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Summary

Keeping maps up to date is quite costly because road geometry changes over time and mapping
by professional surveyors is an expensive operation. With the presence of GPS sensors on mobile
phones and in most cars today it becomes possible to measure the location of roads with many
measurements from sensors of lower accuracy. In this thesis we explored a method to use these
less-accurate measurements for the development and maintenance of a dynamic road map. The
main research question is:

How to create and maintain
an accurate and dynamic map
based on position traces?

Method
To answer the main research question, we have developed a quadratic time robust online map-
generation algorithm (ROMA) for creation a dynamic vector-representation of the world where
position signals are gathered. The world and GPS signals were simulated so that an absolute
ground truth representation off the world was available. For the evaluation of map quality we de-
veloped a cubic time metric which finds a common edge subgraph of the world and the developed
map. This subgraph indicates the true positives and enabled us to determine both precision and
recall for the generated map. Using the harmonic mean of precision and recall we were able to
indicate map quality in one number on the interval [0,1]. We tested the dynamic behaviour of
ROMA on scenarios of road introduction and road removal.

Results
Each run of the road introduction experiment showed an increase in map quality followed by
stabilisation or even a decline in map quality. Map quality generally reached a value of 0.5 within
5 minutes of road introduction. In all experiments the recall was constantly higher than the
measured precision. Recall generally reached a maximum of over 0.8 whereas precision stayed
at 0.5. For the road removal experiment we introduced roadblocks at the peak of measured map
quality for traffic densities showing a clear decline afterwards. Road removal was detected within
30 minutes after the introduction of roadblocks for removal of up to 50% of all roads in the world.
All experiments showed a build up of web-like road structures around the location of roads in the
world. This build-up was stronger present in experiments with higher traffic densities.

Discussion and conclusion
This research has provided new insight into incremental map-development by looking at the tem-
poral aspects of the process. Within this research we have provided insight in the formation over
time of web-like structures within trace-merging algorithms. Due to the investigation of this phe-
nomenon we have also provided suggestions for the decrease of this effect over time by merging
parallel roads. The novel graph based method for map comparison offers advantages to existing
approaches and is especially suitable for incremental maps while the road takes shape.

ROMA offers a method for dynamic map generation which robustly creates and maintains a
map representation of the world through the collection of GPS traces. The experiments show
that a navigable map is generated which detects new roads being travelled and also forgets roads
no longer travelled. We therefore conclude that ROMA is a decent proof of concept for dynamic
vector-map generation in an online fashion.
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Samenvatting

Het up to date houden van kaarten is redelijk kostbaar omdat de geometrie van wegen over
tijd verandert en het maken van kaarten door professionele landmeters erg kostbaar is. Met de
opkomst van GPS-sensoren op mobiele telefoons en in de meeste auto’s wordt het mogelijk om
de locatie van de weg te meten met behulp van veel metingen van een lagere nauwkeurigheid.
In dit verslag verkenden wij een methode om door middel van deze metingen een dynamische
wegenkaart te bouwen en onderhouden. De hoofdvraag van het onderzoek luidt:

Hoe creëer en onderhoud je een accurate
en dynamische kaart op basis van positie-traces?

Methode
Om de hoofdvraag te beantwoorden hebben we een robuust online map-generatie algorithme
(ROMA) met kwadratische complexiteit ontwikkeld voor het maken van een dynamische vector-
representatie van de wereld waarop positiedata verzameld wordt. De wereld en GPS-signalen zijn
gesimuleerd om zo een objectieve waarheid van de wereld te bewerkstelligen. Voor het meten
van de kaartkwaliteit hebben we een metriek met derdegraads complexiteit ontwikkeld welke een
common edge subgraph vindt van de wereld en de ontwikkelde kaart. Deze subgraaf geeft een
indicatie van de true positives en maakte dat wij zowel precisie als recall kunnen bepalen voor
de geproduceerde kaart. Met behulp van het harmonisch gemiddelde van de precisie en recall
verkregen wij een kwaliteitsmaat voor de kaart op het interval [0,1]. Wij hebben het dynamische
gedrag van ROMA getest op scenario’s met zowel introductie als ook verwijdering van wegen.

Resultaten
Elke run van het experiment met introductie van wegen toonde een toename in kaartkwaliteit
gevolgd door stabilisatie of zelf afname van deze kwaliteit. De kaartkwaliteit bereikte over het al-
gemeen een waarde van 0.5 binnen 5 minuten na de introductie van wegen. In alle experimenten
was de recall consistent hoger dan de gemeten precisie. Recall bereikte over het algemeen een
maximumwaarde van meer dan 0.8 terwijl de precisie bleef steken op 0.5. Voor het experiment
met verwijdering van wegen hebben wij blokkades toegevoegd op het moment van maximale
kaartkwaliteit voor verkeersdichtheden waarbij afname in kwaliteit zichtbaar was. Binnen 30 mi-
nuten na toevoeging van blokkades werden deze gedetecteerd bij het verwijderen van tot aan
50% van alle wegen in de wereld. Alle experimenten toonden een opbouw van web-achtige weg-
structuren rondom de ligging van wegen in de wereld. Deze opbouw was sterker aanwezig in
experimenten met hogere verkeersdichtheid.

Discussie en conclusie
Dit onderzoek heeft nieuwe inzichten opgeleverd in incrementele kaartontwikkeling door te kijken
naar de temporele aspecten in het proces. In dit onderzoek hebben wij inzichten gegeven in
de vorming over tijd van web-achtige structuren binnen trace-merging algorithmes. Door het
onderzoek naar dit verschijnsel hebben we tevens suggesties verstrekt voor de vermindering van
dit effect in de tijd door parallelle wegen samen te voegen. De nieuwe graafgebaseerde methode
voor kaartvergelijking biedt voordelen ten opzichte van bestaande methodes en is in het bijzonder
geschikt voor incrementele kaarten waarin de wegvorm nog ontwikkelt.

ROMA biedt een methode voor dynamische kaartgeneratie welke op robuuste wijze een kaart
van de wereld maakt en onderhoudt door het verzamelen van GPS-traces. De experimenten tonen
aan dat een navigeerbare kaart gemaakt wordt welke nieuwe wegen herkent en tevens niet langer
bereden wegen vergeet. Wij concluderen daarom dat ROMA een proof of concept is voor het op
incrementele wijze maken van dynamische vectorkaarten.
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1
Introduction

The process of creating a map by surveyors or from aerial images is quite complex and makes
that most available digital maps are expensive to produce and update. Next to the complexity
it is also quite costly to keep these maps up to date because road geometry changes over time
[5]. With the availability of low-cost positioning devices and the development of wireless com-
munication systems, integrated data gathering and processing become feasible at a large scale.
These methods are able to continuously update the map as new information becomes available
[1, 3, 25]. The direct motivation for the research in this thesis is found in disaster scenarios where
a priori maps are no longer accurate.

This thesis presents a proof of concept for a robust online map-generation algorithm (ROMA)
applicable to situations without a priori maps and the evaluation of this algorithm. The research
problem is described in section 1.1 followed by the research goal for this thesis in section 1.2.
The formalisation of the research problem and goal is given in section 1.3 where the research
questions are defined. We approach the research questions using the methodology described in
section 1.4. The relevance of this research to both theory and practice is given in section 1.5, and
the focus of this research is explained in section 1.6. The chapter ends with the outline of the
report in section 1.7.

1.1. Problem description
Position measurements provide the information needed to create and maintain a dynamic map
of a previously unmapped environment. Together with modern wireless communication we are
able to integrate these measurements into an existing map. Through the abundance of data,
the inaccuracy of cheap positioning devices can be compensated. The resulting roadmap contains
more detail and is more accurate compared to maps created by traditional methods such as satellite
imagery and specialized surveillance. Furthermore, these methods are able to continuously update
the map as new information becomes available [1, 25].

Methods of determining the road network from a multitude of position traces have been re-
searched. However, most of this research uses a one-time processing of all traces and keeps
the created topology intact over time. In a disaster relief scenario where a map representing
the current situation should be provided as soon as possible, an on-line method would be better
suited since it provides a best guess of the observed world at any time. If such a map is up-
dated in real-time, rescue-workers can follow detected paths without having to spend valuable
time searching for them. Maintaining an up-to-date map also increases the situation awareness
of the rescue-workers.

The success of a map for a dynamic and hazardous environment has two essential elements:
spatial accuracy and temporal accuracy. The first, spatial accuracy makes sure that vehicles using
the map for navigation can be placed on the map as best as possible. Many authors [5, 11, 23, 24]
state that combination of measurements from low-precision data sources provides equal or even
of better spatial accuracy compared to the expensive use of a high-precision data source as used
by professional surveyors.
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2 1. Introduction

The second element, temporal accuracy makes sure that the road representation best repre-
sents the actual road layout. Because subsequent events in a disaster area can make previously
available paths unavailable, we wish to research how to deal with changes in road layout. An
answer to the question of how to determine whether or not a road still exists has not been found
in literature but is relevant for the case of exploration in a disaster scenario.

1.2. Research goal
It is needed for modern road maps to deal with the temporal aspects of their content. This should
be done by 1) dealing with changing road shapes where the shape should best represent the actual
situation, but also be as spatially accurate as possible; and 2) detecting new roads and removing
roads which no longer exist. These two elements have not been researched to a great extend
and will therefore be new additions to research on incremental ad-hoc mapping. The goal of this
research is therefore to provide a proof of concept for a dynamic road map which incorporates
the temporal and spatial aspects needed when no a priori map is present and both topology and
geography of the map may change over time.

1.3. Research question
The problem description in section 1.1 states that the temporal aspect of a dynamic road map in
terms of topology and geography are less researched. It is however needed to attend to these
temporal aspects to develop a map useful for a changing environment where a priori knowledge
is missing and a best guess is better than no map. The research question based on this setting is
defined as:

How to create and maintain
an accurate and dynamic map
based on position traces?

We state several sub questions to aid in answering the main research question. Having an accurate
map both temporally and spatially is essential for the use of such a map in a changing environment.
Since we want to see if the developed solution is an accurate representation of the world, we
therefore ask:

SQ1: How to measure spatial and temporal accuracy of a map?

After an answer for this question is obtained, we can come to develop an algorithm which is
capable of creating such a spatial and temporally accurate map. The second sub question is thus:

SQ2: How to create a spatial and temporally accurate map?

With the developed proof-of-concept map-generation algorithm, we can then test the perfor-
mance of the algorithm and find out how the characteristics in terms of spatial and temporal
accuracy are. This allows us to answer the following question:

SQ3: How spatially and temporally accurate can a dynamic map be?

The developed algorithm might be influenced by external factors and we would like to know
how the performance of the algorithm can be influenced. We therefore define the following
question:

SQ4: How do spatial and temporal accuracy correlate ?

Given this thorough examination of the algorithm’s performance under different circumstances
and experience with the subject matter, we finally pose the last sub question as:

SQ5: Which domains can benefit from the developed method for dynamic mapping?
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1.4. Methodology
Information on automated mapping in relation with spatial and temporal accuracy will be sought
in literature and used to build a method which can be used to create a spatially and temporally
accurate map. Because no graph based approach to map comparison is known, such a method
will also be developed based on what has been found in literature.

Because the research focuses on the spatial and temporal accuracy of the map derived from
position traces, modules in the prototype dealing with temporal accuracy are evaluated more in
depth. Multiple solutions for obtaining spatial and temporal accuracy are tested and compared.
For other modules, a method will be used from previous research wherever possible.

To measure the quality of the generated map, an absolute ground truth is needed. We there-
fore use a simulator to simulate traffic on a known ground truth map and generate GPS-position
measurements. The simulator is developed in a modular fashion to accommodate comparisons
with other developed methods. The developed method for comparison of two vector-maps will be
used to compare the ground truth and generated map with one another.

Two experiments are run to test the algorithm for dealing with new roads, and with the removal
of roads from the ground truth. The experimental design with relations between independent
and dependent variables researched in this thesis are shown in fig. 1.1. For these experiments,
multiple traffic intensities will be used in both experiments as independent variable. In the second
experiment, the amount of roads removed might influence the performance of the algorithm,
and is therefore tested as independent variable. After introducing changes in the ground truth
we expect map quality to either stabilize over time or show overfitting such as seen in machine
learning. We use the moment that either overfitting or stabilization occurs as indication that the
map has adapted to changes in the world.

Figure 1.1: Structural diagram for the experimental design. The predictive relationships from independent to dependent
variables are explored in the experiments as well as the correlation between spatial and temporal accuracy.

1.5. Scientific and practical relevance
The research performed in this thesis provides a proof of concept for a novelty in dynamic map
generation by adding a method of both growth and decay of the map topology. This online
approach to mapping is explored in some but often without integration of traffic information and
decay of topology. By adding dynamic decay to the map topology, a map can ideally be kept and
updated without having to rebuild the entire map.

The evaluation of the developed map-generation method during execution provides novel in-
sight in the incremental application of trace-merging algorithms. With no known literature on the
development of map quality over time this temporal aspect is a novelty to the field of Geographic
Information Systems. The obtained insight in the process of development of web-like structures
is an addition to the known literature on trace merging methods.

Because evaluation of two maps is mostly done by raster comparison and the available vector-
based comparison of Biagioni and Eriksson [3] does directly compare graphs, we believe that the
method for comparison of two vector maps using a graph-based approach is a novelty in the field.
The developed metric is an advantage to the method of Biagioni and Eriksson for its ability to deal
with displaced maps which occur in dynamic map generation.



4 1. Introduction

The practical value of this research is found in the fact that the developed algorithm can be
applied to situations where no map is present or current maps are no longer of use such as in
disaster response or relief works. The development of a map by all of its users and the speed
by which this map provides an up-to-date and dynamic map is an advantage to such cooperative
efforts requiring active user actions. Without the need for confirmation, ROMA prevents extra
cognitive stress for the users who need to focus on the task at hand (i.e. driving a vehicle).

1.6. Research focus
Within this research we focus on the algorithm for development of a dynamic map. Using a simu-
lated environment, we simulated central processing without having to communicate the resulting
map to any clients. We were also able to directly provide an error-free signal to the algorithm. In
a real application errors occur during transmission of data and non-continuous connections make
that data needs to be buffered at the server or client-side. The GPS-measurements simulated on
a world-model are fed as raw data and application of extensive filters and smoothening of the
GPS-trace are left outside of this research. In a real application measurements might be obtained
by sensor-fusion in order to improve position estimates, but that is outside the scope of this re-
search. For more on sensor fusion, please refer to [26]. The GPS-data simulated in this thesis is
timestamped, and has an indication of measurement accuracy.

ROMA produces a vector-map for navigational purposes. Cao and Crumm [7] and Wing [29,
pp. 32-43] indicate that a vector-map is most suited for navigation since it provides information
on topological connectivity and geometry of the road. According to Schroedl et al. [24], digital
maps are usually represented as graphs which show the topological connectivity.

The disaster relief setting described in section 1.1 makes that we require ROMA to be able to
operate without a priori map and deal with changes in the map even as long as new measurements
are fed to ROMA. Both the spatial and temporal accuracy of the developed map are the focus of
this research. Spatial accuracy is the similarity of the map to the real world at a given time, and
temporal accuracy is measured by the speed of the map to respond to changes in the topology or
geography of the world.

Drivers (and rescue workers) operate in an already complex environment and it is advised not
to ask drivers for direct feedback when it can be solved otherwise [25]. We therefore focus the
research on an algorithm for fully automated mapping.

Given the focus described above, we defined the following requirements to ROMA:

• use GPS-measurements as input

• represent the map as a graph

• require no a-priori map

• recognize changes in the world

• require no active user-input

1.7. Outline
The outline of this thesis follows the methodology described in section 1.4. Chapter 2 lists back-
ground knowledge for an enhanced understanding of the matter and reviews related work that
forms the foundation of the measure and algorithm developed in this thesis. Chapter 3 shows the
developed measure for comparison of two vector-maps and chapter 4 describes in detail the design
and workings of the developed algorithm, ROMA. In chapter 5 we briefly describe the simulator
which is used for the experiments which are described together with their results in chapter 6.
We discuss these results in chapter 7 and conclude this thesis in chapter 8.



2
Background and related work

This chapter explores literature on mapping and related fields to provide a decent background on
which this thesis is based. Each section of this chapter concludes with the selection of appropriate
methods which are later used in this thesis. Since the development of a dynamic map is central
in this thesis, we first explore the possibilities for storing a map in section 2.1.

To automatize the process of collecting traces and using them to update maps, client–server
frameworks have been developed such as the ActMAP–FeedMAP framework developed by Thomas
et al. [25]. Since we focus on the algorithmic aspect of map inference, we use the sequential steps
defined by Edelkamp et al. [14]. Their architecture is based upon a detailed analysis of previous
work and can be used for automatic map generation with or without an initial base map. In
short their approach follows these steps, with the sections in which we describe them between
parentheses:

• filtering of incoming traces (section 2.2)

• matching traces to the existing map (section 2.3)

• creating a new road (section 2.4) or updating existing roads (section 2.5)

We conclude with an exploration of evaluation methods for developed maps in section 2.6.

2.1. Maps
According to Wing [29, p. 38] map data is commonly stored into one of two formats: raster or
vector. The differences between both formats are shown in fig. 2.1 Maps stored in raster format
make use of a grid where each of the positions on the grid gives information on a location in the
world. The vector format uses a graph representation of the world where points and lines between
them represent roads and areas. Labels are added in both representations to indicate what the
stored locations represent.

(a) Vector representation (b) Raster representation.

Figure 2.1: The same world represented as vector (fig. 2.1a) and raster (fig. 2.1b).

5



6 2. Background and related work

Wing [29, pp. 32-43] suggests that vectors are best used to represent the traces and map.
Vectors provide information on connectivity between locations and the precision of these locations
is not limited by the grid size as in raster maps. The represented locations can be exact latitude
and longitude values related to a real-world location.

A vector map used for representation of a road network is conceptually related to a mathe-
matical graph representation. A graph is essentially a collection of objects or nodes (𝑣 ∈ 𝑉) of
which some are connected through so called edges (𝑒 ∈ 𝐸). A graphical representation of such
a collection is shown in fig. 2.2 and makes the relation with vector maps clear. Roads in vector
maps are translated to edges in a graph and intersections translate to nodes. Since graphs are
well studied concepts in mathematics and offer benefits over raster representations for their di-
rect representation of connectivity. The main difference between vector maps and graphs is that
vector maps contain information on the position of nodes whereas nodes in graphs do not. The
distance between two nodes can be known in a graph by adding a weight value representing the
distance to the edge connecting the nodes.

