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SUMMARY

Most physical phenomena be it mechanical, chemical or biological are inherently non-
linear in nature. In fact, it is the linear phenomenon that is the exception rather than the
rule. By harnessing these nonlinearities one can obtain far greater information about the
underlying physics and develop more sensitive and efficient devices. This is especially
true at the micro and nanoscale world where the forces tend to be highly nonlinear and
the go-to tool for studying such forces is the atomic force microscopy (AFM).

Ever since its inception, AFM has revolutionized the world of nanotechnology through
its ability to manipulate and characterize matter with atomic resolution. With the grad-
ual development of novel characterization techniques, AFM has slowly transitioned from
a traditional imaging technique to a powerful nanomechanical characterization tool ca-
pable of estimating material properties of wide variety of samples with ease. This tran-
sition is fueled by the greater interest in understanding the highly nonlinear tip-sample
interaction forces that exist between an AFM probe and the sample of interest. How-
ever, in order to advance our understanding of nanoscale interactions, one must fully
embrace the nonlinear nature of the system and develop parameter identification tech-
niques based on nonlinear dynamics. In this regard, this thesis focusses on both fun-
damental and applied nonlinear dynamical studies to develop novel identification tech-
niques for dynamic AFM applications.

In chapter 1, I briefly introduce AFM, its different modes of operation and the role
of tip-sample interactions in obtaining compositional contrast of samples. I end this
chapter by discussing the motivation behind developing identification techniques and
its applications in the field of dynamic AFM.

Chapter 2 describes the global dynamics of tapping mode AFM. Here, I study the
robustness and integrity of different oscillatory states of the AFM cantilever driven in
Lennard-Jones potential. I make use of nonlinear dynamical tools such as frequency
response curves, basins of attraction, and integrity measures to analyze the stability of
cantilever oscillations under external perturbations. Moreover, I develop a global bifur-
cation chart to track the appearance of various cantilever oscillatory states as a function
of excitation frequency and amplitude. The chart provides insight into choosing and op-
timizing the various parameters required for stable scanning operation. Furthermore,
this work demonstrates that by studying the global dynamics of the system, unwanted
scenarios such as jumps between dynamical states of the cantilever and chaotic motion
can be avoided.

In chapter 3, I discuss the role of mode coupling in enhancing the sensitivity of higher
harmonics in dynamic AFM. I begin by introducing a methodology for obtaining nonlin-
ear frequency response curves in the experimental setting and use that to determine a
frequency range in the spectral neighborhood of resonance that hosts strong modal in-
teractions. I label this frequency range in the thesis as the "sweet spot". I find that in
the sweet spot not only the signal to noise ratio (SNR) of higher harmonics increase by
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several folds but also cantilever exhibits reduced indentation in the sample. By perform-
ing experiments on different cantilevers and samples I also show that the occurrence of
sweet spot is independent from probe-sample configuration. I corroborate these find-
ings by simulating a multiple degree of freedom model with a non-smooth tip-sample
potential. I expect this work to be useful for developing multi-parameter identification
techniques based on higher harmonics, bi-modal AFM, and multi-frequency AFM with-
out the need for specialized cantilevers.

Chapter 4 sheds light on the influence of experimental observables on viscoelastic
characterization in Multi-frequency AFM. By making use of Intermodulation AFM tech-
nique, I explore the dependency of bulk and surface viscoelastic response of a polymer
blend to the instrument’s observables. I highlight the sensitivity issues that can be faced
when fitting a large number of observables, and touch upon non-convexity of the fitting
problem that can also lead to inconsistent viscoelastic parameter estimations. I verify
these findings by performing extensive simulations that employ both local and global
optimization techniques. I believe this work to be useful for validating viscoelastic mod-
els and optimization routines that enable fast and accurate quantification of viscoelas-
ticity in novel polymers and biological specimens.

In chapter 5, I leverage the strengths of data science and machine learning in distill-
ing the governing equations of a dynamic AFM using the cantilever’s deflection signal.
The data driven algorithm obtains physically interpretable models from experiments
and estimates the time resolved tip-sample interaction force with a sub-microsecond
resolution. I train and test the algorithm on several well-established AFM models and
create a library of functions that can approximate the underlying physics in various ex-
perimental scenarios. The data driven algorithm is then used to estimate the tip-sample
interaction force from experimental data obtained on a co-block polymer blend. The
method provides insight into the peak loading forces and energy dissipation during con-
tact without prior knowledge of the interaction mechanisms. I expect this work to be
used for exploring the transient dynamics behind chemical and biological processes and
developing novel feedback architectures based on real time tip-sample force as well as
obtain high-resolution dynamical force volume measurements.

Chapter 6 provides an outlook into future research directions based on preliminary
investigations in this thesis. In particular, I discuss a methodology to exploit the elec-
trostatic response of the cantilever to determine the tip radius, and experimentally show
how Hamaker constant can be estimated from van der Waals forces. At the end of this
chapter, I also discuss applications of machine learning in estimating sample viscoelas-
ticity as well as its potential in developing data driven nonlinear model predictive feed-
back architectures, and show how neural networks can be used for predicting mode cou-
pling from AFM time-domain data. In chapter 7, I conclude the thesis by providing a
summary of the findings.



SAMENVATTING

De meeste fysische fenomenen, zij het mechanisch, chemisch dan wel biologisch, zijn
van nature inherent niet-lineair. In feite zijn het juist de lineaire fenomenen die eerder
de uitzondering dan de regel zijn. Door deze niet-lineairiteiten te benutten kan men
ampel informatie vergaren over de onderliggende fysica, en gevoeligere en efficiëntere
apparaten ontwikkelen. Dit geldt vooral op de schaal van de micro- en nanoscopis-
che wereld waarin krachten doorgaans hoogst niet-lineair zijn, en de atoomkrachtmi-
croscoop (AFM) het voorkeurswerktuig is voor het onderzoek naar zulke krachten.

Al sinds zijn ontdekking heeft de AFM de wereld van de nanotechnologie gerevolu-
tioneerd dankzij de mogelijkheid om materie op de schaal van atomen te manipuleren
en te karakteriseren. Met de geleidelijke ontwikkeling van moderne karakterisering-
stechnieken is de AFM gaandeweg verandert van een traditioneel beeldvormingstech-
niek in een veelzijdige nanomechanische karakteriseringstechniek waarmee eenvoudig
de materiaaleigenschappen kunnen worden ingeschat van een wijde variëteit samples.
Deze transitie wordt versneld door de grote interesse in het begrijpen van de hoogst
niet-lineaire interactiekracht die bestaat tussen een AFM sonde en het specimen. Om
onze kennis van nanoschaal interacties te vergroten, moet men de niet-lineaire natuur
van het systeem volledig omarmen, en parameter identificatie technieken ontwikkelen
gebaseerd op niet-lineaire systemen. Vanuit dit oogpunt focust dit proefschrift op zowel
fundamentele als toegepaste niet-lineaire dynamische studies voor de ontwikkeling van
moderne identificatietechnieken voor dynamische AFM toepassingen.

In hoofdstuk 1 introduceer ik kort de AFM, zijn verschillende werkwijzen en de rol
van tip-specimen interacties bij het verkrijgen van een samenstellingscontrast van een
specimen. Ik sluit dit hoofdstuk af met een discussie over de motivatie voor de ontwikke-
ling van identificatie technieken en hun toepassingen in het veld van de dynamische
AFM.

Hoofdstuk 2 beschrijft de globale dynamiek van tapmodus AFM. Ik bestudeer hoe
robuust en betrouwbaar de verschillende oscillatietoestanden van de AFM cantilever
zijn binnen een Lennard-Jones-potentiaal. Ik maak gebruik van technieken binnen
de niet-lineaire dynamica, zoals frequentieresponscurves, aantrekkingsbassins en in-
tegriteitsparameters om de stabiliteit van oscillaties van een cantilever onder externe
verstoringen te analyseren. Bovendien ontwikkel ik een globale bifurcatiediagram om
het ontstaan van verschillende oscillatietoestanden van de cantilever te volgen als een
functie van de excitatiefrequentie en amplitude. Het geeft inzicht in het kiezen en opti-
maliseren van de verschillende parameters die nodig zijn voor een stabiele scanwerking.
Bovendien toont dit werk aan dat door de globale dynamiek van het systeem te bestud-
eren, ongewenste scenario’s zoals sprongen tussen dynamische toestanden van de can-
tilever en chaotische beweging kunnen worden vermeden.

In hoofdstuk 3 bespreek ik de rol van koppeling tussen eigentrillingen bij het ver-
beteren van de gevoeligheid van hogere harmonischen in dynamische AFM. Ik begin
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met de introductie van een methodologie voor het verkrijgen van niet-lineaire frequen-
tieresponscurves in de experimentele omgeving en gebruik die om een frequentiebereik
te bepalen die spectraal in de buurt ligt van de resonantie die sterke modale interacties
herbergt. Ik noem dit frequentiebereik in het proefschrift de "sweet spot". Ik merk op dat
in de sweet spot niet alleen de signaal-ruisverhouding (SNR) van hogere harmonischen
enkele malen toeneemt, maar ook de AFM cantilever een verminderde indrukking van
het specimen teweegbrengt. Door experimenten uit te voeren met verschillende son-
des en samples, laat ik ook zien dat het optreden van een sweet spot onafhankelijk is
van de sonde-sample configuratie. Ik bevestig deze bevindingen door een model met
meerdere vrijheidsgraden te simuleren met een niet-gladde tip-sample-potentiaal. Ik
verwacht dat dit werk nuttig zal zijn voor het ontwikkelen van multi-parameter identifi-
catietechnieken op basis van hogere harmonischen, bimodale AFM en multi-frequentie
AFM zonder de noodzaak van gespecialiseerde sondes.

Hoofdstuk 4 werpt licht op de invloed van experimentele waarnemingen op vis-
coelastische karakterisering bij multi-frequentie AFM. Door gebruik te maken van in-
termodulatie AFM techniek, verken ik de afhankelijkheid van bulk en oppervlak vis-
coelastische respons van een polymeermengsel op de waarneembare kenmerken van
het instrument. Ik benadruk de gevoeligheidsproblemen waarmee men te maken kan
krijgen bij het passen van een groot aantal waarneembare objecten, en bespreek de niet-
convexiteit van het aanpasprobleem dat ook kan leiden tot inconsistente schattingen
van viscoelastische parameters. Ik verifieer deze bevindingen door uitgebreide simu-
laties uit te voeren die zowel lokale als globale optimalisatietechnieken gebruiken. Ik
geloof dat dit werk nuttig is voor het valideren van viscoelastische modellen en optimal-
isatieroutines die snelle en nauwkeurige kwantificering van viscoelasticiteit in nieuwe
polymeren en biologische specimens mogelijk maken.

In hoofdstuk 5 maak ik gebruik van de sterke punten van datawetenschap en ma-
chine learning bij het distilleren van de beschrijvende vergelijkingen van een dynamis-
che AFM met behulp van het deflectiesignaal van de cantilever. Het datagestuurde al-
goritme verkrijgt fysiek interpreteerbare modellen uit experimenten en schat de tijd-
safhankelijke tip-sample-interactiekracht met een resolutie van minder dan een mi-
croseconde. Ik train en test het algoritme op verschillende gevestigde AFM-modellen
en creëer een bibliotheek met functies die de onderliggende fysica kunnen benaderen in
verschillende experimentele scenario’s. Het datagestuurde algoritme wordt vervolgens
gebruikt om de interactiekracht tussen AFM-naald en monster te schatten op basis van
experimentele gegevens die zijn verkregen op een co-blokpolymeermengsel. De meth-
ode geeft inzicht in de krachten bij piekbelasting en energie-dissipatie tijdens contact
zonder voorkennis van de interactiemechanismen. Ik verwacht dat dit werk zal wor-
den gebruikt voor het onderzoeken van de overgangsdynamiek achter chemische en
biologische processen en het ontwikkelen van nieuwe feedbackarchitecturen op basis
van real-time tip-sample interactiekracht en het verkrijgen van dynamische krachtvol-
umemetingen met hoge resolutie.

Hoofdstuk 6 biedt een vooruitblik op toekomstige onderzoeksrichtingen op basis van
vooronderzoeken in dit proefschrift. In het bijzonder bespreek ik een methodologie om
de elektrostatische respons van de cantilever te benutten om de tipstraal te bepalen, en
laat ik experimenteel zien hoe de Hamaker-constante kan worden geschat aan de hand
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van van der Waals-krachten. Aan het einde van dit hoofdstuk bespreek ik ook toepassin-
gen van machine learning bij het schatten van de viscoelasticiteit van een monster,
evenals het potentieel ervan bij het ontwikkelen van datagestuurde niet-lineaire model
voorspellende feedbackarchitecturen. Ik laat zien hoe neurale netwerken kunnen wor-
den gebruikt voor het voorspellen van eigentrilling koppeling op basis van AFM tijd-
domein gegevens. In hoofdstuk 7 sluit ik het proefschrift af met een samenvatting van
de bevindingen.
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1
INTRODUCTION

In the recent years, nanotechnology has made giant strides in improving the quality of
human life. These improvements can be seen in every day life in the form of faster and
cheaper computers, more compact smart phones, medical implants that can provide real-
time information about one’s health and in recent times even development of nanorobots
that can make repair at cellular levels. These innovations are made possible due to the
significant progress made by the scientific community in understanding the interactions
between matter at nanoscale. The interactions at nanoscale are different from the macro-
scopic scale and thus understanding these differences can often be challenging without
proper tools and techniques. In this aspect, the invention of Atomic Force Microscopy
(AFM) played a key role in disentangling the subtle physics behind several nanoscale pro-
cesses. Currently, AFM has transcended its function as an imaging tool with atomic reso-
lution to a research tool capable of providing high resolution maps of mechanical, chem-
ical and biological properties of sample at nanoscale. With further improvements in AFM
characterization techniques, the field of nanotechnology can be better equipped to provide
novel solutions for the betterment of the society.
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1.1. THE PHYSICS AND WORKING PRINCIPLE BEHIND AFM
The fundamental concept behind the working principle of an AFM is fairly simple to
understand. An AFM utilizes an atomically sharp tip at the end of a micro-cantilever
to interrogate and measure the surface of the sample [1]. It does this by bringing the
tip in close proximity of the sample surface and measures the interaction between the
atoms of the surface and the tip. Based on this interaction force, one can obtain infor-
mation of the sample like the topography, stiffness, adhesion and other material proper-
ties at nanoscale. Although the physics behind the AFM seem relatively straight forward,
it must be noted that the tip-sample interaction is highly nonlinear and is generally a
convolution of different types of nanoscale forces [2]. Furthermore, the microcantilever
exhibits complex and often non-smooth dynamics due to these different forces; thus
making the nanomechanical characterization process even more complicated.
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Figure 1.1: Schematic of an AFM. The probe is a microcantilever with a sharp tip at its free end that mechani-
cally interacts with the sample surface. The deflection induced due to the tip-sample forces is measured using
a laser beam and a photodetector. This deflection is further processed within the controller and displayed as a
topographical image on the computer.

On the other hand, since the inception of AFM in 1986 [1], the technology behind an
AFM system starting from the acquisition electronics, data processing algorithms as well
as the mathematical and computational models utilized for nanomechanical character-
ization have made tremendous leaps in terms of sophistication and accuracy. Thanks
to these advancements, AFM has become one of the most prominent nanoscale charac-
terization tools in modern science with applications ranging from probing soft matter,
understanding molecular metrology [3–8] to imaging live cells, bacteria and other tran-
sient biological processes with atomic resolution [9–13].

Figure.1.1 shows the schematic of an AFM system. At the heart of the AFM is a micro-
cantilever which acts as a mechanical force transducer by periodically interacting with
the sample and converting the forces between the cantilever tip and the sample into
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measurable deflection. These forces are generally referred to as the tip-sample interac-
tion forces. An AFM’s main purpose is to maintain this tip-sample forces constant over
time and is done by attaching either the cantilever or the substrate to a z-piezo actua-
tor that allows for fine control of the vertical position. The deflections of the cantilever
are monitored by a laser beam that reflects from the back-side of the cantilever onto a
four quadrant photodiode. The output voltage from the photodiode is used to monitor
changes in the cantilever position. Furthermore, in order to scan the sample in the x-y
directions as shown in Fig.1.1, there exists an x-y piezo scanner that works in tandem
with z-piezo actuator to position the cantilever from one pixel to another. The entire
operation is carefully controlled via an AFM controller in order to maintain a constant
tip-sample force and avoid any imaging artefacts.

1.2. MODES OF OPERATION IN AFM
The essence of an AFM technique is to probe the surface of a given sample. This is
achieved in several different ways depending on the methodology employed to mea-
sure the tip-sample forces and each method is classified as an "operating mode". In
this aspect, static or contact mode AFM was the first mode developed for topographi-
cal measurements, where the static deflection of the cantilever is monitored under the
influence of tip-sample forces [1]. Although static AFM is a simple and robust method,
it suffers from disadvantages such as sample damage and limited observables to study
the complex nature of tip-sample interaction. This led to the development of dynamic
AFM [14, 15] in which the microcantilever tip interacts intermittently with the sample
while being driven close to or at its resonance frequency. Since these microcantilevers
often posses a high quality factor they are sensitive to perturbations near the resonance
and can react to minute changes in tip-sample forces. However, several developments
in feedback control architectures have made imaging in liquids with low quality factors
a possibility; thus extending the library of materials that can be probed using dynamic
AFM technique. To date several studies have exploited the sensitivity of dynamic AFM
to visualize individual atoms and molecular configurations in samples [16–20]. Further-
more, the intermittent contact of the tip with the sample helps in reducing sample dam-
age due to reduced lateral forces.

Today, dynamic AFM has become one of the most popular operating modes and is
further bifurcated into several sub-categories depending on the modulation techniques,
observables of interest and controller methodologies. Among them, frequency modula-
tion AFM (FM-AFM) [14], Amplitude modulation AFM (AM-AFM) [21], Intermodulation
AFM (IM-AFM) [22] , Bimodal AFM [23] are some of the prominent modes. Besides the
static and dynamic modes of operation, researchers have also developed quasi-static
or off-resonance modes such as peak force tapping [24, 25] and force volume imaging
modes [26, 27], where the AFM instrument approaches the probe to contact the surface,
and then pulls the probe away, periodically from one pixel to another. This method of
measuring interactions provide individual force curves at each and every single pixel of
the image. However, they are quite slow when compared to other modes of operation
and often involves large amount of data processing.

In this thesis, we focus mainly on AM-AFM also known as tapping mode AFM (TM-
AFM). In TM-AFM there are two observable channels at each image pixel: the amplitude
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and phase of the cantilever response. The feedback loop monitors the change in ampli-
tude of the cantilever under the influence of the tip-sample forces and corrects the error
signal to maintain a constant amplitude throughout the scan operation. The feedback is
further translated into other useful information channels such as change in amplitude
to topography and change in phase to dissipation and many other important sample
properties [28]. TM-AFM is the most regularly used technique since it can be easily used
in ambient and liquid environments. Furthermore, the versatility of the technique in
achieving atomic resolution and possessing the capability to scan large areas with stark
change in topography makes TM-AFM the most popular imaging technique within the
scientific community .

1.3. TIP-SURFACE FORCES
In order make effective use of an AFM for nanomechanical characterization it is of ut-
most importance to understand the intricacies of tip-sample interaction forces. In gen-
eral the interaction forces in AFM are of electromagnetic in nature as shown in Fig.1.2(a)
and can be broadly classified as non-contact forces (blue) and contact forces (red) de-
pending on tip-sample separation distance as shown in Fig.1.2(b). Non-contact forces
refer to the long range forces influencing the cantilever dynamics when the tip is not in
contact with the sample; whereas the contact forces are those which are activated when
the tip comes into contact with the sample. Furthermore, these tip-sample forces are of-
ten distance dependent and can have conservative or non-conservative origins. To add
another layer of complexity, some of these forces are attractive in nature and some repul-
sive, and depending on the surrounding medium the attractive or repulsive character of
the forces can be changed for example by modifying the ionic strength of an electrolyte
[2, 28, 29]. Thus, the variety of tip-sample forces combined with their different character
and the difficulty of isolating the forces to a particular interaction type are some of the
factors that make estimation of nanoscale material properties using an AFM a challeng-
ing task.

The non-contact forces that dominate the tip-sample interaction mechanics is the
Van der Waals (VdW) force [29–31]. The VdW force between the atoms and/or molecules
have their origin in electric dipole interactions. The dipoles could be of permanent or
induced by thermal fluctuations and consists of three main interaction types: dipole-
dipole, dipole-induced dipole and induced dipole-induced dipole. The VdW forces are
found to be effective from large distances such as hundreds of nanometres to inter-
atomic distances [32]. Below the interatomic distance, the contact repulsive forces be-
tween atoms and molecules arising from Pauli and ionic repulsion start dominating the
interaction mechanics [29]. The surface of two bodies deform when brought into me-
chanical contact and depending on the contact area several hundreds or thousands of
atoms can exert an effective repulsive force. The description of such a repulsive force is
modelled using contact mechanics [33–36]. These models rely on continuum elasticity
theories to describe the contact and adhesion between the probe tip and the sample un-
der an external load. Some of the popular models that describe the contact mechanics
are the Hertz [37], Johnson, Kendall, and Roberts (JKR) [33, 34] and Derjaguin, Muller,
and Toporov (DMT) [35] models.

Although there exists numerous models that describe the indentation or contact un-
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Figure 1.2: Schematic of tip-sample interaction in AFM. (a) When the tip (pink) and the sample (green) is
separated by distance larger than inter-atomic distance value (a0) the long range forces (non-contact forces)
dominate the interaction. Below the a0 value the repulsive forces (contact forces) dominate the interaction
behaviour. (b) The variation in tip-sample force as a function of tip-sample separation distance.

der an AFM tip, these models have an underlying assumption regarding the nature of
probe geometry and the sample under investigation. In general the geometry of the tip
is not well defined and as a consequence the models are not universal and must be cho-
sen with care. In addition to this, the use of continuum models to describe nanoscale
processes is still an open question and has inherent limitations [38–40]. Nevertheless,
continuum models have provided good description for experimental results [41, 42] and
are currently employed in most of the newer AFM systems to perform sample character-
izations.

Figure.1.2(b) shows the variation of tip-sample force with separation distance. It
highlights the overall effect of the various forces influencing the cantilever oscillations
as it approaches the sample. From the figure we observe that the cantilever experiences
attractive force until the intermolecular distance and then repulsive force from then on-
wards. Additionally, close to the intermolecular distance there exists a region where both
attractive and repulsive regions co-exist. The combined attractive and repulsive poten-
tials bends the nonlinear resonance and leads to a hysteretic amplitude response. In fact,
the first experimental evidence for the existence of bi-stability in TM-AFM was the ob-
servation of this hysteretic response under the influence of varying tip-sample distance
[43–45].

In addition to the above forces, the cantilever can experience additional forces de-
pending on the surrounding media and environmental conditions. For example, the
tip or the surface can be electrostatically charged depending on the material properties.
There could be capillary forces due to thin layer of water adhering to the sample at ambi-
ent experimental conditions and in special cases there could be additional local surface
effects such as chemical bonds, localized charges and viscoelastic forces which could in-
fluence the dynamics of the system. Thus it is imperative to understand the nature of
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interaction forces in a given experiment and choose an appropriate model for determin-
ing the nanomechanical properties of the sample using dynamic AFM methods.

1.4. RESEARCH OBJECTIVES AND SCOPE OF THE THESIS
The primary goal of this thesis is to develop nonlinear identification techniques to es-
timate nanomechanical properties of samples. For this, we focus on nonlinear dynam-
ics of the AFM cantilever, influence of operating parameters on nonlinear frequency re-
sponse curves, sensitivity of instrument’s observables on model parameters and subse-
quent estimation of material properties. Finally, we leverage machine learning and data
science techniques for reconstructing tip-sample interaction forces in dynamic AFM.

• To study the global dynamics and robustness of attractors in TM-AFM.

Majority of the existing dynamic models in the literature tend to focus on govern-
ing the local dynamics of the system by tuning the operating parameters while
leaving the impact on global dynamics largely unexplored. But, in order to con-
trol and predict the nonlinear dynamical events such as jump between attractors,
chaos and feedback instabilities as well as preserve the stability of the scanning
operation in TM-AFM, the understanding of the system response from a global
perspective is necessary. In this regard, a vast number of previous studies have
been dedicated to the study of microcantilever dynamics by using simplified sin-
gle degree of freedom point mass models [43, 46–48]. These models utilize static
analysis to determine the cantilever stiffness and then an equivalent mass is cal-
culated by combining information from thermal calibration [49].

However, such a lumped parameter model does not accurately explain the exper-
imental behaviour of the system, where certain nonlinear effects such as para-
metric resonance occurring due to base excitation1 cannot be captured. These
nonlinear effects often result in image artefacts and induce feedback instabilities
hampering the proper functioning of the AFM. In order to understand the physics
behind these artefacts, it is important to study the influence of operating param-
eters such as AFM tip radius, drive amplitude and frequencies on the stability of
the scanning operation. By quantifying the influence of these parameters on the
dynamical state of the system we can define robust guidelines for smooth func-
tioning of the system.

• To improve the signal to noise ratio of higher harmonics and thus enhance the sen-
sitivity of TM-AFM.

Accurate reconstruction of tip-sample interaction force has remained an impor-
tant but often a difficult goal for the AFM community. The reconstruction of
tip-sample force has wide range of implications such as the measurement of
the height profile, development of novel feedback strategies and estimation of
nanomechanical properties of the system. A major limitation in extracting the in-
stantaneous tip-sample interaction force in dynamic AFM stems from the fact that
conventional AFM is essentially driven with a single frequency and thus results in

1The base of the cantilever is given a prescribed harmonic motion causing the cantilever to oscillate.
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at most two observable channels: the amplitude and the phase of the response.
These two observables are insufficient to completely characterize mechanical
properties of the sample. To remedy this limitation several multi-harmonic AFM
techniques were established [7, 22, 50–52]. These techniques either utilize the
higher harmonics or higher order modes as additional channels of observable and
provide complementary information on the sample properties.

However, a majority of these multi-harmonic AFM techniques rely on high SNR
of higher harmonics and eigenmodes to reconstruct information about the tip-
sample interaction. This enhancement of SNR typically comes from physical mod-
ification of the cantilever by either changing the geometric shapes [53–55], creat-
ing notches and holes [56] or by adding concentrated mass at specific locations
[57]. The use of these cantilever require extensive knowledge on the AFM dynam-
ics thus making them less viable for normal AFM operations. In this thesis we
show that the tip-sample interactions mediates an inherent mode coupling be-
tween several different modes of the cantilever. This mode coupling phenomena
can in turn be exploited to enhance the SNR of several higher harmonics without
any physical modification of the probes. In addition to improved SNR of higher
harmonics, we show that the mode coupling phenomena leads to a decreased
sample indentation thus making it suitable for normal AFM imaging operation.

• To investigate the sensitivity of viscoelastic characterization in TM-AFM.

Dynamic AFM has transitioned from being an imaging technique to a more versa-
tile instrument that can perform nanomechanical characterization of wide variety
of materials [5–7, 58, 59]. Amongst them, viscoelastic characterization of soft mat-
ter is currently an important topic in the AFM community due to its varied appli-
cations such as understanding cell functioning [60], mechanobiology [6, 61, 62],
and novel polymers [59, 63–65]. To date, the most straightforward way to obtain
the nanomechanical properties and in particular the viscoelastic properties of the
sample from the experimental observables is by setting up an optimization prob-
lem that will tune the various model parameters within a specific range and obtain
the best fit for the experimental data.

However, due to the highly nonlinear nature of the tip-sample interaction in dy-
namic AFM, these optimization techniques are prone to pitfalls such as vanishing
gradient due to insensitivity of a particular model parameter to the experimen-
tal data, a barren flat topological landscape of the objective function, presence of
multiple local minima and numerical non-convexity. Till date, there are no studies
detailing on how to recognize and tackle the above issues for experimental char-
acterization of samples.

In this thesis, we perform a systematic study on the sensitivity of viscoelastic char-
acterization in Intermodulation AFM (IM-AFM). In particular, we use a model that
has six distinct parameters and can model both the bulk and the surface viscoelas-
tic responses of the sample; whereas, the IM-AFM experiment provides with 32
distinct harmonic observables that arise due to the tip-sample interactions. To un-
derstand the sensitivity of the model parameters on the physical observables, we
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perform several local and global optimization routines and underline the afore-
mentioned pitfalls in a physically intuitive fashion. Furthermore, we remedy the
limitations of our model by reducing the initial six parameter model to a simpler
three parameter model and analyse the experimental data. The analysis shows
consistent results that are comparable with values previously reported in the lit-
erature. This further demonstrates the disadvantages of treating the fitting proce-
dure in dynamic AFM application as a black box.

• Reconstructing the tip-sample force from temporal data using machine learning in
TM-AFM.

One of the most important aspect of dynamic AFM is to understand the tip-sample
interaction mechanism since the tip-sample interaction force is a unique finger-
print of every material; it is the basis for every nanomechanical characterization
technique. In the previous section we discussed SNR of higher harmonics as one
of the limiting factors for accurate reconstruction of tip-sample interaction. The
other limiting factor is the lack of generalized universal approach for reconstruct-
ing the tip-sample interaction force. Dynamic AFM in contrast to its name does
not measure the interaction forces directly but is often reconstructed from the
limited number of experimental observables. For example by capturing the fre-
quency or amplitude and phase information from the oscillating cantilever while
changing the separation distance of the cantilever from the sample [54, 66–69].

Although, there are several analytical and experimental techniques available for
force reconstruction, each come with its own set of limitations. For example, the
analytical techniques such as the integral equations [66, 68], Fourier expansion
methods [70] provide time averaged values of interaction forces and thus neglect
crucial information of how the interaction force changes during the time period of
the cantilever’s oscillation. Whereas, experimental techniques suffer from disad-
vantages such as requiring special cantilever designs for obtaining large number
of harmonics in the deflection signal for accurate force estimation [54, 56], hav-
ing a priori knowledge on the transfer function and/or spatial mode shapes of the
cantilever [70, 71].

In this thesis we overcome these limitations by combining the experimental ob-
servables with machine learning and data science techniques. Data driven models
have revolutionized the analysis and understanding of complex data, recognizing
patterns, and developing classifications based on multimodal datasets in various
situations that are normally beyond the grasp of humans. Recently, data driven
methodologies have made giant strides in their predictive capabilities to identify
and extract the governing dynamics of a system beyond the attractor where they
are sampled and constructed [72–74]. By utilizing these data driven techniques
we eliminate the inherent assumptions on the mathematical models or the nature
of interaction and focus on extracting the tip-sample interaction directly from the
experimental data.
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1.5. OUTLINE OF THE THESIS
This thesis is a collection of articles either published or submitted in peer reviewed jour-
nals. Hence, the reader might find some similarities in the introduction and methodol-
ogy section of different chapters. The thesis outline is as follows:

Chapter 2 presents the global dynamics and robustness of different oscillatory states
in TM-AFM. We begin by modelling the system using continuous beam theory that can
provide precise and deep insights into the physics behind several nonlinear phenomena
such as amplitude jumps, period-doubling cascades and grazing bifurcations. Addition-
ally, we study the influence of several operating parameters such as AFM tip radius, ex-
citation amplitude and drive frequencies on the cantilever dynamics through nonlinear
frequency response curves and basins of attraction.

Furthermore, we study the robustness of attractors in TM-AFM by making use of sys-
tematic bifurcation diagrams to highlight the various possible steady state solutions and
discuss their stability to external perturbations. We show that in addition to the well
known bi-stable potential encompassing the standard attractive and repulsive oscilla-
tory states, there exists a second co-existing potential well close to the sample surface
which we refer to as "in-contact" attractor in this thesis. Finally, we conclude the chap-
ter by quantifying the robustness of all the possible solutions present in TM-AFM using
integrity measures.

Chapter 3 studies the enhancement of signal to noise ratio in higher harmonics by
exploiting mode coupling. In particular, we determine a range of drive frequencies us-
ing the nonlinear frequency response curve with which the cantilever can be excited
to enhance the SNR of higher harmonics. Furthermore, we show that by sweeping the
frequency around this spectral neighbourhood we observe a decreased sample indenta-
tion. To simulate the experimental behaviour, a Multiple Degrees of Freedom (MDOF) is
developed using reduced order modelling based on a non-smooth interaction force. The
results from the simulations further reinforce the aforementioned mode coupling as the
physical phenomena responsible for the enhancement of SNR of higher harmonics. The
study also reveals the potential of phase space trajectories as tools for visualizing mode
coupling phenomena and further highlights the potential of the technique to be used in
a wide variety of multi-frequency AFM applications.

Chapter 4 discusses the importance of having experimental observables that have
an appreciable influence on the nanomechanical property being estimated. The study
involves characterizing the viscoelastic properties of the sample using multi-harmonic
AFM together with a numerical model that can characterize both the bulk and the sur-
face properties. The study offers insight into the various pitfalls of setting up an opti-
mization problem and how to identify them. Furthermore, the analysis on experimental
data obtained on a polymer blend shows that the multi-harmonic observables although
large in number is incapable of characterizing the surface viscoelastic response in multi-
harmonic AFM setting. We reinforce this analysis by doing numerous local and global
optimization simulations. Finally, we show that by reducing the model parameters, the
optimization problem produces meaningful results which suggests that novel viscoelas-
tic models which can truly capture the surface response is crucial for accurate quantifi-
cation of surface properties using dynamic AFM.

