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Chapter 1

Introduction

1.1 Background

1.1.1 Hierarchical nature of today’s complex structures

In today’s complex structures, such as encountered in aerospace engineering, mul-
tiple levels of detail are distinguishable, that form a hierarchy of components that
goes down to the material level. The origin of these levels is found in the growing
complexity of structures, improvements in technology and higher demands on individ-
ual components. Tight interaction of components of the hierarchy with neighboring
components is necessary such that better structural or material characteristics are
exhibited that would not be possible when these components would be considered
individually.

Because physicists have not come up with a single model that describes the entire
universe in space and time, one has to rely on models that are only accurate within
certain assumptions. Even if such an all-in-one model would be possible, it is unlikely
that such an analysis model could be solved with sufficient resolution by a single
person with or without the use of a computer. The amount of data to be processed
and the complexity of the underlying mathematics would just be too large to handle
at once.

Hence, the analysis of a complex structure involves accounting for physical phe-
nomena that occur at various physical scales. Furthermore, in order to reduce the
complexity of analyzing a structure’s physical responses, it is necessary to identify
levels in the structure that allow for a decomposed approach of the analysis. This
decomposed analysis approach may involve models of physical scales, ever increas-
ingly structural detail and/or a decomposition along disciplinary boundaries. These
disciplines require specialist expertise in order to evaluate the physical responses.

1



2 INTRODUCTION 1.1

The hierarchical nature of complex structures is also reflected in the design op-
timization process where design variables and design constraints are identified that
are specific to an individual component or shared among various members of the
hierarchy. The levels that are identified in the design optimization problem enable
design optimization considerations specific to the performance of the entire structure
to be separated from design optimization considerations that are specific to individual
components.

Individual components that are optimized separately, hence without considering
the entire hierarchy, may lead to designs that are optimal with respect to individual
component demands. However, such an approach may lead to non-optimal struc-
tures that are a combination of such individually optimal components. Furthermore,
not every desirable performance can be accomplished within a design optimization
of an individual component. Multiple components combined covering various physi-
cal scales, structural detail and/or disciplinary expertise may be necessary to find a
desirable performance. Hence, the design of complex structures benefits from a hi-
erarchical design process that considers multiple physical scales, components and/or
disciplines.

1.1.2 Analysis

Multi-scale analysis

In physics, engineering, and computer science, multi-scale analysis is the field of
solving physical phenomena which have important features at multiple scales. The
necessity to analyze such important features that are described by means of combining
physical models, together with the huge amount of data and mathematics involved has
resulted in the development of multi-scale analysis methods (Rudd and Broughton,
2000, Ghoniem et al., 2003, Ladevèze, 2004).

The challenge of multi-scale analysis is to analyze physical phenomena that re-
quire detailed and expensive analysis on one scale, while depending on the physics
at another scale. A hierarchy of many scales is obtained by combining these scale
depended models, see Figure 1.1.

Multi-level analysis

A reason for identifying levels in the analysis of a complex structure is to apply
a decomposition principle. Considering a structural analysis model utilizing model
dimensions to capture general structural characteristics at a top-level, the individual
components embedded in this structure are modeled at a second (lower) level. The
latter consists of a detailed description of individual components where individual
behavior of a component is captured. This behavior is coupled to the behavior of the
larger component in the hierarchy and (possibly) mutually coupled with neighboring
components.

This top-down process of zooming-in into the details continues until the smallest
components which can be distinguished within the entire structure, see Figure 1.2.
Likewise, a bottom-up approach starts at the lowest level of observance and at each
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Figure 1.1: Concurrent coupling of length and time scales in physics. Because no single
model describing the entire universe has been derived yet, one has to rely on a number of
theories, each applicable within a certain scale. Coupling these models results in multi-scale
analysis models.

Levels

Figure 1.2: In complex structures such as aircraft, multiple levels of structural detail are
distinguishable. Traditionally, engineers have modeled these structures as individual compo-
nents to analyze their individual behavior. In a later stage of the design these components
are assembled to larger components where collective behavior of the components is analyzed
while neglecting the individual component behavior.
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Disciplines

Figure 1.3: The analysis of complex structures such as aircraft, requires the knowledge and
expertise of various disciplines. Therefore, analyzing complex structures is nowadays divided
into several, though coupled, disciplinary tasks.

level larger components are distinguished that capture collective behavior of the lower-
level components to which the behavior of the larger component is coupled. The
systematic process of zooming-in (or zooming-out) is the area of multi-level analysis
methods.

In summary, multi-scale analysis methods capture physical phenomena
at multiple scales via a hierarchy based on physical scales, whereas multi-
level analysis methods capture structural characteristics at multiple levels
via a hierarchy based on individual component size.

Multi-disciplinary analysis

Because areas of research in individual structural characteristics have become so com-
plex, no single person can take on the task of analyzing an entire structure. Instead,
the analysis is decomposed along the boundaries of individual disciplines for which
specialized teams are responsible. The area of research that studies the interaction
between these disciplines is called multi-disciplinary analysis.

Multi-disciplinary analysis emphasizes the need to account for different disciplines,
see Figure 1.3. The focus of these disciplines has been traditionally on individual
simulations of structural characteristics. However, because many structural charac-
teristics can not be captured by one single discipline, interaction is necessary. Multi-
disciplinary analysis tries to develop systematic approaches in order to handle these
interactions.
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Abstract elements

Recapitulating, multi-scale analysis, multi-level analysis and multi-disciplinary anal-
ysis are research fields that share a common interest. The development of analysis
models that take advantage of the multiple scales, levels or disciplines present in
many complex systems to balance between accuracy and efficiency of finding a solu-
tion. Essentially these three analysis methods consist of elements that are coupled.
Therefore, in the remainder of this thesis reference to individual elements is made
when discussing abstract characteristics of these three analysis methods. In cases
where this is not possible, reference is made to the physical interpretation of the
elements.

1.1.3 Optimization

Traditionally, the focus of engineering design optimization for complex structures
has been on meeting certain requirements for individual components. Therefore,
the focus of optimization has been on conducting a single analysis combined with an
optimization problem formulated for that specific component. The lack of an abstract
mathematical description for the coupling between elements causes many of the design
decisions to be taken based on heuristics, experience of the designer and/or the art
of engineering.

In contrast, optimization of complex structures with a distinguishable hierarchy
seeks to minimize (or maximize) a certain objective function. This objective function
can be assigned to an individual element and/or distributed over multiple elements of
a hierarchy. Via changing sets of design variables that are distributed over individual
elements of a hierarchy the objective function can be changed. Changes made to the
objective function are permitted while satisfying sets of constraint functions specific
to individual elements and/or shared over multiple elements. Finally, during the
search for an optimal objective function the coupling between elements is accounted
for. Hence, the optimization of complex structures focuses on explicitly changing
design variables within individual elements of the hierarchy while accounting for the
coupling between these elements.

Optimization of complex structures relies on the identification of a hierarchy, which
is used to decompose the design optimization problem into more manageable less
complex elements. The individual solutions of these elements require coordination,
i.e. moving of data of coupled elements such that the optimum of the entire hierarchy
is found. Both decomposition and coordination have to be done such that no changes
to the design optimization problem are introduced. Hence, that no different optimal
point is found as compared to an approach that does not involve decomposition and
coordination of the optimization problem.

Decomposition and coordination depend heavily on each other and therefore com-
putational frameworks are defined that cover both the decomposition of the complex
structural optimization problem as well as the coordination of the individual opti-
mization problems. Typically, these frameworks include a description on how to split
an initially all-in-one optimization problem into an optimization covering multiple
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hierarchical levels. Alternatively, these frameworks describe a systematic approach
towards formulating an optimization problem for a structure where a hierarchy is
already present.

The complexity of optimizing complex structures that have a distinguishable hier-
archy demands reproducible benchmark problems that are hierarchical. These bench-
mark problems are required in order to test and compare newly developed decompo-
sition and/or coordination methods.

1.1.4 Current status

Optimization of complex structures consisting of a hierarchy of elements has four main
areas of interest. Alexandrov (2005) has classified these areas for the field of multi-
disciplinary design optimization and/or multi-level design optimization research. A
similar distinction has been made for multi-scale analysis research (Fish and Shek,
2000). The main research areas are:� the development of methods that decompose multi-disciplinary, multi-level

and/or multi-scale problems;� the development of coordination (optimization) algorithms;� the development of computational frameworks;� the development of multi-disciplinary, multi-level and/or multi-scale (optimiza-
tion) benchmark problems.

Decomposition

In the early development of multi-disciplinary design methods much emphasis was
put on problem decomposition. Some researchers argued that multi-disciplinary
problems were decomposed by nature and hence the problem was not how to de-
compose, rather how to combine these individual disciplines into a problem that
could be solved via optimization algorithms (e.g. Beers and Vanderplaats (1987),
Sobieszczanski-Sobieski et al. (1987), Renaud and Gabriele (1993)). Other researchers
argued that an optimization problem should be seen as a whole and therefore the de-
velopment of decomposition procedures was necessary in order to assure that one
was still solving the same optimization problem after it was decomposed into smaller
problems (e.g. Alexandrov and Lewis (2002), Michelena et al. (2003), Lassiter et al.

(2005)).
Whether the multi-disciplinary design problem is seen as a series of individual

disciplines that are coupled or whether it is seen as an optimization problem that
requires decomposition, research has shown (e.g. Bloebaum (1995), Tosserams et al.

(2007)) that any decisions made on coupling between disciplines has a significant effect
on computational efficiency and algorithmic behavior. Furthermore, as the number
of disciplines increases, the algorithmic performance deteriorates.

Initial work on formulating multi-level optimization problems was conducted by
Mesarović et al. (1970) who analyzed the decomposition of complex systems for which
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a hierarchy could be identified. Two decomposition techniques were identified. A
model-oriented decomposition technique and a goal-oriented decomposition technique.
The model-oriented decomposition technique prescribes the model parameters that
couple the element to elements to which it is coupled. The goal-oriented decomposi-
tion technique prescribes the goal for an individual element. The goal resembles the
model parameters that couple the element to elements to which it is coupled.

Likewise, Lasdon (1970) also focused on decomposition and introduced a number
of decomposition techniques based on duality theory. The so-called angular and dual
angular problem structure is explained. The angular problem structure indicates cou-
pling between individual elements via coupling variables. The dual angular problem
structure indicates coupling via optimization functions, i.e. objective and/or con-
straint functions depend on data of multiple individual elements. The angular and
dual angular problem structure were used in a later paper by Barthelemy (1989) to
classify multi-level methods and are still in use today as, for example, Tosserams et al.

(2008a) demonstrate for the development of their extension to Analytical Target Cas-
cading 1.

Multi-level optimization methods are closely related to the field of multi-disciplinary
design optimization. Most researchers active in the field of multi-disciplinary de-
sign optimization are also active in the field of multi-level optimization. Hence,
many of the decomposition methods that were developed initially for the design of
multi-level systems, evolved into methods developed for multi-disciplinary design op-
timization and vice versa. Examples of such methods can be found in papers by
Sobieszczanski-Sobieski et al. (1998) or Kim et al. (2003).

Multi-scale methods can be subdivided into multiple scale expansion methods
and superposition based methods (Fish and Shek, 2000). Multiple scale expansion
methods or homogenization methods consider large scale physical characteristics to
remain constant at the lower scales. Furthermore, the small scale physical character-
istics are considered to remain local. Finally, the small scale models (Representative
Volume Elements) are periodically distributed over the large scale elements. Superpo-
sition based methods rely on a hierarchical decomposition of the solution space of the
physical responses into large-scale and small-scale responses. Compatibility between
the interfaces is prescribed via homogeneous boundary conditions on the interface
between the top-level and the lower-level. Typically, these methods are applied to
bridge material and structural scales.

Coordination

Once a hierarchy of coupled elements is present, data is send between elements to
take into account the coupling that exists between the elements of a hierarchy. The
process of regulating the exchange of data between elements is called coordination.
Coordination is conducted, such that the individual coupled elements combined form
a consistent system.

In this thesis the general approach to coordinating relevant data of individual
elements is based on six main stream approaches that were distinguished in a literature

1Analytical Target Cascading is a multi-level optimization method
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study, namely:� Optimization by Linear Decomposition (Sobieszczanski-Sobieski et al., 1985);� Concurrent SubSpace Optimization (Sobieszczanski-Sobieski, 1988);� Collaborative Optimization (Braun and Kroo, 1997);� Bi-Level Integrated System Synthesis (Sobieszczanski-Sobieski et al., 2003);� Analytical Target Cascading (Kim et al., 2003);� Quasi-separable Subsystem Decomposition (Haftka and Watson, 2005).

These methods differ in how consistency between individual components of the hier-
archy is maintained and how relevant data of the decoupled optimization problems is
coordinated.

The six main stream approaches can be subdivided into two groups. Coordina-
tion techniques that coordinate model-based decomposed2 elements and coordination
techniques that coordinate goal-based decomposed3 elements. Optimization by Lin-
ear Decomposition, Concurrent SubSpace Optimization, Bi-Level Integrated System
Synthesis and Quasi-separable Subsystem Decomposition are coordination methods
that coordinate model-based decomposed elements. Collaborative Optimization and
Analytical Target Cascading are coordination methods that coordinate goal-based
decomposed elements.

Coordination of elements that are decomposed via model-based decomposition
initially focussed on linearizing the coupling between elements of a hierarchy. An
element that represented the top-level prescribes the necessary coupling parame-
ters to elements at a lower level. The lower elements provide the top-level with
sensitivity data on their behavior under various coupling conditions. Multi-level
optimization techniques that were developed from this principle were published by
Sobieszczanski-Sobieski et al. (1985, 1987) and Beers and Vanderplaats (1987) amongst
others. The need for optimum sensitivity analysis in order to provide additional
information to other elements of the hierarchy was published by Barthelemey and
Sobieszczanski-Sobieski (1983).

Research showed that not all complex systems could be modeled as a hierarchy.
Therefore, a formulation that could handle non-hierarchic systems was developed by
Sobieszczanski-Sobieski (1988) that relied on linearization techniques via calculation
of the Global Sensitivity Equations (Sobieszczanski-Sobieski, 1990). Various alterna-
tive techniques were developed from this initial framework by Shankar et al. (1993),
Renaud and Gabriele (1994) and Rodriguez et al.(1998) amongst others. These alter-
native techniques focussed on additional terms in the linearized coupling equations,
construction of response surfaces to replace having to compute Global Sensitivity
Equations and relaxation of the coupling via Augmented Lagrangian relaxation.

2The model-oriented decomposition technique prescribes the model parameters that couple the
element to elements to which it is coupled.

3The goal-oriented decomposition technique prescribes the goal for an individual element. The
goal resembles the model parameters that couple the element to elements to which it is coupled.
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To overcome difficulties in finding an optimum within each element optimization
Sobieszczanski-Sobieski et al. (1998) formulated the Bi-Level Integrated System Syn-
thesis method. This method was later modified (Sobieszczanski-Sobieski et al. (2003))
such that load balancing techniques were added. These load balancing techniques as-
sign priority to individual elements and show similarities with techniques used to
distribute the computational load in a multi-processor environment.

Work published by Alexandrov and Lewis (1999, 2002) initiated the search for
convergence proofs of coordination techniques. Although, to the author’s knowledge,
no convergence proof was provided for Optimization by Linear Decomposition, a
modified version not relying on optimal sensitivity analysis was shown to converge to
the optimum under certain mathematical assumptions. This method is called Quasi-
separable Subsystem Decomposition (Haftka and Watson, 2005) and relies on slack
variables in the constraint functions.

Coordination of elements that are decomposed via goal-based decomposition, fo-
cussed on formulations that balance between coupled elements. Collaborative Opti-
mization (Braun and Kroo, 1997) accomplished this balancing via consistency con-
straints that were formulated as quadratic functions. However, research has shown
that these quadratic functions propose difficulties for the coordination near the op-
timum (DeMiguel and Murray, 2000). Therefore, alternative formulations to the
quadratic functions were proposed by DeMiguel and Murray (2006), amongst others.

The search for a mathematically convergent coordination technique for goal-based
decomposed elements resulted in the development of Analytical Target Cascading
(Kim, 2001, Kim et al., 2003). The method relies on penalty relaxation and balanc-
ing between element solutions via penalty parameters. Alternative formulations of
the method that have been published and show better numerical performance in-
clude Lagrangian relaxation (Lassiter et al., 2005, Kim et al., 2006) and Augmented
Lagrangian relaxation (Tosserams et al., 2007).

Although some of the coordination techniques developed in literature are shown
to converge to the optimum, computational efficiency of coordination techniques is
still an issue. Therefore, DeMiguel and Nogales (2008) have studied alternative for-
mulations of the coordination problem. These formulations use solution techniques
that are developed to solve large systems of equations. The coordination problem
formulated as such shows better numerical efficiency then previously developed me-
thods. To the author’s knowledge, no applications beyond academic examples have
been published using this class of methods so far.

Computational framework

Computational frameworks have focused on formulating unifying approaches to han-
dle the hierarchical design problem. A large effort has been made in this area in
unifying the notation and formulating the individual optimization problems to han-
dle the hierarchical nature of the design optimization.

Sobieszczanski-Sobieski et al. (1987) developed a unifying approach to formulat-
ing hierarchical problems of more then two levels. These hierarchical problems are
decomposed via model-based decomposition. This hierarchical formulation is ex-
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tended in later work (Sobieszczanski-Sobieski, 1988) to include non-hierarchical sys-
tems. Finally, a complete framework including distributed computing was proposed
by Sobieszczanski-Sobieski et al. (2003). This framework is implemented into a com-
mercial software package iSIGHT (Engineous Software, 2008).

A computational framework that focussed on formulating a hierarchy via relaxation-
based decomposition was developed by Kim et al. (2003). Adjustments to notations
were published later by Michalek and Papalambros (2005b) and modifications to in-
clude non-hierarchic systems were proposed by Tosserams et al. (2008a). A commer-
cial software package that includes parts of this goal-oriented framework is HEEDS
(Red Cedar Technology, 2008).

An effort to combine various decomposition and coordination techniques into a
single software program is conducted by Martins and Marriage (2007, 2009). The au-
thors propose an object-oriented framework that contains different solution techniques
to solving the multi-level optimization problem.

Multi-scale design optimization in the context of adjusting small-scale parameters
to obtain large-scale responses that are considered optimal is an area of research that
is still in an early phase. Work addressing the necessity of robust design in multi-
scale optimization was published by Allen et al. (2006). However, this paper does not
propose an actual framework for the development of such techniques.

Development of benchmark problems

The development of design optimization problems that are multi-disciplinary, multi-
level and/or multi-scale and can serve as a benchmark for testing and comparing
multi-disciplinary, multi-level or multi-scale optimization methods has not received
much attention. Efforts on defining such benchmark problems have been initiated by
Padula et al. (1996).

Padula et al. (1996) addressed the need for reproducible benchmark problems and
created a website on the internet where code for benchmark problems could be down-
loaded from and where new benchmark problems could be uploaded to. Unfortu-
nately, to the author’s knowledge the website is no longer accessible. However, the
problems posted on the website are made available via the group of Prof. Bloebaum
University of Buffalo (2009).

In literature a few benchmark problems have been developed and documented
such that reproducible results can be obtained. The portal framework formulated by
Sobieszczanski-Sobieski (1982) is used by various authors and a large effort in search-
ing for local and global optima was conducted by Tosserams et al. (2008b). A second
benchmark problem that is frequently used is that of a supersonic business jet formu-
lated by Agte et al. (1999). A design search conducted by Tosserams et al. (2008b)
showed various local optima. Furthermore, adjustments made to the problem for-
mulation have led to different optimal configurations (Sobieszczanski-Sobieski et al.,
2003, Tosserams et al., 2008b). More recently, Tosserams et al. (2009) developed a
new benchmark problem of a micro-accelerometer where various disciplines are em-
bedded in the optimization problem.

Examples that require solving analytical functions have extensively been used by
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Kim et al. (2003), Li et al. (2008), Tosserams et al. (2008b) amongst others. An ad-
vantage of these examples is that the optimum can be found analytically and the
computational costs of finding an optimum are small. However, these examples can
be adjusted to fit the algorithm to be tested, whereas problems that rely on codes
developed in industry are often limited in their means to access data. Furthermore,
sensitivity information of analytical functions can be retrieved relatively straight-
forward, whereas industrial codes that are considered black-boxes do not allow for
straightforward sensitivity calculations.

1.1.5 Problem Statement

The main question this thesis tries to answer is; How do we optimize complex struc-
tures that can be considered a hierarchy of coupled elements via multi-disciplinary
design optimization and/or multi-level design optimization? Therefore, this thesis
tries to propose a framework that covers all multi-disciplinary design optimization
and/or multi-level design optimization methods.

To answer the main question we question:� how accurate multi-level optimization and multi-disciplinary optimization me-
thods defined in literature find the optimum value of an analytical example;� what are the computational costs of multi-level optimization and multi-discipli-
nary optimization methods defined in literature to find an optimum;� what efforts are necessary in order to implement the procedures defined in lit-
erature into a software code.

Furthermore, in order to define the framework a clear understanding of how multi-
disciplinary design optimization and multi-level optimization methods handle cou-
pling within the hierarchy as compared to multi-scale methods is necessary. Under-
standing how these couplings enter the optimization problem and how the relevant
data of the individual optimization problems is exchanged is necessary. Consequently,
it is necessary to answer the question how individual problem formulations can be
generalized in such a form that every subproblem has the same format for the entire
hierarchy, irrespective of the decoupling technique used. Likewise, it is questioned
how the coordination process capable of coordinating individual subsystems indepen-
dently from the chosen decoupling can be generalized. Finally, it is questioned how
the generalized coupling and coordination can be transferred into a programming lan-
guage and how this program can be tested to verify the implementation of the design
optimization framework.

1.2 Objective and approach

1.2.1 Objective

The objective of this research is to formulate a design optimization framework that
incorporates multi-disciplinary design optimization, multi-level design optimization
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and multi-scale design optimization for the design optimization of structures or sys-
tems that involve a hierarchy of multiple levels and/or disciplines. These levels may
consist of increasingly structural detail, different disciplines or physical properties
that involve multiple scales.

This research distinguishes itself from previous studies on multi-level optimization
methods in that it proposes a framework that can use hierarchic and non-hierarchic
decomposition methods. The decomposition can be formulated via exact and relaxed
consistency constraints. Furthermore, different coordination methods can be used
depending on the decomposition formulation. Finally, this research compares six main
stream approaches found in literature and compares them on numerical performance,
accuracy in finding the optimal solution and implementation effort.

1.2.2 Approach

In order to develop the multi-level design optimization framework a unifying notation
of physical responses, physical coupling, design variables, design constraint functions
and design objective functions is necessary, see Chapter 2. This unifying notation
is applied to a number of main stream approaches in multi-disciplinary and multi-
level optimization to uncover the general structure of the analysis and optimization
of systems embedding a hierarchy. These main stream approaches were chosen af-
ter conducting a literature study on multi-disciplinary and multi-level optimization
techniques. This literature study also explored how coupling of analysis models is
managed in multi-level and multi-disciplinary design optimization methods as com-
pared to multi-scale analysis models.

Decomposition

The structure in which analysis is embedded in multi-disciplinary design optimization
and multi-level optimization is compared with that of multi-scale analysis methods,
see Chapter 3. The research on multi-scale methods focuses on how the physical
properties of a small scale problem are transferred to a larger scale and vice versa.
The goal is to find an abstract approach to this coupling between scales that resembles
to a great extent the coupling between disciplines and the coupling among levels in
design optimization problems. Similarities between multi-disciplinary analysis, multi-
level analysis and multi-scale analysis are combined into a general decomposition
formulation.

How the coupling of analysis models is embedded in the optimization problem
of complex systems consisting of a hierarchy is analyzed by means of the problem
matrix. The problem matrix is a means of illustrating coupling between subsystems
for an optimization problem formulation. This problem matrix has four characteris-
tic patterns that are characteristic for optimization problems of structures with an
embedded hierarchy.

The first pattern in the problem matrix is observed when the objective function
depends on design variables and physical responses of the top-element and coupling
variables that couple the top-element to elements identified at lower levels in the hi-
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erarchy. The design constraints of each individual element of the hierarchy depend on
individual design variables, individual physical responses and coupling variables. The
second pattern is observed when the individual elements contribute to the objective
function of the top-level element. A third pattern is found when some of the individual
elements contribute to design constraint functions of neighboring elements. Finally,
a fourth pattern is observed when no hierarchy can be distinguished. The objective
function and design constraint functions depend on design variables and physical re-
sponses from all neighboring elements. This problem matrix is used to categorize the
main stream multi-level and multi-disciplinary design optimization approaches.

Coordination

Having developed an abstract formulation of the individual elements the coordination
of the solutions of these individual elements is generalized, see Chapter 4. A number
of different coordination strategies are taken from literature and formulated in such
a format that they can be used on elements that are decomposed irrespective, up to
some extent, of the decomposition process chosen, see Chapter 5.

The efficiency of these coordination methods is studied via a benchmark optimiza-
tion problem that is similar for every coordination method. Furthermore, a study on
the accuracy in finding a known solution is made of each of the methods. Finally,
implementation efforts of each method are studied.

The abstract formulation of the individual elements allows for extension of the
framework with additional coordination methods that are not commonly used for
coordinating individual elements and delivers insight into directions of further devel-
opment of coordination techniques, see Chapter 6.

Computational framework

From the theoretical framework an object-oriented framework is derived that is im-
plemented in Java (Sun Microsystems, Inc., 2008a), see Chapter 7. In contrast to
the object-oriented approach of Martins and Marriage (2007, 2009) that is imple-
mented in Python, the objects of this framework consist of classes4 that are equal for
each multi-level, multi-disciplinary or multi-scale optimization method up to some
extent, whereas their approach treats all implemented methods as separate classes.
The benefit of such an approach is that each method can be implemented in separate
routines that are linked via e.g. Python. Furthermore, such a framework focusses
on individual routines and how these perform with respect to one another. However,
such an approach does not take full advantage of object-oriented programming where
equivalent behavior of the multi-level methods is combined into classes and hides the
details of how this behavior is accomplished.

Objects are closely related to the hierarchical structure of a design optimization
problem. The means by which interaction is managed through interfaces offers great
flexibility for the individual implementation of components of the hierarchy and the

4A class is a blueprint from which objects are constructed and forms the basis for object-oriented
programming.
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implementation of new algorithms. A fixed approach of handling coupling and coordi-
nating the entire multi-level optimization problem reduces the effort of applying multi-
level optimization to design problems with an embedded hierarchy. Furthermore, the
flexibility of the framework permits combining different techniques to develop new
algorithms.

Benchmark problem

Finally, the proposed object-oriented framework is applied to a modified version of one
of the main stream approaches (Analytical Target Cascading), which was found best
suitable for the proposed framework in terms of implementation effort and numerical
performance (de Wit and van Keulen, 2007). This implementation is tested on several
benchmark examples taken from literature, see Chapter 8.

1.2.3 Constraints on the research

Throughout this thesis reference is made to a hierarchy of elements rather then multi-
disciplinary optimization, multi-level optimization and/or to multi-scale analysis. The
abstract form of coupling of the individual analysis problems, the definition of design
variables, design objectives and design constraints per individual element allows for
such a generalization. Hence, for the theoretical framework this thesis does not dis-
tinguish between multi-level optimization, multi-disciplinary design optimization or
multi-scale optimization.

The research in this thesis is limited to linear elastic structural examples. These
examples are small enough to allow for analytical treatment; however they are general
enough to resemble real structural analysis problems. The multi-level optimization of
a supersonic business jet is included to demonstrate the performance of the proposed
object-oriented framework on one of the multi-level optimization techniques.

1.3 Outline of the thesis

This thesis outline is shown in Figure 1.4 and can be read as follows. In Chapter
2 the notation is introduced that is necessary to distinguish between the individual
analysis and optimization problems embedded in the hierarchy. Furthermore, this
chapter describes fundamental optimization techniques that are referred to in later
chapters and are necessary to understand the development of the framework. Readers
that are familiar with constraint minimization, as well as post optimum sensitivity
analysis and response surface methods may skip the later sections of this chapter.

In Chapter 3 the decomposition process is described. Here the analysis of a struc-
ture is split and different decomposition techniques are classified. Furthermore, the
problem matrix is introduced which indicates how decomposed analysis models enter
the optimization problem.

The individual solutions require coordination. This is accomplished via coordina-
tion techniques which are introduced in Chapter 4. A distinction is made between
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Figure 1.4: Outline of the thesis, representing an overview of the background questions that
are answered per chapter that are necessary to answer the main research question.
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bi-level coordination techniques which are discussed in Chapter 5, and multi-level
coordination techniques which are the topic of Chapter 6.

An object-oriented framework is developed in Chapter 7 and a modified version
of Analytical Target Cascading is implemented in the proposed framework. This
framework is applied to the multi-level optimization of a two-bar truss, portal frame
and supersonic business jet in Chapter 8.

Finally, Chapter 9 discusses the results and some conclusions are drawn from
these. Furthermore, recommendations for future research are given.



Chapter 2

Theoretical framework

This chapter introduces preliminary knowledge necessary to understand the discussion
of the multi-level design optimization framework in the following chapters.

The notation that is used throughout this thesis is introduced in Section 2.1.
Necessary conditions for optimality are derived in Section 2.2 which are extended in
Chapter 3 to coupled design optimization problems and form the basis of Chapter
6 for the development of multi-level coordination procedures. In Section 2.3 three
definitions on measuring inconsistency between two individual hierarchical elements
are defined. Furthermore, in Section 2.4 two techniques from the optimization field are
introduced which are used for the development of the multi-level framework. Finally,
two approximation techniques are introduced in Section 2.5 that approximate the
behavior of the optimum of an individual component.

2.1 A unifying multi-level notation

A clear notation of the multi-level optimization problem will help to understand
and compare the different multi-level methods studied in the present thesis. This
thesis uses for each element the same symbols for design variables, responses and
optimization functions, but with additional sub- and superscripts. In this section we
shall elaborate on these notations and variables.

A multi-level problem typically has a hierarchical structure of individual elements
as is illustrated in Figure 2.1(a). The top-level is denoted Level-0. At this level, the
top-element or global design variables are distinguished, which are denoted 0x. One
level lower, i.e. at Level-1, the “children” of Level-0 (“parent”) can be found. The
elements at Level-1 are numbered in the left upper corner, i.e. ..x. At the second
level, Level-2, the children of the Level-1 elements are found. They have two numbers
in the upper-left corner, i.e. ..,..x. The first reflects the parent in the hierarchy

17
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0x

1x 2x 3x

1,1x 1,2x 2,1x 2,2x

Level-0

Level-1

Level-2

0r

1r 2r 3r

1,1r 1,2r 2,1r 2,2r

(a) (b)

Figure 2.1: Multi-level notation for a three-level hierarchy. (a) The design variables corre-
sponding to the individual elements are illustrated. (b) The physical responses corresponding
to each of the elements.

and the second their place among the children of the parent element. In a similar
fashion, more levels can be added to the hierarchy. Consequently, at every level the
relative position can easily be seen from the superscript in front of a (design) variable.
Similarly, the physical responses corresponding to the elements are identified. This is
illustrated in Figure 2.1(b).

Although for each element a set of physical responses can be identified, these
responses are typically interacting with responses in neighboring elements, i.e. parent,
brothers/sisters and children. In other words, there are couplings which need to be
taken into account as is illustrated in Figure 2.2. For this purpose, the operators H
are introduced. These operators map the response from one element, onto another. In
front of the operator in the top-left corner the origin of the information is indicated,
i.e. ..H. In the bottom-left corner, the destination of the information is specified, i.e.

..H.

Design variables can be present that are shared among multiple elements. These
design variables are considered separately from the individual design variables ..x and
these shared design variables are written as ..

..z. The top-left index (..) represents
the element to which the design variable is assigned and the bottom-left index (..)
represents the element that shares that design variable. In case the same design
variable is shared among the parent element and two or more child elements a dot
(..
.. . ..z) separates the indices from each of the child elements. Shared design variables

are shown in Figure 2.3, where a design variable is shared among three elements
distributed over two levels of a hierarchy.

Responses that are mapped from one element onto another element are introduced
via the operator H. Once a response is mapped from one element onto another element
it is written as ..

..h, see Figure 2.4. This variable is called a coupling variable and is
defined as: ..

..h = ..
..H(..r). This coupling variable can be used in one element as a
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Figure 2.2: Physical interactions between elements. The operators ..
..H map the physical

responses of an element onto a neighboring element. Formally this can be a mapping taking
place at the same level, though it may also map between different levels.
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Figure 2.3: Design variables that are shared among multiple elements. The top left in-
dex represents the element to which the design variable is associated and the bottom index
represents the neighboring element(s) that share the design variable.
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Figure 2.4: Functions used in the optimization formulation of the hierarchy. These func-
tions typically depend on design variables, the constraints and the physical responses of the
corresponding element.

desirable property of neighboring elements. Hence, instead of mapping the physical
responses coming from a neighboring element onto the current element: ..

..H(..r) = ..
..h,

the value of the coupling variable (..
..h) is chosen. The corresponding physical responses

(..r) are determined by the neighboring element.
Consistency constraints are introduced in order to temporarily decouple the ele-

ments from their surroundings, such that each of them is solved without interacting
with other elements. These consistency constraints are mathematically defined as:
..
..c = ..

..H(..r) − ..
..h. A consistency constraint that is assigned to an element enables

the element to change ..r or when applicable ..h without communicating directly
to the element to which it is coupled. These consistency constraints are written ..

..c,
where the upper left subscript ..c indicates the origin of the mapped responses and/or
shared design variables and the lower left subscript ..c indicates the destination, see
Figure 2.4. This notation is in accordance with the notation for coupling (hence oper-
ators H) or shared design variables (z) between two individual elements. Decoupled
hierarchical elements depend on consistency constraints, therefore the consistency
constraints are added to the optimization functions inside the hierarchical elements.

The final step in setting up an optimization problem is to formulate objective and
constraint functions (..v) that can be minimized (maximized) by the optimizer. These
functions depend on local design variables (..x), local responses (..r) and consistency
conditions (..c) as well as the coupling (..

..h and ..
..z) between two individual elements.

These design functions are illustrated in Figure 2.4.
The hierarchy described in this section is an abstract representation of a complex

system. It can be interpreted in three different ways:� The physical behavior of the system can be fully described via a huge amount
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of parameters. However, the size of the model poses problems on the computer
infrastructure on which the model should be evaluated. Therefore, a hierarchy
is defined that splits the optimization problem into smaller coupled problems
that can be evaluated on the available computer infrastructure. Behavior of
individual components that reflect the smaller coupled problems is computed
via a small number of parameters. Coupling is present between the individual
components to translate properties of elements higher in the hierarchy into
properties of elements lower in the hierarchy and vice versa. This coupling is
covered via the coupling between levels.� The physical behavior cannot be described by means of a single disciplinary
model. Coupling is present, however there is no single model that can replace
the two individual models. This type of coupling is present in the mapping of
physical responses from one element onto a neighboring element. This coupling
is covered via the coupling between elements on the same level.� The physical behavior covers multiple scales, the numerical computations of the
underlying theory are too costly to accurately model certain physical behavior.
Therefore, a mapping from a small-scale model onto a larger scale model is used
and vice versa. Hence, no all-in-one formulation of the problem is present. This
coupling is covered via the coupling between levels.

The analysis of large structures typically involves the above three categories. Op-
timization of a structure that embeds one or more of the above categories can be
accomplished via an all-in-one optimization given enough resources to solve the prob-
lem. Hence, a single optimization problem is formulated where the responses are
computed at the different elements of the hierarchy they occur. Consistency be-
tween individual elements is to be maintained between the physical analysis models
throughout every iteration step of the optimization process. In contrast, a multi-level
formulation takes the consistency constraints into account as part of the optimization
problem formulation such that part of the optimization process can be conducted at
the individual elements.

2.2 Conditions for optimality

Multi-level optimization of complex systems involves minimization or maximization of
an objective function that mathematically represents the performance of the complex
system. In the present section the focus lies on decomposing a single problem into
two or more individual problems that are coupled. Optimality criteria for the all-
in-one problem are compared with optimality criteria for the associated decoupled
problem. Because the focus lies on the effect of introducing consistency constraints
into the decoupled problem, for simplicity no design constraints are considered and
the all-in-one unconstrained optimization problem is expressed as:

min
x

vf (x, r(x)) . (2.1)
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For the all-in-one problem, the objective function vf (x, r(x)) is minimized with re-
spect to the design variables x.

Local optimality for the AiO problem requires first-order and second-order opti-
mality conditions to be satisfied. For an unconstrained convex optimization problem
the minimum is found if

∇xvf (x, r(x))∂x ≥ 0, (2.2)

where ∇xvf =
[

∂vf
∂x1

, . . . ,
∂vf
∂xn

]T
and ∂x represents a vector of arbitrary perturbations

of the design variables x.
In case vf is non-convex the first-order condition (2.2) is only a necessary con-

dition. At maxima and saddle points the gradient of the function vf is zero as well
and, therefore, second-order information is required to inspect the very nature of the
stationary point.

The second-order condition can mathematically be expressed as:

∂vf = ∂xT∇2
x,xvf∂x, (2.3)

where ∇2
x,xvf =

[
∂∇xvf

∂x1
, . . . ,

∂∇xvf
∂xn

]T
. When Equation 2.3 is positive for all arbitrary

perturbations ∂x, then the stationary point is a local minimum. Thus, ∇2
x,xvf must be

positive definite. This is a sufficient condition for local optimality of the unconstrained
AiO problem.

Multi-level optimization involves identifying a hierarchy in the design optimiza-
tion problem that allows for a decomposition. Hence, the AiO optimization problem
defined in Equation 2.1 is decomposed into multiple, coupled, optimization problems.
The decomposition is accomplished via consistency constraints which are added to the
decoupled optimization problem. These consistency constraints reflect the coupling
between physical quantities or responses and/or shared design variables.

Determining local optimality of a decoupled optimization problem implies again
that the first order optimality conditions are satisfied. For this purpose, the following
optimization problem with consistency constraints is considered:

min
x

vf (x, r(x))

s.t. c(x, r(x)) = 0
. (2.4)

The constraint functions c provide the coupling reflecting the physics of the coupling
and shared design variables.

A first step in deriving the first-order optimality conditions is to formulate the
Lagrangian. The Lagrangian is defined as:

L(x, λ) = vf (x, r(x)) + λT c(x, r(x)). (2.5)

The elements of vector λ are unknown Lagrange multipliers. Necessary conditions
for a stationary point are:

∇xL = ∇xvf (x, r(x)) + λT∇xc(x, r(x)) = 0

∇λL = c(x, r(x)) = 0
; (2.6)
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When the problem is non-convex, second-order information is required as well.
For this purpose, we study the second-order derivatives ∇2L which read

∇2
x,xL = ∇2

x,xvf (x, r(x)) + λT∇2
x,xc(x, r(x))

∇2
λ,xL = ∇xc(x, r(x))

∇2
x,λL = ∇xc(x, r(x))

∇2
λ,λL = 0

. (2.7)

or in matrix notation

∇2L =

[
∇2

x,xL ∇2
λ,xL

∇2
x,λL 0

]
, (2.8)

which is the Hessian matrix. A sufficient condition for local optimality is that:

∂xT
(
∇2

x,xL
)
∂x > 0, (2.9)

for all directions ∂x for which ∂xT∇xc = 0 hold. This condition reflects that all
feasible perturbations lead to an increase of the objective function.

First and second order optimality conditions provide necessary and sufficient con-
ditions for an optimal point of both constrained and unconstrained optimization
problems. To determine whether a decomposition technique introduces changes in
the design problem, the first and second order optimality equations should not return
different solutions after decomposition. Thus, the first order conditions require that
the consistency constraints c have the property that:

c(x, r(x)) = 0

λT∇xc(x, r(x)) = 0
, (2.10)

and the second order conditions require that the consistency constraints c have the
property that:

λ
T∇2

x,xc(x, r(x)) ≥ 0. (2.11)

If these conditions are not met at the same optimal point for the problem defined
by Equation 2.1 and Equation 2.4, then the decomposition has changed the design
problem.

Additional requirements on the decomposition yield: no extra optimal points are
introduced, therefore condition 2.6 should not hold for points other than the optimal
points determined for Equation 2.1.

2.3 Norms for measuring inconsistency

Two elements that are coupled and that require individual solving are temporarily de-
coupled via consistency constraints during the individual solution processes. However,
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these consistency constraints are not necessarily satisfied and thus inconsistencies be-
tween levels, i.e. c, are present. These inconsistencies are measured as the distance
between the mapped responses H(r) and the expected or prescribed responses h, i.e.

c = H (r) − h. (2.12)

The distance between mapped responses and expected responses that occur during
the solution of the individual design optimization problems is defined as the length
of a vector. For example the length of c = [c1, . . . , cn] is captured by the expression:

||c||2 =
√

c2
1 + . . . + c2

n. (2.13)

This measure is the Euclidean norm or l2-norm. Other norms that are frequently
used to measure the inconsistency as a means of performance measures for iterative
procedures are:
the l1-norm:

||c||1 =

n∑

i=1

|ci|. (2.14)

The | . . . | indicate absolute values. The infinity norm (or maximum norm) is mathe-
matically expressed as:

||c||∞ = max{|c1|, . . . , |cn|} (2.15)

The norm of an inconsistency is used in multi-level techniques that require relaxation.
This relaxation is discussed in more detail in Chapter 3.

2.4 Optimization techniques

2.4.1 Penalty function methods

Characteristic for multi-level optimization are equality constraints on the physical re-
sponses that interact between two individual elements and/or by equality constraints
on shared design variables. These equality constraint functions limit the search do-
main in which the objective function is minimized. One remedy to milden this effect
is to penalize the constraints.

Penalization permits the optimizer to allow for small violations of the constraints.
One common approach is to multiply the square of the constraint violation with a
penalty parameter which has to be high enough such that the violations remain small.
The following example illustrates this for a constrained optimization problem:

min
x

vf (x, r(x))

s.t. c(x, r(x)) = 0.
(2.16)

The constrained minimization problem is replaced with an unconstrained minimiza-
tion problem and becomes:

min
x

vf (x, r(x)) + s (c(x, r(x)))
2

(2.17)
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Figure 2.5: Example of relaxation through an exterior penalty function. The constraint
function: vh = x − 4 = 0 is relaxed and added to the objective function to obtain: vf =
2.5 − 0.5x + s (x − 4)2. A penalty function relaxes the constraints such that it is easier for
the optimizer to satisfy the constraints. The penalty parameter s is incremented such that
the steep slope of the penalty function does not pose difficulties for the minimization in the
beginning of the search for the constraint minimum.

where s is the penalty parameter.

The penalty parameter is increased by small increments letting the optimizer grad-
ually approach the constraint. Minimizing a penalty function is thus an iterative
process, because the curvature of the penalty function is very sharp for high penalty
parameters. This is illustrated in Figure 2.5 for a constrained optimization problem.
Furthermore, the high penalty parameters introduce ill-conditioning making it diffi-
cult to solve the optimization problem. This ill-conditioning can be avoided if the
penalty function is added to the Lagrangian of the optimization problem (see 2.2)
instead of the objective function. This alternative formulation shifts the origin of the
penalty function such that the minimum of the objective function is found without
the penalty term going to large values.

In multi-level optimization the exterior penalty function allows for small devia-
tions on the consistency constraints. Therefore the optimization of the individual
element can concentrate on minimizing the objective function in the initial stage of
the optimization process. Later during the solution stage, the consistencies become
more important and the penalties are increased. The advantage of this approach is
that initially little effort is spend on satisfying the constraints for configurations that
are not optimal. However, during the optimization process the combined hierarchy
of elements is infeasible since the consistency constraints are violated. Optimization
techniques that adopt penalty functions are discussed in Chapter 5.
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2.4.2 Constraint minimization

Multi-level optimization is characterized by equality constraints on the physical re-
sponses that interact between two individual elements and/or by equality constraints
on shared design variables. These constraints are added to the design optimization
problem in order to temporarily decouple the optimization problem associated with
an individual element from it’s surroundings.

In general it is undesirable to increase the number of constraints, because con-
straints involve function calls that can be expensive in terms of computational cost.
However, in case of multi-level optimization typically a huge number of equality con-
straints is present in every individual optimization problem due to decomposition
combined with the constraints on the individual design of the element.

For problems with a large number of inequality constraints, it is possible to re-
place them by one equivalent constraint. Likewise, for problems consisting of a large
number of equality constraints a single equivalent constraint can be formulated. Ad-
vantage is that several constraints of various origin can be combined. A disadvan-
tage is that non-feasible designs are obtained because the equivalent is not an exact
representation of the combination of all the individual constraints. An example of
such a cumulative equivalent constraint is the Kreisselmeier-Steinhauser(KS) func-
tion. This KS-function was initially introduced to multi-level optimization problems
by Sobieszczanski-Sobieski (1992).

Considering a single optimization problem, the KS-function is a differentiable en-
velope function for a set of inequalities of the form v = vi(xi) ≤ 0. It is assumed
that each function is continuous in xi but does not necessarily has derivatives that
are continuous. The KS-function is expressed as:

KS(v) =
1

ρ
ln

[
n∑

i=1

e(ρvi)

]
. (2.18)

(2.19)

where i = 1..n represents each individual function vi that is present in the optimiza-
tion problem.

If the KS function generates too large values of the exponential function an alter-
native expression is used:

KS(v) = vmax +
1

ρ
ln

[
n∑

i=1

e(ρ(vi−vmax))

]
. (2.20)

A property of the KS-function is that:

vmax ≤ KS(vi) ≤ vmax +
ln (n)

ρ
. (2.21)

The parameter ρ is set by the user in order to control the accuracy of the KS-function
in following the piecewise envelope of the set of inequalities v, see Figure 2.6(a).
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Figure 2.6: (a)KS function used as an envelope function of a set of functions (vi). The
function acquires a minimum at the point where the combined functions (vi) obtain a mini-
mum. (b) The minimum of the KS function coincides with the root of a function (vi), hence
the KS function can be used as a tool for root finding.

Equality constraints are formulated as inequality constraints such that the KS-
function can be used as a tool for root finding. Hence, the equality constraint vi = 0
is split into a positive part vi+ and a negative part vi− . Both parts are rewritten
as inequality constraints and inserted into the KS-function (KS(vi+ , vi−)). The KS-
function has the property that the minimum lies at the point where the root of the
function vi is located, see Figure 2.6(b).

The KS function performs as an extended-interior penalty function (see for a
definition of penalty functions Section 2.4.1) for the multilevel optimization because
it is defined throughout the infeasible and the feasible domains. In literature other
envelope functions can be found, e.g. the empirical function (Sobieszczanski-Sobieski,
1993).

2.5 Optimum approximation techniques

2.5.1 Optimum sensitivity derivatives

Every element of the hierarchy that consists of an individual optimization problem
searches for the optimal values of the design variables, physical responses, and ob-
jective and constraint functions for certain fixed parameter settings. In a multi-level
hierarchy typically many of these temporarily fixed parameters will be changed after
the optimization has finished due to changes elsewhere in the hierarchy. In order
to analyze the influence such changes have on the local optimum and in order to
approximate such changes in other parts of the hierarchy an Optimum Sensitivity
Analysis can be performed (a complete derivation is discussed by Barthelemy and
Sobieszczanski-Sobieski (1983)).

Optimum Sensitivity Analysis analyses changes in objective function, constraint
functions and optimal parameters due to changes in parameters that were initially
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kept fixed during the optimization. To distinguish between derivatives necessary to
minimize objective and constraint functions (behavior derivatives) and derivatives
computed in this section the latter are called optimum sensitivity derivatives.

A constrained optimization problem defined for a single element is considered in
order to derive the necessary optimum sensitivity derivatives, hence:

min
x

vf (x, r(x),h)

s.t. c(x, r(x),h) = 0
(2.22)

where h are initially fixed parameters that are prescribed via elements elsewhere in
the hierarchy. Stationary conditions were defined in Section 2.2 and for the current
problem these read:

∇xL = ∇xvf (x, r(x),h) + λ
T∇xc(x, r(x),h) = 0

∇λL = c(x, r(x),h) = 0
. (2.23)

However, these stationary conditions depend on the parameters h that are put into
the optimization problem. In other words, x = x(h) and vf = vf (x(h), r(x,h),h).
Sensitivity of these stationary conditions with respect to h is obtained by applying
the chain rule (Dh(. . .) = ∇h(. . .) + ∇x(. . .)T Dh(x)) to Equation 2.23, where the
total derivatives are defined as Dh.. = [ d..

dh1
, . . . , d..

dhn
]T . This results in

∇h∇xvf + ∇2
x,xvfDh(x) + λT

(
∇h∇xc + ∇2

x,xcDh(x)
)

+ Dh(λT )∇xc = 0,

∇hc + ∇xc
TDh(x) = 0,

(2.24)

or in matrix notation
[

∇2
x,xvf + λT∇2

x,xc ∇xc

∇xc
T 0

] [
Dh(x)

Dh(λT )

]
+

[
∇h∇xvf + λT∇h∇xc

∇hc

]
= 0.

(2.25)
At the constraint optimal point the above equations are evaluated to find the unknown
derivatives of the optimum solution Dh(x) and Dh(λλλT ). Once Dh(x) are found, the
optimum sensitivity derivative of the objective function vf can be computed. The
total derivative of vf is obtained via:

Dh(vf ) = ∇hvf + ∇xvfDh(x) (2.26)

The total derivatives of each individual element can be used in other elements of
a hierarchy in order to estimate the changes in neighboring elements. Chapter 4
discusses usage of these optimum sensitivity derivatives in the multi-level optimization
hierarchy.

2.5.2 Response surface approximations

In a multi-level hierarchy coupling among the elements is present. The optimal solu-
tion of each of the individual elements depends on data that comes from neighboring



2.5 OPTIMUM APPROXIMATION TECHNIQUES 29

elements. Because it is computationally expensive to find the optimum of these el-
ements, techniques that approximate the behavior of these elements become useful.
In the previous section a similar approach, denoted Optimum Sensitivity Analysis,
was introduced which gives additional insight into the behavior of the optimum of an
element in the close neighborhood of the optimal point. Not only the optimum value,
but also the direction to which this optimum shifts under changes in other elements
is computed. However, computing derivatives might not always be feasible and the
optimum sensitivity derivatives are only useful for small changes in the multi-level
hierarchy. Therefore, often Response Surface Methods are used. See for a thorough
discussion on this topic, e.g., Myers and Montgomery (1995).

Response surface methods rely on a combination of mathematical and statistical
techniques. In principle one is interested in the quantitative relationship between the
response of a black box (here the optimization of an individual element) to changes
made to the input parameters. The latter should in the current context be associ-
ated with the parameters h and z, respectively. The systematic process of choosing
input parameters and determining the resulting output is called Design of Experi-
ments(DOE).

A DOE involves choosing points within a subdomain of the space of the input
parameters, which will reveal as much of the elements behavior within that subdomain
of the entire space. For this purpose use is made of techniques that select points within
the space, for example, a Latin Hypercube Sampling(LHS) (McKay et al., 1979). LHS
chooses random points that are guaranteed to be uniformly distributed over the space.
For each of these initial points the computed responses are normalized. After all points
of the LHS sample have been evaluated the resulting normalized responses combined
are fitted with a polynomial.

For brevity of notations the objective function nvf is written v, the coupling
parameters ..

..h are written h and shared design variables z are not considered in
the current discussion. Shared design variables are treated similarly in the response
surface construction as the coupling variables. A linear response surface model for
the objective function of Element-n in the hierarchy is:

v (h) = a0 +
m∑

l=1

alhl. (2.27)

The coefficients a0, .., am are unknown coefficients. These unknown coefficients
are determined as follows. Changing the value of hl via, e.g. a Latin Hypercube
Sampling of a subdomain of the space, different values of v (h) are observed. These
observations are indicated via subscript

o
and each observation v

0
is written as:

v
o
(h

o
) = a0 +

m∑
l=1

alhlo + εreso

(2.28)

where εreso is called the residual. The residual is defined as the difference between
the response value obtained from evaluating the element’s objective function v for
parameters (hl) chosen by the LHS and the fitted value from the response surface
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function for those same parameters. Hence:

εreso = v
o
− vRSMo

. (2.29)

One approach to choose the coefficients (a..) is the method of least squares, which
chooses the coefficients (a..) such that the sum of the squares of the errors (εreso) are
minimized. The least squares function is mathematically expressed as:

L =

p∑

o=1

ε2
reso

(2.30)

=

p∑

o=1

(
v
o
(h) − a0 −

(
m∑

l=1

alhlo

))2

. (2.31)

The observations (v
o
) can also be written in matrix vector notation. In this case

Equation 2.28 is rewritten and becomes:

v = Ha + εres. (2.32)

The least squares function simplifies to:

L = εT
resεres = (v − Ha)

T
(v − Ha) . (2.33)

The least squares estimator is minimized with respect to the coefficients (a..). There-
fore, the least squares estimator must satisfy:

∇aL = −2HTv + 2HTHa = 0. (2.34)

From Equation 2.34 the coefficients (a) can be evaluated, hence:

a =
(
HTH

)−1
HTv. (2.35)

The fitted response surface function is mathematically expressed as:

v̂ = Ha. (2.36)

Difference between the observations v and the fitted values v̂ is measured via:

e = v − v̂. (2.37)

These residuals are important in order to determine model adequacy. However, scaled
residuals often convey more information than these ordinary residuals. Two important
scaled residual measures are the F-ratio (signal to noise):

F0 =

p∑
o=1

(
v̂
o
− 1

p

p∑
o=1

v
o

)2

/m

eTe/ (p − m − 1)
, (2.38)
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which measures if one of the variables (hl) contributes significantly to the model.
Typically (Myers and Montgomery, 1995), one tests if F0 exceeds F0.05,m,p−m−1. Up-
per critical values of the F -distribution can be found in books on statistics, e.g. Ross
(2009).

The second scaled residual is the coefficient of determination R2, mathematically
expressed as:

R2 = 1 −
eTe

p∑
o=1

(
v̂
o
− 1

p

p∑
o=1

v
o

)2 (2.39)

which determines the amount of reduction in the variability of v̂ (the diversity of
computed values v̂) by using the hl variables in the model. Values for R are 0 ≤
R2 ≤ 1. A higher value of R does not imply that the accuracy of the model is better
because adding data points will always increase R even if they do not significantly
contribute to the model.

Based upon these two statistical data measures the response surface is accepted
or modified. Modifications yield evaluating additional points inside the subset of the
design space, changing the degree of the fitted polynomial or increasing or decreasing
the size of the subset of the design space.





Chapter 3

Decomposition methods

The previous chapter introduced a unifying notation for the development of the multi-
level design optimization framework. Furthermore, a few necessary techniques from
the field of optimization were introduced that are applied in this chapter to decom-
position techniques.

The concept of identifying coupled elements is introduced in Section 3.1. This
coupling is represented by an abstract coupling circle, which is discussed in Section
3.2 along with decomposition formulations.

Following the discussion on decomposition techniques, Section 3.3 introduces the
problem matrix. The problem matrix is a means of illustrating coupling between
elements in optimization problems.

The discussion on the problem matrix is then extended to the multi-level case
for systems consisting of many levels in Section 3.4. Furthermore, the necessary
conditions for optimality of an optimization problem with embedded hierarchy are
derived in Section 3.5.

Finally, the various steps in the decomposition process are illustrated via decom-
position of a two-bar structural optimization problem in Section 3.6 and in Section
3.7 a discussion on the presented decomposition methods concludes the chapter.

3.1 Identifying coupled problems

Complex systems, such as those encountered in aerospace engineering, can typically
be considered as a hierarchy of individual elements. This hierarchy is reflected in the
analysis techniques that are used to analyze the physical characteristics of the system
as a whole. These analysis techniques rely on a hierarchy of models, each accounting
for different length scales, components or disciplines.

33
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Many complex systems can be considered a single component when viewed from
far and a collection of components when closely observed. An aircraft can be seen
as a single element when viewed from far. Zooming in, the aircraft consists of wing,
fuselage, vertical tail, engines etc. Each element is built from smaller components,
e.g. the wing consists of a skin, torsion box, flaps, etc. Each of these small elements
is built from material that can be considered a single component when viewed as
an element, however when closely observing the material, the material is built up
of several components, e.g. fibers in composites, material matrix, grain boundaries
and at the smallest scales individual atoms. Therefore, analysis models have been
developed that describe a structure at the level of observation. Explicit links between
the multiple levels are necessary to develop an efficient multi-level description of a
structure’s behavior.

