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Abstract

The company Kien 1 is developing Bluetooth Low Energy (BLE) speakers,
consisting of a subwoofer and several satellite speakers. These subwoofer
and satellite speakers will have a feature named Follow Me, which when
enabled from a smartphone application, will play music only in the room
where the user currently is. The BLE’s signals will encounter obstruction,
reflection, and diffraction from obstacles such as people, walls, and furni-
ture. These indoor propagation issues cause the received signal strength
(RSS) to have more distortion and variate more. Indoor position systems
(IPS) that make use of a geometric model, such as using the RSS in tri-
lateration methods, will suffer greatly from the propagation issues. On the
contrary, fingerprinting methods that use a statistical model are more ro-
bust. However, fingerprinting requires a time consuming setup that needs
to be redone periodically and every time after the environment changes.
We implemented a Naive Bayes Gaussian classifier that can distinguish

whether the signals travelling between a pair of BLE speakers, which are
placed in two fully furnished adjacent rooms, came from speakers in the
same room or in different rooms. Subsequently, the speakers that are in the
same room can be grouped together, which is a subtask for the Follow Me
feature. The classifier uses two features derived from the RSS information.
Namely, the mean of the sum of several RSS samples (MSUM) and the
standard deviation of the RSS range of several sample sets (SRR).
We have quantified the classifier’s robustness by evaluating its perfor-

mance in 9 different environments that had obstacles or radio frequency
(RF) interference or both. We chose the acceptable performance to be an
area under the curve (AUC) of at least 80.00 %. The classifier was able to
successfully distinguish between BLE speakers that were in the same room
and in different rooms in 7 environments with a minimum and maximum
AUC of 86.64 % and 100.00 %, respectively.

1https://www.kien.io/
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Chapter 1

Introduction

A multi-room audio system is a centralized audio system for the home,
which consists of a main speaker (hub) and several speakers. It provides the
means for a user to listen and control the audio in all rooms with speakers
simultaneously or individually using a mobile device such as a smartphone.
Kien is a start-up company in the Netherlands that makes multi-room au-
dio systems consisting of a subwoofer (SUB) and portable satellite (SAT)
speakers.

Follow Me is a technology patented by Kien that enables a Bluetooth
Low Energy (BLE) multi-room system to play audio automatically in rooms
where the user carrying a smartphone is located. This thesis sets the foun-
dation for this technology by researching a method to automatically group
speakers based on the room they are in.

1.1 Motivation

Kien’s speakers are expected to work out of the box, requiring minimal user
interaction to set up. This entails that once the speakers are taken out of
the box, they can be powered on and placed in the desired locations and the
system automatically deduces what speakers are in the audio network and
in the same room. The set of all speakers that are in the same room will
be referred to as a bundle. SATs and a user’s smartphone connect to the
SUB in order to join Kien’s multi-room audio system. Consequently, the
connected SATs will be considered to be in group mode, as it highlighted in
Appendix A. All speakers in group mode will play music in sync. The Follow
Me feature monitors the user’s location using BLE and detects within a few
seconds when a user enters a room that contains speakers from the audio
network. Follow Me requires mainly two separate, yet dependent stages.
First, the system locates BLE speakers and deduces what speakers are in
the same room. This results in a logical list of bundles, whereby each bundle
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consists of a set of speakers that are in the same room. The actual room
is, therefore, not important. Second, the system locates the user carrying
a smartphone and determines if the user is in a room containing speakers.
Subsequently, music will play only through the speakers that are in the same
room with the user. This thesis focuses on the first stage.
A node is a connection point within a distributed network. All speakers

and a smartphone behave as nodes in a BLE network. There are several
ways localization is done in order to obtain the position of an unlocalized
device (UD), also known as the target. Bluetooth indoor localization is usu-
ally done using methods that use the received signal strength (RSS) with a
path loss model (PLM) [26] [29]. The PLM is used to capture the relation
between the radio frequency’s (RF) RSS and the distance between the tar-
get and a reference node. RSS methods are trivial and low cost, especially
when used with already existing infrastructure [40] [48]. The simplicity of
this method is preferable for Follow Me, however this method has several
complications. First, the location of the reference nodes are usually known
[47], whereas speakers location are not known during the setup of Kien’s sys-
tem. Second, the path loss model must represent the current environment,
making it challenging to select a single model that works for every room
[29]. Free space is an environment with no obstacles between the sender
and receiver, resulting in a clear line of sight (LOS). In an environment with
obstacles the RF path will be obstructed resulting in no clear LOS. The RF
signal will propagate differently in different environments. Therefore, the
PLM can only be used to model a specific environment [32]. Third, the
RSS fluctuates more due to the signal reflecting, diffracting, and scattering
on obstacles in a room [27]. This is known as the multipath effect, which
describes the phenomenon where a signal will traverse from sender to the
receiver via multiple paths, each experiencing different distortion, resulting
in combined signal to be distorted even more by receiver. The multiple are
created due to reflection, diffraction, and scattering. Fourth, the RSS may
be unreliable since it may give the wrong distance when attenuated by ob-
stacles, such as furniture and people. Obstacles cause the signal path to not
have a direct path between a sender and receiver, resulting in the absence
of a clear LOS [21].
Alternatively, in proximity-based methods reference nodes use the RSS

to detect when the target is in close proximity by comparing the RSS to
different configured thresholds [16] [21]. This method is simpler to imple-
ment than RSS methods using PLM. However, proximity-based methods will
also suffer from similar multipath issues as RSS methods using PLM [40].
Therefore, this method is also challenging to provide accurate localization
for Follow-me.
Furthermore, fingerprint-based methods are also used to model the RSS

pattern in several areas [18] [28] [34]. Fingerprint-based methods create
an RSS database of each room and statistically model the RSS patterns.
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Machine learning algorithms are usually used to determine in what room
a target is currently located by comparing a new RSS sample, which was
sampled by the target, to the RSS database. Fingerprint-based methods
are more robust to multi-path issues than RSS methods using PLM and
proximity-based methods [40]. However, fingerprint-based methods have
several drawbacks. First, they require a time consuming and labor intensive
setup in order to create the database, which is not desirable for Follow Me.
Second, fingerprint methods are not robust to indoor environment changes
[19] [48]. And since Follow Me requires minimal interaction and a room’s
environment may change, the challenge in the application of fingerprinting is
reducing the setup time and finding an optimal way to update the database
whenever the environment changes.

Given the previously mentioned issues in the common BLE localization
methods, it is necessary to research a more reliable method that can localize
BLE nodes indoors accurately despite the obstruction caused by obstacles.
Additionally, it will be crucial to find a method that requires no user inter-
action.

1.2 Problem Statement

Assume the environment depicted in Figure 1.1 with two adjacent rooms,
the office and the living room, which are separated by a wall with a sliding
door. Both rooms are fully furnished and contain nodes, SUB1, SAT2,
SAT3, and SAT4, which are all connected to Kien’s audio network. In the
living room SAT2 and SAT3 are close to one another. SUB1 and SAT1 are
in the office, whereby both nodes are placed on top of a bookshelf. The
nodes in the office are placed very close to each other and to the wall that
separates the two adjacent rooms. Furthermore, assume that the location
of a smartphone that a user is carrying is unknown to the system and is
therefore, an unlocalized device (UD).

The UD is currently in the living room, however much closer to the office’s
nodes. Therefore, the system might falsely localize the UD to be in the office
with SUB1 and SAT1. As it was mentioned in Section 1.1, RSS methods
using PLM will rely on the estimated distance between nodes to determine
the UD’s position. Alternatively, proximity-based localization will measure
the RSS and compare it to several thresholds. The wall that separates
the living room from the office will attenuate the RF signals propagating
between the UD and the office’s nodes. In an ideal scenario, this attenuation
will be strong enough to make a clear distinction between signals propagating
in the office and signals propagating in the living room, despite the fact
that the nodes in the office are closer to the UD. In practice however, the
construction material used in walls varies in different buildings and rooms
[32]. Therefore, a scenario will occur where the RF signals will not be

3



Figure 1.1: Environment with 2 adjacent rooms containing each 2 BLE nodes
(speakers). The location of a smartphone that a user is carrying is unknown. There-
fore, the smartphone is referred to as an unlocalized device (UD). The UD is placed
in the living room, however closer to the office’s nodes. The wall that separates
both rooms does not attenuate all the radio frequency (RF) waves propagating from
the nodes in the adjacent room. The localization system should position the UD as
being in the living room, despite being close to the office’s speakers. However, the
system might falsely localize the UD in the office.

attenuated enough, causing the Follow Me feature to not accurately locate
nodes or a user’s smartphone. This is caused by the fact that the system of
nodes will perceive the UD, when located close to the wall, to be in close
proximity to the nodes in the office. The UD will then be falsely localized
as being in the office, instead of in the living room.

In addition to the wall degrading the performance of localization methods
that use RSS with path loss model or proximity, Section 1.1 also indicates
that since nodes are placed randomly within the same room they are prone
to be blocked by furniture or other types of obstacles. Furthermore, people
that are walking in the room will obstruct the RF signals causing unpre-
dictable attenuation and reflection. The aforementioned mentioned issues
might eventually cause the localization system to localize the UD to be in
the wrong room.

Much research has been done into using RF for indoor localization with
RSS model-based methods. But the problem with RSS model-based meth-
ods is that they give a single model which will not be portable to other
environments. Alternatively, the fingerprint method is usually used since
it is more robust to the absence of LOS than RSS methods using a PLM
or proximity. However, fingerprinting requires a time consuming and labor
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intensive task of creating a radio-map containing the RSS data from differ-
ent transmitters collected in multiple rooms. Furthermore, the radio-map
needs to be updated when a major environment change occurs (e.g., moving
a couch or one of the nodes) in order to maintain a good accuracy [46]. All
the previous positioning methods rely mainly on anchor nodes, which are
nodes whose location are known, in order to localize the UD [47].

We limit the project’s scope to only finding a solution to automatically
group BLE nodes together with minimal user interaction. The work carried
out will be researching and designing a solution that can distinguish between
BLE nodes, which are placed in two fully furnished adjacent rooms, in the
same room from nodes in different rooms. Furthermore, although it
would be good to create a solution that can locate BLE nodes while a user
move them in real-time, the focus will be dealing with a static setup. Given
the complications using current localization methods for Follow Me, the
research question for this thesis is:

How to accurately group Bluetooth Low Energy (BLE) nodes
by the room that they are located in, while being robust to ra-
dio frequency (RF) interference, attenuation, and multipath effect
caused by people and obstacles, such as walls and furniture, with
zero user interaction?

The main challenges in solving the problem statement are listed below:

1. Interference and the multipath effect: RF devices, such as BLE
nodes, encounter challenges indoors such as the multipath effect re-
sulting in an increase in the distortion present in RSS signal [40] [48].
Obstacles, such as people, furniture, and walls cause the RF signal to
attenuate, diffract, and reflect. Copies of the signal will travel through
multiple path, each experiencing different phase shifts and distortion.
The combined signal at the receiver will be distorted even more, caus-
ing the RSS to variate more [35].

Additionally, signal distortion may occur more when other devices in
the same frequency as BLE are nearby, such as a microwave and other
BLE nodes [48].

2. Difficult to model the RF propagation for all environments:
Different environments have different furniture layouts and different
construction materials in walls [32]. Therefore, signal will propagate
differently and the multipath effect will be different. It is challenging
to find a model to represent the propagation for different environments
[31]. Localization such as RSS-model-based and proximity-based will
suffer from the multipath effect [32].

3. Environment changes over time: The setup of a room might even-
tually change. Furniture may be added, removed, or moved. This will
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have an impact such that the RF will propagate differently in that
room [35]. Methods that model the environment such as fingerprint-
ing will not be robust to these environment changes.

1.3 Contribution

The main contribution of this thesis is that we have implemented a Naive
Bayes (NB) Gaussian classifier that with just 2 features performs with an
AUC ≥80 % and will function with the same performance in several other
environments.

1.4 Organization

The organization of this report is as follows: First, Chapter 2 provides the
necessary background information. Second, Chapter 3 highlights the state of
the art research on BLE indoor localization. Third, Chapter 4 describes the
classifier that was designed and the features used in order to group speakers
together. Fourth, Chapter 5 highlights how the classifier was implemented
and the communication infrastructure used. Fifth, Chapter 6 evaluates the
classifier and discusses the results. Finally, Chapter 7 concludes the research
and provides recommendations for future work.
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Chapter 2

Background

This chapter provides the necessary information required to understand the
topics and methods discussed in this thesis.

2.1 Machine Learning and Classifier Model

Pattern recognition is the scientific discipline that focuses on categorizing
(classifying) objects, based on some measurements, to several categories
(classes). A multi-class classifier categorizes objects to more than two class,
while a binary classifier categorizes objects only to two classes. Every object
will be defined by several observed characteristics, also known as features.
Moreover, an object is referred to as a pattern or an observation and is
mathematically defined as a vector x consisting of l features [44], as it
shown in Equation 2.1.

x = {x1, x2, ...xl}T (2.1)

The feature space is l-dimensional space containing all the observations.
In machine learning the goal of a classifier is to learn how the patterns
for each class are categorized by means of analyzing each observation’s fea-
ture (metric). The classifier creates decision lines (decision thresholds) that
separates the patterns in regions, which represents the different class. Clas-
sifiers can be grouped into 3 types based on how the learning process occurs,
namely, supervised, unsupervised, and semi-supervised learning. Supervised
learning consists of two sequential phases, the training and then the testing
phase. A class label is a label assigned to an observation in order to declare
to what class it belongs to. In the training phase an observation table is cre-
ated using N observations with known class labels. This creates a N x(l+1)
matrix that contains N observations, whereby each observation contains l
features and the class label appended. The observation table will be used
as training data, whereby a classifier model will trained how the behavior
amongst each patters are for the different classes. Once the training phase
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is completed the classifier can then classify new observations to a given class
in the testing phase. This is done by comparing the features of a new obser-
vation to that of the training data and determining to what class the new
observation is most probable to belong to.

Unsupervised learning differs from supervised learning in that the classi-
fier model does not need an observation table that consists of class labels.
The classifier will find similarities between the patterns and cluster similar
patterns.

In semi-supervised learning a combination of supervised and unsupervised
learning is applied. The classifier is trained with a set of observations for
which class labels are known. Additionally, the classifier is given set of
observations with unknown class labels in order to find similarities.

Pattern recognition problems normally follow a baseline sequential flow.
Feature generation, feature selection, classifier design, and then system eval-
uation. At any given stage the process can return to any of the previous
stages for improving the model performance further.

The feature generation stage involves creating features from raw measure-
ments. This can also be done by combining features and generating a new
feature, such as the product of two features. The more features that are
used by the classifier, the higher the chance of experiencing the curse of
dimensionality. The curse of dimensionality m means that the number of
observations needed by the classifier to achieve an acceptable performance
increases exponentially with the dimensionality of l [44]. Consequently, the
computation time will be increased and the required storage space will be
more.

Once the features have been generated, the feature selecting phase can
begin. The feature selecting phase involves selecting the best combination
of features, which gives a higher classifier performance.

Consequently, the classifier is designed and implemented. Given the in-
put observations, consisting of features, the classifier then classifies each
observation. Finally, the classifier’s performance is evaluated based on some
metric, as it is described in Section 2.2.