Chapter 5 focusses on using machine learning and data science to distil physically in-
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terpretable models directly from experimental data. The identified models can be used
to estimate the tip-sample interaction force with sub-microsecond resolution. More-
over, it provides insights on peak loading forces and energy dissipation during con-
tact without prior knowledge of the interacting samples. We achieve this, by using the
sparse identification technique to train and test on a large number of well established
AFM models. These models are capable of representing different tip-sample interac-
tion physics and thus help to build a library of linear and nonlinear functions capable of
replicating the said interaction in experimental data. we showcase the capability of the
technique by characterizing a co-block polymer and extract the interaction force as a
function of tip-sample separation distance. In addition to this, we show that data driven
analysis can be used for probing the geometry and the stiffness of the sample.

In Chapter 6, I discuss the future research outlook and possible research directions.
The discussion is further supplemented with preliminary results that can bridge several
areas of research such as extracting tip-radius using electrostatic forces, exploiting the
softening dynamical response of the cantilever to quantify VdW forces, data driven based
nonlinear control techniques, extending the data driven identification in dynamic AFM
to characterize viscoelastic samples and finally, employing neural networks to identify
specific signatures within temporal data that suggest inter-modal coupling.

In Chapter 7, the conclusions of this research are outlined and further discussion on
the advantages and improvements of the employed techniques are provided.



2



2



2
GLOBAL DYNAMICS OF TAPPING

MODE ATOMIC FORCE MICROCOPY

In this chapter, we perform a comprehensive analysis of the robustness of attractors in
tapping mode atomic force microscopy. We achieve this by developing a numerical model
based on cantilever dynamics driven in the Lennard-Jones interaction potential. Pseudo
arc-length continuation and basins of attraction are utilized to obtain the frequency re-
sponse and dynamical integrity of the attractors. The global bifurcation and response sce-
nario maps for the system are developed by incorporating several local bifurcation loci in
the excitation parameter space. Moreover, the map delineates various escape thresholds
for different attractors present in the system. Our work unveils the properties of the can-
tilever oscillation in proximity to the sample surface, which is governed by the so called in-
contact attractor. The robustness of this attractor against operating parameters is quanti-
fied by means of integrity profiles. Our work provides a unique view into global dynamics
in tapping mode atomic force microscopy and helps establishing an extended topological
view of the system.

This chapter is published as an article in Nonlinear dynamics journal [75]. The published article is adapted to
fit into the context of the thesis.
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Atomic Force Microscopy (AFM) has become one of the most prominent character-
ization tools in modern science. It is ubiquitously used to characterize and manipulate
surface properties of materials down to atomic resolution in both air and liquid envi-
ronments [4–6, 9–13, 76]. Among the various AFM operational modes, Tapping Mode
AFM (TM-AFM) [21] also known as Amplitude Modulation AFM (AM-AFM) [28] is one of
the most extensively used techniques to obtain high-resolution images of wide variety of
samples. Owing to reduced lateral forces and high-phase sensitivity, TM-AFM is widely
popular in soft matter [5], biological samples [6] and polymer [7, 77] applications.

TM-AFM is based on the near-resonant excitation of a microcantilever with a sharp
tip at its free end that is vibrating in the vicinity of the sample. The vibrations in the
cantilever are influenced by the tip-sample interaction forces, which modifies the beam
dynamics. In general, the tip-sample interaction is nonlinear and comprises of long-
range attractive Van der Waals forces, short-range quantum mechanical repulsive forces,
adhesive and contact forces. The nonlinear response due to tip-sample interaction is
even more involved in the presence of electrostatic and capillary forces [78]. In the ex-
istence of such complex nonlinearities, a comprehensive understanding of the multi-
stable response is crucial, since these nonlinearities can be efficiently utilized for ex-
tracting several nanomechanical properties of the sample [6, 28, 79, 80]. Furthermore,
the accuracy of imaging and nanomechanical characterization of sample surfaces from
measured data depends crucially on the deconvolution of data with appropriate models.

In recent years, the underlying dynamics of AFM cantilever and its exploitation have
been investigated by many authors [43, 46–48, 81]. The vast majority of these stud-
ies have been dedicated to study the microcantilever dynamics by utilizing a simpli-
fied single-degree-of-freedom point mass model [82–84]. In this approach, first a static
analysis is performed to determine the cantilever stiffness and then the equivalent mass
is calculated based on the experimentally evaluated fundamental resonance frequency.
Furthermore, the excitation is modelled as an external force acting on the point mass.
Such a lumped parameter model does not represent the conditions encountered in re-
ality, where the microcantilever is subjected to base excitation at the clamped end by
means of a piezoelectric actuator. The base excitation induces linear and nonlinear para-
metric excitations that are typically not captured by the lumped parameter model thus
failing to accurately describe the dynamics of the microcantilever [81, 83].

Continuous beam models on the contrary, have proven to predict the nonlinear as-
pects of AFM cantilever dynamics accurately [46–48, 81]. These models are able to pro-
vide precise and deeper insights into the physics behind the nonlinear phenomena such
as amplitude jumps, period-doubling, and grazing bifurcations [81, 85]. Therefore, in
spite of the complexities involved in modelling of the AFM cantilever as a continuous
beam, it allows for capturing the overall nonlinear aspects of the AFM dynamics [86].

In practical operation, the dynamics of AFM cantilever is influenced by several op-
erating parameters such as tip radius, excitation amplitude, excitation frequency, and
feedback values etc. The real-time variation of these parameters during an AFM oper-
ation can lead to unwanted dynamical phenomena such as bifurcations, unstable and
aperiodic motions, which can decrease the reliability of results and strictly limit the op-
erating ranges of the AFM. The dynamic models as well as the feedback strategies im-
plemented in standard AFM systems tend to focus on governing the local dynamics of
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the system, leaving the impact on the global dynamics largely unknown. Therefore, in
order to predict and control these dynamical events as well as preserving the stability of
operation in TM-AFM, it is important to study and understand the nonlinear responses
from a global perspective.

Currently, there are no detailed works on global dynamics of TM-AFM, which i) eval-
uate the escape boundaries, ii) estimate dynamical integrity, and iii) perform detailed
analysis of bifurcations. Existing literature have focussed on the dynamical integrity and
bifurcation scenarios of non-contact AFM [85, 87]. But basins of attraction and erosion
process of basin portraits in TM-AFM are lacking in the literature. The erosion of uncor-
rupted basins of attraction surrounding each main solution as a function of AFM oper-
ation parameters is of paramount importance from both theoretical and experimental
perspective.

In this chapter, we elucidate the global dynamics and robustness of attractors in
TM-AFM. Differently from existing works, which are based on limited analysis on the
local dynamical behaviour, this work makes systematic use of bifurcation diagrams to
highlight the appearance and disappearance of steady-state solutions. The latter offers
an overall interpretation of the dynamic response with respect to operational parame-
ters, namely, excitation frequency and forcing amplitude. Additionally, we show that, by
changing the operation parameters, a microcantilever initially in the primary resonant
branch, can escape from its local potential well and get captured by a second co-existing
local potential well close to the sample surface. This regime of oscillation close to the
sample surface, referred in this chapter as, ’in-contact’ attractor is unexplored in the lit-
erature. In this work, we examine its evolution and robustness properties with frequency
response curves and basins of attraction. Furthermore, the envelopes of local bifurca-
tion boundaries are built to understand the escape scenarios of the solutions. Finally,
integrity analysis is performed to quantify the steady-state solutions associated with all
the attractors present in TM-AFM.

Based on these motivations, the chapter is organized as follows: the modelling of the
system is discussed briefly in Sec.2.1. This is followed by a detailed analysis of frequency
response of the system, bifurcation charts and response scenarios including escape of
solutions in an excitation parameter space in Sec.2.2. Particular attention is paid to the
frequency response analysis of the in-contact attractor around its primary and paramet-
ric resonance. The results of this section are then utilized to build basins of attraction
and dynamical integrity curves for the main attractors present in the system in Sec.2.3.

η*

 w*(L)

Z

y(t)
u(x,t)

(a) (b)

Figure 2.1: Schematic of the AFM cantilever in (a) static deflection configuration and (b) configuration at which
AFM cantilever exhibits oscillations around the nonlinear static equilibrium. The sample is at η1 = 1.
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2.1. NUMERICAL MODEL
The classical beam theory, based on the Euler-Bernoulli assumptions, is used to obtain
the continuous model for the AFM microcantilever shown in Fig 2.1. The nomenclature
used to describe the equations in this chapter is identical to the one described by Ruet-
zel et al [47]. The deflection of the cantilever towards the sample is treated as positive
and the rest position of the cantilever is taken as reference. The considered microcan-
tilever has a length L, mass density ρ, Young’s modulus E, area moment of inertia I , and
cross-section area A. The beam is clamped at x = 0 and free at x = L. The tip-sample sep-
aration distance in the reference configuration is denoted by Z and the total deflection
of the microcantilever w(x, t ), can be expressed as w(x, t ) = u(x, t )+w∗(x)+ y(t ), where
u(x, t ) is the deflection of the microcantilever relative to a non-inertial reference frame
attached to the base and w∗(x) is the static deflection towards the sample due to tip-
sample interaction. The base excitation is generated by a dither piezo and is assumed to
be harmonic, i.e, y(t ) = Y si n(Ωt ), where Y and Ω are the amplitude and frequency of
excitation, respectively.

2.1.1. TIP-SAMPLE INTERACTION
In TM-AFM, the microcantilever oscillates in close proximity to the sample surface. In
our work, we use the Lennard-Jones (LJ) potential to describe the tip-sample interac-
tions [29]. Although the model doesn’t take into account the real contact mechanics
encountered in TM-AFM, it represents a generic tip-surface interaction potential which
mimics qualitatively, the more detailed and computationally expensive models [48]. The
LJ potential models the non-retarded dispersive Van der Waals forces as well as the short-
range repulsive exchange interactions between two molecules. Assuming a spherical tip
apex with radius R and a flat sample surface, the interaction potential and the force are:

ULJ = A1R

1260z7 − A2R

6z
, (2.1a)

PLJ =−∂U

∂z
= A1R

180z8 − A2R

6z2 , (2.1b)

where z is the instantaneous tip-sample separation gap. A1 and A2 are the Hamaker
constants for the repulsive and attractive potentials, respectively. A positive interaction
force implies repulsion. The Hamaker constants are A1 = π2ρ1ρ2c1 and A2 = π2ρ1ρ2c2,
where ρ1 and ρ2 are the number densities of molecules in the interacting media and c1

and c2 are the interaction coefficients of intermolecular pair potential [29].

2.1.2. EQUATION OF MOTION
The nonlinear static deflection of the microcantilever in the absence of base excitation
is computed by solving for the equilibrium gap between the tip and the sample shown
in Fig. 2.1. The static equilibrium gap η∗ at the free end is calculated as a function of the
approach distance Z through static balancing of the cantilever restoring force and the
tip-sample interaction forces.

The dynamic equation of motion of the tip deflection u(x,t) about its nonlinear
equilibrium subjected to base harmonic motion is then derived through a single mode
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discretization of the Euler-Bernoulli beam equation. The interaction forces given by
Eq. (2.1)(b) are assumed to be acting on the free end of the cantilever and is mathemat-
ically achieved through the use of Kronecker delta (δ) function. Writing the equation of
motion of the vibrating cantilever with respect to a non-inertial frame of reference leads
to the following governing equation,

ρAü(x, t )+E I (u′′′′(x, t )+w∗′′′′(x)) = Fi (Z −w(L, t ))δ(x −L)+ρAΩ2Y si n(Ωt ), (2.2)

where,

Fi (Z −w(L, t )) =− A1R

180(Z −w(L, t ))8 + A2R

6(Z −w(L, t ))2 and

w(L, t ) = w∗(L)−u(L, t )−Y si n(ΩT ).
(2.3)

Equation (2.2) is a non-autonomous and nonlinear equation. The equation is discretized
by projecting the dynamics onto the system’s linear modes of vibration. The natural
modes and frequencies are obtained using the Galerkin approach [47, 88]. The fre-
quency range of the analyses in this paper spans around the neighbourhood of the fun-
damental resonance, where the contribution of higher modes is substantially negligi-
ble. Based on this assumption, a single-degree-of-freedom model is used. Assuming
u(x, t ) = φ1(x)q1(t ) (where φ1 is the first approximate eigenfunction around the static
deflected configuration) and using the Galerkin approach, the following nonlinear equa-
tion can be derived [47]:

The non-dimensional parameters and the corresponding coefficients of Eq. (2.4) are
described below. For further details the reader is suggested to read the article [47].

η̈1 =−d1η̇1 −η1 +B1 + C11

(1−η1 − y si n(Ωt ))8
+ C12

(1−η1 − y si n(Ωt ))2
+ yΩ

2
E1si n(Ωt ).

η1 =
x1(τ)

η∗
, x1(τ) =φ1(L)q1(τ), η∗ = Z −w∗(L), τ=ω1t , Ω= Ω

ω1
, d1 = c1

ω1ρA
∫ L

0 φ
2
1d x

,

B1 = (1− Z

η∗
)Γ1, C11 =− A1R

180k(η∗)9 Γ1, C12 =− A2R

6k(η∗)3 Γ1, ω2
1 =

E I
∫ L

0 φ1φ
′′′′
1 d x

ρA
∫ L

0 φ
2
1d x

,

Γ1 =
kφ2

1(L)

ω1ρA
∫ L

0 φ
2
1d x

, k = 3E I

L3 , y = Y

η∗
, E1 =

φ(L)
∫ L

0 φ1d x∫ L
0 φ

2
1d x

.

(2.4)
The microcantilever tip deflection towards the sample is denoted by η1. In addition,
the equation is made dimensionless with respect to equilibrium gap width (η∗) and the
fundamental frequency of the free microcantilever (ω1) in the absence of tip-sample in-
teraction forces. The amplitude of the dither piezoelectric actuator is denoted by y . The
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Figure 2.2: Frequency response curve and basin portrait of the system for fixed parameters y = 0.006 and
R = 150 nm. The parameters are obtained from the monostable region of nonlinear elastostatic equilibrium
curve. (a) Frequency response shows softening and hardening behaviour corresponding to the attractive and
repulsive tip-sample forces. Continuous and dotted lines indicate stable and unstable branches of the so-
lution. Red and blue circles indicate period-doubling and saddle-node bifurcation points respectively. The
natural frequency of the system isΩ0 = 0.94. (b) Basins of attraction taken at sectionΩ = 0.8. The positive dis-
placement implies movement of the tip closer to the sample. The details on basin color and the corresponding
attractor/solution description is given in Table. 2.4.

dotted quantities represent derivatives with respect to rescaled time τ (τ=ω1t ). Finally,
the modal damping d1 is explicitly introduced in Eq. (2.4) and is related to the quality
factor Q of the cantilever by the relation Q = 1/d1.

2.2. NUMERICAL ANALYSIS
In order to investigate the dynamical behaviour of the TM-AFM, the simulations of the
model given by Eq. (2.4) are performed in this section. The entire analysis is carried out
for the interaction of a soft monocrystalline silicon microcantilever with the (111) face
of flat silicon sample. The cantilever and interaction properties are listed in Table 2.1.
Furthermore, the analysis is performed for tip-sample gap (η∗) in the bi-stable region of
nonlinear elastostatic equilibrium curve. Thus a value of η∗ = 6.542 nm1 is chosen for
the rest of the analysis in this work. However, a similar analysis can be carried out for
any other tip-sample gap values.

Numerical simulations are performed by using a pseudo arc-length continuation
technique [89]. We also make use of basins of attraction (phase space) in order to illus-
trate the presence of various attractors (steady state solutions). A basins of attraction is a
set of possible initial conditions about an equilibrium point in phase space that assures a
specific response from the cantilever. In other words, any chosen initial condition within
the phase space will be ’attracted’ to a particular steady state motion of the cantilever.

1This value allows for comparison of results with the reference paper of Ruetzel et al [47]. However, qualita-
tively the same results are obtained for η∗ = 6.5 nm.
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Table 2.1: Properties and dimensions of the cantilever [47].

Description Dimensions
Length (L) 449µm
Width (b) 46µm
Thickness (h) 1.7µm
Tip radius (R) 150 nm
Density (ρ) 2330 kgm−3

Static stiffness (k) 0.11 Nm−1

Elastic modulus (E) 176 GPa
Fundamental resonance frequency (f 1) 11.804 kHz
Quality factor (Q) 100
Hamaker constant-repulsive (A1) 1.35961×10−70 Jm6

Hamaker constant-attractive (A2) 1.8651×10−19 J

Unless specified, the basins are evaluated in a phase space grid of η1 = [-0.9, 0.9] and
η̇1 = [-0.9, 0.9] as it contains all the main attractors involved in the system potential well.

2.2.1. FREQUENCY RESPONSE AND BIFURCATION SCENARIOS

The interaction between tip and sample gives rise to different nonlinear frequency re-
sponses depending on the tip-sample separation distance. The response displayed in
Fig. 2.2(a) shows an initial softening behaviour when the tip is far away from the sample.
This region is dominated by attractive Van der Waals forces. However, when the tip-
sample separation reaches the order of the interatomic distance, the response exhibits
hardening behaviour and this region is dominated by repulsive forces (see Fig. 2.2(a)).
Figure 2.2(b) shows the corresponding basin portrait associated with the frequency re-
sponse atΩ = 0.8. The blue and crimson basins together form the attractive region, while
the purple basin belongs to the repulsive region.

The nonlinear frequency response shown in Fig. 2.2(a) is well-known and studied ex-
tensively by many authors [47, 80, 90]. However, there exists another overlooked steady-
state response when the cantilever escapes the local potential well and gets trapped by
a subsequent attractor very close to the sample. Figure 2.3(a) shows the frequency re-
sponse for the model given by Eq. ((2.4)) and Fig. 2.3(b) shows the position of the in-
contact attractor in the basin portrait. Note that Fig. 2.3(a) is made up of two different so-
lutions belonging to the attractive (lower frequency response curve) and the in-contact
attractor (upper frequency response curve). The two solutions can be obtained by using
different initial conditions in the numerical integration. In the next section, the detailed
analysis of the in-contact attractor’s frequency response and corresponding bifurcation
scenarios are presented parametrically.

2.2.2. FREQUENCY RESPONSE CURVES

Local dynamic analysis is performed using frequency response curves together with the
bifurcation charts. The analysis offers a complete overview into the bifurcations and
escape scenarios of the system. Furthermore, the unstable solution branches shown in
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Figure 2.3: Frequency response curve and basin portrait of the system for fixed parameter y = 0.020 and
R = 150 nm. The parameters are obtained from the bi-stable region of nonlinear elastostatic equilibrium curve.
(a) Frequency response of the system showing both attractive (lower curve) and in-contact (upper curve) main
solutions. Continuous and dotted lines indicate stable and unstable branches of the solution. Red and blue
circles indicate period-doubling and saddle-node bifurcation points, respectively. (b) Basins of attraction of
the system is obtained at sectionΩ = 0.8. The details on basin color and the corresponding attractor/solution
description is given in Table 2.4.

frequency response curves are not discussed in detail but are reported for the sake of
completeness.

Figure 2.4 and 2.5 show the evolution of frequency response of the in-contact attrac-
tor as a function of the excitation amplitude, y = 0.005 and 0.020, respectively. In both fig-
ures, red and blue circles indicate period-doubling and saddle-node bifurcation points,
respectively. Although the dimensionless natural frequency of the system oscillating in
attractive regime is found to be Ω0 = 0.83 (Ω0 is the natural frequency affected by the
system potential well), it can be observed in Fig. 2.4 that, the first natural frequency of
the system oscillating in the in-contact regime isΩ0 = 3.72 with corresponding paramet-
ric resonance at 2Ω0 = 7.44. This shift in resonance frequency is due to the presence of
strong repulsive forces which act as a hard spring connecting the cantilever to the sam-
ple. This can be visualized as a change in the boundary conditions of the cantilever sim-
ilar to that of a clamped-clamped beam. Interestingly, the system also exhibits softening
nonlinearity in spite of the presence of repulsive forces. This is due to the fact that the
cantilever is oscillating in the potential well with a duration of oscillation longer in the
attractive regime. In addition, multi-stability can be observed with different solutions
overlapping in several discrete ranges of frequencies (see Fig. 2.4(a)). At lower values of
forcing frequency Ω ≤ 1.85, the system has only one non-resonant low-amplitude solu-
tion (LP1). The corresponding basin associated with LP1 solution at Ω = 0.5 is shown in
light brown color in Fig. 2.4(b). The figure illustrates the low-amplitude attractor being
the dominant solution in the in-contact regime at low-frequency values. The LP1 solu-
tion eventually gives rise to a superharmonic branch (Su1HP1) at Ω = 1.85 via saddle-
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Figure 2.4: Frequency response curve and basins of attraction for the in-contact attractor. (a) Frequency re-
sponse of in-contact attractor for fixed parameter y = 0.005 and R = 150 nm. Continuous and dotted lines indi-
cate stable and unstable branches of solution.Red and blue circles indicate period-doubling and saddle-node
bifurcation points, respectively. (b)-(c) Basins of attraction of in-contact attractor obtained at sections,Ω = 0.5
and Ω = 2.96, respectively in the frequency response curve. The details on basin color and the corresponding
attractor/solution description is given in Table. 2.4.

node bifurcation, and later a resonant high amplitude solution (HP1) at Ω = 3.3. Figure
2.4(c) reports the orange basin belonging to HP1 solution arising from the boundaries of
Su1HP1 solution (green basin) in the in-contact regime.

Furthermore, the HP1 branch in Fig. 2.4(a) destabilizes with the inception of a pair
of period-2 branches via flip/period-doubling bifurcations. One of the period-doubling
bifurcation occurs close to the low-frequency saddle-node bifurcation at Ω = 0.3, while
the other period-doubling bifurcation occurs at Ω = 1.56 (zoomed part of Fig. 2.4(a)).
This behaviour is similar to the nonlinear cantilever response seen in attractive regime
as illustrated earlier in Fig. 2.3(a). Moreover, in Fig. 2.4(a) the period-2 branch continua-
tion shows stable motion over a short frequency range before undergoing further period-
doubling bifurcation cascade. The subharmonic response associated with the period-
doubling bifurcation can be observed around the principal parametric resonance fre-
quency of 2Ω0 = 7.44. The stable large amplitude period-2 solution (referred to as Pa-P2

in Fig. 2.4(a)), arising from one of the period-doubling points is found to be stable over
a wide range of excitation frequency (Ω ∈ {4.8, 7.7}). In addition to the above analysis,
referring to Fig. 2.5, at larger excitation amplitudes (y ≥ 0.0118), the softening behaviour
in the nonlinear response of the system increases along with a larger field of existence of
the superharmonic response (Su1HP1).

Furthermore, a second superharmonic branch (Su2HP1) bifurcates through a saddle-
node atΩ = 1.79. Here, four forced period-1 solutions co-exist out of which only two are
stable (Su2HP1 and Su1HP1) and two are unstable. The superharmonic branch for larger
excitations, eventually joins the main branch of the in-contact response via the saddle-
node at Ω = 2.83. In addition, the Su1HP1 branch is destabilized over narrow frequency
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ranges, Ω ∈ {0.92, 0.95} andΩ ∈ {2.41, 2.42}, by the occurrence of period-doubling bifur-
cations.

It is observed in Fig. 2.5 that, the low-frequency period-doubling point (Ω = 0.94) has
a stable period-2 solution over a short frequency range (see zoomed part of the figure)
and the high-frequency period-doubling (Ω = 2.42) presents mostly an unstable bifur-
cated period-2 solution except for few initial continuation points that are stable. These
few stable points are not shown in the frequency response curves but are described in the
bifurcation maps. In an analogous way, a period-doubling bifurcation at Ω = 2.90 is ob-
served on the HP1 branch having a stable period-2 solution limited in frequency range
Ω ∈ {2.7, 2.9}. Moreover, period-doubling cascades are present in both stable period-
2 solutions arising from Su1HP1 and HP1 branches. This period-doubling cascade can
lead to chaos in a similar fashion as encountered in standard TM-AFM systems [91].

2.2.3. BIFURCATION CHART, RESPONSE SCENARIOS AND ESCAPE THRESH-
OLD

Figures 2.6 and 2.7 provide an overview of the various bifurcation scenarios and escape
thresholds occurring for a wide range of excitation amplitudes and frequencies. In these
figures, local bifurcation envelope (loci) are constructed by following the variation of the
bifurcation point (saddle-node or period-doubling) with respect to operating parame-
ters, namely Ω and y . Furthermore, by assembling all the local bifurcation envelopes
together, the global response and behaviour map of the entire system in the excitation
amplitude and frequency control space is obtained. The bifurcation map has been ob-
tained numerically for the in-contact attractor over a wide range of frequencies which
includes the fundamental (Ω0) and principal parametric resonances (2Ω0). Thus, it is
convenient to analyse the global dynamics by dividing the bifurcation map into two
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Table 2.2: Bifurcation envelope data

Envelope name Envelope color Description
USN1/LSN1 Blue Upper/lower saddle-node bifurcation loci

belonging to the main solution branch.
Su1-USN1/Su1-LSN1 Blue Upper/lower saddle-node bifurcation loci

belonging to the first superharmonic solu-
tion branch.

Su2-USN1/Su2-LSN1 Blue Upper/lower saddle-node bifurcation loci
belonging to the second superharmonic so-
lution branch.

SN2 Blue Saddle-node bifurcation loci belonging to
the period-2 solution of the principal para-
metric resonance.

Pa-SBF/Pa-SPF Red Subcritical/supercritical flip bifurcation
loci emerging from the principal paramet-
ric resonance.

Su1-SBF/Su1-SPF Red Subcritical/supercritical flip bifurcation
loci emerging from the first superharmonic
solution branch.

Pa-SPF2 Green Supercritical flip bifurcation loci emerging
from the period-2 response of the principal
parametric resonance.

Su1-SPF2 Green Supercritical flip bifurcation loci emerging
from the first superharmonic branch with
period-2 response.

separate regions: the first region focuses around the fundamental resonance frequency
Ω0 = 3.72 illustrated in Fig. 2.6, whereas the second region analyses the principal para-
metric resonance frequencyΩ0 = 7.44 as shown in Fig. 2.7. In addition, Table 2.2 outlines
the data concerning the various bifurcation envelopes of Fig. 2.6 and 2.7. Furthermore,
Table 2.3 summarizes the various dynamic regions formed by these envelopes and the
corresponding solutions involved. From an experimental perspective the response sce-
nario map provides qualitative information on the form of cantilever response expected
for the chosen set of excitation amplitude and excitation frequency.

ANALYSIS OF THE BIFURCATION MAP AROUND THE FUNDAMENTAL RESONANCE

Around the fundamental resonance frequency of the in-contact attractor, the dynamics
is more involved than in the case of the attractive region [85]. The period-doubling/flip
bifurcations appear not only on the main branch of the solution (HP1 branch in Fig.
2.5), but also on the first superharmonic branch (Su1HP1 branch in Fig. 2.5). This drasti-
cally increases the possibility of global escape through crisis and also chaotic behaviour
through period-doubling cascade. In an analogous way the saddle-node bifurcations
that arise from the superharmonic branch increase the complexity of the response.

Figure 2.6 reports all the possible regions of motions for the cantilever in the range of
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Table 2.3: Correlation data between the dynamic regions and corresponding solutions.

Dynamic region Solution Description
R1 LP1 Low-amplitude non-resonant period-

1 response from the main solution
branch.

R2 Su1HP1 + HP1 High-amplitude period-1 solution
arising from the first superharmonic
branch and High-amplitude resonant
period-1 response arising from main
solution branch.

R3 HP1-P2 Period-2 response arising from the res-
onant high-amplitude solution.

R4 Su1-P2 + Su1HP1 Period-2 solution together with high-
amplitude period-1 solution arising
from the first superharmonic branch.

R5 LP1 + Su1HP1 Low-amplitude period-1 response be-
longing to the main solution branch
together with high-amplitude period-1
solution arising from the first superhar-
monic branch.

R6 Su1HP1 High-amplitude period-1 solution
arising from the first superharmonic
branch.

R7 LP1 + Su1HP1 + Su2HP1 Low-amplitude period-1 response to-
gether with high-amplitude period-1
solution arising from the first and sec-
ond superharmonic branches, respec-
tively.

R8 Su1-P2 Period-2 solution arising from the first
superharmonic branch.

R9 HP1 High-amplitude resonant period-1 re-
sponse arising from main solution
branch.

R10 Su1HP1 + HP1 + Pa-P2 High-amplitude period-1 solution
arising from the first superharmonic
branch, High-amplitude resonant
period-1 solution and period-2 re-
sponse from the principal parametric
resonance solution.

R11 Escape region period-doubling cascades and exis-
tence of strange attractors

R12 HP1 + Pa-P2 High-amplitude resonant period-1 so-
lution and period-2 response from the
principal parametric resonance solu-
tion.

R13 Pa-P2 Period-2 response from the principal
parametric resonance solution.

R14 HP1 High-amplitude resonant period-1 re-
sponse arising from main solution
branch.
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Figure 2.6: In-contact attractor bifurcation and response chart focussing on the region below the primary reso-
nance frequency (Ω0 = 3.721 indicated by the vertical dashed line). Blue lines are the saddle-node bifurcation
loci on period-1 solution branches, red lines are the period-doubling/flip bifurcation loci on period-1 solution
branches, green lines are the period-doubling/flip bifurcation loci on period-2 solution branches. The de-
tails on individual bifurcation envelope description and the corresponding solution regions are summarized
in Table 2.2 and Table 2.3, respectively.

Table 2.4: Correlation data between the basin colors and corresponding attractors.

Basin color Attractor/Solution
branch

Basin color Attractor/Solution
branch

A-LP1 A-HP1

Repulsive solution LP1

Su1-HP1 HP1

A-Pa-P2 and Pa-P2

frequencies surrounding the fundamental resonance. The different regions are named
with pink labels and accordingly numbered. For both low-amplitude excitations and
frequencies up to y = 0.004 and Ω < 1.85, there exists only the LP1 motion indicated by
region R1 in Fig. 2.6. Hereafter, with increase in Ω ≥ 1.85, the response consists of both
the HP1 and superharmonic high-amplitude (Su1HP1) solutions bound by loci HP1-SPF
as shown in the region R2 of Fig. 2.6. Moving to even larger values of excitation fre-
quency, the solution HP1 governs the behaviour of the system (R9). Similarly, in addition
to the discussion of aforementioned regions, the presence of other response scenarios



2

28 GLOBAL DYNAMICS OF TAPPING MODE ATOMIC FORCE MICROCOPY

and dynamic regions data is tabulated in Table 2.3. Moreover, in contrast to the various
stable responses seen in Fig. 2.6, the bifurcation analysis of in-contact attractor shows
the presence of multiple strange attractors leading to crisis scenarios and global escape.
The operating parameters leading to escape are depicted by grey regions (R11) in Fig.
2.6. The crisis scenario also highlights appearance of several rare attractors (period-5
and above) along with period-doubling cascades, which lead the solution to escape from
the local potential well.
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Figure 2.7: In-contact attractor bifurcation and response map focussing on the region near the neighbourhood
of parametric resonance frequency (2Ω0 = 7.44 indicated by the vertical dashed line). The details on individual
bifurcation envelope description and the corresponding solution regions are summarized in Table 2.2 and
Table 2.3, respectively.

ANALYSIS OF THE BIFURCATION MAP AROUND THE PRINCIPAL PARAMETRIC RESONANCE

Figure 2.7 shows that, below the parametric resonance frequency, Ω < 7.44 , only HP1

solution exists (R9) until the Pa-P2 solution from the parametric resonance (2Ω0=7.44)
overlaps with the region R9 resulting in two co-existing period-1 (HP1) and period-2
(Pa-P2) responses as shown in region R12. In between the classic parametric instabil-
ity tongue (V-shaped region near Ω = 7.44) formed by the parametric subcritical (Pa-
SBF) and supercritical (Pa-SPF) bifurcations, the HP1 solution becomes unstable and
there exists only period-2 (Pa-P2) solution (R13). As expected in any of the archetypal
parametric oscillators, the system requires a minimum excitation threshold to achieve
parametric resonance. This is indicated by the lifting of the instability tongue (V-shaped
region) along the y axis and in our system the critical threshold is at y = 0.00014. Finally,
for excitation frequencyΩ > 7.44, only HP1 solution is present as shown in region R14.

2.3. DYNAMICAL INTEGRITY AND ROBUSTNESS OF ATTRAC-
TORS

In the previous section, we provided insight into diverse solutions and bifurcation sce-
narios including escape thresholds. However, the analysis did not furnish details on the
various instability paths and eventual escape of the steady state solutions. The informa-



2.3. DYNAMICAL INTEGRITY AND ROBUSTNESS OF ATTRACTORS

2

29

tion on the instability path (escape from local potential well, cross-well chaos) taken by
the cantilever response is of utmost importance in practical applications of AFM. This
helps to disentangle image artefacts from factual data.

From an experimental perspective, if the system perturbations can be quantized
then basins of attraction provide insight into the evolution of various steady state re-
sponses (system attractors) and instabilities (erosion profiles) occurring in the system.
Furthermore, measures of the basin portraits, the dynamical integrity of the system, are
able to quantify the robustness of different attractors. This can be realized through var-
ious scalar integrity measures [92]. These integrity measures provide information on
the strength of such quantized perturbations required to destabilize the corresponding
system response. Therefore, basin portraits together with integrity measures provide a
means to track the basin erosion process with respect to changes in operating param-
eters. Hence, in order to advance the dynamical analysis of the AFM cantilever in the
in-contact regime of oscillation, this section focuses on the global topology analysis by
means of basins of attraction [93, 94].

There have been multiple integrity measures introduced in the literature [95] and this
section makes use of two integrity indicators to measure the evolution of phase-space
topology, namely Local Integrity Measures (LIM) [92] and Integrity Factor [96] (IF). The
LIM is defined as the normalized radius of the largest hypersphere (circle in 2D), cen-
tered on the safe attractor and entirely belonging to the safe basin. It is used to analyse
the robustness of the attractor of interest against perturbations. On the other hand, the
IF is defined as the normalized radius of the largest circle entirely belonging to the com-
pact part of safe basin. The IF is suitable to study the dynamical integrity of the attractors
subject to perturbation around its initial equilibrium condition. The reason to choose
these measures with respect to others such as Global Integrity Measures (GIM) relies on
the fact that, IF and LIM can disentangle the fractality of basin since they focus only on
its compact part [92]. In our case this is a serious advantage since, the homoclinic tan-
gling of the saddle results in fractalization of the low-amplitude attractive regime basin.