Provided the scales can be decoupled, for that reason they must differ substan-
tially, the multi-level analysis of elements at different length or time scales is typically
conducted independently. That is, the output from one analysis forms the input to the
neighboring element. When elements are part of a hierarchy and the higher elements
in the hierarchy pass output to elements lower in the hierarchy, approaches are called
hierarchical top-down approaches. The analysis covering general characteristics of the
structure is conducted and results are passed on to the lower levels in the hierarchy.
Likewise, a hierarchic bottom-up approach is used that starts at the smallest scale of
observation and passes the results to higher levels in the hierarchy.

In cases where independent analysis of phenomena at different levels is not possi-
ble, coupled approaches are required. Modern techniques that focus on this coupling
are multi-scale analysis techniques and domain decomposition techniques. Multi-
scale techniques analyze physical responses that cover multiple length and time scales
and domain decomposition techniques typically couple the domains of different me-
dia (e.g. fluid structure interaction) or partition a domain in smaller segments (e.g.
sub-structuring in case non-overlapping sub-domains are used).

Multi-scale computational techniques can be subdivided into multiple scale ex-
pansion methods and superposition based methods (Fish and Shek, 2000). Typically
these methods are applied to bridge material and structural scales.

Multiple scale expansion methods or homogenization techniques rely on three as-
sumptions. (1) The physical characteristics observed at the top-level are constant at
the lower levels. (2) The physical characteristics that are observed within the lower
level element are local. (3) The top-level physical characteristics are formed by a spa-
tial periodicity of the lower level elements (Representative Volume Elements(RVE)).
These assumptions are valid as long as the scale of the lower level element (RVE) phys-
ical characteristics is much smaller then the scale of the top-level element physical
responses.

Superposition methods rely on a hierarchical decomposition of the solution space of
the physical responses r into: top-level (large scale) responses 0r and lower level (small
scale) responses 1r, . . . , 1,...,ir. Hence, r = 0r + . . . + 1,...,ir, the compatibility between
the physical responses is prescribed by homogeneous boundary conditions on 0r at
the interface between Level-0 and Level-1. Superposition methods are characterized
via three aspects: approximation of physical responses of individual elements of the
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hierarchy; mathematical formulation of the interface between hierarchical elements, in
the present thesis these interfaces are expressed as i

jH(ir)− i
jh or j

iH(jr)−j
i h; solution

methods of the analysis problem, hence numerical or exact solution techniques.

The design of a structure involves the combined performance of various disciplines.
Analysis of the aerodynamics, hence fluid computations, the analysis of structural per-
formance, hence computational solid mechanics, the analysis of power consumption,
the analysis of operational costs and business models are examples of such disciplines.
Explicit links between these models are essential for a designer to consider effects on
other disciplines while making changes within an individual disciplinary model. Typi-
cally such computations are done in sequence, data is passed to the next element until
all elements have been evaluated. A coupled approach iterates between the disciplines
such that changes in one discipline are accounted for in all the disciplines.

Likewise, the designer may decompose the design problem over various levels of a
hierarchy. Elements of the hierarchy are formulated as individual optimization prob-
lems that are coupled to individual optimization problems elsewhere in the hierarchy.
The designer can focus on changing smaller more manageable parts of the design with-
out neglecting the combined performance of the entire hierarchy. Such an approach is
successful if many design variables and/or constraint functions and/or objectives can
be assigned to individual hierarchical elements. Typically, the design optimization is
started at the top or the bottom of the hierarchy and level by level the individual
optimizations are conducted. Cycling over the levels is necessary if the design of a
single element largely effects the optimal design of neighboring elements.

Lastly, a hierarchy can be created because the model is too large to solve or it is
more convenient to solve it in parts. Such techniques search for weak links between
the analysis functions and/or optimization functions that allow for a decomposition.
Examples of such approaches are found in the work of Bloebaum (1995). Bloebaum
developed a procedure to quantify the strength of coupling. A hierarchy might not
seem present at first, but due to analyzing the properties of the underlying problem,
blocks of local analysis equations and/or optimization functions can be distinguished
such that decomposition can take place.

Essential in the identification of elements, whether they are naturally present or ar-
tificially identified, is that physical responses and/or design problems can be computed
locally. These responses and/or design problems might weakly or strongly depend on
responses and/or design problems elsewhere, however their main computational effort
is local. The influence of computed local responses and/or design problems are com-
municated to neighboring elements through boundary conditions. Hence, the physical
responses are mapped onto the neighboring domain and vice versa. Formulating such
boundary conditions between coupled elements is discussed in the next section.

3.2 Separating coupled problems

There are two distinct approaches to obtain a multi-level design hierarchy as intro-
duced in Chapter 2. The first is that one combines various elements together and in
this manner a complete structure is formed. Here the hierarchy is automatically em-
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Figure 3.1: Physical response interaction between two elements. The responses 0r computed
at the parent element are transformed by the operator 0

1H into information that influences
the responses of the child element 1r. Likewise, the responses from the child element are
transformed by the operator 1

0H into information that influences the responses at the parent
element.

bedded in the resulting design problem. The second approach is that a design problem
is too large to solve by a single approach and is distributed over multiple elements.
The hierarchy obtained in either of these two approaches has similar characteristics.
The main characteristic being the interaction between two elements which will be the
focus of this section.

The interaction between two elements can be described by the interactions between
a parent element and a child element, see Figure 3.1. In this figure a representation
of the physical coupling is visible.

The physical responses of a single element can be temporarily isolated via decom-
position. Decomposition refers to the process by which the links between the coupled
elements are (temporarily) broken down such that both elements can be considered
individual, making the process of finding a solution to the coupled problem more
manageable.

Decomposition is accomplished via the introduction of consistency constraints:

i
jc = i

jH
(

ir
)
− i

jh, (3.1)

where for the present coupling circle i 6= j and i, j = 0, 1. There are two formulations
for the consistency constraints that are used frequently in order to maintain consis-
tency for two coupled elements. Exact formulations expressed as equality constraints
and inexact formulations where the consistency is relaxed:

1. equality constraints/conditions:

0
1c = 0

1H
(
0r
)
− 0

1h = 0;
1
0c = 1

0H
(
1r
)
− 1

0h = 0.
(3.2)

2. relaxation, via, e.g., Lagrange multipliers:

0
1λ

T 0
1c = 0

1λ
T
(
0
1H
(
0r
)
− 0

1h
)
;

1
0λ

T 1
0c = 1

0λ
T
(
1
0H
(
1r
)
− 1

0h
)
.

(3.3)
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Figure 3.2: (a) Consistency between the coupled elements is maintained through interface
compatibility or equilibrium. (b) Consistency can be relaxed via relaxation. In the current
figure Lagrange multipliers are applied, however Penalty function methods or Augmented
Lagrangian relaxation can be used similarly. Externally the relaxation parameters (in the
current figure the Lagrange multipliers) are controlled, such that the inconsistencies vanish
at compatibility or equilibrium of the interface.

Relaxation-based decomposition is accomplished via relaxation of the consistency con-
straints. There are three typical approaches that relax these constraints: Lagrangian
relaxation, Penalty function methods and Augmented Lagrangian relaxation.

The effect of decomposition on the coupling circle shown in Figure 3.1 is shown
in Figure 3.2(a) in case equality consistency constraints are formulated and in Figure
3.2(b) in case relaxation of the consistency constraints is applied. In the current
figure, Lagrangian decomposition is shown, however Penalty function relaxation or
Augmented Lagrangian relaxation can be used similarly.

For each of the categories of the previously mentioned consistency formulations,
two different formulations can be distinguished. These are:

1. hierarchic decomposition, which is subdivided into top-down or/and bottom-up
formulations.

2. non-hierarchic decomposition, which treats all elements equal.

Hierarchic decomposition is the result of identifying elements in the hierarchy that
dictate the output from other elements. This is illustrated in Figure 3.3(a) in case of a
top-down decomposition formulation with equality consistency constraints. The top,
or Level-0 element prescribes the necessary output from the Level-1 element. A similar
but opposite approach is possible, where the Level-1 element prescribes the necessary
output of the Level-0 element. The latter approach is shown in Figure 3.3(b) and is
called a bottom-up decomposition.

In case the consistency constraints are relaxed via, e.g., Lagrange multipliers,
the resulting top-down decomposition is shown in Figure 3.4(a) and the bottom-up
decomposition in Figure 3.4(b). The relaxed constraints are added to the Level-1
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Figure 3.3: (a) The Level-0 element prescribes the necessary responses for the Level-1
element by means of equality consistency constraints. This is called top-down decomposition.
(b) Level-1 prescribes the responses of the Level-0 element, hence a bottom-up decomposition
by means of equality consistency constraints.

element objective function causing a violation of the consistency constraint to have a
negative effect on the measured performance of that individual element.

Figure 3.3 and Figure 3.4 show hierarchic decomposition of the coupling circle
shown in Figure 3.1. The coupling in one direction, left or right depending on respec-
tively top-down or bottom-up decomposition is replaced via consistency constraints.
The opposite direction is still intact meaning that coupling is still present making one
element the �leader�and the other element the �follower�.

Non-hierarchic decomposition of the coupling circle shown in Figure 3.1 involves
replacing the links in both directions of the coupling circle. The decomposition in-
volves elements that do not prescribe output from each other. Instead, output is
estimated and after element solutions are found, the information is exchanged among
the elements via a coordination method (discussed in Chapter 4) that updates the
coupling parameters and confirms if the consistency constraints are satisfied.

In case decomposition is accomplished via equality constraints the non-hierar-
chic decomposition is shown in Figure 3.5. Additional information is required to take
into account changes in the interaction. This is accomplished via derivation of the
Global Sensitivity Equations (Sobieszczanski-Sobieski, 1990):

D0x(01H) = ∇0x(01H) + ∇1
0h

(01H)T D0x(10H)

D1x(01H) = ∇1x(01H) + ∇1
0h

(01H)T D1x(10H)

D0x(10H) = ∇0x(10H) + ∇0
1h

(10H)T D0x(01H)

D1x(10H) = ∇1x(10H) + ∇0
1h

(10H)T D1x(01H)

(3.4)

The necessary sensitivity information is the solution to the system of equations:

[
I −∇1

0h
(01H)T

−∇0
1h

(10H)T I

] [
D0x(01H) D1x(01H)
D0x(10H) D1x(10H)

]
= . . .

[
∇0x(01H) 0

0 ∇1x(10H)

]
(3.5)
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(a) (b)

Figure 3.4: (a) Top-down decomposition by means of relaxation of the consistency con-
straint and assigning the Lagrangian multipliers to the Level-1 element. (b) Bottom-up de-
composition by means of relaxation of the consistency constraint and assigning the Lagrangian
multipliers to the Level-0 element.

0r
(
0x, 1

0h
)

1r
(
1x, 0

1h
)

D0x(01H) = ∇0x(01H) + . . .
∇1

0h
(01H)T D0x(10H)

D1x(01H) = ∇1x(01H) + . . .
∇1

0h
(01H)T D1x(10H)

D0x(10H) = ∇0x(10H) + . . .
∇0

1h
(10H)T D0x(01H)

D1x(10H) = ∇1x(10H) + . . .
∇0

1h
(10H)T D1x(10H)

Figure 3.5: None of the elements prescribes the output of the neighboring element, thus a
non-hierarchic decomposition. Equality consistency constraints are assumed (..

..c = 0) and
the interaction is approximated by means of computing the Global Sensitivity Equations.
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1
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Figure 3.6: None of the elements prescribes the output of a neighboring element, thus a
non-hierarchic decomposition. The consistency between the two elements is relaxed on both
sides of the coupling circle, via e.g. Lagrange multipliers. Via coordination the Lagrange
multipliers are updated such that the consistency is restored. The relaxation parameters
applied to the relaxed consistency constraints in each individual element are not necessarily
equal. Therefore, an additional index distinguishes the relaxation parameters, here ..

..λ0 and
..
..λ1.

Another frequently used technique to account for interactions between the ele-
ments is the use of Response Surface(RS) methods. An RS method seeks to fit a
function through the responses of an element which are changing due to different in-
put parameters for the element. The basic principles of RS techniques were discussed
in Chapter 2.

A non-hierarchic decomposition by means of relaxation of the consistency con-
straints via e.g. introducing Lagrange multipliers is shown in Figure 3.6. A coordi-
nation method is necessary to update the Lagrange multipliers.

Figure 3.7 presents an overview of the two-decomposition techniques for coupled
elements: equality based decomposition; and relaxation based decomposition. Re-
laxation based decomposition is accomplished via relaxation of the consistency con-
straints. There are three typical approaches that relax these constraints, e.g. La-
grangian relaxation, Penalty function relaxation and Augmented Lagrangian relax-
ation. Both decomposition techniques can be subdivided into hierarchic and non-
hierarchic formulations.

Thus far the decomposition of physical properties of elements is discussed, how this
decomposition enters the optimization problem is characterized through the problem
matrix, which will be discussed in the next section.

3.3 Illustrating coupling via the problem matrix

The decomposition process of optimization problems involves identifying relationships
between the design variables, physical responses and objectives/constraints that per-
mit us to separate them into elements that are connected. Optimization problems for
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Figure 3.7: Summary of the decomposition process. Two choices are available for decom-
posing coupled problems. These are equality based decomposition and relaxation based decom-
position. Furthermore, these approaches are subdivided in hierarchic top-down or bottom-up
formulations and non-hierarchic formulations.

which no elements have been identified yet are defined as:

min
x

vf (x, r(x))

s.t. vg(x, r(x)) ≤ 0 (3.6)

vh(x, r(x)) = 0

where vf (. . .) is the objective function, vg(. . .) are inequality constraints and vh(. . .)
are equality constraints. The relationship between variables (x), responses (r) and
functions (vf , vg and vh) is illustrated amongst others by Barthelemy (1989) with
the problem matrix (also known as Functional Dependence Table

(Wagner, 1993)).
When the problem matrix is full, all functions depend on all the variables and

responses. This is illustrated in the problem matrix of Figure 3.8, where the depen-
dence of r on the design variables x is dropped for brevity of notations. Above the
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x, r
︷ ︸︸ ︷

vg,vh






vf
min
x

vf (x, r)

s.t. vg(x, r) ≤ 0

vh(x, r) = 0

Figure 3.8: Problem matrix, illustrating the relationship between variables and functions.
The problem matrix is full, meaning that objective and constraint functions depend on all the
design variables.

thick black line the objective function vf is reflected and the blocks of variables x

and responses r on which this objective function depends are marked. Likewise, the
design constraints vg and vh are listed below the thick black line and the blocks of
variables and responses to which these functions correspond are marked.

A single individual element depends on element design variables and element phys-
ical responses. Such an element is shown in Figure 3.9. The objective function 0v
depends on the element design variables 0x and element physical responses 0r. Below
the thick black line the element design constraints 0vg and 0vh are listed.

For a problem consisting of many elements, the simplest case is when there are only
uncoupled problems (Kirsch and Moses, 1979). The problem matrix resembles that
of Figure 3.10. A hierarchy of three individual elements is shown that are uncoupled.
The dependencies of optimization functions (horizontal) on design variables and phys-
ical responses (vertical) form a diagonal pattern in the problem matrix. This is called
a block diagonal problem matrix. The constraints are completely separable and the
objective function is additively separable, meaning that the objective function consists
of a summation of element objectives that are uncoupled. Combined these element
objectives form the entire objective function. The element objectives are minimized

objective

constraints

0x, 0r
︷ ︸︸ ︷

0vg
0vh

}
0vf

min
0x

0vf (0x, 0r)

s.t. 0vg(
0x, 0r) ≤ 0

0vh(0x, 0r) = 0

Figure 3.9: Problem matrix, illustrating the relationship between variables and functions.
A gray block indicates that the functions (horizontal) depend on the design variables and
responses (vertical).
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vf

0vg,
0vh

1vg,
1vh

2vg,
2vh

3vg,
3vh

0x,0r 1x,1r 2x,2r 3x,3r

min
x

vf =
3∑
0

ivf (ix, ir)

s.t. 0vg = 0vg(
0x, 0r)

0vh = 0vh(0x, 0r)
1vg = 1vg(

1x, 1r)
...

3vh = 3vh(3x, 3r)

Figure 3.10: Block diagonal matrix, showing the relationships between variables and fully
uncoupled functions. In this case there is no need for coordinating the solution process to
reach the optimum of the multi-level optimization problem.

separately. Uncoupled problems can be solved independently and therefore there is
no coordination (see Chapter 4) necessary.

In order to make the problem more manageable, one searches for interaction (or
coupling) between groups of variables and/or responses such that individual elements
are formed or identified. These interactions are subdivided into:

1. non existing, hence elements that are formed or identified are uncoupled.

2. weak, if the number of coupling variables is substantially less than the total
number of variables associated with each of the individual elements and none of
the coupling variables that are identified has a significant impact on the solution
of the individual element.

3. strong, if most of the coupling variables are shared among the elements and a
diagonal on the problem matrix cannot be identified.

In real life problems, uncoupled elements do not exist. But often a distinction
between weak and strong dependencies of the elements can be made. In Figure 3.11
such a distinction is illustrated. The light gray blocks indicate weak dependencies
and the dark gray blocks strong dependencies.

Preferably one has a Block Diagonal problem matrix such as illustrated in Figure
3.10 since the individual elements are then uncoupled in the constraints and additively
separable in the objective function. However, more frequently encountered problems
involve coupling. In that case, the subproblems are connected through design i

jz

and/or coupling variables i
jh. Shared design variables i

jz are design variables that

are present in multiple hierarchical elements. Coupling variables i
jh represent the

mapped physical responses (i
jH(ir)) from one element onto a neighboring element to

which it is coupled, see Section 3.2. An example of a problem consisting of shared
design variables and coupled responses is the minimization of an additively separable
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x, r
︷ ︸︸ ︷

vg,vh






vf

strong dependency

weak dependency

Figure 3.11: Problem matrix, illustrating the weak (off-diagonal) and strong (main-
diagonal) dependencies between individual elements. The objective is a function of all the
design variables and depends on all the elements. However, the constraints can be organized
in strong and weak dependencies associated with each individual element.

objective function subjected to constraints:

min
x

0vf (0i z,
0x, 0r

(
0
i z,

0x, i
0h
)
) +

3∑
i=1

ivf

(
i
0z,

ix, ir
(

i
0z,

ix, 0
i h
))

s.t. 0vg(
0
i z,

0x, 0r(0i z,
0x, i

0h)) ≤ 0
ivg(

i
0z,

ix, ir(i
0z,

ix, 0
i h)) ≤ 0 i = 1, . . . , 3

0vh(0i z,
0x, 0r(0i z,

0x, i
0h)) = 0

ivh(i
0z,

ix, ir(i
0z,

ix, 0
i h)) = 0

where 0x, 0r top-element level variables
ix, ir element level variables

..

..h coupling variables
..
..z shared design variables

x =
[
0x, 0

i z,
ix, i

0z
]

(3.7)

Notice that one may now distinguish global variables 0x and 0r related to the Level-0
problem, local variables ix and ir, which are related to Level-1, coupling variables
..
..h connecting the two levels via physical coupling and shared design variables that
are shared among individual elements (i

jz = j
iz). The current example involves four

individual elements that are coupled and divided over two levels.

The problem matrix that illustrates the relations between the variables of Equation
3.7 is called an Angular problem matrix. This problem matrix is illustrated in Figure
3.12 for the problem of Equation 3.7.

In the previous section two decoupling formulations were introduced, hence equal-
ity based decoupling and relaxation based decoupling. Furthermore, two decom-
position approaches for each of the decoupling formulations were discussed, hence
hierarchical and non-hierarchical decomposition. In the next section first the equality
based decoupling for hierarchical decomposition is introduced followed by the non-
hierarchical equality based decomposition. After the discussion on equality based
decoupling the relaxation based decoupling is illustrated with the problem matrix for
hierarchic and non-hierarchical decomposition.
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0vh
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1vh

2vg,
2vh
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vf
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coupling variables

top-element constraints

i = 1, 2, 3





element constraints

Figure 3.12: Angular problem matrix, coordination between levels is necessary due to the
coupling variables 0

i h and i
0h. Each element receives a copy of the variable i

0h or 0
i h and

coordination is necessary to introduce these copies into the other element.

3.3.1 Equality based decoupling

In case of hierarchic decomposition, the coupling circle shown in Figure 3.13(a) is
decomposed and consistency is maintained between Level-0 and Level-1 elements
through consistency constraints, e.g., top-down hierarchic decomposition shown in
Figure 3.13(b). The consistency constraints are assigned either to Level-0 or to Level-
1, recall Section 3.2. In case consistency is maintained via equality constraints at
Level-1, the coupling variables i

0h become additional design variables for the Level-0
optimization problem. The physical responses 0

iH
(
0r
)

= 0
i h that are mapped from

Level-0 to Level-1 are not added as design variables but accounted for in the analysis of
the Level-1 element. The coupling variables are constant in the Level-1 optimization
problems and are therefore omitted for brevity of notations as well as the dependence
of r on the design variables x.

An additively separable objective function is considered and a hierarchy is present
that consists of a single element at Level-0 and three individual elements are located at
Level-1. The Level-0 problem, after hierarchic top-down equality based decomposition
of the Level-1 elements is:

min
i
0h,0x

0vf (i
0h, 0x, 0r)

s.t. 0vg(
i
0h, 0x, 0r) ≤ 0

0vh(i
0h, 0x, 0r) = 0

where i = 1, 2, 3

. (3.8)
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i
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Figure 3.13: (a) Physical response interaction between a single Level-0 element and the
ith element present at Level-1, where i = 1, . . . , n n being the amount of elements present
at Level-1. The responses 0r computed at the parent element are transformed by the opera-
tor 0

iH into information that influences the responses of the child element ir. Likewise, the
responses from the child element are transformed by the operator i

0H into information that
influences the responses at the parent element. (b) The Level-0 element prescribes the nec-
essary responses for the Level-1 element by means of equality consistency constraints. This
is called top-down decomposition.

The optimization problem for the Level-1 elements now reads:

min
ix

ivf (ix, ir)

s.t. ivg(
ix, ir) ≤ 0

ivh(ix, ir) = 0
ivi

0c(
i
0c(

ix, ir)) = i
0H(ir) − i

0h = 0

where i = 1, 2, 3

. (3.9)

Thus, an additional set of constraints is added to the lower level subproblems ivi
0c(

i
0c(..)).

These constraints are the result of temporary decoupling of the physical responses,
see Figure 3.13 or for a more detailed discussion Section 3.2. These constraints de-
pend on i

0c which is a function of the actual response of the element and the expected
response.

The resulting problem matrix is shown in Figure 3.14. The consistency is main-
tained at the lower level elements.

Similar to the previous discussion, a bottom-up formulation can be constructed
where the consistency is maintained at Level-0. The problem matrix in this case has
the form shown in Figure 3.15. Such a formulation uses for the Level-0 problem:

min
0x

0vf (0x, 0r)

s.t. 0vg(
0x, 0r) ≤ 0

0vh(0x, 0r) = 0
0v0

i
c(

0
i c(

0x, 0r)) = 0
iH(0r) − 0

i h = 0

where i = 1, 2, 3

. (3.10)
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vf

i = 1, 2, 3coupling variables

top-element constraints




element constraints

Figure 3.14: Problem matrix showing a top-down decomposition approach. Consistency is
maintained at Level-1 by means of additional constraints and coupling variables i

0h are added
to the Level-0 optimization problem.

0
i h

0x,0r 1x,1r 2x,2r 3x,3r

0vg,
0vh

1vg,
1vh

0v0
i
c

2vg,
2vh

3vg,
3vh

vf

i = 1, 2, 3coupling variables

top-element constraints





element constraints

Figure 3.15: Problem matrix showing a bottom-up decomposition approach. Consistency is
maintained at Level-0 by means of additional constraints and coupling variables 0

i h are added
to the Level-1 optimization problems as design variables.
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i
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1vg,
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1v1
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3v3
0c

0vf

i = 1, 2, 3coupling variables
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element constraints

Figure 3.16: Problem matrix where only coupling variables are connecting the elements.
For this case, the number of constraints of each Level-1 element is reduced using a cumulative
constraint formulation. The inequality and equality constraints are embedded in the objective
function of the Level-1 problems. Furthermore, coupling variables i

0h are added tot the Level-0
optimization problem.

The resulting problem formulation for Level-1 becomes then:

min
ix,0

i
h

ivf (0i h, ix, ir)

s.t. ivg(
0
i h, ix, ir) ≤ 0

ivh(0i h, ix, ir) = 0

where i = 1, 2, 3

. (3.11)

If the overall objective function is only a function of the coupling variables i
0h, then

the Level-1 inequality and equality constraints may be replaced by a single envelope
function ive(..) (e.g. KS-function (Sobieszczanski-Sobieski, 1992)). The inequality
(ivg) and equality (ivh) constraints are embedded in the envelope function. The
equality constraints are split into a positive part ivh+ and a negative part ivh− that
allows them to be written as two sets of inequality constraints that can be inserted
into the envelope function. The problem matrix will then have a form as shown in
Figure 3.16.

In this case there is no contribution to the Level-0 objective function through the
Level-1 design variables. Therefore, Equation 3.7 reduces to:

min
i
0h,0

i
h,x

0vf (i
0h, 0x, 0r)

s.t. 0vg(
i
0h, 0x, 0r) ≤ 0 ; 0vh(i

0h, 0x, 0r) = 0
ive(

ivg(
0
i h, ix, ir), ivh+(0i h, ix, ir), ivh−(0i h, ix, ir)) ≤ 0

where ive(. . .) = envelope function
ivh+ , ivh− = positive and negative part of equality constraint
i = 1, 2, 3

(3.12)

The problem is split into a Level-0 optimization problem and Level-1 optimization
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0x,0r 1x,1r 2x,2r 3x,3r

0vg,
0vh

1vg,
1vh

2vg,
2vh

3vg,
3vh

vf

top-element constraints




element constraints

Figure 3.17: Typical problem matrix in case of shared design variable vectors. Hence,
design variables that are used on Level-0 are also used in the Level-1 elements.

problems. The Level-1 optimization problems are formulated as constraint minimiza-
tion problems. The Level-1 element constraints are embedded in the envelope function
and this function is formulated as the objective function of the Level-1 elements. The
envelope function embeds inequality constraints and therefore the Level-1 optimiza-
tion problem is to push the design point of the individual elements into the feasible
domain. This allows room for improvement in these elements since the real constraints
of the Level-1 elements are not active. Therefore, the objective function of the Level-1
elements is added to the Level-0 problem to take into account the influence design
changes in Level-0 have on the Level-1 elements (on the design constraints embedded
in the envelope function).

With ive(
iv..(..)), the optimum objective of the ith subproblem. The Level-0

optimization problem becomes:

min
i
0h,0x

0vf (i
0h, 0x, 0r)

s.t. 0vg(
i
0h, 0x, 0r) ≤ 0

0vh(i
0h, 0x, 0r) = 0

iv∗e(iv..(..)) ≤ 0

where i = 1, 2, 3

(3.13)

Where the coupling variables i
0h are assigned to the Level-0 design variables and

the coupling variables 0
i h in the Level-1 problems are naturally accounted for by the

mapping of Level-0 onto Level-1, hence 0
iH(ir) − 0

i h. The Level-1 problem becomes:

min
ix

ive(
ivg(

ix, ir), ivh+(ix, ir), ivh−(ix, ir))

s.t. ivi
0c(

i
0c(

ix, ir)) = i
0H(ir) − i

0h

where i = 1, 2, 3

, (3.14)

where consistency with the Level-0 element is maintained via the consistency con-
straint ivi

0c.

In case the coupling originates from design variables that are shared over multiple
levels, the problem matrix has a form as shown in Figure 3.17. The optimization
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Figure 3.18: Decomposed problem matrix in case of shared design variables. The design
variables ..

..z are shared design variables between elements and therefore: 0
i z = i

0z. Consis-
tency is maintained at the lower levels, hence a top-down decomposition.

problem in this case has the form:

min
x

vf (x, r)

s.t. 0vg(x, r) ≤ 0 ; ivg(
ix, ir) ≤ 0

0vh(x, r) = 0 ; ivh(ix, ir) = 0

where x = 0x, ix

i = 1, 2, 3

, (3.15)

and the objective function vf is considered additively separable.
The optimization problem is decomposed introducing consistency constraints. These

constraints force variables that are shared among Level-0 and Level-1 elements to
equal value. These consistency constraints are assigned to either the lower level, see
Figure 3.18, or to the upper level, see Figure 3.19, in case of a bottom up approach.
To distinguish between design variables that belong to individual elements and to
design variables that are shared among elements the shared design variables are writ-
ten ..

..z. For a top-down equality based decomposition approach the shared design
variables read 0

i z and the Level-0 part of Equation 3.15 becomes:

min
0x,0

i
z

0vf (0i z,
0x, 0r)

s.t. 0vg(
0
i z,

0x, 0r) ≤ 0
0vh(0i z,

0x, 0r) = 0

where i = 1, 2, 3

. (3.16)

The Level-1 problem formulation for each element is:

min
ix,i0z

ivf (i
0z,

ix, ir)

s.t. ivg(
i
0z,

ix, ir) ≤ 0
ivh(i

0z,
ix, ir) = 0

ivi
0cz

(i
0cz

(
i
0z
)
) = 0

i z − i
0z = 0

where i = 1, 2, 3

, (3.17)
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Figure 3.19: Problem matrix with shared design variables ..
..z. Consistency is maintained

at the upper level, hence a bottom-up decomposition approach.

where the shared design variables associated to Level-1 read i
0z. The index z is

added to distinguish between consistency expressions related to physical coupling
and consistency expressions related to shared design variables.

The bottom-up approach results in a similar problem description, where the con-
sistency between the variable sets is maintained at Level-0. The Level-0 problem
formulation of Equation 3.15 is in this case:

min
0x,0

i
z

0vf (0i z,
0x, 0r)

s.t. 0vg(
0
i z,

0x, 0r) ≤ 0
0vh(0i z,

0x, 0r) = 0
0v0

i
cz (

0
i cz

(
0
i z
)
) = 0

i z− i
0z = 0

where i = 1, 2, 3

, (3.18)

and the Level-1 formulation resembles:

min
ix,i0z

ivf (i
0z,

ix, ir)

s.t. ivg(
i
0z,

ix, ir) ≤ 0
ivh(i

0z,
ix, ir) = 0

where i = 1, 2, 3

. (3.19)

The problem matrix of the bottom-up approach is shown in Figure 3.19.
So far the discussion on coupling between elements is limited to coupling be-

tween a Level-0 element and Level-1 elements, thus coupling between levels. When-
ever a problem involves coupling of two elements on the same level as shown in
Figure 3.20 or even if there is a fully populated problem matrix, such as shown in
Figure 3.8 the problem can still be decomposed. Such a decomposition is called a
non-hierarchic decomposition(Sobieszczanski-Sobieski, 1988) or system-oriented de-
composition (Kirsch, 1993). The previous discussed decomposition methods all fall
within the category of hierarchic decomposition or process-oriented decomposition.
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Figure 3.20: Coupling between elements on Level-1 via coupling variables j
ih. This will

result in a non-hierarchic decomposition, hence decoupling of the elements is necessary in
two-directions.

The essential difference between hierarchic decomposition and non-hierarchic de-
composition is that the first decomposes one direction of the coupling circle and the
latter decomposes both directions of the coupling circle. One element prescribes the
coupling variables for the neighboring element. In non-hierarchic decomposition both
directions of the coupling circle are decomposed and both elements are required to
satisfy the consistency constraints.

Elements that are coupled on the same level (Level-1) are shown in Figure 3.20.
The initial optimization problem before decomposition reads:

min
x

vf = 0vf (0x, 0r
(
0x
)
) +

3∑
i=1

ivf

(
ix, ir

(
ix, j

ih
))

s.t. 0vg(
0x, 0r

(
0x
)
) ≤ 0; 0vh(0x, 0r

(
0x
)
) = 0

ivg(
ix, ir

(
ix, j

ih
)
) ≤ 0; ivh(ix, ir

(
ix, j

ih
)
) = 0

where 0x, 0r top-element level variables
..x, ..r element level variables

..

..h coupling variables
i, j = 1, 2, 3 i 6= j

. (3.20)

The elements on Level-1 are coupled to each other and the Level-0 element is uncou-
pled from the Level-1 elements.

The elements on Level-1 are decomposed via consistency constraints between the
elements. To take into account changes in the neighboring element the coupling vari-
able vector i

jh is introduced as a design variable vector for the Level-1 elements. For
brevity of notation the dependence of the response vector r on the design variables
is omitted. Interaction via mapping of physical responses i

jH
(
ir
)

= i
jh is approx-

imated by means of computing the Global Sensitivity Equations(GSE), see Section
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element constraints

Figure 3.21: Decomposed problem after introducing the physical responses as design vari-
ables into the Level-1 optimization problems. The changes in the physical coupling are ac-
counted for by means of computing the Global Sensitivity Equations. Therefore, the light
shaded blocks indicate the approximated coupling.

3.2. Hence, on Level-1 the individual problems to optimize become:

min
i
j
h,ix

ivf (i
jh, ix, ir)

s.t. ivg(
i
jh, ix, ir) ≤ 0

ivh(i
jh, ix, ir) = 0

where i, j = 1, 2, 3 i 6= j

. (3.21)

The Level-0 optimization is independent of the Level-1 optimizations and reads:

min
ix

ivf (ix, ir)

s.t. ivg(
ix, ir) ≤ 0

ivh(ix, ir) = 0

where i = 1, 2, 3

. (3.22)

The problem matrix for the non-hierarchic decomposed problem is shown in Figure
3.21. The influence of the Global Sensitivity Equations (GSE) is shown via lighter
shaded blocks in the problem matrix.

Three characteristic cases of coupling have been described by means of compar-
ing problem matrices. These cases were physical coupling between levels, coupling
by means of shared design variables and coupling on the same level. All coupled
problems were decomposed using equality consistency constraint formulation. In the
next section the consistency constraints are relaxed and the changes involving this
relaxation on the three coupling cases are discussed.

3.3.2 Relaxation based decoupling

Similar to the equality consistency constraint formulation, decoupling through relax-
ation of the consistency constraints is done via hierarchic or non-hierarchic decom-
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Figure 3.22: (a) Physical response interaction between two elements. The responses 0r

computed at the parent element are transformed by the operator 0
iH into information that

influences the responses of the child element ir. Likewise, the responses from the child
element are transformed by the operator i

0H into information that influences the responses at
the parent element. (b) Top-down decomposition by means of relaxation of the consistency
constraint via, e.g., Lagrange multipliers and assigning the Lagrangian multipliers to the
Level-1 element.

position. The hierarchic decomposition approach is discussed first and is sub-divided
into a top-down and a bottom-up approach.

First the coupling circle, Figure 3.22(a), is relaxed via a top-down decomposition,
see Figure 3.22(b). Hence, the relaxed consistency constraints using, e.g., Lagrange
multipliers read:

..vi
0c(

i
0c) = i

0λ
T i

0c = i
0λ

T
(
i
0H(ir) − i

0h
)

. (3.23)

Because the constraints are relaxed, a procedure to reduce the inconsistency between
the via Level-0 prescribed response (i

0h) and the actual response computed at Level-1
(i
0H(ir)) is necessary. For the present problem, Lagrangian relaxation, this is accom-

plished via the so-called dual problem 1. While keeping the design variables fixed,
the minimum of the Lagrangian function of the relaxed optimization problem is max-
imized. The dual problem for a two-level hierarchy consisting of a single element at
Level-0, three individual elements at Level-1 and an additively separable objective
function reads:

max
i
0λT

min
i
0h,0x,ix

0vf (i
0h, 0x, 0r) +

3∑
i=1

ivf (0i h, ix, ir) +
3∑

i=1

ivi
0c(

i
0c(

ir, i
0h))

s.t. 0vg(
i
0h, 0x, 0r) ≤ 0

0vh(i
0h, 0x, 0r) = 0

ivg(
ix, ir) ≤ 0

ivh(ix, ir) = 0

where ivi
0c(

i
0c(

ir, i
0h)) = i

0λ
T
(
i
0H
(
ir
)
− i

0h
)

i = 1, 2, 3

. (3.24)

The problem of finding relaxation parameters (here optimal Lagrange multipliers)
is a coordination problem. This coordination problem is discussed in chapters 4 and

1The dual problem is defined in Proposition 5.1.1 through 5.1.6 in the book of Bertsekas (1995)
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5. The focus of this chapter is individual element optimization problems. Therefore,
relaxation parameters are considered fixed parameters in the examples discussed and
are adjusted via the coordinator problem (Chapter 4 and 5).

The inconsistency is added to the objective of the Level-1 elements. An increase
of inconsistency has a negative effect on the performance (the objective function) of
the individual element.

The Level-0 problem, after decomposition of the Level-1 elements reads:

min
i
0h,0x

0vf (i
0h, 0x, 0r)

s.t. 0vg(
i
0h, 0x, 0r) ≤ 0

0vh(i
0h, 0x, 0r) = 0

where i = 1, 2, 3

. (3.25)

Again, index i indicates the ith lower level element. The individual problem formula-
tion for the Level-1 elements of Equation 3.7 becomes:

min
ix

ivf (ix, ir) + ivi
0c(

i
0c(

ir))

s.t. ivg(
ix, ir) ≤ 0

ivh(ix, ir) = 0

where ivi
0c(

i
0c(

ir)) = i
0λ

T
(
i
0H(ir) − i

0h
)

i = 1, 2, 3

. (3.26)

The Lagrange multipliers i
0λ present in the Level-1 optimization problems form part of

the optimal solution that is determined via an external coordination routine (Chapter
5).

Similar to the top-down approach, the equations of the bottom-up approach can be
obtained via relaxation of the consistency constraints, e.g., via Lagrange multipliers.
The Level-0 system becomes:

min
0x

0vf (0x, 0r) +
3∑

i=1

0v0
i
c(

0
i c(

0r))

s.t. 0vg(
0x, 0r) ≤ 0

0vh(0x, 0r) = 0

where 0v0
i
c(

0
i c(

0r)) = 0
i λ

T
(
0
i H(0r) − 0

i h
)

i = 1, 2, 3

, (3.27)

and the problem formulation for the Level-1 elements becomes:

min
ix,0

i
h

ivf (0i h, ix, ir)

s.t. ivg(
0
i h, ix, ir) ≤ 0

ivh(0i h, ix, ir) = 0

where i = 1, 2, 3

. (3.28)

Similar to the top-down decomposition approach the Lagrange multipliers form part
of the solution that is determined via a coordination approach (Chapter 5).



56 DECOMPOSITION METHODS 3.3

When coupling exists between elements due to shared design variables, the relaxed
formulation of the consistency constraints is similar to that of the coupled physical
responses. The total optimization problem before decomposition is:

min
x

vf (x, r)

s.t. 0vg(x, r) ≤ 0 ; ivg(
ix, ir) ≤ 0

0vh(x, r) = 0 ; ivh(ix, ir) = 0

where x = 0x, ix

i = 1, 2, 3

. (3.29)

Design variables that are shared between multiple elements are expressed as ..
..z and

consistency constraints between these variables are introduced. Relaxing the consis-
tency constraints between elements the Level-0 optimization problem becomes:

min
0
i
z,0x

0vf (0i z,
0x, 0r)

s.t. 0vg(
0
i z,

0x, 0r) ≤ 0
0vh(0i z,

0x, 0r) = 0

where i = 1, 2, 3

, (3.30)

and the relaxed Level-1 optimization problems become:

min
i
0z,ix

ivf (i
0z,

ix, ir) + ivi
0cz

(i
0cz

(
i
0z
)
)

s.t. ivg(
i
0z,

ix, ir) ≤ 0
ivh(i

0z,
ix, ir) = 0

where ivi
0cz

(i
0cz(

i
0z)) = i

0λ
T
(
0
i z − i

0z
)

i = 1, 2, 3

. (3.31)

In the case of a fully populated problem matrix, such as illustrated in Figure 3.8,
or in case coupling is only present between elements on the same level, as illustrated
in Figure 3.20, a non-hierarchic decomposition approach is applied. For simplicity,
a multi-level problem is considered where the Level-0 element is uncoupled from the
Level-1 elements and coupling is only present between the elements on Level-1.

The resulting problem formulation for the individual elements of Level-1 have the
form:

min
ix,

j
i
h

ivf (j
ih, ix, ir) + ivj

i
c
(j
ic(

j
ih)) + ivi

jc
(i
jc(

i
jH(ir)))

s.t. ivg(
j
ih, ix, ir) ≤ 0

ivh(j
ih, ix, ir) = 0

where ivj
i
c
(j
ic(

j
ih)) = j

iλ
T
i

(
j
iH(jr) − j

ih
)

ivi
j
c(

i
jc(

i
jH(ir))) = i

jλ
T
i

(
i
jH(ir) − i

jh
)

. (3.32)

The Level-0 is not coupled to the Level-1 elements and writes:

min
0x

0vf (0x, 0r)

s.t. 0vg(
0x, 0r) ≤ 0

0vh(0x, 0r) = 0

. (3.33)
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The Lagrange multipliers necessary for the Level-1 elements are determined via coor-
dination approaches which are discussed in Chapter 5.

Three characteristic cases of coupling between elements were discussed in accor-
dance with the discussion on equality-based decomposition. The fourth case, where
the objective function only depends on the top-level element does not change the de-
composition approach in case relaxation based decomposition is applied. A summary
of these characteristic cases is shown in Figure 3.23 via typical patterns of the problem
matrix. The first pattern (a) illustrates a problem matrix where the objective function
only depends on the top-level element. This resembles a special case in equality-based
decomposition approaches where use is made of constraint minimization in the lower
level elements. Pattern (b) illustrates the case where a small number of coupling
variables couples the objective and constraint functions of all the levels. Pattern (c)
illustrates a problem where the design variables and/or physical responses are shared
over multiple levels. And in pattern (d) the objective function and the constraints
depend on all the design variables and physical responses of all the elements. Hence,
no hierarchy can be distinguished and use is made of Global Sensitivity Equations
in case of equality based decomposition and of relaxation in both directions of the
coupling circle in case of relaxation based decomposition.

In the next section the results of both the equality-based decomposition and the
relaxation-based decomposition are extended to a general multi-level optimization
problem.

3.4 From two-level to multi-level methods

In the previous section a two-level decomposition was considered. In this section the
decomposition principles applied to a two-level hierarchy are extended to a multiple
level hierarchy.

A multi-level formulation is characterized by a top-level, n intermediate levels and
a bottom level. Therefore, a 3-level description is sufficient to cover the essence of
a multi-level description. A three-level hierarchy is considered, Level-0 consisting of
a single element and the two lower levels consisting of two individual elements. The
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Figure 3.23: Four typical patterns can be distinguished in the problem matrix. (a) A hier-
archy where the objective function depends on the top-level design variables 0x and physical
responses 0r and on the coupling variables i

0h. The lower level elements do not have an
individual objective function. (b) A hierarchy where the objective function and constraint
functions share a small number of coupling variables. Level-0 as well as elements present at
Level-1 contribute to the minimization of the additively separable objective function vf . (c) A
hierarchy where the design variables and physical responses of different elements contribute
to the constraint functions of neighboring elements. Some of the elements in lower levels
depend on physical responses and/or design variables from neighboring elements. (d) No
clear hierarchy can be distinguished. The objective function as well as the constraint func-
tions depend on the physical responses and design variables from all the elements. Either
Global Sensitivity Equations (GSE) are required to separate the elements or relaxation of the
consistency constraints between the elements is necessary.
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Figure 3.24: Problem matrix for a three level problem with coupling indicated by coupling
variables between the levels. The hierarchy consists of a single element at Level-0, two ele-
ments at Level-1 and each element present at Level-1 is coupled to two individual elements
on Level-2.

coupled optimization problem for a 3-level optimization problem is

min
x

0vf (0x, 0r(0x, i
0h))+

2∑
i=1

(
ivf (ix, ir(ix, 0

i h, i,j
i h)) +

2∑
j=1

(
i,jvf (i,jx, i,jr(i,jx, i

i,jh))
)
)

s.t. 0vg(
0x, 0r(0x, i

0h)) ≤ 0
ivg(

ix, ir(ix, 0
i h, i,j

i h)) ≤ 0
i,jvg(

i,jx, i,jr(i,jx, i
i,jh)) ≤ 0

0vh(0x, 0r(0x, i
0h)) = 0

ivh(ix, ir(ix, 0
i h, i,j

i h)) = 0
i,jvh(i,jx, i,jr(i,jx, i

i,jh)) = 0

where 0x, 0r Level-0 variables
ix, ir Level-1 variables

i,jx, i,jr Level-2 variables
..
..h coupling variables

i, j = 1, 2

. (3.34)

For simplicity, only physical coupling between levels is present. Hence, no coupling
between elements on the same level is considered. Furthermore, shared design vari-
ables are not considered. Shared design variables are treated similar as the physical
coupling between elements. The problem matrix showing the coupling between the
three levels and the individual elements is shown in Figure 3.24.

In order to decouple the optimization problem, the coupling variables h are as-
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signed to the higher level elements (meaning Level-0 and Level-1) in case of a top-down
decomposition approach. In case of a bottom-up decomposition approach they are
assigned to the lower element levels (meaning Level-1 and Level-2). A top-down de-
composition is considered here, thus the Level-0 optimization problem includes the
physical responses of the intermediate level as design variables. The Level-0 optimiza-
tion problem becomes:

min
i
0h,0x

0vf (i
0h, 0x, 0r)

s.t. 0vg(
i
0h, 0x, 0r) ≤ 0

0vh(i
0h, 0x, 0r) = 0

where i = 1, 2

. (3.35)

This formulation is similar to that of the two-level problem discussed in the previous
section.

The biggest changes in problem formulation are at the intermediate level, which
is connected to both the Level-0 and Level-2 elements. The physical responses
which connect the intermediate level to the lowest level are added as design vari-
ables j

ih. Consistency with the Level-0 level is maintained via additional consistency
constraints. The intermediate problem writes:

min
j
i
h,ix

ivf (j
ih, ix, ir)

s.t. ivg(
j
ih, ix, ir) ≤ 0

ivh(j
ih, ix, ir) = 0

where ivi
0c(

i
0c(

ir)) = i
0H(ir) − i

0h = 0

i, j = 1, 2

. (3.36)

Finally, the Level-2 problem formulation writes:

min
i,jx

i,jvf (i,jx, i,jr)

s.t. i,jvg(
i,jx, i,jr) ≤ 0

i,jvh(i,jx, i,jr) = 0

where i,jvi,j
i

c
(i,j
i c(i,jr)) = i,j

i H(i,jr) − i,j
i h = 0

i, j = 1, 2

. (3.37)

The problem formulation is similar to that of the Level-1 problem of the previous
section. The relation between the position in the hierarchy and the index notation
was introduced in Section 2.1.

A similar formulation holds for the case of a coupled design variable vector. The
case of elements on the same level was already discussed in the previous section for
three connected elements and does not differ for a multi-level hierarchy. In order to
complete the discussion, the changes due to relaxation of the consistency constraints
are now discussed.

The three level optimization problem (3.34) is considered and a top-down hier-
archic decomposition is assumed. The consistency constraints between levels are
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relaxed, for the present example, via Lagrangian relaxation. Therefore, an additional
objective is added to the individual optimization problems of Level-1 and Level-2.
This additional objective has a negative contribution to the objective function if the
consistency between elements is violated. The Level-0 optimization problem becomes:

min
i
0h,0x,

0vf (i
0h, 0x, 0r)

s.t. 0vg(
i
0h, 0x, 0r) ≤ 0

0vh(i
0h, 0x, 0r) = 0

where i = 1, 2

. (3.38)

The intermediate level is new compared to the two-level hierarchy. It includes
a contribution to the objective function that takes into account a violation of the
consistency between Level-0 and Level-1 and between Level-1 and Level-2. The in-
termediate level, i.e. the Level-1 optimization problem becomes:

min
i,j
i

h,ix

ivf (i,j
i h, ix, ir) + ivi

0c(
i
0c(

ir))

s.t. ivg(
i,j
i h, ix, ir) ≤ 0

ivh(i,j
i h, ix, ir) = 0

where ivi
0c(

i
0c(

ir)) = i
0λ

T
(
i
0H(ir) − i

0h
)

i, j = 1, 2

. (3.39)

Two additional objectives are present in the objective function. These involve the
relaxed consistency between Level-0 and Level-1 and the relaxed consistency between
Level-2 and Level-1. The optimal Lagrange multipliers ..

..λ.. are determined as part
of the coordination problem that is discussed in chapters 4 and 5.

The lowest level optimization problems are similar to those of the two-level prob-
lem formulation. For the current three-level hierarchy the lowest-level optimization
problems become, i.e. Level-2:

min
i,jx

i,jvf (i,jx, i,jr) + i,jvi,j
i

c
(i,j
i c(i,jr))

s.t. i,jvg(
i,jx, i,jr) ≤ 0

i,jvh(i,jx, i,jr) = 0

where i,jvi,j
i

c
(i,j
i c(i,jr)) = i,j

i λT
(

i,j
i H(i,jr) − i,j

i h
)

i, j = 1, 2

. (3.40)

The inconsistency between the physical response of the Level-2 elements and the
expected response of these elements at Level-1 is accounted for by an additional term
in the objective function.

The problem description of a shared design variable vector is similar to the decou-
pling of physical responses and the implications on the individual problem descriptions
was discussed in the previous section. Therefore, the problem description of problems
involving shared design variable vectors will not be discussed here. In case elements
on the same level are coupled, the equations follow from the discussion in the previous
section as well. The multi-level setting does not change these formulations and the
reader is directed to the two-level problem description.
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Figure 3.25: (a) Physical response interaction between two elements. The responses 0r

computed at the parent element are transformed by the operator 0
1H into information that

influences the responses of the child element 1r. Likewise, the responses from the child
element are transformed by the operator 1

0H into information that influences the responses at
the parent element. (b) The Level-0 element prescribes the necessary responses for the Level-1
element by means of equality consistency constraints. This is called top-down decomposition.

3.5 Optimality conditions for coupled problems

In this section the optimality criteria for optimization problems with embedded cou-
pling are derived. The optimization problem formulation that describes the entire
optimization problem before identifying a hierarchy is written as:

min
x

vf = vf (x, r(x)) . (3.41)

An unconstrained optimization problem is considered for simplicity. However, the
derivation is similarly for constrained problems. Equation 3.41 may reflect an opti-
mization formulation for a complex problem. A hierarchy of two elements that are
coupled is considered for the present unconstrained optimization problem.

The physical response r is separated into a Level-0 component 0r and a Level-1
component 1r that are coupled. Changes in 0r effect 1r and vice versa. Furthermore,
the design variable vector x is considered to consist of Level-0 design variables 0x

and Level-1 design variables 1x. The problem after identifying a two level hierarchy
is written as:

min
0x,1x

vf = vf (0x, 1x, 0r(0x, 1
0h), 1r(1x, 0

1h)) . (3.42)

A choice is made on decoupling the coupling circle, see Figure 3.25(a). Hence,
in case of top-down hierarchic decomposition (see Figure 3.25(b)) of the physical
responses the all-in-one optimization problem with a consistency constraint on the
responses that are mapped from the element at Level-1 onto the element at Level-0
is written as:

min
0x,1x,10h

vf = vf

(
1
0h, 0x, 1x, 0r(0x, 1

0h), 1r(1x, 0
1h)
)

s.t. 1
0c(

1
0h, 1r(1x, 0

1h)) = 1
0H(1r) − 1

0h = 0
. (3.43)
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The Lagrangian is defined as:

L(0x, 1x, 1
0h, 1

0λ) = vf

(
1
0h, 0x, 1x, 0r(0x, 1

0h), 1r(1x, 0
1h)
)

+

1
0λ

T 1
0c(

1
0h, 1r(1x, 0

1h)). (3.44)

The elements of vector 1
0λ are unknown Lagrange multipliers. Necessary conditions

for a stationary point are:

∇0xL = ∇0xvf + 1
0λ

T∇0x
1
0c = 0

∇1xL = ∇1xvf + 1
0λ

T∇1x
1
0c = 0

∇1
0h
L = ∇1

0h
vf + 1

0λ
T∇1

0h
1
0c = 0

∇1
0λL = 1

0c
(
1
0h, 1r

)
= 0

. (3.45)

where the dependence of the function on coupling variables, design variables and
responses are omitted for brevity of notation. According to Section 2.2, the first
order derivatives of the Lagrangian is a necessary, however not sufficient condition
for optimality. Therefore, the second order conditions are required to determine
optimality.

In matrix notation the second-order condition is:

∇2L =





∇2
0x,0xL ∇2

1x,0xL ∇2
1
0h,0x

L ∇2
1
0λ,0x

L

∇2
0x,1xL ∇2

1x,1xL ∇2
1
0h,1x

L ∇2
1
0λ,1x

L

∇2
0x,10h

L ∇2
1x,10h

L ∇2
1
0h,10h

L ∇2
1
0λ,10h

L

∇2
0x,10λ

L ∇2
1x,10λ

L ∇2
1
0h,10λ

L 0




, (3.46)

which is called the Hessian matrix. A sufficient condition for optimality is that:

∂xT
(
∇2

x,xL
)
∂x > 0. (3.47)

for all directions ∂x for which ∂xT∇xc = 0 holds and x = [0x, 1x, 1
0h].

In case of a bottom-up decomposition the first- and second-order conditions are
derived similar. A decomposition in two-directions, hence non-hierarchic decomposi-
tion, leads to consistency constraints in both directions of the coupling circle:

min
0x,1x,01h,10h

vf = vf

(
0
1h, 1

0h, 0x, 1x, 0r(0x, 1
0h), 1r(1x, 0

1h)
)

s.t. 0
1c(

0
1h, 0r(0x, 1

0h)) = 0
1H(0r) − 0

1h = 0
1
0c(

1
0h, 1r(1x, 0

1h)) = 1
0H(1r) − 1

0h = 0

, (3.48)

and the corresponding Lagrangian function is:

L(0x, 1x, 1
0h, 1

0λ, 0
1λ) = vf

(
1
0h, 0x, 1x, 0r(0x, 1

0h), 1r(1x, 0
1h)
)

+

0
1λ

T 0
1c(

0
1h, 0r(0x, 1

0h)) + 1
0λ

T 1
0c(

1
0h, 1r(1x, 0

1h)),

(3.49)

after differentiating once the first-order conditions are obtained. And for the second-
order conditions the first-order conditions are differentiated once more.
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0x, 1
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2
0h1

)
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)
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(
0r
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ir1
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= i
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α β

Figure 3.26: Two-bar truss structure with embedded hierarchy. Level-0 responses are the
displacement and the total mass of the structure. These responses depend on cross-sectional
details of the two bar members. The detailed cross-section is described via Level-1 parameters.

Typically the Hessian matrix (3.46) is sparse, because not all the functions depend
on all the design variables and coupling variables. Furthermore, due to partitioning of
the physical responses the optimization problem has become a saddle point problem.
Therefore, techniques that efficiently solve such problems can be used as a guideline
to develop coordination techniques that coordinate the data between the individual
elements of the hierarchy. In chapters 4, 5 and 6 techniques that take advantage of
sparse matrices and that efficiently solve saddle point problems are discussed in the
context of multi-level optimization.

3.6 Example: Two-bar truss

The process of formulating a multi-level structural optimization problem is demon-
strated on the basis of a two-bar truss design optimization problem. The two-bar
truss problem is shown in Figure 3.26. Two levels can be distinguished, namely, the
general lay-out of the structure consisting of two bar elements (Level-0) and the de-
tailed cross-sectional area described by the diameter and the thickness of the wall
(Level-1).

As general responses of the structure we study total structural mass 0r1 and the
horizontal displacement 0r2, both depending on the cross-sectional areas that are
considered Level-0 properties. The detailed cross-sectional geometry formulation of
the bar elements are considered Level-1 properties. The two-bar truss design problem
is shown in Figure 3.27.
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L; fixed

1
0h

2
0h

0r2

P

0x1
0x2

ix1

ix2

Figure 3.27: Two-bar truss structure with embedded hierarchy. The general lay-out of the
structure is described via design parameters 0x and cross-sectional areas of the elements. The
cross-sectional area is represented via coupling variables 1

0h, 2
0h. The element cross-sectional

areas are described in detail via design variables ix1,
ix2.