Figure 2.2: A graph with 4 nodes and 3 edges.

Graph type node (𝑣) edge (𝑒)
Regular
World
Map

Measurement

Table 2.1: Icons for graphs used in this thesis.

A vector representation is used in this thesis because of the unlimited location specificity and
spatial resolution as well as the ease of topology representation. Table 2.1 shows the icons for
different graph types used in this thesis: regular (without geographical position), world, map, and
measurement.

2.2. Pre-processing
The research in this thesis focuses on the use of GPS measurements as input for the algorithm
described in chapter 4. GPS measurements are obtained with a GPS receiver which listens to
signals from multiple geostationary satellites as shown in fig. 2.3a. Knowledge of the satellite
locations and the difference in time of arrival of received signals enables the construction of a
position measurement on earth. Constructed measurements contain information on the position
of the receiver in 3 dimensions, the error of the measurement, and the moment of measurement.
The error on GPS position measurements can be assumed to be circular Gaussian distributed on
the horizontal plane [27] as shown in fig. 2.3b. This means that the value of a measurement is
95.45% certain to be within 2 standard deviations of the measured position. Derived information
available after calculations on multiple measurements are speed and direction of the receiver.

Based upon the accuracy value of the estimated positions in GPS measurements, Lima and
Ferreira [18] define two filters. One filter is based upon the degradation level of the horizontal
positioning accuracy of the GPS and removes measurements which are too inaccurate. Another
filter removes measurements obtained from less then five satellites, since no decent error estimate
can be obtained for those measurements.

Given a subsequent measurements, it is possible to define filters based upon velocity infor-
mation. Lima and Ferreira [18] throw away all data points with a speed of less then 6 km/h,
considering these measurements to be insufficiently accurate. Bruntrup et al. [5] use a threshold
on absolute velocity and acceleration to detect and eliminate unrealistic outliers. This last method
does rely heavily on the characteristics of the data provider; a pedestrian moving at a speed ≥ 50
km h is not realistic, but for a car in an urban area it is a regular speed.

When other information on the environment is available, this can be included for increased
accuracy using a Kalman filter. Kalman filtering is often applied in mobile robotics and used in
pre-processing by Mayr [19]. Their approach combines a model for GPS accuracy, a model for
the error induced by the travelled terrain, and one model for the vehicle characteristics. Kalman
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(a) Acquiring signals of GPS satellites. (b) GPS error on the horizontal plane.

Figure 2.3: Signals from GPS satellites (fig. 2.3a) provide an estimated position on earth with a Gaussian error on the
horizontal plane (fig. 2.3b).

filters use these models to predict the next position that will be measured and use this prediction
to reduce error on the actually measured position. Thrun et al. [26] provide a decent coverage
on the use of Kalman filters for localization and mapping.

After removal of inconsistent data points, many methods split traces with irregularities between
measurements. This can be done based upon a large time interval [7, 18], a large distance interval
[7, 31], and also when there is a significant change in direction [20, 31].

As a final step in pre-processing, traces can be smoothed by the reduction of points to rep-
resent the trace. Lima and Ferreira [18] make use of the well known off-line Douglas-Peucker
algorithm [12] with a static distance threshold. An example of the Douglas-Peucker algorithm for
line simplification is given in fig. 2.4. Cao and Crumm [7] use a variable distance threshold based
upon the angle between measurements so that straight lines are represented with less points than
bends. Although found in pre-processing steps, we believe that smoothing can also be applied to
the resulting map.

(a) The provided line consists of 4 points. (b) The point with max( ) is selected if .

(c) The method is called recursively until . (d) The resulting line excludes the grey point.

Figure 2.4: Example of the Douglas-Peucker algorithm Douglas and Peucker [12] for line simplification.

For use in this work we require filters which are non-dependent on vehicle characteristics since
we simulate these vehicles. The filters we describe in section 4.1 are based upon measurement
accuracy as done by Lima and Ferreira [18]. We also split traces based upon a distance interval as
done by Cao and Crumm [7]. Line simplification is not done in pre-processing, but applied after
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adjustment of the map as can be found in section 4.4. We do this to be able to add as much
measurements as possible to the map instead of throwing them away beforehand.

2.3. Map matching
A match with the existing map is tried using the filtered trace of GPS measurements. Each of
these measurements is attempted to match to the existing map in this step.

For limiting the search for possible routes on which a vehicle might have driven, Pfoser and
Jensen [21] propose a method for defining the area within which a vehicle could have driven
in between measurements. Using the accuracy of two measurements and the maximum driven
speed between those measurements they define an error-ellipse as that area. This area limits the
search but does not cover the map matching problem itself.

In the overview of White et al. [28] several approaches to the problem of map matching are
discussed. The most simple method in terms of implementation and execution is point to point
matching shown in fig. 2.5a. This method matches a GPS measurement to the nearest node in
the map, making it highly dependent on spread of shape points over the map. Point to curve
matching shown in fig. 2.5b does not have this dependency since it matches the measurement
to the nearest edge instead. This solves the dependency stated for point to point matching, but
some other problems are still unsolved.

(a) Point to point matching. (b) Point to edge matching.

Figure 2.5: Examples of different point matching methods.

White et al. [28] suggest improving the map matching procedure by using similarity measures
such as difference in heading next to only the distance. An example of a similarity measure based
on heading is given in fig. 2.6. This kind of information is used by Brakatsoulas et al. [4] in
their incremental map matching algorithm and combined into one similarity measure. Topological
information can be used to make sure that a trace is matched in a traversable route over the map
as applied by Bruntrup et al. [5] using a depth-first search over possible routes to find the best
match as shown in fig. 2.7. This look-ahead method comes at the cost of a more extensive search
for the best route to match, but does not affect computational complexity since it is bound by an
absolute amount of extra measurements to be explored.

Figure 2.6: The effects of a match based on heading for two measurements.

Most map matching methods deal with maps that they assume are correct, but Haunert and
Budig [17] have devised a method which also handles incomplete road data. Their off-line ap-
proach allows for the map matching to jump to another piece of the map when no feasible route
is present. They also include a set of parameters allowing the algorithm to balance between
matching to the map and going off-road.

The path estimation described in section 4.2 uses point-to-edge matching augmented with
similarity based upon trace heading and look-ahead as done by Brakatsoulas et al. [4]. Further-
more we restrict the search for fitting edges by application of the method proposed by Pfoser and
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(a) Two measurements indicate a straight line. (b) Looking ahead shows a change in direction.

Figure 2.7: A local look-ahead provides more certainty as to which turn was taken.

Jensen [21] to increase algorithmic speed. The method for dealing with incomplete maps is used
as inspiration for our map generation method as described in section 4.3.

2.4. Map merging
As defined by Biagioni and Eriksson [3], map merging can be categorized by their algorithmic
foundations: k-means, trace merging, or kernel density estimation. In this section we describe all
three of these categories.

Edelkamp and Schrödl [13] apply the k-means approach as illustrated in fig. 2.8 to map merging
by distributing a set of cluster seeds at locations found in the trace data. The coverage of these
seeds is chosen in such a way that every measurement found in the trace data is within a fixed
distance 𝑑 and bearing difference 𝛿 of a cluster seed which is seen as the de facto standard in
this approach [3]. The location and heading of each cluster is then determined by averaging
over the traces belonging to that cluster and connections between clusters are determined using
these same traces as shown in fig. 2.8c. K-means can also be applied in an on-line manner in
which cluster locations can change or new clusters can be added after processing new traces [13].
Schroedl et al. [24] later extended this methodology by extracting lane positions by evaluating the
cross-section of traces perpendicular to the cluster heading.

(a) Collection of raw traces. (b) Initial placement of seeds.

(c) Updated means with bearing. (d) Final graph after means are linked.

Figure 2.8: Example of kernel density estimation (KDE) for map merging as explained in [3]
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In the iterative trace merge approach, edges from collected traces are added to the map unless
a similar edge is already present at that location as illustrated in fig. 2.9. The weight of each edge
represents the amount of traces passing over that edge and edges with a weight below a certain
threshold are removed at the end of the trace merging approach [3]. Bruntrup et al. [5] present
a on-line applicable method for trace merging, where several position indicators move along with
the trace. These mark the position until where the trace is explored, where map merging can be
applied, and where map merging has been applied. The off-line approach by Cao and Crumm
[7] reduces the effect of GPS noise by pulling together similar traces which they expect to be
representative of the same road.

(a) Collection of raw traces. (b) New edges are added.

(c) Weight of existing edges increases. (d) Edges with insufficient weight are removed.

Figure 2.9: Example of trace merging as explained in [3]

In kernel density estimation (KDE) as illustrated in fig. 2.10, collected traces are first trans-
ferred onto a raster which is then smoothed before the centrelines of driven roads are extracted
[3]. The two-dimensional raster contains cell values representing the amount of traces passing
through that cell. This raster representation is then smoothed by application of KDE which is
a method that assumes the Gaussian distribution of measurements. We know from section 2.2
that GPS measurements show a Gaussian error distribution. Davies et al. [11] apply a threshold
function over the smoothed image which results in a a binary image and ensures that erroneous
measurements are left out of the map. The Voronoi-graph of this binary image then shows the
estimation of road centrelines in a graph representation. Lima and Ferreira [18] take a different
approach and apply a method similar to the generation of clusters found in the k-means approach
after the rasterization of traces. They place so called centroids at specific distances related to the
amount of traffic passing that point; when there is more traffic, centroids may be placed closer to-
gether. Lima and Ferreira continue by connecting these centroids with edges and hereby construct
a vector representation of the road map. The KDE is not applicable in a dynamic or incremental
fashion because all traces on the raster are needed to perform the kernel density estimation.

We believe that k-means and trace merging are suitable options to apply in an on-line and
dynamic approach to map inference. Since trace merging can even directly merge sections of a
found trace to the available map we use that approach in section 4.3. The centreline extraction
method found in the k-means approach by Edelkamp and Schrödl [13] is used to determine node
locations.
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(a) Collection of raw traces. (b) KDE is computed

(c) An absolute threshold is applied. (d) Road outlines and centrelines are computed.

Figure 2.10: Example of kernel density estimation (KDE) for map merging as explained in [3]

2.5. Map dynamics
The measurements being added to the map can influence the map in a variety of ways. In this
section we discuss how the aggregation of measurements can contribute to map dynamics. We
start with a description of the various methods of storing measurements in the generated graph
related to the estimation of centrelines and continue with methods for increasing map accuracy
and decreasing the influence of measurement outliers.

The k-meansmethod described in section 2.4 averages the position on the plane perpendicular
to the cluster direction of all related traces to determine the centreline of the road described by it as
shown in fig. 2.11a. The requirements of traces belonging to a cluster are only described in terms
of spatial characteristics (distance or directionality), but leave out how to handle changes over
time. In trace merging it is possible to accumulate knowledge on multiple measurements in one
map node as if it were one measurement. Cao and Crumm [7] align similar traces in an elaborate
trace refinement step before actual map merging which decreases the need for actual merger of
measurements. They therefore only use extra measurements to increase traffic volume over edges
and to create new nodes for previously unexplored roads. Rogers [23] adds new traces to the
already developed map by weighing the positions of map and trace based upon accuracy of both
positions as shown in fig. 2.11b. The resulting new position for the map is then adjusted and its
accuracy value improves. Rogers states that this improvement to map accuracy comes at the cost
of increased inertia of the map. Edelkamp et al. [14] furthermore state that the improvements
make the estimate biased towards recent measurements and suggest to apply a batch-based
reconstruction of the entire map periodically. Although a bias towards recent measurements is
welcome given the need to adjust to changing environments, our method should deal with the
described map inertia.

(a) Averaging over all measurements. (b) Weighted addition of a new measurement.

Figure 2.11: Options for determining the position of a node on the map.
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Given that measurement data is stored in the graph, various authors have shown methods to
determine characteristics other than general topology and road geography. Some authors have
developed methods to detect the amount of lanes on a road [10, 13, 24], when lanes split and
merge [7, 13, 24], or even the precise layout of and legal turns on intersections [13, 18, 24].
Others focused on finding average and maximum speeds allowed on a road [20, 25] resulting in
the possibility to estimate the road type (e.g. highways, streets, or walkways) [20]. Since vertical
accuracy of GPS signals is quite bad [27], Niehöfer et al. [20] developed a method of detecting
bridges and tunnels based upon the signal strength of received GPS signals. In our work, we will
let these advanced characteristics untouched and focus on determining the changes of topology
and geometry over time.

Although it is known that maps change over time [5] and for some domains (e.g. mining)
significant changes can occur within a week [1], no methods of dealing with temporal change
have been found other than adding new traces to a map. Deletion of removed roads is often
overlooked. Niehöfer et al. [20] state that aged map segments will be deleted eventually in their
method, but do not explain their decision method. Davies et al. [11] give the most detailed
description and state that the level of trust in certain parts of the map decreases over time. The
trust value is increased by adding traces to the map where older traces provide less trust compared
to more recent measurements. Roads are removed from the map as soon as the level of trust
comes below a certain threshold. Davies, Beresford, and Hopper finally indicate that detecting
removal of roads depends much on the amount of vehicles providing GPS traces.

Floreano and Mattiussi [15] describe the use of pheromones by ants to define paths and apply
it in algorithms. Ants apply pheromones which fade over time to mark paths travelled between
food sources and the nest as shown in fig. 2.12. Each passing ant leaves a pheromone marker
which decays in strength over time. Ants prefer the route with most pheromones and eventually
find the shortest path as emergent behaviour. For our research, measurements merged to the
map can confirm existence of the matched road using a similar method. We will have to adjust this
method to work with different traffic intensities since not every road is travelled similarly often.

Figure 2.12: Pheromone trails from hill to food. The path will converge to the shortest path due to decay of pheromones.

Many authors [7, 13, 18] apply clean up steps to prevent outliers through single measurements.
Some apply a threshold on traffic volume, but the values used differs per author. Cao and Crumm
[7] remove edges with a traffic volume < 3 whereas Lima and Ferreira [18] need > 20 traces
before they assume a road is valid. Another clean up method is applied by Edelkamp and Schrödl
[13] who remove initial and final trace sections since these can be individual driveways or parking
lots.

In our approach to map dynamics described in section 4.4, we store a limited set of most recent
measurements in each element in the graph. This enables us to benefit from the possibilities of
Gaussian estimation found in k-means while keeping only to the most recent measurements to
facilitate adjustments to road geometry and prevent map inertia. We model fading of roads by
estimating a time before we expect that a new car will pass based upon the recorded traffic
characteristics which is inspired by the concept of pheromones described in this section. As a
clean up step we disregard edges with a low traffic volume and also dead end streets below a
certain length.
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2.6. Map validation
Biagioni and Eriksson [3] note in their survey of existing literature that evaluation is almost ex-
clusively done visually. This is often done by laying the produced map onto a ground truth map.
Such maps are often obtained from arbitrarily chosen commercially available maps [7, 18, 20] and
in some cases constructed using a high-precision Differential GPS [13, 24]. No ground truth was
available in cases were data from open pit mining was used [1, 30]. Agamennoni et al. [1] solved
this lack of ground truth by comparing their algorithm to other well known methods [5, 11, 24].

Quantitative measures for measuring the quality of a match of a GPS trace to the ground truth
map exist (see Brakatsoulas et al. [4]), but for comparison of a generated map with the available
ground truth this is still uncommon [3]. Biagioni and Eriksson [3] claim to be the first authors
offering both a quantitative and qualitative comparison of existing map generation methods. We
doubt if they are the first to apply quantitative comparison since Lima and Ferreira [18] already
provide information on general positives, false positives, and false negatives. However, they do
not provide a clear description on their method. Biagioni and Eriksson provide a method which
automatically calculates these measures and we therefore describe their method in this section 2.6.
They also compare three well-known algorithms from each of the three approaches: k-means [13],
trace merging [7], and KDE [11].

Biagioni and Eriksson [3] measure both geometric and topological similarity of maps by taking
samples of both the map and ground truth. They explore the map up until a certain distance from
a random chosen starting point and take samples at a fixed interval over all outgoing edges as
shown in fig. 2.13. This operation is performed for both the map and the ground truth after which
it is determined which samples from both sets match within a specified matching distance.

(a) ’Holes’ are placed at equal distances on the world (b) ’Marbles’ are placed from the same start position.

(c) True positives where ’marbles’ match ’holes’.

Figure 2.13: Example of the method for map comparison by Biagioni and Eriksson [3].



14 2. Background and related work

Biagioni and Eriksson [3] translate these matches into terms found in information retrieval so
that one accuracy value can be calculated. Within table 2.2 we summarize the terms used in
information retrieval and how they relate to the observations (map) and ground truth (world).
All matched samples are considered as true positives (TP), unmatched samples present on the
map represent false positives (FP), and unmatched samples on the ground truth are seen as false
negatives (FN). True negatives (TN) can not be calculated in this context as there are no bounds
to the total search area.

ground truth
available not available

observations available true positive false positive
not available false negative true negative

Table 2.2: Relations between correctness of observations and ground truth

These terms used for classification methods are then used to produce precision and recall,
of which the standard formulae are given in eq. (2.1a) and eq. (2.1b). Precision represents the
part of selected items which are relevant and translates to the part of the map which is actually a
representation of the world. Recall represents the part of relevant items which are selected and
translates to the part of the world which is actually represented on the map.

precision = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃 (2.1a)

recall = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁 (2.1b)

As both precision and recall indicate fractions of a whole, their values are on the interval [0, 1].
The harmonic mean of precision and recall then combines these values into the balanced F-score
as shown in eq. (2.2), and results in values on the interval [0, 1].

𝐹 = 2 ⋅ precision ⋅ recall
precision+ recall

(2.2)

Biagioni and Eriksson [3] state that a graph similarity algorithms are able to measure the
degree of topological similarity but believe that these methods are not suited for measuring any
geographical qualities. In this thesis, we propose a method using graph similarity which is able
to measure both topological and geographical qualities of a developed map. We shall therefore
describe the maximum common edge subgraph (MCES) isomorphism and the limitations which
need to be overcome. Two graphs are isomorphic when there is a one-to-one correspondence
between nodes and edges only exist between two nodes in one graph when an edge is also
present between the two corresponding nodes in the other graph [22]. Raymond and Willett [22]
further describe the MCES isomorphism as a subgraph consisting of the largest number of edges
between two graphs. An example of a MCES is given in fig. 2.14.