2.3.1. BASIN PORTRAITS AND EVOLUTION AS A FUNCTION OF TIP RADIUS

One of the common causes for image artefacts during AFM scanning operation is the
degradation of tip radius R due to repetitive impacts with the sample surface [97]. Fur-
thermore, the correct and reliable operation of the AFM is dependent on the status of
the probe tip, since it is responsible for resolving the topography of the sample [80].
The change in radius value during the aforementioned scanning operation thus causes
a sensible variation in the system response and corresponding global integrity values.
Therefore, in this section, we make an effort to elucidate the variation of system integrity
via basin portraits by considering the AFM tip radius (R) as the corresponding varying
parameter.

Figure 2.8 outlines the variation of dynamical integrity of system attractors as a func-
tion of AFM cantilever tip radius R. The numerical simulations are performed for tip ra-
dius ranging from 105 nm to 225 nm in steps of 3 nm, with excitation frequencyΩ = 0.85
being close to resonance, and excitation amplitude y = 0.005. Figure 2.8(a)-(c) report the
integrity variation trend as a function of tip radius and Fig. 2.8(d)-(f) reveal the snapshot
of basin portrait at several crucial radius values, namely 114 nm, 117 nm, and 197 nm,
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Figure 2.8: Variation of integrity measures (LIM, IF), basin portraits and frequency response curves as a func-
tion of tip radius (R), for fixed parameter values of y = 0.005 andΩ = 0.85. (a) Integrity profiles of the attractive
region containing non-resonant low-amplitude (crimson) and resonant high-amplitude solution (blue) attrac-
tors. (b) Integrity profiles of repulsive region attractor. (c) Integrity profiles of the in-contact region consisting
of non-resonant low-amplitude (light brown) and resonant high-amplitude solution (orange) attractors. The
continuous and dotted lines indicate the LIM, IF integrity measures respectively. (d)-(f) show the basin por-
traits at specific radius values of 114 nm, 117 nm, and 197 nm, respectively. The details on basin color and the
corresponding attractor/solution description is given in Table 2.4. (g) Frequency response of microcantilever
with radius R = 105 nm and R = 182 nm oscillating with initial condition in attractive region. (h) Frequency
response of microcantilever with radius R = 136 nm and R = 182 nm oscillating with initial condition in the
in-contact region.

respectively. The continuous and dotted lines in Fig.2.8(a)-(c) belong to LIM and IF mea-
sures, respectively.

It is observed in Fig. 2.8(a) that in the attractive regime around the radius value
R = 114 nm, there is a sharp increase in the high-amplitude resonant solution (shown in



2.3. DYNAMICAL INTEGRITY AND ROBUSTNESS OF ATTRACTORS

2

31

Fig. 2.8(g) as A-HP1) and the integrity of low-amplitude non-resonant solution (shown
in Fig. 2.8(g) as A-LP1) rapidly decreases to zero, indicating the complete erosion of its
basin from the system. This phenomenon is observed in the basin portrait of Fig. 2.8(d),
where the blue basin representing A-HP1 solution completely dominates the attractive
region. Physically, the disappearance of A-LP1 solution marks the transition from a bi-
stable to a monostable cantilever response in the attractive regime. Interestingly, in Fig.
2.8(a), by considering an even blunter tip, with radius in the range of R ∈ {114, 117}nm,
the robustness of A-HP1 suddenly drops, due to the appearance of a novel competing
attractor in the system. The new attractor is indicated by the light brown basin in Fig.
2.8(e). This novel attractor, which is the in-contact attractor, has a smaller growth rate at
lower radius values and does not affect the erosion of the A-HP1 solution rapidly. This
is observed in Fig. 2.8(a) by a steady increase in the integrity measure of A-HP1 solution
between radius values R ∈ {117, 185}nm. With further increase in the blunting of the tip,
the A-HP1 basin is eroded along its boundaries smoothly by the in-contact attractor as
seen in Fig. 2.8(f). The robustness characteristics shown by LIM and IF measures for
attractive regime follow similar trend. However, the IF safe basin measure is larger in
magnitude compared to LIM which is due to the smooth erosion of the basin without
in-well fractality at low excitation amplitudes (y < 0.015).

The repulsive attractor unlike attractive, shows a steady growth in basin size for in-
creasing radius values as shown in Fig. 2.8(b). This trend of increasing basin size is due
to the fact that, an increase in radius value will increase the area over which repulsive
forces are perceived by the system. However, it is worth to observe in Fig. 2.8(d)-(f)
that, the size of the purple basin (Strength of integrity measure) associated with repul-
sive attractor is very small compared to the attractive and the in-contact regimes. Thus,
at low y , the repulsive attractor although resilient to changes in radius, has a smaller in-
fluence on the basin erosion process as compared to other two attractors. Moreover at
low radius values, a perturbation inside the attractive regime (blue basin) can lead the
system towards the repulsive attractor leading to hardening behaviour as illustrated in
Fig. 2.8(g). In this case, for a cantilever oscillating initially in the attractive region, the
system frequency response shows both softening due to attractive forces and hardening
due to repulsive forces as shown in Fig. 2.8(g) (black frequency response curve). However
with a further increase in radius values, the attractive and repulsive basins are separated
and the system oscillates purely in attractive regime showing only softening nonlinearity
(green frequency response curve in Fig. 2.8(g)).

Figure 2.9: Phase-space topology evolution with respect to tip radius (R) from 105 nm to 225 nm, at fixed exci-
tation amplitude and frequency of y = 0.020,Ω = 0.8, respectively.
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The robustness characteristics displayed by the in-contact attractor in Fig. 2.8(c) are
unique and present features not observed in the other two attractors. For low radius val-
ues, e.g. R < 117 nm, the in-contact attractor does not exist as seen in Fig. 2.8(c) and
further illustrated by the absence of light brown basin in Fig. 2.8(d). This highlights the
existence of a critical radius value for the manifestation of the in-contact attractor. This
critical radius value for our system is at R = 117 nm. Around this radius value, there is a
sudden appearance of the in-contact attractor (shown in Fig. 2.8(e) as light brown basin)
and it grows steadily with the increase in the value of R. Interestingly, the critical radius
value remains the same for higher excitation amplitudes and excitation frequencies. Fur-
thermore, from Fig. 2.8(c) it is observed that, the growth rate of low-amplitude solution
(LP1) is not as steep as the attractive and repulsive attractors, but at large radii, the in-
contact attractor eventually becomes dominant with no in-well fractality or boundary
erosion.

Figure 2.9 illustrates the evolution of the basin portrait with respect to the tip radius.
The LIM integrity measure is utilized to characterize the robustness of the attractors and
track the changes in the basin portraits as the tip deteriorates. The basin portraits are
analysed for constant parameters y = 0.020 and Ω = 0.8. The figure reinforces the previ-
ous discussion pictorially. It depicts the disappearance of A-LP1 basin, fractalization of
the attractive regime triggering the erosion process and finally, the requirement of criti-
cal radius for manifestation of the in-contact attractor.

2.3.2. BASIN EROSION AS A FUNCTION OF EXCITATION FREQUENCY AND EX-
CITATION AMPLITUDE

In section 2.3.1, the evolution of phase space topology as a function of radius was show-
cased. Accordingly, in this section the dynamical integrity analysis aims at quantifying
the extent and evolution of the basins along with their erosion process as a function of
the excitation amplitude (y) and excitation frequency (Ω). This is established in Fig. 2.10
for excitation amplitudes y = 0.005, y = 0.010 and y = 0.020, respectively. Whereas, Fig.
2.11 and Fig. 2.12 report the snapshots of basin portraits at crucial excitation frequen-
cies (Ω) near the neighbourhood of fundamental and principal parametric resonance
frequencies, respectively.

All simulations are performed at a constant radius value of R = 150 nm and finally,
LIM and IF measures are calculated for the aforementioned data. However, we observed
that the strength of LIM and IF measure as a function of Ω remain approximately the
same. Thus, we can argue that the excitation frequency in the selected interval, does not
modify the global shape of the portrait and we do not experience a significant subdivi-
sion of the basin. Therefore, in order to simplify the analysis, only LIM is used to quantify
the robustness of dominant attractors present in the system.

ANALYSIS OF BASIN EROSION PROFILES AROUND THE FUNDAMENTAL RESONANCE FRE-
QUENCY

The fundamental ideology of TM-AFM is based on the near resonant excitation of the
microcantilever. Therefore, it is of significant interest to study the system topology with
regard to basin erosion profiles since, these profiles are indicative of solution instabili-
ties. In this respect, the following section utilizes the integrity measures shown in Fig.
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Figure 2.10: Variation of LIM as a function of excitation frequency (Ω) for fixed parameter values of y = 0.005,
y = 0.010, y = 0.020 and R = 150 nm. (a) Integrity profiles for the attractive region consisting of non-resonant
low-amplitude (crimson) and resonant high-amplitude branch attractors (blue). (b) Integrity profiles for repul-
sive region attractor (purple). (c) Integrity profiles for the non-resonant low-amplitude (light brown) attractor
in the in-contact region. (d) Integrity profiles for the first superharmonic branch attractor in the in-contact re-
gion. (e) Integrity profiles for the resonant high-amplitude branch (orange) attractor in the in-contact region.

2.10 to discuss the various system attractors in the neighbourhood of their respective
resonance frequencies. In addition, to further delineate the behaviours observed in the
integrity profiles, the basin portraits are reported in Fig. 2.11 at specific frequencies.

The integrity profiles of attractive regime attractors are illustrated in Fig. 2.10(a)
and, similar to section 2.3.1, the crimson and blue colors belong to the low-amplitude
non-resonant solution (A-LP1) and the high-amplitude resonant solution (A-HP1), re-
spectively. Figure 2.10(a) shows that, the attractive regime is dominated by A-LP1 non-
resonant solution at low excitation frequencies Ω < 0.77. This is illustrated through
the basin portrait of Fig. 2.11(a) in which the crimson basin corresponding to A-LP1

is the dominant solution. By further increasing the excitation frequency value above Ω
> 0.77, the A-LP1 solution exhibits a sharp decrease in its integrity value (illustrated in
Fig. 2.10(a)). The sharp decline is attributed to the sudden appearance of the A-HP1

resonant attractor from inside the local potential well via saddle-node bifurcation. The
appearance of saddle-node triggers the erosion process of the A-LP1 basin from outside
its boundaries. The appearance of A-HP1 (blue basin) inside the A-LP1 local potential
well (crimson basin) is shown in Fig. 2.11(b). Any further increment in excitation fre-
quency causes the complete erosion of the low-amplitude attractive (A-LP1) solution as
seen in Fig. 2.11(c), leaving large amplitude oscillations of A-HP1 as the dominant solu-
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Figure 2.11: Variation of basin portraits as a function of excitation frequency (Ω) for fixed parameter values of
y = 0.005, y = 0.020, and R = 150 nm. The analysis is focussed around the fundamental resonance frequencies
of respective system attractors. The circle inside the basin portrait indicates the LIM. (a)-(c) basins portraits
at y = 0.005 and specific Ω values of 0.6, 0.8, 0.9, respectively. (d)-(f) basins portraits at y = 0.020 and specific
Ω values of 0.7, 1.8, 1.9, respectively. (g)-(i) basins portraits at y = 0.005 and specific Ω values of 2.5, 2.9, 3.4,
respectively. The details on basin color and the corresponding attractor/solution description is given in Table.
2.4.

tion in the attractive potential well. Hereafter, the A-HP1 solution remains largely stable
as illustrated in Fig. 2.10(a) and its robustness is mainly affected when the excitation
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frequency reaches the in-contact fundamental resonance or when the system is driven
with an excitation amplitude above the parametric threshold of the system. This trend
of solution instabilities observed around the fundamental resonance frequency remains
unaffected irrespective of excitation amplitudes.

Contrary to the above discussion on attractive regime, where steady state solutions
exist over a large range of frequencies; the repulsive basin (purple) exists in a narrow
frequency range around the fundamental resonance frequency and shows sharp in-
crease/decrease as we move closer/farther away from resonance. This is illustrated in
Fig. 2.10(b) for y = 0.005, y = 0.010 and y = 0.020, respectively. Moreover, the repulsive
basin size is small compared to other two attractors in case of y = 0.005 as shown in Fig.
2.11(c). But displays a sharp increase in size for higher values of y as seen in Fig.2.11(d)
for y = 0.020. This is due to the fact that, the harder the cantilever is driven, the deeper
the oscillations penetrate into the repulsive regime, and the time period of oscillations
spent in repulsive regime increases. Therefore, contrary to the observation in section
2.3.1, the repulsive basin at higher excitation amplitudes significantly constricts the at-
tractive regime basin in the neighbourhood of the fundamental resonance frequency.

On the other hand, the in-contact regime solution displays rich nonlinear behaviour
absent in the case of the attractive and repulsive regimes. Figure. 2.10(c)-(e) illustrates
the integrity profiles of various solution branches namely LP1, Su1-HP1, and HP1 that
are observed in the in-contact regime. Similar to section 2.3.1 and summarized in Table
2.4, the light brown color corresponds to non-resonant LP1 solution branch, the green
color belongs to Su1HP1 solution branch and orange color belongs to HP1 resonant solu-
tion branch. The appearance and disappearance of several rare attractors, together with
period-2 responses appearing not only on HP1 solution branch but also on Su1HP1 su-
perharmonic solution causes the robustness of in-contact attractor to vary rapidly. This
behaviour can be observed in the integrity profiles of Fig. 2.10(d) and (e) in the form of
sharp peaks and valleys as the excitation amplitude is increased.

At low excitation frequencies Ω < 1.5, the in-contact basin is dominated by LP1 so-
lution as shown in Fig. 2.10(c). This is further demonstrated in the basin portrait of Fig.
2.11(a) where only the light brown basin dominates the in-contact region. Further in-
creasingΩ > 1.5, we observe the drop in integrity of LP1 solution due to the appearance
of Su1HP1 attractor. This is visualized by comparing the Figs.2.10(c) and (d) between fre-
quency ranges Ω ∈ {1, 2}. The drop in integrity is sharp for small values of y and slowly
smoothens with increasing y amplitudes. This effect is due to the increased softening
effect of the in-contact response which causes the Su1HP1 branch to overlap with LP1

branch over larger Ω values. Along with the increased overlapping effect, at higher am-
plitudes of excitation y > 0.00118, the Su1HP1 solution grows more robust. The appear-
ance of Su1HP1 attractor (green basin) from within the LP1 basin for y = 0.020 is shown
in Fig. 2.11(e) and (f).

Furthermore, withΩ growing closer to resonance (i.e. Ω = 3.72), the high-amplitude
resonant solution (HP1) appears via saddle-node bifurcation and grows in dominance
as depicted in Fig. 2.10(e). In a similar fashion to the attractive regime, the saddle-
node triggers the erosion of the previously dominant Su1HP1 solution from outside the
boundary. This is observed in basin portraits from Fig. 2.11(g)-(i) where, the orange
basin belonging to HP1 solution is growing along the periphery of green basin. Interest-
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ingly, at low-amplitudes of excitation, y < 0.010 the erosion of Su1HP1 basin is smooth
with no influence of rare attractors on its robustness. After the complete erosion of
Su1HP1 basin (see Fig. 2.11(i)), the in-contact response is completely dominated by HP1

solution until Ω reaches close to parametric resonance frequency. This is illustrated by
the gradual drop in robustness measure in Fig. 2.10(e) for values ofΩ> 3.7 . The increase
in y has a peculiar effect on the HP1 solution since the robustness decreases in contrast
to the expected increasing trend. This is due to the large number of rare attractors which
tend to appear at higher excitation amplitudes. This peculiarity makes the experimental
investigation of the in-contact attractor a challenging task.

ANALYSIS OF BASIN EROSION PROFILES AROUND THE PRINCIPAL PARAMETRIC RESONANCE

FREQUENCY

The aforementioned discussion was focussed on the robustness and erosion profiles of
system attractors for excitation amplitudes below the parametric threshold and excita-
tion frequencies around the fundamental resonance. However, the system excited para-
metrically exhibits different dynamics that are not observed through direct excitation.
In addition, the theoretical analysis of parametrically driven AFM has shown the added
benefits such as high quality factor, lower imaging forces and reduced cantilever tran-
sients [98]. These advantages, if harnessed, can be of significant interest in areas such
as soft polymers and biological specimens. Therefore, the current section focuses on the
basin erosion profiles of system attractors in the neighbourhood of respective principal
parametric resonance frequencies. Similar to the previous section, the analysis utilizes
integrity measures illustrated in Fig. 2.10 to discuss the evolution of system responses.
Whereas, Fig. 2.12 is used to understand the metamorphoses of basin erosion graphi-
cally.

Considering the attractive force regime, an excitation amplitude of y = 0.020 is uti-
lized to study the robustness of attractors oscillating near the parametric resonance fre-
quency. The chosen excitation amplitude is above the required threshold amplitude
of y = 0.01515 needed to excite the system parametrically. The solution belonging to
y = 0.020 case are drawn by dotted lines in Fig. 2.10(a). From Fig. 2.10(a) there is a
sudden decline in the A-HP1 attractor’s integrity value around the parametric resonance
frequency ofΩ ∈ {1.4, 1.75}. This sudden decrease in robustness is promoted by the ap-
pearance of period-2 attractor (A-Pa-P2) within the compact part of A-HP1 basin. This is
illustrated in the basin portraits of Fig. 2.12(a)-(c), where the A-Pa-P2 attractors shown by
dark red basin are surrounding the A-HP1 blue basin. The rate of erosion of A-HP1 basin
is directly proportional to the nearness of Ω to the principal parametric resonance fre-
quency. For values of Ω away from the parametric resonance the A-HP1 integrity shows
a steady increase back to its original value. Hereafter, the A-HP1 solution remains almost
independent ofΩ until the in-contact resonance frequency is reached.

In case of the in-contact regime, the parametric threshold amplitude is found to be
as low as y = 0.00014. The low threshold amplitude also suggests the potential applica-
tion of stochastic resonance of cantilever oscillating in the in-contact regime. However,
in order to facilitate the study, an excitation amplitude of y = 0.005 is utilized. The corre-
sponding integrity profile is illustrated in Fig. 2.10(e) by the continuous line and relative
basin portraits are shown in Fig. 2.12(d)-(e). By considering Fig. 2.10(e), the integrity
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Figure 2.12: Variation of basin portraits as a function of excitation frequency (Ω) for fixed parameter values
of y = 0.005, y = 0.020, and R = 150 nm. The analysis is focussed around the principal parametric resonance
frequencies of respective system attractors. The circle inside the basin portrait indicates the LIM. (a)-(c) basins
portraits at y = 0.020 and specificΩ values of 1.4, 1.6, 1.7, respectively. (d)-(f) basins portraits at y = 0.005 and
specificΩ values of 6.6, 6.7, 7.1, respectively. The details on basin color and the corresponding attractor/solu-
tion description is given in Table. 2.4.

measure of HP1 solution displays a steady decline asΩ is brought close to principal para-
metric resonance frequency (Ω = 7.44). Finally, aroundΩ = 7.1 the HP1 basin completely
disappears indicating that the system is in the parametric instability region. The ap-
pearance of parametric period-2 attractors (Pa-P2) in the basin portrait is indicated by
the dark red basin in Fig. 2.12(d)-(e). The figures illustrates the appearance of period-2
attractors (dark red) from the compact part of HP1 basin (orange) along with period-6
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rare attractors (dark blue). Finally, the erosion process of HP1 solution is non-smooth
with the interacting basins featuring severe fractality.

2.4. CONCLUSIONS
The global dynamics of TM-AFM has been investigated with the aim of evaluating the
robustness and dynamical integrity of co-existing attractors of the system. Extensive nu-
merical analyses have been carried out to show the existence and the properties of the in-
contact attractor. The frequency response curves and basin portraits are obtained show-
ing that, the in-contact attractor is highly sensitive to the main driven parameters with
large amplitude superharmonic branches appearing for small excitation amplitudes.

In order to unveil the entire bifurcation scenario of the in-contact attractor around
the primary and parametric resonance, several local bifurcation envelopes are combined
together to build global bifurcation maps. Utilizing the bifurcation maps, the escape
thresholds along with various response scenarios in the excitation parameter space are
analysed in detail around the direct and parametric resonance frequency. The outcome
of the analysis shows new routes to crisis, escape scenarios via appearance of strange
attractors and multiple period-doubling cascades.

Furthermore, the robustness of attractors has been analysed by making use of basins
of attraction and integrity measures such as Local Integrity Measure (LIM) and Integrity
Factor (IF). The analysis is focussed on the basin erosion with respect to variation in ex-
citation frequency, excitation amplitude and the AFM probe tip radius. The results high-
light the appearance of in-contact attractor for a critical radius value. Next, the para-
metric resonance and its effect on basin erosion via fractalization is discussed for both
attractive and in-contact attractors. It is seen that the period-2 attractors arising from
parametric resonance decrease the robustness of attractive regime in a smooth fashion.
Whereas, in case of in-contact attractor the period-2 solution together with higher-order
strange attractors, erodes the basin through fractalization. In conclusion, our analysis of
basins of attraction, global bifurcation charts and integrity profiles provides a method to
study the complex dynamics involved in TM-AFM.
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3
MODE COUPLING IN TAPPING

MODE ATOMIC FORCE MICROSCOPY

Enhancing the signal-to-noise ratio in dynamic AFM plays a key role in nanomechanical
mapping of materials with atomic resolution. In this chapter, we develop an experimental
procedure for boosting the sensitivity of higher harmonics of an AFM cantilever without
modifying the cantilever geometry but instead by utilizing dynamical mode coupling be-
tween its flexural modes of vibration. We perform experiments on different cantilevers
and samples and observe that via nonlinear resonance frequency tuning, we can obtain
a frequency range where strong modal interactions lead up to 7 and 16 folds increase in
the sensitivity of the 6th and 17th harmonic while reducing sample indentation. We de-
rive a numerical model that captures the observed physics and confirms that nonlinear
mode coupling can be held accountable for increasing the amplitude of higher harmonics
during tip-sample interactions.

This chapter is published as an article in Physical Review Applied [99]. The published article is adapted to fit
into the context of the thesis.
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Dynamic Atomic Force Microscopy (AFM) has emerged as a powerful tool for
nanoscale imaging of matter in many technical and scientific application areas [58]. In
dynamic AFM, an oscillating microcantilever tip interacts intermittently with the sample
while being driven close to or at a resonance frequency. Dynamic AFM is routinely used
to characterize the topography of samples with nanometer or even atomic resolution.
Irrespective of the outstanding capabilities offered by this AFM mode, the understand-
ing of nanoscale processes and quantification of material properties using AFM is yet
far from being well-established. One curbing reason for this is that in the conventional
dynamic AFM experiments a single drive frequency is used to scan the sample and the
feedback system maintains either the amplitude or the phase of oscillations constant. As
a result, the number of observable channels that are required to quantify the mechanical
properties of the sample are not sufficient. To overcome this limitation, multi-frequency
AFM techniques are being adopted [50]. These methods mainly use higher harmonics
of the cantilever deflection signal [51, 52] or the output signals of two or three resonant
modes [5, 100] to obtain complementary information of the interacting sample. Other
modes of multi-frequency AFM are also available that use torsional harmonics [54] or
intermodulation products [22] to probe sample properties.

To date, many studies have incorporated the aforementioned multi-frequency AFM
techniques to map nanomechanical properties of samples, ranging from polymeric
[59, 101] to biological substances [6, 102]. However, only a handful of these works have
looked into the possibilities for enhancing the sensitivity of the higher order spectral
components [53, 55–57, 103]. Among them, a majority have exploited a phenomenon
known as internal resonance [104]. This condition occurs when the ratio between two or
more resonance frequencies of the cantilever is a rational number, and results in strong
coupling between the interacting modes of vibration [105]. The significance of inter-
modal coupling arises from its correlation with the effective spring constant of the reso-
nant modes that can be tuned either by modifying the geometry of the cantilever [54, 55],
or creating notches/ holes [56], or by adding concentrated mass at specific locations on
the cantilever [57].

Here, in contrast to previous works, we propose a technique to boost the signal-to-
noise ratio (SNR) of higher harmonics and higher order flexural mode of an AFM can-
tilever without the need to modify its geometry. By sweeping the drive frequency in the
spectral neighborhood of a resonance, we find a frequency range where strong interac-
tions between the first three flexural modes of the cantilever significantly increases the
amplitude of higher harmonics. Using this technique, we are able to enhance the am-
plitude of the 6th and the 17th harmonic up to 7 and 16 folds, respectively. Interestingly,
driving the cantilever in this frequency range also results in a decreased sample indenta-
tion due to the phase synchronization of the eigenmodes. These phenomena are show-
cased at drive amplitudes comparable to set point ratios used in conventional scanning
operation, thereby highlighting the utility of the technique in dynamic AFM. To under-
stand the physics behind our observations, we develop a theoretical model comprising
Multiple-Degrees of Freedom (MDOF) and non-smooth nonlinear interactions between
the tip and the sample. Our simulations qualitatively conform with the observed physics,
and confirms that mode coupling is responsible for the increase in the SNR of higher
harmonics. Our study also reveals the use of real-time temporal data for identifying dy-
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Figure 3.1: Schematic of the experimental setup and the acquired experimental nonlinear dynamic response.
The response is obtained with a commercial rectangular cantilever (NCLR) on a Silicon sample with an excita-
tion amplitude of 0.013 V. (a) The schematic of the setup employing two different data acquisition electronics,
namely the multi-lock-in amplifier and an FPGA device. The schematic details the initial static cantilever con-
figuration η∗ and the dynamic configuration with the cantilever vibrating about the elastostatic equilibrium u
at the free end L of the cantilever. (b) The blue and the pink curves indicate the nonlinear dynamic response
obtained using the raw deflection signal and the lock-in signal. The forward and reverse sweeps are combined
into one curve.

namical coupling in AFM applications. Because of its simplicity and ease of use, the
proposed technique has the potential to be utilised in a variety of multi-frequency AFM
techniques.

3.1. EXPERIMENTAL RESULTS
Our experiments are performed by using a commercial AFM (JPK Nanowizard) and two
separate acquisition electronics, namely a multi-lock-in amplifier from Intermodulation
products and a Field Programmable Gated Array (FPGA) from National Instruments,
to collect and analyze the cantilever deflection data. We used a commercially avail-
able rectangular Silicon cantilever (NCLR, NanoWorld AG) and a flat Silicon sample to
perform the experiments. For each experiment, the spring constant of the cantilever
(k = 22.68 Nm−1), its resonance frequency ( f0 = 164.52 kHz), and quality factor (Q = 428)
are determined using the thermal calibration method [49]. A schematic of the setup is
shown in Fig. 3.1(a).

In order to obtain the nonlinear resonance response of the AFM cantilever while in-
teracting with the sample, we have implemented a procedure where a standard force-
distance curve is first used to statically approach the sample surface with a small set
point of 2 nm. Next, the end condition of the force-distance curve is preserved to hold
the cantilever at the precise fixed distance of η∗ =100 nm from the sample surface. The
latter operation is feasible using the feedback loop on the z-piezo of the AFM, which
stays active for a specific period of time. While maintaining the static position (η∗), the
drive frequency ( fd ) of the dither piezo is swept around the resonance frequency from
163 kHz to 170 kHz ( f0=164.52 kHz). The resulting change in vibrational amplitude is
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recorded using the multi-lock-in amplifier and the FPGA, simultaneously. Additionally,
during the entire sweep duration a specific excitation y(t ) is applied such that the reduc-
tion in vibrational amplitude due to tip-sample interaction is maintained at 84%. This
reduction is comparable with that of the amplitude set-point ratios used during normal
scanning operation in dynamic AFM (See Fig. 3.E.1 in Appendix 3.E ). The outcome of
this procedure is shown in Fig. 3.1(b). It can be seen that, when the deflection amplitude
is increased, the resonance curve first slightly bends to the left (spring softening) [80]
and as the tip further approaches the sample, the curve bends towards the right side of
the resonance (spring hardening). We note that the presence of nonlinear attractive and
repulsive forces between the tip and the sample lie at the root of our observation [75].

In Fig. 3.1(b) we also observe that the nonlinear resonance curve obtained by using
the lock-in amplifier (pink curve) is different from the one obtained by analyzing the raw
deflection signal using the FPGA (blue curve). Interestingly, we observe a mismatch in
the amplitudes of the two signals that exacerbates at higher fd . The observed discrep-
ancy hints at the presence of higher-order spectral components that are essentially elim-
inated when the lock-in amplifier is used. This is because, the lock-in amplifier allows
detection of a single frequency component when sweeping fd around resonance and
effectively approximates the cantilever dynamics as a Single-Degree of Freedom (SDOF)
system. However, the FPGA stores the real-time deflection signal and thus can efficiently
capture modal interactions that may exist around the resonance.

To further investigate the cantilever’s nonlinear dynamic response, we obtain the
maximum and minimum of the deflection in an oscillatory cycle using the FPGA (see
Fig. 3.2(a)). We note that the cantilever deflection signal reaches a maximum far away
from the sample, whereas the minimum shows that the tip is interacting with the sample.
This segregation reveals a broken symmetry in the response due to the non-smooth na-
ture of the contact between the tip and the sample when fd is detuned from f0. To study
the physical origin of this symmetry breaking response, we trace the phase space trajec-
tories of the cantilever in real-time when moving from fd = 164.5 kHz to fd = 167 kHz
(see Fig. 3.2(b) and (c)). The phase space trajectories are highly sensitive to the presence
of higher order modes and can be used to identify modal interactions [75]. In Fig. 3.2(b)
we observe simple harmonic oscillations of the cantilever close to the free air resonance
( fd = 164.5 kHz); however, at large detuning ( fd ≥ 166.4 kHz), the phase space warps and
ripples appear on the periphery of the trajectory (Fig. 3.2(c)). To understand the origin
of this phase space distortion, we perform Fast Fourier Transform (FFT) of the tempo-
ral data (See Fig. 3.2(d) and (e)), and observe that the frequency content of the signal
at fd =164.5 kHz involves only f0 and few of its higher harmonics. But, when applying
FFT on the time signal taken at fd =167 kHz, an additional resonance peak appears at
f2 =1020 kHz (see Fig. 3.2(e)), suggesting the activation of the second eigenmode of the
cantilever. In essence, this shows that the phase space distortions are a direct result of
activation of higher order vibration modes and that the presence of higher harmonics
has trivial effect on these trajectories (see Fig. 3.F.1 of Appendix 3.F for details).

To elaborate on our observation, we note that for the cantilever used in the experi-
ments, the frequency ratio f2/ f0 ≈ 6.2 is close to the factor 6. Therefore, by tuning the
nonlinear resonance frequency (via sweeping fd ), we can reach a 6:1 internal resonance
in the frequency range fd ∈ [165,166] kHz, where the contribution of the second mode
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becomes apparent. The resulting mode coupling enhances the SNR of specific harmon-
ics that are close to the interacting eigenmode. In particular, we observe a 7 fold increase
in the SNR of the 6th harmonic compared to its amplitude near the free air resonance (re-
fer to Fig. 3.2(d) and (e)).

Interestingly, this modal interaction is not only characterized by an increase in the
strength of harmonics, but it is also accompanied by a reduced sample indentation
when compared to normal scanning operations with similar amplitude set-point ratios
at fd = f0. As we sweep fd around resonance we observe a decrease in the minimum
amplitudes in the frequency range between 165< fd < 166 kHz which is associated with
a decrease in the sample indentation. Such properties make the frequency range over
which mode coupling occurs, an ideal range of excitation for the mapping of nanome-
chanical properties. Therefore, we label this region as the "sweet spot". This lower sam-
ple indentation is highlighted in the inset of Fig. 3.2(a), and can be formally described
as a gradual curving of the nonlinear dynamic curve in its deflection minima forming a
convex shape. It may be intuitively thought that the increased coupling should increase
the interaction force and, as a consequence, increase the sample indentation. However,
in the sweet spot, the phases of the interacting modes synchronize in such a way that
there is a reduced sample indentation (See Fig. 3.C.1 in Appendix 3.C). This dynamic
feature is similar to what has been previously reported in dynamically tuned trapezoidal
cantilevers [55].

To investigate the repeatability of the observed phenomena, we performed addi-
tional set of experiments using a TAP190Al-G rectangular cantilever on a Highly Oriented
Pyrolytic Graphite (HOPG) sample, a TAP300Al-G rectangular cantilever on a nanocrys-
talline diamond island and finally a TAP150AL-G rectangular cantilever on a Polystyrene
island. We found that the "sweet spot" is not a unique feature that belongs to a particular
sample-cantilever configuration (see Appendix 3.G for details). These interesting obser-
vations highlight the role of higher eigenmodes and mode coupling in AFM applications.