The optimization functions associated with the two-bar truss design problem are
mathematically expressed as:

0vf =
0r1(

0x,1x,2x)
0rmmax

0vg =
0r2(

0x,1x,2x)
0rumax

− 1
1vg =

1r1(
1x,0r)

0.91rcr
− 1

2vg =
(
2

2r1(
2x,0r)

2rEuler(0x2,2x1)

)2

− 1

, (3.50)

and the parameters determining the structural lay-out are listed in Table 3.1.
The problem matrix illustrating the dependencies of the optimization functions

of Equation 3.50 on the design variables and the physical responses is shown in
Figure 3.28. The objective function and constraint function of the Level-0 optimiza-
tion problem depend on the design variables of Level-0 and Level-1 elements.

Coupling variables are added in Figure 3.29 to show the coupling between the two
levels. Individual objectives for the Level-1 elements are not present and contributions
of the Level-1 elements to the Level-0 objective function are accounted for by the
coupling parameters ..

..h.
Two decomposition formulations of the coupling circle (Figure 3.26) are consid-

ered: hierarchic top-down equality based decomposition (Figure 3.30(a)), and hierar-
chic top-down relaxation based decomposition (Figure 3.30(b)).

The Level-1 elements have no individual objective function. The problem matrix
is shown in Figure 3.31. Because after the decomposition via equality constraints no
individual objective functions are present in the Level-1 elements, constraint mini-
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0x1
0x2

0r1
0r2

1x1
1x2

1r1
2x1

2x2
2r1

0vf - total mass
0vg - tip displacement
1vg - stress element 1
2vg - stress element 2

top-element constraint
}

element constraint

Figure 3.28: Coupling matrix Two bar truss optimization problem before decomposition.
On the left the optimization problem functions are listed and on the top the design variables
and physical responses. A function that depends on a specific design variable or physical
response is shaded.

0
1h1

0
2h1

0
2h2

1
0h1

2
0h1

0x1
0x2

0r1
0r2

1x1
1x2

1r1
2x1

2x2
2r1

0vf

0vg

1vg

2vg

Figure 3.29: Coupling parameters are introduced into the problem matrix, which illustrates
the data that is required between the Level-0 element and the two Level-1 elements.

mization is applied. The minimization of constraints is accomplished via an envelope
function, here the KS-function is applied. The properties of the KS-function were
discussed in Chapter 2.

The equality based consistency constraints between Level-0 and Level-1 are written
as:

1
0c = 1

0H1

(
1r1

)
− 1

0h1 = 0;
2
0c = 2

0H1

(
2r1

)
− 2

0h1 = 0. (3.51)

These constraints are added to the Level-1 elements as equality constraints 1vc and
2vc. The coupling variables 1

0h and 2
0h are introduced as design variables in the Level-0

optimization problem. The optimization problem for Level-0 now becomes:

min
0x,10h,20h

0vf =
0r1(0x,10h,20h)

0rmmax

s.t. 0vg =
0r2(0x,10h1,20h1)

0rumax
− 1 ≤ 0

0v1a = 1ve

(
1vg(

1
0h)
)

≤ 0
0v2a = 2ve

(
2vg(

2
0h)
)

≤ 0
0x ≤ 0x ≤ 0x

, (3.52)

where the functions 0v1a, 0v2a take into account that the Level-1 optima change due to
changes in the Level-0 optimization problem. For the Level-1 elements the individual
optimization problems become:
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Figure 3.30: (a)The Level-0 element prescribes the necessary responses for the Level-1
element by means of equality consistency constraints. This is called hierarchical top-down
decomposition via equality constraints. (b) Top-down hierarchical relaxation based decompo-
sition via, e.g. relaxation of the consistency constraint with Lagrangian multipliers assigned
to the Level-1 element.
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1vc
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Figure 3.31: Coupling matrix Two bar truss after decomposition. A top-down decomposition
scheme is used, where the consistency constraints are added to the Level-1 elements.
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Element 1:

min
1x1,1x2

1ve

(
1vg

)
= 1

ρ
ln

(
e

ρ

(
1r1

0.91rcr
−1

))

s.t. 1v1
0c(

1
0c) = 1

0H1(
1r1) − 1

0h1 = 0
1x ≤ 1x ≤ 1x

. (3.53)

Element 2:

min
2x1,2x2

2ve

(
2vg

)
= 1

ρ
ln

(
e

ρ

((
2

2r1
2rEuler

)2

−1

))

s.t. 2v2
0c(

2
0c) = 2

0H1(
2r1) − 2

0h1 = 0
2x ≤ 2x ≤ 2x

. (3.54)

The consistency constraint equations 1v1
0c,

2v2
0c temporarily decouple the consistency

constraints such that three individual optimization problems are solved.
In case relaxation is applied to the consistency constraints via, e.g., Lagrange

multipliers the consistency constraints read:

1
0λ

1
0c = 1

0λ
(
1
0H1

(
1r1

)
− 1

0h1

)
;

2
0λ

2
0c = 2

0λ
(
2
0H1

(
2r1

)
− 2

0h1

)
. (3.55)

Relaxation of the consistency constraints means that an inconsistency is present be-
cause the constraints are not exactly satisfied. An additional term is added to each
individual optimization problem present at Level-1 that adds a negative contribution
to the objective function that takes into account the inconsistency. The optimization
problem for the Level-0 element is:

min
0x1,0x2,10h1,20h1

0vf =
0r1(0x,10h1,20h1)

0rmmax

s.t. 0vg =
0r2(0x,10h1,20h1)

0rumax
− 1 ≤ 0

0x ≤ 0x ≤ 0x

, (3.56)

and for the Level-1 elements the individual optimization problems write:
Element 1:

min
1x1,1x2

1vf = 1vc(
1
0c)

s.t. 1vg =
1r1

0.91rcr
− 1 ≤ 0

1x ≤ 1x ≤ 1x

where 1vc(
1
0c) = 1

0λ
(
1
0H1

(
1r1

)
− 1

0h1

)
. (3.57)

Element 2:

min
2x1,2x2

2vf = 2vc(
2
0c)

s.t. 2vg =
(
2

2r1
2rEuler

)2

− 1 ≤ 0
2x ≤ 2x ≤ 2x

where 2vc(
2
0c) = 2

0λ
(
2
0H1

(
2r1

)
− 2

0h1

)
. (3.58)
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Two different decompositions were shown for a two-bar truss optimization prob-
lem. Equality-based decomposition where the Level-1 optimization problems have no
objective function. Instead these Level-1 optimization problems are given the task of
minimizing the element design constraint while satisfying the consistency constraint.
Relaxation-based decomposition distributes the task of satisfying the consistencies of
both levels over all the elements, while each element has to minimize element objective
and satisfy element constraint functions.

3.7 Discussion

This chapter discussed the decoupling of coupled problems and its implications on
optimization problems. Three types of decomposition were identified. Furthermore,
by means of a problem matrix, four characteristic coupling scenarios where treated
and an extension to general multi-level optimization problems was made. Finally,
necessary and sufficient conditions for finding an optimum were derived for uncon-
strained optimization problems with embedded hierarchy. The next chapter deals
with the coordination of the results of the decoupled elements.



Chapter 4

Coordination

The previous chapter discussed techniques that temporarily decouple the analysis
and/or optimization of complex structures into individual elements and how this
temporarily decoupling is embedded in the design optimization problem. Because the
individual analyzes and/or optimizations of these individual elements are coupled,
their individual solutions require coordination. Coordination should combine the
intermediate solutions of the individual elements such that the solution to the entire
coupled optimization problem is found.

First, this chapter introduces the concept of coordination for equality-based de-
composed problems and for relaxation-based decomposed problems in Section 4.1.
Followed by an introduction to bi-level coordinating methods in Section 4.2 and an
introduction to multi-level coordinating methods in Section 4.3. Methods that imple-
ment the bi-level coordination or multi-level coordination are discussed in more detail
in Chapter 5 and Chapter 6, respectively.

4.1 Coordinating individual problems

A complex structure that is decomposed into a hierarchy of individual elements that
are coupled requires coordination of the solutions of the individual elements. This
coordination can be subdivided in two distinct formulations. These are:� equality-based coordination or model-based coordination;� relaxation-based coordination or goal-oriented coordination.

Both coordination techniques are the direct consequence of choices made on formu-
lating consistency constraints between coupled elements.

71
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Level-0

Level-1

0v(0x, 0r(0x, 1
0h))0v(0x, 0r(0x, 1

0h))

1v(1x, 1r(1x, 0
1h))

1v(1x, 1r(1x, 0
1h)) 1

0c = 1
0H
(
1r
)
− 1

0h

0
1H

(
0r
)

= 0
1h

0
1H

(
0r
)

= 0
1h

1
0H

(
1r
)

= 1
0h

1
0h

Figure 4.1: On the left two elements that are coupled and require optimization are shown.
After a top-down hierarchic decomposition of the physical responses that are mapped between
the two elements the remaining coupling is shown on the right. Elements that are decoupled
require coordination. The coordination should be done such that the solution of the coupled
individual elements is the same as the all-in-one solution.

4.1.1 Equality-based or model-based coordination

Equality-based coordination or model-based coordination uses physical responses from
the model to steer the coordination process. To illustrate the coordination process,
consider the consistency equations that model the interaction between two elements
of a hierarchy:

0
1c = 0

1H
(
0r
)
− 0

1h = 0;
1
0c = 1

0H
(
1r
)
− 1

0h = 0.
(4.1)

The two coupled elements are illustrated in Figure 4.1(left). In the previous chap-
ter three decomposition procedures were introduced. In order to illustrate the co-
ordination process a hierarchic top-down decomposition is considered, depicted in
Figure 4.1(right). Hence, the mapping of Level-0 onto Level-1 is explicitly satisfied
and the mapping of Level-1 onto Level-0 is decoupled and replaced via consistency con-
straints 1

0c. The coupling variables 1
0h representing the mapped physical responses of

Level-1 onto Level-0 are added to the Level-0 optimization problem as design variables
and the consistency constraints 1

0c are added to the Level-1 optimization problem. The
Level-0 optimization problem conducts an optimization returning an optimal 0r that
is mapped via 0

1H(0r) = 0
1h onto the Level-1 optimization problem. Furthermore, op-

timal 1
0h are determined that prescribe the expected mapped response coming from

the Level-1 element optimization. Hence, optimal values 0
1h, 1

0h are determined during
the optimization of the Level-0 element and send to the Level-1 element.

Model-based coordination uses the values of physical responses to steer the coordi-
nation process. The Level-0 optimization problem determines optimal values for the
physical responses (0r) and coupling variables (10h). The optimal physical response is
mapped via 0

1H(0r) = 0
1h and then send together with the optimal coupling variables

(10h) to the Level-1 optimization problem. At Level-1, the mapped responses and
optimal coupling parameters are kept fixed during the optimization of the Level-1
element as shown in Figure 4.2.
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0v(0x, 1
0h, 0r(0x, 1

0h))

1v(1x, 1r(1x, 0
1h))

1
0c = 1

0H(1r) − 1
0h = 0

0
1H(0r) = 0

1h

1
0h

1
0h

0
1H(0r) = 0

1h

Coordinator

Figure 4.2: Equality-based or model-based coordination, the optimal physical coupling be-
tween elements is determined in the parent element and send to the neighboring element as
fixed parameters. The neighboring element keeps these variables fixed while performing it’s
individual design optimization.

The coupling of Level-0 onto Level-1 is explicitly satisfied via 0
1H
(
0r
)

= 0
1h. Con-

sistency constraints 1
0c are satisfied via considering 1

0h a fixed set of parameters dur-
ing optimization of the Level-1 element. An optimal value 1r is searched such that
1
0c = 1

0H
(
1r
)
− 1

0h = 0 is satisfied. After the lowest level in the hierarchy is solved,
the optimization of the entire hierarchy is finished. Coordinating the solution of the
hierarchy is thus accomplished via the top-elements in the hierarchy that steer the
lower level elements and no communication is present from the lower elements to
the higher elements. Coordination via the multi-level hierarchy is called single-level
coordination.

Equality-based or model-based coordination can also be applied in case a bottom-
up decomposition or a non-hierarchic decomposition is applied. In case of a bottom-
up decomposition, the top-level is the last level to be optimized before optimization
is finished. When non-hierarchic decomposition is applied, physical responses are
exchanged in both directions.

Sensitivity information may be added to the data exchange to improve the process
of finding a solution to the coordination problem. In summary, when equality-based
decomposition is applied the coordination involves sending physical responses and/or
sensitivities of these responses (hence, model data) to neighboring elements.

The coupling due to shared design variables is treated similar as the physical
coupling during the coordination process. Instead of requiring mapping of the physical
responses the design variables can directly be send to neighboring elements. In the
neighboring element the design variables are treated as fixed parameters such that,
e.g. in case of top-down hierarchic equality-based decomposition, 0

1z = 1
0z holds for

the Level-1 element.

4.1.2 Relaxation-based or goal-oriented coordination

Relaxation-based coordination or goal-oriented coordination uses relaxation param-
eters to coordinate the individual element optimization problems. To illustrate the
relaxation-based coordination process, consider the physical coupling between a two-



74 COORDINATION 4.1

0v(0x, 1
0h, 0r(0x, 1

0h))

1v(1x, 1r(1x, 01h)) + 1
0λT 1

0c

1
0λT 1

0c = 1
0λT

(
1
0H(1r) − 1

0h
)

1
0λ, 1

0h, 0
1h

1
0h, 0

1H
(
0r
)

Coordinator
compute new: 1

0λ

Figure 4.3: Relaxation-based or goal-oriented coordination, to coordinate the convergence of
the hierarchy, relaxation parameters 1

0λ are updated via the coordinator. The element present
at Level-1 tries to reduce the contribution of the inconsistencies to the Level-1 objective
function.

level hierarchy consisting of a single element per level:

0
1H
(
0r
)

= 0
1h;

1
0H
(
1r
)

= 1
0h.

(4.2)

Similar to the equality-based coordination approach a hierarchic top-down decompo-
sition is considered during the present discussion on relaxation-based coordination.
Hence, the consistency between the mapping of physical responses from the Level-0 el-
ement onto the Level-1 element follows explicitly from 0

1H
(
0r
)

= 0
1h and the mapping

of physical responses from Level-1 onto Level-0 is replaced via consistency constraints:

1
0c = 1

0H
(
1r
)
− 1

0h. (4.3)

The consistency constraints are relaxed via, e.g., Lagrange multipliers. The relaxed
consistency constraints applying Lagrange multipliers yield:

1
0λ

T 1
0c = 1

0λ
T
(
1
0H
(
1r
)
− 1

0h
)
. (4.4)

The interaction is relaxed and data is communicated between the two elements to up-
date the interaction variables, see Figure 4.3. The relaxation parameters 1

0λ are up-
dated by the coordinator in order to balance the deviation between physical responses
1
0H
(
1r
)

and coupling variables 1
0h. Techniques to update the relaxation parameters

are discussed in Chapter 5.
The relaxation parameters 1

0λ pull the Level-1 element solution towards finding
a physical response that reduces the consistency violation. Determining the optimal
relaxation parameters that pull the Level-1 element solution towards a consistent so-
lution with the neighboring Level-0 element requires a solution process. This solution
process requires iterations that update the relaxation parameters until an optimum
is found. The consistencies are only satisfied at convergence of the entire hierar-
chy, meaning that re-optimizing each individual element is necessary as long as the
consistency constraints are not satisfied within allowable tolerances.

In case the decomposition is bottom-up the consistency constraints 0
1c are relaxed

and coupling data is send between the levels via the coordinator together with relax-
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Figure 4.4: Information exchange between two individual coupled optimization problems.
Coordination of the data that is send between the two elements is necessary.

ation parameters that are updated by the coordinator. Likewise, non-hierarchic de-
composed elements are relaxed via relaxation parameters and coupling data together
with relaxation parameters are send back to the individual elements via the coor-
dinator. The coordinator updates the relaxation parameters for both the elements.
Because the coordinator performs an additional solution step, i.e. computing optimal
relaxation parameters, this type of coordination is called bi-level coordination.

Shared design variables are treated similarly as the coupled physical responses.
Consistency constraints are introduced that require consistency between the design
variables that are shared in both elements. Relaxation of these consistency constraints
is done similar to the relaxation of physical coupling and the relaxation parameters
are updated via the coordinator.

In summary, the coordination process can thus be steered via model parameters
or via relaxation parameters. In case model parameters are used and no additional
computations are performed via the coordinator the coordination is called single level
coordination. In case additional computations are performed on the model data or
relaxation parameters are computed via the coordinator, the coordination is Bi-level.
Bi-level coordination is discussed in the next section and for systems with many
elements the bi-level coordination is extended to multi-level coordination, which is
discussed in Section 4.3.

4.2 Bi-level coordination

Coordination of interaction between elements involves decision making. Between two
individual optimization problems data is transferred, see Figure 4.4. This data cannot
be arbitrarily send from one element to the neighboring element. Therefore, decisions
on which data to send and in what order this is done are necessary.

According to Shupe et al. (1987) there are three types of decisions that can be
distinguished:

1. separable decisions;

2. inseparable decisions;
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1v(1x, 1r(1x, 0
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0
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Level-1






Figure 4.5: Separable decisions, the Level-1 optimization problems of element 1 and element
2 are not coupled to eachother. Hence, the data that is used and the optimal data computed
in element 1 at Level-1 does not change the outcome of the optimization of the neighboring
element 2 at Level-1 and vice versa.

0v(10h, 0x, 0r(0x, 1
0h))

1v(1x, 1r(1x, 0
1h))

1
0c = 1

0H
(
1r
)
− 1

0h = 0

0
1h

1
0h

1
0h

0
1H(0r) = 0

1h

Coordinator

Level-0

Level-1

Figure 4.6: Inseparable decisions, the optimization problems are coupled and data is send
from one element to the neighboring element.

3. inseparable and coupled decisions.

The first type of decisions, the separable decisions are illustrated in Figure 4.5. These
type of decisions occur in a multi-level hierarchy where the update of information of
one element does not depend on the data that is send to other neighboring elements.
This is typically the case for elements on the same level that are not coupled to each
other. Hence, after solving the parent element (Level-0), the updates of child elements
(Level-1) are independent from one-another.

The second type of decisions are inseparable decisions, which are illustrated in
Figure 4.6 for, e.g., equality-based coordination. The output of one element is send
to the input of the neighboring element. These decisions are done sequentially and are
typically the result of top-down or bottom-up decomposition schemes, recall Chapter
3 for a definition of these decomposition procedures. The sequential process moves
from level to level and is finished when it reaches the bottom (top-down) or the
top-level (bottom-up).

Inseparable decisions require no operations inside the coordinator block and no
changes are made to the Level-0 optimization problem after it has finished. Various
researchers (e.g. Vanderplaats et al. (1990), Kirsch (1997)) reported that this type
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Figure 4.7: Inseparable coupled decisions require iteration. The solution of both elements
depends on the solution of the neighboring elements.

of coordination fails in cases where the Level-0 element prescribes physical responses
(i.e. 1

0h) or shared design variable vectors (i.e. 0
1z = 1

0z) that the Level-1 element is
unable to meet. Either due to restrictions on design variables (i.e. lower bounds x

and/or upper bounds x) and/or physical restrictions and/or design restrictions on the
Level-1 element. Hence, no feed-back of the optimization results is present. Therefore,
additional information on the Level-1 optimization problem is required by the Level-0
element. Procedures to overcome this drawback are discussed in Chapter 5.

The third type of decisions are the inseparable and coupled decisions. The output
of one element is the input of the neighboring element and vice versa. The decision
process is illustrated in Figure 4.7. These decisions are done sequentially or done
concurrently via iterations between elements or via optimization (e.g. determining
optimal Lagrange multipliers). Examples of such approaches are introduced in chap-
ters 5 and 6.

Inseparable decisions that require additional information to be added to the higher
elements in the hierarchy and inseparable and coupled decisions belong to bi-level
coordination methods. Single level coordination involves sending model data between
elements. If additional computations are required on the model data, sensitivity
information is required or, e.g., relaxation parameters are evaluated, the coordinator
involves a second level in which these computations are conducted. Therefore, these
type of coordination procedures are called bi-level coordination. Bi-level coordination
typically focuses on the coupling between two individual elements. A hierarchy of
multiple levels and elements is coordinated stepwise by focussing on the coupling
between two levels or two individually coupled elements.

4.3 Multi-level coordination

In case the number of elements is large or the coupling among elements covers multiple
levels, bi-level approaches become slow in terms of convergence characteristics, see
e.g. DeMiguel and Nogales (2008). Therefore, additional levels can be added to the
coordinator that allow for a pre-coordination of the data, see Figure 4.8.

Multi-level coordination is shown in Figure 4.8 for a hierarchic top-down decom-
position. Instead of having data send from level to level, the data is directly send
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Figure 4.8: Multi-level coordination is necessary if the amount of elements in the hierarchy
becomes too large and a bi-level coordination involves too much copying of data between levels.
The simplest form is to directly send data from an element to the neighboring element that
depends on the data. However, in more complex situations levels in the coordination are used
to approximate the interactions between elements to steer the coordination before actual data
is send to the elements for evaluation of these elements.

between the elements that depend on the data. In this example the coordinating
levels are somewhat trivial, however in a more complex setting a similar hierarchy in
the coordination is present.

Solving large optimization problems

Essential to the coordination process is to find an optimal solution for the consis-
tency constraints. Additionally, the optimal solution of the individual elements is
important, however these optimal solutions typically depend on the consistency con-
straints. Therefore, it is beneficial to first try to find an approximation to the optimal
setting for the consistency constraints before trying to find an optimal setting for
the individual elements. The procedure shows large analogies with those found in
domain decomposition methods and/or multi-grid methods for optimization, see, e.g.
Dreyer et al. (2000).

A necessary requirement for a multi-level coordinator that solves the consistency
constraints is that a solution to the necessary conditions for the all-in-one problem
is found. These conditions were derived in Chapter 3 for a two-level hierarchical
optimization problem. The optimization problem considered is:

min
0x,1x,10h

vf = vf

(
1
0h, 0x, 1x, 0r(0x, 1

0h), 1r(1x, 0
1h)
)

s.t. 1
0c(

1
0h, 1r(1x, 0

1h)) = 1
0H(1r) − 1

0h = 0
. (4.5)
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Necessary conditions for this optimization problem are:

∇0xL = ∇0xvf + 1
0λ

T∇0x
1
0c = 0

∇1
0h
L = ∇1

0h
vf + 1

0λ
T∇1

0h
1
0c = 0

∇1xL = ∇1xvf + 1
0λ

T∇1x
1
0c = 0

∇1
0λL = 1

0c = 0

(4.6)

where the dependence of vf and 1
0c on coupling variables, design variables and re-

sponses are omitted for brevity of notations. Furthermore, coupling variables 1
0h are

assigned as design variables to the Level-0 element and a hierarchic top-down decom-
position is considered. Therefore, the consistency constraints 1

0c are added to the
Level-1 optimization problem.

To search for a solution of Equation 4.5 in the local neighborhood of the current
configuration a Newton process can be used. The effect of a small perturbation of
the design variables, coupling variables and Lagrange multipliers is approximated via
a first-order Taylor series expansion that yields:

∇L(x + ∆x, 1
0λ + ∆1

0λ) = ∇L + ∇ (∇L)
[
∆x, ∆1

0λ
]T , (4.7)

where x =
[
0x, 1

0h, 1x
]T

. A stationary point to these equations is found setting the
left-hand-side equal to zero. Then Equation 4.7 becomes:

∇2L
[
∆x, ∆1

0λ
]T

= −∇L. (4.8)

The iteration matrix ∇2L is used to find a search direction towards a local stationary
point. In matrix notation the iteration matrix is expressed as:

∇2L =





∇2
0x,0xL ∇2

1
0h,0x

L ∇2
1x,0xL ∇2

1
0λ,0x

L

∇2
0x,10h

L ∇2
1
0h,10h

L ∇2
1x,10h

L ∇2
1
0λ,10h

L

∇2
0x,1xL ∇2

1
0h,1x

L ∇2
1x,1xL ∇2

1
0λ,1x

L

∇2
0x,10λ

L ∇2
1
0h,10λ

L ∇2
1x,10λ

L 0




. (4.9)

A sufficient condition for local optimality is:

∆xT
(
∇2

x,xL
)
∆x > 0. (4.10)

for all directions ∆x for which ∆xT∇xc = 0 hold. This condition reflects that all
feasible perturbations lead to an increase of the objective function.

A problem that immediately comes to mind is that not all information required
for Equation 4.8 can be computed when considering a multi-level hierarchy. A multi-
level hierarchy of two-individual elements and a top-down hierarchic decomposition
typically involves:
Level-0:

min
1
0h,0x

0vf (10h, 0x, 0r(10h, 0x)) (4.11)
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Level-1:

min
1x

1vf (1x, 1r(1x))

s.t. 1
0c(

1r) = 1
0H(1r) − 1

0h
, (4.12)

where the objective function vf is considered additively separable: vf = 0vf + 1vf .
The first- and second-derivatives necessary to construct Equation 4.8 can only be

found if, e.g., Equation 4.11 finds the optimal variables 0x, 1
0h of Equation 4.8. If that

is the case, then the data that is mapped from Level-0 onto Level-1 assures that the
Level-1 optimization problem (Equation 4.12) can construct the correct first-order
and second-order derivatives that are necessary for Equation 4.8. In general this will
not be the case, however if the optimum found via Equation 4.11 is sufficiently close
to the optimum of the two elements (Equation 4.8) then via Optimum Sensitivity
Analysis it can be shown that the necessary first and second order information is
closely approximated. This is shown by DeMiguel and Nogales (2008).

Solving large systems of equations via, e.g., the Null-space method

A means of searching for a solution of Equation 4.5 is to split the optimization problem
into a part that tries to satisfy the constraints 1

0c and a part that tries to minimize the
objective function value vf . In linear algebra this approach is known as the Null-space
method. The Null-space method assumes that the following is available:� a particular solution ∆x̂ =

[
∆0x, ∆1

0h, ∆1x
]T

for which:

∇x

(
1
0c
)
∆x̂ = −1

0c. The gradient of the constraints is defined as ∇x

(
1
0c
)

=[
∇0x

(
1
0c
)
, ∇1

0h

(
1
0c
)
, ∇1x

(
1
0c
)]

.� there is a matrix T, such that:
[
∇0x

1
0c, ∇1

0h
1
0c, ∇1x

1
0c
]
[T] = [0] (The columns

of T form a complete basis for the null space of ∇x
1
0c).

If ∆x̂ is a solution of ∇x

(
1
0c
)
∆x = −1

0c, then other solutions that satisfy this equation
can be found. Hence, ∆x = T∆y+∆x̂ are solutions as well, where ∆y can be chosen
arbitrarily.

∆x = T∆y + ∆x̂ is substituted into Equation 4.8. The matrix vector calculation
and rearrangement of terms yields:

∇2
x,xL (T∆y + ∆x̂) = −∇xL −∇x

(
1
0c
)T

∆1
0λ, (4.13)

∇x

(
1
0c
)
(T∆y + ∆x̂) = −∇1

0λL, (4.14)

where ∇2
x,10λ

L = ∇2
1
0λ,x

LT , ∇2
x,10λ

L = ∇x

(
1
0c
)T

and x = [0x, 1
0h, 1x]T .

Rearranging terms of Equation 4.13 and pre-multiplying by the null-space TT

gives:

TT∇2
x,xLT∆y = TT

(
−∇xL −∇2

x,xL∆x̂
)
, (4.15)



4.3 MULTI-LEVEL COORDINATION 81

where use is made of the fact that TT∇x

(
1
0c
)T

= 0.
The dimension of Equation 4.15 is smaller (reduced in size with the number of con-

straints 1
0c) then the dimension of Equation 4.8 and involves solving an unconstrained

optimization problem.
Once ∆y is found, the update of the design variable vector ∆x can be computed

via:

∆x = T∆y + ∆x̂. (4.16)

The update of the Lagrange multipliers is then found via substitution of ∆x into:

∇2
x,xL∆x = −∇xL−∇x

(
1
0c
)T

∆1
0λ. (4.17)

After reordering terms and pre-multiplying both sides with ∇x

(
1
0c
)

the system to
solve is:

∇x

(
1
0c
)
∇x

(
1
0c
)T

∆1
0λ = ∇x

(
1
0c
) (

−∇xL −∇2
x,xL∆x

)
. (4.18)

Equation 4.18 may also be regarded as the normal equations for the over-determined

system ∇x

(
1
0c
)T

∆1
0λ =

(
−∇xL −∇2

x,xL∆x
)
. Which can be mathematically ex-

pressed as:

min
∆1

0λ
||(−∇xL −∇2

x,xL∆x) −∇x

(
1
0c
)T

∆1
0λ||2. (4.19)

Equation 4.19 is the coordination problem that computes updates of the Lagrange
multipliers given the current design configuration at time (t). If ∆1

0λ is replaced in

Equation 4.8 via ∆1
0λ = 1

0λ
(t+1) − 1

0λ
(t) then Equation 4.19 is rewritten slightly such

that it directly computes the new Lagrange multipliers:

min
1
0λ(t+1)

||(−∇xvf −∇2
x,xL∆x) −∇x

(
1
0c
)T 1

0λ
(t+1)||2. (4.20)

and Equation 4.15 is then rewritten to yield:

TT∇2
x,xLT∆y = TT

(
−∇xvf −∇2

x,xL∆x̂
)
. (4.21)

Individual element optimization problems

In multi-level optimization the null-space is computed via the individual elements.
The consistency constraints are assigned to individual optimization problems of the
multi-level hierarchy. In order to find x̂, a first problem to solve is:

∇x

(
1
0c
)
∆x = −1

0c, (4.22)

while ∇x

(
1
0c
)

T = 0.
The consistency constraints are defined as:

1
0c = 1

0H(1r) − 1
0h, (4.23)
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and in the current example these are assigned to the Level-1 problem.
To find a solution to Equation 4.22 a first step is found, e.g., via minimization of

the Gauss-Newton system of Equation 4.22 in terms of Level-1 variables:

min
1x

1
2∆1xT∇1x

(
1
0c
)
∆1x + 1

0c
T ∆1x

s.t. ∇1x

(
1
0c
)

T∆1x = 0
(4.24)

It is not necessary to find the exact solution to Equation 4.22 immediately, because
Equation 4.22 depends on non-optimal data from Level-0. A step into the direction
of the constraints is sufficient. In the work of, e.g., Alexandrov (1998) techniques are
shown that monitor the direction of the step-size. A derivation of such monitoring
procedures lies outside the scope of the present thesis.

Typically, the objective function vf is additively separable for a multi-level hi-
erarchy. Therefore, part of the objective function vf , namely 1vf , can be added
to Equation 4.24. The Level-1 optimization problem including the Level-1 objective
function and additional terms to compute a step into the direction of the constraints
becomes:

min
1x

1vf (1x, 1r) + 1
2∆1xT∇1x

(
1
0c
)
∆1x + 1

0c
T ∆1x

s.t. ∇1x

(
1
0c
)

T∆1x = 0
(4.25)

A second step in finding a solution to the multi-level optimization problem involves
a search into the direction that minimizes the Level-0 optimization problem (recall
Equation 4.15):

min
0x∗

TT∇2
0x∗,0x∗LT∆0y + TT

(
∇0x∗L + ∇2

0x∗,0x∗L∆ ˆ0x∗
)

, (4.26)

where 0x∗ =
[
1
0h, 0x

]
; ∇2

0x∗,0x∗L = ∇2
0x∗,0x∗

0vf +1
0λ

T∇2
0x∗,0x∗

1
0c; ∇0x∗L = ∇0x∗vf +

1
0λ

T∇0x∗
1
0c. The coordination involves updating of the Lagrange multipliers via

Equation 4.19 or Equation 4.20 depending on the formulation chosen.
For each element that is introduced the null space (T) decreases in size by the size

of the consistency constraints between the introduced element and the neighboring
elements to which this element is coupled. In practice, elements are chosen such
that the number of coupling variables and/or shared design variables is much smaller
than the amount of individual element design variables ..x. Therefore, the projected
Hessian matrix is of much smaller size then the Hessian matrix. The projected Hessian
matrix can be used to search for the objective function that describes the performance
of the entire hierarchy, i.e. vf , or the single objective function of Level-0 when the
objective function is additively separable over multiple elements.

When the total optimization problem of the entire hierarchy becomes too large
the projected Hessian matrix will also become too large to solve as a single problem.
Therefore, additional levels in the coordination can be introduced that construct
a search direction towards the solution of the entire optimization problem. These
levels act as approximations to the distribution of coupling data that is send between
the individual elements. In the work of Smith et al. (1996) multi-level coordinators
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for domain decomposition methods are derived in the context of pre-conditioners
for solving large systems of equations. Such an approach allows for development of
pre-conditioners that efficiently coordinate the solution of the system of equations.
To show the coordination process in the context of multi-level optimization as a
preconditioning approach for large systems of equations lies outside the scope of the
present thesis.

A multi-level coordinator based on pre-conditioning techniques is constructed via
restriction and extension vectors (R). The total system of equations to solve is a
summation of each level of the coordinator. Let B represent the projected Hessian
matrix, then the multi-level coordinator is written as:

B =

n∑

i=1

(
Ri
)T

∇2Li−1
(
Ri
)
, (4.27)

where n is the number of coordinating levels.
Expressions for the restriction and extension vectors are well established in domain

decomposition or multi-grid methods, see e.g. Smith et al. (1996), Quarteroni and
Valli (1999). In the field of optimization the multilevel coordinator is applied to
PDE-constrained optimization by e.g. Biros and Ghattas (2005) and in multi-grid
optimization by e.g. Dreyer et al. (2000).

To the author’s knowledge, restriction and extension vectors in the context of
multi-level coordination of multi-level optimization problems are not derived yet.
However, techniques that seem promising into this direction are introduced, e.g., by
Alexandrov (1998) and DeMiguel and Nogales (2008). These multi-level coordination
techniques are discussed in Chapter 6.

Multi-level coordination can easily be mistaken for single level coordination em-
bedded in a multi-level hierarchy of a decomposed problem. However, a multi-level
coordination hierarchy focuses on the decomposition of a solution algorithm, while
decomposition that was considered in Chapter 3 deals with finding links between
elements in the physical and/or optimization problem that allow for decomposition.

4.4 Discussion

This chapter introduced the basic concepts of coordination and discussed the origin
of levels in the coordination that make a large coordination problem easier to solve.
In Chapters 5 and 6 methods are introduced that can be categorized in either Bi-level
coordination or Multi-level coordination schemes.





Chapter 5

Bi-level coordination methods

Bi-level methods are most commonly used in multi-level optimization. The individual
optimization results of the elements are send to a coordinator which then distributes
the data over the individual elements. Within the bi-level coordination methods
two approaches are distinguished: equality-based coordination which is discussed in
Section 5.1; relaxation-based coordination which is discussed in Section 5.2. Both
approaches are subdivided into hierarchic approaches and non-hierarchic approaches.
Each section concludes with a discussion of a few of the main stream coordination
techniques that are applied to a multi-level formulation of a two-bar truss problem.
In Section 5.3, performance indicator methods are discussed which give insight into
an algorithm’s convergence characteristics. Finally, in Section 5.4 the bi-level coordi-
nation methods are summarized.

5.1 Equality-based coordination

Equality-based coordination techniques are subdivided in two categories:� hierarchic coordination,� non-hierarchic coordination.

Furthermore, the hierarchic coordination techniques can be subdivided into:� techniques that take into account neighboring elements via linearizing the cou-
pling,� techniques that take into account neighboring elements via creating design free-
dom for neighboring elements.

85
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Figure 5.1: Inseparable decisions, the optimization problems are coupled and data is send
from one element to the neighboring element.

In the present section the hierarchic coordination techniques are discussed first, fol-
lowed by a discussion on non-hierarchic coordination techniques. For each category
two main stream approaches are considered in detail and the section is concluded
with a multi-level optimization of a two-bar truss problem. Each section considers
a hierarchy of two levels containing a single element per level. A two-level problem
consisting of a single element per level is sufficient to show the coordination between
coupled elements and simplifies the formulation of the optimization problems. The
discussion focuses on physical coupling, however coupling via shared design variables
is treated similarly.

5.1.1 Hierarchic linearized coordination

Optimization by Linear Decomposition

In Chapter 4 three types of decisions were distinguished. These were: separable
decisions; inseparable decisions; and inseparable and coupled decisions. In the present
section the inseparable decisions are considered. In Chapter 4 a drawback of this type
of decisions was mentioned which is repeated in the present section and a procedure to
overcome this drawback is introduced called Optimization by Linear Decomposition
(Sobieszczanski-Sobieski et al., 1985, 1987).

Inseparable decisions are present when a Level-1 optimization problem receives
information from the Level-0 element that prescribes the mapped responses (10H(1r))
and/or shared design variables (10z) that the Level-1 optimization has to satisfy. As
an example, prescribing mapped responses is shown in Figure 5.1. Shared design
variables are treated similarly.

Various researchers (e.g. Kirsch (1997), Vanderplaats et al. (1990)) reported that
this type of coordination fails in cases where the Level-0 element prescribes physical
responses (i.e. 1

0h) or shared design variable vectors (i.e. 0
1z = 1

0z) that the Level-1
element is unable to meet. Either due to restrictions on design variables (i.e. lower
bounds x and/or upper bounds x) and/or physical restrictions on the Level-1 element.
Hence, additional information on the Level-1 optimization problem is required by the
Level-0 element.

Optimization by Linear Decomposition was derived to add information of the



5.1 EQUALITY-BASED COORDINATION 87

Level-1 element to the Level-0 element such that the Level-0 element does not pre-
scribe physical responses and/or design variables for the Level-1 problem that cannot
be satisfied. The derivation of Optimization by Linear Decomposition initially in-
volved problems where the Level-1 element does not share design variables and/or
physical responses with the objective function (recall Figure 3.16 showing this partic-
ular problem matrix). In the present thesis the procedure is generalized to arbitrary
multi-level problems. Furthermore, the bundling of constraints is omitted in the dis-
cussion and is treated in Subsection 5.1.2 to compare cumulative constraints with a
slack variable approach.

Adding additional information of the Level-1 element to the Level-0 element is
illustrated according to an equality-based top-down decomposition scheme. This type
of decomposition was introduced in Section 3.2. The element of Level-1 is considered
first and the optimization problem for Level-1 yields:

min
1x

1vf (1x, 1r)

s.t. 1vg(
1x, 1r) ≤ 0

1vh(1x, 1r) = 0
1v1

0c(
1
0c(

1r)) = 1
0H(1r) − 1

0h = 0
1x ≤ 1x ≤ 1x

(5.1)

Lower bounds (1x) and upper bounds (1x) on the design variables of Level-1 are
present as well as inequality constraints 1vg, equality constraints 1vh and consis-
tency constraints 1v1

0c that couple the Level-1 optimization problem to the Level-0

optimization problem, where 1
0h is a vector of fixed parameters during optimization.

These parameters can change via changes in the Level-0 element that are send to the
Level-1 element. However, during optimization these parameters do not change.

An optimum for Equation 5.1 is found for a certain value of the coupling variables
(10h, 0

1h). Coupling variables 1
0h originate from Level-0 where they were used as design

variables. 0
1h are coupling variables that are directly mapped onto Level-1 (01H(0r) =

0
1h). Hence, there is an effect of Level-0 via the parameters 1

0h and 0
1h, that is, the

optimum found for Equation 5.1 changes when 0
1h and 1v1

0c(
1
0c(

1r)) = 0 are changed.

For certain values of the consistency constraints (1v1
0c(. . .)) there might not be

a feasible solution possible. Either due to bounds on the design variables or due to
equality or inequality constraints. The Level-0 optimization problem thus, must not
prescribe 1

0h that do not lead to a feasible solution of the Level-1 element. Therefore,
information is added to the Level-0 element by means of exploring the optimum of
the Level-1 problem.

Optimization of Level-1 requires a feasible solution. This optimum is then differ-
entiated with respect to the coupling parameters 0

1h and 1
0h via a technique called

Optimum Sensitivity Analysis. A sensitivity analysis of the Level-1 element is carried
out and the effect of changes in the physical coupling (01h and 1

0h) and/or shared
design variables (01z) is approximated. This sensitivity analysis procedure was in-
troduced by Barthelemy and Sobieszczanski-Sobieski (1983) who named it Optimum
Sensitivity Analysis. This method has been introduced in Chapter 2 and for the
current multi-level problem the optimum sensitivity derivatives are found as follows.
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Stationary conditions (defined in Section 2.2) for Equation 5.1 read:

∇1xL = ∇1x
1vf (1x, 1r(1x, 0

1h)) + . . .
1
0λ

T
c ∇1x

1v1
0c(

1r(1x, 0
1h), 1

0h) + . . .
1λT

g ∇1x
1vg(

1x, 1r(1x, 0
1h)) + . . .

1λT
h∇1x

1vh(1x, 1r(1x, 0
1h)) = 0

∇1
0λc

L = 1v1
0c(

1x, 1r(1x, 0
1h)) = 0

∇1λgL = 1vg(
1x, 1r(1x, 0

1h)) − µ2 = 0

∇1λhL = 1vh(1x, 1r(1x, 0
1h)) = 0

∇µL = −21λ
T
g µ = 0

, (5.2)

where the inequality constraints 1vg are transformed into equality constraints via
addition of slack variables µ.

These stationary conditions depend on the parameters that are put into the opti-
mization problem. In other words, 1x = 1x(01h, 1

0h),
1vf = 1vf (1x(01h, 1

0h), 1r(1x, 0
1h, 1

0h), 0
1h, 1

0h) and 1vg(..),
1vh(..), 1vc(..), µ similarly.

Sensitivity of these stationary conditions is obtained via applying the chain rule
(Di

j
h(. . .) = ∇i

j
h(. . .) + ∇1x(. . .)TDi

j
h(1x)) for i, j = 0, 1 and i 6= j to Equation 5.2,

where the total derivatives are defined as Di
j
h.. = [ d..

di
j
h1

, . . . , d..
di
j
hn

]. This results in an

expression for the sensitivity of the stationary point, which yields in matrix notation:




A B 0 A B 0

BT 0 CT BT 0 CT

0 C 0 0 C 0




[

0y
1y

]
+

[
0w1
0w2

]
+

[
1w1
1w2

]
= 0 (5.3)

where:

A =
[

∇2
1x,1x

1vf + 1
0λ

T
c ∇

2
1x,1x

1v1
0c + 1λT

g ∇
2
1x,1x

1vg + 1λT
h∇

2
1x,1x

1vh

]
;

B =
[

∇1x
1v1

0c ∇1x
1vg ∇1x

1vh

]
;

C =
[

0 −I 0
]
;

i
y =

[
Di
j
h(1x) Di

j
h(10λ

T
c ) Di

j
h(1λT

g ) Di
j
h(1λT

h ) Di
j
h(µ)

]T

;

i
w1 =

[
∇i
j
h∇1x

1vf + 1
0λ

T
c ∇i

j
h∇1x

1v1
0c + 1λT

g ∇i
j
h∇1x

1vg + 1λT
h∇i

j
h∇1x

1vh

]
;

i
w2 =

[
∇i
j
h

1v1
0c ∇i

j
h

1vg ∇i
j
h

1vh 0
]T

,

where i, j = 0, 1 and i 6= j.
At the constraint optimal point Equation 5.3 is evaluated to find the unknown

derivatives of the optimum solution Di
j
h(1x) and Di

j
h(10λ

T
c ), Di

j
h(1λT

g ), Di
j
h(1λT

h ),

Di
j
h(µT ). Once Di

j
h(1x) are found, the optimum sensitivity derivative of the objec-

tive function 1vf and/or constraint functions 1vg,
1vh can be computed. The total

derivatives of, e.g., 1vg are obtained via:

Di
j
h(1vg) = ∇i

j
h

1vg + ∇1x
1vT

g Di
j
h(1x) (5.4)
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The total derivatives are used to linearize the Level-1 constraints with respect to
the coupling variables (01h and 1

0h) and the Level-1 extrapolated optimum is added to
the Level-0 optimization problem to yield:

min
0x,10h

0vf

(
1
0h, 0x, 0r

)

s.t. 0vg(10h, 0x, 0r) ≤ 0
0vh(10h, 0x, 0r) = 0
0v1ag

(10h, 0x, 0r) = 1vg + D1
0h

(
1vg

)
∆1

0h + D0
1h

(1vg)
(
0
1H(0r) − 0

1h
)
≤ 0

0v1ah
(10h, 0x, 0r) = 1vh + D1

0h

(
1vh

)
∆1

0h + D0
1h

(1vh)
(
0
1H(0r) − 0

1h
)

= 0
0v1ax

(10h, 0x, 0r) = 1x − 1x − D1
0h

(1x)∆1
0h − D0

1h
(1x)

(
0
1H(0r) − 0

1h
)
≤ 0

0v1ax
(10h, 0x, 0r) = −1x + 1x + D1

0h
(1x)∆1

0h + D0
1h

(1x)
(
0
1H(0r) − 0

1h
)
≤ 0

0x ≤ 0x ≤ 0x

,

(5.5)

where 0
1h are values of the mapped responses that were used to find the constraint

optimal point of the Level-1 element for which the optimum sensitivities have been
computed. The linearized constraints added to Level-0 are relatively easier to solve
then the actual constraints present at Level-1.

A significant amount of linearized constraints are added to the Level-0 optimiza-
tion problem. In the present example a single element is considered at Level-1. In
case multiple elements are present at Level-1 the amount of linearized constraints
increases in the Level-0 optimization problem for every element that is coupled to the
Level-0 optimization problem. In order to reduce the number of additional linearized
constraints, Sobieszczanski-Sobieski (1992) proposed the use of an envelope function
(recall Chapter 2) in which all the constraints of the Level-1 optimization problem
are combined into a single function. In this case only a single envelope function needs
to be extrapolated to the Level-0 optimization problem.

Due to linearizing the Level-1 constraints, the results of the Level-0 optimization
are only accurate in the neighborhood of the initial coupling variables. Therefore,
large changes in these values may require a re-optimization of the Level-1 elements
and a new sensitivity analysis of these optima.

The coordination procedure of Optimization by Linear Decomposition is illus-
trated in Figure 5.2. There are two levels of optimization, Level-0 and Level-1 and
the solution process also involves two levels. The first yields the individual optimiza-
tion of the Level-0 and Level-1 problems and the second the sensitivity analysis. Here,
the coefficients necessary for the linearized constraints are computed.

Linearized Multi-level Optimization

A different technique that linearizes the coupling between levels was introduced by
Vanderplaats et al. (1990). The authors pointed out two drawbacks of Optimization
by Linear Decomposition. The first being the fact that nonlinear equality constraints
(1v1

0c(
1
0c)) are introduced as consistency constraints at Level-1. The second drawback

arises when use is made of envelope functions (introduced in Chapter 2) and is twofold,
potentially highly nonlinear cumulative constraints1 are send to Level-0 and these

1A cumulative constraint is a constraint that combines a set of constraints into a single constraint
called an envelope function. An example of such an envelope function is the KS-function.
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0v(0x, 0r(0x, 1
0h))

0v1a(0x, 0r(0x, 1
0h))

1v(1x, 1r(1x, 0
1h))

0v1
0c(

1
0c) = 1

0H(1r) − 1
0h

Di
j
h(1x) and Di

j
h

(
1
..λ..

T
)

Di
j
h(1v) = ∇i

j
h(1v) +

∇1x(1v)T Di
j
h(1x)

h

i, j = 0, 1

Optimum Sensitivity
Analysis:

Total Derivative:

Level-0

Level-1

Figure 5.2: Coordination via Optimum Sensitivity Analysis. A sensitivity of the Level-1
optimization is conducted to compute the total derivatives (Di

j
h(1v)). These total derivatives

are used to construct a linearization of the constraint equations with respect to the coupling
variables and these linearized constraints are then added as constraints to the Level-0 op-
timization problem. The Lagrange multipliers 1

..λ..

are the multipliers associated with the
constraints of the Level-1 optimization problem.

cumulative constraints require optimum sensitivities. These optimum sensitivities
can be discontinuous which requires special attention.

The basic idea of the method of Vanderplaats et al. is that individual design con-
straints are linearized with respect to coupling variables. These linearized constraints
are added to neighboring elements to which the present element is coupled. The effect
is that neighboring elements avoid designs that might result in an infeasible design of
the present element to which the neighboring elements are coupled.

Similar to Optimization by Linear Decomposition, first the Level-1 optimization
problem is discussed. The linearized Level-1 optimization problem yields:

min
1x

1vf (1x, 1r)

s.t. 1vg(
1x, 1r) ≤ 0

1vh(1x, 1r) = 0
1v0ag (

1x, 1r) = 0vg + D1
0h

(
0vg

) (
1
0H(1r) − 1

0h
)
≤ 0

1v0ah(
1x, 1r) = 0vh + D1

0h

(
0vh

) (
1
0H(1r) − 1

0h
)

= 0
1x ≤ 1x ≤ 1x

. (5.6)

Notice the difference with Equation 5.1, the current problem no longer has a constraint
to remain consistency. The additional constraints 1v0ag and 1v0ah represent the
linearized equality and inequality constraints of the neighboring element (Level-0).
The Level-0 optimization problem with linearized constraints from Level-1 yields:

min
0x

0vf

(
0x, 0r

)

s.t. 0vg(
0x, 0r) ≤ 0

0vh(0x, 0r) = 0
0v1ag (

0x, 0r) = 1vg + D0
1h

(
1vg

) (
0
1H(0r) − 0

1h
)
≤ 0

0v1ah(
0x, 0r) = 1vh + D0

1h

(
1vh

) (
0
1H(0r) − 0

1h
)

= 0
0x ≤ 0x ≤ 0x

. (5.7)
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0v(0x, 0r(0x, 1
0h))

0v1a(1v, 0r(0x, 1
0h))

1v(1x, 1r(1x, 0
1h))

1v0a(1x, 1r(1x, 0
1h))

Dj
i
h
(iv..) = ∇j

i
h
(iv..) +

∇ix(iv..)
T Dj

i
h
(ix)

Dj
ih

(ix)

r))

i, j = 0, 1

Evaluate derivatives

Total Derivative:

Level-0

Level-1

Figure 5.3: Coordination by means of linearization of the coupling. The total derivatives
(Dj

i
h
(iv)) are computed via the coordinator. These total derivatives are used to construct

a linearization of the constraint equations with respect to the coupling variables. These lin-
earized constraints are then added as constraints to the neighboring optimization problem.

The advantage of linearizing the coupling via the above procedure is that the
degree of nonlinearity is reduced with respect to the approach of Sobieski et al. (1985).
It does not require optimum sensitivities and the Level-1 optimization problem has
more design freedom as compared to Optimization by Linear Decomposition due to the
absence of consistency constraints. Furthermore, it eliminates the need for nonlinear
consistency constraints.

A disadvantage of linearizing the coupling is that the coupling between elements
is not dealt with in a precise mathematical manner.

Figure 5.3 shows the main characteristics of the linearized multi-level optimization
method. Both elements are solved independently and the derivatives necessary for
the linearization of the coupling are evaluated by the coordinator block.

5.1.2 Hierarchic constraint margin approach

Optimization by Linear Decomposition

A special case in decomposition are the problems where the overall objective function
is only a function of the coupling variables between elements and Level-0 design
variables. Recall Figure 3.16 where the problem matrix for such an optimization
problem is shown. Sobieszczanski-Sobieski et al. (1985) formulated Optimization by
Linear Decomposition to solve such multi-level optimization problems.

After decomposition the Level-0 optimization problem yields:

min
0x,10h

0vf

(
1
0h, 0x, 0r

)

s.t. 0vg(
1
0h, 0x, 0r) ≤ 0

0vh(10h, 0x, 0r) = 0
0x ≤ 0x ≤ 0x

(5.8)
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and the Level-1 optimization yields:

min
1x

s.t. 1vg(
1x, 1r) ≤ 0

1vh(1x, 1r) = 0
1v1

0c(
1
0c(

1r)) = 1
0H(1r) − 1

0h = 0
1x ≤ 1x ≤ 1x

. (5.9)

The Level-1 optimization problem does not have an objective that can be mini-
mized/maximized. Instead, the design constraints of the Level-1 elements become
the objective of interest.

In order to combine the design constraints (1vg,
1vh) into a single objective func-

tion Sobieszczanski-Sobieski et al. (1985) used a KS-function. For Level-1 this KS-
function yields:

1ve(
1vg,

1vh+ , 1vh−) =
1

ρ
ln

[∑
eρ1vgk +

∑
e

ρ1v
h
+
l +

∑
e

ρ1v
h
−

m

]
. (5.10)

This function is called an envelope function and the properties of this function were
discussed in Chapter 2. The envelope function combines the constraints into a single
function. This function is added to the objective function of Level-1. The effect is
that the Level-1 design point is pushed as far as possible into the feasible domain
away from the constraints.

Incorporating the envelope function into the Optimization by Linear Decomposi-
tion formulation, the Level-0 optimization problem yields:

min
0x,1

0
h

0vf
(
1
0h, 0x, 0r

)

s.t. 0vg(
1
0h, 0x, 0r) ≤ 0

0vh(10h, 0x, 0r) = 0
0v1ae

(10h, 0x, 0r) = 1ve + D1
0
h

(
1ve

)
∆1

0h + D0
1
h
(1ve)

(
0
1H(0r) − 0

1h
)

≤ 0
0v1ax

(10h, 0x, 0r) = 1x − 1x − D1
0h

(1x)∆1
0h − D0

1h
(1x)

(
0
1H(0r) − 0

1h
)

≤ 0
0v1ax

(10h, 0x, 0r) = −1x + 1x + D1
0
h
(1x)∆1

0h + D0
1
h
(1x)

(
0
1H(0r) − 0

1h
)

≤ 0
0x ≤ 0x ≤ 0x

,

(5.11)

which is similar to that of Equation 5.5. However, in the above problem formula-
tion the constraints are clustered into one envelope function (1ve(. . .)) which is ex-
trapolated. Necessary sensitivity information of the optimum is found via Optimum
Sensitivity Analysis (recall Chapter 2 and Section 5.1.1).

The Level-1 optimization problem yields:

min
1x

1vf (1x, 1r) = 1ve(
1vg(

1x, 1r), 1vh+(1x, 1r), 1vh−(1x, 1r))

s.t. 1v1
0c(

1
0c(

1r)) = 1
0H(1r) − 1

0h = 0
1x ≤ 1x ≤ 1x

, (5.12)

with 1ve(
1v..(..)) an envelope function (cumulative constraint function) encompassing

all the subproblem design constraints. Balling and Sobieszczanski-Sobieski (1995)
proposed a number of different envelope functions that minimize all the constraints
at once by means of minimizing just one envelope function.
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Quasi-separable Subsystem Decomposition

Haftka and Watson (2005) introduced a different approach for which a mathematical
justification of the method was derived for convex optimization problems. In that
approach, named Quasi-separable Subsystem Decomposition, the authors consider
the same decomposed multi-level optimization problem as Optimization by Linear
Decomposition. However, instead of applying a cumulative constraint to minimize
the constraint violation in the Level-1 elements, a slack variable is introduced. The
modified Level-1 optimization problem yields:

min
1x,1µ

1vf = −
m∑

n=1

1µn

s.t. 1vg(
1x, 1r) ≤ −1µ

1vh(1x, 1r) = 0
1v1

0c(
1
0c(

1r)) = 1
0H(1r) − 1

0h = 0
1x ≤ 1x ≤ 1x

. (5.13)

The additional design variable vector 1µ (slack variables) measures the distance be-
tween the current value of the constraints and the position where these constraints
become active. This margin is maximized in the Level-1 elements.

Equation 5.13 is solved a number of times for different fixed values of the mapped
responses (01H(0r) = 0

1h) and coupling variables (10h). The values of mapped responses
and coupling variables that are used to solve Equation 5.13 are chosen via a Latin
Hypercube Sampling (see Chapter 2). Hence, for various settings of the coupling
variables (01H(0r) = 0

1h and 1
0h) the Level-1 optimizations are repeated. The Level-

1 results (1vf ) are utilized to construct a Response Surface (1vRSM ) that is fitted
through the optimal values 1vf found. The response function that is constructed
approximates the design freedom (shift in optimum) of the Level-1 element with
respect to changes in the coupling.