2.2 Classifier’s Evaluation Methods

In the previous section, Section 2.1, it was highlighted that a classifier’s
performance is evaluated using some metric. The selected metric is influ-
enced by the desired classifier optimization for a specific application and the
available dataset. The main metrics used are confusion matrix, accuracy,
area under curve (AUC), precision, sensitivity (recall), and specificity. The
accuracy, AUC, precision, sensitivity, and specificity are all based on the
confusion matrix. Additionally, the log loss is a next metric used [15].

Section 2.1 also highlights that an observation is a classifier’s input sample
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Table 2.1: General concept of a confusion matrix. Given N observations that were
predicted the confusion matrix summarizes the total number of true positive (TP),
false positive (FP), true negative (TN), and false negative (FN).

Actual
Positive (1) Negative (0) Total

Prediction
Positive (1) TP FP TP + FP
Negative (0) FN TN FN + TN

Total TP + FN FP + TN N

that contains features describing it. Furthermore, that a classifier classifies
new observations to a given class. In other words the classifier predicts to
what class it assumes the observation belongs to. For this thesis the observa-
tions define samples from the Bluetooth Low Energy (BLE) radio frequency
(RF) signals between a pair of nodes. We focused on two classes, namely
same room and different rooms, therefore we made use of a binary classifier.
The class same room and different rooms are represented by the classifier’s
discrete outputs 1 (positive class) and 0 (negative class), respectively. In
a binary classifier application the positive class defines the desirable class,
which is the class we are focused on getting correct.

Confusion Matrix The confusion matrix is a foundational performance
metric. Table 2.1 highlights that the confusion matrix consists of 4 terms,
true positive (TP), false positive (FP), true negative (TN), and false nega-
tive (FN). For this thesis, the positive class with the classifier’s output value
1 represents an observation in the class same room. Whereby, the class dif-
ferent rooms is represented by the negative class with the classifier’s output
value 0. Given a set of N observations that a classifier have classified, the
confusion matrix summarizes the total number of TP, FP, TN, and FN.
When an observation that actually belongs to nodes from the same room

is accurately predicted to belong to the class same room then the classifier’s
response is defined as a true positive (TP). However, if the observation was
inaccurately predicted as belonging to nodes in different rooms then the
prediction was a false negative (FN). A FN is also known as a miss or type
2 error .
On the other hand, when an observation belongs to nodes from different

rooms, if the classifier accurately predicted the observation to be in differ-
ent rooms then the classifier’s response is labeled as a true negative (TN).
Otherwise, the prediction is inaccurate and defined as a false positive (FP).
A FP is also known as a false alarm or type 1 error .

Sensitivity The sensitivity, also known as the recall or the true positive
rate (TPR), is a metric used to evaluate how well a classifier can detect
an observation that belongs to a pair of nodes that are actually within
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the same room and accurately predict the nodes to be in the class same
room. The sensitivity is derived by evaluating how many times the classifier
accurately predicted observations to be in the same room, from the set of
all observations that belonged to nodes from the same room. Equation 2.2
illustrates how the sensitivity is calculated.

recall = TPR =
TP

TP + FN
(2.2)

When nodes are actually in the same room, higher sensitivity implies that
a classifier will accurately predict observations in the class same room more.
Consequently, the type 2 error will be decreased.

To the contrary, lower sensitivity implies that when nodes are actually
from the same room, the classifier will miss it and inaccurately predict the
observation to be in different rooms, resulting in the type 2 error increasing.

It is desirable for this thesis to not miss detecting when 2 nodes are ac-
tually in the same room. Therefore, it is preferred to optimize the classifier
for high sensitivity and thus minimizing the type 2 errors.

The rate at which a classifier misses the detection of observations from the
class same room, which results in an increase in the type 2 errors, is defined
as the false negative rate (FNR). Equation 2.3 describes how the FNR is
mathematically defined and shows that the FNR is negatively related to the
TPR. The more frequent a classifier inaccurately predicted observations as
different rooms while they were actually from nodes in the same room then
the higher the type 2 errors and FNR will become. The inverse holds true.

FNR =
FN

TP + FN

= 1− recall
(2.3)

Specificity The specificity, also known as the true negative rate (TNR), is
a metric that describes how well the classifier don’t respond to observations
that don’t belong to the desirable class, which is same room. In other words,
given all observations that belong to nodes that were in different rooms,
the specificity highlights how often the classifier accurately predicted the
observations to be in different rooms. Equation 2.4 highlights how the
specificity is mathematically defined.

specificity = TNR =
TN

TN + FP
(2.4)

The higher the specificity is then the classifier will inaccurately predict
observations to be in the same room less often, when they actually belong
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to nodes from different rooms. Consequently, the type 1 errors (FP) will
decreased.

On the other hand, the lower the specificity is then the classifier will in-
accurately predict observations to belong to same room more often, when
they actually belong to nodes from different rooms. The decrease in speci-
ficity results in the false positive rate (FPR) increasing, as Equation 2.5
highlights. The FPR is negatively related to the specificity and positively
related to the type 1 error (FP).

FPR =
FP

TN + FP

= 1− specificity
(2.5)

Sensitivity and Specificity trade-off If the data distribution of all the
classes are completely separable then a classifier can easily achieve high sensi-
tivity and specificity. However, if the data distribution of the classes overlap
errors will be made. Therefore, a trade-off between sensitivity and specificity
must be taken. Given a (slightly) overlapping distributions, if a classifier ad-
justs its decision line such that more of the observations that belong to nodes
from the same room are detected then the classifier’s sensitivity (TPR) will
be increased and the type 2 errors decreased. Consequently, the FNR will be
decreased. However, more observations that belong to nodes from different
rooms will be inaccurately classified as being in the same room. Therefore,
the type 1 error (FP) will increase, resulting in an increase in the FPR and
a decrease in the specificity.

To the contrary, if the classifier’s decision line is set such that less ob-
servations from nodes in the same room are detected then the classifier’s
specificity (TNR) will be increased. This is a result of an increase in true
negatives (TN). Therefore, there will be less type 1 errors, which results
in a less false positive rate (FPR). However, the classifier will inaccurately
predict observations to be in the class different rooms more often while they
actually belong to nodes in different rooms. Therefore, there will be an in-
crease in type 2 errors (FN) and thus the false negative rate (FNR). Since
the true positive rate (TPR) is negative relates to the FNR, the TPR will be
decreased. That is, the classifier will detect less frequent when observations
belong to nodes from the same room [13].

Area Under Curve (AUC) The receiver operating characteristic (ROC)
is a 2D graph that plots the TPR versus the FPR for every possible classi-
fier’s decision line possible. A ROC curve is created, as it is shown in Figure
2.1. The area under curve (AUC) is the area under the ROC curve and is
a performance metric that is often used. The AUC summarizes the overall
ratio between TPR and FPR amongst every given threshold. Therefore,
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the AUC declares the classifier’s overall capabilities to distinguish between
classes, independent of where the final decision line was set.

AUC

0 1

1

Figure 2.1: The area under the curve (AUC) for a region of convergence (ROC).
The ROC-AUC graph shows a the ratio of the true positive rate (TPR) versus the
false positive rate (FPR) for different decision thresholds. The diagonal line defines
an AUC of 0.5 where a model just randomly predicts. The closer the AUC is to 1,
above the diagonal line, the better the model can distinguish between positive and
negative class. In the case of an AUC below the line, the model makes the opposite
prediction from what the actual class is. Image edited from [13]

For our binary classifier the AUC will declare how well the classifier dis-
tinguishes observations that belong to BLE nodes in the same room from
those in different rooms. The AUC values range between 0 and 1 and is
dependent on the data distribution of the observations for each class in the
feature space. An AUC of 1 indicates that a classifier can perfectly separate
observations from nodes in the same room from those in different rooms.
However, in practice an AUC of 1 is difficult to achieve. Moreover, an AUC
of 0.5 describes a classifier that is as good as randomly predicting an ob-
servation to any class. This is shown in Figure 2.1 as the diagonal line
and it defines a non-informative model. An AUC can be a also be a result
of overlapping data distributions. An AUC of 0 indicates that a classifier
completely inverses its output predictions. The classifier will inaccurately
predict all observations to be from nodes in the same room, while they be-
long to nodes from different rooms. The inverse holds true [13]. For this
thesis the AUC will be expressed in percentage and thus ranging between 0
% and 100 %.

Log Loss The log loss is a metric used to determine the level of uncertainty
and checks how confident a classifier was when it inaccurately predicted an
observation. In other words, a classifier that made a wrong prediction is
penalized more if it was more confident about its prediction.
Moreover, the log loss requires that the classifier provide the predicted
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probability that an observation belonged to a specific class. The predicted
probability is then compared to the classifier’s discrete output of the actual
classes. The formula for a binary classifier is given in Equation 2.6. Given
a binary classifier with 2 discrete outputs, namely same room and different
rooms, the classifier’s output is defined as y ∈0,1. For each observation the
classifier can predict with a probability p = Pr(y = 1). For an observation
that belongs to the class same room, namely the positive class with y = 1
the log loss becomes Llog(1, p) = −ylog(p). The closer the prediction is to
0, declaring that the observation belongs to the class different rooms, the
more the prediction will be penalized. The closer the prediction is to 1 the
less it will penalized. The contrary holds true for observations belonging
to the class different rooms. The formula will be Llog(0, p) = −log(1 − p)),
The prediction will be penalized more the closer the probability is to 1,
declaring that the observation belongs to the class same room. The closer
the observation is to 0, the less it will be penalized.
The log loss values range between 0 and ∞. The closer the log loss is to 0

the better. The log loss is influenced by two factors, the number of classes
and if the data is balanced. For a binary class that is balanced the prevalence
of any of the class is maximum p = 0.5, which will mean that an acceptable
log loss is L(1, 0.5) = −log(0, 5) = 0.69 [15]. For an imbalanced binary
classifier, with the positive class having a prevalence of p1 , the acceptable
log loss is L(1, p1) = −log(p1)

Llog(y, p) = −logPr(y|p)
= −ylog(p) + (1− y)log(1− p)

(2.6)
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Chapter 3

Related Work

The state of the art indoor localization methods will be analyzed and criti-
cally evaluated in this section. The purpose is to learn how other researcher
deals with the localization challenges similar to the one stated in Section
1.2.

3.1 System’s Requirements and Research’s Scope

In order to develop a system that provides a good practical solution for
Kien’s Follow-me feature, it is important to specify what requirements are
needed for the Kien’s system. Consequently, the requirements will set the
context and scope of this literature review and thesis research. The system’s
requirements are as follows:

• REQ-1: Room-level accuracy to localize and group/bundle an unlo-
calized device (UD), which will be a BLE speaker, according to the
room it is in;

• REQ-2: To automatically detect that speakers are in the same room;

• REQ-3: Minimal user interaction/set up cost;

• REQ-4: Responsive, such that when an UD is placed in a new room
that the system is able to determine to which speaker bundle the UD
belongs to;

• REQ-5: Energy efficient;

• REQ-6: Scalability, such that by adding or removing speakers from a
room or to the network, the system will still be able to detect a UD
in a room with speakers;

• REQ-7: Robust to interference and the multipath issues caused by
obstacles, mainly from walls, furniture, and people;
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• REQ-8: Flexible positioning of the BLE speakers.

Given these requirements this thesis and literature review will mainly fo-
cus on indoor localization Bluetooth Low Energy nodes. The BLE nodes are
mainly considered to represent BLE speakers. Special attention will be given
to how different solutions satisfy the requirements in terms of performance,
scalability, robustness, node positioning, and user interaction. Additionally,
only papers dating from 2009 to recent will be reviewed.

3.2 Wireless Positioning Techniques

In most application localization will be done by means of wireless commu-
nication. Generally this require for the target to transmit a wireless signal
which a receiver can then pick up to deduce the targets current position.
The target may transmit Wi-Fi, Bluetooth (Classic or Low Energy), Acous-
tic, RFID, GPS, etc. Indoor localization is the research that is focused on
methods to locate a target indoors and mainly uses some of the previously
mentioned wireless communication, excluding GPS. Indoor localization can
mainly estimates a person’s location by sampling the signals between the
mobile phone that a user is carrying and anchor nodes. In addition to
the previously mentioned signals, sometimes a hybrid method is used to
enhanced the overall performance, overcoming any limitation from any in-
dividual signal [47].

Wireless positioning is the localization of an unlocalized device (UD) with
the use of a wireless system. A sensor node is a node in the network that
can gather sensory information, process data, and communicate with other
nodes in that network. The location of sensor nodes may be unknown.
Anchor nodes, also known as base stations, are (sensor) nodes that locations
are known [17], which can be determined using GPS [47]. The techniques
used to accomplish wireless positioning are mainly done by estimating the
distance between the UD and the anchor nodes. Wireless tracking differs
from wireless positioning in that wireless position deduces the location of
the UD once, while wireless tracking does this continuously.

Localization done outdoor achieve high accuracy when using GPS or cel-
lular systems. However, these two systems have a degraded accuracy indoors
due to the absence of a line of sight (LOS). Indoor localization require there-
fore other methods that uses other wireless signals.

Indoor localization uses mainly the following wireless signals: Wi-Fi, Blue-
tooth (Classic or Low Energy), Acoustic, and RFID. Apart from the wireless
signals there are embedded sensors in devices, such as a mobile phone, that
are mainly used for indoors. Namely inertial sensors and camera.

There are several measurements that can be attained from the wireless
signal between the infrastructure with base stations (BS) and the target.
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These measurements are used to deduce the target’s current position. Fig-
ure 3.1 shows the taxonomy of techniques used for wireless localization.
Localization can be grouped based on the measurement it uses and what
technique is used to deduce the target’s position. These methods differ also
on the necessary infrastructure that is required. Localization methods can
be further grouped how the observed data is modeled and used with respect
to the anchor nodes position to deduce the target’s position.

Some measurements are calculated using time and relates to the range or
the difference of ranges, respectively, time of arrival (TOA) and time differ-
ence of arrival (TDOA). TOA is a example of the Trilateration technique
and TDOA of the type Multilateration. Moreover, there are measurements
related to angle such as the angle of arrival (AOA), which is of the type
Triangulation. Consequentially, there are measurements related to the the
signal strength such as the received signal strength (RSS). The RSS mea-
surement can be used in 3 different ways. First, the distance between the
target and several nodes are calculated using a path loss model (PLM). Then,
trilateration is used to deduce the target’s absolute position. RSS models
using a PLM and trilateration will be referred to as RSS-model-based local-
ization. Second, statistical measurements of the RSS is used in the statisti-
cal models such as Fingerprint methods or Bayesian methods. Fingerprint
methods will be referred to as fingerprint-based localization. Fingerprint-
based localization deduces the target’s symbolic location. Third, the RSS
can be used to detect close proximity of the target, and will be referred to
as proximity-based localization. Proximity-based localization estimate the
target symbolic location to an anchor node. A path loss model is also used
to estimate the distance [48]. Finally, there are measurements which are
related to the quality of the signal in a digital communication channel such
as the link quality indicator (LQI) and the bit error rate (BER).