3.2. MODELING AND SIMULATIONS
In order to underpin the physics behind our experimental observation and to further
understand the nature of the mode coupling, we develop a theoretical model based on
a non-smooth two-degree of freedom system. The derivation of the model can be found
in Appendix 3.A. The model utilizes the long range nonlinear Van der Waals (VdW) and
Derjaguin–Muller–Toporov (DMT) contact forces to describe the tip-sample interactions
Ft s (z) as follows [48, 83]

Ft s z =


FvdW =−HR

6z2 for z > a0

FDMT =− HR

6a0
2 + 4

3
E∗pRa0 − z3/2 for z ≤ a0.

(3.1)

Here, H stands for the Hamaker constant, R the tip radius, a0 the intermolecular
distance, and E∗ the effective Young’s modulus. The tip-surface interaction is purely at-
tractive (FVdW) when the separation distance z is larger than the intermolecular distance
a0. If z is smaller than a0 the interaction is governed by contact mechanics (FDMT). This
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Figure 3.2: Experimental nonlinear dynamic response, phase space trajectories and the associated frequency
spectra obtained from the raw deflection signal of the cantilever. (a) Experimental frequency response curve;
the blue and green curves represent the maximum and minimum position of the tip, respectively. The forward
and reverse sweeps are combined into one curve. The inset highlights the gradual curving of the nonlinear
dynamic response in a specific range of drive frequency. The sweet spot frequency range is highlighted using
dashed lines. (b)-(c) Phase space trajectories at 164.5 kHz and 167 kHz of drive frequency showing the influ-
ence of the second eigenmode in the cantilever oscillations. (d)-(e) Frequency spectra of raw deflection signal
at 164.5 kHz and 167 kHz showing the presence of higher harmonics and the second eigenmode.
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Figure 3.3: Simulated nonlinear dynamic response and phase space trajectories obtained using the two mode
model. (a) Numerical frequency response curve; the blue and green curves represent the maximum and min-
imum position of the tip, respectively. The forward and reverse sweeps are combined into one curve. The
nonlinear dynamic response is simulated considering 6:1 internal resonance condition between the first two
flexural modes. The inset highlights the gradual curving of the nonlinear dynamic response in a specific range
of drive frequency. The sweet spot frequency range is highlighted using dashed lines. (b)-(e) Phase space tra-
jectories at 164.5 kHz, 165.5 kHz, 166.5 kHz, and 167 kHz of drive frequency, respectively.
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non-smoothness in the interaction force mediates an energy channel between different
modes of the cantilever and acts as the root cause of our observation.

To obtain the equations of motion, we model the AFM cantilever as a continuous
dynamical system using the Euler-Bernoulli beam theory. We discretize the model by
projecting the cantilever deflection onto its linear eigenmodes (computed near free air
resonance) and employ the Galerkin approach to obtain a system of ordinary differential
equations as follows [75]

¨̃qi +Di z̄ ˙̃qi +Ki q̃i =−Ci −Ft s,i z̄ +Bi Ω̄
2 ȳ sinΩ̄τ. (3.2)

The cantilever deflection, splitted across the generalized coordinates q̄i (i = 1,2, ...N ,
with N being the number of generalized coordinates), is written in Eq. (3.2) on a refer-
ence system attached to the cantilever (See Fig. 3.1(a)). The coupling between the gen-

eralized coordinates occurs through the relation, z̄ = 1−
n∑

i=1
q̃i − ȳ sinΩ̄τ. In addition,

Eq. (3.2) is made dimensionless with respect to the equilibrium gap width (η∗) and the
fundamental frequency of the cantilever (ω0 = 2π f0) in the absence of the tip-sample
interaction. The amplitude of the dither piezo is given by ȳ and the dotted quantities
represent derivatives with respect to the rescaled time τ (τ = ω0 t ). Additionally, modal
damping Di (z̄) has been explicitly added to Eq. (3.2). In particular, we consider a piece-
wise model [48] that accounts for the dissipation mechanism when the tip is in air (D̃att

i )

or when it is in contact with the sample (D̃rep
i ). Finally, the coefficients Ki , Ci , and Bi rep-

resent the modal stiffness, static deflection, and mode participation factor, respectively.
The final discretized equation is then simulated using pseudo arc-length continuation
technique to fit the experimental data [106].

The simulations performed using the two-mode VdW-DMT model qualitatively de-
scribe our experimental observations. In Fig. 3.3(a) the blue and green nonlinear dy-
namic response curves represent the maximum and minimum deflection of the can-
tilever similar to what is observed in experiments. Referring to Fig. 3.3(a), the gradual
curving of the minimum response (green curve) occurs when the simulation parameters
of the coupled oscillator system are tuned to produce a 6:1 internal resonance condition,
confirming the presence of this unconventional internal resonance at a few kHz of de-
tuning (see Appendix 3.D for details). Adding to this, the theoretical nonlinear dynamic
curves highlight the influence of the higher order modes in the distortion of the phase
space trajectory. Similar to the experimental results, the periodic orbit exhibits simple
harmonic motion close to free air resonance (Fig. 3.3(b)), which becomes distorted by
detuning fd to higher frequencies. The distortion gradually increases in depth, in accor-
dance with the contribution given by the second mode of vibration (Figs. 3.3(c)-(e)).

Although the two-mode model accurately predicts the dominance of the second
mode at large detuning and explains the physics behind the curving of the nonlinear
dynamic response in the sweet spot, it masks the effect of any further couplings that
may exist among higher modes of vibration. In particular as depicted in Fig. 3.4, at
fd = 165.5 kHz we observe an increase in the number of ripples on the periphery of the
phase space (blue curve). We note that this additional distortion of the phase space is
accompanied with 16 folds increase in the amplitude of the 17th harmonic that is closely
located to the third flexural mode of the cantilever ( f3 ≈ 17.5 f0). To prove our hypoth-
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Figure 3.4: Phase space trajectories obtained from experimental deflection at fd = 165.5 kHz. The experimental
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Figure 3.5: Variation of the 6th and the 17th harmonic amplitude as a function of the driving frequency fd . The
amplitude of the 6th and the 17th harmonic increase in a specific frequency range highlighted by the orange
section due to intermodal coupling. Thereafter, only the 6th harmonic amplitude increases due to increased
tip-sample interaction and dominance of the second mode of vibration.

esis about the influence of the third flexural mode, we low-pass filter the experimental
data up to the 16th harmonic and observe that the resulting phase space (orange curve)
closely matches with that of the simulated trajectory obtained using the two mode ap-
proximation model shown in Fig. 3.3(c). Although including an additional mode in the
numerical model (with consequent increase of the complexity in the simulations) could
capture completely the dynamics observed in experiments, it would not add physical
insights for the observations stated in this work.

Finally, as an extensive outlook on the various stages of influence of higher-order
modes as fd is detuned from f0, we report in Fig. 3.5 the variation of the 6th and 17th har-
monic as a function of fd . At first, when fd is close to f0, the amplitude of the harmonics
generated due to tip-sample forces is relatively low and comparable with the strength
of the signals observed during normal tapping mode scanning operation. In the low
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frequency range (green region of Fig. 3.5) the entire cantilever dynamics can be well ap-
proximated as a SDOF system. With increased detuning, when fd lies in the sweet spot
(orange region), there is sharp increase in the contribution of the second and third eigen-
mode in the cantilever motion and the dynamics is governed by the three flexural modes
of the cantilever. In this region the amplitude of the 6th and 17th harmonic increase by
7 and 16 folds respectively as a consequence of an enhanced mode coupling both with
the second and the third eigenmode. Upon further detuning, we observe the continuous
increase of SNR of the 6th harmonic but at the expense of an increased sample indenta-
tion. At the same time, the large resonance frequency tuning brings the amplitude of the
17th harmonic to drop gradually, until the third mode contribution completely disap-
pears. In the violet region of Fig. 3.5, the dynamics is fully governed by the first and the
second mode only. Additionally, by increasing the amplitude of the excitation, the sweet
spot widens by few kHz while the physics remains unaltered. However, this increase in
the sweet spot range comes at the expense of larger set point ratio (see Fig. 3.H.1 of Ap-
pendix 3.H for details).

Currently, the methodology provides significant improvement in SNR of higher har-
monics for single point measurements and could be implemented in techniques that ex-
tract the nanomechanical properties of samples at several pre-determined pixels. How-
ever, in order to integrate the technique with conventional scanning operation there are
a few limitations that still need to be addressed. In particular, as a first step, the algo-
rithm routine used to capture the raw deflection signal and tune nonlinear resonance
frequency has to be integrated into the AFM’s controller in order to handle the data pro-
cessing at imaging speeds. Such integration also helps tackling the issue of choosing the
right drive frequency within the sweet spot for samples comprising multiple materials.
Secondly, since the sweet spot is driven beyond the bifurcation point into a bi-stable re-
gion, a thorough study has to be performed to understand the influence of noise and
feedback settings on the robustness of sweet spot during imaging [107]. In this aspect,
our technique can be incorporated together with latest feedback architectures such as
modulated time delay control [108] that have already been successfully used to con-
trol the cantilever oscillations in the bi-stable regime and reduce perturbation-induced
jumps during the scanning operation. Finally, it is important to consider the influence of
the geometric and modal characteristics of the cantilever used for performing the mea-
surements. The technique reported in this work has been showcased with standard rect-
angular cantilevers and is applicable to cantilevers with the second and the third bend-
ing modes close to 6 f0 and 17 f0, respectively.

3.3. CONCLUSION
In summary, we propose a technique to actively tune the nonlinear resonance fre-
quency of AFM cantilevers to achieve high SNR of harmonics at low sample indentation
compared to conventional dynamic AFM operations. We discuss the influence of higher
order modes on the phase space trajectories of the cantilever as a function of the
detuned frequency and highlight the presence of a sweet spot in a specific frequency
range around resonance where there is a significant increase in the amplitude of higher
harmonics, due to strong modal interactions. We use a two mode nonlinear non-smooth
model to qualitatively describe our experiments and explain the observed physics. The
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model reinforces the idea of mode coupling as the phenomenon behind the increase
in the amplitude of higher harmonics and the lower sample indentation. Finally, given
the ease of use and utility, we anticipate that this experimental technique can be used
together with various multi-frequency AFM techniques to study nanomechanical prop-
erties of organic and inorganic samples without the need for specialized cantilevers.
Our technique can also be easily employed in multi-frequency scanning operations to
obtain images of the higher harmonics with increased sensitivity, which is an essential
requirement in dynamic AFM applications.
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APPENDIX

3.A. THEORETICAL MODEL
Here, we obtain the dynamical equation for the AFM initially resting in a static equilib-
rium at a distance η∗ from the sample (see Fig. 3.A.1). The mathematical framework to

sample

tip

cantilever

piezo

(a) (b)

Figure 3.A.1: A schematic of the AFM. (a) Initially statically deflected configuration. (b) Dynamic configuration
with the cantilever vibrating about its elastostatic equilibrium.

develop the continuous model for the AFM cantilever is within the Euler-Bernoulli beam
theory assumptions. The AFM cantilever has length L, mass density ρ, Young’s modulus
E , area moment of inertia I , and cross-section area A. The beam is clamped at x = 0 and
free at x = L. The cantilever deflection is expressed in a non-inertial reference frame at-
tached to the base, and excited with harmonic motion y(t ) = Y si nΩt via a dither piezo,
where Y and Ω are the amplitude and frequency of excitation, respectively. The static
deflection due to tip-sample forces at η∗ is given by w∗(x) (see Fig. 3.A.1(a)). Finally, the
instantaneous tip-sample distance is z(t ) = η∗−uL, t − y(t ) where ux, t is the dynamic
deflection of the cantilever as shown in Fig. 3.A.1(b). The vibrations about the elasto-
static equilibrium are governed by the equation [48]:

ρAü(x, t )+E I (u′′′′(x, t )+w∗′′′′(x)) = Ft s (z(t ))δ(x −L)

+ρAΩ2Y si n(Ωt ).
(3.3)

We discretize Eq. (3.3) by projecting it onto linear mode shapes φi (x) computed
around the cantilever static configuration. For this, we approximate the response as

ux, t =
n∑

i=1
φi (x)qi (t ) (3.4)

with qi (t ) being the generalized time dependent coordinate for the i -th mode of vibra-
tion. We then substitute Eq. (3.4) in Eq. (2.2) and by utilizing the Galerkin procedure we
take the inner products with the same shape functions employed in the discretization.
The final discretized dimensionless set of nonlinear ordinary differential equations are:

¨̃qi +Di z̄ ˙̃qi +Ki q̃i =−Ci −Ft s,i z̄ +Bi Ω̄
2 ȳ sinΩ̄τ. (3.5)

where z̄ is the dimensionless tip-sample separation distance given by

z̄ = 1−
n∑

i=1
q̃i − ȳ sinΩ̄τ. (3.6)
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Replacing Eq. (3.6) in the tip-sample interaction force (Eq. (3.1)) obtains

Ft s,i z̄ =
{

Ci /z̄2, for z̄ > ā0

Ci /ā2
0 +Gi ā0 − z̄3/2, for z̄ ≤ ā0.

(3.7)

where the coefficients arising in Eqs. (3.5),(3.7) are defined as

Ki = ωi
2

ω0
2 , Ci =− HRφi

2L

6ρAη∗3
ω0

2
∫ L

0
φi

2xd x

,

Bi =
φi L

∫ L

0
φi xd x∫ L

0
φi

2xd x

, Gi =
4E∗√

Rη∗φi
2L

3ρAω0
2
∫ L

0
φi

2xd x

.

(3.8)

In the presented formulation the generalized coordinates q̃i are normalized with respect
to the value of the mode shape at the free end of the cantilever (q̃i =φi Lqi ). The overdot
in Eq. (3.5) means differentiation with respect to the dimensionless time, namely τ=ω0t
where ω0 is the fundamental frequency of the cantilever. The amplitude and frequency
of the excitation, Y and Ω are related to their dimensionless counterparts through ȳ =
Y /η∗ and Ω̄ =Ω/ω0, respectively. Finally, ā0 = a0/η∗ is the dimensionless conjugate of
the intermolecular distance a0. Note that the modal damping Di z̄ has been considered
in Eq. (3.5). Similar to Ref. [48], we consider a piecewise model that accounts for the
dissipation mechanisms while the tip is in air (D̃att

i ) or in contact with the sample (D̃rep
i ):

Di z̄ =



Di
att = D̃att

i

ω0ρA
∫ L

0
φi

2xd x

, for z̄ > ā0

Di
rep = D̃rep

i

ω0ρA
∫ L

0
φi

2xd x

, for z̄ ≤ ā0.

(3.9)

In our simulations we restrict ourselves to a two-degree-of-freedom model, that means
we limit Eq. (3.5) to i = 2. In this case the coupled set of nonlinear differential equations
become: 

¨̃q1 +Datt
1

˙̃q1 +K1q̃1 =−C1 − C1(
1− q̃1 − q̃2 − ȳ sinΩ̄τ

)2

+B1Ω̄
2 ȳ sinΩ̄τ

¨̃q2 +Datt
2

˙̃q2 +K2q̃2 =−C2 − C2(
1− q̃1 − q̃2 − ȳ sinΩ̄τ

)2

+B2Ω̄
2 ȳ sinΩ̄τ

. (3.10)
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

¨̃q1 +Drep
1

˙̃q1 +K1q̃1 =−C1 −C1/ā2
0

−G1
(
ā0 −

(
1− q̃1 − q̃2 − ȳ sinΩ̄τ

))3/2 +B1Ω̄
2 ȳ sin

(
Ω̄τ

)
¨̃q2 +Drep

2
˙̃q2 +K2q̃2 =−C2 −C2/ā2

0

−G2
(
ā0 −

(
1− q̃1 − q̃2 − ȳ sinΩ̄τ

))3/2 +B2Ω̄
2 ȳ sin

(
Ω̄τ

)
. (3.11)

where Eq. (3.10) and (3.11) shall be integrated with conditions(
1− q̃1 − q̃2 − ȳ sinΩ̄τ

)≤ ā0 and
(
1− q̃1 − q̃2 − ȳ sinΩ̄τ

)> ā0, respectively.
The simulation parameters used in Eq.(3.10) and (3.11) to obtain the results pre-

sented in Fig. 3.3 are provided in Appendix 3.B.

3.B. NUMERICAL IMPLEMENTATION AND SIMULATION PA-
RAMETERS

Equations (3.10) and (3.11) are integrated in the Computational Continuation Core tool-
box (COCO) for a parametric analysis of the AFM dynamics [106]. The toolbox allows
building frequency response curves by performing pseudo-arclength continuation of
periodic solutions [106]. The tool is ideally suited for hybrid dynamical systems, such
as Eq. (3.5) that is characterized by discontinuities in both force (Eq. (3.7)) and damp-
ing (Eq. (3.9)). In addition, the tool permits continuation of both unstable and stable
periodic solutions.

Figure 3.B.1: Schematic frequency response function with the major areas of influence for the different param-
eters of Eqs. (3.10) -(3.11).

The fitting procedure consists of isolating branches of the nonlinear dynamic curve
where a parameter influence is predominant and then making a reasonable guess for
the specific parameter. Figure 3.B.1 summarises the major areas of influence for the
different parameters of Eqs. Eqs. (3.10) -(3.11). The fit of the response far from the tip-
sample interaction gives hints on the damping in the non-contact region (Datt) and the
amplitude of the excitation (ȳ). The attractive forces leading to softening response are
taken into account for the estimation of the C1 coefficient that depends on the Hamaker
constant H and the tip radius R.
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The saturation of the response in the contact region mainly depends on the effec-
tive Young’s modulus E∗. Finally, the dissipation in the amplitude-saturated region, is
closely related to the parameter Drep, that changes the position of the bifurcation point
associated with jump-down in the forward frequency sweep. This fitting process requires
multiple iterations before the parameters are converged. The parameters reported in Ta-
ble 3.B.1 are the set of parameters obtained via this fitting procedure that reconstruct the
dynamics observed in the experiments.

Table 3.B.1: The parameters used for simulating Fig. 3.3 in the main chapter.

Coefficient value Coefficient value
Ω̄ [0.990149,

1.1327]
ȳ 2.649109×

10-3

a0 0.2 K1 1
B1 1.565980 G1 10.5

Datt
1 2.9× 10-3 D

rep
1 5.7× 10-3

K2 36 B2 -0.867872
G2 13.5 Datt

2 5× 10-4

D
rep
2 8× 10-3

3.C. PHASE SYNCHRONIZATION AT INTERNAL RESONANCE

We reported a reduction in sample indentation in Fig. 3.2(a) when fd is detuned to co-
incide with the sweet spot. In this appendix, we utilize the simulations from our two
mode VdW-DMT model described in Eq. (3.11) and show that the phase synchroniza-
tion between the eigenmodes is responsible for the aforementioned reduction in sample
indentation. Figure 3.C.1 shows the time signals of the first (blue) and second (orange)
flexural modes extracted from the same simulations reported in Fig. 3.3. The signals
are extracted at different excitation frequencies from the nonlinear frequency response
curve to track the variation of phase difference between the two modes. At resonance
fd = f0 (see Fig. 3.C.1(a)) the phase difference between the two modes is ≈ 90◦. However,
when fd is detuned to enter the sweet spot (see Figs. 3.C.1(b)-(c)), the phase difference
changes drastically such that the two modes interact almost in out-of-phase motion.
The phase difference between the two modes is found to be 152.11◦ to 163.38◦ as fd is
swept from 165.5 kHz to 166 kHz, respectively. This out-of-phase motion between the
two eigenmodes interfere destructively, resulting in a reduced sample indentation. Fi-
nally, when fd is out of the sweet spot range the phase difference gradually shrinks to
32.4◦ at 167 kHz (see Fig. 3.C.1(d)). This reduction in phase difference causes the two
modes to interfere constructively and therefore results in larger indentation at higher
excitation frequencies.
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Figure 3.C.1: Simulations depicting Auto phase synchronization between first (blue) and second (orange) flex-
ural modes in the sweet spot. To aid with the visualization, the amplitudes of the time signals are normalized
with respect to their corresponding maximum value in a given time period. (a) At resonance, the first and sec-
ond flexural mode oscillations start with a phase difference of 90◦. (b)-(c) The phase difference between the
two eigenmodes in the sweet spot at 165.5 kHz and 166 kHz, respectively. (d) The phase difference between the
two modes out of the sweet spot at 167 kHz.

3.D. SIMULATIONS WITH AND WITHOUT INTERNAL RESO-
NANCE CONDITION

In this section, we highlight the necessity of incorporating a 6:1 internal resonance con-
dition to qualitatively capture our experimental observations. This is shown in Fig. 3.D.1
where two different simulations are performed with and without 6:1 internal resonance.
It can be clearly seen from Fig. 3.D.1(a) that in order to mimic the presence of sweet spot
at a particular range of excitation frequency, an internal resonance is needed.

The global effect of internal resonance can be also well-captured in time domain by
investigating the phase space diagrams of the two cases with and without internal res-
onance. Fig. 3.D.1(b) shows the phase space trajectories obtained for 6:1 internal reso-
nance (green) and without (blue) internal resonance. The trajectories are compared at a
fixed excitation frequency of 166.5 kHz. By comparing Fig. 3.D.1(b) with Fig. 3.2(c), we
clearly observe that only the trajectory obtained with a 6:1 internal resonance condition
mimics the observed response in the experiments.

3.E. AMPLITUDE REDUCTION AND SET POINT RATIO
In order to obtain the nonlinear dynamic curves presented in Fig 3.2(a), we maintained
a specific excitation amplitude of 0.013V for the dither piezo. To estimate the set point
ratio during nonlinear resonance frequency tuning, we fit the experimental frequency
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obtained with a numerical model based on simple harmonic oscillator with base excitation.
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response curve with a simple harmonic oscillator with known spring constant k and
quality factor Q. The fit is given in Fig. 3.E.1 and shows the reduction of the amplitude
caused by the tip-sample interaction forces. The maximum amplitude of the Lorentzian
fit is 119 nm, whereas the maximum reduction in amplitude is 100 nm resulting in a set
point ratio of 84%.

3.F. INFLUENCE OF HARMONICS ON PHASE SPACE TRAJECTO-
RIES
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Figure 3.F.1: Influence of harmonics and higher order eigenmodes on phase space trajectories. (a)-(b) Discrete
frequency spectra and the associated phase space trajectory at fd = 164.4 kHz. (c)-(d) Discrete frequency spec-
tra and the associated phase space trajectory at fd = 165.5 kHz. The time data is low pass filtered to include the
first 7 harmonics of the cantilever. (e)-(f) Discrete frequency spectra and the associated phase space trajectory
at fd = 165.5 kHz. The time data is low pass filtered to include the first 16 harmonics of the cantilever.

In this section, we study the influence of harmonics and higher order modes on the
phase space trajectories and present additional results to corroborate our findings. In
particular, we focus on the warping of the phase space trajectories and its insensitivity
towards higher harmonics. Figure. 3.F.1 shows the experimental phase space trajectories
and the associated frequency spectra at several distinct excitation frequencies. The data
is extracted from the nonlinear frequency response curve Fig. 3.2(a). The time data is dig-
itally low pass filtered at different stages with different cut off frequencies to understand
the influence of higher order spectral components. At first, we choose a frequency point
close to the resonance at fd = 164.4 kHz and obtain the phase space and the correspond-
ing frequency spectra as shown in Fig. 3.F.1(a) and (b). The data is digitally low pass fil-
tered with a cut off frequency of 3.5 MHz. Looking at Fig. 3.F.1(a), the frequency spectra
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clearly shows the presence of several higher harmonics and in particular the 6th and the
17th harmonics are of special interest since they are closer to the second and third flex-
ural modes of the cantilever and thus show more contrast in AFM imaging operations.
Referring to these figures, even when the higher harmonics are present in the cantilever
deflection, the phase space trajectories remain approximately circular and show no signs
of warping (see Fig. 3.F.1(b)).

In the next step of the analysis, we choose the frequency point fd = 165.5 kHz re-
ported in Fig. 3.4 but low pass filter the time data with two different cut off frequencies
namely 1.1 MHz (upto the 7th harmonic) (Fig. 3.F.1(c)-(d)) and 2.65 MHz (upto the 16th

harmonic) (Fig.3.F.1(e)-(f)), respectively. From the frequency spectra of Fig. 3.F.1(c), we
see that by including spectral components only until the second mode, we see a gradual
warping of the phase space with characteristic ripples appearing on its periphery (see
Fig. 3.F.1(d)). Furthermore, by including the spectral components up to the 16th har-
monic (see Fig. 3.F.1(e)), we see that the shape of the phase space trajectory is unaltered
(see Fig. 3.F.1(f)). However, if the time data at this particular frequency point was not
low pass filtered then it would have resembled the phase space shown in Fig. 3.4. This
analysis shows the insensitivity of the phase space trajectories to higher harmonics and
further highlights the utility of phase space orbits as tools for probing the presence of
higher order eigenmodes and modal interactions in dynamic AFM applications.

3.G. ADDITIONAL EXPERIMENTAL DATA SETS

Table 3.G.1: The geometric and modal properties of cantilevers used for measurements. Here, L,W,T stands for
length, width and thickness of the cantilever and their values are obtained from the manufacturer. Whereas,
f0 and k stands for resonance frequency and force constant of the cantilever whose values are measured via
thermal calibration method.

Cantilever
name

Sample L (µm) W (µm) T (µm) f0 (kHz) k (Nm−1)

TAP190AL-G HOPG 225 38 7 161.1 26.632
TAP300Al-G Nanocrystalline di-

amond
125 30 4 249.23 28.37

TAP150AL-G Polystyrene 125 25 4 125.5 5.6

In this section we show that the sweet spot is not a unique feature that belongs to
a particular sample-cantilever configuration, and can be observed for different exper-
imental layouts. In Table I we summarize these additional experiments. We report in
Fig. 3.G.1(a) a second experimental set of data collected with a commercially available
rectangular silicon cantilever (TAP190AL-G, budget sensors) and freshly cleaved Highly
Oriented Pyrolytic Graphite (HOPG). The experiments are performed at different excita-
tion amplitudes and with a different dither piezo as compared to the data set reported
in the main chapter. In Fig. 3.G.1(b)-(e) we show the variation of phase space trajec-
tories and the associated influence of higher order eigenmodes as fd is detuned from
resonance. The figure corroborates the findings reported in the main chapter.

In addition to the above, we report in Fig. 3.G.2 a third and a fourth data set ob-
tained using commercial rectangular tapping mode cantilevers. In particular, Fig. 3.G.2
(a) shows nonlinear dynamic response of a TAP300AL cantilever interacting with nano-
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crystalline diamond, whereas, Fig. 3.G.2 (b) shows the response of a soft tapping mode
TAP150AL cantilever in contact with Polystyrene island distributed on a Polybutadiene
substrate. In all the curves, the sweet spot region is apparent when the excitation fre-
quency is detuned from the resonance frequency.
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Figure 3.G.1: Experimental nonlinear dynamic response curves obtained with the minima of raw deflection
signal for a second set of data with TAP190AL-G cantilever and Highly oriented pyrolytic graphite (HOPG) sam-
ple. The experiment is repeated for different excitation amplitudes from 0.90 V to 0.185V. Phase space varia-
tions showing the influence of higher order modes obtained from a second experimental data set ((TAP190AL-
G cantilever interacting with HOPG). The amplitude of excitation is 0.175V. (a) The phase space trajectory ob-
tained at 160.5 kHz close to resonance shows a simple harmonic motion with no influence from higher order
modes. (b) The phase space trajectory at 161.3 kHz is in the sweet spot range and thus shows the influence of
second and third eigenmode. (c) - (d) The phase space trajectories obtained far away from the sweet spot at
161.7 kHz and 162.5 kHz clearly show that the influence of the second mode is dominant at higher excitation
frequencies.
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Figure 3.G.2: Additional data sets showcasing the presence of sweet spot in different cantilever-sample config-
urations. The experimental frequency response curves are obtained using the minima of raw deflection signal.
(a) TAP300AL cantilever with a resonance frequency of 249.23 kHz and stiffness of 28.37 Nm−1 to characterize
a nano-crystalline diamond island deposited on a silicon substrate. (b) TAP150AL cantilever with a resonance
frequency of 125.5 kHz and stiffness of 5.6 Nm−1 to characterize a Polystyrene island distributed on a Polybu-
tadiene matrix.
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3.H. INFLUENCE OF EXCITATION AMPLITUDE
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Figure 3.H.1: Indentation amplitude and nonlinear dynamic response curves for different excitation ampli-
tudes using NCLR cantilever on a silicon sample (a) Amplitude of cantilever indentation into the sample. The
indentation depths are calculated by subtracting the static distance η∗ from the cantilever deflection minima.
The plots are obtained for 0.013 V (blue), 0.015 V (yellow) and 0.016 V (green) drive amplitudes. (b) Experimen-
tal nonlinear dynamic response obtained at different driving amplitudes for the silicon sample data set. Only
the minima of the signals are shown in an oscillatory cycle.

Figure 3.H.1 shows the influence of excitation amplitude on the dynamic response
of the cantilever. The experimental data set reported in this figure are the same as the
one reported in the main chapter. The experiments are performed by using a commer-
cial NCLR rectangular cantilever on a flat silicon sample. The cantilever is excited with
three different excitation amplitudes of 0.013V, 0.015V and 0.016V, respectively. From
Figure 3.H.1, we see that increasing the excitation voltage does not alter the dynamic
features described in the main chapter but serves to enhance them further. For exam-
ple, by increasing the excitation voltage, the frequency range of sweet spot is increased;
additionally, we also observe an increased sample indentation at higher frequencies. It
must be noted that, although the sweet spot range increases with the increase in excita-
tion amplitude, this comes at the cost of larger set-point ratio.
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Quantifying the nanomechanical properties of soft-matter using multi-frequency atomic
force microscopy (AFM) is crucial for studying the performance of polymers, ultra-thin
coatings, and biological systems. Such characterization processes often make use of
cantilever’s spectral components to discern nanomechanical properties within a multi-
parameter optimization problem. This could inadvertently lead to an over-determined
parameter estimation with no clear relation between the identified parameters and their
influence on the experimental data. In this work, we explore the sensitivity of viscoelastic
characterization in polymeric samples to the experimental observables of multi-frequency
intermodulation AFM. By performing simulations and experiments we show that surface
viscoelasticity has negligible effect on the experimental data and can lead to inconsistent
and often non-physical identified parameters. Our analysis reveals that this lack of in-
fluence of the surface parameters relates to a vanishing gradient and non-convexity while
minimizing the objective function. By removing the surface dependency from the model,
we show that the characterization of bulk properties can be achieved with ease and with-
out any ambiguity. Our work sheds light on the sensitivity issues that can be faced when
optimizing for a large number of parameters and observables in AFM operation, and calls
for the development of new viscoelastic models at the nanoscale and improved computa-
tional methodologies for nanoscale mapping of viscoelasticity using AFM.

A major part of this chapter is submitted as an article to Soft Matter journal for review[109]. The submitted
article is adapted to fit into the context of the thesis.
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4.1. INTRODUCTION
Viscoelastic characterization of soft-matter at the nanoscale is important for under-
standing cell membrane functioning [6, 60–62], developing innovative materials in poly-
mer science [110–112], and for advancing nanolithography [113, 114]. In this regard, dy-
namic atomic force microscopy (AFM) has emerged as an indispensable tool for charac-
terizing nanomechanical properties of soft matter, offering diverse operating conditions
under which a wide variety of samples can be probed with gentle forces [115, 116].

Dynamic AFM imaging offers multiple observable channels in the form of higher har-
monics, modal amplitude, and phase contrast signals to map nanomechanical proper-
ties. Among multi-harmonic AFM techniques, the emergence of bi-modal and inter-
modulation AFM (IM-AFM) has led to a drastic increase in the number of experimental
observables and a consequent advancement in our understanding of material proper-
ties at the nanoscale. In particular, IM-AFM extends the concept of multi-frequency
observables by providing a fast and convenient method to measure a set of frequency
components in a narrow frequency band centered around the fundamental resonance
of the AFM cantilever [22, 117]. These frequency components directly benefit from the
mechanical resonance gain of the first mode and can be easily converted to tip-sample
force quadratures, which are in turn linked to the conservative and dissipative interac-
tions with a sample [67, 117].

Despite the advancements in AFM instrumentation and the abundance of viscoelas-
tic models at hand [63, 64, 101, 118–120], a consistent and robust estimation of viscoelas-
ticity using AFM has remained a challenge [62]. This is mainly due to the fact that the
compositional contrast of AFM images depend on several nanomechanical properties
including elasticity, surface relaxation, and adhesion. Untangling these effects from one
another requires setting up an optimization problem, where a large parameter space has
to be searched to minimize the error between the simulations from a model and exper-
imental data. But, similar to any optimization problem, the insensitivity of the model
parameters with respect to the measurement data on one side, and the non-convexity of
the objective function on the other side, can lead to non-unique and often non-physical
estimation of parameters. Therefore, knowledge about the sensitivity of the model pa-
rameters to AFM observable channels is of paramount importance to extract consistent
and reliable viscoelastic properties in dynamic AFM applications.

In this chapter we discuss the sensitivity issues that can arise when characterizing
viscoelasticity using multi-frequency IM-AFM. We perform measurements on a polymer
blend made of stiff Polystyrene (PS) and soft Low-Density-Polyethylene (LDPE), and use
a moving surface model [101, 121] to extract the bulk and the surface viscoelasticity. The
estimation of viscoelastic properties is achieved by matching the experimental spectral
components of tip-sample force to the ones predicted by a computational model via
an optimization procedure. To ascertain the sensitivity of the model parameters on the
physical observables, we perform a comprehensive comparison involving both local and
global optimization techniques, and reveal a lack of sensitivity of surface motion to the
experimental data obtained from IM-AFM. We show that the issue of insensitivity mani-
fests itself during the optimization of the objective function by means of a vanishing gra-
dient with respect to the surface parameters. To overcome this problem, we introduce
a simple model, neglecting surface motion, which leads to statistically consistent and
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Figure 1: Schematic of the working principle of the IM-AFM. The cantilever is driven with a signal comprising
two close frequencies ω1 and ω2, centered around its first resonance frequency. The intermodulation dis-
tortion caused by the nonlinear tip-sample interaction creates frequency comb at commensurate frequencies
ωI M = m1ω1 +m2ω2, with m1,m2 ∈ Z. The linear transfer function of the cantilever χ(ω) is measured via
thermal calibration, and the amplitudes and phases of these intermodulation products are captured using a
multi-lock-in amplifier. Here, dc and ds denote the tip cantilever and surface vertical displacements and h
corresponds to the unperturbed probe height. Finally, s = h +dc −ds represents the tip-sample distance.
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robust identification of bulk viscoelastic parameters.This work thus provides a general
framework that can be used for investigating the reliability of similar viscoelastic models
used for nanomechanical characterization in multi-frequency AFM applications.