The Response Surface approximation is added to the Level-0 optimization problem
as additional constraints that approximate the behavior of the vector 1µ during the
optimization of the Level-0 element. This technique resembles the extrapolation of
constraints from Level-1 to Level-0 as was previously shown (see Section 5.1.1).

The Level-0 optimization problem now includes information on the Level-1 prob-
lems. The effect is similar to that of linearizing the constraints. Hence, the Level-0 op-
timization problem tries to avoid designs which are infeasible in the Level-1 problems.
The Level-0 problem including the additional Response Surface constraint yields:

min
0x,10h

0vf (10h, 0x, 0r)

s.t. 0vg(
1
0h, 0x, 0r) ≤ 0

0vh(10h, 0x, 0r) = 0
0v1a(10h, 0x, 0r) = 1vfRSM (1µ(0r, 1

0h)) ≤ 0
0x ≤ 0x ≤ 0x

. (5.14)

The Response Surface covers a larger part of the domain of the Level-1 opti-
mization problems as opposed to linearizing the constraints. Linearization is only
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0vf (0x, 0r(0x, 1
0h))

1v(1x, 1r(1x, 0
1h))

1vfRSM (1µ(0r, 1
0h))

0v1a(0r, 1
0h) ≤ 0

Construct Response

Compute coefficients
required for response surface

Surface function:

Level-0

Level-1

Design Of Experiments
choose sample of 0

1H(0r), 1
0h

1v1
0c(

1
0c(
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Figure 5.4: Coordination by means of constructing a Response Surface of the constraint
margins. The Level-1 optimization is repeated for a number of different coupling variables
(01H(0r), 0

1h). The optima (1vf ) that are obtained for these different coupling variables are
then fitted by means of a response surface method and added as additional constraints to the
Level-0 optimization problem.

valid in the neighborhood of the design point, i.e. for small changes in the consis-
tency constraints. Therefore, the Response Surface approach is expected to require
less cycling between the Level-1 and Level-0 optimization problems as compared to
techniques that require optimum sensitivity information. Furthermore, the response
surface technique is still applicable if the Level-1 optimum has discontinuous deriva-
tives.

The Response Surface coordination method is illustrated in Figure 5.4, which is
similar to Figure 5.2. The major difference is that the coordinator involves construct-
ing a Response Surface of the Level-1 problems instead of performing a sensitivity
analysis.

5.1.3 Non-hierarchic linearized coordination

The previous discussed coordination techniques solve hierarchic top-down and/or
bottom-up decomposition schemes based on equality consistency constraints. A third
coordination scheme that is suitable for non-hierarchic equality-based decomposition
schemes has not yet been discussed.

A non-hierarchic decomposition scheme differs from a hierarchic scheme in the
sense that all the individual elements are treated equally. The data of these individual
elements is then send to the coordinator, which re-distributes the coupling data and
sends back updates of this data to the elements.

Because all levels and/or elements of the hierarchy are treated equally, some sort
of balancing between the individual elements is necessary. Various solution tech-
niques for this balancing can be found in literature. The main stream procedures are
discussed in this section.

Concurrent SubSpace Optimization

Concurrent SubSpace Optimization (CSSO) was first introduced by Sobieszczanski-
Sobieski (1988) as an alternative to Optimization by Linear Decomposition (OLD).
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OLD did not satisfy the observation that in some systems no clear hierarchy can
be distinguished. When no hierarchy is present a non-hierarchic decomposition is
applied (see Chapter 3). The decoupling is accomplished in two-directions as a result
of coupling between elements on the same level or as a choice of the designer.

The non-hierarchic decomposition leads to decoupling in both directions and no
additional consistency constraints between levels are required. Instead, the changes
in the coupling are accounted for via sensitivities which are computed via the Global
Sensitivity Equations (GSE) (see Chapter 3, Equation 3.5). A check on consistency
is required after data between elements is exchanged.

In the following discussion a decomposition into two elements is considered. The
individual optimization problem after non-hierarchic decomposition is for the Level-0
element:

min
1
0h,0x

0vf (10h, 0x, 0r)

s.t. 0vg(
1
0h, 0x, 0r) ≤ 0

0vh(10h, 0x, 0r) = 0
0vgs(

1
0h, 0x, 0r) = vgs(x, r) ≤ 0

0vhs(
1
0h, 0x, 0r) = vhs(x, r) = 0

0x ≤ 0x ≤ 0x

(5.15)

and for the Level-1 element:

min
0
1h,1x

1vf (01h, 1x, 1r)

s.t. 1vg(
0
1h, 1x, 1r) ≤ 0

1vh(01h, 1x, 1r) = 0
1vgs(

0
1h, 1x, 1r) = vgs(x, r) ≤ 0

1vhs(
0
1h, 1x, 1r) = vhs(x, r) = 0

1x ≤ 1x ≤ 1x

, (5.16)

where x =
[
0x, 1x

]
, 0r(0x, 0

1h), 1r(1x, 1
0h) and vgs , vhs are constraints that are present

in both elements due to the presence of both 0x and 1x in these constraint equations.
The possible problem that arises in the above formulation is that both levels are

trying to satisfy the same constraints (vgs , vhs). Which may be successful in one
element and fail in the other element. The elements combined might result in a
feasible design. However, since one element did not converge to a feasible design the
data from that optimization is questionable.

In order to allow for unfeasible designs (additional design freedom) in one element,
another element has to ”over-satisfy” those constraints that are not satisfied. This
is accomplished via trade-off and responsibility factors. Hence, the responsibility of
one element to reduce the violation of a (cumulative) constraint2 is indicated by a
weighting vector i

jsr, where i represents the position in the hierarchy (see Chapter 2)
and j the position of elements that share the constraint(s). These weights are defined
such that the sum of all the weights equals one.

2Sobieszczanski-Sobieski applied cumulative constraints to CSSO so to reduce the number of
constraints. However, without the use of cumulative constraints the discussion is still valid and the
essential steps of the method are clearer.
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Furthermore, the objective function may be reduced even further if (cumulative)
constraints are allowed to be violated in one element, provided that they are over-
satisfied in another element. Therefore, a weight-vector i

jst is introduced under the
condition that the sum of the weights per (cumulative) constraint equals zero.

Summarizing, the responsibility weights (i
jsr) are necessary in case of a violation

of a constraint. The trade-off weights (i
jst) are necessary in case constraints become

critical. Therefore, only one of the weight-vectors is necessary at a time. A third
weight-vector i

jss is introduced to switch between the two cases. If a (cumulative)

constraint is violated the weight i
jss is set to one (which activates i

jsr). Once a

(cumulative) constraint becomes critical during the optimization, the weight i
jss is

set to zero for that particular constraint (which activates i
jst). The weight i

jss stays
at zero until the optimization terminates. Multiplying the natural constraints by
a factor max{ivgm , 0} or max{ivhn , 0} (where i = 0, 1 and m or n the constraint
that is considered), has the effect that constraints that are already satisfied are not
considered in the trade-off and responsibility.

Incorporating the above reasoning into the individual element optimization prob-
lems transforms Equation 5.15 into:

min
1
0h,0x

0vf (10h, 0x, 0r)

s.t. 0vg(
1
0h, 0x, 0r) ≤ 0

1ss ◦ (1 − 0
1sr) ◦ max{0vg,0} + (1 − 0

1ss) ◦
0
1st

0vh(10h, 0x, 0r) = 0
1ss ◦ (1 − 0

1sr) ◦ max{0vh,0} + (1 − 0
1ss) ◦

0
1st

0vgs(
1
0h, 0x, 0r) ≤ 0

1ss ◦ (1 − 0
1sr) ◦ vgs(x, r) + (1 − 0

1ss) ◦
0
1st

0vhs(
1
0h, 0x, 0r) = 0

1ss ◦ (1 − 0
1sr) ◦ vhs(x, r) + (1 − 0

1ss) ◦
0
1st

0x ≤ 0x ≤ 0x

,

(5.17)

and Equation 5.16 into:

min
0
1h,1x

1vf (01h, 1x, 1r)

s.t. 1vg(
0
1h, 1x, 1r) ≤ 1

0ss ◦ (1 − 1
0sr) ◦ max{1vg,0} + (1 − 1

0ss) ◦
1
0st

1vh(01h, 1x, 1r) = 1
0ss ◦ (1 − 1

0sr) ◦ max{1vh,0} + (1 − 1
0ss) ◦

1
0st

1vgs(
0
1h, 1x, 1r) ≤ 1

0ss ◦ (1 − 1
0sr) ◦ vgs(x, r) + (1 − 1

0ss) ◦
1
0st

1vhs(
0
1h, 1x, 1r) = 1

0ss ◦ (1 − 1
0sr) ◦ vhs(x, r) + (1 − 1

0ss) ◦
1
0st

1x ≤ 1x ≤ 1x

,

(5.18)

where max{1v..,0} means that constraints that are already satisfied are no longer
considered in the trade-off and responsibility. Hence, they are removed from the
individual element optimization problem that satisfies the shared constraint.

The two levels are solved in parallel and a coordinator is necessary to determine
which element requires additional design freedom via the trade-off and responsibility
factors. The coordinator determines the new trade-off and responsibility factors for
each element by means of solving a minimization problem. The constraint minimum
of both levels (vf = f(0vf , 1vf )), obtained from updating all the parameters from each
element optimization is a function of the weights i

jst and i
jsr. Using gradient informa-

tion of the objective and (cumulative) constraint functions, a linear approximation of
vf is obtained. This linear approximation is minimized during the coordinator step.
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0v(0x, 0r(0x, 1
0h))

1v(1x, 1r(1x, 0
1h))

∇st(vf ) and ∇sr (vf )

min
st,sr

vf (st, sr)

s.t. constraints

Sensitivity Analysis:

Optimize:

Level-0

Level-1

Figure 5.5: Coordination by means of solving a linear programming problem for the trade-
off and responsibility factors is a two step process. In the first step the Level-1 optimization
and Level-0 optimization are perturbed in order to obtain sensitivity information with respect
to the trade-off and responsibility factors. The second step is that an optimization problem
is solved, which delivers new trade-off and responsibility factors for both levels.

Move limits on the weights i
jst and i

jsr are necessary to prevent large changes in these
coefficients caused by nonlinearity of the initial problem.

Incorporating the above reasoning into the coordinator problem leads to a linear
programming problem which yields:

min
st,sr

vf + ∇stvf · ∆st + ∇srvf · ∆sr

s.t. 0
1st + 1

0st − I = 0
0
1sr + 1

0sr = 0

0 ≤ [01st,
1
0st] ≤ I

[01st,
1
0st]

T ≤ [01st,
1
0st]

T ≤ [01st,
1
0st]

T

[01sr,
1
0sr]

T ≤ [01sr,
1
0sr]

T ≤ [01sr,
1
0sr]

T

. (5.19)

The coordination procedure is shown in Figure 5.5 for a two level hierarchy consisting
of two individual elements.

Shankar et al. (1993) and de Wit and van Keulen (2007) conducted a numerical
study of the CSSO method. A few drawbacks of the method were observed. Con-
straint switching was pointed out as having a negative impact on overall algorithm per-
formance. This occurs when constraints that are shared among elements are switched
on by the responsibility factors. Furthermore, it was observed that the coordinator
problem keeps sending new trade-off and responsibility factors even after a feasible
optimum is found. Later designs might even become infeasible, however the coordi-
nator is not aware of this. Furthermore, the number of design variables grows with
the number of elements due to the weight vectors included in each element. This
generates a tremendous amount of data to be send to the coordinator in addition to
the physical coupling and optimization data.

Concurrent SubSpace Optimization has been further developed to include higher-
order sensitivity information (Renaud and Gabriele, 1993, 1994), dealing with discrete
design variables (Sellar et al., 1994), Response Surface approximations instead of a
linear programming problem coordinating the individual elements (Sellar et al., 1996)
and the inclusion of Augmented Lagrangian Relaxation of the consistency constraints
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(Rodŕıguez et al., 1998). In the latter approach consistency constraints between the
elements are introduced and these consistency constraints are relaxed via an Aug-
mented Lagrangian method.

Bi-Level Integrated System Synthesis

Sobieszczanski-Sobieski et al. (1998) proposed a method to overcome the constraint
switching that occurs in the elements when Concurrent SubSpace Optimization is
conducted. Instead of introducing trade-off and responsibility factors, a linearization
of optimization functions is constructed.

Sobieszczanski-Sobieski et al. consider an objective function present at Level-
0 that depends on design variables (0x), physical responses (0..H(0r) = 0

..h) and/or
shared design variables (0..z). For simplicity, shared design variables are not considered
in the present derivation. Shared design variables are treated similar as physical
responses. Furthermore, a two-level system is considered with a single element per
level. Finally, in the current derivation the method of Sobieszczanski-Sobieski et al.

is generalized to arbitrary optimization functions assigned to every element present
in the hierarchy.

An optimization function shared over elements in the hierarchy yields:

v..s = v..s (x, r) . (5.20)

And a step that increases or decreases this function yields:

v(t+1)
..s

= v(t)
..s

+ ∆v..s . (5.21)

An expression for ∆v..s is found via a linear Taylor series expansion of Equation
5.20 at the current point x∗, r∗:

v..s(x, r) = v..s(x
∗, r∗) + D0x (v..s)∆0x + D1x (v..s)∆1x. (5.22)

The total derivatives D0x (v..) and D1x (v..) are found computing the Global Sense-
tivity Equations (GSE), see Chapter 3 (Equation 3.4).

An increase or decrease of the optimization function yields:

∆v..s = D0x (v..s)∆0x + D1x (v..s)∆1x. (5.23)

This expression shows contributions from Element-0 at Level-0 and contributions from
Element-1 at Level-1. Therefore, Equation 5.23 can be seen as a composite function
with contributions from both elements. These contributions may be computed sepa-
rately and therefore can be added to the individual element optimization problems.

Each individual element contributes to the optimization via:

min
ix

ivf

(
ix, ir

)
+ vfs (x∗, r∗) + Dix (vfs)∆ix

s.t. ivgs

(
ix, ir

)
= vgs (x∗, r∗) + Dix (vgs) ∆ix ≤ 0

ivhs

(
ix, ir

)
= vhs (x∗, r∗) + Dix (vhs) ∆ix = 0

ivg

(
ix, ir

)
≤ 0

ivh

(
ix, ir

)
= 0

ix ≤ ix ≤ ix

(5.24)
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Individual optimization functions (ivf , ivg,
ivh) are present and optimization func-

tions that are shared between elements (vfs ,vgs ,vhs) are added to the individual
optimization problems. Coupling data, 0

1h, 1
0h, is kept fixed during the individual

element optimizations.
Coupling data is transferred via a coordinator method. Sobieszczanski-Sobieski

et al. propose different methods to construct the sensitivity of the shared functions
with respect to changes in the coupling variables. In the present thesis the coordi-
nator method conducts an Optimum Sensitivity Analysis (OSA), see Chapter 2, of
the individual elements with respect to changes in the coupling data (01h, 1

0h). The
coordinator problem can improve the optimization functions (vfs ,vgs ,vhs) via an op-
timization problem that considers the coupling variables as design variables. The
coordinator problem yields:

min
i
j
h

vfs (x∗, r∗) + Di
j
h (vfs)∆i

jh

s.t. vgs (x∗, r∗) + Di
j
h (vgs)∆i

jh ≤ 0

vhs (x∗, r∗) + Di
j
h (vhs)∆i

jh = 0
i
jh ≤ i

jh ≤ i
jh

(5.25)

where the total derivatives are computed via the OSA. This method is called Bi-Level
Integrated System Synthesis (BLISS).

Modified Bi-Level Integrated System Synthesis

A more convenient means of distributing the optimization problem resulted in a redef-
inition of the method by Sobieszczanski-Sobieski et al. (2003). The modified BLISS
method distributes optimization of the multi-level problem as follows.

An optimization function shared over elements in the hierarchy yields:

v..s = v..s (x, r) . (5.26)

This function depends on design variables and physical responses from individual
elements. The physical responses r are a function of design variables x and mapped
physical responses i

jH(ir) = i
jh. Optimization of the shared functions is done first

at the individual elements. Therefore each individual element optimizes the shared
function with respect to design variables present in the element.

The individual element optimizations yield:
Level-0:

min
0x

0vf (0x, 0r) = 0vf (0x, 0r) + 0vfs(
0x, 0r)

s.t. 0vgs

(
0x, 0r

)
= vgs(x, r) ≤ 0

0vhs

(
0x, 0r

)
= vhs(x, r) = 0

0vg(
0x, 0r) ≤ 0

0vh(0x, 0r) = 0
0x ≤ 0x ≤ 0x

where 0vfs(
0x, 0r) = 0

1s
T 0

1H(0r)

. (5.27)
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Level-1:

min
1x

1vf (1x, 1r) = 1vf (1x, 1r) + 1vfs(
1x, 1r)

s.t. 1vgs

(
1x, 1r

)
= vgs(x, r) ≤ 0

1vhs

(
1x, 1r

)
= vhs(x, r) = 0

1vg(
1x, 1r) ≤ 0

1vh(1x, 1r) = 0
1x ≤ 1x ≤ 1x

where 1vfs(
1x, 1r) = 1

0s
T 1

0H(1r)

. (5.28)

Instead of directly mapping the physical responses onto the neighboring element that
depends on these responses (01H(0r), 1

0H(1r)), the mapped responses are send to the
coordinator. Additional coefficients (01s,

1
0s) are introduced that are set via the coor-

dinator and are kept fixed during the individual element optimizations. These coef-
ficients can be positive or negative depending on whether a certain mapped physical
response needs to be increased or decreased.

Individual elements depend on physical responses from neighboring elements.
Therefore, different physical responses of the individual elements can be found if
the mapped responses coming from neighboring elements are changed. To study the
input-output relation of an individual element, a Design of Experiments (DoE) can
be conducted. This DoE explores the change in physical responses in one element
with respect to changes in the mapped responses coming from neighboring elements.

Each individual component of the vector of mapped responses i
jH(ir) = i

jh is
approximated via a response surface. This response surface is constructed via, e.g., a
Least Squares method (see Chapter 2). A vector of coefficients (a) is determined that
can be used to construct for each individual component of i

jH(ir) = i
jh a polynomial

function ivfRSM . These polynomial functions approximate the behavior of the mapped
physical responses of the individual element onto neighboring elements.

The shared design function, v..s , depends on mapped physical responses (i
jh) from

the individual elements. These responses are approximated via the response surfaces
(ivfRSM ) that are constructed for the mapped physical responses of each individual
element. The coordinator optimizes the shared optimization functions via changing
coupling variables (mapped physical responses) that are assigned as design variables.
Consistency constraints (v0

1c, v1
0c) are added that require that the approximated map-

ped responses (ivfRSM ) are equal to expected coupling variables (i
jh).

The coordinator problem yields:

min
i
j
h,i
j
s

vfs(
0vfRSM (10h, 1

0s),
1vfRSM (01h, 0

1s))

s.t. vgs(
0vfRSM (10h, 1

0s),
1vfRSM (01h, 0

1s)) ≤ 0

vhs(
0vfRSM (10h, 1

0s),
1vfRSM (01h, 0

1s)) = 0

v0
1c(

0
1h, 1

0h, 1
0s) = 0vfRSM (10h, 1

0s) −
0
1h = 0

v1
0c(

0
1h, 1

0h, 0
1s) = 1vfRSM (01h, 0

1s) −
1
0h = 0

i
jh ≤ i

jh ≤ i
jh

i
js ≤ i

js ≤ i
js

. (5.29)
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0vf (0x, 0r(0x, 1
0h))

1v(1x, 1r(1x, 0
1h))

choose: 1
0h, 0

1h, 1
0s,

0
1s

min
s,h

vf (ivfRSM (j
ih, j

i s))

s.t. vi
j
c(

i
jh, i

js) = 0

r) =

Compute coefficients

required for response surface.

i, j = 0, 1

Design of Experiments:

Optimize:

Level-0

Level-1

Figure 5.6: First, a response surface is constructed for the output of the two levels. Then,
a Coordination via a linear programming problem for the vectors s and coupling variables h

is conducted.

The vectors i
js determine whether components of these vectors require an increase or

decrease during the individual element optimizations.
The entire coordination process is shown in Figure 5.6. Two individual element

optimizations are conducted for a number of different mapped physical responses and
coefficient vectors s. After enough experiments have been conducted a fit through each
of the results is computed and the resulting fitted functions are used to minimize the
approximated objective function that models the performance of the entire hierarchy.

5.1.4 Design of a two-bar truss structure

In Chapter 3 the decomposition process was applied to a two-bar truss optimization
problem. In this section results for equality-based coordination techniques applied to
a multi-level two-bar truss optimization are summarized. The equality-based methods
tested are:� Hierarchic linearized coordination: Optimization by Linear Decomposition (OLD),� Hierarchic constraint margin approach: Quasi-separable Subsystem Decompo-

sition (QSD),� Non-hierarchic linearized coordination: Concurrent SubSpace
Optimization (CSSO) and modified Bi-Level Integrated System Synthesis (BLISS).

The multi-level optimization was started from six different initial designs and the
reference optimum was found solving the All-in-One optimization problem. The total
number of individual element function calls were counted for one single run, as well as
the total number of optimization iterations and the number of hierarchical updates.

The total number of individual element function calls is counted as follows: each
time an analysis model is evaluated during the optimization process to compute new
values ir, a counter is increased by one. The function calls of each individual element
are then added to one another to give the total number of individual element function
calls.
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The total number of optimization iterations is counted as follows: each time a new
search direction is computed by the optimizer of the individual element a counter is
increased by one. The optimization iterations of each individual element are then
added to one another to give the total number of optimization iterations.

The total number of hierarchical updates is counted as follows: each time an in-
dividual element receives updated coupling data (mapped physical responses and/or
shared design variables) and starts a new optimization (in case of the All-in-One ap-
proach constraint and objective function evaluations) of the updated model, a counter
is increased by one.

Costs associated with the coordination problem are listed separately. These costs
include constructing response surfaces (RSM), sensitivity analysis (SA), optimum sen-
sitivity analysis (OSA) or solving an optimization problem (OP) during the coordi-
nation face. Furthermore, additional computations that are necessary to evaluate the
final design after the optimization is finished, e.g in case of response surface methods,
are not accounted for.

Because the coupling variables 1
0h and 2

0h associated with Level-0 cannot unam-
biguously be expressed in Level-1 design variables, the Level-0 design variables (0x)
as well as the coupling variables (10h, 2

0h) are utilized to compare the different op-
tima found. The solution error is measured subtracting the optimum design variables
computed at Level-0 via one of the multi-level optimization methods from the refer-
ence optimum found via All-in-One and divided component wise by the All-in-One
solution. Taking the infinity-norm of the vector representing the component wise dif-
ference between the optimum and reference optimum gives the solution error. Finally,
the objective function value is compared to the objective function value found via an
All-in-One approach.

The results for the five performance criteria are listed in Table 5.1. In addition,
Table 5.2 lists the results of the consistency constraints 1

0c,
2
0c and the individual

element design constraints. At the reference optimum found via an All-in-One opti-
mization approach all individual element design constraints are active. Furthermore,
a lower bound on one of the design constraints is active 2x2. In case no value is
listed for the equality constraints in Table 5.2, these constraints are not added to
the optimization problem and are automatically satisfied via a direct mapping of one
individual element onto a neighboring element. Design constraints that are not active
are represented via their function value.

It is clear from the results of Table 5.1 that the equality-based multi-level optimiza-
tion approaches require significantly more element function evaluations as compared
to the All-in-One approach. However, the amount of hierarchical updates are less
for most of the coordination methods. Which means that communication between
elements is reduced. This is due to the approximation techniques that approximate
the behavior of the neighboring elements.

Optimization by Linear Decomposition and Quasi-Separable Subsystem Decompo-
sition without a Response Surface approximation converge to the same optimal point
as was found via AiO. Bi-Level Integrated System Synthesis converged close to the
same point, although the lower bound on the Level-1 design variable was not active.
Since approximations are only accurate within a certain margin, none of the response
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Table 5.1: Numerical comparison of multi-level coordination techniques for equality-
based decomposition. Total number of function evaluations, total number of optimiza-
tion iterations and the total number of hierarchical updates are listed. Furthermore,
the difference between the reference optimal design variables and those found via
the multi-level optimization procedure are listed as well as the optimum found with
respect to the reference optimum.

Method Func.eval. Opt.Iter Hierar.upd. Sol.Error Obj./Obj.AiO

AiO 285 95 0.0 1.00

OLD 1045 192 12 7.24 × 10−6 1.00
OLD OSA*1 1035 331

QSD*2 51836 9498 590 7.17 × 10−7 1.00

QSD 50 9 1 5.38 × 10−2 1.02
QSD RSM*3 1369 272

CSSO 1104 152 8 2.36 × 10−1 1.03
CSSO GSE*4 48
CSSO C*5 380 12

BLISS*2 12085 3484 226 2.67 × 10−7 1.00

BLISS 328 60 5 1.47 × 10−1 1.01
BLISS RSM*3 1907 451
*1 Costs related to the Optimum Sensitivity Analysis (OSA) of the Level-1 elements.
*2 Without the use of a response surface for the Level-1 elements.
*3 Costs associated with applying a response surface method (RSM).
*4 Costs associated with computing Global Sensitivity Equations (GSE).
*5 Costs associated with solving the coordination problem (Equation 5.19).

Table 5.2: Consistency constraint values (i
0c) and design constraint values (ivg,

2x2)
of the equality-based coordination methods. The reference design (AiO) has four active
design constraints. Constraints that are not listed are not present in the multi-level
optimization formulation and constraints that are not active are represented by their
function value.

Method 1
0c 2

0c 0vg
1vg

2vg
2x2

AiO active active active active
OLD active active active active active active

QSD*1 active active active active active active

QSD*2 active active active −4.2 × 10−3 −1.6 × 10−1 active

CSSO active −4.0 × 10−2 −9.4 × 10−1 −3.4 × 10−6

BLISS*1 active active active −7.1 × 10−4

BLISS*2 −1.2 × 10−2 active active active
*1 Without the use of a response surface for the Level-1 elements.
*2 Constraint values evaluated for the real model instead of the response surface model.
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surface based coordination methods finds exactly the same optimal point. Concurrent
SubSpace Optimization did not converge to the optimal point. The Level-0 optimiza-
tion constraint becomes active, however in the Level-1 optimization problems there is
still room for improvement. Due to the non-active Level-1 constraints the objective
function value found is slightly higher then that found via AiO.

During the multi-level optimization tests the following observations were made:� Hierarchic linearized coordination (OLD): No difficulties with the minimization
of the envelope function or calculation of sensitivities were observed. These
sensitivities were computed via a finite difference technique for which the costs
are listed separately in Table 5.1. The tolerance on the objective function value
and constraint function value was set to 1 · 10−9 during the multi-level opti-
mization process. To compute the optimum sensitivities via finite differences
the tolerance on objective and constraint functions was increased to 1 · 10−15

during the perturbed optimization runs. The perturbation step necessary to
calculate the finite differences was set to 1 · 10−10, which was found to produce
accurate optimum sensitivity values.� Hierarchic constraint margin approach (QSD): The optimizer had difficulties
finding feasible solutions for the Level-1 elements when the necessary data from
these elements was directly evaluated. Likewise, approximating the Level-1
elements via a response surface did not succeed in many cases due to infeasible
Level-1 element optimizations that were observed while conducting a Design
of Experiments necessary to construct the response surface. Therefore, the
design space that was used to choose points via a Latin Hypercube Sampling
was reduced manually until only feasible lower level element optimizations were
observed. The costs of finding a design space that would only result in feasible
designs is not accounted for in Table 5.1, because no automated process was
defined for this process. Through the results of the Level-1 feasible optima a
response surface was fitted, which was used during the Level-0 optimization to
obtain the final optimal design.� Non-hierarchic linearized coordination (CSSO): Tight move limits in the co-
ordinator problem were applied as a means of damping the cycling that was
observed in de Wit and van Keulen (2007). These move limits are mathemati-
cally expressed as:

0.8s(t−1)
r ≤ s(t)

r ≤ 1.2s(t−1)
r + 0.01. (5.30)

The result is that the individual element optimization problems do not receive
large changes in the responsibility coefficients after sufficient optimization runs
are computed and therefore the solution found in these individual elements does
not change. The costs of sensitivity analysis representing the coupling between
elements and the costs for the optimization conducted for the coordination are
listed separately in Table 5.1. The sensitivity calculations involve evaluating
the analysis models and the coordination calculation involves linear functions
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and therefore the latter does not significantly contribute to the computational
costs.� Non-hierarchic linearized coordination (BLISS): Response surfaces that were
computed for the BLISS method showed no difficulties, hence a Latin Hypercube
Sampling covering the entire design space was used and all the Level-1 element
optimizations necessary for the response surface converged. However, due to the
size of the initial design space the BLISS method does require a few updates
in which the design space is reduced and a new response surface is constructed
before the optimum is found.

An advantage of the equality based multi-level optimization methods is that the
user receives information on how the individual optimization problems interact and
behave under changes in neighboring elements. Furthermore, the intermediate designs
are all consistent and may only be inconsistent in design constraints that can be
individual to a single element or shared over many elements. These advantages are
also the disadvantage of these methods. Knowledge about the model is required
in order to compute interaction sensitivities (GSE), accurate response surfaces or
optimum sensitivities. Before starting any equality based multi-level optimization
method, additional knowledge is required about the model that is not required by the
relaxation based methods as is shown in the next section.

The response surface technique used for the multi-level optimization methods is
discussed in Chapter 2. The multi-level optimization methods that use a response
surface require fewer Level-0 computations then the multi-level optimization methods
that rely on sensitivity analysis. The Level-1 computational cost is comparable for
each of the multi-level optimization methods. More robust response surface methods
may improve the results obtained for the two-bar truss structure, similarly the opti-
mum sensitivity analysis can be conducted via less expensive approaches then finite
differences. However, the focus in this thesis is on capturing the generic steps of each
multi-level method and not on the approximation methods.

5.2 Relaxation-based coordination

Relaxation based coordination techniques are subdivided into two categories:� hierarchic coordination,� non-hierarchic coordination.

Furthermore, the hierarchic coordination techniques can be subdivided into:� techniques that directly evaluate relaxation parameters,� techniques that approximate relaxation parameters.

Methods that decompose a complex system via relaxation obtain their feasible or
consistent design only at convergence of the algorithm. As opposed to equality-based
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decomposition schemes, which require feasibility or consistency at each iteration of
the hierarchy. In order to obtain feasibility an additional relaxation parameter update
procedure is necessary. This section describes different approaches to update these
parameters depending on the type of decomposition formulation (see Chapter 3) that
is used. For each coordination method a hierarchy of two levels containing a single
element per level is considered. A two-level problem consisting of a single element per
level is sufficient to show the coordination between coupled elements and simplifies
the formulation of the optimization problems. The discussion focuses on physical
coupling, however coupling via shared design variables is treated similarly.

5.2.1 Hierarchic relaxation methods

Collaborative Optimization

In Section 5.1 equality-based coordination procedures were introduced that can handle
inseparable decisions (see Chapter 4). Equality-based coordination procedures add
additional information to neighboring elements to overcome problems with insepara-
ble decisions. Relaxation-based coordination methods add information on neighboring
elements to the current element via copies of the relaxed constraints. The inconsis-
tency is partly taken into account in the current element and partly taken into account
at the neighboring element. The coordinator balances via updates of the relaxation
parameters between the two individual elements. A first method that introduced this
type of approach was Collaborative Optimization (CO).

Collaborative Optimization was first introduced by Braun and Kroo (1997). The
method utilizes quadratic functions for the consistency constraints. Although the
method was successfully applied to various large optimization problems (Braun et al.,
1997, Budianto and Olds, 2004), research conducted by Alexandrov and Lewis (2002)
demonstrated that for convex problems it was very unlikely that CO would converge
to the optimum.

A two-level problem of two individual elements is considered. The elements are
decomposed via a top-down hierarchic relaxation-based decomposition scheme. The
consistency constraints are relaxed via a quadratic function. According to Chapter
3, relaxed consistency constraint formulations minimize the consistency constraints
at both levels. However, in the case of CO the requirement is that the consistency
constraints are satisfied at Level-0 and minimized at Level-1. Thus, the consistency
constraints are not added to the objective function of the Level-0 optimization prob-
lem. Instead, they are introduced as additional equality constraints. Summarizing,
the Level-0 Optimization problem becomes:

min
0x,10h

0vf (10h, 0x, 0r)

s.t. 0vg(
1
0h, 0x, 0r) ≤ 0

0vh(10h, 0x, 0r) = 0
0v1

0c(
1
0c(

1
0h)) =

∑
n

(
1
0Hn(1r) − 1

0hn

)2
= 0

0x ≤ 0x ≤ 0x
1
0h ≤ 1

0h ≤ 1
0h

. (5.31)
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Figure 5.7: The process of coordinating element data between the levels in case of Collab-
orative Optimization. The coordinator does not operate on the data and sends it directly to
the other element.

The requirement that the quadratic function of the consistency constraints should be
zero (0v1

0c(
1
0c(

1
0h))) is explicitly stated by the authors, see (Braun and Kroo, 1997).

The Level-1 optimization problem tries to find an optimum value while keeping
the deviation between the prescribed physical responses (10h) and the actual physical
responses (10H(1r)) as small as possible:

min
1x

1vf (1x, 1r) +
m∑

n=1

1v1
0cn(10c(

1r))

s.t. 1vg(
1x, 1r) ≤ 0

1vh(1x, 1r) = 0
1x ≤ 1x ≤ 1x

where 1v1
0c(

1
0c(

1r)) =
(
1
0H(1r) − 1

0h
)2

. (5.32)

Satisfying the quadratic consistency constraint functions has shown to be difficult
because the gradients of these constraint functions vanish near the optimum (see e.g.
DeMiguel and Murray (2000)). Vanishing of the gradients near the optimum means
that the Linear Independent Constraint Qualification3 is not satisfied and therefore
the coordination method does not converge towards the optimum as found via an
All-in-One approach. The process that coordinates the data between the two levels
is illustrated in Figure 5.7. The coordinator step involves sending data from Level-1
to Level-0 and vice versa. No additional operations are necessary and the method is
actually a single level coordination method.

CO has many characteristic features of a relaxation-based decomposition tech-
nique. However, the original paper written by Braun and Kroo (1997) requires the
consistency constraints to be satisfied at every Level-0 optimization (in case a hier-
archic top-down decomposition scheme is used). According to Kodiyalam (1998), in
practice these consistency constraints are relaxed as follows:

0v1
0c(

1
0c(

1
0h)) =

(
1
0H(1r) − 1

0h
)2

≤ ε, (5.33)

where ε is chosen by the multi-level optimization specialist.

3See DeMiguel and Murray (2000) for a definition.
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Equation 5.33 allows for small numerical errors such that the Level-0 problem
remains feasible, i.e. feasible in the context of Equation 5.33. For this reason, the
algorithm is considered a penalty function method and not one of the equality-based
approaches. Furthermore, the requirement that the constraints are minimized at
Level-1 and implemented as equality constraints at Level-0 is similar to introducing
a quadratic penalty function on the consistency constraints:

0v1
0c(

1
0c(

1
0h)) = 1

0s
T
..

(
1
0H(1r) − 1

0h
)2

(5.34)

The penalty weights (10s..) on the consistency constraints are set to one in the Level-1
elements and set to infinity in the Level-0 element (e.g. DeMiguel and Murray (2006)
discuss this issue).

Collaborative Optimization via inexact penalty function

Recent work carried out by DeMiguel and Murray (2006) on reformulating the incon-
sistencies via a penalty function relaxation and externally updated weights has led to
a mathematical validation of the method. DeMiguel and Murray propose two differ-
ent relaxation procedures; an inexact penalty function and an exact penalty function
formulation leading to different coordination procedures. The inexact penalty de-
composition scheme requires minor changes to the original CO formulation and is
discussed first.

The two-level optimization problem, Equations 5.31 and 5.32, is considered. Hence,
a top-down hierarchic decomposition is applied and the consistency constraints are
relaxed via an inexact penalty function:

iv1
0c

(
1
0c
)

= 1
0s||

1
0H(1r) − 1

0h||
2
2, (5.35)

the penalty parameter 1
0s is a fixed parameter during the individual element optimiza-

tions and is incremented in the coordinator problem. The penalty function is called
inexact because the All-in-One solution is not found, rather an approximated solution
is found.

When a top-down hierarchic decomposed element is considered the relaxed con-
sistency constraint (Equation 5.35) is assigned to the Level-0 element and the Level-1
element. The consistency gap is minimized at both Level-0 and Level-1. The Level-0
optimization problem is mathematically expressed as:

min
0x,10h

0vf (10h, 0x, 0r) + 0v1
0c(

1
0c(

1
0h))

s.t. 0vg(
1
0h, 0x, 0r) ≤ 0

0vh(10h, 0x, 0r) = 0
0x ≤ 0x ≤ 0x
1
0h ≤ 1

0h ≤ 1
0h

where 0v1
0c(

1
0c(

1
0h)) = 1

0s
∣∣∣∣1

0H(1r) − 1
0h
∣∣∣∣2

2

. (5.36)

In the above problem formulation Level-0 determines the optimal values of the cou-
pling variables. The Level-1 optimization problem minimizes the consistency gap and
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yields:

min
1x

1vf (1x, 1r) + 1v1
0c(

1
0c(

1r))

s.t. 1vg(
1x, 1r) ≤ 0

1vh(1x, 1r) = 0
1x ≤ 1x ≤ 1x

where 1v1
0c(

1
0c(

1r)) = 1
0s
∣∣∣∣1

0H(1r) − 1
0h
∣∣∣∣2

2

. (5.37)

The penalty parameter 1
0s is equal in both elements.

DeMiguel and Murray state the mathematical conditions (second-order optimality
conditions, linear independent constraint qualification, smoothness of the Level-1 op-
tima, see DeMiguel and Murray (2006)) under which the computed design variables
will approach the optimum values (x∗) of the AiO problem if:

x∗ = lim
1
0s→∞

x(10s). (5.38)

Thus, the computed optimal design variables depend on the weights. The weights 1
0s

are incrementally updated to obtain a sufficiently accurate solution, conform Equation
5.38.

Collaborative Optimization via exact penalty function

A second approach suggested by DeMiguel and Murray (2006) is the use of an exact
penalty function to decompose the multi-level optimization problem. An optimization
problem decomposed via an exact penalty function finds the same optimum as an
All-in-One approach for finite values of the penalty parameters 1

0s rather then an
approximated solution. The same two-level hierarchic top-down optimization problem
is considered as previously, i.e. Equations 5.31 and 5.32.

An exact penalty function is used to relax the consistency constraints:

iv1
0c

(
1
0c
)

= ||10H(1r) − 1
0h||1 =

∑

n

|10Hn(1r) − 1
0hn|. (5.39)

The l1-norm is not a continuous function and therefore adding this contribution to the
Level-1 objective function has the effect that the changing optimum value of Level-1
under changing coupling variables does not represent a continuous function. To avoid
non-smoothness of the absolute value function in Equation 5.39 two vectors of elastic
variables (10µ, 1

0ν) are introduced. The penalty function in terms of elastic variables
yields:

iv1
0c

(
1
0c
)

=
∑

n

|10Hn(1r) − 1
0hn| =

∑

n

(
1
0µn + 1

0νn

)
. (5.40)

A requirement for the elastic variables is that: 1
0µ, 1

0ν ≥ 0.
The two-level optimization problem is now written as:
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Level-0:

min
0x,10h

0vf (10h, 0x, 0r)

s.t. 0vg(
1
0h, 0x, 0r) ≤ 0

0vh(10h, 0x, 0r) = 0
0x ≤ 0x ≤ 0x
1
0h ≤ 1

0h ≤ 1
0h

(5.41)

Level-1:

min
1x,10µ,10ν

1vf (1x, 1r) + 1
0s

T
1

(
1
0µ + 1

0ν
)

s.t. 1vg(
1x, 1r) ≤ 0

1vh(1x, 1r) = 0
1v1

0c(
1
0c(

1r)) = 1
0H(1r) + 1

0µ − 1
0ν = 1

0h
1x ≤ 1x ≤ 1x
1
0µ, 1

0ν ≥ 0

. (5.42)

DeMiguel and Murray state that in general the gradients of the constraints of Equa-
tion 5.42 are linear dependent, because most engineering optimization problems are
non-convex. Therefore, the output of Level-1 that forms the input for the Level-0
optimization problem is non-smooth. Meaning that it is difficult to find an optimum
for the Level-0 problem if the mapped responses of the Level-1 element cannot be
described as a smooth function.

To overcome the difficulty of linear dependent gradients of the constraints barrier
terms are introduced. These barrier terms remove the inequality constraints on the
elastic variables. The problem statement via exact penalty function relaxation with
elastic variables and additional barrier terms for the Level-0 optimization is:

min
0x,10h

0vf (10h, 0x, 0r) + 1
0s

T
1

(
1
0µ + 1

0ν
)

+ 1
0s2

n∑
m=1

(
log 1

0µm + log 1
0νm

)

s.t. 0vg(
1
0h, 0x, 0r) ≤ 0

0vh(10h, 0x, 0r) = 0
0v1

0c(
1
0c(

1
0h)) = 1

0H(1r) + 1
0µ − 1

0ν = 1
0h

0x ≤ 0x ≤ 0x
1
0h ≤ 1

0h ≤ 1
0h

(5.43)

and the Level-1 optimization problem yields:

min
1x,10µ,10ν

1vf (1x, 1r) + 1
0s

T
1

(
1
0µ + 1

0ν
)

+ 1
0s2

n∑
m=1

(
log 1

0µm + log 1
0νm

)

s.t. 1vg(
1x, 1r) ≤ 0

1vh(1x, 1r) = 0
1v1

0c(
1
0c(

1r)) = 1
0H(1r) + 1

0µ − 1
0ν = 1

0h
1x ≤ 1x ≤ 1x

. (5.44)

Instead of increasing the penalty weight to a sufficiently large number as was the case
for the inexact penalty decomposition method (5.38) a barrier term 1

0s2 (recall Section
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2.4.1 for an explanation) is decreased via the coordinator to zero via:

1
0s

(t+1)
2 = β · 1

0s
(t)
2 , (5.45)

for a fixed large value of the weight vector 1
0s1. Furthermore, two additional slack

variables µ and ν are added to the Level-1 optimization problem. If the penalty
weight vector 1

0s1 is chosen large enough, these two parameters are a measure of the
gap size of the inconsistency:

∣∣∣∣1
0c
∣∣∣∣

1
=
∣∣∣∣1

0H(1r) − 1
0h
∣∣∣∣

1
=

n∑
m=1

1
0µm + 1

0νm . (5.46)

For sufficient conditions (second order sufficient conditions, linear independent con-
straint qualification (DeMiguel and Murray, 2006)) this approach converges to the
optimum.

Analytical Target Cascading

Another improvement over the Collaborative Optimization procedure was introduced
by Kim et al. (2003). Analytical Target Cascading (ATC) overcomes some of the
drawbacks of Collaborative Optimization. The procedure was derived for bottom-up
hierarchic decomposition schemes (top-down decomposition was shown by Allison et al.

(2005)) via relaxation through penalty functions multiplied with an iteratively in-
creasing weight. Extensive research on generalizing the method was conducted by
Michalek and Papalambros (2005b) and mathematical justification of the method un-
der convexity assumptions was shown by Michelena et al. (2003). This mathematical
justification was questioned however by Lassiter et al. (2005), which will be touched
upon briefly during the discussion on incremental weight update techniques hereafter.

A top-down hierarchic decomposition scheme is considered. The constraints are
relaxed by taking the l2-norm of the quadratic of the inconsistency in contrast to
Collaborative Optimization which uses a quadratic function of the consistency con-
straints. Weights 1

0s are introduced that are updated via a coordinator scheme that
pushes the consistency constraints to zero. The Level-0 problem is mathematically
expressed as:

min
0x,10h

0vf (10h, 0x, 0r) + 0v1
0c(

1
0c(

1
0h))

s.t. 0vg(
1
0h, 0x, 0r) ≤ 0

0vh(10h, 0x, 0r) = 0
0x ≤ 0x ≤ 0x
1
0h ≤ 1

0h ≤ 1
0h

where 0v1
0c(

1
0c(

1
0h)) =

∣∣∣∣1
0s1 ◦

(
1
0H(1r) − 1

0h
)∣∣∣∣2

2

. (5.47)

The weights 1
0s1 are adjusted externally via the coordinator. The coordinator ef-

fectively assigns priority between minimizing the objective function 0vf (0x, 0r) and/or
reducing the consistency violation 1

0c(
1
0h). The consistency constraint is included at
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the Level-0 problem as well as the Level-1 problem, which is possible due to the relax-
ation of the constraint. Both levels are required to reduce any inconsistency between
the two levels.

The Level-1 optimization problem yields:

min
1x

1vf (1x, 1r) + 1v1
0c(

1
0c(

1r))

s.t. 1vg(
1x, 1r) ≤ 0

1vh(1x, 1r) = 0
1x ≤ 1x ≤ 1x

where 1v1
0c(

1
0c(

1r)) =
∣∣∣∣1

0s2 ◦
(
1
0H(1r) − 1

0h
)∣∣∣∣2

2

. (5.48)

The weight vectors 1
0s1 and 1

0s2 remain equal per component of the vector according to
Kim et al. (2003), Michalek and Papalambros (2005b) and Tosserams et al. (2008a).
However, to the authors knowledge this does not need to be the case and numerical
experiments conducted by the author suggest that the method converges faster if
these vectors are not kept equal. Therefore, numerical results listed in Section 5.2.4
and Chapter 8 are based on relaxation via parameters within individual elements that
are not kept equal between elements that are coupled.

The convergence of the algorithm is proven via the observation that the decom-
posed optimization problem is a saddle point problem such as discussed in the work
of Benzi et al. (2005). Then finding the solution to the decomposed optimization
problem is based upon the observation that:

x∗ = lim
1
0s→∞

x(10s), (5.49)

where x∗ is the unique solution for the problem solved all-in-one. Hence, via iterative
increments after each element optimization the coordinator step involves:

1
0s

(t+1) = β · 1
0s

(t). (5.50)

For a bounded sequence of increments of 1
0s, a convex optimization problem, strict

linear independent constraint qualification and second order sufficient conditions these
weight increments will approach the optimal weights that are required to solve the
saddle point type of problem originating from decomposing the all-in-one problem.

Lassiter et al. (2005) argue that there is no procedure or mathematical proof that
optimal weights can be computed. The optimum is not found exactly and thus the
procedure cannot be stated as such. However, the penalty method is a well-established
approach for solving saddle point problems approximately.

The only means of finding the exact solution utilizing a penalty method is via a
procedure suggested by (Benzi et al., 2005) that employs a direct solver. A direct
solver suggests that the subproblems are solved via the same solution technique.
ATC does not have this restriction. The method allows for individual optimization
techniques for each element allowing more freedom to the designer.

The total procedure for ATC is sketched in Figure 5.8. Besides sending data from
one level to the next, the coordinator has to increment the weights 1

0s and send the
updated weights to both elements.
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0vf (10h, 0x, 0r)+
0v1

0c
(10c(

1
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Figure 5.8: ATC coordination through incremental weight updates. By means of increasing
the penalty weight both levels are forced in each new step to assign greater priority to closing
the consistency gap.

Analytical Target Cascading via Lagrangian relaxation

Recently, various alternative constraint relaxation and coordination techniques have
been introduced. Lassiter et al. (2005) and Kim et al. (2006) use Lagrange multipli-
ers in order to relax the consistency constraints. In case of a top-down hierarchic
decomposition the relaxed consistency constraints for the two-level problem yield:

iv1
0c(

1
0c) = 1

0λ
T
(
1
0H(1r) − 1

0h
)
. (5.51)

The individual element optimization problems after decomposition were discussed in
Chapter 3 and are not repeated here.

The coordinator problem involves solving the so-called dual problem4, see Ap-
pendix A. Hence, the coordinator solves an optimization problem in which a function
representing the minimization of both the Level-0 and Level-1 optimization problems
is maximized keeping the design variables fixed and changing the Lagrange multipli-
ers:

max
1
0λ

vf (10λ) (5.52)

where vf represents the combined individual optimization problems of the hierarchy
with relaxed consistency constraints. Neglecting terms that do not depend on the
Lagrange multipliers associated with the relaxation of the consistency constraints,
the dual problem solved via the coordinator is simplified to:

max
1
0λ

vf (10λ) = 1
0λ

T
(
1
0H(1r) − 1

0h
)

. (5.53)

The solution to the dual problem is found via stepwise increments of the Lagrange
multipliers computed as:

1
0λ

(t+1) = 1
0λ

(t) + β · 1
0c

(t), (5.54)

4The dual problem is defined in the book of Bertsekas (1995), Propositions 5.1.1 through 5.1.6.
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where β is the step size which is used here as a numerical damping parameter and 1
0c

the size of the inconsistency.

After each increment of the Lagrange multipliers the individual optimizations are
repeated with the updated multipliers. New increments of the Lagrange multipliers
are computed after these optimizations have finished and coupling data is exchanged
again.

If each element is assigned individual Lagrange multipliers then the coordination
problem of finding optimal Lagrange multipliers is split and Equation 5.53 becomes:

max
1
0λ1

vf (10λ1) = 1
0λ

T
1

(
1
0H(1r) − 1

0h
)

; (5.55)

max
1
0λ2

vf (10λ2) = 1
0λ

T
2

(
1
0H(1r) − 1

0h
)

; (5.56)

where the Lagrange multipliers are assigned to the individual elements.

The procedures proposed by Lassiter et al. (2005) and Kim et al. (2006) are al-
most identical. The difference is that Lassiter et al. add 1

0λ
T (−1

0h) to the Level-0
objective and 1

0λ
T (10H(1r)) to the Level-1 element objective instead of the complete

expression of the relaxed consistency constraints (Equation 5.51), while Kim et al.

add 1
0λ

T (10H(1r) − 1
0h) to each individual element objective (hence Equation 5.51).

Furthermore, Lassiter et al. solve each individual element optimization concurrent
while Kim et al. solve the hierarchy level by level.

These formulations that coordinate relaxed consistency constraints are applicable
to hierarchic top-down decomposition schemes using relaxation. The bottom-up pro-
cedures are similar and the non-hierarchic variants of these coordination approaches
are discussed in Section 5.2.3.

Analytical Target Cascading via Augmented Lagrangian relaxation

Tosserams et al. (2006, 2007, 2008a) use an augmented Lagrangian relaxation of
the consistency constraints. A common procedure to modify the penalty relaxation
method in order to avoid ill-conditioning due to large weights 1

0s. A second benefit
of the method is that combining Lagrange multipliers and penalty weights results in
finding the exact solution for convex optimization problems rather then an approx-
imated one. The method is called method of multipliers, which was according to
Benzi et al. (2005) independently derived by various researchers.

Incorporating augmented Lagrangian relaxation into a top-down hierarchic de-
composition scheme is accomplished via the mathematical expression:

iv1
0c(

1
0c) = 1

0λ
T
(
1
0H(1r) − 1

0h
)

+
∣∣∣∣1

0s ◦
(
1
0H(1r) − 1

0h
)∣∣∣∣2

2
, (5.57)

added to the Level-0 and Level-1 objective function. Updates of 1
0λ and of 1

0s are
controlled via the coordinator. After solving the individual element optimizations the
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Figure 5.9: Coordination for elements where the consistency constraints are relaxed with
an augmented Lagrangian function. The coordinator redistributes the coupling data and
computes new relaxation parameters for the augmented Lagrangian function.

parameters are updated via:

1
0λ

(t+1) = 1
0λ

(t) + 2 1
0s

(t) ◦ 1
0s

(t) ◦
(
1
0H(1r) − 1

0h
)

1
0s

(t+1) =

{
1
0s

(t) if 1
0c

(t) ≤ γ1
0c

(t−1)

β · 1
0s

(t) if 1
0c

(t) > γ1
0c

(t−1) (5.58)

β > 1 and 0 < γ < 1

where 1
0c

(t) =
(
1
0H(1r) − 1

0h
)(t)

, the inconsistency at iteration (t). According to
Tosserams et al. (2008a) the parameter β is generally chosen between 2 < β < 3
and γ = 0.25. For mathematical justification of the method, Tosserams et al. refer
to the work of Bertsekas and Tsitsiklis (1989).

In order to reduce computational cost, Tosserams et al. (2008a) propose the use of
the Alternating Direction Method of Multipliers (see Bertsekas and Tsitsiklis (1989)).
Instead of iterating between levels until the solution of the objective function stabi-
lizes, a pass through all the Levels is made once, after which the penalty parameters
are updated.

The entire procedure for Augmented Lagrangian Relaxation coordination is shown
in Figure 5.9. The coordinator is involved with distributing the coupling data as well
as updating the relaxation parameters.

5.2.2 Hierarchic approximation methods

Analytical Target Cascading via Approximated Weight Update Method

The previously discussed coordination methods for relaxed decomposition schemes
all require iteratively updated weights, where the size of β is determined by expe-
rience. An alternative was introduced by Michalek and Papalambros (2005a), who
derived a technique to approximate the weights necessary to drive the inconsistencies
to zero. Their approach is derived in the present thesis for a top-down hierarchic de-
composition with consistency constraints relaxed with a quadratic norm, however this
derivation can easily be extended to any of the other relaxation-based decomposition
approaches.
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The approximation technique introduced by Michalek and Papalambros (2005a) is
illustrated for the two-level case. Consider the Level-0 optimization problem defined
previously for ATC:

min
0x,10h

0vf (10h, 0x, 0r) + 0v1
0c(

1
0c(

1
0h))

s.t. 0vg(
1
0h, 0x, 0r) ≤ 0

0vh(10h, 0x, 0r) = 0
0x ≤ 0x ≤ 0x
1
0h ≤ 1

0h ≤ 1
0h

where 0v1
0c(

1
0c(

1
0h)) =

∣∣∣∣1
0s1 ◦

(
1
0H(1r) − 1

0h
)∣∣∣∣2

2

. (5.59)

The Lagrangian of Equation 5.59 yields:

L = 0vf (10h, 0x, 0r) +
∣∣∣∣1

0s1 ◦
(
1
0H(1r) − 1

0h
)∣∣∣∣2

2
+ 0λ

T
g

0vg + 0λ
T
h

0vh

(5.60)

The first order necessary conditions for an optimal point state that the derivative
of the Lagrangian with respect to any design variable or Lagrange multiplier equals
zero. Hence, for the Level-0 optimization problem (Equation 5.59) differentiated with
respect to the coupling variables 1

0h this condition yields:

∇1
0h
L = ∇1

0h
(0vf ) + 2(10s)

2
(
1
0H(0r) − 1

0h
)
∇1

0h
(10h)

+0λT
g ∇1

0h
(0vg) + 0λT

h∇1
0h

(0vh) = 0, (5.61)

where 0λg are the lagrange multipliers associated with the inequality constraints
and 0λh are the lagrange multipliers associated with the equality constraints. From
Equation 5.61 the weights, necessary for satisfying the consistency constraints are
computed as:

(
1
0s
)2

=
1

2

1

(10h− 1
0H(0r))

∇1
0h

(0vf ) +
1

2

0λg

(10h− 1
0H(0r))

∇1
0h

(0vg) +

1

2

0λh

(10h− 1
0H(0r))

∇1
0h

(0vh) (5.62)

This approach has shown to reduce the cycling between elements and/or levels com-
pared to iteratively increasing weights as is done in Equation 5.50, see de Wit and
van Keulen (2007).

The Weight Update Method is shown in Figure 5.10. After a solution of the
individual elements is found a sensitivity analysis of the top-level element is conducted.
The sensitivity information that is obtained is used to compute new penalty weights.

Analytical Target Cascading via Diagonal Quadratic Approximation Method

A different approximation method was proposed by Li et al. (2008). These authors
propose an approximation to the quadratic norm of the consistency constraints that
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Figure 5.10: ATC coordination by means of approximating the weights necessary to reduce
the gap in the inconsistency. First, an optimum sensitivity analysis is conducted. Second,
with the gradient information from the optimum sensitivity analysis the weights necessary to
push the consistencies to some predetermined small value are computed.

are used for the Analytical Target Cascading (ATC) method. The modified ATC
method is called Diagonal Quadratic Approximation Method. By means of a Tay-
lor series expansion an approximation to the inseparable coupled expressions of the
quadratic norm used to relax the consistency constraints is found.

