

Delft University of Technology

Tensor-Based Kernel Methods

Wesel, F.

DOI
10.4233/uuid:19c0d433-dba9-40e1-a45c-d56d1140bbfa
Publication date
2025
Document Version
Final published version
Citation (APA)
Wesel, F. (2025). Tensor-Based Kernel Methods. [Dissertation (TU Delft), Delft University of Technology].
https://doi.org/10.4233/uuid:19c0d433-dba9-40e1-a45c-d56d1140bbfa

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:19c0d433-dba9-40e1-a45c-d56d1140bbfa
https://doi.org/10.4233/uuid:19c0d433-dba9-40e1-a45c-d56d1140bbfa

FREDERIEK WESEL

TENSOR-

B A S E D

K E R N E L

MODE L S

TENSOR-BASED KERNEL METHODS

TENSOR-BASED KERNEL METHODS

Dissertation

for the purpose of obtaining the degree of doctor

at Delft University of Technology

by the authority of the Rector Magnificus, prof. dr. ir. T.H.J.J. van der Hagen,

chair of the Board for Doctorates

to be defended publicly on

Friday, the 14th of November, 2025, at 10:00 o’clock

by

Frederiek WESEL

Master of Science in Applied Mathematics,

Delft University of Technology, The Netherlands

born in Bordighera, Italy

This dissertation has been approved by the promotors.

Composition of the doctoral committee:

Rector Magnificus, chairperson

Prof. dr. ir. J.W. van Wingerden, Delft University of Technology, promotor

Dr. B. Hunyadi, Delft University of Technology, promotor

Dr. ir. K. Batselier, Delft University of Technology, copromotor

Independent members:

Dr. M. Kok, Delft University of Technology

Prof. dr. ir. G.J.T. Leus, Delft University of Technology

Prof. dr. ir. J. Suykens, Katholieke Universiteit Leuven

Dr. N. Wong The University of Hong Kong

Prof. dr. ir. T. Keviczky, Delft University of Technology, reserve member

Keywords: Machine Learning, Kernel Machines, Gaussian Processes, Ten-

sors, Tensor Decompositions, Tensor Networks

Printed by: ProefschriftMaken.nl

Copyright © 2025 by F. Wesel

ISBN 978-94-6518-163-9

An electronic copy of this dissertation is available at

https://doi.org/10.4233/uuid:19c0d433-dba9-40e1-a45c-d56d1140bbfa.

CONTENTS

Summary vii

Samenvatting ix

1. Introduction 1

1.1. Notation and Tensors . 3

1.2. Tensor Networks . 4

1.3. Kernel Machines . 7

1.4. Contributions of this Thesis . 10

2. Fourier Features and Tensor Decompositions 17

2.1. Introduction . 18

2.2. Related work . 19

2.3. Learning with Fourier features . 21

2.4. Numerical Experiments . 26

2.5. Conclusion . 31

3. Structured Inducing Points and Tensor Decompositions 37

3.1. Introduction . 38

3.2. Grid-Structured Kernel Machines . 43

3.3. Experiments . 48

3.4. Conclusion . 52

4. Quantized Features and Tensor Decompositions 61

4.1. Introduction . 62

4.2. Background . 64

4.3. Quantizing Polynomial and Fourier Features 66

4.4. Quantized Tensor Network Kernel Machines 70

4.5. Numerical Experiments . 73

4.6. Conclusion . 77

A. Definitions . 83

B. Proofs . 83

C. Faster Multi-Convex Optimization Algorithms 86

V

VI CONTENTS

D. Numerical Experiments . 87

5. Tensor Networks and Kernel Machines as Gaussian Processes 89

5.1. Introduction . 90

5.2. Background . 91

5.3. TN-Constrained Kernel Machines as GPs 96

5.4. Numerical Experiments . 101

5.5. Related Work . 103

5.6. Conclusion . 104

A. Introduction . 109

B. TN-Constrained Kernel Machines as GPs 110

C. Numerical Experiments . 117

6. A Kernelizable Primal-Dual Formulation of the MLSVD 119

6.1. Introduction . 120

6.2. Background . 121

6.3. A Primal-Dual formulation for the MLSVD 122

6.4. Connection with Other Methods . 130

6.5. Related work . 134

6.6. Conclusions, Further Research and Applications 135

A. A Primal-dual formulation for the MLSVD 141

G. Conclusion 145

G.1. Further Work . 146

Curriculum Vitæ 151

List of Publications 153

SUMMARY

In an era where data-driven decision-making is becoming increasingly central

to societal progress, the ability to efficiently process and analyze vast amounts

of information is paramount. From healthcare and climate modeling to finan-

cial forecasting and autonomous systems, the demand for scalable and inter-

pretable machine learning models has never been greater. However, as the com-

plexity and dimensionality of data continue to grow, traditional machine learn-

ing approaches often struggle to keep pace. Kernel machines, a class of models

renowned for their theoretical elegance and practical effectiveness, are no excep-

tion. While they offer powerful tools for learning complex patterns, their compu-

tational and memory requirements often scale prohibitively with the dimension-

ality of the data, limiting their applicability to real-world problems. This chal-

lenge is particularly acute in domains where high-dimensional data is the norm,

such as medical imaging, genomics, and natural language processing.

At the heart of this issue lies the curse of dimensionality: as the number of fea-

tures or dimensions in the data increases, the computational resources required

to train and deploy kernel machines grow exponentially. This not only restricts

their use in resource-constrained environments but also hinders their adoption

in time-sensitive applications where rapid decision-making is critical. Moreover,

the interpretability of these models, essential for gaining trust and actionable in-

sights, often diminishes as their number of parameters grows. These limitations

underscore a need for innovative approaches that can enhance the scalability

and efficiency of kernel machines without compromising their predictive power.

This thesis addresses these challenges by exploring the intersection of Tensor

Networks (TNs) and kernel machines, two fields that have traditionally evolved in

parallel. Tensor networks, with their ability to efficiently represent high-dimensional

data through low-rank structures, offer a promising avenue for overcoming the

scalability limitations of kernel machines. By integrating the principles of TNs

into kernel-based learning, this thesis aims to unlock new possibilities for mod-

eling high-dimensional data while maintaining computational tractability and

interpretability which characterizes kernel machines.

The contributions of this thesis are organized around three central questions,

each addressing a critical aspect of the relationship between TNs and kernel ma-

VII

VIII SUMMARY

chines. First, we investigate how TNs can be used to accelerate and enhance

the scalability of kernel machines, while implicitly learning from a kernel func-

tion approximated to machine precision. Through a series of methodological

advancements, we demonstrate that imposing low-rank TN constraints on the

model weights can significantly reduce computational complexity while preserv-

ing the expressive power of kernel machines and enabling to learn from features

that approximate the kernel function up to machine precision for both stationary

and non-stationary kernels. Second, we explore the theoretical connections be-

tween TN-constrained kernel machines and Gaussian processes, shedding light

on the conditions under which these models converge and generalize. Finally,

we establish a novel optimization framework that characterizes a specific TN, the

Multilinear Singular Value Decomposition (MLSVD), in terms of primal and dual

problems, paving the way for new algorithmic developments and applications.

By exploring connections between TNs and kernel machines, this thesis not

only advances the theoretical foundations of machine learning but also provides

practical tools for addressing some of the most pressing challenges in data sci-

ence. The methodologies developed here have the potential to democratize ac-

cess to powerful machine learning models, enabling their use in a wider range

of applications and ultimately contributing to societal progress in fields where

data-driven insights are critical.

SAMENVATTING

In een tijdperk waarin datagestuurde besluitvorming steeds centraler staat in de

maatschappelijke vooruitgang, is het vermogen om grote hoeveelheden infor-

matie efficiënt te verwerken en analyseren van cruciaal belang. Van gezondhei-

dszorg en klimaatmodellering tot financiële voorspellingen en autonome syste-

men, de vraag naar schaalbare en interpreteerbare machine learning-modellen is

nog nooit zo groot geweest. Echter, naarmate de complexiteit en dimensionaliteit

van data blijven toenemen, hebben traditionele machine learning-benaderingen

vaak moeite om bij te blijven. Kernel machines, een klasse van modellen die

bekend staan om hun theoretische elegantie en praktische effectiviteit, vormen

hierop geen uitzondering. Hoewel ze krachtige tools bieden voor het leren van

complexe patronen, schalen hun reken- en geheugeneisen vaak onhoudbaar met

de dimensionaliteit van de data, wat hun toepasbaarheid op real-world prob-

lemen beperkt. Deze uitdaging is vooral acuut in domeinen waar hoogdimen-

sionale data de norm is, zoals medische beeldvorming, genomica en natuurlijke

taalverwerking.

De kern van dit probleem ligt in de zogenaamde vloek van dimensionaliteit:

naarmate het aantal kenmerken of dimensies in de data toeneemt, groeien de

benodigde rekenbronnen om kernel machines te trainen en in te zetten exponen-

tieel. Dit beperkt niet alleen hun gebruik in omgevingen met beperkte midde-

len, maar belemmert ook hun adoptie in tijdgevoelige toepassingen waar snelle

besluitvorming cruciaal is. Bovendien neemt de interpreteerbaarheid van deze

modellen, essentieel voor het verkrijgen van vertrouwen en bruikbare inzichten,

vaak af naarmate hun complexiteit toeneemt. Deze beperkingen onderstrepen

een dringende maatschappelijke behoefte aan innovatieve benaderingen die de

schaalbaarheid, efficiëntie en interpreteerbaarheid van kernel machines kunnen

verbeteren zonder in te leveren op hun voorspellende kracht.

Deze scriptie gaat deze uitdagingen aan door het snijvlak van Tensor Networks

(TNs) en kernel machines te verkennen, twee velden die traditioneel parallel zijn

geëvolueerd. Tensornetwerken, met hun vermogen om hoogdimensionale data

efficiënt weer te geven via laag-rang structuren, bieden een veelbelovende weg

om de schaalbaarheidsbeperkingen van kernel machines te overwinnen. Door

de principes van TNs te integreren in kernel-gebaseerd leren, streven we ernaar

IX

X SAMENVATTING

nieuwe mogelijkheden te ontsluiten voor het modelleren van hoogdimensionale

data, terwijl we rekenefficiëntie en interpreteerbaarheid behouden.

De bijdragen van deze scriptie zijn georganiseerd rond drie centrale vragen,

elk gericht op een kritisch aspect van de relatie tussen TNs en kernel machines.

Ten eerste onderzoeken we hoe TNs kunnen worden gebruikt om kernel ma-

chines te versnellen en hun schaalbaarheid te verbeteren, terwijl ze impliciet

leren van een kernelfunctie die tot machineprecisie wordt benaderd. Door een

reeks methodologische vooruitgangen tonen we aan dat het opleggen van laag-

rang TN-beperkingen aan de modelgewichten de rekencomplexiteit aanzienlijk

kan verminderen, terwijl de expressieve kracht van kernel machines behouden

blijft en het mogelijk wordt om te leren van kenmerken die de kernelfunctie be-

naderen tot op machineprecisie, zowel voor stationaire als niet-stationaire ker-

nels. Ten tweede verkennen we de theoretische verbanden tussen TN-beperkte

kernel machines en Gaussische processen, waardoor we inzicht krijgen in de

voorwaarden waaronder deze modellen convergeren en generaliseren. Tot slot

stellen we een nieuw optimalisatiekader op dat een specifiek TN, de Multilinear

Singular Value Decomposition (MLSVD), karakteriseert in termen van primale en

duale problemen, wat de weg vrijmaakt voor nieuwe algoritmische ontwikkelin-

gen en toepassingen.

Door de verbanden tussen TNs en kernel machines te verkennen, draagt deze

scriptie niet alleen bij aan de theoretische fundamenten van machine learning,

maar biedt het ook praktische tools om enkele van de meest urgente uitdagin-

gen in de datawetenschap aan te pakken. De hier ontwikkelde methodologieën

hebben het potentieel om toegang tot krachtige machine learning-modellen te

democratiseren, waardoor hun gebruik in een breder scala aan toepassingen mo-

gelijk wordt en uiteindelijk bijdraagt aan maatschappelijke vooruitgang in domeinen

waar datagestuurde inzichten cruciaal zijn.

1
INTRODUCTION

In an era where data-driven decision-making is becoming increasingly central

to societal progress, the ability to efficiently process and analyze vast amounts

of information is paramount [1]. From healthcare [2] and climate modeling [3]

to financial forecasting [4], the demand for scalable and interpretable machine

learning models has never been greater. These models are not only tools for

scientific discovery but also enablers of transformative technologies that impact

everyday life. For instance, in healthcare, they facilitate early disease detection

and personalized treatment plans by analyzing complex medical data. In climate

science, they help predict extreme weather events and inform mitigation strate-

gies by processing vast amounts of environmental data. In finance, they enable

real-time risk assessment and fraud detection by learning from high-dimensional

transactional data. Similarly, in autonomous systems, they underpin perception

and decision-making capabilities by interpreting sensory inputs in real time.

However, as the complexity and dimensionality of data continue to grow, tra-

ditional machine learning approaches often struggle to keep pace. Kernel ma-

chines, a class of models renowned for their theoretical elegance and practical

effectiveness, are no exception. While they offer powerful tools for learning com-

plex patterns, their computational and memory requirements often scale pro-

hibitively with the dimensionality of the data, limiting their applicability to real-

world problems. This challenge is particularly acute in domains where high-

dimensional data is the norm, such as medical imaging, genomics, and natu-

ral language processing. For example, in medical imaging, the analysis of high-

resolution scans requires models that can handle millions of voxels efficiently [5].

In genomics, the interpretation of gene expression data involves thousands of

features, necessitating models that can scale without sacrificing accuracy [6]. In

natural language processing, the representation of text data in high-dimensional

embedding spaces demands models that can operate effectively within these spaces

1

1

2 1. INTRODUCTION

[7].

At the heart of this issue lies the curse of dimensionality: as the number of fea-

tures or dimensions in the data increases, the computational resources required

to train and deploy kernel machines scale unfavourably [8, 9]. From a dual op-

timization perspective, said scaling is at least quadratic with the number of dat-

apoints. This scaling arises because kernel methods typically rely on pairwise

comparisons between data points, a fundamental operation that underlies their

ability to capture complex relationships in the data. Specifically, kernel methods

compute similarity measures between all pairs of data points, resulting in a ker-

nel matrix whose size scales quadratically with the number of datapoints. This

kernel matrix must be stored and manipulated, leading to significant computa-

tional and memory costs that quickly become intractable for large, possibly high-

dimensional datasets. This quadratic scaling makes kernel methods impractical

for modern datasets, which often consist of millions or billions of datapoints.

Moreover, the challenges of kernel methods extend beyond the kernel matrix

itself. In order to break down the aforementioned quadratic complexity from

quadratic to linear in the number of datapoints, a common strategy is to approx-

imate the kernel function in terms of basis functions [10, 11]. A large number of

basis functions are often required to approximate the kernel function effectively,

particularly for high-dimensional input data. In many cases, the number of basis

functions required to bound the approximation error grows exponentially with

the dimensionality of the input data. [12, 13]. This exponential growth in the

number of basis functions translates directly into an exponential increase in the

number of model parameters, making it infeasible to handle data that is even

moderately high-dimensional. As a result, while kernel methods are theoretically

powerful and capable of learning highly complex functions, their practical appli-

cation is limited by these scalability issues.

These limitations not only restrict the use of kernel machines in resource-constrained

environments, such as edge computing devices or low-power systems, but also

hinders their adoption in time-sensitive applications where rapid decision-making

is critical. In fields like autonomous driving or real-time fraud detection, de-

lays caused by computationally intensive models can have severe consequences,

ranging from safety risks to financial losses. These limitations underscore a need

for innovative approaches that can enhance the scalability and efficiency of ker-

nel machines without compromising their predictive power and explainability.

This thesis addresses these challenges by exploring the intersection of Tensor

Networks (TNs) and kernel machines, two fields that have traditionally evolved

in parallel. TNs, with their ability to efficiently represent high-dimensional data

through low-rank structures, offer a promising avenue for overcoming the scal-

1.1. NOTATION AND TENSORS

1

3

ability limitations of kernel machines [14]. By integrating the principles of TNs

into kernel-based learning, we aim to unlock new possibilities for modeling non-

linear high-dimensional and highly-sampled data while maintaining computa-

tional tractability. The methodologies developed here have the potential to de-

mocratize access to powerful machine learning models, enabling their use in a

wider range of applications and ultimately contributing to societal progress in

fields where data-driven insights are critical.

The remainder of this introduction are structured as follows. In Section 1.1

we briefly introduce the main concepts and notations regarding tensors adopted

throughout the remainder of the thesis. In Section 1.2 we introduce the funda-

mentals regarding TNs, while in Section 1.3 we touch on the fundamental themes

concerning kernel machines. Finally, in Section 1.4 we describe the layout of the

rest of this thesis.

1.1 NOTATION AND TENSORS

A tensor of order D is an array with entries indexed with D indices. Types of ten-

sors that are possibly familiar to the reader are tensors of order zero (scalars),

tensors of order one (vectors), and tensors of order 2 (matrices). Henceforth the

word tensors will generally refer to tensors of order higher than two. Throughout

this thesis, tensors are represented using uppercase bold italics, e.g. W , matrices

with uppercase bold letters, e.g. W , and vectors with lowercase bold letters, e.g.

w . Scalars are represented by lowercase letters, e.g. w , unless they denote the up-

per limit of an index, in which case they are uppercase. Element m1,m2, . . . ,mD

of a tensor W ∈ C
M1×M2×···×MD of order D is denoted as wm1,m2,...,mD

. Vectoriza-

tion, i.e. the process of converting a tensor into a vector, is achieved by flattening

the tensor along a specified order of its indices. For a tensor W ∈ C
M1×M2×···×MD ,

its vectorized form is denoted as vec(W) ∈C
M1M2···MD , such that

vec(W)m = wm1,m2,...,mD
,

with m = m1 +
∑

D

d=2
(md −1)

∏
d

k=1
Mk . Likewise, its inverse, the tensorization op-

erator ten(·, M1, M2, . . . , MD) : CM1M2···MD →C
M1×M2×...MD is defined such that

ten(w , M1, M2, . . . , MD)m1,m2,··· ,mD
= wm .

For simplicity, in the rest of the thesis it will be denoted in short form as ten(·) un-

less otherwise necessary. The mode-d unfolding of a tensor W ∈ C
M1×M2×···×MD

1

4 1. INTRODUCTION

is denoted as W(d), and is defined such that

w(d)md ,m1m2···mD
= ten(W)m1,m2,...,mD

. (1.1)

In the following, the left Kronecker product between two matrices W1 ∈ C
M1×M2

and W2 ∈C
N1×N2 is denoted with ⊗ and defined such that

(W1 ⊗W2)m1n1,m2n2
= w1m1,m2

w2n1,n2
. (1.2)

1.2 TENSOR NETWORKS

Tensor Networks (TNs) or Tensor Decompositions (TDs) extend the concept of rank

from matrices to tensors, also known as higher-order arrays. Any matrix W ∈

R
M1×M2 can be decomposed as

W =W1W
T

2 , (1.3)

where W1 ∈R
M1×R and W2 ∈R

M2×R and R is the matrix rank, upper bounded by

R ≤ min(M1, M2). (1.4)

An important class of matrix decompositions are the so-called rank-revealing de-

compositions, which as their name suggests, decompose a matrix in terms of

other matrices which allow to infer the rank by inspection. The most well-known

one is the Singular Value Decomposition (SVD).

Definition 1.2.1 (SVD [15]). A matrix W ∈C
M1×M2 has a rank-R SVD if

wm1,m2 =

R∑

r=1

w1m1,r w2m2,r sr ,

where W1 ∈ C
M1×R and W2 ∈ C

M2×R such that W
T

1 W1 = W
T

2 W2 = IR are matrices

of singular vectors and s ∈R
R
+ is the vector of singular values.

In tensors, there is not one unique concept of tensor rank. It is in fact possible

to decompose a tensor in multiple cores using a different approaches, which in

turn define their own notion of rank. Some of these decompositions are rank-

revealing, others are not. We will here briefly review the most common TNs,

which will be of use in the rest of this manuscript.

1.2. TENSOR NETWORKS

1

5

CANONICAL POLYADIC DECOMPOSITION

The Canonical Polyadic Decomposition (CPD), also known as CANonical DECOM-

Position (CANDECOMP) or PARAllel FACtor (PARAFAC) analysis, was independently

introduced as a method to factorize a tensor into a sum of component rank-1 ten-

sors, gaining prominence as a a way to uncover unique hidden factors in multi-

way data, becoming foundational in tensor decomposition methods. The defini-

tion of the CPD is provided below.

Definition 1.2.2 (CPD [16]). A D-dimensional tensor W ∈ C
M1×M2×···×MD has a

rank-R CPD if

wm1,m2,...,mD =

R∑

r=1

D∏

d=1

wd md ,r sr .

The cores of this particular network are D factor matrices Wd ∈ C
Md×R , and the

vector s ∈ R
R typically contains the norms of the columns of the factor matrices.

The storage complexity P = R
∑D

d=1
Md of a rank-R CPD is therefore O (DMR),

where M = max(M1, M2, . . . , MD).

Compared to the SVD, the orthogonality constraint is absent. Notably, not all

tensor admit a CPD [17, Section 3.3], and determining the CPD rank is a Nondeter-

ministic Polynomial-hard (NP-HARD) problem [18]. The CPD is however unique

under mild conditions (Krushkal conditions) [19]. The first applications of the

CPD are historically rooted in psychometrics and chemometrics. More recent

fields of application are signal processing (source separation, multichannel data

analysis), spectroscopy, image compression, recommendation systems, compres-

sion of Deep Neural Networks (DNNs), and others. We redirect the interested

reader in legacy applications to the comprehensive survey by Kolda and Bader

[20]. More recent applications can be found in the survey by Panagakis et al. [21].

TENSOR TRAIN DECOMPOSITION

The Tensor Train (TT) decomposition can be traced back to concepts developed

by White [22], particularly the Matrix Product State (MPS) in quantum physics,

which were introduced as a way to represent quantum states efficiently in high-

dimensional spaces. The idea of representing multi-dimensional data using low-

rank tensor factorizations was formalized as the TT decomposition, building on

previous tensor decomposition methods but optimizing for high-dimensional

data by expressing tensors as a sequence of smaller, lower-dimensional tensors.

This reinvention bridged a gap between quantum physics representations and

1

6 1. INTRODUCTION

numerical methods for high-dimensional data. We provide the definition of the

TT decomposition below.

Definition 1.2.3 (TT [23]). A D-dimensional tensor W ∈ C
M1×M2×···×MD admits a

rank-(R1 := 1,R2, . . . ,RD ,RD+1 := R1) TT if

wm1,m2,...,mD =

R1∑

r1=1

R2∑

r2=1

· · ·

Rd∑

rD=1

D∏

d=1

wd rd ,md ,rd+1
.

The cores of a TT are the D 3-dimensional tensors W d ∈ C
Rd×Md×Rd+1 . The case

R1 > 1 is also called a Tensor Ring (TR) [24]. The values R2, . . . ,RD are called the TT

ranks and are upper bounded by Rd ≤ min (
∏d−1

p=1 Mp ,
∏D

p=d+1
Mp). The storage

complexity P =

∑D
d=1

Md Rd Rd+1 of a TT is then O (DMR2),

where M = max(M1, M2, . . . , MD).

Unlike the CPD, the TT decomposition is not unique under trivial rescaling,

meaning that the CPD might be a more suitable choice in certain circumstances,

e.g. in unsupervised learning. Applications of the TT decomposition are data

compression [25], deep learning [26, 27], signal processing [28], scientific com-

puting [29], multivariate data analysis [30], and recommendation systems [31].

The interested reader is redirected to the monograph by Cichocki et al. [32] sur-

vey by Panagakis et al. [21].

TUCKER DECOMPOSITION

The Tucker decomposition is a higher-order generalization of the SVD for tensors,

where a tensor is factored into a core tensor multiplied by matrices along each

mode.

Definition 1.2.4 (Tucker Decomposition [33, 34]). A D-dimensional tensor W ∈

C
M1×M2×···×MD admits a rank-(R1,R2, . . . ,RD) Tucker decomposition if

wm1,m2,...,mD =

R1∑

r1=1

R2∑

r2=1

· · ·

Rd∑

rD=1

D∏

d=1

wd md ,rd
sr1,r2,...,rD .

The cores of a Tucker decompositions are the D factor matrices Wd ∈ C
Md×Rd

and the core tensor S ∈ R
R1×R2×···×RD . The values (R1,R2, . . . ,RD) are called the

Tucker ranks and are upper bounded by Rd ≤ min (Md ,
∏d−1

p=1 Mp
∏D

p=d+1
Mp).

The storage complexity P =

∑D
d=1

Md Rd +

∏
d=1 Rd of a Tucker decomposition is

then O (RD).

1.3. KERNEL MACHINES

1

7

An important type of Tucker decomposition is the Multilinear Singular Value

Decomposition (MLSVD). The MLSVD encompasses two ulterior constraints, namely

the semi-orthogonality of the factor matrices, i.e. W
T

d
Wd = IRd

and the all-orthogonality

of the core, i.e. S(d)
T

S(d) is a positive diagonal matrix with non-increasing en-

tries. Due to the semi-orthogonality of the factor matrices, it is hence sometimes

regarded as a generalization of Principal Component Analysis (PCA) to tensors.

Unlike the CPD, determining the Tucker decomposition ranks of a tensor and car-

rying out its decompositions are operations that can be accomplished in polyno-

mial time e.g. using MLSVD algorithm [35]. Example applications are chemomet-

rics [36], signal processing [28] and deep learning [21]. As previously the case, the

interested reader is redirected to the surveys by Kolda and Bader [20] and Pana-

gakis et al. [21].

A TN is underparametrized if P ≪

∏D
d=1

Md , i.e. it can represent a tensor with

fewer parameters than the number of entries of the tensor. Other TNs are the hier-

archical hierarchical Tucker [37, 38] decomposition, block-term decompositions

[39, 40], Projected Entangled Pair States (PEPS) [41] and Multi-scale Entanglement

Renormalization Ansatz (MERA) [42].

1.3 KERNEL MACHINES

Supervised learning is one of the main paradigms in Machine Learning (ML). In

its most standard setting, supervised learning is characterized by the presence

of a labeled dataset {(xn , yn)N
n=1}, which consists of N i.d.d. inputs-output pairs,

where xn ∈ R
D are the inputs and yn ∈ R are the outputs. The learning goal is to

find a model f (·, w) : RD
→ R, typically parameterized in terms of of weights w ∈

R
P , which describes the relationship between inputs and outputs and enables to

make prediction on unseen inputs.

Training a model consists then in finding a model f (·, w
∗) such that the input-

output relationship is best described according to a measure of loss. One com-

mon approach to do so is by performing Regularized Loss Minimization (RLM),

i.e. seeking a set of weights which minimizes the regularized loss

w
∗ :=argmin

w

N∑

n=1

ℓ(f (xn), yn)+ r (w). (1.5)

Here ℓ(·, ·) : R×R→R+ is a measure of loss, sometimes called loss function which

penalizes models that deviate from the data, and r (·) : RP
→R is an explicit regu-

larization term, which penalizes the model complexity. For context, examples of

1

8 1. INTRODUCTION

model parametrization are Feed-Forward Neural Network (FNN), Convolutional

Neural Network (CNN) or Support Vector Machine (SVM), while examples of reg-

ularization are lasso, ridge or elastic net. Other common optimization strategies

are Empirical Risk Minimization (ERM), Structural Risk Minimization (SRM).

1.3.1 LINEAR MODELS

As their names suggests, linear models model the relationship between the in-

puts and outputs as linear in both the data and the model weights

f (x , w) = 〈x , w〉 . (1.6)

Linear models are foundational in both statistical learning and machine learn-

ing, due to their simplicity and interpretability. They assume that the relationship

between the inputs and the outputs is linear, which can be particularly useful in

situations where the underlying process governing the data is indeed linear, or

when the goal is to provide an interpretable approximation of a more complex

system. Notably, the computational cost of evaluating Eq. (1.6) and its gradient is

of O (D), i.e. the scaling is linear in the dimensionality of the input feature and of

model parameters. Examples of linear models which solve Eq. (1.5) with differ-

ent loss functions are Least-Squares Support Vector Machine (LS-SVM) [43], Ridge

Regression (RR) [44], Lasso Regression (LR) [45], and others such as linear discrim-

inant analysis (LDA) and Poisson regression [9].

1.3.2 KERNEL MACHINES

Kernel machines provide a straightforward strategy for linear models to handle

nonlinear data by mapping the inputs into a typically higher-dimensional space

using a nonlinear feature map ϕ(·) : RD
→R

M

f (x , w) =
〈
ϕ(x), w

〉
, (1.7)

where w ∈R
M are the model weights. Arguably the most common choices of fea-

tures are polynomials or Fourier features, as they guarantee that kernel machines

can approximate any nonlinear function if the number of basis function is high

enough [46]. The computational cost associated with computing Eq. (1.7) and its

gradient is of O (M), i.e. linear with the number of features. Importantly, placing

a normal prior on the weights w ∼N (0,Λ) yields the weight-space or parametric

formulation of Gaussian Processes (GPs) [11]. A GP is a normal distribution over

1.3. KERNEL MACHINES

1

9

a class of functions, parameterized in terms of a mean and covariance (kernel)

function.

1.3.3 TENSOR-NETWORK CONSTRAINED KERNEL MACHINES

TNs-constrained kernel machines, as the name suggests, add an additional con-

straint to Eq. (1.7) which forces the model weights to be a vectorized TN of low

rank, and considers features which have Kronecker product structure. The re-

sulting optimization problem is then

w
∗ :=argmin

w

N∑

n=1

ℓ(
〈
ϕ1(x)⊗ϕ2(x)⊗·· ·⊗ϕQ (x), w

〉
, yn)+ r (w). (1.8)

subject to: TN-rank(ten(w)) = r , (1.9)

where r here indicates the vector containing the additional hyperparameters which

are the ranks of the TN, and each ϕq (·) : RD
→ R

Md maps the inputs or a subset

of the inputs to a higher space. Said models were first considered by Wahls et al.

[47] and Stoudenmire and Schwab [48] (TT and Fourier features), Chen et al. [49]

and Novikov, Oseledets, and Trofimov [50] (TT and polynomials). Said models

have the advantage of being able to learn from a large
∏Q

q=1 Mq number of fea-

tures, with a restricted number of model parameters, which is fully determined

by the choice of TN and of TN rank. Additionally, said models have been shown to

posses some degree of regularization due to the imposed low-rank structure, of-

ten achieving better generalization than kernel machines without the additional

TN constraint [47, 49, 50].

1.3.4 PRIMAL-DUAL OPTIMIZATION AND KERNELIZATION

Training a kernel machine in a supervised learning setting amounts typically to

solve Eq. (1.5), which is also called the primal optimization. Due to the i.i.d.

assumption, training with a stochastic first-order gradient-based method has a

computational cost equal to the number of model parameters, i.e. O (P), which is

independent of the number of inputs and outputs in the training set. If the loss

function and regularization term are convex, a global optimum can be found,

possibly closed form, e.g. if the loss function is the sum of squares and with lasso

or ridge regularization. Alternatively, one can solve the associated dual optimiza-

1

10 1. INTRODUCTION

tion problem, which requires to compute the inner products

k(x , xn) :=
〈
ϕ(x),ϕ(xn)

〉
, (1.10)

for all inputs in the training set. This requires a computational cost of at least

O (N), i.e. which is linear and fixed in terms of the size of the training set, render-

ing the dual optimization problem only advantageous if N ≪ M . Importantly, it

is not necessary to compute the inner products in Eq. (1.10) explicitly as long as

we can compute the kernel function k(·, ·) directly. This is the key idea behind the

kernel trick, which allows us to implicitly map the data into a high-dimensional

space without ever explicitly calculating the feature mapping ϕ(·). As a result, we

can perform optimization in the dual space without having to deal with the com-

putational burden of working with the potentially infinite-dimensional feature

space.

1.4 CONTRIBUTIONS OF THIS THESIS

In this thesis, we broadly explore the relation between TNs and kernel machines,

i.e. the models in Eq. (1.7). In particular we investigate:

How can tensor networks be used to accelerate and enhance the scalability

of kernel machines?

We explore this idea in Chapters 2 to 4, where we train kernel machines

with the additional constraint that the tensorized model weights are a low-

rank TN (Eq. (1.8)).

More specifically, in Chapter 2 we consider models defined by weighted

products of Fourier features, which are commonly used in literature to ap-

proximate stationary kernel functions. These approximations can be very

accurate, but require an exponential number of basis functions in the di-

mensionality of the data. By casting the problem as a TN-constraint kernel

machine, i.e. by introducing the additional constraint that the tensorized

model weights are a low-rank TN, we enable learning kernel machines with

linear complexity in the dimensionality of the data from stationary kernel

functions which are implicitly approximated up to machine precision.

In Chapter 3, we explore the same idea in the context of Nyström or induc-

ing point-based approximations of the kernel function, which can be re-

garded as choosing the kernel function itself as a basis function. In particu-

lar, we notice that when considering product kernels, placing the inducing

1.4. CONTRIBUTIONS OF THIS THESIS

1

11

points on a Cartesian grid yields features which have Kronecker product

structure. By imposing a low-rank TN constraint on the model weights, we

can develop kernel machines that achieve linear complexity with respect

to the dimensionality of the data. These models effectively learn from a

product kernel function that is approximated to machine precision.