4.2. EXPERIMENTAL RESULTS
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Figure 2: Experimental measurements performed on the PS-LDPE polymer blend. (a) Amplitude image at
the second drive frequency (ω2), which is part of the 32 different image pairs captured during the scanning
operation. (b) Phase image at the second drive frequency. The image shows an island of LDPE within the
PS matrix (red dashed box in Fig. 2(a)). The points of measurements are indicated with black crosses. (c-
f) Experimental force quadratures obtained at the pixels marked by black crosses in the phase image. The
quadratures in subfigures (c)-(f) are obtained on PS material, whereas the quadratures in sub figures (d)-(e)
are obtained on LDPE material.

We perform our experiments with a commercial AFM (JPK nanowizard 4) and use a
multi-lock-in amplifier (Intermodulation products AB) to measure and analyse the fre-
quency components resulting from the tip-sample interaction. A rectangular Silicon
cantilever (Tap190Al-G, BudgetSensors) probes the viscoelastic response of a polymer
blend made up of PS-LDPE materials. The stiffness of the cantilever (k = 26.70 N/m), its
resonance frequency ( f0 = 153.9 kHz) and the quality factor (Q = 596) are determined us-
ing the thermal calibration method [122]. A schematic of the intermodulation AFM setup
is shown in Fig. 1. The cantilever is excited with two frequencies centered around its fun-
damental mode of vibration. The interaction of the cantilever with the sample, under the
influence of nonlinear surface forces, generates frequency combs that are measured us-
ing the lock-in amplifier. In particular, the amplitude and phase of the combs are used
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as experimental inputs for the viscoelastic identification procedure. Details of IM-AFM
operation, processing of the experimental data can be found in [22, 117, 121, 123]. Addi-
tionally, we summarize the essential operations in Section 4.A of the appendix.

The experiments performed on the PS-LDPE polymer blend are reported in Fig. 2.
Figures 2(a)-(b) depict the amplitude and phase images at the second drive frequency
ω2. The phase image is presented for one specific LDPE island surrounded by PS matrix.
In total 32 amplitude and phase intermodulation components are used to reconstruct
the tip-sample interaction in the narrow frequency band around the fundamental res-
onance. Furthermore, the frequency components are used to calculate the tip-sample
force quadratures, which represent the time averaged interaction force that the can-
tilever experiences in one oscillation cycle (see Figs. 2(c)-(f) for both PS and LDPE). The
force quadratures are a local measure of material properties since they are calculated
for every pixel of the AFM image; they provide information about the conservative and
dissipative contributions of the interaction force between the tip and the sample. For
instance, the in-phase quadratures provide information about the amount of adhesive
(positive part) and repulsive (negative part) forces at the measured pixels [67, 121].

4.3. MODELING TIP-SAMPLE INTERACTION
In order to probe the viscoelastic response of the sample and interpret the in-phase and
out-of-phase quadrature information quantitatively, we begin by describing the dynam-
ics of the AFM cantilever using the following simple model [48, 75]:

1

ω2
0

d̈c + 1

Qω0
ḋc +dc = 1

k

(
Fd(t )+Fts(s, ṡ)

)
, (4.1)

where dc describes the total deflection of the cantilever from its equilibrium, ω0=2π f0

denotes its resonance frequency, k represents the stiffness of the cantilever, t denotes the
time and Fd is the excitation force. The above equation couples to the sample through
the nonlinear tip-surface force

Fts(s, ṡ) =
{
−Fad −kv s −ηv ṡ, if s ≤ 0,

0 if s > 0.
(4.2)

Here, the piecewise linear (PWL) model assumes Fts to be function of the indentation (s)
and the rate of indentation (ṡ). In Eq. (4.2), the tip-sample interaction comprises of an
adhesion force represented by Fad, a repulsive force due to surface indentation governed
by the bulk sample stiffness kv , and finally, a viscous force due to material flow upon in-
dentation governed by the coefficient ηv . It must be noted that the PWL model preserves
an essential feature of the interaction that is well-known in AFM, which is the presence
of large force gradient localized near the point of contact, i.e at s = 0. This rapid change
of force is responsible for the jump-to-contact and pull-off hysteresis seen in nearly all
quasi-static force curves in AFM. However, in dynamic AFM, the oscillation amplitude
is typically much larger than the range of this localized interaction. Hence, we approx-
imate this region of large interaction gradient as an adhesion force that instantly turns
on and off when crossing the point of contact, whose magnitude is counterbalanced by
the contribution of the velocity-dependent term ηv ṡ.
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We then couple the cantilever dynamics with a moving surface model [101, 121] to
account for the motion of the sample interacting with the tip

ηs ḋs +ks ds =−Fts(s, ṡ). (4.3)

Here, the stiffness and viscosity of the sample surface are ks and ηs , respectively. The
instantaneous surface motion is related to the cantilever oscillation through the relation
s = h +dc −ds , where h is the unperturbed cantilever height as shown in Fig. 1.

The tip-sample interaction process as described by Eqs. (4.1)-(4.3) introduces a large
set of unknown parameters that shall be extracted from the intermodulation compo-
nents. However, few of them, namely ω0, Q, and k are obtained directly from thermal
calibration [49]. This reduces the unknown set of parameters that needs to be identified
to P = {Fad, kv , ηv , ks , ηs , h}. At this stage, the optimization problem is written as:

find minP∈R6 f (P ) (4.4)

with f (P ) the objective function defined as [67, 124, 125]:

f (P ) =
√ ∑

ω=ωI M

|F̃ts,exp(ω)− F̃ts,sim(ω,P )|2 (4.5)

where F̃ts,sim and F̃ts,exp denote the complex spectral components of the simulated and
experimental interaction force at the intermodulation frequencies ωI M , respectively.

4.4. LINKING VISCOELASTICITY TO INTERMODULATION COM-
PONENTS

We start the identification by analyzing the two pixels denoted by (i) and (iii) in Fig. 2(b).
These pixels belong to the PS and the LDPE material, respectively. The optimization
of the model parameters is carried out using the Levenberg-Marquardt algorithm since
it has strong convergence properties and robustness against numerical inconsistencies
[126]. We note that the minima obtained by the optimizer are largely dependent on the
initial points (IP) chosen for the unknown parameter set P . Thus, several initial starting
configurations are tested for the identification procedure; these are selected based on
values previously reported in the literature [65, 127–129] (see Section 4.B.2 in appendix
for additional details).

Table 1 summarises the identified model parameters and the corresponding errors
between the simulation and the experimental counterparts for several different IPs on
pixels (i) and (iii). Here, we note that the surface stiffness (ks ) and damping (ηs ) of LDPE
is much higher than PS matrix. This qualitative and counter-intuitive result (PS being
the stiffer material), can be explained by a larger penetration depth which results in a
larger contact area and thus a larger estimated ks for the softer material. In addition
to this, we observe from Fig. 3(a)-(b) that the reconstructed cantilever motion (green)
and the surface motion (pink) look identical, even though they represent different set
of identified values (See table 1). Moreover, in Fig. 3(c)-(d) the surface motion in case
of LDPE is strongly dependent on the choice of IPs and consequently leads to different
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Pixel (i) - PS Pixel (iii) - LDPE
Initial point IP 1 IP 55 IP 99 IP 1 IP 22 IP 87

Fad (nN) 30.5 31.6 41.6 7.08 7.12 7.13
kv (N/m) 94.9 43.2 89.5 0.848 0.854 0.860
ηv (mg/s) 15.5 7.33 6.60 0.520 0.521 0.521
ks (N/m) 18.8 16.8 11.8 123.8 239.3 28.4
ηs (mg/s) 0.0552 0.00884 0.993 57.2 0.0594 62.0

h (nm) 26.35 24.69 24.11 14.43 14.69 14.67
Final E (nN) 0.511 0.537 0.579 0.193 0.194 0.194

R2 0.961 0.957 0.950 0.979 0.979 0.979

Table 1: Extracted results from a large set of local minimization routines using Levenberg-Marquardt algo-
rithm. The model including surface motion and the grid initial points (IPs) defined in table 4.B.2 of appendix.
The initial points are ranked according to the best results, defined here as the lowest errors / highest R2.
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Figure 3: Simulations of the cantilever (green) and sample (pink) surface dynamics based on the results pro-
vided in table 1. (a)-(b) Simulated results for PS material with parameter values taken from initial point 1 and
55, respectively. (c)-(d) Simulated results for LDPE material with parameter values taken from initial point 1
and 87. (e)-(f)-(g)-(h) A close up visualization of the surface dynamics is reported in (a)-(b)-(c)-(d).

parameter value estimations. Contrary to the popular notion, the amplitude of surface
motion in case of soft LDPE is also much smaller when compared to the stiff PS material.

We relate the above discrepancies to possible insensitivity of the objective function
towards certain model parameters and the presence of multiple local minima, which
indicates that the objective function is non-convex. To elaborate on these issues, we an-
alyze the topological landscape of the objective function on a larger parameter range.
We note that the objective function includes 6 parameters, out of which Fad and h show
consistent convergence. Hence, we limit our analysis to the bulk and surface viscoelastic
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parameters governed by kv , ηv , ks , and ηs . This is showcased in Fig. 4, where topologi-
cal landscapes of the objective function are obtained by sweeping across the viscoelastic
parameters for both PS and LDPE material at pixels (i) and (iii), respectively. In each sub-
figure, the four non-varied parameters are chosen as those of IP 1 in table 1. Interestingly,
we note that Figs. 4(a)-(b) exhibit a valley in which a single optimum solution is found.
This is further highlighted in the 2D cross sections shown as Figs. 4(c)-(d) , confirming
the strong dependency of parameters kv and ηv on the experimental observables. Con-
trary to this, the objective landscape of Figs. 4(e)-(f) highlight multiple local minima (in
the case of pixel (i) in Fig. 4(e)) or a flat insensitive gradient (for pixel (iii), in Fig. 4(f)). A
flat landscape of the objective function in case of softer LDPE is counter-intuitive since
one would expect a softer material to show pronounced surface dynamics compared to
PS. This behaviour is also reflected in the large spread of values reported in table 1.

In order to verify that the discrepancy does not stem from the optimizer used, we also
employ a heuristic global optimization technique in pursuit of a global solution in the
parameter space. We create synthetic data sets with known optima to analyse how the
global optimizer performs (for details see Section 4.A.2 in appendix). Once again the op-
timizer fails to overcome the aforementioned discrepancies. Since a wide range of non-
physical parameter values reconstructs the cantilever motion while surface viscoelastic
parameters do not affect the objective function. Upon closer inspection of results, we
noticed a trend for synthetic data sets with good solution convergence, where the bulk
parameters of the model, namely kv , ηv , tends to the original optimum (for details see
table 4.A.2 in appendix). This is in accordance with our hypothesis regarding the insen-
sitivity of surface viscoelastic parameters on the experimental observables. Therefore,
fine-tuning of the global optimization parameter space is effective in determining bulk
viscoelastic parameters. Nevertheless, isolation of non-physical solutions as outliers is
computationally expensive when aiming for fast parameter estimation. For this reason
we explore an alternative local optimization route paired with an initial point selection
procedure in the following section.

ESTIMATING BULK VISCOELASTICITY IN THE ABSENCE OF SURFACE MOTION

In order to overcome the aforementioned limitations as well as to improve the compu-
tational efficiency for the parameter estimation procedure, we neglect the surface dy-
namics of the sample and reduce the unknown parameter set to P̄ = {Fad, kv , ηv , h}.
It must be noted that this reduced set is still descriptive of the nanomechanical map-
ping of polymer blends and coherent with several well-established formulations, e.g.,
Derjaguin-Muller-Toporov (DMT)-Kelvin-Voigt [127], 3D Kelvin-Voigt [130], and DMT-
Garcia [4].

We begin by repeating the quantitative analysis at pixels (i) and (iii) of Fig. 2, once
again applying the Levenberg-Marquardt algorithm. In this procedure we use a grid of
34 IPs, by defining three values for the four free parameters of the model. This choice
of three values is motivated by a compromise between a wide range of parameter explo-
ration and a reasonable simulation duration. These parameter values include in par-
ticular at least one order of magnitude for the viscoelastic properties (for details see
Section 4.B.2 in appendix). Furthermore, the three values of the probe height h can be
framed from the force quadrature profiles and from onsets of repulsive forces (for de-
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Figure 4: Variation of the objective function in a 2-dimensional parameter space comprising ((ks ,ηs ) or
(kv ,ηv )), with the other parameters fixed in accordance with the best results found from the local minimiza-
tion routine. (a)-(d) Visualizing the landscape of the minimization objective as a function of kv and ηv for PS
and LDPE material obtained at pixel (i) and (iii) of Fig. 2(b). The Pink and orange lines indicate a 2D cross-
sectional view of the objective function. (a)-(d) Visualizing the landscape of the minimization objective as a
function of ks and ηs for PS and LDPE material obtained at pixel (i) and (iii) of Fig. 2(b). Pink and orange lines
indicate 2D cross-sectional views of the objective function.
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Figure 5: Estimated properties of the PS-LDPE sample obtained using the model without surface motion and
the initial points selection procedure described in this work. The maps are of dimensions 2.5µm x 2.5µm. Left:
parameter maps of (a) adhesion force, (b) contact force stiffness, (c) contact force viscosity, (d) Probe height.
Right: histogram distribution of the respective parameters (e-f-g-h).

tails see Section 4.A.3 in appendix). We then perform a gradient-based optimization for
each combination of parameters in the parameter space and conduct statistical analy-
sis by obtaining the Gaussian distribution profiles of the identified parameters (for more
details see Section 4.B.2 in appendix). Interestingly, for most of the IPs the optimizer
converges towards an admissible physical solution.

Based on this statistical analysis we extract a set of three initial points for performing
the parameter identification at all pixels of the entire AFM scan. The first two sets of IPs
are derived from the mean values of the Gaussian distribution for both the PS and LDPE
material. Indeed, these mean values lead to the lowest errors at pixels (i) and (iii). As for
the third set, an IP is chosen which can lead to a set of identified parameter within a spe-
cific confidence interval for both the PS and LDPE material. The reasoning for choosing
such an IP is rooted in our optimization procedure where, we assume that pixels belong-
ing to the same material have similar objective function topology. This assumption may
not hold true at the junctions where the two materials blend. Hence, having a third IP
that could identify the parameters of both PS and LDPE material within a certain con-
fidence interval is crucial to avoid non-physical parameter estimation (for details see
Section 4.B.2 of appendix). Finally, among the three optimization run at each pixel, we
retain the parameters of the best fit (i.e. the lowest error) as the identified model param-
eters.

Figure 5 shows the identified parameter values for the PS-LDPE polymer blend. It
highlights a clear distinction between the identified bulk parameters Fad, kv , and ηv

between the island of LDPE and the surrounding PS matrix. This can be seen in the
observed compositional contrast in the colored figures. Additionally, the histogram dis-
played on the right side of the figure highlights clear separated Gaussian profiles for each
of the parameters. The estimated values lie within a 95% confidence interval for the
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entire image, as table. 2 shows. Moreover, we remark that our identified values are in
line with those previously reported in the literature [65, 127–129] and align with the ex-
pected physical behaviour of the two polymers, i.e (Fa,PS > Fa,LDPE, kv,PS > kv,LDPE and
ηv,PS > ηv,LDPE). Our analysis suggests that intermodulation frequency components have
a direct correlation with the bulk properties of the sample and the interaction force func-
tion can be robustly characterized.

PS LDPE
Fad [nN] 31.49±0.12 6.960±0.076
kv [N/m] 17.31±0.09 0.819±0.020
ηv [mg/s] 1.951±0.007 0.492±0.005

h [nm] 26.71±0.02 12.86±0.021

Table 2: Identified parameters resulting from the Gaussian fits, made from the material properties estimated
at all pixels plotted in Fig. 5. The uncertainties are estimated with a 95% confidence interval.

4.5. CONCLUSIONS
In summary, we studied the dependency of viscoelastic response of polymeric samples
to multi-frequency IM-AFM. We discussed the sensitivity issues that can be faced when
minimizing the error between IM-AFM spectral components and a tip-sample force
model with surface dynamics, and confirmed that insensitivity of surface viscoelastic-
ity to experimental observables could lead to non-physical parameter estimations. We
attribute this finding to the non-convexity and flat topological landscape of the objec-
tive function with respect to the sample’s surface viscoelastic parameters. This was fur-
ther reinforced with numerical simulations that used both gradient-based and heuristic
global optimization techniques.

Next, we remedy this issue with a simplified model that only accounts for the bulk
viscoelastic parameters and by implementing an initial point selection procedure that
searches a large parameter space to estimate model unknowns with ease. This new
framework results in consistent identification of viscoelastic parameters that are in good
agreement with previously reported values. However, in order to take full advantage
of the vast amount of multi-frequency observables, a more accurate and sensitive vis-
coelastic tip-surface model is needed [64, 65, 118], and computational developments to
speed up the optimization process are required. Finally, given the growing interest in
developing multi-parametric techniques in multi-frequency AFM, we believe that the
techniques showcased in this work can be useful in providing guidance to future inves-
tigations that are aimed at studying soft, adhesive and viscoelastic surfaces of samples.
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APPENDIX

4.A. ADDITIONAL NUMERICAL DATA

4.A.1. SIMULATIONS
The driving force signal Fd(t ) used in the simulations is defined specifically for the exper-
imental data considered in the study. In particular it is estimated for the set of frequency,
stiffness and quality factor of the first resonance of the cantilever f0,k and Q obtained
from the thermal calibration. The excitation signal is obtained from the free motion fre-
quency components as :

Fd(t ) = ∑
ω∈ωIM

2|F̃d(ω)|cos(ωt +arg(F̃d(ω))) (4.6)

with

F̃d(ω) = k
[− ω

ω0

2
+ j

ω

Qω0
+1

]
d̃free(ω) (4.7)

where the ωIM denotes the pulsation of intermodulation [117].
The time signals were simulated using the following dimensionless values:

d c = dc

A
, d s = ds

A
, F d = Fd

k A
, F ts = Fts

k A
, t =ω0t , h = h

A
, s = s

A
. (4.8)

in which the displacement of reference is the amplitude of the engaged motion at the
second drive frequency A = |dc|ω=ω2 . The following dimensionless design parameters
are considered in the numerical procedure:

F ad = Fad

k A
, kv = kv

k
, k s = ks

k
, ηv = ηvω0

k
, ηs =

ηsω0

k
. (4.9)

Thus the equation of motion is

d̈c + ḋc

Q
+dc = Fd(t )+Fts(s, ṡ) (4.10)

in which the overbars are dropped for a sake of clarity. The time signals are computed by
simulating Eq. (4.10) using Runge-Kutta schemes, which are at hand in standard func-
tions of Matlab. At low sample relaxation times τs = ηs /k s < 10−3, a scheme designed
for stiff systems is employed (the ode23s function of Matlab is used, instead of the clas-
sical ode45 time integration solver). The signals for dc , ds and Fts are simulated on 8
ms, which corresponds to four intermodulation beatings since ∆ f = ω2−ω1

2π = 500 Hz is
applied in experiments. A zero initial condition for displacements and velocities is ap-
plied, the tolerance is set at 10−7, and the nonsmooth event (s = 0) is processed using a
conditional rule.

OPTIMIZATION

The objective function used for estimating the viscoelastic parameters is defined by [117,
125]:

f (P ) =
√ ∑

ω=ωIm

|F̃ts,exp(ω)− F̃ts,sim(ω,P )|2. (4.11)
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Next, in order to minimize Eq. (4.11) we use Levenberg-Marquardt algorithm [131] and
combine it with non-linear least squares (lsqnonlin function) in Matlab. A least-square
minimization is performed with an iterative procedure which involves the computation
of the partial derivatives (gradient) at each iteration and it is based on a finite difference
scheme.

A parallel implementation on a small cluster was used to perform multiple minimiza-
tion routines: approximately 10 nodes and 36 hours in total were needed to obtain the
results shown in Fig. 5. We show in table 4.A.1 the lower and upper limit of parameter
values defined for the optimization. These parameter ranges are deliberately wide be-
cause we assume that we have no prior knowledge of the material properties, except in
the case of the probe height for which a first approximation can be extracted from the
force quadrature curves.

Parameter Fad [nN] kv [N.m−1] ηv [mg.s−1] ks [N.m−1] ηs [mg.s−1] h [nm]
Min value 0.05 ≈ 0 ≈ 0 ≈ 0 ≈ 0 5
Max value 100 10k 10k/ω0 20k 20k/ω0 45

Table 4.A.1: Parameter ranges used for the optimization routine. Here, k represents the cantilever stiffness in
N/m and ω0 represents the first resonance frequency in rad/s

4.A.2. RESULTS OF GLOBAL OPTIMIZATION TESTS ON SYNTHETIC DATA
In this section we discuss the use of a global optimization procedure for parameter es-
timation and further elaborate on the limitations of the procedure. In general global
optimization techniques such as Particle swarm optimization does not rely on gradient
descent method used by local optimization techniques like the Levengerg-Marquardt
method, and hence don’t require a differentiable objective function. Such a characteris-
tic helps to determine if the lack of sensitivity of surface motion can be attributed to the
chosen optimization algorithm or it is linked to model parameters. Additionally a global
optimization method has the advantage that a large parameter space can be searched
from different initial starting points without having prior knowledge on the optimum
solution. However, in order to obtain a physically interpretable solution and to reduce
the computational time, it is necessary to restrict the search range. We achieve this by
assigning values for each of the model parameter from previous experimental character-
izations and then extending their ranges by an order of magnitude [101, 121, 132].

In particular, we choose the sample parameters suitable for PS-LDPE material and
generate synthetic data sets based on the interaction with a Silicon cantilever. The sam-
ple properties used for the simulations is provided in table 4.A.2 together with the fol-
lowing cantilever properties: f0 = 163 kHz, Q = 491, k = 23.95 Nm−1, the effective driving
force Fd = 1.39 nN and the unperturbed height h = 22.6 nm. Next, we use random sam-
pling to select different starting parameter sets. A total of 15 different parameter sets
are created and simulated with the moving surface model to generate the amplitude and
phase frequency components which are then used as inputs for the Particle swarm based
global optimization. For all the 15 data sets, the optimization procedure is performed
starting from the same initial "swarm".

Table 4.A.2 shows the optimization results for 4 randomly chosen parameter sets out



4

76
SENSITIVITY OF VISCOELASTIC CHARACTERIZATION IN MULTI-HARMONIC ATOMIC FORCE

MICROSCOPY

No. Designation Fad [nN] kv [N.m−1] ηv [mg.s−1] ks [N.m−1] ηs [mg.s−1] E (pN)

P1

Optimum 2.98 2.60 0.199 8.31 0.0371
3.80PSO 2.49 2.04 0.181 81.0 2.14

Error 16.4 % 21.3 % 9.17 % 875 % 5670 %

P2

Optimum 0.161 0.0101 0.141 0.220 1.51
0.254PSO 0.165 0.0100 0.135 16.8 0.00155

Error 3.00 % 0.547 % 4.05 % 7.53e3 % 99.9 %

P3

Optimum 4.49 6.81 0.0221 0.108 0.582
21.1PSO 8.18 0.97 0.378 0.938 0.00105

Error 39.6 % 25.7 % 20.0 % 680 % 99.0%

P4

Optimum 0.473 0.349 0.469 65.5 0.0105
0.812PSO 0.277 0.283 0.802 1.20 0.0360

Error 41.5 % 19.0 % 71.1 % 98.2 % 245 %

Table 4.A.2: Parameter Convergence for data sets P1, P2, P3 and P4. Cantilever properties used: f0 = 163
kHz, Q = 491, k = 23.95 N/m. Scanning properties: Fd = 1.39 nN, h = 22.6 nm, and 41 amplitude and phase
intermodulation products.
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Figure 4.A.1: Global optimization results for parameter sets 1 and 2. Cantilever properties: f0 = 163 kHz,
Q = 491, k = 23.95 N/m. Scanning properties: Fd = 1.39 nN, h = 22.6 nm, and 41 amplitude and phase in-
termodulation products. (a)-(d) Force quadratures showing the conservative and dissipative tip-sample inter-
actions. The blue color represents the original quadratures obtained from model simulations and the orange
color represents the identified quadratures based on optimization. (e)-(f) Time data depicting the motion of
the cantilever and the corresponding surface motion due to tip-sample interaction. right: (g)-(h) Zoomed
surface motion indicating discrepancies between the original and the identified surface dynamics. The blue
and purple color represents the original cantilever and surface dynamics obtained from model simulations;
whereas, the orange and green color the original cantilever and surface dynamics based on optimization.
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of 15 simulated data sets. The results show that tip-sample dynamics is well approxi-
mated with low error values E , but the identified parameter values are far from their true
values. This deviation is far more significant for surface parameters in comparison with
bulk parameters. Once again, we attribute this issue to non-convexity and lack of sen-
sitivity of surface parameters as discussed in the main chapter. Additionally, Figs. 4.A.1
and 4.A.2 show the temporal data of the cantilever and the associated surface motion to-
gether with the force quadratures for both the original dynamics coming from the model
simulations and the identified dynamics resulting from optimization. In both the figures,
while we observe a good agreement for the force quadratures, the identified motion of
the sample surface does not match with the simulated motion (See Figs 4.A.1(g)-(h) and
4.A.2(g)-(h) ). This further confirms the trivial contribution of the surface motion on
amplitude and phase of intermodulation components.
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Figure 4.A.2: Global optimization results for parameter sets 3 and 4. Cantilever properties: f0 = 163 kHz,
Q = 491, k = 23.95 N/m. Scanning properties: Fd = 1.39 nN, h = 22.6 nm, and 41 amplitude and phase in-
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color represents the identified quadratures based on optimization. (e)-(f) Time data depicting the motion of
the cantilever and the corresponding surface motion due to tip-sample interaction. right: (g)-(h) Zoomed
surface motion indicating discrepancies between the original and the identified surface dynamics. The blue
and purple color represents the original cantilever and surface dynamics obtained from model simulations;
whereas, the orange and green color the original cantilever and surface dynamics based on optimization.
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4.A.3. CRITERION FOR PROBE HEIGHT IDENTIFICATION FROM FORCE
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Figure 4.A.3: Portion of the extracted line for the analysis in the AFM image (top left). Identified h and reported
values directly read from the force quadratures (top right). Illustration of the two criteria (dashed lines) for
estimating the probe height on the quadratures on one pixel made of PS (bottom left) and of LDPE (bottom
right).

The probe height h is included in the set of unknown parameters (see main chapter
modelling section). In general h varies with the working height of the cantilever which in
turn depends on how much the feedback control moves the z-piezo during the scanning
operation. By taking advantage of the conservative quadrature, in phase with the can-
tilever motion, it is possible to estimate an approximate value for h based on the onset
of repulsive forces.

We suggest two criteria for extracting h from force quadratures as illustrated in
Fig. 4.A.3. We assume the maximum of the in-phase force component (related to ad-
hesion) is achieved closely after the tip starts to penetrate the sample. Thus, the first
criterion (denoted by red crosses in Fig. 4.A.3 (b)) is taken at the middle of the increas-
ing part of FI , whereas the second one corresponds to the amplitude where the in-phase
component starts to increase. We browse and apply these two criterion on all pixels of
the black line displayed in Fig. 4.A.3(a). The comparison shown in Fig. 4.A.3(b) highlights
a better match between the heights corresponding to LDPE pixels using the first criteria,
when the second criteria seems more suited for the pixels related to PS material. That
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can be explained by the different material properties, for instance the larger stiffness for
PS causes a faster increase of FI , whereas in case of the softer material the short-range
adhesive force is more significantly involved before the tip starts to indent the sample.
The analysis of these force quadrature curves could be further developed using a more
accurate tip-sample force model such as Attard’s model [40, 63–65, 119], in order to de-
scribe first the transition between the non-contact and adhesive regime, and secondly
the transition between the adhesive and repulsive regime.

4.B. HIGH VOLUME GRADIENT BASED OPTIMIZATION AND INI-
TIAL POINT SELECTION PROCEDURE

In this section, we discuss the results obtained using the Levenberg-Marquardt algo-
rithm from multiple initial points for both models with and without sample’s surface
motion. This is done to analyze the sensitivity of the model on initial starting points
for the optimization. We begin by creating a numerical range for each parameter based
on previous literature studies. Then, a grid of initial starting points is chosen and for
each initial point we perform the optimization routine. The distribution of the identi-
fied parameters is analysed with histograms and by fitting Gaussian function to extract
statistics. The distribution are discussed for each model separately in the following sec-
tions.

4.B.1. PIECEWISE LINEAR MODEL WITH SURFACE MOTION
Using the moving surface model, we run multiple gradient-based optimizations for pixel
(i) and pixel (iii) of Fig. 2 with the grid of initial parameters defined in table 4.B.1. The
grid includes 3 different values per parameters, chosen in such a way that the param-
eter exploration recovers a large parameter space (including notably at least one order
of magnitude in the case of the viscoelastic properties), and that all routines are per-
formed within a reasonable computational time. In total, 36 = 729 optimizations were
performed, starting from all the combinations of the grid.

In this section we present the histograms used to extract the values reported in ta-
ble 1.

Fad [nN] kv [N.m−1] ηv [mg.s−1] ks [N.m−1] ηs [mg.s−1] h [nm]
[5 25 45] [0.02 1 40] [0.2 1 5] [0.02 1 40] [0.2 1 5] [15 25 35]

Table 4.B.1: Grid of initial points for the local optimization procedure using the moving surface model.
Figures 4.B.1 and 4.B.2 highlight the distribution of the identified parameters with

respect to the objective function for pixels (i) and (iii), respectively. We see a clear corre-
lation between a large distribution and low errors only for some parameters such as Fa ,
kv , ηv , h for pixel (iii) in Fig. 4.B.1. If model parameters have strong correlation with the
objective function then the maximum of the histogram counts (rows 1 and 3) coincides
with the minima of the scatter plots (rows 2 and 4). For example, in case of Figs. 4.B.1(a)
and (d), we look at the influence of adhesion force Fa on the objective function and we
observe that the location of the maximum along the x-axis in Fig. 4.B.1(a) coincides with
the minima along the same x-axis in Fig. 4.B.1(d). A similar behaviour is observed in
Figs. 4.B.1 (b)&(e), (c)&(f), and(i)&(l). On the contrary, Figs. 4.B.1 (g)&(j) and (h)&(k) lack
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Figure 4.B.1: Identified parameters of the PWL model with sample motion, obtained on LDPE material at pixel
(iii) of Fig. 2(b) with the initial positions defined in table 4.B.1. Parameter distributions and errors are respec-
tively plotted in (a)&(d) for Fa , (b)&(e) for kv , (c)&(f) for ηv , (g)&(j) for ks , (h)&(k) for ηv and (i)&(l) for h.
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Figure 4.B.2: Identified parameters of the PWL model with sample motion, obtained on PS material at pixel (i)
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such property and instead exhibit random and spread distributions. This behavior is due
to the insensitivity of the objective function to the sample parameters. A similar obser-
vation holds for the PS material (Fig. 4.B.2) with an even more complex distribution. It is
here attributed to the combined effect of non-convexity and insensitive regions in which
the optimizer encounters a stopping condition.

4.B.2. PIECEWISE LINEAR MODEL WITHOUT SURFACE MOTION
Here, we report the results and histograms obtained from the large set of optimizations
carried out using the piecewise linear model without surface motion. We begin with a
set of 34 initial parameters defined by the grid presented in table 4.B.2, and analyze the
parameter distributions in the same way as outlined in the previous section.

Fad [nN] kv [N.m−1] ηv [mg.s−1] h [nm]
[5 25 45] [0.02 1 40] [0.2 1 5] [15 25 35]

Table 4.B.2: Grid of initial points for the local optimization procedure using PWL model without sample mo-
tion.

With the 4 parameters model, statistics for the identified parameters depicts well
defined Gaussian distributions that are specific for each type of material. Additionally,
the mean of the Gaussian distributions correspond to the lowest values of the objective
function. This is shown in Figs. 4.B.1 and 4.B.2 for PS and LDPE material sampled at pixel
locations (i) and (iii) of Fig. 2. The parameter values from the optimization procedure are
reported in table 4.B.3.

From this statistical analysis, we extract a reduced set of starting parameters. The
parameters summarised in table 4.B.4 have been used to obtain the results showcased
in Fig. 5. The two first initial points in Table 4.B.4 were selected by identifying the mean
values (also corresponding with the lowest error) among the final results displayed in
Figs. 4.B.3 and 4.B.4. In addition, we add a third initial point leading to identified param-
eters within the confidence intervals for all parameters and both the pixels. We detail the
final parameters and errors obtained on pixels (i) and (iii) with these three initial points
in table 4.B.5.

Pixel (i) Pixel (iii)
Fad [nN] 32.7±0.45 7.13±0.008
kv [N/m] 17.52±0.52 0.854±0.002
ηv [mg/s] 1.975±0.006 0.519±0.001

h [nm] 26.7±0.18 14.7±0.03

Table 4.B.3: Identified parameters resulting from the Gaussian fits. We extracted the results with errors smaller
than 0.71 nN for pixel (i) (cf Fig. 4.B.4) and 0.25 nN for pixel (iii) (cf Fig. 4.B.3). The uncertainties are estimated
with a 95% confidence interval.
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Figure 4.B.3: Identified parameters of the PWL model without sample motion, obtained on pixel (iii) Fig.. 2(b)
(LDPE) from the initial positions defined in table 4.B.2. Parameter distributions and errors are respectively
plotted in (a)&(b) for Fa , (e)&(f) for kv , (c)&(d) for ηv and (g)&(h) for h. The shadowed areas highlight the
Gaussian distributions.