For a top-down hierarchic decomposition problem consisting of two-levels of each
one element, the consistency constraints relaxed via a quadratic l2-norm of the con-
sistencies multiplied by a weight coefficient yield:

1v1
0c(

1
0c) = ||10s ◦

(
1
0H(1r) − 1

0h
)
||22. (5.63)

Rewriting the relaxed consistency constraint into equivalent l1-norm yields:

||10s ◦
(
1
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)
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1

. (5.64)

This expression is additively separable except for the last part 1
0H(1r) ◦ 1

0h. In order
to separate this last part a linear Taylor series expansion is applied.

If 1
0H(1r)(t) and 1

0h
(t) are the values for the mapped physical responses and the

coupling variables of the current solution of the elements at iteration (t), then a linear
Taylor series expansion up to first order of the coupling terms is:

1
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(5.65)

Inserting Equation 5.65 into Equation 5.64 leads to:

||10s ◦
(
1
0H(1r) − 1

0h
)
||22

∼= . . .

||10s ◦
(
1
0H(1r) ◦ 1

0H(1r) + 1
0h ◦ 1

0h − 2
(
1
0H(1r) ◦ 1

0h
))

||1 = . . .

||10s ◦
(
1
0H(1r)(t) ◦ 1

0H(1r)(t) + 1
0h

(t+1) ◦ 1
0h

(t+1) − 2
(
1
0H(1r)(t) ◦ 1

0h
(t+1)

))
||1 + . . .

||10s ◦
(
1
0H(1r)(t+1) ◦ 1

0H(1r)(t+1) + 1
0h

(t) ◦ 1
0h

(t) − 2
(
1
0H(1r)(t+1) ◦ 1

0h
(t)
))

||1 + . . .

||10s ◦
(
2
(
1
0H(1r)(t) ◦ 1

0h
(t)
)
− 1

0H(1r)(t) ◦ 1
0H(1r)(t) − 1

0h
(t) ◦ 1

0h
(t)
)
||1 = . . .

||10s ◦
(
1
0H(1r)(t) − 1

0h
(t+1)

)
||22 + ||10s ◦

(
1
0H(1r)(t+1) − 1

0h
(t)
)
||22 + Constant



118 BI-LEVEL COORDINATION METHODS 5.2

(5.66)

The final expression depends on the new values of the coupling variables 1
0h

(t+1), the
new values of the mapped physical responses 1

0H(1r)(t+1) and constant terms, because
the values calculated at iteration (t) are kept constant during iteration (t+1).

The approximation to the quadratic norm of the consistency constraints:
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(5.67)

is additively separable and can be solved at both levels simultaneously. Hence, at
Level-0:

∣∣∣
∣∣∣10s ◦

(
1
0H(1r)(t) − 1

0h
(t+1)

)∣∣∣
∣∣∣
2

2
(5.68)

is solved, because 1
0h are considered design variables at Level-0. At Level-1:

∣∣∣
∣∣∣10s ◦

(
1
0H(1r)(t+1) − 1

0h
(t)
)∣∣∣
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2

2
(5.69)

is solved, because new physical responses 1r are computed at Level-1.
Essentially this is an application of a block Jacobi instead of a block Gauss-Seidel

method for solving a large system of equations. Lassiter et al. (2005) use a similar
technique for their Lagrangian coordination method because the Lagrangian function
(Equation 5.51):

iv1
0c(

1
0c) = 1

0λ
T
(
1
0H(1r) − 1

0h
)
, (5.70)

depends on a value 1
0H(1r) that is evaluated during the Level-1 optimization, while

keeping 1
0h constant and vice versa in case of the Level-0 optimization problem. The

updating of the information from one element onto the other element is done parallel
(simultaneously) instead of sequential (first Level-0 is optimized followed by Level-1
with updated 1

0h).
To reduce overall cost of the Diagonal Quadratic Approximation method Li et al.

(2008) propose to use an Alternating Direction method such as suggested by Tosser-
ams et al. (2008a) for his Augmented Lagrangian coordination method. Hence, only
one pass through all the individual element optimizations is made after which the
penalty weights are updated and coupling variables and mapped response values are
exchanged.

5.2.3 Non-hierarchic relaxed coordination

Analytical Target Cascading via Lagrangian relaxation

Coordination methods for hierarchic top-down and/or bottom-up relaxation can also
be applied to non-hierarchic problems. In Chapter 3 the decomposition of physical
coupling was shown and for the non-hierarchic case this required the relaxation of



5.2 RELAXATION-BASED COORDINATION 119

the consistency constraints in two directions. A two level hierarchy consisting of one
element per level is considered and the relaxation by means of Lagrange multipliers
yields:

iv0
1c(

0
1c) = 0

1λ
(
0
1H(0r) − 0

1h
)
;

iv1
0c(

1
0c) = 1

0λ
(
1
0H(1r) − 1

0h
)
.

(5.71)

Compared to the hierarchic case an additional set of multipliers 0
1λ and consistency

constraints 0
1c are present. The Level-0 element optimization problem yields:
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and the Level-1 element optimization problem yields:

min
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The relaxed consistency constraints are added to both elements because the map-
ped responses (i

jH(ir)) are computed in Element-i, while coupling variables (i
jh)

are considered design variables in Element-j. Either mapped responses or coupling
variables are kept fixed during the individual optimization. Because inconsistency be-
tween mapped physical responses and coupling variables has only a negative impact
on the objective, both elements try to contribute to keeping the negative impact as
low as possible.

The coordinator problem is to maximize the individual optimization problems of
the entire hierarchy for fixed design variables via changing the Lagrange multipliers:

max
0
1λ,10λ

vf (01λ, 1
0λ), (5.74)

where vf represents the combined individual hierarchical element optimization prob-
lems. Neglecting terms that do not depend on the Lagrange multipliers associated
with the relaxation of the consistency constraints, the coordination problem is sim-
plified and yields:

max
0
1λ,10λ

vf (01λ, 1
0λ) = 0

1λ
T
(
0
1H(0r) − 0

1h
)

+ 1
0λ

T
(
1
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)

(5.75)
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Figure 5.11: Coordination in case of a non-hierarchic decomposition with consistency con-
straints that are relaxed with Lagrange multipliers. The coordinator redistributes the coupling
data and computes new relaxation parameters for the Lagrangian function.

Similar to the hierarchical case, the consistency constraints on both levels can be
assigned individual Lagrange multipliers. In that case Equation 5.75 is split into two
coordination problems:
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If the consistency constraints are decomposed via a quadratic norm or an augmented
Lagrangian function the relaxation parameters are updated with the same procedures
introduced for the hierarchic top-down decomposition case. Therefore, these methods
are not repeated here and the reader is referred to Section 5.2.1 and to Section 5.2.2.
The methods are adjusted for non-hierarchic problems via an additional constraint
that takes into account the coupling in the opposite direction.

The non-hierarchic relaxed coordination method is shown in Figure 5.11. Notice
that in addition to the additional multipliers, additional coupling data is send from
the Level-1 element to the Level-0 element to account for the second consistency
constraint.

5.2.4 Design of a two-bar truss structure

In Chapter 3 the decomposition process was applied to a two-bar truss optimization
problem. In this section results for relaxation-based coordination techniques on the
two-bar truss optimization are presented. The relaxation based methods that were
applied are:� Hierarchic relaxed coordination: Collaborative Optimization (CO), Collabora-

tive Optimization with Inexact Penalty Decomposition (CO IPD), Analytical
Target Cascading (ATC);� Hierarchic approximation methods: Analytical Target Cascading via Approxi-
mated Weight Update Method (ATC WUM);
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Table 5.3: Additional settings used for the multi-level coordination methods. The
convergence parameters εvf and εvc are discussed in Section 5.3

Method 1
0sinitial

2
0sinitial εvf εvc

CO 1 × 10−4 1 × 10−4

CO IPD β = 1.1, γinit. = 1 × 10−4 1 × 10−5 1 × 10−5

ATC 1 × 10−2 1 × 10−2 β = 1.4 1 × 10−6 1 × 10−6

ATC WUM 1 × 10−3 1 × 10−3 2×10−4

(t)

∗

1 × 10−5 1 × 10−5

ATC AL 5 × 10−3 5 × 10−3 β = 2.0, γ = 0.4 5 × 10−6 5 × 10−6

* The allowed inconsistency is gradually reduced via dividing a measure of
inconsistency by the iteration number of the hierarchical updates.

Table 5.4: Numerical comparison of multi-level coordination techniques for relaxation-
based hierarchic top-down decomposition. Total number of function evaluations, total
number of optimization iterations and the total number of hierarchical updates are
listed. Furthermore, the difference between the reference optimal design variables and
those found via the multi-level optimization procedure are listed as well as the optimum
found with respect to the reference optimum.

Method Func.eval. Opt.iter Hier.upd. Sol.error Obj./Obj.AiO

AiO 285 95 0.0 1.00
CO 214 42 2 6.44 × 10−1 3.19
CO IPD 14568 3386 97 2.10 × 10−1 1.01
ATC 2800 506 24 2.11 × 10−1 1.01
ATC WUM 23847 2236 14 2.12 × 10−1 1.02
ATC AL 7326 1674 47 2.11 × 10−1 1.01� Non-hierarchic relaxed coordination: Analytical Target Cascading via Aug-

mented Lagrangian relaxation (ATC AL).

The optimization was performed on six different initial designs and the reference
optimum was found solving the optimization problem All-in-One, i.e. without utilizing
a multi-level optimization technique. Necessary parameters that are required by the
multi-level optimization techniques to start the optimization are listed in Table 5.3.

The numerical costs were counted as described in Section 5.1.4 and are listed in
Table 5.4. In addition, Table 5.5 lists the results of the consistency constraints 1

0c,
2
0c (normalized with respect to reference coupling values 1

0h, 2
0h respectively) and the

individual element design constraints. At the reference optimum found via All-in-One
all individual element design constraints are active. In addition, a lower bound on
one of the design constraints is active 2x2. In case design constraints are not active
the function value of the constraint is listed.

It is clear from Table 5.4 that the relaxation-based multi-level methods require sig-
nificantly more function evaluations then the All-in-One optimization method. How-
ever, the amount of hierarchical updates is significantly reduced utilizing an Ana-
lytical Target Cascading (ATC) based approach. Collaborative Optimization (CO)
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Table 5.5: Consistency constraint values and design constraint values of the relaxation-
based coordination methods. The reference design (AiO) has four active design con-
straints.

Method 1
0c 2

0c 0vg
1vg

2vg
2x2

AiO active active active active
CO active active active −6.8 × 10−1 −3.5 × 10−2

−2.4 × 10−4

CO IPD −2.6 × 10−4 −2.7 × 10−4 active active active active
ATC −2.0 × 10−6 −6.7 × 10−8 active active active active
ATC WUM −2.4 × 10−6 7.9 × 10−9 active active −2.3 × 10−2 active
ATC AL −7.1 × 10−7 5.5 × 10−9 active −2.4 × 10−9 active active

prematurely converged to a non-optimal solution and Collaborative Optimization via
Inexact Penalty Decomposition (CO IPD) still required many hierarchical updates
before finally converging towards the constrained optimum.

Analytical Target Cascading (ATC) converged towards the same constraint opti-
mum at less computational costs then the Inexact Penalty Decomposition (CO IPD)
method. Analytical Target Cascading utilizing a weight update method (ATC WUM)
converged to a point where the constraint at Level-0 and the constraint in Element-
1 at Level-1 was active and the lower bound on the design variable in Element-2
was active. Analytical Target Cascading via Augmented Lagrangian relaxation (ATC
AL) almost converged to the same constrained optimal point as Analytical Target
Cascading (ATC), however the constraint in Element-1 at Level-1 was not active.
Furthermore, the numerical costs were higher then those observed for Analytical Tar-
get Cascading (ATC).

During the multi-level optimization tests the following observations were made:� Hierarchic relaxation-based coordination (CO): Although Collaborative Opti-
mization is straightforward to implement the procedure prematurely converges
to a non-optimal value making it less attractive for optimization.� Hierarchic relaxation-based coordination (CO IPD): The inexact penalty de-
composition approach solves the problem of premature convergence of the CO
method, however the increments in the penalty parameter have to remain small
not to prematurely converge. The result is that the method is relatively ex-
pensive. Furthermore, the reference optimum is not found exactly and the nor-
malized inconsistency size is relatively large compared to the Analytical Target
Cascading approaches indicating that a less consistent design is obtained.� Hierarchic relaxation-based coordination (ATC): Analytical Target Cascading
is straightforward to implement, however the computational cost compared to
AiO is significant and similar to the Collaborative Optimization approaches the
reference optimum is not found exact. Furthermore, some tuning of parameters
εvc , εvf , β and i

0sinitial is required to find a configuration close to the reference
optimum.
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date Method effectively reduces the amount of hierarchical updates as required
by the ATC method. No difficulties were observed calculating the necessary
sensitivities for the method. These sensitivities were calculated via finite differ-
ences. If the target inconsistency size is set too small to compute the approxi-
mated weights these approximated weights become too large and pose problems
for the individual optimization problems to converge to feasible configurations.
Therefore, instead of setting the target inconsistency at once this target incon-
sistency is gradually reduced via:

max

{
2 × 10−4

(t)
, εvc

}
(5.78)

The effect is that the approximated weights gradually increase after each cycle
through all the individual element optimizations instead of immediately impos-
ing large weights on the consistency constraints after one single pass though
the individual element optimizations. The reference optimum is not found, but
rather a close approximation of the optimum. All the constraints are active
except for the design constraint 2vg in Element-2 at Level-1. Furthermore, the
gap in consistency is of equal magnitude as that of Analytical Target Cascading.� Non-hierarchic relaxation-based coordination (ATC AL): The method does not
find the reference optimum and significant computational costs are observed as
compared to the All-in-One approach and Analytical Target Cascading. Some
tuning of the parameters β, γ, i

0sinitial, εvf and εvc is necessary in order to find
a solution that is close to the optimal reference solution.

In general the relaxation-based methods are easier to implement then equality-
based methods, because no additional gradient information is required by the in-
dividual elements from the neighboring elements which is essential in the case of
equality based coordination methods. A drawback of the relaxation is that during
the optimization no feasible solution is available, only at convergence of the method
the inconsistencies have vanished and a consistent design is obtained. Furthermore,
except for the hierarchic approximation method (ATC WUM) all knowledge on indi-
vidual design problem changes due to changes in neighboring elements is lost.

5.3 Indicators for performance

Performance of a multi-level optimization is measured inside the individual elements
and at the coordinator. The performance of individual elements is defined as local
performance, while the performance of the coordinator is defined as global perfor-
mance. A third means of measuring performance is the ability of finding an optimal
point. These three performance measurements are discussed in more detail in the
following sections.
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5.3.1 Local performance of elements

Local performance of individual elements is expressed as the total amount of func-
tion evaluations and the total amount of optimization iterations for the individual
elements. The total amount of function evaluations is measured as the number of
times the physical responses (r) are evaluated and the total number of optimiza-
tion iterations is measured as the number of times the functions associated with the
optimization problem (v) are evaluated.

The individual element optimizations are repeated until local convergence, which
is mathematically expressed as:

iεvf = ||iv
(t+1)
f − iv

(t)
f ||∞, (5.79)

The objective function values are compared between two successive completed opti-
mizations of the element optimization problem. This objective function value changes
between two successive element optimizations due to updated coupling variables (j

ih)
and/or updated shared design variables (jz) and/or changes due to increments of
the relaxation parameters in case relaxation of the consistency constraints is applied.
Hence, the cost of optimizing the individual elements lies in the optimization algorithm
chosen and updates of coupling variables, shared design variables and/or changes in
the relaxation parameters.

5.3.2 Global performance of complete hierarchy

Global performance of the entire hierarchy is expressed as the total amount of hier-
archical updates. Hence, the number of times data is exchanged between individual
elements. Exchange of data can become a time consuming process when individual
elements are evaluated on different machines connected via a network or when pro-
cesses that are related to the multi-level optimization have to be stopped in order to
make the data exchange possible.

The data exchange or updating of coupling variables is mathematically expressed
as:

i
jh

(t+1) = i
jh

(t) + τ (t)
(

i
jh

(t+1) − i
jh

(t)
)

; (5.80)

j
ih

(t+1) = j
ih

(t) + τ (t)
(

j
ih

(t+1) − j
ih

(t)
)

; (5.81)

ix(t+1) = ix(t) + τ (t)
(

jx(t+1) − jx(t)
)

; (5.82)

where τ (t) is an adjustable step-size.
The costs of exchanging data is related to the size of inconsistencies and rate of

change in the inconsistencies. Therefore, convergence of the coordination problem is
evaluated via measuring the inconsistency size and rate of change of the inconsistency,
mathematically expressed as:

εvc = max
{
||iv(t+1)

c ||∞, ||iv(t+1)
c − iv(t)

c ||∞
}

. (5.83)
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In some cases (e.g. the Null-Space method (Chapter 6)) Equation 5.83 is replaced
via a merit function. The merit function provides an alternative means of measur-
ing convergence of the coordination algorithm. Typically merit functions are used
for multi-level coordination methods. The mathematical form of the merit function
depends on the type of coordinator chosen.

Performance of the coordinator is mathematically expressed as the rate of conver-
gence (α) of the coupling variables (..

..h) and/or shared design variables (..x) towards
their optimal values (..

..hopt and ixopt:

||ijh
(t+1) − i

jhopt.||2 ≤ α||ijh
(t) − i

jhopt.||2
||jih

(t+1) − j
ihopt.||2 ≤ α||jih

(t) − j
ihopt.||2

||ix(t+1) − ixopt.||2 ≤ α||ix(t) − ixopt.||2




 0 < α < 1 linear (5.84)
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 α(t) → 0 superlinear

(5.85)
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 αǫℜ quadratic

(5.86)

These performance measures measure the rate of convergence of the coordinator
problem and not that of the individual optimization problems.

Figure 5.12 shows typical convergence rates of relaxation-based bi-level coordina-
tion algorithms. Initial convergence rates are due to the optimizer algorithm used for
the individual element optimizations. After a few iterations in which data between
elements is exchanged the bi-level coordination algorithms exhibit linear convergence
rate. The linear convergence rate is due to the fixed point iteration step embedded
in the bi-level coordination algorithms. A solution is found via iterating between:

i
jH

(t+1)(ir(t+1)) ⇔ jv
(t)
f (i

jh
(t)), (5.87)

until a stable solution is found. The coupling variables computed for element i . . .
depend on the outcome of the optimization of element j . . .. However, the optimization
of element j . . . depends on the outcome of the optimization of element i . . ..

The convergence rate of a fixed point iteration process can be improved via e.g.
Newton’s method. The basic idea is to add gradient information to the exchanged cou-
pling data. Equality-based multi-level methods rely on gradient information and/or
other means of approximations, however none of the relaxation-based techniques has
this property. Multi-level coordination methods are promising in this sense because
the coordination of coupling data takes into account the characteristics of the under-
lying coordination problem.
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Figure 5.12: Rate of convergence α for relaxation-based bi-level coordination methods.
Initial convergence rates are due to the optimization algorithm used for the individual element
optimizations. After a few iterations in which data is exchanged between elements all methods
show linear convergence rate.

5.3.3 Ability of finding the optimal point

The ability of a multi-level optimization algorithm to find the optimal point is a diffi-
cult measurement since the optimal point should be know beforehand. However, it is
often used as an argument to choose one multi-level method over another multi-level
method. Especially if a mathematical validation of the method is present this argu-
ment is explicitly pointed out in favor over other methods for which no mathematical
justification is known.

The ability of an algorithm to find the optimal point is in the present thesis
measured via the mathematical expression:

∣∣∣∣

∣∣∣∣
x

xopt.

− 1

∣∣∣∣

∣∣∣∣
∞

. (5.88)

Typically the optimal point is found performing an All-in-One optimization starting
from a large number of initial design points that cover the entire design domain.

In practice the local and global performance rates are just as important measure-
ments since these give insight into the time it will take to find a feasible design. An
algorithm that can find the optimum at a very low convergence rate α where the in-
termediate designs are infeasible may be less attractive then a prematurely converting
algorithm that has a higher convergence rate and produces a non-optimal design that
is still better then the initial design.
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5.4 Discussion

In this chapter the bi-level coordination methods were classified into two groups:
equality-based coordination methods and relaxation-based coordination methods. Each
group was subdivided into three smaller categories: hierarchic coordination methods,
hierarchic approximation based methods and non-hierarchic methods.

To summarize the multi-level methods that were discussed, Figure 5.13 presents
an overview of each method classified into each individual group. The methods differ
in individual problem definition, however, in general two distinct formulations can be
identified for equality-based and relaxation-based problems that require coordination.

How specific data is coordinated between the individual element optimizations is
characteristic for each type of method. For equality-based coordination three types
of coordination were distinguished. Coordination by means of calculating sensitiv-
ity data, coordinating by means of distributing design freedom and non-hierarchic
coordination based on sensitivity analysis. Relaxation based coordination methods
were also characterized into three different approaches. Coordination by assigning
increments in relaxation parameters, coordination by means of approximations and
non-hierarchic coordination by means of increments in relaxation parameters.

From each group a few methods were tested on a two-bar truss design problem.
The equality-based coordination methods, except for Concurrent SubSpace Optimiza-
tion, were able to find the reference optimum. Using approximations via Response
Surfaces reduced the computational costs, however the design obtained had a higher
objective function value then the configuration found without utilizing a Response
Surface. It was observed that constructing a Response Surface using a Bi-Level In-
tegrated System Synthesis approach was easier then constructing a Response Surface
for a Quasi-separable Subsystem Decomposition approach. The relaxation-based co-
ordination methods, except for Collaborative Optimization, were able to get close to
the reference optimal design. However, none of these approaches found the reference
optimal point exact.

The computational costs were compared showing that in terms of function evalu-
ations and optimization iterations the costs were of the same order when comparing
equality-based and relaxation-based coordination methods. Best results in terms of
function evaluations, optimization iterations and optimal design were observed for
Optimization by Linear Decomposition. In terms of hierarchical updates, a means
of measuring the communication between individual elements, fewer hierarchical up-
dates were observed especially when utilizing approximations. However, the difference
in amount of hierarchical updates is small between the equality-based coordination
approaches and the relaxation-based coordination approaches.

In the next chapter two multi-level coordination methods are discussed which have
more robust convergence behavior then the bi-level methods discussed in this chapter.
From the classification of the methods in this chapter and Chapter 6 a framework for
multi-level optimization is presented in Chapter 7.
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Figure 5.13: Overview of coordination approaches classified into two main stream ap-
proaches. The first (left): methods that coordinate individual elements where the decomposi-
tion is based on equality consistency constraints. The second (right): methods that coordinate
individual elements where the decomposition is based on relaxed consistency constraints. Each
main stream approach is subdivided into three classifications. The equality-based coordina-
tion into: linearization, approximation and non-hierarchic methods. The relaxation-based
coordination into: relaxation, approximation and non-hierarchic relaxation. Each bi-level
optimization method discussed in this thesis falls into one of these categories.



Chapter 6

Outlook: Multi-level coordination

methods

The previous chapter discussed Bi-level coordination techniques. If the number of
individual elements in the hierarchy becomes large, Bi-level coordination techniques
become less attractive in terms of computational costs. A solution is to extend the
Bi-level coordination technique to a multi-level coordination technique.

In this chapter an outlook to multi-level coordination methods is presented. The
derivation of the multi-level coordination methods is developed from optimality crite-
ria for coupled problems (see Chapter 3) and the introductory chapter on coordination
(see Chapter 4). Two multi-level coordination methods are presented: a Null-space
method which is discussed in Section 6.2 and a Schur-complement reduction method
which is discussed in Section 6.3.

6.1 Introduction

Multi-level coordination methods are derived from techniques that are developed for
solving large systems of equations. If multi-level optimization problems could be
written as an all-in-one problem, then a large system of equations would need to be
solved. In practice such an approach may not be feasible. However, assuming that all
the equations could be solved as a single large system. What are the necessary steps
to split the large problem into smaller problems? Can individual element optimization
problems be identified from these smaller problems? What coordination techniques
are then necessary to coordinate the individual elements to a solution of the entire
hierarchy?

In the present thesis the large system of equations to solve is identified as the
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equations that find a solution to the first-order conditions of a consistency constraint
optimization problem (Chapter 3). In the present chapter methods are discussed that
solve a large system of equations via a technique based on a Null-space method and
via an approach based on Schur-complement reduction. To introduce the necessary
equations first a two-level hierarchy is considered consisting of a single element per
level. Subsequently, the equations derived from this two-level hierarchy are extended
to multiple levels.

6.2 Null-space method

The basic idea of a null-space method is to reduce the dimension of the problem by first
computing a step towards the solution of the equality constraints and then minimizing
the objective restricted to the null-space of the linearized constraints. The resulting
minimization problem is smaller then the original one. Alexandrov and Dennis (1994)
(see also, (Alexandrov, 1998, Alexandrov et al., 1998)) adopted a null-space method
called tangent space approach to formulate a multi-level optimization method com-
bined with a trust region approach.

Alexandrov and Dennis assume that the multi-level optimization problem is of the
form:

min
0x,jx,

j
i
h

vf = 0vf

(
j
0h, 0x, 0r(j

0h, 0x)
)

s.t. j
ic(

j
ih, jr(i

jh, jx)) = 0
, (6.1)

where i = 0, 1, 2, .., 1.1, ..; j = 1, 2, .., 1.1, ..; i 6= j and i representing a higher level then
j. Hence, a top-down hierarchic decomposition using equality consistency constraints
is considered and the objective function depends solely on Level-0 design variables and
physical responses. Shared design variables i

jz are omitted in the current derivation
because these are treated similarly as the coupled physics for the null-space method.

To simplify the derivation, a two-level hierarchy of a single individual element per
level is considered, hence i = 0 and j = 1. For brevity of notation the dependence of
the physical responses r on the design variables x is omitted. A first step in solving the
first order conditions is to formulate the Lagrangian function of the AiO optimization
problem:

L(0x, 1x, 1
0h, 1

0λ) = 0vf (10h, 0x, 0r) + 1
0λ

T 1
0c(

1
0h, 1r) (6.2)

To simplify the notation, the vector y =
[

0x 1
0h

1x
]T

is introduced as well
as v = 0vf , λ = 1

0λ and c = 1
0c. Necessary conditions for a stationary point of

Equation 6.2 are:

∇yL = ∇yvf + λT∇yc = 0
∇λL = c = 0

. (6.3)

A linear Taylor series expansion up to first order of Equation 6.3 yields:

∇L(y + ∆y, λ + ∆λ) = ∇L + ∇ (∇L) [∆y, ∆λ]
T . (6.4)
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A stationary point to Equation 6.2 is found setting the left hand side of Equation 6.4
to zero. Introducing ∆λ = λ(t+1) − λ(t), Equation 6.4 can be rewritten as1:

∇2
y,yL∆y + ∇ycλ

(t+1) + ∇yvf ≈ 0
∇yc

T ∆y + c ≈ 0
. (6.5)

These equations may be viewed as the first order conditions for a quadratic model
where the design variables are y and the multipliers λ(t+1).

A common approach to solve the quadratic model of which Equation 6.5 are the
first order conditions is via Sequential Quadratic Programming (Haftka and Gürdal,
1999). An iterative procedure that solves at each step (t) the quadratic problem:

min
∆y

1
2∆yT∇2

y,yL∆y + ∇yL∆y + vf

s.t. ∇yc
T ∆y + c = 0

||∆y||2 ≤ δ

(6.6)

where δ is the radius of the trust region, ∆y is a vector that in the current derivation

contains ∆0x, ∆1
0h and ∆1x (hence, ∆y =

[
∆0x ∆1

0h ∆1x
]T

), the multipliers of

the quadratic problem are ∆λ, which relate to the multipliers (λ(t+1)) of Equation 6.5

as ∆λ = λ(t+1) −λ(t) and the term ∇yL is defined as ∇yL = ∇yvf +λ(t)T∇yc, with

y =
[

0x 1
0h

1x
]

and λ(t) is known at the current iterate (t).
In Equation 6.6 the linearized constraint and the trust-region constraint may con-

flict. Hence, the quadratic problem does not have a solution. One approach to
overcome this problem is the Tangent-Space approach (Dennis et al., 1997). This ap-
proach relies on a splitting of the search for an optimal solution into two (or more)
directions. Alexandrov (1998) identifies the splitting of the search for an optimal
solution into two (or more) directions as solving a multi-level optimization or multi-
disciplinary design optimization problem. In the context of multi-level optimization or
multi-level design optimization the search directions represent the individual element
optimization problems (elements such as used throughout the present thesis).

6.2.1 Extending to multiple levels

Multi-level optimization problems are characterized via a hierarchy that is present.
Due to the decomposition of the optimization problem into separate levels and in-
dividual elements a number of consistency constraints is introduced. To derive the
Tangent-Space approach, see Dennis et al. (1997), Equation 6.6 is extended to an
optimization problem covering multiple levels as follows.

The Lagrangian function is formulated for the optimization problem covering the
entire hierarchy as was done in Equation 6.2. This Lagrangian function is differenti-
ated with respect to the design variables (ix), coupling variables (i

jh) and Lagrange

multipliers (i
jλ). The resulting expressions are set to zero (first order conditions).

1∇2
y,yL∆y + ∇yc∆λ = −∇yvf − ∇ycλ(t) introducing ∆λ = λ(t+1) − λ(t) gives ∇2

y,yL∆y +

∇ycλ(t+1) = −∇yvf
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Vector y is introduced combining all design variables and coupling variables into a
single vector. The first order conditions are then linearized via a first order Taylor
series expansion (similar to Equation 6.4). Introducing ∆λ = λ(t+1) − λ(t) yields
Equation 6.5 for a problem of multiple levels and elements. In matrix-vector format:

[
∇2

y,yL ∇yc

∇yc
T 0

] [
∆y

λ(t+1)

]
= −

[
∇yv
c

]
(6.7)

where ∇yc is a block diagonal matrix:




∇y

1
0c

. . .

∇y
j
ic



 (6.8)

For the Tangent-Space approach no special structure of the matrix ∇yc is required.
The Tangent-Space approach can be applied to find a solution to Equation 6.7.

6.2.2 Sub step conditions

The tangent space approach splits the trial step ∆y into a normal component ∆yn

and a tangential component ∆yt. Therefore, the trial step is written as;

∆y = ∆yn + ∆yt (6.9)

where ∆yn is the normal component which is inside the trust-region and the normal
direction to the null-space of the constraint Jacobian, thus N (∇yc

T ). The vector
∆yt is the component of the step in the tangent space of the constraints and ∆yt

is defined2 as ∆yt = T∆ŷt. Where T is a matrix whose columns form a basis for
N (∇yc

T ).
The objective function relies on the Level-0 design variables increment ∆0x and

coupling variables increment ∆i
0h and the consistency constraint functions rely on the

lower level design variables increment ∆1x, . . . , ∆jx and coupling variables increment
∆j

ih. Therefore, the splitting of the design vector increment into a normal direction to
the null-space of the constraint Jacobian can be seen as the Element-j component of
the design problem and the step into the tangent space of the constraints can be seen
as the Level-0 component of the design problem. Hence, Equation 6.9 is rewritten as:

∆y = ∆1y + . . . + ∆ny︸ ︷︷ ︸
normal component

+ ∆0y︸︷︷︸
tangential component

(6.10)

for a hierarchy of n + 1 elements.
A complete derivation of the individual element optimization problems is be-

yond the scope of the present thesis. Therefore, the interested reader is referred
to Dennis et al. (1997) for a complete derivation of the tangent space method. Es-
sential is that in each individual optimization problem a direction is computed that

2Recall Chapter 4 for an introduction to the null-space method.
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satisfies criteria that make sure that each calculated step is into the direction of the
consistency constraints. Furthermore, procedures are defined that make sure that
each total step of the entire hierarchy is into the direction that minimizes the Level-0
objective function 0vf .

6.3 Schur-complement reduction

DeMiguel and Nogales (2008) discussed the poor convergence characteristics of the
well established Bi-Level algorithms in multi-level optimization. The authors pro-
pose the use of interior point methods which are well established solution techniques
for large optimization problems. Especially the super linear or quadratic conver-
gence properties of these methods outperform the Bi-level procedures. However, the
mathematical assumptions on which these algorithms rely are more strict then that of
Bi-level algorithms. In their work, DeMiguel and Nogales study a Schur interior point
method that can only be applied to problems that satisfy the so-called Strict Linear
Independent Constraint Qualification (SLICQ), see DeMiguel and Nogales (2008) for
a definition. In contrast, Bi-level optimization methods can be applied to problems
that satisfy the less restrictive so-called Linear Independent Constraint Qualifica-
tion. Furthermore, Newton approximations rely on the use of a single optimization
approach, whereas Bi-level algorithms do not require the use of the same optimiza-
tion algorithm in each subsystem. DeMiguel and Nogales show a number of steps
to overcome these difficulties such that interior point methods can be applied as a
coordination method for multi-level optimization problems. These steps are discussed
in the following sections.

6.3.1 The Schur-complement

DeMiguel and Nogales consider multi-level optimization problems of the form:

min
0x,jx,

j
i
h

vf = vf

(
0x, jx, j

ih, r(0x, jx, j
ih)
)

s.t. j
ic(

j
ih, jr(jx, j

ih)) = 0

, (6.11)

where i = 0, 1, 2, .., 1.1, ..; j = 1, 2, .., 1.1, ..; i 6= j and i representing a higher level then
j. Shared design variables j

iz are not considered in the present derivation because the
consistency constraints for shared design variables are treated similarly as the con-
sistency constraints for the coupled physical responses. Furthermore, for the current
derivation the multi-level hierarchy is reduced to a two-level hierarchy consisting of a
single individual element per level. Therefore, the multi-level optimization problem
that is considered yields:

min
0x,1x,10h

vf = vf

(
1
0h, 0x, 1x, 0r(0x, 1

0h), 1r(1x, 0
1h)
)

s.t. 1
0c(

1
0h, 1r(1x, 0

1h)) = 0
(6.12)

Hence, a top-down hierarchic decomposition using equality consistency constraints is
considered.
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For brevity of notations the dependence of the physical responses r on the design
variables x and mapped physical responses h is omitted. To introduce the Schur-
complement first the first-order conditions for the Lagrangian function:

L(0x, 1x, 1
0h, 1

0λ) = vf (10h, 0x, 1x, 0r, 1r) + 1
0λ

T 1
0c(

1
0h, 1r) (6.13)

of the problem defined in Equation 6.12 are formulated. Necessary conditions for a
stationary point of Equation 6.13 are:

∇yL = ∇yvf + 1
0λ

T∇y
1
0c = 0

∇1
0λL = 1

0c = 0
, (6.14)

where
[

0x 1
0h

1x 1
0λ

]
= y.

A Taylor series expansion up to first-order that is evaluated at the current step
yields:

[
A −C

−CT M

] [
∆0y

∆1y

]
= −

[
0w
1w

]
(6.15)

where

∆0y =
[

∆0x ∆1
0h

]T

∆1y =
[

∆1x ∆1
0λ

]T
0w =

[
∇0yL

]T
1w =

[
∇1yL

1
0c
]T

(6.16)

which means that A = ∇0y
0w, C = −∇0y

1w = −
(
∇1y

0w
)T

and M = ∇1y
1w.

One approach to solve Equation 6.15 is via Schur-complement reduction. The
Schur-complement approach is a well-established approach within domain decompo-
sition methods. The method relies on a splitting of the system of equations into
internal degrees of freedom of the individually connected domains and the degrees of
freedom on the interfaces that connect the individual domains. The degrees of freedom
of the internal domains are eliminated and the resulting Schur-complement matrix is
used to solve the interfaces. This allows for parallelization of computations in the
sense that computations on internal degrees of freedom can be done independently
from neighboring domains after the interfaces are evaluated.

In the context of multi-level optimization the interfaces associated with the Schur-
complement approach are the gradients of the consistency constraints. The individual
connected domains associated with the Schur-complement approach are the individual
element optimization problems that enter the iteration matrix of the interior point
method via Equation 6.13 into Equation 6.15.

The Schur-complement of the iteration matrix in Equation 6.15 is defined:

S = A− CT
(
M−1

)
C (6.17)

where it is assumed that matrix M is invertible.
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DeMiguel and Nogales discuss the necessary conditions for M and S to be invert-
ible. Linear independence constraint qualification and second-order sufficient condi-
tions for Level-1 imply that matrix M is invertible. Linear independence constraint
qualification means that the gradients of the constraints ∇c that are active are linear
independent. Consistency constraints can only be inactive if there is no coupling be-
tween individual elements and therefore it is unlikely that such consistency constraints
are present.

If the Schur-complement matrix S is also invertible the Level-0 part of the search
direction is found as:

S∆0y = −
(
0w − CT

(
M−1

)
1w
)

(6.18)

and the Level-1 part of the search direction is found as:

M∆1y = −
(
1w − C∆0y

)
(6.19)

DeMiguel and Nogales show that under the Strong Linear Independence Con-
straint Qualification (for any solution to the Level-0 optimization problem the Level-
1 optimization has an optimum at which all the consistency constraints are active)
the Schur-complement approach converges super linearly and in some cases quadrati-
cally. Furthermore, DeMiguel and Nogales discuss the fact that the gradients that are
necessary to evaluate the interior point matrix cannot be calculated from standard
sensitivity analysis of the individual element optimizations. Because the individual
optimization problems are coupled, sensitivities of, e.g. Level-1, are computed with
optimal parameters coming from Level-0. However, optimal parameters from Level-0
assume that the optimum of Level-1 is found beforehand and that coupling between
elements is consistent. Because the consistent optimal solution of both individual
elements is not known beforehand the sensitivities of each individual element are not
calculated exact. The authors show how approximations to these gradients can be
constructed under certain mathematical assumptions. A complete derivation of these
approximations lies outside the scope of the present thesis. However, one of their main
assumptions is that optima of the individual elements behave as a continuous function
under changes in the coupling variables. This assumption is not valid for most multi-
level optimization formulations that are discussed in Chapter 5. Therefore, care has
to be taken in formulating the individual element optimization problems such that
their optima do behave as a continuous function in order to use the Schur-complement
approach.
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6.3.2 Extending to multiple levels

In case of a top-down hierarchic decomposition with n + 1 individual optimization
problems the Newton search direction has the characteristic form:





A 0C
0CT 1B 1C

1CT
. . .

. . .

. . .
. . .

n−1B n−1C
n−1CT M









∆0y

∆1y

...

∆ny





= −





0w
1w

...

nw





(6.20)

where A =

[
∇2

0xL ∇i
0h
∇0xL

∇0x∇i
0h
L ∇2

i
0h
L

]
; 0C =

[
0 0

∇ix∇i
0h
L ∇i

0h
i
0c

]
;

..B =




∇2
jx,jxL ∇jx

j
ic ∇k

j
h∇jxL

∇jx
j
ic

T 0 0

∇jx∇k
j
hL 0 ∇2

k
j
h,k
j
h
L



; ..C =




0 0

0 0

∇kx∇k
j
hL ∇kh

k
j c



;

and

M =

[
∇2
mxL ∇mx

m
l c

∇mx
m
l cT 0

]
. (6.21)

where indices i, j, k, l and m denote the position in the hierarchy. Furthermore, the
right hand side is constructed as:

0w =
[
∇0yL

]T 1..nw =
[
∇kyL

k
j c
]T

; (6.22)

and the vector ∆y is defined as:

∆0y =
[

0x i
0h

]T
∆1..ny =

[
kx i

jλ
k
j h

]T
(6.23)

The Schur-complement for individual optimization problems becomes then for
problems on the first level:

1S = 0A − 1CT 1B−11C (6.24)

and for the bottom level:

..S = ..B − ..CT ..M−1..C. (6.25)

For the intermediate levels the Schur-complement writes:

nS = n−2B− n−1CT n−1B−1n−1C. (6.26)

The search direction for Level-0 is computed according to Equation 6.18 and the
search direction for the individual elements of the lower levels are evaluated according
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to Equation 6.19, where the matrices have to be replaced according to the level that
is evaluated. This procedure holds for an hierarchic top-down decomposition pro-
cedure without coupling between elements on the same level. Decomposition where
coupling among elements on the same level is present and non-hierarchic decomposi-
tion are derived similarly. The interested reader is referred to Smith et al. (1996) for
a derivation of the Schur-complement when such couplings are present.

6.4 Discussion

The null-space method derived by Alexandrov and Lewis who denote the method
Trust Region Model Management has been widely accepted in the field of multi-
disciplinary design optimization. An overview is presented by (Rodŕıguez et al.,
2000). The method has been implemented in the DAKOTA (Giunta and Eldred,
2000) optimization package and various successful applications of the method are
recorded in literature (e.g. Campana et al. (2006), Hoyle et al. (2006)).

To the author’s knowledge Schur-complement reduction has not been applied to
multi-level optimization problems yet. However, it is expected that the large compu-
tational costs associated with solving bi-level optimization problems will stimulate the
search for coordination algorithms that show better convergence characteristics such
as the null-space method and Schur-interior point iteration presented in this chapter.





Chapter 7

Object-oriented multi-level

optimization framework

The previous chapters lay-out the theoretical foundation for the framework that is
developed in this chapter. The framework is described along the concept of object-
oriented programming. Object-oriented programming focuses on the actual data (the
objects) and the procedures that belong to this data rather then procedures or algo-
rithms that can change data. Implementation details on how behavior of an object
is accomplished are hidden inside the object. The benefit is an easier to maintain
software framework. This chapter focuses on the structure of the multi-level opti-
mization framework and the interfaces of each of the components of the framework.
Implementation details are not provided in the text of the present thesis.

In Section 7.1 an introduction into the concept of object-oriented programming is
provided. Followed by a discussion of the object-oriented framework for multi-level
optimization in Section 7.2.

7.1 Object-oriented programming

Object-oriented programming is a methodology to develop a software program via
focussing on objects (the data) and the corresponding methods (procedures) that
belong to this data, rather then focussing on algorithms that are provided with data
that is changed. Objects have two characteristic features; objects have state and
exhibit behavior. The state of an object is stored in fields also known as attributes.
The state of the object can be changed via accessing the object’s methods. Methods
operate on an object to change it’s state which is the primary mechanism for object-
to-object communication.

139
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Access to the internal state (the data) of an object can be hidden from other
parts of the program via exclusively providing access to the state through accessor
methods. This is known as data encapsulation and is a basic principle of object-
oriented programming.

Defining states of an object and providing methods to give access to and to change
these states, the object remains in control of how other objects or programs may use
the attributes of the object. This has a number of advantages:� Modularity: Every object’s source code is independently written from other

objects. Therefore, changes to the internal source code of the object do not
influence other objects. An object can be reused, once defined it can be easily
used in other parts of the program.� Information-hiding: Providing access to the object’s state only through it’s
methods hides the internal implementation of the object to other objects and/or
programs.� Code re-use: Already existing objects can be easily inserted into another pro-
gram. Therefore, complex or task specific code can be tested separately by
others and used without considering the object’s implementation.� Plug-in and debugging ease: Objects that cause difficulties can easily be re-
moved and replaced with a different object.

A class is a blueprint from which an object can be created. The class describes
the state and behavior of an object. All code in an object-oriented program is written
inside a class. An instance of a class is the actual object at runtime.

Inheritance is one of the powerful advantages of object-oriented programming.
Classes may inherit state and behavior from super classes, such classes that inherit
the super class’s behavior represent a more complex version of the superclass that has
additional attributes and/or methods and/or overwrites method’s behavior. In such
a case a blueprint of more complex behavior is created, while inheriting the attributes
and methods of the super class. If more complex structures are necessary, a subclass
can be created that inherits attributes and methods from the class and super class.
This is called multiple inheritance. Inheritance is a natural way to organize and
structure the code.

An interface is a contract between a class that implements the interface and
other components of the program. The class that implements a specific interface
is more formal towards the outside world on the behavior it promises to have. A class
that implements an interface has to provide all the behavior that the interface has
published. An interface itself has no attributes and objects cannot be created from
it.

A package collects classes and interfaces that belong together into a single name-
space. Packages enable the programmer to manage large software programs easier and
to test parts of the code separately. Packages also provide a convenient means of ex-
tending a program with basic routines that any program may require at specific time.
These routines are accessible through the Application Programming Interface (API)
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which is a collection of packages provided with most (object-oriented) programming
languages.

7.2 Framework components

The multi-level framework is modeled using an Integrated Development Environment
(IDE). This is a software application that provides tools for computer programmers
to develop or maintain software. In general an IDE consists of a source editor, a
compiler and/or software code interpreter, automation tools for building the code and
a debugger. Furthermore, the IDE may have a procedure for version control (CVS)
(The CVS Team, 2008) and in some cases a drawing tool to draw the basic structure
of the program according to the Unified Modeling Language (UML) specification
(Object Management Group, 2008).

There are many IDEs available, however in the present thesis the Netbeans (Sun
Microsystems, Inc., 2008b) IDE is used. It is free (and open-source), has an active
developer community and it provides all the necessary tools required for the develop-
ment of software, including a UML editor1.

The Unified Modeling Language (UML) is a standardized visual specification lan-
guage for object modeling. The language includes a graphical notation used to create
an abstract model of a system, called UML model and can be used for any object-
oriented programming language.

The Netbeans environment is used to draw and program the framework and the
target language for implementation is the Java (Sun Microsystems, Inc., 2008a) pro-
gramming language. However, no implementation specific details are given therefore
any object-oriented language can be applied to implement the present multi-level
framework.

Java is an object-oriented language developed by Sun Microsystems that has most
of its syntax derived from older languages such as C and C++. In contrast to lan-
guages such as C or C++ which need to be compiled on each individual computer
architecture, Java is compiled to bytecode2 that can run on any Java virtual machine
independently of the computer architecture.

7.2.1 The mlprogram package

The multi-level framework resides in the mlprogram name-space (directory or pack-
age) separated from the user supplied classes that are required to model the analysis
problem and to model the optimization problem, see Figure 7.1. The framework
consists of five major components:� The subsystem package, holding the individual element analysis, optimization

problem data and the procedures to operate on this data.

1The UML specification used in Netbeans is 1.4 extended with an early version of the UML2.0
specification. The Netbeans editor and therefore the UML diagrams in the present thesis follow the
1.4 specification of the language and not the 2.0 specification.

2Bytecode is a term which is used to denote various forms of instruction sets designed for efficient
execution by a software interpreter.
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elements, hence the objects instantiated from the classes inside the subsystem

package.� The middlelevel package holding the coupling data that is shared among indi-
vidual elements (the subsystems) and it provides procedures mapping the data
from one element onto a neighboring element.� The postprocess package holding the procedures operating on the data after the
multi-level optimization has finished, such as writing results to file, etc.� The userfiles package holding user supplied files.

The main components of the mlprogram package are shown in Figure 7.1 together
with the userfiles package that contains user supplied files. Each folder in the figure
represents a name-space (package) holding the classes specific to that name-space
(package).

7.2.2 The subsystem package

The subsystem package holds the individual element optimization problem formula-
tion, see Figure 7.2. Mathematically the problem that is embedded in the subsystem

package has one of two formats:

Equality-based:

min
ix,

j
i
h

ivf (j
ih, ix, ir(ix, j

ih))

s.t. ivg(
j
ih, ix, ir(ix, j

ih)) ≤ 0
ivh(j

ih, ix, ir(ix, j
ih)) = 0

ivc(
i
jc(

ir, i
jh)) = 0

ivc(
j
ic(

jr, j
ih)) = 0

iva(i
jh, ix) ≤ 0

where i 6= j

;

Relaxation-based:

min
ix,

j
i
h

ivf (j
ih, ix, ir(ix, j

ih)) +
∑(

ivc(
i
jc(

ir, i
jh)) + ivc(

j
ic(

jr, j
ih))

)

s.t. ivg(
j
ih, ix, ir(ix, j

ih)) ≤ 0
ivh(j

ih, ix, ir(ix, j
ih)) = 0

where i 6= j

.

(7.1)

In contrast to an optimization problem formulation that is not coupled, mathemati-
cally expressed as:

min
x

vf (x, r(x))

s.t. vg(x, r(x)) ≤ 0
vh(x, r(x)) = 0

. (7.2)
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Figure 7.2: The subsystem package consists of four main components. The elements
package, which contains the classes that provide access to the element data. The analysis
package that contains interfaces which describe the methods to operate on the element data
and how communication with analysis code is to be handled. Furthermore, it contains the
classes necessary to execute the analysis code. The Optimization package that contains the
interfaces that execute the optimization algorithm. The multilevel package, which contains
additional classes to account for the multi-level nature of the element’s optimization problem.
Furthermore, the subsystem package contains an interface SubSystemInterface that defines
two methods that every element implementing the interface should have.

The multi-level formulation for individual problems (Equation 7.1) has additional
terms. In case of equality-based decomposition, the additional terms are present as
constraints (ivc and iva). In case of relaxation-based decomposition, the additional
terms (ivc) are present as additional terms in the objective function. In both cases
additional coupling variables are present.

Object-oriented programming focuses on the data first and secondly on the op-
erations on this data. Therefore, the subsystem package is split into four individual
packages:� the elements package providing the bookkeeping for the element data such as:

design variables (ix); physical responses (ir) and optimization functions (iv)
amongst others and provides accessor methods allowing access to the element
data;� the analysis package providing methods that evaluate the physical responses of
an individual element (ir);� the optimization package providing methods that evaluate the objective function
(ivf ) and/or constraint functions (ivh, ivg) of each individual element;� the multilevel package providing methods that account for the multi-level na-
ture of the individual analysis and/or optimization problem. In case of equality-
based decomposition methods, additional constraints (ivc and iva) are evalu-
ated. In case of relaxation-based decomposition methods, additional terms (ivc)
that are added to the objective function are evaluated.



7.2 FRAMEWORK COMPONENTS 145

The class that provides access to individual optimization problem data (located
in the elements package) is constructed from interfaces. These interfaces are defined
inside the analysis package, inside the optimization package and inside the multilevel

package. Figure 7.3 shows the inheritance of interfaces and their equivalent mathe-
matical expression.

The hierarchical pattern of accessor methods for the elements in the element pack-
age is also applied to the methods operating on the element classes. In Figure 7.4 the
interfaces that define the behavior that analysis programs and optimization programs
should implement are shown.

The RunAnalysisInterface prescribes the methods that are necessary to compute
physical responses. Furthermore, methods required for mapping of responses onto
neighboring elements are prescribed via the RunAnalysisInterface. Responses are
required for the optimization algorithm. The optimization algorithm is not an ex-
tension of the analysis program. Analysis and optimization are considered individual
algorithms that require different accessor methods.

The RunOptimizationInterface prescribes methods conducting optimization ap-
plied to elements that implement the RunAnalysisInterface. Because individual op-
timization problems can be coupled to other elements (multi-level optimization) an
extension of the interface is present. In Figure 7.4 a relaxation based interface is
shown. Furthermore, differences in mathematical expression between coupled opti-
mization problem formulation and optimization problem formulation without coupling
are shown.

Finally, the subsystem package contains an interface for the subsystems (Figure
7.2). Each subsystem implements the SubSystemInterface and therefore provides
methods to access the subsystem’s identifier and type of decomposition that is used
for decomposition.

The content of each package is discussed separately and modeled via class dia-
grams. Attributes and methods that do not directly contribute to the discussion are
omitted for brevity of the class diagrams.
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Figure 7.3: Interfaces describing the structure of a typical individual optimization prob-
lem. The top interface(the SubSystemInterface) provides a contract for methods allow-
ing access to the identity and type of the multilevel method. One level lower, the in-
terface (the SubSystemAnalysisInterface) defines methods that provide access to input
variables and physical responses related to the analysis. One level lower the interface
(SubSystemOptimizationInterface) defines attributes and methods providing access to the
optimization data. The bottom level, the interface (the SubSystemRelaxationInterface) de-
scribes the methods related to the multi-level optimization method. In the present figure a
relaxation based method is shown.
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Figure 7.4: Interfaces describing the structure of a typical individual optimization problem.
The RunAnalysis interface prescribes methods that analysis algorithms have to implement
in order to be able to communicate with the elements. Methods that compute the physical
responses, as well as, methods to compute the mapping of these physical responses to neighbor-
ing elements should be implemented. The RunOptimizationInterface interface prescribes the
necessary methods that optimization algorithms should implement. This interface covers the
basic methods associated with executing optimization algorithms. The interface is extended
via RunRelaxationBasedOptimizationInterface in case relaxation-based decomposition is ap-
plied to decompose consistency constraints. The mathematically equivalent expression of the
interface shows an Augmented Lagrangian decomposition. The added functionality of the
RunRelaxationBasedOptimizationInterface is shown compared to the RunOptimizationIn-
terface.
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The elements package

The elements package (Figure 7.2) contains the subsystem classes. These classes
are defined reflecting the decomposition method chosen (Chapter 3 and coordina-
tion method (see chapters 5 and 6). An example of a class that implements, e.g. a
relaxation based method, is a relaxation based class shown in Figure 7.5. This Sub-

SystemAugmentedLagrangian class provides methods to access, and fields to store,
the data associated with an individual element. This individual element is, for the
present class, decomposed from the multi-level optimization hierarchy via a relaxation
based decomposition (here: Augmented Lagrangian decomposition, see Chapter 5).
Hence, the SubSystemAugmentedLagrangian class provides methods to access data
associated with:

min
ix,

j
i
h

ivf (j
ih, ix, ir(ix, j

ih)) +
∑(

j
iλ

T · (j
ic(

ir, j
ih)) + ||ji s ◦

j
ic(

ir, j
ih)||22

)
. . .

+
∑(

i
jλ

T · (i
jc(

jr, i
jh)) + ||ijs ◦

i
jc(

jr, i
jh)||22

)

s.t. ivg(
j
ih, ix, ir(ix, j

ih)) ≤ 0
ivh(j

ih, ix, ir(ix, j
ih)) = 0

(7.3)

Furthermore, the class provides accessor methods that provide access to attributes
(states) stored inside the fields of the class. Element classes themselves have no
methods to operate on the data other then creating, replacing and removing the
data. Hence, no function evaluations are done inside any of the classes in the elements

package. Additionally, the element classes contain methods that call methods from
other objects. These methods from other objects can evaluate physical responses or
conduct optimization from the data offered via the element’s methods.

The analysis package

The analysis package, shown in Figure 7.6, contains two interfaces that are required to
communicate between a subsystem and an external program or class that can evaluate
the responses (ir). The two interfaces are:� the SubSystemAnalysisInterface that defines methods every element implements

in order to provide access to attributes from the element class.� the RunAnalysisInterface defines methods programs or classes implement in
order to evaluate responses (ir) from each individual element.

Thus, the SubSystemAnalysisInterface is implemented by elements to allow the out-
side world to access the attributes required for analysis. Typically, these attributes
are constant values required to set algorithm specific parameters. Furthermore, these
attributes consist of design variables (ix) and/or shared design variables (i

jz) that
are input parameters to the analysis. Finally, these attributes consist of coupling
variables (j

ih) that are input parameters to the analysis. Therefore, the SubSystem-

AnalysisInterface provides a formal contract to access these attributes. Additionally,
a method executing analysis is provided without specifying the type of analysis.
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Figure 7.5: The element package contains elements that implement the subsystem inter-
face and interfaces that extend the subsystem interface with multi-level optimization method
specific attributes and methods. SubsystemAugmentedLagrangian is an element that expects
an Augmented Lagrangian decomposition to decouple the physical model and associated opti-
mization problem.

Figure 7.6: The analysis package consists of two interfaces. The first interface describes
the methods that every analysis program has to implement that will be used by the multi-level
program. The second interface describes the methods that every element has to implement in
order to allow access to the analysis variables.
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Figure 7.7: The optimization package consists of a package containing the optimization
algorithm in the algorithm package. A package is present that is involved with storing the
optimization results. Furthermore, a package is present that contains the design problem
(objective and constraint functions) and finally two additional interfaces are present. The
SubSystemOptimizationInterface interface defines methods providing access to data stored
in the element for optimization purpose. The RunOptimizationInterface is implemented for
each optimizer algorithm to communicate with the multi-level program.

A requirement for the analysis class is that it implements the RunAnalysisInter-

face. This interface specifies a formal contract to return ir and i
jH(ir) to other parts

of the object oriented program. Therefore, classes that implement the RunAnalysisIn-

terface provide a method to evaluate the physical responses and mapping of physical
responses onto neighboring elements.

Finally, the externalprogram package can be used to attach an external analysis
program to the Java framework.