In Chapter 4, we observe that some Fourier and polynomial basis func-

tions contain further latent product structure, i.e. can be quantized (not to

be confused with the practice of training models with lower machine pre-

cision), or in other words, tensorized along a number of fictitious modes.

As a consequence, the model parameters in the associated kernel machine

can be quantized as well. Thanks to low-rank TN constraint imposed on the

weight tensor characterized by an artificially increased number of modes,

the resulting quantized model is able to describe more patterns for the

same number of parameters. We show that, for the same number of model

parameters, the resulting quantized TN-constrained kernel machines have

a higher bound on the Vapnik–Chervonenkis (VC)-dimension (the largest

set of points that can be classified in all possible ways) as opposed to their

non-quantized counterparts, at no additional computational cost, while

learning from identical features. In simpler terms, this means that quan-

tized models can learn from the exact same functions of non-quantized

models and build a model which generalizes better with fewer model pa-

rameters and thus faster.

In which ways do the resulting tensor network-constrained kernel machines

relate to Gaussian processes?

In Chapter 5, we establish a formal connection between TN-constrained

kernel machines and GPs in a novel way, distinct from previous approaches

that treated the TN as a constraint on the GP. We observe that the TN-

constrained models converge to a GP when the limit of the ranks tends

to infinity and when an appropriate prior is specified on their cores. A

CPD-constrained model converges faster to the GP than a TT-constrained

model. The proposed priors, unlike the ones that are implicitly considered

in Chapters 2 to 4, are less strict, and allow the model to better generalize

or overfit more depending on the training regime the model is in, providing

an alternative regularization strategy to the interested practitioner.

Is it possible to characterize tensor networks in terms of a primal and dual

optimization problem?

In Chapter 6, we establish a primal optimization problem whose associated

1

12 1. INTRODUCTION

dual optimization problem is a Tucker decomposition (Definition 1.2.4)

with the additional constraints of semi-orthogonality on the factor matri-

ces, and all-orthogonality of the core tensors, in other words, the MLSVD. In

the spirit of kernel machines, said primal optimization problem describes

the MLSVD parametrically in terms of model weights, paving the way for

more computationally and memory efficient implementations and for the

kernelization of the decomposition. We also discuss several lines of appli-

cation.

Other Contributions Additional contributions that are not integral to this the-

sis can be found listed in the List of Publications.

REFERENCES

[1] E. Brynjolfsson, L. M. Hitt, and H. H. Kim. Strength in Numbers: How Does Data-

Driven Decisionmaking Affect Firm Performance? SSRN Scholarly Paper. Rochester,

NY, Apr. 2011. Social Science Research Network: 1819486.

[2] S. Secinaro, D. Calandra, A. Secinaro, V. Muthurangu, and P. Biancone. “The Role of

Artificial Intelligence in Healthcare: A Structured Literature Review”. In: BMC Med-

ical Informatics and Decision Making 21.1 (Apr. 2021), p. 125.

[3] C. Huntingford, E. S. Jeffers, M. B. Bonsall, H. M. Christensen, T. Lees, and H. Yang.

“Machine Learning and Artificial Intelligence to Aid Climate Change Research and

Preparedness”. In: Environmental Research Letters 14.12 (Nov. 2019), p. 124007.

[4] S. Bahoo, M. Cucculelli, X. Goga, and J. Mondolo. “Artificial Intelligence in Finance:

A Comprehensive Review through Bibliometric and Content Analysis”. In: SN Busi-

ness & Economics 4.2 (Jan. 2024), p. 23.

[5] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger. “3D U-Net:

Learning Dense Volumetric Segmentation from Sparse Annotation”. In: Medical Im-

age Computing and Computer-Assisted Intervention – MICCAI 2016. Ed. by S. Ourselin,

L. Joskowicz, M. R. Sabuncu, G. Unal, and W. Wells. Cham: Springer International

Publishing, 2016, pp. 424–432.

[6] J. Gui and H. Li. “Penalized Cox Regression Analysis in the High-Dimensional and

Low-Sample Size Settings, with Applications to Microarray Gene Expression Data”.

In: Bioinformatics 21.13 (July 2005), pp. 3001–3008.

[7] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. ukasz

Kaiser, and I. Polosukhin. “Attention Is All You Need”. In: Advances in Neural In-

formation Processing Systems. Vol. 30. Curran Associates, Inc., 2017.

[8] Y. Bengio, O. Delalleau, and N. Roux. “The Curse of Highly Variable Functions for

Local Kernel Machines”. In: Advances in Neural Information Processing Systems.

Vol. 18. MIT Press, 2005.

[9] C. M. Bishop. Pattern Recognition and Machine Learning (Information Science and

Statistics). Berlin, Heidelberg: Springer-Verlag, July 2006.

[10] J. A. K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, and J. Vandewalle. Least

Squares Support Vector Machines. World Scientific, Nov. 2002.

[11] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning.

Adaptive Computation and Machine Learning. Cambridge, Mass: MIT Press, 2006.

13

1

14 REFERENCES

[12] J. Hensman, N. Durrande, and A. Solin. “Variational Fourier Features for Gaussian

Processes”. In: The Journal of Machine Learning Research 18.1 (Jan. 2017), pp. 5537–

5588.

[13] A. Solin and S. Särkkä. “Hilbert Space Methods for Reduced-Rank Gaussian Process

Regression”. In: Statistics and Computing 30.2 (Mar. 2020), pp. 419–446.

[14] A. Cichocki. “Era of Big Data Processing: A New Approach via Tensor Networks and

Tensor Decompositions”. In: arXiv:1403.2048 [cs] (Aug. 2014). arXiv: 1403.2048 [cs].

[15] G. H. Golub and C. F. Van Loan. Matrix Computations (3rd Ed.) USA: Johns Hopkins

University Press, Oct. 1996.

[16] F. L. Hitchcock. “The Expression of a Tensor or a Polyadic as a Sum of Products”. In:

Journal of Mathematics and Physics 6.1-4 (1927), pp. 164–189.

[17] T. G. Kolda. “Orthogonal Tensor Decompositions”. In: SIAM Journal on Matrix Anal-

ysis and Applications 23.1 (Jan. 2001), pp. 243–255.

[18] J. Håstad. “Tensor Rank Is NP-Complete”. In: Journal of Algorithms 11.4 (Dec. 1990),

pp. 644–654.

[19] N. D. Sidiropoulos and R. Bro. “On the Uniqueness of Multilinear Decomposition of

N-Way Arrays”. In: Journal of Chemometrics 14.3 (2000), pp. 229–239.

[20] T. G. Kolda and B. W. Bader. “Tensor Decompositions and Applications”. In: SIAM

Review 51.3 (Aug. 2009), pp. 455–500.

[21] Y. Panagakis, J. Kossaifi, G. G. Chrysos, J. Oldfield, M. A. Nicolaou, A. Anandkumar,

and S. Zafeiriou. “Tensor Methods in Computer Vision and Deep Learning”. In: Pro-

ceedings of the IEEE 109.5 (May 2021), pp. 863–890.

[22] S. R. White. “Density Matrix Formulation for Quantum Renormalization Groups”.

In: Physical Review Letters 69.19 (Nov. 1992), pp. 2863–2866.

[23] I. V. Oseledets. “Tensor-Train Decomposition”. In: SIAM Journal on Scientific Com-

puting 33.5 (Jan. 2011), pp. 2295–2317.

[24] Q. Zhao, G. Zhou, S. Xie, L. Zhang, and A. Cichocki. “Tensor Ring Decomposition”.

In: arXiv:1606.05535 [cs] (June 2016). arXiv: 1606.05535 [cs].

[25] K. Batselier, W. Yu, L. Daniel, and N. Wong. “Computing Low-Rank Approximations

of Large-Scale Matrices with the Tensor Network Randomized SVD”. In: SIAM Jour-

nal on Matrix Analysis and Applications 39.3 (Jan. 2018), pp. 1221–1244.

[26] A. Novikov, D. Podoprikhin, A. Osokin, and D. P. Vetrov. “Tensorizing Neural Net-

works”. In: Advances in Neural Information Processing Systems. Ed. by C. Cortes,

N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett. Vol. 28. Curran Associates, Inc.,

2015.

[27] A. Tjandra, S. Sakti, and S. Nakamura. “Compressing Recurrent Neural Network

with Tensor Train”. In: 2017 International Joint Conference on Neural Networks (IJCNN).

May 2017, pp. 4451–4458.

REFERENCES

1

15

[28] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalexakis, and C.

Faloutsos. “Tensor Decomposition for Signal Processing and Machine Learning”.

In: IEEE Transactions on Signal Processing 65.13 (July 2017), pp. 3551–3582.

[29] B. N. Khoromskij. “Tensors-Structured Numerical Methods in Scientific Computing:

Survey on Recent Advances”. In: Chemometrics and Intelligent Laboratory Systems

110.1 (Jan. 2012), pp. 1–19.

[30] I. V. Oseledets and E. E. Tyrtyshnikov. “Algebraic Wavelet Transform via Quantics

Tensor Train Decomposition”. In: SIAM Journal on Scientific Computing 33.3 (Jan.

2011), pp. 1315–1328.

[31] C. Yin, B. Acun, C.-J. Wu, and X. Liu. “TT-Rec: Tensor Train Compression for Deep

Learning Recommendation Models”. In: Proceedings of Machine Learning and Sys-

tems 3 (Mar. 2021), pp. 448–462.

[32] A. Cichocki, A.-H. Phan, Q. Zhao, N. Lee, I. V. Oseledets, M. Sugiyama, and D. Mandic.

“Tensor Networks for Dimensionality Reduction and Large-Scale Optimizations. Part

2 Applications and Future Perspectives”. In: Foundations and Trends® in Machine

Learning 9.6 (2017), pp. 249–429. arXiv: 1708.09165.

[33] L. R. Tucker. “Implications of Factor Analysis of Three-Way Matrices for Measure-

ment of Change”. In: Problems in measuring change 15.122-137 (1963), p. 3.

[34] L. R. Tucker. “Some Mathematical Notes on Three-Mode Factor Analysis”. In: Psy-

chometrika 31.3 (Sept. 1966), pp. 279–311.

[35] L. De Lathauwer, B. De Moor, and J. Vandewalle. “A Multilinear Singular Value De-

composition”. In: SIAM Journal on Matrix Analysis and Applications 21.4 (Jan. 2000),

pp. 1253–1278.

[36] R. Bro and A. K. Smilde. “Principal Component Analysis”. In: Analytical Methods 6.9

(2014), pp. 2812–2831.

[37] W. Hackbusch and S. Kühn. “A New Scheme for the Tensor Representation”. In: Jour-

nal of Fourier Analysis and Applications 15.5 (Oct. 2009), pp. 706–722.

[38] L. Grasedyck. “Hierarchical Singular Value Decomposition of Tensors”. In: SIAM

Journal on Matrix Analysis and Applications 31.4 (Jan. 2010), pp. 2029–2054.

[39] L. De Lathauwer. “Decompositions of a Higher-Order Tensor in Block Terms—Part

I: Lemmas for Partitioned Matrices”. In: SIAM Journal on Matrix Analysis and Ap-

plications 30.3 (Jan. 2008), pp. 1022–1032.

[40] L. De Lathauwer. “Decompositions of a Higher-Order Tensor in Block Terms—Part

II: Definitions and Uniqueness”. In: SIAM Journal on Matrix Analysis and Applica-

tions 30.3 (Jan. 2008), pp. 1033–1066.

[41] F. Verstraete and J. I. Cirac. Renormalization Algorithms for Quantum-Many Body

Systems in Two and Higher Dimensions. July 2004. arXiv: cond-mat/0407066.

1

16 REFERENCES

[42] G. Evenbly and G. Vidal. “Algorithms for Entanglement Renormalization”. In: Phys-

ical Review B 79.14 (Apr. 2009), p. 144108.

[43] J. Suykens and J. Vandewalle. “Least Squares Support Vector Machine Classifiers”.

In: Neural Processing Letters 9.3 (June 1999), pp. 293–300.

[44] C. Saunders, A. Gammerman, and V. Vovk. “Ridge Regression Learning Algorithm

in Dual Variables”. In: Proceedings of the Fifteenth International Conference on Ma-

chine Learning. ICML ’98. San Francisco, CA, USA: Morgan Kaufmann Publishers

Inc., July 1998, pp. 515–521.

[45] V. Roth. “The Generalized LASSO”. In: IEEE Transactions on Neural Networks 15.1

(Jan. 2004), pp. 16–28.

[46] B. Hammer and K. Gersmann. “A Note on the Universal Approximation Capability

of Support Vector Machines”. In: Neural Processing Letters 17.1 (Feb. 2003), pp. 43–

53.

[47] S. Wahls, V. Koivunen, H. V. Poor, and M. Verhaegen. “Learning Multidimensional

Fourier Series with Tensor Trains”. In: 2014 IEEE Global Conference on Signal and

Information Processing (GlobalSIP). Dec. 2014, pp. 394–398.

[48] E. M. Stoudenmire and D. J. Schwab. “Supervised Learning with Tensor Networks”.

In: Proceedings of the 30th International Conference on Neural Information Process-

ing Systems. Curran Associates Inc., Dec. 2016, pp. 4806–4814.

[49] Z. Chen, K. Batselier, J. A. K. Suykens, and N. Wong. “Parallelized Tensor Train Learn-

ing of Polynomial Classifiers”. In: IEEE Transactions on Neural Networks and Learn-

ing Systems 29.10 (Oct. 2018), pp. 4621–4632.

[50] A. Novikov, I. Oseledets, and M. Trofimov. “Exponential Machines”. In: Bulletin of

the Polish Academy of Sciences: Technical Sciences; 2018; 66; No 6 (Special Section on

Deep Learning: Theory and Practice); 789-797 (2018).

2
LARGE-SCALE LEARNING WITH FOURIER

FEATURES AND TENSOR DECOMPOSITIONS

Random Fourier features provide a way to tackle large-scale machine learning

problems with kernel methods. Their slow Monte Carlo convergence rate has mo-

tivated the research of deterministic Fourier features whose approximation error

can decrease exponentially in the number of basis functions. However, due to

their tensor product extension to multiple dimensions, these methods suffer heav-

ily from the curse of dimensionality, limiting their applicability to one, two or

three-dimensional scenarios. In our approach we overcome said curse of dimen-

sionality by exploiting the tensor product structure of deterministic Fourier fea-

tures, which enables us to represent the model parameters as a low-rank tensor

decomposition. We derive a monotonically converging block coordinate descent

algorithm with linear complexity in both the sample size and the dimensionality

of the inputs for a regularized squared loss function, allowing to learn a parsimo-

nious model in decomposed form using deterministic Fourier features. We demon-

strate by means of numerical experiments how our low-rank tensor approach ob-

tains the same performance of the corresponding nonparametric model, consis-

tently outperforming random Fourier features.

This chapter has been published as:

F. Wesel and K. Batselier. “Large-Scale Learning with Fourier Features and Tensor Decompositions”.

In: Advances in Neural Information Processing Systems. Vol. 34. Curran Associates, Inc., 2021,

pp. 17543–17554

17

2

18 2. FOURIER FEATURES AND TENSOR DECOMPOSITIONS

2.1 INTRODUCTION

Kernel methods such as Support Vector Machines (SVMs) and Gaussian Processes

(GPs) are commonly used to tackle problems such as classification, regression

and dimensionality reduction. Since they can be universal function approxima-

tors [2], kernel methods have received renewed attention in the last few years

and have shown equivalent or superior performance to Neural Networks (NNs) [3,

4, 5]. The main idea behind kernel methods is to lift the data into a higher-

dimensional (or even infinite-dimensional) Reproducing Kernel Hilbert Space by

means of a feature map ϕ (·) : RD
→ R

M . Considering then the pairwise similar-

ities between the mapped data allows to tackle problems which are highly non-

linear in the original sample space. This can be done equivalently by considering

a kernel function k (·, ·) : RM
×R

M
→R such that

〈
ϕ (x) ,ϕ

(
x
′′′
)〉

= k
(
x , x

′′′
)

and per-

forming thus said mapping implicitly. Although effective at learning nonlinear

patterns in the data, kernel methods are known to scale poorly as the number

of data points N increases. For example, when considering Kernel Ridge Regres-

sion (KRR), Gaussian Process Regression (GPR) [6] or Least-Squares Support Vec-

tor Machine (LS-SVM) [7, 8] training usually consist in inverting the Gram ma-

trix ki j = k
(
xi , x j

)
, which encodes the pairwise relation between all data. As

a consequence, the associated storage complexity is O
(
N 2

)
and the computa-

tional complexity is O
(
N 3

)
, rendering these methods unfeasible for large data.

In order to lower the computational cost, data-dependent methods approximate

the kernel function by means of M data-dependent basis functions. Due to their

reduced-rank formulation, the computational complexity is reduced to O
(
N M 2

)

for N ≫ M . However, e.g. for the Nyström method [9], the convergence rate

is only of O

(
1

p

M

)

[10] limiting its effectiveness. As the name suggests, data-

independent methods approximate the kernel function by M data-independent

basis functions. A good example is the celebrated Random Fourier Features (RFF)

approach by Rahimi and Recht [11], where the authors propose for stationary

kernels a low-dimensional random mapping z (·) : RD
→R

M such that

k
(
x , x

′′′
)
=

〈
ϕ (x) ,ϕ

(
x
′′′
)〉

≈

〈
z (x) , z

(
x
′′′
)〉

. (2.1)

As in the case of data-dependent methods, the reduced-rank formulation allows

for a computational complexity of O
(
N M 2

)
for N ≫ M . Probabilistic error bounds

on the approximation are provided which result in a convergence rate of O

(
1

p

M

)

,

which is again the Monte Carlo rate.

Improvements in this sense were achieved by considering deterministic fea-

2.2. RELATED WORK

2

19

tures resulting from dense quadrature methods [12, 13, 14] and kernel eigen-

functions [15, 16]. These methods are able to achieve exponentially decreasing

upper bounds on uniform convergence guarantees when certain conditions are

met. However, for a D-dimensional input space these methods take the tensor

product of D vectors, resulting in an exponential increase in the number of basis

functions and thus of model weights, effectively limiting the applicability of de-

terministic features to low-dimensional data. In this work we consider determin-

istic features. In order to take advantage of the tensor product structure which

arises when mapping the inputs to H , we represent the weights as a low-rank

tensor. This allows us to learn the inter-modal relations in the tensor product of

(low-dimensional) Hilbert spaces, avoiding the exponential computational and

storage complexities in D . In this way we are able to obtain a linear computa-

tional complexity in both the number of samples and in the input dimension

during training, without having to resort to the use of sparse grids or additive

modeling of kernels.

The main contribution of this work is in lifting the curse of dimensionality af-

fecting deterministic Fourier features by modeling the weights as a low-rank ten-

sor. This enables the efficient solution of large-scale and high-dimensional ker-

nel learning problems. We derive an iterative algorithm under the exemplifying

case of regularized squared loss and test it on regression and classification prob-

lems.

2.2 RELATED WORK

Fourier Features (FFs) are a collection of data-independent methods that lever-

age Bochner’s theorem [17] from harmonic analysis to approximate stationary

kernels by numerical integration of their spectral density p (·):

k
(
x , x

′′′
) Stationarity

:= k
(
x −x

′′′
) Bochner

=

∫

p (ω)exp
(〈

iω,
(
x −−−x

′′′
)〉)

dω
FF
≈

〈
z (x) , z

(
x
′′′
)〉

.

(2.2)

Rahimi and Recht [11] proposed to approximate the integral by Monte Carlo inte-

gration i.e. by drawing M random frequencies ω∼ p (·). In their work they show

how the method converges uniformly at the Monte Carlo rate. See [18] for an

overview of RFF. In order to achieve faster convergence and a lower sample com-

plexity, a multitude of approaches that rely on deterministic numerical quadra-

ture of the Fourier integral were developed. These methods generally consider

2

20 2. FOURIER FEATURES AND TENSOR DECOMPOSITIONS

product kernels whose spectral density factors in the frequency domain, which

enables in turn to factor the Fourier integral. The resulting deterministic Fourier

features are then the tensor product of D one-dimensional deterministic fea-

tures.

For example, in [12] the authors give an analysis of the sample complexity

of features resulting from dense Gaussian Quadrature (GQ). In [13] the authors

present a similar quadrature approach for kernels whose spectral density factors

over the dimensions of the inputs. They provide an explicit construction for their

Quadrature Fourier Features relying on a dense Cartesian grid, and note that their

method, as well as GQ, can attain exponentially decreasing uniform convergence

bounds in the total number of basis functions per dimensions M [13, Theorem 1].

To avoid the curse of dimensionality, they make use of additive modeling of ker-

nels. Variational Fourier Features (VFF) [15] are derived probabilistically in a one-

dimensional setting for Matérn kernels by projecting a GP onto a set of Fourier

basis. An extension to multiple dimensions when considering product kernels is

then achieved by taking the tensor product of the one-dimensional features, in-

curring however again in exponentially rising computational costs in D . In what

they call Hilbert–space Gaussian Process (HGP) [16] the authors diagonalize sta-

tionary kernels in terms of the eigenvalues and eigenfunctions of the Laplace op-

erator with Dirichlet boundary conditions. Due to the multiplicative structure

of the eigenfunctions of the Laplace operator, the complexity of the basis func-

tion increases exponentially in D when one considers product kernels. Like with

other deterministic approximations, bounds on the uniform convergence error

which decrease exponentially in M can be achieved [16, Theorem 8].

Tensor decompositions have been used extensively in machine learning in or-

der to benefit from structure in data [19], in particular to obtain an efficient rep-

resentation of the model parameters. In the context of GPR, the tensor prod-

uct structure which arises when the inputs are located on a Cartesian grid have

been exploited to speedup inference [20]. In their variational inference frame-

work, [21] proposed to parameterize the posterior mean of a GP by means of

a tensor decomposition in order to exploit the tensor product structure which

arises when interpolating the kernel function. In the context of NNs, [22] pro-

posed to represent the weights in deep NNs as a tensor decomposition to speed

up training. A similar approach was carried out in case of recurrent NNs [23] [24].

Tensor decompositions have also been used to learn from simple features. In [25]

multivariate functions are learned from a Fourier basis, which corresponds to

assuming a uniform spectral density in Eq. (2.2). Motivated by spin vectors in

quantum mechanics, [26] consider trigonometric feature maps which they ar-

gue induce uninformative kernels. On a similar note, [27] and [28] leverage the

2.3. LEARNING WITH FOURIER FEATURES

2

21

tensor product structure of polynomial mappings to induce a polynomial kernel

and consider model parameters in decomposed form. While these existing ap-

proaches are able to overcome the curse of dimensionality affecting tensor prod-

uct feature maps by modeling the parameter tensor as a tensor network, they

consider simple and empirical feature maps which induce uninformative ker-

nels. In the following section we show how deterministic Fourier features can

be used for supervised learning in both large and high-dimensional scenarios by

assuming that the model weights are a low-rank tensor, thereby linking tensor

decompositions with stationary product kernels.

2.3 LEARNING WITH FOURIER FEATURES

2.3.1 THE MODEL

In this article we assume models of the form

f (x , w) =
〈
ϕ(x), w

〉
. (2.3)

Here x ∈ R
D is the input vector, ϕ (·) : RD

→ R
M is a feature map, w ∈ R

M are the

model weights, y ∈ R is the corresponding available observation. Learning such

a kernelized model consists in finding as set of weights w such that

N∑

n=1

ℓ
(

f (xn , w) , yn

)
+ r (w), (2.4)

is minimized. Here, ℓ (·, ·) : R×R → R+ is a symmetric and positive loss func-

tion and r (w) is a regularization term. A variety of primal machine learning for-

mulations arise when considering different combinations of loss functions and

regularization terms. For example, considering a ridge regularization term and

squared loss leads to KRR [8], while considering hinge loss leads to SVM [29], and

so on. Furthermore, applying the kernel trick when considering ϕ (·) recovers

the nonparametric formulation which, depending on the choice of kernel, en-

ables to perform inference using infinitely many basis functions with a computa-

tional complexity of O (N 3). Considering instead a low-dimensional finite map-

ping z (·) : RD
→R

M such as RFF or the Nyström method leads a primal approach

and to computational savings with a computational complexity of O
(
N M 2

)
for

N ≫ M . However, as already discussed, these low-dimensional random map-

pings converge at the slow Monte Carlo rate, motivating our approach.

2

22 2. FOURIER FEATURES AND TENSOR DECOMPOSITIONS

In order to approximate the kernel function with faster and possibly exponen-

tial convergence, we consider deterministic, finite-dimensional features which

are the tensor product of D vectors. For a given D-dimensional input point x we

define the deterministic feature mapping z (·) : RD
→R

M1M2···MD as

z (x) = z1 (x1)⊗ z2 (x2) · · ·⊗ zD (xD) , (2.5)

where zd is a deterministic mapping applied to the d-th dimension. The dimen-

sion of the feature space is
∏D

d=1
Md . It is easy to verify by applying the kernel

trick that the features of Eq. (2.5) yield product kernels. The mapping z(·) en-

compasses for instance the mappings derived by quadrature [12, 13, 14] and by

projection [15, 16]. Note that these mappings cover many popular kernels such as

the Gaussian and Matérn kernels. To give a concrete example, in the framework

of A. Solin and S. Särkkä [16, Equation 60], for input data centered in a hyperbox

[−U1,U1]× ·· ·× [−UD ,UD], the Gaussian kernel is approximated by means of D

tensor products of weighted sinusoidal basis functions with frequencies lying on

a harmonic scale such that:

zd (xd)id
=

1
√

Ud

p

(
πid

2Ud

)

sin

(
πid (xd +Ud)

2Ud

)

, id = 1,2, . . . , Md . (2.6)

Here p (·) is the spectral density of the Gaussian kernel with one-dimensional in-

puts, which is known in closed-form [6, page 83]. This deterministic mapping

then approximates the Gaussian kernel function [16, Equation 59] such that

k
(
x , x

′′′
)
≈

〈
z(x), z(x

′′′)
〉
= 〈ten(z(x)) , ten

(
z(x

′′′)
)
〉F,

and converges uniformly with exponentially decreasing bounds [16, Theorem 8].

We therefore use z(·) instead of ϕ(·) in Eq. (2.3) to obtain

f (x , w) = 〈z(x), w〉 = 〈ten(z(x)) , ten(w)〉F. (2.7)

Learning the exponential number of model parameters ten(w) in Eq. (2.7) under

a hinge loss leads to SVM, while considering a squared loss leads to the primal

formulation of KRR, which we will consider as exemplifying case from here on:

argmin
w

N∑

n=1

(
〈ten(z(xn)) , ten(w)〉F − yn

)2
+λ||ten(w)||2F. (2.8)

Since the number of elements M in ten(w) and ten(z) grows exponentially in D ,

2.3. LEARNING WITH FOURIER FEATURES

2

23

this primal approach is advantageous compared to the nonparametric dual ap-

proach only if
∏D

d=1
Md ≪ N , limiting it to low-dimensional inputs. In order to lift

this curse of dimensionality, we propose to represent and to learn ten(w) directly

as a low-rank tensor decomposition. A low-rank tensor decomposition allows us

to exploit redundancies in ten(w) in order to obtain a parsimonious model with

a storage complexity that scales linearly in both M and D . The low-rank struc-

ture will, as explicitly shown in the experiments, act as a form of regularization

by limiting the total number of degrees of freedom of the model.

2.3.2 LOW-RANK TENSOR DECOMPOSITIONS

Tensor Networks (TNs) can be seen as generalizations of the Singular Value De-

composition (SVD) of a matrix to tensors [30]. Three common tensor decompo-

sitions are the Tucker decomposition [31, 32], the Tensor Train (TT) decomposi-

tion [33] and the Canonical Polyadic Decomposition (CPD) [34, 35], where each of

them encompasses different properties of the SVD. In this subsection we briefly

discuss these three decompositions and list both their advantages and disadvan-

tages for modeling ten(w) in Eq. (2.8). For a detailed exposition on tensor de-

compositions we refer the reader to [36] and the references therein. An important

property of tensor decompositions is that they can always be written linearly in

their components, which implies that applying a block coordinate descent algo-

rithm to solve Eq. (2.8) results in a series of linear least-squares problems.

A rank-R CPD of W consists of D factor matrices Wd ∈R
Md×R and S ∈R

R×R×···×R

is a superdiagonal core tensor, whose entries typically scale the columns of the

factor matrices up to unit norm.

vec(W) = (W1 ⊗W2 ⊗·· ·⊗WD)vec(S) .

Note that the entries of the vec(S) vector were absorbed in one of the factor

matrices when writing the CPD as a sum of R terms. The CPD has been shown,

in contrast to matrix factorizations, to be unique under mild conditions [37].

The storage complexity comes mainly from the D factor matrices and is there-

fore O (RMD). The Tucker decomposition generalizes the CPD in two ways. First,

the Khatri-Rao product is replaced with a Kronecker product. The vec(S) vec-

tor has to grow in length accordingly from R to RD . Second, the R-dimension

of each of the factor matrices is allowed to vary, resulting in a multi-linear rank

2

24 2. FOURIER FEATURES AND TENSOR DECOMPOSITIONS

(R1,R2, . . . ,RD):

w = (W1 ⊗W2 ⊗·· ·⊗WD) s.

The Tucker decomposition is inherently non-unique and its storage complexity

O (RD) is dominated by the s vector, which limits its use to low-dimensional input

data. For this reason we do not consider the Tucker decomposition any further

in this article.

The TT decomposition consists of D third-order tensors W d ∈R
Rd×M×Rd+1 such

that

wi1i2···iD =

R1∑

r1=1

· · ·

RD+1∑

rD+1=1

w1r1i1r2
· · ·wD rD iD rD+1

. (2.9)

The auxiliary dimensions R1,R2, . . . ,RD+1 are called the TT-ranks. In order to

ensure that the right-hand side of Eq. (2.9) is a scalar, the boundary condition

R1 = RD+1 = 1 is enforced. The TT decomposition is, just like the Tucker decom-

position, non-unique and its storage complexity R2MD is due to the D tensor

components W
(d). Considering their storage complexity, both the CPD and TT

decomposition are viable candidates to replace W in Eq. (2.8). The CPD-rank R

and TT-ranks R2, . . . ,RD are additional hyperparameters, which favors the CPD in

practice. For the TT, one could choose R2 = R3 = ·· · = RD to reduce the number

of additional hyperparameters but this constraint turns out in practice to lead

to suboptimal results. For these reasons we limit the discussion of the learning

algorithm to the CPD case.

2.3.3 TENSOR LEARNING WITH FOURIER FEATURES

We now wish to minimize the standard regularized squared loss function as in Eq. (2.8)

with the additional constraint that the weight tensor has a rank-R CPD structure:

argmin
w

N∑

n=1

(
〈ten(z(x)) , ten(w)〉F − yn

)2
+λ||ten(w)||2F, (2.10)

subject to: CPD-rank(ten(w)) = R. (2.11)

Note that if R equals the true CPD-rank of the underlying weight tensor then the

exact solution of Eq. (2.8) would be obtained. In practice a low-rank solution

for ten(w) achieves a sufficiently complex decision boundary that is practically

indistinguishable from the full-rank solution, as is demonstrated in the experi-

2.3. LEARNING WITH FOURIER FEATURES

2

25

ments. Imposing the rank-R reduces the number of unknowns from M D to RMD

and allows the application of a block coordinate descent algorithm (also known

as alternating linear scheme), which is shown to converge monotonically [38, 39].

Each of the factor matrices Wd is optimized in an iterative fashion while keeping

the others fixed. Such a factor matrix update is obtained by solving a linear least-

squares problem with MR unknowns. In what follows we derive the linear prob-

lem for the d-th factor matrix Wd . The data-fitting term 〈ten(z(x)) , ten(w)〉F can

be rewritten linearly in terms of the unknown factor matrix as

〈ten(z(x)) , ten(w)〉F = 〈ten(z1 ⊗ z2 · · ·⊗ zD) , ten

(
R∑

r=1

w1r ⊗w2r ⊗·· ·⊗wD r

)

〉

F

=

Md∑

md=1

R∑

r=1

(

zd md

M1∑

i1=1

w1m1,r z1m1
· · ·

M∑

mD=1

wD mD ,r zD mD

)

wd md r

=

(
zd ⊗

(
z1

T
W1 ⊙·· ·⊙ zD

T
WD

))T
vec(Wd)

= 〈gd (x),vec(Wd)〉F. (2.12)

where gd (x) := zd ⊗

(
z1

T
W1 ⊙·· ·⊙ zD

T
WD

)
. Similarly, for the regularization term:

||ten(w)||2F = 〈ten

(
R∑

r=1

w1r ⊗w2r ⊗·· ·⊗wD r

)

, ten

(
R∑

p=1

w1p ⊗w2p ⊗·· ·⊗wD p

)

〉

F

=

Md∑

md=1

R∑

r=1

R∑

p=1

wd md ,r

(
M1∑

m1=1

w1m1,r w1m1,p · · ·

MD∑

mD=1

wD mD ,r wD mD ,p

)

wd md ,p

=

Md∑

md=1

R∑

r=1

R∑

p=1

wd md ,r

(
W

T
1 W1 ⊙·· ·⊙W

T
D WD

)

r,p wd md ,p

= vec(Wd)T
(

IMd
⊗Hd

)
vec(Wd) . (2.13)

Here Hd :=
(
W1

T
W1 ⊙·· ·⊙Wd

T
WD

)
.