(a) Graph (b) Graph (c) MCES of ∩ (d) MCES of ∩

Figure 2.14: Graphs (2.14a) and (2.14b) can have many maximum common edge subgraphs. There are already
⋅ ⋅ possible maximum common edge subgraphs of ∩ of which 2.14c and 2.14d are only two examples.

The problem of determining a MCES is categorized as NP-complete in terms of computational
complexity given the amount of comparisons needed to check if there exists no subgraph with
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more edges. Biagioni and Eriksson [3] furthermore argue that graphs do not possess geographical
locations and therefore deem graph-based methods unfit for comparison of maps. We believe that
the measurements stored in nodes in a road graph can be exploited to provided a distance measure
used to match only nodes from the ground truth to the map which are geographically near to one
another.

We agree with Biagioni and Eriksson [3] that quantitative evaluation is necessary to obtain
insight in the quality of a mapping algorithm and follow their use of precision, recall, and the
combined f-score. However, we see a possibility to apply the MCES concept to obtain a estimate
of map quality without the necessity for the random selection of positions within the developed
map. In chapter 3 we describe a method for application of the MCES concept which uses the
geographical information stored in a vector map representation to enhance node mapping.





3
Evaluation criteria and metrics

In this chapter we describe the metrics used to determine map quality and how these are used
to determine both spatial and temporal accuracy of the developed maps. The metrics are used
in chapter 6 to quantitatively measure the effectiveness of the algorithm described in chapter 4.
Contrary to the metric described by Biagioni and Eriksson [3], the metrics in the current chapter
makes use of topological properties and graph-related methods. Section 3.1 describes the method
inspired by the concept of the Maximum Common Edge Subgraph (MCES, section 2.6) isomorphism
and determines which edges of the map are matched to edges in the world. In section 3.2 we
use these matches we calculate true positives (TP), false positives (FP), and false negatives (FN)
in order to calculate the spatial accuracy. In section 3.3, these metrics are used to define the
temporal accuracy.

3.1. Common edge subgraph
This section describes the process for finding the true positive matchings map and world based
upon the concept of the Maximum Common Edge Subgraph (MCES). After a brief recapitulation of
the difference between regular graph comparison and the comparison of vector maps we continue
to describe the process itself. The first part describes the method for application of geographical
information found in vector maps so that the extracted subgraph contains edges which are also
matched. The second part then describes how conflicts in node matching are solved using topo-
logical and geographical differences. This process results in an approximation of the MCES which
takes into account the geographical information stored in vector-maps.

An important difference between regular graph matching and the comparison of vector maps is
that nodes in maps have a geographical position. Next to this, the edges within a map have weights
which represent the geographical length of the roads they represent. As stated in section 2.6, it
is difficult to apply regular MCES algorithms for quantitative evaluation, since graphs do not have
notion of their geographical location. We solve this problem by first matching the nodes in map
and world based upon geographical distance.

Algorithm 3.1 Determining the matches between nodes in world and map

Require: map graph 𝐺 = (𝑉 , 𝐸 ), world graph 𝐺 = (𝑉 , 𝐸 )
1: 𝑎 ← getNearestMatches(𝑉 , 𝑉 )
2: 𝑏 ← getNearestMatches(𝑉 , 𝑉 )
3: 𝑓 ← 𝑎 ∩ 𝑏
4: 𝑡 ← (𝑎 ∪ 𝑏) ∩ ¬𝑓
5: while 𝑡 ≠ ∅ do
6: 𝑐 ← (𝑣 , 𝑣 ) ∶ 𝑑(𝑣 , 𝑣 ) is minimal in 𝑡
7: remove all matches with 𝑣 or 𝑣 from 𝑡
8: 𝑓 ← 𝑐
9: end whilereturn 𝑓

17
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The graph comparison method starts with alignment and matching of the nodes found in map
and world. Each of the nodes in map and world contain position information: latitude, longitude,
and altitude. Given that the measurements are taken on the surface of the earth, the orthodromic
or great-circle distance (𝑑) is used in this work to determine the distance between two node
coordinates. The pseudocode overview for deriving suitable node matchings for the common edge
subgraph is given in algorithm 3.1 and shows a computational complexity of O(|𝑉| ). Matches for
nodes (intersection or endpoint) from map (𝑣 ) to world (𝑣 ) and vice versa are made such that
𝑑(𝑣 , 𝑣 ) is minimal. These two lists of matches are then searched and combined into 𝑡. All
mappings between 𝑣 and 𝑣 existing in both lists are automatically stored into 𝑓. As long as
there are matches remaining in 𝑡, the match with the smallest 𝑑(𝑣 , 𝑣 ) is taken and stored into 𝑓
followed by the removal from 𝑡 of all matches containing either 𝑣 or 𝑣 equal the stored match.
Exemplary matching for the graphs in fig. 3.1 is shown in fig. 3.2.

Figure 3.1: Example map (squares) and world (circles) graphs positioned on top of one another.

𝑣 𝑣 𝑣 𝑣
𝑣 0 2 0 0
𝑣 2 0 2 2
𝑣 0 2 0 0
𝑣 0 2 0 0

(a) Adjacency matrix for nodes in the world

𝑣 𝑣 𝑣 𝑣
𝑣 0 2 0 0
𝑣 2 0 2 1
𝑣 0 2 0 0
𝑣 0 1 0 0

(b) Adjacency matrix for nodes on the map

Table 3.1: Adjacency matrices the world and map shown in fig. 3.1.

We can not assume that roads between matched nodes in the world are equal to those roads on
the map. Therefore two weighted adjacency matrices are built for both world𝑊 and map 𝑀 to be
used for calculations of precision and recall. Within these two matrices the edges of the common
subgraph are defined including their weight. The weights of edges for directly connected nodes are
calculated using an all-pair shortest path algorithm of O(|𝑉| ). The shortest paths are restricted
to contain only direct paths with no matched nodes within the path itself. A similarity matrix 𝑆 is
defined to take geometric properties into account. The values for this matrix are calculated using
a simple comparison of road lengths as shown in eq. (3.1). As required for a similarity measure,
this equation is bound on the interval [0, 1] since the exponent of the equation is bound on the
interval (−∞, 0], lim → 𝑒 = 0, and 𝑒 = 1. The exemplary matrices in table 3.2 show the
values for 𝑀, 𝑊, and 𝑆 for the graphs in fig. 3.1 matched as shown in fig. 3.2.

𝑆 , = 𝑒 (abs(| | | |)⋅ ) / (| | | |) (3.1)
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(a) at line 1. (b) at line 2. (c) at line 9.

Figure 3.2: Example of algorithm 3.1 at different moments for map and world in fig. 3.1. Since a match in both directions
( ↔ ) exists, the matches ( ↔ ) and ( ↔ ) are not included in .

𝑣 𝑣 𝑣
𝑣 0 2 0
𝑣 2 0 2
𝑣 0 2 0

(a) Weighted adjacency matrix

𝑣 𝑣 𝑣
𝑣 0 2 0
𝑣 2 0 1
𝑣 0 1 0

(b) Weighted adjacency matrix

𝑆 𝑣 𝑣 𝑣
𝑣 0 1 0
𝑣 1 0 𝑒 ( / )

𝑣 0 𝑒 ( / ) 0

(c) Similarity matrix

Table 3.2: Example matrices for the map and world shown in fig. 3.1 matched as described in fig. 3.2c

The computational complexity of the implementation of this approximation of the MCES is of
cubic time 𝑂(𝑣 ) due to the all-pair shortest path approach to building the adjacency matrix. This
metric as used in the simulations described in chapter 6 therefore falls within polynomial time.

3.2. Spatial accuracy
Given the matrices calculated in section 3.1 this section defines the quality measure for spatial
accuracy. Precision and recall are both first calculated before combining them into the balanced
F-score which is used as main quality measure. We adapt these measures to take geometric
properties into account using the similarity matrix 𝑆.

Traditional precision can be calculated given the amount of true positives and false positives
as defined in eq. (3.2a). In a summation over all elements in the matrices, the precision for
map comparison is determined. 𝑀 is used to measure precision since false positives can only be
expressed in terms of size on the map and geographical similarity is included using 𝑆. Multiplication
of these terms results in a scored length for each of the edges in the common subgraph. The
summation of these lengths is divided by the total length of edges on the map to obtain the map’s
precision as shown in eq. (3.2b).

traditional precision = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃 (3.2a)

vector-map precision =
∑| | ∑| | 𝑆 , ⋅ 𝑀 ,

∑ |𝑒 | (3.2b)

Traditional recall can be calculated given the amount of true positives and false negatives as
defined in eq. (3.3a). Since false negatives are expressed in terms of size in the world, the recall
value for map comparison is calculated using 𝑊. The traditional formula is transformed into one
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for vector-map recall as given in eq. (3.3b) in a similar fashion as done for precision.

traditional recall = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁 (3.3a)

vector-map recall =
∑| | ∑| | 𝑆 , ⋅ 𝑊 ,

∑ |𝑒 | (3.3b)

Given the precision and recall values adjusted for geographical similarity, the formula for de-
termining their harmonic mean stays intact. The balanced F-score combines both precision and
recall into one quality measure for spatial accuracy as defined in eq. (3.4). Application of the
balanced F-score for spatial accuracy implicitly states that false positives and false negatives are
equally unwanted.

𝐹 = 2 ⋅ precision ⋅ recall
precision+ recall

(3.4)

3.3. Temporal accuracy
Precision, recall, and the F-score are all used in chapter 6 to examine the change of map quality
after roads are added or removed. A map with optimal temporal accuracy would represent the
world at any time exactly as it is. Because changes to the world are not always directly observed,
the speed of recovery from these changes is used as an indicator for the temporal accuracy of
the map. The speed of recovery is defined as the interval between introduction of changes in the
world and the moment these changes are visible in the map.

For an algorithm that produces maps without much added noise, the changes for experiments
adding or removing roads would show a course in the F-score as shown in fig. 3.3. After intro-
duction of new roads in an empty world, the map quality would increase up to at most a quality
value of 1. Given an existing map and the removal of roads from the world, map quality would
first fall directly due to misrepresentation of the world. The quality would then increase because
the removal of these roads is detected by the algorithm and can ideally increase up to a quality
value of 1.

(a) After road introduction (b) After road removal

Figure 3.3: Expected course of map quality in an ideal setting following road introduction and road removal

Noise has a significant effect on map quality, changing the expected course of the map quality
as shown in fig. 3.4. For the introduction of new roads, the course changes to show a pattern
similar to the effects of overfitting in machine learning. After removal of roads from an existing
map, noise hinders the recovery of the map. Because of these effects we rely on comparison of
map qualities for different settings in the experiments.



3.3. Temporal accuracy 21

(a) After road introduction (b) After road removal

Figure 3.4: Expected course of map quality with increasing noise following road introduction and road removal.





4
Algorithm design

In this chapter we describe the robust online map-generation algorithm (ROMA). ROMA is a trace
merging algorithm in the categorization by Biagioni and Eriksson [3]. It is executed in an on-line
fashion using the processTrace-method every time that a GPS-trace of sufficient length becomes
available. The outline of this method is given in algorithm 4.1 and shows four sequential steps: pre-
processing, path estimation, path generation, and path adjustment. The pre-processing step filters
the incoming GPS-trace based upon measurement accuracy and distance between measurements
as described in section 4.1. Path estimation described in section 4.2 matches the GPS-trace to the
existing graph by application of point-to-edge matching and uses a look-ahead method to improve
the best match. The path generation step described in section 4.3 ensures extraction of the best
possible path and closes gaps in the existing graph where needed. How the measurements in the
GPS-trace influence the travelled path and how the dynamic nature of ROMA is ensured is described
in section 4.4. The entire processTrace-method representing ROMA has a computational upper
bound of O(|𝑉| ⋅ |𝐸|) defined by the getSpanningForest-method called in line 5 and described in
section 4.2. This method generates a set of spanning trees, or a spanning forest, with limitations
for which a subset 𝐸 of all edges in the graph has to be compared with the generated spanning
forest which consists of a subset of nodes 𝑉 in the graph resulting in the computational complexity
of O(|𝑉| ⋅ |𝐸|).

Several variables for the algorithm are defined throughout the chapter as tuning parameters for
the algorithm. Each of these variables has been determined using several simulator runs with 50
simulated cars using the simulator described in chapter 5. The ideal values obtained through these
simulations are given where the variable is defined in the algorithm. Visual examples are provided
throughout the chapter to accompany the procedural descriptions of steps in the processTrace-
method. The initial graph 𝐺 = (𝑉, 𝐸) used in the examples is shown in fig. 4.1 and consists of
a set of nodes 𝑉 connected by a set of edges 𝐸. Figure 4.2 shows the measurement stream
𝑆 = 𝑚 ,… ,𝑚 used in the examples. Each measurement 𝑚 is essentially a vector containing the
values defined in eq. (4.1).

𝑚 ∈ 𝑆 =
⎡
⎢
⎢
⎢
⎣

𝜏
pos
𝜎
∠

speed

⎤
⎥
⎥
⎥
⎦

(4.1)

4.1. Pre-processing
In this section we describe the pre-processing step based upon the related work selected in sec-
tion 2.2. The filter methods used in this work are non-dependent on vehicle characteristics for
a more general applicability. A filter on accuracy and distance interval are applied in the filter-
function on line 2 in algorithm 4.1. The filter on accuracy ensures that measurements with a
low accuracy, high standard deviation (𝜎 < 𝛼), are removed as shown in fig. 4.3. Although the
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Algorithm 4.1 General overview of the trace processor for ROMA

Require: map graph 𝐺 = (𝑉, 𝐸)
Require: a measurement stream 𝑆
1: function processTrace(𝑆)
pre-processing section 4.1

2: 𝑀 ← filter(𝑆)
3: if |𝑀| ≥ 𝑛 + 2 ∨ end of stream then
path estimation section 4.2

4: 𝐸 ← getFitEdges(𝑀)
5: 𝑇 ← getSpanningForest(𝐸 ,𝑀)
path generation section 4.3

6: 𝑃 ← getBestPath(𝑇, 𝐸 )
7: if 𝑃 = ∅ then
8: 𝑃 ← getBestPath(𝑇, 𝐸 )
9: 𝑇 ← getSpanningForest(𝑝 𝑝 , [𝑚 ,𝑚 ])
10: 𝑃 ← bridgeSmallestGap(𝑇, 𝑇 , [𝑚 ,𝑚 ])
11: end if

path adjustment section 4.4
12: influencePath(𝑃, [𝑚 ,𝑚 ])
13: end if
14: end function

Figure 4.1: The graph as used in visual examples throughout this chapter. The nodes ∈ are shown as green squares
with connecting edges ∈ as lines.

functionality is implemented in ROMA, the simulations provide measurements with a constant 𝜎.
The value of 𝛼 is therefore set to ∞. Trace splitting ensures that no gaps of a distance above 𝛽
meters exist in the final set of measurements by splitting the trace as shown in fig. 4.4. The value
of 𝛽 was set to 300 meters following the advise in [7, 31]. The function ends with returning the
set of filtered measurements in an array 𝑀. The length of 𝑀 is limited by the value 𝑛 representing
the look-ahead size. Table 4.1 shows the size of 𝑀 resulting from different choices of 𝑛 in the
exemplary trace shown in fig. 4.4. The value of 𝑛 is set to 4 following the advice in [4, 5].

𝑛 0 1 2 3
|𝑀| 2 3 4 4

Table 4.1: The size of for different look-ahead sizes for the sequence of measurements shown in fig. 4.4.

4.2. Path estimation
In this section we describe the path estimation step based upon the related work in section 2.3.
The functions as listed in algorithm 4.1 for point-to-edge matching and local look-ahead are first
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Figure 4.2: Example of a set of measurements with six measurements used in this chapter. For each measurement , a
position (pos, centre of the circle), and accuracy ( , shown as the grey circle) is shown. Time of measurement , direction
∠, and speed are not shown in the visualisations of this chapter.

Figure 4.3: Example of a measurement with . The highlighted measurement is therefore removed from the trace.

Figure 4.4: Example of a gap between measurements which is reason for a split as shown in table 4.1.

explained followed by examples to clarify their working.
The getFitEdges-function called in line 4 applies point-to-edge matching based on Brakatsoulas

et al. [4]. Within the function each of the edges in the map constructed thus far is compared to
the filtered measurements found in 𝑀. Each edge is matched to the measurement 𝑚 to which
it is most similar. The resulting set 𝐸 is therefore subdivided into 𝐸 ,… , 𝐸 | | such that all
edges most similar to 𝑚 are contained in 𝐸 as shown in fig. 4.5. The similarity measure used
for comparison is based on distance and heading and applies the formula given in eq. (4.2). The
distance between measurement and edge is calculated in the function 𝑑 using the orthodromic or
great-circle distance. This distance is normalized by division through the error of measurement for
𝑚. In the calculation for angle difference between heading of the measurement directionality of
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the edge is left out of consideration. The method returns only those edges with a similarity of at
least 𝛾 to the matched measurement 𝑚. The value for 𝛾 is determined during tuning-experiments
as 0.01.

similarity(𝑚, 𝑒) = d(𝑚, 𝑒)
𝜎 ⋅ (12 +

cos(abs(∠𝑚 − ∠𝑒) ∗ 𝜋)
180 ) (4.2)

Figure 4.5: Example of how is divided into , … , .

The getSpanningForest-method called in line 5 generates a spanning forest as shown in fig. 4.6
in order to provide a local look-ahead. A spanning forest provides a shortest path to all nodes
reachable from a certain start node and a spanning forest has multiple start nodes and thus
contains multiple spanning trees. An introduction to algorithms for the creation of spanning trees
can be found in [16, pp. 638 - 642]. The developed spanning forest contains spanning trees
originating from the nodes contained in all edges in 𝐸 . Based upon the measurement𝑚 matched
to the originating edge 𝑒, each tree is pruned by the distance function defined by Pfoser and Jensen
[21] as written in eq. (4.3). The pruning distance used in the construction of the minimal spanning
forest is implemented with a multiplication of 1.1 to prevent round-off errors.

d(𝑚 ,𝑚 ) =max(speed , speed ) ⋅ (𝑡 − 𝑡 ) (4.3)

Figure 4.6: The spanning forest based on in shown fig. 4.5. Only trees originating from or are kept.
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4.3. Path generation
In this section we describe the path generation step based upon the related work in section 2.4.
The methods for path extraction and closing of gaps as listed in algorithm 4.1 are first described
followed by examples to clarify their working.