Fad [nN] kv [N.m−1] ηv [mg.s−1] h [nm]
[45 5 5] [0.02 1 1] [0.2 1 1] [35 35 15]

Table 4.B.4: Initial starting parameters used as inputs for the optimization performed on the AFM scan shown
in Fig. 5.
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Figure 4.B.4: Identified parameters of the PWL model without sample motion, obtained on pixel (i) of Fig. 2
(PS), starting from the initial positions defined in table 4.B.2. Parameter distributions and errors are respec-
tively plotted in (a)&(b) for Fa , (e)&(f) for kv , (c)&(d) for ηv and (g)&(h) for h. The shadowed areas highlight
the Gaussian distributions.

Pixel (i) Pixel (iii)
Final parameters Final Error Final parameters Final Error

Fad kv ηv h E Fad kv ηv h E
[nN] [N/m] [mg/s] [nm] [nN] [nN] [N/m] [mg/s] [nm] [nN]
32.9 17.74 1.99 26.9 0.68 0.3 9.33 21.1 31.5 0.78
33.8 18.6 2.08 27.0 0.69 7.06 0.833 0.508 14.4 0.192
32.0 16.7 1.89 26.6 0.69 7.12 0.852 0.519 14.6 0.193

Table 4.B.5: Identified parameters and final errors obtained at pixels (i) and (iii) from the three selected initial
points defined in table 4.B.4.
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Dynamic AFM is a key platform that enables topological and nanomechanical charac-
terization of novel materials. This is achieved by linking the nanoscale forces that exist
between the AFM tip and the sample to specific mathematical functions through model-
ing. However, the main challenge in dynamic AFM is to quantify these nanoscale forces
without the use of complex models that are routinely used to explain the physics of tip-
sample interaction. Here, we make use of machine learning and data science to charac-
terize tip-sample forces purely from experimental data with sub-microsecond resolution.
Our machine learning approach is first trained on standard AFM models and then show-
cased experimentally on a polymer blend of Polystyrene (PS) and Low Density Polyethylene
(LDPE) sample. Using this algorithm we probe the complex physics of tip-sample con-
tact in polymers, estimate elasticity, and provide insight into energy dissipation during
contact. Our study opens a new route in dynamic AFM characterization where machine
learning can be combined with experimental methodologies to probe transient processes
involved in phase transformation as well as complex chemical and biological phenomena
in real-time.

This chapter is published as an article in Nanoscale Advances [133]. The published article is adapted to fit into
the context of the thesis.
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Dynamic atomic force microscopy (AFM) has transitioned from a high resolution
imaging technique to a versatile tool that provides spatially resolved maps of mechani-
cal [4, 5], chemical [19, 134], and biological properties [6, 7] of samples. This transition is
primarily fueled by the interest of the scientific community in precise quantification of
materials at the nanoscale, which can be achieved by probing the tip-sample interaction
force [5, 6]. However, dynamic AFM, in contrast to its name, does not directly measure
the interaction force while imaging in any of its modalities. Instead, it uses different
information channels like frequency, amplitude, and phase of the oscillating probe to
reconstruct the interaction force indirectly [54, 66–71].

Tip-sample reconstruction in dynamic AFM is essentially an inverse problem [135–
137], where the measured deflection data is used to infer the underlying interaction
physics and thus estimate parameters that are not directly observed. The reconstruction
techniques in dynamic AFM are broadly categorized into two classes: analytical meth-
ods that rely on slow variations of amplitude and phase of the cantilever [66–69], and
experimental techniques that depend on the spectral components generated due to the
nonlinear nature of the tip-sample contact [54, 70, 71]. Although versatile in discern-
ing the tip-sample force, analytical methods cannot trace the variations in interaction
force at the fast time scale; a scenario that is of importance when probing biological
and chemical processes [9, 12, 13]. On the other hand, experimental techniques often
follow a multi-step procedure to invert cantilever oscillations for obtaining the interac-
tion force. These procedures either require measurement of the experimental transfer
function [71] or make use of special harmonic probes that are tailor-made to resolve the
interaction force with high-resolution [54]. Thus, despite the success of dynamic AFM
in topography mapping and nanoscale imaging in its diverse modes of operation [50], a
generic approach that allows direct access to the time-resolved surface forces, irrespec-
tive of the chosen probe-sample configuration is still missing.

Here, we develop a novel method for reconstructing the tip-sample interaction forces
of dynamic AFM by making use of the recent advances in data science [73] and machine
learning [138–140] that are well-suited for tackling inverse problems. In particular, we
make use of sparse identification of nonlinear dynamical systems [73, 139–142] to distill
the governing equations of dynamic AFM. We train the algorithm on numerically gen-
erated data from several standard AFM models, and use that to discover physically in-
terpretable models in experiments. The discovered models are able to predict the time-
resolved interaction forces in dynamic AFM with sub-microsecond resolution. Unlike
existing methods, our approach has no inherent assumptions on the type of interactions,
and instead, relies solely on the extracted temporal data from AFM measurements. Us-
ing this method we are able to extract the variation in contact duration and peak loading
forces in stiff and compliant materials as well as highlight the ability of the technique in
probing transient surface forces and hysteresis phenomenon during tip-sample interac-
tions.

5.1. FORMULATION
In order to obtain the tip-sample interaction force, we begin by finding the governing
equations of AFM using an unified sparse identification framework known as sparse re-
laxed regularized regression [138, 139, 141]. This approach aims at finding the equations
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Figure 1: Training the algorithm on synthetic data obtained for a cantilever with DMT force model described
in Appendix 5.D.1 [48, 99]. (a) 3D pareto frontier with parsimony, accuracy of the predicted model, and the
tip-sample force as the selection parameters. The blue dots indicate the projection of the 3D cubes onto 2D
planes. In the (x,z) plane the red line indicates the pareto optimal line between parsimony and the model
accuracy; whereas, in the (x,y) plane it is the optimal line between the parsimony and the tip-sample force
accuracy. The best model in this 3D space is highlighted by a red cube. (b) Coefficient matrix showing the
influence of each library function on the governing equations. The blue color indicates the original value of
the coefficients and the orange color indicates the coefficients as determined by the data-driven algorithm.
The description of the functions are given in table. 1. (c)-(d) Transient dynamics prediction: Comparison
of the state vectors and the tip sample force between the DMT simulation (blue) and the data-driven model
(orange). (e)-(f) Steady-state response prediction: Comparison of the state vectors and the tip sample force
between the DMT simulation (blue) and the data-driven model (orange). Additional details on selection of
hyper-parameters and constraints on the optimization are provided in the methods section.
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Table 1: Description of the nonlinear functions used in the coefficient matrix of Fig. 1(b). We represent the
instantaneous tip-sample distance by z, the indentation depth by δ, the intermolecular distance by a0 and the
normalized time vector as τ. It should be noted that both z and δ are functions of x.

Function ID θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 θ11

Function definition z−2 z−3 δ0.5 δ̇ δδ̇2 z0.5 ż z ż2 δ2 δ2.5 δ1.5 z−2∀z ≤ a0 sin(Ωτ)

of nonlinear dynamical systems of the form

ẋ(t ) = f (x(t )) , (5.1)

subjected to initial condition x(0) = x0, where x(t ) ∈ Rn is the state of the dynamical
system at time t in the experimental time frame. Here, f is a nonlinear function that
maps the dynamical state vectors to that of the experimental observables. In order to
retrieve a minimal set of f, a library of linear and nonlinear candidate functions Θ(X) =
[θ1(X) θ2(X) . . . θn(X)] is introduced such that

f(x(t )) =Θ(X)Ξ,

where Ξ = [ξ1 ξ2 . . . ξn] is the unknown coefficient vector containing weights
for each of the candidate functions that shall be determined. In addition, X =
[x(t1) x(t2) . . . x(tn)]T are snapshots of the time histories used as the inputs. Here, for
example x(t1) = [x1(t1) x2(t1) . . . xn(t1)] is a vector containing the measurements of all n
state vectors at a specific time interval t1. Moreover, the time series may include trajecto-
ries from multiple initial conditions concatenated together. We note that, the derivative
Ẋ is not an experimental observable but can be numerically evaluated from X. Finally,
the unknown vectorΞ is found by solving the following optimization problem via sparse
regression

min
W,Ξ

1

2

∥∥Ẋ−Θ(X)Ξ
∥∥2 +λR(W)+ 1

2ν
∥Ξ− W∥2

s.t CΞ[:] = d.
(5.2)

In Eq. (5.2), R(·) is the regularization function that promotes sparsity and minimizes
over-fitting. In our study, we choose R(·) as the the l0 norm of the auxiliary variable W.
This variable is introduced here to enable relaxation and partial minimization in order to
improve the conditioning of the problem and tackle the non-convexity of the optimiza-
tion [139]. In addition, λ and ν are hyper-parameters that control the strength of regu-
larization and relaxation, respectively. Finally, in order to find physics-inspired models,
we incorporate constraints derived from experiments through matrices C and d (See Ap-
pendix 5.B). In particular, these constraints make sure that during model discovery the
stiffness k, quality factor Q, and external force Fc exerted on the cantilever match those
from experiments.

5.2. TRAINING
We begin by training the algorithm over numerically generated data sets from several
standard AFM models. For the sake of clarity, we explain the training methodology on
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the data obtained from a Derjaguin-Muller-Toporov (DMT) model here [35]. The train-
ing data includes both the transient and steady-state interactions typically observed dur-
ing scanning operation in dynamic AFM as shown in Fig. 1.

In our study, the library Θ(X) consists of constants, polynomials, and trigonomet-
ric terms of X. To predict the true physics of interaction, we also incorporate nonlin-
ear functions in Θ(X) that are derived from consolidated AFM models (e.g., DMT [35],
Johnson, Kendall and Roberts (JKR) [34] and Lennard-Jones (LJ) [29] as discussed in Ap-
pendix 5.D).

In addition to the functions describing the tip-sample interactions, the library also
includes bridging functions that mediate a smooth switch between the attractive and
repulsive forces experienced by the tip’s trajectory at the intermolecular distance (a0).
Overall, we used 500 functions θi in the training phase of the analysis. To mimic experi-
mental conditions, we also corrupted the numerically generated state vectors X with 1%
Gaussian noise with zero mean. This signal is then differentiated by using Savitzky-Golay
algorithm [143] to obtain the velocity, and acceleration vectors.

Figure 2: Schematic of the identification process. (a) Experimental data is obtained directly from the photode-
tector of the AFM. (b) The data is captured using an FPGA device and post-processed to create state vector
channels. (c) The state vectors are used as inputs in the sparse identification algorithm to discover the govern-
ing model of the system. (d) The data-driven model is used to estimate the tip-sample interaction force.

Before proceeding with the sparse identification, elimination of non-candidate func-
tions from the library Θ(X) is necessary to improve the interpretability of the predicted
models and avoid ill-conditioned matrices or large computational times [140]. In or-
der to achieve this, we augment the optimization problem defined in Eq. (5.2) with
constraints derived from experiments [99], the details of which are provided in the Ap-
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pendix 5.B.

Finally, the noisy state measurements and the constraints are fed into the data-
driven algorithm as part of a final routine in which the hyper parameters λ and ν are
swept in a 2D space to obtain an approximate model capable of predicting the dynamics
of the system. For each configuration of hyper-parameters, we perform 10 instance of
rolling cross-validation with each instance running 250 iterations of an optimization
routine to determine the optimum value of the coefficients. The optimization objective
is defined such that the identification routine will find the best parsimonious model
by penalizing the goodness of fit value based on the number of terms present in that
particular model. In other words, the lengthier the equation of motion the more penalty
the model is awarded. This not only promotes parsimony but also improves the general
interpretability of the predicted model.

5.2.1. NUMERICAL RESULTS

In order to identify the best model that can approximate the dynamics of the system, we
build a three dimensional (3D) pareto diagram as shown in Fig. 1(a). The 3D Pareto fron-
tier is calculated by plotting parsimony (the length of the identified equation of motion
Leq ) on the x-axis, the accuracy of state vector prediction on the z-axis (Req ) and the ac-
curacy of the tip-sample force on the y-axis (R f t s ). The best model is readily identifiable
by following the marked red line at the sharp drop in prediction accuracy (marked by the
red cube). In table 1 we list the candidate functions that represent the best model, and
in Fig. 1(b) we compare the coefficients of this identified model (orange line) against the
original DMT model (blue line) based on which the numerical data were generated. It
can be seen that the identified coefficients are within 1% of their true values. We also
note that the data-driven approach has led to two additional functions, namely θ2 and
θ10 that were not present in the original model. This can be understood by compar-
ing the total number of blue lines vs orange lines. Among the two, θ2 appears in the
identified model purely due to the noise added to the state vectors. Whereas, θ10 acts
as a bridging function to connect the non-smooth interaction forces namely, the non-
contact Van der Waals and the contact repulsive forces. We highlight that the DMT
model inherently contains a bridging function in the form of adhesion force given by
fadh =C3/a0

2 (see Appendix 5.D.1).

To clarify this observation further, we compare the transient and steady-state re-
sponse of the predicted model with the true dynamics in Figs. 1(c) and (e). We observe
that the motion of the cantilever is well-replicated with an accuracy of 95% in a 3D phase
space. The resulting 5% estimation error is due to the deviation of the identified coef-
ficients from the true values which causes a small shift in the phase value between the
original and the identified trajectories (For details, see Appendix 5.D.3).

Irrespective of this slight discrepancy, the ability of the selected model to unravel the
corresponding tip-sample interaction force stands out in Figs. 1(d) and (f). Figure 1(d)
shows the development of transient tip-sample interaction force when the cantilever
encounters a step like feature during the scanning; whereas, Fig. 1(f) shows the steady-
state tip-sample interaction force when the cantilever is imaging a uniform surface. In
both cases, the blue and the orange colors represent the original and the identified force
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Figure 3: Data-driven identification for a Silicon cantilever interacting with PS sample. The experimental de-
flection is obtained at a fixed tip-sample distance of 66 nm (a) Identification of velocity and acceleration state
vectors. The blue and orange curves represent the experimental and identified state space trajectories, respec-
tively. (b) Estimation of the tip-sample force from data-driven model (orange) superimposed on the experi-
mental acceleration signal (blue).

signals and the negative and positive force values indicate attractive and repulsive forces,
respectfully. The inset in both figures highlights the ability of the data-driven algorithm
to identify specific features of interaction with sub-microsecond precision.

Finally, we remark that the algorithm has an accuracy of 99% in predicting the repul-
sive or contact interaction and 94% accuracy in predicting the attractive or non-contact
interaction. These numbers drop down to approximately 82% near the interatomic dis-
tance where both contact and non-contact interactions co-exist. This is primarily due
to the non-smooth nature of the contact and the lack of resolution in data points to ap-
proximate the behaviour of the system near the minima of the potential well.

5.3. EXPERIMENTS
Based on the insights gained from the training data-sets, we extend the formulation to
experimental data and follow the methodology presented in Fig. 2. We begin by acquir-
ing the raw deflection signal of an AFM cantilever directly from the photodetector using a
Field Programmable Gated Array (FPGA) (see Appendix 5.A). We estimate the tip-sample
force for two sets of experiments using a silicon cantilever tapping on a two component
polymer blend made of PS and LDPE. In the first experiment, we read-out the motion of
the cantilever at a fixed distance from the sample, and in the second, we move the can-
tilever from a distance with zero-interaction to a point with maximum repulsive force
similar to conventional dynamic spectroscopy measurements (see Fig. 2(b)). In both ex-
periments, the acquired time signal is processed as described in the training procedure.
Furthermore, we reduce the library of the candidate functions to a smaller subset of 40
functions. Next, we regress the AFM dynamics onto this library (see Fig. 2(c)) and esti-
mate the instantaneous tip-sample force (see Fig. 2(d)).

Figure 3 shows the identification of the cantilever motion and the estimation of the
interaction force when the probe is engaged with the PS polymer matrix at a fixed dis-
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Identification of the tip-sample force based on data-driven model at different tip-sample sample distances.
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tance of 66 nm from the sample. It can be observed from the 3D phase space shown in
Fig. 3(a) that our data-driven approach successfully captures the cantilever dynamics,
and that the identified model follows the true experimental trajectory with an accuracy
of 90%.

In Fig. 3(b) we also show the estimated tip-sample force for several consecutive pe-
riods in the same experiment. It is interesting to note that the data-driven algorithm
is capable to reconstruct the time-sample interaction from fast cantilever oscillations.
A similar trend in behaviour for LDPE sample is also observed and showcased in Ap-
pendix 5.C. Here, it is noted that the variation in the estimated force per period, is asso-
ciated with the slight changes in the acceleration vector from one oscillatory period to
another which may have multiple origins. These may include, perturbations that can-
tilever experiences during the tapping cycle or may stem from numerical differentiation
of the deflection signal. We highlight that by further suppression of noise in the exper-
imental signal [144–146], the accuracy of the identification process can be further im-
proved.

To further investigate the applicability of the data-driven approach in dynamic AFM
measurements, in our second experiment we capture the deflection signal of the can-
tilever while varying the tip-sample distance. The measurements are once again per-
formed on the PS-LDPE blend which shows a large contrast in the material properties
and thus allows probing of different interaction mechanics.

Figures 4(a)-(b) depict the phase and topography data of the this sample. The points
of time measurements are marked on each material with a red cross for reference. Fig-
ure 4(c) corresponds to the spectroscopic time data obtained on LDPE sample by varying
the tip-sample separation. Here, the color gradient indicates the increase in strength of
interaction as the probe is brought closer to the sample. The evolution of this interaction
is showcased in Figs. 4(d)-(e) by slicing the time data at specific tip-sample separations.

It can be observed that at 85 nm the cantilever is initially in a state of no-interaction
far away from the sample (Fig. 4(d)-(i)) and thus the corresponding tip-sample force is
zero as indicated by the blue curve. As the cantilever is brought closer to the sample,
the amplitude of the deflection signal drops (Figs. 4(d) (ii)-(iv)) owing to the presence
of tip-sample forces and thus the interaction force gradually increases as shown in
Figs. 4(e) (ii)-(iv). A similar trend is observed for the PS sample in Figs. 4(f)-(h).

5.3.1. TIP-SAMPLE CONTACT ANALYSIS

In the experimental results shown in Fig. 4(e) and (h) the tip-sample force appears as a
clipped sine wave whose magnitude depends on the contact duration, i.e. pulse width.
The contact span in turn depends on the effective stiffness of the cantilever-sample con-
figuration. For compliant samples such as LDPE, we expect a larger contact duration
and thus a broadly distributed tip-sample force [147]. In contrast, we expect a faster in-
crease in tip-sample force on stiffer PS sample since larger forces are required to produce
a given depth of indentation in these samples [103, 147]. This results in a shorter dura-
tion of contact and thus a narrower tip-sample force waveform [71]. It is interesting to
note that our data-driven analysis captures these underlying features accurately in both
samples without any prior assumption on the nature of the interaction.
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Furthermore, by analyzing the interaction exponent of functions that describe the
indentation of the tip into the sample, we show that the interaction geometry follows
a cone indenting a flat geometry as opposed to the commonly used sphere-half-plane
model. The tip-sample interaction in dynamic AFM is mathematically described by
power-law relations [29]. In particular, several studies in contact mechanics have shown
that the indentation force and the indentation depth are linked by a nonlinear function
that depends not only on the material properties but also on the geometry of the AFM tip
and the sample being investigated. This prompted the force reconstruction techniques
in dynamic AFM to seek the instantaneous force profiles as a function of tip-sample dis-
tance in the form [29, 67, 147]

Fi nd = γδρ , (5.3)

where Fi nd is the indentation force, γ the effective stiffness, δ the indentation depth and
ρ the interaction exponent. The value of exponent ρ is assumed to be 1.5 in several tradi-
tional AFM models, e.g. Derjaguin-Muller-Toporov (DMT) [35] or the Johnson, Kendall
and Roberts (JKR) force model [34]. This value stems from the assumption of a sphere
(tip apex) interacting with a planar surface (sample). However, due to fabrication pro-
cesses, the AFM tip shape resembles more a pyramidal cone rather than a sphere. An
exponent equal to ρ = 2.0 in Eq. (5.3) provides in this case a better representation of the
interaction [33]. Nevertheless, a generalization of the exponent value is not trivial. Each
probe can be assumed unique in its own geometry, wear, and contamination status. If
the interaction ensemble does not change then the exponent ρ will be constant across
various experiments with minor changes. On the contrary, the interaction with a differ-
ent sample causes the γ coefficient to vary due to the change in the material properties.
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Figure 5: Histograms of conservative tip-sample interaction measurements on PS-LDPE sample. (a) His-
tograms of the interaction geometry for the PS (red) and LDPE (blue) domains of the sample. (b) Histograms
of the stiffness factor for the PS (red) and LDPE (blue) domains of the sample assuming the mean interaction
geometry factor of 2.27. The histograms confirm that the PS sample is stiffer than LDPE sample.

Using our machine learning approach we retrieve ρ from a library containing a col-
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lection of functions with varying exponents. Depending on the nature of interaction, our
optimization procedure automatically converges to the best value. This is further high-
lighted in Fig. 5 (a), where we plot the histogram of the exponents of the indentation
functions chosen directly by the machine learning process. The analysis shows a mean
value of ρ = 2.27±0.4 which is in excellent agreement with the values previously reported
in different studies[67, 147]. Adding to this, we extract the effective stiffness value by as-
suming an interaction exponent of 2.27 and plot the histograms for both PS and LDPE
material. The analysis shows a clear distinction in the stiffness value, where the PS ma-
terial is approximately twelve times stiffer than the LDPE material. This is in agreement
with previous measurements and in-line with the expected bulk modulus values of PS
and LDPE [66, 67, 148].

Finally, in addition to providing insight into elastic behaviour of the sample, our ma-
chine learning approach also predicts the hysteresis in the interaction force due to en-
ergy dissipation as an asymmetry in the clipped sine wave (see Figs. 4(e) and (h)). The
hysteresis is obtained in both PS and LDPE samples, but similar to previous observa-
tions [71, 147, 149], the dissipation in case of the compliant sample (LDPE) is found to
be much larger than PS. Within our function library, the dissipation is linked to δ̇lδp -
type functions where δ and δ̇ are the indentation depth and rate of indentation, re-
spectively and the coefficients l and p are material-related interaction exponents. This
suggests that the viscoelastic nature of the polymer could be a major contributor to
the energy dissipation [2, 4, 5, 8, 150]. Our analysis shows the potential of machine
learning approaches to overcome some of the inherent short comings of prior meth-
ods where complex or ad hoc models are often used to estimate elastic/viscoelastic
properties[4, 101, 121] and thus are limited in their ability to accurately represent tip
contact with softer, more adhesive and viscoelastic surfaces. In contrast to this, machine
learning algorithm can autonomously pick the best functions to represent the experi-
mental data and distil a physically interpretable model that governs the tip-sample dy-
namics.

5.4. DISCUSSION
In summary, we proposed an approach based on sparse identification of nonlinear dy-
namical systems to reconstruct the tip-sample interaction in dynamic AFM measure-
ments. We discussed the training methodology and supervision of the algorithm based
on standard AFM models, and explained the model selection criterion in the pareto
space via tuning hyper-parameters. We showed that our data-driven algorithm captures
the governing equations and the tip-sample interaction force on numerically generated
data with an accuracy of more than 90%. To highlight the utility of our approach, we also
performed several experiments on soft and stiff polymeric samples and estimated their
tip-sample force with high resolution.

The results from our data-driven analysis were inline with the findings previously
reported from AFM measurements of polymers. This further illustrates the potential of
data-driven methodologies to uncover the true physics of the tip-sample interaction in
materials at the nanoscale without any prior assumption on the mathematical models
to estimate surface forces. The results further highlight the inherent sub-microsecond
temporal resolution and nN peak loading forces expected in dynamic AFM and facil-
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itate high resolution mapping of nanomechanical properties. In addition to estimat-
ing the sample properties, by taking advantage of future generations of high-frequency
force sensors, acquisition electronics and data processing algorithms, we envision that
data science combined with machine learning techniques will uncover the true poten-
tial of dynamic AFM in understanding the physics behind transient biological processes,
developing novel feedback architectures and high-resolution dynamical force–volume
measurements at video rate.
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5.A. EXPERIMENTAL SETUP AND MEASUREMENT PROTOCOL
The experiments are performed using a commercial AFM (JPK Nanowizard) and a
multi-lock-in amplifier from Intermodulation products [22, 99] that can function as a
Field Programmable Gated Array (FPGA). The FPGA is used to collect and analyze the
cantilever deflection data. We used a commercially available rectangular Silicon can-
tilever (TAP300AL-G, Budgetsensors) and a two-component polymer blend made up of
Polystyrene (PS) and Low Density Polyethylene (LDPE) (from Bruker) to perform the ex-
periments. For each experiment, the spring constant of the cantilever (k = 20.68 N/m),
its resonance frequency ( f0 = 259.9 kHz), and quality factor (Q = 443) are determined
using the thermal calibration method [49].

The time signal of the cantilever interacting with the polymer sample is captured
by implementing a procedure which uses standard modalities available in commercial
AFM. As a first step, we perform standard dynamic spectroscopy operation at a specific
set point ratio comparable with the ratios used in normal scanning operation in dynamic
AFM. The AFM is then synchronized with the FPGA using a trigger signal to ensure a one-
to one-correlation between the time axis and the tip-sample distance measurements.
Next, the resulting change in vibrational amplitude is recorded using the built in lock-in
amplifier within the AFM and using the FPGA at 50 MHz, simultaneously. In this way,
we capture the lock-in amplitude and phase data as well as the real-time motion of the
cantilever as a function of the varying tip-sample distance.

In the next step, the experimental data obtained by the FPGA is post-processed to
align the deflection versus time signal with that of the lock-in amplitude versus tip-
sample distance signal extracted from the AFM. This step correlates to access chunks
of time data corresponding to specific tip-sample separations. Finally, the deflection
signal is de-noised and differentiated using Savitzky-Golay filter to obtain all three state
vector channels, namely acceleration, velocity, and time.

5.B. PROTOCOL FOR CHOOSING HYPER-PARAMETERS AND

CONSTRAINTS FOR THE ALGORITHM
The data-driven algorithm requires the specification of two parameters, ν and λ that
control the learning process. The parameter ν controls the strength of relaxation for the
coefficient matrix W and how closely it matches Ξ. A larger value of ν allows for larger
relaxation and vice versa. Whereas, the parameter λ controls the strength of regulariza-
tion. In our analysis we use a l0 regularization which is equivalent to hard-thresholding,
making the optimization problem non-convex. The l0 norm will threshold coefficients
below a value determined by both ν and λ. For example, if the desired threshold value is
called η then the value of λ is chosen via the relationship λ = η2/2ν [147].

We note that it is often difficult to know the desired threshold value a priori for ev-
ery AFM experiment; hence we performed extensive simulations and experiments and
based on the analysis we observed that for the best results in a dynamic AFM application,
it is a good starting point to use η = 1/Q, where, Q is the quality factor of the cantilever. By
normalizing the dynamical system with the correct length and time scales it is possible
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to make Q the smallest identifiable coefficient in the equation of motion, thus making
it the ideal candidate as a threshold parameter. Furthermore, we extend the parameter
range by allowing a tolerance of 15% and utilize the hyper-opt python package to de-
termine the best threshold coefficient that results in the smallest possible equation of
motion via cross validation.

The physics informed constraints that must be imposed to determine the governing
equations are obtained from experimental conditions. In particular, we obtain infor-
mation on the stiffness (k), quality factor (Q) and the resonance frequency ( f0) of the
cantilever directly from the experiments by performing a thermal calibration procedure
[147]. In addition to these information, a final constraint on the amplitude of excitation
is required. This is crucial for performing accurate system identification since the am-
plitude of the forcing function Fc (dither piezo based excitation) remains constant while
the cantilever approaches the sample and thus the reduction in the amplitude should be
purely attributed to the tip-sample interaction force. Therefore, a constraint on the am-
plitude of base excitation will force the algorithm to select the right nonlinear functions
that can accommodate this amplitude reduction.

We derive the constraint on Fc by performing an intermediate identification step on
what we refer to as no-interaction data. The no-interaction data are obtained far from
the sample and as the name suggests has no influence from the tip-sample forces. These
data-sets are similar to free air vibration in an experimental scenario and the interme-
diate step to identify the final constraint can be considered similar to fitting the free air
vibration data with a simple harmonic oscillator to estimate the excitation amplitude.
Based on these information, we then introduce constraints into the data-driven algo-
rithm by assuming the governing equation of the cantilever to be of the form:

ẍ +Dẋ +K x =−Ft s (z, ż)+B cos(Ωτ) ,

the constraints that must be imposed are

D =Q−1

K = k

B = Fc

(5.4)

The above constraints can be more intuitively understood by looking at the function
library below. Here for example the coefficient of function ’X’ which co-relates to the

1 X Ẋ X2 X3 ...... cos(Ωτ)

k Q− 1 Fc

deflection of the cantilever is given by stiffness ’k’, the function describing the velocity
of the cantilever (Ẋ ) has its coefficient dictated by the inverse of the quality factor (Q)
and finally the function governing the amplitude of excitation (cos(Ωτ)) by ’Fc ’. Further-
more, during the model discovery, we allow a tolerance of 15% in the aforementioned
coefficient values to account for the inconsistencies encountered in the determination
of cantilever properties via thermal calibration procedure.
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5.C. IDENTIFICATION OF TIP-SAMPLE INTERACTION IN LDPE
SAMPLE

Figure 5.C.1 reports the data-driven identification for a silicon cantilever interacting with
a LDPE sample. The presentation of the results is similar to that of Fig. 3. We acquire
a total of 50 periods of time oscillations obtained at a fixed distance of 63.1 nm from
the sample. We performed data driven analysis to identify the dynamics (Fig. 5.C.1(a))
and to capture the variation of the instantaneous tip-sample force period by period
(Fig. 5.C.1(b)).
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Figure 5.C.1: Data driven identification on Silicon cantilever interacting with LDPE sample. The experimental
deflection is obtained at a fixed tip-sample distance of 63.1 nm. (a) Identification of velocity and acceleration
state vectors from data driven model. The blue and orange curve represents the experimental and identified
state space trajectories, respectively. (b) Estimation of tip sample force from data driven model (orange) su-
perimposed on the experimental acceleration signal (blue).

5.D. ADDITIONAL DATA: ALGORITHM TRAINING
In this section we report additional results from training the data-driven algorithm.
Training data is derived from various well established AFM models with different in-
teraction physics. In particular, we utilized the following models for the training and
validation of the algorithm:

5.D.1 Derjaguin-Muller-Toporov (DMT) model1. Training outcome is shown in Fig. 1
with description of the library functions in Tab. 1

5.D.2 Lennard-Jones model.

5.D.3 DMT model with viscoelastic damping.

5.D.4 DMT model with exponential damping.

5.D.5 JKR model.
1Model employed to train the sparse identification algorithm in the main chapter
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5.D.1. DMT MODEL

The equation of motion governing the AFM dynamics with a DMT interaction model is
given by Eq. (5.5). Here, the microcantilever tip deflection towards the sample is denoted
by x and the instantaneous tip-sample distance and the indentation depth are indicated
by z and δ, respectively. It should be noted that both z and δ are functions of x. The
damping and stiffness coefficients are indicated by D and K , the amplitude of the dither
piezoelectric actuator is denoted by B . The dotted quantities represent derivatives with
respect to re-scaled time τ (τ =ω0t), whereω0 is the natural frequency of the cantilever. In
the DMT model, the tip-sample force Ft s consists of: i) long range Van der Waal’s attrac-
tive force with coefficient C1 governed by a second order inverse power law; ii) repulsive
component described by the Hertz contact force with effective stiffness governed by the
coefficient C2; iii) adhesion force given by Fa = 4πRγwith R and γ representing the AFM
tip radius and surface interaction energy, respectively. The adhesion force Fa can be re-
formulated as an attractive force such that it depends on the inter-molecular distance a0

and its strength governed by the coefficient C3. The coefficients utilized for the simula-
tions are that of reference article. [48, 99]. The results of this model are discussed in the
main chapter.

ẍ +Dẋ +K x = Ft s (z)+B cos(Ωτ)

Ft s (z) =
{

C1/z2, for z > a0

C2 (δ)3/2 −Fa , for z ≤ ā0.

Fa = 4πRγ=C3/a0
2.

(5.5)

5.D.2. LENNARD-JONES MODEL

In the Lennard-Jones (LJ) force model the tip-sample interaction is described by the con-
tinuous and smooth functions of Eq. (5.6). The tip-sample force Ft s consists of Van der
Waal’s attractive force comprising a second and a eighth order inverse power law func-
tion of the instantaneous tip-sample separation z and proportional to the coefficients C1

and C2, respectively. Additional parameters in Eq. (5.6) related to the cantilever dynam-
ics are those of Eq. (5.5) and described in Sec. 5.D.1. The coefficients for the simulations
are obtained from the reference article [47, 75].

ẍ +Dẋ +K x = Ft s (z)+B cos(Ωτ)

Ft s (z) =C1/z2 +C2/z8 .
(5.6)

Figures. 5.D.1 (a) & (b) highlight the transient and steady state dynamics as determined
by the data driven analysis. In addition to the state vectors, Figs. 5.D.1 (c) & (d) highlights
the transient and steady state tip-sample force. In either of the cases the blue and orange
colours indicate the original and identified system. Furthermore, Fig. 5.D.2 shows the
coefficients obtained from the data driven algorithm in comparison with the values used
for simulation; whereas table 5.D.1 provides an insight into the library functions used
in the simulation. It must be noted that since the model is governed by a smooth and
continuous tip-sample force with relatively simple functions, the LJ model shows the
fastest convergence rate among all the tested models.
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Figure 5.D.1: Simulations of a cantilever interacting with a sample based on LJ force model. The LJ model
parameters are tuned to induce transient and steady state dynamics in order to replicate the experiments. (a)
Transient dynamics prediction: The blue curve indicates the simulated transient phase space trajectory and
the orange curve is the prediction from the data driven model. (b) Steady state dynamics prediction: The blue
curve indicates the simulated steady state phase space trajectory and the orange curve shows prediction from
the data driven model. (c)-(d) Comparison of the tip sample force between the LJ simulation (blue) and the
data driven model (orange) for both the transient and steady state scenarios. The coefficients utilized for the
simulations are that of Rutzel et al. [47, 75]

Original coefficients Identified coefficients

x500-1

Ω

Figure 5.D.2: Coefficient matrix showing the influence of each library function on the governing equations of
LJ force model. The blue color indicates the original value of the coefficients and the orange color indicates
the coefficients as determined by the data driven model. The θi functions are detailed in Tab. 5.D.1



5

104 DATA-DRIVEN FORCE RECONSTRUCTION IN DYNAMIC ATOMIC FORCE MICROSCOPY

Table 5.D.1: Description of the nonlinear functions used in the coefficient matrix of Fig. 5.D.2.