Substitution of the expressions Eq. (2.12) and Eq. (2.13) into Eq. (2.10) leads to a

linear least-squares problem for vec(Wd):

argmin
vec(Wd)

N∑

n=1

〈gd (xn) ,vec(Wd)〉F +λvec(Wd)
(

IMd
⊗Hd

)T
vec(Wd) . (2.14)

Its unique solution can be computed exactly in an efficient manner by solving

the normal equations, requiring N M 2R2
+M 3R3 operations. Since we are solv-

2

26 2. FOURIER FEATURES AND TENSOR DECOMPOSITIONS

ing a non-convex optimization problem that consists of a series of convex and

exactly solvable sub-problems, our algorithm is monotonically decreasing, and,

although it is not guaranteed to converge to the global optimum, it is the stan-

dard choice when dealing with tensor decompositions [30, 38]. The total com-

putational complexity of the algorithm when N ≫ MR is then O (N DM 2R2), ren-

dering it suitable for problems which are large in both N and D , provided that R

and M are small. The necessary memory is equal to RMD +2R2M 2
+2RM (stor-

ing the weight tensor W in decomposed form, the rank-RM Gram matrix and

regularization matrix, the transformed responses and the solution of the linear

system), leading to a storage complexity of O
(
N R2M 2

)
for RM ≫ D .

When learning, the selection of λ and of the kernel-related hyperparameters

can be carried out by standard methods such as cross-validation. The choice of

M and the additional hyperparameter R which we introduce are directly linked

with the available computational budget. One should in fact choose M so that the

model has access to a sufficiently complex set of basis functions to learn from. In

practice we notice that for our choices of kernel function hyperparameters, at

most M = 40 basis functions per dimension suffice. R can then be fixed accord-

ingly in order to match the computational budget at hand. As we will show in the

next section, learning is possible with small values of M and R.

2.4 NUMERICAL EXPERIMENTS

We implemented our Tensor-Kernel Ridge Regression (T-KRR) algorithm in Math-

works MATLAB 2021a (Update 1) [40] and tested it on several regression and

classification problems. Our implementation can be freely downloaded from

https://github.com/fwesel/T-KRR and allows reproduction of all experiments in

this section. In our implementation we avoid constructing gd (·) and Hd from

scratch at every iteration by updating their components iteratively. With the ex-

ception of the first experiment 2.4.1, we further speedup our implementation

by considering only the diagonal of the regularization term Hd . All experiments

were run on a Dell Inc. Latitude 7410 laptop with 16 GB of RAM and an Intel Core

i7-10610U CPU running at 1.80 GHz. In all our experiments the Gaussian kernel

k
(
x , x

′′′
)
= exp

(
−||x−x

′′′
||

2
2/2l 2

)
was approximated by considering the HGP [16] map-

ping of Eq. (2.6). In all experiments inputs were scaled to lie in a D-dimensional

unit hypercube. When dealing with regression, the responses were standardized

around the mean, while when considering binary classification inference was

done by looking at the sign of the model response (LS-SVM [7]). One sweep of

our T-KRR algorithm is defined as updating factor matrices in the order 1 → D

2.4. NUMERICAL EXPERIMENTS

2

27

and then back from D → 1. All initial factor matrices were initialized with stan-

dard normal numbers and normalized by dividing all entries with their Frobe-

nius norm. For all experiments the number of sweeps of T-KRR algorithm are

set to 10. In the following three experiments it is shown how our proposed T-KRR

algorithm is stable and recovers the full KRR estimate in case of low number of fre-

quencies M and low rank R, consistently outperforming RFF. Finally, our model

exhibits very competitive performance on large-scale problems when compared

with other kernel methods.

2.4.1 BANANA CLASSIFICATION

The banana dataset is a two-dimensional classification problem [41] consisting

of N = 5300 datapoints. Since the data is two-dimensional, we consider M = 12

frequencies per dimension, which enables us to compare T-KRR with HGP. Fur-

thermore since for tensors of order two (i.e. matrices) the CPD-rank is the ma-

trix rank, we can deduce that our approach should recover the underlying HGP

method with R = M = 12. In this example we fix the kernel hyperparameters of

our method and of the HGP to l = 1/2 and λ= 10−5 for visualization purposes. In

Figure 2.1 we plot the decision boundary of T-KRR (full line) and of the associ-

ated HGP (dashed line). We can see that already when R = 6 the learned decision

boundary is indistinguishable to the one of HGP, meaning that in this example

it is possible to obtain a low-rank representation of the model weights. From

a computational point of view, we solve a series of linear systems with MR un-

knowns instead of M D . However due to the low-dimensionality of the dataset, the

computational savings per iteration are very modest, i.e. for R = 6 and M = 12, we

solve per iteration a linear system with 72 unknowns as opposed to the one-time

solve of a linear system with 144 unknowns as in case of HGP. As we show in Sub-

section 2.4.2, the linear computational complexity in D of our algorithm results

in ever-increasing performance benefits as the dimensionality of the problem be-

comes larger, where it becomes impossible to consider a full weight tensor.

2.4.2 MODEL PERFORMANCE WITH BASELINE

We consider five University of California, Irvine (UCI) [42] datasets in order to

compare the performance of our model with RFF and the GPR/KRR baseline. For

each dataset, we consider 90% of the data for training and the remaining 10% for

testing. In particular, in all regression datasets, we first obtain an estimate of the

lengthscale of the Gaussian kernel l and regularization term λ by log-marginal

2

28 2. FOURIER FEATURES AND TENSOR DECOMPOSITIONS

(a) R = 2 (b) R = 4 (c) R = 6 (d) R = M = 12

Figure 2.1.: Classification boundary of the two-dimensional banana dataset for increasing

CPD-ranks. In the last plot the chosen CPD-rank matches the true matrix rank.

The dashed line is the HGP, while the full line is T-KRR.

likelihood optimization over the whole training set using the GPLM toolbox [43].

We subsequently train GPR/KRR, RFF and our method with the estimated hyper-

parameter. In case of classification, we choose the lengthscale l to be the sample

mean of the sample standard deviation of our data (which is the default choice

in the Matlab Machine Learning Toolbox and scikit-learn [44]) and λ= 10−5. We

repeat this procedure ten times over different random splits and report the sam-

ple mean and sample standard deviation of the predictive Mean Squared Error

(MSE) and the misclassification rate for regression and classification respectively.

In order to test the approximation capabilities of our approach, we set M and R

such that MR ≪ N in order to benefit from computational gains. Furthermore,

we note that due to the curse of dimensionality it is not possible to compare our

approach with RFF while considering the same total number of basis functions

M = M D . Hence we select MRFF = MR such that the computational complexity of

both methods is similar. Table 2.1 shows the MSE for different UCI datasets. We

see that our approach comes close to the performance of full KRR and outper-

forms RFF on all datasets when considering the same number of model parame-

ters. This is because our approach considers implicitly M D frequencies to learn

a low-rank parsimonious model which is fully described by MRD parameters,

as opposed to RFF where the number of frequencies is the same as the number

of model weights. Similarly to what is reported in [45, Figure 2] we observe lower

performance of RFF on the Adult dataset than reported in [11]. Figure 2.2 plots the

monotonically decreasing loss function as well as the corresponding misclassifi-

cation rate while training with T-KRR on the Spambase dataset. After four sweeps

the misclassification rate has converged. Since T-KRR is able to obtain similar per-

formance as the KRR baseline on a range of small datasets, we proceed to tackle a

2.4. NUMERICAL EXPERIMENTS

2

29

large-scale regression problem.

0 2 4 6 8 10

Number of sweeps

0.5

0.6

0.7

0.8

0.9

1

L
os

s

0 2 4 6 8 10

Number of sweeps

0.1

0.2

0.3

0.4

0.5

M
is
cl
as

si
-
ca

ti
on

ra
te

Figure 2.2.: Normalized loss and misclassification rate while training on the Spambase

dataset.

Dataset N ↓ D M R RFF T-KRR KRR

Yacht 308 6 10 25 0.0021±0.0018 0.0009±0.0006 0.0007±0.0004

Energy 768 9 20 10 0.0275±0.0075 0.0200±0.0066 0.0200±0.0087

Airfoil 1503 5 20 10 0.2180±0.0336 0.1679±0.0258 0.1587±0.0232

Spambase 4601 57 40 10 0.3620±0.0188 0.0935±0.0095 0.0909±0.0115

Adult 45222 96 40 10 0.3976±0.0056 0.1596±0.0046 N/A

Table 2.1.: Predictive MSE (regression) and misclassification rate (classification) with one

standard deviation for RFF, T-KRR and KRR on different UCI datasets.

2.4.3 LARGE-SCALE EXPERIMENT

In order to highlight the ability of our method to deal with large data we consider

the Airline dataset. The Airline dataset [15, 46] is a large-scale regression prob-

lem originally considered in [46] which is often used to compare state-of-the-art

GPR approximations due to its large size and its non-stationary features. The goal

is in fact to predict the delay of a flight given eight features, which are the age

of the airplane, route distance, airtime, departure time, arrival time, day of the

week, day of the month, and month. We follow the same exact preprocessing

steps as in the experiments in [15], [16] and [47], which consider subsets of data

2

30 2. FOURIER FEATURES AND TENSOR DECOMPOSITIONS

of size N = 10000,100000,1000000,5929413, each chosen uniformly at random.

Training the model is then accomplished with 2/3N datapoints, with the remain-

ing portion reserved for testing. The entire procedure is then repeated 10 times

with random initialization in order to obtain a sample mean and sample stan-

dard deviation estimate of the MSE. Following exactly the approach in HGP [16],

we consider M = 40 basis functions per dimension, with the crucial difference

that T-KRR approximates a standard product Gaussian kernel, as opposed to an

additive model. As was the case in the previous section for classification, we se-

lect the lengthscale of the kernel as the mean of the standard deviations of the

eight features and choose λN = 100/N for the different splits, where the depen-

dency on N is suggested by standard learning theory. We then train four distinct

models for R = 5,10,15,20. Table 2.2 compares T-KRR with the best performing

models found in the literature, which all (except for GPR) rely on low-rank approx-

imation of the kernel function. The T-KRR method is able to recover the baseline

GPR performance already with R = 5 and remarkably outperform all other ap-

proaches although we choose the hyperparameters naively and consider equal

lengthscales l for all dimensions. Interestingly, a higher choice of R does result

in better performance in all cases except for N = 10000, where model perfor-

mance very much depends on the random split (note that we consider different

splits for each experiment). The Stochastic Variational Inference Gaussian Process

(SVIGP) [46] achieves comparable results to T-KRR, indicating that a performance

gain is possible from product kernels. The difficulty with SVIGP is however that

the kernel function is interpolated locally at M nodes in a data-dependent fash-

ion, requiring an increasing amount of interpolation nodes to cover the whole

domain to allow for good generalization. In contrast, T-KRR considers an expo-

nentially large amount of basis functions in the frequency domain, and learns

an efficient representation of the model weights. In light of the performance of

the additive HGP and additive VFF models, we expect similar performance when

considering other feature maps which induce stationary kernels. When consid-

ering the whole dataset, training our model with R = 5 takes 1565±1 seconds on

a laptop, while for R = 20 it takes 7141± 245 seconds. Reported training times

of SVIGP indicate 18360 ± 360 seconds [15] on a cluster. Variational Inducing

Spherical Harmonics (VISH) scales very favorably in terms of time, but since it is

a data-independent method, we expect the predictive performance to be inferior

for the same number of parameters. Since the computational complexity of our

algorithm is dominated by matrix-matrix multiplications, we expect significant

speedups when relying on GPU computations.

2.5. CONCLUSION

2

31

N 10000 100000 1000000 5929413

T-KRR (R = 5) 0.91±0.10 0.82±0.03 0.80±0.02 0.800±0.008

T-KRR (R = 10) 0.89±0.05 0.80±0.05 0.79±0.02 0.785±0.009

T-KRR (R = 15) 0.90±0.07 0.80±0.04 0.78±0.02 0.773±0.007

T-KRR (R = 20) 0.97±0.15 0.78±0.04 0.77±0.01 0.763±0.007

Additive-HGP [16] 0.97±0.14 0.80±0.06 0.83±0.02 0.827±0.005

Additive-VFF [15] 0.89±0.15 0.82±0.05 0.83±0.01 0.827±0.004

SVIGP [46] 0.89±0.16 0.79±0.05 0.79±0.01 0.791±0.005

VISH [47] 0.90±0.16 0.81±0.05 0.83±0.03 0.834±0.055

GPR [6] 0.89±0.16 N/A N/A N/A

Additive-GPR [48] 0.89±0.16 N/A N/A N/A

Table 2.2.: Predictive MSE with one standard deviation for T-KRR.

2.5 CONCLUSION

In this work a framework to perform large-scale supervised learning with tensor

decompositions which leverages the tensor product structure of deterministic

Fourier features was introduced. Concretely, a monotonically decreasing learn-

ing algorithm with linear complexity in both sample size and dimensionality was

derived. This algorithm leverages the efficient format of the CPD in combination

with exponentially fast converging FFs which allow to implicitly approximate sta-

tionary product kernels up to machine precision. Numerical experiments show

how the performance of the baseline KRR is recovered with a very limited number

of parameters. The proposed method can handle problems which are both large

in the number of samples as well as in their dimensionality, effectively enabling

large-scale supervised learning with stationary product kernels. The biggest lim-

itation of the current approach is that it is does not allow for uncertainty quan-

tification, which motivates further work in that direction.

REFERENCES

[1] F. Wesel and K. Batselier. “Large-Scale Learning with Fourier Features and Tensor

Decompositions”. In: Advances in Neural Information Processing Systems. Vol. 34.

Curran Associates, Inc., 2021, pp. 17543–17554.

[2] B. Hammer and K. Gersmann. “A Note on the Universal Approximation Capability

of Support Vector Machines”. In: Neural Processing Letters 17.1 (Feb. 2003), pp. 43–

53.

[3] J. Lee, Y. Bahri, R. Novak, S. S. Schoenholz, J. Pennington, and J. Sohl-Dickstein.

“Deep Neural Networks as Gaussian Processes”. In: International Conference on

Learning Representations. Feb. 2018.

[4] R. Novak, L. Xiao, Y. Bahri, J. Lee, G. Yang, J. Hron, D. A. Abolafia, J. Pennington,

and J. Sohl-dickstein. “Bayesian Deep Convolutional Networks with Many Channels

Are Gaussian Processes”. In: International Conference on Learning Representations.

Sept. 2018.

[5] A. Garriga-Alonso, C. E. Rasmussen, and L. Aitchison. “Deep Convolutional Net-

works as Shallow Gaussian Processes”. In: International Conference on Learning

Representations. Sept. 2018.

[6] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning.

Adaptive Computation and Machine Learning. Cambridge, Mass: MIT Press, 2006.

[7] J. Suykens and J. Vandewalle. “Least Squares Support Vector Machine Classifiers”.

In: Neural Processing Letters 9.3 (June 1999), pp. 293–300.

[8] J. A. K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, and J. Vandewalle. Least

Squares Support Vector Machines. World Scientific, Nov. 2002.

[9] C. Williams and M. Seeger. “Using the Nyström Method to Speed Up Kernel Ma-

chines”. In: Advances in Neural Information Processing Systems 13. MIT Press, 2001,

pp. 682–688.

[10] P. Drineas and M. W. Mahoney. “On the Nystrom Method for Approximating a Gram

Matrix for Improved Kernel-Based Learning”. In: Journal of Machine Learning Re-

search 6.72 (2005), pp. 2153–2175.

[11] A. Rahimi and B. Recht. “Random Features for Large-Scale Kernel Machines”. In:

Proceedings of the 20th International Conference on Neural Information Processing

Systems. Curran Associates Inc., Dec. 2007, pp. 1177–1184.

33

2

34 REFERENCES

[12] T. Dao, C. D. Sa, and C. Ré. “Gaussian Quadrature for Kernel Features”. In: Proceed-

ings of the 31st International Conference on Neural Information Processing Systems.

NIPS’17. Red Hook, NY, USA: Curran Associates Inc., Dec. 2017, pp. 6109–6119.

[13] M. Mutný and A. Krause. “Efficient High Dimensional Bayesian Optimization with

Additivity and Quadrature Fourier Features”. In: Proceedings of the 32nd Interna-

tional Conference on Neural Information Processing Systems. NIPS’18. Red Hook,

NY, USA: Curran Associates Inc., Dec. 2018, pp. 9019–9030.

[14] P. F. Shustin and H. Avron. “Gauss-Legendre Features for Gaussian Process Regres-

sion”. In: arXiv:2101.01137 [cs, math] (Jan. 2021). arXiv: 2101.01137 [cs, math].

[15] J. Hensman, N. Durrande, and A. Solin. “Variational Fourier Features for Gaussian

Processes”. In: The Journal of Machine Learning Research 18.1 (Jan. 2017), pp. 5537–

5588.

[16] A. Solin and S. Särkkä. “Hilbert Space Methods for Reduced-Rank Gaussian Process

Regression”. In: Statistics and Computing 30.2 (Mar. 2020), pp. 419–446.

[17] W. Rudin. Fourier Analysis on Groups. Interscience Tracts in Pure and Applied Math-

ematics 12. New York: Interscience Publishers, 1962. Chap. 285 pages 24 cm.

[18] F. Liu, X. Huang, Y. Chen, and J. A. K. Suykens. “Random Features for Kernel Ap-

proximation: A Survey on Algorithms, Theory, and Beyond”. In: arXiv:2004.11154

[cs, stat] (July 2020). arXiv: 2004.11154 [cs, stat].

[19] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalexakis, and C.

Faloutsos. “Tensor Decomposition for Signal Processing and Machine Learning”.

In: IEEE Transactions on Signal Processing 65.13 (July 2017), pp. 3551–3582.

[20] E. Gilboa, Y. Saatçi, and J. P. Cunningham. “Scaling Multidimensional Inference for

Structured Gaussian Processes”. In: IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence 37.2 (Feb. 2015), pp. 424–436.

[21] P. Izmailov, A. Novikov, and D. Kropotov. “Scalable Gaussian Processes with Billions

of Inducing Inputs via Tensor Train Decomposition”. In: International Conference

on Artificial Intelligence and Statistics. PMLR, Mar. 2018, pp. 726–735.

[22] A. Novikov, D. Podoprikhin, A. Osokin, and D. P. Vetrov. “Tensorizing Neural Net-

works”. In: Advances in Neural Information Processing Systems. Ed. by C. Cortes,

N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett. Vol. 28. Curran Associates, Inc.,

2015.

[23] Y. Yang, D. Krompass, and V. Tresp. “Tensor-Train Recurrent Neural Networks for

Video Classification”. In: International Conference on Machine Learning. PMLR, July

2017, pp. 3891–3900.

[24] A. Tjandra, S. Sakti, and S. Nakamura. “Compressing Recurrent Neural Network

with Tensor Train”. In: 2017 International Joint Conference on Neural Networks (IJCNN).

May 2017, pp. 4451–4458.

REFERENCES

2

35

[25] S. Wahls, V. Koivunen, H. V. Poor, and M. Verhaegen. “Learning Multidimensional

Fourier Series with Tensor Trains”. In: 2014 IEEE Global Conference on Signal and

Information Processing (GlobalSIP). Dec. 2014, pp. 394–398.

[26] E. M. Stoudenmire and D. J. Schwab. “Supervised Learning with Tensor Networks”.

In: Proceedings of the 30th International Conference on Neural Information Process-

ing Systems. Curran Associates Inc., Dec. 2016, pp. 4806–4814.

[27] A. Novikov, I. Oseledets, and M. Trofimov. “Exponential Machines”. In: Bulletin of

the Polish Academy of Sciences: Technical Sciences; 2018; 66; No 6 (Special Section on

Deep Learning: Theory and Practice); 789-797 (2018).

[28] Z. Chen, K. Batselier, J. A. K. Suykens, and N. Wong. “Parallelized Tensor Train Learn-

ing of Polynomial Classifiers”. In: IEEE Transactions on Neural Networks and Learn-

ing Systems 29.10 (Oct. 2018), pp. 4621–4632.

[29] C. Cortes and V. Vapnik. “Support-Vector Networks”. In: Machine Learning 20.3 (Sept.

1995), pp. 273–297.

[30] T. G. Kolda and B. W. Bader. “Tensor Decompositions and Applications”. In: SIAM

Review 51.3 (Aug. 2009), pp. 455–500.

[31] L. De Lathauwer, B. De Moor, and J. Vandewalle. “A Multilinear Singular Value De-

composition”. In: SIAM Journal on Matrix Analysis and Applications 21.4 (Jan. 2000),

pp. 1253–1278.

[32] L. R. Tucker. “Some Mathematical Notes on Three-Mode Factor Analysis”. In: Psy-

chometrika 31.3 (Sept. 1966), pp. 279–311.

[33] I. V. Oseledets. “Tensor-Train Decomposition”. In: SIAM Journal on Scientific Com-

puting 33.5 (Jan. 2011), pp. 2295–2317.

[34] F. L. Hitchcock. “The Expression of a Tensor or a Polyadic as a Sum of Products”. In:

Journal of Mathematics and Physics 6.1-4 (1927), pp. 164–189.

[35] J. B. Kruskal. “Three-Way Arrays: Rank and Uniqueness of Trilinear Decomposi-

tions, with Application to Arithmetic Complexity and Statistics”. In: Linear Algebra

and its Applications 18.2 (Jan. 1977), pp. 95–138.

[36] A. Cichocki, N. Lee, I. Oseledets, A.-H. Phan, Q. Zhao, and D. P. Mandic. “Tensor

Networks for Dimensionality Reduction and Large-Scale Optimization: Part 1 Low-

Rank Tensor Decompositions”. In: Foundations and Trends® in Machine Learning

9.4-5 (2016), pp. 249–429.

[37] N. D. Sidiropoulos and R. Bro. “On the Uniqueness of Multilinear Decomposition of

N-Way Arrays”. In: Journal of Chemometrics 14.3 (2000), pp. 229–239.

[38] P. Comon, X. Luciani, and A. L. F. de Almeida. “Tensor Decompositions, Alternat-

ing Least Squares and Other Tales”. In: Journal of Chemometrics 23.7-8 (July 2009),

pp. 393–405.

2

36 REFERENCES

[39] S. Holtz, T. Rohwedder, and R. Schneider. “The Alternating Linear Scheme for Ten-

sor Optimization in the Tensor Train Format”. In: SIAM Journal on Scientific Com-

puting 34.2 (Jan. 2012), A683–A713.

[40] Matlab. 9.10.0.1649659 (R2021a) Update 1. Natick, Massachussetts: The MathWorks

Inc., 2021.

[41] J. Hensman, A. Matthews, and Z. Ghahramani. “Scalable Variational Gaussian Pro-

cess Classification”. In: Artificial Intelligence and Statistics. PMLR, Feb. 2015, pp. 351–

360.

[42] D. Dua and C. Graff. UCI Machine Learning Repository. 2017.

[43] C. E. Rasmussen and H. Nickisch. “Gaussian Processes for Machine Learning (GPML)

Toolbox”. In: Journal of Machine Learning Research 11.100 (2010), pp. 3011–3015.

[44] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,

P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M.

Brucher, M. Perrot, and É. Duchesnay. “Scikit-Learn: Machine Learning in Python”.

In: Journal of Machine Learning Research 12.85 (2011), pp. 2825–2830.

[45] T. Yang, Y.-f. Li, M. Mahdavi, R. Jin, and Z.-H. Zhou. “Nyström Method vs Random

Fourier Features: A Theoretical and Empirical Comparison”. In: Advances in Neural

Information Processing Systems. Vol. 25. Curran Associates, Inc., 2012.

[46] J. Hensman, N. Fusi, and N. D. Lawrence. “Gaussian Processes for Big Data”. In:

Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence.

UAI’13. AUAI Press, Aug. 2013, pp. 282–290.

[47] V. Dutordoir, N. Durrande, and J. Hensman. “Sparse Gaussian Processes with Spher-

ical Harmonic Features”. In: International Conference on Machine Learning. PMLR,

Nov. 2020, pp. 2793–2802.

[48] D. K. Duvenaud, H. Nickisch, and C. Rasmussen. “Additive Gaussian Processes”. In:

Advances in Neural Information Processing Systems 24 (2011), pp. 226–234.

3
TENSOR-BASED KERNEL MACHINES WITH

STRUCTURED INDUCING POINTS FOR LARGE

AND HIGH-DIMENSIONAL DATA

Kernel machines are one of the most studied family of methods in machine learn-

ing. In the exact setting, training requires to instantiate the kernel matrix, thereby

prohibiting their application to large-sampled data. One popular kernel approxi-

mation strategy which allows to tackle large-sampled data consists in interpolat-

ing product kernels on a set of grid-structured inducing points. However, since the

number of model parameters increases exponentially with the dimensionality of

the data, these methods are limited to small-dimensional datasets. In this work we

lift this limitation entirely by placing inducing points on a grid and constraining

the primal weights to be a low-rank Canonical Polyadic Decomposition (CPD). We

derive a block coordinate descent algorithm that efficiently exploits grid-structured

inducing points. The computational complexity of the algorithm scales linearly

both in the number of samples and in the dimensionality of the data for any prod-

uct kernel. We demonstrate the performance of our algorithm on large-scale and

high-dimensional data, achieving state-of-the art results on a laptop computer.

Our results show that grid-structured approaches can work in higher-dimensional

problems.

This chapter has been published as:

F. Wesel and K. Batselier. “Tensor-Based Kernel Machines with Structured Inducing Points for Large

and High-Dimensional Data”. In: Proceedings of The 26th International Conference on Artificial Intel-

ligence and Statistics. PMLR, Apr. 2023, pp. 8308–8320

37

3

38 3. STRUCTURED INDUCING POINTS AND TENSOR DECOMPOSITIONS

3.1 INTRODUCTION

Kernel machines, such as Support Vector Machines (SVMs) [2] and Gaussian Pro-

cesses (GPs) [3] are a family of machine learning methods that handle inference of

nonlinear functions by lifting the data into a high and possibly infinite-dimensional

feature space and performing linear inference therein. Because of their elegant

formulation, their connection with reproducing kernel Hilbert spaces and the

guarantees which stem from their convex optimization setting, they have be-

come one of the most widely studied machine learning paradigms. Furthermore,

kernel machines are known for their connections with neural networks [4, 5, 6]

and for the fact that they can be universal function approximators for a suitable

choice of kernel [7].

The main limitation of kernel machines is that training involves instantiating

the kernel matrix which encodes the similarities between all mapped data. This

results in a cost of at least O (N 2), limiting their applicability to small datasets. To

obviate this problem, a number of low-rank approaches based on random fea-

tures [8, 9] and inducing points [10, 11, 12, 13, 14, 15, 16] have been developed.

Broadly speaking, these methods seek a rank-M ≪ N approximation of the ker-

nel function, which enables faster inference at cost of O (N M 2). However, this

scaling forces the modeler to trade-off accuracy of the kernel approximation with

the ability to process large-scale data.

A popular family of approaches that is based on the Nyström approximation of

kernel functions is Structured Kernel Interpolation (SKI) [17, 18, 19, 20, 21]. SKI-

methods do not sacrifice accuracy for fast inference since they interpolate the

kernel function globally on a regularly spaced grid in order to exploit the ensu-

ing structure for computational gains. However, since the number of interpola-

tion points are placed on a regular grid, and therefore the number of model pa-

rameters increases exponentially with the dimensionality of the data, these ap-

proaches are limited to small-dimensional datasets.

Recently, the CPD [22], a tool from multi-linear algebra, has been applied in

the context of kernel machines to bypass the exponential growth of model pa-

rameters affecting Fourier features-based approximations of stationary kernels

[23] by constraining the model weights to be a CPD of low rank. This low-rank

constraint allows to learn a model with a linear number of model parameters

in the dimensionality D , but requires knowledge of the spectral representation

(Fourier transform) of the kernel of choice which in general can be unknown

or non-analytical, requiring then further approximations. In this paper we de-

velop a CPD-based approach to learn from any product kernel which allows grid-

structured inducing points methods to scale to both large-sampled and high-

3.1. INTRODUCTION

3

39

dimensional data. We exploit the tensor-product structure of grid-structured in-

ducing point by constraining the model weights to be a CPD of low-rank. Under

this constraint, we derive a block coordinate descent algorithm that allows for the

efficient training of kernel machines. Our algorithm has a computational com-

plexity of O (N DM
2
D R2) and storage complexity of O (N R), where R is the rank of

the tensor-decomposition which controls the time versus accuracy trade-off. We

show through experiments that competitive results in terms of performance can

be obtained on a laptop computer for data that is both large in sample size as well

as in dimensionality.

In the context of supervised learning, the goal is to estimate a function f (·) :

R
D
→ R given only a finite set of i.i.d. input-output pairs

(
xn , yn

)N
n=1 s.t. xn ∈

R
D , y ∈ R, ∀n ∈ {1, . . . , N } generated by some probability measure. After defining

a measure of loss ℓ (·, ·) : R×R→R+, this can be accomplished by minimizing the

(regularized) empirical risk

N∑

n=1

ℓ
(

f (xn , w) , yn

)
+ r (w). (3.1)

3.1.1 KERNEL MACHINES

Kernel machines model f as linear in the mapped data, i.e.

f (x , w) =
〈
ϕ (x) , w

〉
. (3.2)

Here ϕ (·) : RD
→R

M is the feature map which lifts the data in a high (and possibly

infinite-dimensional) reproducing kernel Hilbert space where linear inference is

possible, and w ∈ R
M are the model weights. In practice, this explicit mapping

can be avoided by considering a kernel function k (·, ·) : RM
×R

M
→ R such that

k
(
x , x

′′′
)
=

〈
ϕ (x) ,ϕ

(
x
′′′
)〉

. By the representer theorem [24] we have in fact that:

f (x ,α) =
N∑

n=1

αnk (x , xn) , (3.3)

which implies that we only need to estimate multipliers α ∈ R
N . Depending on

the choice of loss function different kernel machines arise, for instance hinge loss

leads to support vector machines, squared loss to Kernel Ridge Regression (KRR),

which is the same estimator as the GP regression posterior mean. In case of mean

squared error, Eq. (3.1) can be minimized exactly from the corresponding dual

3

40 3. STRUCTURED INDUCING POINTS AND TENSOR DECOMPOSITIONS

optimization problem:

(KX X +λI)α= y . (3.4)

In practice, since the kernel evaluations between all points need to be computed,

the computational cost of training in the dual is at least O (N
2), limiting its use-

fulness to small-sampled data.

Structured Data One way to enable exact inference on large-scale data is to ex-

ploit existing structure in the data. A particular fortunate case arises when the

data lies on a Cartesian grid x1 × x2 × ·· · × xD where each xd ∈ R
Nd such that

N =

∏
D

d=1
Nd , and when considering product kernels of the form:

k
(
x , x

′′′
)
=

D∏

d=1

kd

(
xd , x

′

d

)
, (3.5)

where x , x
′′′
∈ R

D . In this case the kernel matrix KX X is the Kronecker product of

small matrices Kxd xd
∈R

Nd×Nd [25, Equation 5.7]:

KX X = Kx1x1 ⊗Kx2x2 ⊗·· ·⊗KxD xD
. (3.6)

Storing the full kernel matrix KX X ∈R
N×N can then be avoided by storing smaller

kernel matrices Kx1x1 , . . . ,KxD xD
without ever computing the tensor-products. Ex-

act training can then be accomplished with O (DN
1+ 1

D) operations by exploiting

the properties of the Kronecker product [25, 26].

Unstructured Data One way to enable faster inference to unstructured data is

to consider the Nyström method [10, 27], whose key idea is to approximate the

spectrum of the full kernel matrix KX X by means of a restricted number of kernel

evaluations at a subset of M ≪ N inducing points denoted by M , traditionally

sampled at random [10] from the data X , defining hence the Nyström approxi-

mation [10, Equations 8-9]:

KX X ≈ KX M L
−T

L
−1

KM X :=KNyström, (3.7)

where L is such that KM M = LL
T. Embedding Eq. (3.7) in Eq. (3.1) under the

assumption of squared loss gives rise to a linear least-squares problem which can

be solved from the normal equations:

(
L
−1

KM X KX M L
−T

+λI
)

w = L
−1

KM X y , (3.8)

3.1. INTRODUCTION

3

41

This formulation enables training at the computational cost of O (N M
2
+M

3) and

storage cost of O (M
2). As argued previously however, these complexities force to

chose between the accuracy of the approximation and the ability to process large-

scale data, as M ≪ N for any computational gains. When one considers station-

ary product kernels, one naive approach would be to locate a large number of

inducing points M ≫ N on a Cartesian grid and to exploit the ensuing Toeplitz

(one-dimensional inputs) and Kronecker (higher-dimensional inputs) structures

for computational gains, as in Eq. (3.6). Since this alone only alleviates the com-

plexity associated with KM M , plenty of research has focused on approximating

KX M which accounts for the dominant O (N M
2) term. One of these methods is

SKI [17]. In SKI, the cross-covariance matrix KX M is approximated by local inter-

polation, i.e. KX M ≈ P KM M , where P is a sparse interpolation matrix with 2D

non-zero elements per row (in case of linear interpolation), giving rise to the SKI

kernel

KX X ≈ P KM M P
T :=KSKI. (3.9)

When considering a stationary product kernel KM M has a Toeplitz structure (one-

dimension) or a Kronecker product structure of Toeplitz matrices (higher-dimensions).