The getBestPath-function called in line 6 returns the best path 𝑃 from the spanning forest 𝑇
which starts at an edge in the provided set of edges 𝐸 as shown in fig. 4.7. The cumulative
fitness for a path is determined by accumulating the fitness-values of the fittest edge in 𝑃∩𝐸 ∩𝑇
for each of the subsets of 𝐸 . The best path has the highest cumulative fitness of all traversable
paths, regardless of whether or not they have a match in each of the subsets of 𝐸 . An empty
path 𝑃 = ∅ is returned when no valid path starts at the given set of edges 𝐸 .

Figure 4.7: Example of the best path found in the spanning forest in fig. 4.6.

If an empty path was returned from the previous function, it is concluded that no path exists
between 𝐸 and 𝐸 such as would be done for fig. 4.8. The conditional section from line 8 to
line 10 creates a path by adding a single edge to the graph.

Figure 4.8: With one edge removed from fig. 4.1, no direct path from to is possible.

This search starts with a call of the getBestPath-function for 𝐸 resulting in the best path 𝑃
starting at 𝐸 . With the best path starting at 𝐸 the path starts at the best edge 𝑝 𝑝 in 𝐸
based upon cumulative fitness. A spanning forest from 𝑝 𝑝 in backward search towards 𝑚 is
created to find a suitable location for the new edge as shown in fig. 4.9. This is done in the
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getBestPath-function with 𝑝 𝑝 as start location, and [𝑚 ,𝑚 ] in reverse order as indicators for
search direction.

Figure 4.9: Example of a backward forest search from to on the graph in fig. 4.8.

In the bridgeSmallestGap-function an edge is then added to enable a traversable path from 𝑚
to 𝑚 as shown in fig. 4.10. An iteration over all possible combinations of nodes from the forward
𝑇 and backward 𝑇 spanning forests is made to search for the best location for the connecting
edge. The best combination ensures that the distance travelled from 𝑒 ∈ 𝐸 to 𝑒 ∈ 𝐸 over
the nodes in the combination keeps within the limits set in eq. (4.3) and adds the shortest edge
𝑒 in doing so. After adding the new edge 𝑒 to the set of edges 𝐸 in the graph 𝐺, a path 𝑃 is
returned which includes 𝑒 .

Figure 4.10: Example of the shortest jump possible between the forward and backward forests. Adding this edge to the
map results in fig. 4.1.

In the initial situation when the map has not been initialized, it can be the case that either 𝑇
or 𝑇 is empty. In case 𝑇 = ∅, measurement 𝑚 is added to 𝑉 as a new node and to 𝑇 thereafter.
Measurement 𝑚 is added to 𝑉 as a new node and to 𝑇 as only node whenever 𝑇 = ∅. These
initializations make sure that both 𝑇 and 𝑇 are non-empty ensuring that an edge can be added
to 𝐸 to create a traversable path.
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4.4. Path adjustment
In this section we describe the path adjustment step based upon the related work in section 2.5.
The influencePath-method for path adjustment listed in algorithm 4.1 is first described followed
by an example to clarify its working. This section first describes the addition of interpolated
measurements to nodes and edges, followed by a description of position adjustment for nodes,
and changes in map dynamics as managed in the edges of the map.

The influencePath-method called on line 12 in algorithm 4.1 adds interpolations of the provided
measurements 𝑚 and 𝑚 to the nodes and edges on the path 𝑃. For each node 𝑣 on the path
a projection 𝑣 onto the line 𝑚 𝑚 is made as shown in fig. 4.11. An interpolation 𝑚 of the
measurements 𝑚 and 𝑚 is constructed based on the relative position of 𝑣 on the line 𝑚 𝑚
using eq. (4.4) The midpoint 𝑣 of each edge 𝑒 on the path is projected onto 𝑚 𝑚 so that an
interpolated measurement can also be constructed for 𝑒 using eq. (4.4). For each node or edge
in the path, the interpolated measurement is added to the set of measurements 𝑀 contained in
that node or edge as shown in fig. 4.12.

𝑚 =
⎡
⎢
⎢
⎢
⎣

𝜏
pos
𝜎
∠

speed

⎤
⎥
⎥
⎥
⎦

= d(𝑚 , 𝑣 )
d(𝑚 ,𝑚 ) ⋅

⎡
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(4.4)

Figure 4.11: Example of projection of nodes in the travelled path.

The amount of measurements is limited by the parameter 𝜁 to prevent map inertia as described
in section 2.5. Only the 𝜁 most recent measurements are stored in nodes and edges to calculate
respectively node position and map dynamics. Based on tuning experiments the maximum number
of measurements 𝜁 is set to 125. The node position is determined by calculating an average
position 𝜇 and standard deviation 𝜎 of measurements for a node as described in eq. (4.5).

pos = 1
|𝑀 | ∑

∈
pos (4.5a)

𝜎 = 1
|𝑀 | ∑

∈
d(𝑚 , 𝑣) (4.5b)

Line simplification is performed using 𝑡-test to see if two neighbouring nodes should be merged
after the calculation of a node position. Given that the amount of measurements per node and
position error are not known to be equal, an Welch’s adaption of Student’s 𝑡-test is used. Two
nodes should be merged if they are believed to represent the same position by comparison using
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Figure 4.12: Influenced nodes move towards the line between measurements.

Welch’s 𝑡-test. Given the sample mean (pos), standard deviation (𝜎), and amount of samples (|M|)
for each of two nodes 𝑣 and 𝑣 , the formulae for the values 𝑡 and 𝜈 are given in eq. (4.6). The
degrees of freedom 𝜈 in eq. (4.6) are approximated using the Welch-Satterthwaite equation shown
ineq. (4.6b). These two values are used in a t-distribution to test for the hypothesis that both
nodes are actually at the same position. The used threshold for Welch’s 𝑡-test in the experiments
is 0.01 based on tuning experiments. This form of line simplification ensures that nodes moving
towards one another are eventually combined.

𝑡 =
pos − pos

√ | | + | |

(4.6a)

𝜈 ≈
( | | + | | )

| | ⋅(| | ) + | | ⋅(| | )

(4.6b)

Changes in map dynamics are calculated for each edge since movement of traffic is a change
of location over certain path. An estimation of these dynamics is calculated using the set of
measurements stored for each edge. Using eq. (4.7) the average interval between measurements
𝜇 and variance thereof 𝜎 are derived.

given |𝑀| ≥ 2:

𝜇 = 1
|𝑀| − 1

| |

∑ (𝑡 − 𝑡 ) (4.7a)

𝜎 = 1
|𝑀| − 1

| |

∑ abs((𝑡 − 𝑡 ) − 𝜇 ) (4.7b)

An expectation of the arrival of a new measurement is made using the estimation of the
measurement interval. An edge is removed when the expectancy of a measurement arriving
drops below a threshold value 𝜃. The time within which a measurement should be updated before
it is removed is called the time to live (TTL). The TTL is calculated using a combination of a dynamic
value based upon the measurement interval statistics and an element linearly decreasing over the
amount of measurements as shown in eq. (4.8). The dynamic time to live dTTL is determined to
be 𝜇 , plus the inverse cumulative distribution function 𝐶𝐷𝐹 at 𝑥 for a 𝑡-distribution with 𝜈 = |𝑀|
multiplied by 𝜎 . Value x is determined as the moment when the inverse cumulative distribution
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function for a 𝑡-distribution with 𝜈 = |𝑀| drops below 𝜃 as stated in eq. (4.8b). The static time to
live sTTL-component decreases to 0 as the amount of measurements reaches 𝜁. The time to live
is then determined to be the maximum of dTTL or sTTL. Based on tuning experiments the static
TTL value is set to 30 minutes and the dynamic TTL threshold 𝜃 to 0.01.

TTL =max(𝜇 + 1 − CDF| |(𝑥) ⋅ 𝜎 , (1 − |𝑀|𝜁 ) ⋅ sTTL) (4.8a)

𝑥 ∶ CDF| |(𝑥) = 1 − 𝜃 (4.8b)

The map 𝐺 is cleaned up before being presented. Inspired by Cao and Crumm [7] the resulting
map only shows edges with |𝑀| > 𝜓 and dead-end streets with a length below 𝜔 are removed
from the final representation. During tuning experiments the minimum amount of measurements
𝜓 is set to 2 and the minimal dead-end street length 𝜔 to 100 meters.





5
Simulator

As described in section 1.4 a simulator is used for the experiments described in chapter 6 so as to
provide an accurate ground truth and possible reproduction of experiments. An overview of the
simulator is given in fig. 5.1 and shows how the world, map, and graph comparison are linked to the
simulator. Simulation control and creation of the ground truth world representation is performed
by the Road Block Simulation tool (RBS) as described in section 5.1. From measurements of cars
in the world a map is developed using ROMA as described in section 5.2. Comparison of the world
and the developed map is described in section 5.3. The entire software package is implemented
in Java. The source code for the algorithm and graph comparison can be found in appendix C.

Figure 5.1: Overview of the Road Block Simulation tool (RBS) with modules for ROMA and graph comparison added.

5.1. World (RBS)
The Road Block Simulation tool (RBS) is developed by Joris Scharpff at the Dutch research com-
pany Almende. This tool was developed to demonstrate the effects of road maintenance blockades
on traffic flow of a road network using discrete time steps of 1 second. At the start of a simu-
lation, a map is loaded in XML-format as world on which a stable amount of traffic is simulated
and roadblocks are placed. An agent based approach is applied in the chosen traffic model to
simulate individual cars which drive the shortest path between two randomly chosen points on
the map. Roadblocks can be placed on specific segments of the map for a given period of time. A
visualization module provides a view of the blockades and where they are placed, as well as the
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effects on traffic as it traverses the map. RBS is suitable for the experiments in this research for
simulating traffic on a ground truth map and removal of roads on that map at specific moments.

5.2. Cartography (ROMA)
The cartography module shown in fig. 5.1 contains the mapping functionality of ROMA as described
in chapter 4 and also the derived map. The pre-processing step from ROMA is disconnected from
the main mapping module to allow for parallel pre-processing. A pre-processor is instantiated per
simulated car which also adds noise to the actual position to simulate GPS measurements. Based
on the statement by Bruntrup et al. [5] that GPS errors can be less than 15 meters as of the year
2000, the simulated GPS error 𝜎 is set to 15 meters. To prevent measurements to jump back and
forth along the actually driven path because of this artificial GPS error, a GPS measurement interval
of 8 seconds (distance of 4.44𝜎 at a speed of 30 km h ) is taken. These measurements are then
pre-processed and the pre-processor calls the mapping module when a set of measurements of
the required size is available. The mapping section then performs the other three steps found in
ROMA: path estimation, path generation, and path adjustment. These steps influence and use the
map stored in the cartography module within which the derived measurements are finally stored.
The visualization module of ROMA provides a view of the developed map.

5.3. Graph comparison
The module for graph comparison executes the common edge subgraph comparison described in
chapter 3. Graph comparison is not executed every time step since the method of comparison has
a computational complexity of O(|𝑉| ). A comparison interval of 30 seconds is chosen to provide
insight in the development of map quality over time. Before actual comparison the world graph is
simplified to represent a similar type of graph as the map graph. The world graph also contains
edges with shape-points in between so that nodes only represent intersections and road ends.
The edges from the world graph are therefore split so that individual edges are present between
all shape-points. The world graph is also filtered using the same post-processing filter applied
to the map graph: dead-end streets with a length of < 100 meters are removed as are roads
travelled only once. With the two graphs being equal in representation the graph comparison as
described in chapter 3 is then applied. The resulting statistics in terms of precision, recall, and
F-score are written to a separate comma-separated file such that a time-stamped progress of map
quality is stored.



6
Experimental set-up and results

This chapter describes the experiments testing the dynamic behaviour of the algorithm, ROMA, as
described in chapter 4. The dynamic behaviour is investigated in two experiments where traffic
intensity and road topology changes are independent variables as shown in fig. 6.1. The values
for these independent variables and other parameters are described in section 6.1. Experiment
1 investigates the dynamic behaviour of ROMA after introduction of new roads as described in
section 6.2 whereas experiment 2 investigates the dynamic behaviour of ROMA after removal of
roads as described in section 6.3. Measurements of dependent variables follow the methodology
described in chapter 3.

Figure 6.1: Structural diagram for the experimental design. The predictive relationships from independent to dependent
variables are explored in the experiments as well as the correlation between spatial and temporal accuracy.

6.1. Experimental set-up
This section describes the motivation and values used for the independent variables followed by
a brief summary of algorithm and simulator settings unchanged during the experiments provided
for completeness.

The simulator described in chapter 5 provides position measurements with added noise from
simulated traffic on a known ground truth. From these measurements a map is generated with
ROMA which is regularly compared to the world resulting in a series of spatial accuracy values.
The ground truth world graph chosen for the simulations is the town of Zoeterwoude-dorp, located
in the urbanised western part of the Netherlands. This world is based upon data obtained from
Open Street Map and filtered so it only contains the roads shown in fig. 6.2. Traffic simulated on
the world graph adheres to the speed limits for the different types of roads present in the map.

The independent variables for the experiments are the traffic density and topological changes
in the world. Traffic intensity is chosen so as to give a reasonable representation of traffic expected
in Zoeterwoude-dorp. Topological changes are the introduction of new roads in experiment 1 and
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Figure 6.2: The undirected world graph representation of Zoeterwoude-Dorp as used in the experiments. Intersections
and dead-ends in the dataset are indicated with a blue dot.

the removal of roads in experiment 2. The changes are introduced at the start of each experiment
and not altered during map recovery.

A reasonable amount of simulated traffic is estimated using the number of inhabitants of
Zoeterwoude-dorp multiplied by the average car ownership in the region. Zoeterwoude-Dorp
had 4.514 inhabitants in 2012 [9] and 418 cars were owned per 1000 in the province of Zuid-
Holland in 2014 [8]. Multiplication of these numbers gives an estimated total of 1887 cars present
in Zoeterwoude-Dorp. For experiment 1, a broad spectrum of traffic intensities is chosen so as to
provide insight in algorithm performance. For the simulated numbers of cars in experiment 1, the
following values are chosen: 50, 100, 200, 500, 1000, 2000, and 4000. Following the results of
experiment 1, traffic intensities for experiment 2 are set to: 1000, 2000, and 4000. For experiment
2 the number of roads blocked is set to 5, 10, and 50 percent of the total length of roads. We
expect that the lower values of 5 or 10 percent of roads blocked cover regular scenarios where
roads are blocked for construction works. The value of 50 percent is chosen to provide insight in
algorithm performance under more extreme changes in topology.

The simulator and ROMA contain variables that are not changed during the experiments. The
values for these variables for the simulator are defined in chapter 5 and in chapter 4 for ROMA. A
summary of these settings is provided in table 6.1 for the completeness of this chapter.

6.2. Experiment 1: road introduction
Experiment 1 investigates the dynamic behaviour of ROMA after introduction of new roads. Traffic
density for different runs of the experiments is set to 50, 100, 200, 500, 1000, 2000, and 4000
simultaneously simulated cars over a maximum period of 240 minutes (4 hours). The initial vector-
map is an empty graph and no roadblocks are added in this experiment. This section first describes
the expectations of the experiment followed by the quantitative results and a qualitative analysis
of the development of the map over time. The experiment with a traffic density of 2000 cars is
used as example. An overview of other experimental data is available in appendix A.
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symbol variable value
Time step size 1 sec
Traffic model random

Max. simulated time 4 hours
𝜎 simulated 𝜎 15 meters
𝛼 𝜎 threshold ∞

GPS interval 8 sec
𝛽 max. measurement distance 300 meters
𝑛 look-ahead size 4
𝛾 min. fitness 0.01

max. distance multiplier 1.1
𝜁 max. # measurements 125

node equality threshold 0.01
sTTL static TTL 30 min
𝜃 TTL threshold 0.01
𝜓 min. # measurements 2
𝜔 min. dead-end length 100

compare interval 30 s

Table 6.1: Settings for ROMA and RBS as described in chapter 4 and chapter 5 respectively.

Expectations
The expected quantitative results for experiment 1 as discussed in section 1.4 are shown in fig. 6.3.
Given that ROMA learns about the world we expect the behaviour of the quality function to be
similar to training a statistical model. In the ideal setting shown in fig. 6.3a would have the map
quality increase towards an asymptote at a 100 % match of the world. Figure 6.3b shows how
incremental noise influences the map quality over time by decreasing the map quality.

(a) Ideal course without noise (b) Expected course with increasing noise

Figure 6.3: Expected course of map quality following road introduction in an ideal setting fig. 6.3a and with noise fig. 6.3b

Quantitative results
The expected maximum value or start of map decrease due to noise did not clearly influence the
simulations with low amounts of traffic (50, 100, 200) in a period of 240 minutes of simulated
traffic. A decline in map quality is visible before the end of the simulation for traffic amounts
above 200. These simulations were stopped at a moment before 240 minutes of simulated traffic.
Overfitting is clearly observed in plots for traffic amounts of ≥ 1000 such as in fig. 6.4 for 2000
simulated cars. A climb in the balanced F-score is visible before the value of 0.55 at 5.5 minutes
into the simulation with 2000 cars. The balanced F-score declines after 5.5 minutes influenced
mostly by the decline in precision. The recall value keeps relatively stable with a value above 0.55
after the moment of overfitting.
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Figure 6.4: Course of map quality over time for 2000 simulated cars in experiment 1. Note that precision decreases after
5.5 minutes while recall stays rather stable.

The moment of overfitting and maximum map quality are determined for traffic amounts of
1000, 2000, and 4000 and shown in table 6.2. From the data we know that for lower traffic
amounts the moment of overfitting occurs at a later time and a higher map quality is seen for
maps with a later moment of overfitting.

traffic 𝜏 (min) prec. rec. F
1000 6.5 0.515 0.791 0.624
2000 5.5 0.463 0.750 0.573
4000 3.5 0.350 0.730 0.473

Table 6.2: Estimated moment of overfitting for different amounts of traffic.