The following section will focus on describing how localization methods
can be grouped based on an observation model h(x), which describes how
the position of base stations and the target relate to an observed measure-
ment r. The generic form of the observation model is described in Equation
3.1. Given an infrastructure with M base stations, r defines the observed
measurement from each base station, r = {r1, r2, ...rM}. The vector x is the
target’s coordinates. The function h(x) defines the observation model that
maps the target position, and indirectly incorporates the base stations’ po-
sition, to the observed measurements. Finally, e defines the measurement’s
error. Localization methods differ in how the observation model is defined
and how the target position is deduced [40]. Localization methods can be
grouped in three main groups, namely, geometric model, proximity model,
and statistical model.

r = h(x)+ e (3.1)
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Figure 3.1: Taxonomy of wireless localization techniques [47].

3.2.1 Geometric Models

Geometric models estimate the position of the target by means of apply-
ing some sort of function such minimizing a cost function as described on
Equation 3.2. Depending on the measurement used the observation model
is defined differently [40].

V (x) = log pe(r− h(x)) (3.2)

Trilateration The trilateration method uses the absolute distance be-
tween the UD and several anchor nodes to deduce the UD’s position. See
Figure 3.2. The distance between the UD and a given anchor node can
be visualized as the radius of a circle with the anchor node at the center.
This entails that the UD can be anywhere on that circle, as it is shown in
the image that illustrates the usage of one anchor node, A. When multiple
anchor nodes are used the intersection of the circles illustrates the UD’s pos-
sible position(s). In a scenario with two anchor nodes, A and B , the target
node’s location reduces to two possibilities. It requires at least three an-
chor nodes in order to reduce the UD position to one possibility. Therefore,
trilateration requires at least three anchor nodes [47].
Trilateration makes use of time of arrival (TOA). Additionally, the RSS

measurement is used in RSS-model-based localization. TOA and RSS-
model-based differ from each other on how they estimate the distance be-
tween the anchor node and the UD [47].
TOA methods use time to estimate the absolute distance. RF signals

propagate through the air with the speed of light. The distance can be
deduced from the time it took for a signal to traverse between the target
node and the anchor node. Equation 3.3 highlights how the distance for
each of the M anchor nodes are calculated to create the observation model
[40].

h(x) = ||x− xi||, i = 1, ....,M (3.3)
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The process begins with the target node sending a signal to each anchor
node with the time of flight (TOF). Each anchor node then records the
time of arrival (TOA). This method requires the UD and all anchor node
to be time synchronized. This timing requirement is a challenging task and
requires special hardware that may cost a lot.

A RSS path loss model gives the relation between the RSS and distance.
RSS-model-based localization relies on a path loss model (PLM) to estimate
the distance between the UD and an anchor node. Equation 3.4 highlights
how the the distance estimation is done for each of the M anchor nodes,
whereby RSS0 highlights the RSS transmitted by the i − th anchor node.
The variable αi highlights the path loss exponent between the target and
the i− th anchor node.

h(x) = RSS0 − 10αi log ||x− xi||, i = 1, ....,M (3.4)

In comparison to TOA methods, no synchronization is needed, therefore
costs are reduced. However, there are several challenges with RSS-model-
based localization. First, it is difficult to find a model to accurately char-
acterize the real environment [47]. Second, a model is unique only to the
environment it was tuned for [47]. Third, just like TOA methods, RSS-
model-based methods suffer from the multipath effect [40] [46].

(a) One anchor node (b) Two anchor nodes (c) Three anchor nodes

Figure 3.2: Localization using the trilateration method. In Figure 3.2a one anchor
node with known location is used, namely node A, The unlocalized device (UD)
may be located on any point on the circle surrounding A. This circle will have a
radius equivalent to the distance between the UD and the anchor node. Figure 3.2b
highlights that when using two anchor nodes, namely the nodes A and B, the UD
may be in either of the two intersection. However, Figure 3.2c shows that when
three anchor nodes are used, namely the nodes A, B, and C, the UD will be located
by the single point, which intersects the radius from all anchors [12].
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Multilateration Multilateration is similar to trilateration in the sense
that both technologies use the distance between the UD and several anchor
nodes [47]. However, the essential concept of multilateration is that it
additionally uses the difference in distance between each pair of nodes to
deduce the UD’s location. This is illustrated in Figure 3.3. Multilateration
differs from trilateration in that it uses relative distances instead of absolute
distances. Using the distance between the UD and a given anchor node
and the inter-node distance a hyperboloid can be visualized for each pair
of nodes. The UD can be anywhere on that plane. When multiple pairs of
nodes are used, several hyperboloid are present which may intersect. Similar
to trilateration, the intersection defines the possible location of the UD and
at least three anchor nodes are necessary to have one possible location.

A technique which uses multilateration is Time Difference of Arrival (TDOA).
This technique uses time to derive the required distances just like TOA, and
its observation model is also defined the same way as shown in Equation 3.3
[40]. TDOA requires timing synchronization on all anchor nodes, however
the UD does not need to be in synchronization. This makes TDOA cheaper
than TOA. However, faces the same challenges with the multipath effect
indoors.

Figure 3.3: Localization using the multilateration method. The unlocalized device
interacts with the three anchor nodes, A, B, and C, to deduce its position. First, the
UD determines the distance between each anchor node. Subsequently, each anchor
node communicates with each other and calculates the difference in distance/time.
This creates a hyperbola, Hij, between node i and j [47].
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Triangulation Triangulation methods differ from lateration by using an-
gles instead of distances. An example is Angle of Arrival (AOA). This
method requires the angle to be calculated at which a signal from the UD
reaches anchor nodes [47], respectively node A and B as it is shown in Figure
3.4. An inter-node measurement is also needed to determine the distance
between the anchor nodes, and the observation model is defined as that of
Equation 3.3 [40]. At least two nodes are required to deduce the UD’s po-
sition. The AOA method suffers from large position estimation errors when
small measurement distortion occur [47].

Figure 3.4: Triangulation method [12].

All of the previously mentioned localization methods are computation ef-
ficient. However, they do not work well in situation of NLOS since it can
not detect outliers caused by NLOS well [46] and the localization accuracy
is degraded. The localization accuracy can be improved by taking multi-
ple samples and then reapplying the localization method over each sample,
which will result in multiple estimated positions. Subsequently, an estimator
robust to noise, such as the mode, is used over all the estimated positions in
order to get the target’s position. This method to improve the localization
accuracy has a trade-off that the localization accuracy will improve at the
expense of a higher computation cost and energy consumption.

3.2.2 Proximity

Proximity-based methods rely solely on detecting the presence of the UD
near a given anchor node. This implies that the UD needs to be in close
proximity. Proximity-based methods also use a path loss model to esti-
mate the distance, however, mainly to create a geofence [48]. The geofence
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represent symbolic locations based on threshold indicators. The use of sym-
bolic locations implies that the target actual position is not estimated. The
simplest form of indication will be labeling the proximity to be far or near.

Reference nodes are sorted by their distance as seen from the UD perspec-
tive. Consequently, the location of the anchor node with the closest distance
is selected to target’s location.

Proximity-based localization is very simple, but also suffer from indoors
multipath effect. To improve the localization accuracy indoors the density
of the reference nodes need to be increased, which in return will increase the
infrastructure cost.

3.2.3 Statistical Models

Another type of localization technique is fingerprint-based methods. This
method differs from Trilateration and Triangulation methods in that fingerprint-
based methods do not calculate the distance between the target and anchor
nodes. This method analyzes the environment and deduces the target’s po-
sition by finding the best match of a new sampled fingerprint to a radio-map
created during calibration [19].

During this scene analysis the raw RSS values are sampled as the input
metric. A fingerprint is a vector r containing RSS measurements from dif-
ferent anchor nodes as they are received by the UD for a given location,
such as a room in a building. A radio-map is a database that consists of
fingerprints from all the areas in which the localization is desired. Given an
environment with M anchor nodes and N locations the observation model
is described in Equation 3.5, whereby pi(xj) defines the data distribution of
the measured signals from the i− th anchor node at the location xj .

h(x) = pi(xj), i = 1, ...M, j = 1, ..., N (3.5)

Fingerprint-base localization consists of two phases, the off-line and the
on-line phase. In the off-line phase, also known as the scene analysis phase,
the radio-map is created by recording the observed measurements from all
M anchor nodes in all of the N locations.

In the on-line stage a UD will be located by sampling a new fingerprint
measurement and comparing it to radio-map to see which area has the best
match. This is done mathematically by means of Equation 3.6. The esti-
mated position, x̂, is the j− th location that minimizes the error defined by
zj . Furthermore, ri defines the new measurement received from the M − th
anchor node. The parameter pi(xj) defines the model created in the off-line
stage for the j − th location, as it described in Equation 3.5.
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x̂ = argmin zj
2

zj
2 =

M∑
i=1

(ri − p(xj))
2

(3.6)

In order to find the best match machine learning algorithms are used, such
as k Nearest Neighbor (kNN) and Bayesian [40]. Other forms of machine
learning that have been used in fingerprint-based methods are neural net-
works, support vector machines, and decision trees [40]. When using kNN
the k estimated position that provides the lowest error zj are used and aver-
aged to deduced the final estimation of the target. Bayesian algorithms are
used to deduce the target position by means of determining the maximum
likelihood estimator of the position, as it is highlighted in Equation 3.7.

x̂ = argmax p(r1, ..., rn|xj) (3.7)

Equation 3.8 describes how the target’s position is calculated using the
Bayes rule.

p(xj |r1, ..., rM ) =
p(r1, ..., rM |xj)p(xj)

p(r1, ..., rM )
(3.8)

The observation model is defined by p(r1, ..., rM |xj), which is the proba-
bility that the measurements from the M anchor nodes were observed in the
j − th location. Additionally, p(xj) describes the prior probability for each
location and p(r1, ..., rM ) the probability of observing the received sample
from each of the M anchor nodes.
Fingerprint-based methods can be cheaper than the trilateration, mul-

tilateration, and triangulation methods since existing infrastructure can be
reused and no special hardware is needed for synchronization [19]. However,
creating a radio-map is time consuming and an exhausting task that needs
to be done in the off-line stage before localization can happen. Furthermore,
this method’s accuracy degrades over time as changes to that environment
causes the radio-map to model the actual environment less accurately. The
off-line phase needs to be repeated again to compensate for this [46]. More-
over, a downfall of fingerprint-based methods is that the target’s position
can only be estimated in the areas where data measurements have been
recorded in the off-line phase [40].
Despite the challenges in fingerprint-based localizations, it mostly used

for methods that use RSS since it is robust to outliers caused by NLOS
scenarios indoors [40] [20] [47].
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Chapter 4

System Model

RF signals propagating through a room between a sender and a receiver may
experience reflection, diffraction, and attenuation from the furniture, walls,
and other obstacles in the room. Since each environment is different, it is
expected that the signals will propagate differently [31] [35]. In [35] the
challenge was that for different environments the standard deviation varied
significantly. Nevertheless, we chose to analyze the standard deviation in
different room, since it may be distinguishable amongst different environ-
ments. Therefore, we focused on taking into account the statistics of the
signal’s variation when generating most of the features.
Fingerprint-based methods has shown to be robust to several of the in-

door challenges mentioned in Section 1.2 [40] [47]. Therefore, we also
implemented a method that analyzes the environment and applies statis-
tical algorithms, which fingerprint-based method do. On the contrary to
using the raw RSS metric in fingerprint-based methods, our method makes
use of other metrics generated from the RSS information. Moreover, most
of the generated metrics incorporate analysis of the statistical properties of
the signal fluctuation.
It was highlighted in [47], that errors always occur in fingerprint-based

systems, using WLAN, although reasonable accuracy. This is because in
fingerprint-based methods different locations have similar radio signature,
which is caused by the dynamic propagation of radio signals. Since BLE and
WLAN are in the 2.4 GHz, this was taken into account by aiming to find
features that model the signal’s random behavior even more. The goal was
to model the signal fluctuation in a room and determine a way to uniquely
distinguish between two BLE nodes exchanging BLE packets from within
the same room from those in different rooms. Recall that in Section
1.1 it was highlighted that Follow Me requires to know what speakers are
in the same room, thus in the same bundle. Since the classifier will only
classify whether a pair of nodes are in the same room or in different rooms,
the classifier results need to be further processed in order to create the list
of bundles. First, the number of distinguishable groups must be identified.
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Second, every node that are in the same room must be categorized to the
same bundle. The creation of the bundle list is not done for this thesis and
it was for future work.

The remainder of this chapter focuses on the metrics (features) that were
used to model the BLE signals propagation indoors. Additionally, this chap-
ter describes the classifier that was designed and implemented to classify
pairs of BLE nodes to being in the same room or in different rooms.

4.1 Feature Generation and Selection

The purpose of this phase was to find the features that describes the two
classes, same room and different rooms, in such a way that there is a clear
distinction between the BLE signals traversing between a pair of BLE nodes
that are in the same room and different rooms.

A single RSS measurement is referred to as a sample, whereby several
samples is referred to as an RSS chunk. The RSS signal between a pair of
BLE nodes is captured over time to create a group of RSS chunks, which
are then processed to create a single observation. Some features process the
group of RSS chunks using a non-overlapping sliding window, processing
each RSS chunk individually. The results of each processed RSS chunk
are then further processed to create the final single value feature. Other
features, on the other hand, process the entire group of RSS chunks to
create the single value feature.

The chosen features can be classified in the way a set of BLE signal is
analyzed, resulting in two types. Method 1 focuses on modeling the RSS
by analyzing its fluctuation. An RF signal propagating in a clear Line
of Sight (LOS) in a room is not expected to experience much attenuation
[48]. However since a room in a home consists of objects, the impact of
the multipath effects on the RSS fluctuation will be different [31] [48].
A portion of that RF signal may penetrate the surrounding walls and can
therefore be observed by neighboring nodes in adjacent rooms [32] [40] [46].
This signal will be attenuated differently due to different wall materials, and
is expected to fluctuate more than a propagation path with a LOS. The
RF fluctuation in a static environment comes to a certain equilibrium and
hardly changes after a while [35][27]. The fluctuation rate has shown to
be unique per environment[35]. RF signal fluctuation has therefore been
chosen to be one of the main feature. Features of this type are the Mean of
the Set of RSS chunks’ Standard deviation using RSS (MSSR), Fluctuation
Rate Distribution (FRD), and Standard deviation of the set of RSS chunks’
Range (SRR).

On the other hand method 2 focuses on a variety of approaches that do
not focus on the signal fluctuation. Features belonging to this group are
Mean of the set of RSS chunks’ Interquartile Range using RSS (MSIQRR),
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Percentage Of Peaks (POP), and the Mean of the set of RSS chunks’ Sum
(MSUM).

4.1.1 Mean of the Set of RSS Chunks’ Standard Deviation
using RSS (MSSR)

Motive The standard deviation of the RSS focuses on analyzing how much
the RF signal strength variated from the average signal strength over time.
Recall that in Section 1 it was stated that the multipath causes the RSS to
experience more distortion and resulting in more RSS variation. [27] refers
to this as fading. Analyzing the standard deviation of a RSS chunk, consist-
ing of several RSS measurements,, can highlight if the signal is experiencing
fade depth.

A low standard deviation means that the signal strength does not variate
much over time, giving some sort of indication that the RF path may not be
under obstruction. This can be the result of the absence of obstacles or that
the RF path between a receiving and transmitting nodes have reached an
equilibrium [27]. Additionally, that the nodes are at a static position. The
higher the std rss is the more multipath fading the RF signals may have
experienced. This can be due to moving objects within the room, obstacles
between the nodes, such as a wall or furniture, or that the nodes have been
placed to a new location.