SKI takes advantage of these structures by approximately solving (KSKI +λI)−1
y

using Krylov subspace methods which rely on matrix-vector products. Since P is

sparse and KM M is structured, each iteration of SKI costs only O (N+M log M) op-

erations and O (N M) memory. However, since M scales exponentially in D , SKI is

limited to sets of data of small dimensionality D < 5 [17]. In order to mitigate this

exponential dependency in D , Gardner et al. [19] approximate the kernel matrix

of a stationary product kernel as the Hadamard product of rank-R SKI kernel ma-

trices in order to perform fast matrix-vector products in a divide-and-conquer

fashion. Although this approach overcomes the curse of dimensionality, it re-

quires the storage of R copies (typically 30) of the dataset limiting its applicability

to data of moderate dimensionality.

Recent extensions and improvement of the SKI framework are the handling of

online data [20], its reformulation as a Bayesian linear regression problem [21]

and the use of a permutohedral lattice instead of a Cartesian grid [28]. This latter

approach reduces the number of neighboring points from 2D to D+1, alleviating

the curse of dimensionality by allowing training at O (D
2(N +M)). However, this

latter approach is most effective only for D ≤ 20 [28] due to the quadratic scaling

in D of the computational complexity and the decreasing accuracy of the kernel

approximation as D increases.

3

42 3. STRUCTURED INDUCING POINTS AND TENSOR DECOMPOSITIONS

3.1.2 TENSOR DECOMPOSITIONS

The most common tensor decompositions are the CPD [22, 29], the Tucker de-

composition [30] and the Tensor Train (TT) decomposition [31]. A rank-R CPD

decomposes a tensor ten(w) ∈R
M1×M2×···×MD such that

w = (W1 ⊗W2 ⊗·· ·⊗WD)vec(S) . (3.10)

Here Wd ∈ R
Md×R are the factor matrices and S ∈ R

R×R×···×R is a superdiagonal

core tensor, whose entries typically scale the columns of the factor matrices up

to unit norm. The rank R is defined as the smallest R such that Eq. (3.10) holds

exactly [22, 29].

Storing ten(w) in decomposed form requires then only to store D factor matri-

ces, requiring R
∑

D

d=1
Md memory units as opposed to M =

∏
D

d=1
Md . Because of

this compression, tensor decompositions have been used to reduce the number

of model parameters in deep learning models by tensorizing and decomposing

weights [32, 33, 34, 35], or compressing filters which have tensorial structure by

definition, e.g. convolutions [36, 37, 38].

Tensor decompositions have also been used to reduce the exponential num-

ber of parameters which arise when learning from tensor-product feature maps

by constraining the weight tensor to be a low-rank tensor decomposition. So

far these models have considered trigonometric [39], polynomial [40, 41] and

Fourier feature maps [23], where the latter are used to induce stationary prod-

uct kernels. Furthermore, in the context of GPs, tensor decompositions have

been used to reduce the complexity of multi-output GPs [42] and in the context of

stochastic variational GPs to compress the mean of the variational posterior dis-

tribution [43]. However the former method is not designed to handle data which

is larger in the number of samples, as it scales with O
(
DN

2
)
, while the latter does

not work for D > 10, as it becomes unpractical to store the interpolation grid,

forcing to train on D ≤ 10-dimensional embeddings of the data.

In the following section, building on the works of [17] and [23], we derive in

the context of classical kernel machines a block-coordinate descent algorithm

whose computational complexity at training scales with O (N DM
2
D R

2) requiring

O (N R) memory, allowing to tackle large-scale and large dimensional problems

as demonstrated experimentally in Section 3.3.

3.2. GRID-STRUCTURED KERNEL MACHINES

3

43

3.2 GRID-STRUCTURED KERNEL MACHINES

In our approach we consider product kernels (Eq. (3.5)) and Nyström inducing

points (Eq. (3.7)), which inspired by Wilson and Nickisch [17] we place on a Carte-

sian grid m1 ×m2 ×·· ·×mD , where each md ∈ R
Md and M =

∏
D

d=1
Md . This ap-

proximation recovers the underlying kernel as M →∞ [44, Theorem 1]. We have

already seen in Eq. (3.6) how KM M can be stored and manipulated efficiently by

considering its Kronecker-product structure by indexing it as a tensor. This al-

lows for the efficient computation of its Cholesky factor L [25, Theorem 5.2] from

Km1m1 ⊗Km2m2 ⊗·· ·⊗KmD mD

=L1L1
T
⊗L2L2

T
⊗·· ·⊗LD LD

T (3.11)

= (L1 ⊗·· ·⊗LD)
︸ ︷︷ ︸

L

(L1 ⊗·· ·⊗LD)T

︸ ︷︷ ︸
LT

,

as it inherits the Kronecker-product structure. Similarly, each row kx M of KX M

has a tensor-product structure:

kx M = kx1m1 ⊗kx2m2 ⊗·· ·⊗kxD mD
,

derivations can be found in the supplementary material. By the mixed-product

property of the Kronecker-product [25, Equation 5.10] we have that:

kx M L
−T

= kx1m1 L1
−T

⊗·· ·⊗kxD mD
LD

−T.

The computational benefits associated with this tensor-product structure can

however not be exploited without further assumptions, as model evaluations
〈

kx M L
−T, w

〉

will require in fact still O (M) computations and the ’unpacking’ of the tensor-

product structure. In the next paragraph, we will show how one can leverage

fully the tensorial structure of kx M L
−T by assuming that the model weights are a

rank-R CPD tensor. This will allow to consider both large and high-dimensional

datasets with grid-structured inducing points, by effectively reducing the num-

ber of model parameters from M to RDM
1
D .

We now wish to minimize the empirical risk Eq. (3.1) under a convex loss, with

the additional constraint that the weight tensor ten(w) has a rank-R CPD struc-

3

44 3. STRUCTURED INDUCING POINTS AND TENSOR DECOMPOSITIONS

ture:

min
w

N∑

n=1

ℓ
(
〈ten

(
kxn M L

−T
)

, ten(w)〉F, yn

)
+λ||ten(w)||2F, (3.12)

subject to: CPD-rank(ten(w)) = R, (3.13)

where if R is chosen to be the true CPD rank of ten(w), the solution of Eq. (3.1)

associated with Eq. (3.7) is recovered. In this case, ten(w) is furthermore also

unique under mild conditions [45]. As we will see, this constraint enables to fully

exploit the rank-1 CPD structure of kx M L
−T by allowing to optimize one CPD fac-

tor matrix Wd of ten(w) at a time, enabling to tackle large-sampled and large-

dimensional datasets with modest hardware. This is accomplished by exploiting

the multilinearity of tensor decomposition which allows to express the empirical

risk as a linear function of the d-th factor matrix Wd . Minimizing the risk succes-

sively for each factor matrix yields a well-known block coordinate descent [22, 46,

47] algorithm for which each subproblem is convex and exhibits local linear con-

vergence [48, Theorem 3.3]. Similar properties hold when constraining ten(w)

to be a low-rank tensor train decomposition or Tucker decomposition. However,

the number of elements in the Tucker decomposition scales exponentially in D ,

while the tensor train decomposition models explicitly the correlations between

features, yielding for the same rank, different models depending on the ordering

of the features. In contrast to other decompositions, our CPD-based approach

enables to reduce the costs of storage by clever in-place updates. Furthermore,

recent theoretical advances in the domain of tensor decomposition show that

the Vapnik–Chervonenkis (VC) dimension and pseudodimension of models of the

form of Eq. (3.2), where ten(w) is a rank-R tensor decomposition, are indepen-

dent of the choice of decomposition of ten(w) and instead upper bounded by the

number of parameters [49, Theorem 7], further motivating the choice of model-

ing ten(w) as a CPD. Following [23], we begin by showing how the risk can be

expressed only as a function of Wd . The model term can in fact be rewritten ex-

3.2. GRID-STRUCTURED KERNEL MACHINES

3

45

actly as

〈kx M L−T, w〉F = 〈ten
(
kx1m1 L1

−T
⊗kx2m2 L2

−T
⊗·· ·⊗kxD mD LD

−T
)

,

ten

(
R∑

r=1

w1r ⊗w2r ⊗·· ·⊗wD r

)

〉

=

Md∑

md=1

R∑

r=1

(kxd md
LD

−T
:md

M1∑

m1=1

w1m1r kx1m1 L1
−T
:m1

· · ·

MD∑

mD=1

wD mD r kxD mD LD
−T
:mD

)wd md r

= vec(kxd md
Ld

−T
⊗ (kx1m1 L1

−TW1 ⊙·· ·⊙kxD mD LD
−TWD))Tvec(Wd)

= 〈gd (x),vec(Wd)〉F. (3.14)

Similarly, for the regularization term

||ten(w)||2F = 〈ten

(
R∑

r=1

w1r ⊗w2r ⊗·· ·⊗wD r

)

, ten

(
R∑

p=1

w1p ⊗w2p ⊗·· ·⊗wD p

)

〉

F

=

Md∑

md=1

R∑

r=1

R∑

p=1

wd md ,r (
M1∑

m1=1

w1m1,r w1m1,p · · ·

MD∑

mD=1

wD mD ,r wD mD ,p)wd md ,p

=

Md∑

md=1

R∑

r=1

R∑

p=1

wd md ,r (W T
1 W1 ⊙·· ·⊙W T

D WD)r,p wd md ,p

= vec(Wd)T (IMd
⊗Hd)vec(Wd) . (3.15)

Here Hd :=
(
W1

TW1 ⊙·· ·⊙Wd
TWD

)
. Substitution of Eq. (3.14) and Eq. (3.15) into

Eq. (3.12) leads to a convex optimization problem for vec(Wd), consisting in prac-

tice to training a kernel machine with RM
1
D model parameters:

min
vec(Wd)

ℓ
(〈

gd (xn) ,vec(Wd)
〉

, yn

)

+λ
〈

vec
(
Wd

TWd

)
,vec(Hd)

〉
, (3.16)

which in case of squared loss can be solved exactly by means of the normal equa-

tions
(
Gd

TGd +λI ⊗Hd

)
vec(Wd) =Gd

T y , (3.17)

where [Gd]i ,: = gd (xi). The computational cost of solving Eq. (3.17) exactly is of

3

46 3. STRUCTURED INDUCING POINTS AND TENSOR DECOMPOSITIONS

O (N M
2
D R2

+M
3
D R3), where the first term accounts for constructing the relevant

squared matrices and the second term accounts for solving the linear system.

The storage requirements are O (M
2
D R2) if one builds up Gd

TGd as a series of N

rank-1 updates. Alternating the minimization by iterating across all factor ma-

trices, i.e. for d = 1,2, . . . ,D yields the a block coordinate algorithm which is well

studied in the tensor community [22, 48]. Section 3.3 shows how the algorithm

converges to suitable minima in all our experiments and is numerically stable.

The computational complexity of our proposed Algorithm CPD-Structured In-

ducing Points (CPD-SIP) is then O (N DM
2
D R2

+DM
3
D R3).

Implementation Details Note that we could have considered in Eq. (3.12) the

linearly equivalent feature map kx M which e.g. under squared loss and without

rank constraints gives rise to the following regularized linear least-squares prob-

lem (KX M
TKX M+KM M)w̄ = KX M

T y , where w̄ = L−Tw . However this formulation

is prone to numerical instability, as the singular values of KX M are not scaled by L,

as discussed in [3, Chapter 3.4.3]. As a consequence when embedded in CPD-SIP,

Gd has a higher condition number and spirals out of control after a few iterations.

The naive storage cost of O (N D(M
2
D R2)) can be reduced by a factor D by up-

dating Gd and Hd in-place and by locating the inducing points on a dimension-

independent grid, see Algorithm CPD-SIP, where we denote these in-place up-

dated matrices as G and H respectively. Since these operations are O (N R), they

do not affect the computational complexity. The storage complexity can be fur-

ther reduced by carrying out the updates for G (e.g. in line 9 of CPD-SIP) in

batches of one or more rows of kxm L−T, which can be computed on-the-fly, bring-

ing it down to O (N R). Of course, if memory is not an issue, speedup up to a con-

stant factor can be easily obtained by caching kX m L−T, however this is not a re-

quirement by any means. A summary of the computational and storage complex-

ities of various SKI-related methods is given in Table 3.1, where we can observe

that the computational complexity of Algorithm scales linearly in N and D , while

having a storage complexity which is independent on D . All methods except the

Simplex-GP, whose complexity scales with O (D2), place the inducing points on a

Cartesian grid. As a result, either an exponential number of computations or R

copies of the whole dataset are required, prohibiting to tackle large-dimensional

(in this case D > 20 [28]) data.

Selecting the hyperparameters In CPD-SIP, the CPD-rank R is introduced as ad-

ditional hyperparameter, which similarly to other SKI-based approaches [17, 19]

we advocate to select based on the computational budget at hand: M should

3.2. GRID-STRUCTURED KERNEL MACHINES

3

47

Algorithm CPD-SIP.

Require: Inputs X ∈R
N×D , outputs y ∈R

N , kernel function k(·, ·) : R×R→R, loss

ℓ(·, ·) : R×R→R+, number of basis M̂ ∈N+ : M̂ := M
1
D , CPD-rank R ∈N+, max

iterations S ∈N+

Ensure: Factor matrices Wd ∈R
M̂×R , d = 1,2, . . . ,D

1: s ← 0

2: G ← ones(M̂ ,R)

3: H ← ones(N ,R)

4: Compute Kmm using Eq. (3.6)

5: L ← chol(Kmm) from Eq. (3.11)

6: for d = D,D −1, . . . ,1 do

7: Wd ← randn(M̂ ,R)

8: Wd ←Wd / ||Wd ||

9: G ←G ⊙ (KX m L
−T

Wd)

10: H ← H ⊙ (Wd
T

Wd)

11: end for

12: repeat

13: s ← s +1

14: for d = 1,2, . . . ,D do

15: H ← H ⊘ (Wd
T

Wd)

16: G ←G ⊘ (KX m L
−T

Wd)

17: Solve Eq. (3.16) for vec(Wd)

18: W
(d)

← ten(vec(Wd))

19: H ← H ⊙ (Wd
T

Wd)

20: G ←G ⊙ (KX m L
−T

Wd)

21: end for

22: until Convergence or s = S

be chosen first as to provide an accurate representation of the kernel, possibly to

machine precision. This can be ensured for instance by means of cross-validation

on a portion of unseen data. R can then be chosen in order to fill in the remainder

of the available computational and memory budget.

3

48 3. STRUCTURED INDUCING POINTS AND TENSOR DECOMPOSITIONS

Method Complexities

Computational Storage

KRR [27] O (N 3) O (N 2)

SKI [17, 21] O (N +M log M) O (N M)

SKIP [19] O (N DR +RM
1
D log M +N R3 logD +N R2) O (DN R)

Simplex-GP [28] O (N D +MD2)) O (MD)

CPD-SIP O (D(N M
2
D R2

+M
3
D R3)) O (N R)

Table 3.1.: Computational and storage complexities of various SKI-based approaches

when exploiting stationary structure. For Scalable Kernel Interpolation for Prod-

ucts (SKIP) R is typically chosen to be between 20 and 100 [28].

3.3 EXPERIMENTS

We implemented CPD-SIPin MathWorks MATLAB. The implementation and in-

structions to reproduce the results are available at https://github.com/fwesel/

CPD-SIP. We scale the inputs in order to lie in the unit hypercube [0,1]D . In case

of regression problems, we standardize the responses to have zero mean and unit

variance. In case of binary classification, we consider only the sign ±1 of the re-

sponses [50]. We initialize the factor matrices Wd with standard normal numbers

and normalize them to have unit norm. In all our experiments we set the num-

ber of iterations to S = 20 (consistent with Wesel and Batselier [23], as we define

iterations as half a sweep). All the experiments were run on the Intel Core i7-

10610U 1.8 GHz (CPU) of a Dell Inc. Latitude 7410 laptop with 16 GB of RAM.

In what follows we present a series of three numerical experiments. Therein we

demonstrate how our algorithm is stable and recovers the underlying KRR base-

line with small values of R. We show how it compares with other grid-structured

approaches managing to extend their applicability to data large in dimensional-

ity (D = 384) or sample-size (N = 5000000).

3.3.1 NON-STATIONARY KERNEL

The Banana dataset [51] is a two-dimensional binary classification dataset which

is often used in the context of low-rank kernel machines to visually demonstrate

their characteristics. The dataset comprises N = 5300 data points roughly split in

two classes. We consider the non-stationary separable polynomial kernel k(x , x
′′′) =

∏D
d=1

(1+ xd x ′

d
)5, λ= 1×10−6/N and consider M = 2500 inducing points, 50 per di-

3.3. EXPERIMENTS

3

49

mension, located on an equidistant Cartesian grid. We then proceed to train a

KRR classifier of Eq. (3.4) and CPD-SIP with the same hyperparameter λ. Since

the problem is two-dimensional, ten(w) is a matrix and has rank R = M
1
D = 50.

In Fig. 3.1 we can observe that for low values of R the classification boundary is

similar to the one of the KRR baseline where there is more data. This is because

CPD-SIP seeks to minimize the empirical risk, and when provided with very few

parameters it will seek to improve the classification boundary where the data is

denser. We notice that already for R = 6 the classification boundary is indistin-

guishable from the one of KRR. As we will see next, the assumption of a small rank

is valid also when dealing with higher-dimensional and large-sampled data.

3.3.2 COMPARISON WITH SKI

In order to compare our method with SKI, we consider seven University of Cal-

ifornia, Irvine (UCI) datasets [52], five of which are considered also by [28]. We

compare our approach against SKIP [19] and Simplex-GP [28]. We consider the

Gaussian kernel and locate M = 10D inducing points on a equidistant Cartesian

grid and model w as a rank-20 CPD. In order to train a model in approximately

the same function space, we select our hyperparameters l and λ by means of

maximizing the log-likelihood of an exact GP model [53] constructed on a small

random uniform subset of 2000 points. We then validate our model by means

of 3-fold cross validation and report in Table 3.2 the standardized Root Mean

Squared Error (RMSE) with one standard deviation. While training we keep track

of the quality of our inducing-point approximation kx M L
−T by sampling uni-

formly at random a subset E of 1000 points and computing the relative error
||KE E−KE M L

−T
L
−1

KME ||/||KE E ||, which we report in Table 3.2. Here we can observe

that the quality of the approximation approaches machine precision on many

datasets, allowing the modeler to chose R according to the remaining computa-

tional budget.

In Table 3.2 we can observe that notwithstanding the sub-optimal choice of hy-

perparameters, our model is competitive in term of performance with the other

inducing-points based approaches. Notably, although the seven considered datasets

range vastly in the number of samples, they do not do so in the dimensionality, as

all methods pay a heavy computational or storage-related price when scaling to

higher-dimensional data. This is not the case of CPD-SIP which contrary to SKIP,

does not require the contemporary storage of D N × R matrices, which allows

us to tackle datasets of large dimensionality such as Slice with D = 384. Train-

ing our model on the laptop CPU requires then 11274(189) s for the Song dataset

3

50 3. STRUCTURED INDUCING POINTS AND TENSOR DECOMPOSITIONS

R = 2 R = 3 R = 6 R = M
1
D = 50

Figure 3.1.: Classification boundary of the two-dimensional Banana dataset for increasing

CPD-ranks R for the non-stationary product kernel k(x , x
′′′) =

∏D
d=1

(1+xd x′

d
)5.

The dashed line is the KRR decision boundary while the full line corresponds

to CPD-SIP. The black crosses are the locations of the inducing points. In the

last plot the chosen CPD-rank matches the true (matrix) rank of ten(w).

and 4724(198) s for the HouseElectric, compared to a per-epoch 1075(176) s of

Simplex-GP [28, Table 4] on a Titan RTX (GPU) with 24 GB of RAM. Training on

the Slice dataset took 226(2) s.

3.3.3 LARGE-SCALE CLASSIFICATION

In order to demonstrate the favorable complexity of CPD-SIP when dealing with

a larger number of samples, we consider the SUperSYmmetry (SUSY) dataset [52,

54], an binary classification 18-dimensional dataset consisting of 5000000 sam-

ples, whose first 8 features consist of particle detector measurements, while the

following 10 are high-level features engineered from the first 8. We consider

M = 20D inducing points, and R = 5,10,15,20. As is standard on this dataset,

training is performed on the first 4500000 points and test on the remainder. We

train both on only low-level and low-level plus high-level features. We use the

Guassian kernel with l as the mean of the standard deviations of the features and

λ = 2×10−5/N and report in Table 3.3 the Area Under the Curve (AUC), misclassifi-

cation error and training time of our and other methods in literature. In Table 3.3

we can see that already for R = 5 our CPD-SIP scores similarly to Variational In-

ducing Spherical Harmonics (VISH) [55], whose reliance on numerically unstable

spherical harmonics prohibits it however to be deployed on data with D > 9. For

higher values of R, the performance rivals with Deep Neural Networks (DNNs).

Others results on the dataset are from [56] where the authors obtain a misclassi-

fication rate of 20.1 % in 2400 s on a cluster with IBM POWER8 12-core CPUs and

3.3. EXPERIMENTS

3

51

D
a

ta
se

t
R

M
S

E
R

e
l.

A
p

p
ro

x.
E

rr
o

r

D
↓

N
S

K
IP

S
im

p
le

x
G

P
C

P
D

-S
IP

C
P

D
-S

IP

P
re

c
ip

it
a

ti
o

n
3

6
2

8
4

7
4

1
.0

3
2
±

0
.0

0
1

0
.9

3
9
±

0
.0

0
1

0
.9

7
4
±

0
.0

0
0

(0
.8

1
±

1
.0

3
)×

1
0
−

2

P
ro

te
in

9
4

5
7

3
0

0
.8

1
7
±

0
.0

1
2

0
.5

7
1
±

0
.0

0
3

0
.7

0
5
±

0
.0

0
4

(1
.9

4
±

1
.7

4
)×

1
0
−

2

H
o

u
se

E
le

c
tr

ic
1

1
2

0
4

9
2

8
0

N
A

0
.0

7
9
±

0
.0

0
2

0
.0

8
4
±

0
.0

0
2

(1
.6

3
±

8
.2

4
)×

1
0
−

1
4

E
le

v
a

to
rs

1
7

1
6

5
9

9
0

.4
4

7
±

0
.0

3
7

0
.5

1
0
±

0
.0

1
8

0
.3

8
2
±

0
.0

0
5

(6
.3

7
±

4
.6

7
)×

1
0
−

1
5

K
e

g
g

D
ir

e
c

te
d

2
0

4
8

8
2

7
0

.4
8

7
±

0
.0

0
5

0
.0

9
5
±

0
.0

0
2

0
.0

8
9
±

0
.0

0
1

(3
.1

7
±

0
.8

1
)×

1
0
−

1
3

S
o

n
g

9
0

5
1

5
3

4
5

N
A

N
A

0
.8

0
0
±

0
.0

0
3

(2
.4

0
±

1
.4

0
)×

1
0
−

5

S
li

c
e

3
8

6
5

3
5

0
0

N
A

N
A

0
.0

9
4
±

0
.0

0
2

(2
.7

9
±

1
.6

5
)×

1
0
−

1
2

T
a

b
le

3
.2

.:
P

re
d

ic
ti

v
e

S
ta

n
d

a
rd

iz
e

d
R

M
S

E
w

it
h

o
n

e
st

a
n

d
a

rd
d

e
v

ia
ti

o
n

o
n

fi
v

e
U

C
I

d
a

ta
se

ts
[2

8
,T

a
b

le
2

]

3

52 3. STRUCTURED INDUCING POINTS AND TENSOR DECOMPOSITIONS

512 GB RAM.

3.4 CONCLUSION

In this work we build on the idea of placing inducing points on a Cartesian grid

in order to exploit the computationally favorable arising tensorial structure. This

allows us to obtain a good approximation of the kernel function on the whole

domain, without sacrificing accuracy or the ability to tackle large-dimensional

problems. In contrast to SKI and inducing points-related literature, we are in fact

able to overcome the curse of dimensionality which affects both computational

and storage-related complexities of these structured approaches by modeling the

weights as a rank-R CPD. We show by means of numerical experiments how our

approach is viable even on modest hardware. Note that all operations in CPD-

SIP can be expressed as a series of matrix-vector products, enabling for efficient

(multi-)GPU implementations. Furthermore, since our approach allows to learn

from any product kernel, it allows to consider the SKI kernel of Eq. (3.9), which

can be a product kernel depending on the the choice of interpolation strategy

[17]. This could then allow for cheap caching of the features and further speedup

by exploiting to the sparse structure in combination with stationary product ker-

nels. One limitation of our approach is that its computational complexity scales

with O (N D), prohibiting its application to data with a large number of samples

and dimensionality, e.g. in case of categorical features. Another limitation, which

we did not encounter in the experiments, is that the low-rank hypothesis is cer-

tainly not always justified, especially when dealing with highly complicated func-

tions. We think that a possible remedy might be to seek for a different kernel

space where the low-rank assumption would hold. Furthermore, although our

approach is inherently non-probabilistic, our work allows to approximately carry

out one of the two GP tasks, namely data fitting. Interesting further directions

would be to investigate the regularizing effects of the low-rank constraint, to in-

corporate this exact approach in a probabilistic framework allowing for uncer-

tainty quantification and possibly Bayesian model selection.

3.4. CONCLUSION

3

53

A
U

C
1

-A
c

c
u

ra
c

y
(%

)
T

im
e

(s
)

T
e

c
h

n
iq

u
e

L
o

w
-l

e
v

e
l

C
o

m
p

le
te

C
o

m
p

le
te

C
o

m
p

le
te

B
D

T
0

.8
5

0
±

0
.0

0
3

0
.8

6
3
±

0
.0

0
3

N
A

N
A

N
eu

ra
l

N
et

w
o

rk
(N

N
)

0
.8

6
7
±

0
.0

0
2

0
.8

7
5
±

0
.0

0
1

N
A

N
A

D
ro

p
o

u
t

N
N

0
.8

5
6
±

0
.0

0
1

0
.8

7
3
±

0
.0

0
1

N
A

N
A

D
N

N
0

.8
7

2
±

0
.0

0
1

0
.8

7
6
±

0
.0

0
1

N
A

N
A

D
ro

p
o

u
t

D
N

N
0

.8
7

6
±

0
.0

0
1

0
.8

7
9
±

0
.0

0
1

N
A

N
A

V
IS

H
0

.8
5

9
±

0
.0

0
1

N
A

N
A

N
A

C
P

D
-S

IP
(R

=
5

)
0

.8
6

2
±

0
.0

0
2

0
.8

7
2
±

0
.0

0
2

2
0

.0
4
±

0
.0

1
1

6
4

1
±

2
1

C
P

D
-S

IP
(R

=
1

0
)

0
.8

6
7
±

0
.0

0
0

0
.8

7
4
±

0
.0

0
0

1
9

.8
2
±

0
.0

1
4

6
5

0
±

1
5

C
P

D
-S

IP
(R

=
1

5
)

0
.8

7
2
±

0
.0

0
0

0
.8

7
5
±

0
.0

0
0

1
9

.7
4
±

0
.0

0
6

7
7

3
±

5
2

C
P

D
-S

IP
(R

=
2

0
)

0
.8

7
2
±

0
.0

0
0

0
.8

7
6
±

0
.0

0
0

1
9

.6
8
±

0
.0

1
9

4
4

6
±

2
3

T
a

b
le

3
.3

.:
P

re
d

ic
ti

v
e

A
U

C
,m

is
c

la
ss

ifi
c

a
ti

o
n

ra
te

a
n

d
tr

a
in

in
g

ti
m

e
w

it
h

o
n

e
st

a
n

d
a

rd
d

e
v

ia
ti

o
n

o
n

th
e

S
U

S
Y

d
a

ta
se

t.
R

e
su

lt
s

fo
r

B
a

ye
si

a
n

D
ec

is
io

n
T

re
e

(B
D

T
)

a
n

d
D

N
N

s
a

re
fr

o
m

[5
4

,T
a

b
le

2
],

w
h

il
e

th
e

re
su

lt
fo

r
V

IS
H

is
fr

o
m

[5
5

,T
a

b
le

3
].

REFERENCES

[1] F. Wesel and K. Batselier. “Tensor-Based Kernel Machines with Structured Inducing

Points for Large and High-Dimensional Data”. In: Proceedings of The 26th Interna-

tional Conference on Artificial Intelligence and Statistics. PMLR, Apr. 2023, pp. 8308–

8320.

[2] C. Cortes and V. Vapnik. “Support-Vector Networks”. In: Machine Learning 20.3 (Sept.

1995), pp. 273–297.

[3] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning.

Adaptive Computation and Machine Learning. Cambridge, Mass: MIT Press, 2006.

[4] J. Lee, Y. Bahri, R. Novak, S. S. Schoenholz, J. Pennington, and J. Sohl-Dickstein.

“Deep Neural Networks as Gaussian Processes”. In: International Conference on

Learning Representations. Feb. 2018.

[5] R. Novak, L. Xiao, Y. Bahri, J. Lee, G. Yang, J. Hron, D. A. Abolafia, J. Pennington,

and J. Sohl-dickstein. “Bayesian Deep Convolutional Networks with Many Channels

Are Gaussian Processes”. In: International Conference on Learning Representations.

Sept. 2018.

[6] A. Garriga-Alonso, C. E. Rasmussen, and L. Aitchison. “Deep Convolutional Net-

works as Shallow Gaussian Processes”. In: International Conference on Learning

Representations. Sept. 2018.

[7] B. Hammer and K. Gersmann. “A Note on the Universal Approximation Capability

of Support Vector Machines”. In: Neural Processing Letters 17.1 (Feb. 2003), pp. 43–

53.

[8] A. Rahimi and B. Recht. “Random Features for Large-Scale Kernel Machines”. In:

Proceedings of the 20th International Conference on Neural Information Processing

Systems. Curran Associates Inc., Dec. 2007, pp. 1177–1184.

[9] Z. Yang, A. Wilson, A. Smola, and L. Song. “A La Carte – Learning Fast Kernels”. In:

Artificial Intelligence and Statistics. PMLR, Feb. 2015, pp. 1098–1106.

[10] C. Williams and M. Seeger. “Using the Nyström Method to Speed Up Kernel Ma-

chines”. In: Advances in Neural Information Processing Systems 13. MIT Press, 2001,

pp. 682–688.

[11] A. Smola and P. Bartlett. “Sparse Greedy Gaussian Process Regression”. In: Advances

in Neural Information Processing Systems. Vol. 13. MIT Press, 2001.

55

3

56 REFERENCES

[12] L. Csató and M. Opper. “Sparse On-Line Gaussian Processes”. In: Neural Computa-

tion 14.3 (Mar. 2002), pp. 641–668.

[13] J. Quiñonero-Candela and C. E. Rasmussen. “A Unifying View of Sparse Approxi-

mate Gaussian Process Regression”. In: Journal of Machine Learning Research 6.65

(2005), pp. 1939–1959.

[14] E. Snelson and Z. Ghahramani. “Sparse Gaussian Processes Using Pseudo-inputs”.

In: Advances in Neural Information Processing Systems. Vol. 18. MIT Press, 2006.

[15] M. Titsias. “Variational Learning of Inducing Variables in Sparse Gaussian Processes”.

In: Proceedings of the Twelth International Conference on Artificial Intelligence and

Statistics. PMLR, Apr. 2009, pp. 567–574.

[16] G. Meanti, L. Carratino, L. Rosasco, and A. Rudi. “Kernel Methods through the Roof:

Handling Billions of Points Efficiently”. In: Advances in Neural Information Process-

ing Systems. Ed. by H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin.

Vol. 33. Curran Associates, Inc., 2020, pp. 14410–14422.

[17] A. Wilson and H. Nickisch. “Kernel Interpolation for Scalable Structured Gaussian

Processes (KISS-GP)”. In: Proceedings of the 32nd International Conference on Ma-

chine Learning. PMLR, June 2015, pp. 1775–1784.

[18] T. Nickson, T. Gunter, C. Lloyd, M. A. Osborne, and S. Roberts. “Blitzkriging: Kronecker-

Structured Stochastic Gaussian Processes”. In: arXiv:1510.07965 [stat] (Oct. 2015).

arXiv: 1510.07965 [stat].

[19] J. Gardner, G. Pleiss, R. Wu, K. Weinberger, and A. Wilson. “Product Kernel Interpo-

lation for Scalable Gaussian Processes”. In: Proceedings of the Twenty-First Interna-

tional Conference on Artificial Intelligence and Statistics. PMLR, Mar. 2018, pp. 1407–

1416.