Function ID θ1 −θ8 θ9 θ10 θ11

Function definition z−n , n=1 to 8 z1.5 z2 sin(Ωτ)

5.D.3. DMT MODEL + VISCOELASTIC DAMPING

The third stage of the training is performed employing a standard DMT model with an
additional viscoelastic term in the interaction mechanism. Viscoelasticity plays an im-
portant role in the energy dissipation mechanisms when dealing with soft samples, e.g.
polymers and biological specimens [4, 5, 7]. Identification of these dissipation mech-
anisms is crucial to understand the hysteresis observed in experiments. Equation. 5.7
describes the DMT model accounting for the viscoelastic behaviour. The basic math-
ematical model is that of Eq. (5.5), adding a viscoelastic contribution controlled by the
coefficient C3 and that depends on the rate of indentation (δ̇). Similar to the LJ model,
the amplitude of deflection is governed by x, the instantaneous tip-sample distance by
z and the indentation depth by δ. The coefficients utilized for the simulations are de-
rived from the reference articles [4, 5, 7]. Contrary to the LJ model, the DMT model with
viscoelastic terms contains both conservative and dissipative nature of interaction and
represents a closer picture to what is encountered in an experimental scenario.

ẍ +Dẋ +K x = Ft s (z, ż)+B cos(Ωτ)

Ft s (z, ż) =
{

C1/z2, for z > a0

C2 (δ)3/2 −C3

p
δδ̇−Fa , for z ≤ ā0.

Fa = 4πRγ=C4/a0
2

(5.7)

Figures. 5.D.3 (a) and (b) highlight the transient and steady state dynamics as deter-
mined by the data driven analysis. In addition, Figs. 5.D.3 (c) and (d) show the simulated
and reconstructed tip-sample force for the transient and steady state case. The coeffi-
cients extracted from the data-driven approach are compared with those of the simula-
tions in Fig. 5.D.4. The difference in the identified coefficients leads to a phase drift of
the identified trajectory and visible in Fig. 5.D.3(d). The description of the library func-
tions used in the simulation is reported in table 5.D.2. The algorithm identifies three
additional functions with respect to those in Eq. (5.7): i) θ2 = z−3, in combination with
θ1 is used by the algorithm for estimating long range attractive forces; ii) θ11 = sin(τ),
function that is similar to the excitation function cos(τ) but with a 90 deg phase differ-
ence; iii) θ10, a bridging function similar to the constant term described by Fa in Eq. (5.7).
These additional functions help to accommodate the perturbation in the dynamics due
to the presence of noise.

Table 5.D.2: Description of the nonlinear functions used in the coefficient matrix of Fig. 5.D.4.

Function ID θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 θ11

Function definition z−2 z−3 δ0.5 δ̇ δδ̇2 z0.5 ż z ż2 δ2 δ2.5 δ1.5 z−2 ∀z ≤ a0 sin(Ωτ)
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Figure 5.D.3: Simulations of a cantilever interacting with a sample based on DMT force model with additional
viscoelastic interaction. The model parameters are tuned to induce transient and steady state dynamics in
order to replicate the experiments. (a) Transient dynamics prediction: The blue curve indicates the simulated
transient phase space trajectory and the orange curve is the prediction from the data driven model. (b) Steady
state dynamics prediction: The blue curve indicates the simulated steady state phase space trajectory and the
orange curve shows prediction from the data driven model. (c)-(d) Comparison of the tip sample force between
the simulation (blue) and the data driven model (orange) for both the transient and steady state scenarios.
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Figure 5.D.4: Coefficient matrix showing the influence of each library function on the governing equations of
DMT force model with additional viscoelastic interactions. The blue color indicates the original value of the
coefficients and the orange color indicates the coefficients as determined by the data driven model.
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5.D.4. DMT + EXPONENTIAL DAMPING
This stage of the training sees the DMT model augmented with exponential damping
term in the interaction mechanism (Eq. (5.8)). The exponential damping term captures
the capillary forces, adhesion and other surface forces with certain decay length [67].
In turn they contribute to the hysteresis in the interaction. The exponential damping
term in Eq. (5.8) is governed by the coefficient C3 and depends on the instantaneous tip-
sample distance z and the instantaneous velocity ż, contributing to the non-dissipative
nature of interaction. Furthermore, in a similar fashion to the aforementioned models,
the amplitude of deflection is governed by x, the indentation depth by δ and the decay
length of the exponential damping by zβ. The coefficients utilized for the simulations
are derived from the reference articles [67].
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Figure 5.D.5: Simulations of a cantilever interacting with a sample based on DMT force model with additional
exponential damping term. The model parameters are tuned to induce transient and steady state dynamics
in order to replicate the behaviour found in experiments. (a) Transient dynamics prediction: The blue curve
indicates the simulated transient phase space trajectory and the orange curve is the prediction from the data
driven model. (b) Steady state dynamics prediction: The blue curve indicates the simulated steady state phase
space trajectory and the orange curve shows prediction from the data driven model. (c)-(d) Comparison of the
tip sample force between the simulation (blue) and the data driven model (orange) for both the transient and
steady state scenarios.

ẍ +Dẋ +K x = Ft s (z, ż)+B cos(Ωτ)

Ft s (z, ż) =
{

C1/z2 −C3 exp(z/zβ)ż, for z > a0

C2 (δ)3/2 −Fa −C3 exp(z/zβ)ż, for z ≤ ā0.

Fa = 4πRγ=C4/a0
2

(5.8)
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Figures 5.D.5 (a) and (b) illustrate the transient and steady state dynamics as deter-
mined by the data driven analysis. In addition to the state vectors, Figs. 5.D.5 (c) and (d)
report the transient and steady state tip-sample force. The coefficients obtained from the
data driven algorithm are listed in Fig. 5.D.6. The data-driven reconstruction with DMT
model and exponential damping does not highlight the phase shift of Sec. 5.D.3. The li-
brary functions used in the simulation is in Tab. 5.D.3. Again we observe three additional
functions in the identification. The functions θ2 described by z−3 and θ9 described by zż
arise due to the presence of noise. Whereas, the function θ10 acts as a bridging function
similar to the constant term described by Fa in Eq. (5.8).

Original coefficients Identified coefficients

x100

x100

x10

x10-3

Ω

Figure 5.D.6: Coefficient matrix showing the influence of each library function on the governing equations
of DMT force model with additional exponential damping. The blue color indicates the original value of the
coefficients and the orange color indicates the coefficients as determined by the data driven model. The θi
functions are detailed in Tab. 5.D.3.

Table 5.D.3: Description of the nonlinear functions used in the coefficient matrix of Fig. 5.D.6.

Function ID θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 θ11

Function definition z−2 z−3 exp(z/zβ)ż exp(z/zβ)2 ż2 z ż z ż2 δ2 δ2.5 δ1.5 z−2 ∀z ≤ a0 sin(Ωτ)

5.D.5. JKR MODEL
The last stage of the training is performed with a Johnson, Kendall and Roberts (JKR)
force model. The JKR model is particularly suited for AFM cantilever with large tip ra-
dius and large adhesion forces, which are regularly encountered in biological and soft
polymers [28]. The equation describing the tip-sample interaction is shown in Eq. (5.9).
Here, the tip-sample force Ft s consists of long range Van der Waal’s attractive force with
coefficient C1 governed by a second order inverse power law. The contact mechanics is
described by the Hertz contact force with effective stiffness governed by the coefficient
C2, and the adhesion force given by Fa similar to the DMT model used in the main chap-
ter. However, in case of JKR model the adhesion force given by Fa = 3πRγ is in general
larger in amplitude due to larger tip radius and surface energy and thus leads to larger
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dissipation and hysteresis during the pull off event. Once gain, here R and γ are the AFM
tip radius and surface interaction energy respectively. Similar to Eq. (5.7), the adhesion
force Fa translates into an attractive force that depends on the intermolecular distance
a0 and its strength governed by the coefficient C4.
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Figure 5.D.7: Simulations of a cantilever interacting with a sample based on JKR force model used in the train-
ing stage of the data driven model. The model parameters are tuned to induce transient and steady state dy-
namics in order to replicate the behaviour found in experiments. (a) Transient dynamics prediction: The blue
curve indicates the simulated transient phase space trajectory and the orange curve is the prediction from the
data driven model. (b) Steady state dynamics prediction: The blue curve indicates the simulated steady state
phase space trajectory and the orange curve shows prediction from the data driven model. (c)-(d) Comparison
of the tip sample force between the simulation (blue) and the data driven model (orange) for both the transient
and steady state scenarios. The coefficients utilized for the simulations are derived from the reference article
[8].

ẍ +Dẋ +K x = Ft s (z, ż)+B cos(Ωτ)

Ft s (z, ż) =
{

C1/z2, for z > a0

C2 (δ)3/2 −Fa , for z ≤ ā0.

Fa = 3πRγ=C4/a0
2

(5.9)

The dynamics of the system described by a JKR interaction force resembles that of the
DMT model in the main chapter as observed in Figs. 5.D.5 (a) and (b). The data driven
algorithm is able to accurately capture the governing dynamics with a small phase dif-
ference which occurs once again due to the presence of noise. The Reconstruction of
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Table 5.D.4: Description of the nonlinear functions used in the coefficient matrix of Fig. 5.D.8.

Function ID θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 θ11

Function definition z−2 z−3 δ0.5 δ̇ δδ̇2 z0.5 ż z ż2 δ2 δ2.5 δ1.5 z−2 ∀z ≤ a0 sin(Ωτ)

Original coefficients Identified coefficients
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x10

x10

x10

Ω

Figure 5.D.8: Coefficient matrix showing the influence of each library function on the governing equations of
JKR force model. The blue color indicates the original value of the coefficients and the orange color indicates
the coefficients as determined by the data driven model. The θi functions are detailed in Tab. 5.D.4.

transient and steady state tip-sample force is reported in Figs. 5.D.5 (c) and (d). Here, in
contrast to the DMT model, the presence of a larger adhesion force during the pull off
of the cantilever results in larger hysteresis as observed in Figs. 5.D.5 (c) and (d). Fur-
thermore, Fig. 5.D.8 shows the coefficients obtained from the data driven algorithm in
comparison with the values used for simulation. Due to similar nature of the functions
required to described both the JKR and DMT models, we utilize the same library used
for the DMT model in main chapter (Tab. 1) to describe the JKR force interactions as
well which highlights the interchangeability and universal nature of the technique.
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OUTLOOK

In this chapter, I present some of the on-going research directions that are unpublished. I
begin with an identification technique based on Kelvin probe microscopy to characterize
the tip radius and then discuss how VdW forces can be used to probe Hamaker constant
of materials. Next, I highlight the possibility of extending the data driven analysis for
extracting viscoelastic response of soft matter and finally, discuss how neural networks
can be used to identify mode coupling in dynamic AFM.
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6.1. TIP MONITORING THROUGH ELECTROSTATIC FORCES
Accurate quantification of the AFM probe geometry is crucial for characterizing the
nano-mechanical properties of samples. However, identifying the probe radius and ge-
ometry from experimental observables is far from trivial. Previous studies in this direc-
tion have made use of methods where an scanning electron microscope (SEM) is used to
take an image of the AFM tip or an AFM tip is used to scan a sample with specific features
to estimate the tip radius [151–154]. However, these techniques are time consuming and
often destructive, since the wear on the tip can increase during the scan or a carbon con-
tamination in the SEM can skew the estimated tip radius value. On the other hand there
are in situ nonlinear dynamic techniques which rely on the experimental observables to
characterize the tip radius [80, 149]. However, they require good understanding of the
cantilever nonlinear dynamics as these techniques rely on operating the AFM in the bi-
stable regime and monitoring the change in strength of the attractive force caused by tip
wear[149].

Here, we present an alternative in situ methodology based on Kelvin Probe Force Mi-
croscopy (KPFM) to probe tip shape geometry and wear during AFM operation. KPFM
is a non-contact variant of conventional AFM that measures the contact potential dif-
ference (CPD) between the tip and the sample. The non-contact aspect of the method
results in a non-destructive estimation of the tip radius.

6.1.1. NUMERICAL MODELING
In order to probe the electrostatic interaction between the probe and the sample, we
model the cantilever as a Single Degree of Freedom (SDOF) system under electrostatic
excitation as follows

1

ω2
0

ẍ + 1

Qω0
ẋ +x = 1

k
Fe(z, t ). (6.1)

Here, x represents the deflection of the cantilever, ω0 = 2π f0 is the resonance fre-
quency of the fundamental mode, k denotes the stiffness of the cantilever, Q represents
the quality factor and Fe corresponds to the excitation force. The major difference be-
tween Eq. (6.1) and that of models introduced in the previous studies is the absence of
other nanomechanical forces such as repulsive or VdW forces which would make the
analysis much more complicated. In contrast to this, here the only nonlinear force act-
ing between the tip and the sample is modelled with the following expression

Fe (z, t ) =−1

2

dC

d z

(
(Vs −VDC )2 + 1

2
V 2

AC

)
+dC

d z
(Vs−VDC )VAC sin(ωe t )+ 1

4

dC

d z
V 2

AC cos(2ωe t ),

(6.2)
where, Vs , VAC and VDC are the sample voltage, AC voltage and DC voltage applied

to the cantilever, respectively. Additionally, dC /d z is the capacitance gradient which is
a function of geometry of the cantilever as well as the tip-sample distance (z), and ωe is
the electrical excitation frequency. From Eq.(6.2), we can divide the contribution of the
electrostatic force into three categories at three different frequencies i.e at ω = 0, ωe and
2ωe , respectively. Thus a lock-in amplifier can be used at eitherωe or 2ωe to monitor the
change in amplitude and phase of the signal under the influence of electrostatic inter-
actions; however, by exciting the cantilever electrically with a frequency close to its first
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resonance frequency i.e ωe = ω0, we can exploit the resonance gain to enhance the SNR
and therefore ω0 is the ideal frequency at which the tip radius can be estimated.

Furthermore, to link the tip radius to the experimental lock-in amplitude channel,
we solve Eq. (6.1) using the method of averaging technique to obtain an expression for
the slow amplitude Aωe as follows:

Aωe =
dC

d z

VAC

k
Q(Vs −VDC ). (6.3)

Although Eq. (6.3) doesn’t appear to have a direct dependency on the tip radius, this
dependency is embedded indirectly in the term dC /d z via the expression

dC

d z
= dC

d zt i p
+ dC

d zcone
+ dC

d zlever

dC

d z
=−2πϵ

R2

z2 +Rz
− −8πϵ

( 2Hc tan2( θ2 )
R + sin( θ2 )

)
(π−θ)2

− 4ϵLw tan2( θt
2 )

Hcθ
2
t (Hc +2L tan( θt

2 ))
.

(6.4)

Here, the overall capacitance gradient (dC /d z) can be divided into three parts based
on the tip-apex, tip-cone and the lever part of the cantilever. The detailed derivation of
the expression for each of these parts can be obtained from [155]. In Eq. (6.4), ϵ repre-
sents the absolute permittivity constant, z is the instantaneous tip-sample gap, R is the
radius of the AFM probe, Hc is the height of the tip-cone, θ is the cone angle, L and w
are the length and width of the cantilever, and finally, θt is the tilt angle of the cantilever.
It must be noted that the values for the above constants can be easily obtained from the
cantilever specification sheet provided by the manufacturer.

In this work, we make use of the entire expression shown in Eq. (6.4) for identifica-
tion. However, the contributions from the cone and the lever remain almost constant at
small z values [155] which leads to a simplified expression for the capacitance gradient
as follows

dC

d z
=−2πϵ

R2

z2 +Rz
+ const ant . (6.5)

The above simplified expression can be combined with experiments at small tip-
sample gaps to obtain a faster in-situ identification of tip radius. However, the exper-
iments must be done with care, since the cantilever is electrically excited they have
smaller amplitudes of oscillation and this could easily result in snap-into contact phe-
nomena. Furthermore, at room temperature the SNR can be low due to the presence of
humidity and the influence of water layer between the tip and the sample.

6.1.2. EXPERIMENTAL METHODS AND DISCUSSION
In order to estimate the tip radius, we have implemented a procedure where standard
AFM modalities is used to extract the experimental observables. As a first step, the can-
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Figure 1: Identification of probe radius from electrostatic response of the cantilever. (a) The cantilever is elec-
trically excited at resonance and modulated with DC voltage at a specific tip-sample gap (z) of 28 nm. The
resulting deflection amplitude Aωe variation as a function of DC voltage VDC (orange) is fitted (blue) with
Eq. (6.3) to extract the value of Vbi as and capacitance gradient dC /d z. (b) The experimental dC /d z values
(orange) obtained at different tip-sample distances are fitted with Eq. (6.4) to extract the AFM tip radius.

R = 19.05 nm 

50 nm

Figure 2: AFM tip radius estimation using SEM image. The image is obtained at a tilt of 30 degrees. The value
extracted from the SEM is used as a benchmark to compare the value estimated from KPFM technique.
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tilever and the sample are connected to ground to ensure the only difference in electri-
cal potential comes from the CPD between the materials. Next, a force distance curve is
used to statically approach the sample at a fixed distance "z" from the sample. Then, the
cantilever is electrically excited at the first mechanical resonance frequency (ω0) with a
voltage of "VAC " and simultaneously the DC voltage "VDC " is modulated. The modu-
lation causes the lock-in amplitude (Aωe ) at frequency "ωe = ω0" to reach a minimum
and traces a V-shaped curve as shown in Fig. 1(a). The characteristic minimum in the
V-shaped curve indicates the bias voltage required to nullify the electrostatic forces be-
tween the tip and the cantilever i.e Vbi as =Vs - VDC . Additionally, the slope of the result-
ing Aωe versus VDC curve provides information about the capacitance gradient which
in turn holds information about the cantilever geometry including the tip radius (see
Eq.(6.4)). The above procedure is repeated at different tip-sample gaps to average piezo
drift and noise within the measurements as shown in Fig. 1(b). Finally, the tip radius is
estimated from the experimental measurements by fitting Eq. (6.4) resulting in a value
approximately equal to 16.21 ± 0.72 nm.

Next, in order to verify this value, the probe is imaged using a high resolution SEM
as shown in Fig. 2. From the SEM image a tip radius of 19.05 ± 0.285 nm is estimated.
The discrepancy between the SEM and the identified radius value can be attributed to
trapped charges on the sample, presence of intermediate water layer in ambient condi-
tions as well as the influence of other long range forces. However, some of these prob-
lems such as water layer can be mitigated to a certain extent by using a controlled en-
vironment chamber and using dry nitrogen; whereas, trapped local charges can be mit-
igated by performing multiple experiments at several different locations on the sample
and average the data to minimize the impact. Additional details regarding the experi-
ments, modelling and data analysis techniques can be found in [156].

6.2. ESTIMATION OF HAMAKER CONSTANT USING SOFTENING

NONLINEAR RESPONSE OF AFM
In chapter 2 we discussed the improvement of SNR in higher harmonics by studying
the nonlinear frequency response of the cantilever interacting with the sample. In this
work, we exploit the dependency between the model coefficients and specific features
in the nonlinear frequency response to identify the Hamaker constant of the sample.
The Hamaker constant is a key parameter that measures the strength of VdW forces be-
tween two materials. Characterizing the VdW forces is key in understanding nanoscale
phenomena such as surface adhesion [157, 158], wetting behaviour [159], colloidal and
emulsion stability [160], stiction and friction [158].

Traditionally, the Hamaker constant is estimated by Lifshitz theory [30] but measur-
ing the same experimentally is far from trivial. Although, some of the previous studies
have employed quasi-static and quasi-dynamic methods to measure the Hamaker con-
stant, they are more prone to instabilities such as snap-in contact and are thus difficult to
control [161, 162]. Since, the VdW force is strongest at few tens of nanometers from the
sample surface, additional surface effects such a capillary, magnetic and electrostatic
forces often distort the results. Other techniques which rely on higher harmonics are
almost impossible to employ in day to day studies since VdW forces barely excite any
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higher harmonics above the noise floor [163]. Hence, in this work we use nonlinear fre-
quency response of the cantilever together with an analytical model for characterizing
the Hamaker constant.

6.2.1. NUMERICAL MODELING
In order to probe the VdW interaction between the tip and the sample, we model the
cantilever probe as a Single Degree of Freedom (SDOF) system with base excitation as
follows

ẍ + 1

Q
ẋ +x = Ω

2Y

k
cos(Ωτ+φ)+Fvd w . (6.6)

Here, x represents the normalized deflection of the cantilever (x=x∗/η, where η is
the static equilibrium gap width). In addition, Ω=ω/ω0 is the normalized excitation fre-
quency and ω0 = 2π f0 is the fundamental frequency of the free microcantilever in the
absence of tip-sample interaction forces; whereas ω is the excitation frequency. Q rep-
resents the quality factor and the amplitude of the dither piezoelectric actuator is de-
noted by Y . The dotted quantities represent derivatives with respect to rescaled time τ
(τ=ω0t ). Finally, Fvd w is the nonlinear tip-sample interaction force defined as

Fvd w (z, t ) =− HR3

z2(2R + z)2 , (6.7)

where, H is the Hamaker constant, R is the tip radius and z is the tip-sample gap.
Similar to the previous section, Eq. (6.6) is solved using the method of averaging to obtain
the slow varying expressions for both the amplitude (A) and phase (φ) of the cantilever
as a function of excitation frequency. These expressions are defined as follows

Ω= 1± 1

2

√( Y η

kz A

)2 − ( 1

A

)2 − I (A,η,R,k)H

where,

I (A,η,R,k) = 1

6kr 2z3

[
(1− (A/η)2)η4 +8R3z +12R2z2 + (6− (A/η)2)Rz3

(4R2 +4Rz + (1− (A/η)2)η2)(3/2)

]
+

1

6kr 2z3

[
(A/η)2(R +η)−η
(1− (A/η)2)(3/2)

]
.

(6.8)

Ω= 1± 1

2Q tan(φ)
−G(R,k,η,Y ,Q,φ)H

where,

G(R,k,η,Y ,Q,φ) = k2

6F 2Q2 sin2(φ)

[
Y 2Q2(R +η)sin2(φ)−k2η3

(k2η2 −Y 2Q2 sin2(φ))(3/2)

]
+ k2

6F 2Q2 sin2(φ)[
Y 2Q2(R +η)cos2(φ)−Y 2Q2(R +η)+k2(2R +η)3

(Y 2Q2 cos2(φ)−Y 2Q2 +k2(2R +η)2)(3/2)

]
.

(6.9)
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Here, I(A,η,R,k) and G(R,k,η,Y,Q,φ) are nonlinear functions that capture the effect
of VdW forces (detailed derivation can be found in [156]); whereas, the remaining ex-
pression within the equations capture the amplitude and phase coming from the dither
piezo excitation. Finally, in order to extract the Hamaker constant of the sample, an op-
timization routine is developed using Eqs. (6.8) and (6.9) to fit the experimental data as
described in the next section.
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Figure 3: Identification of Hamaker constant from the softening response of the cantilever due to VdW forces.
(a) Experimental frequency response of the cantilever (yellow) and the corresponding fit (blue) from Eq. (6.8).
(b) Experimental phase response (red) as a function of frequency and the corresponding fit (blue) from
Eq. (6.9).

6.2.2. EXPERIMENTAL RESULTS AND DISCUSSION
The experimental procedure to obtain the nonlinear frequency response is similar to
the one described in section. 3.1 of chapter 3. Figure. 3 shows an experimental fre-
quency response curve with amplitude (yellow) and phase data (red). Furthermore,
the corresponding analytical fit from Eqs. (6.8) and (6.9) are highlighted in blue lines.
The experiment is performed with a silicon cantilever with platinum conductive coat-
ing (TAP190ALG, budget sensors) on HOPG sample. Additionally, the AFM tip radius
R=20 ± 0.31 nm is measured using SEM, and the stiffness k=4.5 N/m, Q= 300.98, and
f0=135.34 kHz is measured using thermal calibration [49].

Since HOPG is susceptible to influence from electrostatic forces, the previously dis-
cussed methodology from section. 6.1 is employed to nullify the electric field between
the tip and the sample before obtaining the frequency response curve. The extracted
Hamaker constant value from the experimental data is 30×10−19 J which is order of mag-
nitude different from the literature value is 4×10−19 J [29, 30]. We postulate several rea-
sons to this observed discrepancy such as the drift from the piezo, the influence of water
layer at ambient conditions, the influence of electrostatic and other long range forces
coming from the cone and lever of the mechanical transducer as crosstalk signals, and
finally, the optical lever sensitivity which has an inherent error depending on the length
of the cantilever [122, 164]. Nevertheless, the technique shows potential for robust iden-
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tification; however, the practical limitations of experiments have to be efficiently tackled
to make the technique useful for AFM applications.

6.3. MACHINE LEARNING BASED IDENTIFICATION TECH-
NIQUES FOR DYNAMIC AFM

In chapter 5, we looked into a novel identification technique that combines data sci-
ence and machine learning with experimental observables of dynamic AFM to obtain
not only the governing equations of motion but also obtain the tip-sample interaction
force. Similarly, here we discuss some of the possible applications of data driven algo-
rithms in dynamic AFM.

6.3.1. CHARACTERIZATION OF VISCOELASTIC RESPONSE OF SOFT MATTER

USING DATA DRIVEN ANALYSIS

Chapter 4 highlighted the growing interest in the scientific community to understand
nanoscale viscoelastic effects and the need for developing computational models that
can exploit the vast number of experimental observables for accurate viscoelastic char-
acterization. In this regard, data driven algorithms provide the necessary tools required
to investigate and characterize nanoscale viscoelastic properties in dynamic AFM ap-
plications. For example, one of the limiting factors of using self-consistent viscoelastic
models is that they require higher computational time (see chapter 4). This limitation is
primarily due to the fact that these models need to know a-priori the tip’s trajectory and
its history. However, such a limitation can be easily overcome by using data driven anal-
ysis since it predicts the temporal motion of the cantilever in real time. Next, the data
driven techniques can correlate the various functions within the library to their underly-
ing physical mechanisms. This was highlighted in chapter 5, where we showed that cer-
tain functions such as indentation and rate of indentation have larger coefficients when
probing softer polymeric samples and are the result of viscoelastic dissipative effects.

In addition to above, the sparse identification technique can be easily modified to
incorporate parameterized library functions and forcing functions. This allows the func-
tions to be not only dependent on the tip-sample gap but also on inter-atomic distance,
surface relaxation times among others. This enhanced functional library has the po-
tential to capture the actual physical phenomena behind the instrument’s observables
without any approximation or linearisation of the phenomena. This improved library
combined with a robust optimization routine can provide the means to probe viscoelas-
tic properties from real time interaction data in dynamic AFM.

6.3.2. IDENTIFICATION OF INTER-MODAL COUPLING IN DYNAMIC AFM US-
ING NEURAL NETWORKS

In chapter 3, we discussed the importance of mode-coupling for dynamic AFM and
how internal resonance based cantilevers have demonstrated a strong SNR of higher
harmonics for tip-sample force reconstruction. Outside of AFM, mode coupling finds
applications in various micro and nanomechanical systems [165] from improving the
accuracy of mass sensing devices [166–168], reducing phase noise in micromechanical
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resonators [169–171] to encoding quantum information by confining light to a quantum
state [172]. In each of these cases, the temporal data of the cantilever such as deflection
and velocity posses specific features coded on to their trajectories that indicate inter-
modal coupling. This was highlighted in chapter 3, where we proposed phase space tra-
jectory as the method of choice to visualize the presence of mode-coupling in dynamic
AFM.

However, mode-coupling in nanomechanical systems has numerous origins [105,
173–177] and is often difficult to attribute it to a specific physical mechanism via tra-
ditional modelling approach. In this regard, an effective strategy would be employing
machine learning to solve the problem. Since data driven models have revolutionized
the analysis and understanding of complex data, recognizing patterns, and developing
classifications based on multimodal datasets [178–183], it is best suited for parsing large
amounts of temporal data in order to identify mode-coupling phenomena and its un-
derlying physics. In this work, we demonstrate the capability of one such data driven
algorithm namely, quasi recurrent neural networks to identify the mode-coupling phe-
nomena in dynamic AFM. We highlight some of our first results in the following section.
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Figure 4: Experimental frequency response curve obtained with raw deflection signal of the cantilever on Mica
sample. The frequency range is divided into three regions depending on the number of higher order eigen-
modes contributing to the overall cantilever oscillations.

6.3.3. METHODS AND RESULTS
The quasi recurrent neural networks (QRNN) is a powerful tool for modelling sequen-
tial data and have been proven to be efficient in untangling complex dynamics behind
structures by studying the time data [184, 185]. Furthermore, the hidden units of QRNN
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provide interpretable information that can be distilled to understand the physics behind
the data. This capability is well suited to identify the coupling mechanism between the
fundamental mode and higher order modes of the cantilever in a dynamic AFM appli-
cation. It must be noted that in this section we only highlight some of the preliminary
results obtained through this technique; whereas, all the intricate details regarding the
QRNN deployment and algorithm can be found in the works of Bradbury et al [186].

Figure. 4 shows the experimental frequency response curve obtained with a standard
tapping mode cantilever made of silicon (NCLR, Nanoworld) on Mica sample. The ex-
perimental data is obtained in a similar fashion to the data showcased in chapter 3 i.e
by making use of nonlinear frequency sweeps. Through this method, the tip-sample dis-
tance at which the nonlinear frequency sweeps are obtained can be carefully controlled
which in turn allows to obtain several data sets with varying degrees of tip-sample inter-
action. The multiple data sets facilitate an efficient training of the neural network; since,
they capture different degrees of distortion within the time data due to mode coupling.

A second way to induce mode-coupling is by tuning the excitation frequency to
the sweet spot frequency range as discussed in chapter 3 and this tuning is inherently
present in frequency sweeps. This will further allow the trained network to track the
change in coupling strength as a function of drive frequency. Furthermore, each fre-
quency sweep is made up of 501 frequency points and is considered as a single data set.
Additionally, each frequency point contains temporal data made up of 50000 data points
obtained at 250MHz sampling rate. The first 20000 time steps are used for training the
algorithm; whereas the rest are used to perform cross validation and model prediction.
This step is then repeated for every frequency point and for multiple data sets which are
obtained at different points on the sample and with different tip-sample distances. Thus
the above approach covers a whole spectrum of possible tip-sample interactions with
varying degrees of contribution from the higher order modes and is ideal for training the
QRNN algorithm.

Figure. 5 shows the identification of deflection time series (orange) and phase space
orbits (red) by the trained network (blue) at different excitation frequencies. QRNN
shows remarkably accurate representation of the underlying dynamics considering that
no mathematical model nor prior knowledge of the underlying physics was used to teach
the network. Additionally, it must be noted that, once the network is fully trained, only
the input highlighted in black curve (approximately 1500 time steps) in Figs. 5(a), (c)
and (e) which corresponds to just one period of oscillation is sufficient for the network
to identify the underlying dynamics. This further highlights the utility of the technique
to predict the dynamics of AFM in real time.

Furthermore, the network is capable of reconstructing the dynamics with varying de-
grees of tip-sample interaction strength as seen in Figs. 5(b), (d) and (f). For example, in
Fig. 5(a) and (b) at excitation frequency of 164.175 kHz, the cantilever is essentially free
from any repulsive tip-sample interaction and only experiences weak long range attrac-
tive forces and the phase space orbit is circular representing a simple harmonic motion.
Whereas, in Fig. 5 (e) and (f), repulsive interactions kick in and the phase space is warped
showing high degree of contributions from the higher order modes in the deflection sig-
nal. In both of these cases, the network can accurately identify the varying contributions
from the higher order modes and reconstruct the cantilever dynamics efficiently.
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Figure 5: QRNN prediction of the AFM nonlinear oscillations and the evolution of the orbits as a function of ex-
citation frequency. The experimental cantilever oscillations and the corresponding phase orbits are indicated
by the orange and red curves, respectively. The fit from neural network is indicated by blue curves. Addi-
tionally, the single cycle input to the neural network is indicated by black curve. (a)-(b) The oscillations at a
frequency of 164.175 kHz show a weak interaction force between the tip and the sample. This is highlighted by
the circular experimental phase space orbit (red) and its corresponding prediction by neural network (blue).
(c)-(d) The oscillations at a frequency of 166.976 kHz show a moderate interaction force between the tip and
the sample. This is highlighted by the warping of the experimental phase space orbit (red) and its correspond-
ing prediction by neural network (blue). The warping is caused by an increased contribution of the second
mode to the overall cantilever oscillations. (e)-(f) The oscillations at a frequency of 169.356 kHz show high
interaction force between the tip and the sample. This is highlighted by a highly warped experimental phase
space orbit (red) and its corresponding prediction by neural network (blue).
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In addition to reconstructing the dynamics of the cantilever under varying tip-
sample strengths, the QRNN network can also distinguish the contribution of different
modes in the cantilever oscillations. An example of this is shown in Fig. 6, where we
show 3 out of 350 different hidden units that are activated at different frequency ranges.
By comparing this activation with the original experimental frequency response curve
in Fig. 4, we see that the contribution of hidden unit 36 and 135 slowly increases with
increasing excitation frequency; whereas, the hidden unit 341 has a particular peak in a
specific frequency range which we referred to as the sweet spot in chapter 3. This indi-
cates that, the hidden unit 341 is following the activation of third mode of the cantilever
and tracks its contribution to the overall cantilever oscillations; whereas, the units 36
and 135 are indicative of the second mode. This behaviour is in line with the results
discussed in chapter 3.