The standard deviation is applied over several RSS chunks over time. To
smooth out the overall variation amongst the RSS chunks we apply the
mean over all RSS chunks. The mean is robust to outliers, however, if
the fade depth changes continuously over time, the MSSR is expected to
increase. For as far as we know, we have not noticed such a feature used for
fingerprint-based methods.

Limitations The fluctuation is expected to be relatively a lot more in a
room that is occupied versus a room that is not. This increase in fluctuation
can be similar to the fluctuation that the RF link encounters through a wall,
which make this feature challenging in occupied areas.

Since the variation of the signal strength is used, it is not expected that
this feature will be affected much by the distance between sender and re-
ceiver. To the contrary, it is expected to be affected more by the obstacles
that are between the receiver and the sender. However, the mean and stan-
dard deviation are not robust to outliers. This feature also works best when
the shape of the data is normally distributed having a bell curved shape

4.1.2 Fluctuation Rate Distribution (FRD)

Motive The Fluctuation Rate Distribution (FRD) focuses on the rate at
which the RSS of a new packet have variated from the previous received
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packet. The distribution of this fluctuation rate over time is then analyzed.

This algorithm was researched in [35] and shown to be able to detect the
presence of a person in a room. We have implemented the FRD algorithm
in software. [35] highlights that each room has a unique rate at which
the RF signals propagate within them. This part is helpful for this thesis
in order to differentiate between rooms. Additionally, [35] highlights that
in the presence of a person the RF signals fluctuates more with smaller
fade depths. This algorithm checks how much a received packet RSS value
variated from the packet received at the previous timestamp. This difference
in variation is captured over time to create the fluctuation rate distribution.
An environment without a person always has 90% of its distribution within
the ranges -1 and 1. In the presence of people the fluctuation is more
and therefore also the spread of the distribution. The percentage of the
distribution within the ranges -1 and 1 remains below 65%. The feature
FRD defines the percentage of the distribution that is within the ranges -1
and 1.

It is expected that when there are changes in the environment that the
RSS will fluctuate more compared to the previous timestamp. Moreover,
it is expected that if the obstruction of a wall causes the RSS to fade even
more, which also results in more fluctuation. In both scenarios the spread of
the fluctuation rate distribution will be more, and therefore the FRD value
decreasing then this will cause the fluctuation rate to increase.

Limitations The FRD has the advantage to be able to detect the presence
a person in a room. Additionally, it is a feature that has been claimed to
uniquely distinguish different rooms. However, if a room is occupied, it
is expected that the FRD may have similar characteristic to an RF path
obstructed by a wall or other obstacles.

4.1.3 Standard deviation of the set of RSS chunks’ Range
(SRR)

Motive This standard deviation of the RSS range (SRR) takes a sample
set and calculates the range, R = max(RSS) − min(RSS). This feature
focuses on the spread of the RSS in a RF path. A RF path that is obstructed
tend to have a larger spread. Fading is also caused by multipath effect and
by shadowing of obstacles, such as the presence of people.

Limitations The SRR provides a simple way to know if there is an ob-
struction in the RF path. However, this feature is quite similar to that of
the Interquartile Range (IQR), however it is not robust to outliers. So the
standard deviation was taken over time to try to minimize the variation in
the result.
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4.1.4 Mean of the Set of RSS Chunks’ Interquartile Range
using RSS (MSIQRR)

Motive The interquartile range (IQR) of the RSS is a measure to see
how spread out the RSS distribution is and what percentage of the signal’s
distribution is within 1 standard deviation from the median. Using the IQR
and the median is similar to using the mean and the std, but unlike the
mean and the std, the IQR and median are robust to outliers.

The IQR of the RSS indirectly states that approximately 50 % of the
signal’s strength were within the quartiles Q1 and Q3, respectively -1 std
and +1 std from the median. A sample set, which contains RSS samples
between two nodes, with a higher IQR is expected to indicate that the RF
path was less stable. The larger the IQR the more fade depth the RF signal
has encountered. It is expected that the IQR will be impacted more by the
RSS variation caused by reflection than the distance between nodes.

The stability of the RSS can indirectly be shown by means of a box plot A
box plot shows the skewness of a sample set’s distribution. If the distribution
is skewed then it means that certain RSS values have been received more
than other values, which indirectly indicates less variation. Additionally,
when the IQR is small then it indicates that the data samples are not often
widely spread apart from one another. Therefore, highlighting that smaller
fade depth have occurred. The rate and amount of variation is expected to
be difficult to see in the IQR directly on the RSS distribution.

After observing the IQR of several samples and RF paths, it has been
observed that the IQR seems to have some sort of relation to the distinction
between nodes within the same room versus those from the different rooms.
For as far as we know, we have not noticed such a feature used for fingerprint-
based methods.

Limitations IQR is a measure of central tendency and the spread of the
data, while being robust to outliers. Additionally, it is robust to the skewness
of the distribution. IQR can be used to find outliers and know the skewness
of the distribution in an easier manner than using the mean and standard
deviation.

4.1.5 Percentage of Peaks (POP)

Motive It has been observed that at times when nodes are in the same
room the observed RSS between each RF path tend to have some similarities
in the shape of the RSS distribution. BLE nodes that were in the same room
seemed to have an RSS distribution that was more narrow and had less and
higher peaks. RF paths that had more variation, for example when nodes
were in separate rooms was expected to have a RSS distribution that was
more broad and also with smaller and broader peaks. For as far as we know,
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we have not noticed such a feature used for fingerprint-based methods.

Limitations This feature is not robust to outliers.

4.1.6 Mean of the Set of RSS Chunks’ Sum (MSUM)

Motive This feature takes the RSS chunk a sample and calculates the sum
of the RSS value. This feature focuses on the sum of the signal strength, to
capture the RSS during a period time even if it has been variated for a period
of time. A RF path that is obstructed tend to have a weaker RSS. Over
time, if obstructed long the sum of the RSS will be really low. However, if
the RF path was blocked for a short while, the sum will be still lower than
normal. Furthermore, if nodes are far apart it is expected that the sum of
the RSS will be really low. The closer the nodes are, the higher the MSUM
will be.

Pros and Limitation The MSUM provides a simple way to know when
speakers are far or close to one another. However, this feature is not robust
to outliers. Furthermore, if nodes from another room is close by, there will
be no easy way to distinguish that the node is behind a wall.

4.1.7 Features Evaluation

The accuracy of a model is strongly influenced by the selected features.
Having too many irrelevant features will increase the complexity, training
time, and may cause over-fitting. Over-fitting is when a classifier to take
account noise instead of relevant patterns and will therefore decrease its
performance [6].

The desire is to have features that are correlated with the output variable,
same room and different rooms. Features that are not correlated with output
are considered irrelevant and can cause the model to over-fit. That is, the
model will be trained for details and will not be generalized. Therefore,
during the testing phase new samples can be wrongly classified.

On the other hand, if two relevant features are used, which are highly
correlated, then one will be redundant. This will increase the complexity of
the classifier without much performance gain [44]. An increase in software
complexity will cause more computation , resulting in more power consump-
tion.

Feature selection is the art of selecting the best combination features that
result in good classifier’s performance. Irrelevant or redundant features may
cause a model to decrease in performance. Classifiers require generalization.
The higher the ratio between the number of patterns and features, the less
the classification error will become [44]. This section highlights how the final
features were selected.
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The goal was to find features that have high discriminatory information
with respect to the classifier’s output, while reducing the number of features.
Additionally, determining what combination of features provide the best
performance. The feature space is the scatter plot of the observation with
the features as the dimensions. In the feature space features should have
large distance values between classes and small variance between the values
within the same class [44].

A Random Forest classifier was implemented in Sci-kit learn, using the
default settings, in order to select the best combination of features to use
for the final classifier. The training data with all of its features for the
environments people walking and minimal room were used. A Random For-
est classifier is built upon several Decision Tree classifiers. A Decision Tree
classifier is a nonlinear classifier, which consists of nodes that represents the
features, capable of grouping features based on how well they reduce the
node impurity. The Gini impurity is a type of node impurity that defines
the probability of misclassifying a new observation if the observation was
randomly classified according the current data distribution, containing the
class labels. The lower the Gini impurity is the better a feature can split
the dataset such that it contains more samples of a class compared to the
other class. In other words, the features are split based on which features
separates the dataset best with respect to the classes same room and differ-
ent rooms. The selected features using a Decision Tree classifier, however,
will may over-fit. The Random Forest classifier improves the over-fitting by
generalizing the selecting features. This is done by using an ensemble of De-
cision Trees and using as the input to each tree a randomly selected subset
of the features and dataset. The Random Forest assigns a score which de-
fines a feature relative contribution to the decision making. The higher the
feature importance score is, the more the feature contributes to the decision
making in the Random Forest [44] [9].

Table 4.1 highlights the features important sorted from top to bottom
with descending order of importance. The two top features are MSUM and
SSR. Therefore, we chose these two features to be used in the final classifier.

4.2 Bluetooth Low Energy Speakers’ Room Clas-
sifier

4.2.1 Models’ Evaluation

Section 2 highlights the performance metrics used for evaluating a classi-
fier’s performance. The main metric for this thesis is the area under the
curve (AUC), since this metric highlights how well a classifier distinguishes
between observations from BLE nodes in the same room and different rooms.

Appendix B highlights how several classifier models were trained and eval-
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Table 4.1: Feature importance using a Random Forest classifier on the test only
dataset. The features are giving a score representing the average level of decreas-
ing the Gini impurity and thus statistically having a stronger relationship with the
classifier’s output values same room and different rooms.

Feature Random Forest Score

MSUM 0.66
SSR 0.13

MSIQR 0.08
MSSR 0.06
FRD 0.04
POP 0.03

uated to select the top 3 classifiers. The result of the classifiers evaluation
is shown in Table 4.2. The performance metric is sorted from left to right
in the order of importance. All metrics use % format except for the log
loss. The log loss requires that the lower the number to indicate a better
classifier’s performance. The classifiers are sorted from top to bottom in the
order of best performance. Overall, the top 3 classifiers were Naive Bayes
Gaussian, Ada-Boost, and then Random Forest.

Table 4.2: Classifiers evaluations with respect to different performance metrics. All
metrics use % format except for the log loss. The top three classifiers are highlighted
in gray.

Classifier
Performance

AUC F1-score Recall Precision Log Loss Accuracy

NB Gaussian 98.53 98.18 100.00 96.43 0.11 98.36

Ada-Boost 97.06 96.43 100.00 93.1 0.22 96.72

Random Forest 96.68 96.3 96.3 96.3 0.15 96.72

Decision Tree 95.59 94.74 100.00 90.00 1.70 95.08

Quadratic Discriminant
Analysis

93.36 92.59 92.59 92.59 0.19 93.44

Gradient
Boosting

92.97 92.31 88.89 96.00 0.45 93.44

KNeighbors 91.88 90.91 92.59 89.29 0.70 91.80

Linear Discriminant
Analysis

87.42 85.71 77.78 95.45 0.2 88.52

NuSVC 80.39 76.6 66.67 90.00 0.32 81.97

The rest of this section evaluates the top three classifiers with respect
to some of the system’s requirements mentioned in Section 3.1, in order
to select the best classifier that satisfies the over all requirements. The
requirements of interest are related to how fast the classifier can classify
new observations to ensure a good response time and the computation cost
to insure proper energy management. Table 4.3 shows the evaluation. The
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classifier are sorted from left to right and ranked by the leftmost having the
highest AUC performance. With respect to the training phase, a Random
Forest classifier has the highest upper-bound time complexity, whereby the
NB Gaussian classifier has the best. For the prediction (testing) phase it is
not simple to compare NB Gaussian with Ada-Boost and Random Forest,
since NB Gaussian is not tree-based. Ada-Boost, however, predicts faster
than Random Forest. Nevertheless, NB Gaussian was selected as the final
classifier, since it simple to implement and has achieved a higher AUC than
Ada-Boost and Random Forest.

Table 4.3: Complexity evaluation of the top three classifier models. The complexity
is expressed using the Big-O notation. Each criteria is expressed against some of
the system’s requirements. N = number of samples, l = number of features, t =
number of trees, d = tree depth and c = number of classes [14] [11] [4] [36] [3]
.

Criteria Requirement
Classifier model

NB Gaussian Ada-Boost Random Forest

Time
complexity
(Training)

REQ-4, REQ-5 O(N ∗ l) O(N ∗ l2 ∗ t) O(N ∗ l ∗ d ∗ log(N))

Time
complexity
(Testing)

REQ-4, REQ-5 O(l ∗ c) O(t) O(d ∗ t)

4.2.2 Naive Bayes (NB) Gaussian Classifier

The Naive Bayes Gaussian classifier is a very simple supervised classifier
that is based on the Bayes rule [19]. The Bayes rule is shown in Equation
4.1 and defines a way to calculate the probability of a given event, class wi

given an observed pattern x. P (wi) defines the class probability and p(x)
the feature distribution. Finally, p(x|wi) defines the class-conditional. For
this thesis there are two classes same room and different rooms. Respectively
class 1 and class 2 defined as w1 and w2. The Bayes rule provides an optimal
way to reduce the classifier error in predicting an observation to be in either
of the two classes wrongly [44]. The feature vector x, x1, x2, ..., xl, describes
a pattern for an observation with values for the corresponding values for
each of the l features. The variable l defines the dimension of the feature
space, which is the number of features used in an observation. The class
probability P (wi) and class-conditional probability density function p(x|wi)
are expected to be known prior to evaluating a classifier. Since this was not
known, they were estimated using the training data.
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P (wi|x) =
p(x|wi)P (wi)

p(x)
, i = 1, 2

p(x) =

2∑
i=1

p(x|wi)P (wi)

P (wi) ≈
Ni

N
, i = 1, 2

(4.1)

The central limit theorem declares that the probability density function
(pdf) of the summation of random variable tends to approximate a normal
distribution as the number of samples tends to infinity, independent of the
pdf of the variables [44] [2]. The Gaussian Naive Bayes makes used of
this theorem and can therefore assume that the class-conditional probability
p(x|wi) is of the type normal distribution, as it is described in Equation 4.2.
The lxl covariance matrix, Σi, describes the covariance of each feature for
that given class. It is defined as Σi = E[ (x - µi) (x - µi)

T ], whereby i denotes
to which of the two classes. In order to ensure that the determinant of the
covariance matrix is non zero it is required that the matrix be nonsingular,
thus that the features are independent. This independent assumption makes
the classifier naive and has the benefit that the Bayes rule can be simplified
to Equation 4.3.

p(x|wi) '
1√

(2π)l det(Σi)
exp(−1

2
(x− µi)

TΣ−1
i (x− µi)), i = 1, 2 (4.2)

P (wi|x1, x2, ..., xl) =
P (wi)p(x1|wi)p(x2|wi)...p(xl|wi)

p(x)

=
P (wi)

p(x)

l∏
j=1

p(xj |wi), i = 1, 2

(4.3)

The Bayes classification rule is a simple equation that is focused on mini-
mizing the probability error or risk [44], whereby the probability error was
used for this thesis. The training data’s feature space containing N samples
with an observation x = {x1, x2, ..., xl} was split in two regions, one for each
class using Equation 4.4. The Gaussian Naive Bayes classifier can predict
to which class a new observation belongs to by classifying the observation
to class w1 if P (w1|x) > P (w2|x). Otherwise, classify the observation to
the class w2 if P (w1|x) < P (w2|x). The Bayes classification rule is shown
in Equation 4.5. The decision boundary is a hyperplane that orthogonal
to µ1-µ2. The hyperplane is situated closer to µ1 if the class probability
P (w1) < P (w2). Otherwise, if P (w1) > P (w2) the hyperplane is closer to
µ2. However, if

P (w1|x)− P (w2|x) = 0 (4.4)
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x ∈ wi =

{
x ∈ w1 if p(x|w1)P (w1) > P (x|w2)P (w2)

x ∈ w2 if p(x|w1)P (w1) < P (x|w2)P (w2)
(4.5)

In Scikit-learn the Gaussian Naive Bayes classifier has only two param-
eters. Namely, prior, which is the class probability P (wi). Additionally,
var smoothing, which is variance added to smooth the variance across all
features. The main parameters prior was derived from the training data
and therefore, this classifier was not tuned and used the default value of
var smoothing.
The Naive Bayes Gaussian classifier is fast, simple, and has a small com-

putational complexity [19]. However, if the assumptions are not met this
classifier can perform poorly [44].
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Chapter 5

System Setup and Model
Implementation

This chapter focuses on describing the communication infrastructure that
was implemented and used with the BLE nodes in order to collect the neces-
sary data samples for the NB Gaussian classifier. Furthermore, this chapter
will describe the NB Gaussian classifier’s parameters, which were used for
the final implementation.