[20] S. Stanton, W. Maddox, I. Delbridge, and A. G. Wilson. “Kernel Interpolation for Scal-

able Online Gaussian Processes”. In: Proceedings of The 24th International Confer-

ence on Artificial Intelligence and Statistics. PMLR, Mar. 2021, pp. 3133–3141.

[21] M. Yadav, D. Sheldon, and C. Musco. “Faster Kernel Interpolation for Gaussian Pro-

cesses”. In: Proceedings of The 24th International Conference on Artificial Intelli-

gence and Statistics. PMLR, Mar. 2021, pp. 2971–2979.

[22] T. G. Kolda and B. W. Bader. “Tensor Decompositions and Applications”. In: SIAM

Review 51.3 (Aug. 2009), pp. 455–500.

[23] F. Wesel and K. Batselier. “Large-Scale Learning with Fourier Features and Tensor

Decompositions”. In: Advances in Neural Information Processing Systems. Vol. 34.

Curran Associates, Inc., 2021, pp. 17543–17554.

[24] B. Schölkopf, R. Herbrich, and A. J. Smola. “A Generalized Representer Theorem”.

In: Computational Learning Theory. Ed. by D. Helmbold and B. Williamson. Lecture

Notes in Computer Science. Berlin, Heidelberg: Springer, 2001, pp. 416–426.

REFERENCES

3

57

[25] Y. Saatchi. “Scalable Inference for Structured Gaussian Process Models”. PhD thesis.

Cambridge: University of Cambridge, Nov. 2011.

[26] E. Gilboa, Y. Saatçi, and J. P. Cunningham. “Scaling Multidimensional Inference for

Structured Gaussian Processes”. In: IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence 37.2 (Feb. 2015), pp. 424–436.

[27] J. A. K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, and J. Vandewalle. Least

Squares Support Vector Machines. World Scientific, Nov. 2002.

[28] S. Kapoor, M. Finzi, K. A. Wang, and A. G. G. Wilson. “SKIing on Simplices: Kernel

Interpolation on the Permutohedral Lattice for Scalable Gaussian Processes”. In:

Proceedings of the 38th International Conference on Machine Learning. PMLR, July

2021, pp. 5279–5289.

[29] F. L. Hitchcock. “The Expression of a Tensor or a Polyadic as a Sum of Products”. In:

Journal of Mathematics and Physics 6.1-4 (1927), pp. 164–189.

[30] L. R. Tucker. “Some Mathematical Notes on Three-Mode Factor Analysis”. In: Psy-

chometrika 31.3 (Sept. 1966), pp. 279–311.

[31] I. V. Oseledets. “Tensor-Train Decomposition”. In: SIAM Journal on Scientific Com-

puting 33.5 (Jan. 2011), pp. 2295–2317.

[32] A. Novikov, D. Podoprikhin, A. Osokin, and D. P. Vetrov. “Tensorizing Neural Net-

works”. In: Advances in Neural Information Processing Systems. Ed. by C. Cortes,

N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett. Vol. 28. Curran Associates, Inc.,

2015.

[33] A. Tjandra, S. Sakti, and S. Nakamura. “Compressing Recurrent Neural Network

with Tensor Train”. In: 2017 International Joint Conference on Neural Networks (IJCNN).

May 2017, pp. 4451–4458.

[34] Y. Yang, D. Krompass, and V. Tresp. “Tensor-Train Recurrent Neural Networks for

Video Classification”. In: International Conference on Machine Learning. PMLR, July

2017, pp. 3891–3900.

[35] M. Khodak, N. A. Tenenholtz, L. Mackey, and N. Fusi. “Initialization and Regular-

ization of Factorized Neural Layers”. In: International Conference on Learning Rep-

resentations. Sept. 2020.

[36] G. Favier and T. Bouilloc. “Parametric Complexity Reduction of Volterra Models Us-

ing Tensor Decompositions”. In: 2009 17th European Signal Processing Conference.

Aug. 2009, pp. 2288–2292.

[37] V. Lebedev, Y. Ganin, M. Rakhuba, I. V. Oseledets, and V. S. Lempitsky. “Speeding-up

Convolutional Neural Networks Using Fine-tuned CP-Decomposition”. In: Interna-

tional Conference on Learning Representations. Jan. 2015.

[38] K. Batselier, Z. Chen, and N. Wong. “Tensor Network Alternating Linear Scheme for

MIMO Volterra System Identification”. In: Automatica 84 (Oct. 2017), pp. 26–35.

3

58 REFERENCES

[39] E. M. Stoudenmire and D. J. Schwab. “Supervised Learning with Tensor Networks”.

In: Proceedings of the 30th International Conference on Neural Information Process-

ing Systems. Curran Associates Inc., Dec. 2016, pp. 4806–4814.

[40] A. Novikov, I. Oseledets, and M. Trofimov. “Exponential Machines”. In: Bulletin of

the Polish Academy of Sciences: Technical Sciences; 2018; 66; No 6 (Special Section on

Deep Learning: Theory and Practice); 789-797 (2018).

[41] Z. Chen, K. Batselier, J. A. K. Suykens, and N. Wong. “Parallelized Tensor Train Learn-

ing of Polynomial Classifiers”. In: IEEE Transactions on Neural Networks and Learn-

ing Systems 29.10 (Oct. 2018), pp. 4621–4632.

[42] S. Zhe, W. Xing, and R. M. Kirby. “Scalable High-Order Gaussian Process Regres-

sion”. In: Proceedings of the Twenty-Second International Conference on Artificial

Intelligence and Statistics. PMLR, Apr. 2019, pp. 2611–2620.

[43] P. Izmailov, A. Novikov, and D. Kropotov. “Scalable Gaussian Processes with Billions

of Inducing Inputs via Tensor Train Decomposition”. In: International Conference

on Artificial Intelligence and Statistics. PMLR, Mar. 2018, pp. 726–735.

[44] T. Evans and P. Nair. “Scalable Gaussian Processes with Grid-Structured Eigenfunc-

tions (GP-GRIEF)”. In: International Conference on Machine Learning. PMLR, July

2018, pp. 1417–1426.

[45] N. D. Sidiropoulos and R. Bro. “On the Uniqueness of Multilinear Decomposition of

N-Way Arrays”. In: Journal of Chemometrics 14.3 (2000), pp. 229–239.

[46] J. D. Carroll and J.-J. Chang. “Analysis of Individual Differences in Multidimensional

Scaling via an N-Way Generalization of “Eckart-Young” Decomposition”. In: Psy-

chometrika 35.3 (Sept. 1970), pp. 283–319.

[47] R. A. Harshman. “Foundations of the PARAFAC Procedure : Models and Conditions

for An”. In: UCLA Working Papers in Phonetics 16 (1970), pp. 1–84.

[48] A. Uschmajew. “Local Convergence of the Alternating Least Squares Algorithm for

Canonical Tensor Approximation”. In: SIAM Journal on Matrix Analysis and Appli-

cations 33.2 (Jan. 2012), pp. 639–652.

[49] B. Khavari and G. Rabusseau. “Lower and Upper Bounds on the Pseudo-Dimension

of Tensor Network Models”. In: Advances in Neural Information Processing Systems.

May 2021.

[50] J. Suykens and J. Vandewalle. “Least Squares Support Vector Machine Classifiers”.

In: Neural Processing Letters 9.3 (June 1999), pp. 293–300.

[51] J. Hensman, A. Matthews, and Z. Ghahramani. “Scalable Variational Gaussian Pro-

cess Classification”. In: Artificial Intelligence and Statistics. PMLR, Feb. 2015, pp. 351–

360.

[52] D. Dua and C. Graff. UCI Machine Learning Repository. 2017.

REFERENCES

3

59

[53] C. E. Rasmussen and H. Nickisch. “Gaussian Processes for Machine Learning (GPML)

Toolbox”. In: Journal of Machine Learning Research 11.100 (2010), pp. 3011–3015.

[54] P. Baldi, P. Sadowski, and D. Whiteson. “Searching for Exotic Particles in High-Energy

Physics with Deep Learning”. In: Nature Communications 5.1 (July 2014), p. 4308.

[55] V. Dutordoir, N. Durrande, and J. Hensman. “Sparse Gaussian Processes with Spher-

ical Harmonic Features”. In: International Conference on Machine Learning. PMLR,

Nov. 2020, pp. 2793–2802.

[56] J. Chen, H. Avron, and V. Sindhwani. “Hierarchically Compositional Kernels for Scal-

able Nonparametric Learning”. In: Journal of Machine Learning Research 18.66 (2017),

pp. 1–42.

4
QUANTIZED FOURIER AND POLYNOMIAL

FEATURES FOR MORE EXPRESSIVE TENSOR

NETWORK MODELS

In the context of kernel machines, polynomial and Fourier features are commonly

used to provide a nonlinear extension to linear models by mapping the data to a

higher-dimensional space. Unless one considers the dual formulation of the learn-

ing problem, which renders exact large-scale learning unfeasible, the exponential

increase of model parameters in the dimensionality of the data caused by their

tensor-product structure prohibits to tackle high-dimensional problems. One of

the possible approaches to circumvent this exponential scaling is to exploit the ten-

sor structure present in the features by constraining the model weights to be an un-

derparametrized tensor network. In this paper we quantize, i.e. further tensorize,

polynomial and Fourier features. Based on this feature quantization we propose to

quantize the associated model weights, yielding quantized models. We show that,

for the same number of model parameters, the resulting quantized models have

a higher bound on the VC-dimension as opposed to their non-quantized coun-

terparts, at no additional computational cost while learning from identical fea-

tures. We verify experimentally how this additional tensorization regularizes the

learning problem by prioritizing the most salient features in the data and how it

provides models with increased generalization capabilities. We finally benchmark

our approach on large regression task, achieving state-of-the-art results on a lap-

top computer.

This chapter has been published as:

F. Wesel and K. Batselier. “Quantized Fourier and Polynomial Features for More Expressive Tensor

Network Models”. In: Proceedings of The 27th International Conference on Artificial Intelligence and

Statistics. PMLR, Apr. 2024, pp. 1261–1269

61

4

62 4. QUANTIZED FEATURES AND TENSOR DECOMPOSITIONS

4.1 INTRODUCTION

In the context of supervised learning, the goal is to estimate a function f (·) : RD
→

R given N input-output pairs
{

xn , yn

}N
n=1, where x ∈ R

D and y ∈ R. Kernel ma-

chines accomplish this by lifting the input data into a high-dimensional feature

space by means of a feature map z (·) : RD
→R

M and seeking a linear relationship

therein:

f (x , w) = 〈z (x) , w〉 . (4.1)

Training such a model involves the minimization of the regularized empirical risk

given a convex measure of loss ℓ (·, ·) : RM
×R→R+

Rempirical (w) =
1

N

N∑

n=1

ℓ
(
〈z (xn) , w〉 , yn

)
+λ ||w ||

2 . (4.2)

Different choices of loss yield the primal formulation of different kernel machines.

For example, squared loss results in Kernel Ridge Regression (KRR) [2], hinge loss

in Support Vector Machines (SVMs) [3], and logistic loss yields logistic regression.

Different choices of the feature map z allow for modeling different nonlinear be-

haviors in the data. In this article we consider tensor-product features

z (x) =
D⊗

d=1

vd (xd) , (4.3)

where vd (·) : C→ C
Md is a feature map acting on each element of the d-th com-

ponent xd of x ∈C
D . Here ⊗ denotes the left Kronecker product [4]. This tensor-

product structure arises when considering product kernels [5, 6, 7], Fourier fea-

tures [8], when considering B-splines [9] and polynomials [5].

Due to the tensor-product structure in Eq. (4.3), z(·) maps an input sample x ∈

C
D into an exponentially large feature vector z(x) ∈ C

M1M2···MD . As a result, the

model is also described by an exponential number of weights w . This exponential

scaling in the number of features limits the use of tensor-product features to low-

dimensional data or to mappings of very low degree.

Both these computational limitations can be sidestepped entirely by consider-

ing the dual formulation of the learning problem in Eq. (4.2), requiring to com-

pute the pairwise similarity of all data respectively by means of a kernel function

k(x , x
′′′) =

〈
z(x), z(x

′′′)
〉

. However, the dual formulation requires to instantiate the

kernel matrix at a cost of O (N 2) and to estimate N Lagrange multipliers by solv-

ing a (convex) quadratic problem at a cost of at least O (N 2), prohibiting to tackle

4.1. INTRODUCTION

4

63

large-scale data (large N). To lift these limitations, a multitude of research has

focused on finding low-rank approximations of kernels by considering random

methods such as polynomial sketching [10, 11, 12] and random features [13, 14,

15], which approximate the feature space with probabilistic approximation guar-

antees.

One way to take advantage of the existing tensor-product structure in Eq. (4.3)

is by imposing a tensor network [16, 17] constraint on the weights w . For ex-

ample, using a polyadic rank-R constraint reduces the storage complexity of the

weights from O (M D) down to O (DMR) and enables the development of efficient

learning algorithms with a computational complexity of O (DMR) per gradient

descent iteration. This idea has been explored for polynomial [18, 19, 20, 21, 22]

pure-power-1 polynomials [23], pure-power polynomials of higher degree [24],

B-splines [9], and Fourier features [8, 25, 26, 27, 28, 29].

In this article, we improve on this entire line of research by deriving an ex-

act quantized representation [30] of pure-power polynomials and Fourier fea-

tures, exploiting their inherent Vandermonde structure. It is worth noting that in

this paper quantized means further tensorized, and should not be confused with

the practice of working with lower precision floating point numbers. By virtue

of the derived quantized features, we are able to quantize the model weights.

We show that compared to their non-quantized counterparts, quantized models

can be trained with no additional computational cost, while learning from the

same exact features. Most importantly, for the same number of model parame-

ters the ensuing quantized models are characterized by higher upper bounds on

the Vapnik–Chervonenkis (VC)-dimension, which indicates a potential higher ex-

pressiveness. While these bounds are in practice not necessarily met, we verify

experimentally that:

1. Quantized models are indeed characterized by higher expressiveness. This

is demonstrated in Section 4.5.1, where we show that in the underparam-

eterized regime quantized models achiever lower test errors than the non-

quantized models with identical features and identical total number of model

parameters.

2. This additional structure regularizes the problem by prioritizing the learn-

ing of the peaks in the frequency spectrum of the signal (in the case of

Fourier features) (Section 4.5.2). In other words, the quantized structure is

learning the most salient features in the data first with its limited amount

of available model parameters.

3. Quantized tensor network models can provide state-of-the-art performance

4

64 4. QUANTIZED FEATURES AND TENSOR DECOMPOSITIONS

on large-scale real-life problems. This is demonstrated in Section 4.5.3,

where we compare the proposed quantized model to both its non-quantized

counterpart and other state-of-the-art methods, demonstrating superior

generalization performance on a laptop computer.

4.2 BACKGROUND

We denote scalars in both capital and non-capital italics w,W , vectors in non-

capital bold w , matrices in capital bold W and tensors, also known as higher-

order arrays, in capital italic bold font W . Sets are denoted with calligraphic

capital letters, e.g. S . The m-th entry of a vector w ∈ C
M is indicated as wm

and the m1m2 . . .mD -th entry of a D-dimensional tensor W ∈ C
M1×M2×···×MD as

wm1m2...mD . We denote the complex-conjugate with superscript ∗ and ⊗ denotes

the left Kronecker product [4]. We employ zero-based indexing for all tensors.

The Frobenius inner product between two D-dimensional tensors V ,W ∈C
M1×M2×···×MD

is defined as

〈V ,W 〉F :=
M1−1∑

m1=0

M2−1∑

m2=0

· · ·

MD−1∑

mD=0

v∗

m1m2...mD
wm1m2...mD . (4.4)

We define the vectorization operator as vec(·) : CM1×M2×···×MD → C
M1M2···MD

such that

vec(W)m = wm1m2...mD ,

with m = m1+
∑D

d=2
md

∏d−1
k=1

Mk . Likewise, its inverse, the tensorization operator

ten(·, M1, M2, . . . , MD) : CM1M2···MD →C
M1×M2×...MD is defined such that

ten(w , M1, M2, . . . , MD)m1m2···mD
= wm .

4.2.1 TENSOR NETWORKS

Tensor Networks (TNs) [4, 16, 31, 32] express a D-dimensional tensor

ten(w , M1, M2, . . . , MD) =: W as a multi-linear function of C core tensors, see Def-

inition A.1 for a rigorous definition. Two commonly used TNs are the Canonical

Polyadic Decomposition (CPD) and Tensor Train (TT).

Definition 4.2.1 (CPD [16, 33]). A D-dimensional tensor W ∈ C
M1×M2×···×MD has

4.2. BACKGROUND

4

65

a rank-R CPD if

wm1m2...mD =

R−1∑

r=0

D∏

d=1

wd md r .

The cores of this particular network are C = D matrices Wd ∈ C
Md×R . The

storage complexity P = R
∑D

d=1
Md of a rank-R CPD is therefore O (DMR), where

M = max(M1, M2, . . . , MD).

Definition 4.2.2 (TT [34]). A D-dimensional tensor W ∈ C
M1×M2×···×MD admits a

rank-(R1 := 1,R2, . . . ,RD ,RD+1 := R1) TT if

wm1m2...mD =

R1−1∑

r1=0

R2−1∑

r2=0

· · ·

Rd−1∑

rD=0

D∏

d=1

wd rd md rd+1
.

The cores of a TT are the C = D 3-dimensional tensors W d ∈C
Rd×Md×Rd+1 . The

case R1 > 1 is also called a Tensor Ring (TR) [35]. Throughout the rest of this article

we will simply refer to the TT rank as R = max(R2, · · · ,RD). The storage complexity

P =

∑D
d=1

Md Rd Rd+1 of a TT is then O (DMR2). A TN is underparametrized if P ≪

∏D
d=1

Md , i.e. it can represent a tensor with fewer parameters than the number of

entries of the tensor.

Other TNs are the Tucker decomposition [36, 37], hierarchical hierarchical Tucker

[38, 39] decomposition, block-term decompositions [40, 41], Projected Entan-

gled Pair States (PEPS) [42] and Multi-scale Entanglement Renormalization Ansatz

(MERA) [43].

4.2.2 TENSORIZED KERNEL MACHINES

The tensor-product structure of features in Eq. (4.3) can be exploited by imposing

a tensor network structure onto the tensorized model weights

ten(w , M1, M2, . . . , MD) .

Although generally speaking the tensorized model weights are not full rank, mod-

eling them as an underparametrized tensor network allows to compute fast model

responses when the feature map z (·) is of the form of Eq. (4.3).

Theorem 4.2.3 (Tensorized kernel machine (TKM)). Suppose ten(w , M1, M2, . . . , MD)

4

66 4. QUANTIZED FEATURES AND TENSOR DECOMPOSITIONS

is a tensor in CPD, TT or TR form. Then model responses and associated gradients

f (x , w) = 〈

D⊗

d=1

vd (xd) , w〉

F

,

can be computed in O (P) instead of O (
∏D

d=1
Md), where P = DMR in case of CPD,

and P = DMR2 in case of TT or TR.

Proof. See Section B.1.

Results for more general TNs can be found in Section B.1. This idea has been

explored for a plethora of different combinations of tensor-product features and

tensor networks [8, 23, 24, 25, 28, 29, 44]. A graphical depiction of a TKM can be

found in Fig. 4.1a: a full line denotes a summation along the corresponding in-

dex, while a dotted line denotes a Kronecker product. Training a kernel machine

under such constraint yields the following nonconvex optimization problem:

min
w

1

N

N∑

n=1

ℓ(〈
D⊗

d=1

vd (xd) , w〉

F

, yn)+λ||w ||
2
F, (4.5)

s.t. ten(w , M1, M2, . . . , MD) is a tensor network.

Common choices of tensor network-specific optimizers are the Alternating Least-

Squares (ALS) [16, 45, 46, 47], the Density Matrix Renormalization Group (DMRG)

[48] and Riemannian optimization [23, 49]. Generic first or second order gradient-

based optimization method can also be employed.

4.3 QUANTIZING POLYNOMIAL AND FOURIER

FEATURES

Before presenting the main contribution of this article, we first provide the defi-

nition of a pure-power polynomial feature map.

Definition 4.3.1 (Pure-power polynomial feature map [24]). For an input sample

x ∈C
D , the pure-power polynomial features z(·) : CD

→C
M1M2···MD

of degree (M1 −1, M2 −1, . . . , MD −1) are defined as

z (x) =
D⊗

d=1

vd (xd) ,

4.3. QUANTIZING POLYNOMIAL AND FOURIER FEATURES

4

67

M1 M2 M3

R2 R3

v1 v2 v3

W 1 W 2 W 3

(a) TKM with TT-constrained

weights.

Q Q Q Q Q Q

R2 R3 R4 R5 R6

s1,1 s1,2 s1,3 s2,1 s3,1 s3,2

W 1,1 W 1,2 W 1,3 W 2,1 W 3,1 W 3,2

(b) Corresponding QTKM with Q-quantized TT-constrained

weights.

Figure 4.1.: TKM (Fig. 4.1a), and QTKM (Fig. 4.1b) with TT-constrained model weights.

In these diagrams, each circle represent a vector which constitutes the pure-

power feature map of Definition 4.3.1, and each square represents a TT core

(Definition 4.2.2). The color coding relates the d-th feature with its quantized

representation. A full connecting line denotes a summation along the corre-

sponding index, while a dotted line denotes a Kronecker product, see Cichocki

et al. [4] for a more in-depth explanation. Figure 4.1b depicts the case where

K1 =Q
3, K2 =Q and K3 =Q

2. Notice how quantization allows to model corre-

lations within each particular mode of the model weights, in this case explicitly

by means of the TT ranks (1,R2, . . . ,R6,1).

with vd (·) : C→C
Md the Vandermonde vector

vd (xd) =
[

1, xd , x
2
d

, . . . , x
Md−1

d

]

.

The md -th element of the feature map vector vd (xd) is

vd (xd)md
= (xd)md , md = 0,1, . . . , Md −1.

4

68 4. QUANTIZED FEATURES AND TENSOR DECOMPOSITIONS

The definition of the feature map is given for degree (M1 −1, M2 −1, . . . , MD −1)

such that the feature map vector z(x) has a length M1M2 · · ·MD . The Kronecker

product in Definition 4.3.1 ensures that all possible combinations of products of

monomial basis functions are computed, up to a total degree of
∑D

d=1
(Md − 1).

Compared to the more common affine polynomials, which are basis functions

of the polynomial kernel k(x , x
′′′) = (b +

〈
x , x

′′′
〉

)M , pure-power polynomial fea-

tures contain more higher-order terms. Similarly, their use is justified by the

Stone-Weierstrass theorem [50], which guarantees that any continuous function

on a locally compact domain can be approximated arbitrarily well by polynomi-

als of increasing degree. Fourier features can be similarly defined by replacing

the monomials with complex exponentials.

Definition 4.3.2. (Fourier Features) For an input sample x ∈C
D , the Fourier fea-

ture map ϕ(·) : CD
→C

M1M2···MD with Md basis frequencies −Md/2, . . . , Md/2−1 per

dimension is defined as

ϕ (x) =
D⊗

d=1

(

cd vd

(

e−
2π j xd

L

))

,

where j is the imaginary unit, cd = e2π j xd
2+Md

2L ∈ C, L ∈ R is the periodicity of the

function class and v
(d) (·) are the Vandermonde vectors of Definition 4.3.1.

Fourier features are ubiquitous in the field of kernel machines as they are eigen-

functions of D-dimensional stationary product kernels with respect to the Lebesgue

measure, see [51, Chapter 4.3] or [6, 7]. As such they are often used for the uni-

form approximation of such kernels in the limit of L →∞ and M1, M2, . . . , MD →

∞ [8, Proposition 1].

We now present the first contribution of this article, which is an exact quan-

tized, i.e. further tensorized, representation of pure-power polynomials and Fourier

features. These quantized features allows for the quantization of the model weights,

which enables to impose additional tensor network structure between features,

yielding more expressive models for the same number of model parameters.

4.3.1 QUANTIZED FEATURES

In order to quantize pure-power polynomial features we assume for ease of no-

tation that Md can be written as some power Md =QKd , where both Q,Kd ∈ N.

The more general case involves considering the (prime) factorization of Md and

follows the same derivation steps albeit with more intricate notation.

4.3. QUANTIZING POLYNOMIAL AND FOURIER FEATURES

4

69

Definition 4.3.3 (Quantized Vandermonde vector). For Q,k ∈ N, we define the

quantized Vandermonde vector sd ,k (·) : C→C
Q as

sd ,k (xd) :=
[

1, x
Qk−1

d
, . . . , x

(Q−1)Qk−1

d

]

.

The q-th element of sd ,k (xd) is therefore

sd ,k (xd)q = (xd)qQk−1

, q = 0,1, . . . ,Q −1.

Theorem 4.3.4 (Quantized pure-power-(Md −1) polynomial feature map). Each

Vandermonde vector v
(d)(xd) can be expressed as a Kronecker product of Kd factors

vd (xd) =
Kd⊗

k=1

sd ,k (xd) ,

where Md =QKd .

Proof. From Definition 4.3.1 we have that

vd (xd)md
= (xd)md .

Assume that Md =QKd . We proceed by tensorizing vd (xd) along Kd dimensions,

each having size Q. Then

vd (xd)md
= ten(vd ,Q,Q, . . . ,Q)q1q2...qKd

= (xd)
∑Kd

k=1
qkQk−1

=

Kd∏

k=1

(xd)qk Qk−1

=

Kd∏

k=1

sd ,k (xd)qk
.

The last equality follows directly from Definition 4.3.3. Hence by the definition of

Kronecker product, we have that

vd (xd) =
Kd⊗

k=1

sd ,k (xd) .

4

70 4. QUANTIZED FEATURES AND TENSOR DECOMPOSITIONS

Note once more that in principle it is possible to tensorize with respect to Kd

indices such that Md = Q1Q2 · · ·QKd
, but we restrain from doing so not to need-

lessly complicate notation. Theorem 4.3.4 allows then to quantize pure-power

and Fourier features.

Corollary 4.3.5 (Quantized pure-power polynomials). For an input sample x ∈

C
D , the pure-power polynomial feature map can be expressed as

z (x) =
D⊗

d=1

Kd⊗

k=1

sd ,k (xd) .

Corollary 4.3.6 (Quantized Fourier feature map). For an input sample x ∈ C
D ,

the Fourier feature map can be expressed as

ϕ(x) =
D⊗

d=1

Kd⊗

k=1

c
1

Kd

d
sd ,k

(

e−
2π j xd

L

)

,

where cd = e2π j xd
2+Md

2L .

Note that when quantized, both pure-power and Fourier features admit an

efficient storage complexity of O (DK) = O (D log M) instead of O (DM), where

K = max(K1, . . . ,KD).

Example 4.3.7. Consider D = 2, M1 = 8 = 23 M2 = 4 = 22, then the Vandermonde

vector of monomials up to total degree 10 is constructed from

z(x) = [1, x1]⊗
[
1, x2

1

]
⊗

[
1, x4

1

]
⊗ [1, x2]⊗

[
1, x2

2

]
.

We now present the second contribution of this article, which is the quanti-

zation of the model weights associated with quantized polynomial and Fourier

features. As we will see, these quantized models are more expressive given the

number of model parameters and same exact features.

4.4 QUANTIZED TENSOR NETWORK KERNEL

MACHINES

When not considering quantization, model weights allow for tensorial index-

ing along the D dimensions of the inputs, i.e. ten(w , M1, M2, . . . , MD). Corol-

lary 4.3.5 and Corollary 4.3.6 allow to exploit the Kronecker product structure

4.4. QUANTIZED TENSOR NETWORK KERNEL MACHINES

4

71

of pure-power polynomial and Fourier features by further tensorizing the model

weights of the tensor network-constrained kernel machines of Eq. (4.5)

ten(w , Q,Q, . . . ,Q
︸ ︷︷ ︸
∑D

d=1
Kd times

).

These further factorized model weights can then be constrained to be a ten-

sor network, and learned by minimizing the empirical risk in the framework of

Eq. (4.5). Training a kernel machine under this constraint results in the following

nonlinear optimization problem:

min
w

1

N

N∑

n=1

ℓ(〈
D⊗

d=1

Kd⊗

k=1

sd ,k (xd) , w〉

F

, yn)+λ||w ||
2
F, (4.6)

s.t. ten(w ,Q,Q, . . . ,Q) is a tensor network.

4.4.1 COMPUTATIONAL COMPLEXITY

In case of CPD, TT or TR-constrained and quantized model weights, model re-

sponses and associated gradients can be computed at the same cost as with non-

quantized models:

Theorem 4.4.1 (Quantized tensorized kernel machine (QTKM)). Consider pure-

power and Fourier feature maps factorized as in Corollary 4.3.5 and Corollary 4.3.6

and suppose ten(w ,Q,Q, . . . ,Q) is a tensor in CPD, TT or TR form. Then by Theo-

rem 4.2.3, model responses and associated gradients

fquantized (x , w) = 〈

D⊗

d=1

Kd⊗

k=1

sd ,k (xd) , w〉

F

,

can be computed in O (P) instead of O (
∏D

d=1
Md), where P = K DQR in case of CPD,

and P = K DQR2 in case of TT or TR.

Proof. See Section B.2.

Results for more general TNs can be found in Section B.2. A graphical depic-

tion of a QTKM can be found in Fig. 4.1b. Furthermore, when considering tensor

network-specific optimization algorithms, the time complexity per iteration of

training when optimizing Eq. (4.6) is lower compared to Eq. (4.5), as these meth-

4

72 4. QUANTIZED FEATURES AND TENSOR DECOMPOSITIONS

ods typically optimize over a subset (typically one core) of model parameters, see

Section C.

4.4.2 INCREASED MODEL EXPRESSIVENESS

10
2

P

10
-3

10
-2

10
-1

M
S
E

yacht

N = 308, D = 6

KRR
RFF
TKM
QTKM

10
2

P

0.6

0.7

0.8

0.9

1

1.1

M
S
E

qsar

N = 546, D = 8

10
2

P

10
-3

10
-2

10
-1

M
S
E

energy

N = 768, D = 8

10
2

P

0.6

0.7

0.8

0.9

1

1.1

M
S
E

qsar

N = 546, D = 8

10
2

P

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

M
S
E

concrete

N = 1030, D = 9

10
2

P

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

M
S
E

airfoil

N = 1503, D = 6

10
2

10
3

P

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

M
S
E

wine

N = 4898, D = 11

10
2

P

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

M
S
E

banana

N = 5300, D = 2

Figure 4.2.: Plots of the test mean squared error as a function of the number of model pa-

rameters P , for different real-life datasets. In blue, random Fourier features

[14], in red tensorized kernel machines with Fourier features [8, 25, 27, 29],

in yellow quantized kernel machines with Fourier features, with quantization

Q = 2. The gray horizontal full line is the full unconstrained optimization prob-

lem, which corresponds to KRR. The grey vertical dotted line is set at P = N . It

can be seen that for P < N case, quantization allows to achieve better general-

ization performance with respect to the non-quantized case.

Constraining a tensor to be a tensor network allows to distill the most salient

characteristics of the data in terms of an limited number of effective parame-

ters without destroying its multi-modal nature. This is also known as the bless-

ing of dimensionality [31] and is the general underlying concept behind tensor

network-based methods. In the more specific context of supervised kernel ma-

chines, these well-known empirical considerations are also captured in the rig-

orous framework of VC-theory [52]. Khavari and Rabusseau [44, theorem 2] have

4.5. NUMERICAL EXPERIMENTS

4

73

recently shown that the VC-dimension and pseudo-dimension of tensor network-

constrained models of the form of Eq. (4.6) satisfies the following upper bound

irrespectively of the choice of tensor network:

VC(f) ≤ 2P log(12|V |),

where |V | is the number of vertices in the TN (see Definition A.1). Since quantiza-

tion of the model weights increases the number of vertices in their tensor network

representation, quantized models are characterized by higher upper bounds on

the VC-dimension and pseudo-dimension for the same number of model param-

eters. For example, in the non-quantized case, parametrizing the TN as a CPD, TT

or TR yields

VC(f) ≤ 2P log(12D),

while for the quantized case

VC(fquantized) ≤ 2P log(12D log M).

Hence, in case of CPD, TT and TR this additional possible model expressiveness

comes at no additional computational costs per iteration when training with gra-

dient descent (Theorems 4.2.3 and 4.4.1). Setting Q = 2 provides then in this

sense an optimal choice for this additional hyperparameter, as it maximizes the

upper bound. In the more general case where Md is not a power of 2, this choice

corresponds with the prime factorization of Md . It should be noted that a higher

VC-dimension does not imply better performance on unseen data. However as

we will see in Sections 4.5.1 and 4.5.2 quantized models tend to outperform their

counterparts in the underparameterized regime where TKMs are typically em-

ployed, as the gained expressiveness is put fully to good use and does not result

in overfitting.