The optimization package

The optimization package, see Figure 7.7, contains classes required for optimization
of a subsystem object. There are two interfaces that require implementation:� the SubSystemOptimizationInterface defines methods for classes of the SubSys-

tem package allowing access to attributes associated with the optimization prob-
lem.� the RunOptimizationInterface defines methods every optimization algorithm im-
plements to access SubSystem attributes and methods necessary for optimiza-
tion.

The SubSystemOptimizationInterface requires methods accessing the design variables
present in the element. Furthermore, it requires a method calling an optimization
routine that carries out the optimization, methods that access the scaling variables
to properly scale the design problem, methods accessing the objective function value,
methods accessing the values of the constraint functions and methods accessing the
value of the upper and lower bounds.

The RunOptimizationInterface requires methods executing the optimization rou-
tine, methods passing updated values of the design variables to the SubSystem object
and methods mapping updated values of shared design variables (ix) and/or coupling
variables (j

ih).
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Figure 7.8: The designproblem package consists of an interface which user defined ob-
jective function classes have to implement. An interface for the constraints of the design
problem which does not include consistency constraints (ivc) or additional information from
neighboring elements (iva). This is dealt with elsewhere inside the multilevel package. A De-
signVariableVector class, which rearranges coupling variables and/or shared design variables
from the local design problem.

The designproblem package

An optimization package expects in it’s arguments an objective function, constraint
functions and lower and upper bounds on the design variables. The lower and up-
per bounds are attributes that can be passed to the arguments directly, however the
objective function and constraint functions are specified by the user. Therefore, sep-
arate classes that implement the objective function and the constraint function are
required.

The designproblem package (Figure 7.8) contains interfaces to evaluate the objec-
tive function and the constraint functions. Furthermore, the designproblem package
provides a class DesignVariableVector used to create a single design variable vector
from local design variables, coupling variables and shared design variables. The user
provides objective and constraint functions to the optimization problem via imple-
menting the ConstraintsInterface and ObjectiveInterface for classes that model the
design problem.

The optimizerdata package

The optimizerdata package attributes computed via the optimizer algorithm. These
attributes are required for post-processing or for coordination of the individual ele-
ments. The package consists of the OptimData class that has two additional classes:
the Iterates class holding numerical costs of the optimization; and the Multipliers

class holding the Lagrange multipliers of the element design constraints.

The multiLevel package

Coupling between elements is separated from analysis and optimization via the mul-

tilevel package. Embedded in this package the classes are defined that store and
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provide access to coupling parameters and classes that provide methods to compute
contributions of the coupling problem formulation to the optimization problem.

Each individual element can be coupled to a number of neighboring elements.
The coupling between an element and a single neighboring element is stored inside
the CouplingParameters class, see Figure 7.9 and Figure 7.10. In case shared design
variables between elements and neighboring elements are present, the CouplingPa-

rameters class is extended via a CouplingOptimizationParameters class. Finally, if
relaxation of the consistency constraints is present the latter class is extended to
provide access to relaxation parameters via a CouplingMultipliers class.

The multilevel package stores attributes necessary to compute consistency equa-
tions, see Figure 7.10. The consistency equations relaxed via, e.g., an Augmented
Lagrangian decomposition are mathematically expressed as:

ivc = i
jλ

T
(
i
jc
)

+ ||ijs ◦
i
jc||

2
2; (7.4)

where i
jc = i

jH
(
ir
)
− i

jh. (7.5)

The CouplingParameters class holds the coupling variables (i
jh) and the mapped

response variables (i
jH(ir)). In case design variables are shared a subclass of Cou-

plingParameters is used (see Figure 7.10) extending attributes and methods available
in the CouplingParameters class. This subclass is called the CouplingOptimization-

Parameters class and holds shared design variables (ix).
Depending on the relaxation method chosen, additional parameters are present in

the consistency formulation, e.g. Augmented Lagrangian decomposition (see Equa-
tion 7.4). The classes that provide access to these parameters are defined inside the
relaxation package.

The relaxation package

The relaxation package, see Figure 7.11 contains packages associated with a specific
relaxation method (see Chapter 3.2) for the consistency constraints. Each package
provides means to extend the CouplingOptimization class accounting for relaxation
parameters. Furthermore, each package provides means to add a contribution to the
objective function due to the relaxation method chosen (see Equation 7.1).

Furthermore, the relaxation package consists of two interfaces. The SubSys-

temRelaxationInterface specifying methods giving access to relaxation parameters
(Figure 7.3) and a RunRelaxationBasedOptimizationInterface defining methods adding
relaxed consistency constraint functions to the element objective function (Figure 7.3).

The equality package

The equality package (see Figure 7.12) contains packages associated with specific
equality-based multi-level optimization methods. The equality-based methods add
additional constraints to the individual element optimization problem. These addi-
tional constraints may consist of consistency constraints (ivc) and/or constraints that
approximate behavior of neighboring elements (va).
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Figure 7.9: Coupling between an element and a single neighboring element is stored in-
side the CouplingParameters class. In case shared design variables are present this class
is extended via a CouplingOptimizationParameters class providing access to shared design
variables. If consistency is relaxed a class extending the CouplingOptimizationParameters
class is used providing access to relaxation parameters. In the present example, access is
provided to Lagrange multipliers and penalty weights associated with Augmented Lagrangian
decomposition.
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Figure 7.10: The multilevel package provides two objects holding coupling data. Data that
is mapped from one element onto a neighboring element in case of coupled analysis and shared
design variables in case of coupled optimization functions. Copy variables represent values
of neighboring elements for coupling variables used in the present element. For brevity of the
class model the accessor methods to set the attributes of the classes are omitted.
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Figure 7.11: The relaxation package contains objects that provide access to relaxation pa-
rameters. Three different relaxation packages are shown. Augmented Lagrangian Relaxation,
Lagrangian Relaxation and Relaxation via a penalty function.

Figure 7.12: The equality package contains interfaces describing the behavior of equality
based multi-level optimization methods. The SubSystemEqualityInterface interface is im-
plemented by classes adding access to additional approximation data stored in the attributes
of the class. The RunEqualityBasedOptimizationInterface is implemented by every opti-
mization algorithm that requires access to approximation data stored in the attributes of a
class implementing the SubSystemEqualityInterface. Finally, linearizeddecomposition is a
package that contains classes that implement both interfaces for multi-level methods based on
linearized decomposition.
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Figure 7.13: The middlelevel package bridges between two elements that are coupled. It
consists of a mapping package that maps the responses, coupling variables and coupled opti-
mization data originating from the coupling between elements. Furthermore, the middlelevel
package consists of a consistency package that computes the inconsistency size between the
coupling variables and the mapped responses and between shared design variables. Finally, it
acts as a buffer where the latest computed value is stored from the coupling parameters inside
the coupling package. Hence, the individual elements do not directly communicate with each
other, instead they communicate through the middlelevel package. The middlelevel package
contains a MiddleLevel class from where MiddleLevel objects can be created. One object is
created between each pair of elements that are coupled.

7.2.3 The middlelevel package

The middlelevel package shown in Figure 7.13 contains the interface between two cou-
pled subsystems. The package stores coupling data from one subsystem and provides
methods to access this data to a coupled subsystem when requested. Both subsystems
that are coupled retrieve coupling data via the classes specified in this package. Access
to the class in the package is controlled via the coordinator package (Figure 7.1). The
coordinator package allows access to update coupling data via the mapping package.
Or the coordinator allows access to determine the gap in consistency between two
coupling variables via the consistency package.

The coupling package

The coupling package shown in Figure 7.14 stores the coupling data from two ele-
ments. It stores mapped responses (i

jH
(
ir
)
) and coupling variables (j

ih) from both

elements, as well as, shared design variables (ix). The middleleveldatastorage class
stores identifiers of both elements. For each element a MiddleLevelCoupling class is
instantiated that holds the coupling data. The MiddleLevelDataStorage class provides
accessor methods to data and has a Reentrantlock procedure to ensure that no more
then one element at a time tries to read and/or write to the MiddleLevelCoupling

attributes.
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Figure 7.14: The coupling package provides two objects: MiddleLevelDataStorage that
provides methods to check which coupling data should be accessed if an element requests
access to the coupling data; MiddleLevelCoupling stores the physical coupling data and/or
the shared design variables.
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Figure 7.15: The consistency package provides an interface for measuring the size of in-
consistencies and a class that implements this interface. Furthermore, it contains a class
that holds the size of the inconsistencies and provides methods to return various measures of
the size of these inconsistencies.

The mapping package

The mapping package holds a single class providing a single method MapPhysical-

Responses. This method calls the mapSubSystemResponses method (see Figure 7.4)
from the analysis algorithm (see Figure 7.6) that implements the RunAnalysisInter-

face (Figure 7.6) mapping physical responses from an element onto the middle-level.

The consistency package

The consistency package shown in Figure 7.15 consists of two classes and an interface.
The interface is called ConsistencyMeasurementInterface and defines what behavior
is expected from classes computing the size of inconsistency between two elements.
The consistency gap is mathematically expressed as:

i
jc = i

jH(ir) − i
jh left side; (7.6)

j
ic = j

iH(jr) − j
ih right side; (7.7)

i
jc = ix− jx left side; (7.8)
j
ic = jx − ix right side. (7.9)

The left or right side reflects sides of the coupling circle (see Chapter 3).
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ConsistencyMeasurement is a class implementing the ConsistencyMeasurementIn-

terface interface and computes the inconsistencies and uses the InConsistencySize

class to store the size of the inconsistency. The InConsistencySize class’s attributes
store the inconsistencies between mapped responses and shared design variables sep-
arately. Furthermore, different norms of these inconsistencies are returned depending
on the method called, e.g. the Euclidean norm:

GapLeftSide = ||ijc|| = ||ijH(ir) − i
jh||2. (7.10)

7.2.4 The coordination package

The coordination package is shown in Figure 7.16. The package consists of a coordi-

nator class that coordinates the steps required to conduct a multi-level optimization.
The coordinator initiates for every element of the hierarchy objects of the Hierar-

chicElement class. These objects have access to methods of the elements. These
methods consist of methods to evaluate physical responses and/or evaluate the in-
dividual optimizations. Furthermore, access to the middlelevel is provided allowing
mapping of the responses, exchange of shared design variables and exchange of cou-
pling variables onto the middlelevel. Finally, methods can be accessed to retrieve
copies of mapped responses, coupling variables and shared design variables from the
middlelevel.

The CoordinatorInterface is an interface that defines methods executing individual
element optimizations. There are three classes that each implement the interface in
a different manner.� FullySequential, the elements of the hierarchy are evaluated sequentially. The

Level-0 element is evaluated first and the computed data is mapped onto the
middle-level. The Level-1 elements are evaluated one-by-one and data is mapped
onto the middle-levels after a solution is found. This process is continued until
all elements located at the lowest level have been evaluated. The process is
repeated from top to bottom until convergence.� FullyParallel, the elements of the hierarchy are evaluated in parallel. As soon
as an individual element is finished it maps the computed data onto the middle-
level and waits until it is signalled to retrieve updated copies from neighboring
elements from the middle-level. After retrieving the updated coupling data the
element optimization is repeated.� LevelbyLevel, the elements are executed sequentially over the levels and parallel
per level.

Elements are executed as separate threads3. In order to run a thread a class has
to provide a “run” method. All methods called inside this “run” method can be
executed in the current threat. Therefore, the HierarchicElement class provides this
run method in which computations for the element are executed.

3A thread in computer science is short for a thread of execution. Threads are a way for a program
to fork (or split) itself into two or more simultaneously (or pseudo-simultaneously) running tasks.
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The coordination package consists of three packages:� the approximationmodel package providing additional methods to compute ap-
proximations for coordination purpose;� the convergence package providing methods determining local convergence of
individual elements and global convergence of the entire hierarchy;� The multilevelmethod package providing multi-level method specific coordina-
tion methods.

The multilevelmethod package

The multilevelmethod package is shown in Figure 7.17. It consists of an interface De-

couplingConditionInterface and two packages equalitymethod and relaxationmethod.
Each package provides methods that are required to coordinate the decomposition
method chosen.

The equalitymethod package provides methods to coordinate elements that are de-
composed according to an equality-based decomposition. Each coordination method
should implement the EqualityMethodInterface describing communication with ob-
jects instantiated from the HierarchicElement class (see Figure 7.16).

The EqualityMethodInterface provides a contract for coefficients (a..). These coef-
ficients are present in the equations that model the behavior of neighboring elements
(iva, see Equation 7.1), mathematically expressed as a pth-order polynomial function:

iva(i
jh, j

ih) ≤ a0 + a1f(i
jh) + a2f(j

ih) + . . . + anfp(i
jh) + an+1f

p(j
ih). (7.11)

The function f(. . .) depends on the multi-level method chosen and is defined inside
the equality package (Figure 7.12).

The relaxationmethod package provides methods necessary to coordinate the ele-
ments that are decomposed via relaxation of the consistency constraints. Typically
these elements require updating of relaxation parameters. The RelaxationMethod-

Interface dictates means of passing new values of the relaxation parameters to the
individual elements. For example, in Figure 7.17 an AugmentedLagrangianMethod

class is shown implementing the RelaxationMethodInterface.

The AugmentedLagrangianMethod class implements methods that compute up-
dates of the Lagrange multipliers and the penalty weights according to:

λ(t+1) = λ(t) + 2s(t) ◦ s(t) ◦ (H(r) − h) ;

s(t+1) =

{
s(t) if c(t+1) ≤ γc(t)

βs(t) if c(t+1) > γc(t) ; (7.12)

β > 0 and 0 < γ < 1;

where indices have been omitted for brevity of notations.
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The approximationmodel package

Depending on decomposition and coordination method different behavior of elements
is approximated. However, techniques that compute these approximations do not
change and therefore approximation methods are combined into a single approxima-

tionmodel package.
The approximationmodel package shown in Figure 7.18 provides methods to com-

pute coefficients (a0, . . . ,an) defined in Equation 7.11. These coefficients are obtained
via analysis of the behavior of individual elements for changing values of the coupling
variables. If constraints are relaxed the package provides approximated weights, e.g.
the Weight Update Method (Chapter 5).

In the present thesis two approximation models are defined: response surface
methods; and linear approximations that are constructed via sensitivity analysis.
Therefore, the approximationmodel package consists of two packages and an interface:� the responsesurfacemethod package providing methods to compute coefficients

for a polynomial function;� the sensitivityanalysis package providing methods to compute sensitivity infor-
mation;� the ApproximationMethodInterface providing an interface for the coordinator
classes to communicate with the approximation models.

The ApproximationMethodInterface is extended inside the two packages via additional
methods that implement specific approximation methods.

The convergence package

The convergence package shown in Figure 7.19 provides a ConvergenceInterface in-
terface prescribing methods required to make decisions on evaluating individual ele-
ments. Type and implementation of these convergence measures may have different
convergence criteria. Therefore, the convergence indicator is modeled as an interface.
The ConvergenceIndicator class implements the ConvergenceInterface interface and
implements the methods to retrieve information on individual element convergence
(see Chapter 5, Section 5.3), hence:

ε(t)
vf

= max
{
||iv

(t)
f − iv

(t−1)
f ||∞

}
(7.13)

where (t) indicates the current iteration number. Convergence of the entire multi-level
hierarchy is measured via the consistency constraints:

ε(t)
vc

= max
{
||iv(t)

c ||∞, ||iv(t)
c − iv(t−1)

c ||∞
}

.

(7.14)

Hence, Equation 7.14 measures convergence according to the value of the inconsis-
tency size and the rate of change in the consistency size reduction. However, other
formulations may apply depending on the decomposition and coordination algorithm
chosen.
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7.2.5 The postprocess package

The postprocess package contains classes that perform postprocessing operations on
the computed data. The package holds two classes. The first class CheckOS changes
the file writing process according to the operating system the multi-level program is
executed on. The second class writeToFile creates output files and writes data to
these files.

7.2.6 The userfiles package

The userfiles package shown in Figure 7.20 contains the user supplied multi-level
optimization problem. For each element of the hierarchy a package is created. The
name of each package is subsystem followed by a number representing the position in
the hierarchy (recall Chapter 2). Every package should contain a class implementing
the ObjectiveInterface. The name of the class implementing the ObjectiveInterface

is Objective followed by the package number. Similarly, a class that implements the
ConstraintsInterface should be implemented. The class name is Constraints followed
by the package number.

The Objective class evaluates the individual element specific objective function.
No additional terms need to be evaluated inside this class that are related to the
multi-level nature of the optimization problem.

Likewise, the Constraints class evaluates individual element specific constraint
functions. No additional constraints are added that take into account the multi-level
nature of the optimization problem. The multi-level nature of the optimization prob-
lem is accounted for inside the mlprogram program and requires no implementations
from the user.
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Figure 7.16: The coordination package coordinates the order in which elements are solved
and calls routines when additional coordination data is required. The package consists of
a Coordinator that communicates via a coordination interface that determines the order in
which elements are solved. Three objects that implement this interface are: FullyParallel
computing all the elements at once; LevelByLevel solving the elements starting at the top
level and then solving each level sequentially; and LevelByLevel solving the levels sequen-
tially and the elements on the same level in parallel. The HierarchicElement class contains
a subsystem object in it’s attributes and implements the Runnable interface of the Java API
allowing the subsystem optimization and/or analysis to be executed as a separate threat.
Furthermore, a local convergence check of the element and the global convergence of the ele-
ment inconsistency convergence criteria is done inside the methods of the HierarchicElement
class. The coordination package consists of an approximationmodel package where approxi-
mation methods are placed, a multilevelmethod package consisting of multi-level optimization
method specific classes and a convergence package is present to evaluate convergence of the
multi-level algorithms.
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Figure 7.17: The multilevelmethod package consists of a DecouplingConditionInterface
that describes the behavior of the multi-level coordination methods. Furthermore, two pack-
ages are present: the equalitymethod package and the relaxationmethod package. These
packages provide methods specific for a coordinator method. In case equality based decompo-
sition is applied the EqualityMethodInterface should be implemented and in case relaxation
based decomposition is applied the RelaxationMethodInterface is implemented. In the present
figure an implementation of the EqualityMethodInterface is shown showing Optimization-
ByLinearDecomposition and an implementation of the RelaxationMethodInterface is shown
showing the AugmentedLagrangianMethod class.
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Figure 7.18: The approximationmodel package consists of an ApproximationMethodIn-
terface interface. Furthermore, the package contains two packages: the first package sen-
sitivityanalysis consisting of a single interface for sensitivity analysis and implemented via
the OptimumSensitivityAnalysis class; the second package ResponseSurfaceMethod consists
of a ResponseSurfaceMethodInterface that is implemented via the ResponseSurfaceMethod
class.
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Figure 7.19: The convergence package consists of a ConvergenceInterface interface that
describes the communication with classes providing methods to measure convergence. Fur-
thermore, the ConvergenceIndicator class implements the ConvergenceInterface interface
and consists of a number of procedures to determine local and global convergence.
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Figure 7.20: The userfiles package consists of packages defining the multi-level optimization
problem. Each package consists of an individual element optimization problem formulation.
Packages are named subsystem followed by a number indicating the position in the hierar-
chy. Each package consists of a class file Objective followed by the package number and a
class Constraints followed by the package number. The Objective class implements the Ob-
jectiveInterface and the Constraints class implements the ConstraintsInterface. The classes
provide methods to compute individual objective function and constraint function values.
These classes do not consider objective and/or constraint formulations that are associated
with the multi-level nature of the design problem.





Chapter 8

Applying the framework on

relaxation-based decomposition

methods

In this chapter the object oriented framework described in the previous chapter is
applied to four examples of which three are taken from the literature. In Section 8.1
the two bar truss example is analyzed, which has been used throughout this thesis
indicating the steps required to decompose and coordinate a multi-level optimization.
In Section 8.2 two examples are presented considering multi-level optimization of a
portal frame according to the problem definition by Tosserams et al. (2008b) and an
alternative problem definition by Sobieszczanski-Sobieski et al. (1985). Finally, in
Section 8.3 a model of a supersonic business jet is optimized taken from (Agte et al.,
1999). This model includes multiple disciplines in the optimization problem.

8.1 Two-bar truss

8.1.1 Multi-level optimization problem

The process of formulating a multi-level structural optimization problem is demon-
strated on the basis of a two-bar truss design optimization problem. The two-bar truss
design problem is shown in Figure 8.1 and the parameters determining the structural
lay-out are listed in Table 8.1. Typical objectives in structural optimization are min-
imal mass or displacement (maximum stiffness).

For this problem, the objective (0vf ) is to minimize the total mass (0r1). The
problem is subjected to a constraint (0vg) on the horizontal displacement (0r2), a

169
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L; fixed

1
0h1

2
0h1

0r2

P

0x1
0x2

ix1

ix2

Figure 8.1: Two-bar truss structure with embedded hierarchy. The general lay-out of the
structure is described via design parameters 0x1,

0x2 and cross-sectional areas. The element’s
cross-section is described in detail via design variables ix1,

ix2. These cross-sections are
present as coupling variables 1

0h1,
2
0h1.

constraint (1vg) on stress (1r1) in the left member and a constraint (2vg) considering
Euler buckling (2r1) for the right member. Design variables are: 0x1,

0x2, which
determine the location of the supports w.r.t. the centerline, ..x1 the radius and ..x2

the thickness of each individual truss member. Furthermore, lower(..x) and upper(..x)
bounds on the design variables are present, see Table 8.2.

Two levels can be distinguished in the design problem. The top level (Level-0)
involving minimization of the total mass (0r1), while satisfying constraints on hori-
zontal displacement (0r2). And the bottom level (Level-1) that involves satisfying a
constraint on stress (1r1) for the left member and a constraint considering Euler buck-
ling (2r1) for the right member. Two individual hierarchical elements are identified
at Level-1 covering the analysis and optimization of each individual bar column.

The Euler buckling stress (2rEuler) is a Level-1 geometrical and material charac-
teristic and is mathematically expressed as:

2rEuler =
π2
(
2x1

)2
E

2l2
. (8.1)

Because the length of the truss member is computed from Level-0 design parameters,
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Table 8.2: Scaling parameters and upper and lower bounds on the
design variables for the two-bar truss problem.

variable lowerbound upperbound scaling parameter

0x1 2.000 × 10−1 1.000 1.000
0x2 1.000 × 10−1 1.100 1.100
1x1 1.000 × 10−3 1.000 × 10−1 1.000× 10−1

1x2 1.590 × 10−4 1.000 × 10−2 1.000× 10−2

2x1 1.000 × 10−3 1.000 × 10−1 1.000× 10−1

2x2 1.590 × 10−4 1.000 × 10−2 1.000× 10−2

0
1h1 −1.000 × 106 1.000 × 106 1.000× 104

0
2h1 −1.000 × 106 1.000 × 106 1.000× 104

0
2h2 1.005 1.487 1.000
1
0h1 1.590 × 10−7 1.000 × 10−4 1.000× 10−3

1
0h2 1.590 × 10−7 1.000 × 10−4 1.000× 10−3

Table 8.3: Constant values used for the two-bar truss multi-level design optimization
problem

constant value constant value constant value

E 7.300× 1010 0rmmax 1.700 × 10−1 F 1.000 × 104

ρ 2.800× 103 0rumax 1.000 × 10−2

L 1.000 1rcr 4.800 × 108
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0x1
0x2

0r1
0r2

1x1
1x2

1r1
2x1

2x2
2r1

0vf

0vg

1vg

2vg

top-element constraint
}

element constraint

Figure 8.2: Coupling matrix two bar truss optimization problem before decomposition. On
the left the optimization problem functions are listed and on the top the design variables and
physical responses. A function that depends on a specific design variable or physical response
is represented via a shaded block.

an additional mapping is required for Element-2:

l2 = 0
2H2(

0x2) =

√
(L)

2
+ (0x2)

2
= 0

2h2. (8.2)

The optimization functions associated with the two-bar truss design problem are
mathematically expressed as:

0vf =
0r1(

0x,1x,2x)
0rmmax

;
0vg =

0r2(
0x,1x,2x)

0rumax
− 1;

1vg =
1r1(

1x,0r)
0.91rcr

− 1;

2vg =
(
2

2r1(
2x,0r)

2rEuler(0x2,2x1)

)2

− 1.

(8.3)

The additional parameters 0rmmax and 0rumax represent respectively maximum al-
lowed mass and displacement. Furthermore, the stress in Element-1 (1r1) is not
allowed to exceed 90% of the critical stress (1rcr). Finally, the quadratic stress in
Element-2 (2r1) should not exceed 50% of the quadratic Euler buckling load (2rEuler).

The problem matrix showing the dependencies of the optimization functions of
Figure 8.3 on the design variables and the physical responses is shown in Figure 8.2.
The objective function and constraint function of the Level-0 optimization problem
depend on the design variables of Level-0 and Level-1 elements. Coupling variables
are added in Figure 8.3 to show the coupling between the two levels.

Hierarchic decomposition

A top-down hierarchic decomposition of the two-bar truss design problem is consid-
ered. Therefore, the mapping of geometrical properties of Level-1 onto Level-0 is
rewritten as consistency constraints:

1
0c1 = 1

0H1

(
1x
)
− 1

0h1;
2
0c1 = 2

0H1

(
2x
)
− 2

0h1.
(8.4)
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0
1h1

0
2h1

0
2h2

1
0h1

2
0h1

0x1
0x2

0r1
0r2

1x1
1x2

1r1
2x1

2x2
2r1

0vf

0vg

1vg

2vg

Figure 8.3: Coupling parameters are introduced into the problem matrix that show the
coupling between the Level-0 element and the two Level-1 elements.

These consistency constraints are relaxed in the present thesis applying Augmented
Lagrangian relaxation. Hence, the consistency constraint formulation becomes:

1
0λ..

(
1
0c1

)
+ ||10s.. ◦ 1

0c1||22;
2
0λ..

(
2
0c1

)
+ ||20s.. ◦

2
0c1||

2
2.

(8.5)

where ..
0λ.. are the Lagrange multipliers and ..

0s.. are the penalty weights. The La-
grange multipliers and penalty weigths are assigned to each individual element. There-
fore, these relaxation parameters do not have to be equal between two coupled ele-
ments (see Chapter 5).

Relaxation of the consistency constraints yields that Equation 8.5 is added to the
individual element optimization problems and therefore the multi-level optimization
problem relaxed via Augmented Lagrangian relaxation yields:

Level-0, Element 0:

min
0x1,0x2,10h1,20h1

0vf =
0r1(

0x,10h1,20h1)
0rmmax

+ 0v1
0c + 0v2

0c

s.t. 0vg =
0r2(

0x,10h1,20h1)
0rumax

− 1 ≤ 0
0x ≤ 0x ≤ 0x
1
0h1 ≤ 1

0h1 ≤ 1
0h1

2
0h1 ≤ 2

0h1 ≤ 2
0h1

where 0v1
0c = 1

0λ1

(
1
0c1

)
+ ||10s1 ◦ 1

0c1||22
0v2

0c = 2
0λ1

(
2
0c1

)
+ ||20s1 ◦ 2

0c1||22

(8.6)

Level-1, Element 1:

min
1x1,1x2

1vf = 1v1
0c

s.t. 1vg =
1r1(1x)
0.91rcr

− 1 ≤ 0
1x ≤ 1x ≤ 1x

where 1v1
0c = 1

0λ2

(
1
0c1

)
+ ||10s2 ◦ 1

0c1||22

(8.7)
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Level-1, Element 2:

min
2x1,2x2

2vf = 2v2
0c

s.t. 2vg =
(
2

2r1(
2x)

2rEuler

)2

− 1 ≤ 0
2x ≤ 2x ≤ 2x

where 2v2
0c = 2

0λ2

(
2
0c1

)
+ ||20s2 ◦ 2

0c1||22

(8.8)

Coupling variables 1
0h1 and 2

0h1 are added to the Level-0 optimization problem as de-
sign variables. These have to match the mapped geometrical characteristics 1

0H1(
1x)

and 2
0H1(

2x), respectively, that are evaluated during the Level-1 optimization.

Non-hierarchic decomposition

A non-hierarchic decomposition of the problem involves a decomposition of the cou-
pling in both directions. The derivation is similar to that of hierarchical decomposi-
tion. In addition to the consistency constraints on the mapping of physical responses
from Level-1 onto Level-0 (Equation 8.4), the responses (the displacements) are map-
ped from Level-0 onto Level-1 (the nodal forces) and are replaced via consistency
constraints. These consistency constraints are relaxed via an Augmented Lagrangian
function and added to the individual optimization problems.

8.1.2 Physical model

The two-bar truss problem is shown in Figure 8.4. Two levels can be distinguished,
the general lay-out of the structure consists of two bar elements and the detailed cross-
sectional area described by the diameter and the thickness of the wall. The expressions
necessary to evaluate physical responses are derived in accordance with the coupling
circle shown in Figure 8.4. For the current two-bar truss problem these expressions
can be derived simpler. However, the current derivation is ment to demonstrate the
coupling circle on a mechanical structure. The physical responses presented in the
present format emphasize coupling as shown via the coupling circle.

The general responses of the structure are total structural mass 0r1 and the hor-
izontal displacement 0r2, both depend on the cross-sectional areas of the bar ele-
ments. The horizontal displacement (0r2) of the structure is found via evaluating the
displacements of the structure. These displacements are found as a solution to the
mathematical expression:

Ku = P, (8.9)

where K is the stiffness matrix of the entire structure, u being the total displacement
and P being the external loading. The stiffness matrix of the individual columns is
mathematically expressed as:

K =

[
k1,1 k1,2

k2,1 k2,2

]
= . . .

E

[ 1
0h1

l1
cos2 α +

2
0h1

l2
cos2 β

1
0h1

l1
sin α cosα +

2
0h1

l2
sinβ cosβ

1
0h1

l1
sin α cosα +

2
0h1

l2
sinβ cosβ

1
0h1

l1
sin2 α +

2
0h1

l2
sin2 β

]
;

(8.10)
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Figure 8.4: Two-bar truss structure with an embedded hierarchy. The displacements (0r)
identified at Level-0 are mapped onto the individual elements present at Level-1 as nodal force
vectors (0i h). The stresses (ir) identified as Level-1 properties determine the geometrical lay-
out of the individual elements. The geometrical characteristics are mapped from Level-1 onto
Level-0 as cross-sectional areas (i

0h1).

where the cross-sectional area of each individual bar column (i) is expressed as i
0h1

and the length of these columns as li.

The horizontal displacement (0r2) is mathematically expressed as:

0r2 =
1

(k1,1 −
k2
1,2

k2,2
)
F. (8.11)

The stiffness matrix K depends on the cross-sectional area of the two bars. This
cross-sectional area is represented via the coupling variables 1

0h1 and 2
0h1 for each

individual column. The coupling variables are mathematically expressed as:

1
0H1

(
1x1,

1x2

)
= 2π1x1

1x2 = 1
0h1;

2
0H1

(
2x1,

2x2

)
= 2π2x1

2x2 = 2
0h1.

(8.12)
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Hence, the mapping of Level-1 onto Level-0 involves the mapping of geometrical
properties. With the mapped geometrical properties the total mass of the structure
can now be computed according to:

0r1 = 1
0h1ρl1 + 2

0h1ρl2. (8.13)

where ρ being the density of the material and the length li of both trusses is mathe-
matically expressed as:

l1 =

√
L2 + (0x1)

2 and l2 =

√
L2 + (0x2)

2. (8.14)

After the displacements are solved the internal forces can be computed. These in-
ternal forces are required by the individual elements present at Level-1 to analyze
the strains (ǫi). The strain is obtained for each individual element from the column
displacements.
Element 1:

ue1 = [T]





0
0

0r2
0r3



 ⇒ ǫ1 = Bue1 = . . .

1
l1

[
−1 1

] [ ue1x

ue1y

]
=

0r2 cos α+0r3 sin α
l1

.

(8.15)

Element 2:

ue2 = [T]





0r2
0r3

0
0



 ⇒ ǫ2 = Bue2 = . . .

1
l2

[
−1 1

] [ ue2x

ue2y

]
= −

0r2 cos β−0r3 sin β
l2

.

(8.16)

Secondly, the internal nodal forces are defined as:
Element 1:

f int
1 =

∫ l1

x=0

1

l1
BTDǫ1A1dx, (8.17)

Element 2:

f int
2 =

∫ l2

x=0

1

l2
BTDǫ2A2dx, (8.18)

where A1 = 1
0h1 and A2 = 2

0h2.
The mapping of displacements (0r2 horizontal and 0r3 vertical displacement) in

order to obtain the internal nodal forces is mathematically expressed in multi-level
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notation as:

0
1H1

(
0r
)

= E1
0h1

[
−

0r2 cos α+0r3 sin α
l1

0r2 cos α+0r3 sin α
l1

]T
= 0

1h1; (8.19)

0
2H1

(
0r
)

= E2
0h1

[
0r2 cos β−0r3 sin β

l2
−

0r2 cos β−0r3 sin β
l2

]T
= 0

2h1. (8.20)

Nominal stress is defined as: σ = p
A

. The load carried by the column is p and the
cross-sectional area is A. Therefore, the nominal stress in each column member is:

1r1 =
0
1h12−

0
1h11

2π1x1
1x2

;

2r1 =
0
2h12−

0
2h11

2π2x1
2x2

.

(8.21)

In this section the expressions necessary to evaluate physical responses were de-
rived in accordance with the coupling circle shown in Figure 8.4. In the next section
the numerical results obtained for the multi-level optimization are presented.

8.1.3 Numerical results

Two different coordination methods are applied to the two-bar truss multi-level op-
timization problem and the method of multipliers (Bertsekas and Tsitsiklis, 1989) is
used to update the relaxation parameters1.

All optimization starting points were chosen via random initial design variables
and the coupling variables were initiated with random values that laid between feasible
bounds (see Table 8.2). Therefore, the individual elements were not consistent with
each other, meaning that an infeasible design point was used in all cases and no initial
computations were done in order to have a consistent starting design configuration.

The optimal values of the reference solution found via an All-in-One optimization
for the design variables are listed in Table 8.4. Furthermore, the value of the objec-
tive function and the optimal value of the coupling variables are listed. The design
constraint functions present in each element of the hierarchy are active.

Optimization history

The history of the objective and constraint function of Element-0 is shown in Figure
8.5(a). The history is plotted for a top-down hierarchic decomposition of the two-bar
truss multi-level optimization problem. Convergence settings for the inconsistencies
(εvc) and objective function (εvf ) correspond to the Alternating Descent method.
Initially, the optimization problem of Element-0 focusses on finding an optimum of the
local objective function. During the multi-level optimization process the consistency
between Element-0 and elements 1 and 2 becomes increasingly important and the
optimum of Element-0 shifts to a higher value that is optimal for the entire hierarchy.
Likewise, the optimal design variables and coupling variables shift to values that are
optimal for the entire hierarchy, see Figure 8.5(b).

1See Chapter 5 for an explanation of relaxation based coordination and the method of multipliers.
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Table 8.4: Optimal solution of the three hierarchical elements of the two bar truss
in terms of design variables, coupling variables and optimization functions. The op-
timum is found via an All-in-One optimization and therefore consistency is satisfied
exactly via direct mapping of physical responses.

parameter description
Element-0 Element-1 Element-2

0vf = 1.06 × 10+0 hor. displ.
0vg = active tot. mass

1vg = active max. stress el. 1
2vg = active max stress el. 2
2x2 = active lower bound 2x2

0
1h11 = −8.64 × 10+3 nod. force el. 1
0
1h12 = 8.64 × 10+3

0
2h11 = 7.67 × 10+3 nod. force el. 2
0
2h12 = −7.67 × 10+3

0
2h2 = 1.20 × 10+0 length el. 2

1
0h1 = 2.00 × 10−5 cr.-sec. area 1

2
0h1 = 3.12 × 10−5 cr.-sec. area 2

0x1 = 9.03 × 10−1 left att. point
0x2 = 6.55 × 10−1 right att. point

1x1 = 6.22 × 10−3 2x1 = 3.12 × 10−2 radius
1x2 = 5.12 × 10−4 2x2 = 1.59 × 10−4 thickness

The increase in the objective function value of Element-0 (Figure 8.5(a)) can
be explained via Figures 8.6, 8.7 and 8.8. These figures show the history of the
inconsistency between Level-0 and Level-1 and the optimization process of Element-1
and Element-2, respectively.

Figure 8.6 shows the size of the inconsistencies (1v1
0c,

2v2
0c) between Level-0 and

Level-1. Initially, the consistency is reduced via data exchange and no difficulties are
observed for Element-1 and Element-2 in finding a feasible optimum. This can be
seen in Figure 8.7(a) where the design constraint 1vg initially has a negative value
and in Figure 8.8(a) where the design constraint 2vg initially has a negative value.

After the first decrease in inconsistency of Element-2 (after 18 hierarchical up-
dates), see Figure 8.6, the inconsistency stays at a constant value. Element-2 is not
able to find a different feasible optimum and therefore cannot reduce the inconsis-
tency further. The design constraint present in Element-2 (2vg) is active and remains
active, see Figure 8.8(a). Design variable 1x1 shifts after 18 hierarchical updates to a
new value and the lower bound on design variable 2x2 remains active throughout the
entire optimization process.

After 30 hierarchical updates the sign of the size of the inconsistency between
Element-0 and Element-1 changes, see Figure 8.6. The design constraint function
present in Element-1 becomes active, see Figure 8.7. However, after a small number
of hierarchical element updates the optimal design variables change to different values
(Figure 8.7(b)) and the design constraint 1vg is negative again.
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Figure 8.5: History of a top-down hierarchic decomposition of the two-bar truss multi-level
optimization problem. Convergence settings for inconsistencies (ǫvc) and objective function
(ǫvf ) correspond to the Alternating Descent method. Furthermore, a sequential coordination

was applied to the iteration process. (a) Objective function (0vf ) and constraint function
(0vg) Element-0. (b) Optimal design variables (0x1,

0x2) and optimal coupling variables
(10h1,

2
0h1) Element-0.

Because the penalty weight embedded in the Augmented Lagrangian function is
increasing, the objective function value of Element-0 (0vf ), Element-1 (1vf ) and of
Element-2 (2vf ) increases, see Figures 8.5(a), 8.7(a) and 8.8(a). To decrease this nega-
tive contribution to the objective function of Element-0, Element-1 and Element-2, the
coupling variables and design variables in Element-0 are rearranged (see Figure 8.5(b))
and the objective of Element-2 decreases to zero after 80 hierarchical updates (see
Figure 8.8(a)). The objective of Element-1 follows after a 105 hierarchical updates.
The final optimum for the entire hierarchy is reached after 120 hierarchical updates.
All design constraints 0vg,

1vg and 2vg are active and the inconsistencies are smaller
then the pre-determined tolerance iǫvc , see Figure 8.6.

Results

Results for different decompositions, coordinations and algorithm settings for the
two-bar truss multi-level optimization are listed in Table 8.5. Two decomposition
methods are applied: hierarchic top-down decomposition and non-hierarchic decom-
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Figure 8.6: History of a top-down hierarchic decomposition of the two-bar truss multi-level
optimization problem. Convergence settings for inconsistencies (ǫvc) and objective function
(ǫvf ) correspond to the Alternating Descent method. Furthermore, a sequential coordination
was applied to the iteration process. The figure shows the size of consistency violation between
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Figure 8.7: History of a top-down hierarchic decomposition of the two-bar truss multi-level
optimization problem. Convergence settings for inconsistencies (ǫvc) and objective function
(ǫvf ) correspond to the Alternating Descent method. Furthermore, a sequential coordination

was applied to the iteration process. (a) Objective function (1vf ) and constraint function
(1vg) Element-1 (b) Optimal design variables (1x1,

1x2) Element-1.
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Figure 8.8: History of a top-down hierarchic decomposition of the two-bar truss multi-level
optimization problem. Convergence settings for inconsistencies (ǫvc) and objective function
(ǫvf ) correspond to the Alternating Descent method. Furthermore, a sequential coordination

was applied to the iteration process. (a) Objective function (2vf ) and constraint function
(2vg) Element-2 (b) Optimal design variables (2x1,

2x2) Element-2.

position. Furthermore, results are compared for three different convergence criteria
and corresponding settings of β and γ combined with a sequential coordination pro-
cess. These criteria correspond to three methods (see Section 5.3) that update the
coupling and relaxation parameters:� Block Coordinate Descent (BCD),� Inexact (InE),� Alternating Descent (AD).

Finally, a sequential and parallel coordination of the individual elements is compared.
The best coupling and relaxation settings that worked are used to show the effect of
parallel coordination with respect to sequential coordination. The parallel coordina-
tion is accomplished via an additional damping parameter τ , see Section 5.3.2.

Furthermore, in Table 8.6 the constraints are listed for the two-bar truss opti-
mization problem. The All-in-One (AiO) solution is compared with respect to the
multi-level optimization formulations. Constraints that are active in the AiO formula-
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Table 8.5: Computational costs of different convergence criteria considering the
two-bar truss optimization problem with an Augmented Lagrangian relaxation tech-
nique. Order of magnitude of function evaluations and optimization iterations
are presented and the number of hierarchical updates. Both hierarchic and non-
hierarchic decompositions are considered. Furthermore, results for a sequential and
parallel solution strategy are presented.

decomp. coord. func.eval. opt.iter. hier.upd. conv. crit.
top-down sequential ǫvc ≤ 1 × 10−3

BCD: β = 2.2, γ = 0.4 8 × 103 1 × 103 67 ǫvf ≤ 1 × 10−5

ǫvc ≤ 1 × 10−3

InE: β = 2.0, γ = 0.5 5 × 103 7 × 102 44 ǫvf ≤ 1 × 10−3

ǫvc ≤ 1 × 10−3

AD: β = 1.1, γ = 0.90 2 × 104 2 × 103 120 ǫvf ≤ +inf

top-down parallel ǫvc ≤ 1 × 10−3

AD: β = 1.05, γ = 0.80, τ = 0.9 3 × 104 6 × 103 222 ǫvf ≤ +inf

non-hier. sequential ǫvc ≤ 1 × 10−3

BCD: β = 2.2, γ = 0.4 5 × 104 5 × 103 382 ǫvf ≤ 1 × 10−5

ǫvc ≤ 1 × 10−4

InE: β = 2.0, γ = 0.5 9 × 103 1 × 103 58 ǫvf ≤ 1 × 10−4

ǫvc ≤ 1 × 10−4

AD: β = 1.1, γ = 0.95 1 × 104 1 × 103 149 ǫvf ≤ +inf

non-hier. parallel ǫvc ≤ 1 × 10−4

BCD: β = 1.1, γ = 0.90, τ = 0.9 1 × 105 2 × 104 1026 ǫvf ≤ 1 × 10−5

tion are listed as well as constraints that become active in the multi-level optimization
problem formulation.

In case a constraint is active in the AiO formulation and not at the optimum
found via multi-level optimization the design constraint value is used. In case lower
or upper bounds become active that are not active during the AiO optimization these
are also listed.

Table 8.6: Consistency constraint values and design constraint values of the
relaxation-based coordination methods. The reference design (AiO) has four
active design constraints.

Method 0vg
1
0c

2
0c

0vg
1vg

2vg
1x1

1x2
2x2

AiO 1.06 act. act. act. act.

BC 1.07 −8 × 10−9 5 × 10−9 act. act. act. act. act.

InE 1.07 −8 × 10−9
−2 × 10−8 act. act. act. act. act.

AD 1.07 2 × 10−8
−1 × 10−9 act. act. act. act. act.

AD Par. 1.07 −1 × 10−9 1 × 10−8 act. act. act. act.

BC n.-h.∗ 1.06 −3 × 10−4 1 × 10−6
−0.06 act. act. act.

BC n.-h. Par∗ 1.08 −4 × 10−7
−8 × 10−6

−0.07 act. act. act.

InE n.-h.∗ 1.08 −3 × 10−9 6 × 10−6
−0.08 act. act. act. act.

AD n.-h.∗ 1.07 1 × 10−6
−3 × 10−8

−0.11 act. act. act. act. act.

* Largest value of the consistency constraints is listed.
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Discussion

Results in Table 8.5 and Table 8.6 show that for the two-bar truss multi-level op-
timization problem considered in the present thesis the java framework is able to
carry out a distributed optimization of the two-bar truss structure. As expected from
numerical results published in literature, (Tosserams et al., 2008b, Li et al., 2008,
de Wit and van Keulen, 2008) the computational cost of the Analytical Target Cas-
cading method combined with an Augmented Lagrangian relaxation is considerable.
Furthermore, it was observed that in some cases the individual design optimization
problems had difficulties to converge depending on the γ and β settings chosen and
the convergence parameter settings. Therefore, the convergence parameters were ad-
justed such that the closest achievable point to the known optimum was found within
reasonable computational time.

Comparing the hierarchic top-down decomposition with the non-hierarchic decom-
position the results show that independent of the algorithm settings the top-down
hierarchic decomposition converges faster in terms of actual wall-clock-time and finds
a better optimal point then the non-hierarchic decomposition approach. All non-
hierarchic multi-level optimization attempts converged to a non-optimal point where
the Level-0 design constraint was not active.

Changing the convergence parameters ǫvc and ǫvf corresponding to Block Coor-
dinate Descent (BCD), Inexact (InE) and Alternating Directions (AD) showed the
effect on the individual optimization costs as well as the frequency in which infor-
mation is send between elements. Alternating Directions converged the fastest of all
algorithm settings. However, the cost of frequently updating the information between
elements is considerable. If information exchange should be kept to a minimum Block
Coordinate Descent (BCD) or Inexact (InE) convergence parameters perform well.

Sequential coordination compared to parallel coordination showed that for the
current example the computational costs increase almost four times for the parallel
coordination. Therefore, the total execution time is longer than that of a sequential
coordination process. However, it is expected that for problems where the optimiza-
tion of individual elements requires significant execution time it will reduce the total
execution time. A sequential process requires each level and/or element to wait until
a previous level/element is finished. A parallel coordination still waits for the element
with the longest execution time, however this will also be the total waiting time for a
single hierarchical update, whereas for a sequential process the waiting time is equal
to the execution time of each individual element. The parallel coordination will not
reduce the computational costs because of the damping parameter τ that reduces the
step-size in which coupling data is updated between elements. Furthermore, the cou-
pling data that is used to evaluate a single element is based on the previous iteration
where a sequential process uses coupling data based on the current iteration.

The results show that even for a small problem the computational costs become
very large. This is because initially, a significant amount of iterations are required
before the penalty parameters start to work. Furthermore, when the multi-level op-
timization is almost finished a number of hierarchical updates is required before the
process converges. Changing the penalty parameters to higher initial values does not
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solve the problem. A high penalty parameter in the Augmented Lagrangian function
creates difficulties for the individual elements to reduce the negative contribution to
the objective function value.

Because this example is small, the costs of starting an optimization and stopping
an individual element optimization after it has finished dominates the algorithms exe-
cution time. It is expected that for examples with more complex element optimization
problems this effect reduces or vanishes and the individual element optimizations be-
come the dominant computational cost factor.

8.2 Portal frame

8.2.1 Multi-level optimization problem

Problem formulation

A portal frame is considered for multi-level design optimization. The portal frame
design problem is shown in Figure 8.9 and the parameters determining the structural
lay-out are listed in Table 8.7. There are eighteen design variables, six for each element
represented by the vectors 1x, 2x, 3x that describe the cross-sectional area of the
individual elements, see Figure 8.9.

For this problem, the objective (0vf ) is to minimize the horizontal displacement
(0r1). The portal frame design is subjected to constraints 0vg1 on the total volume
(0r2) of the structure and the rotation (0r3) of the right upper corner of the structure.
Furthermore, there are several constraints on the individual members of the structure.
Each member has a maximum allowable normal stress (ivg1 ), (ivg2), (ivg3), (ivg4 )
which is computed at the top and bottom of both ends of the column. The maximum
allowable normal stress holds for both compression and extension of the columns.
Furthermore, each member has a maximum allowable shear stress (ivg5 ), (ivg6) which
is computed at both ends of the columns at the axis running through the center of
the cross-section. To prevent slender structures that are likely to buckle additional
constraints on the geometry are added (ivg7), (ivg8), (ivg9), (ivg10) to prevent flange
and web buckling. Finally, lower bounds (..x) and upper bounds (..x) on the design
variables are present, see Table 8.8.

Two levels are distinguished in the design problem, see Figure 8.9. The top level
(Level-0) consisting of a single hierarchical element and involving minimization of the
horizontal displacement (0r1), while satisfying constraints on the total volume (0r2)
and the rotation of the right upper corner of the structure (0r3). The bottom level
(Level-1) consisting of three individual elements involving constraints on maximum
normal stress (ir1,

ir2), maximum shear stress (ir3,
ir4) and geometrical constraints to

prevent buckling.

The optimization functions associated with the portal frame design problem are
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Figure 8.9: Portal framework with embedded hierarchy. The general lay-out of the structure
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8.2 PORTAL FRAME 187

T
a
b
le

8
.7

:
D

efi
n
it
io

n
o
f

d
es

ig
n

va
ri

a
bl

es
,

p
h
ys

ic
a
l

re
sp

o
n
se

s,
p
h
ys

ic
a
l

in
te

ra
ct

io
n
s

be
tw

ee
n

su
bs

ys
te

m
s

a
n
d

o
p
ti
m

iz
a
ti
o
n

pa
ra

m
et

er
s

fo
r

th
e

po
rt

a
l
fr
a
m

e.

d
es

ig
n

d
es

cr
ip

ti
o
n

p
h
y
si

ca
l
re

sp
o
n
se

d
es

cr
ip

ti
o
n

in
te

ra
ct

io
n

d
es

cr
ip

ti
o
n

0
r 1

d
is

p
la

ce
m

en
t

le
ft

co
rn

er
0 1
h

n
o
d
a
l
fo

rc
es

E
le

m
en

t-
1

0
r 2

to
ta

l
v
o
lu

m
e

0 2
h

n
o
d
a
l
fo

rc
es

E
le

m
en

t-
2

0
r 3

ro
ta

ti
o
n

le
ft

co
rn

er
0 3
h

n
o
d
a
l
fo

rc
es

E
le

m
en

t-
3

i
x

1
to

ta
l
h
ei

g
h
t

i
r 1

n
o
rm

a
l
st

re
ss

fr
o
n
t

i 0
h

1
cr

o
ss

-s
ec

ti
o
n
a
l
a
re

a
i
x

2
th

ic
k
n
es

s
to

p
i
r 2

n
o
rm

a
l
st

re
ss

b
a
ck

i 0
h

2
m

o
m

en
t

o
f
in

er
ti
a

i
x

3
th

ic
k
n
es

s
b
o
tt

o
m

i
r 3

sh
ea

r
st

re
ss

fr
o
n
t

i
x

4
th

ic
k
n
es

s
m

id
d
le

i
r 4

sh
ea

r
st

re
ss

b
a
ck

i
x

5
to

p
w

id
th

i
x

6
b
o
tt

o
m

w
id

th

o
p
ti
m

iz
a
ti
o
n

d
es

cr
ip

ti
o
n

0
r V
m
a
x

re
fe

re
n
ce

v
o
lu

m
e

0
r θ
m
a
x

a
ll
ow

ed
ro

ta
ti
o
n

i
r σ
c
r

m
a
x
im

u
m

a
ll
ow

ed
n
o
rm

a
l
st

re
ss

E
=

Y
o
u
n
g
’s

m
o
d
u
lu

s
i
r τ
c
r

m
a
x
im

u
m

a
ll
ow

ed
sh

ea
r

st
re

ss
ρ

=
d
en

si
ty



188 APPLYING THE FRAMEWORK ON RELAXATION-BASED DECOMPOSITION
METHODS 8.2

Table 8.8: Scaling parameters and upper and lower bounds on the
design variables for the portal frame problem, where i = 1, 2, 3.

variable lowerbound upperbound scaling parameter

ix1 2.000 × 10−1 20.00 × 10−1 1.000× 10−1

ix2 0.750 × 10−2 7.500 × 10−2 1.000× 10−2

ix3 0.750 × 10−2 7.500 × 10−2 1.000× 10−2

ix4 1.000 × 10−2 10.00 × 10−2 1.000× 10−2

ix5 1.500 × 10−1 15.00 × 10−1 1.000× 10−1

ix6 1.500 × 10−1 15.00 × 10−1 1.000× 10−1

0
i h1 0.410 × 10−2 41.00 × 10−2 1.000× 10−2

0
i h2 0.261 × 10−4 2613 × 10−4 1.000× 10−4

i
0h1 −1.000 × 106 1.000 × 106 1.000× 104

i
0h2 −1.000 × 106 1.000 × 106 1.000× 104

0
i h3 −1.000 × 106 1.000 × 106 1.000× 104

0
i h4 −1.000 × 106 1.000 × 106 1.000× 104

0
i h5 −1.000 × 106 1.000 × 106 1.000× 104

0
i h6 −1.000 × 106 1.000 × 106 1.000× 104

Table 8.9: Constant values necessary to evaluate the portal frame multi-
level design optimization problem.

constant value constant value constant value

E 7.06 × 1010 L1 5 0rVmax 3.00 × 10−1

ρ 1.00 × 100 L2 10 0rθmax 1.50 × 10−2

P 5.00 × 104 L3 10 irσcr 2.00 × 108

M 2.00 × 105 irτcr 1.16 × 108

mathematically expressed as:

0vf =
0r1(1x,2x,3x)

0rumax
; ivg4 = −

ir2(
ix,0r)

irσcr
− 1;

0vg1 =
0r2(

1x,2x,3x)
0rVmax

− 1 ; ivg5 = |ir3(
ix,0r)|

irτcr
− 1;

0vg2 =
0r3(

1x,2x,3x)
0rθmax

− 1 ; ivg6 = |ir4(
ix,0r)|

irτcr
− 1;

ivg1 =
ir1(ix,0r)
irσcr

− 1 ; ivg7 =
(ix1−

ix2−
ix3)

35ix4
− 1;

ivg2 = −
ir1(

ix,0r)
irσcr

− 1 ; ivg8 =
ix5

20ix2
− 1;

ivg3 =
ir2(ix,0r)
irσcr

− 1 ; ivg9 =
ix6

20ix3
− 1;

ivg10 = 1 −
5(ix1−

ix2−
ix3)ix4

(ix5)(ix2)+(ix1−ix2−ix3)ix4+(ix6)(ix3)
.

(8.22)

The problem matrix showing the dependencies of the optimization functions of
Equation 8.22 on the design variables and the physical responses is shown in Figure
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8.10. The objective function and the constraint functions of Level-0 depend on the
design variables of the individual elements identified at Level-1. Likewise, the physical
responses at Level-1 depend on physical responses computed at Level-0. The coupling
between the two levels is shown via coupling variables in the problem matrix, see
Figure 8.11.

Hierarchic decomposition

A top-down hierarchic decomposition of the portal frame optimization problem is
considered:
Level-0, Element 0:

min
1
0h,20h,30h

0vf =
0r1(1

0h,20h,30h)
0rumax

+
∑3

i=1
0vi

0c

s.t. 0vg1 =
0r2(10h,20h,30h)

0rVmax
− 1 ≤ 0

0vg2 =
0r3(10h,20h,30h)

0rθmax
− 1 ≤ 0

1
0h ≤ 1

0h ≤ 1
0h, 2

0h ≤ 2
0h ≤ 2

0h, 3
0h ≤ 3

0h ≤ 3
0h

where 0v1
0c = 1

0λ
T
1 (10c) + ||10s1 ◦ 1

0c||
2
2

0v2
0c = 2

0λ
T
1 (20c) + ||20s1 ◦ 2

0c||
2
2

0v3
0c = 3

0λ
T
1 (30c) + ||30s1 ◦ 3

0c||
2
2

; (8.23)

Level-1, Element i:

min
ix

ivf = ivi
0c;

s.t. ivg1 =
ir1(

ix)
irσcr

− 1 ≤ 0 ; ivg6 = |ir4(
ix)|

irτcr
− 1 ≤ 0;

ivg2 = −
ir1(

ix)
irσcr

− 1 ≤ 0 ; ivg7 =
(ix1−

ix2−
ix3)

35ix4
− 1 ≤ 0;

ivg3 =
ir2(

ix)
irσcr

− 1 ≤ 0 ; ivg8 =
ix5

20ix2
− 1 ≤ 0;

ivg4 = −
ir2(

ix)
irσcr

− 1 ≤ 0 ; ivg9 =
ix6

20ix3
− 1 ≤ 0;

ivg5 = |ir3(ix)|
irτcr

− 1 ≤ 0;

ivg10 = 1 −
5(ix1−

ix2−
ix3)ix4

(ix5)(ix2)+(ix1−ix2−ix3)ix4+(ix6)(ix3)
≤ 0;

ix ≤ ix ≤ ix

where ivi
0c = i

0λ
T
2 (i

0c) + ||i0s2 ◦ i
0c||

2
2;

(8.24)
Coupling variable vectors 1

0h, 2
0h and 3

0h are added to the Level-0 optimization problem
as design variables. These variables must match the mapped geometrical character-
istics 1

0H(1x), 2
0H(2x) and 3

0H(3x) respectively. The latter are evaluated during the
Level-1 optimization.