5.1 Communication Infrastructure

Figure 5.1 shows the high-level infrastructure of the system. Every BLE
node communicates with neighboring nodes by means of advertisements,
thus not an actual BLE link connection. This approach was chosen to
take advantage of the BLE protocol that allows broadcasting a message
to many BLE scanners at the same time. In order for the system to deter-
mine whether nodes are in the same room or different rooms, nodes advertise
BLE packets containing the necessary information. The subwoofer adver-
tises Scalable Lightweight Time Synchronization Protocol (SLTP) packets,
which will be discussed more in Section 5.2. The satellites advertises Altbea-
con packets. Section 5.3 will discuss the packets transmitted by satellites.

Every receiving node parses the transmitted packets from neighboring
nodes and creates a local dataset. Table 5.1 highlights how each receiving
node records the parsed packets into a local dataset. Note that each local
dataset is recorded from the perspective of the receiving node. The Trans-
mitter ID is the ID of the node that transmitted the received packet and
the RSS is the received signal strength of the received packet. Moreover,
the TOA is the time of arrival of the received packet. The TOA is set to
be the estimated SUB’s local time (elapsed time) as seen from the receiving
node’s perspective. The TOA will be discussed in more detail in Section
5.2. Finally, the parameter Receiver ID is used to identify the node that
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Figure 5.1: Communication infrastructure. Nodes are advertising packets, while
simultaneously scanning advertised packets from neighboring BLE nodes. The SUB
advertises scalable lightweight time synchronization protocol (SLTP) packets. The
SATs advertise Altbeacon packets.

received the packet. The parameter Receiver ID comes in handy when the
local dataset from each node will be concatenated in a combined dataset to
form one meaningful information. The classifier can then identify the pair
of nodes and process the corresponding information describing the signal
traveling between the sender and receiver.

Table 5.1: Data structure for the local dataset logged in each individual node. The
Transmitter ID is the ID of the node that transmitted the SLTP or Altbeacon packet.
The RSS is the received signal strength of the current packet by the receiver. The
TOA is time of arrival (TOA) of the received packet. The TOA is set to be the esti-
mated SUB’s local time (elapsed time) as seen from the receiving node’s perspective.
Finally, the receiver ID is the ID of the node that received the packet.

Parameter Description

Transmitter ID Node’s ID that transmitted the packet

RSS Received signals strength of the packet

TOA Time of Arrival of the packet. Set as the SUB’s estimated elapsed time

Receiver ID Node’s ID that received the packet

The local dataset that was created by each node is centralized and con-
catenated to form a combined dataset, which will then be used to generate
the features of interest, as it is described in Section 4.1. An observation ta-
ble is then created that can be used by the classifier. Section 5.5 will discuss
more on the implementation of the observation table. For our experimen-
tal setup we extracted the local dataset from each node by implemented a
software that allows a node to send its local dataset through a serial port.
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Moreover, we connected a PC to each node’s serial port and extracted their
local dataset. We then made use of Python to concatenate the local datasets
for further processing, which are explained in Section 5.4.
Table 5.2 highlights the main configurations for the satellite and the

subwoofer. It is important to highlight that the subwoofer only transmits
synchronization packets, SLTP packets, containing its local time, while scan-
ning for Altbeacon packets from satellites. The satellites on the other hand,
advertise Altbeacon packets while scanning for both Altbeacon and SLTP
packets, respectively from neighboring satellites and the subwoofer.

Table 5.2: Satellite’s (SAT’s) and subwoofer’s (SUB’s) BLE configuration. A
SAT advertises Altbeacon packets every 100 ms, while a SUB advertises scalable
lightweight time synchronization protocol (SLTP) sync packets every 100 ms.

Description Value

Transmission power 0 dBm
Scanning interval 600 ms
Scanning window 200 ms
Scanning timeout never

SAT’s advertisement interval 100 ms
SAT’s advertisement timeout never
SUB’s synchronization interval 100 ms

5.2 Scalable Lightweight Time Synchronization Pro-
tocol (SLTP)

The BLE nodes that we implemented in the field work collectively to ac-
complish a specific task, which is locating a target’s current position, by
means of wireless communication with one another. This requires for each
node to query the local time that it received packets. Subsequently, as it
was stated in Section 5.1, the collected data from each node should be fused
together to a single meaningful data. Therefore, it is crucial to synchronize
the nodes.
Wireless sensor nodes (WSN) application and the BLE nodes used for this

thesis share several things in common. First, WSN nodes may be mobile.
Although we have not implemented mobility, it is taken into account in the
time synchronization protocol evaluation for future improvement. Second,
energy efficiency is essential. Third, nodes are distributed and must take
into account being robust to obstacles and nodes not working. Therefore,
we analyzed time synchronization protocols also used for WSN and focused
mainly on the metrics mobility, energy efficiency, and robustness.
The requirements in Table 5.3, provides the overview of what the en-

tire application must comply to. The time synchronization implementation
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contributes to the requirements REQ-1, REQ-3 to REQ-5, and REQ-7 to
REQ-9. The main metrics that are required is to have a protocol that is en-
ergy efficient and robust to obstacles. Although BLE nodes are not tracked
in real time for this thesis, mobility is also taken into account for future
improvement of the system. Additionally, it is good to have a protocol that
has high precision.

Table 5.3: Requirements for a time synchronization protocol. The requirements are
ordered using the MoSCoW analysis. M = Must have, S= Should have, C= Could
have, and W= Won’t have.

ID Requirement Priority

REQ-1 To operate in an Indoor Environment M

REQ-2 To automatically determine what BLE nodes are in the same room M

REQ-3 To support flexible positioning of portable BLE nodes M

REQ-4 An energy efficiency of 10 hours M

REQ-5 To be scalable to support between 3 to 6 BLE nodes M

REQ-6 Zero user set up/interaction cost. M

REQ-7
To be operational, despite if a BLE node
joins or leaves the network on the fly

S

REQ-8
To be robust to interference

from indoor obstacles, mainly walls, furniture, and people
C

5.2.1 Time Synchronization Methods’ Evaluation

In order to select a proper time synchronization for Kien we classified time
synchronized protocols based on how nodes synchronize with one another.
There are mainly two categories, namely, Sender-Receiver (SR) and Receiver-
Receiver (RR) [23] [30] [43].

In Sender-Receiver (SR) synchronization protocols a reference node peri-
odically transmits a message with its local clock timestamped in it. Receiv-
ing nodes then synchronize their local clock with the reference node. This
is done by using the timestamp and calculating the time delay. FTSP, LTS,
TPSN, TSync, Tiny-Sync & Mini-Sync (TS/MS), SLTP, and GTSP proto-
cols are from the SR category. SR protocols are often used and are able to
receive higher precision than RR methods.

Receiver-Receiver (RR) protocols on the hand, require for the receiving
nodes to synchronize with each other. Furthermore, it is not required for
the reference node to advertise a reference time. Receiving nodes will record
the time they received the broadcast packets from the reference node and
then compare their reception times amongst other receiving nodes in order
to synchronize with each other. RBS is a known protocol of this category.

Table 5.4 compares several protocols among the previously mentioned
metrics. Namely, mobility, energy efficiency, robustness. Additionally, the
precision is also evaluated. The metrics are organized in descending order
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of importance. All two categories have protocols that are energy efficient.
However, Receiver-Receiver methods do not support mobility nor are they
robust. SR methods mostly have a high energy efficiency and support mo-
bility. Therefore, SR protocols were the main focus for this thesis.

Table 5.4: Time synchronization protocol evaluation. The protocol metrics are
sorted from left to right in descending order of importance [23] [38].

Category Protocol
Performance metric

Mobility Energy efficiency Robustness Precision(µsec)

SR SLTP [39] Yes High Low 0.13 ±0.06

SR FTSP [37] Yes High Low 0.50

SR LTS [45] Yes Low Medium 5.00 ∗ 105
SR GTSP [42] No High Medium 4.00

SR
Tiny-Sync &

Mini-Sync [41]
No High Medium 9.45

RR RBS [24] No High Low 1.85 ±1.28

SR TPSN [25] No High Low 16.90

SR TSync [22] No Medium Medium 29.00

From the Sender-Receiver category only LTS, SLTP, and FTSP support
mobility, therefore the other protocols will not be used. LTS in compari-
son to FTSP does not have a better energy efficiency nor better precision.
However, LTS is more robust. SLTP in comparison to LTS is not robust,
however it does have a higher energy efficiency. Additionally, SLTP has a
better precision than both LTS and FTSP, therefore we chose SLTP for this
thesis. We achieve mobility, high energy efficiency, and high precision at
the cost of not having robustness. This implies that a higher software layer
should aim to solve this issue of robustness.

5.2.2 SLTP Implementation

SLTP is a protocol that supports clustering with multiple cluster groups. We
make use of only 1 SUB and several SATs in a small environment, therefore
we implemented only 1 cluster group, 1 cluster head, and several cluster
members. The SUB was implemented as a cluster head and sends SLTP
sync packet ever 100 ms. SATs were configured as cluster members that
buffers SLTP packets over time. Subsequently, linear regressions is used
on the oldest 32 SLTP packets in order to estimate the SUB’s local time
(elapsed time). The estimated SUB’s local time is then used by SATs as
their time of arrival (TOA), as it is described in Sections 5.1 and 5.3.

We re-used a structure similar to that of an Altbeacon packet to imple-
ment the SLTP packet, whereby Table C.1 highlights the main parameters.
Namely, the beacon code and the beacon ID. The beacon code is a ID used
to differentiate the SLTP packet from other packet. The beacon ID consists
of only the Speaker ID and the Elapsed time. The Speaker ID is the ID of
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the transmitter of the SLTP packet, which is the SUB, and is configured
at runtime. The Elapsed time is the SUB’s local time (elapsed time). Ap-
pendix C.1 highlights in more detail the modified structure of the SLTP
packet.

5.3 Altbeacon packets

The Altbeacon packet was implemented mainly for satellite nodes to trans-
mit. Altbeacon was chosen since it is an open source standard for BLE
beacon packets and it may be used for both Android and iOS devices [8].
The convenience of an easy-to-implement and cross-platform protocol makes
Atlbeacon useful for Follow Me, since users will have phones with different
mobile operating systems.

Table C.2 highlights the main fields of the Altbeacon’s data structure.
Only the beacon ID and beacon code are of interest for localization. The
beacon code consist of an identifier used to distinguish the packet from
other BLE packets, such as the SLTP packet. The beacon ID consists of
the company universally unique identifier (UUID), speaker ID, and the room
ID. The company UUID is an identifier used to identify the nodes as Kien
speakers. Moreover, the speaker ID is used to uniquely identify each node
in the system. The speaker ID is derived from the hardware chip’s serial
number.

Section 4 highlights that for Follow Me nodes are grouped in bundles
to indicate which are together in the same room. Each Satellite will be
advertising to what bundle it is in with respect to the SUB using the room ID
parameter. By default all satellite advertise the value 0 for the parameter
room ID to indicate that they are in the same room as the SUB. Once
the actual bundle is determined by the system, every satellite node will
get notified their updated bundle ID. Consequently, satellite noes will then
advertise their new room ID. Recall that in Section 4 it was highlighted
the classifier output must be further processed to create the list of bundles,
which is phase not implemented in this thesis. Appendix C.2 highlights in
more detail the data structure of the Altbeacon packet.

5.4 Test Runs and Creating the Observation Table

Each experiment was executed 4 times and each test run lasted between 3
to 5 minutes. As it was mentioned in Sections 5.2 and 5.3 the SUB sends
SLTP sync packets and scans for Altbeacon packets from neighboring SATs.
SATs on the hand, advertise Altbeacon packets, while scanning for SLTP
and Altbeacon packets. Despite the packet type each node samples the RSS
value from the received packet in order to create its own local dataset. The
structure of a sample is shown in Table 5.1.
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The features described in Section 4.1 are created by extracting the RSS
measurements over a set of RSS chunks. For each pair of sender and receiver
node a non-overlapping sliding window (Wobs), of size 80 samples is applied
to the received RSS measurements.(Wobs) is referred to as a set of RSS
chunks, since it will be processed even further in chunks.
For the feature MSUM the set of RSS chunks are processed using a non-

overlapping window Nwindow msum of 10 samples, creating 8 RSS chunks.
For each RSS chunk the sum is calculated and then the mean is applied over
all the intermediate sums to create MSUM value.
The feature SSR is also processed in a similar manner, using a non-

overlapping sliding window size Nwindow ssr of 10 samples, creating 8 RSS
chunks. For each RSS chunk, the range of the chunk is calculated. The
standard deviation is then calculated for each intermediate RSS ranges to
create the SSR value.

5.5 Naive Bayes Gaussian Classifier Implementa-
tion

The Gaussian classifier from the sci-kit learn library has two parameters as it
shown in Table 5.5. The class prior P (same room) and P (different rooms).
No values were given to this input in order to ensure they were estimated
from the dataset. Additionally, the default value was used for var smooth,
which is a variance added for smoothing. Equation 4.2 highlights the math-
ematical model for the Naive Bayes Gaussian classifier. The generic form of
the mean and covariance matrix uses for this this is highlighted in Equations
5.1 and 5.2, whereby i defines the class same room or different rooms. The
µi defines the mean and σi the covariance matrix of the i − th class. Fur-
thermore, σ2 defines the correlation of a feature and σ the cross correlation
of 2 features.

µi = [µ(SSR), µ(MSUM)] (5.1)

Σi =

(
σ2(SSR) σ(SSR,MSUM)

σ(SSR,MSUM) σ2(MSUM)

)
, (5.2)

The classifier was created by training it using the dataset from the envi-
ronment minimal room and person walking combined. Recall that in Section
4.2.1 it was stated that 70 % of the data was used for training and the re-
mainder for testing. The mean and covariance matrix for dataset from the
same room class is depicted in Equation 5.3 and 5.4, respectively. For the
class different rooms the mean and covariance matrix is shown in Equation
5.5 and 5.6 respectively.