4.5 NUMERICAL EXPERIMENTS

In all experiments we consider a squared loss ℓ(f (x), y) = | f (x)−y |2, scale our in-

puts to lie in the unit box, and consider Fourier features (Definition 4.3.2) as they

notably suffer less from ill-conditioning than polynomials. In all experiments we

model the weight tensor as a CPD of rank R. We do not consider other TNs in

the numerical experiments for three reasons: first, it has been shown that TTs

are more suited to model time-varying functions such as dynamical systems and

time series, as opposed to CPD [53]. Second, CPD adds only one hyperparameter

4

74 4. QUANTIZED FEATURES AND TENSOR DECOMPOSITIONS

R = 10, P = 260

0 1000 2000 3000 4000

m

0

0.01

0.02

0.03

0.04

0.05

0.06
jw

j
R = 25, P = 650

0 1000 2000 3000 4000

m

0

0.01

0.02

0.03

0.04

0.05

0.06

jw
j

R = 50, P = 1300

0 1000 2000 3000 4000

m

0

0.01

0.02

0.03

0.04

0.05

0.06

jw
j

R = 100, P = 2600

0 1000 2000 3000 4000

m

0

0.01

0.02

0.03

0.04

0.05

0.06

jw
j

Figure 4.3.: Sound dataset. In red, plot of the magnitude of the quantized Fourier coeffi-

cients for different values of R and total number of model parameters P . The

magnitude of the full unconstrained Fourier coefficients is shown in black. It

can be observed that increasing the CPD rank R recovers the peaks of frequen-

cies with the highest magnitude.

to our model as opposed to D hyperparameters for the TT or TR. Choosing these

hyperparameters (TT ranks) is not trivial and can yield models with very different

performance for the same total number of model parameters. Third, CPD-based

models are invariant to reordering of the features as opposed to TT. We believe

that this invariance is very much desired in the context of kernel machines. We

solve the ensuing optimization problem using ALS [46]. The source code and data

to reproduce all experiments is available at https://github.com/fwesel/QFF.

4.5.1 IMPROVED GENERALIZATION CAPABILITIES

In this experiment we verify the expected quantization to positively affect the

generalization capabilities of quantized models. We compare QTKM (our ap-

proach) with TKM [8, 25, 27, 29], Random Fourier Features (RFF) [14], and with

the full, unconstrained model (KRR) which is our baseline, as we are dealing in

all cases with squared loss). For our comparison we select eight small Univer-

sity of California, Irvine (UCI) datasets [54]. This choice allows us to train KRR by

solving its dual optimization problem and thus to implicitly consider
∏D

d=1
Md

features. For each dataset, we select uniformly at random 80% of the data for

training, and keep the rest for test. We set Q = 2 and select the remaining hyper-

parameters (λ and L) by 3-fold cross validating KRR. We set the number of basis

functions Md = 16 uniformly for all d for all models, so that they learn from the

4.5. NUMERICAL EXPERIMENTS

4

75

same representation (except for RFF, which is intrinsically random). We then vary

the rank R of the non-quantized tensorized model from R = 1,2, . . . ,6 and train all

other models such that their number of model parameters P is at most equal to

the ones of the non-quantized model. This means that for TKM P = R
∑D

d=1
Md ,

for QTKM P = 2R
∑D

d=1
log2 Md and for RFF P equals the number of random fre-

quencies. To make sure that TKM and QTKM converge, we run ALS for a very

large number of iterations (5000). We repeat the procedure 10 times, and plot the

mean and standard deviation of the test Mean Squared Error (MSE) in Fig. 4.2.

In Fig. 4.2 one can observe that on all datasets, for the same number of model

parameters P and identical features, the generalization performance of QTKM is

equivalent or better in term of test MSE. An intuitive explanation for these results

is that for equal P , quantization allows to explicitly model correlations within

each of the D modes of the feature map, yielding models with increased learn-

ing capacity. We notice that while on most datasets the tensor-based approaches

recover the performance of KRR, in one case, namely on the yacht dataset, the

performance is better than baseline, pointing out at the regularizing effect of the

quantized CPD model. Furthermore, on all datasets examined in Fig. 4.2 it can be

observed that QTKM switches from underfitting to overfitting regime (first local

optimum of the learning curve) before TKM, indicating that indeed its capacity

is saturated with fewer model parameters. At that sweet spot, TKM is still un-

derfitting and underperforming with respect to QTKM. For a further increase in

model parameters both models exhibit double descent, as can be observed on

the qsar, qsar_fish and airfoil datasets. Note that QTKM outperforms TKM in

a similar fashion on the training set (Fig. 4 in the appendix), corroborating the

presented analysis. In Fig. 4.2 it can also be seen that except on the examined 2-

dimensional dataset, both tensor network are consistently outperforming RFF. As

we will see in Section 4.5.2, these tensor network-based methods are able to find

in a data-dependent way a parsimonious model representation given an expo-

nentially large feature space. This is in contrast to random methods such as RFF,

which perform feature selection prior to training and are in this sense oblivious

to training data.

4.5.2 REGULARIZING EFFECT OF QUANTIZATION

We would like to gain insight in the regularizing effect caused by modeling the

quantized weights as an underparametrized tensor network. For this reason we

investigate how the Fourier coefficients are approximated as a function of the

CPD rank in a one-dimensional dataset. In order to remove other sources of reg-

4

76 4. QUANTIZED FEATURES AND TENSOR DECOMPOSITIONS

ularization, we set λ= 0. The sound dataset [55] is a one-dimensional time series

regression task which comprises 60000 sampled points of a sound wave. The

training set consists of N = 59309 points, of which the remainder is kept for test.

Based on the Nyquist–Shannon sampling theorem, we consider M = 213
= 8192

Fourier features, which we quantize with Q = 2. We model the signal as a hav-

ing unit period, hence set L = 1. The Fourier coefficients are modeled as a CPD

tensor, with rank R = 10,25,50,100 in order to yield underparametrized models

(P ≪ M). We plot the magnitude of the Fourier coefficients, which we obtain by

minimizing Eq. (4.6) under squared loss.

We compare the magnitude of the quantized weights with the magnitude of the

unconstrained model response, obtained by solving Eq. (4.2), in Fig. 4.3. From

Fig. 4.3 we can see that for low values of R the quantized kernel machine does

not recover the coefficients associated with the lowest frequencies, as a data-

independent approach would. Instead, we observe that the coefficients which

are recovered for lower ranks, e.g. in case of R = 10, are the peaks with the highest

magnitude. This is explained by the fact that the additional modes introduced

by Q = 2-quantization force the underparametrized tensor network to model the

nonlinear relation between different basis which under squared-loss maximize

the energy of the signal. As the rank increases, the increased model flexibility

allows to model more independent nonlinearities. We can see that already for

R = 100 the two spectra become almost indistinguishable. We report the relative

approximation error of the weights and the standardized mean absolute error on

the test set in Section D.2.

4.5.3 LARGE-SCALE REGRESSION

In order to showcase and compare out approach with existing literature in the

realm of kernel machines, we consider the airline dataset [56], an 8-dimensional

dataset which consists of N = 5929413 recordings of commercial airplane flight

delays that occurred in 2008 in the USA. As is standard on this dataset [57], we

consider a uniform random draw of 2/3N for training and keep the remainder for

the evaluation of the MSE on the test set and repeat the procedure ten times. In

order to capture the complicated nonlinear relation between input and output,

we resort to consider Md = 64 Fourier features per dimension, which we quantize

with Q = 2. For this experiment, we set L = 10, λ = 1× 10−10 and run the ALS

optimizer for 25 epochs. We train three different QTKMs with R = 20,30,40.

We present the results in Table 4.1, where we can see that QTKM (our approach)

is best at predicting airline delay in term of MSE. Other grid-based approaches,

4.6. CONCLUSION

4

77

such as Variational Fourier Features (VFF) [6] or Hilbert–space Gaussian Process

(HGP) [7], are forced to resort to additive kernel modeling and thus disregard

higher-order interactions between Fourier features pertaining to different dimen-

sion. Other inducing points-based methods such as Stochastic Variational Infer-

ence Gaussian Process (SVIGP) [56] or Variational Inducing Spherical Harmonics

(VISH) [58] struggle find meaningful features in their exponentially large space.

In contrast, QTKM is able to construct R data-driven explanatory variables based

on an exponentially large set of Fourier features. When compared with its non-

quantized counterpart TKM, we can see that our quantized approach outper-

forms it with approximately half of its model parameters. Training QTKM on the

Intel Core i7-10610U CPU of a Dell Inc. Latitude 7410 laptop with 16GB of RAM

took 6613(40)s for R = 20 and took 13039(114)s for R = 40 .

Method M P ↓ MSE

VFF [6] 40 320 0.827±0.004

HGP [7] 40 320 0.827±0.005

VISH [58] 660 660 0.834±0.055

SVIGP [56] 1000 1000 0.791±0.005

Falkon [59] 10000 10000 0.758±0.005

TKM (R = 4) 64 2048 0.789±0.005

TKM (R = 6 64 3072 0.773±0.006

TKM (R = 8) 64 4096 0.765±0.007

QTKM (R = 20) 64 1920 0.764±0.005

QTKM (R = 30) 64 2880 0.754±0.005

QTKM (R = 40) 64 3840 0.748± 0.005

Table 4.1.: MSE for different kernel machines on the airline dataset with one standard de-

viation. We report the number of basis functions M per dimensions (in case

of random approaches we simply report the total number of basis) and model

parameters P . Notice that QTKM is able to parsimoniously predict airline delay

with a restricted number of model parameters, achieving state-of-the art per-

formance on this dataset.

4.6 CONCLUSION

We proposed to quantize Fourier and pure-power polynomial features, which al-

lowed us to quantize the model weights in the context of tensor network-constrained

4

78 4. QUANTIZED FEATURES AND TENSOR DECOMPOSITIONS

kernel machines. We verified experimentally the theoretically expected increase

in model flexibility which allows us to construct more expressive models with the

same number of model parameters which learn from the same exact features at

the same computational cost per iteration.

Our approach can be readily incorporated in other tensor network-based learn-

ing methods which make use of pure-power polynomials or Fourier features.

REFERENCES

[1] F. Wesel and K. Batselier. “Quantized Fourier and Polynomial Features for More Ex-

pressive Tensor Network Models”. In: Proceedings of The 27th International Confer-

ence on Artificial Intelligence and Statistics. PMLR, Apr. 2024, pp. 1261–1269.

[2] J. A. K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, and J. Vandewalle. Least

Squares Support Vector Machines. World Scientific, Nov. 2002.

[3] C. Cortes and V. Vapnik. “Support-Vector Networks”. In: Machine Learning 20.3 (Sept.

1995), pp. 273–297.

[4] A. Cichocki, N. Lee, I. Oseledets, A.-H. Phan, Q. Zhao, and D. P. Mandic. “Tensor

Networks for Dimensionality Reduction and Large-Scale Optimization: Part 1 Low-

Rank Tensor Decompositions”. In: Foundations and Trends® in Machine Learning

9.4-5 (2016), pp. 249–429.

[5] J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cambridge

University Press, 2004.

[6] J. Hensman, N. Durrande, and A. Solin. “Variational Fourier Features for Gaussian

Processes”. In: The Journal of Machine Learning Research 18.1 (Jan. 2017), pp. 5537–

5588.

[7] A. Solin and S. Särkkä. “Hilbert Space Methods for Reduced-Rank Gaussian Process

Regression”. In: Statistics and Computing 30.2 (Mar. 2020), pp. 419–446.

[8] S. Wahls, V. Koivunen, H. V. Poor, and M. Verhaegen. “Learning Multidimensional

Fourier Series with Tensor Trains”. In: 2014 IEEE Global Conference on Signal and

Information Processing (GlobalSIP). Dec. 2014, pp. 394–398.

[9] R. Karagoz and K. Batselier. “Nonlinear System Identification with Regularized Ten-

sor Network B-splines”. In: Automatica 122 (Dec. 2020), p. 109300.

[10] N. Pham and R. Pagh. “Fast and Scalable Polynomial Kernels via Explicit Feature

Maps”. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining. KDD ’13. Association for Computing Machinery,

Aug. 2013, pp. 239–247.

[11] D. P. Woodruff. “Sketching as a Tool for Numerical Linear Algebra”. In: Foundations

and Trends® in Theoretical Computer Science 10.1–2 (Oct. 2014), pp. 1–157.

[12] M. Meister, T. Sarlos, and D. Woodruff. “Tight Dimensionality Reduction for Sketch-

ing Low Degree Polynomial Kernels”. In: Advances in Neural Information Processing

Systems. Vol. 32. Curran Associates, Inc., 2019.

79

4

80 REFERENCES

[13] C. Williams and M. Seeger. “Using the Nyström Method to Speed Up Kernel Ma-

chines”. In: Advances in Neural Information Processing Systems 13. MIT Press, 2001,

pp. 682–688.

[14] A. Rahimi and B. Recht. “Random Features for Large-Scale Kernel Machines”. In:

Proceedings of the 20th International Conference on Neural Information Processing

Systems. Curran Associates Inc., Dec. 2007, pp. 1177–1184.

[15] Q. Le, T. Sarlos, and A. Smola. “Fastfood - Computing Hilbert Space Expansions in

Loglinear Time”. In: Proceedings of the 30th International Conference on Machine

Learning. PMLR, May 2013, pp. 244–252.

[16] T. G. Kolda and B. W. Bader. “Tensor Decompositions and Applications”. In: SIAM

Review 51.3 (Aug. 2009), pp. 455–500.

[17] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalexakis, and C.

Faloutsos. “Tensor Decomposition for Signal Processing and Machine Learning”.

In: IEEE Transactions on Signal Processing 65.13 (July 2017), pp. 3551–3582.

[18] G. Favier and T. Bouilloc. “Parametric Complexity Reduction of Volterra Models Us-

ing Tensor Decompositions”. In: 2009 17th European Signal Processing Conference.

Aug. 2009, pp. 2288–2292.

[19] S. Rendle. “Factorization Machines”. In: 2010 IEEE International Conference on Data

Mining. Dec. 2010, pp. 995–1000.

[20] M. Blondel, A. Fujino, N. Ueda, and M. Ishihata. “Higher-Order Factorization Ma-

chines”. In: Advances in Neural Information Processing Systems. Vol. 29. Curran As-

sociates, Inc., 2016.

[21] M. Blondel, V. Niculae, T. Otsuka, and N. Ueda. “Multi-Output Polynomial Networks

and Factorization Machines”. In: Advances in Neural Information Processing Sys-

tems. Vol. 30. Curran Associates, Inc., 2017.

[22] K. Batselier, Z. Chen, and N. Wong. “Tensor Network Alternating Linear Scheme for

MIMO Volterra System Identification”. In: Automatica 84 (Oct. 2017), pp. 26–35.

[23] A. Novikov, I. Oseledets, and M. Trofimov. “Exponential Machines”. In: Bulletin of

the Polish Academy of Sciences: Technical Sciences; 2018; 66; No 6 (Special Section on

Deep Learning: Theory and Practice); 789-797 (2018).

[24] Z. Chen, K. Batselier, J. A. K. Suykens, and N. Wong. “Parallelized Tensor Train Learn-

ing of Polynomial Classifiers”. In: IEEE Transactions on Neural Networks and Learn-

ing Systems 29.10 (Oct. 2018), pp. 4621–4632.

[25] E. M. Stoudenmire and D. J. Schwab. “Supervised Learning with Tensor Networks”.

In: Proceedings of the 30th International Conference on Neural Information Process-

ing Systems. Curran Associates Inc., Dec. 2016, pp. 4806–4814.

REFERENCES

4

81

[26] S. Efthymiou, J. Hidary, and S. Leichenauer. “TensorNetwork for Machine Learn-

ing”. In: arXiv:1906.06329 [cond-mat, physics:physics, stat] (June 2019). arXiv: 1906.

06329 [cond-mat, physics:physics, stat].

[27] N. Kargas and N. D. Sidiropoulos. “Supervised Learning and Canonical Decompo-

sition of Multivariate Functions”. In: IEEE Transactions on Signal Processing (2021),

pp. 1–1.

[28] S. Cheng, L. Wang, and P. Zhang. “Supervised Learning with Projected Entangled

Pair States”. In: Physical Review B 103.12 (Mar. 2021), p. 125117.

[29] F. Wesel and K. Batselier. “Large-Scale Learning with Fourier Features and Tensor

Decompositions”. In: Advances in Neural Information Processing Systems. Vol. 34.

Curran Associates, Inc., 2021, pp. 17543–17554.

[30] B. N. Khoromskij. “O(Dlog N)-Quantics Approximation of N-d Tensors in High-Dimensional

Numerical Modeling”. In: Constructive Approximation 34.2 (Oct. 2011), pp. 257–280.

[31] A. Cichocki. “Era of Big Data Processing: A New Approach via Tensor Networks and

Tensor Decompositions”. In: arXiv:1403.2048 [cs] (Aug. 2014). arXiv: 1403.2048 [cs].

[32] A. Cichocki, A.-H. Phan, Q. Zhao, N. Lee, I. V. Oseledets, M. Sugiyama, and D. Mandic.

“Tensor Networks for Dimensionality Reduction and Large-Scale Optimizations. Part

2 Applications and Future Perspectives”. In: Foundations and Trends® in Machine

Learning 9.6 (2017), pp. 249–429. arXiv: 1708.09165.

[33] F. L. Hitchcock. “The Expression of a Tensor or a Polyadic as a Sum of Products”. In:

Journal of Mathematics and Physics 6.1-4 (1927), pp. 164–189.

[34] I. V. Oseledets. “Tensor-Train Decomposition”. In: SIAM Journal on Scientific Com-

puting 33.5 (Jan. 2011), pp. 2295–2317.

[35] Q. Zhao, G. Zhou, S. Xie, L. Zhang, and A. Cichocki. “Tensor Ring Decomposition”.

In: arXiv:1606.05535 [cs] (June 2016). arXiv: 1606.05535 [cs].

[36] L. R. Tucker. “Implications of Factor Analysis of Three-Way Matrices for Measure-

ment of Change”. In: Problems in measuring change 15.122-137 (1963), p. 3.

[37] L. R. Tucker. “Some Mathematical Notes on Three-Mode Factor Analysis”. In: Psy-

chometrika 31.3 (Sept. 1966), pp. 279–311.

[38] W. Hackbusch and S. Kühn. “A New Scheme for the Tensor Representation”. In: Jour-

nal of Fourier Analysis and Applications 15.5 (Oct. 2009), pp. 706–722.

[39] L. Grasedyck. “Hierarchical Singular Value Decomposition of Tensors”. In: SIAM

Journal on Matrix Analysis and Applications 31.4 (Jan. 2010), pp. 2029–2054.

[40] L. De Lathauwer. “Decompositions of a Higher-Order Tensor in Block Terms—Part

I: Lemmas for Partitioned Matrices”. In: SIAM Journal on Matrix Analysis and Ap-

plications 30.3 (Jan. 2008), pp. 1022–1032.

4

82 REFERENCES

[41] L. De Lathauwer. “Decompositions of a Higher-Order Tensor in Block Terms—Part

II: Definitions and Uniqueness”. In: SIAM Journal on Matrix Analysis and Applica-

tions 30.3 (Jan. 2008), pp. 1033–1066.

[42] F. Verstraete and J. I. Cirac. Renormalization Algorithms for Quantum-Many Body

Systems in Two and Higher Dimensions. July 2004. arXiv: cond-mat/0407066.

[43] G. Evenbly and G. Vidal. “Algorithms for Entanglement Renormalization”. In: Phys-

ical Review B 79.14 (Apr. 2009), p. 144108.

[44] B. Khavari and G. Rabusseau. “Lower and Upper Bounds on the Pseudo-Dimension

of Tensor Network Models”. In: Advances in Neural Information Processing Systems.

May 2021.

[45] P. Comon, X. Luciani, and A. L. F. de Almeida. “Tensor Decompositions, Alternat-

ing Least Squares and Other Tales”. In: Journal of Chemometrics 23.7-8 (July 2009),

pp. 393–405.

[46] A. Uschmajew. “Local Convergence of the Alternating Least Squares Algorithm for

Canonical Tensor Approximation”. In: SIAM Journal on Matrix Analysis and Appli-

cations 33.2 (Jan. 2012), pp. 639–652.

[47] S. Holtz, T. Rohwedder, and R. Schneider. “The Alternating Linear Scheme for Ten-

sor Optimization in the Tensor Train Format”. In: SIAM Journal on Scientific Com-

puting 34.2 (Jan. 2012), A683–A713.

[48] S. R. White. “Density Matrix Formulation for Quantum Renormalization Groups”.

In: Physical Review Letters 69.19 (Nov. 1992), pp. 2863–2866.

[49] A. Novikov, M. Rakhuba, and I. Oseledets. “Automatic Differentiation for Rieman-

nian Optimization on Low-Rank Matrix and Tensor-Train Manifolds”. In: arXiv:2103.14974

[cs, math] (Oct. 2021). arXiv: 2103.14974 [cs, math].

[50] L. De Branges. “The Stone-Weierstrass Theorem”. In: Proceedings of the American

Mathematical Society 10.5 (1959), pp. 822–824. JSTOR: 2033481.

[51] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning.

Adaptive Computation and Machine Learning. Cambridge, Mass: MIT Press, 2006.

[52] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer New York, 1998.

[53] V. Khrulkov, A. Novikov, and I. Oseledets. “Expressive Power of Recurrent Neural

Networks”. In: International Conference on Learning Representations. Apr. 2018.

[54] D. Dua and C. Graff. UCI Machine Learning Repository. 2017.

[55] A. Wilson and H. Nickisch. “Kernel Interpolation for Scalable Structured Gaussian

Processes (KISS-GP)”. In: Proceedings of the 32nd International Conference on Ma-

chine Learning. PMLR, June 2015, pp. 1775–1784.

[56] J. Hensman, N. Fusi, and N. D. Lawrence. “Gaussian Processes for Big Data”. In:

Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence.

UAI’13. AUAI Press, Aug. 2013, pp. 282–290.

A. DEFINITIONS 83

[57] Y.-L. K. Samo and S. J. Roberts. “String and Membrane Gaussian Processes”. In: Jour-

nal of Machine Learning Research 17.131 (2016), pp. 1–87.

[58] V. Dutordoir, N. Durrande, and J. Hensman. “Sparse Gaussian Processes with Spher-

ical Harmonic Features”. In: International Conference on Machine Learning. PMLR,

Nov. 2020, pp. 2793–2802.

[59] G. Meanti, L. Carratino, L. Rosasco, and A. Rudi. “Kernel Methods through the Roof:

Handling Billions of Points Efficiently”. In: Advances in Neural Information Process-

ing Systems. Ed. by H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin.

Vol. 33. Curran Associates, Inc., 2020, pp. 14410–14422.

A DEFINITIONS

Definition A.1 (TN [44]). Given a graph G = (V ,E ,dim) where V is a set of vertices,

E is a set of edges and dim : E → N assigns a dimension to each edge, a tensor

network assigns a core tensor C v to each vertex of the graph, such that C v ∈

⊗e∈Ev C
dim(e). Here Ev = {e ∈ E |v ∈ e} is the set of edges connected to vertex v . The

resulting tensor is a tensor in ⊗e∈E∩V C
dim(e). The number of parameters of the

tensor network is then P =

∑
v∈V

∏
e∈Ev

dim(e).

B PROOFS

B.1 TENSOR NETWORK KERNEL MACHINE

Theorem B.1. Suppose ten(w , M , M , . . . , M
︸ ︷︷ ︸

D times

) is a tensor network. Then the depen-

dency on M of the computational complexity for the model responses

f (x) = 〈

D⊗

d=1

vd (xd) , w〉

F

,

is O (M t), where t is the maximum number of singleton edges per core.

Proof. Let t be the maximum number of singleton edges per core. Since taking

the Frobenius inner product (Eq. (4.4)) involves summing over all singleton edges

M , M , . . . , M
︸ ︷︷ ︸

D times

, the required number of floating point operations will be O (M t).

84 REFERENCES

Corollary B.2. Suppose ten(w , M , M , . . . , M
︸ ︷︷ ︸

D times

) is a tensor network with t = 1 maxi-

mum number of singleton edges per core. Then the dependency on M of the com-

putational complexity for the model responses

f (x) = 〈

D⊗

d=1

vd (xd) , w〉

F

,

is of O (M).

Note that most used tensor networks such as CPD, Tucker, TT/TR, MERA, PEPS

have t = 1. An example of a tensor network where t can be t ≥ 2 or higher is

hierarchical Tucker. In what follows we derive the computational complexity of

the model responses of CPD and TT networks.

Theorem 4.2.3 (Tensorized kernel machine (TKM)). Suppose ten(w , M1, M2, . . . , MD)

is a tensor in CPD, TT or TR form. Then model responses and associated gradients

f (x , w) = 〈

D⊗

d=1

vd (xd) , w〉

F

,

can be computed in O (P) instead of O (
∏D

d=1
Md), where P = DMR in case of CPD,

and P = DMR2 in case of TT or TR.

Proof. Let ten(w , M1, M2, . . . , MD) be a tensor in CPD form. Then

f (x) = 〈

D⊗

d=1

vd (xd) , w〉

F

=

M1−1∑

m1=0

· · ·

MD−1∑

mD=0

D∏

d=1

vd md

R−1∑

r=0

D∏

d=1

wd md r

=

R−1∑

r=0

M1−1∑

m1=0

· · ·

MD−1∑

mD=0

D∏

d=1

vd md
wd md r

=

R−1∑

r=0

D∏

d=1

Md−1∑

md=0

vd md
wd md r .

Gradients can be computed efficiently by caching
∏D

d=1

∑Md−1
md=0 vd md

wd rd−1md rd
, r =

1, . . . ,R. Hence the computational complexity of the model responses and associ-

B. PROOFS 85

ated gradients is of O (DMR). Now let ten(w , M1, M2, . . . , MD) be a tensor in TT/TR

form. Then

f (x) = 〈

D⊗

d=1

vd (xd) , w〉

F

=

M1−1∑

m1=0

· · ·

MD−1∑

mD=0

D∏

d=1

vd md

R1−1∑

r1=0

· · ·

RD−1∑

rD=0

D∏

d=1

wd rd−1md rd

=

R1−1∑

r1=0

· · ·

RD−1∑

rD=0

M1−1∑

m1=0

· · ·

MD−1∑

md=0

D∏

d=1

vd md
wd rd−1md rd

=

R1−1∑

r1=0

· · ·

RD−1∑

rD=0

D∏

d=1

Md−1∑

md=0

vd md
wd rd−1md rd

,

which is a sequence of matrix-matrix multiplications. Gradients can be com-

puted efficiently by caching
∑Md−1

md=0 vd md
wd rd−1md rd

, rd = 1, . . . ,Rd , d = 1, . . . ,D .

Hence the computational complexity of the model responses and associated gra-

dients is of O (DMR2), where M = max(M1, M2, . . . , MD) i.e. O (P) for both CPD and

TT/TR.

B.2 QUANTIZED TENSOR NETWORK KERNEL MACHINE

Theorem B.3. Suppose ten(w ,Q,Q, . . . ,Q
︸ ︷︷ ︸

DK times

) is a tensor network. Then the depen-

dency on M on the computational complexity of model responses

f (x) = 〈

D⊗

d=1

K⊗

k=1

sd ,k (xd) , w〉

F

,

is of O (M
t

logQ log M), where t is the maximum number of singleton edges per core.

Proof. Let Q be chosen such that K = logQ M . Let t be the maximum number of

singleton edges per core. Taking the Frobenius inner product (Eq. (4.4)) involves

summing over all singleton edges Q,Q, . . . ,Q
︸ ︷︷ ︸

D logQ M times

. Since Q =
1

logQ M
, the required

number of floating point operations will be O (Q t logQ M) = O (M
s

logQ log M).

86 REFERENCES

Corollary B.4. Suppose ten(w ,Q,Q, . . . ,Q
︸ ︷︷ ︸

DK times

) is a tensor network with t = 1 maxi-

mum number of singleton edges per core. Then the dependency on M on the com-

putational complexity of model responses

f (x) = 〈

D⊗

d=1

Kd⊗

k=1

sd ,k (xd) , w〉

F

,

is of O (log M).

Theorem 4.4.1 (Quantized tensorized kernel machine (QTKM)). Consider pure-

power and Fourier feature maps factorized as in Corollary 4.3.5 and Corollary 4.3.6

and suppose ten(w ,Q,Q, . . . ,Q) is a tensor in CPD, TT or TR form. Then by Theo-

rem 4.2.3, model responses and associated gradients

fquantized (x , w) = 〈

D⊗

d=1

Kd⊗

k=1

sd ,k (xd) , w〉

F

,

can be computed in O (P) instead of O (
∏D

d=1
Md), where P = K DQR in case of CPD,

and P = K DQR2 in case of TT or TR.

Proof. The proof follows from the proof of Theorem 4.2.3. Since instead of sum-

ming R times over M1, M2, . . . , MD we are summing R times over Q,Q, . . . ,Q
︸ ︷︷ ︸

DK times

, a

model response can be evaluated in QK DR floating point operations for CPD

and QK DR2 floating point operations for TT. Since Q is a constant which does

not dependent on M and K = logQ M , we have that the computational complex-

ities are respectively O (log MDR) and O (log MDR2) for CPD and TT/TR, where

K = log M = max(log M1, log M2, . . . , log MD), i.e. O (P) for both CPD and TT/TR.

C FASTER MULTI-CONVEX OPTIMIZATION

ALGORITHMS

Quantized features allow to speedup Eq. (4.6) for a large class of multi-convex

solvers such as ALS [16, 45, 46, 47], the DMRG [48] and Riemannian optimiza-

tion [23, 49]. These solvers exploit the multi-linearity of tensor networks in order

to express the empirical risk as a function of only one core of the weight tensor

in tensor network form per iteration, also known as sub-problem. After solving

D. NUMERICAL EXPERIMENTS

4

87

the ensuing optimization sub-problem, this procedure is repeated for for the re-

maining cores, defining one epoch. The whole procedure is then repeated until

convergence. When a convex quadratic loss function is used, computational ben-

efits associated with quantization arise as it enables to solve a series of quadratic

problems exactly. This is common practice in literature, see for instance Wahls

et al. [8], Novikov, Oseledets, and Trofimov [23], Chen et al. [24], and Wesel and

Batselier [29].

In the exemplifying case of CPD, TT and tensor ring, for a fixed number of model

parameters P , quantization allows to solve each sub-problem at a reduced com-

putational cost of O (P 2/D2) compared to a cost of O (P 2/D2(log M)2). This yields a

sub-problem complexity which is independent of M . A similar reduction follows

for other one-layered networks. Quantifying the computational gains for other

structures of tensor networks is less straightforward.

D NUMERICAL EXPERIMENTS

D.1 IMPROVED GENERALIZATION CAPABILITIES

We report in Fig. 4 the training error on the examined datasets in Section 4.5.1. As

one can observe, QTKM outperforms TKM in terms of training error (Fig. 4) and

test error (Fig. 4.2).

D.2 REGULARIZING EFFECT OF QUANTIZATION

In Table 2 we repeat the number of model parameters P = 2log2 MR, the com-

pression ratio of the quantized model weights M/P , as well as the relative approx-

imation error of the weights ||w−wCPD||/||w || and the standardized Mean Absolute

Error (MAE) of the reconstruction error on the test set as a function of the CPD

rank.

4

88 REFERENCES

10
2

P

10
-3

10
-2

10
-1

M
S
E

yacht

N = 308, D = 6

KRR
RFF
TKM
QTKM

10
2

P

0.5

0.6

0.7

0.8

0.9

1

M
S
E

qsar

N = 546, D = 8

10
2

P

10
-3

10
-2

10
-1

M
S
E

energy

N = 768, D = 8

10
2

P

0.4

0.5

0.6

0.7

0.8

0.9

M
S
E

qsar -sh

N = 908, D = 6

10
2

P

10
-1

10
0

M
S
E

concrete

N = 1030, D = 9

10
2

P

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

M
S
E

airfoil

N = 1503, D = 6

10
2

10
3

P

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

M
S
E

wine

N = 4898, D = 11

10
2

P

0.3

0.4

0.5

0.6

0.7

0.8

M
S
E

banana

N = 5300, D = 2

Figure 4.: Plots of the train MSE as a function of the number of model parameters P , for dif-

ferent real-life datasets. In blue, random Fourier features [14], in red tensorized

kernel machines with Fourier features [8, 25, 27, 29], in yellow quantized kernel

machines with Fourier features, with quantization Q = 2. The gray horizontal

full line is the full unconstrained optimization problem, which corresponds to

KRR. The grey vertical dotted line is set at P = N . It can be seen that for P < N

case, quantization allows to achieve better performance with respect to the non-

quantized case on the training set (this figure) and on the test set (Fig. 4.2).

R P M/P ||w−wCPD||/||w || MAE

10 260 31.5 0.841 0.579

25 650 12.6 0.712 0.571

50 1300 6.3 0.528 0.451

100 2600 3.1 0.310 0.182

Table 2.: Model parameters, compression ratio and relative approximation error of the

weights, and standardized mean absolute error on the test data as a function of

the CPD rank.

5
TENSOR NETWORK-CONSTRAINED KERNEL

MACHINES AS GAUSSIAN PROCESSES

In this paper we establish a new connection between Tensor Network (TN)-constrained

kernel machines and Gaussian Processes (GPs). We prove that the outputs of

Canonical Polyadic Decomposition (CPD) and Tensor Train (TT)-constrained ker-

nel machines converge in the limit of large ranks to the same product kernel GP

which we fully characterize, when specifying appropriate i.i.d. priors across their

components. We show that TT-constrained models convergence faster to the GP

compared to their CPD counterparts for the same number of model parameters.

