), and con-
sequently the wild type (wt) nuclease can only be improved if brought into region A, where
it is possible to engineer specificity increases with limited costs in the on-target efficiency.
The transiƟon-state diagrams shown in the top panel of Figure ??C show a situaƟon where
the barrier to cleavage (right most node) is substanƟally lower than the barrier to unbind-
ing (leŌmost node) for two different PAM biases, both resulƟng in near unit-probability to
cleave , and corresponding to region C in Figure ??A. Reengineering the nuclease to have
overall weaker PAM binding (Figure ??C, boƩom panel) brings the system into region B,
where the cleavage probability for the correct PAM (black) remains close to unity, while
the probability of cleaving with the incorrect PAM (gray) is drasƟcally lowered. The above
scenariomight explain how PAMmutant Cas9s are able to outperform their wildtype coun-
terparts [? ? ] on specificity without significant loss in efficiency.

Another approach to gain specificity is to weaken the protein-DNA interacƟons effecƟng
the bias for R-loop extension [? ? ]. In Figure 5Dwe show how engineering the PAM-bound
nuclease in this way, inducing a lower gain for correct base pairing, can render previously
cleaved off-targets (gray line in top panel) rejected (gray line in boƩom panel). We further
see how we can retain on-target specificity if the highest transiƟon state towards cleavage
(rightmost node of black line) remains substanƟally lower than the transiƟon state to un-
binding (leŌmost node of black line). The above scenario might explain howmutant Cas9s
could have an extended seed, while having negligible reducƟon in on-target cleavage ac-
Ɵvity [? ? ].

2.2.5. Comparison to experimental data for a broad class of RNA
guided nucleases

To test our model, we acquired published datasets from different RGN systems, and fiƩed
EquaƟon ?? to singly mismatched targets and blocks of mismatches. The fiƩed sigmoid has
only three effecƟve fit parameters (𝑝max orKD,max, 𝑛seed and ΔC), so we can unfortunately
not get an esƟmate for all microscopic parameters from the single-mismatch datasets (sec-
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Figure 2.6: Comparison to experimental data. Fit of sigmoid (equaƟon ??) to experimental data from: (A)
spCas9 [? ]. (B) LbCpf1 [? ]. (C) AsCpf1 [? ]. (D) Human Argonaute 2 [? ]. (E) E. coli Cascade complex [? ]. Values
reported in (A)-(D) correspond to the median of 1000 bootstrap replicates, and the confidence intervals in the
text correspond to 68%. See Figure ?? for addiƟonal fits.

Ɵons ?? and ??)—for this, further experiments are required, as outlined below. Details of
the fiƫng procedure and addiƟonal fits can be found in secƟon ??.

Perhaps the best characterized RGN system is the Type-II CRISPR associated Streptococcus
Pyogenes Cas9 (spCas9). Among the systemswe esƟmate parameters for, the dataset from
Anderson et al. [? ] traces out the sigmoidal trend parƟcularly well. For this data set we fit
out a kineƟc seed of about 11.3 [11.0,11.4] nt (68% confidence interval between 11.0 and
11.4), and an average bias per correct base pair of about ΔC = 1.70[1.15, 4.0]𝑘ፁ𝑇 (Figure
??A). This posiƟve bias indicates that associaƟon with the RGN stabilizes the hybrid, which
is in line with recent studies demonstraƟng that the protein has a strong contribuƟon to
the energeƟcs of the resulƟng bound complex [? ? ? ]. The relaƟve cleavage probability
levels-off around 𝑝max = 0.74[0.72, 0.77], indicaƟng that spCas9 retains some specificity
even against errors that are outside the seed. We performed addiƟonal fits using a second
target site from the dataset of Anderson et al. and data obtained from PaƩanayak et al. [?
], which produced results that do not significantly differ (Figures S5A-C).

Recently, the type V CRISPR associated enzyme Cpf1 has been characterized as another
single-subunit RGN [? ]. KleinsƟver et al. [? ] performed in vivo (human cells) cleavage
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assays using two different variants named LbCpf1 (Figure ??B) and AsCpf1 (Figure ??C).
Both variants exhibit quanƟtaƟvely similar off-targeƟng, both with seed lengths (𝑛seed ≈
18.9[18.5, 19.2] nt for LbCpf1 vs. 19.1 [18.7,19.3] nt for AsCpf1) and maximum off-target
acƟvity (𝑝max ≈ 0.84[0.66, 1.0] nt for LbCpf1 vs. 0.83[0.71,1.0] for AsCpf1). Compared to
spCas9, the Cpf1s are much more specific as the seed region is significantly larger.

Single-molecule FRET experiments done with hAgo2 [? ] uƟlized targets with two con-
secuƟve mismatches. Given that hybrid formaƟon is not preceded by PAM recogniƟon,
and that consecuƟve mismatches impose a combined penalty (Figures 3C-D), the esƟ-
mated half-saturaƟon point is approximately twice the kineƟc seed length for a single mis-
match ( 𝑛seed ≈ 10 [9.5,9.9] nt). The hAgo2 data thus suggests a similar seed length as
that of spCas9 (Figure ??D), consistent with the observaƟon that hAgo2 and spCas9 dis-
play structural similariƟes within their respecƟve seed regions [? ]. Our fits further re-
veal that hAgo2 likely exhibits a substanƟally lower gain per correctly formed base pair
(ΔC ≈ 0.77[0.66, 0.92]𝑘ፁ𝑇).

Unlike the aforemenƟoned RGNs, the Type I CRISPR uses a mulƟ-subunit protein complex,
termed Cascade, to target invaders [? ]. Semenova et al. [? ] measured the dissocia-
Ɵon constant in vitro of the E. Coli subtype I-E Cascade. Fiƫng their data, we find that
mismatches within the first 9 nt of the guide lead to rapid rejecƟon (Figure ??E). Interest-
ingly, the energeƟc gain for a match again suggests a large contribuƟon of the protein to
the overall stability (energeƟc bias 𝛿C ≈ 3.7𝑘ፁ𝑇). Structurally, subunits of the Cascade
complex bind to nucleoƟdes 6, 12, 18, 24 and 30 of the guide [? ]. To model this property
we assume that incorporaƟng matches or mismatches at the Cascade-guide binding posi-
Ɵons does not affect affinity. Including this effect mainly reduced the esƟmated energeƟc
gain for matches (𝛿C ≈ 1.9𝑘ፁ𝑇, secƟon ?? and Figure ??D), a value more in line to those
obtained for the other CRISPR systems.

2.3. Discussion
We have presented a general descripƟon of target recogniƟon by RGNs with a progres-
sive matching between guide and target (Figure ??A), applicable to both CRISPR and Arg-
onaute systems. In its simplest form, our model contains only two parameters to describe
the R-loop formaƟon process: an average kineƟc bias towards incorporaƟon beyond a
match (ΔC) and an average kineƟc bias against extending the R-loop beyond a mismatch
(ΔI) (Figure ??B; middle panel). Despite the simplificaƟons going into this minimal model,
we can qualitaƟvely understand the targeƟng rules for these RGNs as resulƟng from kinet-
ics, as illustrated graphically for: seed region (Figure ??B), mismatch spread (Figure ??D),
the poor match between cleavage propensity and binding propensity (Figure ??A) and the
specificity-efficiency decoupling (Figure ??C-D ). Based on our model we have been able
to establish a general targeƟng rule: ”Off-targets will typically be rejected if any mismatch,
say the mth mismatch, is posiƟoned closer than 𝑛seed + (𝑚 − 1)𝑛pair to the PAM.”

Although Figure 6 shows that our model can already describe experimental data from var-
ious RGNs, the number of microscopic parameters in the physical model (ΔPAM,ΔC ,ΔI and
Δclv, Figure 1B) exceeds the number of fit parameters available from single-mismatch ex-
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periments (ΔC,𝑝max, and 𝑛seed). It is therefore not possible to determine all themicroscopic
parameters from single-mismatch experiments alone. However, Figure 3B shows that with
two mismatches, we could also fit out 𝑛pair, and so determine all the microscopic param-
eters. It should be possible to directly extract all four microscopic parameters once such
extended datasets become available.

One should recognize that ourminimalmodel does not capture all the physics of the target-
ing process. Nucleic-acid interacƟons are explicitly sequence dependent, RGNs are known
to undergo conformaƟonal changes prior to cleavage [? ? ? ], and the ΔC we fit out in
Figure 6 technically only reports the matching-bias at the end of the seed, allowing for
variable biases along the R-loop. Although these are all topics that need to be explored for
future improved quanƟtaƟve predicƟons, such extensions are not needed to explain the
observed targeƟng rules, and will not qualitaƟvely alter the trends predicted by our model.
An excepƟon might be the data from Cpf1 (Figure ??B-C), since it shows an increased tol-
erance to mismatches of nucleoƟdes 1,2,8 and 9 compared to our minimal model, with a
second independent study showing the same behavior [? ]. Similarly, deviaƟons from the
sigmoidal trend are observed for Cascade (Figure ??E). Such features could be explained
either through a sequence or posiƟon dependence of the kineƟc biases.

In conclusion, our model is capable of explaining the observed off-targeƟng rules of CRISPR
and Argonaute systems in simple kineƟc terms. AŌer having established the general uƟlity
of this approach, the next step will be to move beyond our minimal model and gradually
allow for conformaƟonal control and sequence effects by leƫng our parameters depend
on the nature of matches/mismatches as well as their posiƟons. Fiƫng such a generalized
model against training data would likely improve on present target predicƟon algorithms
by limiƟng overfiƫng, as it captures the basic targeƟng rules deduced from experiments
while using only a minimal set of physically meaningful parameters.

2.4. Methods
2.4.1. A generalmodel for RGNswith progressive R-loop formation

followed by cleavage
Given the observed dependence of cleavage acƟvity on Cas9 concentraƟon [? ? ? ? ? ], we
here limit ourselves to the regime where nuclease concentraƟons are low enough that all
binding sites are unsaturated. The unsaturated regime is also the regime with the highest
specificity, and should therefore be of parƟcular interest in gene-ediƟng applicaƟons.
We define the cleavage efficiency 𝑃clv(𝑠|𝑔) as the fracƟon of binding events to sequence
𝑠 that result in cleavage, given the RGN is loaded with guide sequence 𝑔. If we in the un-
saturated regime assume the binding rate to be independent of sequence, we can express
the relaƟve rate of non-target vs. target cleavage as

𝑝clv(𝑠|𝑔) =
𝑃clv(𝑠|𝑔)
𝑃clv(𝑔|𝑔)

(2.4)

This relaƟve efficiency is a direct measure of specificity, approaching unity for non-specific
targeƟng (𝑃clv(𝑠|𝑔) ≈ 𝑃clv(𝑔|𝑔)) and zero for specific targeƟng (𝑃clv(𝑠|𝑔) ≪ 𝑃clv(𝑔|𝑔)).
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In our model, we denote the PAM bound state as and the subsequent R-loop states by
the number of base pairs that are formed in the hybrid. Each of the states 𝑛 = 1, ..., 𝑁 are
taken to transiƟon to state 𝑛−1/𝑛 + 1with backward/forward hopping rate 𝑘b(𝑛)/𝑘f(𝑛)
(Figure ??A). The raƟo between forward and backward rates sets the relaƟve probability of
going forward and backward from any state, and can be parametrized in terms of Δ(𝑛), the
difference in the free-energy barrier between going backwards and forwards from state 𝑛
(Figure ??A),

𝑘f(𝑛)
𝑘b(𝑛)

= 𝑒ጂ(፧). (2.5)

Here we measure energy in units of 𝑘ፁ𝑇 for notaƟonal convenience, and we will refer to
Δ(𝑛) as the bias toward cleavage. Themodel (Figure ??A) is known as a birth-death process
[? ], and the cleavage efficiency is given by the expression (secƟon ??),

𝑃clv(𝑠|𝑔) =
1

1 + ∑ፍ፧዆ኺ 𝑒ዅጂፓ(፧)
, Δ𝑇(𝑛) =

፧

∑
፦዆ኺ

Δ(𝑚). (2.6)

Here Δ𝑇(𝑛) represents the free-energy difference between the transiƟon-state to soluƟon
and the forward transiƟon state from posiƟon 𝑛 (Figure ??A-C). For systems like hAgo2,
there is no iniƟal PAM binding [? ? ], and the sums in EquaƟon ?? should omit the PAM
state (𝑛,𝑚 = 0).

2.4.2. Building intuition by using the transition landscape (large
bias limit)

Though we will use the exact results of EquaƟon ?? for all calculaƟons, it is useful to build
intuiƟon for the system by considering the case of large biases. In this limit, the term (say
𝑛 = 𝑛∗) with the highest transiƟon-state dominates the sum in EquaƟons ?? and ?? (Figure
??A-B), and the cleavage efficiency can be approximated as

𝑃clv(𝑠|𝑔) ≈
1

1 + 𝑒ዅጂፓ(፧∗) (2.7)

Based on this we deduce the rule-of-thumb that cleavage dominates (𝑃clv > 1/2) if the
first state of the transiƟon landscape is the highest (Δ𝑇(𝑛∗) > 0) (Figure ??A). Conversely,
a potenƟal target is likely rejected (𝑃clv < 1/2) if any of the other transiƟon states lies
above the first (Δ𝑇(𝑛∗) < 0) (Figure ??B).

2.4.3. A minimal model for RGNs with progressive R-loop forma-
tion followed by cleavage

Given that the defining feature of RGNs is their ability to target any sequence, we expect
the major targeƟng mechanisms to depend more strongly on mismatch posiƟon than on
the precise nature of the mismatches. With this in mind, we consider a sequence inde-
pendent model with the aim of finding a descripƟon that captures the gross, sequence
averaged, features with a minimal number of parameters.
Focusing first on how PAM binding effects the system (Figure ??1; leŌ panel), we see that
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Δ(0) = ΔPAM controls the kineƟc bias between iniƟaƟng R-loop formaƟon and unbinding.
A canonical PAM (black) promotes R-loop iniƟaƟon, while a non-canonical PAM lessens
(darker gray) or reverses (lighter gray) the bias towards R-loop formaƟon. Note that PAM
independent systems omit this iniƟal step.
Turning to the bias of R-loop progression, we represent the guide-target hybrid as a se-
quence of matches (C, correct base pairing) and mismatches (I, incorrect base pairing).
Defining the average kineƟc bias towards/against extending theR-loopbyone correct/incorrect
base pair as ΔC/ΔI (Figure ??B; middle panel), we take Δ(𝑛) = ΔC or Δ(𝑛) = −ΔI depend-
ing on if the base pairing is correct or incorrect (secƟon ??). In themiddle panel of Figure 1B
we show a transiƟon landscape with moderate gains for correct base pairings and moder-
ate costs for incorrect base pairings (dark gray). The black transiƟon landscape corresponds
to an increased gain for matches, while the light gray corresponds to an increased penalty
for mismatches.
Lastly, considering the bias between cleavage and unwinding of the R-loop, we assume that
an incorrect base-pair at the terminal posiƟon adds the same change in bias as it did in the
interior of the R-loop. Therefore, introducing the cleavage bias Δclv, we take Δ(𝑁) = ΔclvC
for a correct match and Δ(𝑁) = −ΔclvI for amismatch, with ΔclvC/I = ΔC/I∓Δclv as bias against
cleavage from the fully hybridized state (Figure ??B; right panel). In the right panel of Fig-
ure ??B, we show examples where the terminal bias ΔclvC/I corresponds to a terminal match
(black), terminal mismatch (dark gray), and for a catalyƟcally dead nuclease (light gray).

2.4.4. Dissociation constant for catalytically dead nucleases
Apart from examining cleavage propensity, many experiments have focused on the binding
of catalyƟcally dead Cas9 (dCas9) or other catalyƟcally dead RGNs [? ? ? ? ? ? ? ].
To be able to relate pure binding experiments to cleavage experiments, we also calculate
the dissociaƟon constant KD for our minimal model when describing a catalyƟcally dead
system (Δclv ≈ ∞) (Figure ??D) through

𝑃bound =
[RGN]

[RGN] + KD
(2.8)

Here 𝑃bound equals the probability to bind a substrate in any of the (𝑁) possible R-loop
configuraƟons and follows from EquaƟon ?? (see secƟon ??). Further, [RGN] denotes
the concentraƟon of effector complex. Differences in stability of the bound states now
parameterize our model (Fig S1D).
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2.7. Supplemental Information
2.7.1. A general kinetic model for target recognition
In Figure ??A we illustrate the states of our model. The RGN is described as either being
unbound, bound to the PAM (in case of CRISPR systems), having formed an R-loop of length
𝑛 = 1,… ,𝑁 or having cleaved its target substrate. Let us label these states as 𝑖 ∈ [−1,𝑁+
1], with 𝑁 being the total length of the guide (target) sequence. Each state 𝑖 ∈ [0, 𝑁] has
rates 𝑘f(𝑖) and 𝑘b(𝑖) associated with it for transiƟoning to 𝑖 + 1 and 𝑖 − 1 respecƟvely.

The cleavage probability
The probability to cleave a target site once the substrate is bound (𝑃clv) is equivalent to the
fixaƟon probability of a Birth-Death process with absorbing states being the unbound and
post-cleavage states [? ]. As the derivaƟon is fairly straight forward, we give it here for
completeness. When starƟng with an R-loop of length 𝑛 − 1, we calculate the probability
to cleave 𝑃clv,፧ዅኻ before reducing the R-loop to a length of 𝑛 − 2. CounƟng all paths that
take you from 𝑛 − 1 to 𝑁 + 1 we can construct a recursion relaƟon for 𝑃clv,፧,

𝑃clv,፧ =
ጼ

∑
፦዆ኺ

( 𝑘f(𝑛)
𝑘b(𝑛 − 1) + 𝑘f(𝑛)

(1 − 𝑃clv,፧ዄኻ))
፦ 𝑘f(𝑛)
𝑘b(𝑛) + 𝑘f(𝑛)

𝑃clv,፧ዄኻ

= 𝑃clv,፧ዄኻ
𝛾፧ + 𝑃clv,፧ዄኻ

, 𝛾፧ =
𝑘b(𝑛)
𝑘f(𝑛)

,

or equivalently
1
𝑃clv,፧

= 1 + 𝛾፧
𝑃clv,፧ዄኻ

. (S2.1)

The boundary probability 𝑃clv,ፍ, represenƟng the probability to cleave staring with a full
R-loop and without reducing the R-loop’s length, is given by a simple spliƫng probability

𝑃clv,ፍ =
𝑘f(𝑁)

𝑘f(𝑁) + 𝑘b(𝑁)
= 1
1 + 𝛾ፍ

. (S2.2)



2.7. Supplemental Information

2

45

Using equaƟons ?? and ?? we have

1
𝑃clv,ኺ

= 1+𝛾ኺ
1
𝑃clv,ኻ

= 1+𝛾ኺ+𝛾ኺ𝛾ኻ
1
𝑃clv,ኼ

= 1+𝛾ኺ+𝛾ኺ𝛾ኻ+𝛾ኺ𝛾ኻ𝛾ኼ
1
𝑃clv,ኽ

= … = 1+
ፍ

∑
፧዆ኺ

፧

∏
።዆ኺ

𝛾። ,

from which it follows that

𝑃clv ≡ 𝑃clv,ኺ =
1

1 +
ፍ
∑
፧዆ኺ

፧
∏
።዆ኺ
𝛾።
. (S2.3)

The transition landscape
We assign a free-energy 𝐹። to each metastable state 𝑖 ∈ [0, 𝑁], and the transiƟon state
energy 𝑇። to the highest free energy point on the reacƟon path from 𝑖 to 𝑖 + 1, for 𝑖 ∈
[−1,𝑁]. Introducing the aƩempt rate 𝑘ኺ we write the associated forward and backward
rates as follows (all energies are measured in units of the thermal energy)

𝑘f(𝑖) = 𝑘ኺ exp(−(𝑇።−𝐹።)), 𝑘b(𝑖) = 𝑘ኺ exp(−(𝑇።ዅኻ−𝐹።)) ⇒ 𝛾። = exp(−Δ።), Δ። = 𝑇።ዅኻ−𝑇። .
(S2.4)

In terms of transiƟon-state free energies we can write ?? as

𝑃clv =
1

1 + ∑ፍ፧዆ኺ exp(−∑
፧
።዆ኺ Δ።)

≡ 1
1 + ∑ፍ፧዆ኺ exp(−Δ𝑇፧)

, Δ𝑇፧ =
፧

∑
።዆ኺ
Δ። . (S2.5)

From the above it is clear that the cleavage probability depends only on the transiƟon state
energies, and not on the free energies of the metastable states. If we assume there to be
one dominant minimal bias, say for 𝑛 = 𝑛∗, then this can be approximated as

𝑃clv ≈
1

1 + exp(−Δ𝑇፧∗)
. (S2.6)

which we will refer to as the large-bias limit.

2.7.2. A minimal kinetic model for target recognition
To understand what consƟtutes the targeƟng principles of RGNs, we introduce a simplified
model where: for the PAM state (𝑖 = 0) we have Δኺ = ΔPAM; for a parƟal R-loop (𝑖 ∈
[1, 𝑁−1]) we haveΔ። = ΔC if the 𝑖:th base in the R-loop is correctlymatched, andΔ። = −ΔI
if mismatched; for a completed R-loop (𝑖 = 𝑁) we have Δፍ = ΔC−Δclv if the terminal base
is mismatched, and Δፍ = −ΔI − Δclv if mismatched. An R-loop in which 𝑛 base pairs are
incorporated, out of which 𝑛C(𝑛) are forming correctWatson-Crick pairs, is then described
by

Δ𝑇፧ = ΔPAM + 𝑛C(𝑛)ΔC − (𝑛 − 𝑛C(𝑛))ΔI − 𝛿፧,ፍΔclv, 𝑛 = 0,… ,𝑁 (S2.7)

where 𝛿፧,ፍ represents the Kronecker delta: 𝛿፧,ፍ = 1 if 𝑛 = 𝑁 and 𝛿፧,ፍ = 0 otherwise.
For PAM independent systems, we instead use

Δ𝑇፧ = 𝑛C(𝑛)ΔC − (𝑛 − 𝑛C(𝑛))ΔI − 𝛿፧,ፍΔclv, 𝑛 = 1,… ,𝑁.
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The emergence of a seed region
Here we show that when comparing off-targets with a single mismatch to the cognate
sequence, the relaƟve cleavage probability is sigmoidal, irrespecƟve of the values of the
model parameters. Let there be a single mismatch at posiƟon 𝑛MM, giving

𝑛C(𝑛) = {
0, 𝑛 < 𝑛MM
1, 𝑛 ≥ 𝑛MM

.

Using equaƟon ?? it is then straight forward to show that

𝑝clv(𝑛MM) ≡
𝑃clv(single error at 𝑛MM)

𝑃clv(no error)
= 𝑝max

1 + 𝑒ዅጂC(፧MMዅ፧seed) , (S2.8)

where

𝑝max =
(1 − 𝑒ዅጂC)𝑒ጂPAM(1 + 𝑒ዅጂፓonᑅ ) + 1 − 𝑒ዅጂፑonᑅ
(1 − 𝑒ዅጂC)𝑒ጂPAM(1 + 𝑒ዅጂፓtmᑅ ) + 1 − 𝑒ዅጂፑtmᑅ

𝑛seed =
1
ΔC

ln [ 𝑒ጂIዄጂC − 1
(1 − 𝑒ዅጂC)𝑒ጂPAM(1 + 𝑒ዅጂፓtmᑅ ) + 1 − 𝑒ዅጂፑtmᑅ

] ,
(S2.9)

and we have introduced the R-loop compleƟon bias with a cognate and terminal-mismatch
target respecƟvely

Δ𝑅onፍ = 𝑁ΔC, Δ𝑅tmፍ = (𝑁 − 1)ΔC − ΔI = Δ𝑅onፍ − (ΔC + ΔI)

as well as the total bias toward cleavage of the on-target and on off-target with terminal-
mismatch target respecƟvely

Δ𝑇onፍ = Δ𝑅onፍ + ΔPAM − Δclv, Δ𝑇tmፍ = Δ𝑅tmፍ + ΔPAM − Δclv = Δ𝑇onፍ − (ΔC + ΔI).

Here 𝑝max represents an upper bound on the achievable relaƟve cleavage rate, and 𝑛seed
marks the transiƟon from a region with no cleavage (the seed region) to a region with
maximal cleavage. Note that our sigmoid funcƟon has three parameters ( 𝑝max, 𝑛seed and
ΔC), which is one less than then number of microscopic parameters (ΔPAM, ΔC, ΔI, and Δclv).
Hence, we will not be able to fit out all four microscopic parameters relying on single-
mismatch-data alone. InteresƟngly, the microscopic parameter ΔC also sets the with of the
transiƟon region from seed to non-seed. To get an esƟmate of the width of the transiƟon
region, we linearize 𝑝clv around the point of most rapid increase (𝑛MM = 𝑛seed)

𝑝clv(𝑛MM) ≈
1
2𝑝max +

1
4𝑝maxΔC(𝑛MM − 𝑛seed). (S2.10)

This funcƟon transiƟons from no relaƟve cleavage to maximal relaƟve cleavage over the
distance 𝑤 = 4/ΔC, giving us an esƟmate of the width of the transiƟon region.

When dealing with a stretch of mismatches, the relaƟve cleavage probability sƟll fol-
lows the sigmoidal form of equaƟon ??, but with modified 𝑝max and 𝑛seed.
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The physiological limit and the large-bias limit
For the correct PAM we expect there to be a considerable PAM bias, and assuming at least
a moderate bias for R-loop extension over correct basepairs, we should be able to take
(1 − 𝑒ዅጂC)𝑒ጂPAM ≫ 1 in equaƟon ??. Further, we expect the overall bias on an on-target
to be strongly toward cleavage (Δ𝑇onፍ ≫ 1), as well as a large change in total bias when
comparing a correctly and incorrectly matched base pair (ΔI + ΔC ≫ 1). With these as-
sumpƟons equaƟon ?? becomes

𝑝max ≈
1

1 + 𝑒ዅጂፓtmᑅ

𝑛seed ≈
ΔI + ΔC − ΔPAM

ΔC
+ ln𝑝max − ln(1 − 𝑒ዅጂC)

ΔC
≈ ΔI − ΔPAM

ΔC
+ 1,

(S2.11)

From thiswe see that themaximumcleavage probability is dictated by the total free-energy
bias toward cleavage. The first term aŌer the first approximate equality in the equaƟon for
𝑛seed has a simple interpretaƟon as the point where the barrier to unbinding matches the
barrier toward cleavage. For the physiological cases examined (see Figure ?? and ??), the
values of 𝑝max are between 0.7 and 1, and ΔC values are order 1 as well. In this limit the
second term adds a correcƟon term that is only a small fracƟon of a full nucleoƟde posiƟon
and can therefore be neglected, as done in the last step in the above equaƟon. EquaƟon
?? can also be arrived at through taking the large-bias limit menƟoned above.

Generalized targeting rule
As we do not have the experimental data to fit mulƟple mismatches, we do not here per-
form the exact calculaƟon of the cleavage probability for mulƟple mismatches. Instead
we start from the fact that the physiological limit of a single mismatch was well described
by the large-bias limit, and so consider also mulƟple mismatches in the large bias limit. If
the first mismatch is outside the seed, then the second mismatch (siƫng say at 𝑛MM2) will
dominate and balance cleavage and dissociaƟon when

1
2 ≈ 𝑃clv(𝑛MM2) ≈

1
1 + exp(−Δ𝑇፧MM2

) ⇒ Δ𝑇፧MM2
≈ 0

From equaƟon ?? we have (assuming that 𝑛MM2 < 𝑁),

0 ≈ Δ𝑇፧MM2
= ΔPAM−2ΔI+(𝑛MM2−2)ΔC ⇒ 𝑛MM2 ≈ 𝑛seed+𝑛pair, 𝑛pair ≡

ΔI
ΔC
+1,

which shows that the second mismatch balances cleavage and unbinding when situated a
further distance 𝑛pair out from 𝑛seed. For each addiƟonal mismatch added, it is easy to
show that the balance point shiŌs a further 𝑛pair bases out.

Effect of PAM recognition on target selectivity
Using equaƟon ?? we can asses how much protecƟon a parƟcular non-canonical PAM site
offers against cleaving the host’s own genome. Leƫng the canonical PAM have ΔPAM and
the non-canonical PAM have ΔᖣPAM, we can write the relaƟve cleavage probability

𝑝PAMclv =
1 + 𝑒ዅጂPAM [1 + ∑ፍ፧዆ኻ 𝑒ዅጂፑᑟ]

1 + 𝑒ዅጂᖤPAM [1 + ∑ፍ፧዆ኻ 𝑒ዅጂፑᑟ]
= 1 + 𝑒ዅ(ጂPAMዅጂcritPAM)

1 + 𝑒ዅ(ጂᖤPAMዅጂcritPAM)
(S2.12)
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where we renamed Δ𝑅፧ = 𝑇፧ − 𝑇ኻ and introduced the criƟcal PAM bias ΔcritPAM

ΔcritPAM = ln [1 +
ፍ

∑
፧዆ኻ

𝑒ዅጂፑᑟ] . (S2.13)

For the case of well separated PAM biases (ΔPAM > ΔᖣPAM), the cleavage probability has
three asymptoƟc regimes

𝑝PAMclv ∼ {
1, ΔcritPAM ≪ ΔᖣPAM ≪ ΔPAM, Region c) in Figure ??A-B
exp [−(ΔcritPAM − ΔᖣPAM)] , ΔᖣPAM ≪ ΔcritPAM ≪ ΔPAM, Region a) in Figure ??A-B
exp [−(ΔPAM − ΔᖣPAM)] , ΔᖣPAM ≪ ΔPAM ≪ ΔcritPAM, Region b) in Figure ??A-B.

A minimal energetic model for target recognition
Now consider a extension of our minimal model where the transiƟon between metastable
state has energy biases (𝛿PAM, 𝛿C, 𝛿I) in direct analogy with the kineƟc biases (see equaƟon
??)

Δ𝐹፧ = 𝐹ዅኻ − 𝐹፧ = 𝛿PAM + 𝑛ፂ(𝑛)𝛿C − (𝑛 − 𝑛ፂ(𝑛))𝛿I. (S2.14)

Hence, all energies are measured with respect to the soluƟon’s free-energy.

2.7.3. Dissociation constant for catalytically inactive systems
Experiments on inacƟvated RGNs usually probe the fracƟon of sites bound at some late
experimental Ɵme. Assuming the system has had enough Ɵme to equilibrate one typically
calculates the dissociaƟon constant, the concentraƟon atwhich the bound fracƟon reaches
half of its maximum value (second equality in EquaƟon ??). This is done in analogy to a
more simple two-state model that only has a bound state and an unbound state. To make
this analogy within our model, we consider all molecules that are not in soluƟon to be
bound.

𝑃ub = 𝑃ዅኻ, 𝑃፛ =
ፍ

∑
፧዆ኺ

𝑃፧ (S2.15)

The binding rate from soluƟon onto any sequence should be proporƟonal to the concentra-
Ɵon of RGNmolecules. We set our 𝛿PAM within the context of the minimal model EquaƟon
?? at some reference concentraƟon, at which we also calculate all free energies (Δ𝐹’s).
Furthermore, in equilibrium Boltzmann staƟsƟcs is valid:

Δ�̃�፧([RGN]) = Δ𝐹፧ − log([RGN]), 𝑃፧ ∝ 𝑒ዅጂፅ̃ᑟ (S2.16)

Taken together, the equilibrium fracƟon and dissociaƟon constant are given by

𝑃b([RGN]) =
[RGN]

ፍ
∑
፧዆ኺ

exp [−Δ𝐹፧]

1 + [RGN]
ፍ
∑
፧዆ኺ

exp [−Δ𝐹፧]
=

[RGN]
[RGN] + KD

KD =
1

ፍ
∑
፧዆ኺ

exp [−Δ𝐹፧]
.

(S2.17)
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For our minimal model of equaƟon ??, with a single mismatch is placed at posiƟon 𝑛MM,
equaƟon ?? results in

𝐾D(𝑛MM) =
𝐾max

1 + 𝑒(፧MMዅ፧eqseed)᎑C
, 𝐾max =

𝑒ዅ᎑PAM(𝑒᎑C − 1)
𝑒ፍ᎑Cዅ᎑I − 1 ,

𝑛eqseed =
𝑁𝛿C − 𝛿I
𝛿C

+ 1
𝛿C

ln
1 − 𝑒ዅ(ፍ᎑Cዅ᎑I)
1 − 𝑒ዅ(᎑Cዄ᎑I)

(S2.18)

Note that this seed length 𝑛eqseed does not in general equal its kineƟc counterpart 𝑛seed in
equaƟon ??.

2.7.4. Details of fitting procedure
Since comparing relaƟve cleavage (or binding) on constructs containing 1 mismatch (or a
set of consequeƟve mismatches) leads to a probability/dissociaƟon constant as in equa-
Ɵons ?? and ??, we fit a sigmoidal funcƟon to the data. Where replicates were available,
we created 1000 bootstrapped replicates, and for each performed a straight least square
fit by minimizing

𝜒ኼ =
ፍ

∑
።዆ኻ
(𝑃data(𝑖) − 𝑃model(𝑖))ኼ (S2.19)

In Figure ?? and ??A-C, we used the bootstrapped median values for all three parameters,
and report the 68% confidence intervals.

In case of the dataset from [? ] no such replicates were available. In stead, we used the
reported averages and standard deviaƟons to minimize

𝜒ኼ =
ፍዅኻ

∑
።዆ኻ

(𝑃data(𝑖) − 𝑃model(𝑖)
𝜎tot(𝑖)

)
ኼ

(S2.20)

where we had to take the finite precision of measurements in to account as some errors
were reported as zero. This was done through taking

𝜎tot = √𝜎ኼSTD + 𝜎ኼround (S2.21)

with𝜎STD being the reported staƟsƟcal error amongstmulƟple replicates and𝜎round = 0.5
a lower esƟmate of the error introduced by having a finite precision in the measurement.
Since themost rapid transiƟon out of the seed region that can be recorded is over one base
pair, 𝑤min = 1, we know the highest measurable ΔC is Δmax

C (see equaƟon ??). Therefore,
we cannot discriminate amongst ΔC values beyond 4, and we have constrained our fits to
respect this condiƟon.

2.7.5. Cascade binds its guide in sections
AŌer assembly of the Cascade complex onto the guide RNA, every 6፭፡ base is flipped out
and does not interact with the target. IncorporaƟng this into the parameterizaƟon of our
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model we assume that the kineƟc bias does not dependent on the sequence of guide and
target at these posiƟons,

𝛿C(𝑛flip) = −𝛿I(𝑛flip), ∀𝑛flip ∈ (6, 12, 18, 24, 30) (S2.22)

To perform the fit shown in Figure ??D, we chose one parƟcular realizaƟon of this condiƟon
with 𝛿C(𝑛flip) = −𝛿I(𝑛flip) = 0. To allow us to fit a conƟnuous curve to the data, data
points at any of the 𝑛flip posiƟons where not taken into account and the remaining data
points where re-indexed accordingly. The resulƟng plot shows the piecewise conƟnuous
curve when we re-introduce the flipped out bases by equaƟng the dissociaƟon constant to
its wildtype value at these posiƟons.

Figure S2.1: General Energy landscapes, related to figure ??. (A) Free-energy landscape underlying the scheme
of figure 1A. Our model is completely determined by the set of transiƟon states (open circles). The largest barrier
opposing cleavage, is given by the point with the highest drawn transiƟon state (smallest ጂፓ). In the limmit
of large kineƟc biases (see Methods: ‘high bias limit’ ), it is this barrier that dominates the probality to cleave
the target sequence represented. The landscape shown represents a target that is likely cleaved as the largest
barrier is opposing unbinding rather then cleavage, or, in other words, the highest transiƟon state lies below the
unbinding transiƟon (leŌ most circle). (B) On the contrary, a target will likely get rejected if the highest transiƟon
state (placed at፧∗) lies above the transiƟon state towards soluƟon. In this scenario the largest barrier obstrucƟng
cleavage is larger then the barrier hindering unbinding. (C) Examples of transiƟons that bias the RGN to extend
the R-loop if the transiƟon state to the right lies below the one to the leŌ (leŌ panel), or to shrink the R-loop
if the transiƟon state to the right lies above the one to the leŌ (right panel). The difference in heights of the
transiƟon states is refered to as a ‘kineƟc bias‘. (D) Free-Energy landscape as in figure A, in which parameters in
equilibrium limit are indicated. EnergeƟc biases (᎑(፧)) are now set by the stable states within the diagram and
their cumulaƟve gain (ጂፅ(፧)) is used to calculate the dissociaƟon constant.
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Figure S2.2: Single mismatch off-targets, related to figure ??. (A) RelaƟve probability of cleaving a singly mis-
matched target. Seed length (፧seed) is kept constant by tuning ጂC and ጂI, while ensuring equaƟon 2 of the main
text is saƟsfied (ጂclv ዆ ዅኻኺኺ፤ᐹፓ, ጂPAM ዆ ኺ.ኼ኿፤ᐹፓ). (B) The width of the transiƟon region from seed to non-
seed is set by the posiƟve bias for correct base pairs (ጂC)(ጂclv ዆ ዅኻኺኺ፤ᐹፓ, ጂPAM ዆ ኺ.ኼ኿፤ᐹፓ). (C) Tuning the
intrinsic bias against cleavage (ጂclv) allows for differenƟal targeƟng of sequences with PAM distal mismatches by
shiŌing ፩max of equaƟon 1 of the main text (ጂC ዆ ኽ፤ᐹፓ, ጂPAM ዆ ኽ፤ᐹፓ, ጂI ዆ ኽኺ፤ᐹፓ).
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Figure S2.3: Block of mismatches, related to figure ??. The probability to cleave a target with ፁ consequeƟve
mismatches is equal to the probability to cleave a target with a single mismatch (placed at the start of the block)
and with a mismatch bias scaled by the length of the block (ጂC ዆ ኻ፤ᐹፓ, ጂPAM ዆ ኼ፤ᐹፓ, ጂclv ዆ ዅኻኺኺ፤ᐹፓ).