Qualitative evaluation
The qualitative evaluation of multiple simulations showed the development of a map represent-
ing the world. An example of the development over time is shown in the simulation with 2000
simultaneous cars in fig. 6.5. Web-like structures are seen to be developing which seem more
present around the intersections on the map. After the moment of overfitting, the development
of web-like structures around the position of roads in the ground truth map is clearly visible in
fig. 6.5d.

6.3. Experiment 2: road removal
Experiment 2 investigates the dynamic behaviour of ROMA after removal of roads from the world.
Traffic density for different runs of the experiments is set to 1000, 2000, and 4000 simultaneously
simulated cars given the clear peak in measurement quality observed in experiment 1. Different
amounts of road are removed from the world at the moment in the simulation at which the peak
in measurement was observed in experiment 1 as summarized in table 6.2. The length of roads
removed is set to 5, 10, or 50 percent of the total road length as motivated in section 6.1. The
simulation from experiment 1 without road removal is used to find the moment of recovery in
a qualitative comparison of map qualities. This section first describes the expectations of the
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(a) t = 1 min, prec. = 0.377, rec. = 0.196, F =
0.258

(b) t = 3 min, prec. = 0.318, rec. = 0.388, F =
0.350

(c) t = 5.5 min, prec. = 0.458, rec. = 0.703, F =
0.554

(d) t = 20 min, prec. = 0.180, rec. = 0.645, F =
0.281

Figure 6.5: Visualisations of the map at several moments during simulation with 2000 cars. Figure 6.5a and fig. 6.5b show
the map before the peak map quality. Figure 6.5c shows the map at maximum quality and fig. 6.5d shows the formation
of webbing after overfitting.

experiment followed by the quantitative results and a qualitative analysis of the development of
the map over time. In this section 6.3 only precision is used as the inspected measure for map
quality as described in the expectations. The experiment with a traffic density of 2000 cars is used
as example. An overview of other experimental data is available in appendix B.

Expectations

The expected quantitative results for experiment 2 as discussed in section 1.4 are shown in fig. 6.6.
Map quality is expected to instantly decrease following the removal of roads in the world. In the
ideal setting shown in fig. 6.6a map quality would then increase towards an asymptote at a 100
% match of the world. Figure 6.6b shows how incremental noise influences the map quality over
time by decreasing the map quality. Precision is used as the inspected measure for map quality
since the expected drop is in the number of roads on the map representing the world.
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(a) Ideal course without noise (b) Expected course with increasing noise

Figure 6.6: Expected course of map quality following road removal in an ideal setting fig. 6.3a and with noise fig. 6.3b

Quantitative results
The simulation results for all three simulated traffic densities show similar behaviour and generally
follow the pattern shown for 2000 simulated cars in fig. 6.7. After the introduction of roadblocks
a steep drop in precision is visible compared to the simulation without roadblocks. Recovery of
the precision value up to the values of the simulations without roadblocks is also visible. In the
simulation with 50 percent of roads blocked this recovery is visible as a near-horizontal line in
the graph. This simulation also reaches the baseline precision values without blockades later
compared to the simulations with only 10 and 20 percent of the roads blocked. Table 6.3 shows
that the times of recovery differ per amount of roadblocks but show a decrease in relation to the
simulated traffic density.

Figure 6.7: Course of precision over time for different percentages of roads blocked with 2000 simulated cars in experiment
1. Roadblocks were added at 5.5 minutes.
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𝜏 (min)
block (%) 1000 cars 2000 cars 4000 cars

10 28.5 15.5 4.5
20 17.0 8 6
50 28.5 24 out of range

Table 6.3: The estimated time of recovery for different amounts of roadblocks.

Qualitative evaluation
The qualitative evaluation of multiple simulations showed the removal of several roads from the
map. An example of the development over time is shown in the simulation with 20% roadblocks
and 2000 simultaneous cars in fig. 6.8. The removal of roads is visible after the start of experi-
ment 2 and is clearly visible in the lower left portions of the map. Road removal continues after
the determined moment of recovery. The development of web-like structures also observed in
experiment 1 also visibly contributes to the overall map as shown in fig. 6.8d.

(a) t = 5.5 min, prec. = 0.508 (b) t = 13.5 min, prec. = 0.223

(c) t = 21.5 min, prec. = 0.184 (d) t = 36.5 min, prec. = 0.137

Figure 6.8: Visualisations of the map at several moments during a simulation with 2000 cars and 20 % roadblocks.
Figure 6.8a shows the map at maximum quality. After fig. 6.8c shows the map at the moment of recovery. Figure 6.8d
shows that even more roads have been removed after another 15 minutes. Road removal is most clearly visible in the
lower left area off the map.
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Discussion

In this chapter we discuss the research in this thesis based on insights from experiments. In
section 7.1 we discuss the simulator described in chapter 5. The metrics and evaluation criteria
described in chapter 3 are discussed in section 7.2. In section 7.3 we discuss ROMA as described
in chapter 4 using the experimental results from chapter 6. After scrutinizing the developed
algorithm and metrics we conclude this chapter with a discussion of general applicability of ROMA
in section 7.4.

7.1. Simulator
A simulator as described in chapter 5 was chosen for the experiments in this thesis to obtain a
reliable ground truth to compare the performance of ROMA against. Although it is known that
map geometry changes over time [5], many authors [7, 18, 20] do compare their work against
commercially available maps. We believe that it can not be assumed that these maps and the maps
created from GPS-traces represent the same ground truth because of the mentioned geometry
changes. To ensure a comparison of the developed map against a ground truth we therefore
simulated the measurements directly from an absolute and known ground truth.

The approach taken to traffic and measurement simulation was straightforward and simple.
Traffic was simulated by selecting the shortest available path between two randomly chosen lo-
cations on the ground truth for each simulated car. Although a smooth adjustment function to
maximum speeds at different streets was used, no interaction between cars due to congestion
was modelled. The speed of simulated cars was also not adjusted when turning a corner. The
simulated GPS-accuracy in the simulator was set to a constant 𝜎 which was the maximum value
suggested by [5]. With this rather straightforward approach to simulation of traffic and GPS sig-
nals we were able to provide a set of measurements for ROMA. With traffic densities heavier on
larger roads we believe that even with a simple traffic model a decent variety of characteristics
was visible. Especially after the removal of roads, the simulation indicated that traffic density on
minor roads increased after a major road was closed. We do advise some adjustments to the
traffic model since ROMA could benefit from a higher resolution of measurements in corners and
intersections. We therefore encourage the use of a more realistic traffic model in future research
using an absolute ground truth especially with regard to traffic speed adjustment in corners and
on intersections. Values for GPS-accuracy also have to be adapted to more recent values given
that [5] is 10 years old. We advise to use the accuracy values from existing datasets to provide
realistic accuracies in simulations.

7.2. Metrics
Graph comparison as described in chapter 3 was used to describe the quality of the map developed
by ROMA. The approximation of true positives using the common edge subgraph of the map and
world graphs is an attempt to compare both topology and geometry of the two graphs. We
managed to apply a graph-theoretic approach to map comparison where Biagioni and Eriksson [3]
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deemed this impossible. We have dealt with the problem of the lack of geographical information
in graph theoretical approaches. By first matching nodes in both vector-maps based upon their
geographical distance we obtained promising results. From the course of map quality over time
we were able to extract the moment of recovery which is used as indicator for temporal accuracy
of ROMA.

The results of the experiments in chapter 6 show that the map quality does not have a smooth
course over time in either precision or recall. The observed simultaneous and sporadic jumps in
both precision and recall can be explained by the fact that node matching is performed for each
quality sample taken. If the node matching from map to world is changed between two quality
samples, the resulting edges in the set of true positives is also influenced. This influences both
these quality measures because true positives are present in the formulae for both precision and
recall. We propose to apply an approximation of the Maximum Common Edge Subgraph (MCES)
to prevent these jumps in map quality. An MCES-algorithm can apply the distance between map
and world as a heuristic for an appropriate match instead of comparing only the nearest possible
nodes to be matched. Polynomial-time approximations of algorithms for the MCES problem exist
[22] and can be used to provide an improved approximation. An improvement to geographic
comparison can be made by comparing the shape of matched edges for the used similarity matrix
𝑆. The currently applied easy method of comparison of edge lengths does not penalize if two
edges are the same length but not the same location.

The method of Biagioni and Eriksson [3] based upon holes and marbles as published in 2012
compares a map on different grounds. The marbles-method of Biagioni and Eriksson as described
in section 2.6 is briefly compared in this section to our method described in chapter 3. In the holes
and marbles approach of Biagioni and Eriksson matches marbles and holes only if geometry is
exactly the same making it rather vulnerable to displacements and geometry differences between
map and world. The example in fig. 7.1a shows how holes are placed on the world, but not on
the map which is displaced in regard to the world. Since our method does work with displaced
maps as shown in fig. 7.1b, we have provided a method with a more forgiving attitude towards
geometrical differences. We believe that because of this forgiving attitude, our method for vector-
map comparison is better suited for dynamic map generation where both geometry and topology
can change.

(a) Measuring using Biagioni and Eriksson [3]. (b) Measuring with the method from chapter 3.

Figure 7.1: Comparison of displaced roads. The method by Biagioni and Eriksson [3] lacks overlap and therefore obtains
no matches between placed ’holes’ and ’marbles’. The method from chapter 3 matches the nearest nodes from map and
world resulting in a common edge.

7.3. Algorithm
The robust online map-generation algorithm (ROMA) described in chapter 4 defines an on-line
approach to trace merging. It is an innovation on related work by addressing the issue of map
dynamics where other authors assume a never-changing world in their articles. The maximum
observed recall in experiment 1 was generally above 0.8 as shown in table 7.1. This indicates
that most of the roads on the world were represented in the map, creating a reasonably navi-
gable map. Recall was below precision in all configurations of experiment 1, showed maximum
values below 0.6, and also a decline over time during the simulations. In the visual inspections
of map development, web-like structures were visible and increasing in size over time as shown
in fig. 7.2. We believe these structures have made a great attribution to noise visible through the
precision values. The presence of noise furthermore seems inversely correlated with the amount
of simulated traffic as can be seen in table 7.1.
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(a) t = 5.5 min, prec. = 0.458, rec. = 0.703, F =
0.554

(b) t = 20 min, prec. = 0.180, rec. = 0.645, F =
0.281

Figure 7.2: Visualisations of the map at several moments during experiment 1 with 2000 cars. Note the increasing presence
of web-like structures around intersections.

traffic max. precision max. recall
50 0.558 0.928
100 0.524 0.676
200 0.578 0.834
500 0.558 0.928
1000 0.515 0.864
2000 0.476 0.819
4000 0.387 0.781

Table 7.1: Maximum precision and recall in experiment 1 for different amounts of traffic.

The observed noise does not greatly influence ROMA as a proof of concept for dynamic map-
ping. Based upon the observed noise we will discuss possible improvements for ROMA in this
section. We start by discussing how better filters can improve the performance of ROMA in
section 7.3.1. We then discuss how more conservative map generation can decrease noise in
section 7.3.2. We conclude by a theory on the effects of conservative edge removal on noise
section 7.3.3.

7.3.1. Pre-processing
The shape of the web-like structures shown in the experimental results suggest that the applied
filter does not smooth the trace well. Due to the lack of a decent model for traffic or GPS we used
a GPS measurement interval of 8 seconds to prevent measurements to jump back and forth along
the driven path as seen in fig. 7.3a. Measurements which stray far from the driven path are not
filtered out by the current methods resulting in the creation of improbable road shapes. Based
on the results we conclude that these outliers negatively influence map precision. In the current
implementation, we only sample GPS measurements every 8 seconds and throw away all location
data in between. To improve on measurements jumping back and forth along the driven path, we
suggest to sample more often and average over multiple samples to smooth the trace as shown in
fig. 7.3b. Given that GPS error follows a 2-dimensional Gaussian error [27], we believe that such
a combination results in a better approximation of the actual location.

More extreme outliers such as shown in fig. 7.4 might be thrown away by removing measure-
ments which make a large change in direction. Such a filter based on direction change is applied
in related work [20, 31], removes extreme outliers and splits the trace by doing so. This direc-
tion filter should be applied before measurement averaging to better recognize extreme outliers.
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(a) Jumpy behaviour GPS measurements. (b) Measurement averaging smooths the trace.

Figure 7.3: Jumpy behaviour of GPS measurements along a trace might be solved by averaging.

We believe that the GPS position trace can be smoothed before map matching and merging by
application of a direction filter and measurement averaging in that order.

(a) Example of extreme outliers due to GPS error. (b) Removal of an extreme outlier benefits the trace.

Figure 7.4: Removal of extreme outliers smooths a trace of GPS measurements.

7.3.2. Map Expansion
The speed of map expansion depends on the availability of a valid path between two measure-
ments. If path estimation does not yield a valid path a new edge is generated which expands the
map. This can either be because no edges were matched to the measurements or no path within
the maximal travelled distance between matched edges exists. Edge matching is influenced by
the minimal-fitness-setting (𝛾 = 0.01) of which higher values result in less edges matched and
more new edges added.

The maximum travelled distance in ROMA is based on the work of Pfoser and Jensen [21] who
assume the measured position to be the absolute truth. We applied this method to uncertain GPS
measurements by only calculating travelled distance on the map, without counting the distance
between measurement and the matched edge. We also multiplied the maximum travelled distance
by 1.1 to prevent round-off errors due to conversion from the float to double type in JAVA. A higher
multiplier would result in more valid paths between matched edges.

In a more progressive setting where new edges are quickly created, recall will probably increase
since all roads in the world have a decent change to be added. However more new edges also
increase the amount of false positives which negatively influences the precision of the map. In
a conservative setting the opposite is true and recall suffers at the cost of increased precision.
Depending on the requirements of the end-user the value of 𝛾 and the multiplier for maximum
travelled distance can be adjusted to select a setting on the spectrum between conservative and
progressive map-generation.

7.3.3. Edge removal
The speed of edge removal depends on both the dynamic and static time to live (TTL) settings.
The dynamic TTL would ideally present an estimate of road availability based on the average and
standard deviation of collected measurement intervals. Since an edge is created with only one
measurement, we added an static TTL value with decreasing influence when more measurements
are added. The used value of 30 minutes was appropriate for a traffic density of 50 cars where
the web-like noise was not as present as with higher traffic densities. In the example of a traffic
density of 2000 cars, the moment of overfitting was 5.5 and the moment of recovery occurred
within 30 minutes for all roadblock sizes. Since these times of adjustment to new situations are all
well below the static TTL value, we believe that static TTL can contribute greatly to the observed
clutter on the map.

With this insight we have developed a theory on how the web-like structures form on the map
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and contribute to decreasing precision values. Because of the Gaussian distribution of GPS error
[27], the general believe is that road centrelines obtained from such signals will converge to the
actual location on the world [5, 11, 23, 24]. The example in fig. 7.5 shows how newly added edges
can contribute to the observed web-like structures in 1-dimension representing the cross section
of a road. The location of a first edge on the cross section will converge towards the centre of the
road because of the Gaussian distribution of GPS error as shown in fig. 7.5a. This changes as soon
as a measurement of the same road causes the creation of an extra edge when it is not matched
to the original edge. Two edges representing the road have to share the incoming measurements
and will probably converge towards symmetrical positions around the actual centreline as shown in
fig. 7.5b. In this situation, all measurements between the two edges are divided between the two
edges, and outside measurements mostly contribute to the nearest edge. Here again, outliers can
create new edges which make the cross section more crowded with edges and measurements are
distributed amongst these edges. With this decreasing amount of measurements per individual
edge, the static TTL value contributes more to the estimation of time to live for each edge. With a
relatively high static TTL edges remain on the map for a longer time compared to when dynamic
TTL would determine the time to live. These remaining edges are observed as web-like structures
on the map and are more present when more measurements per time are added such as is the
case with higher traffic density. Since only one edge per road on the world will be counted as true
positive, all others contributed to a decrease in precision which was observed for higher traffic
densities.

(a) One edge converges towards the road’s centre-
line.

(b) Two edges converge on different positions.

Figure 7.5: Example of points of convergence for 1 and 2 edges representing the same road.

The web-like structures can possibly be merged during algorithm execution in a similar style
as the merging of nodes defined in section 4.4. Because of differences in connectivity of nodes in
edges a solution is less trivial than the simple merger of shape points applied within ROMA. We
suggest to further research the best method of edge merging to also improve the dynamic nature
of ROMA. Regarding the static TTL value we advise to apply a value related to the overall traffic
density as initial setting.

7.4. Generalisation
This section discusses the general applicability of ROMA as well as the developed metric. ROMA
was developed to be develop a map (1) based on simulated GPS-measurements (2) without a
priori map, (3) using direct communication, and (4) centralized processing. In this section we
explore how ROMA can be applied to settings with (1) real world measurements, (2) existing
maps, (3) indirect communication, or (4) decentralized processing. We start this section with the
general applicability of the developed metric.

The metric as described in chapter 3 was applied to describe the quality of the map developed
by ROMA. We believe that we can even use the metric as generic similarity measure for two
vector-maps. The balanced F-score provides a harmonic mean which indicates that both precision
and recall are equally important. Precision and recall are both calculated as the amount of true
positives relative to the total length of respectively map and world. When neither of the vector-
maps is an absolute ground truth, the balanced F-score is thus essentially a similarity measure
between two vector-maps.

The simulator described in chapter 5 was used to simulate GPS measurements from car traffic.
With the adjustments proposed in section 7.3 we believe that ROMA can also be used on real-world
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data. With only the proposed measurement averaging and outlier removal as filter we furthermore
believe that the dependency on GPS or the use of cars is no longer essential. Even data without
information on the accuracy can be used with a few small adjustments to parts of the filter and
the fitness function where measurement accuracy is used. Without timestamps it is possible to
apply a general trace-merging method, but the temporal dynamics of ROMA will be lost.

The experiments described in chapter 6 used an empty map as starting point for ROMA. We
have already shown that ROMA operates with a map built using ROMA in experiment 2 as described
in section 6.3. Using the static time-to-live (TTL) we believe that ROMA can also be used with
non-empty maps as starting point. By converting an existing map to ROMA the static TTL provides
an initial estimate of traffic for the map. The value for static TTL then has to be set based on the
most specific traffic intensity data available as concluded in section 7.3.