The convergence to the GP occurs as the ranks tend to infinity, as opposed to the

standard approach which introduces TNs as an additional constraint on the pos-

terior. This implies that the newly established priors allow the models to learn

features more freely as they necessitate infinitely more parameters to converge to a

GP, which is characterized by a fixed learning representation and thus no feature

learning. As a consequence, the newly derived priors yield more flexible models

which can better fit the data, albeit at increased risk of overfitting. We demonstrate

these considerations by means of two numerical experiments.

This chapter has been published as:

F. Wesel and K. Batselier. “Tensor Network-Constrained Kernel Machines as Gaussian Processes”. In:

Proceedings of The 28th International Conference on Artificial Intelligence and Statistics. PMLR, Apr.

2025, pp. 2161–2169

89

5

90 5. TENSOR NETWORKS AND KERNEL MACHINES AS GAUSSIAN PROCESSES

5.1 INTRODUCTION

Tensor Networks [TNs, 2, 3, 4], a tool from multilinear algebra, extend the concept

of rank from matrices to tensors allowing to represent an exponentially large ob-

ject with a linear number of parameters. As such, TNs have been used to reduce

the storage and computational complexities by compressing the model parame-

ters of a range of models such as Deep Neural Networks (DNNs) [5], Convolutional

Neural Networks (CNNs) [6, 7], Recurrent Neural Networks (RNNs) [8], Graph Neu-

ral Networks (GNNs) [9] and transformers [10].

Similarly, TNs have also found application in the context of kernel machines

for supervised learning [11, 12, 13] as an additional constraint on the model pos-

terior. Such models learn a low-rank nonlinear data-dependent representation

from an exponentially large number of fixed features by means of a restricted

number of parameters, and are as such characterized by an implicit source of

regularization. Furthermore, storage and the evaluation of the model and its gra-

dient require a linear complexity in the number of parameters, rendering these

methods promising candidates for applications requiring both good generaliza-

tion and scalability. Because of their intrinsic nonlinearity which prohibits closed-

form Bayesian inference, the training of these models is typically accomplished

in the Maximum Likelihood (ML) and Maximum A Posteriori (MAP) framework

where the low-rank TN assumption is introduced as an additional nonlinear con-

straint in the optimization problem. In this setting the ensuing estimator recov-

ers the solution that would be obtained without the TN constraint when the low-

rank assumption is satisfied exactly, i.e. for finite rank.

In contrast, Gaussian Processes [GPs, 14] are an established framework for mod-

eling functions which naturally allows the practitioner to incorporate prior knowl-

edge. When considering i.i.d. observations and Gaussian likelihoods, GPs allow

for the determination of the posterior in closed-form, which considerably facili-

tates tasks such as inference, sampling and the construction of sparse approxi-

mations among many others.

In this paper we establish a direct connection between TN-constrained kernel

machines and GPs, thus solving an open question considered by Wesel and Bat-

selier [13, 15]. We prove that the outputs of Canonical Polyadic Decomposition

(CPD) and Tensor Train (TT)-constrained kernel machines converge in the limit

of large ranks to the same product kernel GP which we fully characterize, when

specifying appropriate i.i.d. priors across their components. This result allows

us to derive that when placing such priors on their parameters, TT-constrained

models achieve faster convergence to the GP compared to their CPD counterparts

for the same number of model parameters. The convergence to the GP occurs

5.2. BACKGROUND

5

91

as the ranks tend to infinity, as opposed to the standard approach which intro-

duces TNs as an additional constraint on the model posterior. This implies that

the newly established priors allow the models to more autonomously learn fea-

tures as they necessitate infinitely more parameters to converge to a GP, which

is characterized by a fixed learning representation and thus no feature learning.

Consequently, the newly derived priors yield more flexible models which can bet-

ter fit the data and have a higher chance of overfitting. We showcase the conver-

gence properties of both newly derived priors and their effect on MAP estimation

by means of numerical experiments.

The rest of this paper is organized as follows. In Section 5.2 we provide a brief

introduction to GPs and their approximations, TNs and TN-constrained kernel

machines. In Section 5.3 we present our main result, i.e. the equivalence in the

limit between TN-constrained kernel machines and product kernel GPs. In Sec-

tion 5.4 we showcase the different convergence rates to the GP of CPD and TT and

their effect on MAP estimation. We then provide a review of related work (Sec-

tion 5.5) and a conclusion (Section 5.6). We discuss the notation used throughout

the paper in Section A.1.

5.2 BACKGROUND

GPs are a collection of random variables such that any finite subset has a joint

Gaussian distribution [14]. They provide a flexible formalism for modeling func-

tions which inherently allows for the incorporation of prior knowledge and the

production of uncertainty estimates in the form of a predictive distribution. More

specifically, a GP is fully specified by a mean function µ(·) : RD
→R, typically cho-

sen as zero, and a covariance or kernel function k(·, ·) : RD
×R

D
→R:

f (x) ∼GP (µ(x),k(x , ·)).

Given a labeled dataset {(xn , yn)}N
n=1 consisting of N inputs xn ∈ R

D and i.i.d.

noisy observations yn ∈ R, GPs can be used for modeling the underlying func-

tion f in classification or regression tasks by specifying a likelihood function. For

example the likelihood

p(yn | f (xn)) =N (f (xn),σ2), (5.1)

yields a GP posterior which can be obtained in closed-form by conditioning the

prior GP on the noisy observations. Calculating the mean and covariance of such

5

92 5. TENSOR NETWORKS AND KERNEL MACHINES AS GAUSSIAN PROCESSES

a posterior crucially requires instantiating and formally inverting the kernel ma-

trix K such that kn,m :=k(xn , xm). These operations respectively incur a compu-

tational cost of O (N 2) and O (N 3) and therefore prohibit the processing of large-

sampled datasets.

5.2.1 BASIS FUNCTION APPROXIMATION

Aside from variational inference [16, 17] and iterative methods [18], a common

approach in literature to circumvent the O (N 3) computational bottleneck is to

project the GP onto a finite number of Basis Functions (BFs) [e.g., 14, 19]. This is

achieved by approximating the kernel as

k(x , x
′′′) ≈ϕ(x)T

Λϕ(x
′′′), (5.2)

where here ϕ(x) : RD
→R

M are (nonlinear) basis functions and Λ ∈R
M×M are the

BF weights. This finite-dimensional kernel approximation ensures a degenerate

kernel [14], as it characterized by a finite number of non-zero eigenvalues. Its

associated GP can be characterized equivalently as

f (x) =
〈
ϕ(x), w

〉
, w ∼N (0,Λ), (5.3)

wherein w ∈ R
M are the model weights and Λ is the associated prior covari-

ance. Once more considering a Gaussian likelihood (Eq. (5.1)) yields a closed-

form posterior GP whose mean and covariance require only the posterior covari-

ance matrix (
∑N

n=1ϕ(xn)ϕ(xn)T
+Λ

−1)−1. This yields a computational complexity

of O (N M 2
+M 3), which allows to tackle large-sampled data when N ≫ M .

5.2.2 PRODUCT KERNELS

In the remainder of this paper we consider GPs with product kernels.

Definition 5.2.1 (Product kernel [14]). A kernel k(x , x
′′′) is a product kernel if

k(x , x
′′′) =

Q∏

q=1

k(q)(x , x
′′′), (5.4)

where each k(q)(·, ·) : RD
×R

D
→R is a valid kernel.

While many commonly used kernels are product kernels e.g. the Gaussian ker-

nel and the polynomial kernel, product kernels provide a straightforward strategy

5.2. BACKGROUND

5

93

to extend one-dimensional kernels to the higher-dimensional case [14, 20]. The

basis functions and prior covariance of product kernels can then be determined

based on the basis function expansion of their constituents as follows.

Lemma 5.2.2 (Basis functions and prior covariances of product kernels). Con-

sider the product kernel of Definition 5.2.1. Denote the basis functions and prior

covariance of each factor k(q)(x , x
′′′) as ϕ

(q)(x) ∈R
Mq and Λ

(q)
∈ R

Mq×Mq respec-

tively, then the basis functions and prior covariance of k(x , x
′′′) are

ϕ(x) =⊗
Q
q=1ϕ

(q)(x), (5.5)

and

Λ=⊗
Q
q=1Λ

(q), (5.6)

The inherent challenge in this approach stems from the exponential increase

of the number of basis functions M and thus of model parameters as a function

of the dimensionality of the input data, thereby restricting their utility to low-

dimensional datasets.

Such structure arises for instance when dealing with Mercer expansions of prod-

uct kernels, in the structured kernel interpolation framework [18, 21] variational

Fourier features framework [20] and Hilbert-GP framework [22]. Alternative im-

portant approximation strategies which avoid this exponential scaling are ran-

dom features [23, 24], inducing features [17, 19, 25, 26, 27, 28] and additive GPs

[29, 30] which circumvent the outlined computational issue. All those approaches

can be interpreted as projecting the GP on a set of BFs.

The performance of these methods however tends to deteriorate in higher di-

mensions, as they need to cover an exponentially large domain with a linear

number of random samples or inducing points. These issues are some of the

computational aspects of the curse of dimensionality, which renders it difficult to

operate in high-dimensional feature spaces [31].

5.2.3 TENSOR NETWORKS

A recent alternative approach to remedy said curse of dimensionality affecting

the exponentially increasing weights of the linear model in Eq. (5.3) consists in

constraining the tensorized models weights ten(w) to be a low-rank tensor net-

work. TNs express a Q-dimensional tensor W as a multi-linear function of a num-

ber of core tensors. Two commonly used TNs are the CPD and TT, defined as fol-

lows.

5

94 5. TENSOR NETWORKS AND KERNEL MACHINES AS GAUSSIAN PROCESSES

Definition 5.2.3 (CPD [32]). A Q-dimensional tensor W ∈ R
M1×M2×···×MQ has a

rank-R CPD if

wm1,m2,...,mQ =

R∑

r=1

Q∏

q=1

w (q)
mq ,r . (5.7)

The cores of a CPD are the matrices W
(q)

∈ R
Mq×R . Since a CPD tensor can be

expressed solely in terms of its cores, its storage requires PCPD = R
∑Q

q=1 Mq pa-

rameters as opposed to
∏Q

q=1 Mq .

Definition 5.2.4 (TT [33]). A Q-dimensional tensor W ∈ R
M1×M2×···×MQ admits a

rank-(R0 :=1,R1, . . . ,RQ :=1) tensor train if

wm1,m2,...,mQ =

R0∑

r0=1

R1∑

r1=1

· · ·

RQ∑

rQ=1

Q∏

q=1

w (q)
rq−1,mq ,rq . (5.8)

The cores of a tensor train are Q 3-dimensional tensors W
(q)

∈R
Rq−1×Mq×Rq which

yield PTT =

∑Q
q=1 RQ−1MQ RQ parameters.

In the following we denote by TN(W) a tensor which admits a general TN format,

by CPD(W) a tensor which is a rank-R CPD form and by TT(W) a tensor in rank-

(R0 :=1,R1, . . . ,RQ :=1) TT form. Lastly, we denote by R1(W) a tensor which is rank-

1 CPD form or rank-(1,1, . . . ,1) TT, as both are equivalent. Importantly, we refer to

a tensor in general TN format TN(W) ∈ R
M1×M2×···×MQ as underparametrized if its

rank hyperparameters, e.g. R in case of CPD, are chosen such that its storage cost

is less than
∏Q

q=1 Mq . This is crucial in order to obtain storage and computational

benefits.

5.2.4 TENSOR NETWORK-CONSTRAINED KERNEL MACHINES

TNs have been used to reduce the number of model parameters in kernel ma-

chines (Eq. (5.3)) by tensorizing the BFs ϕ(·) and model weights w and by con-

straining both to be underparameterized TNs. This approach lays its foundations

on the fact that the Frobenius inner product of a tensorized vector is isometric

with respect to the Euclidean inner product, i.e.

f (x) =
〈
ϕ(x), w

〉
= 〈ten

(
ϕ(x)

)
, ten(w)〉F. (5.9)

This isometry allows then to constrain the BFs and the model weights to be an

underparameterized TN. Since product kernels yield an expansion in terms of

5.2. BACKGROUND

5

95

Kronecker-product BFs (Eq. (5.5)), they are a rank-1 TN by definition after ten-

sorization. Embedding these relations yields an approximate model

f (x) ≈ fTN(x) :=〈R1(ten
(
ϕ(x)

)
),TN(ten(w))〉F, (5.10)

characterized by lower storage and computational complexities. This approach

has been proposed mostly for weights modeled as CPD [13, 15, 34] or TT [11, 12,

35, 36, 37] as they arguably introduce fewer rank hyperparameters (only one in

case of CPD) and thus are in practice easier to work with compared to other TNs

such as the Multi-scale Entanglement Renormalization Ansatz (MERA) [38].

We define such models as we will need them in detail in the next section, where

we present our main contribution.

Definition 5.2.5 (CPD-constrained kernel machine). The CPD-constrained kernel

machine is defined as

fCPD(x) :=〈R1(ten
(
ϕ(x)

)
),CPD(ten(w))〉F (5.11)

=

R∑

r=1

hr (x), (5.12)

where the intermediate variables hr ∈R are defined as

hr (x) :=
Q∏

q=1

ϕ
(q)(x)

T
w

(q)
:,r . (5.13)

Similarly, we provide a definition for the TT-constrained kernel machine.

Definition 5.2.6 (TT-constrained kernel machine). The TT-constrained kernel

machine is defined as

fTT(x) :=〈R1(ten
(
ϕ(x)

)
),TT(ten(w))〉F (5.14)

=

RQ∑

rQ=1

RQ−1∑

rQ−1=1

· · ·

R0∑

r0=1

Q∏

q=1

z
(q)
rq−1,rq

(x), (5.15)

where the intermediate variables Z
(q)

∈R
Rq−1×Rq are defined element-wise as

z
(q)
rq−1,rq

(x) :=

Mq∑

mq=1

ϕ
(q)
mq

(x)w
(q)
rq−1,mq ,rq

. (5.16)

Evaluating CPD and TT-constrained kernel machines (Eq. (5.11), Eq. (5.14)) and

5

96 5. TENSOR NETWORKS AND KERNEL MACHINES AS GAUSSIAN PROCESSES

their gradients can be accomplished with O (PCPD) and O (PTT) computations, re-

spectively. This allows the practitioner to tune the rank hyperparameter in order

to achieve a model that fits in the computational budget at hand and that learns

from the specified BFs.

From an optimization point-of-view, models in the form of Eq. (5.10) are con-

sidered in the ML [11, 36] and in the MAP setting [12, 13, 15, 34, 35, 37] and in

the context of GP variational inference [39] where TTs are used to parameterize

the variational distribution. In all these scenarios, TNs appear as an additional

constraint to the optimization problem, and do hence not define a probabilistic

model but merely approximate the chosen estimator (ML, MAP, etc.).

In the following section we present the main contribution of our work: we

show how when placing i.i.d. priors on the cores of these CPD and TT-constrained

model, they converge to a GP which we fully characterize. As we will see, beside

connecting the TN-constrained kernel machines with GPs, this probabilistic char-

acterization defines a different and less stringent type of regularization for such

models.

5.3 TN-CONSTRAINED KERNEL MACHINES AS GPS

Figure 5.1.: Histograms of the empirical Probability Density Function (PDF) of CPD (blue)

and TT (orange) models specified in Theorems 5.3.1 and 5.3.2 evaluated at a

random point as a function of model parameters P for D = 16. The black line

is the PDF of the GP. Notice how TT converges faster to the GP for the same

number of model parameters P .

We commence to outline the correspondence between TN-constrained kernel

machine and GPs, which makes use of the Central Limit Theorem (CLT). We begin

by elucidating the simplest case, i.e. the CPD.

5.3. TN-CONSTRAINED KERNEL MACHINES AS GPS

5

97

Theorem 5.3.1 (CPD-constrained kernel machine as GP). Consider the CPD-constrained

kernel machine

fCPD(x) :=〈R1(ten
(
ϕ(x)

)
),CPD(ten(w))〉F.

If each of the R columns w
(q)

:,r ∈R
Mq of each CPD core is an i.i.d. random variable

such that

E

[

w
(q)
:,r

]

= 0,

E

[

w
(q)
:,r w

(q)
:,r

T]

= R
−

1
Q Λ

(q),

then fCPD(x) converges in distribution as R →∞ to the GP

fCPD(x) ∼GP

(

0,
Q∏

q=1

ϕ
(q)(x)

T
Λ

(q)
ϕ

(q)(·)

)

.

Proof. See Section B.1.

A similar result can be constructed for the TT case.

Theorem 5.3.2 (TT-constrained kernel machine as GP). Consider the TT-constrained

kernel machine

fTT(x) :=〈R1(ten
(
ϕ(x)

)
),TT(ten(w))〉F

If each of the Rq−1Rq fibers W
(q)

rq−1,:,rq ∈ R
Mq of each TT core is an i.i.d. random

variable such that

E

[

W
(q)

rq−1,:,rq

]

= 0,

E

[

W
(q)

rq−1,:,rq
W

(q)
rq−1,:,rq

T]

=

1
√

Rq−1Rq

Λ
(q),

then fTT(x) converges in distribution as sequentially R1 →∞, R2 →∞, . . . , RQ−1 →

∞ to the Gaussian process

fTT(x) ∼GP

(

0,
Q∏

q=1

ϕ
(q)(x)

T
Λ

(q)
ϕ

(q)(·)

)

.

Proof. See Section B.1.

Theorem 5.3.2 guarantees the convergence in distribution of fTT(x) to the GP

of Eq. (5.3) by taking successive limits of each TT rank. Importantly, the same

5

98 5. TENSOR NETWORKS AND KERNEL MACHINES AS GAUSSIAN PROCESSES

convergence results also holds true if the TT ranks grow simultaneously, see Sec-

tion B.3.

Both Theorems 5.3.1 and 5.3.2 are remarkable, as they imply that a GP which

can be defined in terms of a finite number of
∏Q

q=1 Mq weights w can be also ob-

tained with an infinite number of model parameters P using the CPD-constrained

model of Definition 5.2.5 or the TT-constrained model of Definition 5.2.6. Fur-

thermore, Theorems 5.3.1 and 5.3.2 suggest that when the priors of Theorems 5.3.1

and 5.3.2 are placed on the model weights, CPD and TT-based models exhibit GP

behavior in the overparameterized regime as their ranks tend towards infinity. GP

behavior is characterized by a fixed learning representation ϕ(·), which in case of

the kernel in Theorems 5.3.1 and 5.3.2 is fully defined by the BFs and is hence

data-independent. On the contrary, as we will see, in the finite rank regime both

CPD and TT models are able to craft nonlinear features from the provided BFs,

learning nonlinear latent patterns in the mapped data.

5.3.1 CONVERGENCE RATE TO THE GP

While both Theorem 5.3.1 and Theorem 5.3.2 guarantee convergence in distribu-

tion to the GP of Eq. (5.3), they do so at rates that differ in terms of the number of

model parameters. Let us assume, for simplicity, that the number of basis func-

tions is the same along each dimension, i.e., M , and that the Q −1 TT ranks equal

R. It follows then that the number of CPD model parameters PCPD = MQRCPD and

the number of TT model parameters PTT = M(Q − 2)R2
TT

+ 2MRTT = O (MQR2
TT

).

Given the convergence rate of the CLT for the expression in Eq. (5.11) to the GP in

Eq. (5.3), denoted as O (1/
p

R
CPD

) with respect to the variable PCPD, we can establish

the following corollary by substituting RCPD as a function of PCPD.

Corollary 5.3.3 (Convergence rate for CPD). Under the conditions of Theorem 5.3.1,

the function fCPD(x) converges in distribution to the GP defined by Eq. (5.3). The

convergence rate is given by:

fCPD(x) →O

((
MQ

PCPD

) 1
2

)

.

Due to their hierarchical structure, TT models are a composition of R
Q−1

TT
vari-

ables, but can be represented in a quadratic number of model parameters in RTT,

since PTT =O (MQR2
TT

). Expressing then the CLT convergence rate of O (1/
p

R
TT

Q−1)

as a function of PTT yields the following corollary.

5.3. TN-CONSTRAINED KERNEL MACHINES AS GPS

5

99

Corollary 5.3.4 (Convergence rate for TT). Under the conditions of Theorem 5.3.2,

the function fTT(x) converges in distribution to the GP defined by Eq. (5.3). The

convergence rate is given by:

fTT(x) →O

((
MQ

PTT

)Q−1
4

)

.

Therefore, when dealing with identical models in terms of the number of basis

functions (M), product kernel terms (Q), and the number of model parameters

(PCPD = PTT), fTT(x) will converge at a polynomially faster rate than fCPD(x), thus

exhibiting GP behavior with a reduced number of model parameters. In particu-

lar, based on Corollaries 5.3.3 and 5.3.4 we expect the GP convergence rate of TT

models to be faster for Q ≥ 3.

0 5000 10000

P

10−1

100

101

W
2

Q=2

CPD
TT

0 5000 10000

P

100

101

102

Q=4

0 2500 5000 7500 10000

P

102

Q=8

0 5000 10000

P

2×102

3×102
4×102

6×102

Q=16

Figure 5.2.: Mean and standard deviation of the Cramér–von Mises statistic W 2 evaluated

between the empirical Cumulative Density Function (CDF) of CPD and TT mod-

els specified in Theorems 5.3.1 and 5.3.2 evaluated at N = 10 random points as

a function of model parameters P for Q = 2,4,8,16. The two models are equiv-

alent for Q = 2. Notice how TT converges faster to the GP as the dimensionality

of the inputs Q increases.

These insights are relevant for practitioners engaged with TN-constrained ker-

nel machines, as they shed light on the balance between the GP and (deep) neu-

ral network behavior inherent in these models. Notably, when using the priors

of Theorems 5.3.1 and 5.3.2 CPD and TT-constrained models, akin to shallow and

DNNs respectively, have the capacity to craft additional nonlinearities beyond the

provided basis functions. This characteristic can result in more expressive model

when dealing with a limited number of parameters. However, as the parameter

count increases, we expect these models to transition towards GP behavior, char-

acterized by a fixed feature representation and static in comparison.

5

100 5. TENSOR NETWORKS AND KERNEL MACHINES AS GAUSSIAN PROCESSES

100 200 300 400 500 600

10−2

10−1
RM

SE
test RMSE yacht, N: 308, D: 6

100 200 300 400 500

2 × 10−1

3 × 10−1

4 × 10−1

6 × 10−1

test RMSE airfoil, N: 1503, D: 5

200 400 600 800

P

10−2

10−1

RM
SE

test RMSE energy, N: 768, D: 8

200 400 600 800

P

2 × 10−1

3 × 10−1

4 × 10−1

6 × 10−1

test RMSE concrete, N: 1030, D: 8

Figure 5.3.: Mean and standard deviation of the test Root Mean Squared Error (RMSE) of

CPD and TT models for regularization Eqs. (5.17) and (5.18) (green and red

curves respectively) as a function of model parameters P as well as their tar-

get Kernel Ridge Regression (KRR) (dotted line). In the plots, the probabilis-

tic regularization of Eq. (5.18) and its TT counterpart are denoted by a blue

and orange line respectively. The dotted line corresponds to the KRR (GP pos-

terior mean) baseline. The proposed regularization which stems from Theo-

rems 5.3.1 and 5.3.2 achieves lower test RMSE with fewer parameters, with the

notable exception of the concrete datasets where it leads to overfitting.

5.3.2 CONSEQUENCES FOR MAP ESTIMATION

As discussed in Section 5.2.4, TN-constrained kernel machines are typically trained

in the ML or MAP framework by constraining the weights w in the log-likelihood

or log-posterior to be a TN. In said MAP context, and e.g. when specifying a nor-

mal prior on the model weights w ∼N (0,Λ), the resulting regularization term Ω

(log-prior) is approximated by ΩTN as

Ω :=||Λ
−

1
2 w ||

2
≈ΩTN :=||TN(ten

(

Λ
−

1
2 w

)

)||
2

,

5.4. NUMERICAL EXPERIMENTS

5

101

where Λ=⊗
Q
q=1Λ

(q). For example, in case of CPD-constrained models we have

ΩCPD = ||⊙
Q
q=1

(

W
(q)T

Λ
(q)−1

W
(q)

)

||

2
. (5.17)

This form of regularization is considered for TT by Novikov, Oseledets, and Trofi-

mov [12], Wahls et al. [35], and Chen et al. [37] and for CPD by Wesel and Bat-

selier [13, 15]. It provides a Frobenius norm approximation of the regulariza-

tion term which recovers the original MAP estimate as the hyperparameters of

TN(ten(Λw)) are chosen such that TN(ten(Λw)) = ten(Λw). If we now consider

the log-posterior of Theorem 5.3.1 we end up with

ΩCPD :=R
1
Q

Q∑

q=1

||Λ
(q)−

1
2

W
(q)

||

2

. (5.18)

This regularization has been employed without the scaling factor R
1
Q and with

Λ
(q)

= I Mq in the work of Kargas and Sidiropoulos [34], who may not have been

aware of the underlying connection with GPs at that time. Contrary to the regu-

larization ΩTN in Eq. (5.17), it provides an approximation which recovers the log-

prior Ω and thus the MAP, which in combination with a Gaussian likelihood and

squared-loss is equivalent to the GP posterior mean in the limit of large ranks.

These considerations point to the fact that if the practitioner is interested only

in a MAP estimate which recovers the GP posterior mean as faithfully as possible

given the computational budget at hand, he might be more interested in the es-

tablished regularization of Eq. (5.17). On the contrary, the choice of Eq. (5.18) in

combination with squared-loss recovers the GP MAP in the limit, yielding models

that can fit the data more closely albeit with an increased possibility of overfitting

with respect to the associated GP baseline. Furthermore, sampling the priors in

Theorems 5.3.1 and 5.3.2 provide a sensible initial guess for gradient-based opti-

mization which adjusts to the dimensionality of the inputs and the choice of rank

hyperparameters [40].

5.4 NUMERICAL EXPERIMENTS

We setup two numerical experiments in order to respectively empirically observe

the claims in Theorems 5.3.1 and 5.3.2 by evaluating the convergence to the prior

GP in Eq. (5.3), and to evaluate the GP behavior of such models at prediction in

the finite rank case. In all experiments we made use of the Hilbert–space Gaussian

5

102 5. TENSOR NETWORKS AND KERNEL MACHINES AS GAUSSIAN PROCESSES

Process (HGP) [22] BFs which approximate stationary tensor product kernels of the

form
∏D

q=1 k(xq , x ′

q), and opt for Mq = 10 basis functions per dimension. We ran

all experiments on a Dell Inc. Latitude 7410 laptop computer with 16 GB of RAM.

The Python implementation is available at github.com/fwesel/tensorGP.

5.4.1 GP CONVERGENCE

In order to empirically verify the convergence to the GP of Eq. (5.3) we sample

10000 instances of the CPD and TT models specified in Theorems 5.3.1 and 5.3.2

for increasing CPD and TT ranks yielding up to P = 10000 model parameters.

Since the target distribution is Gaussian with known moments, we record the

Cramér–von Mises statistic W 2 [41] which gives a metric of closeness between the

target and our sampled empirical CDF. We repeat this for 10 randomly sampled

data points and for Q = 2,4,8,16 and report the mean and standard deviation of

the results in Fig. 5.2. Therein it can be observed that for the same number of

model parameters, TT converges more rapidly than CPD as the dimensionality of

the inputs grows. Both approaches however need exponentially more parameters

to converge at the same rate for increasing dimensionality of the inputs. Note that

for Q = P = 4 CPD, contrary to what stated in Section 5.3.1 still converges faster

due to the approximation made when considering PTT = QMR2. Histograms of

the empirical CDF for one datapoint are shown in Fig. 5.1. This behavior stems

from the fact that for a fixed combination of Q, M and P , TT captures an expo-

nential RQ−1 range of model interactions in contrast to the R linear interactions

exhibited by CPD.

5.4.2 GP BEHAVIOR AT PREDICTION

To investigate whether CPD and TT-constrained kernel machines trained with the

priors of Theorems 5.3.1 and 5.3.2 indeed exhibit less GP behavior compared to

the standard CPD and TT-constrained prior we tackle four small University of

California, Irvine (UCI) regression problems [42]. We consider 70% of the data

for training and the remaining for test and train a KRR model (equivalent to the

GP posterior mean) on the training data and chose its kernel and regularization

hyperparameters by 3-fold cross-validation. With the found KRR hyperparame-

ters we then train two CPD-constrained kernel machines with Alternating Least-

Squares (ALS) for an increasing number of ranks and thus of parameters, one such

model with the standard regularization (Eq. (5.17)) and one with the regulariza-

tion that follows from Theorem 5.3.1 (Eq. (5.18)). We repeat the same procedure

5.5. RELATED WORK

5

103

for TT-constrained kernel machines. We report the RMSE on test data in Fig. 5.3

and on train in Fig. 4 in the appendix. In Fig. 5.3 one can observe that on all

datasets the predictions on unseen data of both CPD and TT models trained with

the standard regularization (green and red curves respectively) converge to the

KRR baseline (dotted line) for P ≪ N . On the contrary, the CPD and TT models

trained with the regularization term of Eq. (5.18) (blue and orange respectively)

with the exception of the concrete dataset fare better in terms of test error, as they

have been trained with a regularization that recover the KRR baseline in the limit.

Plots of the training errors can be found in Fig. 4 in Section C.1, where it can be

seen that the regularization enforced by Theorems 5.3.1 and 5.3.2 yields overall

models that fit the data better and, with the exception of the concrete dataset,

generalize better.

5.5 RELATED WORK

Our contribution is closely tied to the links between Bayesian neural networks

and GPs, first established for single-layer single-output neural networks [43, 44]

having sigmoidal [45], Gaussian [46] and rectified linear unit [47] as activation

function. This idea was extended to DNNs by Lee et al. [48] and Matthews et al.

[49] for the most common activation functions. Further extensions have been

proposed to CNNs where the number of channels tends to infinity [50, 51], to

RNNs [52] and to DNNs having low-rank constraints on the weight matrices [53].

In particular Theorem 5.3.1 resembles the results of Neal [43, 44] and Williams

[46] which relate infinite-width single layer neural networks to GPs. The CPD rank

corresponds exactly to the width of the neural network. The crucial difference

lies however in the Kronecker product structure, which is not present in neu-

ral networks and introduces a nonlinearity of different kind than the activation

function. TTs on the other hand resemble DNNs as they map the output of each

core to the next one. However, in contrast to DNNs, the inputs are processed over

the depth of the network. For a more in depth discussion we refer the reader

to [54]. Likewise Theorem 5.3.2 is the TN counterpart to the works of Lee et al.

[48] and Matthews et al. [49] which relate finite depth neural networks to GPs.

The priors we propose are also used in practice as a sensible initial guess for

gradient-based optimization of TN-constrained models [40]. The results related

to TT-constrained kernel machines in Theorem 5.3.2 were also derived by Guo

and Draper [55, 56] from a quantum mechanical perspective, though a theoret-

ical and experimental comparison with CPD-constrained kernel machines was

not provided.

5

104 5. TENSOR NETWORKS AND KERNEL MACHINES AS GAUSSIAN PROCESSES

5.6 CONCLUSION

In this paper we proved that CPD and TT-constrained kernel machines are prod-

uct kernel GPs in the limit of large TN ranks when placing suitable priors on their

parameters. We characterized the target GP and showed that compared to CPD,

TT-based models converge faster to the GP when dealing with higher-dimensional

inputs. The proposed priors can be used in case of finite rank to train more flex-

ible models that better fit the data compared to the standard approach which

seeks instead to approximate the posterior with the addition of a TN constraint.

One important limitation is that the ensuing models are more susceptible to over-

fitting and have thus to be tuned with more care. We empirically demonstrated

these observations by means of numerical experiments.

REFERENCES

[1] F. Wesel and K. Batselier. “Tensor Network-Constrained Kernel Machines as Gaus-

sian Processes”. In: Proceedings of The 28th International Conference on Artificial

Intelligence and Statistics. PMLR, Apr. 2025, pp. 2161–2169.

[2] A. Cichocki. “Era of Big Data Processing: A New Approach via Tensor Networks and

Tensor Decompositions”. In: arXiv:1403.2048 [cs] (Aug. 2014). arXiv: 1403.2048 [cs].

[3] A. Cichocki, N. Lee, I. Oseledets, A.-H. Phan, Q. Zhao, and D. P. Mandic. “Tensor

Networks for Dimensionality Reduction and Large-Scale Optimization: Part 1 Low-

Rank Tensor Decompositions”. In: Foundations and Trends® in Machine Learning

9.4-5 (2016), pp. 249–429.

[4] A. Cichocki, A.-H. Phan, Q. Zhao, N. Lee, I. V. Oseledets, M. Sugiyama, and D. Mandic.

“Tensor Networks for Dimensionality Reduction and Large-Scale Optimizations. Part

2 Applications and Future Perspectives”. In: Foundations and Trends® in Machine

Learning 9.6 (2017), pp. 249–429. arXiv: 1708.09165.

[5] A. Novikov, D. Podoprikhin, A. Osokin, and D. P. Vetrov. “Tensorizing Neural Net-

works”. In: Advances in Neural Information Processing Systems. Ed. by C. Cortes,

N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett. Vol. 28. Curran Associates, Inc.,

2015.