Figure S2.4: DissociaƟon constant for single-mismatch targets, related to figure ??. (A) DissociaƟon constant
for singly mismatched targets. Fixing ᎑C fixes the width of the curve, the steepness of the transiƟon from seed
to non-seed (᎑PAM ዆ ኽᑜፁፓ, ᎑C ዆ ኻ፤ᐹፓ). (B) Fixing the raƟo between match and mismatch energies fixes the
seed length (፧EQseed through equaƟon ??) (᎑PAM ዆ ኽ፤ᐹፓ, ᎑I ዆ ኻኺ᎑C).
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Figure S2.5: AddiƟonal comparison to experimental data , related to figure ??
(A)Data from Anderson et al. [? ], PSMD7 target Confidence interval for fit parameters (68%): ጂC[0.43,4.0),፧seed
[12.3,14], ፩max[0.53,0.75]. (B) Data from Andersonet al. [? ],global fit to both target sites (VCP2 target is shown
in Figure 6 of main manuscript). Confidence interval for fit parameters (68%): ጂC[0.59,4.0), ፧seed [10.9,13.9],
፩max[0.50,1.0]. (C) Data from PaƩanayak et al. [? ], for each mutaƟon posiƟon the median score of all single-
mismatched targets within the library with the mutaƟon at that locaƟon was used. Errorbars indicate standard
deviaƟon. Confidence interval for fit parameters (68%): ጂC[0.20,4.0), ፧seed [7.5,14.3], ፩max[0.58,0.98]. (D) Data
from Semenova et al. [? ], fit performed aŌer accounƟng for the assembly of Cascade onto its guide in secƟons.
All experimental data shown corresponds to mean ± standard deviaƟon.
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3
Mechanistic modeling explains

dCas9 binding and Cas9
cleavage dynamics

Genome engineering using the RNA guided DNA endonuclease CRISPR-Cas9 is
on the rise. When loaded with a single-guide RNA (sgRNA), the Cas9-sgRNA
binds and cleaves the DNA site complementary to the supplied guide sequence.
Unfortunately, Cas9-sgRNA is known to also cleave DNA sites with non-perfect
complementarity, a phenomenon more commonly known as off-targeting. To-
wards quantifying the risks of its implementation, wemodel the (off-)target bind-
ing, dsDNAunwinding, and cleavage by Cas9-sgRNA to tell the fraction of cleaved
DNA when subjected to a fixed nuclease concentration for a given time. Within
the same physical model, we also capture the binding dynamics of catalytically
‘dead’ dCas9 and rationalize the large disparity in off-targeting observed with
its active counterpart. Using a series of recent high-throughput biophysical ex-
periments, we extract the microscopic free-energy landscape that underlies the
interactions between Cas9-sgRNA and an (off-)target DNA. We reveal the major
conformational change, which repositions Cas9’s nuclease domains, initiates si-
multaneously with DNA unwinding, only to be completed once a (near) complete
RNA-DNA hybrid is formed. Finally, by direct comparison and using the free-
energy landscape, we rationalize how our kinetic model improves upon existing
thermodynamic models.
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58 3. Explaining dCas9 binding and Cas9 cleavage

3.1. Introduction

C RISPR (clustered regularly interspaced short palindromic repeats)-Cas (CIRPSR associ-
ated) systems, CRISPR-Cas9 systems in parƟcular, have opened the door to a mulƟtude

of gene ediƟng applicaƟons [? ? ]. Cas9 uses two RNA molecules – the CRISPR RNA (cr-
RNA) and trans-acƟvaƟng crRNA (tracrRNA) – as a guide to bind and cleave complementary
(double-stranded) DNA. Most biotechnological applicaƟons instead load Cas9 with a syn-
theƟc singe-guide RNA (sgRNA) containing a 20 nucleoƟde (nt) long sequence designed to
be complementarity to the DNA sequence one wishes to target [? ]. The relaƟve ease by
which Cas9-sgRNA can be programmed to bind and cleave any (genomic) DNA sequence
of interest has enabled its use in gene silencing/acƟvaƟon [? ], fluorescent imaging of ge-
nomic loci [? ], RNA or DNA detecƟon [? ? ] and genome ediƟng [? ? ].

Structural [? ? ] and biophysical [? ? ? ] studies indicate that Cas9’s two nuclease domains
(HNH and RuvC) are acƟvated only aŌer binding the DNA target, which is oŌen taken to im-
ply Cas9 is reasonably specific. However, Cas9-sgRNA also targets sites (off-targets) other
than those fully complementary to its guide (the on-target) [? ? ? ? ? ? ? ? ? ]. Such off-
targeƟng can induce unwanted genomic alteraƟons, including point mutaƟons, large-scale
deleƟons or chromosomal rearrangements [? ]. Due to the high risk of deleterious effects,
such ediƟng errors have impeded a wide-spread implementaƟon of Cas9-sgRNA in human
therapeuƟcs.
Though experiments have demonstrated that the posiƟon of mismatches along the guide-
to-target hybrid strongly influences both binding and cleavage acƟviƟes, the process be-
hind this is not yet quanƟtaƟvely understood. For example, catalyƟcally inacƟve (‘dead’)
dCas9 notoriously binds more off-targets sites than Cas9 cleaves [? ? ? ? ], and there is at
present no way of translaƟng binding affiniƟes into cleavage propensiƟes, or vise versa.

Here we unify binding and cleavage of Streptococcus pyogenes Cas9 (spCas9) within a sin-
gle kineƟc model. We expect such a physics-based framework to hold several advantages
compared to exisƟng in silico predicƟon tools that are either based on empirically derived
scoring schemes [? ? ] or Machine Learning approaches [? ? ] uƟlizing scoring schemes
derived and hidden within a “black box” algorithm. First, all our model parameters are
physically interpretable, rates and energies determining the binding/cleavage reacƟons. As
a result, the model’s output is physically interpretable as well, returning effecƟve reacƟon
rates for either binding or cleavage reacƟons under variable experimental condiƟons. This
allows us to tell more than what off-targets are cleaved most (at steady-state) and answer
the quesƟon: “What fracƟon of my off-target pool is bound or cut at a given nuclease con-
centraƟon and aŌer a given Ɵme?” Hence, such a model offers an in silico tesƟng-ground
for future binding or cuƫng based experiments.
Second, using the language of free-energy landscapes allows us to Ɵe reacƟon intermedi-
ates (metastable states) to structural data.

Expanding upon our own kineƟc modeling efforts (Chapter ??)[? ] we shall use three high-
throughput biophysical datasets to elucidate the free-energy landscape that (d)Cas9-sgRNA
experiences while interacƟng with (off-)target DNA. First, Boyle et al. [? ] measured the
rate of change in bound DNA fracƟon at fixed dCas9-sgRNA concentraƟon in the first 1500
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seconds of the reacƟon for a library of off-targets. Second, Jones et al. [NucleaSeq data
from [? ]] used saturaƟng concentraƟons of (acƟve) Cas9-sgRNA to determine effecƟve
cleavage rates. Finally, Jones et al. [CHAMP data from [? ]] independently measured the
half-saturaƟng concentraƟons 10 minutes aŌer introducing (inacƟve) dCas9-sgRNA. We
demonstrate that our parameterized model is capable of accurately describing all three
quanƟƟes. Moreover, we can predict the half-saturaƟng concentraƟons, while training
the model only with data taken at fixed concentraƟon. To the best of our knowledge, we
thereby present the first physical model capable of quanƟtaƟvely describing both bind-
ing and cleavage reacƟons, for both varying (d)Cas9-sgRNA concentraƟons and incubaƟon
Ɵmes.

The free-energy landscape we propose, the extracted model parameters, helps us explain
experimental observaƟons in terms of reacƟon rates for the sub-processes of iniƟal target
binding, (parƟal) hybrid-formaƟon and inducing the DNA breaks. In parƟcular, the free-
energy landscape helps us understand how Cas9 balances being both an efficient (high
enough acƟvity on on-target) and specific (low enough acƟvity on off-targets) nuclease,
at the cost of binding more promiscuously. We show mismatches come at (nearly) equal
energeƟc costs throughout the guide-target hybrid, while the free-energy represenƟng in-
teracƟons with the on-target shows a disƟnct posiƟon dependence. We shall demonstrate
how the previously characterized conformaƟonal rearrangements involving Cas9’s two nu-
clease domains [? ? ? ] manifests itself within our proposed Cas9-gRNA free-energy land-
scape. Hence, we thereby unify observaƟons across bulk and single-molecule experiments.

Finally, we demonstrate how both the state-of-the-art predicƟon tool [? ], as well as the
recently published model by Zhang et al. [? ], can both been seen as a limiƟng case of our
more general model. By direct comparison of predicƟons and by showing that we are not
in the required limits, we shall explain exactly how our model improves upon the exisƟng
ones.

3.2. Results
3.2.1. A kinetic model for target recognition by (d)Cas9-sgRNA
The reacƟon scheme underlying our model is shown in Figure ??A. A Cas9-sgRNA from
soluƟon binds a DNA target aŌer first using protein-DNA interacƟons to recognize a 3nt
‘protospacer adjacentmoƟf’ (PAM) sequence – canonically 5’-NGG-3’ – located on the non-
target DNA strand [? ? ]. Binding to the PAM triggers a conformaƟonal change that enables
interacƟonswith the +1 DNA base pair [? ? ] iniƟaƟng sequenƟal formaƟon of a DNA-Cas9-
sgRNA-DNA ‘sandwich’, called the R-loop [? ? ? ? ]. The R-loop can grow and shrink unƟl
unbinding or reaching compleƟon, aŌer which Cas9 uses its two nuclease domains (HNH
and RuvC) to cleave the target and non-target DNA strands [? ].

While exisƟng theoreƟcalmodels only incorporate the thermodynamics [? ? ], we (Chapter
??)[? ] and others [? ] have emphasized the importance of incorporaƟng the kineƟcs of
the PAM binding, hybridizaƟon and cleavage reacƟons to explain several experimental ob-
servaƟons. To build a kineƟc model of target recogniƟon by Cas9-sgRNA, we treat every
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Figure 3.1: kineƟc model captures both binding and cleavage data. (A) General reacƟon schema underlying
our kineƟc model. A Cas9-sgRNA from the soluble pool (with known concentraƟon) binds the DNA at the PAM
site, sequenƟally progresses through R-loop formaƟon, and eventually cuts the DNA. The set of forward and
backward rates describing transiƟons (arrows) between states (images) fully parameterize our model. (B) Fit to
HiTS-FLIP data [? ]. top: the associaƟon rate (፤a) is esƟmated as the slope of a straight line forced through the
origin and fiƩed to three measurement points (see S.I.). Figure here shows representaƟve calculaƟons using the
extracted model parameters. middle: fit against off-targets with 1 mismatch. BoƩom: fit against off-targets with
2 mismatches (data in upper triangle/ model in lower triangle). (C) Fit to NucleaSeq data [? ]. top: the cleavage
rate (፤clv) is esƟmated by an exponenƟal fit to the fracƟon of uncut off-target DNA (see S.I.). middle: fit against
off-targets with 1 mismatch. BoƩom: fit against off-targets with 2 mismatches (data in upper triangle/ model
in lower triangle). (D) PredicƟon of CHAMP data [? ]. top: ABA values are the logarithm of the half-saturaƟon
concentraƟon aŌer 10 minutes of dCas9-sgRNA interacƟons with DNA (see S.I.). middle: predicƟon of off-targets
with 1 mismatch. BoƩom: predicƟon of off-targets with 2 mismatches (data in upper triangle/ model in lower
triangle).

intermediately sized R-loop (1,2,…,20 nt) as well as the PAMbound and unbound (soluƟon)
configuraƟons as metastable states, and transiƟons between states as being thermally ac-
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Ɵvated. In general, the model is completely parameterized by the set of forward and back-
ward rates (Figure 1A) for every Cas9-sgRNA-DNA combinaƟon.

Though the type of mismatch maƩers, experimental data also shows consistent trends in
both binding and cleavage acƟvity with respect to the posiƟon for any mismatch type (i.e.
the data shown in this work). As a step towards a full sequence dependent model, and to
uncover any sequence independent determinants of targeƟng acƟvity, we here use a (tar-
get) sequenced averaged parameterizaƟon of a specific Cas9-sgRNA combinaƟon. In this
scenario, all internal forward reacƟons represent the same process of removing one DNA-
DNA base pair and forming a new one between the guide RNA and target strand DNA. To
simplify maƩers, we assume only backward reacƟons can be dependent on posiƟon and
the complementarity between RNA and DNA, thereby carrying all posiƟon dependency.
This assumes the transiƟon state encountered when extending the R-loop occurs before
the RNA base interacts with the DNA base (the dsDNA always matches). Hence, apart from
a (concentraƟon dependent) rate of binding from soluƟon onto the PAM (𝑘on) and the final
rate of inducing the DNA breaks (𝑘cat), a single forward rate (𝑘f) is used to parameterize all
remaining forward reacƟons (Figure ??A, S.I.). Although no direct evidence that forward
rates must be posiƟon independent, we shall show that the current parameterizaƟon is
sufficient to capture the trends in the data. Instead of using backward rates as our model
parameters directly, we use the detailed balance condiƟon (𝑘b(𝑛) = 𝑘f𝑒ፅnዅፅn-1 ) to relate
every backward rate to the forward rate and the difference in free-energy between con-
secuƟve states (𝐹n − 𝐹n-1, Figure ??A, S.I.). As we assume that placing a mismatch at the
posiƟon within the R-loop promotes only the corresponding backward rate, this implies all
free-energies from the posiƟon onwards will be raised by the same amount (S.I.).

All in all, a total of 44 independent parameters describe target binding and cleavage of
a fixed Cas9-sgRNA at any DNA target: (1-2) The rate of PAM binding from soluƟon, 𝑘on,
and the free-energy gained/lost in this process,𝐹PAM (both at the (d)Cas9-sgRNA concentra-
Ɵon the data is taken), (3) the forward rate 𝑘f, (4-23) 20 free-energy differences describing
progressing the R-loop when guide and target are matching, (24-43) 20 penalƟes for mis-
matches within the R-loop that (locally) increase the difference in free-energy, raising the
on-target’s landscape from the posiƟon of the mismatch onwards, and (44) the catalyƟc
rate 𝑘cat which is set to zero when considering nuclease inacƟve dCas9 [see Figure ??A, S.I.
for details].

As Cas9 is known to interact with the DNA, especially with the non-target strand [? ], the
target recogniƟon process is not fully described by the hybridizaƟon energies of the nucleic
acids alone. For this reason, adding a matching base pair to the hybrid does not need to
be energeƟcally favorable, and the parameters corresponding to matches can include any
form of protein-DNA interacƟons or conformaƟonal changes that couple to R-loop progres-
sion. Mismatch penalƟes are assumed to be posiƟve, as replacing amatchwith amismatch
is by definiƟon energeƟcally unfavorable.



3

62 3. Explaining dCas9 binding and Cas9 cleavage

3.2.2. Modeling measurable quantities for both dCas9 and Cas9

We have set it as our goal to quanƟtaƟvely describe the outcome of both binding and
cleavage experiments within a single physical framework. To this end, three independent
high-throughput biophysical datasets were used to compare against our model.
First, Boyle et al. [? ] used a high-throughput fluorescence microscopy assay (HiTS-FLIP:
‘high-throughput sequencing-fluorescent ligand interacƟon profiling’) to determine the
rate of change in the bound DNA populaƟon (for a large library of off-targets) within the
first 1500 seconds upon introducing dCas9-sgRNA (top panel Figure ??B).We used amaster
equaƟon formulaƟon to numerically determine the temporal evoluƟon of the bound frac-
Ɵon at any off-target, which we interpreted as the equivalent of (background corrected)
fluorescence intensiƟes. From here, we extracted the reported (effecƟve) associate rate
(𝑘a) by mimicking the procedure used in the experiments by Boyle et al. (top panel Figure
??B, see S.I. for details). Note this effecƟve associaƟon rate does not equal the binding
rate from soluƟon (𝑘on), but rather is modulated by the rate of rejecƟon from the DNA,
explaining its dependence on mismatch configuraƟon.

A second experiment, the CHAMP (‘chip-hybridized associaƟon- mapping plaƞorm’) assay
[? ? ], similar to HiTS-FLIP, uses a high-throughput fluorescence setup to determine binding
acƟviƟes. However, while HiTS-FLIP tracks the bound fracƟon over Ɵme at a fixed dCas9-
sgRNA concentraƟon of 1nM, CHAMP measures the bound fracƟon aŌer a fixed Ɵme of
10 minutes for a series of concentraƟons. Hence, while both reporƟng on dCas9 bind-
ing off-targets, the CHAMP and HiTS-FLIP datasets probe the binding acƟvity’s response to
uniquely varying experimental condiƟons. Using the bound fracƟons, CHAMP determines
the half-saturaƟon concentraƟons (effecƟve dissociaƟon constants) aŌer 10 minutes of
dCas9 exposure. Comparing this to a reference of 1 nM, allows one to define an ’Apparent
Binding Affinity’ (ABA, ΔABA = ABA− ABAon-target) as the logarithm of the relaƟve dissoci-
aƟon constant (Figure ??D top panel, see S.I. for details).

Finally, Jones et al. also present the NucleaSeq (nuclease digesƟon and deep sequencing)
technique [? ] to measure the (effecƟve) cleavage rates for a library of off-targets (𝑘clv)
by monitoring the fracƟon of uncut DNA over Ɵme and fiƫng this to a single exponenƟal
funcƟon (top panel Figure ??C). The S.I. shows how we numerically determined 𝑘clv for
all off-targets within the experimental library. Note that is not the same as the intrinsic
catalyƟc rate (𝑘cat) we have set as a model parameter. Rather, 𝑘clv ≤ 𝑘cat, as NucleaSeq
reports the (inverse) average Ɵme to bind the target, complete the R-loop and induce the
DNA breaks (which happens at the rate 𝑘cat), explaining how 𝑘clv can depend on the off-
target sequence.
All three experiments used the same guide sequence derived from 𝜆-phage DNA. (CHAMP
and NucleaSeq addiƟonally used the same off-target library), thereby minimizing potenƟal
sequence dependencies that would effect a successful translaƟon between the datasets
by our model.

As a first approach we have fit our model against the HiTS-FLIP data alone, leaving the
others as tests (Figure ??). Figure ??A shows the fit against all library members with a sin-
gle mismatch (top panel), and those with two mismatches (boƩom panel), together form-
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ing the enƟre dataset used to fit. Figure ??B shows that we captured measured values of
CHAMP with high precision (top panel: one mismatch, boƩom panel: two mismatches,
combined correlaƟon coefficient: 93%). This strongly indicates that the model’s imple-
mentaƟon of varying nuclease concentraƟon is valid, as this predicƟon of dCas9 binding
at varying concentraƟons (CHAMP) is based on model parameters extracted solely from
the HiTS-FLIP data taken at 1 nM. Further, using a 𝑘cat ≫ 1𝑠ዅኻ to not make this the rate
limiƟng step, we predict cleavage rates from NucleaSeq with approximately 84% correla-
Ɵon, again only using dCas9 based informaƟon (Figure ??C shows comparison to library
members with one mismatch on top and with two mismatches below). Yet, Figure ??C re-
veals that the model underesƟmates 𝑘clv for many off-targets (which cannot be resolved
by a further increase in 𝑘cat). In addiƟon, our stochasƟc opƟmizaƟon algorithm (see S.I.
for details) returned relaƟvely strongly varying parameter sets, while sƟll giving similar fit
qualiƟes (Figure S1D). Figures ??D-F show the parameter set (Figure ??D: on-target free-
energy landscape, Figure ??E: mismatch penalƟes, Figure ??F: rate parameters) of the best
fit (lowest 𝜒ኼ, see S.I.) that was used to produce Figures ??A-C together with parameter
sets belonging to fits that differ less than 5% in their predicƟon of the fiƩed HiTS-FLIP data
(see S.I.). We noƟced that apart from the on-target’s free-energy at the PAM and 11-12 nt
into the R-loop, most parameters are allowed to vary significantly without apparent loss in
fit quality. Especially the strongly varying mismatch penalƟes (Figure ??E) and rate param-
eters (Figure ??F) may not affect the resulƟng associaƟon rates (Figure ??A), but strongly
affect the cleavage rates (Figure ??C). In the coming secƟon we shall describe the obtained
parameters in more detail. For now, we note that fiƫng our model only to associaƟon
rates can constraint our model parameters enough to describe CHAMP, but not enough
for NucleaSeq.

We take the heterogeneity of the fit parameters (Figures ??D-F) as a sign that the best fit
represents an overfit to the HiTS-FLIP data, capturing noise, thereby limiƟng our predicƟve
power of the NucleaSeq data. In an aƩempt to combat this, and more confidently report
the underlying kineƟc parameters, we proceeded by using a simultaneous fit to HiTS-FLIP
(𝑘a) together with NucleaSeq (𝑘clv) (Figures ??B-C, see S.I. for details). We reasoned that
as 𝑘clv values report the Ɵme needed for Cas9-sgRNA to make it from the soluƟon state all
the way through the free-energy landscape into the post-cleavage state, the predicƟon of
the NucleaSeq data should be more sensiƟve to the value of the mismatch penalƟes and
forward rates. These parameter values set the placement, height and typical crossing Ɵmes
of (effecƟve) energeƟc barriers within the off-target free-energy landscapes. Adding this
informaƟon to that coming from HiTS-FLIP, presumably being most sensiƟve to the stabil-
ity of different states as this determines whether or not binding will be long enough lived
to be observed, should be enough to constraint our model parameters sufficiently. Figure
?? shows fit parameters, in parƟcular the mismatch penalƟes up unƟl nt 16 (Figure ??B)
and the forward rates (Figure ??C) are now more strongly constrained. The combinaƟon
of having typical cleavage Ɵmes (NucleaSeq) at saturaƟng condiƟons together with typical
Ɵmes to reach stable binding (HiTS-FLIP) at a fixed concentraƟon, also strongly constrained
the fiƩed binding rate (𝑘on) (Figure ??C).

More importantly, using this combined fit we see it is possible to quanƟtaƟvely capture
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both dCas9 binding andCas9 cleavage dynamicswithin a single physical framework (Figures
??B and C). Clearly, our model nicely reproduces values for off-targets with one (middle
panel Figure ??B) and two mismatches (boƩom panel Figure ??B). Using the fit to library
members with up to two mismatches, we also accurately reproduce measured 𝑘a’s for all
off-targets in the library with more mismatches, leading to a combined correlaƟon of 89%
(Figure ??A). Similarly, our model accurately reproduces cleavage rates from NucleaSeq
both for single-mismatched (middle panel Figure ??C) and double-mismatched off-targets
(boƩom panel Figure ??C), with high accuracy (combined correlaƟon of 93%, Figure ??B).
InteresƟngly, the model recovers that a mismatches between nt 12 and nt 17 can strongly
reduce cleavage acƟvity (Figure ??C, middle panel) while minimally influencing apparent
binding acƟvity (Figure ??B, middle panel). We shall discuss the physics underlying this
below. Finally, without fiƫng any parameters, we manage to accurately translate from
the temporal sweep of HiTS-FLIP (Figure ??B) to the Cas9-sgRNA concentraƟon sweep of
CHAMP for all given off-targets (95% correlaƟon, Figures ?? and ??C).

Taken together, we build and parameterized (as we shall discuss using Figure ??) a single
kineƟc model (Figure ??A) that explains the dynamics of (d)Cas9-sgRNA-DNA interacƟons
both at various Ɵmes and concentraƟons. Next, we shall take a further look at the physical
properƟes of Cas9 extracted from the data and describe their consequences.

A B

C D

Figure 3.2: KineƟc parameters. (A) Free-energy landscape represenƟng on-target DNA interacƟng with 1nM
Cas9-sgRNA. (B) Free-energy landscape represenƟng off-target DNA (mismatches at posiƟons 12 and 18) inter-
acƟng with 1nM Cas9-sgRNA (blue). On-target free-energy landscape shown in grey. (C)Mismatch penalƟes as a
funcƟon of locaƟon within RNA-DNA hybrid. (D) Forward rate parameters.
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3.2.3. Free-energy landscape of (d)Cas9-sgRNA-DNA

From a simultaneous fit (S.I.) to the data shown in Figures ??B and C, we obtain the free-
energy landscape that the Cas9-sgRNA experiences upon interacƟng with a given DNA
target, for the guide common to both experiments. Figure ??A shows the resulƟng free-
energy landscape for interacƟng with the on-target, while Figure ??B shows both the on-
target’s landscape (grey, dashed line) together with an example landscape encountered
at an off-target with mismatches placed at nt 12 and nt 18 (blue, solid line). The laƩer is
obtained by raising all points from the 12th posiƟon onwards in the on-target’s landscape
by the 12th mismatch penalty, and all points from the 18th posiƟon onwards by the 18th

penalty (Figure ??C, S.I.). Figure ??D shows the obtained rate constants.
Remarkably, the on-target free-energy landscape (Figure ??A) shows a disƟnct posiƟon de-
pendence, which we have found to be responsible formany features seen in the dataset(s).
StarƟng from the PAM bound state, the free-energy strongly increases and remains rela-
Ɵvely high for the first 8 nt. Destabilizing the first 8 R-loop associated states results in an
effecƟve barrier that must be bypassed before a stable binding intermediate is reached.
As a result, adding a single mismatch within this region makes the effecƟve barrier nearly
insurmountable within the Ɵme of a typical experiment. Hence, we recover what is com-
monly referred to as the ‘seed’ region wherein a single mismatch can completely disrupt
either binding or cleavage [? ? ]. The end of the seed-region contains another (slighter)
increase (see nucleoƟdes 6 to 8). Although no direct evidence, we hypothesize such an
addiƟonal barrier reflects the cost of rearranging the guide outside the seed into proper
helical form to enable further hybrid formaƟon [? ].
AŌer the unstable seed, the bound state gradually becomes more stable when forming nt
10-12, reaching a local minimum aŌer the 12th base pair. InteresƟngly, before reaching
a final cleavage competent state (full R-loop), the free-energy landscape reveals a second
effecƟve barrier aŌer nucleoƟde 13. Below we shall show the presence of two regions
of unfavorable R-loop progression is consistent with experimentally established conforma-
Ɵonal dynamics of Cas9’s nuclease domains.

The mismatch penalƟes (Figure ??C) remain rather constant (at about 6±1𝑘ፁ𝑇) through-
out. Notable excepƟons are nucleoƟdes 2, 9 and those from 17 unƟl 19. The lower mis-
match penalty of around 4 𝑘ፁ𝑇 at the second R-loop posiƟon originates the increased ac-
Ɵvity seen for both dCas9 and Cas9 when muƟng nt 2 compared to mutaƟng either of its
neighbors (Figures ??B-D). Similarly, as placing the first of two mismatches at the 9th posi-
Ɵon results in a lower cleavage rate compared to placing it at either the 8th or 10th posiƟon,
we fit an increased mismatch penalty of around 9 𝑘ፁ𝑇. MutaƟng nucleoƟdes 17-19 comes
at a lesser cost of 4 𝑘ፁ𝑇, compared to most of the other posiƟons. This, together with
the on-target target binding being always more stable than iniƟal PAM recogniƟon aŌer
the 17th base pair (Figure ??A), is consistent with a previous reports that have shown Cas9
can indeed cleave substrates that contain mismatches at nucleoƟdes 17-20 with only slight
hindrance [? ? ].
The fiƩed rate constants of Figure ??D reveal that, at 1nM Cas9-sgRNA, PAM recogniƟon
happens at a rate (𝑘on) that is 5 orders of magnitude less than the rate of progressing the
R-loop (𝑘f) and the rate of catalyzing cleavage (𝑘cat). The large forward rate (𝑘f) results
in similarly high rates for shrinking the R-loop (𝑘b(𝑛) = 𝑘f𝑒ፅnዅፅn-1 , see S.I.). Yet, despite
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growing or shrinking the R-loop by one nucleoƟde happening rather fast, the shear amount
of such steps needed before the full R-loop is formed makes that R-loop formaƟon is sƟll
the rate limiƟng process to cleavage (and stable binding), thereby governing Cas9’s mis-
match tolerance.

In conclusion, our physical model allows us to the extract the free-energy landscape de-
scribing the interacƟon between target DNA and a Cas9-sgRNA complex. In what follows,
we shall first in more detail explain how the landscape shown in Figure ??A captures Cas9’s
major conformaƟonal change, and show how this results in the pronounced difference be-
tween binding (dCas9) and cleavage (Cas9) acƟviƟes

A

C

B
Open Inter-

mediate
Closed

Figure 3.3: RelaƟng free-energy landscape to Cas9’s conformaƟonal dynamics. (A) Equilibrium occupancies
(10nM dCas9-gRNA) for all 21 microscopic states, and different off-targets. This mimics the FRET histograms
shown in Figure 1C of [? ] (B)A coarse-grained view of the on-target free-energy landscape (Figure ??A). Using the
nomenclature of [? ] we idenƟfy the ‘open’, ‘intermediate’ and ‘closed’ states. Solid colors show the states with
the greatest contribuƟon (the most stable states in every subgroup). (C) A. FracƟon of equilibrium occupancies
for each of the three coarse-grained states, shown for off-targets with increasing number of consecuƟve PAM
distal mismatches.

3.2.4. Conformational change of Cas9’s HNH domain couples to R-
loop formation

Figure ??A reveals that although forming a complete R-loop with the on-target (at 1nM) is
energeƟcally favorable, reaching this cleavage competent state is preceded by surpassing
two regions of significant instability. This is surprising, given we have previously showed
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(Chapter ??)[? ] that the sequenƟal nature of the R-loop formaƟon process in itself dic-
tates clearmismatchposiƟondependent unbinding/cleavage rates at off-targets. Evenwith
a constant gain for every match added to the R-loop, the placement of a mismatch sƟll
modulates the barrier opposing rejecƟon of the off-target. As the free-energy landscape
of Figure ??A clearly deviates from one with a constant downward slope, it must be the
result of structural properƟes of the Cas9 protein that couple to hybrid formaƟon.

A comparison of guide-bound and target-bound structures revealed Cas9 undergoes a con-
formaƟonal change in which the acƟve sites of its HNH and RuvC nuclease domains are
reposiƟoned favorably for cleavage [? ? ? ]. A bulk FRET experiment, in which two of
dCas9’s (iniƟally distant from each other) amino-acids are fluorescently labelled, confirmed
the HNH domain rearranges itself prior to cleavage, and showed the RuvC domain move-
ment is strictly coupled to that of the HNH domain [? ]. More recently, single-molecule
FRET studies have shown the existence of two dominant bound configuraƟons of Cas9-
sgRNA [? ? ? ]. As the HNH domain moves, the distance between the fluorescent dyes
changes, resulƟng in an altered FRET efficiency. By collecƟng the FRET efficiency traces
of many molecules, observed for long enough Ɵme, one obtains an esƟmate of the equi-
librium occupaƟon in the state space along the FRET coordinate, the posiƟon of the HNH
domain.

Given the free-energy landscapes for both on-target and off-targets (Figure ??), we can di-
rectly calculate the equilibrium dCas9 occupaƟon in each state according to the Boltzmann
distribuƟon (S.I.), which is what the FRET efficiency histograms aƩempt to esƟmate. Fig-
ure ??A displays equilibrium distribuƟons for various amounts of PAM distal mismatches,
thereby directly mimicking the experiment performed by Dagdas et al. (see Figure 1C in [?
]). In linewith the authors’ findings, we confirmdCas9-sgRNA-DNA ismainly found in one of
three states (conformaƟons) (indicated by different colors in Figure ??B). When subjected
to on-target DNA, nearly all bound molecules are cleavage competent (occupying the final
state). Introducing mismatches causes dCas9-sgRNA-DNA to get trapped in an interme-
diate configuraƟon (the orange colored peak around nt 12 in Figure ??A). Four or more
terminal mismatches is sufficient to effecƟvely deplete the final state (blue bars in Figure
??A). As the target contains more mismatches, the iniƟal (bound) state (the peak seen for
the soluƟon and PAM states in Figure ??A) becomes more favorable. Figure ??C shows the
fracƟons of molecules occupying each of the three ‘coarse-grained states’ (defined in Fig-
ure ??B) as a funcƟon of the number of consecuƟvely placed PAMdistal mismatches. Using
the terminology introduced by Yang et al. [? ], we idenƟfy an ‘open’ HNH conformaƟon
(roughly corresponding to the microscopic states up unƟl the 8th base pair in Figure ??A),
a ‘closed’ configuraƟon (roughly corresponding states 17–20 in Figure ??A), as well as an
‘intermediate’ configuraƟon (states 9–16 in Figure ??A). In agreement with the study of
Dagdas et al. [? ], the system gradually switches from mainly occupying the closed state,
to the open state as moremismatches are introduced, transiƟng via the intermediate state
in the process. We note the smFRET studies probe the reacƟon coordinate along the HNH
conformaƟonal change, whereas our model’s reacƟon coordinate indicates targeƟng pro-
gression (PAMbinding + R-loop formaƟon). The similarity between ourmodel and the data
discussed here thus reveals a likely equivalence of these two point of views. We conclude
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that Cas9’s nuclease domains must rearrange themselves in order for the R-loop to extend.
Moreover, Figure ??B shows that the conformaƟonal change is split over two major barri-
ers, with the first barrier being encountered straight aŌer binding to the PAM.
Furthermore, Yang et al. menƟon that although three main FRET values were observed
on any (off-)target, the value of the intermediate state depends on the number of mis-
matches introduced – signifying the HNH domain adopted a (slightly) different configura-
Ɵon. Indeed, Figure ??A shows that with 7 PAM distal mismatches the R-loop is unlikely
to progress passed the 12th base pair, while the likelihood of observing a parƟal R-loop
of length 16 is many Ɵmes higher with only 4 mismatches, both corresponding to what
we idenƟfy as ‘the intermediate HNH state’ in Figure ??B. The reported shiŌ in FRET value
upon introducƟon ofmoremismatches is consistent with ourmodel’s predicƟon that Cas9-
sgRNA-DNA occupies different microscopic states. This is in line with our finding that the
conformaƟonal change happens throughout the hybrid formaƟon process.
Finally, we note that only the closed state is found to be cleavage competent [? ], also con-
sistent with our model. We conclude that the free-energy landscape (Figure ??) obtained
by fiƫng bulk data (Figure ??) is not only consistent with, but complements structural and
single-molecule data on (d)Cas9.
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Figure 3.4: Difference between binding and cleavage acƟviƟes. (A) AssociaƟon rates from HiTS-FLIP (purple
triangles) and cleavage rates from NucleaSeq (orange squares), for single-mismatch off-targets, both normalized
to the corresponding on-target rates. (B) Free-energy landscape for off-target (mismatch at posiƟon 2) (blue)
together with on-target (grey). A seed mismatch significantly raises the largest barrier (horizontal lines) opposing
both binding and cleavage. (C)With a mismatch at posiƟon 10, binding and cleavage sƟll are limited by the same
barrier (horizontal line). Compared to placing a mismatch in the seed (figure B), the off-target landscape (blue) is
raised far less in comparison to the on-target landscape (grey). (D) mismatch at posiƟon 15 causes binding and
cleavage to be limited by different barriers. Binding is stabilized aŌer surpassing the first barrier (entering posiƟon
12), whereas cleavage requires Cas9 to surpass also the second barrier visible.
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3.2.5. Promiscuous binding helps Cas9 to be both a specific and an
efficient nuclease

With the free-energy landscape in hand, we can now explain what off-target sequences
typically lead to binding without cleavage. Figure ??A overlays the data from Nucleaseq
(orange squares) and HiTS-FLIP (purple triangles) experiments for singly-mismatched off-
targets, both normalized to their respecƟve on-target values. Clearly, placing just a single
mismatch within approximately 8 nucleoƟdes from the PAM significantly slows down both
binding and cleavage. Figure ??B shows the free-energy landscape for a target with a mis-
match at the second nucleoƟde. To cleave either the on-target (grey, dashed line) and the
off-target (blue, solid line), the largest energeƟc penalty comes from making it passed the
‘seed’ (nt 8). The off-target has raised this barrier (from the grey horizontal line to the
blue horizontal line) by an amount equal to the second mismatch penalty seen in Figure
??C. The increased barrier exponenƟally suppresses the corresponding off-target (effec-
Ɵve) cleavage rate. Given cleavage implies binding, also the effecƟve associaƟon rate is
exponenƟally suppressed. Placing the mismatch further down the hybrid, for example at
nt 10, we see both binding and cleavage rates have recovered parƟally from their values in
the seed (Figure ??A). The corresponding landscape in Figure ??C shows that the seed sƟll
imposes the largest barrier against cleavage, and thereby also against binding. Although
raising the energy, and the barrier against R-loop compleƟon, the energy for the off-target,
also aŌer nt 10, remains almost at the same height as the on-target landscape’s height in
seed (compare the grey and blue horizontal lines). In other words, the mismatch therefore
only minimally raises the effecƟve barrier opposing R-loop compleƟon. Hence, both dCas9
and Cas9 can complete R-loop formaƟon at rates closer to that of compleƟng the R-loop
for the on-target.

InteresƟngly, placing amismatch between nt 12–17 significantly reduces the cleavage rate,
while only minimally impacƟng the associaƟon rate (Figure ??A). Figure ??D, displaying a
landscape with a mismatch at nt 15, reveals that although binding (making it into any long-
lived bound state) is limited mainly by the seed, cleavage necessitates proceeding past the
second large barrier – now of similar height – seen beyond the 13th base pair. Hence,
(d)Cas9 will bind such a target at a rate comparable to the on-target and get trapped in a
configuraƟon with a parƟal R-loop (the ‘intermediate state’ referred to above, Figures ??A-
B). Eventually, Cas9 escapes from this intermediate, either through unbinding or cleavage,
both requiring it to overcome a second large energeƟc barrier, thereby leading to relaƟvely
low cleavage rates at such off-targets, diverging from the relaƟve associaƟon rate.

Besides providing Cas9 the ability to swiŌly reject off-targets without matching seeds, the
associated energeƟc barrier (between the ‘open’ and ‘intermediate’ configuraƟons dis-
cussed above) significantly opposes cleavage of even the on-target. Raising this barrier
further as ameans to gain specificity, definitely reduces the efficiency atwhich Cas9 cleaves
the on-target. The introducƟon of the second barrier separaƟng the intermediate and
closed states in the on-target free-energy landscape (Figures ??A and ??B) allows Cas9 to
reject an addiƟonal set of off-targets, without having to sacrifice the rate at which it can
cut the on-target – prevenƟng the first barrier from becoming of insurmountable height.
Therefore, the promiscuous binding of Cas9 can be seen as a price to pay in order to be
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both a (sufficiently) fast and specific nuclease.

A
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Figure 3.5: Comparison to thermodynamics based models. (A) Upper half shows NucleaSeq data for double
mismatched off-targets, normalized to the on-target’s rate. BoƩom half uses single-mismatch data from Figure
??A as a naïve Bayes classifier to predict the double-mismatch data. For every set of two mismatch posiƟons,
the lower half shows the product of the corresponding data points from Figure ??A. (B) Sequenced averaged CFD
score compared to NucleaSeq data for off-targets with one mismatch (Figure ??A). (C) Sequenced averaged CFD
score compared to NucleaSeq data for off-targets with two-mismatches (upper half Figure ??B) (D) Sequenced
averaged uCRISPR score (normalized to on-target) compared to NucleaSeq data for off-targets with onemismatch.
(E) Sequenced averaged uCRISPR score (normalized to on-target) compared to NucleaSeq data for off-targets with
two-mismatches.

3.2.6. Existing off-target prediction models can be seen as a limit-
ing case of ours

Currently, state-of-the-art off-target predicƟon [? ] is based mainly on the ‘Cuƫng Fre-
quency DeterminaƟon’ (CFD) score [? ] – a ‘naïve Bayes classificaƟon’ scheme [? ] as-
suming mismatches affect the relaƟve cleavage rate independent of the distance between
them. More recently, Zhang et al. report their ‘unified CRISPR’ (uCRISPR) score [? ], in
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which cleavage probabiliƟes are evaluated as the Boltzmann weight corresponding to the
cleavage competent state (see S.I.), outperforms the CFD score.