Non-hierarchic decomposition

A non-hierarchic decomposition of the problem involves a decomposition of the cou-
pling in both directions. Mapping of the displacements calculated at Level-0 onto
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Figure 8.10: Problem matrix portal frame optimization problem before decomposition. On
the left the optimization problem functions are listed and on the top the design variables and
physical responses. A function that depends on a specific design variable or physical response
is represented by a shaded block.
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Figure 8.11: Coupling parameters are introduced into the problem matrix, showing the data
that is shared between the Level-0 element and the three Level-1 elements.

the Level-1 elements as nodal forces is replaced via consistency constraints. These
constraints are relaxed and added to the individual element objective function of each
element.

8.2.2 Physical model

The initial shape of the portal frame and it’s deformed state under external loading
are shown in Figure 8.12. Two levels can be distinguished, the general lay-out of the
portal frame structure consisting of three columns and the detailed cross-sectional
area, which is described by the thicknesses and the widths of three plates.

General responses of the structure are the horizontal displacement (0r1) at the
point where the external forces are applied, the total volume of the structure (0r2)
and the angular displacement (0r3) of the point where the external forces are applied.
These responses depend on the cross-sectional areas and the moments of inertia of
the columns which are considered Level-1 properties.

The general responses evaluated at Level-0 are computed by means of solving a
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Figure 8.12: Portal frame with embedded hierarchy. The general lay-out consists of three
columns representing Level-0. The detailed cross-sectional area is identified at Level-1. The
stress in each element is computed at the top (σ1,1, σ2,1), at the bottom (σ1,2, σ2,2) and at
the axis running through the middle of the cross-section (τ1, τ2) on both ends of the column.
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finite element model. The displacements of the structure are computed via:

Ku = P, (8.25)

where K is the stiffness matrix of the entire structure. The columns are modeled as
beam elements and the flexural stiffness matrix of these beam elements is mathemat-
ically expressed as:

Ke =

∫

V

BTDBdV (8.26)

A complete derivation of the necessary equations required to compute the displace-
ments is presented in Appendix B. After assembly of the element stiffness matrices
the total structural stiffness matrix is found. The displacements at the top right
corner where the external loading is applied are of special interest. Therefore, the
horizontal displacement at this node is written: 0r1; and the angular rotation of the
top right corner is written: 0r3.

The stiffness matrix (K) is considered a Level-0 property and depends on the cross-
sectional area of the columns which is considered a Level-1 property. The mapping
of the cross-sectional area from Level-1 onto Level-0 is mathematically expressed as:

i
0H1

(
ix1,

ix2,
ix3,

ix4,
ix5,

ix6

)
= i

0h1, (8.27)

where i = 1, 2, 3. Furthermore, the stiffness matrix depends on the moment of inertia.
The mapping of the moment of inertia is mathematically expressed as:

i
0H2

(
ix1,

ix2,
ix3,

ix4,
ix5,

ix6

)
= i

0h2, (8.28)

where i = 1, 2, 3.
The total volume of the structure is defined as:

0r2 = 1
0h1l1 + 2

0h1l2 + 3
0h1l3, (8.29)

where the lengths li are given parameters.
After the displacements of the structure are found, the internal forces can be

computed. The internal forces are required by the Level-1 analysis of the individ-
ual elements. First the strains are computed for each individual element from the
structural displacements. Secondly, the internal nodal forces are computed:
Element 1:

f int
1 =

∫

V

BTDǫ1dV ⇒ 0
1h = 0

1H(0r) (8.30)

Element 2:

f int
2 =

∫

V

BTDǫ2dV ⇒ 0
2h = 0

2H(0r) (8.31)

Element 3:

f int
3 =

∫

V

BTDǫ3dV ⇒ 0
3h = 0

3H(0r) (8.32)
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Axial stress is defined as σa = p
A

. The axial load carried by an element is p and the
cross-sectional area is A. Hence, the axial stress represented in multi-level notation
is:

σa =
0
i h14 −

0
i h11

i
0h

, (8.33)

where 0
i h11 and 0

i h14 are the axial forces applied on each column. The bending stress is
defined as σb = dM

I
. The bending moment carried by the element is M , the distance

d is the free surface distance and the moment of inertia of the element is I. The
bending stress represented in multi-level notation is:

σb1 =
d0

i h13

i
0h2

and σb2 =
d0

i h16

i
0h2

, (8.34)

where 0
i h13 and 0

i h16 are the bending moments applied on each end of the columns
and d depends on the geometrical lay-out of the cross-section of the column. A
mathematical expression for d is presented in Appendix B. The normal stress in the
elements is a summation of axial and bending stresses:

ir1 = σa + σb1
ir2 = σa + σb2 . (8.35)

Finally, the shear stress τ is defined as τ = V Q
Ib

. The first moment of inertia is Q, the
downward nodal force is V and the thickness of the vertical plate of the column is b.
In multi-level notation the shear stress τ is represented as:

ir3 =
0
i h12Q
i
0h2

ix4
and ir4 =

0
i h15Q
i
0h2

ix4
(8.36)

where 0
i h12 and 0

i h15 are the downward applied loads on both ends of the column
and Q depends on the geometrical lay-out of the cross-section of the column. A
mathematical expression for Q is presented in Appendix B.

8.2.3 Numerical results

Two different coordination methods are applied to the portal frame multi-level opti-
mization problem: Sequential and Parallel coordination. The relaxation parameters
are updated via the method of multipliers (Bertsekas and Tsitsiklis, 1989).

All optimization starting points were chosen via random initial design variables.
Furthermore, the coupling variables were initiated with variables that laid between
feasible bounds, see Table 8.8. Therefore, the individual elements were not consis-
tent with each other meaning that an infeasible design point was used in all cases
and no initial computations were done in order to have a consistent starting design
configuration.

The global optimal values for the design variables of the portal frame optimization
problem are listed in Table 8.10. There is a second local optimum that can be found
via an All-in-One optimization process that has a higher objective function value,
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Table 8.10: Optimal solution of the four elements of the portal frame in terms of
design variables. The optimal solution was found via an All-in-One optimization.
Therefore, the consistency constraints are satisfied exact.

parameter description

0vf = 9.2281 × 10−3 horizontal displacement
1
0h1 = 3.1169 × 10−2 cross-sectional area 1
1
0h2 = 1.4040 × 10−4 moment of inertia 1
2
0h1 = 2.8001 × 10−2 cross-sectional area 2
2
0h2 = 4.5000 × 10−4 moment of inertia 2
3
0h1 = 1.1615 × 10−2 cross-sectional area 3
3
0h2 = 4.2848 × 10−4 moment of inertia 3

1x1 = 5.0000 × 10−1 2x1 = 1.0004 × 10−2 3x1 = 5.0000 × 10−1 height
1x2 = 4.1559 × 10−2 2x2 = 1.0000 × 10−2 3x2 = 1.1300 × 10−1 top thickness
1x3 = 4.1559 × 10−2 2x3 = 1.0000 × 10−2 3x3 = 1.1337 × 10−2 bottom thickness
1x4 = 1.4953 × 10−2 2x4 = 1.0000 × 10−2 3x4 = 1.3639 × 10−2 flange width
1x5 = 3.0000 × 10−1 2x5 = 1.0000 × 10−2 3x5 = 2.2600 × 10−2 top width
1x6 = 3.0000 × 10−1 2x6 = 1.0000 × 10−2 3x6 = 2.2504 × 10−1 bottom width

see Tosserams (2008). However, none of the multi-level optimizations converged to
this second optimum. The value of the objective function at the global optimal point
and the optimal value of the coupling variables are listed in Table 8.10. The design
constraint functions present in each element of the hierarchy are active.

Results

Results for the portal frame multi-level optimizations that converged to an objective
value of 9.2× 10−3 are listed in Table 8.11. Two decomposition methods are applied:
hierarchic top-down and non-hierarchic. Furthermore, results are compared for three
different convergence criteria and corresponding settings of β and γ combined with
a sequential coordination process. These criteria correspond to three methods that
update the coupling and relaxation parameters:� Block Coordinate Descent (BCD),� Inexact (InE),� Alternating Descent (AD).

Finally, a sequential and parallel coordination of the individual elements is compared.
The best coupling and relaxation settings that worked are used to show the effect of
parallel coordination with respect to sequential coordination. The parallel coordina-
tion is accomplished via an additional damping parameter τ , see Chapter 5.

In Table 8.11 the consistency tolerances (ǫvc) are changed from 1×10−3 to 1×10−4

for some algorithm settings. Changing the convergence tolerance was necessary for
non-hierarchic decompositions that otherwise would not converge to the optimal point.
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Table 8.11: Computational cost of each solution strategy for solving the portal
framework via an Augmented Lagrangian relaxation technique. Order of magni-
tude for number of function evaluations and the number of optimization iterations
are presented. Both hierarchic and non-hierarchic decompositions are considered.
Furthermore, results for a sequential and parallel solution strategy are presented.

decomp. coord. func.eval. opt.iter. hier.upd. conv. crit.
top-down sequential ǫvc ≤ 5 × 10−3

BCD: β = 2.2, γ = 0.4 2 × 104 2 × 103 595 ǫvf ≤ 1 × 10−5

ǫvc ≤ 1 × 10−3

InE: β = 2.0, γ = 0.5 1 × 106 2 × 105 456 ǫvf ≤ 1 × 10−3

ǫvc ≤ 1 × 10−3

AD: β = 1.1, γ = 0.9 2 × 104 2 × 103 97 ǫvf ≤ +inf

top-down parallel ǫvc ≤ 1 × 10−3

InE: β = 1.1, γ = 0.9, τ = 0.9 7 × 105 8 × 104 922 ǫvf ≤ 1 × 10−3

non-hier. sequential ǫvc ≤ 1 × 10−3

BCD: β = 2.2, γ = 0.4 2 × 105 1 × 104 308 ǫvf ≤ 1 × 10−5

ǫvc ≤ 1 × 10−3

InE: β = 2.0, γ = 0.5 7 × 104 5 × 103 109 ǫvf ≤ 1 × 10−3

ǫvc ≤ 1 × 10−4

AD: β = 1.1, γ = 0.9 8 × 104 6 × 103 119 ǫvf ≤ +inf

non-hier. parallel ǫvc ≤ 1 × 10−4

InE: β = 1.1, γ = 0.9, τ = 0.9 1 × 106 8 × 104 712 ǫvf ≤ 1 × 10−4

Table 8.12 lists the size of the largest inconsistencies between each element. Hence,
all optimal points that were found via the different approaches tested resulted in
consistent optimal designs.

Table 8.12: Consistency constraint values for optimal values of
the portal framework found via various settings of the relaxation-
based coordination methods.

Method 1
0c

2
0c

3
0c

BCD∗ 2 × 10−8 6 × 10−10 −2 × 10−8

InE∗ −1 × 10−8 −2 × 10−8 −2 × 10−8

InE Parallel 3 × 10−6 2 × 10−8 3 × 10−7

AD∗ 1 × 10−5 −3 × 10−5 6 × 10−5

BCD non-hier. ∗ −7 × 10−5 1 × 10−5 −1 × 10−5

InE non-hier. ∗ −1 × 10−4 −2 × 10−4 −1 × 10−3

InE n.-h. Par.∗ 1 × 10−4 −4 × 10−5 −8 × 10−5

AD non-hier. ∗ −2 × 10−6 −4 × 10−5 −5 × 10−5

* Largest value of the consistency constraints is listed.

The optimal cross sectional areas found are listed in Table 8.13. These belong to
the indicated costs listed in Table 8.15. From the table it is clear that all top-down
hierarchic decomposition approaches and non-hierarchic decomposition approaches
that were sequentially coordinated converge to the same optimal point. However,
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the parallel coordinated approaches converged to a different optimal point where the
objective function value was approximately the same.

Table 8.13: Objective function value and optimal cross-sectional areas for each indi-
vidual column found via different multi-level optimization strategies.

Method 0vf
1
0h

2
0h

3
0h

BCD 9.229× 10−3 3.117 × 10−2 2.801 × 10−2 1.162× 10−2

InE 9.234× 10−3 3.116 × 10−2 2.805 × 10−2 1.162× 10−2

InE Parallel 9.222× 10−3 2.832 × 10−2 4.910 × 10−2 1.073× 10−2

AD 9.228× 10−3 3.117 × 10−2 2.800 × 10−2 1.162× 10−2

BCD non-hier. 9.229× 10−3 3.117 × 10−2 2.800 × 10−2 1.161× 10−2

InE non-hier. 9.228× 10−3 3.116 × 10−2 2.800 × 10−2 1.162× 10−2

InE n.-h. Par 9.228× 10−3 2.836 × 10−2 4.846 × 10−2 1.077× 10−2

AD non-hier. 9.229× 10−3 3.117 × 10−2 2.800 × 10−2 1.162× 10−2

Discussion

The results of Table 8.11 show the effect of adding additional coupling between Level-
0 and Level-1 as compared to the two-bar truss example. The computational costs
have increased, partly due to additional design constraints which increase the com-
putational cost of individual element optimizations and partly due to the additional
coupling parameters (moment of inertia and cross-sectional area in case top-down and
moment of inertia, cross-sectional area and the internal forces of the beam elements
in case non-hierarchic).

Comparing the hierarchic top-down decomposition with respect to a non-hierarchic
decomposition results vary for different γ, β and convergence parameter settings. The
hierarchic decomposition approach requires less computational effort if individual ele-
ment optimizations are calculated via Block Coordinate Descent (BCD) or via Alter-
nating Descent (AD). The non-hierarchic decomposition requires less computational
effort when individual element optimizations are calculated via Inexact (InE). Over-
all, the amount of hierarchical updates required by the non-hierarchic decomposition
approach is less then observed for the hierarchic decomposition approach.

Sequential coordination with respect to parallel coordination shows similar results
as compared to the two-bar truss example problem. The amount of computational
effort doubles in case a hierarchic decomposition is used. In case a non-hierarchic
decomposition is used, the convergence tolerance is increased from 1 × 10−3 to 1 ×
10−4 to converge to the optimal point. Therefore, the computational effort for the
non-hierarchic decomposed and parallel coordinated approach is seven times higher
then the sequentially coordinated approach. Hence, for the current example only
top-down hierarchic decomposition benefits from parallel execution of the multi-level
optimization approach.

The choice between Block Coordinate Descent (BCD), Inexact (InE) or Alternat-
ing Descent (AD) has a large effect on the numerical costs. Table 8.11 shows that
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Figure 8.13: Optimization history of the portal frame using a hierarchic top-down decompo-
sition. Convergence settings for inconsistencies (ǫvc) and objective function (ǫvf ) correspond
to the Alternating Descent method. Furthermore, a sequential coordination was applied to
the iteration process. (0vf ) Element-0 objective function value versus the number of hier-
archical updates. (1vf ) Element-1 objective function value versus number of hierarchical
updates. (2vf ) Element-2, objective function value versus number of hierarchical updates.
(3vf ) Element-3, objective function value versus number of hierarchical updates.

Alternating Descent requires less computational effort then the other approaches in
most cases. Furthermore, it does not require more computational effort of the indi-
vidual optimization and function evaluations and in some cases even reduces these
costs.

In Figure 8.13 the optimization history is plotted for the portal frame multi-level
optimization using a hierarchic top-down relaxation, alternating descent convergence
settings and sequential coordination. A similar shift in optimal value of Element-0
is seen in the optimization history as compared to the optimization history of the
two-bar truss multi-level optimization problem. The objective function value history
of the Level-1 elements is less smooth than that of the Level-1 elements of the two-bar
truss example. This is because more consistency constraints are present in the current
example.

8.2.4 Alternative Portal Frame design problem

Multi-level design problem

A second portal frame design optimization problem is taken from Sobieszczanski-
Sobieski et al.(1985). Sobieszczanski-Sobieski et al. solved the portal frame optimiza-
tion problem via the Optimization by Linear Decomposition method (see Chapter 5).
The decomposition and coordination of the model is identical to that of the previous
portal frame problem, see Section 8.2. However, the design optimization functions of
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Table 8.14: Scaling parameters and upper and lower bounds on the
design variables for the portal frame problem, where i = 1, 2, 3.

variable lowerbound upperbound scaling parameter

ix1 1.000 × 10−1 5.000 × 10−1 1.000× 10−1

ix2 1.000 × 10−2 5.000 × 10−2 1.000× 10−2

ix3 1.000 × 10−2 5.000 × 10−2 1.000× 10−2

ix4 1.000 × 10−2 5.000 × 10−2 1.000× 10−2

ix5 1.000 × 10−1 3.000 × 10−1 1.000× 10−1

ix6 1.000 × 10−1 3.000 × 10−1 1.000× 10−1

0
i h1 2.800 × 10−3 5.000 × 10−2 1.000× 10−2

0
i h2 4.500 × 10−6 1.800 × 10−3 1.000× 10−4

i
0h1 −1.000 × 106 1.000 × 106 1.000× 104

i
0h2 −1.000 × 106 1.000 × 106 1.000× 104

0
i h3 −1.000 × 106 1.000 × 106 1.000× 104

0
i h4 −1.000 × 106 1.000 × 106 1.000× 104

0
i h5 −1.000 × 106 1.000 × 106 1.000× 104

0
i h6 −1.000 × 106 1.000 × 106 1.000× 104

the current optimization problem are slightly modified to yield:

0vf =
0r2(

1x,2x,3x)
0rVmax

; ivg5 = |ir3(
ix,0r)|

irτcr
− 1;

ivg1 =
ir1(ix,0r)
irσcr

− 1 ; ivg6 = |ir4(
ix,0r)|

irτcr
− 1;

ivg2 = −
ir1(

ix,0r)
irσcr

− 1 ; ivg7 =
(ix1−

ix2−
ix3)

35ix4
− 1;

ivg3 =
ir2(ix,0r)
irσcr

− 1 ; ivg8 =
ix5

20ix2
− 1;

ivg4 = −
ir2(

ix,0r)
irσcr

− 1 ; ivg9 =
ix6

20ix3
− 1;

ivg10 = 1 −
5(ix1−

ix2−
ix3)ix4

(ix5)(ix2)+(ix1−ix2−ix3)ix4+(ix6)(ix3)
;

ivg11 =
(
1 −

ix2
ix5

2ix3
ix6

)(
1 −

ix2
ix5

2ix3
ix6

)
.

(8.37)

The objective is changed from minimizing the horizontal tip displacement to min-
imization of the volume (mass) of the total structure. Constraints on portal frame
displacements have been omitted and an additional constraint is added to the individ-
ual elements (ivg11 ). This constraint represents a fabrication constraint. Either the
top or the bottom flange of the columns must be twice the size of the opposite side.
This enables one to distinguish between top and bottom of the I-columns. Finally,
lower and upper bounds of the design variables are changed, see Table 8.14.

The problem is extensively studied in the work of Tosserams (2008). Tosserams
shows that a number of optimal configurations exist. In the present discussion the
focus is on computational costs for various decomposition, coordination and conver-
gence settings and therefore a discussion on the range of global and local optima is
omitted.
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Table 8.15: Computational cost of different convergence criteria for the portal
frame optimization problem with an Augmented Lagrangian relaxation technique.
The results show the effect of hierarchic and non-hierarchic decompositions. Fur-
thermore, the results show the effect of different convergence settings and corre-
sponding choice of β and γ. Finally, the results show the effect of sequential versus
parallel coordination.

decomp. coord. func.eval. opt.iter. hier.upd. conv. crit.
top-down sequential ǫvc ≤ 1 · 10−4

BCD: β = 2.2, γ = 0.4 2 × 104 1 × 103 104 ǫvf ≤ 1 · 10−5

ǫvc ≤ 1 · 10−4

InE: β = 2.0, γ = 0.5 2 × 104 2 × 103 178 ǫvf ≤ 1 · 10−4

ǫvc ≤ 1 · 10−4

AD: β = 1.1, γ = 0.9 8 × 103 7 × 102 52 ǫvf ≤ +inf

top-down parallel ǫvc ≤ 1 · 10−4

InE: β = 1.1, γ = 0.90, τ = 0.9 1 × 105 1 × 104 216 ǫvf ≤ 1 · 10−4

non-hier. sequential ǫvc ≤ 1 · 10−4

BCD: β = 2.2, γ = 0.4 9 × 104 7 × 103 359 ǫvf ≤ 1 · 10−5

ǫvc ≤ 1 · 10−4

InE: β = 2.0, γ = 0.5 2 × 105 1 × 104 705 ǫvf ≤ 1 · 10−4

ǫvc ≤ 1 · 10−6

AD: β = 1.1, γ = 0.9 8 × 104 4 × 103 131 ǫvf ≤ +inf

non-hier. parallel ǫvc ≤ 1 · 10−4

InE: β = 1.05, γ = 0.95, τ = 0.9 1 × 106 8 × 104 783 ǫvf ≤ 1 · 10−4

Numerical results

Two decomposition methods are applied: hierarchic top-down decomposition and
non-hierarchic decomposition. Furthermore, results are compared for different con-
vergence criteria corresponding to Block Coordinate Descent (BCD), Inexact (InE)
and Alternating Descent (AD). In addition, β and γ are tuned for the algorithm to
remain numerically stable. Finally, for convergence settings that resulted in least
computational effort, sequential coordination is compared to parallel coordination of
the individual elements. The computational costs listed in Table 8.15 are typical for
the algorithm settings that were used to obtain the results. The corresponding optima
for which these results were obtained are listed in Table 8.16.

The optimal cross sectional areas found are listed in Table 8.16 and correspond
to local optima found by Tosserams (2008). The optima listed in Table 8.16 belong
to the computational costs listed in Table 8.15. Global optimal points were found
for a top-down hierarchic decomposition with Block Coordinate Descent (BCD) or
Inexact (InE) convergence settings and a sequential coordination process. The worst
local optimal point was found for a non-hierarchic decomposition with Inexact (InE)
convergence settings and a sequential coordination process.

In Table 8.17 the consistency constraints are listed for the portal frame optimiza-
tion problem.
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Table 8.16: Different optima were found for the multi-
level optimization problem. The optimum changes for dif-
ferent initial starting points and with different algorithm
settings. The objective function (0vf ) and coupling vari-
ables (i

0h) are listed for the various algorithm settings. The
coupling variables represent the optimal areas of the three
columns.

Method 0vf
1
0h

2
0h

3
0h

BCD 0.1688 0.5150 0.5150 0.9153
InE 0.1684 0.5150 0.5150 0.9120
InE Parallel 0.1684 0.5095 0.5086 0.8600
AD 0.1688 0.5150 0.5150 0.9153
BCD non-hier. 0.1708 0.5914 0.5153 0.8966
InE non-hier. 0.1800 0.7022 0.6777 0.7711
InE n.-h. Par 0.1690 0.5128 0.5029 0.8614
AD non-hier. 0.1763 0.6285 0.5823 0.8664

Table 8.17: Consistency constraint values of the
relaxation-based coordination methods for the portal frame
multi-level optimization problem. The consistency con-
straints listed are the largest inconsistencies measured be-
tween elements.

Method 1
0c

2
0c

3
0c

BCD −2 · 10−9 −2 · 10−9 −2 · 10−8

InE −6 · 10−9 −6 · 10−9 −8 · 10−8

InE Par. −2 · 10−9 −4 · 10−9 2 · 10−8

AD −1 · 10−5 2 · 10−5 −4 · 10−6

BCD n.-h. −2 · 10−5 −2 · 10−6 −2 · 10−6

InE n.-h. −1 · 10−5 −1 · 10−5 1 · 10−5

InE n.-h. Par −1 · 10−5 −2 · 10−6 −3 · 10−5

AD n.-h. 4 · 10−7 −1 · 10−6 2 · 10−7
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Discussion

A comparison between the results of Table 8.11 and Table 8.15 shows the effect of
removing Level-0 design constraints. The computational costs have decreased for the
top-down decomposed optimization problems and increased for the non-hierarchic
decomposed optimization problems.

Comparing the hierarchic top-down decomposition with respect to a non-hierarchic
decomposition the results show that a hierarchic top-down decomposition requires less
computational effort for the current multi-level optimization problem. The amount
of hierarchical updates is approximately three times higher and the number of opti-
mization iterations and function evaluations are an order of magnitude higher for the
non-hierarchic decomposition.

Comparing sequential versus parallel coordination shows that given the inexact
(InE) convergence parameter settings the computational effort for parallel coordina-
tion is in terms of function evaluations and optimization iterations much higher then
for sequential coordination. This is due to attempts of optimizing individual elements
that did not converge and were restarted from slightly different initial design points
to try to converge to feasible optimal points.

Various results were obtained for the three methods that correspond to different
convergence criteria and relaxation parameter update settings. In general, Alternat-
ing Descent (AD) performed best in terms of computational effort. Block Coordi-
nate Descent (BCD) performed better then the Inexact (InE) approach. The inexact
convergence tolerance on the objective function of the individual elements did not
decrease the computational effort.

In Figure 8.14 a plot of the optimization history of the objective function values of
the four elements is presented. A sequential solution process is used and convergence
settings correspond to Alternating Descent(AD). A similar trend as was observed in
the plots of the two-bar truss multi-level optimization problem is seen. The optimal
value of Element-0 shifts during the multi-level optimization process to a higher value
that is optimal for the entire hierarchy. The objective function values of the Level-1
elements show a smooth increasing Augmented Lagrangian function of the inconsis-
tencies between Level-0 and the individual Level-1 elements. After a certain value
of the relaxation parameters is reached the optimization history shows a large shift
in objective function values. At this point the individual optimization problems are
pushed towards a different configuration and the multi-level optimization converges
towards the optimum value.

8.3 A supersonic business jet

The supersonic business jet shown in Figure 8.15 was introduced by Agte et al. (1999)
as a benchmark problem for multi-disciplinary design optimization approaches. In the
present chapter a brief overview of the multi-disciplinary design optimization problem
is presented. The interested reader is referred to Agte et al. (1999) for a detailed
derivation of the expressions used to model the supersonic business jet.
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Figure 8.14: Optimization history of the portal frame using a hierarchic top-down decompo-
sition. Convergence settings for inconsistencies (ǫvc) and objective function (ǫvf ) correspond
to the Alternating Descent method. Furthermore, a sequential coordination was applied to
the iteration process. (0vf ) Element-0 objective function value versus the number of hier-
archical updates. (1vf ) Element-1 objective function value versus number of hierarchical
updates. (2vf ) Element-2, objective function value versus number of hierarchical updates.
(3vf ) Element-3, objective function value versus number of hierarchical updates.

Figure 8.15: Impression of a supersonic business jet, Sobieszczanski-Sobieski et al. (2003).
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Range

Aerodynamics Propulsion Structure

Level-0

Level-1

Figure 8.16: Two levels are distinguished in the supersonic business jet multi-level opti-
mization problem. Level-0 considering the range of the plane and Level-1 where 3 individual
hierarchical elements are identified: Aerodynamics; Propulsion; and Structure. Each hi-
erarchical element involves a discipline that computes physical characteristics required by
neighboring elements to compute the physical responses.

8.3.1 Multi-level optimization problem

The supersonic business jet design optimization hierarchy is illustrated in Figure
8.16 and the parameters determining the lay-out and performance of the supersonic
business jet are listed in Table 8.18. There are 41 design variables distributed over
four hierarchical elements. Eight of these design variables are present in more then
one hierarchical element. The total structural weight is also listed twice, because this
value is send to two different hierarchical elements.

For this problem, the objective (0vf ) is to maximize the range (0r) of the aircraft.
The supersonic business jet design problem is subjected to constraints on adverse
pressure gradient (1vg1 ) and constraints on the ratio between lift of the wing and lift
of the horizontal tail wing (respectively 1vg2 and 1vg3). Furthermore, constraints on
the maximum engine temperature (2vg1) and on the throttle setting (2vg2) are pre-
sent. Finally, constraints on allowable stresses (3vg1...60) and geometrical constraints
(3vg61...72) are considered in the design problem. Lower bounds ..x, ..

..z and upper
bounds ..x, ..

..z are present on all the design variables, see Table 8.19.

Two levels are distinguished in the design problem, see Figure 8.16. The top
level (Level-0) consisting of a single hierarchical element involved with maximizing
the range (0r1) of the business jet. No constraint functions are present in the Level-
0 hierarchical element. The bottom level (Level-1) consisting of three individual
elements involving constraints on aerodynamics (1vg1 ,

1vg2 and 1vg3), on propulsion
(2vg1 and 2vg2) and constraints on structural characteristics (3vg1...60 and 3vg61...72).

The problem matrix showing the dependencies of the optimization functions on
the design variables and physical responses is shown in Figure 8.17. The objective
function depends on mapped responses from the Level-1 elements. Likewise, the
constraint equations of the Level-1 hierarchical elements depend on physical responses
that are mapped between the levels and between the individual hierarchical elements.
The coupling between hierarchical elements is shown via coupling variables in the
problem matrix, see Figure 8.18.
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Figure 8.17: Supersonic Business Jet problem matrix before decomposition. On the left the
optimization problem functions are listed and on the top the design variables and physical
responses. A function that depends on a specific design variable or physical response is
represented via a shaded block. No constraints are present in the Level-0 element, hence 0vg

is left blank. Furthermore, design variables are present in multiple hierarchical elements that
are shared. For brevity of the problem matrix, the design variables, responses and design
optimization functions are combined into vectors.
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Figure 8.18: Coupling parameters are introduced into the problem matrix, showing the data
that is shared between the Level-0 element and the three Level-1 elements.
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Hierarchic decomposition

The optimization problem is decomposed via a top-down hierarchic decomposition.
The consistency constraints between the individual elements are relaxed via Aug-
mented Lagrangian relaxation. Therefore, the individual optimization problems be-
come:

Element-0, Range:

min
0
1 . 2z1,

0
1 . 2z2,

1
0h1,

2
0h1,

3
0h1,

3
0h2

0vf =
0r1

0rreference
+ 0v1

0c + 0v2
0c + 0v3

0c

s.t.
0
1 . 2z ≤ 0

1 . 2z ≤ 0
1 . 2z ; 1

0h1 ≤ 1
0h1 ≤ 1

0h1 ; 2
0h1 ≤ 2

0h1 ≤ 2
0h1 ; 3

0h ≤ 3
0h ≤ 3

0h

where 0v1
0c = 1

0λ1(
1
0c) + ||10s1 ◦ 1

0c||
2
2

0v2
0c = 2

0λ1(
2
0c) + ||20s1 ◦ 2

0c||
2
2

0v3
0c = 3

0λ
T
1 (30c) + ||30s1 ◦ 3

0c||
2
2

(8.38)

Element-1, Aerodynamics:

min
2
1h,31h,1x,13z

1vf = 1v1
0c + 1v2

1c + 1v1
2c + 1v3

1c + 1v1
3c + 1v1

3cz

s.t. 1vg1 = 1v1

(
1r1(

1x, 1
3z,

2
1h)
)

≤ 0
1vg2 = 1v2

(
1r2(

1x, 1
3z,

3
1h)
)

≤ 0
1vg3 = 1v2

(
1r2(

1x, 1
3z,

3
1h)
)

≤ 0
1x ≤ 1x ≤ 1x ; 1

3z ≤ 1
3z ≤ 1

3z ; 2
1h ≤ 2

1h ≤ 2
1h ; 3

1h ≤ 3
1h ≤ 3

1h

where 1v1
0c = 1

0λ2(
1
0c) + ||10s2 ◦

1
0c||

2
2

1v2
1c = 2

1λ1(
2
1c) + ||21s1 ◦ 2

1c||
2
2

1v1
2c = 1

2λ2(
1
2c) + ||12s2 ◦ 1

2c||
2
2

1v3
1c = 3

1λ
T
1 (31c) + ||31s1 ◦ 3

1c||
2
2

1v1
3c = 1

3λ2(
1
3c) + ||13s2 ◦ 1

3c||
2
2

1v1
3cz

= 1
3λ

T (13cz) + ||13sz ◦ 1
3cz||22

(8.39)

Element-2, Propulsion:

min
1
2h,2x

2vf = 2v2
0c + 2v1

2c + 2v2
1c + 2v2

3c

s.t. 2vg1 = 2v1

(
2r1(

2x, 2
0z)
)

≤ 0
2vg2 = 2v2

(
2r2(

2x, 2
0z,

1
2h)
)

≤ 0
2x ≤ 2x ≤ 2x ; 1

2h ≤ 1
2h ≤ 1

2h
where 2v2

0c = 2
0λ2(

2
0c) + ||20s2 ◦ 2

0c||
2
2

2v1
2c = 1

2λ1(
1
2c) + ||12s1 ◦ 1

2c||
2
2

2v2
1c = 2

1λ2(
2
1c) + ||21s2 ◦ 2

1c||
2
2

2v2
3c = 2

3λ2(
2
3c) + ||23s2 ◦ 2

3c||
2
2

(8.40)
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Element-3, Structures:

min
2
3h,13h,3x,31z

3vf = 3v3
0c + 3v3

1cz
+ 3v2

3c + 3v1
3c + 3v3

1c

s.t. 3vg1 = 3v1

(
3r1(

3x, 3
1z,

i
3h)
)

≤ 0
...

3vg60 = 3v60

(
3r6(

3x, 3
1z,

i
3h)
)

≤ 0
3vg61 = 3v61

(
3x, 3

1z,
2
3h
)

≤ 0
...

3vg70 = 3v70

(
3x, 3

1z,
2
3h
)

≤ 0
3x ≤ 3x ≤ 3x ; 3

1z ≤ 3
1z ≤ 3

1z ; 1
3h ≤ 1

3h ≤ 1
3h ; 2

3h ≤ 2
3h ≤ 2

3h

where 3v3
0c = 3

0λ
T
2 (30c) + ||30s2 ◦ 3

0c||
2
2

3v2
3c = 2

3λ1(
2
3c) + ||23s1 ◦ 2

3c||
2
2

3v1
3c = 1

3λ1(
1
3c) + ||13s1 ◦ 1

3c||
2
2

3v3
1c = 3

1λ
T
2 (31c) + ||31s2 ◦ 3

1c||
2
2

3v3
1cz = 3

1λ
T (31cz) + ||31sz ◦ 3

1cz ||22

(8.41)

Coupling variables (..
..h) are added to the Level-0 optimization problem as design

variables. These variables must match the mapped physical responses (..
..H(..r)). The

latter are evaluated during the Level-1 optimizations.

The Aerodynamics, Propulsion and Structures hierarchical element are located on
Level-1. Since these hierarchical elements are coupled on the same level the consis-
tency constraints are relaxed in both directions. Therefore, coupling variables (..

..h)
are added to the design variables of these hierarchical elements. These variables must
match the mapped physical responses (..

..H(r)) that are computed in the neighboring
element.

In the present thesis a top-down hierarchic decomposition is considered with re-
laxed consistency constraints. This decomposition is different from that of Tosserams
et al. (2008b). In their approach all the shared design variables are send to the
Level-0 element. However, such an approach does not take advantage of the purpose
of decomposition, which is to hide information from elements that do not depend on
this information. Furthermore, additional data flow is generated since the data is
transported along elements that do not depend on it. Finally, additional complexity
is introduced to the individual optimization problems, because more design variables
are present and additional terms are added to the objective functions.

Non-hierarchic decomposition

Agte et al. (1999) use a non-hierarchic decomposition of the supersonic business jet
model. Hence, the consistency constraints between Level-0 and Level-1 are relaxed in
both directions (from Level-0 onto Level-1 and vice versa). Therefore, in addition to
the consistency constraints already present in the top-down hierarchic decomposition,
the mapping of shared design variables from Level-0 onto Level-1 is expressed as:
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Consistency of design variables between Range and Aerodynamics element:

1
0cz1 = 0

1 . 2z1 − 1
0z1

1
0cz2 = 0

1 . 2z2 − 1
0z2

. (8.42)

Consistency of design variables between Range and Propulsion element:

2
0cz1 = 0

1 . 2z1 − 2
0z1

2
0cz2 = 0

1 . 2z2 − 2
0z2

. (8.43)

8.3.2 Numerical results

Two different coordination methods are applied to the supersonic business jet multi-
level optimization problem: sequential and parallel coordination. The relaxation
parameters are updated via the method of multipliers (Bertsekas and Tsitsiklis, 1989).

Results

The optimal design variable values and coupling variable values for the best solution
found via the multi-level optimization framework for the supersonic business jet multi-
level optimization problem are listed in Table 8.20.

Results for different decomposition and coordination approaches applied to the
supersonic business jet multi-level optimization are listed in Table 8.21. Two decom-
position methods are applied: hierarchic top-down and non-hierarchic decomposition.
Furthermore, results are compared for three different combinations of convergence cri-
teria ǫvc and ǫvf that correspond to Block Coordinate Descent (BCD), Inexact (InE)
and Alternating Descent (AD) methods. In addition, settings for β and γ are adjusted
so that the algorithms converge. Finally, for settings that exhibited least computa-
tional cost via sequential coordination, the sequential coordination is compared with
parallel coordination of the individual hierarchical elements.

The computational costs listed in Table 8.21 do not represent multi-level optimiza-
tion runs that converged to the same optimum. The best optimum was obtained via
non-hierarchic decomposition with convergence settings that correspond to Block Co-
ordinate Descent (BCD) and a sequential solution process. The same optimal range
was also found via parallel coordination with convergence settings that correspond to
Inexact (InE). However, the sequential and parallel approach that converged to the
best optimum were also the most expensive methods considering computational effort.
An optimum value found close to the optimum value of 2626 was found via sequential
coordination and convergence settings that correspond to Alternating Descent (AD)
(2489) at significantly lower computational effort. The worst optimum (628) was
found via non-hierarchic decomposition with convergence settings that corresponded
to the Inexact method.

In general, settings for γ and β are chosen such that the relaxation parameters are
updated frequently and with small increments. If for the current example, combina-
tions of γ and β are chosen such that large increments in the relaxation parameters
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Table 8.21: Computational cost of each solution strategy for solving the super-
sonic business jet. Settings that did not converge are indicated by nc.

decomp. coord. func.eval. opt.iter. hier.upd. conv. crit.
top-down sequential ǫvc ≤ 1 · 10−3

BCD: β = 2.2, γ = 0.4, τ = 0.9 9 × 105 4 × 104 480 ǫvf ≤ 1 · 10−4

ǫvc ≤ 1 · 10−3

InE: β = 1.1, γ = 0.9, τ = 0.9 6 × 105 3 × 104 1101 ǫvf ≤ 1 · 10−3

ǫvc ≤ 1 · 10−3

AD: β = 1.1, γ = 0.90, τ = 0.85 nc nc nc ǫvf ≤ +inf

top-down parallel ǫvc ≤ 1 · 10−3

InE: β = 1.05, γ = 0.95, τ = 0.9 nc nc nc ǫvf ≤ 1 · 10−3

non-hier. sequential ǫvc ≤ 1 · 10−3

BCD: β = 1.1, γ = 0.9 3 × 106 3 × 105 4790 ǫvf ≤ 1 · 10−4

ǫvc ≤ 1 · 10−3

InE: β = 2.0, γ = 0.5 5 × 105 3 × 104 560 ǫvf ≤ 1 · 10−3

ǫvc ≤ 1 · 10−3

AD: β = 1.05, γ = 0.95 1 × 105 7 × 103 174 ǫvf ≤ +inf

non-hier. parallel ǫvc ≤ 1 · 10−3

InE: β = 1.05, γ = 0.95, τ = 0.9 9 × 106 4 × 105 4450 ǫvf ≤ 1 · 10−3

occur, the multi-level optimization process diverges and no solution is found. Further-
more, as a consequence of large increments in the relaxation parameters individual
optimization problems have difficulties to converge to an individually feasible solution.

Parallel coordination requires small increments in both relaxation parameters and
coupling variable updates. No convergence was observed for Alternating Descent (AD)
convergence settings together with parallel coordination. However, inexact (InE)
convergence settings and tuning of β and γ was sufficient to update coupling variables
such that the coordination process was numerically stable.

In Figure 8.19 the history of the optimization process is plotted using different con-
vergence settings for non-hierarchic decomposed and sequentially coordinated (Fig-
ures 8.19(a), 8.19(b) and 8.19(c)) or parallel coordinated (Figure 8.19(d)) multi-level
optimization. During the shift from individual optimal to overall optimal design large
jumps in the objective function values are observed. The computations that were
conducted during this jump showed numerical difficulties with respect to convergence
of the individual optimization problems and difficulties with finding feasible solutions.

The results for the supersonic business jet show that the Java framework is able
to perform a multi-level optimization of a large design problem involving many design
constraints and a significant amount of coupling. However, the computational effort
required to converge to an optimum is considerable and the optima found show a large
difference between best optimum and worst optimum found. Because the computa-
tional effort is considerable it might not be feasible in a commercial environment to
rerun these optimizations frequently enough to assure that one finds a good optimal
point. The convergence rate still poses a challenge before multi-level optimization
becomes an alternative in a commercial environment.
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Figure 8.19: Optimization history of the Supersonic business jet using a non-hierarchic
decomposition with a sequential coordination process and (a) exact (BCD) convergence crite-
ria. (b) inexact convergence criteria. (c) Alternating Descent (AD) convergence criteria. In
(d) a non-hierarchic decomposition with a parallel coordination process is shown and inexact
convergence criteria.





Chapter 9

Conclusions and Recommendations

9.1 Conclusions

In this thesis a unified approach towards decomposition and coordination for multi-
level optimization problems is presented. A multi-level notation has been introduced
in order to compare different main-stream formulations in multi-level optimization.
The notation clearly distinguishes between the aspects of optimization and analysis
within the multi-level design. In addition, it emphasizes the handling of inconsistency
between subsystems and clarifies where in the multi-level formulation these are solved.
To study the implementation efforts and numerical costs of different main-stream for-
mulations a numerical comparison of multi-level optimization and multi-disciplinary
design optimization approaches was performed, motivated by a specific interest for
structural multi-scale mechanics.

Each multi-level method was tested on the basis of a two bar truss example. Most
of the multi-level methods approached the optimum that was found with an All-in-
One method (AiO), which was used as a standard to compare the methods. The
following observations were made:� [ Section 5.1.4 ] Constructing a response surface of individual elements optima

according to Quasi-separable Subsystem Decomposition was more challenging
then constructing a response surface from the mapped physical response data
dictated via Bi-Level Integrated System Synthesis. Using optimal objective or
constraint function data of neighboring elements can be challenging because this
data cannot be fitted via a smooth function. As observed by other researchers
this optimal data is often discontinuous. However, introducing, e.g., barrier
functions into the objective function overcomes the problem of discontinuity of
the optimal functions.

215



216 CONCLUSIONS AND RECOMMENDATIONS 9.1� [ Section 5.1.4 ] Linearizing objective and/or constraints using sensitivity anal-
ysis requires tight move limits to maintain accurate sensitivity data. Further-
more, introducing trade-off and responsibility factors to switch on or switch off
constraints that are shared introduces numerical difficulties.� [ Section 5.2.4 ] Coordination of parameters related to a quadratic of the l2-norm
(Analytical Target Cascading) of the inconsistencies requires the least com-
putational effort. For Augmented Lagrangian relaxation and Inexact Penalty
Decomposition the computational costs were of the same order of magnitude.
Approximating the relaxation parameters via a Weight Update Method was
more expensive in terms of computational effort then approaches that com-
puted the relaxation parameters. Finally, relaxation via a quadratic penalty
function and fixed weights did not converge to a known solution and therefore
the computational costs are not representative.� [ Sections 5.1.4 and 5.2.4 ] Equality-based methods find the exact optimum
whereas the relaxation-based methods converge to designs close to the optimal
point found via an All-in-One optimization. Collaborative Optimization con-
verges to a non-optimal point. This is due to the definition of the penalty func-
tion embedded in the Collaborative Optimization problem formulation. Prop-
erly introducing the correct penalty function (e.g., via exact penalty function
decomposition) and associated update technique for the relaxation parameters
converges towards the optimum.� [ Sections 5.1.4 and 5.2.4 ] The computational costs of equality-based coordi-
nation methods compared to relaxation-based coordination methods are of the
same order of magnitude. Equality-based methods require more computational
effort from the individual elements and relaxation-based methods require more
data exchange between elements.� [ Chapter 6 ] To improve the convergence characteristics of coordination methods
so-called multi-level coordination methods are promising. These methods are
developed from methods that solve large systems of equations. A drawback of
these methods is that the mathematical assumptions on which these methods
rely are more stringent then the so-called bi-level coordination methods that are
commonly used in multi-level optimization. This thesis showed that multi-level
optimization problems that are formulated for bi-level optimization problems
can be transformed with little effort into problems that can be solved via a
multi-level coordination technique.� [ Sections 5.1.4 and 5.2.4 ] An advantage of the relaxation-based coordination
methods with respect to the equality-based coordination methods is that they
are relatively simple to implement. Equality-based coordination methods re-
quire additional techniques such as optimum sensitivity analysis or response
surface methods in order to function properly. Therefore, in terms of imple-
mentation effort relaxation-based coordination methods are preferred.
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By capturing the generic steps of multi-level optimization and multi-disciplinary
design optimization the key components of a multi-level software program were de-
fined. The flexibility of the framework was shown on typical multi-level optimization
problems for which different decomposition and coordination schemes can easily be
exchanged.

A relaxation based multi-level optimization technique (Analytical Target Cascad-
ing via Augmented Lagrangian relaxation) was implemented according to the multi-
level optimization framework developed in this thesis and the following observations
were done:� [ Chapter 8 ] The computational effort required to solve the top-down hierar-

chic decomposition and non-hierarchic decomposition varied between test cases.
The smaller test cases showed faster convergence via hierarchic top-down de-
composition and the test cases with many design constraints converged faster
via non-hierarchic decomposition.� [ Chapter 8 ] Two coordination strategies were considered. A sequential co-
ordination process and a parallel coordination process. The parallel process
exhibited more computational effort then the sequential coordination process.
However, it is expected that if the problem size increases the computational
effort becomes close to that of sequential coordination. Therefore, the actual
time it takes to execute an entire multi-level optimization in parallel is smaller
as compared to the same problem executed sequentially.� [ Chapter 8 ] In all test cases considered, the method of alternating directions
exhibited best computational characteristics as compared to inexact and block
coordinate descent.

Findings in this study show that design of complex structures that exhibit multi-
scale behavior in the view of multi-scale mechanics via methods that are proposed in
literature is challenging.� [ Section 5.1 ] Equality-based methods suffer from the fact that for each param-

eter that is send from one element to a neighboring element either sensitivity
information is required or a response surface is constructed. Constructing accu-
rate sensitivity information is not straightforward and can become a numerically
expensive procedure on its own. Fitting a response surface through elements
that output more then ten parameters to a single neighboring element (a small
number if a detailed local finite element model communicates physical responses
and/or shared design variables with a global finite element model) is challenging.� [ Section 5.3 ] Relaxation-based methods suffer from poor numerical convergence
characteristics. The linear convergence rate of these methods and the fact that
intermediate designs during the multi-level optimization cannot be used makes
these methods challenging to use in a commercial environment.

Multi-level optimization and multi-disciplinary design optimization methods are
useful when the amount of data that is exchanged between individual elements remains
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small and models are weakly coupled. Weak coupling in the sense that large errors
in the solution of a neighboring element do not occur when mapping the data from
one element onto a neighboring element. The number of parameters that can be send
from one element to a neighboring element is limited. Therefore, one may question
the effort that is spend on finding an accurate solution within individual elements.
Due to the limited amount of parameters that can be mapped accuracy of coupling
may be lost.

9.2 Recommendations

Recommendations of this thesis are two-fold. First directions for the research con-
ducted in this thesis are presented. Second, directions for further development of the
framework are presented.

9.2.1 Validating framework� In this thesis the multi-level framework is demonstrated via Augmented La-
grangian relaxation and coordination via the method of multipliers. To demon-
strate the unified formulation of the framework an equality based method should
be implemented as well. Equality based methods implemented according to the
framework can be used to compare them with relaxation based methods imple-
mented via this framework. A comparison between individual multi-level opti-
mization methods implemented according to the multi-level framework is more
objective because the same building blocks are used. In the present thesis the
multi-level optimization methods are compared via method specific implementa-
tions of the multi-level optimization methods. An approach that lends itself best
for a validation of the framework is Bi-Level Integrated System Synthesis be-
cause it requires various additional techniques that are specific to equality-based
decomposition. Furthermore, it is derived for the same type of multi-level opti-
mization problems as Analytical Target Cascading when looking at the problem
matrix.� The Bi-Level Integrated System Synthesis (BLISS) approach relies on global sen-
sitivity equations or response surface modeling. Development of the global sensi-
tivity module can be used to develop and study the effect of different sensitivity
methods on coupled problems. The development of a module that constructs
the response surfaces required for BLISS can be used to introduce response sur-
faces into the relaxation based methods. Because of the generalized formulation
of the framework the effect of approximating responses of neighboring elements
in the relaxation based methods can be studied.� The current framework implements Augmented Lagrangian relaxation. Because
Augmented Lagrangian relaxation consists of a penalty formulation combined
with a Lagrangian relaxation the packages for penalty relaxation and Lagrangian
relaxation are already present. Hence, the benchmark problems conducted in
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the present thesis can be repeated via Penalty Relaxation and Lagrangian re-
laxation. A comparison between the relaxation based approaches should show
which approach is faster in what kind of multi-level optimization setting.� Numerical tests conducted in the present thesis were limited to hierarchic top-
down and non-hierarchic decomposition. For completeness and to demonstrate
the flexibility of the framework a bottom-up hierarchic decomposition should
be included in the examples as well.� The current examples are limited to two-level examples. To show the flexibility
of multi-level optimization methods a three-level example should be included. A
three (or more) level example should show the effect of coordinating individual
optimization problems in different sequences. Furthermore, a three (or more)
level problem lends itself as an initial study towards multi-level coordination of
a hierarchy.� The present thesis suggests that multi-level coordination is more promising as
compared to bi-level coordination in terms of computational effort. Two ap-
proaches were suggested that initiated work into the multi-level coordination
direction. To show the numerical performance of such an approach with respect
to bi-level coordination methods a null-space method according to Alexandrov’s
Trust Region Model Management strategy looks promising.� A null-space method opens up possibilities to further extend the framework
via methods that are common to solve large systems of equations. Examples
are the Schur complement reduction method introduced in the present thesis
and Schwarz-decomposition. Schur complement reduction involves solving the
consistency constraints via a reduced problem that is much smaller in size then
the original problem. Schwarz-decomposition should make it possible to avoid
the use of consistency constraints and map computed data from one model
directly onto a neighboring model and still consider both models independent.

9.2.2 Extending the framework� The present framework focuses on decomposition of coupling. Although de-
composition enables distribution of the optimization problem it also introduces
communication between individual elements. To reduce this communication
the effect of completely neglecting parts of the coupling should be studied. A
promising approach into this direction is that of Bloebaum (1995) who defines
a means of measuring coupling strength between elements. Based on coupling
strength a choice which coupling to account for and which coupling to neglect
can be made. Other techniques that are promising are diagonal approxima-
tions which neglect off-diagonal terms in the coupling matrix or methods that
rely on reduction techniques coming from the theory of solving large systems of
equations.
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differences. In literature techniques can be found that reduce the computational
costs of sensitivity calculations with several orders of magnitude. Sensitivities
are present in the direct coupling of individual elements, hence the Global Sen-
sitivity Equations, as well as, in optimum sensitivity calculations.� The development of a multi-level coordination method should speed-up the
multi-level optimization process with several orders of magnitude. However,
a real multi-level coordination process in which separate levels are introduced
that pre-coordinate the coordination of element data is challenging. Solution
techniques that utilize such an approach are already present. An example is a
hierarchy of ever increasing resolution of the same finite element model. The
solution to this finite element model is found via first solving an inexpensive
model with a coarse mesh. Each individual element in the mesh is then re-
meshed and solved individually until the finest mesh partitioning is reached. A
similar technique should be applicable to the coordination process of multi-level
optimization of complex structures.� The development of a structural multi-level benchmark problem that includes
geometric nonlinearity of individual elements in the hierarchy and/or nonlin-
ear material behavior. Within such a model the effect of different decoupling
strategies on nonlinearities can be studied and how these couplings should be
constrained within the individual elements.� The development of a structural multi-level benchmark problem that involves
geometric and/or material nonlinearities that cover multiple elements. Hence,
the nonlinear behavior cannot be isolated within a single element and cou-
pling between individual elements is strong. This problem can be used to test
the effect of coordination strategies on reducing the cycling between individual
elements. Because coupling is strong in such problems a significant gain in com-
putational effort is expected from approaches that rely on more advanced data
exchange methods than fixed point iteration between the elements.� Finally, the development of a structural multi-level benchmark problem in which
geometric and/or material nonlinearities cover multiple levels in the hierarchy.
In this test case small material parameters and/or geometrical parameters can
be changed on the small scale that can be used to change responses at the large
scale for the purpose of optimization. The decomposition of the physical model
can be accomplished via, e.g., the Variational Multi-scale Method. Initially, the
optimization problem should be constructed such that the multi-level behavior
is present in the physical model and optimization problems at the different
levels are coupled via the physics. However, eventually optimization problems
should be formulated as an All-in-One problem and decomposed via the same
mathematical procedure that forms the basis for the Variational Multi-scale
Method.
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This thesis proposes a framework for multi-level optimization and should function
as a basis from which multi-level optimization approaches can be developed and/or
applied to the optimization of complex structures. Therefore, the possibilities of
validating and extending the framework are endless. We expect that the research
conducted in the present thesis inspires the community to further develop multi-level
optimization into the four areas that were covered in this thesis.
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Appendix A

Significance of relaxation parameters

within multi-level optimization

Relaxation based multi-level optimization methods rely on external updates of the
relaxation parameters. The significance of these parameters with respect to the indi-
vidual optimization problems and the combined optimization problem can be seen as
follows.

Consider an optimization problem where the objective function is additively sepa-
rable and coupling is present via physical responses between two individual elements.
The consistency is maintained via a consistency constraint 1

0c that is taken into ac-
count in the optimization problem formulation. Mathematically the problem can be
expressed as:

min
0x,10h,1x

vf = 0vf (0x, 0r(0x, 1
0h)) + 1vf (1x, 1r(1x, 0

1h))

s.t. 1
0c = 1

0H(1r) − 1
0h = 0

. (A.1)

The two individual elements that are embedded in the optimization problem are
Element-0 and Element-1. Constructing individual coupled optimization problems
from Equation A.1 in the context of multi-level optimization is accomplished via
formulating the Lagrangian.

The Lagrangian of Equation A.1 is mathematically expressed as:

L(y, 1
0λ) = 0vf (0x, 0r(0x, 1

0h)) + 1vf (1x, 1r(1x, 0
1h)) + 1

0λ
T
(
1
0H(1r) − 1

0h
)

,(A.2)

where the Lagrange multipliers (10λ) are additional parameters that relax the consis-

tency constraints (10c) and y =
[

0x 1x 1
0h

]T
.
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For brevity of notation the vectors 0y =
[

0x 1
0h

]
and 1y =

[
1x
]

are intro-
duced. Necessary conditions for a stationary solution of Equation A.2 are:

∇0y
0vf + 1

0λ
T∇0y

(
1
0H(1r) − 1

0h
)

= 0

⇒
(
∇0y

0vf

)T
= −∇0y

(
1
0H(1r) − 1

0h
)T 1

0λ
(A.3)

∇1y
1vf + 1

0λ
T∇1y

(
1
0H(1r) − 1

0h
)

= 0

⇒
(
∇1y

1vf

)T
= −∇1y

(
1
0H(1r) − 1

0h
)T 1

0λ
(A.4)

∇1
0λL =

(
1
0H(1r) − 1

0h
)

= 0 (A.5)

where ∇..y.. =
[

∂..
∂..y1

, . . . , ∂..
∂..yn

]T
and ∇1

0λ.. defined similarly.