µsame room = [3.68,−604.61] (5.3)
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Table 5.5: Naive Bayes Classifier’s configuration

Description Value

P (same room) ≈34 %
P (different rooms) ≈66 %

var smoothing 1e-9

:

Σsame room =

(
1.53 −18.56

−18.56 2520.98

)
(5.4)

µdifferent rooms = [4.47,−728.77] (5.5)

Σdifferent room =

(
2.98 −18.35

−18.35 1201.62

)
(5.6)
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Chapter 6

Classifier’s Performance

After implementing the Naive Bayes (NB) Gaussian classifier its perfor-
mance was evaluated to see how well it distinguished between BLE nodes
that were in the same room from those in different rooms. The AUC metric
was used, since it is a metric of separability between the different classifier’s
outputs, which in this experiment was same room and different rooms. For a
given environment the acceptable performance is 80 %. Section 1.2 indicates
that the classifier should be portable such that it works in different home
environments. To validate the reliability of the NB Gaussian classifier be-
ing portable it has been agreed with Kien that the acceptable performance
should be met in at least 7 out of the 9 environments.

6.1 Experimental Setup

6.1.1 Environments

The remainder of this section describes the environments used to evaluate
the classifier’s performance. All of the experiments’ setups are described
in Appendix D. Figure 6.1 and 6.2 depict examples of environments that
were used, respectively adjacent room closer and person walking. These were
the environments where the classifier had the worst and best performance,
respectively.
All environments can be grouped by the test scenario they captured. The

3 test scenarios were placement, obstacles & disturbances, and people. The
test scenario placement main purpose was to understand the impact that
different distances between nodes have on the performance. Moreover, the
test scenario obstacles & disturbances took into account the impact that
different type of obstacles in a home may have on the performance. Addi-
tionally, the impact of RF disturbances is also analyzed. Finally, the test
case people focused on the impact people have on the performance.
Four speakers were used to collect samples from each environment, one

SUB and three SATs. In all of the evaluated environments at least one
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Figure 6.1: Setup of the environment adjacent room closer with 4 BLE nodes,
namely SUB1, SAT1, SAT2, and SAT3. SUB1 and SAT1 were in the office and
separated by a concrete wall from the nodes in the living room, SAT2 and SAT3.
Moreover, SAT2 was closer to nodes from the adjacent room in comparison to SAT3,
which was in the same room
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Figure 6.2: Setup of the environment person walking with BLE nodes separated by
a glass wall. Two nodes were in both adjacent rooms. A person walked in, around,
and then out of meeting room 2 several times.
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speaker was located in one of each adjacent rooms. Table 6.1 summarizes
the minimum and maximum distances between any two given nodes, whether
they were in the same room or in different rooms. Section 1.2 highlights a
scenario where an UD might be inaccurately classified to be together with
nodes in a different room when the UD is closer to the nodes in a different
room instead to the nodes in the same room. In other to keep track how
well the classifier handles such scenarios Table 6.1 takes into account the
parameters min dij , max dij , and ∆. Consider a pair of nodes, namely node i
and j, in a given environment. The parameter max dij defines the maximum
distance amongst any pair of nodes for any class, same room or different
room. On the other hand, the parameter min dij records the minimum
distance. In other to know if a scenario occurred, during our experiments,
where a BLE node is closer to another node in a different room than to nodes
in the same room we recorded the parameter ∆. The parameter ∆ defines
the difference between min dij for nodes in different rooms and max dij for
nodes in the same room. When ∆ is negative it means that there exist a
node that is closer to other nodes in a different room than to the nodes in
the same room. Additionally, we made use of the parameter ∆ to know for
what values of ∆the classifier performs well or not.

Table 6.1: For all environments the distances (dij) in meters between any two
nodes, namely node i and j, are highlighted. Given any two nodes the minimum
and maximum distance are shown, whether they are in the same room or different
rooms. The difference in distance between min dij and max dij, respectively from
nodes in different rooms and same room, is given by ∆.

Test scenario Environment

Distances [meters]
same room different rooms

∆min dij max dij min dij max dij

Placement
Multiple floors 0.80 1.22 3.00 3.10 1.78
Multiple rooms 0.64 0.64 3.7 8.80 3.6

Adjacent room closer 0.64 2.84 0.50 3.00 -2.34

Obstacle & disturbances
Plaster wall 0.62 1.65 3.20 3.30 1.55
Concrete wall 0.64 0.64 3.54 3.70 2.9
RF disturbance 1.10 3.31 5.50 6.17 2.19

Bookshelf 0.64 1.35 3.54 3.70 2.19

People
Minimal room 1.40 1.40 2.56 2.8 1.16
Person walking 1.40 1.40 2.56 2.8 1.16

6.2 Classification Performance

The NB Gaussian classifier was evaluated in 9 different environments. A
given test scenario for an experiment would serve to see the impact of some
scenario on the classifier performance, namely placement, obstacles & dis-
turbances, and people. The test scenario placement served to analyze the
impact of the speakers’ position with respect to one another. The envi-
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ronments in this test scenario were adjacent room closer, multiple floors,
and multiple rooms. Moreover, the test scenario obstacles & disturbances
focused on analyzing the impact that different obstacles and interference,
such as furniture and RF disturbances, have on the classifier’s prediction
performance. The environments that belonged to this test scenario were
bookshelf, plaster wall, concrete wall, and RF disturbance. Finally, the last
test scenario people focused on capturing the impact that people have on
the classifier’s performance. The environments in this test scenario were
minimal room and person walking.
Figure 6.3, Table 6.2, and Table 6.3 depict the classifier’s performance

evaluation and highlight that the classifier performed successfully above the
AUC criteria in 7 out of the 9 environments. The corresponding environ-
ments were minimal room, person walking, concrete wall, multiple floors,
multiple rooms, plaster wall, and rf disturbance. The previously mentioned
environments will be further referred to as the successful environments.
From the successful environments the environment multiple rooms resulted
in the weakest performance, while the environment person walking resulted
in the best performance, having an AUC of 86 % and 100 % respectively. A
performance of 100 % is not surprising for the environment person walking,
since this environment was one of the those that was used to train the classi-
fier. On the other hand, the classifier did not meet the performance criteria
in just 2 environments, namely adjacent room closer and bookshelf, having
a performance of 37 % and 70 % respectively. The environments adjacent
room closer and bookshelf will be referred to as the failing environments.

Table 6.2: Gaussian classifier’s performance highlight in the different environments
whereby the classifier failed to achieve the acceptable performance. The classifier
used the 2 features MSUM and SSR. The metrics used in the comparison are the area
under curve (AUC), log loss, and some terms from the confusion matrix, namely
the terms false positive rate (FPR), false negative rate (FNR).

Test scenario Environment

Performance metric

AUC [%]
Confusion matrix

Log loss
FPR [%] FNR[%]

Placement
Adjacent room

closer
36.99 42.00 84.00 4.12

Obstacles
&

disturbances
Bookshelf 70.00 60.00 0.00 1.33

The metrics AUC, FPR, FNR, and log loss will be used to clarify why the
classifier did not perform well in failing environments.
Section 2.2 highlights that the AUC is a performance metric that compares

the true positive rate (TPR) with the false positive rate (FPR) for different
decision lines. Additionally, that the TPR and FPR are related to the type
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Figure 6.3: Gaussian Naive Bayes classifier’s evaluation on several environments.
Performance metric is area under curve (AUC). Accepted performance is 82% and
greater. Only 2 out of 9 environments failed, namely adjacent room closer and
bookshelf.

Table 6.3: Gaussian classifier’s performance highlight in the different environments
whereby the classifier succeeded above acceptable performance. The classifier used
the 2 features MSUM and SSR. The metrics used in the comparison are the area
under curve (AUC), log loss, and some terms from the confusion matrix, namely
the terms false positive rate (FPR), false negative rate (FNR).

Test scenario Environment

Performance metric

AUC [%]
Confusion matrix

Log loss
FPR[%] FNR[%]

Placement
Multiple floors 98.51 3.00 0.00 0.31
Multiple rooms 86.64 26.00 0.00 1.21

Obstacle & disturbances
Plaster wall 98.68 3.00 0.00 0.24
Concrete wall 99.11 2.00 0.00 0.09
RF disturbance 91.46 1.00 16.00 0.37

People
Minimal room 95.83 8.00 0.00 0.19
Person walking 100.00 0.00 0.00 0.06
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2 and type 1 errors, respectively. Furthermore, TPR is negatively related
to the false negative rate (FNR).
In the failing environments the classifier inaccurately classified a signifi-

cant amount of the observations that belonged to nodes in different rooms
as being in the same room. Furthermore, Figures 6.7 and G.1 show that
the observations’ distribution for a given class has varied and spread to-
wards the distribution of the next class label. The classifier achieved a false
positive rate (FPR) of 42 % and 60 %, respectively the minimum and max-
imum AUC. Such FPR values indicate that the classifier have often made
type 1 errors. In other words, the classifier inaccurately classified nodes to
be in the same room, whereby this was done the most for the environment
bookshelf.
The FNR was at its minimum 0 % and maximum 84 %, respectively for the

environment bookshelf and adjacent room closer. For the latter environment,
the classifier predicted almost all the observations from the class same room
to be in the class different rooms.
Moreover, the classifier’s log loss was at its minimum 1.33 and maximum

4.12, respectively for the environment bookshelf and adjacent room closer.
According to Equation 2.6 the acceptable log loss is ≤1.08, since Table 5.5
highlights that the class prevalence was ≈34 % for the same room. The log
loss results indicates that the classifier did not perform well in the environ-
ments bookshelf and adjacent room closer.
To the contrary to the failing environments, in the successful environments

not much of the data distribution of a given class varied and spread out near
the distribution of the other class.
A minimum FPR of 0 % and maximum FPR of 26 % was achieved, re-

spectively for the environments person walking and multiple rooms. The NB
Gaussian classifier barely made predictions that were a false alarm, in other
words they were not much type 1 errors. In the successful environments the
average and standard deviation of the false positive rate (FPR) was 6.14%
and 9.12 % respectively. This is highlighted in Table 6.4, which summarizes
the mean and standard deviation for the FPR, FNR, and log loss for the
successful environments. Furthermore, Table 6.4 implies that the environ-
ment multiple rooms can be considered an edge case since it deviates from
the mean FPR by ≈2.18 σ, comparing to the other environments, which
deviated at their maximum within 1 σ.
All successful environments achieved an FNR of 0 % except the envi-

ronment rf disturbance, which achieved a maximum FNR of 16 %. This
indicates that the classifier was very specific in only responding when BLE
nodes were in the same room. The average and standard deviation of the
FNR for the successful environments were 2.29 % and 6.05 % respectively.
The environment rf disturbance can be considered an edge case since it de-
viated by ≈2.27 σ, in comparison to the other environments that remained
within 1 σ. Finally, the classifier had a minimum log loss of 0.06 and maxi-
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mum log loss of 1.21, respectively for the environments person walking and
multiple rooms. The environment multiple rooms exceeded the acceptable
log loss of 1.08, yet the classifier succeeded in this environment.

In the previous discussion the environments multiple rooms and rf dis-
turbance were considered edge cases. However, the classifier exceeded the
acceptable AUC in those environments. Overall, this means that the TPR
was more than the FPR.

Table 6.4: Highlight of the average and standard deviation classifier’s errors
amongst all of the successful environments. Metrics used are log loss and parts
of the confusion matrix, namely, the false positive rate (FPR) and the false nega-
tive rate (FNR).

Description FPR [%] FNR [%] Log loss

mean 6.14 2.29 0.35
standard deviation 9.12 6.05 0.39

The remainder of this section will compare the results of the failing en-
vironments in Table 6.2 to the average errors experienced in the successful
environments, as it is highlighted in Table 6.4. When comparing the FPR,
the environment adjacent room closer was ≈3.92 σ, while bookshelf was
≈5.91 σ. For the FNR the environment adjacent room closer deviated by
≈13.51 σ, while bookshelf was within 1 σ. The log loss was ≈9.56 σ for
adjacent room closer and ≈2.58 σ for bookshelf. In the failing environments
the classifier has always inaccurately classified a greater portion of the ob-
servations from nodes in different rooms to be in the same room. This can
be seen for example in Figure G.1 from Section G. For only one of the suc-
cessful environments, multiple rooms, did the classifier inaccurately classify
observations from different rooms to be in the same room. However, for the
latter environment the classifier still achieved a successful AUC.

6.3 Discussion

The NB Gaussian classifier made use of several features (predictors) in or-
der to determine the probability that an observation belonged to a given
class. This is shown in Equation 4.1. The first step in determining why the
classifier failed in the environments adjacent room closer and bookshelf is,
therefore, to determine if the NB Gaussian classifier model’s assumptions
were met. It was assumed that all features were statistically independent
from one another and that the data distribution of the features, for each
class, had a Gaussian distribution.

Independent features This section will focus first on the independence
of the features. In none of the environments the data distribution showed
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a strong statistical independence. Therefore, this is not the reason why the
NB Gaussian classifier failed in certain rooms.

According to [44] if the predictors are independent then Equation 6.1
should always hold true for the conditional/posteriori probability. That is,
the joint probability density function (pdf) for the posteriori probability
is equal to the product of the pdf of all the posteriori probability of the
individual features.

p(x|wi) = p(x1|wi)p(x2|wi), i = 1, 2 (6.1)

Independent predictors/features will always have a covariance and corre-
lation of 0. However, a covariance or correlation of 0 does not, in general,
mean that the variables are statistically independent [44]. The correlation
between the features MSUM and SSR for different environments are shown
in Table 6.5 and 6.6, respectively for the environments where the Gaus-
sian classifier did not and did exceed the accepted performance. The results
serve as an indication for in which environment the two features may be
independent.

The correlation is represented in the form of a correlation coefficient,
which was calculated using the Pearson method. The coefficient range is
[-1,1] and serves to show the linear dependency between variables. The
linear dependency is weaker for values that are closer to 0. Moreover, a
strong linear dependency is observed for a values closer to -1/1. Negative
values highlight a negative relation, that is if one variable increases the other
decreases, while in positive values both values move in the same direction.
Note however, that the correlation coefficient highlights linear relationship
and not the true feature dependent in the statistical form.

Table 6.5: Correlation of the features per class for the features MSUM and SSR
accuracy for different environments where the Gaussian classifier did not pass the
acceptable performance.

Test scenario Environment
Correlation(MSUM,SSR)

Same room Different rooms

Placement Adjacent room closer -0.440 -0.499

Obstacle & disturbances Bookshelf -0.391 -0.820

As the RF signals encounter variation overtime, due to obstacles or reflec-
tion, the feature SSR increases. Obstructions reduced the RSS and therefore
the featureMSUM of the correlations are negative. Moreover, reflection may
increase or decrease the signal strength. If the correlation is negative, it can
imply that the RSS decreases as the variation increases, due to obstacles
or reflection. In a barely furnished room, such as the environment minimal
room and person walking, the correlation slightly went positive. This can
be due to the fact that the table material reflects the signal such that the
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Table 6.6: Correlation of the features per class for the features MSUM and SSR
accuracy for different environments where the Gaussian classifier did pass the ac-
ceptable performance.