In the S.I. we show that both models can be seen as a limiƟng case of ours. To reduce
our model to theirs, wemust assume target-binding equilibrates prior to cleavage and that
all bound states are unstable compared to soluƟon (independent of nuclease concentra-
Ɵon) (see S.I.). Within this limit, the relaƟve rate of cleaving a mulƟ-mismatched off-target
versus the on-target equals the product of the corresponding relaƟve rates of cleaving the
set of singly mismatched off-targets (see S.I. for details). For example, if an off-target has
mismatches at posiƟons 5 and 7, its corresponding relaƟve rate equals the product of the
relaƟve rates for cleaving the off-targets with one mismatch at nt 5 and the one with a
mismatch at nt 7, all compared to the on-target cleavage rate. As this is exactly how the
CFD score has been constructed using their own set of experiments [? ], a special case of
the mechanisƟc model presented here produces a score equal to the CFD score – despite
the construcƟon of the CFD score not beingmoƟvated by physics. Furthermore, our model
directly reduces to the uCRISPR score within these same limits (S.I.).
The physical regime wherein CFD and uCRISPR could ever produce accurate predicƟons
corresponds to all bound states, including the cleavage competent state being energeƟ-
cally unfavorable compared to soluƟon, nomaƩer the nuclease concentraƟon. This regime
clearly does not comply with free-energy esƟmates, even at 1nM (d)Cas9-sgRNA (Figure
??A). We take the quanƟtaƟve agreement between our model and the bulk experimental
data (Figure ??), and its consistency with single-molecule data (Figure ??), to imply the
physical regime suggested by our model parameters to be valid.

As assuming no cooperaƟve effect ofmismatches (as done in by themenƟoned equilibrium
based models) is an aƩracƟve approach due to its simplicity, it is informaƟve to see exactly
where it fails. To test whether a naïve Bayes classifier can be used as an accurate predictor
of the NucleaSeq data for the given sgRNA, we first test whether products of relaƟve 𝑘clv
values for singly mismatched off-targets in the NucleaSeq dataset are a good predictor of
the corresponding measurements at off-targets containing two mismatches (Figure ??A).
Figure ??A shows the NucleaSeq data normalized to the on-target cleavage rate. While the
upper half displays the normalized data directly, the boƩom half is constructed by using
products of the measured single-mismatch values (Figure ??A). Clearly, assuming no coop-
eraƟve effect of mismatches does not result in the measured (relaƟve) cleavage rates. In
parƟcular, the cleavage rate is severely overesƟmated when both mismatches are placed
outside the seed (beyond nt 8), but before nt 16. That is, when the mismatches are placed
in between the ‘intermediate’ and ‘closed’ states (Figure ??B), which is exactly the set of
off-targets that tend to lead to a divergence between apparent binding and cleavage rates
(Figure ??).

Next, directly comparing the CFD score (Figures ??B,C) and the uCRISPR score (Figures
??D,E) to the (normalized) Nucleaseq data, we see both methods seem to be plagued
by this same underesƟmaƟon due to the non-addiƟve nature of mismatches. The CFD
score completely fails to produce even qualitaƟvely similar relaƟve rates (Figures ??B,C).
Note that the method used in Figure ??A represents an equivalent CFD score, had the
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authors’ used the Nucleaseq assay to produce their data, thereby showing it is the under-
lying assumpƟons of the CFD score rather than the training data that leads to inaccurate
predicƟons. Furthermore, the uCRISPR score produces a single-mismatch profile similar to
the Nucleaseq data (Figure ??D). Therefore, as mismatches also act independently within
uCRISPR (see S.I.), this leads to a two-mismatch profile nearly idenƟcal to the one shown
in Figure ??A, despite the large difference in absolute values compared to the data. Hence,
even though the uCRISPRmodel has introduced an addiƟonal energeƟc penalty for placing
consecuƟve mismatches (see supplement of [? ]), it sƟll ranks off-targets almost idenƟcal
to a model that assumes mismatches each effect the cleavage rate independently.

Taken together, the more general kineƟc model presented in this work correctly treats
how mulƟple mismatches alter cleavage rates, and how binding does not imply cleavage,
while the equilibrium based CFD and uCRISPR fail to do such.

3.2.7. Measuring relative rates at various concentrations
Thus far we have presented a physical model capable of explaining experimental data of
various forms (Figures ?? and ??), and demonstrated the added benefit of incorporaƟng
the kineƟcs of the targeƟng process (Figures ?? and ??). In what remains, we shall use our
model to predict cleavage rates under various experimental condiƟons.
Figures ??A and B show cleavage rates, normalized to on-target values, for several Cas9-
sgRNA concentraƟons. First, we note that as the concentraƟon is decreased, the raƟo of
cleavage rates (symbols in Figure ??A) approaches the raƟo in probabiliƟes for a (PAM)
bound Cas9-sgRNA to cleave the DNA prior to rejecƟng it (pink line). This cleavage proba-
bility is the central quanƟty of Chapter ?? [? ] and we here confirm its validity in the low
concentraƟon regime.
InteresƟngly, varying the concentraƟon mainly effects the relaƟve cleavage rate at off-
targets with PAM distal mismatches. Figure ?? shows that by lowering the concentraƟon
the height of the effecƟve barrier separaƟng the open and intermediate states increases
relaƟve to the one separaƟng intermediate and closed configuraƟons. Hence, at low con-
centraƟons the contribuƟon of this second transiƟon to the cleavage rate is reduced, which
manifests itself in an increase in the rates of cleaving correspondingly mismatched off-
targets (a less sever ‘dip’ between posiƟons 13 and 17) (Figure ??A). A similar signature
is seen when comparing mismatches with two mismatches at 0.01nM and 100nM Cas9-
sgRNA (Figure ??B). Lowering the concentraƟon causes the effecƟve cleavage rate to be-
come limited by the rate of binding a DNA sequence from soluƟon, mulƟplied by the prob-
ability to cleave once bound (𝑘clv ≈ 𝑘on𝑃clv, as 𝑘on becomes rate limiƟng at low concentra-
Ɵons, Figure ?? and Chapter ??).

3.2.8. Measuring relative fractions of cut DNA after various incu-
bation times

Other than the concentraƟon, the exposure Ɵme of the DNA to Cas9-sgRNA can be var-
ied experimentally. Figures ??C and D show the relaƟve probability of cleaving off-targets
(compared to on-target) for different incubaƟon Ɵmes. When considering off-targets with
a single mismatch, placing a mismatch directly adjacent to the PAM results in the lowest
cleavage rate. If the experiment runs for a Ɵme exceeding the inverse of this rate (the
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Figure 3.6: Measuring cleavage acƟvity under varying experimental condiƟons. (A) Cleavage rates, normalized
to on-target, for various nuclease concentraƟons (symbols). Solid line (pink) shows the probability that a PAM
bound Cas9-sgRNA cuts the DNA before unbinding (relaƟve to on-target) (EquaƟon ??). (B) RelaƟve cleavage
rates for 0.01nM Cas9-sgRNA (upper half) and 100nM (lower half) Cas9-sgRNA. (C) Probability of a DNA target
being cut, relaƟve to on-target, aŌer a fixed Ɵme (different symbols) and 1nM Cas9-sgRNA. ፭1mm represents ፤ᎽᎳclv
for the off-target with a mismatch adjacent to the PAM, which is the off-target with the lowest cleavage rate
amongst all off-targets with a single mismatch. Solid link (pink) shows raƟo between cleavage rates (off-target vs.
on-target). (D) ፭2mm represents ፤ᎽᎳclv for the off-target with mismatches at the first two posiƟons adjacent to the
PAM, which is the off-target with the lowest cleavage rate amongst all off-targets with two mismatches. Upper
half ፭ ዆ ኻኺᎽᎷ፭2mm ዆ ኺ.ኻ፭on-target, lower half shows ፭ ዆ ኻኺኺ፭2mm.

maximum 𝑘ዅኻclv denoted by 𝑡1mm in Figure ??C), essenƟally any off-target (with a single)
mismatch will get cut. Hence, no difference between off-targets and on-target will be ob-
served when counƟng the relaƟve fracƟons of cleaved DNA (light blue diamonds in Fig-
ure ??C). Similarly, using 𝑡2mm to denote the inverse cleavage rate for the off-target with
mismatches at the first two R-loop nucleoƟdes, all measured cleavage rates approach the
off-target rates for incubaƟon Ɵmes exceeding 𝑡2mm (Figure ??D). Performing this same
experiment aŌer much shorter incubaƟon Ɵmes (dark green squares), we see that for mis-
matches in the seed, these relaƟve counts are well approximated by the relaƟve cleavage
rates at the corresponding nuclease concentraƟon (pink line in Figure ??C or the curve for
1 nM in ??A). In the S.I.we show this implies the cleavage probability is well approximated
by a single-exponenƟal process. Placing the mismatch between intermediate and closed
states increases the Ɵme to surpass the intervening barrier. When the Ɵme to transiƟon
into the closed state becomes comparable to the Ɵme to transiƟon into the intermediate
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state from PAM, we expect the probability to cleave a DNA not anymore to follow a single
exponenƟal curve. For this reason the raƟo in the cleavage rates does not anymore match
the raƟo in counted cleaved molecules when a mismatch is placed between posiƟons 11
and 16 (Figure ??C). In conclusion, the incubaƟon Ɵme greatly influences the relaƟve frac-
Ɵons of cut DNA, both for PAM proximal as well as PAM distal mismatches (Figures ??C and
D).

3.3. Discussion
The increasing popularity of the CRISPR-Cas9 system as a genome-ediƟng tool calls for a
quanƟtaƟve understanding of its risks. Here, we presented a single mechanisƟc model
(Figure ??A) to describe the kineƟcs of off-targeƟng by Cas9-sgRNA, as well as binding
by the nuclease inacƟve dCas9-sgRNA. Using a (target) sequence averaged approach, we
demonstrated our model accurately describes experimental associaƟon rates (Figure ??B),
cleavage rates (Figure ??C) and dissociaƟon constants (Figure ??D). The free-energy land-
scape(s) describing interacƟons between (d)Cas9-sgRNAwith on-target (Figures ??A andD)
and off-target DNA (Figures ??B-D) serve as our model parameters. Hence, using the bulk
data (Figure ??B and C), we extracted the microscopic thermodynamic and kineƟc proper-
Ɵes of Cas9-sgRNA (Figure ??). The parƟcular free-energy landscape obtained shows signa-
tures consistent with Cas9’s major conformaƟonal change, rearrangement of its nuclease
domains, observed in structural and single-molecule experiments (Figure ??). Moreover,
the barriers opposing this conformaƟonal change directly explains how Cas9’s promiscu-
ity when it comes to off-target binding is the price to pay for it to balance on-target and
off-target cleavage acƟviƟes (Figure ??). Further, the free-energy landscape implies Cas9
operates far from the regime in which exisƟng predicƟon models operate. As a result, only
our model quanƟtaƟvely describes the difference between Cas9 and dCas9 specificiƟes
(Figure ??). Finally, we showed how varying nuclease concentraƟons and incubaƟon Ɵmes
strongly influence, not only the quanƟtaƟve, but also the qualitaƟve specificity profiles
(Figure ??).

3.3.1. Comment on translation to other guide RNA sequences (‘short-
cut’ to redoing measurement for every guide)

In Figures ??A-C, we display target sequence averaged cleavage acƟviƟes (w.r.t on-target)
from datasets across the literature [? ? ? ], including the data used to construct the CFD
score (Figures ??B,C). Different curves correspond to different guide sequences. Also, Fig-
ure ??D shows a second NucleaSeq dataset (together with the data shown in Figure ??C)
[? ]. Clearly, the cleavage rate is strongly dependent on the guide sequence used.
As a future improvement to our model parameterizaƟon, incorporaƟng (guide) sequence
dependencies seems the most logical way forward. However re-training our model against
equivalent datasets (HiTS-FLIP + NucleaSeq ) [? ? ] for every guide sequence of interest
would require an immense amount of experimental effort.
For this reason, developing a translaƟon between guides, using the current parameter set
could be an aƩracƟve approach. Figure ?? showed our model is capable of producing a
wide range of specificity profiles by varying the experimental condiƟons. This variaƟon
appears to be similar to that caused by the guide sequence shown in Figure ??. For ex-
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ample, Figure ??A shows data belonging to six guides from Doench et al. [? ]. A transla-
Ɵon from the lower three curves (pink, orange, yellow) to the upper three curves (purple,
green, blue) seems to be achievable within our model by a combinaƟon of lowering the
concentraƟon (Figure ??A) and increasing the incubaƟon Ɵme (Figure ??C). This similarity
between Figures ?? and ?? leads us to believe a less experimentally (aswell as computaƟon-
ally) intensive scheme may exist to predict off-targeƟng for different guides. Differences
in sequence manifest themselves in the energeƟcs (Figures ??A-C), altering (effecƟve) bar-
rier heights separaƟng states. Figure ?? demonstrated the same can be achieved through
varying the Cas9-sgRNA concentraƟon. AlternaƟvely, increasing the incubaƟon Ɵme in-
creases the probability of exceeding the typical Ɵme needed to reach states further down
the landscape (Figure ??A). We hypothesize that varying the guide sequence could possi-
bly bemodeled by an altered ‘effecƟve nuclease concentraƟon’ and ‘effecƟve experimental
Ɵme’, while keeping the same model parameters (Figure ??) as determined for the guide
used in this work. In this manner, sequence dependencies can possibly be derived from
experiments performed for a limited set of guides.

3.3.2. Move to other guided nucleases (generality of approach)

Cas9-sgRNA is by far not the only RNA guided nuclease system uƟlized in biotechnological
applicaƟons. Other CRISPR associated nucleases, such as CRISPR-Cas12a, CRISPR-Cas13
and CRISPR-Cas14 offer a diversified ‘genome-engineering toolkit’ to complement Cas9 [?
? ? ? ? ? ? ]. Moreover, the high-specificity requirements for therapeuƟc applicaƟons has
driven the development of several strategies to improve Cas9’s cleavage specificity, with
the use of either engineered [? ? ? ] or natural variants (such as N. meningiƟdes Cas9)
[? ] becoming increasingly popular. The general model presented in this work (Figure
??A) should be applicable to any RNA guided nuclease whose target binding happens in
a sequenƟal fashion. High-throughput measurements using different nuclease systems
(preferably similar to HiTS-FLIP, CHAMP and/or NucleaSeq, i.e. [? ? ? ? ]), will allow us to
also decipher their microscopic free-energy landscape underlying target interference and
can point towards the relevant structure-funcƟon relaƟons (as done here for Streptococcus
pyogenes Cas9).

3.3.3. Test against genome-wide off-target data/prediction tools will
follow

ExisƟng off-target predicƟon tools [? ? ? ? ? ? ? ? ] are not all made to quanƟtaƟvely
predict experimental measurements, but rather to rank off-targets according to their ac-
Ɵvity (w.r.t on-target). Typically, the performance is assessed using either of two methods.
Either the rank correlaƟon between modeled scores and measurements is used as a per-
formance measure [? ? ]. AlternaƟvely, predicƟon tools are tested for their capability to
separate the ‘cut’ from ‘uncut’ genomic DNA sites [? ]. Although our physical model offers
more than such a classificaƟon scheme, we nevertheless are working towards performing
tests against idenƟfied genomic off-targets [? ? ] in order to directly compare our model
to other bioinformaƟcs or machine learning based predictors.
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3.5. Supplemental Information
3.5.1. Kinetic model for Target Recognition
We here explain in more precise mathemaƟcal terms how we have built the model put
forth in the main text and in Figure ??A. To incorporate the concentraƟon of Cas9-sgRNA
present in soluƟon (’sol’), we shall take the viewpoint of a single DNA target sequence, ei-
ther on- or off-target. AŌer one of the Cas9-sgRNA binds the DNA at its PAM site, R-loop
formaƟon (Cas9 mediated strand exchange between gRNA and DNA) is modeled as a se-
quenƟal process. That is, the gRNA-DNA hybrid grows or shrinks with single-nucleoƟde
increments, allowing for hybrids of intermediate lengths (1-20 bp formed). Cleavage (’clv’)
can follow complete R-loop formaƟon (20 nucleoƟdes in case of Cas9). Together, wemodel
the enƟre target recogniƟon process as a random walk on the linear state-space, 𝑛 ∈
[sol, PAM, 1, 2, ...., 20, clv]. Knowing the probability of a Cas9-sgRNA-DNA to be found in
each of the states aŌer a Ɵme 𝑡 gives access to anymeasurable quanƟty of interest (see be-
low for examples). Leƫng𝑃n(𝑡) denote the occupancy of state𝑛 at Ɵme 𝑡, and𝑘f(𝑛)/𝑘b(𝑛)
the rates (inverse average Ɵmes) for ’forward’(𝑛 → 𝑛 + 1)/’backward’(𝑛 → 𝑛 − 1) transi-
Ɵons, the occupancies evolve according to the following set of Master EquaƟons

𝜕𝑃sol
𝜕𝑡 = −𝑘f(sol)𝑃sol(𝑡) + 𝑘b(PAM)𝑃PAM(𝑡) (S3.1)

𝜕𝑃n
𝜕𝑡 = 𝑘f(𝑛 − 1)𝑃n-1(𝑡) − (𝑘f(𝑛) + 𝑘b(𝑛))𝑃n(𝑡)

+ 𝑘b(𝑛 + 1)𝑃n+1(𝑡) ∀𝑛 ∈ [PAM, 1, 2, ...., 19]
(S3.2)

𝜕𝑃20
𝜕𝑡 = 𝑘f(19)𝑃19(𝑡) − (𝑘f(20) + 𝑘b(20))𝑃20(𝑡) (S3.3)

From here on we interchangeably use 𝑛 = −1 ≡ sol, 𝑛 = 0 ≡ PAM and 𝑛 = 21 ≡ clv.
Given any DNA is either unbound, bound or cleaved, the fracƟon of cleaved DNA (for acƟve
Cas9) is set by 𝑃clv(𝑡) = 1 − ∑

፧ጽclv
𝑃n(𝑡). Defining the vector �⃗�(𝑡) = [𝑃sol(𝑡), 𝑃PAM(𝑡),

𝑃1(𝑡),....,𝑃20(𝑡)]ፓ, the soluƟon to EquaƟons ?? and ?? can be wriƩen as

�⃗�(𝑡) = 𝑒ዅፊ፭�⃗�(0), (S3.4)

with the (tri-diagonal) rate matrix 𝐾’s elements given by

𝐾፧,፦ =
⎧⎪
⎨⎪⎩

−𝑘f(𝑛 − 1) 𝑛 = 𝑚 + 1
𝑘f(𝑛) + 𝑘b(𝑛) 𝑛 = 𝑚
−𝑘b(𝑛 + 1) 𝑛 = 𝑚 − 1
0 else

(S3.5)
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In general, we recognize the system is completely determined by the set of forward and
backward rates for every Cas9-sgRNA-DNA of interest. To extract informaƟon from the ex-
perimental data, we now proceed to show the parƟcular parameterizaƟon used through-
out this work.

As menƟoned in the main text, we have chosen a DNA sequence averaged parameteriza-
Ɵon. Adding any nucleoƟde to the R-loop is assumed to happen at the same rate (denoted
by 𝑘f, as opposed to the general posiƟon dependent forward rate 𝑘f(𝑛)). Further, the rate
of binding from soluƟon onto the DNA (transiƟoning from sol (𝑛 = −1) to PAM (𝑛 = 0)) is
assumed to grow linearly with concentraƟon, 𝑘on = 𝑘on([Cas9-sgRNA]ref)×[Cas9-sgRNA],
resulƟng in the binding rate at our chosen reference concentraƟon [Cas9-sgRNA]ref = 1nM
being a free-parameter. Finally, catalyzing the reacƟon to induce the DNA breaks is as-
signed a separate rate of 𝑘cat. Taken together, forward transiƟons are assigned the follow-
ing rates

𝑘f(𝑛) = {
𝑘on([Cas9-sgRNA]) 𝑛 = PAM

𝑘f 𝑛 ∈ [1, 2, ..., 19]
𝑘cat 𝑛 = 20

(S3.6)

Backward rates (unbinding, shrinking the R-loop) are set by requiring the convergence of
𝑃n(𝑡) to the Boltzmann DistribuƟon when equilibrated.

𝑃EQn = 𝑒ዅፅn
∑

፦∈[sol,PAM,ኻ...,ኼኺ]
𝑒ዅፅm ∀𝑛 ∈ [sol, PAM, 1..., 20] (S3.7)

Given all occupancies are Ɵme-independent in this limit (Ꭷፏ⃗Ꭷ፭ = 0), EquaƟons ??-?? result
in the ’detailed balance condiƟon’

𝑘b(𝑛) = 𝑘f(𝑛 − 1)
𝑃EQn-1

𝑃EQn
= 𝑘f(𝑛 − 1)𝑒ፅnዅፅn-1 ∀𝑛 ∈ [PAM, 1, ..., 20] (S3.8)

Differences in free-energy (𝐹n’s, measured in units of 𝑘ፁ𝑇) between consecuƟve states for
a parƟcular Cas9-sgRNA-DNA are modeled as (𝐹sol = 0 as reference state)

𝐹n − 𝐹n-1 = {
𝐹PAM([Cas9-sgRNA]) 𝑛 = PAM

𝜖ፂ(𝑛) match at 𝑛 ∈ [1, 2, ...20]
𝜖ፂ(𝑛) + 𝜖ፈ(𝑛) mismatch at 𝑛 ∈ [1, 2, ...20]

(S3.9)

If the nth base of the target is complementary to the corresponding base of the guide, the
Cas9-sgRNA-DNA ternary complex gains/loses 𝜖ፂ(𝑛) 𝑘ፁ𝑇 in incorporaƟng the basepair into
the R-loop. The Cas9 protein is known to interact with the (non-target strand) DNA, as well
as undergo conformaƟonal changes, during the process of R-loop formaƟon. For this rea-
son, 𝜖ፂ(𝑛)’s can either be negaƟve (signifying an energeƟc benefit) or posiƟve (penalizing
progression of the R-loop). If the nth base of the target does not match the guide’s base,
the ternary complex gets penalized 𝜖ፈ(𝑛) ≥ 0 for incorporaƟng the mismatch into the
R-loop. All subsequent free-energy states are therefore also raised by this same amount
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(Figure ??B), thereby only locally increasing the backward rate (EquaƟon ??).
The energy of the PAMbound configuraƟon ismodeled as a concentraƟon dependent free-
energy, 𝐹PAM([Cas9-sgRNA]) = 𝐹PAM([Cas9-sgRNA]ref) − log([Cas9-sgRNA]), becoming
more stable with increasing nuclease concentraƟon. Note that using the concentraƟon
dependencies of both 𝐹PAM and 𝑘on, via EquaƟon ??, leads to a concentraƟon independent
rate to return to soluƟon 𝑘b(PAM).

In conclusion, we have built a general kineƟc model (EquaƟon ??), and used a DNA se-
quence averaged parameterizaƟon to reduce our parameter space to the following 44 pa-
rameters: (1) 𝐹PAM([Cas9-sgRNA]ref), (2-21) 20x 𝜖ፂ(𝑛)’s, (21-41) 20x 𝜖ፈ(𝑛)’s,
(42) 𝑘on([Cas9-sgRNA]ref), (43) 𝑘f, and (44) 𝑘cat. When considering dCas9 cleavage is un-
able to occur, which is simply modeled by seƫng 𝑘cat = 0 (leaving 43 free-parameters).

3.5.2. Calculating (effective) association rates (HiTS-FLIP)
To predict measured associaƟon rates, we assume equivalence between the soluƟon to
the Master EquaƟons (EquaƟon ??) and the fluorescence signal obtained in the HiTS-FLIP
experiment [? ]. Experiments are performed at 1nM dCas9-sgRNA, which we thereby set
as our reference concentraƟon. Given the experiment uses dCas9, all molecules are either
in soluƟon or bound to DNA (𝑃clv = 0). Here we follow the procedure detailed in Boyle et
al. [? ]. First, we determine the fracƟon of bound DNA molecules,

𝑃bnd(𝑡) = ∑
፧∈{PAM,ኻ,..ኼኺ}

𝑃n(𝑡) = 1 − 𝑃sol(𝑡) (S3.10)

at three specified Ɵme points 𝑡ኻ = 500𝑠, 𝑡ኼ = 1000𝑠 and 𝑡ኽ = 1500𝑠, starƟng with all
DNA molecules being unbound at 𝑡ኺ = 0𝑠 (𝑃sol(0) = 1 , 𝑃n(0) = 0 ∀𝑛 ≠ sol). Next,
the effecƟve associaƟon rate (𝑘a) is defined as the coefficient of a linear fit to the three
occupancies, forced to go through the origin,

𝑝። = 𝑘a𝑡። ∀𝑖 ∈ [0, 1, 2, 3] (S3.11)

EquaƟon ?? is the approximate soluƟon for 𝑃bnd(𝑡) for 𝑡 ≪ 𝑘ዅኻa , if one would assume the
system not to consist of 21 possible bound states (as done here), but just by a single one.
Namely, in this simplified two-state system (𝑛 ∈ [sol, bnd])

𝜕𝑃bnd
𝜕𝑡 = 𝑘a𝑃sol(𝑡) ⇒ 𝑃bnd(𝑡) = 1 − 𝑒ዅ፤a፭ ≈ 𝑘a𝑡 if 𝑡 ≪ 𝑘ዅኻa (S3.12)

Using least-squares opƟmizaƟon (linear regression),

𝑘a =

ኽ
∑
።዆ኻ
𝑡።𝑝።

ኽ
∑
፣዆ኻ
𝑡ኼ፣

(S3.13)
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3.5.3. Calculating (effective) cleavage rates (NucleaSeq)
Next, we show how we instead can use the soluƟon to the Master EquaƟons (EquaƟon
??) to mimic the NucleaSeq experiment [? ]. NucleaSeq is performed at saturaƟng con-
centraƟons of Cas9-sgRNA, which we model by seƫng 𝐹PAM ≪ 0𝑘ፁ𝑇 (we chose 𝐹PAM =
−1000𝑘ፁ𝑇), 𝑘on → ∞. As done in the original experiment, the fracƟonof DNAnot cleaved,

𝑃no clv(𝑡) = 1 − 𝑃clv(𝑡) = ∑
፧ጽclv

𝑃n(𝑡) (S3.14)

is evaluated at the Ɵmepoints 𝑡ኺ through 𝑡ዃ as 0 s,12 s,60 s,180 s,600 s,1800 s,6000 s,18000
s, and 60000 s (using the iniƟal condiƟon of everything being unbound at 𝑡ኺ = 0𝑠, which
due to the high nuclease concentraƟon results in (near) instantaneous occupaƟon of the
DNA). Similarly to Boyle et al., Jones et al. assume the system to consist of just a single
bound state, for which the fracƟon of cleaved DNA under saturaƟng condiƟons (no un-
bound DNA) follows

𝜕𝑃clv
𝜕𝑡 = 𝑘clv𝑃no clv(𝑡) ⇒ 𝑃no clv(𝑡) = 𝑒ዅ፤clv፭ (S3.15)

Hence, we obtain the effecƟve cleavage rate (𝑘clv(𝑡)) by fiƫng a line (forced through origin)
to the logarithm of the occupancies,

log(𝑝።) = −𝑘clv𝑡። ∀𝑖 ∈ [0, 1, 2, ..., 9], (S3.16)

Using linear regression,

𝑘clv = −1 ×

ዃ
∑
።዆ኻ
𝑡። log(𝑝።)

ዃ
∑
፣዆ኻ
𝑡ኼ፣

(S3.17)

3.5.4. Calculating apparent binding affinities (CHAMP)
A third quanƟty used throughout this work are ’Apparent Binding AffiniƟes’ (ABA) obtained
from the CHAMP experiment [? ]. CHAMP experiments are performed using dCas9, at
varying nuclease concentraƟons, rather than varying incubaƟon Ɵmes. Using the fiƩed
binding rate at 1nM,

𝑘on([Cas9-sgRNA]) = 𝑘1nMon
[Cas9-sgRNA]
[1 nM] (S3.18)

The experiment consists of determining the fracƟon of bound DNA, EquaƟon ??, at 𝑡 =
10 minutes, for the concentraƟons ([Cas9-sgRNA]) 0.1 nM,0.3 nM,1 nM,3 nM,10 nM,30
nM,100 nM and 300 nM. Assuming the system has had sufficient Ɵme to equilibrate within
these 10 minutes, the series of occupancies should follow the Hill EquaƟon (using 𝑐 =
[Cas9-sgRNA]/[ኻnM] to denote the relaƟve concentraƟon)

𝐻 = 1
1+ ፊᐻ

፜
(S3.19)
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A fit of EquaƟon ?? to the series of occupancies (for the specified concentraƟons), results
in the apparent half-saturaƟon concentraƟon, or apparent dissociaƟon constant𝐾ፃ for the
(off-)target of interest. The ABA is defined as the logarithm of 𝐾ፃ, which has units of free-
energy. The quanƟty shown are what are termed, ΔABA’s, which are ABA differences w.r.t.
the on-target

Δ𝐴𝐵𝐴 = 𝐴𝐵𝐴off-target − 𝐴𝐵𝐴on-target (S3.20)

3.5.5. Simulated Annealing fitting
All fits are performed using a custom wriƩen Simulated Annealing (SA) algorithm to mini-
mize the 𝜒ኼ (least-squares opƟmizaƟon). Prior to fiƫng, the data (𝑘a and 𝑘clv values) are
converted to sequence averaged values for every unique mismatch paƩern, weighted by
the square of their corresponding measurement errors (𝜎(sequence)),

𝑘clv/a(mm paƩern) ≡ ∑
the same mm-paƩern:።

𝑤።𝑘clv/a,i , 𝑤። = ᎟ᑚ/∑
ᑛ
᎟ᑛ (S3.21)

The sums in EquaƟon ?? run over all off-target sequences in the library that have the
same mismatch paƩern. This parƟcular weighted average is chosen as one can prove
that it represent the best possible sequence averaged model - it is the global opƟmal 𝜒ኼ
when allowing one to assign exactly one model value to every possible mismatch paƩern.
Hence, a good fit to the weighted averaged data represents a good fit to the raw data. The
corresponding measurement error in the weighted averaged rates (’standard error in the
weighted mean’) follows

�̂�(mm paƩern) ≡ ∑
the same mm-paƩern:።

𝑤ኼ። 𝜎ኼ። , (S3.22)

Furthermore, in our experience we obtained more accurate predicƟons of the lower val-
ued 𝑘clv’s in the NucleaSeq experiment when fiƫng not to the 𝑘clv’s, but to the log(𝑘clv)
values in stead. For consistency we therefore also fiƩed against log(𝑘a) values (in case
of the simultaneous fit). To construct a global 𝜒ኼ for both associaƟon and cleavage rate
experiments, the individual 𝜒ኼ’s are added together aŌer dividing each by the number of
different sequences with the idenƟcal mismatch paƩern in the respecƟve libraries. For
both libraries, each member sequence contains more than the 20 nucleoƟdes + 3 PAM nu-
cleoƟdes that are important for targeƟng. Hence, mulƟple members would be considered
to be an on-target (also because of the first nucleoƟde in the NGG PAM that is allowed to
vary). Similarly, more than 3 off-targets are present with a single mismatch at one of the
20 R-loop posiƟons. Using 𝑖 to iterate over unique mismatch paƩerns, we let 𝑁። denote
the number of library members with paƩern 𝑖. Further, their simply are more unique mis-
match paƩerns with two mismatches (ኼኺ×ኻዃ/ኼ = 190 in total) than with a single mismatch
(20 in total). To not over represent the influence of sequences with twomismatches, com-
pared to single mismatches (and on-targets), the 𝜒ኼ is further divided into individual terms
with fixed total number of mismatches, dividing by the total number of unique mismatch
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configuraƟons in every group,

𝜒ኼ = 1
𝑁on-target

∑
on-targets

( log(𝑘
model
a ) − log(𝑘experiment

a )
�̂� )

ኼ

+ 1
20 ∑

single mm posiƟon:።

1
𝑁።
(
log(𝑘model

a,i ) − log(𝑘experiment
a,i )

̂𝜎።
)
ኼ

+ 1
190 ∑

double mm paƩern:።

1
𝑁።
(
log(𝑘model

a,i ) − log(𝑘experiment
a,i )

̂𝜎።
)
ኼ

+ 1
𝑁on-target

∑
on-targets

( log(𝑘
model
clv ) − log(𝑘experiment

clv )
�̂� )

ኼ

+ 1
20 ∑

single mm posiƟon:።

1
𝑁።
(
log(𝑘model

clv,i ) − log(𝑘experiment
clv,i )

̂𝜎።
)
ኼ

+ 1
190 ∑

double mm paƩern:።

1
𝑁።
(
log(𝑘model

clv,i ) − log(𝑘experiment
clv,i )

̂𝜎።
)
ኼ

(S3.23)

Here,𝑘experiment and �̂� values are givenby EquaƟons ?? and ??. Themodel’s values𝑘experiment

are determined using EquaƟons ?? and ??.

The SA algorithm [? ] is commonly used for high-dimensional opƟmizaƟon problems, such
as the fit presented here, and we here highlight the specific adjustments made to suit our
problem. In brief, the SA algorithm finds the (presumably) global minimum of the objec-
Ɵve funcƟon 𝜒ኼ(�⃗�), a funcƟon of the set of parameter values �⃗�, by assuming equivalence
to the potenƟal energy of a physical system. In every iteraƟon, the parameter vector is
updated according to (leƫng 𝑈(−𝛿, 𝛿) denote the uniform distribuƟon from −𝛿 to 𝛿)

�⃗� → �⃗� + 𝑈(−𝛿, 𝛿)⏝⎵⎵⎵⏟⎵⎵⎵⏝
ፗ⃗ᖤ

(S3.24)

We shall refer to𝛿 as the step size. AŌer the update, the newparameter set (�⃗�ᖣ) is accepted
if it lowers the objecƟve funcƟon (𝜒ኼ(�⃗�ᖣ) < 𝜒ኼ(�⃗�)) or with a probability proporƟonal to
its corresponding Boltzmann weight when 𝜒ኼ(�⃗�ᖣ) ≥ 𝜒ኼ(�⃗�). The resulƟng ’acceptance
probability’ is known as the Metropolis condiƟon,

𝑝acc = min[1, 𝑒
ᎽᒜᎴ(ᑏ⃗ᖤ)/ᑋ

𝑒ᎽᒜᎴ(ᑏ⃗)/ᑋ
] (S3.25)

In the SA algorithm, the ’temperature’ (𝑇) is reduced iteraƟvely to bias the system (pa-
rameter vector �⃗�) to occupy its ’ground state’ (global minimum of 𝜒ኼ(�⃗�)). We start from
an iniƟal temperature (𝑇ኺ) as the temperature at which the iniƟally supplied step size (𝛿)
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results in an acceptance raƟo between 40% and 60% (evaluated every 1000th iteraƟon).
Next, �⃗� is reset, and 𝛿 is adapted every 1000 iteraƟons to ensure an acceptance raƟo of
40-60% at the current temperature, before moving on to the next temperature aŌer one
more set of 1000 iteraƟons. In analogy with staƟsƟcal mechanics, we thereby let the sys-
tem equilibrate at every temperature before moving onwards [? ]. Here, we used an ex-
ponenƟal cooling scheme with a 1% cooling rate for which the temperatures are defined
by the series

𝑇፤ = 0.99፤𝑇ኺ (S3.26)

The algorithm is stopped, minimum has been found, when both: (i) the temperature has
fallen below 1% of its iniƟal value 𝑇 < 0.01𝑇ኺ, and (ii) the relaƟve change in average
𝜒ኼ (aŌer equilibraƟon), induced by reducing the temperature from 𝑇፤ to 𝑇፤ዄኻ, has fallen
below the user-defined threshold (10ዅ኿ for all reported fits)

| ⟨𝜒ኼ⟩፤ − ⟨𝜒ኼ⟩፤ዄኻ |
⟨𝜒ኼ⟩፤

≤ 10ዅ኿ (S3.27)

with ⟨𝜒ኼ⟩፤ denoƟng the average 𝜒ኼ at temperature 𝑇፤ (determined in the 1000 steps aŌer
’equilibraƟon’ as been reached, acceptance raƟo of 40-60%). To be more confident that
our presented soluƟon represents the global opƟmum of 𝜒ኼ, we repeat our SA fit several
Ɵmes, Figures ?? and ?? presents the best soluƟon amongst the different replica.

In Figures ??D-F we post-selected the final results from the individual runs of the algo-
rithm by requiring that the resulƟng 𝑘a values (the only quanƟty fiƩed in this figure) on
average differ ≤ 5% from those corresponding to the best fit. That is, the runs shown in
Figures S1D-F saƟsfy

1
# mm-paƩerns

∑
mm-paƩern:።

|𝑘runa,i − 𝑘besta,i |
𝑘besta,i

≤ 0.05, (S3.28)

which we take to be ’equally valid’ soluƟons, as we now have filtered out fits clearly frozen
into sub-opƟmal minima. For the simultaneous fit of Figure ??, no such selecƟon was
needed as all runs saƟsfied the equivalent of EquaƟon ?? with both 𝑘a and 𝑘clv.

3.5.6. Translation to models assuming individual mismatches act
additively

Here we show in what limits our kineƟc model corresponds to exisƟng state-of-the-art
(model-based) predicƟon tools, in parƟcular CFD [? ] and uCRISPR [? ]. Although no direct
comparison with our model has been given, we also discuss how the model of Farasat and
Salis can be raƟonalized from ours [? ]. Despite the different parameterizaƟons, said mod-
els treat mismatches along the R-loop in quite similar fashion. To get the probability (rela-
Ɵve rate) to cleave an off-target (compared to the on-target), the individual contribuƟons
of separate mismatches are either added together in energy-space (uCRISPR) or mulƟplied
together in terms of their provabiliƟes (CFD). From our physical model, we can understand
what assumpƟons have (implicitly) been made in their construcƟon, and therefore must
hold in order to produce an accurate predicƟon.
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As has been done explicitly when construcƟng uCRISPR, we start by assuming the PAM
recogniƟon and R-loop formaƟon processes equilibrate prior to cleavage. In this limit, the
effecƟve rate of cleaving an off-target equals the fracƟon of Cas9-sgRNA-DNA that is in the
cleavage competent state, mulƟplied by the bare catalyƟc rate,

𝑘clv ≈ 𝑘cat𝑃EQ20 (S3.29)

When our sequenƟal model equilibrates, occupancies follow the Boltzmann distribuƟon,

𝑃EQ20 = 𝑒ዅፅ20

1 +
ኼኺ
∑

፧዆PAM
𝑒ዅፅn

(S3.30)

The Boltzmann factor (𝑒ዅፅ20 ) alone explains how straight addiƟon of free-energymismatch
penalƟes lead tomulƟplicaƟon of probabiliƟes. However, as seen in EquaƟon ??, the Boltz-
mann factormerely describes the numerator and to calculate the probability onemust first
evaluate the parƟƟon funcƟon which is the denominator. ExisƟng models used different
versions of the parƟƟon funcƟon. First, Farasat and Salis, only account for the soluƟon
and cleavage competent states (state ’20’). Within the context of our microscopic model,
this implies all but the final state’s energy are much greater than the soluƟon state’s free-
energy,

𝐹n ≫ 1 𝑘ፁ𝑇 ∀𝑛 ∈ [PAM, 1...19] ⇒ 𝑃EQ20 ≈ 𝑒ዅፅ20
1 + 𝑒ዅፅ20 (S3.31)

This is the core of the model used by Farasat and Salis ([? ]), in which 𝐹20 includes both se-
quence and posiƟon dependent mismatch penalƟes. In effect, both uCRISPR and CFD have
further assumed also the cleavage competent state is unstable (compared to soluƟon),

𝐹20 ≫ 1 𝑘ፁ𝑇, (S3.32)

which reduces the occupaƟon to al but its corresponding Boltzmann weight

𝑃EQ20 ≈ 𝑒ዅፅᎴᎲ , (S3.33)

The uCRISPR model uses EquaƟon ?? to determine (relaƟve) cleavage rates (EquaƟon ??),
using a set of sequence and posiƟon dependent energies. To parƟally correct for their
model’s inability of naturally explaining the non-addiƟve naturemulƟplemismatches have,
the authors used a set of addiƟonal energeƟc penalƟes for incorporaƟng consecuƟve mis-
matches.
We note that EquaƟon ?? also describes the CFDmodel. CFD uses a set ofmeasured proba-
biliƟes to cleave singlymismatched off-targets w.r.t the on-target, which according to Equa-
Ɵon ?? amounts to measuring relaƟve rates.