The simulator described in chapter 5 provided direct communication with the cars sending GPS
measurements to ROMA. In a real-life situation direct communication can not be assumed and
buffers are often used to store messages until they have been properly transferred. The ActMAP -
FeedMAP framework described by Thomas et al. [25] provides a client-server architecture required
for such buffering. We do not foresee difficulties with such a method since ActMAP - FeedMAP
processes sets of map changes similar to the incremental trace-merging approach of ROMA.

The research in this thesis focused on a centralized map to be kept up to date. We believe that
the basic principle of trace-merging can also be applied in a distributed approach without central
control. We do think that the current implementation of ROMA is far from distributed and shall
therefore describe this option as future work in section 8.2.3 of the next chapter.
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Conclusion and future work

This chapter concludes the research in this thesis on the development and evaluation of a ro-
bust online map-generation algorithm (ROMA). Section 8.1 describes the answers to the research
questions set in section 1.3 based on the results and discussion thereof. Section 8.2 concludes
the chapter with a look into future work based upon reflection on the research performed in this
work.

8.1. Conclusion
The research in this thesis was used to find answers to the research questions in section 1.3. This
section first lists the subquestions and concludes with a conclusion on the main research question.

Subquestion 1
How to measure spatial and temporal accuracy of a map?

The first subquestion is addressed in chapter 3 where we described a novel graph-based eval-
uation of a vector-map against a known ground truth. This method, which has a non-optimized
computational complexity of O(|𝑉| ), defines the common edge subgraph for two graphs which
respects geographical node locations. The common edge subgraph enabled us to define true pos-
itive matches between map and ground truth and derive precision and recall for the developed
map. We defined the balanced F-score of these two measures as a single value metric for spatial
accuracy of a map. We defined the time to recover from changes in the world as the temporal
accuracy of a map. The developed metric is an advantage to the method of Biagioni and Eriksson
[3] for its ability to deal with displaced maps which occur in dynamic map generation.

Subquestion 2
How to create a dynamic map?

The second subquestion is addressed in chapter 4 where we described the Robust Online Map-
generation Algorithm (ROMA). This method, which has a non-optimized computational complexity
of O(|𝑉| ), creates a dynamic map by processing streams of GPS measurements. ROMA falls in the
class of trace-merging algorithms [3] and applies artificial pheromones for topological dynamics.

Subquestion 3
How spatially and temporally accurate can a dynamic map be?

The third subquestion is addressed in chapter 6 where we describe the application of ROMA
in the simulated environment described in chapter 5. From the results of the road introduction
experiment in section 6.2 we conclude that a navigable map can be created with a recall value of
0.8 and above. Roma suffers from outliers in measurements, as do all trace merging algorithms
[3]. The precision values for ROMA in the road introduction experiment decline over time as the
formation of web-like structures on the map get the upper hand. Maximum values for precision
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of traffic densities up to 1000 cars do show maximum precision values of 0.5 and above as shown
in table 8.1. In section 7.3 we discussed how the effect of outliers can be minimized and in
section 8.2.2 we propose future research to contribute to this goal. The obtained insight in the
process of development of web-like structures is an addition to the known literature on trace
merging methods.

traffic max. precision max. recall
50 0.558 0.928
100 0.524 0.676
200 0.578 0.834
500 0.558 0.928
1000 0.515 0.864
2000 0.476 0.819
4000 0.387 0.781

Table 8.1: Maximum precision and recall in experiment 1 for different amounts of traffic.

The moment when precision declined was defined as proxy for temporal accuracy and showed
how fast ROMA responds to changes in the world. These moments of overfitting were defined
for traffic intensities of 1000, 2000, and 4000 cars in experiment 1 as shown in table 8.2. ROMA
responds to road introduction in 3.5 to 6.5 minutes with speedier recovery for more cars. The
speed of detection for road removal differs greatly per amount of roadblocks as shown in table 8.3.
With the percentage of roadblocks equal, the moment of recovery seems earlier for higher traffic
densities. ROMA generally responds to road removal within 30 minutes for the simulated traffic
densities. The obtained insight in the temporal aspect of incrementally generated maps is an
addition to research in map generation algorithms.

traffic 𝜏 (min) prec. rec. F
1000 6.5 0.515 0.791 0.624
2000 5.5 0.463 0.750 0.573
4000 3.5 0.350 0.730 0.473

Table 8.2: Estimated moment of overfitting for different amounts of traffic.

𝜏 (min)
block (%) 1000 cars 2000 cars 4000 cars

10 28.5 15.5 4.5
20 17.0 8 6
50 28.5 24 out of range

Table 8.3: The estimated time of recovery for different amounts of roadblocks.

Subquestion 4
How do spatial and temporal accuracy correlate ?

The fourth subquestion is also addressed in chapter 6. From the results of experiment 1 we
expect that better maps take more time to be build using ROMA. This implies a negative correlation
between spatial and temporal accuracy since temporal accuracy is the opposite of time needed to
recover. As single experimental runs were used for each of the configurations we can not indicate
specific values of correlation.

Subquestion 5
Which domains can benefit from the developed method for dynamic mapping?

The fifth subquestion is addressed in section 7.4 where the generalisability of ROMA and the
developed metric is explored. We believe that environments where no a priori map is available or
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where the topology and geometry are changing can benefit from the dynamic aspect of ROMA.
Examples of such environment are found in recovery scenarios for large scale (natural) disasters
and the constantly available setting of open pit mining.

Besides ROMA this research has also provided methods and insights useful for the Geographic
Information System (GIS) community. To our knowledge this is the first research project looking in
to the effects over time of incremental map generation. We have therefore developed new insight
in the outliers generally observed in trace merging algorithms. The developed map comparison
method also offers a novel and graph-based approach suitable for the evaluation of dynamic maps.

Main research question
How to create and maintain an accurate and dynamic map based on position traces?

In conclusion we believe that the Real-time Online Map-generation Algorithm (ROMA) de-
scribed and evaluated in this thesis provides a proof of concept for online generation of dynamic
vector-maps. The focus on quantitative evaluation of map quality furthermore makes a valuable
contribution to the GIS community.

8.2. Future work
In this section we provide three recommendations for future work following the discussion in chap-
ter 7. Section 8.2.1 defines a research focus for future work on the developed metric. Section 8.2.2
explores the improvements to ROMA regarding its dynamic nature and dealing with outliers in trace
merging algorithms. Section 8.2.3 describes the possibilities for ROMA in a distributed setting and
the resulting positive effects on end-user privacy.

8.2.1. Improvements to the metric
The metric described in chapter 3 provides a similarity measure for two vector-maps on the interval
[0,1]. In this section we propose improvements to better approximate the true positives.

We propose to investigate a combination of Maximum Common Edge Subgraph (MCES) algo-
rithms with the use of edge-similarity measure usable for geographical maps. Similarity between
roads is now calculated using a simple comparison of edge lengths which does not penalize the
true positives for roads of equal length at unequal locations. To emphasize geographical simi-
larity we would replace this method with one which directly compares the shape and position of
two edges. In terms of topological similarity we suggest to look into approximation algorithm for
the Maximum Common Edge Subgraph (MCES). Polynomial-time approximations of algorithms for
the MCES problem exist [22] and can be used to provide an improved approximation of topol-
ogy. Since MCES algorithms normally work with graphs of fixed edge weight, including an edge
similarity measure makes the problem less trivial.

We furthermore propose to further research the definition of map quality with regard to differ-
ent application domains. In our research we concluded that a vector-map representation is usable
for disaster relief settings as long as it has a decent recall value. For situations where a map is used
for automatic driving it might be more valuable to have a high precision value. Connectivity may
also play a role in determination of map quality. Our method does not differentiate between maps
with many disjoint clusters and maps with coverage and connection on a large area as shown in
fig. 8.1. Preference of connectivity and the balance between precision an recall might differ per
application domain. We therefore propose to investigate what qualities in terms of topology and
geometry are most valued for maps in different domains.

8.2.2. Topological and geographical map dynamics
This section explores the improvements to ROMA regarding its dynamic nature and dealing with
outliers in trace merging algorithms. In section 7.3 we discussed how measurement outliers
probably result in the web-like structures frequently observed in trace merging methods. In this
section we combine these discussed points to propose a different map representation method for
dynamic maps. We furthermore propose further research in comparison of edges so they could
be combined when representing the same road.

The shape of a road in ROMA is initially determined by the positions of the first measurements
creating that road. Projections of measurements are added to adjust these positions but influence
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(a) A disjoint common edge subgraph (b) Non-disjoint common edge subgraph

Figure 8.1: Two common edge subgraphs result in identical precision and recall values. Which is the better graph?

the shape mainly perpendicular to the road location. In order to better represent the actual
road shape, we propose to store the measurements directly in the edge itself. Methods used in
regression analysis can then be applied to represent the shape on the map and estimate a smooth
centreline fitting the level of detail required. With this alternative approach we believe that the
road shape would be better represented.

Although the suggested approach better represents the road shape, measurement outliers
might still cause the creation of unnecessary duplicate roads. With all original measurements
stored in the road itself it becomes possible to compare two sets of measurements with statistical
methods. ROMA uses Welch’s 𝑡-test to compare if two nodes actually represent the same location
and such a comparison can also be applied to roads consisting of sets of measurements. If the
𝑡-test concludes that measurements in two roads actually stem from the same road in the world,
both roads can be merged into one. Where the merger of two adjacent nodes representing the
same road does not cause topological changes in the map, the merger of two roads might and
is therefore non-trivial. Given this added complexity for merging two roads we propose further
research into the conditions for and effects of merging two roads.

8.2.3. Distributed application of ROMA
The research in this thesis focused on centralized processing of traces to generate a map. In this
section we propose a method for a decentralized application of ROMA and trace-merging methods
in general.

In a decentralized approach to map generation GPS trace data is exchanged directly between
trace providers who each generate their own map representation of the world. The car 2 car
communication consortium [6] proposes the use of wireless signals in their concept where cars
communicate dangers and traffic information directly to one another. We believe that a collabo-
rative roadmap can be created by collectively broadcasting parts of the known road map to other
cars. The following example shows how we envision this distributed application for the fictional
world shown in fig. 8.2a. Bob intends to travel from left to right on the world and travels towards
his destination while Alice travels in the opposite direction. Bob’s knowledge of the world is shown
in fig. 8.2b and Alice knows what is shown in fig. 8.2c. Bob and Alice encounters one another
just after Bob has started his travel at the common part of both their maps. Bob broadcasts his
intended route and this message is received by Alice. Alice adds this knowledge to her map rep-
resentation using ROMA and sees that her map offers a shorter route. She then replies to Bob’s
message by sending an improved route (subset of her map) to Bob. Bob adds this knowledge to
his map using ROMA and sees that he can now travel on a shorter route. Alice also broadcasts
her intended path, but receives no alternative since Bob knows no shorter route. In the end Bob
and Alice both have the map representation shown in fig. 8.2d.

Since wireless signals have a limited range and cars might not drive within communication of
one another range for a long time, research is needed as to what can and should be communicated.
Balch and Arkin [2] has shown that little communication is needed for artificial ant colonies to
efficiently perform a foraging task together. We suggest to research the decentralization of ROMA
in an similar manner to explore what is essential for collaborative map generation. Based on the
believe that locals best know the local situation, perhaps only the first part of the intended route
can be sent in detail while restricting the rest to topological information only.
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(a) The world of Bob and Alice. (b) The map known to Bob.

(c) The map known to Alice. (d) The resulting map for Bob and Alice.

Figure 8.2: Evolution of the maps for Bob and Alice after exchanging map information.

We believe that by broadcasting a route known to the sender, user privacy can be preserved.
No information about the intended route of the sender himself has to be transferred which makes
it difficult to obtain information such as a home address. Broadcasting equal message types for
both requests and answers furthermore prevents obvious sending of the intended route. The sent
messages can be constructed using measurements from different origins for each edge in the
route. If the recorded measurements are labelled with a rotating random number for each edge,
the source of measurement can also not be traced back to his or her places of interest.





A
Graphs for experiment 1

A.1. Per quality measure

Precision

Figure A.1: Course of precision over the first 90 minutes simulated.
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56 A. Graphs for experiment 1

Recall

Figure A.2: Course of recall over the first 90 minutes simulated.

F-score

Figure A.3: Course of the balanced f-score over the first 90 minutes simulated.
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A.2. Per traffic intensity
50 cars

Figure A.4: Course of map quality for 50 cars over the first 90 minutes simulated.

100 cars

Figure A.5: Course of map quality for 100 cars over the first 90 minutes simulated.
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200 cars

Figure A.6: Course of map quality for 200 cars over the first 90 minutes simulated.

500 cars

Figure A.7: Course of map quality for 500 cars over the first 90 minutes simulated.
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1000 cars

Figure A.8: Course of map quality for 1000 cars over 62.5 minutes simulated. Overfitting was observed at 6.5 minutes.

2000 cars

Figure A.9: Course of map quality for 2000 cars over 61.5 minutes simulated. Overfitting was observed at 5.5 minutes.
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4000 cars

Figure A.10: Course of map quality for 4000 cars over 16 minutes simulated. Overfitting was observed at 3.5 minutes.



B
Graphs for experiment 2

B.1. Per traffic intensity

1000 cars

Figure B.1: Course of precision over the first 62.5 minutes simulated. Roadblocks were added at 6.5 minutes and recovery
was observed 28.5 minutes after for 10%, 17 minutes after for 20%, and 28.5 minutes after for 50% roadblocks.
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2000 cars

Figure B.2: Course of precision over the first 61.5 minutes simulated. Roadblocks were added at 5.5 minutes and recovery
was observed 15.5 minutes after for 10%, 8 minutes after for 20%, and 24 minutes after for 50% roadblocks.

4000 cars

Figure B.3: Course of precision over the first 13.5 minutes simulated. Roadblocks were added at 3.5 minutes and recovery
was observed 4.5 minutes after for 10%, 6 minutes after for 20%, and not before the end of simulation for 50% roadblocks.



C
Source code

In this appendix we provide a selection of functions from the cartography and analysis modules
in fig. C.1. All code is written in Java. The complete software package is available upon request.

Figure C.1: Overview of the Road Block Simulation tool (RBS) with modules for cartography (chapter 4) and analysis
(chapter 3) added.

Appendix C.1 describes the steps used for simulation and preprocessing of measurements.
Appendix C.2 describes the core functionalities of ROMA in terms of path matching, merging,
and adjustment. Appendix C.3 describes the map dynamics used for calculating the time to live
for nodes and edges. We conclude this appendix with a description of the method for graph
comparison in Appendix C.4.

C.1. Pre-processing
Both functions described in this section can be found in rbs.traffic.traceagents.CarTraceAgent.

update
public void update(TimePoint now)

/ / on ly add a measurement i f the car has not stopped yet (End of stream
)

i f ( ! carstopped ) {
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MeasurementProvided cur ren t = getNoisyMeasurement (now) ;
i f ( cu r ren t . accuracy < minaccuracy ) {
double d = measurements . isEmpty ( ) ?0:Math . abs ( cu r ren t . getBear ing ( ) −

measurements . getLas t ( ) . d i r e c t i o n ( cu r ren t ) ) % 360;
measurements . add ( cu r ren t ) ;

}
}

/ / get a v a l i d sequence of measurements up to look−ahead s i z e i f
a v a i l a b l e

i f ( carstopped | | measurements . s i z e ( ) >= lookahead + 2) {
L inkedL i s t <MeasurementProvided> v a l i d l i s t = new L inkedL i s t <

MeasurementProvided >() ;
while (measurements . g e t F i r s t ( ) == null )
measurements . removeF i rs t ( ) ;

v a l i d l i s t . addLast (measurements . g e t F i r s t ( ) ) ;
while ( v a l i d l i s t . s i z e ( ) < Math . min (measurements . s i z e ( ) , lookahead +

2) && measurements . get ( v a l i d l i s t . s i z e ( ) ) != null && v a l i d l i s t .
ge tLas t ( ) . d i s tance (measurements . get ( v a l i d l i s t . s i z e ( ) ) ) <=
maxdistance )
v a l i d l i s t . addLast (measurements . get ( v a l i d l i s t . s i z e ( ) ) ) ;

/ / cont inue path est imat ion , generat ion , and adjustment i n the map−
module

MeasurementProvided [ ] v a l i d a r r a y =
v a l i d l i s t . toAr ray (new MeasurementProvided [ v a l i d l i s t . s i z e ( ) ] ) ;

i f ( Car tographyGloba ls . getMap ( ) instanceof Graph ) {
Graph map = (Graph ) CartographyGloba ls . getMap ( ) ;
l a s t l o c a t i o n = map. updateGraph ( l a s t l o c a t i o n , v a l i d a r r a y ) ;

}
else
( ( Measured ) ( CartographyGloba ls . getMap ( ) ) ) . addMeasurement ( v a l i d a r r a y

) ;

/ / remove the measurement from where t h i s i t e r a t i o n s t a r t ed
measurements . removeF i rs t ( ) ;

}

getNoisyMeasurement
private MeasurementProvided getNoisyMeasurement(TimePoint now)

Coord rea lpos = getCar ( ) . ge t Po s i t i o n ( ) ;

/ / determine the d i r e c t i o n to which to s h i f t t h i s measurement
int l a t s i g n = ( G loba l s . getRandom ( ) . nex t In t (2) ) * 2 − 1;
int l ons i gn = ( G loba l s . getRandom ( ) . nex t In t (2) ) * 2 − 1;
double angle = Globa l s . getRandom ( ) . nextDouble ( ) * (Math . PI / 2d) ;

/ / determine the d i s tance to s h i f t the measurement
double range = Globa l s . getRandom ( ) . nextGaussian ( ) * accuracymean ;
double d i s t l o n = Math . cos ( angle )* range ;
double d i s t l a t = Math . s i n ( angle )* range ;

/ / determine how much d i s tance i s covered when s h i f t i n g one un i t of
p r e c i s i o n i n l a t / lon

double p r e c i s i o n = 1d/(1000d) ;
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double d i s t d l a t = rea lpos . d i s tance ( new Coord ( ( rea lpos . ge tLa t i t ude ( ) +
p r e c i s i o n ) , rea lpos . getLongi tude ( ) ) ) ;

double d i s t d l o n = rea lpos . d i s tance ( new Coord ( ( rea lpos . ge tLa t i t ude ( ) ) ,
rea lpos . getLongi tude ( ) + p r e c i s i o n ) ) ;