Equation A.3, A.4 and A.5 are stationary conditions for the coupled optimiza-
tion problem expressed in Equation A.1. The total objective function depends on
the individual objective function of Element-0 (0vf ) and the objective function of
Element-1 (1vf ). A stationary solution to 0vf changes via changes in the design vari-
ables of Element-1. Sensitivity with respect to these changes is found via applying
the chain rule (Diy (. . .) = ∇iy (. . .)+∇jy (. . .)

T
Diy

(
jy
)
) to 0vf . D..y (. . .) are total

derivatives and are defined as D..y (. . .) =
[

d..
d..y , . . . , d..

d..y

]T
. Hence, sensitivity of a

stationary solution of 0vf that is found via Equation A.3 with respect to changes in
the coupled neighboring element are mathematically expressed as:

D1y

(
0vf

)
= ∇1y

0vf + (∇0y
0vf )T D1y

(
0y
)

. (A.6)

Substitution of Equation A.3 into Equation A.6 gives for Element-0:

D1y

(
0vf

)
= ∇1y

0vf −∇0y

(
1
0H(1r) − 1

0h
)T

D1y

(
0y
)

1
0λ . (A.7)

Sensitivity of the consistency constraint in Element-0 with respect to changes within
Element-1 is found via the chain rule and is mathematically expressed as:

∇1y

(
1
0H
(
1r
)
− 1

0h
)

+ ∇0y

(
1
0H
(
1r
)
− 1

0h
)T

D1y

(
0y
)

= 0

⇒ ∇1y

(
1
0H
(
1r
)
− 1

0h
)

= −∇0y

(
1
0H
(
1r
)
− 1

0h
)T

D1y

(
0y
) . (A.8)

Substituting Equation A.8 into Equation A.7 we obtain:

D1y

(
0vf

)
= ∇1y

0vf + 1
0λ

T∇1y

(
1
0H
(
1r
)
− 1

0h
)

. (A.9)

A similar derivation for the objective of Element-1 (1vf ) for the sensitivity of the
objective function value of 1vf with respect to changes in Element-0 leads to:

D0y

(
1vf

)
= ∇0y

1vf + 1
0λ

T∇0y

(
1
0H
(
1r
)
− 1

0h
)

. (A.10)

From Equation A.9 and Equation A.10 we see how the objective of Element-0
(0vf ) or Element-1 (1vf ) changes with respect to changes in the design variables in
the neighboring element.
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The two individual optimization problems are related to one another via Equation
A.2. For the combined optimization problem to be a (local) minimum within the space
of arbitrary perturbations y we must have:

∇yLλ∂y ≥ 0 (A.11)

where Lλ is the Lagrangian function for fixed 1
0λ and perturbations must be feasi-

ble (∂yT
(
1
0H
(
1r
)
− 1

0h
)

= 0). Hence, a minimum of the combined Element-0 and
Element-1 optimization problems is found via inserting Equation A.9 and Equation
A.10 into Equation A.11 leading to1:

∇yLλ∂y =
(
D1y(0vf ) + D0y(1vf )

)
∂y ≥ 0

= ∇1y
0vf∂1y + ∇0y

1vf∂0y + 1
0λ

T∇y

(
1
0H
(
1r
)
− 1

0h
)
∂y ≥ 0

.(A.12)

After rearrangements of terms Equation A.12 can be written as:

∇1y
0vf∂1y + ∇0y

1vf∂0y ≥ −1
0λ

T
(
∇y

1
0H
(
1r
)
− 1

0h
)
∂y . (A.13)

If
(
∇y

(
1
0H
(
1r
)
− 1

0h
))

is invertible, then Equation A.13 can be further rearranged
to:

−
(
∇1y

0vf∂1y + ∇0y
1vf∂0y

) (
∇y

(
1
0H
(
1r
)
− 1

0h
))−1

≤ 1
0λ

T ∂y . (A.14)

Hence, according to Equation A.14 the Lagrange multipliers form an upper bound for
arbitrary perturbations of the combined stationary point of the optimization problems
expressed in Equation A.9 and Equation A.10.

We assume that
(
∇1y

0vf + ∇0y
1vf

)
is positive definite2 and ∇y

(
1
0H
(
1r
)
− 1

0h
)

has full rank, it follows that the left hand side of Equation A.14 is negative definite
and therefore:

Lλ

(
1
0λ
)

= min
y

L
(
y, 1

0λ
)

(A.15)

is concave. Therefore, finding a stationary solution to Equation A.15 is obtained via:

max
1
0λ

Lλ

(
1
0λ
)

where Lλ

(
1
0λ
)

= min
y

L
(
y, 1

0λ
) . (A.16)

Equation A.16 is also known as the Dual of Equation A.1. The latter defined as the
primal. Under certain mathematical assumptions, see Proposition 5.1.1 to 5.1.6 of
Bertsekas (1982) the solution to Equation A.16 is equal to the solution of Equation
A.1.

1D0y
0vf = 0 and D1y

1vf = 0 due to optimality of the individual optimization problems
2With positive definite we assume that ∂yT

(
∇1y

0vf + ∇0y
1vf

)
∂y > 0 for ∂y 6= 0. This is true

if the optima (0vf , 1vf ) for which the sensitivities are evaluated are additively separable. In that

case we have ∂yT ∇2
y,yvf ∂y > 0 and ∂yT ∇y

1
0c = 0 for the all-in-one problem.





Appendix B

Bar element and beam element

analysis

The necessary equations for the analysis of the structural responses of the two-bar
truss and the portal framework are derived in this chapter.

B.1 bar element

The displacement (u) of the two-bar truss structure, see Figure B.1, is computed via:

Ku = P, (B.1)

where K is the stiffness matrix of the entire structure and P the externally applied
load. The bar element stiffness matrix of individual elements with respect to element
coordinates is computed as:

Ke =

∫

V

BT DBdV ;

B =
1

l

[
−1 1

]
D = [E] Ke =

EA

l

[
1 −1

−1 1

]
.

The transformation matrix from element coordinates to structural coordinates is:

T =

[
cosφ sinφ 0 0

0 0 cosφ sin φ

]
,

where φ is defined in Figure B.2.
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L

1
0h1

2
0h1

0r2

0r3

P

0x1
0x2

ix1

ix2

α β

Figure B.1: Two-bar truss structure with embedded hierarchy. The general lay-out of the
structure is described via design parameters 0x1,

0x2 and cross-sectional areas. The element’s
cross-section is described in detail via design variables ix1,

ix2. These cross-sections are
present as coupling variables 1

0h1,
2
0h1.

ue1

ue2

ue3

ue4

ux

uy

φ

Figure B.2: Transformation from element coordinates to structural coordinates.

After assembly of the individual element stiffness matrices and elimination of boun-
dary conditions the stiffness matrix necessary to compute the horizontal displacement
is:

K =

[
k1,1 k1,2

k2,1 k2,2

]
= . . .

E

[ 1
0h

l1
cos2 α +

2
0h

l2
cos2 β

1
0h

l1
sin α cosα +

2
0h

l2
sin β cosβ

1
0h

l1
sin α cosα +

2
0h

l2
sin β cosβ

1
0h

l1
sin2 α +

2
0h

l2
sin2 β

]
,

where the cross-sectional area of each individual bar column (i) is expressed as i
0h1

and the length of these columns ar li. The displacement vector (u) and the applied
force vector (P) are given as:

u =

[
0r2
0r3

]
P =

[
F
0

]
.

where 0r2 is the horizontal displacement in structural coordinates and 0r3 the vertical
displacement in structural coordinates.
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The displacements are then obtained as follows

k1,1
0r2 + k1,2

0r3 = F k1,2
0r2 + k2,2

0r3 = 0

where k1,2 = k2,1

0r2 =
1

(k1,1 −
k2
1,2

k2,2
)
F

The stiffness matrix K depends on the cross-sectional area of the two bars. A thin-
walled bar element is considered and therefore the cross-section can be approximated
as:

1
0H
(
1x1,

1x2

)
= 1

0h1 = 2π1x1
1x2; (B.2)

2
0H
(
2x1,

2x2

)
= 2

0h1 = 2π2x1
2x2. (B.3)

The total mass of the structure can now be computed according to:

0r1 = 1
0hρl1 + 2

0hρl2 (B.4)

where the length of both trusses is computed according to:

l1 =

√
L2 + (0x1)

2
and l2 =

√
L2 + (0x2)

2
. (B.5)

After solving for the displacements the internal forces can be computed. First, the
strains are computed for each individual element from the structural displacements.
Secondly, the internal nodal forces are computed:
Element 1:

ue1 = T





0
0

0r2
0r3



 ⇒ ǫ1 = Bue =
[
−1 1

] [ ue1

ue2

]
=

0r2 cosα + 0r3 sin α

l1
,

f int
1 =

∫ l1

x=0

1

l1
BTDǫ1A1dx.

Element 2:

ue2 = T





0r2
0r3

0
0



 ⇒ ǫ2 = Bue =
[
−1 1

] [ ue2

ue3

]
= −

0r2 cosβ − 0r3 sin β

l2
,

f int
2 =

∫ l2

x=0

1

l2
BTDǫ2A2dx.

Mapping the displacements 0r2,
0r3 gives the internal nodal forces:

0
1H
(
0r
)

= 0
1h = E1

0h1

[
−

0r2 cos α+0r3 sin α
l1

0r2 cos α+0r3 sin α
l1

]
; (B.6)

0
2H
(
0r
)

= 0
2h = E2

0h1

[
0r2 cos β−0r3 sin β

l2
−

0r2 cos β−0r3 sin β
l2

]
. (B.7)
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Nominal stress is defined as: σ = f
A

. The load carried by the element is f and the
cross-sectional area is A. Therefore, the nominal stress in each member is:

1r1 =
0
1h1

2π1x1
1x2

; (B.8)

2r1 =
0
2h1

2π2x1
2x2

. (B.9)

B.2 beam element

The displacements of the portal frame structure, see Figure B.3 are computed via:

Ku = P, (B.10)

where K is the stiffness matrix of the entire structure. The columns are modeled with
beam elements. The degrees of freedom for the flexural stiffness matrix of these beam
elements are defined in Figure B.4. The stiffness matrix is computed via:

Ke =

∫

V

BTDBdV D = [EI]

B =
[

6
l2
− 12 x

l3
4
l2
− 6x

l2
− 6

l2
+ 12 x

l3
2
l
− 6 x

l2

]

Ke
f =





12EI
l3

6EI
l2

−12EI
l3

6EI
l2

6EI
l2

4EI
l

−6EI
l2

2EI
l

−12EI
l3

−6EI
l2

12EI
l3

−6EI
l2

6EI
l2

2EI
l

−6EI
l2

4EI
l



 .

The axial stiffness matrix is equal to the bar element stiffness matrix in Section
B.1:

Ke
a =

EA

l

[
1 −1

−1 1

]
.

The transformation matrix that maps element coordinates to structural coordinates
is:

T =





cosφ sin φ 0 0 0 0
− sinφ cosφ 0 0 0 0

0 0 1 0 0 0
0 0 0 cosφ sinφ 0
0 0 0 − sin φ cosφ 0
0 0 0 0 0 1




(B.11)

The element stiffness matrix is rotated into global coordinates via:

Ke = TT KeT; (B.12)

after assembly of the element stiffness matrices the total structural stiffness matrix is
found.



BEAM ELEMENT 237

x

y

L
1

L2

L
3

P

M

ix1

ix2

ix3

ix4

ix5

ix6

central axis

Figure B.3: Portal framework with embedded hierarchy. The general lay-out of the structure
is described via fixed lengths of the columns and the cross-sectional areas of the columns. The
elements are described in detail via design variable vectors 1x, 2x, 3x.
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Figure B.4: Transformation from element coordinates to structural coordinates.
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The stiffness matrix K depends on the cross-sectional area of the columns, the
area is computed as:

i
0H1

(
ix1,

ix2,
ix3,

ix4,
ix5,

ix6

)
=

(ix5)(
ix2) + (ix1 −

ix2 −
ix3)

ix4 + (ix6)(
ix3). (B.13)

Furthermore, the stiffness matrix depends on the moment of inertia:

i
0H2

(
ix1,

ix2,
ix3,

ix4,
ix5,

ix6

)
=

ix5(
ix2)

3

12
+ (ix5)(

ix2)(yc − (ix1 −

1

2
ix2))

2 +
ix4(

ix1 − ix2 − ix3)
3

12
+ ix4(

ix1 −
ix2 −

ix3)(yc −
1

2
ix1)

2 +

ix6(
ix3)

3

12
+ (ix6)(

ix3)(yc −
1

2
ix3)

2

(B.14)

where the centroid yc is given by:

yc =
ix5

ix2(ix1 − 1
2

ix2) + 1
2
(ix1 − ix2 − ix3)(ix4)(ix1) + 1

2
ix6(ix3)2

ix5
ix2 + ix4(ix1 − ix2 − ix3) + (ix6)(ix3)

(B.15)

The total volume of the structure can be computed as:

0r2 = 1
0hl1 + 2

0hl2 + 3
0hl3; (B.16)

where the lengths l.. are fixed.
After solving the displacements of the structure the internal forces can be com-

puted. First the strains are computed for each individual element from the structural
displacements. Secondly, the internal nodal forces are computed:
Element 1:

f int
1 =

∫

V

BTDǫ1dV ⇒ 0
1h = 0

1H(0r) (B.17)

Element 2:

f int
2 =

∫

V

BTDǫ2dV ⇒ 0
2h = 0

2H(0r) (B.18)

Element 3:

f int
3 =

∫

V

BTDǫ3dV ⇒ 0
3h = 0

3H(0r) (B.19)

Axial stress is defined as σa = f
A

. The axial load carried by the element is f and
the cross-sectional area is A. Hence, the axial stress is:

σa =
0
i h14 −

0
i h11

i
0h

, (B.20)



BEAM ELEMENT 239

where 0
i h11 and 0

i h14 are the axial forces applied on each column. The bending stress is
defined as σb = dM

I
. The bending moment carried by the element is M , the distance

d is the free surface distance and the moment of inertia of the element is I. The
bending stress is:

σb1 =
d0

i h13

i
0h2

and σb2 =
d0

i h16

i
0h2

, (B.21)

where 0
i h13 and 0

i h16 are the bending moments applied on each end of the columns
and d depends on the geometrical lay-out of the cross-section of the column. The free
surface distance d is mathematically expressed as:

d =

{
ix1 − yc for σbi at the top of the flange
yc for σbi at the bottom of the flange

(B.22)

The normal stress in the elements is a summation of axial and bending stresses:

ir1 = σa + σb1
ir2 = σa + σb2 . (B.23)

Finally, the shear stress τ is defined as τ = V Q
Ib

. The first moment of inertia is Q, the
downward nodal force is V and the thickness of the vertical plate of the column is b.
In multi-level notation the shear stress τ is represented as:

ir3 =
0
i h12Q
i
0h2

ix4
and ir4 =

0
i h15Q
i
0h2

ix4
(B.24)

where 0
i h12 and 0

i h15 are the downward applied loads on both ends of the column and
Q depends on the geometrical lay-out of the cross-section of the column. The first
moment of inertia is mathematically expressed as:

Q = ix4
ix2(

ix1 − yc −
1

2
ix2) +

1

2
ix4(

ix1 − yc − ix2)
2; (B.25)





Summary

A unified approach towards decomposition and coordination for multi-level op-
timization

Complex systems, such as those encountered in aerospace engineering, can typically
be considered as a hierarchy of individual elements. This hierarchy is reflected in the
analysis techniques that are used to analyze the characteristics of the system as a
whole. Consequently, a hierarchy of models is to be used, thus each accounting for
different physical scales, components or disciplines. This thesis presents a framework
for the multi-level optimization of such complex systems.

Decomposition of physical models and/or optimization problems of large complex
structures is important in order to make the problem more manageable and/or to
account for various types of physics and/or disciplines in quantifying the performance
of the structure. The decomposition process involves identifying a hierarchy in the
analysis model and/or optimization problem such that part of the analysis and/or
optimization of the structure can be conducted individually, while taking into account
the coupling with neighboring elements in the hierarchy. The result is an optimum
that is optimal for the entire hierarchy of the complex structure.

A multi-level optimization problem is characterized via a hierarchy that is present.
This hierarchy can be present due to:� a coupling of physical models that each analyze and/or optimize physical prop-

erties at different scales;� levels in the structural details of an analysis and/or optimization model;� or a coupling between disciplines in the analysis and/or optimization problem.
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A hierarchy consists of individual elements that consist of analysis and/or opti-
mization problems that can be isolated up to some extent and communicate with their
surroundings via mapping of physical responses and/or exchanging design variables
that are shared.

Decomposition is accomplished via consistency constraints that are introduced to
the physical model and/or the optimization problem formulation. There are two types
of consistency constraint formulations:

1. equality consistency constraints;

2. relaxed consistency constraints.

These two formulations are further subdivided into hierarchic and non-hierarchic for-
mulations. Hierarchic decomposition is further subdivided into:� top-down decomposition;� bottom-up decomposition.

Top-down decomposition involves elements that are higher in the multi-level hier-
archy that prescribe the physical responses and/or design variables that are desired
from the lower elements in the hierarchy. Bottom-up decomposition involves ele-
ments that are lower in the hierarchy and prescribe the physical responses and/or
design variables that are desired from the higher elements in the hierarchy.

To show the different decomposition approaches a coupling circle was introduced
that shows the coupling between two individual elements. This coupling circle dis-
tinguishes between the physical responses that are computed individually for each
element and the mapping of the computed physical responses onto the neighboring
element. Furthermore, it shows where consistency constraints are placed between
coupled elements. Therefore, the coupling circle clearly illustrates the consequences
of decomposition approach chosen on the individual element problems.

The multi-level optimization methods studied in this thesis handle coupling via
two distinct approaches:

1. via equality-based consistency constraints: Optimization by Linear Decom-
position (OLD), Concurrent SubSpace Optimization (CSSO), Bi-Level Inte-
grated System Synthesis (BLISS) and Quasi-separable Subsystem Decompo-
sition (QSD) use equality constraints to decompose the coupling between ele-
ments. Optimization by Linear Decomposition and Quasi-separable Subsystem
Decomposition consider a top-down decomposition of the hierarchy. Concur-
rent SubSpace Optimization and Bi-Level Integrated System Synthesis consider
a non-hierarchic decomposition of the hierarchy.

2. via relaxation-based consistency constraints: Collaborative Optimization (CO)
and Analytical Target Cascading (ATC) use relaxation of the consistency con-
straints to decompose the coupling between elements. Collaborative Optimiza-
tion considers a top-down decomposition of the hierarchy. Analytical Target
Cascading considers a bottom-up decomposition of the hierarchy.
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Coupling enters the optimization problem via copies of design variables when
design variables are shared or coupling enters the optimization problem via coupling
variables. Coupling variables represent mapped physical responses from neighboring
elements that are mapped onto the current element. Instead of receiving this mapped
physical response, a design variable representing this response is introduced to the
optimization problem of the current element.

A problem matrix is used to illustrate how the decomposition of coupled physi-
cal responses and coupling in the design problem enters the optimization problem.
Typically four different patterns can be distinguished:

1. a problem matrix where the coupling is present in the design constraints;

2. a problem matrix where the coupling is present between the design constraints
and coupling is present in the objective function;

3. a problem matrix where design variables and physical responses of various ele-
ments are present in a few design constraints;

4. a problem matrix where no hierarchy can be identified. All the design functions
depend on responses and design variables of all the hierarchical elements.

Based on the graphical representation of the multi-level optimization problem, changes
can be made that change the optimization problem formulation of the individual
elements. These changes are necessary to change the multi-level optimization problem
such that it can be solved via a multi-level optimization method. These changes are:� reformulating the design constraints as objectives via, e.g., envelope functions;� introducing copies of design variables that are shared among elements;� or neglecting coupling such that individual elements can be distinguished.

Via the problem matrix the multi-level optimization methods have been catego-
rized as:� Coupling is present in the design constraints: Optimization by Linear Decom-

position (OLD) and Quasi-separable Subsystem Decomposition (QSD) are me-
thods developed for this type of multi-level optimization problems.� Coupling is present between the design constraints and the objective function:
Collaborative Optimization (CO) and Analytical Target Cascading (ATC) are
methods developed to handle this type of multi-level optimization problems.� Design variables and physical responses of more than a single element are present
in a small number of design constraints: Analytical Target Cascading (ATC)
and Bi-Level Integrated System Synthesis (BLISS) are developed for this type
of multi-level optimization problems.� No hierarchy can be identified: Concurrent SubSpace Optimization (CSSO).
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The generalized notation introduced in the present thesis and the application of all
multi-level optimization methods studied in the present thesis applied to the same
benchmark problem suggests that the multi-level optimization methods can be used
for problems having a different pattern in the problem matrix as well. However, the
efficiency of a method may be effected if it is applied to a different type of problem.

Coordination of an optimization problem that is decomposed into a hierarchy of mul-
tiple levels and/or multiple elements per level is important to steer the individual
optimal designs such that an overall optimal structure is obtained.

Coordination depends on the type of decomposition chosen. Therefore, two types
of coordination are distinguished:

1. equality-based or model-based coordination;

2. relaxation-based or goal-based coordination.

Equality-based coordination involves coordination of model data between individual
elements of the hierarchy. The coordinator provides additional behavioral properties
to neighboring elements when required. Relaxation-based coordination involves load
balancing via the coordinator. Relaxation parameters are updated for each individ-
ual element without involving individual elements with the behavior of neighboring
elements. Hence, relaxation parameters are coordinated.

Three types of decision making are distinguished:

1. separable decisions;

2. inseparable decisions;

3. inseparable and coupled decisions.

Separable decisions do not impose problems to the coordinator. Because they are
separable the decision to update coupling data or to evaluate an individual element
does not influence neighboring elements. In case inseparable decisions are present,
the order in which the decisions to update coupling data and/or to evaluate the
individual elements are made becomes important. This is the case where the order in
which elements are solved may result in infeasible elements elsewhere.

To prevent infeasible elements in the hierarchy, the coordinator provides additional
data on neighboring elements that are coupled. Elements that are solved first in the
hierarchy receive additional data on the behavior of coupled neighboring elements.
This additional data allows the element to avoid solutions that result in infeasible
solutions elsewhere in the hierarchy. The additional data is obtained via:� optimum sensitivity analysis of elements;� switching shared design constraints on or off;� linearization of constraints in neighboring elements with respect to responses

coming from the current element;
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made in the current element;� or via a copy of the relaxed consistency constraints in case a relaxation-based
decomposition is present.

Inseparable and coupled decisions require iterations and are typically the result
of relaxation-based coordination techniques. Because the relaxation parameters are
used to balance between solving the individual optimization problem and reaching
consistency with neighboring elements in the hierarchy.

Coordination of individual elements is based on the type of decomposition used.
The multi-level optimization methods studied in the present thesis are subdivided
into:� Equality-based coordination, these methods include: Optimization by Linear

Decomposition (OLD), Quasi-separable Subsystem Decomposition (QSD), Con-
current SubSystem Optimization (CSSO) and Bi-Level Integrated System Syn-
thesis (BLISS);� Relaxation-based coordination, these methods include: Collaborative Optimiza-
tion (CO) and Analytical Target Cascading (ATC).

The type of data required by the equality-based coordination method is impor-
tant. This data is retrieved via the coordinator from a single element and represents
an approximation to the elements behavior. Various approaches exist to construct
approximations of the behavior of individual elements. The main approaches are:� using objective and constraint function values of neighboring elements via ex-

trapolation;� linearize constraints of neighboring elements;� using mapped physical responses from neighboring elements.

Numerical tests on equality-based multi-level optimization methods showed that:� constructing a response surface of individual elements optima required via Quasi-
separable Subsystem Decomposition was more challenging then constructing a
response surface from the mapped physical response data required via Bi-Level
Integrated System Synthesis. Using optimal objective or constraint function
data of neighboring elements can be challenging because this data cannot be
fitted via a smooth function. As observed by other researchers this optimal
data is often discontinuous. However, introducing, e.g., barrier functions into
the objective function overcomes the problem of discontinuity of the optimal
functions.� linearizing objective and/or constraints using sensitivity analysis requires tight
move limits to maintain accurate sensitivity data. Furthermore, introducing
trade-off and responsibility factors to switch on or switch off constraints that
are shared introduces numerical difficulties.
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The type of data that is send between elements for relaxation-based coordination
methods depends on the relaxation formulation chosen. In general three distinct
approaches are present. These approaches are:� relaxation via a penalty function;� relaxation via a Lagrangian function;� relaxation via an Augmented Lagrangian function.

Updating strategies of the relaxation parameters depend on the relaxation formulation
chosen. The relaxation parameters are iteratively updated to approach the optimal
relaxation parameters; computed via analytical expressions; or approximated via a
linearization technique that requires optimum sensitivity analysis.

The ability of a multi-level optimization algorithm to find the optimal point is
a difficult measurement since the optimal point should be know beforehand. How-
ever, it is often used as an argument to choose one multi-level method over another
multi-level method. Especially if a mathematical validation of the method is pre-
sent this argument is explicitly pointed out in favor over other methods for which no
mathematical justification is present.

A numerical study on equality-based coordination methods and relaxation-based
coordination methods showed that for the test case considered equality-based methods
find the exact optimum whereas the relaxation-based methods converged to designs
close to the optimal point. Collaborative Optimization converged to a non-optimal
point. This is due to the definition of the penalty function embedded in the Collab-
orative Optimization problem formulation. Properly introducing the correct penalty
function and associated update technique for the relaxation parameters converged
towards the optimum.

Numerical tests conducted on relaxation-based coordination methods showed that
convergence rates of these algorithms are slow and additional effort to improve these
characteristics is required before these algorithms can be used in a competitive en-
vironment. To improve the convergence characteristics of coordination methods so-
called multi-level coordination methods are promising. These methods are developed
from methods that solve large systems of equations. A drawback of these methods is
that the mathematical assumptions on which these methods rely are more stringent
then the so-called bi-level coordination methods that are commonly used in multi-
level optimization. This thesis showed that multi-level optimization problems that
are formulated for bi-level optimization problems can be transformed with little effort
into problems that can be solved via a multi-level coordination technique.

Relaxation-based coordination methods provide minimal insight into the behavior
of individual optimization problems and the influence of coupling. Essentially, an
initial design and a final result are meaningful designs. The intermediate steps cannot
be used since they are infeasible.

The multi-level optimization methods that were studied are formulated for specific
optimization problems. To deal with different multi-level optimization techniques in
an efficient manner, a general framework was formulated that can handle the majority
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of multi-level optimization problems using a variety of multi-level optimization tech-
niques. The proposed framework combines generic aspects of multi-level optimization
methods into a single computational framework.

The multi-level framework was tested on the test problem developed in the pre-
sent thesis and benchmark problems taken from literature via an Analytical Target
Cascading with Augmented Lagrangian relaxation implementation. Flexibility of the
framework was demonstrated utilizing two different decomposition formulations on
each of the presented multi-level optimization problems. A top-down decomposition
and a non-hierarchic decomposition of the multi-level optimization problems was con-
structed.

The computational effort required to solve the top-down hierarchic decomposi-
tion and non-hierarchic decomposition varied between the test cases. The smaller
test cases showed faster convergence with hierarchic top-down decomposition and the
test cases with many design constraints converged faster when using non-hierarchic
decomposition.

Two coordination strategies were considered. A sequential coordination process
and a parallel coordination process. The parallel process exhibited more computa-
tional effort then the sequential coordination process. However, it is expected that if
the problem size increases the computational effort becomes close to that of sequen-
tial coordination. Therefore, the actual time it takes to execute an entire multi-level
optimization in parallel is smaller as compared to the same problem executed sequen-
tially.

Different convergence criteria were applied to test algorithm performance. The
convergence criteria were changed together with parameters that coordinate the up-
date of relaxation parameters according to Block Coordinate Descent, Inexact and
Alternating Descent. A choice between one of the three approaches is based on plac-
ing computational effort at the individual elements or at the coordinator and the
accuracy of the final solution. In all test cases considered, the Alternating Descent
exhibited best computational characteristics.

Findings in this study show that design of complex structures that exhibit multi-
scale behavior in the view of multi-scale mechanics via methods that are proposed in
literature is challenging.� Equality-based methods suffer from the fact that for each parameter that is

send from one element to a neighboring element either sensitivity information is
required or a response surface is constructed. Constructing accurate sensitivity
information is not straightforward and can become a numerically expensive
procedure on it’s own. Fitting a response surface through elements that output
more then ten parameters to a single neighboring element (a small number if
a detailed local finite element model communicates physical responses and/or
shared design variables with a global finite element model) is challenging.� Relaxation-based methods suffer from poor numerical convergence characteris-
tics. The linear convergence rate of these methods and the fact that intermediate



248 SUMMARY

designs during the multi-level optimization cannot be used makes these methods
challenging to use in a commercial environment.

Multi-level optimization and multi-disciplinary design optimization methods are
useful when the amount of data that is exchanged between individual elements remains
small and models are weakly coupled. Weak coupling in the sense that large errors
in the solution of a neighboring element do not occur when mapping the data from
one element onto a neighboring element. The number of parameters that can be send
from one element to a neighboring element is limited. Therefore, one may question
the effort that is spend on finding an accurate solution within individual elements.
Due to the limited amount of parameters that can be mapped accuracy of coupling
may be lost.

Albert Jan de Wit



Samenvatting

Een uniforme werkwijze voor ontkoppelen en coördineren ten behoeve van multi-
level optimalisatie

Complexe systemen, zoals men die tegenkomt in de luchtvaart -en ruimtevaarttech-
niek, kunnen worden beschouwd als een hiërarchie van individuele elementen. Deze
hiërarchie uit zich in de analyse technieken die gebruikt worden om de eigenschap-
pen van het systeem als geheel te bepalen. Een hiërarchie van modellen wordt ge-
bruikt, waarbij elk model verschillende fysische schalen, componenten of disciplines
beschouwd. Dit proefschrift presenteert een raamwerk voor de multi-level optimali-
satie van dergelijke complexe systemen.

Het ontkoppelen van fysische modellen en/of optimalisatie problemen van grote
complexe constructies is belangrijk, omdat het ontkoppelde probleem beter beheers-
baar wordt, en/of omdat verschillende fysica en/of disciplines te beschouwen zijn
die de prestaties van het totale systeem bepalen. Het ontkoppelingsproces bestaat
uit het identificeren van een hiërarchie in het analyse model, en/of het optimalisatie
probleem, zodat een deel van de analyse en/of optimalisatie van de constructie in-
dividueel uitgevoerd kan worden. Waarbij men tijdens de individuele uitvoering van
de optimalisatie ook rekening houdt met de koppeling met naburige elementen. Het
resultaat is een optimaal ontwerp, dat optimaal is voor de gehele hiërarchie van de
complexe constructie.

Een multi-level optimalisatie probleem wordt gekenmerkt door een hiërarchie die
aanwezig is. Deze hiërarchie bestaat uit:� een koppeling van fysische modellen waarvan analyse, en/of optimalisatie, ver-

schillende fysische eigenschappen op verschillende fysische schalen beschouwd;� niveaus in componenten van een constructie via analyse, en/of optimalisatie,
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modellen;� een koppeling tussen disciplines in het analyse, en/of optimalisatie, probleem.

Een hiërarchie bevat individuele elementen bestaande uit analyse en/of optimali-
satie problemen. Deze individuele elementen kunnen tot op zekere hoogte gëısoleerd
worden en communiceren met de omgeving via het projecteren van fysische responsies,
en/of het uitwisselen van gedeelde ontwerp variabelen.

Ontkoppelen wordt bereikt via consistentie restricties die gëıntroduceerd worden in
het fysische model, en/of het optimalisatie probleem. Er zijn twee typen consistentie
restricties:

1. overeenkomst consistentie restricties;

2. relaxatie consistentie restricties.

Deze twee formuleringen worden vervolgens onderverdeeld in hiërarchische en niet-
hiërarchische ontkoppelingsformuleringen. Hiërarchische ontkoppeling is verder onder
te verdelen in:

1. top-down;

2. bottom-up.

Top-down ontkoppeling impliceert dat, elementen die boven aan de hiërarchie
staan, de fysische responsies en/of gedeelde ontwerpvariabelen voorschrijven, welke
verlangd worden van de lager in de hiërarchie gelegen elementen. Bottom-up ontkop-
peling impliceert dat, elementen die onderaan de hiërarchie staan, de fysische respon-
sies en/of gedeelde ontwerpvariabelen voorschrijven, welke verlangd worden van de
hoger in de hiërarchie gelegen elementen.

Om de verschillende ontkoppelingstechnieken te illustreren is een koppelingscirkel
gëıntroduceerd die de koppeling tussen twee elementen laat zien. De koppelingscirkel
maakt onderscheid tussen de fysische responsies die individueel uitgerekend worden,
en responsies die geprojecteerd worden op naburige elementen. Ook maakt de kop-
pelingscirkel zichtbaar waar consistentie restricties geplaatst worden. Hierdoor wordt
via de koppelingscirkel duidelijk wat de consequenties zijn, van de gekozen ontkop-
pelingstechniek, op de formulering van analyse en/of optimalisatie problemen van
individuele elementen van de hiërarchie.

De multi-level optimalisatie methoden die bestudeerd worden in dit proefschrift
behandelen koppeling via twee verschillende methoden:

1. via overeenkomst consistentie restricties: “Optimization by Linear Decomposi-
tion” (OLD), “Concurrent SubSpace Optimization” (CSSO), “Bi-Level Integra-
ted System Synthesis” (BLISS) en “Quasi-separable Subsystem Decomposition”
(QSD) gebruiken overeenkomst consistentie restricties om de koppeling tussen
elementen te ontkoppelen. OLD en QSD beschouwen een top-down ontkop-
peling van de hiërarchie. CSSO en BLISS beschouwen een niet-hiërarchische
ontkoppeling van de hiërarchie.
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2. via relaxatie consistentie restricties: “Collaborative Optimization” (CO) en
“Analytical Target Cascading” (ATC) gebruiken relaxatie consistentie restric-
ties om de koppelingen tussen de elementen te ontkoppelen. CO beschouwt
een top-down ontkoppeling van de hiërarchie. ATC beschouwt een bottom-up
ontkoppeling van de hiërarchie.

Koppelingen worden in het optimalisatie probleem beschouwd via kopieën van
ontwerp variabelen wanneer ontwerp variabelen gedeeld worden, of via koppelingsva-
riabelen. Koppelingsvariabelen representeren geprojecteerde fysische responsies van
naburige elementen op het huidige element. In plaats van het direct ontvangen van
deze geprojecteerde responsies, wordt een ontwerpvariabele gëıntroduceerd die de ge-
projecteerde responsie representeert in het optimalisatie probleem van het huidige
element.

Een probleem matrix wordt gebruikt om te illustreren waar zich gekoppelde fysi-
sche responsies en koppelingen in het ontwerp probleem bevinden. Er zijn vier typisch
verschillende patronen die in de probleem matrix kunnen worden gëıdentificeerd:

1. een probleem matrix waar de koppeling aanwezig is tussen de ontwerpvariabelen;

2. een probleem matrix waar de koppeling aanwezig is tussen de ontwerp restricties;

3. een probleem matrix waar ontwerp variabelen en fysische responsies van ver-
schillende elementen aanwezig zijn in enkele ontwerp restricties;

4. een probleem matrix waar geen hiërarchie kan worden gëıdentificeerd. Alle
ontwerp functies zijn afhankelijk van fysische responsies en ontwerp variabelen
van alle hiërarchische elementen.

Aan de hand van de grafische illustratie van het multi-level optimalisatie probleem
kunnen aanpassingen aan de individuele optimalisatie formuleringen op element ni-
veau gemaakt worden. Deze aanpassingen zijn nodig om een specifieke multi-level
optimalisatie toe te kunnen passen. Deze aanpassingen bestaan in het algemeen uit:

1. het herformuleren van ontwerp restricties naar het doel van het ontwerp. Dit is
bijvoorbeeld mogelijk via zogenaamde omhulsel functies;

2. het introduceren van kopieën van ontwerp variabelen die gedeeld worden tussen
elementen;

3. het verwaarlozen van koppelingen, zodat individuele elementen gëıdentificeerd
kunnen worden.

De resulterende probleem matrix bepaalt welke coördinatie strategie het meest
geschikt is, om het ontkoppelde optimalisatie probleem op te kunnen lossen.

Via de probleem matrix worden de multi-level optimalisatie methoden, die in dit
werk bestudeerd zijn, als volgt verdeeld:� koppeling is aanwezig in de ontwerp restricties: “Optimization by Linear De-

composition” (OLD) en “Quasi-separable Subsystem Decomposition” (QSD)
zijn methoden ontwikkeld voor dit type multi-level optimalisatie problemen;
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laborative Optimization” (CO) en “Analytical Target Cascading” (ATC) zijn
methoden ontwikkeld om dit type multi-level optimalisatie problemen op te
lossen;� ontwerp variabelen en fysische responsies van meer dan één enkel element zijn
aanwezig in een klein aantal ontwerp restricties: “Analytical Target Cascading”
(ATC) en “Bi-Level Integrated System Synthesis” (BLISS) zijn methoden ont-
wikkeld om dit type multi-level optimalisatie problemen op te lossen;� er kan geen hiërarchie gëıdentificeerd worden: “Concurrent SubSystem Optimi-
zation” (CSSO).

De uniforme notatie die is gëıntroduceerd in het huidige proefschrift en de toepas-
sing van alle multi-level optimalisatie problemen die bestudeerd zijn in het huidige
proefschrift en toegepast op eenzelfde testprobleem, suggereert dat, de multi-level
optimalisatie methoden ook toegepast kunnen worden op problemen, die een ander
patroon in de probleem matrix hebben, dan waarvoor ze zijn afgeleid. Echter, de
efficiëntie van een methode kan nadelig uitpakken, wanneer het toegepast wordt op
een ander type probleem, dan waarvoor de methode gëıntroduceerd is.

Coördinatie van een optimalisatie probleem dat ontkoppeld is, in een hiërarchie van
meerdere niveaus en/of meerdere elementen per niveau, is belangrijk om de individuele
optimale ontwerpen te sturen, zodanig, dat een voor de gehele constructie optimaal
ontwerp bereikt wordt.

Coördinatie hangt af van de gekozen ontkoppelingsmethode. Om die reden kunnen
twee typen coördinatie onderscheiden worden:

1. overeenkomst of model gebaseerde coördinatie;

2. relaxatie of doel gebaseerde coördinatie.

Overeenkomst of model gebaseerde coördinatie houdt in dat, coördinatie plaats
vindt via model data tussen de individuele elementen van de hiërarchie. De coördinator
levert eigenschappen van naburige elementen aan het huidige element wanneer hierom
gevraagd wordt. Bij relaxatie of doel gebaseerde coördinatie worden voor elk individu-
eel element relaxatie parameters bepaald. De coördinatie vindt plaats via parameters
die samenhangen met de relaxatie formulering van de consistentie restrictie.

Er worden drie typen beslissingen onderscheiden:

1. onafhankelijke beslissingen;

2. afhankelijke beslissingen;

3. afhankelijke en gekoppelde beslissingen.

Onafhankelijke beslissingen vormen geen probleem voor de coördinatie. Doordat
deze beslissingen onafhankelijk van elkaar zijn, kan de beslissing om gekoppelde data
te vernieuwen, of een element te evalueren, uitgevoerd worden zonder dat dit van
invloed is op naburige elementen. Indien afhankelijke beslissingen aanwezig zijn, dan
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is de volgorde waarin gekoppelde data verzonden wordt, en/of een individueel element
geëvalueerd wordt, wel belangrijk. Deze situaties doen zich voor wanneer de volgorde
waarin elementen worden opgelost kan resulteren in naburige elementen die in conflict
raken met individuele ontwerp restricties.

Om te voorkomen dat naburige gekoppelde elementen in conflict komen met ont-
werp restricties, stelt de coördinator extra informatie over deze elementen beschikbaar
aan het element dat geëvalueerd wordt. Elementen die eerder worden geëvalueerd in
de hiërarchie ontvangen hierdoor extra informatie over de naburige gekoppelde ele-
menten. De extra informatie stelt het element in staat om ontwerpen die een conflict
veroorzaken in naburige elementen te mijden. De extra informatie over naburige
elementen kan verkregen worden via:� een gevoeligheidsanalyse van het optimum van een element;� het in -en uitschakelen van ontwerp restricties die gedeeld worden tussen ver-

schillende elementen;� linearisering van ontwerp restrictie vergelijkingen van naburige elementen, ten
opzichte van responsies van het huidige element;� responsie oppervlakken, die het gedrag van naburige elementen modelleren ten
opzichte van veranderingen in het huidige element;� kopieën van de vergelijkingen die relaxatie van de consistentie restricties be-
schrijven in het geval van relaxatie gebaseerde consistentie ontkoppeling.

Afhankelijke en gekoppelde beslissingen zijn aangewezen op iteraties waarbij de
gehele hiërarchie meerdere malen doorlopen wordt. Meestal zijn dit soort beslissin-
gen ontstaan door het gebruik van relaxatie gebaseerde coördinatie technieken. De
parameters, die samenhangen met de relaxatie formulering van de consistentie re-
stricties, worden gebruikt om een balans te vinden tussen het optimaliseren van de
individuele doelfunctie van ieder individueel element en het bereiken van consistentie
met naburige elementen in de hiërarchie.

Coördinatie van individuele elementen is gebaseerd op het type ontkoppeling dat
gebruikt wordt. De multi-level optimalisatie methoden die in dit proefschrift bestu-
deerd zijn, zijn onderverdeeld in:� coördinatie gebaseerd op een overeenkomst formulering van de consistentie re-

stricties, deze methoden zijn: “Optimization by Linear Decomposition” (OLD),
Quasi-separable Subsystem Decomposition (QSD), “Concurrent SubSystem Op-
timization” (CSSO) en “Bi-Level Integrated Subsystem Decomposition” (BLISS);� coördinatie gebaseerd op een relaxatie formulering van de consistentie restricties,
deze methoden zijn: “Collaborative Optimization” (CO) en “Analytical Target
Cascading” (ATC).

In het geval dat, coördinatie gebaseerd is op een overeenkomst formulering van
de consistentie restricties, is het type data dat benodigd is belangrijk. Dit type da-
ta wordt verkregen via de coördinator. De data bestaat uit een benadering van het
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gedrag van naburige gekoppelde elementen. Er zijn verschillende manieren beschik-
baar om benaderingen van de eigenschappen van naburige elementen te creëren. De
belangrijkste zijn:� het gebruik van functie waarden van doel en restrictie functies van naburige

elementen, via extrapolatie;� linearisering van restrictie functies van naburige elementen ten behoeve van
gebruik in het huidige element;� het gebruik van geprojecteerde fysische responsies van naburige elementen.

Numerieke tests met behulp van multi-level optimalisatie methoden, gebaseerd op
een overeenkomst formulering van de consistentie restricties, lieten zien dat:

1. het bouwen van een responsie oppervlak van het optimum van individuele ele-
menten via “Quasi-separable Subsystem Decomposition” (QSD), een grotere
uitdaging bleek, dan het bouwen van een responsie oppervlak door geprojec-
teerde fysische responsies, die nodig zijn voor “Bi-Level Integrated System Syn-
thesis” (BLISS). Het gebruik van optimale waarden bij verschillende gepro-
jecteerde responsies en waarden voor gedeelde ontwerpvariabelen van doel en
restrictie functies kan een uitdaging zijn, doordat deze data niet met behulp
van een gladde functie benaderd kan worden. In overeenstemming met wat in
de literatuur gemeld wordt, is deze data vaak discontinu. Echter, via het in-
troduceren van bijvoorbeeld barrière functies in de doelfuncties van naburige
elementen, kan het probleem van discontinüıteit van deze benaderingsfuncties
verholpen worden;

2. linearisering van doel en/of restrictie functies via gevoeligheidsanalyse vraagt
kleine bewegingslimieten, zodat accurate gevoeligheidsinformatie verkregen wordt.
Het introduceren van wisselwerking en verantwoordelijkheidsvariabelen om re-
strictievergelijkingen aan of uit te zetten introduceert numerieke moeilijkheden.

Het type data dat tussen elementen wordt gestuurd bij het gebruik van coördinatie
gebaseerd op een relaxatie formulering van de consistentie restricties, hangt af van
de relaxatie formulering van de consistentie vergelijking. In het algemeen zijn er drie
verschillende methoden beschikbaar. Deze methoden zijn:

1. een relaxatie formulering gebaseerd op een straf functie;

2. een relaxatie formulering gebaseerd op een “Lagrangian” functie;

3. een relaxatie formulering gebaseerd op een “Augmented Lagrangian” functie.

Strategieën voor het vernieuwen van relaxatie parameters hangen af van de re-
laxatie formulering waarvoor gekozen is. De relaxatie parameters worden iteratief
vernieuwd, totdat zij de optimale relaxatie parameters benaderen. Deze kunnen be-
rekend worden via analytische expressies of via linearisering welke afhangt van een
gevoeligheidsanalyse van het optimum.
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De eigenschap van een multi-level algoritme om een optimaal punt te vinden is
moeilijk vast te stellen, omdat het optimale punt van te voren bepaald moet zijn.
Deze eigenschap wordt echter vaak gebruikt als argument om voor een bepaald multi-
level algoritme te kiezen. Met name wanneer een geldige wiskundige onderbouwing
van de methode aanwezig is, wordt een wiskundige onderbouwing expliciet als geldi-
ge keuze genoemd, dit ten nadele van methoden waarvoor geen geldige wiskundige
onderbouwing bekend is.

Een numerieke studie naar overeenkomst gebaseerde coördinatie methoden en re-
laxatie gebaseerde coördinatie methoden liet zien dat, voor het behandelde test pro-
bleem, overeenkomst gebaseerde coördinatie methoden de exacte optimale oplossing
vinden. Relaxatie gebaseerde methoden convergeren naar ontwerpen dichtbij het op-
timale punt. “Collaborative Optimization” (CO) convergeerde echter naar een niet
optimaal punt. Het slechte resultaat van CO is te wijten aan de gekozen straf functie.
Het wijzigen van deze straf functie (aan de hand van voorstellen uit de literatuur) in
een correcte variant, met bijbehorende verversingstechniek voor de relaxatie parame-
ters, resulteert wel in het vinden van de juiste oplossing.

Numerieke tests die uitgevoerd werden op relaxatie gebaseerde coördinatie metho-
den lieten zien dat, de convergentie snelheid van dit type algoritme langzaam is, en
dat extra inspanningen nodig zijn om deze eigenschappen te verbeteren, voordat deze
algoritmen in een commerciële omgeving toepasbaar worden. Om de convergentie
eigenschappen van coördinatie methoden te verbeteren zijn zogenaamde multi-level
coördinatie methoden interessant. Deze methoden zijn afgeleid van methoden die
grote systemen van vergelijkingen oplossen. Een nadeel van deze methoden is ech-
ter dat de wiskundige aannamen waarop deze methoden gebaseerd zijn, veel strikter
zijn, dan de zogenaamde twee-niveau coördinatie methoden, die gebruikelijk zijn bij
multi-level optimalisatie. Dit proefschrift toont aan dat problemen die geformuleerd
zijn voor twee-niveau coördinatie, eenvoudig zijn om te schrijven naar problemen die
opgelost kunnen worden via een multi-level coördinatie techniek.

Relaxatie gebaseerde coördinatie methoden geven weinig inzicht in het gedrag van
individuele optimalisatie problemen en de invloed van koppelingen. Samengevat zijn
alleen het initiële en het uiteindelijke ontwerp zinnige resultaten. De tussenliggen-
de stappen van het optimalisatie proces zijn onbruikbaar, aangezien het ontwerpen
betreft welke niet aan de ontwerp consistentie restricties voldoen.

De multi-level methoden die in dit werk bestudeerd zijn, zijn geformuleerd met
bepaalde toepassingen in het achterhoofd. Om met verschillende multi-level optima-
lisatie methoden, op een efficiënte manier, te kunnen werken, is een gegeneraliseerd
raamwerk geformuleerd. Dit raamwerk kan het overgrote deel aan multi-level optima-
lisatie problemen oplossen via verschillende multi-level optimalisatie technieken. Het
voorgestelde raamwerk combineert generieke aspecten van de verschillende multi-level
optimalisatie methoden in een enkel multi-level raamwerk.

Het multi-level raamwerk is getest op het twee staaf elementen probleem, dat in
dit proefschrift gedefinieerd is, en op standaard problemen die overgenomen zijn uit
de literatuur. Het testen is uitgevoerd met behulp van “Analytical Target Cascading”
(ATC) waarbij de relaxatie van de consistentie restricties is uitgevoerd met behulp van
een “Augmented Lagrangian” relaxatie implementatie. Flexibiliteit van het raamwerk
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is gedemonstreerd via twee verschillende ontkoppelingsformuleringen op elk van de
multi-level optimalisatie problemen. Op elk van de test problemen is een top-down
ontkoppeling en een niet hiërarchische ontkoppeling van de multi-level optimalisatie
toegepast.

De numerieke kosten, die nodig waren om de top-down hiërarchische ontkoppe-
ling en de niet hiërarchische ontkoppeling op te lossen, varieerden per test probleem.
De kleinere test problemen convergeerden sneller, wanneer gebruik werd gemaakt
van hiërarchische top-down ontkoppeling, en de test problemen met veel ontwerp
restricties convergeerden sneller, wanneer een niet hiërarchische ontkoppeling werd
toegepast.

Twee coördinatie strategieën zijn toegepast. Een sequentieel coördinatie proces
en een parallel coördinatie proces. Het parallelle proces bleek duurder in termen van
numerieke kosten in vergelijking tot het sequentiële proces. De verwachting is echter
dat, wanneer de grootte van het probleem toeneemt, de kosten van het parallelle
proces, die van het sequentiële proces benaderen. De tijd die nodig is om een gehele
multi-level optimalisatie parallel uit te voeren zal korter zijn, dan wanneer hetzelfde
proces sequentieel wordt doorlopen.

Verschillende convergentie criteria zijn toegepast om de prestatie van het gëımplemen-
teerde algoritme te testen. De convergentie criteria zijn aangepast, samen met pa-
rameters die het vernieuwen van relaxatie parameters bepalen. Drie verschillende
methoden zijn gebruikt: “Block Coordinate Descent” (BCD); “InExact” (InE); en
“Alternating Descent” (AD). De keuze tussen één van de drie methoden is geba-
seerd op het toewijzen van numerieke kosten aan de individuele elementen, of aan de
coördinator en de uiteindelijke nauwkeurigheid van de oplossing. Voor alle behandelde
test problemen was AD het goedkoopste in termen van numerieke kosten.

De resultaten van dit onderzoek laten zien dat het ontwerpen van complexe con-
structies die gedrag vertonen dat gekoppeld is over verschillende niveaus via methoden
die voorgesteld zijn in de literatuur een uitdaging is.� Overeenkomst gebaseerde methoden hebben het nadeel dat, voor elke parame-

ter die van een individueel element naar een naburig element gestuurd wordt,
gevoeligheidsinformatie nodig is, of, dat een responsie oppervlak gecreërd moet
worden. Het vergaren van accurate gevoeligheidsinformatie is alleszins trivi-
aal en kan op zichzelf al een kostbare procedure worden. Het passen van een
responsie oppervlak, door de parameters die van een enkel individueel element
naar een naburig element gestuurd worden, vormt een echte uitdaging, wanneer
er tien (een klein aantal als het hier een gedetailleerd eindige elementen mo-
del betreft dat fysische eigenschappen en/of gedeelde ontwerpvariabelen stuurt
naar een globaal eindige elementen model op hoger niveau) of meer parameters
gepast moeten worden.� Relaxatie gebaseerde methoden hebben het nadeel dat zij langzame convergentie
eigenschappen bezitten. De lineaire convergentie snelheid van deze methoden,
en het feit dat tussenliggende ontwerpen gedurende het multi-level optimalisatie
proces onbruikbaar zijn, maakt deze methoden moeilijk te gebruiken in een
commerciële omgeving.
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Multi-level optimalisatie en multi-disciplinaire optimalisatie methoden zijn toepas-
baar, wanneer de hoeveelheid data die tussen individuele elementen wordt gestuurd
klein blijft en de elementen onderling zwak gekoppeld zijn. Met zwakke koppeling
wordt hier bedoeld dat, er geen grote numerieke fouten ontstaan in naburige elemen-
ten, wanneer de data van één element naar het naburige element wordt vertaald. Het
aantal parameters dat verstuurd kan worden, van het ene element naar het andere
element, is beperkt. Hierdoor kan men zich afvragen of het werk dat verricht wordt,
om een nauwkeurige oplossing voor elk individueel element afzonderlijk te verkrijgen,
gerechtvaardigd is. Doordat er maar een klein aantal parameters geprojecteerd kan
worden van het ene naar het andere element in de hiërarchie, kan de nauwkeurigheid
van de oplossing verslechteren.

Albert Jan de Wit
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Stellingen

behorende bij het proefschrift

Een uniforme werkwijze voor ontkoppelen en coördineren ten behoeve

van multi-level optimalisatie

Albert Jan de Wit

1. Huidige multi-level optimalisatietechnieken zijn dusdanig kostbaar in termen van
rekentijd en modellering dat het multi-level optimaliseren van constructies nog niet
tot een logische keuze voor het numerieke optimalisatieproces behoort.
[ dit proefschrift ]

2. Bij het toepassen van multi-level optimalisatie met behulp van “Bi-Level Integrated
System Synthesis” is niet de multi-level expertise van belang maar de “kunst” van
het creëren van responsie-oppervlakken.
[ dit proefschrift ]

3. Gecompliceerde ontwerpproblemen worden met behulp van multi-level optimalisa-
tie niet makkelijker.
[ dit proefschrift ]

4. Bij het ontwikkelen van multi-level optimalisatietechnieken voor constructies waar-
bij gebruik moet worden gemaakt van interactie tussen verschillende eindige-elementen
modellen is het formuleren van het raakvlak tussen individuele deelproblemen on-
derbelicht.
[ dit proefschrift ]

5. De huidige druk op onderzoekers om te publiceren, dan wel beloning naar rato van
publicaties, zal uiteindelijk leiden tot een wetenschapscrisis.

6. De kniklast van een constructie is geen doel, maar een randvoorwaarde voor con-
structie optimalisatieproblemen.

7. Toegankelijkheid van onderwijs staat de kwaliteit van onderwijs in de weg.

8. Doelstellingen tot het reduceren van het verbruik van fossiele brandstoffen zijn
overbodig.

9. Een hiërarchische kantoor structuur waarbij hoogleraren zo ver mogelijk van hun
studenten zitten belemmert de kennisoverdracht en werpt een onzichtbare barrière
tussen “kennis” generaties op.

10. Gezien het feit dat bij mooi weer heel werkend Nederland op het strand ligt,
staat Nederland met de globale opwarming van de aarde nog een aardige crisis
te wachten.

Deze stellingen worden verdedigbaar geacht en zijn als zodanig goedgekeurd door de

promotor, Prof. dr. ir. A. van Keulen.



Propositions

accompanying the thesis

A unified approach towards decomposition and coordination for

multi-level optimization

Albert Jan de Wit

1. Current multi-level optimization methods are so costly in terms of computation
time and modeling effort that multi-level optimization of structures is not a logical
choice for the process of numerical optimization.
[ this thesis ]

2. Conducting multi-level optimization via Bi-Level Integrated System Synthesis does
not require multi-level expertise but the expertise of creating response surfaces.
[ this thesis ]

3. Complicated design problems do not become easier via multi-level optimization.
[ this thesis ]

4. During the development of multi-level optimization techniques applied to struc-
tures where interaction between different finite element models has to be accounted
for, not enough attention has been given to formulating the interface.
[ this thesis ]

5. Current pressure on researchers to publish, or being rewarded according to the
amount of publications, will ultimately result in a science crisis.

6. The buckling load of a structure is not an objective but a constraint of structural
optimization problems.

7. Access to education stands in the way of quality of education.

8. Objectives to reduce the use of fossil fuels are superfluous.

9. A hierarchical office structure where professors are seated far from their students
stands in the way of knowledge transfer and poses an invisible barrier between
knowledge generations.

10. Given the fact that during nice weather Dutch workers spend their time lying on
the beach, the Netherlands awaits a major crisis given earth’s prospect of global
warming.

These propositions are considered defendable and as such have been approved by the

supervisor, Prof. dr. ir. A. van Keulen.
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