𝑝 ≡ 𝑃EQ20 (1x mm)
𝑃EQ20 (on-target)

(S3.34)

The probability to cleave an off-target containing mulƟple mismatches, say at locaƟons
𝑚𝑚1 and 𝑚𝑚2, is obtained by mulƟplying the individual probabiliƟes for the off-targets
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containing either of the mismatches. To see that our general model also returns mulƟpli-
caƟons of probabiliƟes in the limit where EquaƟon ?? is valid, we denote the free-energy
of the off-targets (applying EquaƟon ??)

𝐹20(2x mm) ≡ 𝜖ፈ(mm 1) + 𝜖ፈ(mm 2) + 𝐹20(on-target) (S3.35)

Next, using the approximaƟons (EquaƟons ?? and ??) leading up to EquaƟon ??,

𝑃EQ20 (2x mm)
𝑃EQ20 (on-target)

= 𝑒ዅፅ20(2x mm)

𝑒ዅፅ20(on-target)

= 𝑒ዅ(Ꭸᑀ(mm 1)ዄᎨᑀ(mm 2))

= 𝑒ዅᎨᑀ(mm 1) × 𝑒ዅᎨᑀ(mm 2)

= 𝑒ዅፅ20(mm 1)

𝑒ዅፅ20(on-target) ×
𝑒ዅፅ20(mm 2)

𝑒ዅፅ20(on-target)

= 𝑃EQ20 (mm 1)
𝑃EQ20 (on-target)

× 𝑃EQ20 (mm 2)
𝑃EQ20 (on-target)

= 𝑝ኻ × 𝑝ኼ

(S3.36)

Note that EquaƟon ?? represents the defining assumpƟon of any ’naïve Bayes classifier’
used to predict cleavage acƟviƟes [? ].

In conclusion, the models discussed here are only ever expected to produce accurate (rela-
Ɵve) cleavage rates if any bound state is unstable, independent of Cas9-sgRNA concentra-
Ɵon - an assumpƟon that contradicts our model’s parameterizaƟon (Figure ??).

3.5.7. At short times, relative counts equal relative rates
AŌer exposing the DNA to Cas9-sgRNA for a Ɵme 𝑡, the number of DNA molecules cut
equals the probability of any molecule being cleaved, 𝑃clv(𝑡) given by EquaƟons ?? and ??,
mulƟplied by the total number of copies in the original pool ofmolecules (𝑁pool). Assuming
the same copy number of every off-target tested in the experiment, leƫng 𝑃on-targetclv (𝑡)
denote the probability of a on-target DNA molecule being cleaved, the number of cleaved
copies of an off-target compared to the number of cut on-targets equals

𝑃clv
𝑃onዅtargetclv

= 1 − 𝑒ዅ፤clv፭

1 − 𝑒ዅ፤onᎽtargetclv ፭
፭→ኺ≈ 1 − (1 − 𝑘clv𝑡)

1 − (1 − 𝑘onዅtargetclv 𝑡)
= 𝑘clv
𝑘onዅtargetclv

(S3.37)

, if the system can be approximated by the simpler EquaƟon ??. We thus see that for
short experiments, the fracƟon of cut DNA molecules can approach the fracƟon to the
corresponding effecƟve cleavage rates.
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HiTS-FLIP (Boyle et al. 2017) NucleaSeq (Jones et al. 2019) CHAMP (Jones et al. 2019)A B C

D E F

Figure S3.1: related to Figure ??. Fit only to dCas9 data from HiTS-FLIP (Boyle et al.) (A) Comparison of model
to HiTS-FLIP data. top: fit against off-targets with 1 mismatch. boƩom: fit against off-targets with 2 mismatches
(data in upper triangle/ model in lower triangle). (B) Comparison of model to CHAMP data. top: predicƟon of
off-targets with 1 mismatch. boƩom: predicƟon of off-targets with 2 mismatches (data in upper triangle/ model
in lower triangle). (C) Comparison of model to NucleaSeq data. top: predicƟon of off-targets with 1 mismatch.
boƩom: predicƟon of off-targets with 2 mismatches (data in upper triangle/ model in lower triangle). (D) Free-
energy landscape for 1nM sgCas9-RNA interacƟon with on-target DNA. Green curves represent fit results from
individual runs of our Simulated Annealing opƟmizaƟon algorithmwhose resulƟng values differ less than 5% from
the best-soluƟon’s outcomes (figure A) (see S.I.). Black shows median to guide the eye. Pink shows best soluƟon,
used to produce figures A-C. (E) Mismatch penalƟes as a funcƟon of posiƟon along the RNA-DNA hybrid. Blue
dots show individual fit results (aŌer selecƟon). Black shows median to guide the eye. Pink shows best soluƟon,
used to produce figures A-C. (F) Forward rate parameters. Green dots show individual fit results (aŌer selecƟon).
Black shows median to guide the eye. Pink shows best soluƟon, used to produce figures A-C.
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A B C

Figure S3.2: related to Figures ?? and ??. Simultaneous fit to HiTS-FLIP and NucleaSeq data. (A) Free-energy
landscape for 1nM sgCas9-RNA interacƟon with on-target DNA. Green curves represent fit results from individual
runs of our Simulated Annealing opƟmizaƟon algorithm whose resulƟng values differ less than 5% from the best-
soluƟon’s outcomes (Figures ??A-B) (see S.I.). Black shows median to guide the eye. Pink shows best soluƟon,
used to produce Figures ??A-C. (B)Mismatch penalƟes as a funcƟon of posiƟon along the RNA-DNA hybrid. Blue
dots show individual fit results (aŌer selecƟon). Black shows median to guide the eye. Pink shows best solu-
Ɵon, used to produce Figures ??A-C. (C) Forward rate parameters. Green dots show individual fit results (aŌer
selecƟon). Black shows median to guide the eye. Pink shows best soluƟon, used to produce ??A-C.
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C D

E

Figure S3.3: related to Figure ??. CorrelaƟon plots and addiƟonal test data. (A) CorrelaƟon of model values
(fit+predicƟon) to HiTS-FLIP data. AŌer making a 2D histogram of the data points, each is assigned a color accord-
ing to the histogram’s bin wherein they lie. Darker color indicates a higher density of data points. Dashed line
indicates perfect correlaƟon. Both data fiƩed against (up unƟl 2 mismatches) and the remainder of the library (>2
mismatches) are included. The laƩer therefore serves as a test. (B) CorrelaƟon of model values (fit) to NucleaSeq
data. Orange/Purple indicates a higher/lower density of data points. (C) CorrelaƟon of model values (predicƟon)
to CHAMP data. Darker color indicates a higher density of data points. (D) CHAMP data for off-targets with con-
secuƟve mismatches. Values on the verƟcal/horizontal axis indicate the first/final mismatch in the stretch. (E)
Model predicƟon of the data shown in figure D.
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ed close HNH

close HNH
seed (’fast’)

Figure S3.4: related to Figure ??. Free-energy landscapes at varying nuclease concentraƟons. Free-energy
landscape for 0.001nM (blue) and 100nM (grey) Cas9-sgRNA interacƟng with on-target DNA. The height of the
first effecƟve barrier is modulated by nuclease concentraƟon, while the height of the second remains constant.
Hence, at higher nuclease concentraƟons, the difference between dCas9 binding and Cas9 cleavage rates is more
pronounced.
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Figure S3.5: related to Figure ??. comparing single-mismatch profiles for various guides (data taken across the
literature). (A) Cleavage acƟvity w.r.t on-target, for different guides. Data from Doench et al. [? ] (processed
dataset from Zhang et al. [? ]). (B) Cleavage acƟvity w.r.t on-target, for different guides. Data from Hsu et al. [?
] (processed dataset from Zhang et al. [? ]). (C) Cleavage acƟvity w.r.t on-target, for different guides. Data from
PaƩanayak et al. [? ]. (D) NucleaSeq data for guide used throughout this study (orange triangles) and a second
guide (green squares).
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4
Why Argonaute is needed to

make microRNA target search
fast and reliable

MicroRNA (miRNA) interferes with the translation of cognate messenger RNA
(mRNA) by finding, preferentially binding, and marking it for degradation.
To facilitate the search process, Argonaute (Ago) proteins come together with
miRNA, forming a dynamic search complex. In this review we use the language
of free-energy landscapes to discuss recent single-molecule and high-resolution
structural data in the light of theoretical work appropriated from the study of
transcription-factor search. We suggest that experimentally observed internal
states of the Ago-miRNA search complex may have the explicit biological func-
tion of speeding up search while maintaining specificity.

This chapter has been published as: M.Klein*, S.D.Chandradoss*,M.Depken and C.Joo. Why Argonaute is needed
to make microRNA target search fast and reliable. Seminars in Cell and Developmental Biology 65 20–28 (2017)
(*co-first authors)
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4.1. Introduction

E ukaryotes regulate gene expression post-transcripƟonally through the RNA interfer-
ence (RNAi) pathway. This pathway begins with the transcripƟon of non-coding RNA

and its subsequent maturaƟon into microRNA (miRNA). To facilitate search and suppres-
sion of target messenger RNA (mRNA), Argonaute (Ago) proteins join together with the
miRNA molecule, forming an efficient search complex [? ? ]. In the pool of cellular RNA,
the search complex finds mRNA cognate to its miRNA and primes its degradaƟon. As the
search relies on thermal moƟon, the funcƟoning of the search complex can be understood
in terms of diffusion and the binding-energy landscape of mRNA-Ago-miRNA interacƟons.
In this Review, we discuss recent single-molecule and structural data on Ago, and borrow
free-energy consideraƟons and theory from transcripƟon-factor search, highlighƟng how
several of the observed Ago conformaƟons could funcƟon to speed up the search process.

1D hopping

1D sliding

Intersegmental 
       transfer

3D diffusion

Figure 4.1: Facilitated diffusion. Four different modes of search can in principle be disƟnguished. 1) 3D search:
An Argonaute protein probes a new sequence by first unbinding, then diffusing through the cytosol, and finally
binding to probe a new uncorrelated site. 2) Sliding: A non- specifically bound protein laterally diffuses along the
mRNA to probe a new site, probing every potenƟal intermediate site from the start to the new site. 3) Hopping:
A non-specifically bound protein unbinds, but quickly rebinds again to a site close by (along the RNA) from where
it unbound, but not necessarily probing every site in between. 4) Intersegmental transfer: a hopping mechanism
where unbinding and binding posiƟons are correlated in 3D space, but far apart along the RNA. This is possible
due to the coiled conformaƟon RNA adapts in vivo. binding

4.2. Target search in 1D and 3D
Ever since the iniƟal observaƟons of an astonishingly high associaƟon rate of the E. coli Lac
repressor to the lac operon [? ], researchers have been trying to understand general mech-
anisms that could speed up target search on nucleic-acid templates. In their seminal work
[? ], Berg, Winter and von Hippel proposed a facilitated diffusion mechanism by which the
protein combines three-dimensional diffusion through the cytoplasmwith lateral diffusion
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along the DNA (see Fig.??) [? ]. We here qualitaƟvely summarize the theoreƟcal argu-
ments behind this suggesƟon and review the experimental evidence for lateral diffusion
by various search complexes.

4.2.1. Facilitated diffusion enables rapid target search of miRNA
Though facilitated diffusion was originally aimed at transcripƟon-factor search on DNA, the
same arguments apply to any searcher along a nucleic acid sequence, including Ago-miRNA
search on RNA. The benefit of employing both 3D and 1D search can be qualitaƟvely un-
derstood as follows: To find the next sequence to probe, it will always be faster to diffuse a
short distance laterally along the RNA (through hopping and sliding; Fig. ??) than to diffuse
a long distance through the cytosol. As lateral diffusion brings you to close-by sites, there
exists a point beyond which the search complex starts predominantly probing sites already
visited. At this point it becomes favorable to move to an unprobed RNA neighborhood by
diffusing through the cytosol. Minimizing redundancy of the one-dimensional (1D) search
thus comes at the cost of employing the slower 3D search, and there exists an opƟmum
parƟƟoning between the two [? ? ? ? ? ].

4.2.2. Experimental evidence for lateral diffusion during target search
Single-molecule fluorescence studies brought direct evidence of lateral diffusion during
molecular target search, including sliding of transcripƟon factors [? ? ], DNA repair proteins
[? ? ? ] zinc-finger proteins [? ], and the DNA recombinaƟon protein RecA [? ]. Like
Argonaute, RecA makes a nucleoprotein complex (a RecA—single-stranded DNA filament)
that is ready to basepair for target search [? ? ? ? ? ]. In order to invesƟgate lateral
diffusion of Ago-miRNA on RNA, we adopted an in vitro single-molecule FRET assay that
was developed for studying RecA-mediated target search [? ]. We placed two idenƟcal
binding sites on a single target RNA strand, each of which led to a different FRET efficiency
with Ago-miRNA bound [? ]. We observed that a substanƟal fracƟon of the binding events
(> 50%) shuƩled between two strong binding posiƟons via rapid lateral diffusion. When
using a volume-occupying reagent (PEG) to mimic physiological condiƟons, most binding
events (> 90%) displayed shuƩling by the same Ago-miRNA complex. This suggests that
lateral diffusion could also be important for in vivomicroRNA search.

4.3. Multiple protein configurations for fast lateral dif-
fusion and stable target recognition

While target search is sped up by facilitated diffusion, Slutsky and Mirny [? ? ] argued that
it is not possible to have both fast lateral diffusion and stable/preferenƟal binding to the
target using a single nucleoprotein conformaƟon. The more stable binding to the target is,
the more stable binding to similar sequences also becomes, and the lateral diffusion slows
down as it gets increasingly trapped at non-target sites. To understand what is needed
for the resoluƟon of this apparent paradox, we now follow Slutsky and Mirny [? ? ] and
consider the staƟsƟcal variaƟon of binding energies along the substrate (which for us is
mRNA).
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Figure 4.2: Search-stability paradox. (A) Energies of the binding sites are shown as short black horizontal mark-
ers. Being a sum of base pairing energies, binding energies are (approximately) Gaussian distributed with a stan-
dard deviaƟon ᎟. The target site is separated from the other binding sites by an energy of about ጂፄ. When
diffusing laterally, the minimal barrier towards diffusion is set by the energeƟc difference between neighbouring
sites (ጂፄᐯ). In reality there are intervening barriers, as depicted by the dashed line. With liƩle loss of generality,
we will ignore these addiƟonal contribuƟons to the barriers and focus on the best-case scenario. (B) RecogniƟon
mode − Stable binding, but slow search: A larger difference between target and non-target energies comes at
the cost of having larger barriers towards diffusion. The right panel shows the complete distribuƟon of energeƟc
states (standard deviaƟon ᎟R) of which a subset is ploƩed in the leŌ panel. The typical (minimal) barrier towards
diffusion (ጂፄᐯR) and differenƟal binding energy (ጂፄR) are indicated. (C) Search mode − Fast search, but no sta-
ble binding: Decreasing the barriers also decreases the difference between target and non-target energy, which
hampers the ability of the search complex to selecƟvely bind to the target. The right panel shows the complete
distribuƟon of energeƟc states (standard deviaƟon ᎟S) of which a subset is ploƩed in the leŌ panel. The typ-
ical (minimal) barrier towards diffusion (ጂፄᐯS ) and differenƟal binding energy (ጂፄS) are indicated. (D) Search
+ RecogniƟon - Fast search and stable binding: If the search complex posesses (at least) two disƟnct binding
modes, it becomes possible to combine the landscapes of figures B (blue) and C (green) to enable rapid diffusion
(ጂፄᐯ ≈ ጂፄᐯS ) towards the target without loss of selecƟvity (ጂፄ ≈ ጂፄR) (orange).

4.3.1. Resolving the speed-stability paradox by utilizing multiple
binding modes

Apart from the target, the sequences being searched through can be considered as essen-
Ɵally random and uncorrelated [? ? ]. A substanƟally preferenƟal binding to the target
requires that a correct match has a considerable energeƟc difference (Δ𝐸, for definiƟon
see Fig. ??A) to all parƟal matches. Slutsky and Mirny assume that the search complex
has a binding energy roughly proporƟonal to the degree of sequence homology between
probed and target sequence. Under the assumpƟon that the binding energy comes only
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from individual nucleoƟde-basepairing energies, a large energeƟc difference between tar-
get and non-target posiƟons can only be achieved by large differences in pairing for each
nucleoƟde. A general increase of basepairing energies results in a larger standard deviaƟon
among binding energies at different posiƟons (compare 𝜎R of the “recogniƟon” landscape
and 𝜎S of the “search” landscape in Fig. ??B and C respecƟvely), and the diffusion constant
along the mRNA can be shown to decrease sharply [? ? ]. In Fig. ??B we illustrate how a
large recogniƟon energy will generally imply large barriers to lateral diffusion (Δ𝐸ጷ, for def-
iniƟon see Fig. ??A),resulƟng in a slow search process. Reversely, in Fig. ??C we illustrate
how small barriers to diffusion implies poor recogniƟon. Slutsky and Mirny proposed that
the coupling between recogniƟon energy and diffusion barrier (Δ𝐸ጷ being proporƟonal to
Δ𝐸) can be broken if the search complex can stochasƟcally switch between two internal
modes with different binding energy strength (Fig. ??D):

1. A search (S) mode: small affinity differences and fast diffusion (𝜎S ⪅ 2𝑘ፁ𝑇 ; Ref. [?
])

2. A recogniƟon (R) mode: large affinity differences and slow diffusion (𝜎R ⪆ 5𝑘ፁ𝑇 ;
Ref. [? ])

An efficient searcher must have evolved the ability to combine the search and recogniƟon
modes. Thereby, the non-specific (average) energies (dashed lines in Fig. ??B-D) are ar-
ranged such that all energies of the search mode lie between the energies of all non-target
sites and the target in the recogniƟon mode (see Fig. ??D). Such systems predominantly
move according to the search mode when not at the target site, but predominantly oc-
cupy the recogniƟonmode once at the target (see states with orange dots in Fig. ??D). The
effecƟve search barriers are now set by the search mode (Δ𝐸ጷ ≈ Δ𝐸ጷS) while the recog-
niƟon energies are set by the recogniƟon mode (Δ𝐸 ≈ Δ𝐸R). Both fast search and stable
recogniƟon is thus in principle possible if the searching protein possesses at least two dis-
Ɵnct bindingmodes, and the above case represents the theoreƟcal ideal scenario (formore
general cases see [? ? ? ? ? ]).

4.3.2. Experimental evidence for two initial binding modes of Ago-
miRNA

Both recent structural and single-molecule data of eukaryoƟc Ago proteins suggest that the
hybridizaƟon between guide and target is gradual and is coupled to structural changes in
the search complex. We here discuss these studies in the light of a search-stability paradox
for Ago-miRNA.
Biochemical, structural and computaƟonal analyses suggest that Argonaute divides itsmiRNA
guides into five funcƟonal domains (5’anchor, seed, mid region, 3’ supplementary region,
and the tail region) (Fig. ??). The seed region (nt 2–8) is crucial for gene suppression [?
? ? ? ? ? ? ], and it was shown that protein mediated interacƟons stabilize nt 2–6 into
an A-form-helix that exposes nt 2–4 (or 2–5) for base paring with the target (Fig. ??A) [?
]. Based on this observaƟon, Schirle et al [? ] proposed a step-wise target recogniƟon for
human Argonaute-2 (hAgo2), in which the iniƟal recogniƟon of the target occurs in the 5’
part of the miRNA. Two subsequent single-molecule studies showed that Ago-miRNA in-
deed uses this so-called sub-seed for the iniƟal weak recogniƟon. Solomon et al designed
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Figure 4.3: Structural and domain overview of hAgo2 and miRNA. (A) The binary structure of hAgo2-miRNA
showing fourwell conserveddomains amongArgonaute proteins (snapshot of the structure 4W5N taken in pymol)
(B) Argonaute proteins dividemiRNA(orange) in to several domains. The 5’ phosphate and nt 1 ofmiRNA (anchor)
is bound to the pocket in the MID domain. The nt 2–8 are known as seed sequence, as they are crucial for iniƟal
targeƟng. The nt 9–10 have the least significant role in target recogniƟon and are known as the mid region. The
3’ supplementary region is comprised of nt 13–16, they also have considerable role in stabilizing miRNA-target
interacƟon. The nucleoƟdes beyond the 16th do not base pair with the target and are called the tail region. The
3’ OH is bound to the binding pocket in PAZ domain making it as a 3’ anchor. The t1 Adenosine (t1A) in the target
RNA (pink) binds to the binding pocket in MID domain..

di-nucleoƟdemutaƟon constructs formouse Ago-miRNA andmeasured the unbinding rate
from the target RNA [? ]. We have also shown that, when the paired region was gradually
shrunk from the full seed (nt 2-8) to only the first three nucleoƟdes (nt 2-4), no difference
in the binding rate was noƟceable [? ]. These two results showed that it is only the first
three nucleoƟdes of the seed that are used to maintain weak interacƟon during the iniƟal
search.
The two single-molecule works also suggested that Ago-miRNA exhibits a sharp increase
in the binding affinity when the number of paired nucleoƟdes changes from 6 to 7 [? ? ].
Comparison of crystal structures suggests that this property originates from the fact that
Argonaute makes the guide kink away from the A-form stacked structure in several places
[? ? ? ? ]. The most prominent kink disrupƟng the helical arrangement of the guide is
between nt 6 and 7 (Fig. ??B). Base paring to the target, therefore, requires a shiŌ of the
helix-7 that clashes with the incoming target. AŌer pairing of nt 2-4, hAgo2 undergoes a
conformaƟonal change leading to a 4Å displacement of the helix-7 loop and allowing base
pairing of nt 6–8 (Fig. ??C). It was hypothesized that the sharp increase in the Ɵme bound
between having 6 and 7 nt matching is caused by the conformaƟonal change of the helix-7
moƟf [? ]. We here suggest that Ago makes a change from a weak binding (search) mode
using nt 2- 4 to a strong binding (recogniƟon) mode using a full seed through the confor-
maƟonal change of the helix-7.
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Figure 4.4: Seed of miRNA and hAgo2-helix7. (A) NucleoƟdes 2–4 (green) of the guide RNA are well exposed
by residues in the PIWI domain (golden surface) possibly for iniƟal target recogniƟon (snapshot of the structure
4W5N taken in pymol). (B) (B) The access to nt 5–7 of the guide (green) is blocked by the helix-7 moƟf (red).
The base paring of target to guide nt 5–7 would require displacement of helix-7 (snapshot of the structure 4W5N
taken in pymol). (C) Upon base paring with the target (grey) the helix-7 moƟf is displaced by 4 Å compared to
guide-only structure. The displacement of helix-7 removes the constraints from nt 6 and 7 (yellow) compared to
guide only structure (green) making nt 6 and 7 available for base paring (see the close-up view in the right panel).
(snapshot of the structures 4W5N (guide only) and 4W5O (guide and target) taken in pymol).

4.3.3. The experimental evidence for additional binding modes of
Ago-miRNA

In addiƟon to the helix-7 movement, more conformaƟonal changes take place aŌer seed
pairing is achieved, and before the bound Ago-miRNA complex becomes cleavage compe-
tent. First, binding of the supplementary region (nt 13-16) ensuing the seed pairing en-
hances the binding stability of Ago-miRNA [? ]. But the pairing beyond nt 8 is restricted by
a physical constraint [? ](Fig. ??A). Widening up of a channel between PAZ and N-terminus
domains allows for a rearrangement of the disordered supplementary region (nt 13-16) of
the miRNA into a helical A-form, preparing it for pairing with the target RNA (Fig. ??B)[? ].
It remains to be seenwhether target recogniƟon is enhanced by this addiƟonal checkpoint.
Second, biochemical and single-molecule studies have shown that the base paring in the
mid region is necessary for cleavage of target RNA [? ? ]. But Jo et al also observed that a
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Figure 4.5: Cleavage competent state. (A) Structure showing the base pairing between a guide strand (green)
and a target strand (red). The base pairing beyond nt 8(g8) is blocked by a residue F811 in a helix of the PIWI
domain (snapshot of the structure 4W5O taken in pymol). (B) A binary structure of hAgo2-miRNA showing the
disordered 3’ supplementary region of guide RNA (green) passing through a channel between N domain (blue)
and PAZ domain (purple) (snapshot of the structure 4W5N taken in pymol). (C) A ternary structure of hAgo2-
miRNA and its target showing an A-form helical arrangement of the 3’ supplementary region of guide (green) in
ternary structure (snapshot of the structure 4W5O taken in pymol). sites

significant porƟon of Ago-miRNAs were not able to cleave the target RNAs in spite of their
perfect complementarity [? ? ]. The unsuccessful cleavage of perfect complementary
target might be the resultant of a failure to induce an addiƟonal conformaƟonal change
needed for cleavage that involves posiƟoning of Ago’s catalyƟc residues residing near nt
9-10 of the miRNA.
Third, Ago uses its PAZ domain to precludemiRNA from being Ɵghtly associated with target
RNA. An earlier biochemical study reported that bare RNA as short as 12bp is long enough
for stable hybridizaƟon ( a year of life Ɵme) [? ]. But it was observed that Ago-miRNA (or
Ago-guide DNA) oŌen dissociated from its target within seconds to minutes aŌer binding
[? ]. This reversible binding, which is speculated to reduce off-targeƟng [? ], is possible be-
cause the 3’ end of guide RNA is anchored to the PAZ domain and this lowers the binding
affinity of Ago-miRNA (especially at the 3’ end) to target RNA [? ? ? ? ? ? ].

In addiƟon to the complex interacƟons between Ago and a guide strand, a direct inter-
acƟon between Ago and target RNA also contributes to the target selecƟon. Schirle et al
[? ] showed that hAgo2 interacts with the adenine nucleoƟde of the target when it is op-
posite to the 1st nucleoƟde of the guide. Through a water network, the residues in the
MID domain (Fig. ??A) specifically recognize the t1A anchoring the Ago-miRNA complex to
the target. Using a single-molecule assay they showed that t1A does not influences iniƟal
target recogniƟon but increases the residence Ɵme of Ago-miRNA on to the target RNA,
which might enhance its cleavage efficiency [? ].
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4.4. Energy landscape of miRNA target search
Having discussed the evidence that a series of conformaƟonal changes are needed to ini-
Ɵate stable binding and cleavage of target mRNA, we now discuss how conformaƟonal
changes effect the binding-energy landscape. When Ago iniƟally scans the target RNA it
exposes only nucleoƟdes 2-4 of the miRNA, termed the sub-seed. In this search mode it
does not discriminate strongly based on RNA sequence, and lateral diffusion is likely rapid.
A complete match of the sub-seed stabilizes a conformaƟonal change that exposes the re-
mainder of the seed (nt 2-8) for base pairing, and, once paired, it slows down the diffusion
in this recogniƟon mode (Fig. ??A). Upon encountering a sequence bearing complemen-
tarity to the enƟre seed, the helix-7 is displaced to allowmiRNA to fully pair with the target,
and the Ago-miRNA complex arrives in this more stable recogniƟon state (Fig. ??A and B).
We suggest that the funcƟon of these various states is analogous to the funcƟon of internal
states in transcripƟon-factor search (Fig. ??D).
In figure ??B we sketch a free-energy landscape of the dominant configuraƟon at varying
degrees of base pairing for a perfect match. TransiƟons requiring conformaƟonal changes
cost energy, increasing barriers to further base pairing. We construct a sketch of the land-
scape based on a single-molecule study that reported the existence of various pathways
even when the full sequence of miRNA matches with a target [? ]: a significant fracƟon
of the populaƟon showed transient binding ( 10%) and stable binding with no cleavage
( 30%). Assuming that the largest barrier to further basepairing originates from the re-
quired movement of helix-7, the substanƟal fracƟon of transiently binding proteins indi-
cates that this barrier must come close to the barrier to unbind. Further, the even larger
fracƟon of stable but non-cleaving complexes indicates that the average binding energy
past helix-7 is strong, and that the cleavage rate is slow compared to experimental Ɵmes,
but fast compared to unbinding.

With these general consideraƟons, we conclude that the free-energy landscape of Fig. ??B
captures at least one search mode (pre-seed pairing) and at least one recogniƟon mode
(post-seed pairing). These two modes could be further split up, e.g. the seed pairing
into sub-seed and full seed pairing. SƟll, the general principle behind resolving the speed-
stability paradox should apply. To determine the quanƟtaƟve effects of this energy land-
scape will require addiƟonal theoreƟcal work accounƟng for gradual base pairing and a
series of conformaƟonal changes. Using single-molecule techniques and high resoluƟon
structural studies, it will also be possible to test the effect of Ago’s conformaƟonal changes
on target search by analysing mutated proteins or directly observe conformaƟonal switch-
ing (for instance by using FRET such as done for Cas9 in [? ]).

4.5. Outlook
We have reviewed the principles behind facilitated diffusion and the speed-stability para-
dox in general target search processes, as well as the experimental evidence for facilitated
diffusion in miRNA target search. We further discussed the evidence for mulƟple search
states in theAgo-miRNA search complex, which could help resolve the speed-stability paradox—
simultaneously enabling the search to be fast and the binding to the target to be strong.
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Figure 4.6: Target search process by hAgo2. (A)A model summarizing conformaƟonal changes during target
search by hAgo2-miRNA. In light of the search-stability paradox discussed in Fig. ??we idenƟfy a two searchmodes
(pink + green) and a recogniƟon mode (blue). AlternaƟng between search and recogniƟon modes is enabled
through themovement of the helix-7moƟf (orange). (B) SchemaƟc free-energy diagram for Ago-microRNA target
recogniƟon. Forming bonds between target and guide (horizontal axis) makes the complex more stable (verƟcal
axis). In light of the search-stability paradox, as proposed by Slutsky andMirny and discussed in Fig. ??, we idenƟfy
at least 1 searchmode (pre-seed pairing, green arrow) and at least one recogniƟonmode (post-seed pairing, blue
arrow). To resolve the paradox, Argonaute can use the movement of its helix-7 moƟf to switch between search
and recogniƟon modes (orange arrow). PotenƟally, addiƟonal modes can be disƟnguished, such as sub-seed
pairing (pink arrow).
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4.5.1. Further insight into Ago-miRNA target search can improve
microRNA target prediction algorithms

Due to the complex nature of the mRNA targeƟng process, it is far from straighƞorward
to predict what genes are silenced by a parƟcular miRNA. Experimentally, mRNA targets
have been found by analysing the effect of miRNA expression on protein producƟon or by
performing binding assays [? ]. For such approaches to work, one needs to know what tar-
get gene should be considered from the outset. Using bioinformaƟcs algorithms, potenƟal
target sites are scored, and high scoring targets are subsequently tested in experiment.
Simple sequence homology between the mRNA to the guiding miRNA does not by itself
give an accurate predicƟon of targets. Presently, typical predicƟon algorithms are largely
phenomenological in nature, for example, assigning higher scores to sequences that fully
match the seed of the miRNA and/or are evoluƟonary conserved. AddiƟonally, account-
ing for the secondary structure of mRNA and the sequence outside of the targeted 3’-UTR
further improves predicƟons [? ? ]. A recent combined bioinformaƟcs and in vivo study
showed that there are at least 14 addiƟonal sequence features (for example the length 3’-
UTR region and the predicted structural accessibility of the RNA) of themRNA that improve
microRNA target predicƟon algorithms [? ]. Yet, despitemuch effort, predicƟon algorithms
oŌen point to many target sites that cannot be validated experimentally or fail to pick out
targets that have been previously validated. Single-molecule studies allow one to study
how Ago-miRNA’s interacƟon with RNA binding proteins effects target affinity. Synthe-
sising such molecular level understanding into the free-energy landscapes that we have
discussed in this review should help improving the scoring funcƟons of target predicƟon
algorithms by taking the non-equilibrium features of the system into account. AddiƟonally,
predicƟon algorithms can potenƟally be improved by taking sequences neighbouring the
target into account [? ? ? ? ]. Chandradoss et al. showed that, when two idenƟcal targets
are neighbouring each other, the total retenƟon Ɵme was substanƟally larger than what
can be expected on theoreƟcal grounds for two non-interacƟng targets [? ]. This synergisƟc
effect might also be observed when a target is neighboured by sub-seed sequences. It will
be interesƟng to determine whether this putaƟve effect exists in vivo. Possibly, modelling
the physical interacƟon with neighbouring sites, and accordingly assigning higher scores
to those mRNA sequences with a high-density of sub-seed sequences, could then improve
target predicƟon algorithms.

4.5.2. Implications for other target search systems
In the cell, mulƟple nucleic acid-mediated target search processes take place. Among them,
RecA-mediated target search is the most thoroughly studied system. Qi et al. [? ] se-
lecƟvely observed stable interacƟons between a RecA-ssDNA homologue and DNA in a
DNA curtain experiment, in which single-molecule signals were only observed when ss-
DNA and dsDNA matched with each other for at least 8 nucleoƟdes. Furthermore, using
singlemolecule FRET, Ragunathan et al. [? ] observed short-lived interacƟons (1-10 s)
between RecA-ssDNA and target DNA that had 5-7 matching nucleoƟdes. The difference
between having 7 or 8 matches suggests there exists a rate limiƟng step hampering RecA-
ssDNA filaments to extend base pairing beyond the 7th nucleoƟde (similar to the barrier
represenƟng the movement of the helix-7 moƟf in Figure ??B).
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Recently, great aƩenƟon has been brought to the CRISPR/Cas system, an adapƟve im-
mune system in bacteria, which uses RNA as a guide to target foreign DNA or RNA [? ].
CRISPR’s target search involves a protein- DNA interacƟon (recogniƟon of a 3-nt sequence,
so-called PAM sequence) and RNA-DNA interacƟons. Biochemical studies suggested that
it is the PAM recogniƟon that occurs prior to the seed recogniƟon [? ? ? ]. Recently, a
structural study showed that the first 8 nucleoƟdes of Cas9’s guide are pre-organized in a
helical Aform, similar to the seed sequence of microRNA in Argonaute [? ]. A recent FRET
study indicated that there is another mode that follows binding of the seed recogniƟon
[? ]. The authors showed that only when the guide RNA of Cas9 makes extensive base
pairing ( 16nt out of the 20nt guide), a nuclease domain (HNH) migrates towards the target
DNA. Altogether, the findings imply that CRISPR/Cas9, similar to Argonaute, usesmore than
two binding modes to overcome the speed-stability paradox (‘PAM only’ to ‘PAM+seed’ to
‘cleavage competent’). Whereas a DNA curtain assay ruled out long distance lateral dif-
fusion, it will be interesƟng to find out whether the CRISPR-Cas system makes any local
lateral excursions when searching for the PAM sequence. Similarly, no large scale lateral
diffusion has been observed for RecA/Rad51 systems using DNA curtain assays (>100nm
resoluƟon) [? ], while short-range lateral diffusion was observed in single-molecule FRET
experiments (nanometer resoluƟon) [? ] .

Finally, itwill be interesƟng tofindout howmuch the searchmechanismof humanArgonaute-
2 is shared with other target search systems such as those menƟoned in this review and
different classes of Ago proteins that use DNA to target DNA [? ? ] and RNA to target DNA
[? ] as well as PIWI proteins [? ].
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5
Argonaute bypasses cellular
obstacles without hindrance

during target search

Argonaute (Ago) proteins are key players in both gene regulation (eukaryotes) and
host defense (prokaryotes). Acting on single-stranded nucleic-acid substrates,
Ago relies on base pairing between a small nucleic-acid guide and its comple-
mentary target sequences for specificity. To efficiently scan nucleic-acid chains
for targets, Ago diffuses laterally along the substrate and must bypass secondary
structures as well as protein barriers. Using single-molecule FRET in conjunc-
tion with kinetic modelling, we reveal that target scanning is mediated through
loose protein-nucleic acid interactions, allowing Ago to slide short distances over
secondary structures, as well as to bypass protein barriers via intersegmental
jumps. Our combined single-molecule experiment and kinetic modelling ap-
proach may serve as a novel platform to dissect search process and study the
effect of sequence on search kinetics for other nucleic acid-guided proteins.

This chapter has been published as: Cui, T.J., Klein, M., Hegge, J.W., Chandradoss, S.D., van der Oost, J., Depken,
M., and Joo, C. Argonaute bypasses cellular obstacles without hindrance during target search. Nature Communi-
caƟons 10-4390 (2019)
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5.1. Introduction

Target recogniƟon by oligonucleoƟde guides is essenƟal in cellular development, differen-
ƟaƟon and immunity [? ? ]. Argonaute (Ago) proteins are key mediators of the target
interference process, uƟlizing short oligo-nucleoƟdes ( 20-30 nt) as guides for finding com-
plementary target sequences [? ? ]. The guide-target interacƟon iniƟates at the 5’ end of
the guide, and progresses throughWatson-Crick base pairing at the “seed” segment, which
propagates along the guide, resulƟng in target interference upon compleƟon [? ]. While
eukaryoƟc Argonautes use RNA guides to target RNA, prokaryoƟc Agos (pAgo) have been
demonstrated to use a variety of guides and targets [? ? ? ]. Depending on the pAgo type,
it uses either DNA or RNA guides to target single-stranded (ss) DNA, ssRNA or both2. The
ability of pAgos to cleave ssDNA but not double stranded DNA (dsDNA) suggests a physi-
ological role as a host defense system against ss mobile geneƟc elements6–8. Recently, a
new family of CRISPR-Cas systems that targets ssDNA—not dsDNA—have been discovered
in archaea, suggesƟng that these defense systems may be more widespread than previ-
ously thought [? ]. The number of potenƟal targets encoded in cellular DNA/RNA is vast
[? ? ? ] and Ago needs to search long stretches of polymer before finding a canonical
target. Single-molecule studies have shown that a mixture of excursions into soluƟon and
one-dimensional movements results in a search that is orders of magnitude more efficient
than is possible without lateral diffusion [? ? ]. In a previous biophysical study we sug-
gested that human Argonaute 2 (hAGO2) uses lateral diffusion along RNA for target search
[? ]. Yet, the degree of lateral diffusion remains unclear, as excessive usage of 1D diffusion
would lead to redundant re-sampling of potenƟal target sites and to problems at various
roadblocks present on the target nucleic acids [? ? ]. In addiƟon to complete dissociaƟon
into soluƟon, intersegmental jumping, in which a protein transfers between two spaƟally
close-by segments, has been shown to occur for DNA binding proteins such as restricƟon
enzyme EcoRV [? ]. AŌer binding to DNA non-specifically from soluƟon, the protein diffu-
sively scans only a limited secƟon [? ? ? ? ], and dissociates into soluƟon before rebinding
to a new secƟon. Use of such a mechanism would lead to reduced sampling redundancy,
and the possibility to circumvent obstrucƟons when proteins search for their targets.

Previous studies have shown that certain DNA/RNA-guided proteins interact with DNA
through non-specific electrostaƟc interacƟons [? ? ? ], but the strength of these inter-
acƟons and their behaviour on roadblocks and secondary structures is not understood.
Since these interacƟons are typically short-ranged [? ? ? ] and short-lived [? ? ? ? ? ?
? ], a method offering high spaƟo-temporal resoluƟon is required to study these interac-
Ɵons. Here we make use of single molecule Förster Resonance Energy Transfer (FRET) to
elucidate the mechanism of ssDNA target search by a mesophilic Ago from the bacterium
Clostridium butyricum (CbAgo). We show that CbAgo does not remain in Ɵght contact
with the DNA backbone, enabling it to bypass secondary structures along the nucleic-acid
chain—all while retaining the ability to recognize its target. AŌer sliding locally, the protein
is able to reach distant sites (>100 nt) along the DNA through intersegmental jumps and
then resumes sliding. These different modes of facilitated diffusion allow Ago to rapidly
search through nucleic acid segments, as well as to bypass substanƟal obstacles during
target scanning.