/ / c a l c u l a t e new l a t i t u d e and long i tude
double newlat = rea lpos . ge tLa t i t ude ( ) + l a t s i g n * ( ( d i s t l a t / d i s t d l a t )

* p r e c i s i o n ) ;
double newlon = rea lpos . getLongi tude ( ) + lons ign * ( ( d i s t l o n / d i s t d l o n

) * p r e c i s i o n ) ;

return new MeasurementProvided ( now. ge tT ime InM i l l i s ( ) , this . carID ,
newlat , newlon , 0d , getCar ( ) . getBear ing ( ) , ( f loat ) getCar ( ) .
g e tVe l o c i t y ( ) , accuracymean , ” ”+ getCar ( ) . hashCode ( ) ) ;

C.2. Map generation
The functions described in this section can be found in rbs.world.designed.Graph.

updateGraph
public FoundPath updateGraph(FoundPath previouspath, MeasurementProvided[] measurements)

i f (measurements == null | | measurements . length <2)
return null ;

i f ( prev iouspath == null )
prev iouspath = new FoundPath ( null , null ) ;

/ / f i n d the f i t and reachable edges
L inkedL i s t <L inkedL i s t <MatchedEdge>> f i t edge s = getF i tEdges ( prev iouspath

. lastedge , measurements ) ;
L i nkedL i s t <HashMap<MatchedEdge , SearchNode2>> reachededges =

getReachedEdges (measurements , f i t edges , prev iouspath ) ;

/ / e x t r a c t the fo l lowed path
MatchedEdge bestgoa l = getBestGoal ( f i t e dge s . get (1) , reachededges ) ;
FoundPath foundpath = getInf luencedNodes ( bestgoal , measurements ,

f i t edges , reachededges ) ;

/ / i f no d i s tance was t rave led , because s t a r t and goal where d i r e c t
neighbours , i n f l u ence the connect ing node

i f ( bes tgoa l != null && bestgoa l . edge != prev iouspath . las tedge && !
bestgoa l . edge . conta ins ( prev iouspath . ge tLas t In f luenced ( ) ) )

foundpath . path . add ( bestgoa l . edge . getA ( ) . d i s tance (measurements [0 ] ) <
bestgoa l . edge . getB ( ) . d i s tance (measurements [0 ] ) ? bestgoa l . edge .
getA ( ) : bes tgoa l . edge . getB ( ) ) ;

/ / update each of the in f l uenced ( t r ave l ed ) nodes
i f ( ! foundpath . path . isEmpty ( ) ) {
/ / i n f l u ence the t r ave l ed nodes
for (Node cur : foundpath . path )
inf luenceNode ( cur , measurements [0 ] , measurements [1 ] ) ;

/ / i n f l u ence the t r ave l ed edges
for ( Edge e : foundpath . getTraveledEdges ( ) )
in f luenceEdge (e , measurements [0 ] , measurements [1 ] ) ;

/ / determine i f nodes need to be merged based upon l o c a t i o n equa l i t y
for (Node cur : foundpath . path ) {
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boolean hasmerged = true ;
while ( hasmerged ) {
hasmerged = false ;
for (Node neighbour : cur . getNeighbours ( ) ) {

i f ( cur . hasEqua lLocat ion ( neighbour , m in ima l l o ca t i onequa l i t y ) ) {
cur = mergeNodes ( cur , neighbour ) ;
hasmerged = true ;
break ;

}
}

}
}

}
return foundpath ;

getFitEdges
private LinkedList<LinkedList<MatchedEdge» getFitEdges(Edge start, MeasurementProvided[] mea-
surements)

L i nkedL i s t <L inkedL i s t <MatchedEdge>> r e s u l t = new L inkedL i s t <L inkedL i s t <
MatchedEdge>>() ;

for ( int i = 0; i <measurements . length ; i ++)
r e s u l t . addLast (new L inkedL i s t <MatchedEdge>() ) ;

for ( Edge e : E) {
double [ ] f i t n e s s = new double [measurements . length ] ;
Boolean [ ] perpend i cu la r = new Boolean [measurements . length ] ;
/ / check i f the edge i s pe rpend i cu la r to any of the prov ided

measurements
for ( int i = 0; i <measurements . length ; i ++){
double c u r r e n t f i t n e s s = f i t n e s s c a l c . c a l c u l a t e F i t P e r p end i c u l a r ( e .

getA ( ) , e . getB ( ) , measurements [ i ] ) ;
double cu r r en t f i t n e s s 2 = f i t n e s s c a l c 2 . c a l c u l a t e F i t P e r p end i c u l a r ( e .

getA ( ) , e . getB ( ) , measurements [ i ] ) ;
f i t n e s s [ i ] = c u r r e n t f i t n e s s ;
double po s i t i o n on l i n e = U t i l . ge tPos i t i onOnL ine ( e . getA ( ) , e . getB ( ) ,

measurements [ i ] ) ;
pe rpend i cu la r [ i ] = new Boolean ( ( p o s i t i o n on l i n e >= 0d &&

po s i t i o n on l i n e <= 1d) | | ( s t a r t != null && i == 0 && s t a r t == e
) ) ;

}
/ / i f the edge i s perpend i cu la r to a measurement , match i t to such a

measurement
i f ( Arrays . a s L i s t ( pe rpend i cu la r ) . con ta ins ( true ) )
for ( int i = 0; i < measurements . length ; i ++){

i f ( pe rpend i cu la r [ i ] && f i t n e s s [ i ] > this . m in ima ledgef i tness )
r e s u l t . get ( i ) . add (new MatchedEdge (e , f i t n e s s [ i ] ) ) ;

}
/ / e lse , match i t to the best (non−perpend i cu la r ) opt ion
else{

int bes t po s i t i o n = −1;
for ( int i = 0; i < measurements . length ; i ++){

i f ( f i t n e s s [ i ] > this . m in ima ledgef i tness && ( be s t po s i t i o n < 0 | |
f i t n e s s [ i ] > f i t n e s s [ be s t po s i t i o n ] ) )

be s t po s i t i o n = i ;
}
i f ( be s t po s i t i o n >= 0)
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r e s u l t . get ( be s t po s i t i o n ) . add (new MatchedEdge (e , f i t n e s s [
be s t po s i t i o n ] ) ) ;

}
}
/ / i f a prev ious step matched to an edge , on ly tha t edge and i t s

neighbours should be in E ’^0
i f ( s t a r t != null ) {
L i nkedL i s t <MatchedEdge> o p t i o n a l f i t = ( L inkedL i s t <MatchedEdge>)

r e s u l t . get (0) . c lone ( ) ;
r e s u l t . get (0) . c l e a r ( ) ;
r e s u l t . get (0) . add (new MatchedEdge ( s t a r t , f i t n e s s c a l c .

c a l c u l a t e F i t P e r p end i c u l a r ( s t a r t . getA ( ) , s t a r t . getB ( ) ,
measurements [0 ] ) ) ) ;

boolean added = true ;
while ( added ) {
added = false ;
for (MatchedEdge mo: o p t i o n a l f i t ) {
for (MatchedEdge mi : r e s u l t . get (0) ) {

i f (mo. edge . neighbours (mi . edge ) ) {
r e s u l t . get (0) . add (mo) ;
o p t i o n a l f i t . remove (mo) ;
added = true ;
break ;

}
}
i f ( added )
break ;

}
}

}
for ( int i = 0; i <measurements . length ; i ++)
Co l l e c t i o n s . so r t ( r e s u l t . get ( i ) ) ;

return r e s u l t ;

getReachedEdges
private LinkedList<HashMap<MatchedEdge, SearchNode2» getReachedEdges(MeasurementProvided[]
measurements, LinkedList<LinkedList<MatchedEdge» fitedges, FoundPath previouspath)

L i nkedL i s t <HashMap<MatchedEdge , SearchNode2>> reachededges = new
L inkedL i s t <HashMap<MatchedEdge , SearchNode2>>() ;

L i nkedL i s t <MatchedEdge> sta r tedges = f i t edge s . get (0) ;
for ( int i = 0; i < measurements . length −1; i ++){
L inkedL i s t <MatchedEdge> unreachededges = new L inkedL i s t <MatchedEdge>(

f i t edge s . get ( i +1) ) ;
reachededges . addLast (new HashMap<Graph . MatchedEdge , Graph . SearchNode2

>() ) ;
/ / f i n d a l l reachable edges from the star tedges , s t a r t i n g at the

f i t t e s t edge thus fa r
for ( int j = s ta r tedges . s i z e ( )−1; j>= 0; j−−){
L i nkedL i s t <SearchNode2> cu r r en t t r ee ;
i f ( i == 0 && star tedges . get ( j ) . edge . conta ins ( prev iouspath .

ge tLas t In f luenced ( ) ) )
cu r r en t t r ee = getSearchTree2 (measurements [ i ] , measurements [ i +1] ,

new Node [ ] { s ta r tedges . get ( j ) . edge . getOther ( prev iouspath .
ge tLas t In f luenced ( ) ) }) ;

else
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cu r r en t t r ee = getSearchTree2 (measurements [ i ] , measurements [ i +1] ,
new Edge [ ] { s ta r tedges . get ( j ) . edge }) ;

HashMap<MatchedEdge , SearchNode2> currentreachededges =
getReachableEdges2 ( unreachededges , measurements [ i ] ,
measurements [ i +1] , cu r ren t t ree , s ta r tedges . get ( j ) . f i t n e s s ) ;

/ / work around method , because unreachededges . removeAl l does not use
equals method

for (MatchedEdge e1 : currentreachededges . keySet ( ) ) {
for (MatchedEdge e2 : unreachededges ) {

i f ( e2 . equals ( e1 ) ) {
unreachededges . remove ( e2 ) ;
break ;

}
}

}
/ / unreachededges . removeAl l ( currentreachededges . keySet ( ) ) ;
reachededges . get ( i ) . p u t A l l ( currentreachededges ) ;
i f ( unreachededges . isEmpty ( ) )
break ;

}
/ / generate the set of s ta r tedges f o r the next i t e r a t i o n . Spec i a l case

i f reachededges i s empty and we are at f i r s t i t e r a t i o n
i f ( i==0 && reachededges . get ( i ) . isEmpty ( ) )
s ta r tedges = f i t edge s . get ( i +1) ;

else
s ta r tedges = new L inkedL i s t <MatchedEdge>(reachededges . get ( i ) . keySet

( ) ) ;
C o l l e c t i o n s . s o r t ( s ta r tedges ) ;

}
return reachededges ;

getBestGoal
private Graph.MatchedEdge getBestGoal(LinkedList<MatchedEdge> goals, LinkedList<HashMap<MatchedEdge,
SearchNode2» reachededges)

double bestsummedfitness = 0d ;
MatchedEdge bes t founddes t i na t i on = null ;
for ( int i = reachededges . s i z e ( )−1; i >0; i −−){
/ / se t the de s t i n a t i on f o r which the source should be found
i f ( bes t founddes t i na t i on == null ) {
i f ( ! reachededges . get ( i ) . isEmpty ( ) ) {
L i nkedL i s t <MatchedEdge> cur ren t = new L inkedL i s t <MatchedEdge>(

reachededges . get ( i ) . keySet ( ) ) ;
C o l l e c t i o n s . s o r t ( cu r ren t ) ;
bes t founddes t i na t i on = cur ren t . getLas t ( ) ;
bestsummedfitness = bes t founddes t i na t i on . f i t n e s s ;

}
}

/ / se t the l i s t of sources i n which the source should be found
L inkedL i s t <MatchedEdge> sources = new L inkedL i s t <MatchedEdge>(

reachededges . get ( i −1) . keySet ( ) ) ;
i f ( i == 1 && sources . isEmpty ( ) && ! goa ls . isEmpty ( ) ) {
Co l l e c t i o n s . so r t ( goa ls ) ;
return goa ls . getLas t ( ) ;

}
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Co l l e c t i o n s . so r t ( sources ) ;

/ / f i n d i f there i s a be t t e r source then the best found des t i n a t i on
boolean be t t e rop t i on = false ;
for ( int s = sources . s i z e ( )−1; s >= 0; s−−){

i f ( bes t founddes t i na t i on == null | | sources . get ( s ) . f i t n e s s >
bestsummedfitness ) {

bes t founddes t i na t i on = sources . get ( s ) ;
bestsummedfitness = sources . get ( s ) . f i t n e s s ;
be t t e rop t i on = true ;

}
}
i f ( be t t e rop t i on )
continue ;

/ / F ind the edge from where bes t founddes t i na t i on was reached
i f ( reachededges . get ( i ) . conta insKey ( bes t founddes t i na t i on ) ) {
Coord root = reachededges . get ( i ) . get ( bes t founddes t i na t i on ) . getRoot

( ) . cu r ren t ;
i f ( root instanceof Node) {
for ( int s = sources . s i z e ( )−1; s >= 0; s−−){

i f ( sources . get ( s ) . edge . conta ins ( ( Node) root ) ) {
bes t founddes t i na t i on = sources . get ( s ) ;
break ;

}
else i f ( s == 0) {
bestsummedfitness = 0d ;
bes t founddes t i na t i on = null ;

}
}

}
else{
bestsummedfitness = 0d ;
bes t founddes t i na t i on = null ;

}
}

}
return bes t founddes t i na t i on ;

getInfluencedNodes
private Graph.FoundPath getInfluencedNodes(Graph.MatchedEdge bestgoal, MeasurementProvided[]
measurements, LinkedList<LinkedList<MatchedEdge» fitedges, LinkedList<HashMap<MatchedEdge,
SearchNode2» reachededges)

Set<MatchedEdge> r = reachededges . g e t F i r s t ( ) . keySet ( ) ;
i f ( bes tgoa l != null && r . conta ins ( bestgoa l ) )
return new FoundPath ( reachededges . g e t F i r s t ( ) . get ( bes tgoa l ) . getPath ( ) ,

bes tgoa l . edge ) ;
else{
/ / se t the pos s i b l e o r i g i n s f o r path−search
Coord [ ] o r i g i n s = ( f i t edge s . g e t F i r s t ( ) . s i z e ( ) == 0) ? new Coord [ ] {

measurements [0 ] } : new Coord [ ] { f i t edge s . g e t F i r s t ( ) . getLas t ( ) . edge .
getA ( ) , f i t e dge s . g e t F i r s t ( ) . getLas t ( ) . edge . getB ( ) } ;

/ / se t the pos s i b l e de s t i n a t i on s f o r path−search
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Coord [ ] de s t i n a t i on s = ( bestgoa l == null ) ? new Coord [ ] { measurements
[1 ] } : new Coord [ ] { bestgoa l . edge . getA ( ) , bes tgoa l . edge . getB ( ) } ;

return generatePath ( o r i g i n s , des t i na t i ons , measurements [0 ] ,
measurements [1 ] ) ;

}

InfluenceNodes
private void influenceNode(Node v, MeasurementProvided m1, MeasurementProvided m2)

double percentonl inesegment = U t i l . ge tPos i t i onOnL ine (m1, m2, v ) ;
MeasuredPos i t ion m = (m2. combineWithMeasurement (m1, percentonl inesegment

) ) . getPosi t ionMeasurement ( ) ;
v . addMeasurement (m) ;

mergeNodes
private Node mergeNodes(Node v1, Node v2)

/ / sever the connect ion between v1 and v2
Edge connect ion = v1 . getEdge ( v2 ) ;
i f ( connect ion != null )

removeEdge ( connect ion ) ;

/ / remember a l l neighbours of v2
L i s t <Node> n1 = v1 . getNeighbours ( ) ;
L i s t <Node> n2 = v2 . getNeighbours ( ) ;

/ /move a l l neighbours from v2 to v1
for (Node neighbour : n2 ) {
removeEdge ( v2 . getEdge ( neighbour ) ) ;
/ / on ly add t h i s neighbour i f i t not a l ready known to v1
i f ( ! n1 . conta ins ( neighbour ) )
addEdge (new Edge ( v1 , neighbour ) ) ;

}

/ / add a l l measurements from v2 to v1
L i s t <MeasuredPosi t ion> m = v2 . getMeasurements ( ) ;
v1 . addMeasurements (m) ;

/ / remove v2 from the graph
V . remove ( v2 ) ;

/ / re tu rn the node which i s l e f t , f o r ease of po in t i ng
return v1 ;

C.3. map dynamics
The functions described in this section can be found in rbs.world.designed.Node and rbs.world.designed.Edge.