Test scenario Environment
Correlation(MSUM,SSR)

Same room Different rooms

Placement
Multiple floors -0.453 -0.240
Multiple rooms -0.181 -0.465

Obstacle & disturbances
Plaster wall -0.756 -0.160
Concrete wall -0.075 -0.512
RF disturbance -0.811 -0.349

People
Minimal room -0.305 0.087
Minimal room1 -0.420 -0.582
Person walking 0.414 -0.777
Person walking1 -0.164 -0.168

1 Dataset is the training data.

signal strength increased. Another matter is the strong correlation for the
environment bookshelf, rf disturbance, and person walking. In these environ-
ments the nodes which experience the most reflection experience also slight
increase in the average sum of the RSS. This indicates that the reflection
caused an amplification of the received signal [32].

From the group of environments where the classifier was not successful, not
all environments showed a true statistical independence between features. In
the environment bookshelf for example, the features were strongly linearly
related for the samples from the class other room.

In the set of environments where the classifier was successful, the features
did not always have true linear independence. Although this assumption was
not always met, the classifier succeeded in all the environments. Therefore,
this assumption does not seem like the main factor why the classifier failed
in those environments shown in Table 6.5.

Gaussian distribution The next assumption that was made for the Gaus-
sian classifier was that the pdf class-conditional probability had a Gaussian
distribution form, as it is shown in Equation 4.2. In other to validate this
assumption a normality test was done using the python libraries statsmodel
and QQ-test. A normality test is a test used to evaluate the if a distribution
was probably sampled from a normal Gaussian distribution. Additionally,
the Sci-kit learn library shapiro was used, which implements the Shapiro-
Wilk test. The remainder of this section will focus on highlighting some
of the results’ main observations, which may clarify why the NB Gaussian
classifier performed poorly in some of the environments and in others not.
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Shapiro-Wilk Test The Shapiro-Wilk test is a statistical test to quan-
tify how likely it is that a dataset was drawn from a normal Gaussian dis-
tribution dataset. Appendix E highlights the results. The results did not
yield promising results, which can help distinguish between the results for
failing and successful environments. In both successful and failing environ-
ments there are features that do not seem to be sampled from a Gaussian
distribution [7].

This test returns two values, W and p. Additionally, a null hypothesis is
assumed, which is that the sample was drawn from a Gaussian distribution.
the p values are compared against a threshold alpha, typically 5 %. Values
equal or less than alpha indicate that the hypothesis is false and must be
rejected. That is, the sample most likely has not come from a Gaussian dis-
tribution. On the other hand, if p is larger than alpha, then it is not possible
to reject the HO, so the sample may have probably come from a Gaussian
distribution. Moreover, W values serves a similar purpose. Values closer to
1 indicates that the sample may have came from a Gaussian distribution,
while lower values are not likely.

Table 6.7 and 6.8 shows the results for the Shapiro-Wilk test for a failing
and successful environment, respectively. It can be seen that for both envi-
ronments the p value rejects the H0, which means that is very unlikely that
samples came from a Gaussian distribution.

In the environment adjacent room the W value indicates that it is unlikely
that the feature MSUM for the same room may have been sampled from
a Gaussian distribution. A successful environment such as concrete wall
shows that it is unlikely that he feature MSUM for the class same room
may have came from a Gaussian distribution. So not all features had a high
W value.

This Shapiro-Wilk test does not seem to be a helpful test to clarify the
failing behavior of the NB Gaussian classifier, because theW and p values are
not completely distinguishable between failing and successful environments.

Quantile-Quantile (QQ)-test The QQ-test is a visual test in order
to validate if two datasets came from populations that have a similar dis-
tribution. Appendix F highlights the results for the QQ-test. The results
highlight that in the failing environments most of the features’ distribution
for the different class labels were not likely to be Gaussian or most of the
observations from a feature did not resemble a Gaussian shape or both. In
the environments where the classifier was successful, this was not true [7].

For this analysis the dataset is compared against a Gaussian distribution.
A dataset that may have a Gaussian distribution would have a QQ-curve
that is linear on a 45 degree angle, which represent the curve for an ideal
Gaussian distribution with a similar distribution, after comparing the quan-
tiles of each dataset.
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Table 6.7: Shapiro-Wilk test for a failing environment adjacent room closer. W
values close to 1 or p values > indicate that the feature’s distribution most prob-
ably was sampled from a Gaussian distribution. Otherwise, low W values or p
values ≤indicate that the feature’s distribution most probably was not sampled from
a Gaussian distribution.

Class label Feature W p

Same room
SSR 0.86 2.41 ∗ 10−5

MSUM 0.55 2.67 ∗ 10−11

Different rooms
SSR 0.78 3.05 ∗ 10−16

MSUM 0.91 1.58 ∗ 10−10

Table 6.8: Shapiro-Wilk test for a successful environment concrete wall.W values
close to 1 or p values > indicate that the feature’s distribution most probably was
sampled from a Gaussian distribution. Otherwise, low W values or p values ≤indi-
cate that the feature’s distribution most probably was not sampled from a Gaussian
distribution.

Class label Feature W p

Same room
SSR 0.91 1.30 ∗ 10−3

MSUM 0.34 8.64 ∗ 10−14

Different rooms
SSR 0.95 1.47 ∗ 10−5

MSUM 0.84 2.87 ∗ 10−12
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Figure 6.4 depicts the results for one of the environments where the
classifier did not meet the acceptable performance, namely adjacent room
closer. It can be seen that for no given class label all variables are following
the ideal curve. For speakers in the same room, the feature SSR has a
strong possibility for having a Gaussian distribution. However, the feature
MSUM seems not have a Gaussian distribution at all. This holds true for
the dataset from the other class label different rooms.
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Figure 6.4: QQ-test for failing room: adjacent room environment

On the other hand, the behavior is different for an environment in which
the classifier performed well. See the environment concrete walls in Figure
6.5. The data distribution for the the feature SSR seems to have a Gaussian
distribution. However, this is not so much the case for the feature MSUM,
especially for the class same room. The feature MSUM in the class different
rooms follows the ideal curve most of times, indicating that most part of the
data distribution resembles samples from Gaussian distribution.
All environments both successful or not, have encountered a scenario

where the distribution for a feature for a given class is not an ideal Gaussian
distribution. However, there are some patterns that can be observed. First,
in almost all cases where a feature has not been considered Gaussian it has
occurred at least for the feature MSUM and mainly in the class same room.
Second, in the environments where the classifier performed poorly, most of
the data distributions were not Gaussian or most of the quantiles for a single
given feature in a class label were not following the line or both. See Figure
6.4 for example, the feature SSR seems to follow the ideal line a bit for the
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class same room, but not much for the class different rooms. The same goes
for the feature MSUM, for the class label same room barely follows the line,
and deviates for most of the quantiles. For the class label different rooms
the quantiles partly follow the line.

To the contrary to the challenging environments, in the environments
where the classifier performed successfully, the QQ-curve followed the ideal
line for most of the features. In Figure 6.5, most of the data samples for all
but one distribution followed the ideal curve. Only the distribution for the
feature MSUM for the class same room barely followed the line. There were
more cases where the distribution did not follow the ideal line well. Consider
for example the environment minimal room in Figure F.4. However, there
were not much data samples and there were very minimal outliers and most
of the data points followed the line. In the environment multiple rooms
the distribution for the feature MSUM in same room seemed not to be
completely Gaussian, however most of the other distributions were Gaussian
enough. The same goes for the environment rf disturbance. Therefore, the
amount of data points from the quantiles that follow the ideal Gaussian
line versus those that did not seem to play an important role for the this
Gaussian classifier.

The assumption is that the classifier failed in the given environments be-
cause in most the distribution there was not a proper Gaussian distribution.
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Figure 6.5: QQ-test for successful room:concrete wall
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Data Distribution of the Features In the environments where the clas-
sifier failed the signal strength of the nodes from different rooms become
stronger on the average, beyond the average signal strength for the dataset
used in the training phase. This occurred due to the fact that the distance
between nodes from different room became smaller.
The AUC will be low for having a low true positive rate (TPR) or false

positive rate (FPR). Table 6.2 and 6.3 highlight that the 3 environments with
a low TPR (high FNR) and a high FPR were the environments adjacent room
closer, bookshelf, and multiple rooms. Only the latter environment achieved
an AUC that was acceptable.
Figure 6.6 shows the distribution of the featureMSUM for both classes. In

order for the false positive rate to increase, the classifier had to inaccurately
classify observations from nodes in different rooms as being in the same
room. The features’ box plots highlights that the Interquartile Range (IQR)
of almost all environments are separable, except that of adjacent room closer.
It can be seen that the IQR of both classes overlap. This can also be seen in
Figure 6.7. Appendix G highlights how the classifier classified observations
in the remaining environments. As the AUC is being calculated and the
decision line moved, a prediction occurs where FPR 42 % and the TPR 16
% is achieved. This brings the AUC to be too low, such that the prediction
are a reciprocal. That is, the observation from one class is classified to be
in the wrong class. This occurred because the feature MSUM for nodes in
the same room have gotten weaker. This is probably caused by interference
from the BLE node that was in very close proximity. Moreover, the feature
MSUM for the class different rooms has gotten stronger, since the nodes
from different rooms are really close. According to Table 6.1 the minimum
distance between nodes from the different rooms was 0.5 meters, making the
signal much stronger.
The environment bookshelf had the IQR also separable for both classes.

However, this environment failed, but by missing an AUC of 10 %. The
environment multiple room had also a relatively high FPR, but the classifier
was successful. The difference between the environments bookshelf and mul-
tiple rooms is the FPR value. In other words, the ratio of observations from
nodes in different rooms that were inaccurately classified as in the same
room. However, the environment bookshelf had its IQR values closer to the
decision lines, indicating that more observations were inaccurately classi-
fied. This increase in the feature MSUM indicates that over time the signal
from nodes in different rooms became stronger than usual. According to
Table 6.1 the minimum distance between nodes from different rooms for the
environment bookshelf was 3.54 meters, while for the environment multiple
rooms it was 3.70 meters. These distance indicates that for the environment
bookshelf nodes were closer to one another, thus the signal will be slightly
stronger.
The successful environments have in common that their IQR of distri-
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bution for the feature MSUM for a given class does not overlap with the
other class. Additionally, The IQR of a feature does exceed far beyond the
decision line.
On the other hand, the distribution of the feature SSR was not distin-

guishable between the failing and successful environments, as Figure H.1
shows. So the feature MSUM is a factor that plays a role when a classifier
fails, and not the feature SSR.
In conclusion both environments bookshelf and adjacent room closer failed

because the data distribution for the feature MSUM has overlapped beyond
the optimized decision line for the class different rooms. In other words, the
classifier have often inaccurately classified observations belonging to nodes
from different rooms as belonging to nodes in the same room. This occurred
mainly when the average of the sum of the signal strength became strong over
time. A scenario that caused such an effect is when the minimum distance
between nodes in different rooms were less than 1 meter. Additionally,
when nodes were placed in an area that was extremely occupied, such as a
bookshelf.

800 700 600 500 400 300 200 100
msum [dBm]

mini
mal 

ro
om

pe
rso

n w
alk

ing

ad
jac

en
t r

oo
m cl

os
er

bo
ok

sh
elf

co
nc

re
te 

wall

mult
ipl

e f
loo

rs

mult
ipl

e r
oo

ms

pla
ste

r w
all

rf 
dis

tu
rb

an
ce

en
vi

ro
nm

en
t

Observation table distribution. Feature:msum. Test data
true_response_name

same_room
different_rooms

Figure 6.6: Box plot describing the distribution of the feature MSUM. For every en-
vironment the distribution is compared for both classes, same room versus different
rooms

60



0 2 4 6 8 10 12
ssr [dBm]

800

700

600

500

400

m
su

m
 [d

B
m

]

different_rooms
same_room

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05

Pr
ob

ab
ili

ty
 o

f c
la

ss
 s

am
e_

ro
om

GaussianNB deciscion boundary.
Test data. Environment: adjacent room closer

Figure 6.7: NB Gaussian decision line and scatter plot for the environment adjacent
room closer. A scatter plot is shown for each observation from the test data that
belongs to either of the two classes, same room or different rooms. Every observation
is given a probability of the likelihood of it belonging to the positive class, same room

61



This page was deliberately left blank

62



Chapter 7

Conclusion and Future Work

This chapter elaborates on the key findings and conclusion in this thesis.
Furthermore, future work will be highlighted on other improvements that
can be done.

7.1 Conclusion

For Follow Me, which is being developed by Kien, it is required for the Blue-
tooh Low Energy (BLE) speakers to be categorized based on which are in
the same room together. BLE speakers will be referred to as BLE nodes.
Indoor localization methods, which will be used for Follow Me, suffer from
several challenges. First, BLE signals may suffer from interference indoors
from other devices on the 2.4 GHz such as a microwave. Additionally, the
signals may diffract, scatter, reflect, and may be obstructed by obstacles in
a room such as walls, furniture, and people. Consequently, this causes the
signal to experience more distortion and variation. Second, it is difficult
to model the radio frequency (RF) propagation for all environments, since
every environment is occupied differently with furniture and people. Third,
the environment indoors changes frequently making it difficult for some lo-
calization methods to maintain their accuracy. We therefore, researched how
to accurately group BLE nodes by the room they are located, while being
robust to radio-frequency (RF) interference, attenuation, and the multipath
effect caused by people, furniture, and obstacles.

We have developed a Naive Bayes (NB) Gaussian classifier that uses only
two features. Namely, the Mean of the set of RSS chunks’ Sum (MSUM)
and the Standard deviation of the set of RSS chunks’ Range (SRR). The
classifier was designed to distinguish between observations from a pair of
nodes that are in the same room and in different rooms. We have evaluated
the classifier in 9 environments, whereby a subset of the samples from only
2 environments were used for training the classifier. The classifier achieved
an area under the curve (AUC) ≥80 % in 7 out of 9 environments, thus even
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in unseen environments. The classifier’s performance meets Kien desires to
have a method that is robust indoors and is able to function well in unseen
environments.
Our method is similar to fingerprint-based method since both methods

analyze the RSS signal from the environment, making no distinction be-
tween line-of-sight (LOS) and non-LOS scenarios. Taking LOS and non-LOS
scenarios into account is a property that makes for more robust methods
compared to others such as triangulation, trilateration, and multilateration.
However, fingerprint-based methods require that data be collected and an-
alyzed in all of the locations where localization is desired. Additionally,
mainly the RSS is used. Our method differs in that it uses different fea-
tures, which are generated from the RSS information. Additionally, our
method performs well in completely unseen environments. Our method also
showed to work in an environment with RF interference.
However, our method has limitations. The classifier mainly fails in envi-

ronments where the features’ distribution deviates from having a Gaussian-
like shape. Such a scenario can occur when nodes from different rooms are
within 1 meter of each other, while being further away from nodes in the
same room. Additionally, when nodes are obstructed by a significant amount
of obstacles, which may negatively impact most of the signals.

7.2 Future Work

The feature MSUM gave the best discriminative information such as to
distinguish between observations belonging to a pair of nodes from the same
room and different rooms. However, the feature MSUM has its limitations.
Therefore, more features should be found that can be robust to changes in

RF signal. With more features, the model should be retrained, potentially
yielding a better model.
The next step towards the Follow Me feature is taking the classifier output

and deducing the different groups exist and categorizing all speakers to the
groups, also known as the list of bundles.
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Appendix A

Kien’s Follow Me Feature

Figure A.1: Kien’s 5.1 system with Follow-me activated in the user’s smartphone
with the Kien application. Audio is playing only through the speakers, which are
shown in red, that are within the subwoofer’s group (G) and located in the same
room as the user carrying the smartphone with the Kien application [10].