5.2. Results

5

113

5.2. Results
5.2.1. Single-molecule kinetics of CbAgo binding
To elucidate the complexity of the target search mechanism, we made use of the high spa-
Ɵal sensiƟvity of single-molecule FRET. We studied a minimal Argonaute complex that con-
sists of CbAgo, loaded with a 22-nt DNA guide (small interfering DNA, siDNA) [? ]. By us-
ing total internal reflecƟon fluorescence (TIRF) microscopy, we recorded the interacƟons
of CbAgo-siDNA with target DNA. Target DNA was immobilized on a PEG-coated quartz
surface in a microfluidic chamber through bioƟn-streptavidin conjugaƟon. Guide-loaded
CbAgo was introduced to the microfluidic chamber by flow. The target was embedded
within a poly-thymine sequence and labelled with an acceptor dye (Cy5) (Figure ??a). The
guide construct was labelled at nt 9 from the 5’-end with a donor dye (Cy3) (Figure ??b).
A 532-nm laser excitaƟon resulted in donor excitaƟon when the protein loaded with the
guide DNA interacted with the target DNA. Once the CbAgo-siDNA complex became bound
to the target, the proximity of the donor dye to the acceptor dye on the target resulted in
high FRET efficiency. This was followed by a sudden disappearance of the signal, indicaƟng
that the complex dissociated from the target and diffused into the free soluƟon. Freely
diffusing molecules move too rapidly (∼ 𝜇s) in and out of the evanescent field for the cur-
rent Ɵme resoluƟon of the experimental setup (100 ms) and were therefore not recorded.
We found that CbAgo is not able to target dsDNA directly (Figure ??a-b). Likewise, when
a ssDNA target with one base pair complementarity to the seed moƟf of the guide was
used, only transient interacƟons (∼0.45 s) were detected (Figure ??c-d), and no accurate
binding profile could be extracted from the FRET histogram (Figure ??e). To observe target
search that involves intrinsically transient interacƟons, we determined the opƟmal target
moƟf for recording binding events. The opƟmalmoƟf should provide binding events longer
than our detecƟon limit of 100 ms, but sƟll lead to dissociaƟon events within the Ɵme of
our measurement (200 s). To determine the opƟmal moƟf, the complementarity between
guide and target was incrementally extended from nt 2 to 8 of the guide, showing a gradu-
ally increasing dwell Ɵme of the Ago-siDNA complex. We found that increasing the number
of complementary base pairs above 6 resulted in stable binding beyond the photobleach-
ing Ɵme (Figure ??c). To maintain weak interacƟons, we conƟnued our experiments using
a siDNA with three-base complementarity (N=3) with the target (nt 2-4) (Figure ??f). This
gives a well-defined FRET populaƟon in the FRET histogram (Figure ??h), unlike one base-
pair complementarity. Our esƟmaƟon of the photobleaching rate (1.4 x 10ዅኽ sዅኻ) (Figure
??d) was an order of magnitude lower than the dissociaƟon rate (2.7 x 10ዅኼ sዅኻ) (Figure
??g), indicaƟng that photobleaching does not affect our esƟmaƟon of the dissociaƟon rate.

5.2.2. Lateral diffusion of CbAgo
It was previously shown that an Ago-guide complex does not directly bind a specific target
site from soluƟon, but rather binds non-specifically to random posiƟons along a surfaced-
immobilized nucleic acid construct [? ]. Such non-specific interacƟons of CbAgo-siDNA
along target DNA are too short-lived to resolve in the absence of a canonical target moƟf
(Figure ??c), and in the presence of such a moƟf there was sƟll no lateral diffusion visible
(Figure ??f). As we were unable to resolve lateral diffusion by CbAgo from non-specifically
bound regions to the target, we quesƟoned whether the observed stable signal for three
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Figure 5.1: Single molecule imaging of target binding by siDNA:CbAgo complex. a, ImmobilizaƟon scheme of the
Argonaute-guide DNA complex. ssDNA is immobilized on a PEGylated quartz slide surface. Presence of the Ago-
siDNA complex is detected by specific binding to target site (light yellow) resulƟng in high FRET. b, Sequences of
guide (green) and target DNA. Guide is labelled on the 9th nucleoƟde posiƟon from the 5’ side. c, RepresentaƟve
FRET trace of a single molecule experiment at 100 mM NaCl showing a transient interacƟon between CbAgo and
a poly-T strand. Time resoluƟon is 100 ms. d, Dwell Ɵme distribuƟon of the Argonaute in absence of target moƟf.
e, FRET values of the transient interacƟons of (d). f, RepresentaƟve FRET trace of a single molecule experiment
showing the interacƟonbetweenCbAgo and a 2-4 nt (N=3)moƟf. g, Dwell ƟmedistribuƟonDwell ƟmedistribuƟon
of N=3 binding events with the mean dwell Ɵme of 37 s. h, FRET histogram of binding events, showing a single
FRET populaƟon for N=3 at E=0.78.

complementary base pairs is due to stable binding to the target or contains lateral excur-
sions away from the target but below our Ɵme resoluƟon. In case of the laƩer, measured
apparent dwell Ɵmes (Figure ??g) would consist of the combined dwell Ɵmes of many tar-
get escapes through lateral diffusion, each followed by rapid recapture below the detecƟon
limit, before CbAgo eventually unbinds from the DNA (Figure ??g). We show that such a
process of repeated recapturewould result in an exponenƟal distribuƟon of apparent dwell
Ɵmes, in accordance with Figure ??g (see S.I.). To overcome the temporal resoluƟon limit,
we adopted a tandem target assay [? ? ]. While lateral diffusive excursions from a trap are
too short-lived to be resolved in the presence of only a single target, a second target can
trap an excursion for long enough to be observed. We placed two idenƟcal opƟmal targets
(site 1 and site 2) separated by 22 nt (Figure ??a) along the DNA construct. Both targets
base pair only with the first three nucleoƟdes (nt 2-4) of the guide bound by CbAgo. As
the second target is located further away from the acceptor dye, binding the second tar-
get results in a lower FRET efficiency than binding the first target. This difference in FRET
values allows us to determine which of the two targets CbAgo-siDNA is bound to (Figure
??b). The respecƟve distance and FRET efficiency between the first binding site (site 1)
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and the acceptor dye (Cy5) remained the same as for the single target assay (E 0.78), while
an addiƟonal peak appeared at a lower FRET efficiency for the second target (E 0.43, Fig-
ure ??c). AŌer binding to one of the target sites, a majority of the binding events (87.8%)
resulted in CbAgo-siDNA shuƩling to the other target without loss of FRET signal. Under
our standard experimental condiƟon (100 mM NaCl), an average of 13.5 shuƩling events
occur per binding event (Figure ??d). When the experiment was repeated for guides and
targets with complementary increased to N=6 (nt 2-7), only 15.1% of the traces showed
the shuƩling signature within our Ɵme window (Figure ??f). This shows that the shuƩling
signature is controlled by interacƟons between CbAgo-ssDNA and the target moƟf. With a
6-nt match, the target is strongly bound, and we are less likely to observe a shuƩling event
within our observaƟon window.
InteresƟngly, the average dwell Ɵme of the first target (Figure ??g) decreased from 37 s
to 1.7 and 1.8 s aŌer adding a second target in its vicinity (Figure ??e). This observaƟon
is in agreement with our lateral diffusion model, since with close-by targets, each sub-
resoluƟon diffusive excursion has some probability to be caught at the opposing target.
To further test our claim that the transiƟon between targets occur through lateral diffu-
sion, we use single-molecule analysis soŌware [? ] to extract the average Ɵme between
shuƩling events (Δ𝜏shuƩle) from traces (Figure ??).

5.2.3. Kinetic modelling of lateral diffusion
To determine how lateral diffusion contributes to the shuƩling, we kineƟcally model how
Δ𝜏shuƩle depends on the distance between traps. The DNA construct is modelled as a series
of binding sites along which CbAgo will perform an unbiased random walk by stepping to
neighboring nucleoƟdes. The rate of stepping away from the target is 𝑘esc in both direc-
Ɵons, while at non-specific sites (poly-T), stepping is assumed to be near instantaneous—an
approximaƟon jusƟfied by the fact that lateral excursions are never resolved in the exper-
iments. The Ɵme needed for FRET transiƟons to occur (named “shuƩling Ɵme”, Δ𝜏shuƩle)
is equivalent to the apparent dwell Ɵme at a single FRET state. In the S.I. we construct a
diffusive model capturing the effect of Ago’s repeated retrapping before shuƩling to the
other trap. The model shows that the shuƩling Ɵme from the target grows linearly with
the separaƟon 𝑥target between the targets

Δ𝜏shuƩle(𝑥target) =
𝑥target
𝑘esc

(5.1)

The linear dependence of the shuƩling Ɵme with trap separaƟon might seem puzzling at
first, given that diffusive Ɵmescales usually show a quadraƟc dependence on distances.
Here though, it is not the diffusive steps themselves that directly contributes to the shut-
tling Ɵme, but rather the changing probability to geƫng retrapped before shuƩling. In
support of this model, we observed that the apparent shuƩling Ɵme Δ𝜏shuƩle(𝑥target) in-
creases approximately linearly when the distance between the targets increases through
11, 15, 18 and 22 nt (Figure ??). A fit to EquaƟon 1 reveals that CbAgo-siDNA complexes
escape the target site at a rate of 15.8 Ɵmes per second (𝑘esc = 15.8𝑠ዅኻ) in either direc-
Ɵon.
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Figure 5.2: ShuƩling signature of CbAgo appears in presence of two targets. a, In the top right corner the DNA
sequence of guide and target for 22 nt separaƟon between targets. Here the distance is defined as the distance
from beginning of a target to the beginning of the next target. The placement of the second target (site 2) results
in the appearance of an addiƟonal FRET signal, with lower FRET efficiency. b, (Top) RepresentaƟve shuƩling trace
of a 22 nt separaƟon tandem target at 100 mMNaCl for N=3. (BoƩom) The corresponding FRET states (blue) with
the fiƩed HMM trace on top (red). (Right) FRET histogram of the respecƟve Ɵme trace. Time resoluƟon is 100ms.
c, FRET histograms of respecƟve states, with peaks at 0.43 and 0.78. d, ShuƩling event distribuƟon for the same
condiƟons (n=309). Bin size = 10. On average 13.5 shuƩling events take place before dissociaƟon. The grey bar
(n=33) marks binding events followed by dissociaƟon (no shuƩling). e, Dwell Ɵme distribuƟons of respecƟvely
the transiƟons from low FRET state to high FRET state (top) and vice versa (boƩom).

5.2.4. Ago probes for targets during lateral diffusion
Next, we placed a third target on the tandem construct (Figure ??a), keeping the distance
between each set of neighboring targets well within the regime for which we find good
agreement to EquaƟon 1 using the assay discussed above (i.e. at 11 nt trap separaƟon,
see Figure ??). We observed three different FRET levels, corresponding to CbAgo get-
Ɵng trapped at the three different targets (Figure ??b). Using Hidden Markov Modelling
(HMM), states can be assigned (Figure ??b) and transiƟon probabiliƟes can be extracted
(Figure ??c). If CbAgo returns to soluƟon between binding targets, transiƟons between
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This theory breaks down for larger distances (green).

any pair of targets will be equally probable, resulƟng in equal effecƟve rates between all
targets. However, if lateral diffusion dominates, transiƟons between adjacent sites will be
favored. The transiƟon probabiliƟes (Figure ??c) indicate that over 90% of the transiƟons
between the two outer targets (from state A to C, or from C to A) proceed through the
intermediate target site (state B). The rate to transfer from B to C and B to A is twice as
much as that of the opposite path (A to B or C to B). Using the fiƩed escape rate from
above, 𝑘esc = 15.8𝑠ዅኻ, we predict similar shuƩling Ɵmes based on our theoreƟcal model
for lateral diffusion (Figure ??d, S.I.). With no more free-parameters remaining for this
predicƟon, we take this experimental agreement with our predicƟon as further evidence
of lateral diffusion. It is noteworthy that there are about 10% direct transiƟons from A
to C and C to A without any intervening dissociaƟon. The exponenƟal distribuƟon of the
dwell Ɵmes (Figure ??b) suggests that at our current Ɵme resoluƟon this 10%may be either
due to missed events or due to the existence of an addiƟonal translocaƟon mode through
which Ago is able to bypass the intermediate target.

5.2.5. Ago target search is unhindered by structural and protein
barriers

Secondary structures are commonly found in mRNA and are also predicted to exist in sin-
gle stranded viruses [? ? ]. It is not known whether CbAgo is able to bypass the numerous
juncƟons it encounters upon scanning a DNA segment. To examine this, a Y-fork structure
(DNA juncƟon) was introduced as a road block between two targets (Figure ??a), while
keeping their separaƟon (11 nt) the same as in the tandem target variant (Figure ??f). The
construct was designed such that the labelled target was parƟally annealed at the stem
with a bioƟnylated target, thus only annealed constructs were observable on the surface
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construct were compared against the parameter-free theoreƟcal model that only uses the ፤esc ዆ ኻ኿.ዂ፬ᎽᎳ from
Figure 3. Error bars indicate the 95% confidence interval acquired from ኻኺᎷ bootstraps.

of the microfluidic device. When CbAgo binds to either of the two targets, it can reach the
other target only by crossing the juncƟon. Our measurement showed that there was no
significant difference in shuƩling Ɵme between the standard tandem-target construct and
the Y-fork construct (Figure ??b-c), indicaƟng that the Y-fork does not impede any of the lat-
eral diffusionmodes present. We have previously observed that the CbAgo-siDNA complex
is not able to stably bind to dsDNA31, demonstraƟng that the protein cannot simply track
the backbone of dsDNA (Figure ??a-b). Thus, our result suggests that the Ago-siDNA com-
plex does not maintain Ɵght contact with DNA during lateral diffusion. Maintaining a weak
interacƟon with the DNA molecule allows CbAgo-siDNA to move past the juncƟon. Next,
we quesƟoned whether CbAgo is also able to overcome larger barriers, such as proteins
which cannot reasonably be traversable through sliding alone. Lin28, a sequence-specific
inhibitor of let-7 miRNA biogenesis, has been found to associate sequence specifically to
RNA and DNA [? ]. His-tagged Lin28 was immobilized on the surface of the microfluidic
chamber (Figure ??d) aŌer which a fluorescent ssDNA fragment was added containing a
central Lin28 binding moƟf and an Ago target moƟf on either side (Figure ??d & Figure
??g). The presence of the protein blockade did not preclude Ago from reaching the dis-
tal site (Figure ??e) but noƟceably broadened the FRET peak (Figure ??f), possibly due to
protein-protein interacƟons. Although the shuƩling rate was lowered from 0.60𝑠ዅኻ to
0.27𝑠ዅኻ (Figure ??g & Figure ??e), Ago is able to bypass the obstacle. Since short-range
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lateral movement is now blocked by the protein barrier, Ago’s ability to move between tar-
gets demonstrates that the target search process also allows for intersegmental jumps, in
accordance with our observaƟon that the middle target is someƟmes skipped when tran-
siƟoning between the outer targets in Figure ??c.

5.2.6. Ago relies on flexibility of DNA segments of bypassing block-
ades

SinceAgowas observed to be able to bypass juncƟons andproteins, wequesƟonedwhether
Ago could bypass other large-profile barriers. Previously, we observed that Ago only inter-
acts transiently with dsDNA (Figure ??a-b) and thus we repurposed dsDNA as an extended
blockade. We made a construct analogous to the tandem target construct used in Fig-
ure ??a, but the targets were separated by 36 nt and complementary strands of 17 nt, 21
nt, and 25 nt were annealed to the region in between the targets (Figure ??h-i). For the
construct with a 17-nt blockade we observed a large number of shuƩling events (shuƩling
probability 65.3% upon binding) indicaƟng that a dsDNA blockade does not prohibit CbAgo
from reaching the other site (Figure ??j and Figure ??l black squares). Upon extending the
length of the dsDNA blockade, to 21 nt and 25 nt, we noƟced a drop in the percentage of
shuƩling events (63.1% and 40.4% respecƟvely) although shuƩling sƟll persisted (Supple-
mentary Fig ??). Since the sƟff segment of dsDNA decreases the shuƩling probability, we
conclude that Ago relies on the flexibility of segments for lateral diffusion. To further inves-
Ɵgate the contribuƟon of DNA flexibility, we used another construct which was shortened
(by 15 nt from 19 nt) from the 5’ side (Figure ??h boƩom sequence). Here, ssDNA coiling
was no longer possible from the 5’ side of the DNA construct (Figure ??k). We measured a
significant decrease ( 50%) in shuƩling probability for all three blockades compared to the
untruncated construct (Figure ??l), which supports that Ago relies on the flexibility of DNA
segments when transferring between them.

5.2.7. Ago uses hops to access distant DNA segments
Sliding is not expected to dominate across large distances, as the linear increase in shuƩling
Ɵme (EquaƟon ??) would render the search process prohibiƟvely slow. However, when
CbAgo was studied with tandem targets that were separated 36 nt or more, we observed
that the shuƩling sƟll persisted across larger distances (Figure ??, green region, Supple-
mentary Table 1 and Figure ??). Together with the evidence of intersegmental jumping
above, and the fact that the ssDNA can easily be coiled back to bring the second target
close to the Ago protein [? ], we speculate that there is a second mechanism of lateral
diffusion: aŌer local scanning for the target through sliding, the CbAgo complex jumps to a
different part of the segment that has looped back into proximity of the complex. From this
point on, we refer to these hops as intersegmental transfers in accordance with the current
literature (Figure ??) [? ? ]. This intersegmental jumping mechanism would enable CbAgo
to travel to new sites without fully dissociaƟng, and rescanning of the same secƟons would
be minimized [? ? ]. Based on the dependence of the single-target off-rate on the ionic
strength (Figure ??f), we expect the rate of the intersegmental jumps to also be dependent
on salt concentraƟon, while sliding should only be moderately effected since it has no net
effect on the ion condensaƟon along the substrate. In order to test the hypothesis that
short-ranged lateral diffusion is governed by sliding and long-range diffusion is governed
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Figure 5.5: Argonaute can overcome structural and protein barriers. a, SchemaƟc drawing tandem target assay
(leŌ) and the Y-fork assay (right) with 11 nt separaƟon between targets. b, RepresentaƟve shuƩling traces of the
tandem target assay (top) and Y-fork assay. c, The shuƩling Ɵme of the Y-fork juncƟon (blue bar) compared with
the tandemassay (white bar). The experimental data of both setswere taken on the samedays. Error bars indicate
the 95% confidence interval acquired from 105 bootstraps d, SchemaƟc drawing of the His-Lin28b blockade assay,
where targets are separated by 64 nt. ImmobilizaƟon happens through a bioƟn-anƟ-His anƟbody. e, Example of a
shuƩling tracewith Lin28b located in between two targets. Exposure Ɵme is 100ms. f, FRET histogram (molecules
n = 46) fit with two Gaussian funcƟons (E=0.64 for red fit and E=0.95 for dark blue fit). g, The shuƩling Ɵme of the
Lin28 assay compared with the tandem target assay for 64 nt separaƟon between targets. h, Sequences used for
the dsDNA block assay, indicaƟng the base pairing between a 17 nt, 21 nt and a 25 nt long blockade and the target
strand. The dsDNA block construct has a 19 nt flank on the 5’ side, whereas the “truncated flank” has a 4 nt flank.
i, SchemaƟc of a dsDNA block assay, where the CTC targets are highlighted with orange. j, RepresentaƟve trace of
binding and shuƩling of CbAgo on a 17 bp blockade DNA construct. k, (leŌ) SchemaƟc of dsDNA block construct
with full length flanks. (right) schemaƟc of the truncated version where the flank on the 5’ side is removed. The
thickness of the arrows indicate the observed shuƩling probability. l, The probability of shuƩling upon binding to
a CTC target ploƩed versus the blockade length (none, 17 nt, 21 nt and 25 nt) for full length flanks (black squares)
and for the truncated flanks (red circles). Error bars are given by the 95% confidence interval acquired from 10Ꮇ

bootstraps
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Figure 5.6: The relaƟve change in shuƩling Ɵme of two constructs from Figure ??, 64 nt separaƟon (dark blue
circles) and 15 nt separaƟon (light blue squares), normalized against ጂᎡᑤᑙᑦᑥᑥᑝᑖ at 200 mM NaCl. Errors of the
raƟo were determined through bootstrapping 10Ꮇ Ɵmes the raƟo of ጂᎡ/ጂᎡ200 mM NaCl

by intersegmental jumps, we altered the ionic strength of the buffer soluƟon from 10 mM
NaCl to 200 mM NaCl. Here, we expect the degree of DNA coiling not to be significantly
affected by the change in salt concentraƟon, since the persistence length is only expected
to vary between 20 and 14 when exchanging the buffers, and in both buffers it is smaller
than the contour length of the constructs [? ]. We used dual-target constructs with 15-nt
separaƟon and 64-nt separaƟon (Figure ??), taken from the two different regions in Figure
?? (indicated by blue and green shading). At a separaƟon of 64 nt, we observed a 13-fold
increase of the shuƩling rate when increasing the salt concentraƟon from 10 mM NaCl
to 200 mM NaCl. In contrast, we observed that for the dual-target construct with 15-nt
separaƟon, the shuƩling Ɵme changed roughly only two-fold for the same change in ionic
strength (Figure ??)—a modest change compared to 13-fold of the dual-target constructs
with 64-nt separaƟon. We take the relaƟve ionic-strength insensiƟvity of shuƩling Ɵmes for
15-nt trap separaƟon as evidence of translocaƟon being dominate by sliding over short dis-
tances. In contrast, given the relaƟve ionic-strength sensiƟvity for the 64-nt construct, the
Ago complex is here unlikely to first reach the distal site through sliding only, and requires
parƟal dissociaƟon from the DNA strand. In conclusion, lateral diffusion during CbAgo tar-
get search is governed by two disƟnct modes. For short distances, lateral diffusion takes
place through a sliding process characterized by loose contact with the DNA strand. This
allows the protein to “glide” past secondary structures. To traverse larger distances, CbAgo
is able to take advantage of the fact that the soŌness of the substrate allows it to bend back
on itself to enable frequent intersegmental jumps between nearby segments (Figure ??).

5.3. Discussion
Within a vast number of potenƟal targets, Ago-guide complexes have to minimize the Ɵme
spent unproducƟvely diffusing through soluƟon or redundantly checking off-targets, as
Ɵmely regulaƟon is crucial for both cell development and host defense [? ]. Our single-
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molecule study shows that Argonaute from C. butryicum (CbAgo) uses a loose slidingmode
to bypass juncƟons and relies on intersegmental jumps to cover larger distances and to by-
pass substanƟal barriers.

We have shown that bacterial Ago binds DNA loosely and slides along the DNA to locally
scan for complementary targets. While such sliding mechanism has been characterized
for several proteins [? ? ? ? ], liƩle was previously known for DNA/RNA-guided target
searchers like Ago. Proteins searching along nucleic acids with secondary structures may
be blocked from sliding further. However, this does not seem to be true for Ago. Instead,
the loose interacƟon with the substrate allows the protein to slide past juncƟons while sƟll
probing potenƟal target sequence through base pairing. To the best of our knowledge, this
mode of loose-contact sliding has not been reported for any nucleic-acid guided proteins.
In addiƟon, we show that the loose binding further allows Ago to move to a new segment
via intersegmental jumps, reducing redundant scanning of the same segment and allowing
Ago to bypass large-profile roadblocks.

The ability of CbAgo to target specifically ssDNA but not dsDNA [? ] (Figure ??a-b) suggests
a role as host defense againstmobile geneƟc elements and ssDNA viruses. In environments
where ssDNA viruses can be abundant, such as in sea water, fresh water, sediment, terres-
trial, extreme, metazoan-associated and marine microbial mats [? ? ? ], pAgo’s targeƟng
ssDNAwould be very beneficial for the host. Upon entry in the infected cell, ssDNA binding
and recombinaƟon proteins may associate with the invading nucleic acid, and DNA poly-
merasewill start to generate the second strand. In addiƟon, it is anƟcipated that secondary
structures will be formed in the ssDNA viral genome [? ]. This will generate road blocks
that may affect scanning by defense systems such as restricƟon enzymes but—as shown
here—not Argonaute. Likewise, inserƟon of transposons in prokaryotes oŌen proceeds
via a ssDNA-intermediate state [? ? ? ], and pAgos may here encounter the same type of
obstacles. In case of ssRNA, both in prokaryotes and in eukaryotes, it is well known that
complex secondary structures can be formed by base pairing different anƟ-parallel RNA
segments [? ? ? ? ]. The presence of secondary structures suggests that it is necessary
for Agos to “glide”—the type of loosely bound sliding we report—past such roadblocks to
enable search along ssRNA. Based on the funcƟonal and structural similariƟes of prokary-
oƟc Agos and eukaryoƟc Agos [? ? ], we expect eAgo to also slide past RNA secondary
structures, minimizing Ɵme spent trapped at such structures.

The effect of lateral diffusion on the total target search Ɵme is dependent on the rough-
ness of the energy landscape that the DNA binding protein encounters once it binds non-
specifically. We have shown how to determine the escape Ɵme for a 3-nt complementary
target. This can be extended to esƟmate the escape Ɵme for any complementarity and
consequently the diffusion constant on DNA with any base composiƟon [? ]. Here we have
inferred a 15.8 sዅኻ escape rate from the 3-nt CTC guide sequence (Figure ??), indicaƟng
that if a target strand were to consists only of GA in repeaƟng order, the effecƟve diffu-

sion 𝐷 = ኻ
ኼ
፝፱Ꮄ
፝፭ = ntᎴ

ኼ(ኼ⋅፤ᎽᎳesc)
= ntኼ𝑘esc = 15.8 ntᎴ

፬ . Changing the number of base-paring

nucleoƟdes as well as the idenƟty of nucleoƟdes in the guide/target could provide insights
into how sequence variaƟon would affect the rate of diffusion for other nucleic acid pro-
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teins. Since the guide strand only provides the specificity needed for accurate targeƟng, lat-
eral diffusion could be reliant on the non-specific surface interacƟons with the protein. We
envision that the posiƟve surface charge distribuƟon inside the Ago cleŌ could orient Ago
with the guide towards the negaƟvely charged nucleic acid strand (Figure ??), thereby pro-
moƟng target interrogaƟon while traveling along the target strand. It is unknown whether
Ago is able to scan each base during this process or whether it skips over nucleoƟdes. For
our triple-target construct, we have observed that 90% of the Ɵme the middle target traps
Ago. It will be of interest to invesƟgate whether this level of effecƟve target trapping is
achieved by a low trapping efficiency offset by repeated passes over the target.

For a longer range target search, wehave observed that at distances >100 nt separaƟon, the
shuƩling Ɵme remains well belowwhat would be expected for sliding (Figure ??). We show
that coiling of the ssDNA (persistence length ∼ 1 nm) may bring distant segments in close
proximity, allowing intersegmental jumps over longer distances (beyond 30 nt target sepa-
raƟon), and so speeding up lateral diffusion. InteresƟngly, Ago cannot use intersegmental
jumps to cover shorter distances, as implied by the sudden increase in shuƩling Ɵme when
the trap separaƟon goes below 30 nt (Figure ??). Experimentally, one could further in-
vesƟgate the nature of intersegmental jumps through a combined tweezer-fluorescence
single-molecule assay, where forces strong enough to pull on entropically coiled ssDNA
can be applied [? ? ]. Furthermore, theoreƟcal modelling and addiƟonal experiments are
required in order to establish to what extent parƟƟoning the search modes on different
length scales will allow nucleic acid guided proteins to opƟmize the search process [? ? ?
] since the absence of cooperaƟve binding was recentley reported for another Ago system
[? ].

We hypothesize that similar target search strategies may be used by Agos from different
families, which are structurally and funcƟonally similar [? ]. For example, in RNA induced
transcripƟonal silencing (RITS), guide-loaded AGO1 binds to a transcript aŌer which other
proteins are recruited for heterochromaƟn assembly [? ? ]. Similarly, in the piRNA path-
way PIWI proteins associate with piRNA in germline cells to bind and cleave transposon
transcripts in the cytoplasm [? ? ? ] or to nascent RNA in the nucleus in order to in-
duce heterochromaƟn formaƟon [? ]. In each of these funcƟons, the reliance on guide-
complementary for sequenƟal target search likely necessitates the usage of facilitated dif-
fusion strategies to opƟmize the search Ɵme for proper regulaƟon of cell development or
gene stability.

5.4. Methods
5.4.1. Purification of CbAgo
The CbAgo gene was codon harmonized for E.coli Bl21 (DE3) and inserted into a pET-His6
MBP TEV cloning vector (Addgene plasmid # 29656) using ligaƟon independent cloning.
The CbAgo proteinwas expressed in E.coli Bl21(DE3) RoseƩaፓፌ 2 (Novagen). Cultureswere
grown at 37 °C in LB medium containing 50µg ml-1 kanamycin and 34µg ml-1 chloram-
phenicol Ɵll an OD600nm of 0.7 was reached. CbAgo expression was induced by addiƟon
of isopropyl 𝛽-D-1-thiogalactopyranoside (IPTG) to a final concentraƟon of 0.1mM. Dur-
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ing the expression cells were incubated at 18∘C for 16 hours with conƟnues shaking. Cells
were harvested by centrifugaƟon and lysed, through sonicaƟon (Bandelin, Sonopuls. 30%
power, 1s on/2s off for 5min) in lysis buffer containing 20mMTris-HCl pH 7.5, 250mMNaCl,
5mM imidazole, supplemented with a EDTA free protease inhibitor cocktail tablet (Roche).
The soluble fracƟon of the lysate was loaded on a nickel column (HisTrap Hp, GE health-
care). The column was extensively washed with wash buffer containing 20mM Tris-HCl pH
7.5, 250mM NaCl and 30mM imidazole. Bound protein was eluted by increasing the con-
centraƟon of imidazole in the wash buffer to 250mM. The eluted protein was dialysed at
4oC overnight against 20mM HEPES pH 7.5, 250mM KCl, and 1mM dithiothreitol (DTT) in
the presence of 1mg TEV protease (expressed and purified according to Tropea et al.63)
to cleave of the His6-MBP tag. Next the cleaved protein was diluted in 20mM HEPES pH
7.5 to lower the final salt concentraƟon to 125mM KCl. The diluted protein was applied to
a heparin column (HiTrap Heparin HP, GE Healthcare), washed with 20mM HEPES pH 7.5,
125mM KCl and eluted with a linear gradient of 0.125-2M KCl. Next, the eluted protein
was loaded onto a size exclusion column (Superdex 200 16/600 column, GE Healthcare)
and eluted with 20mM HEPES pH 7.5, 500mM KCl and 1mM DTT. Purified CbAgo protein
was diluted in size exclusion buffer to a final concentraƟon of 5uM. Aliquots were flash
frozen in liquid nitrogen and stored at -80°C.

5.4.2. Purification of His-tagged Lin28b
The protein was prepared following the protocol of Yeom et al. [? ].Briefly, recombinant
Lin28b was prepared by subcloning cDNA with BamHI and XhoI into pET28-a vector (No-
vagen). Subsequently, the strain was transformed to E. coli BL21-RIL strain. The expression
and purificaƟon of recombinant Lin28b was performed according to the manufacturer’s
protocol.

5.4.3. Single molecule experimental setup
Single molecule FRET experiments were performed with an inverted microscope (IX73,
Olympus) with prism-based total internal reflecƟon. ExcitaƟon of the donor dye Cy3 is
done by illuminaƟng with a 532nm diode laser (Compass 215M/50mW, Coherent). A 60X
water immersion objecƟve (UPLSAPO60XW, Olympus) was used for collecƟon of photons
from the Cy3 and Cy5 dyes on the surface, aŌer which a 532 nm long pass filter (LDP01-
532RU-25, Semrock) blocks the excitaƟon light. A dichroic mirror (635 dcxr, Chroma) sep-
arates the fluorescence signal which is then projected onto an EM-CCD camera (iXon Ultra,
DU-897U-CS0-#BV, Andor Technology). All experiments were performed at an exposure
Ɵme of 0.1 s at room temperature (22 ± 0.1 °C)

5.4.4. Fluorescent dye labeling of nucleic acid constructs
All DNA constructs were ordered from ELLA Biotech. Nucleic acid constructs that have an
internal aminomodificaƟonwere labeledwith fluorescent dyes based on the CSHL protocol
65.1 uL of 1 mM of DNA/RNA dissolved in MilliQ H20 is added to 5 uL labeling buffer of
(freshly prepared) sodiumbicarbonate (84 mg/10mL, pH 8.5). 1 uL of 20 mM dye (1 mg in
56 uL DMSO) is added and incubated overnight at 4°C in the dark, followed by washing and
ethanol precipitaƟon. ConcentraƟon of nucleic acid and labeling efficiencywas determined
with a Nanodrop spectrophotometer.
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5.4.5. Single molecule chamber preparation
Quartz slideswere coatedwith a polyethylene-glycol through theuse of amino-silane chem-
istry. This is followed by assembly of microfluidic chambers with the use of double sided
scotchtape. For a detailed protocol, we refer to 66. Further improvement of surface qual-
ity occurs through 15 min incubaƟon of T50 and 5% Tween20 67 aŌer which the channel
is rinsed with 100 𝜇L T50 buffer. Streptavidin (5 mg/mL) was diluted in T50 to 0.1 mg/mL.
50 𝜇L of this soluƟon is then flowed inside the chamber. This is followed by incubaƟon for
1 min followed by rinsing with approximately 10-fold the volume of the chamber with T50
(10mMTris-HCl [pH 8.0], 50mMNaCl). 100 pM of DNA/RNA target with bioƟn construct is
then flushed in the chamber, followed by 1 min incubaƟon. This is followed subsequently
by rinsing with T50. The chamber is subsequently flushed with CbAgo buffer, containing
50 mM Tris-HCl [pH 8.0], 1 mM Trolox, 1 mMMnCl2, 100 mM NaCl. Guide-loading of apo-
CbAGO occurs by incubaƟon of the protein (10 nM) with 1 nM guide construct in a buffer
containing 50mMTris-HCl [pH 8.0], 1mMTrolox, 1mMMnCl2, 100mMNaCl, 0.8% glucose
at 37°C for 30min. Following incubaƟon, glucose oxidase and catalase is added (0.1mg/mL
glucose oxidase) aŌer which the sample is flushed in the microfluidic chamber containing
the DNA targets.

5.4.6. Lin28 assay
ImmobilizaƟon of Lin28b occurred in the following way: 50 𝜇l of streptavidin (0.1 mg/mL)
in T50 is flowed inside the chamber and incubated for 1 minute. AŌer this, the chamber
is rinsed with approximately 100 𝜇L of T50. 1 𝜇l of AnƟ-6X His tag® anƟbody (BioƟn) di-
luted 100-fold in T50 and subsequently flowed inside the chamber. AŌer 5 minutes, the
chamber is rinsed with 100 𝜇L of T50. Stock of Lin28b (100 𝜇M) is diluted to 100 nM and
incubatedwith the target DNA (10 nM) and 10mMMgCl2 for 5minutes, aŌerwhich the so-
luƟon is flushed inside the chamber, followed by incubaƟon of 5minutes. Lastly, the CbAgo
buffer is flushed inside the chamber. Guide-loading of apo-CbAgo occurs in the same way
as described above (Single molecule chamber preparaƟon) aŌer which the CbAgo:siDNA
complex is also flushed inside the chamber.