Although, the data driven algorithm shows potential in identifying mode coupling in
dynamic AFM; further experiments with different tip-sample configurations are neces-
sary to fully explore its capability. Nevertheless, the approach has shown that the data
driven analysis is capable of uncovering hidden dynamics of nanomechanical systems
without any prior knowledge of the underlying physics which could prove instrumental
in probing certain mode interactions in other complex NEMS and MEMS devices.
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CONCLUSIONS AND

RECOMMENDATIONS

In this chapter, a brief summary and relevant conclusions derived from the performed re-
search are presented. Furthermore, reflections on the limitations of the chosen approaches
and recommendations for continuation on basis of this research are discussed.
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7.0.1. OVERVIEW AND CONCLUSIONS

The main goal of this research was to exploit the nonlinear dynamical behaviour of the
cantilever in TM-AFM and develop novel identification techniques for material char-
acterization. The techniques developed in this thesis have taken the AFM community
a step closer in identifying the nanomechanical properties with an increased accuracy.
In this section, I briefly summarize the main findings of each chapter and highlight the
potential impact of the research on future applications in dynamic AFM.

Intuitively, we started by first investigating the global nonlinear dynamics of TM-
AFM and the robustness of attractors in chapter 2. We showed that in addition to the
well known bi-stable solutions of TM-AFM, there exists another possible state of mo-
tion close to the sample characterized by small amplitude of deflection. This previously
unknown state of motion was referred to as "in-contact" attractor in this thesis. Interest-
ingly, during the parametric study of in-contact attractor it was found that there exists
a critical threshold value of AFM tip radius below which the in-contact attractor doesn’t
exist. We highlighted this using basins of attraction and tracking the evolution of in-
contact attractor as a function of tip radius. Furthermore, we showed that by operating
the cantilever close to the sample with a small amplitude of oscillation; one can obtain
high resolution images, better stability as well as lower tip wear. Additionally, the feed-
back instabilities caused by switching between repulsive and attractive regimes can be
avoided by operating the cantilever in the in-contact regime [187–189].

Next, we highlighted the utility of bifurcation diagrams and nonlinear frequency re-
sponse curves to map the appearance and disappearance of several stable oscillatory
motions in TM-AFM. Moreover, the robustness of these oscillatory motions and their
corresponding attractors to external perturbations were studied using local integrity
measures (LIM) and integrity factor (IF). We showed that these nonlinear dynamical
tools not only help in identifying the dynamical scenario under which the system is ren-
dered unfit for use, but can also provide details on new routes to crisis and escape scenar-
ios which could lead to chaos and be detrimental to AFM operation [91, 107, 190, 191].
Hence, based on the aforementioned results we see that such fundamental studies are
required to not only understand some of the underlying mechanisms affecting the per-
formance of the AFM; but also to help identify which specific nonlinear dynamical tool
can be used to understand and solve some of the practical issues such as feedback insta-
bilities, chaotic motion or amplitude jumps that are regularly observed when operating
an AFM.

The insights derived from studying the global dynamics of TM-AFM were exploited
in chapter 3 to develop a novel methodology to boost the signal to noise ratio (SNR) of
higher harmonics. In this chapter, we showed that by actively detuning the drive fre-
quency of the cantilever to a specific excitation range, one can induce strong modal in-
teractions between the eigenmodes of the cantilever. In particular, we made use of in-
ternal resonance phenomena between the first three eigenmodes of the cantilever and
improved the SNR of the 6th and 17th harmonics by 7 and 16 folds, respectively. Tra-
ditionally, such improvements in SNR had stemmed from geometrical modification of
the AFM probe [53–56]. In contrast to this, here we highlighted the importance of un-
derstanding the nonlinear dynamical behaviour of the AFM probe under the influence
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of the tip-sample forces and how we can exploit these nonlinear phenomena for signal
amplification. Moreover, mode coupling also has additional benefits such as lowered
sample indentation due to phase synchronization between the interacting modes. This
lowered indentation reduces the peak repulsive forces exerted by the cantilever on to the
sample thus minimizing sample damage.

In addition to above, we showed that such a nonlinear dynamical study is not just
limited to parameter identification but can also be used to construct tools for visual in-
spection. We illustrated this by highlighting how the phase-space orbit can be utilized for
visualization of mode-coupling. Finally, we corroborated the experimental results using
a computational model comprising of Multiple-Degrees of Freedom (MDOF) and non-
smooth nonlinear interactions between the tip and the sample. The model reinforces
the idea of mode coupling as the physics behind the observed increase in the amplitude
of higher harmonics as well as the associated lower sample indentation. We believe that
this work will enable efficient characterization of nanomechanical properties of organic
and inorganic samples using multi-frequency AFM techniques.

In chapter 4, we studied the influence of experimental observables on the identified
viscoelastic parameters. In particular, we looked into viscoelastic response of a soft PS-
LDPE polymer blend sample using the moving surface model and IM-AFM technique.
The detailed analysis revealed that the surface viscoelastic response obtained from the
model is often non-physical and dominated by only those parameters which can be at-
tributed to the bulk viscoelastic properties of the sample. We attributed this finding to
the non-convexity and flat topological landscape of the objective function with respect
to the sample’s surface viscoelastic parameters. We further reinforced this hypothesis by
performing a large number of simulations using both local gradient-based and heuristic
based global optimization techniques.

To remedy this, we introduced a simplified model with only three bulk parameters
that were deemed important from the previous statistical analysis. In addition to this,
we introduced a numerical framework wherein an initial point selection criteria was in-
troduced to ensure that the optimization routine leads to consistent results. The results
obtained from this procedure were in excellent agreement with the values previously
reported in the literature. This work highlights the importance of testing the depen-
dency of instrument’s observables on the model’s viscoelastic response before attempt-
ing nanomechanical characterization. Additionally, the work also sheds light on the
need to develop novel numerical models that can take advantage of the large number
of experimental observables available in multi-frequency AFM to truly probe the surface
dynamics of the sample.

Some of the aforementioned limitations is addressed in chapter 5 by moving away
from traditional AFM models and brute force fitting techniques in favour of machine
learning and data science based approaches for dynamic AFM applications. We showed
that by using sparse identification technique [73, 138–142] combined with symbolic re-
gression [72, 74] the nanoscale interaction forces in dynamic AFM measurements can
be easily identified. The machine learning algorithm not only identifies the interaction
force with a sub-microsecond resolution but also determines the underlying governing
equation of motion of the AFM cantilever. This governing equation is often crucial for
untangling the hidden physical mechanisms responsible for the observed tip-sample in-
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teraction.

In addition to above, we also discussed in detail the training methodology and su-
pervision of the algorithm based on standard AFM models, and explained the model se-
lection criterion in the pareto space by tuning hyper-parameters. Finally, we showed the
usefulness of the approach by performing experiments on polymer blend of PS-LDPE
materials and estimating their nanoscale interaction forces.

The experimental results obtained in our study was inline with the values previously
reported in the AFM measurements of polymers which further reinforced the capabil-
ity of the proposed approach. Since, accurate measurement of tip-sample force is cen-
tral to many AFM applications, we believe that data science combined with machine
learning will ease the difficulty of reconstructing the tip-sample force in dynamic AFM.
Furthermore, the use of machine learning algorithms to study the nano-scale interac-
tions in dynamic AFM circumvents the problems previously reported in literature such
as the requirements of high number of harmonics [54] , measuring experimental transfer
function [71] and inability to follow changes in tip-sample forces under fast time scales
[66–69]. Thus the proposed approach is of importance when studying transient biologi-
cal processes or chemical reactions as well as obtaining high resolution dynamical force
volume measurements.

Finally, a detailed overview of possible research directions based on preliminary in-
vestigation carried out during the course of this thesis is presented in chapter 6. In par-
ticular, we discussed a methodology to monitor the AFM probe radius via electrostatic
forces. We further discussed in detail the experimental procedure to obtain the dynam-
ical response of the cantilever as a function of bias voltage and fitted the experimental
data with a SDOF model. An SEM image was used to corroborate the results obtained
from KPFM technique. Although the method was found promising, including a more
accurate capacitance model and streamlining the experimental procedure can enhance
the accuracy of the characterization.

Next, we proposed an identification technique to extract the Hamaker constant of
the sample through the nonlinear frequency response curves. We showed through both
experiments and simulations that the cantilever exhibits softening response under the
influence of VdW forces and this softening response is directly proportional to the non-
linear forces existing between the tip and the sample. Furthermore, the proposed model
based on method of averaging provides expressions for amplitude and phase of the can-
tilever response which can be combined with optimization algorithms to develop a au-
tomated and fast fitting procedure.

I finalized the research outlook by looking at possibilities of incorporating machine
learning and data driven analysis to improve dynamic AFM capabilities. In particular,
I discussed the opportunities in extracting the viscoelastic properties of the sample by
combining self consistent models together with data driven analysis. Finally, I high-
lighted some results where neural networks can be trained on experimental data alone
without any prior knowledge of the physics to determine the presence of mode cou-
pling. This method can be easily extended to other nanomechanical systems to deter-
mine complex nonlinear phenomena such as internal resonance, quasi-periodic motion
and chaotic behaviour.

In conclusion, I believe that the approaches and ideas discussed in this thesis will
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offer insight and inspire the scientific community to develop novel concepts and identi-
fication techniques that can tackle the future challenges in nanoscale characterization.
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membranes, machine learning and AFM but even more so our social and cultural topics
like ‘how to raise kids to be independent’ and ‘how you need to be a little eccentric and
quirky to be a professor’. During my time at PME, I have seen you grow our DMN group
into an excellent research group with diverse disciplines. I am convinced that under
your leadership and vision our group will reach newer heights in the coming years and
no matter where I am, I will always be proud that I was part of the DMN group.

Pierpaolo, you were my mentor and buddy who taught me a lot in nonlinear dy-
namics and coached me in the ways of academia. Everyone knows you are an amazing
researcher but what is even more amazing is the kind human being you are. I have per-
sonally seen the dedication, passion and the kindness you would show when it came to
teaching students irrespective of how overloaded you were with your own work. If there
is one person who should be in academia, I firmly believe it to be you because with you
as a teacher the future of the next generation of students is secure. I cannot count the
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number of times you have helped me debug my codes and the number of time you lis-
tened to me complain, you have been there to console me and guide me on the right
path but also share the pain of getting rejected by journals we were so hopeful for. I am
extremely happy that I started my PhD under your wing and together with Banafsheh
you both postdocs raised the bar so high that in pursuit of it I became a much better
researcher so, thanks for that. However, I still hold you responsible for my cryptic coding
skills..like master the student right? I still can’t decipher what we did in the mathematica
code for the cluster but hey! it works, so I follow your advice here: ‘if it ain’t broke don’t
fix it’.

I can go on and on about our adventures in PME, from late night work to early morn-
ing white board discussions, from politics of academia to discussing ‘one piece’ manga
that your kids love so much. I have seen your highs and lows, but no matter what, the
passion you had for research and teaching never waned. I am happy that you got a posi-
tion closer to your family back in Italy, you deserved it. I have no doubt that you will only
see new heights in your career (Gomu Gomu no Roketto!) and nurture younger genera-
tion of students towards a brighter future. It was truly an honor working with you and
sharing all those experiences. Without you, I wouldn’t have made it to the stage I am
currently and I am grateful that I had you as my colleague, mentor and friend during my
doctoral journey.

Next I would like to thank the user committee members of the NICE TIP TAP project
Paul, Richard, Patrick, Jordi, Edin, and Anne. Thank you all for spending your time and
energy to make sure the project deliverables remained relevant to the current industry
requirements and standards. It was thanks to your efforts that the project was a success.

Next are the faculty of PME department who have supported me during my PhD. Mu-
rali, thanks for all the advice on how to supervise master students and the discussions
about the AFM application in mechano-biology. Also, thanks a lot for getting the super
expensive JPK AFM, without this equipment I would have had a lot more tough time with
my research. Alejandro, thanks for collaborating on our viscoelasticity project, your in-
sights helped a lot in streamlining the project and obtain interesting results. Also, I’m a
big fan of your jokes, i find them really funny, It was always fun to have discussions with
you. Gerard, thanks for collaborating on the Hamaker constant and KPFM project. I was
so happy to be able to have one more person in the department with whom I could dis-
cuss nitty gritty technical details of AFM. You always had the most critical and technical
questions during the project and it was a pleasure working with you.

Finally, Miguel, thanks for collaborating with us on the machine learning project. I
learnt about the vast number of applications possible with machine learning and arti-
ficial intelligence and I am convinced that one way or another every one’s life will be
intertwined with AI in future. Thanks to your insights and guidance I was able to pub-
lish my article and also learn about ML which proved to be quite useful during my job
hunts. I wish you all success and hope you all get lots of funding to keep churning out
the amazing research and foster the future generations of PhD’s within the department.

The next group of people I want to thank are the ones who are mandatory for ev-
ery PhD to taste success. These are my faculty’s technical support staff, Rob, Bradley,
Gideon, Patrick and Spiridon, I can’t thank you guys enough for sticking with my crazy
requests for the last 4 years. I have probably dropped by your offices more than I did to
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my supervisors. You all have been extremely supportive both in making changes to my
experimental setup and also to order parts. Without you guys I am sure I would have
struggled a lot during my candidacy. A special mention to Rob and Spiridon, since you
both were more involved to get my setup up and running during my first year which
helped me get confidence and keep the momentum going. I wish you all good luck with
your careers and see you all at my defense.

Now is the turn of non-technical support staff, Lisette, Marianne, Birgit, Corrine
and our financial guru Marli, thank you all for helping us during the course of NICE TIP
TAP project with all sorts of administrative work. Our research went smoothly know-
ing that the project planning and management were under your capable hands. Lisette,
thank you for helping me out for my guest registration and Visa. Marianne, Birgit, Cor-
rine, thank you for all the HR related help you saved me a ton of time when I was not
getting any answers from central HR. Finally, Marli, thanks for all the instant answers
to my endless financial questions related to Baan code and project codes and expense
claims; you are truly the financial guru of our department.

To all the remaining faculty members, even though I have not had much interaction
with every one of you, I keep hearing great things from other PhD’s in their research
so I am sure our department is in safe hands and I will keep reading about your work
in future. If I have left out any names please know that it was not intentional and my
memory might have slipped but I will always remember your contribution.

Next up are my office mates from 3mE, without you guys I wouldn’t have remained
sane during my PhD. I believe every PhD candidate needs friends and colleagues with
whom you can relax and talk about ‘non-sense’ topics that have no relation to science
and technology. Our legendary coffee break discussions and our ‘last supper’ sized
lunches made my PhD more memorable.

I will start with the two penguins, my paranymphs Ata and Irek. Ata, you were my
room-office mate (if that is even a word!). You got the most coveted desk in all of PME,
where you could play chess all day and quickly change your screen to matlab when Far-
bod walked in. Oops was it a secret?. But it doesn’t matter because you are so smart that
you used to get work done in half the time of others, the nature comms and nano letters
publications are the proof. We used to discuss at length about gaming, stocks and crypto
and it was truly fun times. Thanks for agreeing to be my paranymph and please read
the propositions really slow so that I can come up with possible answers. You are almost
at the end of your PhD and I am not worried because you are one of the most capable
researchers within our group and I am sure you will ace it. So all the best for your final
sprint and know that ‘abi’ is here for you.

Next up is the Polish-Dutch penguin Irek or should I call you ‘Eiyrek?’, you were
barely in your second year and you had already made a breakthrough in sensing field
with your bacterial motion research. It was so fascinating to see your cutting edge re-
search coming to fruition. I am sure you will have a smooth sailing in your final year with
the results you have amassed so far. We became good friends during the covid lockdown,
where it used to be mostly you and me in the office complaining about our experimental
results, covid lockdowns and dutch politics like we were experts. Man we complained a
lot about a lot of things; oh, wait a minute have I become dutch?. I still find it funny that
you described the weather in Poland once as “In Poland winter is more wintery and sum-
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mer is more summery”. It was hilarious. Irek, you are a dependable friend, who doesnt
think twice to stand up for his friends which was apparent during the summer school
dinner incident and I hope you stay the same. Since I am now more in Eindhoven and
you in Delft, time to switch houses!. I know you will be incredibly successful in your ca-
reer so I am rooting for you and your future company. All the best with the final stage of
your PhD and you can always rely on me for any help.

Tomás, you were a super-postdoc working on several different projects related to
micro-resonators, duffing oscillators, PID controllers and even AFM research on cells,
you have incredible knowledge on several different fields and you are always work-
ing hard. Congratulations on becoming an assistant professor at EWI. The next super-
postdoc is Satadal, the plant whisperer and microelectronics expert. In our day to day
coffee breaks, your broad knowledge in biology, chemistry and physics was incredible
to witness. You were always curious to know more about any research topics we used
to discuss and expand your knowledge on other subjects. I guess that’s why you are a
super-postdoc. I wish you the best of luck with your plantenna project and also your
future entrepreneurial plans. I have spent many lunches with you both discussing from
Spanish-catalonia politics to football to various interpretations of covid statistics. In fu-
ture, I am convinced that you both will make great PI’s and supervisors. We will stay
in touch and get together often to discuss more random things going on in the world,
prost!.

Livia, I am still amazed as to how a postdoc ended up publishing more than 10 arti-
cles in a completely new field compared to your PhD. To top it off you did all that with a
new born baby, you are simply incredible. We shared JPK AFM setup for our research and
ended up teaching each other tricks and tips to have good results, so thanks for that. I am
happy to see you at your new position in TU Eindhoven, which means I will bump into
you more often in the train on some mornings. I wish you success with your research
and see you on Monday morning at 7?.

Banafsheh, thanks for warning me about the third year PhD slump! It is real and it
can be hard even if you know it is coming. Thanks to your heads up I was able to wade
through it. I keep reading about the amazing work you and Mohammad are doing at
Amber Implants. I wish you good luck and success with your company.

Robin, thanks for mentoring me during my master thesis. I learnt from the best and
strived to meet that expectations. I was proud to be able to contribute to your research
a tiny bit during masters and it was together with you that I got my first publication so
thanks for that. I know you will make an amazing PI in future. Good luck with your
graphene research.

Arthur, thanks for driving home the viscoelasticity paper. Without your simula-
tions it would not have been possible. You never cut any corners and always took the
moral high ground when it came to showcasing your results, which is a rare quality in
academia. It was a pleasure working with you. I wish you all the best with your future ca-
reer. Andre, the kick boxer postdoc, thanks for getting me Silicon and Diamond samples
for my research. Now that you are at ASML, lets meet more often. Be careful not to get
any more black eye from your training sessions!. Let’s stay in touch. Dongil, thanks for
teaching me Bayesian optimization, and congratulations on starting a new position as
Postdoc at Sandia National Laboratories. I wish you good luck with your research. Mar-
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tin, Hadi and Vijayendra, I did not get enough time to get to know you guys during my
last year of PhD. But I wish you guys success with your academic careers.

Now on to my fellow PhDs!, Matthijs, how do you have a perfect anecdote for every
situation is beyond me; It doesn’t matter what the discussion is you come and say "The
one time I was backpacking with my buddies in France. . . . " or "We were hiking in Ger-
many when suddenly..". It was fun to hear the different experiences you have had and
discuss them during lunch. I hear that your research is going well, I wish you good luck
with your preparations for your PhD defense. Minxing, I am absolutely sure if a robot
bites you, you will not become a robot zombie! but trust me, you will get robot superpow-
ers!. It was a lot of fun discussing crypto with you and hearing about your crazy economic
theories. I know you are writing several articles at a time so i wish you good luck and also
success with the rest of your PhD.

Curry a.k.a Hanqing Liu a.k.a the league of legends shifu, don’t worry your secret is
safe with me!. You are a hard worker, I have seen you in office even on Saturdays and Sun-
days working non-stop. Thanks for all the Chinese dinners and the special green tea. We
have had some fun conversations about China and had some good laughs over lunches.
I hope you will keep the promise of showing me around in China one day! Keep up with
the good work and all the best with your PhD journey. Xianfeng a.k.a the levitation mas-
ter, you have done extremely well in your PhD and the number of publications you have
is the proof. We had fun during the engineering dynamics as teaching assistants and
thanks for helping me grade 300 odd students every year. I know you are looking for Jobs
in Industry and I wish you good luck with your job hunt. Hit me up if you need any help
and all the best for your defense preparations. Yong, we both started writing our disser-
tations around the same time but you managed to finish it in just two weeks and I took
2 months!. It is nice that you joined ASML and now we can easily catch up in train and
complain about the long commute to work.

Martin Lee, I remember you as the guy who put electrodes in the mouse brain. It was
your first presentation at DMN and I was so impressed looking at that picture. After that
you kept on surprising everyone with your amazing cleanroom skills and even more so
with your unending list of publications. Good luck with your academic career in Munich
and hope to see you around. Makars, the guy who is bringing back all the soviet era the-
oretical 2D structures to life through his research. You are so passionate about your work
that you would turn any conversation into a discussion about physics. Your brilliance
and dedication shows in your research and needs no words to explain. I wish you the
best with your research in the other part of the world.

Saleh, there was so much cultural similarities between Iran and India that we used to
agree on most ‘idiotic’ things followed in our respective countries and laugh at them all
the time. You had some tough luck with your experimental setup but you pulled through
it and got some nice results. It shows your dedication and commitment to the work.
I know that you are preparing for your PhD defense so good luck with that (break the
curse!). I am sure you and Mahnaz will have a brighter future in your careers. Stay in
touch!. Andrea, thanks for helping me out with PhD council works. You seem to be a
better fit over there than me. You already have amazing results in your research so keep
up the good work and churn out the papers. Ali, I hope your graphene related research
is going well. Good luck with your manuscript preparations and the rest of your PhD.
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Alkisti, Eleonoor and Cristina, you guys were the fun PhD’s of PME. You all were
social and made the new PhDs feel more at home with your warm hospitality. Thanks
for that. Alkisti, I know you are enjoying your work at ASML since the last time I saw
you, you were smiling from ear to ear. Christina, I hope you are enjoying your work in
Italy as well. Eleonoor, thanks for teaching me Nanosurf AFM during my first year and I
hope your recovery is going well. Enrique, I am sorry that I completed overhauled your
experimental setup and made it into one of a kind hybrid AFM. Thanks a lot for taking
time from your work to teach me about the setup in the initial days. It helped me a ton!.
I hope you are enjoying your work at CAF.

Gurhan, Rajit, Vibhas, Stijn, Sabiju, Zhichao (MNE), Arnoud, Nils, and Zichao
(DMN) thank you guys for all the fun discussions and interactions. I wish you all good
luck with the rest of your PhD. Now to the mechatronics guys who let me bunk in their
room for last two months of writing my dissertation, Ali, Xinxin, Abdullah, Malte, Jelle,
and Nima, thank you and I wish you all success with your PhD.

Being part of the PhD council of 3mE was a fun experience. I had the opportunity
to interact with the PhD’s of different departments within 3mE and brainstorm ideas
and frameworks to further strengthen our graduate school. Vilborg, Eline, Bart, Ankur,
Andrea, Hongpeng, Pieter, Alina, Costanza, Zongcheng and Padmaja, thanks you all
for the fun sports events, lunch and info lectures on thesis printing (I made use of their
discount code successfully!) and pub quizzes. By being part of the council I realized how
diverse every PhD’s problems can be and how we need a strong university connections to
help each of them get through their issues. It also made me realize how Covid can easily
exacerbate the already stressful PhD journey and create mental breakdowns for PhD’s.
But thanks to you guys, we had regular virtual coffee meetups, games and surveys to
make sure everyone within our department could get the help and social interaction they
needed. Finally, Mascha, thanks for chairing the council meetings and giving us the reign
to handle these varied issues. Without your unconditional support and encouragement
it would not have been possible.

Now moving on to my master students, Casper, you were a diligent student who had
a tough master thesis topic but you aced it by handling both experiments and simula-
tions. Kudos to you. You were a well-rounded master student who needed minimum
supervision. Your work made it into this thesis and we also managed to publish a paper
out of it so congratulations!. I wish you good luck with your industrial career at prodrive
technologies. Matthew, you had some tough luck with the experimental setup but still
you managed to write an excellent master thesis. You have very good understanding of
mathematics that helps you easily understand relatively difficult concepts and you also
possess amazing coding skills. Let’s turn your thesis into a publication soon!. I already
know that you are enjoying your work at ASML but I like how you are also following your
passion for teaching by making youtube tutorial videos on nonlinear dynamics. Keep
up the good work! and spread the knowledge on nonlinear dynamics!. Hidde, although
officially you weren’t my student, I still learnt a lot on GPR by collaborating with you. I
wish you success in your career at ASML.

And now time to thank my friends, Shrinivas, you have been an amazing roommate
for the last 4 years thanks for that. From the endless F1 conspiracy theories and gossip
from paddock to gruelling leg days at the gym and blisters at bouldering, I have enjoyed
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your company thoroughly. You are really smart and I am sorry for all the times I took
advantage of your cleaning OCD at home. I wish you all the best with your upcoming
defense and your postdoc at Karlsruhe!. We need to also plan for that trek in black forest.

Ankur, my partner in crime at ASML. First of all I should address you as Dr. Ankur,
now that you have defended your PhD successfully. I am grateful to have a wonderful
friend like you. Thanks for all the fun night outs, get-togethers and the ’phd council’
events (only we know why we joined the council). On behalf of everyone from my state,
please don’t talk in Kannada. It’s too hilarious and someone taught you only the ‘swear’
words. Congratulations to you and Krishti on your first house in Netherlands; now I
dont have to be wary of NS railways running on time!. I wish you both success in your
careers and life endeavours. And also Salud! to many more mischiefs at ASML.

Arvind, my other crime partner from ASML. I can’t believe you ended up in Nether-
lands for your PhD but I am glad that you did. I feel like you are still the same goofy,
nerdy, smarta** you were during our pre-university times. When I move to Eindhoven
you are tagging along with me for gym and bouldering, we shall embark on Mission Mus-
cular Arvind 2023!. Thanks for listening to my rants and also joining in on them at times.
Good luck with your career at ASML and your other upcoming big plan.

Martina, first of all sorry I borrowed your penguin word for paranymphs or as we
academics call it ’derived inspiration’ from you (I am doing air quotes). You have a cool
research topic but I am sorry that I keep forgetting about the details of it and you have
to explain it every time we meet. I want to thank you and Irek for showing me the best
pizza and ice cream place in Eindhoven. Good luck with your PhD. Uddhav, I have no
idea how you are friends with almost everyone and know all about their life stories. It is
always fun hanging out with you, I wish you the best of luck with your final year of PhD.
Lili, Aryn, Vaishnavi and Pritish, my long lost friends, I am happy that joining ASML got
you guys back in touch. Let’s keep up the regular dinner meets and anecdotes sharing
sessions. We have lot of catching up to do!.

Alok and Arun, thanks for checking up on me from time to time from India and also
thanks for all the dinner parties and lunches whenever I come to India for vacation. I
always feel relieved to talk to you guys and reminisce about our engineering days and
all the foolhardy things we did in MSRIT. I know that both of you will be part of my life
forever and I am grateful to have friends like you on whom I can rely on during difficult
times. I wish you guys immense success in your careers and life endeavours.

Now for the ex and present ‘LAMinates’, Manoj, Ram, Srikkanth, Ajay, Naveen and
Lakshminarayana, thanks for the beautiful and fun memories while working at LAM
Research. It wouldn’t have been nearly as much enjoyable without you guys. I look for-
ward to visiting India each year thanks to you guys. We discovered most of the Bangalore
pubs, eateries and hangouts during those two years of working together (that’s where all
my salary went eh?!+). I know for sure you all will excel in your respective careers and I
wish you guys the best of luck.

Yogesh, Ranju and Arju, my gaming buddies. You all kept me sane during the covid
times with Monster Hunting, Nioh and Genshin Impact. The countless number of hours
we spent farming for rare materials and gems for our builds is insane. I think I have
crooked fingers thanks to all the button mashing we did during our playthroughs. Look-

+Manoj, I know what you are thinking, dont say it!
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ing forward to many more such days!. Happy button mashing!.
Tanvi, let me just tell you that you are way too wise for your years. I am amazed

by how multi-talented you are from academic research to your mouth watering cooking
skills. You do all this while travelling all over the world; it makes me a little jealous but
more happy that I have someone of your incredible calibre as a friend. We share a strange
telepathy right from the Goethe Institute times that continued all the way to Netherlands
and Sweden. I don’t know how you call me or ping me at exactly the right time but let’s
keep it going. Thanks for all the late night calls and discussions on life, relationships,
human psychology, and all the other fun stories†. It made my PhD a bit less stressful.
Now that you are in the last leg of your own PhD journey, I wish you success and know
that, I am here for you if you need to talk about anything. Cheers to many more years of
our growing friendship!.

Sharmilee, my chaddi dost, my only non-techie lawyer friend. You have been my
friend since kindergarten (how long is too long?) and we have been there for each other
during many ups and downs of life. Thank you for your constant support in all aspects
of my life; you have seen me at my best and my worst, and stuck by me all this while.
From listening to my boring ’gyaan’ sharing and NRI ranting to watching random movies
with me and reciting ‘Friends’ dialogues; I have many beautiful memories of Bangalore
thanks to you. You are more fun than anyone or anything I know. I couldn’t have asked
for a better friend than you. You are simply amazing!. Even after I moved to Netherlands,
you have always been there as a solid support on my side that I can lean on during my
difficult times, thank you for that. Keep being this incredible, chill and energetic person
you are and let’s continue this friendship for another 40 years∗, what say you?.

Finally, In the last four years, if there is someone whom I should definitely thank for
my success that would be you Alekhya. This whole journey could not have been possible
if it wasn’t for you. This entire thesis would not be sufficient to convey my adoration
and gratitude for you and your contribution to my success. I can write tales about how
patient, kind and empathetic you were and how many personal sacrifices you made for
my plans. I wish we could have travelled around Europe more and made even more
memories to take home with. I am sorry for all the trouble I caused you. You have taught
me a lot outside academia. Know that no matter what, I will be there for you if you need
me. I wish you all the health and happiness in the world.

Last but not least a few words for my family. Abhishek, my brother, you were forced
to step up and care for the family as soon as I left India. I am sorry for putting you through
this responsibility sooner than you expected, but you have handled it beautifully. I have
seen you grow from a teenager to a responsible adult in a short period of time especially
when the Covid wave hit India. Thank you for everything you have done. Know that there
is no one path for success and everyone’s definition of success will be different. You are
the protagonist of your life, so carve your own path. Don’t worry, If you do fall down, I
will be there to pick you up. Regardless of what I asked of you, you have never refused
me; I am blessed to have an understanding and supporting brother like you. Know that
I will always support you and stand by you. I am looking forward to seeing your success
in future.

† I swear I will install Instagram the day you install Tiktok.
∗Please continue guarding my secrets and please don’t tell anyone about the ‘injection’ incident in school.
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To my beloved mom and dad, sorry I could not find a way to write this in kannada
directly but I hope this will do. Appa, naanu modhalane sala masters ge antha band-
haaga neevu eshto dinagala kaala sariyaagi nidhhe madirlilla. Naanu phone madid-
haagella neevu kannalli neeru thumbikondiddha dinagalu nanage nenapidhe. Nanna
geluvige, nimma aase aakaankshegallannu badhiyalli ittu nimma dhudimenu kooda bali
kotti nannannu illige kalisiddhakke, nanna hruthpoorvaka dhanyavaadhagalu. Nimage
husharilladhidhaaga naanu nimma pakaadhalli iralilla, adhakke nannannu kshamisi.
Appa nimage baruthidda pudigaasannu varshagala kaala koodi haki nannannu odhod-
hikke antha vidheshakke kalisiddhakke nanna vandhanegalu. Nimma thyagavannu
naanu yavatthu mareyodhilla. Amma, naanu yavaga phone madidhru naanu oota
madudhna ilva annodhe ninagondhu chinthe. Ninna mugdhatheye ninage alankaara.
Naanu chikkavanaagiddhaaga, vidhyabhyasada mele ondhu reethiya aasakthi, uthsaaha
barodhikke neene kaarana. Neenu aduge maadtha nanage helikotta paatagala parina-
madhindha ivattu naanu intha dodda mattadhalli ninthidhini, idhakke naanu ninage
chira runi. chikkandhinindhalu aidhu hattu roopayiyannu sasive jeerige dabbi yalli ba-
chittu nanage thindhi thinisugalannu kodisthidde. Ninna aa preethi matthu vathsalya
nannannu ivatthigu aarogyavaagi ittidhe. Nimmibara preethi, vishawasa matthu thya-
gadha guruthige ivattu naanu ee nanna geluvannu nimmibbara hesarige arpisuthid-
hene. Matthomme, nanna hruthpoorvaka dhanyavaadhagalu.

As I am writing these last few lines, I realize that I am standing on the precipice
with borrowed strength, the strength in the form of friends, family and colleagues who
are holding me up with their invisible hands and guiding me forward. It is ironic that
we often think PhD as a solitary journey while in reality, we get support from so many
lives around us, each contributing to our growth along the journey. For this, I express
my sincere gratitude to each and every one of you who made this journey less arduous
and gave me so many happy memories that, I almost forgot getting a PhD can be hard.
Although my thesis ends here, I will continue to learn new things throughout my life
and discover the endless opportunities that life has to offer. Once again a final thank
you from the bottom of my heart.

Abhilash Chandrashekar
Delft, September 2022
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