Node.addMeasurement
public boolean addMeasurement(MeasuredPosition newmeasurement, boolean calculate)

boolean merged = false ;
for ( int i = 0; i <M. s i z e ( ) ; i ++){
MeasuredPos i t ion cur ren t = M. get ( i ) ;
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/ / i f the inst rument has a l ready measured fo r t h i s node , merge the two
measurements

i f (M. get ( i ) . getAgentID ( ) . equals ( newmeasurement . getAgentID ( ) ) ) {
M. se t ( i , cu r ren t . combineWithMeasurement (newmeasurement , 0 .5) ) ;
merged = true ;
break ;

}
}
i f ( ! merged )
M. addLast ( newmeasurement ) ;

i f ( c a l c u l a t e )
this . r eCa l cu l a t e ( ) ;

return true ;

Node.calculateCoordinates
private void calculateCoordinates()

double newlat = 0 , newlon = 0;

/ / a l t e r n a t i v e f o r empty set of measurements
i f (M. isEmpty ( ) ) {

/ / c a l c u l a t e new l o c a t i o n of t h i s i n t e r s e c t i o n based upon average
l o c a t i o n of neighbour ing nodes

A r r ayL i s t <Node> neighbours = this . getNeighbours ( ) ;
for (Node neighbour : neighbours ) {
newlat += neighbour . ge tLa t i t ude ( ) ;
newlon += neighbour . getLongi tude ( ) ;

}
se tCoord ina tes ( newlat / neighbours . s i z e ( ) , newlon / neighbours . s i z e ( ) ) ;

/ / c a l c u l a t e new s p a t i a l var iance
double summedsquarederror = 0d ;
for (Node neighbour : neighbours )
summedsquarederror += Math .pow( this . d i s tance ( neighbour ) , 2) ;

this . s p a t i a l v a r i a n c e = ( neighbours . s i z e ( ) > 1) ? ( summedsquarederror /
neighbours . s i z e ( ) ) : Math .pow( neighbours . get (0) . getAccuracy ( ) ,2) ;

}

/ / normal mode fo r non−j un c t i on s
else{

/ / c a l c u l a t e new l o c a t i o n of t h i s node based upon measurements
for ( MeasuredPos i t ion measurement : M) {
newlat += measurement . ge tLa t i t ude ( ) ;
newlon += measurement . getLongi tude ( ) ;

}
se tCoord ina tes ( newlat / M. s i z e ( ) , newlon / M. s i z e ( ) ) ;

/ / c a l c u l a t e new s p a t i a l var iance
double summedsquarederror = 0d ;
for ( MeasuredPos i t ion measurement : M)
summedsquarederror += Math .pow( this . d i s tance (measurement ) , 2) ;

this . s p a t i a l v a r i a n c e = (M. s i z e ( ) > 1) ? ( summedsquarederror / M. s i z e ( )
) : Math .pow(M. g e t F i r s t ( ) . accuracy , 2 ) ;

}
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calculateFrequency
private void calculateFrequency()

i f (M. s i z e ( ) >= 2) {
d i s t = new TD i s t r i b u t i o n ( this . getAmountMeasurements ( )−1) ;
tempora l interva lmean = ( (double ) (M. getLas t ( ) . ge tT ime InM i l l i s ( ) − M.

g e t F i r s t ( ) . g e tT ime InM i l l i s ( ) ) ) / ( (double ) ( d i s t .
getDegreesOfFreedom ( ) ) ) ;

double summedpopulat ionvariance = 0d ;
for ( int i = 0; i <M. s i z e ( )−1; i ++)
summedpopulationvariance += Math .pow( tempora l interva lmean − (M. get (

i +1) . ge tT ime InM i l l i s ( ) − M. get ( i ) . g e tT ime InM i l l i s ( ) ) ,2) ;

/ / unbiased est imate of i n t e r v a l −var iance
temporalsigma = Math . sq r t ( summedpopulat ionvariance / ( (double ) (M. s i z e

( )−1) ) ) ;
}

calculateTimeOfDeath
private void calculateTimeOfDeath()

long l a s t t ime = M. getLas t ( ) . g e tT ime InM i l l i s ( ) ;
switch ( Car tographyGloba ls . getDecayMethod ( ) ) {
case s o l i d :
t imeofdeath = l a s t t ime + CartographyGloba ls . ge tS ta t i cT imeToL ive ( ) ;
break ;

case dynamic :
t imeofdeath = Math . round ( l a s t t ime + getInterva lMean ( ) + d i s t .

i n ve r seCumu l a t i v eP robab i l i t y (1 − CartographyGloba ls .
ge tM in ima l Ex i s t anceP robab i l i t y ( ) ) * temporalsigma ) ;

break ;
case argmax :
/ / l e t the s o l i d va lue decay l i n e a r l y over the amount of

measurements
long s o l i d = l a s t t ime + ( CartographyGloba ls . ge tS ta t i cT imeToL ive ( ) *

( CartographyGloba ls . getMaximalNumMeasurements ( ) − M. s i z e ( ) ) ) /
Car tographyGloba ls . getMaximalNumMeasurements ( ) ;

/ / dynamic va lue i s determined by TD i s t r i b u t i o n
long dynamic = ( d i s t == null ) ? 0 l : Math . round ( l a s t t ime +

getInterva lMean ( ) + d i s t . i n ve r seCumu l a t i v eP robab i l i t y (1 −
CartographyGloba ls . ge tM in ima l Ex i s t anceP robab i l i t y ( ) ) *
temporalsigma ) ;

/ / take the maximum value of both methods
t imeofdeath = Math .max( so l i d , dynamic ) ;
break ;

default :
t imeofdeath = Long .MAX_VALUE;
break ;

}

C.4. Graph Comparison
The functions described in this section can be found in rbs.graphcomparison.FastMCESGraphComparator.



C.4. Graph Comparison 73

Compare
public StatisticalFrame Compare(Graph world, Graph map)

/ / Step 1: Matching j unc t i on s and endnodes
f ina l Node [ ] worldnodes = getNodes ( world , new NodeType [ ] { NodeType .

junc t ion , NodeType . endnode }) ;
f ina l Node [ ] mapnodes = getNodes (map, new NodeType [ ] { NodeType . junc t ion ,

NodeType . endnode }) ;
f ina l L inkedL i s t <Match> nearest4wor ld = getNearest ( worldnodes , mapnodes

, true ) ;
f ina l L inkedL i s t <Match> nearest4map = getNearest (mapnodes , worldnodes ,

false ) ;
f ina l Match [ ] bestmatches = getBestMatches ( nearest4world , nearest4map ) ;

/ / Step 2: F ind ing t rue po s i t i v e s and geometr ic s i m i l a r i t y between map
and world

f ina l double [ ] [ ] wor ldadjecency = makeUndirected ( getAdjecency (
bestmatches , world . getRoads ( ) , true ) ) ;

f ina l double [ ] [ ] mapadjecency = makeUndirected ( getAdjecency ( bestmatches
, world . getRoads ( ) , false ) ) ;

f ina l double [ ] [ ] scoredmask = getMask ( worldadjecency , mapadjecency ,
true ) ;

/ / Step 3: Ca l c u l a t i n g p r e c i s i o n and r e c a l l
double s co redp rec i s i on = getScoredPercentage ( scoredmask , mapadjecency ,

map) ;
double s c o r ed r e c a l l = getScoredPercentage ( scoredmask , worldadjecency ,

world ) ;

/ / re tu rn the S t a t i s t i c a l F r ame
return new S t a t i s t i c a l F r ame ( G loba l s . getNow ( ) . ge tT ime InM i l l i s ( ) ,

s co redprec i s i on , s c o r ed r e c a l l ) ;

getNodes
private Node[] getNodes(Graph graph, NodeType[] nodeTypes)

L i nkedL i s t <Node> r e s u l t = new L inkedL i s t <Node>() ;
for (Node n : graph . getNodes ( ) ) {

i f ( ! ( n instanceof rbs . world . designed . Node | | n instanceof rbs . world .
map. RoadNode) | |
( ( n instanceof rbs . world .map. RoadNode) && ( ( rbs . world .map.

RoadNode)n) . i sReachab le ( ) ) | |
( ( n instanceof rbs . world . designed . Node) && ( ( rbs . world . designed .

Node)n) . i s V i s i b l e ( G loba l s . getNow ( ) ) ) ) {
NodeType c t = n . getType ( ) ;
for (NodeType at : nodeTypes ) {

i f ( at == c t ) {
r e s u l t . add (n) ;
break ;

}
}

}
}
return r e s u l t . toAr ray (new Node[ r e s u l t . s i z e ( ) ] ) ;
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getNearest
private LinkedList<Match> getNearest(Node[] A, Node[] B, boolean aisworld)

L i nkedL i s t <Match> r e s u l t = new L inkedL i s t <Match>() ;
for ( int i = 0; i < A . length ; i ++){
double cur ren td i s tance , bes td i s tance = Double . POSITIVE_INFINITY ;
int bestBindex = −1;
for ( int j = 0; j< B . length ; j++){
cu r ren td i s t ance = A[ i ] . d i s tance (B[ j ] ) ;
i f ( cu r r en td i s t ance < bes td i s tance ) {
bes td i s tance = cu r ren td i s t ance ;
bestB index = j ;

}
}
i f ( bestBindex > −1){
i f ( a i swor ld )
r e s u l t . add (new Match (A[ i ] , B[ bestBindex ] , bes td i s tance ) ) ;

else
r e s u l t . add (new Match (B[ bestBindex ] , A[ i ] , bes td i s tance ) ) ;

}
}
return r e s u l t ;

getBestMatches
private Match[] getBestMatches(LinkedList<Match> nearest4world, LinkedList<Match> nearest4map)

L inkedL i s t <Match> chosen = new L inkedL i s t <Match>() ;

/ / f i n d a l l matches which are nearest f o r world AND fo r map
for (Match worldmatch : nearest4wor ld )
for (Match mapmatch : nearest4map )

i f ( worldmatch . equals (mapmatch) )
chosen . add ( worldmatch ) ;

/ / generate a l i s t of notchosen matches , which are l a t e r eva luated f o r
p o s s i b i l i t y of adding to the chosen matches

L inkedL i s t <Match> notchosen = ( L inkedL i s t <Match>) ( ( nearest4wor ld . s i z e
( )>nearest4map . s i z e ( ) ) ? nearest4wor ld . c lone ( ) : nearest4map . c lone ( ) )
;

for ( int i = 0; i <chosen . s i z e ( ) ; i ++){
for ( int j = 0; j<notchosen . s i z e ( ) ; j++){

i f ( chosen . get ( i ) . world == notchosen . get ( j ) . world | | chosen . get ( i ) .
map == notchosen . get ( j ) .map) {
notchosen . remove ( j ) ;
j−−;

}
}

}

/ / so r t the notchosen matches accord ing to d is tance , and add these (
removing any c o n f l i c t i n g other opt ions from the l i s t )

C o l l e c t i o n s . so r t ( notchosen ) ;
Match cur ren t = null ;
while ( ! notchosen . isEmpty ( ) ) {
cu r ren t = notchosen . removeF i rs t ( ) ;
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/ / remove a l l c o n f l i c t i n g , but i n f e r i o r due to d is tance , opt ions from
notchosen

for ( int i = 0; i <notchosen . s i z e ( ) ; i ++){
i f ( notchosen . get ( i ) . world == cur ren t . world | | notchosen . get ( i ) .map

== cur ren t .map) {
notchosen . remove ( i ) ;
i −−;

}
}
chosen . addLast ( cu r ren t ) ;

}
return chosen . toAr ray (new Match [ chosen . s i z e ( ) ] ) ;

getAdjecency
private double[][] getAdjecency(Match[] bestmatches, Road[] worldroads, boolean forworld)

double [ ] [ ] r e s u l t = new double [ bestmatches . length ] [ bestmatches . length ] ;
for ( int i = 0; i <bestmatches . length ; i ++){

/ / c reate a search queue fo r search ing from bestmatches [ i ]
Pr io r i tyQueue<SearchItem> queue = new Pr io r i tyQueue<SearchItem >() ;
i f ( fo rwor ld )
queue . add (new SearchItem ( bestmatches [ i ] . world , 0d) ) ;

else
queue . add (new SearchItem ( bestmatches [ i ] .map, 0d) ) ;

L i nkedL i s t <Node> v i s i t e d = new L inkedL i s t <Node>() ;
v i s i t e d . add ( queue . peek ( ) . node ) ;

SearchItem cur ren t ;
while ( ! queue . isEmpty ( ) ) {
cu r ren t = queue . p o l l ( ) ;

/ / F ind out i f the cur ren t SearchItem i s a goal
int index = 0;
while ( index < bestmatches . length ) {

i f ( bestmatches [ index ] . equals ( cu r ren t . node ) ) {
break ;

}
index++;

}

/ / i f the cur ren t SearchItem i s a goal , cont inue to the next
SearchItem

i f ( index != i && index != bestmatches . length ) {
i f ( r e s u l t [ i ] [ index ] == 0 | | cu r ren t . d i s tance < r e s u l t [ i ] [ index ] )
r e s u l t [ i ] [ index ] = cur ren t . d i s tance ;

continue ;
}

/ / e lse , f i n d neighbours f o r designed (map) nodes
else i f ( cu r ren t . node instanceof rbs . world . designed . Node) {
for ( rbs . world . designed . Node neighbour : ( ( rbs . world . designed . Node)

cur ren t . node ) . getNeighbours ( ) ) {
i f ( neighbour . i s V i s i b l e ( G loba l s . getNow ( ) ) && ! v i s i t e d . conta ins (

neighbour ) ) {
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v i s i t e d . add ( neighbour ) ;
queue . add (new SearchItem ( neighbour , cu r ren t . d i s tance +

cur ren t . node . d i s tance ( neighbour ) ) ) ;
}

}
}

/ / e lse , f i n d neighbours f o r world nodes
else i f ( cu r ren t . node instanceof rbs . world .map. RoadNode) {
L inkedL i s t <Road> roadstocheck = new L inkedL i s t <Road>(Arrays .

a s L i s t ( cu r ren t . node . getRoads ( ) ) ) ;

/ / r e t a i n on ly the pos s i b l e roads , po s s i b l y a very time−expensive
opera t ion

roadstocheck . r e t a i n A l l ( Arrays . a s L i s t ( wor ldroads ) ) ;
for ( rbs . world . Road r : cu r ren t . node . getRoads ( ) ) {

i f ( r instanceof rbs . world .map. Road && ( ( rbs . world .map. Road ) r ) .
getRoadBlock ( ) == null && ( ( rbs . world .map. Road ) r ) .
isAl lowedFrom ( ( RoadNode) cu r ren t . node ) ) {

Node neighbour = ( ( rbs . world .map. Road ) r ) . getDest inat ionFrom (
cur ren t . node ) ;

i f ( ! v i s i t e d . conta ins ( neighbour ) ) {
v i s i t e d . add ( neighbour ) ;
queue . add (new SearchItem ( neighbour , cu r ren t . d i s tance +

cur ren t . node . d i s tance ( neighbour ) ) ) ;
}

}
}

}
}

}
return r e s u l t ;

getMask
private double[][] getMask(double[][] WA, double[][] MA, boolean scored)

double [ ] [ ] r e s u l t = new double [WA. length ] [WA. length ] ;
for ( int i = 0; i < WA. length ; i ++){
for ( int j = 0; j< WA. length ; j++){
double currentWA = WA[ i ] [ j ] ;
double currentMA = MA[ i ] [ j ] ;
r e s u l t [ i ] [ j ] = (WA[ i ] [ j ]==0 | | MA[ i ] [ j ] ==0)? 0: scored ? Math . exp

(−(Math . abs (WA[ i ] [ j ] − MA[ i ] [ j ] ) *2) / (WA[ i ] [ j ]+MA[ i ] [ j ] ) ) : 1;
i f ( Double . isNaN ( r e s u l t [ i ] [ j ] ) )
r e s u l t [ i ] [ j ] = 0d ;

}
}
return r e s u l t ;

getScoredPercentage
private double getScoredPercentage(double[][] edgesimilarity, double[][] adjecency, Graph graph)

/ / c a l c u l a t e the scored t rue po s i t i v e s
double s co r ed t r uepos i t i v e s = 0;
for ( int i = 0; i < adjecency . length ; i ++)
for ( int j = 0; j< adjecency . length ; j++)
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s co r ed t r uepos i t i v e s += edge s im i l a r i t y [ i ] [ j ] * adjecency [ i ] [ j ] ;

/ / d i v i d e scored t rue po s i t i v e s by ( twice the ) t o t a l length of roads in
the graph and re tu rn t h i s

double d i v i d e r = 2d * graph . getLength ( ) ;
return s co r ed t r uepos i t i v e s == 0 && d i v i d e r ==0? 1: s co r ed t r uepos i t i v e s

/ d i v i d e r ;





List of symbols

𝜏 time (ms)

𝜇 average

𝜎 standard deviation

∠ direction (degrees)

∅ an empty set

𝛼 𝜎-threshold for measurements

𝛽 distance-threshold between measurements

𝛾 minimal fitness for point-to-edge matching

𝑛 size of local look-ahead

𝑡 variable for 𝑡-distribution

𝜈 degrees of freedom

𝜁 maximum number of measurements in 𝑀

𝜃 threshold for time to live TTL

sTTL threshold (ms) for static time to live

Graph type node (𝑣) edge (𝑒)
Regular
World
Map

Measurement

Icons for graph examples used in this thesis.
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(Balanced) F-Score
The balanced F-score is a method to calculate the harmonized mean of two values. We
apply this method to precision and recall to obtain one value for the overall map quality. The
following formula is used to calculate the F-score:

𝐹 = 2 ⋅ precision ⋅ recall
precision+ recall

Global Positioning System (GPS)
The global positioning system is a space-based satellite navigation system with which re-
ceivers can determine their position on the surface of the earth and estimate the error of the
measurement. ROMA was developed to operate with position data as provided using GPS
signals. GPS measurements are visually represented as .

Graph
A mathematical representation used to show connections between objects. Nodes (𝑣/𝑖𝑛𝑉)
represent the objects, and edges (𝑒 = 𝑣, 𝑣, 𝑒/𝑖𝑛𝐸) the connections between nodes. Within
this thesis, graphs are represented as 𝐺 = (𝑉, 𝐸) in written form. Nodes in regular graphs
are visually represented as and edges as .

(Vector) Map
The map developed by ROMA is created as a graph with nodes positioned using aggregated
position measurements. The use of a graph to represent a road map makes this a vector
map. Nodes in vector-maps are visually represented as and edges as .

Maximum Common Edge Subgraph (MCES)
The maximum common edge subgraph is a graph 𝐺 with as many edges as possible which
is isomorphic to two subgraphs. We approximate this concept to find true positives in the
developed map by matching edges from the world to the map and vice versa as described
in chapter 3.

Precision
We define precision of the generated map as the fraction of edges on the map which is
matched to edges on the ground truth map. We apply scoring based on similarity to com-
pensate for difference in path-length. section 3.2 provides the mathematical details and
formulae used to obtain a precision value.

Recall
We define recall of the generated map as the fraction of edges in the ground truth map
which is matched to edges on in the developed map. We apply scoring based on similarity
to compensate for difference in path-length. Section 3.2 provides the mathematical details
and formulae used to obtain a recall value.

ROMA
The developed algorithm is called ROMA (Robust Online Map-generation Algorithm). We
believe it to be robust since it can adapt to changes in the world. The online nature is found
in the ability to process new measurements as they become available. The entire algorithm is
a map-generation algorithm since it manipulates a vector map based upon collected position
measurements. ROMA falls in the category of trace-merging algorithms [3] and its design is
found in chapter 4.
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Trace
A series of position-measurements in order of time of measurement used as input for ROMA.
ROMA takes traces consisting of 5 consecutive measurements as input. Measurements in a
trace are visually represented as and connected using dotted lines .

World
We use a graph representation of the village of Zoeterwoude-Dorp as the ground truth for
the experiments in <Chapter exp>. On this world we simulate traffic which is used as input
for ROMA. Nodes in the world are visually represented as and edges as .
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