5.4.7. QUANTIFICATION AND STATISTICAL ANALYSIS
Fluorescence signals are collected at 0.1-s exposure Ɵme unless otherwise specified. For
7-nt target separaƟon, 30-ms exposure Ɵme is used. Time traces were subsequently ex-
tracted through IDL soŌware using a custom script. Prior to data collecƟon, the locaƟon of
targets (Cy5 labeled) are found by illuminaƟng the sample with the 637nm laser. Through
a mapping file, it subsequently collects the individual intensity hotspots in both the donor
and acceptor channel and pairs them up through the mapping file, aŌer which the traces
are extracted. During the acquisiƟon of themovie, the green laser is used. Only at the end,
the red laser is turned on once more to check for photobleaching of the red dye. Traces
containing the fluorescence intensity from the donor and acceptor signal aremanually pre-
selected occurs through the use of MATLAB (Mathworks), disregarding artefacts caused by
non-specific binding, addiƟonal binding to neighboring regions and photobleaching.
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Figure S5.1: Single molecule interacƟons of CbAgo:siDNA (2-4 nt) at different condiƟons. (a) RepresentaƟve
trace single-molecule interacƟon of CbAgo-siDNA (let7) with full target dsDNA target immobilized on the surface
( 300 per FoV). Exposure Ɵme is 100 ms. (b) DwellƟme distribuƟon of CbAgo-guide 3-dsDNA target interacƟons.
Number of molecules recorded n = 540. Number of datapoints n = 12 (c) Average dwell Ɵme of protein bound
to target versus guide length for N=1 to N=8. The error bars are taken from the 95% confidence interval of boot-
strapped dwellƟmes (20,000 empirical bootstraps). The striped red line indicates the observaƟon Ɵme, limited
by photobleaching. (d) Survival plot of donor only (Cy3) constructs in standard experimental condiƟons (100 mM
NaCl, 50 mM Tris-HCl pH 8.0). Mean donor bleaching Ɵme was obtained by a single exponenƟal fit to the survival
probability plot. (e) Binding rate for different salt concentraƟons for N=3 (nt 2-4) between guide and single tar-
get. (f) Dwell Ɵme of CbAgo and a single-stranded single target DNA construct (N=3) at 10, 50, 100, 150 and 200
mM NaCl concentraƟon. Total measurement Ɵme = 250 s. Error bars are indicaƟng the 95% percenƟle of 20,000
empirical bootstraps of the mean dwell Ɵme. (G) SchemaƟc image indicaƟng the dynamic escape and recapture
events of CbAgo.
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Figure S5.2: Single-molecule interacƟons of CbAgo with guide 4, 5, 6 and tandem target (22 nt separaƟon). (a)
RepresentaƟve trace of binding events by CbAgowith guide 4 (nt 2-5). DuraƟon of observaƟon 200 s. (b) ShuƩling
event distribuƟon for guide 4 (nt 2-5). Bin size = 5. Thewhite bar represents binding (no shuƩling) events followed
by dissociaƟon. N = 317. (c) RepresentaƟve trace of binding events by CbAgo with guide 5 (2-6). (d) ShuƩling
event distribuƟon for guide 5 (2-6 nt). Bin size = 10. The white bar represents events that consists of single
molecule binding followed by dissociaƟon. n = 550. (e) RepresentaƟve trace of guide 6 (2-7 nt) interacƟon.(f)
ShuƩling event distribuƟon for guide 6. The white bar represents events that consists of single molecule binding
followed by dissociaƟon. n = 621.
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Figure S5.3: Example of HMM soŌware applied to data trace. (Top) An example shuƩling trace of CbAgo in the
user interface of ebFRET. The donor and acceptor intensiƟes ploƩed versus Ɵme. The donor intensity is enhanced
arƟficially in absence of any signal, resulƟng in an extra zero FRET state (upper subfigure). (BoƩom) The donor,
acceptor and FRET intensiƟes overlaid with states resulƟng from the HiddenMarkovModeling. The HMManalysis
program recognizes the unbound state as an extra state (light blue), while low FRET and high FRET are respecƟvely
assigned dark blue and purple.
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Figure S5.4: Triple target assay, Y-fork assay and Lin28 assay. (a) FRET histogram of three-target assay. n = 168
molecules (b) Dwell Ɵme histograms for respecƟvely the low FRET, mid FRET and high FRET state of the three
target assay. (c) ShuƩling rate of Y-fork constructs (blue) compared to tandem target assay (white) for 11 nt, 36
nt, 50 nt and 92 nt target separaƟon. The error bars indicate the 95% percenƟle of 20,000 bootstrapped mean
dwell Ɵmes. (d) An EMCCD image of the acceptor channel. (LeŌ) In absence of Lin28 protein and anƟbody with
Cy5 labeled DNA. (Middle) In absence of anƟbody, but in presence of Lin28 protein and Cy5 labeled DNA. (Right)
In presence of anƟbody, Lin28 protein and Cy5 labeled DNA. (e) Individual dwell Ɵmes from low FRET state to
high FRET state (leŌ) and vice versa (right). (f) Sequence schemaƟc for the Y-fork 11 nt, indicaƟng the target sites
and their respecƟve distances to the juncƟon. (g) Sequence schemaƟc for the Lin28 blockade assay, indicaƟng
the target sites and their respecƟve distances to the juncƟon/protein.
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Figure S5.5: InteracƟons of CbAgowith the dsDNA block construct. (a) RepresentaƟve trace of CbAgo interacƟng
with a 21 bp DNA blockade construct. (b) RepresentaƟve trace of CbAgo interacƟng with a 25 bp DNA blockade
construct.
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Figure S5.6: Example shuƩling traces for 11 nt, 15 nt, 18 nt, 22 nt, 29 nt, 36 nt, 50 nt and 120 nt target separaƟon.
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Hopping 

Sliding

Neighbouring 

DNA segment

Intersegmental transfer via hopping

Figure S5.7: Cartoon representaƟon of target search mechanisms. Sliding: Proteins that undergo sliding make
a well-correlated movement along the contour of the nucleic acid substrate. There is no net displacement of
counterions (grey circles). Hopping: Proteins alternate quickly between a bound and unbound state with respect
to DNA and there is counterion condensaƟon upon dissociaƟon of the protein. The method of diffusion is similar
to 3D search, but its movements are correlated along the contour of the strand. Intersegmental transfer: This
mechanism is a specialized form of hopping where segments appear transiently close by allow the protein to
transfer to this new segment.
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Intersegmental transfer allow Ago 

to bypass protein barriers

and access distant DNA/RNA segments
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hAGO2
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DNA binding protein

RNA binding protein

CbAgo

Figure S5.8: Cartoon representaƟon of Ago search model. The Ago complex uƟlizes short transient interacƟons
with nucleic acid strands to rapidly sample the adjacent (tens of nucleoƟdes away) sites for possible targets. Loose
interacƟon with the nucleic acid strand persists. Obstacles can be overcome through intersegmental jumps.
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Figure S5.9: Coulombic surface coloring of Clostridium butyricum Argonaute (CbAgo). The crystal structure of
CbAgo (PDB 6qzk) (3.23 Å resoluƟon) reveals the charge distribuƟon. The cleŌ that contains the guide DNA and
the target DNA is highly posiƟvely charged (blue).
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5.5.1. Binding times single-target including recapture events fol-
low single-exponential distribution

We here build a kineƟc model for the lateral diffusion by CbAgo. Since Argonaute can in
principle bind to any sequence along the DNA, we imagine the binding sites to be located
a nucleoƟde apart. Further, we shall here only explicitly take sliding into account, which
is represented as an unbiased random walk with unit step length. Assuming sliding should
be a good approximaƟon when considering only short distances traveled. If the protein
is bound at the designed 3-nt sub-seed ’target’ it can move to either of its neighbors at
a rate of 𝑘esc or unbind from the ssDNA at a rate of 𝑘ub. When bound elsewhere move-
ment and dissociaƟon are assumed to happen instantaneously. To establish the manner in
which these undetectable movements contribute to the observed dwell Ɵme distribuƟon
(𝑝bound(Δ𝑡)) we count all possible paths that the protein can take to dissociate follow-
ing iniƟal associaƟon to the sub-seed. In Laplace space the unbinding-Ɵme distribuƟon,
𝑃ub(𝑠) = ℒ {𝑝bound(Δ𝑡)}, can be calculated as a product of the distribuƟons of individ-
ual transiƟons (rather than their convoluƟons), summed over the possible paths towards
unbinding. With an exponenƟal distribuƟon of stepping/escape Ɵmes from the sub-seed
trap,

𝑝esc(𝑠) =
2𝑘esc

𝑠 + 2𝑘esc + 𝑘ub
(S5.1)

, an unbinding Ɵme distribuƟon from the trap

𝑝ub(𝑠) =
𝑘ub

𝑠 + 2𝑘esc + 𝑘ub
(S5.2)

and a probability to return, get recaptured at the trap, from either flank without unbinding
𝑃retrap we can write

𝑃ub(𝑠) =
ጼ

∑
፦዆ኺ

(𝑝esc(𝑠)𝑃retrap)
፦ [𝑝ub(𝑠) + 𝑝esc(𝑠)(1 − 𝑃retrap)]

=
𝑘ub + 2𝑘esc(1 − 𝑃retrap)

𝑠 + 𝑘ub + 2𝑘esc(1 − 𝑃retrap)

(S5.3)

The sum on the leŌ hand side of EquaƟon ?? therefore accounts for the protein escap-
ing from, and geƫng recaptured at the target an arbitrary amount of Ɵmes (see Figure ??
below). The two terms outside the sum represent the probability distribuƟons to unbind
from either the target directly or aŌer having escaped one final Ɵme respecƟvely (Figure
?? below). Taking the inverse Laplace transform, we derive the observed dwell Ɵme distri-
buƟon.

𝑝bound(Δ𝑡) = ℒዅኻ {
𝑘ub + 2𝑘esc(1 − 𝑃retrap)

𝑠 + 𝑘ub + 2𝑘esc(1 − 𝑃retrap)
}

= (𝑘ub + 2𝑘esc(1 − 𝑃retrap))𝑒ዅ(፤ubዄኼ፤esc(ኻዅፏretrap))ጂ፭
(S5.4)

Hence, despite themulƟtude of possible bound states along theDNA the protein can reside
in, the observed distribuƟon remains single-exponenƟal. The apparent dissociaƟon rate
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Figure S5.10: This figure illustrates how to construct EquaƟon ??. StarƟng from the sub-seed, Ago can either
unbind directly (probability ፩ub) or slide onto the non-specific binding sites flanking the trap (probability ፩esc).
When non-specifically bound, Ago can either laterally diffuse back into the sub-seed (probability ፏretrap), or un-
bind (probability ኻ ዅ ፏretrap)

follows

𝑘observedub = 𝑘ub + 2𝑘esc(1 − 𝑃retrap) (S5.5)

Given the assay selects for events that get (re-)captured, the observed rate is greater than
its intrinsic value.

5.5.2. Shuttling rate due to sliding alone
We seek to explain to what extend sliding contributes to the observed shuƩling rate from
the tandem-target assay. Givenunder the current experimental condiƟons about 13 shuƩle
events occur prior to unbinding, we shall ignore unbinding in the following analysis (𝑘ub ≪
𝑘esc). To get the distribuƟon of shuƩle Ɵmes (𝑝(Δ𝑡shuttle)) we count all possible paths that
lead the protein from one sub-seed to the other. If the two 3-nt nucleoƟde long sub-seeds
are separated by 𝑥polyዅT thymine nucleoƟdes, the shuƩle Ɵmes are distributed as (seƫng
𝑥target = 𝑥polyዅT + 3 ≥ 3) (see Figure ?? below).

𝑃shuƩle(𝑠, 𝑥target) =
ጼ

∑
፦዆ኺ

(𝑝esc(𝑠) (
1
2 × 1 +

1
2 × 𝑃R(𝑥target)))

፦
𝑝esc(𝑠)𝑃S(𝑥target)

=
𝑘esc𝑃S(𝑥target)

𝑠 + 𝑘esc𝑃S(𝑥target)
(S5.6)
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5.5.3. Shuttling rate triple-target construct
For the assay using three sub-seed targets, we can now predict both the Ɵme needed to
slide from any of the outer ones to the inner (𝐶 → 𝐵) and the average Ɵme needed to slide
along the opposite path (𝐵 → 𝐶). The former is equal to the Ɵmemeasured on the tandem
target construct, denoted above as Δ𝑡shuttle (EquaƟon ??, Δ𝜏CB = Δ𝑡shuttle). We obtain
Δ𝜏BC, via the distribuƟon of lifeƟmes in the middle trap

𝑃(leave 𝐵|arrive at 𝐶)(𝑡) = 𝑃(leave 𝐵)(𝑡)
𝑃(arrive at 𝐶(and not 𝐴)) (S5.7)

Using that the distance between 𝐴 and 𝐵 is equal to that in between 𝐵 and 𝐶, in Laplace
space, the Ɵme spent at target 𝐵 is distributed as (𝑃B(𝑡) ≡ 𝑃(leave 𝐵)(𝑡))

𝑃B(𝑠, 𝑥target, 𝑘esc) =
ጼ

∑
፦዆ኺ

(12𝑝esc(𝑠) × 2 × 𝑃R(𝑥target))
፦ 1
2𝑝esc(𝑠)𝑃S(𝑥target) (S5.8)

The sum accounts for all paths that return to target 𝐵. Given the equal distances between
all targets on the construct the probability to not make it across to either 𝐴 or 𝐶 are equal,
which gives rise to the factor of two. The factor outside the sum accounts for the fact that
the protein must eventually leave B and make it across to either 𝐴 or 𝐶. Using the same
technique as shown above, the average Ɵme spent in 𝐵 equals

𝜏B(𝑥target) =
𝑥target
4𝑘esc

(S5.9)

Using that half of the Ɵmes the protein arrives at 𝐴, rather than 𝐶, results in the average
dwellƟme/shuƩling Ɵme condiƟoned on moving from 𝐵 to 𝐶 (using eq. ??):

Δ𝜏BC(𝑥target) = 2𝜏B(𝑥target) =
𝑥target
2𝑘esc

(S5.10)

5.5.4. error estimates using bootstrapping
Fiƫng the data from the tandem target assay to EquaƟon ?? provides the esƟmate of 𝑘esc.
We bootstrapped the dwell Ɵme distribuƟons acquired using the original tandem target
assay (distances of 11nt, 15nt, 18nt and 22nt). For each of the 10኿ bootstrap samples we
calculated new values for the associated Δ𝑡shuttle’s and repeated the fit to EquaƟon ?? to
obtain an error esƟmate in the fiƩed value of the escape rate.
AŌer using the data from the tandem target assay to esƟmate 𝑘esc there are no more free
parameters remaining when predicƟng the data for the triple-target assay. Performing the
bootstrap procedure for 𝑘esc, and using EquaƟons ?? and ?? results in the 95% confidence
intervals shown in figure 4D in the main manuscript.
An error esƟmate for the experimental values of Δ𝜏BC and Δ𝜏CB were obtained using 10኿
bootstrap samples of the dwell Ɵme distribuƟons measured using the triple-target assay.
All analysis was performedwith a custom codewriƩen in Python. The two termswithin the
sum shown above represent recapture events at the iniƟal trap via either the the flanking
sequence (from which it always returns) or the poly-T stretch in between the traps (from
which it returns with a probability 𝑃R(𝑥target) without shuƩling) (Figure ?? shown below).



5

138 5. Clostridium butyricum Argonaute Target search

Finally, the term outside the sum accounts for successful shuƩling events (which occurs
with probability 𝑃S(𝑥target) = 1 − 𝑃R(𝑥target)). Once the protein has leŌ the iniƟal trap
𝑃R(𝑥) and 𝑃S(𝑥) denote the distribuƟons for either returning back to the iniƟal trap or
shuƩling/making it across to the other, if the two traps are 𝑥 nucleoƟdes apart (see Figure
?? below)). InverƟng the Laplace transformaƟon of EquaƟon ?? we obtain

𝑝(Δ𝑡shuttle) = ℒዅኻ {
𝑘esc𝑃S(𝑥target)

𝑠 + 𝑘esc𝑃S(𝑥target)
}

= 𝑘esc𝑃S(𝑥target)𝑒ዅ(፤escፏS(፱target)ጂ፭shuttle)
(S5.11)

Hence, the observed dwell Ɵme distribuƟons are indeed single exponenƟal. In terms of
the microscopic model the average Ɵme is set by the escape rate from the trap modified
by the probability to make it across once outside of it (𝑃S(𝑥target)).
The probabiliƟes 𝑃R and 𝑃S, for a given inter-trap distance 𝑥target follow (see Figure ?? be-
low)

𝑃R(𝑥target) =
ጼ

∑
፦዆ኺ

(12𝑃R(𝑥target − 1))
፦ 1
2 (S5.12)

𝑃S(𝑥target) =
ጼ

∑
፦዆ኺ

(12𝑃R(𝑥target − 1))
፦ 1
2𝑃S(𝑥target − 1) (S5.13)

- from which we can write the recurrence relaƟon

𝑃S(𝑥target) = 𝑃R(𝑥target)𝑃S(𝑥target − 1) (S5.14)

Using (𝑃S(𝑥target) = 1 − 𝑃R(𝑥target)) the above can be re-wriƩen as

𝑃S(𝑥target) =
𝑃S(𝑥target − 1)

𝑃S(𝑥target − 1) + 1
(S5.15)

which subjected to the boundary condiƟon 𝑃S(1) = 1 - signifying that if the traps are
placed adjacent to each other, the shuƩle is complete once the protein escaped the iniƟal
trap - has the simple soluƟon

𝑃S(𝑥target) =
1

𝑥target
(S5.16)

Taken together, the observed shuƩling Ɵme equals

Δ𝜏shuttle =
1

𝑘esc𝑃S(𝑥target)
=
𝑥target
𝑘esc

(S5.17)

Note that 𝑥target ≥ 3, as the two sub-seeds cannot overlap. A fit of EquaƟon ?? to the ex-
perimental data for 𝑥target of 11nt, 15nt, 18nt and 22nt in Figure ?? of themainmanuscript
were used to esƟmate the value of 𝑘esc for CbAgo.
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Figure S5.11: This figure illustrates how to construct EquaƟon ??. Ago slides to either of its neighboring sites with
equal probability. Every shuƩle event starts with Ago bound to one of the sub-seed sequences. AŌer residing
there for a Ɵme distributed as ፩esc(፬), half of the Ɵmes Ago moves onto the flank (from which it always returns
by assumpƟon), while the other half of the Ɵmes the protein slid onto the poly-T sequence in between the two
sub-seeds. All movements along these intermediate sites occur too fast to observe, which is why we only take
into account to probability ፏS(፱target) of compleƟng the shuƩle event when ፱target sites separate Ago from the
second sub-seed.

 sub-seed 1  sub-seed 2 

fr
ee

-e
ne

rg
y

position (nt)

Figure S5.12: This figure illustrates how to construct EquaƟons ?? and ??. Let ፏS(፱) denote the probability to
complete the shuƩle when ፱ sites separate Ago from the second sub-seed. Ago walks to either of its neighboring
sites with equal probability. Therefore, when situated next to the first sub-seed, Ago gets recaptured half of the
Ɵmes it makes a move, while the other half has a probability of ፏS(፱ ዅ ኻ) to result in a completed shuƩle event.
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5.5.5. Supplementary Tables

Table S1: Dwell Ɵmes of different two target DNA constructs for several distances. The upper bound and lower
bound are esƟmated through 20000 bootstraps of the acquired dwell Ɵmes.

Target distance (nt) LifeƟme (sec) Lower bound lifeƟme (sec) Upper bound lifeƟme (sec) ShuƩling rate (sec-1) Lower bound shuƩling rate (sec-1) Upper bound shuƩling rate (sec-1)
11 0.47 0.46 0.49 2.11 2.04 2.19
15 0.83 0.81 0.87 1.19 1.15 1.24
18 1.17 1.11 1.24 0.85 0.81 0.90
22 1.79 1.74 1.86 0.56 0.54 0.57
29 1.36 1.30 1.42 0.73 0.7 0.77
36 1.19 1.16 1.23 0.84 0.81 0.86
50 1.52 1.46 1.57 0.66 0.64 0.68
64 1.65 1.59 1.71 0.61 0.59 0.63
92 1.94 1.85 2.02 0.52 0.49 0.54
120 2.11 2.03 2.19 0.47 0.46 0.49

Table S2: OligonucleoƟdes used for this study

Name Oligo Sequence 5’->3’ Length (nt)
GUIDE

Guide 3nt (2-4)
5- /5Phos/CGA GTA TT/iAmMC6T/ TTT TTT TTT TTT
T – 3’ 22

Guide 4nt (2-5)
5’-/5Phos/CGA GGA TT/iAmMC6T/ TTT TTT TTT TTT
T - 3’ 22

Guide 5nt (2-6)
5’- /5Phos/CGA GGT TT/iAmMC6T/ TTT TTT TTT
TTT T - 3’ 22

Guide 6nt (2-7)
5’- /5Phos/CGA GGT AT/iAmMC6T/ TTT TTT TTT
TTT T - 3 ’ 22

Guide 7nt (2-8)
5’- /5Phos/CGA GGT AGA /iAmMC6T/TT TTT
TTT TTT T -3’ 22

Guide 8nt (2-9)
5’- /5Phos/ CGA GGT AG/iAmMC6T/ TTT TTT TTT
TTT T - 3 ’ 22

TARGET

8nt tandem target 7nt separaƟon
5’ - TTT TTT TTT TTT TTT TTT CTC TTT TCT CT/iAmMC6T/
TTT TTT TTT TTT TTT TTT TTT TTT TTT T/bioƟn/ -3’ 58

8nt tandem target 11nt separaƟon
5’ - TTT TTT TTT TTT TTT TTT CTC TTT TTT TT CT
CT/iAmMC6T/ TTT TTT TTT TTT TTT TTT TTT TTT
TTT T/bioƟn/ -3’

62

8nt tandem target 15nt separaƟon
5’ - TTT TTT TTT TTT TAC TAC CTC TTT TTT TA CTA CCT
CT/iAmMC6T/ TTT TTT TTT TTT TTT TTT TTT
TTT TTT T/bioƟn/ -3’

66

8nt tandem target 18nt separaƟon
5’ - TTT TTT TTT TTT TAC TAC CTC TTT TTT TTT TA CTA
CCT CT/iAmMC6T/ TTT TTT TTT TTT TTT TTT
TTT TTT TTT T/bioƟn/ -3’

69

8nt tandem target 22nt separaƟon
5’ - TTT TTT TTT TTT TAC TAC CTC TTT TTT /iAmMC6T/TT
TTT TTA CTA CCT CTT TTT TTT TTT TTT TTT TTT TTT
TTT TTT T/bioƟn/ -3’

73

8nt tandem target 29nt separaƟon
5’ –TTT TTT TTT TTT TA CTA CCT CTT TT TTT
TT/iAmMC6T/ TTT TTT TTT TTA CTA CCT CTT TTT TTT TTT
TTT TTT TTT TTT TTT TTT TT/bioƟn/-3’

81

8nt double target 36nt separaƟon
5’ –TTT TTT TTT TTT TTA CTA CCT CTT TTT TTT TTT TTT
TT/iAmMC6T/ TTT TTT TTT TTA CTA CCT CTT TTT
TTT TTT TTT TTT TTT TTT TTT TTT TT/bioƟn dT//Phos/-3’

89
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8 nt tandem target 50nt separaƟon

5’ –TTT TTT TTT TTT TTA CTA CCT CTT TTT TTT TTT TTT
TTT TTT TT TTT TTT TT/iAmMC6T/ TTT TTT TTT TTA CTA
CCT CTT TTT TTT TTT TTT TTT TTT TTT TTT TTT
TT/bioƟn dT//Phos/-3’

104

8 nt tandem target 64 nt separaƟon

5’ –TTT TTT TTT TTT TTA CTA CCT CTT TTT TTT TTT TTT
TTT TTT TTT TTT TTT TTT TTT TTT TTT T/iAmMC6T/T TTT
TTT TTT TTT ACT ACC TCT TTT TTT TTT TTT TTT TTT
TTT TTT TTT TT/bioƟn-dT/ /Phos/-3’

117

8 nt tandem target 92 nt separaƟon

5’ –TTT TTT TTT TTT TTA CTA CCT CTT TTT TTT TTT TTT
TTT TTT TTT TTT TTT TTT T TTT TTT TTT TTT TTT TT
TTT TTT TTT TTT TTT TTT TTT T/iAmMC6T/T TTT TTT TTT
T ACT ACC TCT TTT TTT TTT TTT TTT TTT TTT TTT TTT
TT/bioƟn-dT/ /Phos/-3’

145

8nt double target 120nt separaƟon

5’ –TTT TTT TTT TTT TTA CTA CCT CTT TTT TTT TTT TTT
TTT TTT TTT TTT TTT TTT TTT TTT TTT TTT TTT TTT TTT
TTT TTT TTT TTT TTT TTT TTT TTT TTT TTT TTT TTT TTT
TTT TTT TT/iAmMC6T/ TTT TTT TTT TTA CTA CCT CTT TTT
TTT TTT TTT TTT TTT TTT TTT TTT TT/bioƟn dT//Phos/-3’

171

11nt Y-fork
5’ – TTT TTT* TTT TTT TTT TTT TTT TTT CTC TT TGG CGA
CGG CAG CGA GGC – 3’ 47

11nt Y-fork bioƟn
5’ - /bioƟn/GCC TCG CTG CCG TCG CCA TTT TTT CTC TTT
TTT TTT – 3’ 36

50nt
Y-fork

5‘- TTT TTT TTT TTT* TTT TTT TAC TAC CTC TTT TTT TTT
TTT TTT TT TTT TGG CGA CGG CAG CGA GGC – 3‘ 65

Y-fork stem (not for Y11)
5’ – /bioƟn/GCC TCG CTG CCG TCG CCA TTT TTT
TTT TTT TTT TTT TTT TAC TAC CTC TTT TTT TTT – 3’ 57

36nt dsDNA target
5’ – TTT TTT TTT TTT T TA CTA C CTC T CGG ACC AAC
AGC GGG /T-bioƟn/AC GGC TGT GC TA CTA CCT CTT
TTT TTT TTT TTT TTT TTT - 3’

78

36nt dsDNA block v2 3’ bioƟn

5’ –TTT TTT TTT TTT T TA CTA C CTC T CGG ACC AAC AGC
GGG TAC GGC TGT GC TA CTA CCT CTT TTT TTT TTT
TTT TTT TTT TTT TTT TTT
TT/bioƟn dT/- 3’

91

36nt dsDNA block 5’end truncated
5’ –CTA C CTC T CGG ACC AAC AGC GGG TAC GGC TGT GC
TA CTA CCT CTT TTT TTT TTT TTT TTT TTT TTT TTT TTT
TT/bioƟn dT/- 3’

75

36nt
25nt block 5’ - TA GC ACA GCC GT* A CCC GCT GTT GGT- 3’ 25

36nt
21nt block

5’- GC ACA GCC
GT* A CCC GCT GTT G- 3’ 21

36nt
17nt block 5’ -ACA GCC GT* A CCC GCT GT- 3’ 17



5

142 5. Clostridium butyricum Argonaute Target search

Triple target
5’ – T/iAmMC6T/ TTT TTT TTT TAC CTC TTT TTT ACC TCT TTT
TTA CCT C TTT TTT TTT TTT TTT TTT TTT TTT TTT
TTT/bioƟn/ -3’

69

No target DNA
5’- TTT TTT TTT TTT TTT TTT TTT TTT TTT /iAmMC6T/TT
TTT TTT TTT TTT TTT TTT TTT TTT TTT TTT TTT TTT
TTT TTT TGG CGA CGG CAG CGA GGC -3’

90

8nt single target
5’ - TTT TTT TTT TTT TTT TTT TTT TTT TTT
/iAmMC6T/TT TTT TTA CTA CCT CTT TTT TTT TTT TTT TTT
TTT TTT TTT TTT T/bioƟn/-3’

73

3’ bioƟn stem 5’ - GCC TCG CTG CCG TCG CCA bioƟn – 3’ 18

Lin28 double target

5’- TTT TTT TTT TTT TTT TTT
TAC TAC CTC TTT TTT TTT TTT TTT TTT TTG CGC TAT GCG
GTT GTA TAG TTT TAG GGT CAC ACC CAC CAC TGG GAG
ATA ACT ATA CAA TCG CAT AGC GCT TTT TTT TTT TTT TTT
TTT TTT T/iAmMC6T/T TTT TTT TTA CTA CCT CTT TTT
TTT TTT TTT TTT-3’

174
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6
Optimal DNA/RNA target

search using frequent
skip-n-slides

The timed action of target searching proteins at specific DNA or RNA sequences
plays a vital role in the cell. A special class of such target searchers, amongst
which Argonaute and CRISPR-Cas9, use small RNA or DNA guides to define
their target site. These guides can readily be synthesized, enabling the repur-
posing of the target searching proteins for genome engineering. Here we employ
a combination of single-molecule FRET and theoretical modeling to understand
the microscopic kinetics underlying the target search. We show both a prokary-
otic and an eukaryotic Argonaute only sparsely interrogate their ssDNA/mRNA
substrates, using a mixture of sliding to neighboring sites and frequent skipping
to interrogate distant sites. Next, we show such a mixture minimizes the time
needed to locate the target. Hence, we suggest Argonaute seems to operate at
near optimal conditions using a mechanism likely applicable to other (guided
and non-guided) target searchers.
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6.1. Introduction

AmulƟtude of cellular processes, including gene regulaƟon, DNA repair, and immune re-
sponse rely on proteins binding to specific DNA or RNA sequences. Even if the protein

interacts only with the correct target sequence, the sheer size of the intracellular volume
restricts the rate at which it can be found through diffusive collisions alone [? ? ? ? ].
SƟll, measured search speeds can exceed the upper limit for diffusive collisions with up
to two orders of magnitude [? ]. To reach the observed speeds, target searching proteins
can reduce the effecƟve size of their search space by spending some fracƟon of Ɵme non-
specifically associated and diffusively sliding along the DNA—parƟally replacing excursions
into the soluƟon (3D moƟon) as a means of reaching new sites to interrogate [? ? ? ? ].
TheoreƟcalwork [? ] showed that an equal split of Ɵme spent sliding along theDNAand dif-
fusing through soluƟon would minimize the search Ɵme. While experiments have indeed
confirmed such facilitated diffusion (a mix of 1D and 3D moƟon) for a variety of proteins
[? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ], in vivo studies suggested the system spends considerably
more than half the Ɵme associated to DNA [? ? ].

Repeated transfer between 1D sliding moƟon and 3D diffusion through soluƟon and re-
binding at an uncorrelated site is beneficial, as the sliding moƟon by itself will inevitably
double back on itself and wastes Ɵme interrogaƟng sites already visited. Early theoreƟcal
work recognized that this scanning redundancy could be further reduced if the non-specific
interacƟons allow for intersegmental transfers [? ? ? ? ], where the protein quickly moves
between close by DNA segments without fully returning to the soluƟon state [? ? ? ].
If the search process is opƟmized for Ɵme, and the total Ɵme spent transferring between
segments is assumed negligible, we expect intersegmental transfers to minimize search re-
dundancy (and so search Ɵme) by occurring as frequently as the geometry of the substrate
allows. It has been shown theoreƟcally that allowing for a (small) fixed amount of rapid in-
tersegmental transfers shiŌs the opƟmal parƟƟoning between 1D and 3D diffusion toward
spending more Ɵme associated with the DNA [? ].

However, when such transfers occur frequently the total Ɵme spent transiƟoning between
segments cannot be neglected. For instance, we expect this to be the case for proteins
searching along single-stranded (ss) RNA or DNA with persistence lengths on the order of
one nucleoƟde (nt) [? ]. We may expect similar behavior for proteins that bind genomic
targets, due to the strongly compacted double-stranded (ds) DNA within the nucleus or
bacterial nucleoid. Furthermore, cellular RNA or DNA is typically occupied by various other
(non-)specific binding proteins [? ? ], or can form secondary structures (i.e. plectonemes
on dsDNA, or hairpins on ssRNA), all forming roadblocks along the target searcher’s path.
Bypassing such obstacles is oŌen impossible through sliding, thereby necessitaƟng the fre-
quent use of some form of base-skipping, such as intersegmental transfers in case of suffi-
ciently flexible substrates. IrrespecƟve of the parƟcular mechanism used, bases along the
substrate are not interrogated, and we will simply refer to this process as ‘skipping’. LiƩle
is known of the effect the frequent skips have on the search Ɵme.

Here we use Argonaute (Ago) as a model system for searches along flexible ss substrates.
Ago belongs to a parƟcular class of target searchers that pair with a small non-coding RNA
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(or DNA) guide, and then targets its complementary sequence [? ]. The common usage of
the CRISPR-Cas9 and CRISPR-Cas12a as next-generaƟon genome ediƟng tools [? ], further
highlights the importance of understanding also how such guided target searchers operate
[? ? ? ? ? ? ]. A recent study showed the prokaryoƟc Clostridium butyricum Argonaute
(CbAgo) uses a ssDNA guide to cleave ssDNA or dsDNA at moderate temperatures (∼ 37
∘C) [? ], making it a suitable candidate as a genome-ediƟng tool. In a previous study [?
] (Chapter ??) we demonstrated CbAgo can bypass roadblocks while diffusing along its
substrate. Here, we start by establishing the generality of this base-skipping behavior by
confirming its existence also for the eukaryoƟc human Argonaute 2 (hAgo2), using single-
molecule (sm) Förster resonance energy transfer (FRET).

Next, we ask under what condiƟons skips can speed-up the target search process. To this
end, we draw inspiraƟon from established models [? ? ? ? ] and consider the search
as consisƟng of three parts, but crucially allow all parts to take a finite Ɵme to complete:
(i) interrogaƟon of off-targets through sliding, (ii) base skipping, and (iii) diffusion through
soluƟon, followed by rebinding at an uncorrelated site. Through our modeling we discover
the existence of two opƟmal parƟƟoning between the three search modes: one coinciding
with the known opƟmum of an equal Ɵme-split between 1D and 3D diffusion through so-
luƟon when no skipping is allowed [? ], and one novel opƟmumwhere skipping and sliding
coexist during lateral diffusion. We fully characterize the search opƟma, and show that as
a general rule, the system can never spend more Ɵme in soluƟon than on the substrate
when opƟmized, in accordance with experimental results [? ? ].
Using the presented smFRET data, we conclude by arguing that Ago operates far from the
sliding-only opƟmum, and that its search characterisƟcs are consistent with the skip-and-
slide opƟmum. Ourwork suggests that any search involvingmany skips soon becomes ben-
eficial over using only sliding, and thus raises the quesƟon whether skip-and-slide search
could also be the preferred search mode for other searchers.

6.2. Results
6.2.1. Single-molecule FRET assay to probe lateral diffusion
Diffusive moƟon is oŌen characterized by measuring the mean square displacement as a
funcƟon of Ɵme [? ? ? ? ? ? ? ? ]. Even in the best of scenarios, when considering
a stretched and uncoiled substrate, direct observaƟon of lateral diffusion would require
us to track target searchers over several hundreds of nucleoƟdes. Such long trajectories
would imply very redundant scanning by Ago, and might therefore not be performed by
the protein [? ]. In an aƩempt to capture also short diffusive excursions [? ? ? ? ? ], we
uƟlized the high spaƟal resoluƟon of smFRET [? ].
The experimental procedure has been described in detail elsewhere [? ? ], and we here re-
state only the core components. To trap any diffusive excursions for long enough to detect
it (>100 ms), and have it complete before photobleaching (<700s), we design ss thymine
(CbAgo [? ]) and uracil (hAgo2, present study) repeats that contain two3-nt targets and two
4-nt targets respecƟvely (Figures ??A and ??). In order to accurately determine whether
the protein is binding to one target as opposed to the other, one of the traps is labeled
with an acceptor fluorophore (Cy5), while the guide is labeled with the donor fluorophore
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Figure 6.1: Single-molecule FRET experiment to probe lateral diffusion. (A) SchemaƟc of assay. DNA/RNA con-
structs, containing the two trapping sequences (shown in red) are passivated to the microscope slide via a 3’
bioƟn-streptavadin linker and are labelled with the acceptor die. The Ago-guide complex is labelled with the
donor die. (B) RepresentaƟve trace for hAgo2 at a trap separaƟon of 50nt. Top shows donor (green) and acceptor
(red) signals. BoƩom shows corresponding FRET efficiency and side panel shows histogram of all FRET efficiency
values obtained for the populaƟon of molecules. (C) ShuƩling Ɵme versus trapping distance (average ± sem) for
CbAgo. Solid lines represent linear fits to data points at 11 nt ,15 nt ,18 nt ,22 nt (iniƟal slope) and 64 nt ,92 nt ,120
nt (final slope). Shaded regions represent 95% confidence interval obtained using bootstrapping (see Methods).
(D) Same as C for hAgo2. Data points at 7 nt ,11nt ,15 nt (iniƟal slope) and 80 nt ,120 nt ,160 nt (final slope) are
used for linear fits.

(Cy3) (Figures ??A and ??). High FRET efficiency is observed when the protein binds to the
site in close proximity of the acceptor dye, whereas lower FRET efficiency is obtained when
Ago is trapped at the target far away from the dye (Figure ??B). To reduce the background
fluorescence, traces were recorded using total internal reflecƟon (TIRF) microscopy.

6.2.2. Ago slides over short distances
As shown in Figure ??B, the FRET efficiency shiŌs almost instantaneously between those
corresponding to the two trap locaƟons. Though smFRET solves the problem of spaƟal res-
oluƟon, the total Ɵme spent diffusing now seems to have fallen below our Ɵme resoluƟon
(30-100ms). In a recent paper [? ] we showed both experimentally and theoreƟcally that
for small trap separaƟons, the average shuƩling Ɵme is directly proporƟonal to the trap
separaƟon

𝑇shuƩle(𝑑trap < 25nt) ≈ 𝑑trap𝜏trap (6.1)

with 𝜏ዅኻtrap being the one-sided escape rate from the trapping sequence. The linear increase
in shuƩling Ɵme with trap separaƟon is consistent with Ago performing rapid lateral diffu-
sion (undetected), with numerous escape and re-trapping events before eventually making
it across to the other trap (Figure ??A). In Figure ??C we show data for CbAgo [? ], and in
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Figure 6.2: Modeling skip-and-slide search (shuƩling events). (A) SchemaƟc of shuƩling event. StarƟng from
the leŌmost trap, the protein uses a combinaƟon of single-nucleoƟde steps (sliding) and larger steps (skipping)
to reach the opposite trap aŌer possibly geƫng recaptured at the iniƟal traps several Ɵmes. (B) single-step distri-
buƟon of randomwalk defining our model. The protein either slides to a neighboring site or skips to sites located
at ±(᎙skip ± ᎟skip). (C) DistribuƟon of visited sites condiƟoned on skips. (top) The protein covers a rms distance
፥Ꮄslide between consecuƟve skips. (middle) The first skip takes the protein ᎙skip away (in either direcƟon) with an
uncertainty of ᎟skip in the landing site. (boƩom) Repeated skip-and-slide (sNs) cycles result in a distribuƟon that
resembles a simple randomwalk (top panel) with an adjusted effecƟve step length of ፥sNs. (D) RepresentaƟve nu-
merical soluƟons (S.I.) for shuƩling Ɵme versus trapping distance. (E) Final slope versus scanning density. Inset
shows equivalent versus skipping length (see S.I. for values in parameter sweep).

Figure ??Dwe confirm that the iniƟal proporƟonality (EquaƟon ??) reported for CbAgo also
holds for hAgo2 (new data).

6.2.3. Ago uses a mixture of skipping and sliding over larger dis-
tances

As the distance between traps grows beyond the iniƟal linear regime, the shuƩling Ɵme
drops, before it eventually seƩles into a gentler linear increase over large trap separaƟons
(Figures ??C and D). The drop in shuƩling Ɵme suggests that a new avenue for traversing
the gap between traps has opened up, while the shuƩling Ɵme’s eventual linearity with re-
gard to trap separaƟon suggests that also this avenue is governed by lateral diffusion and



6

152 6. Optimal DNA/RNA target search using frequent skip-n-slides

repeated re-trapping to the original trap, before reaching the second trap.To explain the
linear long-range behavior, we consider the fact that CbAgo has previously been shown to
bypass both protein roadblocks and secondary structures [? ]. Exactly how such obstacles
are traversed is not fully understood, but it is clear that bases would be skipped (i.e. not
interrogated) in any process able to bypass roadblocks, and we will therefore simply refer
to this process as skipping.

In Figure ??A we show a schemaƟc of the skip-and-slide dynamics, and in Figure ??B we
show the single step distribuƟon such a randomwalker has within ourmodel. In Figure ??C
we show the cumulaƟve step distribuƟon condiƟoned on skipping. Measuring all lengths
in nucleoƟdes, Ago has diffused the average root-mean square (rms) distance 𝑙slide aŌer
taking 𝑙ኼslide sliding steps between consecuƟve skips (see S.I. for derivaƟon). AŌer having
slid the 𝑙ኼslide steps, Ago skips on average 𝜇skip nucleoƟdes away in either direcƟon, with a
standard deviaƟon of𝜎skip nucleoƟdes in the length of every skip (Figures ??B and C). In the
S.I. we calculate the average shuƩling Ɵme for such a system numerically using a master-
equaƟon formulaƟon. In Figure ??Dwe show the resulƟng shuƩling Ɵme for a fixed sliding
length 𝑙slide = 12nt, while the average skip distance and its standard deviaƟon is either
𝜇skip = 36nt and 𝜎skip = 0nt (green curve) or 𝜎skip = 36nt and 𝜇skip = 0nt (orange curve).
Both have the same rms skipping length, 𝑙skip = √𝜇ኼskip + 𝜎ኼskip = 36nt, with the𝜎skip = 0nt
case represenƟng skips of definite length that take the protein to a locaƟon not reachable
in a single round of sliding (𝑙skip ≫ 𝑙slide). Contrarily, the protein may (likely) skip to a site
already interrogated when 𝜇skip = 0nt – depleƟng the ‘gap’ shown in the middle panel
of Figure ??C causes the distribuƟons shown in the middle panel to overlap with that of
the top panel. We note a clear resemblance of our numerical soluƟons to the empirical
curves (Figures ??C and D), including the possibility of non-monotonic behavior when the
skip length distribuƟon is Ɵght enough that there is a central gap in the cumulaƟve step
distribuƟon just aŌer the first skip (middle panel Figure ??C).
From the central-limit theorem it follows that the distribuƟon of Ago posiƟons aŌer re-
peated skip-and-slide (sNs) cycles will approach that of simple diffusive moƟon with aver-

age mean squared step length 𝑙sNs = √𝑙ኼslide + 𝑙ኼskip between each unbinding cycle (boƩom
panel Figure ??C), where 𝑙ኼskip = 𝜇ኼskip+𝜎ኼskip is the variance added to the cumulaƟve translo-
caƟon by one skip. In the S.I.we use a descripƟon condiƟoned on skips to construct scaling
arguments showing that for large trap separaƟons (Figure ??D)

𝑇shuƩle(𝑑trap≫ 𝑙sNs) ≈ const.+𝜌ኼscan𝜏trap𝑑trap with 𝜌scan = ፥slide/፥sNs (6.2)

Here we have introduced the scanning density 𝜌scan as the fracƟon of unique bases inter-
rogated by Ago within a single skip-and-slide cycle. Having used our numerical approach
to obtain 𝑇shuƩle(𝑑trap) curves for a wide range of 𝑙slide, 𝜇skip and 𝜎skip (S.I.), the resulƟng
final slopes from those curves indeed coincide with the derivaƟve of EquaƟon ??, thereby
validaƟng our scaling arguments (Figure ??E).
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6.2.4. Ago skips straight into the second trap for intermediate trap
separations

In between the two linear regimes, the shuƩling Ɵme varies non-monotonically (Figures
??C,D and ??D). At short distances, when only sliding, the protein’smoƟon is well described
by a simple random walk, with consecuƟve steps being uncorrelated (EquaƟon ??). Using
the scaling arguments leading up to EquaƟon ??, a similar uncorrelated moƟon over seg-
ments of length 𝑙sNs is expected at large trap separaƟons. Although we expect said scaling
arguments to fail (i.e. ignoring the constant in EquaƟon ??) within the intermediate (non-
monotonic) regime, prevenƟng us from esƟmaƟng the corresponding shuƩling Ɵmes, we
can sƟll esƟmate the trap separaƟon at which we expect a local minimum shuƩling Ɵme.
If the trap is not the outermost sequence on the construct, as is the case in our experiment
(Figure ??), the iniƟal sliding induces no average shiŌ in posiƟon, and it stands to reason
that the local minimum in shuƩling Ɵmes appears at a trap separaƟon 𝜇skip, from where
Ago typically slides straight into the second trap aŌer the first skip. Below, we shall use this
reasoning to esƟmate 𝑙slide and 𝑙skip from the data. Note that our numerical calculaƟons
have been performed for traps placed as the most outer sequence on the construct. For
such a system Ago driŌs an approximate distance 𝑙slide towards the other trap before skip-
ping, which is why Figure ??D shows a curve with its minimum around a trap separaƟon of
𝜇skip + 𝑙slide = 48nt (orange curve).