The living room is highlighted red depicting that the user has Follow-me
enabled on the mobile phone and music is currently playing only in that
room. It is expected that if a user enters a room that does not contain
any speakers then no speakers from the network should be playing music.
Therefore, it is necessary to have a system that mainly detects when a user
is in a room containing speakers that are in the audio network, and responds
within a few seconds by playing music in that room.

Follow-me requires two stages. First, the system should know what speak-
ers are together in the same room. Figure A.1 shows that there are 3
groups. Namely, 1 speaker in the living room, 1 speaker in the bathroom,
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and 4 speakers in the living room. Secondly, the system must detect when
the user, which is carrying the a smartphone, enters a room containing
speakers. Therefore, the user position must also be deduced.
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Appendix B

Model’s Evaluation
Flowchart

A classifier sometimes have hyper-parameters, which are parameters that
are specific to that classifier and used for tweaking the its behavior. Grid-
Search is a Scikit library that makes use of cross validation to optimize a
classifier. A classifier is evaluated using a performance metric CV score,
whereby the higher the CV score the better the classifier’s performance. We
use of GridSearch with the training and testing observation table, which are
the dataset train ot and test ot, respectively.

The Scikit library GridSearch was used to optimize a classifier in order
to find the hyper parameter that resulted in the best performance given
a dataset as input. The GridSearch makes use of cross validation. The
dataset train ot and test ot were used. Cross validation was then applied
on the training data, whereby k-1 fold was used for training and 1 fold used
for validating. For a given classifier this process was repeated for different
hyper-parameter combination. The performance, the CV score, of all these
classifiers were evaluated and the best classifier containing the highest CV
score was selected as the final classifier. This is done for for each classifier
type. The final optimized models were then tested against the test data,
which was a completely unseen dataset. The classifier’s evaluation A, as
shown in Figure B.1 , were compared and the best model was selected
based on the highest auc roc value. The procedure is as follows:

1. Parse the dataset for each environment;

2. Preprocess the dataset. Clean data, remove outliers etc.;

3. Merge dataset into the total dataset unified ds;

4. Split the total dataset into two datasets, one for training the classi-
fiers and evaluating which classifier is the best. Additionally, a next
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dataset to evaluate the final classifier across different environments.
Respectively, train test ds and test only ds;

5. Create an observation table from datasets. Given a set of samples
generate an observation with all the features, which were selected in
Section 4.1;

6. Split the train test ot into two datasets to train and test data, with a
70 % and 30 % split respectively;

7. Using the training data, train ot , apply cross validation using K-
Folds, with K=5. The training data is split in k folds. For each
iteration the model is trained using a new set of k-1 folds of data and
tested on the remaining 1 fold. At the end of each iteration a CV score
metric will be given to that model. At the end of k iteration, average
all the CV

8. Repeat with other model parameters;

9. Find optimal parameters that gives the highest average CV score;

10. Repeat for other classifiers;

11. For each classifier select the model with the optimal parameters. For
each optimized classifier test against the test data, test ot ;

12. Select the classifier that has the best performance on the testing data,
from Evaluation A;

13. Evaluate the final model also with test data from completely environ-
ment, namely test only ot resulting in Evaluation B.
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Figure B.1: Flowchart on how the dataset for M different environments are merged
together, preprocessed, and divided into two datasets. First the training and testing
dataset, train test ds, to select final model. Second, test only dataset, test only ds,
to evaluate final model in different environments.
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Appendix C

BLE Packets

C.1 SLTP Advertisement Packet Structure

Table C.1: Data structure for the advertised Scalable Lightweight Time Synchro-
nization Protocol (SLTP) packets. The data structure is not a standard form, but
was implemented using the Altbeacon standard as reference. The beacon code make
this packet distinguishable from other advertised BLE packets. The speaker ID is
used to uniquely identify the transmitter of the packet. The elapsed time is trans-
mitter elapsed time and it is used for synchronizing.

Bytes Field name Description Value

2 Beacon code Field used to distinguish the packet from other advertised packets 0xceed

1 Speaker ID ID of the node that transmits the SLTP packet 1

2 Elapsed time Local elapsed time of the transmitter of the SLTP packet 1

1 Calculated during runtime.

C.2 Altbeacon Advertisement Packet Structure
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Table C.2: Data structure for the advertised Altbeacon packet. The beacon code
makes this packet distinguishable from other advertised BLE packets. The beacon
ID consists of the company universally unique identifier (UUID), speaker ID, and
the room ID [8].

Bytes Field Description Value

2 Beacon code Field to distinguish the packet type 0xbeac

16
Company
UUID

ID to identify the owner of the Application
Set to a custom Kien UUID

{0x01,0x02,0x03,0x04,
0x05,0x06,0x07,0x08,
0x09,0x0a,0x0b,0x0c,
0x0d,0x0e,0x0f, 0x10}

1 Speaker ID
ID of the transmitter of the

Altbeacon packet elapsed time
of the transmitter of the SLTP packet

1

1 Room ID
Estimated room the transmitter
of this Altbeacon packet is in.

1

1 Calculated during runtime.
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Appendix D

Experiment Environments

It is essential to model the large variation of different speaker placement
and home structure in order to have a classifier that covers most scenarios.
The goal was therefore to model the edge cases and the most general home
structure and placement. Homes in the Netherlands consist of a family of
2 on the average [1] [5]. Homes typically are one floor apartment with less
than eight rooms. The scope of this thesis is therefore a home with no more
than 4 people and a home with maximum eight rooms.

Each environment can be grouped in a test group that defines the purpose
of the experiment in that environment. The test groups were placement,
obstacles & disturbances, people. The remaining of the section will focus to
describe the environment for each test group and the environments’ setup.

It is interested to know the impact that people, obstacles and disturbances,
and placement of the speakers have on the performance of the model. Each
experiment were executed for approximately 3-5 minutes and done between
four to five times.

D.1 Placement

The goal for the placement test case was to analyze the impact that the
distance between the speakers on the classifier model. Additionally, the
impact of the speaker density has on the model. During these experiments
the altitude of the speaker and also the edge case, where a speakers from an
adjacent rooms are closer to one another than speakers in the same room,
were analyzed.

D.1.1 Adjacent Room Closer

This experiment was an edge case that was the main focus of this thesis
research. BLE RSS is impacted by the distance between sender and receiver.
Additionally, the obstacles that are between the RF path of two speakers
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also influence the RF signals strength. Due to this fact two speakers that
are in adjacent rooms, but relatively closer to one another despite being
obstructed by a wall may have a lower signal strength that two speakers
that are in the same room. This can happen if the speakers that are in the
same room are far apart or, the disturbance in between both speakers are
strong. If the RF signal strength is solely used for the classifier, speakers
in different rooms may be perceived to be in the same room. The setup for
this experiment is shown in Figure D.1.
Table D.1 shows the packet ratio for this experiment before applying data

munging. 18 % of the data samples were from the class same room, and the
remaining 82 % for different rooms. This dataset is highly imbalanced.

le

Figure D.1: Environment setup for the environment adjacent room closer. SAT2
is closer to the other speakers from the office than SAT3, which is from the same
room.

Table D.1: Packet count ratio for all the classes in the environment adjacent room
closer.

Class label Amount

Same room 5784
Different rooms 26196

Total 31980
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D.1.2 Multiple Rooms

The environmentmultiple rooms simulates an a usae case where a user places
BLE nodes in multiple rooms. The setup for this experiment is shown in
Figure D.2. Table D.2 shows the packet ratio for this experiment. Only 3 %
of the dataset has been for the class same class. Although, this experiment
was not the main scope of this research it has been done as an edge case
experiment and to analyze how the system will behave.

Figure D.2: Multiple rooms environment

D.1.3 Multiple Floors

Multiple floors is a use case outside of the scope of this research, however
it was still taking into account to have an idea how the system will be have
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Table D.2: Packet count ratio for all the classes in the environment multiple rooms.

Class label Amount

Same room 1192
Different rooms 30788

Total 31980

in a home with multiple floors. Figure D.3 shows setup for this experiment
and the packet ratio is shown in Table D.3. Only 23 % of the dataset was
gathered for the same room.

Figure D.3: Multiple floors environment
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Table D.3: Packet count ratio for all the classes in the environment multiple floors.

Class label Amount

Same room 5922
Different rooms 19662

Total 25584

D.2 Obstacles and Disturbances

Indoor environment consists of obstacles that is unique in every new environ-
ment. This include furniture and walls. The goal for experiments under this
branch is to see how the type of obstacle impacts model. The experiments
done were:

D.2.1 Plaster Wall

This experiment focused on analyzing the impact of a wall material on the
model. The setup for this experiment is shown in Figure D.4. Table D.4
illustrates that 30 % of the data was gathered for the class same room.

Table D.4: Packet count ratio for all the classes in the environment plaster walls.

Class label Amount

Same room 7771
Different rooms 17813

Total 25584

D.2.2 Concrete Wall

This experiment focused on analyzing the impact of a wall material on the
model. The setup for this experiment is shown in Figure D.5. Table D.5
shows that 77 % of the dataset was for the class different rooms, making
this experiment slightly imbalanced.

Table D.5: Packet count ratio for all the classes in the environment concrete walls.

Class label Amount

Same room 5889
Different rooms 19695

Total 25584
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Figure D.4: Plaster walls environment

D.2.3 Bookshelf

Users will also place their speakers in and on top of certain furnitures, such
as tables and bookshelf. This experiment simulates such a scenario. The
setup is depicted in Figure D.6. For this experiment 20 % of the dataset
was gathered for the class same room, as it shown in Table D.6.

Class label Amount

Same room 5095
Different rooms 20489

Total 25584

Table D.6: Packet count ratio for all the classes in the environment bookshelf.

D.2.4 RF Disturbances

Every home is bound to experience some sort of RF frequency that will
interfere with the systems. Some example are Wi-Fi devices (router and

82



Figure D.5: Concrete walls environment

laptop), Bluetooth devices (smart phones), and other devices on the 2.4
GHz range (microwave). The experiment in Figure D.7 simulates such a
scenario. Table D.7 highlights that only 34 % of the dataset is gathered
for the same room class. This speakers in the same room had the most RF
disturbances, and this could be a cause for the low packet reception.
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Figure D.6: Bookshelf environment

Table D.7: Packet count ratio for all the classes in the environment rf disturbance.

Class label Amount

Same room 10967
Different rooms 21013

Total 31980

D.3 People

The purpose of this test was to see how people impacts the model. As people
move around in a room this will cause extra variation. Additionally, people
add attenuation to the RF signal.

D.3.1 Minimal Room

A baseline experiment was done in order to get an idea on how the RF
behaves in a room with no people and with minimal furniture in a room.
This is shown in Figure D.8. 35 % of the data samples was for the class
same room, and the remaining 65 % were for the different rooms, as it is
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Figure D.7: RF disturbance environment

illustrated in Table D.8.

Table D.8: Packet count ratio for all the classes in the environment minimal room.

Class label Amount

Same room 6724
Different rooms 12048

Total 18772

D.3.2 Person Walking

Experiments were done in order to be able to detect when a person is in a
room. The goal was to see if by detecting a person in a room, the speakers
in the same room of the user detect the person better than the speakers in
different rooms. This experiment is depicted in Figure D.8. 33 % of the
dataset were gathered for the class same room, as it is depicted in Table
D.9.
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Figure D.8: Minimal room environment

Table D.9: Packet count ratio for all the classes in the environment person walking.

Class label Amount

Same room 6579
Different rooms 13338

Total 19917

86



Appendix E

Shapiro-Wilk Test
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Figure E.1: Normality test for features’ data distribution using the Shapiro-Wilk
Test. For every environment the W and −log10(p) values are compared for all
features per class label.
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Appendix F

Quantile-Quantile (QQ)-test
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Figure F.1: QQ-test for the environment adjacent room environment.
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QQ-plot comparison. Environment: bookshelf

Figure F.2: QQ-test for the environment bookshelf.
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Figure F.3: QQ-test for the environment concrete wall.
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Figure F.4: QQ-test for the environment minimal room.
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Figure F.5: QQ-test the environment multiple floors.
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Figure F.6: QQ-test the environment multiple rooms.
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Figure F.7: QQ-test for the environment person walking.
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Figure F.8: QQ-test for the environment plaster wall.
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Figure F.9: QQ-test for the environment rf disturbance.
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Appendix G

Decision Boundary and
Scatter Plot
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Figure G.1: NB Gaussian decision line and scatter plot for the environment book-
shelf. A scatter plot is shown for each observation from the test data that belongs to
either of the two classes, same room or different rooms. Every observation is given
a probability of the likelihood of it belonging to the positive class, same room.
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Figure G.2: NB Gaussian decision line and scatter plot for the environment con-
crete wall. A scatter plot is shown for each observation from the test data that
belongs to either of the two classes, same room or different rooms. Every observa-
tion is given a probability of the likelihood of it belonging to the positive class, same
room.
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Figure G.3: NB Gaussian decision line and scatter plot for the environment min-
imal room. A scatter plot is shown for each observation from the test data that
belongs to either of the two classes, same room or different rooms. Every observa-
tion is given a probability of the likelihood of it belonging to the positive class, same
room.
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Figure G.4: NB Gaussian decision line and scatter plot for the environment multiple
floors. A scatter plot is shown for each observation from the test data that belongs
to either of the two classes, same room or different rooms. Every observation is
given a probability of the likelihood of it belonging to the positive class, same room.
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Figure G.5: NB Gaussian decision line and scatter plot for the environment multiple
rooms. A scatter plot is shown for each observation from the test data that belongs
to either of the two classes, same room or different rooms. Every observation is
given a probability of the likelihood of it belonging to the positive class, same room.
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Figure G.6: NB Gaussian decision line and scatter plot for the environment person
walking. A scatter plot is shown for each observation from the test data that belongs
to either of the two classes, same room or different rooms. Every observation is
given a probability of the likelihood of it belonging to the positive class, same room.
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Figure G.7: NB Gaussian decision line and scatter plot for the environment plaster
wall. A scatter plot is shown for each observation from the test data that belongs to
either of the two classes, same room or different rooms. Every observation is given
a probability of the likelihood of it belonging to the positive class, same room.
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Figure G.8: NB Gaussian decision line and scatter plot for the environment rf
disturbance. A scatter plot is shown for each observation from the test data that
belongs to either of the two classes, same room or different rooms. Every observation
is given a probability of the likelihood of it belonging to the positive class, same room.
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Figure G.9: NB Gaussian decision line and scatter plot for the environment person
walking. A scatter plot is shown for each observation from the training data that
belongs to either of the two classes, same room or different rooms. Every observation
is given a probability of the likelihood of it belonging to the positive class, same room.
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Figure G.10: NB Gaussian decision line and scatter plot for the environment min-
imal room. A scatter plot is shown for each observation from the training data that
belongs to either of the two classes, same room or different rooms. Every observa-
tion is given a probability of the likelihood of it belonging to the positive class, same
room.
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Appendix H

Features’ Data Distribution

H.1 Box plot
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Figure H.1: Box plot describing the distribution of the feature ssr using the test
data. For every environment the distribution is compared for both classes, same
room versus different rooms.
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