6.2.5. Ago skips over two thirds of all bases

Applying the above arguments to our experimental data, we esƟmate the trapping Ɵme
𝜏trap by fiƫng EquaƟon ?? to the iniƟal linear part of the shuƩling Ɵme dependence on
trap distance (leŌ most line in Figures ??C and D, 𝜏trap = 0.062 ± 0.003s for CbAgo and
𝜏trap = 0.057 ± 0.002sfor hAgo2)(see Methods). Next, we can determine the scanning
density 𝜌scan by fiƫng EquaƟon ?? to the final linear part of the data (right most line in
Figures ??C and D). The resulƟng scanning densiƟes (𝜌scan = 0.38 ± 0.03 for CbAgo and
𝜌scan = 0.31 ± 0.04 for hAgo2) indicate that only approximately one in three bases are
checked by Ago while moving along its substrate.

We can further give rough esƟmates of the sliding distance and skip length as follows.
As we see a dip in the shuƩling Ɵme we know that skipping can only be a viable avenue
of translocaƟon above a certain trap separaƟon, and thus there should be a gap in the
posiƟon distribuƟon of a skip-and-slide cycle just aŌer the first skip (middle panel Figure
??C). For there to be a substanƟal gap in this distribuƟon we need a clear separaƟon be-
tween the distribuƟons shown in the first two panels of Figure ??C. In mathemaƟcal terms,
𝜎ኼskip + 𝑙ኼslide ≪ 𝜇ኼskip, implying that 𝑙sNs ≈ 𝑙skip ≈ 𝜇skip, and that the dip visible in the shut-
tling Ɵme (Figures ??C and D) essenƟally reports on this quanƟty. With a dip for both sys-
tems occurring around trap-separaƟons of 30 nt, this implies a skipping distance of around
𝑙skip ≈ 30nt. With a scanning density of a third, this skip distance in turn suggests that
both sliding distances are around 𝑙slide ≈ 10nt, or equivalently, Ago takes around 100 slid-
ing steps between skips.
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Figure 6.3: OpƟmal search Ɵmes. (A) SchemaƟc single search round. In search of the unique target, the protein
uses a combinaƟon of skipping and sliding along the substrate before it unbinds into soluƟon and must perform
3D diffusion before it can return. Only sites slid past (at least once) are interrogated (green), resulƟng in a prob-
ability ፩check to interrogate a parƟcular site. (B) Comparison of ፩check(፱) (solid line, EquaƟon 3) to Monte Carlo
simulaƟons (symbols) (details given inMethods). Dashed lines indicate Argonauts (᎞scan ≈ ኺ.ኽ) that typically skip
once (light grey), 10 (dark grey), and 100 Ɵmes (black) before unbinding. (C) Search Ɵme versus ፍslide and ፍskip.
Region above the solid line represents sparse scanning (᎞scan ጺ ኺ.኿), while the region below it represents dense
scanning (᎞scan ጻ ኺ.኿). (D) Phase-diagram showing when ፓsNssearch ጺ ፓ

sliding
search. Dashed line represents the constant

scanning density of 0.3 (approx. the value esƟmated for both Ago). Arrows represent direcƟons of increasing
፥skip, protein copy number (concentraƟon) and substrate persistence length.

6.2.6. The total search time
Having shown that both hAgo2 and CbAgo skip over a significant number of bases—about
double the number of bases it actually scans in any skip-and-slide cycle—we now turn to
the quesƟon why both Argonaute – from different kingdoms of life – behave so similarly.
Under what condiƟons does skipping speed up a protein’s search for a single target in the
genome ormRNA pool? To answer this quesƟon, we now theoreƟcally consider what com-
binaƟons of the number and length of skipping and sliding steps – and thereby scanning
density – lead to minimal overall search Ɵmes.

We consider a target searcher that aŌer diffusing through soluƟon, binds its substrate ran-
domly and non-specifically to perform a lateral excursion consisƟng of both skipping and
sliding before unbinding (or finding the target). In a lateral excursion that endswith unbind-
ing, we take the protein to undergo an average of 𝑁skip skips, and 𝑁slide slides. Note that
𝑁slide does not equal the previously defined 𝑙ኼslide, as the laƩer is the number of sliding steps
between consecuƟve skips, while the former equals 𝑙ኼslide mulƟplied by the number of skips
prior to unbinding (see S.I.). To esƟmate the total Ɵme to find the target, we first deter-
mine the average number𝑁rnd of search rounds (‘rnd’) (binding-skip-and-slide-unbinding)
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needed before the target is found, and then the average Ɵme 𝑇rnd of each search round [?
? ? ]. In what follows, we express both 𝑁rnd and 𝑇rnd for target searchers using a mixture
of skipping and sliding corresponding to a scanning density 𝜌scan, aŌer which we shall pro-
ceed to minimize the search Ɵme in terms of the frequency of skipping and sliding steps
taken. To properly model the skip-and-slide process between unbinding events, we must
cover the scenario presented in Figure ??A: even though the target sits in between the
binding and unbinding locaƟons, it might sƟll be skipped over. In the S.I. we show that
the average fracƟon of bases checked at least once over the rms lateral diffusion distance
𝑙1D = √𝑁skip𝑙sNs between binding and unbinding can be esƟmated using the scanning den-
sity and the typical number of skips prior to unbinding as (see Figures ??A and B)

𝑝check(𝑥) = 1 −
log (1 + 2𝑥)

2𝑥 , with 𝑥 = 𝜌scan
1 − 𝜌scan

√𝑁skip (6.3)

The total number of checked sites at a fixed scanning density increases with increasing
number of skips per binding event. The logic being that an increased number of skips al-
lows for repeated rescanning of the same region of DNA sites, with the protein every Ɵme
interrogaƟng about 𝜌scan of these sites. Figure ??B shows that if the Argonaute proteins
(𝜌scan ≈ 0.3) are to skip on average 100 Ɵmes before unbinding, they sƟll interrogate only
about 60% of all sites spanned within its lateral excursion (dashed lines). Hence, aŌer cor-
recƟng for repeated scanning due to skipping, Ago likely sƟll leaves a significant porƟon
of the RNA/DNA unseen. We validated EquaƟon ?? (solid line in Figure ??B) using Monte
Carlo simulaƟons (colored data points,Methods).
Each lateral diffusion event checks on average 𝑝check𝑙1D disƟnct bases, and with a single
target on a substrate of 𝐿 nucleoƟdes, it will take on average 𝑁rnd = ፋ/፩check፥1D cycles be-
fore the target is found.

Each search round can be split between base interrogaƟon through 1D lateral diffusion
and 3D diffusion through soluƟon. The 1D lateral diffusion Ɵme 𝜏1D = 𝑇slide+𝑇skip can fur-
ther be split into the total Ɵme spent interrogaƟng off-targets aŌer a sliding step 𝑇slide =
𝑁slide𝜏slide, and the total Ɵme spent compleƟng skips and interrogaƟng the landing site
𝑇skip = 𝑁skip𝜏skip. The Ɵmescales for interrogaƟng off-targets aŌer a sliding event 𝜏slide,
execuƟng skips 𝜏skip (including the Ɵme to interrogaƟng the site of arrival), and execuƟng
excursions into soluƟon 𝜏3D (including the Ɵme to interrogaƟng the site of binding), to-
gether with the average number of rounds to find the target, leads us to the total search
Ɵme

𝑇search = 𝑇rnd𝑁rnd = (
Ꭱ1D

⏜⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⏜𝑁slide𝜏slide⏝⎵⎵⏟⎵⎵⏝
ፓslide

+𝑁skip𝜏skip⏝⎵⏟⎵⏝
ፓskip

+𝜏3D)
𝐿

𝑙1D𝑝check
(6.4)

We will seek the minima of the search Ɵme, but before proceeding wemust consider what
variables evoluƟon could act upon to create a balance between skipping, sliding, and un-
binding.
From the definiƟon of themicroscopic Ɵmescales we immediately have 𝜏skip, 𝜏3D > 𝜏slide as
the sliding moƟon itself costs negligible Ɵme by assumpƟon, and both skipping and excur-
sions into soluƟon are ended by interrogaƟng the base at arrival (𝜏slide). Further, we only
ever expect to find an opƟmum with a balance between skipping and unbinding when the
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Ɵme to complete a skip is shorter than the Ɵme to return from soluƟon. If returning from
soluƟon would be faster than compleƟng a skip, skipping would always be eliminated and
unbinding favored because it has both lower redundancy and is completed quicker. Fur-
ther, decreasing any of the microscopic Ɵmescales associated with different search modes
will clearly speed it up. Therefore, we assume these Ɵmes to already be reduced as far as
possible, and ordered as 𝜏3D > 𝜏skip > 𝜏slide.
Apart from the three microscopic Ɵmescales, there are three more independent parame-
ters evoluƟon could act upon. These are the total number𝑁skip of skips𝑁skip in one search
round, the number 𝑁slide of off-targets checked aŌer sliding in one search round, and the
rms skip distance 𝑙skip (or equivalently 𝑁skip, 𝑁slide and 𝜌scan, see S.I.). Increasing only the
rms skipping distance 𝑙skip will always reduce the scanning redundancy, and so will always
reduce the search Ɵme. Since we observe skips of finite length, we also assume these to
be externally limited, and take also 𝑙skip to be fixed. We are leŌ with two independent pa-
rameters, and in Figure ??C we plot the search Ɵme as a funcƟon of 𝑁skip and 𝑁slide when
𝑙skip = 30nt and 𝜏3D = 10𝜏skip = 100𝜏slide.
MinimizaƟon of the search Ɵme over our remaining two independent variables – the num-
ber of skips 𝑁skip and the scanning density 𝜌scan (defined in EquaƟon ??) – results in two
condiƟons that need to be saƟsfied at any opƟmum (see S.I.). We present the general con-
diƟons in the S.I., and here present soluƟons valid in regimes of both high and low scanning
densiƟes to determinewhen skip-and-slide search, of the kind observed for Ago, is favored.

6.2.7. Sliding is optimal for scanning densities above ኻ/ኼ
One local minimum exists in the densely scanned region (1−𝜌scan≪ ኻ/ኼ) and corresponds
to the protein using sliding as its only lateral diffusion mode, eliminaƟng skips enƟrely. The
minimum is defined by, 𝜌slidingscan = 1, and (see S.I.)

𝑁sliding
skip = 0, 𝑁sliding

slide = 𝜏3D
𝜏slide

⇒ 𝑇slide =
1
2𝑇rnd (6.5)

This minimum corresponds to the known minimum when a priori assuming that there are
no skips [? ? ]. Namely, the protein spends half its Ɵme diffusing through soluƟon and
the other half of the Ɵme sliding (the rightmost idenƟty in EquaƟon ?? is equivalent to
𝜏1D = 𝜏3D). The search Ɵme at this minimum equals (see S.I.)

𝑇slidingsearch = 2𝐿√𝜏slide𝜏3D (6.6)

The non-skip minimum is the only minimum in the densely scanned regime (𝜌scan > ኻ/ኼ)
(Figure ??C, minimum coinciding with horizontal axis), suggesƟng that it might be hard to
evolve away from the it by incremental steps.

6.2.8. A mix of skipping and sliding is optimal for scanning densi-
ties below ኻ/ኼ

For the skipping to be beneficial, skips must be large enough (𝑙skip ≫ 𝑙slide or equivalently
𝜌scan≪ ኻ/ኼ) to get the system beyond the barrier visible in Figure ??C. In the S.I. we show
that aŌer recognizing

𝜏slow = 𝜏slide𝑙ኼskip (6.7)
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as the Ɵme needed to traverse the length of a skip purely through sliding (diffusion with 1
nt steps) – a measure of the added benefit of using skipping – we obtain the locaƟon of the

skip-n-slide opƟmum corresponding to a scanning density of 𝜌sNsscan = 𝑙ዅኻskip√ፍsNs
slide/ፍsNs

skip < 0.5,
with (see S.I.)

𝑁sNs
slide =

𝜏3D
𝜏slide

(𝜏slow𝜏3D
)
Ꮃ
Ꮅ
, 𝑁sNs

skip =
𝜏3D
𝜏skip

(1 + (𝜏slow𝜏3D
)
Ꮃ
Ꮅ
) ⇒ 𝑇skip =

1
2𝑇rnd (6.8)

Note the final idenƟty shown in EquaƟon ?? says that at the skip-and-slide opƟmum, the
protein spends half of its Ɵme skipping, and the other half on a combinaƟon of sliding and
diffusing through soluƟon. In agreement with experimental studies [? ? ], this indicates
the protein spendsmore Ɵme diffusing along the DNA then it does through soluƟon (𝜏1D >
𝜏3D). The search Ɵme at this skip-and-slide opƟmum equals (see S.I.)

𝑇sNssearch =
2𝐿√𝜏skip𝜏3D

𝑙skip

√1+( ᎡslowᎡ3D )
Ꮃ
Ꮅ

𝑝check(( ᎡslowᎡ3D )
Ꮄ
Ꮅ)

(6.9)

6.2.9. Global optimal search strategy
As there are local minima in both the sparsely and densely scanned regions (EquaƟons ??
and ??), the global opƟmal search strategy is defined by which of these two minima have
the smallest search Ɵme. The condiƟon for the slip-and-slide minimum being the global
minimum (𝑇sNssearch < 𝑇slidingsearch ) can be wriƩen as (see S.I.)

𝜏skip
𝜏slow

<
𝑝ኼcheck(( ᎡslowᎡ3D )

Ꮄ
Ꮅ)

1+( ᎡslowᎡ3D )
Ꮃ
Ꮅ

< 1 (6.10)

Figure ??D shows the corresponding phase diagram – in {𝜏slow, ᎡskipᎡ3D }-space – showingwhen
the skip-and-slide minimum is the global minimum. We previously argued that if 𝜏3D <
𝜏skip there will be no skip-and-slide minimum. Now we see that for 𝜏3D > 𝜏skip we can al-
ways find an 𝑙skip long enough that the skip-and-slide opƟmum is also the global opƟmum
(upward arrow in Figure ??D). Logically, the skip-and-slide opƟmum is only preferred over
the sliding-only one for 𝜏slow > 𝜏skip, indicaƟng the typical return Ɵme of a skip may not
exceed the Ɵme needed to cover the same distance by just sliding, and EquaƟon ?? gives
the more stringent condiƟon that must be saƟsfied.

We conclude by noƟng both of the Argonaute proteins considered above have 𝜌scan ≈ 0.3
(yellow dashed line in Figure ??D), puƫng the system above the line separaƟng the sparse
and dense scanning regimes (Figure ??C). Certainly, hAgo2 and CbAgo operate far from the
sliding-only opƟmum, and, as we shall discuss further below, are working in the regime
where the skip-and-slide opƟmum is found (crossing point Figure ??D).
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6.3. Discussion
Site-specific DNA or RNA binding proteins must find a single sequence amongst megabase
(prokaryotes) to gigabase (eukaryotes) pools of off-targets. Here we have shown that facil-
itated diffusion with a mixture of sliding (single-nucleoƟde steps) with frequent and large
skips (mulƟ-nucleoƟde steps) is capable of reducing the overall search Ɵme beyond using
sliding by itself. InteresƟngly, pure sliding is a possible opƟmal strategy, and the search
Ɵme for skips shorter than the sliding length is minimal only aŌer eliminaƟng skips enƟrely
as their temporal cost is no longer accompanied by the benefit of visiƟng off-targets not
encountered before (Figure ??C). Contrarily, skips greater than the sliding length reduce
the probability of redundantly sampling off-targets, and we find another opƟmum where
the search Ɵme is minimal if skips are used so frequently that the system spends half of
the Ɵme skipping. We further showed how single-molecule FRET experiments (Figure ??)
can be used to extract what we termed the scanning density, a measure of the fracƟon
of bases directly interrogated during a skip-and-slide cycle (Figure ??). Our experiments
performed on a prokaryoƟc (CbAgo) and eukaryoƟc (hAgo2) Argonaute revealed both to
have scanning densiƟes around 0.3 (Figures ??C and ??D)—well within the sparse scanning
regime (Figure ??C).

As shown in Figure ??C, the scanning densiƟes of the Argonaute proteins are consistent
with having skip-n-slide search as an opƟmal strategy. However, according to Figure ??D
it appears at this the system just touches the separaƟng line determining the global op-
Ɵmum. One might speculate what other factor, not taken into account in our modeling,
could have driven Ago away from the sliding only opƟmum. As shown in reference [? ],
skips are needed to surpass roadblocks present on any physiological substrate. Typical 3’-
UTR substrates are 40-80% with proteins [? ] and about one protein for every 30-100 nt is
bound to cellular DNA [? ? ]. We therefore hypothesize that if one limits the sliding length
to be less than the typical separaƟon between other (high affinity) binding proteins it to
always be beneficial to include skips (𝑇sNssearch < 𝑇slidingsearch ).

Based on our results, for a low scanning density to be preferred, the binding rate from
soluƟon should not exceed the return rate aŌer skipping (Figure ??D). As binding rates
scale linearly with concentraƟons (before reaching saturaƟng levels), we thus expect bind-
ing proteins present at lower copy numbers to be prone to use more frequent skips (arrow
in Figure ??D). For example, E.coli cells express about 1-10 copies of the lac repressor [? ]
and experiments have indeed seen signatures of a skipping-and-sliding mixture [? ].
Instead of increasing (reducing copy number), a reducƟon in 𝜏skip is to be expected onmore
flexible substrates, such as single-stranded DNA or RNA. We therefore deem it likely that
skip-n-slide search to also be used by sequence specific single-stranded binding proteins
other than Argonaute, such as ribosomes searching for the transcripƟon start site. We
hope to moƟvate future experiments uƟlizing different DNA binding proteins to invesƟ-
gate whether they belong to the “sliding only” (𝜌scan ≫ ኻ/ኼ) or the “skipping-and-sliding”
(𝜌scan≪ ኻ

ኼ ) class (Figure ??C).

Within our analysis of the total search Ɵme we have decoupled the return Ɵme from a skip
(𝜏skip) from the average length thereof (𝑙skip). Hence, fixing the Ɵme, there is no penalty for
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ever increasing skipping distances. In fact, for large enough skipping distances we can al-
ways reach a situaƟon where the skip-and-slide opƟmum is the global opƟmum (provided
𝜏skip < 𝜏3D)(Figure ??D). In our previous work [? ] we demonstrated the duraƟon of skips
to be limited by the Ɵme needed to escape the bound site – rather than the Ɵme needed
to find the distant locaƟon – jusƟfying our assumpƟon for Argonaute. However, skips lim-
ited by the rate of rebinding – for instance through diffusion – couple 𝜏skip to 𝑙skip and we
expect an opƟmal 𝑙skip to exist. As we here focused on the coupling between search Ɵme
and the experimentally measurable 𝜌scan, we deem such an analysis beyond the scope of
the presented research, but an interesƟng future direcƟon.

A previous study [? ] has pointed out that speeding up the lateral diffusion – by reduc-
ing the variaƟon in binding strengths along the genome – comes at the cost of reducing
the protein’s specificity. The authors proposed that in order to overcome this apparent
‘search-stability paradox’ the protein must switch between two conformaƟons – one with
higher affinity (for specificity) and one with a lower one (for speed) – and detail the Ɵght
constrains on the binding energies for such a soluƟon to exist [? ? ](Chapter ??). Se-
lected target searchers – including selected RNA guided nucleases [? ? ? ? ? ] – indeed
adopt mulƟple conformaƟons during target interrogaƟon [? ? ? ]. The necessity for two
protein conformaƟons, however, arises from assuming the protein is only capable of slid-
ing, thereby forcing the protein to sample every site along the genome. We hypothesize
that using the different skip-and-slide scheme described here could provide a complemen-
tary/alternaƟve route to being both fast and specific –allowing for wider spreads in binding
energies – especially for proteins that are not known to exhibit mulƟple conformaƟons.

The experiments performed here – together with our theoreƟcal analysis – are in principle
applicable to other DNA binding proteins. Proteins not guided by non-coding DNA/RNA
should be labeled with the donor dye directly. Moreover, both Ago proteins examined
here bind single-stranded nucleic acids, which have close to nucleoƟde persistent lengths
[? ] and thereby offer a clear possible mechanism of introducing frequent skips – Ago can
skip to distant sequences as they can come close together in space. Yet, the presented
analysis and experiment do not rely on such, and proteins binding double-stranded DNA –
persistence lengths ∼50 nt– can similarly be invesƟgated for the presence of (presumably
larger and less frequent) skips, without prior knowledge of a possible microscopic mecha-
nism for skipping.

In conclusion, a search strategy combining skipping and sliding can significantly increase
the rate of associaƟon to the cognate target – which is of criƟcal importance for proper
funcƟoning of the cell – and Argonaute proteins adopt scanning densiƟes consistent with
their mixture being opƟmal.

6.4. Methods
6.4.1. Monte Carlo simulations for validating 𝑃check
To test the validity of EquaƟon ??, we set up Monte Carlo simulaƟons (code wriƩen in
Python). The proteins are assigned a unity step rate to either side, as well as an unbinding
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rate 𝑢. Hence in every move, the protein diffuses to one of its neighboring site with a
probability ኻ/ኼዄ፮ and unbinds with a probability ፮/ኼዄ፮. Before every move, the protein
interrogates the site currently located at with a fixed probability of 𝜌scan. Each of the 1000
runs ends when the protein unbinds. The corresponding value of 𝑥 is evaluated using the
distance between binding and unbinding sites (see definiƟon of 𝑥 above EquaƟon ??). We
esƟmate the value of𝑝check as the fracƟonof sites visited that are interrogated. Error bars in
Figure ??B show 95% confidence intervals for both 𝑥 and 𝑝check. SimulaƟons we repeated
for in [10ዅኻኺ, 10ዅዃ,10ዅዂ,...,10ዅኼ, 0.9,0.8,...0.1], and 𝑢 in [10ዅ኿,...,10ዅኼ] as indicated in
Figure ??B.

6.4.2. Bootstrapping for error estimation and based on smFRET
data

Fiƫng the data from the tandem target assay to EquaƟon ?? provides the esƟmate of 𝜏trap.
We bootstrapped the dwell Ɵme distribuƟons acquired using the original tandem target
assay (distances of 11 nt, 15 nt, 18 nt and 22 nt (CbAgo) and 7 nt, 11 nt, and 15 nt (hAgo2)).
For each of the 10኿ bootstrap samples we calculated new values for the associated 𝑇shuƩle’s
and repeated the fit to EquaƟon ?? to obtain an error esƟmate in the fiƩed value of the
escape rate. In similar fashion, we used EquaƟon ??, together with the esƟmate of 𝜏trap
from the original dataset, to determine 𝜌scan (distances of 64 nt, 92 nt and 120 nt (CbAgo)
and 80 nt, 120 nt, 160 nt (hAgo2)). All analysis was performed with a custom code wriƩen
in Python. Shaded areas in Figures ??C and D represent 95% confidence intervals.

6.4.3. protein purification
CbAgo was purified according to Hegge et al, 2019 [? ]. hAgo2 was purified according to
Chandradoss et al, 2015 [? ].

6.4.4. Nucleic acid preparation
RNA constructs with a single amine-C6-uridine modificaƟon were ordered from STPharm.
AŌer labelling with Cy5 according to [? ], the constructs were precipitated. The RNA con-
structs were subsequently annealed to a DNA splint (specific for RNA and U40 mer), a sec-
ond DNA splint (for ligaƟng U40 mers) and a U40 mer (in the raƟo 1:2:3:3). AŌer ligaƟon
with T4 RNA ligase II (NEB), the ligated constructs were run on a 10%PAGE. Different ligated
populaƟons are created through this process (for example, TGT- U40 or TGT-U40-U40 etc)
and these are then excised from the gel and concentrated through ethanol precipitaƟon.
The concentrated and ligated RNA constructs were again annealed to a DNA construct and
an RNA target with bioƟn on the 3’ end. LigaƟonwas again performedwith T4 RNA ligase II.
DNA oligos with a single amine-C6-thymine modificaƟon were ordered from ELLA Biotech
GmbH and labeled in the same way as the RNA.

6.4.5. Sample preparation
Quartz slides were prepared according to [? ]. Briefly, quartz slides were cleaned with
detergent, sonicated and treated with acetone and subsequently KOH. Coverslips were di-
rectly sonicatedwith KOH. Piranha cleaningwas done followedby treatmentwithmethanol
and incubaƟon of (3-Aminopropyl)triethoxysilane (APTES) for both coverslips and quartz
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slides. PEGylaƟon took place overnight and slides and coverslips were stored at -20 ∘C. Be-
fore single-molecule experiments, an extra round of PEGylaƟon took place with MSPEG-4.
The quartz slide was then assembled with scotch tape and epoxy glue and the chamber
is flushed in T50 and 1% Tween-20 for >10min to further improve the surface quality of
the single-molecule chambers [? ]. Channels were thoroughly washed with T50 before
adding in streptavidin (0.1 mg/mL) for 1 min. Subsequently, DNA or RNA was immobilized
on the surface through bioƟn-streptavidin conjugaƟon. 10 nM CbAgo or hAgo2 was incu-
bated with 1 nM guide in (100 mM NaCl for CbAgo, 50 mM NaCl for hAgo2), 50 mM Tris, 1
mM Trolox, 0.8% glucose for 30 min. Lastly, glucose oxidase (0.1 mg/mL final conc.) and
catalase (17 μg/mL final conc.) were added and introduced in the chamber.

6.4.6. Experimental setup

Single-molecule experimentswere performed on a custombuilt invertedmicroscope (IX73,
Olympus) using prism-TIRF and a 60X water immersion objecƟve (UPLSAPO60XW, Olym-
pus). The Cy3 dye was excited using a 532 nm diode laser Compass 215M/50mW, Coher-
ent) and the Cy5 dye was excited using a 637 nm diode laser (OBIS 637 nm LX 140 mW).
The scaƩered light was blocked by a 532 nm notch filter (NF03-532E-25, Semrock) and a
633 nm notch filter (NF03-633E-25, Semrock) aŌer which the remaining signal from the
fluophores was separated into two separate channels. Lastly, the light is projected on a
EM-CCD camera (iXon Ultra, DU-897U-CS0-# BV, Andor Technology). Before each experi-
ment, a reference movie was taken with the red laser to excite the Cy5 dyes on the nucleic
acid molecules of interest. AŌer that, a movie is taken with the green laser. The single-
molecule experiments were taken at room temperature (20± 0.1 ∘C).

6.4.7. Analysis of raw data

The raw data was analysed using custom wriƩen code in IDL, where the reference movie
is used to take into account only the regions of interest (i.e. the regions that contain a
Cy5). The resulƟng Ɵme traces where further analysed in MATLAB (Mathworks) where the
shuƩling rates were extracted through the use of Hidden Markov soŌware called ebFRET
(hƩp://ebfret.github.io/) and custom wriƩen code in Matlab.
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6.7. Supplemental Information
6.7.1. Determining shuttling times using a mixture of skipping

and sliding
We here build a kineƟc model for the lateral diffusion by target searching proteins capable
of explaining the experimental data shown in Figure ??.

modeling skipping-and-sliding lateral diffusion
Given the protein can in principle (aƩempt to) bind any sequence along theDNAor RNA,we
imagine binding sites to be a nucleoƟde apart. When bound to site 𝑖, the protein diffuses
away (in either direcƟon) at a rate

𝑘move(𝑖) = {
𝑘trap at trap

𝑘ns at non-specific site
(S6.1)

We assume the binding energy at the trap is significantly greater than at any non-specific
site, with both sƟll being significantly more stable than the unbound state. As a result,
the (average) shuƩling Ɵme measured in our in vitro experiments - the system contains
two stronger binding traps and a limited amount of remaining off-targets - is governed by
movements from the trap.

𝑘ns ≫ 𝑘trap (S6.2)

Ignoring any temporal contribuƟon from the non-specific sites reflects the lack of any di-
rectly observable FRET signal corresponding to the protein being at these locaƟons (Figure
??). Furthermore, given the TIRF microscopy assay ensures we are tracking laterally diffus-
ing proteins that did not unbind - proteins diffusing through soluƟon move in and out of
the evanescent field too fast to be detected - we shall ignore the protein’s intrinsic unbind-
ing rate at all sites for now - an assumpƟon that is further jusƟfied by noƟng that typically
more than 10 shuƩle events occur prior to unbinding.

In every move, taking an average Ɵme of 𝑘ዅኻmove, the protein can either slide - step to its
neighbors - or skip - step further.We let the rate to step away from site 𝑖 sƟll be set by
EquaƟon ?? and assign a probability that such a step is of definite length |𝑙| (in nucleoƟdes).
Leƫng 𝛿፱,፲ denote the Kronecker delta,

𝑃(𝑙, 𝑙slide, 𝑙skip) =
𝑛slide(𝑙slide)

1 + 𝑛slide(𝑙slide)
𝛿|፥|,ኻ +

1
1 + 𝑛slide(𝑙slide)

𝑠(|𝑙|, 𝑙skip) (S6.3)

, with∑፧ጻኺ 𝑃(𝑛) = 1. The weight of a skip of length |𝑙| as a funcƟon of the typical skipping
length 𝑙skip, is denoted by 𝑠(|𝑙|, 𝑙skip). Further, 𝑛slide is the typical number of sliding steps
taken between two consecuƟve skips. Given a sliding step displaces the protein by a sin-
gle nucleoƟde, the stochasƟc variable Δ𝑛። represenƟng the number of nucleoƟdes moved
during one such step follows

Δ𝑛። = {
+1 nt 𝑝 = ኻ/ኼ
−1 nt 1−𝑝 = ኻ/ኼ (S6.4)
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Hence, the mean squared displacement aŌer 𝑛slide of such steps equals

(1 nt)ኼ 𝑙ኼslide = ⟨(
፧slide
∑
።዆ኻ

Δ𝑛።)
ኼ

⟩

=
፧slide
∑
።዆ኻ

፧slide
∑
፣዆ኻ

⟨Δ𝑛።Δ𝑛፣⟩

=
፧slide
∑
።዆ኻ

⟨(Δ𝑛።)ኼ⟩ +∑
።ጽ፣
⟨Δ𝑛።⟩ ⟨Δ𝑛፣⟩

= 𝑛slide × ⟨(Δ𝑛ኻ)ኼ⟩
= 𝑛slide (1 nt)ኼ

(S6.5)

, where in the third line we have used the independence of individual steps. We define
the ’sliding length’, 𝑙slide = √𝑛slide, as the typical number of nucleoƟdes covered sliding
between two consecuƟve skips - the rms displacement of a simple randomwalk with 𝑛slide
steps. RewriƩen in terms of the now defined sliding length 𝑙slide, the probability of taking
a step of length |𝑛| reads

𝑃(𝑛, 𝑙slide, 𝑙skip) =
𝑙ኼslide

1 + 𝑙ኼslide
𝛿|፧|,ኻ +

1
1 + 𝑙ኼslide

𝑠(|𝑛|, 𝑙skip) (S6.6)

The (effecƟve) rate from 𝑖 to 𝑗 then equals

𝜅(𝑖, 𝑗|𝑙slide, 𝑙skip) = 𝑘move(𝑖)𝑃(|𝑖 − 𝑗|, 𝑙slide, 𝑙skip) (S6.7)

As we will show below, the behavior of the resulƟng shuƩling Ɵmes both at short and long
distances is independent of the choice of the distribuƟon 𝑠. Yet, all numerical results are
obtained using

𝑠(𝑛, 𝜇skip, 𝜎skip) = ∫
፧ዄᎳ/Ꮄ

፧ዅᎳ/Ꮄ
[𝐺(𝑛|𝜇skip, 𝜎skip) + 𝐺(𝑛| − 𝜇skip, 𝜎skip)]d𝑛 (S6.8)

with

𝐺(𝑥, 𝜇skip, 𝜎skip) =
1

√2𝜋𝜎ኼskip
𝑒
Ꮍ(ᑩᎽᒑskip)Ꮄ

ᎴᒗᎴskip (S6.9)

denoƟng the Gaussian distribuƟon with average 𝜇skip and standard deviaƟon 𝜎skip. Hence,
the length of each skip is normally distributed, with a typical (rms) skipping length of

𝑙skip = √𝜇ኼskip + 𝜎ኼskip (S6.10)
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numerical method to solve for shuttling time

Every shuƩling event starts with the protein bound at one of the two trapping sites (𝑡 = 0)
and ends the first Ɵme it reaches the other (𝑡 = 𝑇shuƩle), located 𝑑trap sites away. Using the
transiƟon rates of EquaƟon ??, leƫng 𝑃i(𝑡) denote the probability for the protein to reside
at site 𝑖 at Ɵme 𝑡, and defining the vector

�⃗�(𝑡) = [𝑃1(𝑡), 𝑃2(𝑡), ..., 𝑃 trapዅኻ(𝑡)]
ፓ

(S6.11)

(for ease of notaƟon we omit the sites flanking either trap 𝑖 < 1 and 𝑖 > 𝑑trap, but note
the approach menƟoned here is applicable also if the traps are not the outermost sites on
the construct)

the following set of Master EquaƟons determine the evoluƟon of the occupancies at every
site during a shuƩling event with the first trap at site 1 and the second at 𝑑trap.

𝜕�⃗�
𝜕𝑡 = −𝐾�⃗�(𝑡) (S6.12)

with the elements in rate matrix 𝐾 given by

𝐾።፣ = {
−𝜅(|𝑗 − 𝑖|, 𝑙slide, 𝑙skip) ∀𝑖 ≠ 𝑗
∑።ጽ፣ 𝜅(|𝑖 − 𝑗|, 𝑙slide, 𝑙skip) ∀𝑖 = 𝑗 (S6.13)

The shuƩle event starts with the protein located at the first trap,

𝑃1(0) = 1, 𝑃i(0) = 0 ∀𝑖 ≠ 1 (S6.14)

, and ends when the second trap is reached, whose corresponding outgoing rates are set
to zero (𝑗 = 𝑑trap in EquaƟon ??). The probability of compleƟng a shuƩle within the Ɵme
interval [𝜏, 𝜏+Δ𝑡] should be proporƟonal to the change in occupancy at the desƟnaƟon trap
(𝑃

trap
(𝜏 + Δ𝑡) − 𝑃

trap
(𝜏)). Leƫng 𝑝shuƩle(𝜏) denote the probability density of compleƟng

the shuƩle at Ɵme 𝜏, (𝑝shuƩle(𝜏)Δ𝑡 = 𝑃 trap
(𝜏 + Δ𝑡) −𝑃

trap
(𝜏), for small enough Δ𝑡. Taking

Δ𝑡 → 0, we recognize the rate of change of the second trap’s occupancy (
Ꭷፏᑕtrap (፭)

Ꭷ፭ |፭዆Ꭱ)
as the instantaneous probability that the shuƩling Ɵme equals 𝜏 (𝑝shuƩle(𝜏)). DenoƟng the
basis vectors 𝑝j as 𝑝0 = [1, 0, 0, .....0]ፓ, 𝑝1 = [0, 1, 0, .....0]ፓ, 𝑝2 = [0, 0, 1, .....0]ፓ and so on,
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the shuƩle Ɵmes are distributed as

𝑝shuƩle(𝜏) =
𝜕𝑃

trap
(𝑡)

𝜕𝑡 |፭዆Ꭱ

= − ∑
፣ጽ፝trap

𝜕𝑃፣(𝑡)
𝜕𝑡 |፭዆Ꭱ

≡ − ∑
፣ጽ፝trap

𝑝jፓ
𝜕�⃗�(𝑡)
𝜕𝑡 |፭዆Ꭱ

= + ∑
፣ጽ፝trap

𝑝jፓ𝐾�⃗�(𝜏)

= + ∑
፣ጽ፝trap

𝑝jፓ𝐾𝑒ዅፊᎡ�⃗�(0)

(S6.15)

In the second line we have used that any addiƟonal occupancy at the trap must come from
somewhere else on the RNA/DNA (𝑃

trap
(𝑡) = 1 − ∑፣ጽ፝trap 𝑃j). The next lines makes use of

EquaƟon ?? together with the basis vectors to write the elements of �⃗� as its projecƟons,
and the Master EquaƟon, EquaƟon ??, to work in the rate matrix 𝐾 and its matrix expo-
nenƟal.The desired average shuƩling Ɵme (𝑇shuƩle) is the first moment of the distribuƟon
𝑝shuƩle(𝜏),

𝑇shuƩle(𝑑trap) = ∫
ጼ

ኺ
𝜏𝑝shuƩle(𝜏)d𝜏

= ∫
ጼ

ኺ
𝜏 ∑
፣ጽ፝trap

𝑝jፓ𝐾𝑒ዅፊᎡ�⃗�(0)d𝜏

= ∑
፣ጽ፝trap

𝑝jፓ (∫
ጼ

ኺ
𝜏𝐾𝑒ዅፊᎡd𝜏) �⃗�(0)

= ∑
፣ጽ፝trap

𝑝jፓ𝐾ዅኻ�⃗�(0)

(S6.16)

Using the values of 𝑙slide, 𝜇skip and 𝜎skip (thereby knowing 𝑙skip via EquaƟon ??) and the
distance between traps 𝑑trap, we construct the rates in EquaƟon ??, build the matrix 𝐾,
invert it and compute 𝑇shuƩle(𝑑trap) as the inner product shown in EquaƟon ??. Note that
if the trap located at 𝑑trap is not the outermost binding site on the construct, EquaƟon ??
is sƟll valid aŌer subsƟtuƟng matrix 𝐾 for the sub-matrix with its 𝑑trap-th row and column
removed.

6.7.2. Shuttling times scales with square of scanning density at
large trap separations

Given movements along the non-specific parts of the substrate occurred too fast to be ob-
served, 𝑇shuƩle should be proporƟonal to the Ɵme needed to escape the iniƟal trap towards
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the region in between traps (𝜏trap = 𝑘ዅኻtrap) mulƟplied by the number of re-trapping events.

𝑇shuƩle(𝑑trap) = 𝑛return𝜏trap (S6.17)

AŌer sufficient rounds of skipping and sliding, the protein’s excursion is well described by
a random walk with basic step length (Figure ??, ’sNs’:’skip-N-slide’):

𝑙sNs = √𝑙ኼslide + 𝑙ኼskip = √𝑙ኼslide + 𝜇ኼskip + 𝜎ኼskip (S6.18)

The protein slides - covering 𝑙slide nucleoƟdes - before skipping to the next segment of
length 𝑙sNs. For this coarse-grained system, we once again expect the escaping of the trap
to be rate limiƟng, resulƟng again in a linear increase of the shuƩling Ɵme with inter-trap
distance, similar to the case of diffusion purely by sliding (EquaƟon ??),

𝑇shuƩle(𝑑trap) = const.+ �̂�return𝜏trap (S6.19)

Here we are concerned only with 𝑇shuƩle(𝑑trap)’s scaling with 𝑑trap, for which it is only the
term proporƟonal to 𝜏trap that has to be taken into account. In the coarse-grained system

�̂�return = (# returns to segment that contains the first trap)
× (# returns to trap when in first segment)
≡ �̂�segment × �̂�retrap

(S6.20)

To get the average number of re-entries to the first segmentwemust derive its correspond-
ing probability. First, given a skip translocates the protein to an adjacent segment of 𝑙sNs
nucleoƟdes, and 𝑙ኼslide steps are taken within each segment

𝜌scan =
𝑙slide
𝑙sNs

= 𝑙slide
√𝑙ኼslide + 𝑙ኼskip

(S6.21)

denotes the typical fracƟon of interrogated sites along the substrate, or ’scanning density’.
In other words, any parƟcular site within a 𝑙sNs-long region of DNA/RNA has a probability
of 𝜌scan to be interrogated prior to the protein moving beyond this segment. Equivalently,
the protein visits a segment without checking (all) the sites within it with a probability
of 1 − 𝜌scan. Next, let 𝑃shuƩle(�̂�) denote the probability of traversing/shuƩling across �̂�
segmentswithout entering the previous segment. We shall derive𝑃shuƩle(𝑑) below. Having
entered the first of the �̂�trap = ፝trap/፥sNs segments that lie between the traps, the probability
of returning to the segment that contains the iniƟally bound trap equals (Figure ??).

𝑃segment = (1 − 𝑃shuƩle(�̂�trap))

+ 𝑃shuƩle(�̂�trap)
ጼ

∑
፦዆ኺ

((1 − 𝜌scan) (1 − 𝑃shuƩle))፦ (1 − 𝜌scan) 𝑃shuƩle(�̂�trap)

(S6.22)
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The first term is the probability of immediately going back to the segment the protein
started from, while the sum accounts for the probability of all paths that reach the seg-
ment that contains the second trap, do not get captured by it, and eventually return back
to the first trap (Figure S2). For instance, the 𝑚 = 0 term (𝑃shuƩle(1 − 𝜌scan)𝑃shuƩle) rep-
resents the path that walks to the opposite side of the construct, does not interrogate the
final trap and walks back across the construct to arrive back at the segment with the ini-
Ɵally bound trap.

Using a similar type of ’path counƟng’, we find the probabiliƟes 𝑃shuƩle and 𝑃no shuƩle =
1 − 𝑃shuƩle, for a given inter-trap distance �̂�trap to equal (Figure ??)

𝑃no shuƩle(�̂�trap) =
ጼ

∑
፦዆ኺ

(12 (1 − 𝑃shuƩle(�̂�trap − 1)))
፦ 1
2 (S6.23)

𝑃shuƩle(�̂�trap) =
ጼ

∑
፦዆ኺ

(12 (1 − 𝑃shuƩle(�̂�trap − 1)))
፦ 1
2𝑃shuƩle(�̂�trap − 1) (S6.24)

- from which we can write the recurrence relaƟon

𝑃shuƩle(�̂�trap) = 𝑃no shuƩle(�̂�trap)𝑃shuƩle(�̂�trap − 1) (S6.25)

The above can be re-wriƩen as

𝑃shuƩle(�̂�trap) =
𝑃shuƩle(�̂�trap − 1)

𝑃shuƩle(�̂�trap − 1) + 1
(S6.26)

, which subjected to the boundary condiƟon 𝑃shuƩle(1) = 1 - signifying that if the traps are
placed in adjacent segments, the shuƩle is complete once the protein escaped the trap for
the first Ɵme - has the simple soluƟon

𝑃shuƩle(�̂�trap) =
1
�̂�trap

(S6.27)

Given the probability of re-entering the first segment, the average number of Ɵmes this
occurs prior to eventually shuƩling across equals

�̂�segment =
ጼ

∑
፧዆ኺ

𝑛𝑃፧segment(1 − 𝑃segment) =
𝑃segment

1 − 𝑃segment
(S6.28)

Using EquaƟon ??wefind that the protein on average re-enters the segmentwith the iniƟal
trap

�̂�segment =
𝑑trap
𝑙sNs

+ 𝑙sNs
𝑙slide

− 2 (S6.29)

Ɵmes prior to compleƟng the shuƩling event. Once arrived back within the first segment,
wemust count the (average) number of Ɵmes the protein gets recaptured by the actual trap
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(�̂�retrap). Assuming sufficient ’skip-and-slide cycles’ have taken place, the protein’s posiƟon
is uniformly spread throughout the 𝑙sNs-long segment (Figure ??C). Hence, every step taken
within the segment has a probability of ኻ/፥sNs to lead to the trap. Given there are typically
𝑛slide = 𝑙ኼslide steps taken prior to a skip (that moves the protein outside of the 𝑙sNs-long
region),

�̂�retrap =
𝑛slide
𝑙sNs

= 𝑙ኼslide
𝑙sNs

(S6.30)

Taken together, EquaƟons ?? and ?? - by virtue of EquaƟon ??:

�̂�return =
𝑙ኼslide
𝑙sNs

× [
𝑑trap
𝑙sNs

+ 𝑙sNs
𝑙slide

− 2] ≡ const.+ 𝑙
ኼ
slide

𝑙ኼsNs
𝑑trap (S6.31)

Hence, when placed sufficiently far apart, the shuƩling Ɵme (EquaƟon ??),

𝑇shuƩle(𝑑trap) = const.+ 𝜌ኼscan𝜏trap𝑑trap = ( 1
1+( ፥skip፥slide )

ኼ)𝑑trap (S6.32)

grows linearly with a slope that scales quadraƟcally with the scanning density (EquaƟon
??) from which we obtain the raƟo between sliding and skipping lengths.

6.7.3. parameter sweep and estimation of slopes
To construct Figure 2E, we evaluate EquaƟon ?? for 𝑙slide ∈ [1 nt, 6 nt, 12 nt, 18 nt, 24 nt,
30 nt, 36 nt, 42 nt], 𝜇skip ∈ [0 nt,6 nt, 12 nt, 18 nt, 24 nt, 30 nt, 36 nt, 42 nt] and 𝜎skip ∈
[0.01 nt, 6 nt, 12 nt, 18 nt, 24 nt, 30 nt, 36 nt, 42 nt]. The distance between traps varied
from 1-250 nt. The values of 𝑙slide, 𝜇skip and 𝜎skip where chosen such that at the largest trap
separaƟon of 250 nt the system is always in the regime for which we expect EquaƟon ??
to hold.
For every 𝑇shuƩle vs 𝑑trap curve, we use the first two points (1 nt , 2 nt) to esƟmate 𝜏trap
(EquaƟon ??) and the final two points (249 nt, 250 nt), together with the esƟmate of 𝜏trap,
to esƟmate 𝜌scan (EquaƟon ??).

6.7.4. Search time using skipping and sliding shows two optima
Here we connect the scanning density (𝜌scan) that we can extract from experiments to the
Ɵme needed for a protein to locate a single target embedded within a larger pool of 𝐿
binding sites. Following [? ],

𝑇search = 𝑁rnd𝑇rnd (S6.33)

with 𝑇rnd the (average) Ɵme each round of facilitated diffusion takes and 𝑁rnd the number
of such rounds (’rnd’) needed to find the target. As menƟoned in the main text, we seek to
find the minimum search Ɵme with respect to the number skips (𝑁skip) and slides (𝑁slide)
within every round (binding - lateral diffusion - unbinding).

The length of a skip (𝑙skip), as well as the Ɵmes to interrogate (slide past) a binding site
(𝜏slide), execute a skip and interrogate the landing site (𝜏skip), and the Ɵme spent on 3D
diffusion and interrogaƟng the landing site (𝜏3D) are all kept constant. The Ɵme per round
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consists of the Ɵme spent on the DNA performing lateral diffusion and the Ɵme spent in
soluƟon performing 3D diffusion.

𝑇rnd = 𝜏1D + 𝜏3D (S6.34)

We further write the Ɵme spent on lateral diffusion as the Ɵme spent interrogaƟng off-
targets either by sliding or skipping,

𝜏1D = 𝑇slide + 𝑇skip (S6.35)

For ease of calculaƟon, we define the following variables with respect to which we have
minimized the search Ɵme

𝑥 = 𝜌scan
1 − 𝜌scan

√𝑁skip (S6.36)

𝑦 = 𝜌scan
1 − 𝜌scan

(S6.37)

WriƩen in terms of 𝑥 and 𝑦 (EquaƟons ?? and ??), the total Ɵmes spent either on sliding
or skipping become

𝑇slide = 𝑁slide𝜏slide = (𝑥𝛿𝑙)ኼ𝜏slide (S6.38)

𝑇skip = 𝑁skip𝜏skip = (፱/፲)ኼ 𝜏skip (S6.39)

Here we have introduced the variable 𝛿𝑙 = 𝑙sNs − 𝑙slide = ፥skip
√ኻዄኼ፲

for ease of notaƟon.

To complete EquaƟon ?? we need the average number of search rounds (binding-lateral
diffusion-unbinding) needed to locate a single target amongst 𝐿 potenƟal binding/target
sites,

𝑁rnd =
𝐿

𝑙1D𝑝check(𝑥)
(S6.40)

In here, we set the typical length of a lateral excursion to span 𝑙1D sites, out of which a frac-
Ɵon 𝑝check(𝑥) have been interrogated (slid past) at least once prior to unbinding (derivaƟon
shown below) (see Figure 3A). Further, 𝑙1D represents the (rms) distance between binding
and unbinding sites

𝑙1D = √𝑁slide + 𝑁skip𝑙ኼskip

= √𝑁skip𝑛slide + 𝑁skip𝑙ኼskip

= √𝑁skip𝑙ኼslide + 𝑁skip𝑙ኼskip

= √𝑁skip𝑙sNs = (
𝑦 + 1
𝑦 )𝑥𝛿𝑙

(S6.41)

In the second line of EquaƟon??wehave rewriƩen the total number of sites visited through
sliding as the product of the number of skip-n-slide cycles (𝑁skip) and the number of slid-
ing steps between two skips (𝑛slide). The laƩer is related to the sliding length as we have
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defined it above (𝑙ኼslide = 𝑛slide, EquaƟon ??). In the last line, we recognize the rms length

covered in a skip-n-slide cycle (𝑙sNs = √𝑙ኼslide + 𝑙ኼskip). We note that 𝑙1D is what can be deter-
mined experimentally as the span of a lateral excursion, which is not equal to the variable
𝑙slide - even when the protein only performs sliding. Namely, as we have defined 𝑙slide to
be the rms between consecuƟve skips, this quanƟty becomes much greater than 𝑙1D if on
average less than a skip occurs per search round (𝑛slide ≫ 1 when 𝑁skip ≪ 1).

Taken together, the search Ɵme can be wriƩen as

𝑇search = 𝑁rnd𝑇rnd = 𝑁rnd [𝑇slide + 𝑇skip + 𝜏3D]

= 𝐿 × 𝑦
(𝑥𝛿𝑙)ኼ𝜏slide + (፱/፲)ኼ 𝜏skip + 𝜏3D

(1 + 𝑦)𝑥𝑝check(𝑥)𝛿𝑙(𝑦)
(S6.42)

In what follows, we shall first derive 𝑝check, and proceed to show 𝑇search has minima
both for large scanning densiƟes (sliding only) and low scanning densiƟes (skip-n-slide).

Probability to interrogate all sites within a given section of sequence space
As discussed in the derivaƟon leading up to EquaƟon ??, aŌer sufficient ’skip-and-slide cy-
cles’ the protein’s moƟon is approximately described by a simple random walk with basic
step length 𝑙sNs and a probability 𝜌scan to check all the bases within each segment per visit.
Here, we derive an approximate equaƟon for 𝑝check for which we used Monte Carlo sim-
ulaƟons to show it has the correct scaling with the model parameters (see main text and
Figure ??) - thereby validaƟng our analysis of the search Ɵme done below.

Let the protein bind to the DNA at segment 1 and leave it at ̂𝑙1D = ፥1D/፥sNs. Towards calcu-
laƟng the probability to check all sites along its path at least once, we first pick a segment
̂𝑙 between start- and endpoints and determine the probability to visit/interrogate all sites
in this segment at least once prior to making it to segment ̂𝑙1D for the first Ɵme (Figure
??A). Assuming the protein does not visit any other segments outside the interval [1, ̂𝑙1D],
the probability to reach ̂𝑙1D aŌer having checked the sites within ̂𝑙 equals the probability of
making it from ̂𝑙 to ̂𝑙1D,
𝑃(1 → ̂𝑙1D|check ̂𝑙) = 𝑃(1 → ̂𝑙) × 𝑃( ̂𝑙 → ̂𝑙1D|check ̂𝑙) = 𝑃( ̂𝑙 → ̂𝑙1D|check ̂𝑙), (S6.43)

as the proteinwill always return from the first segment to the intermediate (with orwithout
checking sites in between) (𝑃(1 → ̂𝑙) = 1). The probability of making it from 1 to ̂𝑙ኻ፝
without checking the intermediate site equals (Figure ??A)

𝑃( ̂𝑙 → ̂𝑙1D|no check ̂𝑙) =
1
2(1 − 𝜌scan)𝑃no shuƩle(

̂𝑙1D − ̂𝑙)

×
ጼ

∑
፦዆ኺ

(12(1 − 𝜌scan) [𝑃no shuƩle(
̂𝑙) + 𝑃shuƩle( ̂𝑙) + 𝑃no shuƩle( ̂𝑙1D − ̂𝑙)])

፦

= 1
1+ ኼ᎞scan( ̂፥1Dዅ ̂፥)

ኻዅ᎞scan

,

(S6.44)
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with 𝑃shuƩle(𝑑) given by EquaƟon ??. The common term in EquaƟon ?? represents the
path that leads directly from segment ̂𝑙 to the final one at ̂𝑙ኻፃ without having checked the
intermediate site. The first set of terms within the sum are all paths that aƩempt to reach
segment 1, but do not make it (Figure ??A). The middle terms within the sum count all
paths that do make it to the first segment and return with unit probability. The final term
within the sum represents all paths that aƩempt to walk to the final segment, but do not
make it across. From this we derive

𝑃( ̂𝑙 → ̂𝑙1D|check ̂𝑙) = 1−𝑃( ̂𝑙 → ̂𝑙1D|no check ̂𝑙) = ( ̂𝑙1D − ̂𝑙)
( ̂𝑙1D− ̂𝑙)+ ኻዅ᎞scan

ኼ᎞scan
(S6.45)

As this holds for any segment within [1, ̂𝑙1D], we get the probability of interrogaƟng all
sites/segments by averaging over all posiƟons of ̂𝑙,

𝑝check(𝜌scan, 𝑙1D) ≈
1
̂𝑙1D

̂፥1D

∫
ኺ
𝑃( ̂𝑙 → ̂𝑙1D|check ̂𝑙)d ̂𝑙

= 1 − 1 − 𝜌scan
2𝜌scan𝑙1D/𝑙sNs

log [1 + 2𝜌scan𝑙1D/𝑙sNs1 − 𝜌scan
] ,

(S6.46)

for which we assumed large enough distances ̂𝑙1D such that ኻ
̂፥1D

̂፥1D
∑
̂፥዆ኻ
𝑃( ̂𝑙 → ̂𝑙1D|check ) ≈

ኻ
̂፥1D

̂፥1D
∫
ኻ
𝑃( ̂𝑙 → ̂𝑙1D|check ̂𝑙)d ̂𝑙 ≈ ኻ

̂፥1D

̂፥1D
∫
ኺ
𝑃( ̂𝑙 → ̂𝑙1D|check ̂𝑙)d ̂𝑙.

We can rewrite EquaƟon ?? using 𝑥 = ፥1D
፥sNs

᎞scan
ኻዅ᎞scan (which is equal to EquaƟon ??, by virtue

of EquaƟon ??),

𝑝check(𝑥) = 1 −
log(1 + 2𝑥)

2𝑥 ≈ {𝑥 −
ኾ
ኽ𝑥ኼ 𝑥 ≪ 1

1 𝑥 ≫ 1 (S6.47)

Conditions for optimal search time
We now proceed to find the opƟma of EquaƟon ?? in terms of 𝑥 and 𝑦. Its derivaƟve with
respect to 𝑥 equals

𝜕፱ log𝑇search =
2
𝑥

𝜏1D
𝜏1D + 𝜏3D

− 1𝑥 − 𝜕፱ log𝑝check (S6.48)

Seƫng it equal to zero results in the following condiƟon

2𝜏1D
𝜏1D + 𝜏3D

= 1 + 𝑥𝜕፱ log𝑝check (S6.49)

Similarly, seƫng 𝜕፲ log𝑇search equal to zero results in

2 [ 𝑦
1 + 2𝑦

𝑇slide
𝑇rnd

+
𝑇skip
𝑇rnd

] = 1 + 𝑦
1 + 2𝑦 −

𝑦
1 + 𝑦 (S6.50)
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In what follows it is our goal to prove the existence of (at least) two minima - sets of co-
ordinates in {𝑁slide, 𝑁skip}-space, or equivalently {𝑥, 𝑦}-space, that simultaneously saƟsfy
EquaƟons ?? and ??.

high scanning densities: sliding-only optimum
Here, we seek a localminimumof EquaƟon ?? - - saƟsfying both EquaƟons ?? and ?? - in the
’densely scanned’ regime (𝜌scan ≫ 0.5). For sufficiently large scanning densiƟes, 𝑦 ≫ 1,
for which EquaƟons ?? and ??make the second term on the leŌ hand side of EquaƟon ??
vanish, and we are leŌ with

𝑇slide =
1
2𝑇rnd (S6.51)

If we addiƟonally assume (close to) no skipping takes place (𝑁skip → 0), or 𝑦 ≫ 𝑥 (EquaƟon
??), this condiƟon simplifies further to

𝜏1D = 𝜏3D (S6.52)

We see that at (close to) unit scanning density it is most beneficial to spend half of the Ɵme
searching laterally along the substrate and the other half using excursions through soluƟons
to reach distant sites. This result was obtained by Slutsky and Mirny [Slutsky and Mirny,
Biophysical Journal 2004], whose model does not allow for skips to take place. Hence, our
model coincides with theirs when shuƫng down skipping. Using EquaƟon ?? in ?? yields

𝑥𝜕፱𝑝check = 0 (S6.53)

As this equaƟon is saƟsfied both for 𝑥 ≫ 1 (EquaƟon ??), and for 𝑥 = 0 (using the 𝑥 ≪ 1
case in EquaƟon ??), we idenƟfy the sliding-only case,

𝑁sliding
skip → 0, 𝑁sliding

slide = 𝜏3D
𝜏slide

, 𝑙slidingslide ≫ 𝑙slidingskip , 𝜌slidingscan → 1, (S6.54)

as a (local) opƟmal search strategy. Recognizing that 𝑙1D = √𝑁slide for𝑁skip = 0 (EquaƟon
??), and using EquaƟons ??, ?? and ?? results in a search Ɵme (EquaƟon ??) at the ”sliding-
only” opƟmum of

𝑇slidingsearch = 2𝐿√𝜏slide𝜏3D (S6.55)

Hence, the search Ɵme can be minimized by eliminaƟng skips altogether and adopƟng a
scanning density of 1 (𝑙slide ≫ 𝑙skip).

low scanning densities: skipping-and-sliding optimum
Next, we seek to find an opƟmal search strategy that involves (frequent) skips. Returning to
the 𝑦-derivaƟve shown in EquaƟon ??, we now explore the opposite limit of low scanning
densiƟes (𝜌scan ≪ 0.5, 𝑙slide ≪ 𝑙skip), 𝑦 ≪ 1, for which

𝑇skip =
1
2𝑇rnd (S6.56)

We see that at low scanning densiƟes, it is most beneficial for the protein to spent half of
its Ɵme interrogaƟng sites following skips. Before proceeding, we introduce

𝜏slow = 𝜏slide𝑙ኼskip (S6.57)
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as theƟme required to travel a full skipping length purely through sliding. That is, Ꭱskip/Ꭱslow <
1 indicates, aŌer having taken into account the temporal cost of performing the skip, it
remains beneficial to skip instead of just using sliding to reach the same region of the
DNA/RNA. Having defined this variable, EquaƟon ?? results in

(𝑦sNs)ኼ =
𝜏skip
𝜏slow⏟
፲ᎴᎲ

(𝑥sNs)ኼ
(𝑥sNs)ኼ + Ꭱ3D

Ꭱslow⏟
፱ᎴᎲ

= 𝑦ኼኺ
(፱sNs/፱Ꮂ)

ኼ

1+(፱sNs/፱Ꮂ)
ኼ , (S6.58)

where we have introduced 𝑥ኺ and 𝑦ኺ for notaƟonal convenience. Using this 𝑦-coordinate
reduces EquaƟon ?? into a condiƟon for the 𝑥-coordinate only

𝑥𝜕፱ log𝑝check|፱዆፱sNs =
(፱sNs/፱Ꮂ)

ኼ

1+(፱sNs/፱Ꮂ)
ኼ (S6.59)

Both sides of EquaƟon ?? are monotonic funcƟons in 𝑥 (Figure ??B). Hence, there is an
opƟmal 𝑇sNssearch at {𝑥sNs, 𝑦sNs} corresponding to small scanning densiƟes (𝜌scan < 0.5).

To obtain the corresponding value of the search Ɵme (𝑇sNssearch), we proceed to solve Equa-
Ɵon ??. Although we are unable to solve EquaƟon ?? for general 𝑥, we can however obtain
an approximate soluƟon by assuming 𝑥 ≪ 1, for which (using EquaƟon ?? to simplify the
leŌ hand side of EquaƟon ??)

(𝑥sNs)ኽ
2𝑥ኼኺ

+ 𝑥sNs = 3
8 (S6.60)

If we further assume 2𝑥ኼኺ ≪ 1, or equivalently, 𝜏3D ≪ 𝜏slow,

𝑥sNs ≈ (34)
Ꮃ/Ꮅ
𝑥Ꮄ/Ꮅኺ ≈ 𝑥Ꮄ/Ꮅኺ = ( 𝜏3D𝜏slow

)
Ꮃ/Ꮅ

(S6.61)

To demonstrate the validity of this assumpƟon we compared the numerical soluƟon to
EquaƟon ?? to the above approximaƟon thereof (EquaƟon ??). Figure ??C shows these
to differ less than a factor 3 over a range in Ꭱ3D/Ꭱslow that spans 20 orders of magnitude.
We therefore deem EquaƟon ?? to be valid also outside the Ꭱ3D/Ꭱslow ≪ 1 taken to obtain it
iniƟally (further allowing us to ignore the factor of (ኽ/ኾ)Ꮃ/Ꮅ ≈ 0.91). Using the𝑥-coordinate,
we obtain the following 𝑦-coordinate (EquaƟon ??)

𝑦sNs = 𝑦ኺ√
1

1 + 𝑥Ꮄ/Ꮅኺ
(S6.62)

Next, using that 𝛿𝑙 ≈ 𝑙skip for 𝑦 ≪ 1 (the limit already taken), we find the following number
of skipping and sliding steps taken in every search round (EquaƟons ?? and ??)

𝑁sNs
slide = 𝑥

Ꮆ/Ꮅ
ኺ 𝑙ኼskip =

𝜏3D
𝜏slide

(𝜏slow𝜏3D
)
Ꮃ/Ꮅ

(S6.63)

𝑁sNs
skip =

𝑥Ꮆ/Ꮅኺ
𝑦ኼኺ

(1 + 𝑥Ꮄ/Ꮅኺ ) =
𝜏3D
𝜏skip

(1 + (𝜏slow𝜏3D
)
Ꮃ/Ꮅ
) (S6.64)
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Combining EquaƟons ?? and ?? together with the skip-n-slide opƟmum set by EquaƟons
??, ??, ?? and ?? , results in a search Ɵme (EquaƟon ??)

𝑇sNssearch = 2𝐿√
𝜏skip𝜏3D
𝑙skip

⎛

⎝

√1+( ᎡslowᎡ3D )
Ꮃ/Ꮅ

𝑝check(𝑥sNs)
⎞

⎠

(S6.65)

In conclusion, the search Ɵme is minimized both at a maximum scanning density of 1
(𝜌slidingscan ≈ 1) - with a search Ɵme of 𝑇slidingsearch (EquaƟon ??) - and at a lower scanning density

(𝜌sNsscan = ኻ
፥skip√ፍ

sNs
slide/ፍsNs

skip < 0.5) - with a search Ɵme 𝑇sNssearch (EquaƟon ??).

Global Optimum
Having found two local opƟma, the more favorable search strategy is the one correspond-
ing to the lowest search Ɵme. Hence, a combinaƟon of skipping and sliding is preferred
(over just sliding) when 𝑇sNssearh < 𝑇slidingsearch . Using EquaƟons ?? and ??

𝑇sNssearch

𝑇slidingsearch

= √
𝜏skip
𝜏slow

⎛

⎝

√1+( ᎡslowᎡ3D )
Ꮃ/Ꮅ

𝑝check(𝑥sNs)
⎞

⎠

< 1 (S6.66)

This can be rewriƩen as
𝜏skip
𝜏slow

< 𝑝ኼcheck(𝑥sNs)
1+( ᎡslowᎡ3D )

Ꮃ/Ꮅ < 1 (S6.67)

The second inequality (’less than 1’) follows fromnoƟcing that𝑝check(𝑥) ≤ 1 for any x as it is
a probability, and ( ᎡslowᎡ3D )

Ꮃ/Ꮅ
> 0 as all 𝜏’s are posiƟve, together making the middle idenƟty

always less than 1. As expected, ᎡskipᎡslow < 1, for skipping to be beneficial. However, EquaƟon
?? refines this statement and gives the exact boundary shown in the phase diagram of
Figure 3D.
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3’-biotin - U30 CUC CAU CAU UUU UUU U Ux CUC CAU CAU UUU UUU UU - 5’ 

5'-p U GAG GAU UuU UUU UUU UUU UUU-3'

3’-biotin - U30 CUC CAU CAU UUU UUU U Ux CUC CAU CAU UUU UUU UU - 5’ 

5'-p U GAG GAU UuU UUU UUU UUU UUU-3'

Figure S6.1: related to Figure ??. construct design hAgo2. ssRNA constructs (red) are passivated to the micro-
scope slide using a 3’-bioƟn-streptavadin linkage. The two trapping sequences, 4 nt sequences that are comple-
mentary to the corresponding guide nucleoƟdes (green), are highlighted in yellow. Top figure represents the ‘high
FRET’ configuraƟon, while the boƩom figure displays Ago bound to the trap resulƟng in ‘low FRET’. The distance
between traps is varied by adding Uracil nucleoƟdes (Ux reads: ‘x Ɵmes a U’). To embed the traps within the
sequence, as opposed to them being the outermost sites, poly-U sequences flank both traps.
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+
walk straight back into segment 
containing the �rst trap

“or...”

make it to segment containing the destina-
tion trap 

without interrogating the trap itself make it 
out of the segment. 

walk back to the destination segment.
repeat m times. 

Without interrogating the trap itself make 
it out of the segment and walk back into 
initial trap’s segment

“and..”

“and...”

 trap 1  trap 2 

Figure S6.2: related to Figure ??. path counƟng to derive scaling of shuƩling Ɵme with distance. A graphical
explanaƟon of EquaƟon ??. Subsequent figures will only show the equivalent of the boƩom shown here.
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 trap 1  trap 2 

Figure S6.3: related to Figure ??. ShuƩling Ɵme simple diffusion scales linearly with ፝trap. IllustraƟon of recur-
sion relaƟon dictaƟng probability to shuƩle ፏshuƩle (or get recaptured ፏno shuƩle) in terms of number of binding
sites separaƟng the two traps. Relates to EquaƟons ?? and ??.

A

C

B

start end

Figure S6.4: related to Figure ??.derivaƟon of search Ɵme at given scanning density. (A) IllustraƟon of paths (and
corresponding probabiliƟes) that lead the protein from segment 1 to ̂፥1D (size ፥sNs) without having interrogated
all binding sites within segment ̂፥. Relates to EquaƟon ??. (B) At low scanning densiƟes, the search Ɵme exhibits
a unique minimum. Colored lines show right hand side of EquaƟon ?? for varying values of ᒙ3D/ᒙslow and black line
shows the leŌ hand side. IntersecƟons (red dots) our found numerically and –together with EquaƟon ?? -indicate
the locaƟon in {፱, ፲}-space the skip-and-slide opƟmum can be found at (EquaƟon ??). (C) Approximate locaƟon
of skip-and-slide opƟmum (፱-coördinate) from EquaƟon ?? versus numerical soluƟon to EquaƟon ??.
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Summary

The past decade has witnessed a revoluƟon in genome-engineering. Using CRISPR-Cas9
DNA sequences can be marked, detected and cleaved. RewriƟng life’s instrucƟons in such
a fashion paves theway towards numerous scienƟfic, agricultural andmedical applicaƟons.
Without proper quanƟficaƟon of the associated risks we face the danger of applying treat-
ments without knowing its consequences. Most notable concern lies in Cas9’s specificity.
Although Cas9 targets DNA complementary to any designed 20nt guide RNA, it notoriously
also acts on non-fully matching sequences. This thesis describes work towards a physical
understanding of howCas9 and similar RNA/DNAguided systems locate and recognize their
target. Chapter 1 introduces the reader to life’s most important molecules (DNA, RNA and
protein) as well as to the RNA guided CRISPR and Argonaute (Ago) systems. The chapter
also provides an introducƟon to the main modeling techniques used in subsequent chap-
ters.
In Chapters 2 and 3 we model the physics governing target selecƟon. Our current under-
standing of binding and cleavage specificity is reflected in a set of rules of thumb used to
design the 20nt target. Chapter 2 shows said rules are a direct consequence of having a
unidirecƟonal binding process, as assumed to be the case for both Cas9 and Argonaute.
At the core of the presented model lies the free-energy landscape underlying the protein-
guide-target interacƟons. Chapter 2 uses a simple landscape in which the addiƟon of a
matching base pair to the guide-target hybrid kineƟcally (as well as energeƟcally) favors
cleavage, while a mismatch makes rejecƟon of the (off-)target more likely. With a single
gain/penalty for every match/mismatch between guide and target we highlight the bene-
fit of using a kineƟc modeling approach. In Chapter 3, the parameterizaƟon is expanded
to allow for posiƟon dependent (mis-)match biases, which are extracted from a series of
high-throughput experimental datasets to elucidate in more detail the free-energy land-
scape of spCas9-sgRNA-DNA. The determined landscape directly explains what off-target
sites are expected to lead to stable binding on Ɵmescales much shorter than cleavage, ex-
plaining the previously reported discrepancy between binding and cleavage specificiƟes.
Moreover, the free-energy landscape is consistent with single-molecule fluorescence ex-
periments probing the conformaƟonal dynamics of Cas9 during target binding, thereby
showing how Cas9’s major conformaƟonal change couples to the hybrid-formaƟon pro-
cess. Finally, this chapter demonstrates how our kineƟc model improves upon exisƟng
target predicƟon tools.
Chapters4-6 describe a protein’s search for a single target site embeddedwithin the genome.
Chapter 4 reviews literature describing how target searching proteins use a combinaƟon
of three-dimensional diffusion through soluƟon with (effecƟve) one-dimensional diffusion
along the contour of the DNA. Furthermore, using the human Argonaute 2 protein as an
example, Chapter 4 hypothesizes how coupling structural changes to hybrid formaƟon, as
we also show for spCas9 in Chapter 3, can balance search Ɵme and specificity. Chapters
5 and 6 present a collaboraƟon with experimentalist from the lab of Chirlmin Joo. First,
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Chapter 5 shows a prokaryoƟc Argonaute can bypass other DNA bound proteins when lat-
erally scanning the DNA. As a model in which Ago is forced to interrogate all binding sites
during a lateral excursion cannot account for themeasured diffusion rates, basesmust have
been skipped when moving past the protein blockades. Next Chapter 6 describes a model
allowing for such base skipping, resulƟng in only a fracƟon of the DNA enclosed within
a lateral excursion being interrogated. AddiƟonal single-molecule experiments show that
also human Ago uses such base-skipping. Although both Ago only interrogate all DNA aŌer
many repeated rounds of lateral diffusion, we show such a mechanism helps to speed up
the search for the cognate target.



Samenvatting

In het afgelopen decennium heeŌ zich een revoluƟe in de genoombewerkingstechnolo-
gie voltrokken. Gebruikmakend van CRISPR-Cas9 kan DNAworden opgespoord en geknipt,
waarmee verschillende wetenschappelijke, agrarische en medische toepassingen een stap
dichterbij zijn. Als demogelijke risico’s van deze krachƟge techniek niet worden gekwanƟfi-
ceerd bestaat de angst datmedische behandelingen plaatsvinden zonder dat allemogelijke
gevolgen bekend zijn. Het grootste risico zit in de specificiteit van Cas9. In principe wordt
Cas9 geprogrammeerd om DNA te knippen met een sequenƟe van 20nt complementair
aan een aan de proteïne meegegeven ‘gids’ RNA. Helaas knipt Cas9 ook DNA-sequenƟes
die niet compleet complementair zijn aan de gids. Het werk omschreven in dit proefschriŌ
draagt bij aan fysisch inzicht in de manier waarop Cas9, en soortgelijke RNA/DNA gepro-
grammeerde systemen, hun doelwit DNA vinden en herkennen. Hoofdstuk 1 maakt de
lezer bekent met de meest belangrijke biomoleculen (DNA, RNA en eiwiƩen) en de CRISPR
en Argonaute (Ago) systemen die in dit proefschriŌ uitvoerig bestudeerd zijn. Tevens be-
vat dit hoofdstuk een introducƟe tot de wiskundige technieken die gebruikt zijn voor het
opstellen van de modellen verderop in het proefschriŌ.
Hoofdstukken 2 en 3 presenteren een fysisch model dat omschrijŌ hoe Cas9 en Ago hun
doelwit herkennen. Ons huidig begrip van de specificiteit van dit soort systemen kan wor-
den samengevatmet een aantal vuistregels die in acht worden genomen bij het ontwerpen
van het gis RNA. Hoofdstuk 2 laat zien dat deze regels een direct gevolg zijn van een bin-
dingsproces dat aan een kant van de gids begint, zoals aangenomen wordt het geval te
zijn voor zowel Cas9 als Ago. In het model staat het vrije-energielandschap dat interac-
Ɵes tussen gids RNA, doelwit DNA en het eiwit omschrijŌ centraal. In Hoofdstuk 2 wordt
er een simpel landschap gebruikt waarin de toevoeging van een complementair basepaar
aan de gids-doelwit hybride een kineƟsch (alsmede een energeƟsch) voordeel oplevert.
De toevoeging van een non-complementair basepaar verhoogt de waarschijnlijkheid dat
de proteïne ontbindt. Dit simpele landschap, met een enkel voordeel/nadeel voor een
correct/incorrect basepaar belicht het voordeel van het gebruik van een kineƟsch model.
In Hoofdstuk 3 wordt de parameterizaƟe uitgebreid. Gebruikmakend van experimentele
datasets, worden de posiƟeaĬankelijke voordelen/nadelen voor correcte/incorrecte base-
paren geëxtraheerd, waaruit een meer gedetailleerd vrije-energielandschap van spCas9-
sgRNA-DNA volgt. Dit landschap verklaard hoe bij sommige non-complementaire DNA
doelwiƩen Cas9-gids stabiel bindt, lang voordat er geknipt wordt. Hiermee geven wij een
verklaring voor het verschil in de schijnbare specificiteit van het binden van inacƟef Cas9 en
het knippen van acƟef/inacƟef Cas9. Het vrije-energielandschap is tevens consistent met
fluorescenƟe experimenten die de eiwitconformaƟe van Cas9 Ɵjdens het bindingsproces
bestuderen, waardoor het gepresenteerde landschap direct laat zien hoe de grootste ver-
andering van conformaƟe koppelt aan het bindingsproces tussen gids en DNA. Ten sloƩe
laat dit hoofdstuk zien hoe ons kineƟsch model een verbetering over bestaande modellen
biedt.
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Hoofdstukken 4-6 beschrijven de zoektocht van een eiwit naar een enkel correct doelwit
binnen een vele malen groter genoom. Hoofdstuk 4 biedt een beschouwing van de li-
teratuur waarin beschreven wordt dat eiwiƩen hun doelwit vinden doormiddel van een
combinaƟe van driedimensionale diffusie door oplossing en (effecƟeve) eendimensionale
diffusie langs de contour van het DNA. Hoofdstuk 4 brengt tevens het idee naar voren dat
een koppeling tussen eiwitconformaƟe en het bindingsproces gebruikt kan worden om het
doelwit zowel snel als specifiek te herkennen. Het hoofdstuk gebruikt het menselijke Ar-
gonaute 2 als zo een systeem met een dergelijke koppeling, net als Hoofdstuk 3 eenzelfde
soort koppeling suggereert voor Cas9.
Hoofdstukken 5 en 6 zijn uitgevoerd in samenwerking met experimentalisten uit het lab
van Chirlmin Joo. Hoofdstuk 5 laat zien dat een prokaryoƟsche Argonaute andere aan het
DNA gebonden eiwiƩen kan omzeilen. De experimenten laten zien dat Ago sneller langs
het DNA diffundeert, dan een model waarin Ago iedere sequenƟe langs het DNA verge-
lijkt met zijn gids voorspelt. Hieruit concluderen we dat Ago sequenƟes langs het DNA
overslaat om zo obstakels langs het DNA te vermijden. Hoofdstuk 6 bouwt hierop voort
door een model op te stellen waarin Ago ook sequenƟes kan overslaan, waardoor slechts
een fracƟe van het DNA waarlangs diffundeert wordt daadwerkelijk vergeleken wordt met
de gids. Aanvullende enkel-molecuul experimenten laten zien dat ook het menselijke Ago
DNA sequenƟes overslaat. Ondanks dat vele rondes van laterale diffusie nodig zijn alvo-
rens Ago alle mogelijke DNA sequenƟes kan hebben vergelijkenmet de gids, laat dit laatste
hoofdstuk zien dat dit eigenlijk helpt om het correcte doelwit sneller te vinden.
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