[6] M. Jaderberg, A. Vedaldi, and A. Zisserman. “Speeding up Convolutional Neural

Networks with Low Rank Expansions”. In: Proceedings of the British Machine Vision

Conference 2014 (2014).

[7] V. Lebedev, Y. Ganin, M. Rakhuba, I. V. Oseledets, and V. S. Lempitsky. “Speeding-up

Convolutional Neural Networks Using Fine-tuned CP-Decomposition”. In: Interna-

tional Conference on Learning Representations. Jan. 2015.

[8] J. Ye, L. Wang, G. Li, D. Chen, S. Zhe, X. Chu, and Z. Xu. “Learning Compact Recur-

rent Neural Networks With Block-Term Tensor Decomposition”. In: Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition. 2018, pp. 9378–

9387.

[9] C. Hua, G. Rabusseau, and J. Tang. “High-Order Pooling for Graph Neural Networks

with Tensor Decomposition”. In: Advances in Neural Information Processing Sys-

tems 35 (Dec. 2022), pp. 6021–6033.

105

5

106 REFERENCES

[10] X. Ma, P. Zhang, S. Zhang, N. Duan, Y. Hou, M. Zhou, and D. Song. “A Tensorized

Transformer for Language Modeling”. In: Advances in Neural Information Process-

ing Systems. Vol. 32. Curran Associates, Inc., 2019.

[11] E. M. Stoudenmire and D. J. Schwab. “Supervised Learning with Tensor Networks”.

In: Proceedings of the 30th International Conference on Neural Information Process-

ing Systems. Curran Associates Inc., Dec. 2016, pp. 4806–4814.

[12] A. Novikov, I. Oseledets, and M. Trofimov. “Exponential Machines”. In: Bulletin of

the Polish Academy of Sciences: Technical Sciences; 2018; 66; No 6 (Special Section on

Deep Learning: Theory and Practice); 789-797 (2018).

[13] F. Wesel and K. Batselier. “Large-Scale Learning with Fourier Features and Tensor

Decompositions”. In: Advances in Neural Information Processing Systems. Vol. 34.

Curran Associates, Inc., 2021, pp. 17543–17554.

[14] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning.

Adaptive Computation and Machine Learning. Cambridge, Mass: MIT Press, 2006.

[15] F. Wesel and K. Batselier. “Tensor-Based Kernel Machines with Structured Inducing

Points for Large and High-Dimensional Data”. In: Proceedings of The 26th Interna-

tional Conference on Artificial Intelligence and Statistics. PMLR, Apr. 2023, pp. 8308–

8320.

[16] M. Titsias. “Variational Learning of Inducing Variables in Sparse Gaussian Processes”.

In: Proceedings of the Twelth International Conference on Artificial Intelligence and

Statistics. PMLR, Apr. 2009, pp. 567–574.

[17] J. Hensman, N. Fusi, and N. D. Lawrence. “Gaussian Processes for Big Data”. In:

Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence.

UAI’13. AUAI Press, Aug. 2013, pp. 282–290.

[18] A. Wilson and H. Nickisch. “Kernel Interpolation for Scalable Structured Gaussian

Processes (KISS-GP)”. In: Proceedings of the 32nd International Conference on Ma-

chine Learning. PMLR, June 2015, pp. 1775–1784.

[19] J. Quiñonero-Candela and C. E. Rasmussen. “A Unifying View of Sparse Approxi-

mate Gaussian Process Regression”. In: Journal of Machine Learning Research 6.65

(2005), pp. 1939–1959.

[20] J. Hensman, N. Durrande, and A. Solin. “Variational Fourier Features for Gaussian

Processes”. In: The Journal of Machine Learning Research 18.1 (Jan. 2017), pp. 5537–

5588.

[21] M. Yadav, D. Sheldon, and C. Musco. “Faster Kernel Interpolation for Gaussian Pro-

cesses”. In: Proceedings of The 24th International Conference on Artificial Intelli-

gence and Statistics. PMLR, Mar. 2021, pp. 2971–2979.

[22] A. Solin and S. Särkkä. “Hilbert Space Methods for Reduced-Rank Gaussian Process

Regression”. In: Statistics and Computing 30.2 (Mar. 2020), pp. 419–446.

REFERENCES

5

107

[23] A. Rahimi and B. Recht. “Random Features for Large-Scale Kernel Machines”. In:

Proceedings of the 20th International Conference on Neural Information Processing

Systems. Curran Associates Inc., Dec. 2007, pp. 1177–1184.

[24] M. Lázaro-Gredilla, J. Quiñnero-Candela, C. E. Rasmussen, and b. R. Figueiras-Vidal.

“Sparse Spectrum Gaussian Process Regression”. In: Journal of Machine Learning

Research 11.63 (2010), pp. 1865–1881.

[25] L. Csató and M. Opper. “Sparse On-Line Gaussian Processes”. In: Neural Computa-

tion 14.3 (Mar. 2002), pp. 641–668.

[26] M. W. Seeger, C. K. I. Williams, and N. D. Lawrence. “Fast Forward Selection to Speed

Up Sparse Gaussian Process Regression”. In: International Workshop on Artificial

Intelligence and Statistics. PMLR, Jan. 2003, pp. 254–261.

[27] E. Snelson and Z. Ghahramani. “Sparse Gaussian Processes Using Pseudo-inputs”.

In: Advances in Neural Information Processing Systems. Vol. 18. MIT Press, 2006.

[28] J. Hensman, A. Matthews, and Z. Ghahramani. “Scalable Variational Gaussian Pro-

cess Classification”. In: Artificial Intelligence and Statistics. PMLR, Feb. 2015, pp. 351–

360.

[29] D. K. Duvenaud, H. Nickisch, and C. Rasmussen. “Additive Gaussian Processes”. In:

Advances in Neural Information Processing Systems 24 (2011), pp. 226–234.

[30] X. Lu, A. Boukouvalas, and J. Hensman. “Additive Gaussian Processes Revisited”. In:

Proceedings of the 39th International Conference on Machine Learning. PMLR, June

2022, pp. 14358–14383.

[31] T. Hastie, J. Friedman, and R. Tibshirani. The Elements of Statistical Learning. Springer

Series in Statistics. New York, NY: Springer, 2001.

[32] F. L. Hitchcock. “The Expression of a Tensor or a Polyadic as a Sum of Products”. In:

Journal of Mathematics and Physics 6.1-4 (1927), pp. 164–189.

[33] I. V. Oseledets. “Tensor-Train Decomposition”. In: SIAM Journal on Scientific Com-

puting 33.5 (Jan. 2011), pp. 2295–2317.

[34] N. Kargas and N. D. Sidiropoulos. “Supervised Learning and Canonical Decompo-

sition of Multivariate Functions”. In: IEEE Transactions on Signal Processing (2021),

pp. 1–1.

[35] S. Wahls, V. Koivunen, H. V. Poor, and M. Verhaegen. “Learning Multidimensional

Fourier Series with Tensor Trains”. In: 2014 IEEE Global Conference on Signal and

Information Processing (GlobalSIP). Dec. 2014, pp. 394–398.

[36] K. Batselier, Z. Chen, and N. Wong. “Tensor Network Alternating Linear Scheme for

MIMO Volterra System Identification”. In: Automatica 84 (Oct. 2017), pp. 26–35.

[37] Z. Chen, K. Batselier, J. A. K. Suykens, and N. Wong. “Parallelized Tensor Train Learn-

ing of Polynomial Classifiers”. In: IEEE Transactions on Neural Networks and Learn-

ing Systems 29.10 (Oct. 2018), pp. 4621–4632.

5

108 REFERENCES

[38] J. A. Reyes and E. M. Stoudenmire. “Multi-Scale Tensor Network Architecture for

Machine Learning”. In: Machine Learning: Science and Technology 2.3 (July 2021),

p. 035036.

[39] P. Izmailov, A. Novikov, and D. Kropotov. “Scalable Gaussian Processes with Billions

of Inducing Inputs via Tensor Train Decomposition”. In: International Conference

on Artificial Intelligence and Statistics. PMLR, Mar. 2018, pp. 726–735.

[40] F. Barratt, J. Dborin, and L. Wright. “Improvements to Gradient Descent Methods for

Quantum Tensor Network Machine Learning”. In: Second Workshop on Quantum

Tensor Networks in Machine Learning. May 2021.

[41] R. B. D’Agostino and M. A. Stephens. Goodness-of-Fit Techniques. CRC Press, Jan.

1986.

[42] D. Dua and C. Graff. UCI Machine Learning Repository. 2017.

[43] R. M. Neal. Bayesian Learning for Neural Networks. Springer Science & Business Me-

dia, Jan. 1996.

[44] R. M. Neal. “Priors for Infinite Networks”. In: Bayesian Learning for Neural Net-

works. Ed. by R. M. Neal. Lecture Notes in Statistics. New York, NY: Springer, 1996,

pp. 29–53.

[45] C. Williams. “Computing with Infinite Networks”. In: Advances in Neural Informa-

tion Processing Systems. Vol. 9. MIT Press, 1996.

[46] C. Williams. “Computing with Infinite Networks”. In: Advances in Neural Informa-

tion Processing Systems 9 (1997), pp. 295–301.

[47] Y. Cho and L. Saul. “Kernel Methods for Deep Learning”. In: Advances in Neural

Information Processing Systems. Vol. 22. Curran Associates, Inc., 2009.

[48] J. Lee, Y. Bahri, R. Novak, S. S. Schoenholz, J. Pennington, and J. Sohl-Dickstein.

“Deep Neural Networks as Gaussian Processes”. In: International Conference on

Learning Representations. Feb. 2018.

[49] A. G. d. G. Matthews, M. Rowland, J. Hron, R. E. Turner, and Z. Ghahramani. Gaus-

sian Process Behaviour in Wide Deep Neural Networks. Aug. 2018. arXiv: 1804.11271

[cs, stat].

[50] R. Novak, L. Xiao, Y. Bahri, J. Lee, G. Yang, J. Hron, D. A. Abolafia, J. Pennington,

and J. Sohl-dickstein. “Bayesian Deep Convolutional Networks with Many Channels

Are Gaussian Processes”. In: International Conference on Learning Representations.

Sept. 2018.

[51] A. Garriga-Alonso, C. E. Rasmussen, and L. Aitchison. “Deep Convolutional Net-

works as Shallow Gaussian Processes”. In: International Conference on Learning

Representations. Sept. 2018.

[52] X. Sun, S. Kim, and J.-I. Choi. “Recurrent Neural Network-Induced Gaussian Pro-

cess”. In: Neurocomputing 509 (Oct. 2022), pp. 75–84.

A. INTRODUCTION 109

[53] T. Nait-Saada, A. Naderi, and J. Tanner. “Beyond IID Weights: Sparse and Low-Rank

Deep Neural Networks Are Also Gaussian Processes”. In: The Twelfth International

Conference on Learning Representations. Oct. 2023. arXiv: 2310.16597 [cs, stat].

[54] N. Cohen, O. Sharir, and A. Shashua. “On the Expressive Power of Deep Learning: A

Tensor Analysis”. In: Conference on Learning Theory. PMLR, June 2016, pp. 698–728.

[55] E. Guo and D. Draper. Infinitely Wide Tensor Networks as Gaussian Process. Jan.

2021. arXiv: 2101.02333 [stat].

[56] E. Guo and D. Draper. Neural Tangent Kernel of Matrix Product States: Convergence

and Applications. Nov. 2021. arXiv: 2111.14046 [stat].

A INTRODUCTION

A.1 NOTATION

Throughout this paper we denote scalars in both capital and non-capital ital-

ics w,W , vectors in non-capital bold w , matrices in capital bold W and tensors

in capital italic bold font W . The m-th entry of a vector w ∈ R
M is indicated as

wm and the m1m2 . . .mQ -th entry of a Q-dimensional tensor W ∈ R
M1×M2×···×MQ

as wm1,m2,...,mQ . We employ the column notation to indicate a set of elements

of tensor given a set of indices, e.g. Wm1,:,m2 and Wm1,1:3,m2 represent respec-

tively all elements and the first three elements along the second dimension of

tensor W with fixed indices m1 and m2. The Kronecker product is denoted by

⊗ and the Hadamard (elementwise) by ⊙. We employ one-based indexing for

all tensors. The Frobenius inner product between two Q-dimensional tensors

V ,W ∈R
M1×M2×···×MQ is

〈V ,W 〉F :=
M1∑

m1=1

M2∑

m2=1

· · ·

MQ∑

mQ=1

vm1,m2,...,mQ wm1,m2,...,mQ ,

and the Frobenius norm of W ∈R
M1×M2×···×MQ is denoted and defined as

||W ||
2 :=〈W ,W 〉F.

We define the vectorization operator as vec(·) : RM1×M2×···×MQ →R
M1M2···MQ such

that

vec(W)m = wm1,m2,...,mQ ,

110 REFERENCES

with m = m1 +
∑Q

q=2(mq −1)
∏q−1

k=1
Mk . Likewise, its inverse, the tensorization op-

erator ten(·) : RM1M2···MQ →C
M1×M2×...MQ is defined such that

ten(w)m1,m2,··· ,mQ
= wm .

B TN-CONSTRAINED KERNEL MACHINES AS GPS

B.1 GP OF CPD-CONSTRAINED KERNEL MACHINE

Theorem 5.3.1 (CPD-constrained kernel machine as GP). Consider the CPD-constrained

kernel machine

fCPD(x) :=〈R1(ten
(
ϕ(x)

)
),CPD(ten(w))〉F.

If each of the R columns w
(q)

:,r ∈R
Mq of each CPD core is an i.i.d. random variable

such that

E

[

w
(q)
:,r

]

= 0,

E

[

w
(q)
:,r w

(q)
:,r

T]

= R
−

1
Q Λ

(q),

then fCPD(x) converges in distribution as R →∞ to the GP

fCPD(x) ∼GP

(

0,
Q∏

q=1

ϕ
(q)(x)

T
Λ

(q)
ϕ

(q)(·)

)

.

Proof. Consider the R intermediate functions hr of Eq. (5.13) which constitute

the CPD-constrained model of Eq. (5.11). Due to the i.i.d. assumption on w
(q)

:,r

each addend is the same function of i.i.d. random variables and thus is itself

i.i.d.Ṫhe mean of each addend is

E [hr (x)] = E

[
Q∏

q=1

ϕ
(q)(x)

T
w

(q)
:,r

]

= 0, (.19)

B. TN-CONSTRAINED KERNEL MACHINES AS GPS 111

due to the i.i.d. assumption and the linearity of expectation. Its covariance is

E
[
hr (x)hr (x

′′′)
]

(.20a)

=E

[
Q∏

q=1

ϕ
(q)(x)

T
w

(q)
:,r

Q∏

q=1

ϕ
(q)(x

′′′)
T

w
(q)

:,r

]

(.20b)

=E

[
Q∏

q=1

ϕ
(q)(x)

T
w

(q)
:,r w

(q)
:,r

T
ϕ

(q)(x
′′′)

]

(.20c)

=

Q∏

q=1

ϕ
(q)(x)

T
E

[

w
(q)

:,r w
(q)

:,r
T
]

ϕ
(q)(x

′′′) (.20d)

=

1

R

Q∏

q=1

ϕ
(q)(x)

T
Λ

(q)
ϕ

(q)(x
′′′).

Here the step from Eq. (.20b) to Eq. (.20c) exploits the fact that the transpose of a

scalar is equal to itself, the step from Eq. (.20c) to Eq. (.20d) is due to the linear-

ity of expectation. As the variances of each intermediate function hr are appro-

priately scaled, by the CLT the partial sum fCPD(x) converges in distribution to a

multivariate normal distribution, which is fully specified by its first two moments

E
[

fCPD(x)
]
= 0,

E
[

fCPD(x) fCPD(x
′′′)
]
=

Q∏

q=1

ϕ
(q)(x)

T
Λ

(q)
ϕ

(q)(x
′′′).

Since any finite collection of { fCPD(x), . . . , fCPD(x
′′′)} will have a joint multivariate

normal distribution with the aforementioned first two moments, we conclude

that fCPD(x) is the Gaussian process

fCPD(x) ∼GP

(

0,
Q∏

q=1

ϕ
(q)(x)

T
Λ

(q)
ϕ

(q)(·)

)

.

112 REFERENCES

B.2 GP OF TT-CONSTRAINED KERNEL MACHINE IN THE

SEQUENTIAL LIMIT OF THE TT RANKS

Theorem 5.3.2 (TT-constrained kernel machine as GP). Consider the TT-constrained

kernel machine

fTT(x) :=〈R1(ten
(
ϕ(x)

)
),TT(ten(w))〉F

If each of the Rq−1Rq fibers W
(q)

rq−1,:,rq ∈ R
Mq of each TT core is an i.i.d. random

variable such that

E

[

W
(q)

rq−1,:,rq

]

= 0,

E

[

W
(q)

rq−1,:,rq
W

(q)
rq−1,:,rq

T]

=

1
√

Rq−1Rq

Λ
(q),

then fTT(x) converges in distribution as sequentially R1 →∞, R2 →∞, . . . , RQ−1 →

∞ to the Gaussian process

fTT(x) ∼GP

(

0,
Q∏

q=1

ϕ
(q)(x)

T
Λ

(q)
ϕ

(q)(·)

)

.

Proof. Define the vector of intermediate function h
(q+1)

∈R
Rq+1 recursively as

h
(q+1)
rq+1

:=

Rq∑

rq=1

z
(q+1)
rq ,rq+1

(xq+1)h
(q)
rq

,

with h(0) :=1. Note that the first two moments of intermediate variable z
(q+1)
rq ,rq+1

(xq+1)

are

E

[

z
(q+1)
rq ,rq+1

(x)
]

= 0,

E

[

z
(q+1)
rq ,rq+1

(x)z
(q+1)
rq ,rq+1

(x
′′′)
]

=

1
√

Rq Rq+1

ϕ
(q)(x)

T
Λ

(q)
ϕ

(q)(x
′′′).

We proceed by induction. For the induction step suppose that h
(q)
rq

is a GP, iden-

B. TN-CONSTRAINED KERNEL MACHINES AS GPS 113

tical and independent for every rq such that

h
(q)
rq

∼GP

(

0,
1

√
Rq

q∏

p=1

ϕ
(p)(x)

T
Λ

(p)
ϕ

(p)(·)

)

.

The scalar h
(q+1)
rq+1

is the sum of Rq i.i.d. terms having mean

E

[

h
(q+1)
rq+1

]

= E

[

z
(q+1)
rq ,rq+1

(x)h
(q)
rq

]

= 0,

and covariance

E

[

h
(q+1)
rq+1

h
(q+1)
rq+1

]

=E

[

z
(q+1)
rq ,rq+1

(x)h
(q)
rq

z
(q+1)
rq ,rq+1

(x
′′′)h

(q)
rq

]

=E

[

z
(q+1)
rq ,rq+1

(x)z
(q+1)
rq ,rq+1

(x
′′′)
]

E

[

h
(q)
rq

h
(q)
rq

]

=

1
√

Rq+1

q+1∏

p=1

ϕ
(p)(x)

T
Λ

(p)
ϕ

(p)(x
′′′).

Since the assumptions of the CLT are satisfied the partial sum h
(q+1)
rq+1

converges

in distribution to the normal distribution, fully specified by the above mentioned

first two moments. Since any finite collection of {h
(q+1)
rq+1

(x1:q+1), . . . ,h
(q+1)
rq+1

(x
′′′

1:q+1)}

will have a joint multivariate normal distribution with the aforementioned first

two moments, we conclude that h
(q+1)
rq+1

(x1:q+1) is the GP

h
(q+1)
rq+1

∼GP

(

0,
1

√
Rq+1

q+1∏

p=1

ϕ
(p)(x)

T
Λ

(p)
ϕ

(p)(·)

)

.

For the base case, consider the R1 outputs of the first hidden function h(1)
r1

. They

are i.i.d. with mean

E
[
h(1)

r1
(x)

]
= 0.

and covariance

E
[
h(1)

r1
(x)h(1)

r1
(x

′′′)
]
=

1
p

R1

ϕ
(1)(x)

T
Λ

(1)
ϕ

(1)(x
′′′).

114 REFERENCES

We now consider the R2 outputs of the second hidden function h(2)
r2

h(2)
r2

=

R1∑

r1=1

z(2)
r1,r2

(x)h(1)
r1

,

which are i.i.d. as they are the same function of the R1 i.i.d. outputs of h(1)
r1

(x).

More specifically, their mean and covariance are

E
[
h(2)

r2

]
= 0,

E
[
h(2)

r2
(x)h(2)

r2
(x

′′′)
]

=

1
p

R2

2∏

q=1

ϕ
(q)(x)

T
Λ

(q)
ϕ

(d)(x
′′′).

Once more by the CLT, the partial sum h(2)
r2

converges in distribution to the nor-

mal distribution with the above first two moments. Since any finite collection

of {h(2)
r2

(x), . . . ,h(2)
r2

(x
′′′} will have a joint multivariate normal distribution with the

aforementioned first two moments, we conclude that h(2)
2 (x) is the GP

h(2)
r2

∼GP

(

0,
1

p

R2

2∏

q=1

ϕ
(q)(x)T

Λ
(q)

ϕ
(q)(·)

)

,

which is our base case. Hence by induction fTT(x) = h(Q) converges in distribu-

tion as R1 →∞, R2 →∞, . . . , RQ−1 →∞ to the GP

fTT(x) ∼GP

(

0,
Q∏

q=1

ϕ
(q)(x)

T
Λ

(q)
ϕ

(q)(·)

)

.

B.3 GP OF TT-CONSTRAINED KERNEL MACHINE IN THE

SIMULTANEOUS LIMIT OF THE TT RANKS

In Theorem 5.3.2 we prove by induction that the TT-constrained kernel machine

converges to a GP by taking successive limits of the TT ranks. This result is analo-

gous to the work of Lee et al. [48], who prove that for the DNNs, taking sequentially

the limit of each layer. A more practically useful result consists in the conver-

gence in the simultaneous limit of TT ranks.

B. TN-CONSTRAINED KERNEL MACHINES AS GPS 115

In deep learning Matthews et al. [49, theorem 4] prove convergence in the con-

text of DNNs over the widths of all layers simultaneously. Said theorem has been

employed to prove GP convergence in the context of convolutional neural net-

works [51] and in the context of DNNs where each weight matrix is of low rank

[53].

Seeing the similarity between TT-constrained kernel machines (Eq. (5.14)) and

DNNs and the technicality of the proof, similarly to [51, 53] we draw a one-to-one

map between the TT-constrained kernel machines and the DNNs considered in

Matthews et al. [49, theorem 4]. Convergence in the simultaneous limit is then

guaranteed by Matthews et al. [49, theorem 4].

We begin by restating the definitions of linear envelope property, DNNs, lin-

ear envelope property and normal recursion as found in Matthews et al. [49]. To

make the comparison easier for the reader, we change the indexing notation to

match the one in this paper.

Definition B.1 (Linear envelope property for nonlinearities [49]). A nonlinearity

t : R → R is said to obey the linear envelope property if there exist c, l ≥ 0 such

that the following inequality holds

|t (u)| < c + l |u| ∀u ∈R. (.25)

Definition B.2 (Fully connected DNN [49]). A fully connected deep neural with

one-dimensional output and inputs x ∈ R
R0 is defined recursively such that the

initial step is

h(1)
r1

(x) =
R0∑

r0=1

z(1)
r1,r0

xr0 +b(1)
r1

, (.26)

the activation step by nonlinear activation function t is given by

g
(q)
rq

= t (f
(q)

rq
), (.27)

and the subsequent layers are defined by the recursion

h
(q+1)
rq+1

=

Rq∑

rq=1

z
(q+1)
rq+1,rd

g
(q)
rq

+b
q+1
rq+1

, (.28)

so that h(Q) is the output of the network. In the above, Z
(q)

∈R
Rq−1×Rq and b

(q)
∈

R
Rq are respectively the weights and biases of the q-th layer.

Definition B.3 (Width function [49]). For a given fixed input n ∈N, a width func-

116 REFERENCES

tion v (q) : N → N at depth q specifies the number of hidden units Rq at depth

q .

Lemma B.4 (Normal recursion [49]). Consider z
(q)
rq−1,rq

∼ N (0,C
(q)
w) and b

(q)
rq

∼

N (0,C
(q)

b
). If the activations of the q-th layer are normally distributed with mo-

ments

E

[

h
(q)
rq

]

= 0 (.29)

E

[

h
(q)
rq

h
(q)
rq

]

= K (x, x ′), (.30)

then under recursion Eqs. (.27) and (.28), as Rq−1 →∞, the activations of the next

layer converge in distribution to a normal distribution with moments

E

[

h
(q+1)
rq+1

]

= 0 (.31)

E

[

h
(q+1)
rq+1

h
(q+1)
rq+1

]

=C
(q+1)
w E(ϵ1,ϵ2)∼N (0,K) [t (ϵ1)t (ϵ2)]+C

(q+1)

b
. (.32)

We can now state the major result in Matthews et al. [49].

Theorem B.5 (GP in the simultaneous limit of fully connected DNNs [49]). Con-

sider a random DNN of the form of Definition B.2 obeying the linear envelope con-

dition of Definition B.1. Then for all sets of strictly increasing width functions v (q)

and for any countable input set {x , . . . , x
′′′}, the distribution of the output of the net-

work converges in distribution to a GP as n →∞. The GP has mean and covariance

functions given by the recursion in Lemma B.4.

Corollary B.6 (GP in the simultaneous limit of TT-constrained kernel machines).

Consider a random TT-constrained kernel machine of the form of Definition 5.2.6

obeying the linear envelope condition of Definition B.1. Then for all sets of strictly

increasing width functions v (q) and for any countable input set {x , . . . , x
′′′}, the dis-

tribution of the output of the network converges in distribution to a GP as P →∞.

The GP has mean and covariance functions given by the recursion in Lemma B.4

and stated in Theorem 5.3.2.

Proof. When examining Definition B.2 and comparing it with Definition 5.2.6 it

becomes clear that both models are similar. In the special case of involving linear

activation function and zero biases, the models are structurally identical if one

considers unit inputs x = 1 in Eq. (.26). The normal recursion in Lemma B.4 is

C. NUMERICAL EXPERIMENTS

5

117

satisfied by TT-constrained kernel machines, as we have that

t (u) :=u ∀u ∈R,

C
(q+1)

b
:=0,

C (q+1) :=
1

√
Rq Rq+1

ϕ
(q)(x)

T
Λ

(q)
ϕ

(q)(x
′′′),

K :=
1

√
Rq

q∏

p=1

ϕ
(p)(x)

T
Λ

(p)
ϕ

(p)(x
′′′)

E(ϵ1,ϵ2)∼N (0,K) [t (ϵ1)t (ϵ2)] :=K .

Hence by Theorem B.5, for all sets of strictly increasing width functions v (q) and

for any countable input set {x , . . . , x
′′′}, the distribution of the output of the net-

work converges in distribution to a GP, fully specified by the output of the normal

recursion in Lemma B.4, which equals the GP in Theorem 5.3.2.

C NUMERICAL EXPERIMENTS

C.1 GP BEHAVIOR AT PREDICTION

We provide the training RMSE related to Section 5.4.2 in Fig. 4, where it can be

seen that the new priors yield model that provide a better fit on all datasets.

5

118 REFERENCES

100 200 300 400 500 600

10−3

10−2

10−1

RM
SE

train RMSE yacht, N: 308, D: 6

100 200 300 400 500

10−1

2 × 10−1

3 × 10−1

4 × 10−1

6 × 10−1

train RMSE airfoil, N: 1503, D: 5

200 400 600 800

P

10−3

10−2

10−1

RM
SE

train RMSE energy, N: 768, D: 8

100 200 300 400 500 600 700 800

P

10−1

train RMSE concrete, N: 1030, D: 8

Figure 4.: Mean and standard deviation of the training RMSE of CPD and TT models for reg-

ularization Eqs. (5.17) and (5.18) (green and red curves respectively) as a func-

tion of model parameters P as well as their target KRR (dotted line). In the plots,

the probabilistic regularization of Eq. (5.18) and its TT counterpart are denoted

by a blue and orange line respectively. The dotted line corresponds to the KRR

(GP posterior mean) baseline. The proposed regularization which stems from

Theorems 4.2.3 and 5.3.2 achieves lower test RMSE with fewer parameters, with

the notable exception of the concrete datasets where it leads to overfitting.

6
A KERNELIZABLE PRIMAL-DUAL

FORMULATION OF THE MLSVD

The ability to express a learning task in terms of a primal and a dual optimiza-

tion problem lies at the core of a plethora of machine learning methods. For ex-

ample, Support Vector Machine (SVM), Least-Squares Support Vector Machine

(LS-SVM), Ridge Regression (RR), Lasso Regression (LR), Principal Component

Analysis (PCA), and more recently Singular Value Decomposition (SVD) have all

been defined either in terms of primal weights or in terms of dual Lagrange mul-

tipliers. The primal formulation is computationally advantageous in the case of

large sample size while the dual is preferred for high-dimensional data. Crucially,

said learning problems can be made nonlinear through the introduction of a fea-

ture map in the primal problem, which corresponds to applying the kernel trick

in the dual. In this paper we derive a primal-dual formulation of the Multilin-

ear Singular Value Decomposition (MLSVD), which recovers as special cases both

PCA and SVD. Besides enabling computational gains through the derived primal

formulation, we propose a nonlinear extension of the MLSVD using feature maps,

which results in a dual problem where a kernel tensor arises. We discuss potential

applications in the context of signal analysis and deep learning.

This chapter has been submitted to the Journal of Machine Learning Research (JMLR) and archived

as:

F. Wesel and K. Batselier. A Kernelizable Primal-Dual Formulation of the Multilinear Singular Value

Decomposition. Oct. 2024. arXiv: 2410.10504

119

6

120 6. A KERNELIZABLE PRIMAL-DUAL FORMULATION OF THE MLSVD

6.1 INTRODUCTION

The linear Support Vector Machine (SVM) was for the first time extended to the

nonlinear case by Boser, Guyon, and Vapnik [2], giving rise to modern SVM the-

ory. Central to this extension is the primal-dual formulation of the learning prob-

lem, which allows for a nonlinear extension in terms of a primal feature map

φ(·) : RN1 →R
M that maps an inputs x ∈R

N1 to a higher (possibly infinite) dimen-

sional space R
M . Solving the corresponding dual problem requires then the eval-

uation of all pairwise kernel evaluations κ(xn , xn′) :=φ(xn)T
φ(xn′). The so-called

kernel trick ensures that these kernel evaluations can be computed without ever

explicitly mapping the inputs to the higher-dimensional space.

This approach has been applied to a plethora of methods [3], e.g. Least-Squares

Support Vector Machine (LS-SVM) [4], Ridge Regression (RR) [5], Lasso Regression

(LR) [6], Principal Component Analysis (PCA) [7, 8] and more recently to the Sin-

gular Value Decomposition (SVD) [9] in order to yield their kernelized variants.

Among those, PCA is an ubiquitous unsupervised learning approach which seeks

an orthogonal subspace that maximizes the covariance between the samples of

data. Its kernelized counterpart, Kernel Principal Component Analysis (KPCA),

seeks an orthogonal subspace which maximizes the covariance of samples of

data mapped into a higher dimensional space. By construction, KPCA does not

provide any information regarding the row subspace of the data matrix, meaning

that if there is any asymmetry in the data, it will not be captured. A related but

different method is the SVD, which factors a data matrix in terms of orthogonal

row and column subspaces linked by a positive diagonal matrix of so-called sin-

gular values. The SVD has been cast in the primal-dual framework by Suykens

[9], who also proposed a Kernel Singular Value Decomposition (KSVD) extension

in terms of feature maps of both rows and columns of the data matrix, coupled

together by a compatibility matrix. In contrast with KPCA, said construction gives

rise to kernel functions that can be asymmetric and non-positive and thus are

arguably better suited to model real-life data, which often is nonlinear and asym-

metric [10]. The Multilinear Singular Value Decomposition (MLSVD) [11] extends

the concept of the SVD to higher-order arrays, also known as tensors. In simple

terms, the MLSVD factors a data tensor in terms of orthogonal subspaces corre-

sponding to each mode coupled by a core tensor, which unlike in the SVD case,

does not need to be diagonal. The research stream of the MLSVD and the closely

associated Tucker decomposition, which relaxes the orthogonality constraint, fol-

lows the trends of most other tensor decompositions. Early literature focuses on

applications in chemometrics and psychometrics. Landmarks in the literature

explored applications in facial [12] and gait recognition [13] and explored the

6.2. BACKGROUND

6

121

method as an extension of PCA to tensorial data. More recently, the decompo-

sition has been research as a tool for the compression of layers of deep learning

models [14, 15, 16, 17], in the setting of tensors completion [18] knowledge graph

completion [19], graph classification [20]. The decomposition has also been used

as a theoretical tool for the study of deep learning models [21, 22, 23]. Other re-

cent areas of active research tackle the issues of scalability [24, 25, 26, 27, 28] and

Bayesian extensions [29, 30].

In this paper we extend the Lanczos decomposition theorem of matrices [31] to

the tensor case. This allows us to derive a primal-dual formulation of the MLSVD,

which recovers as special cases both PCA and the SVD. The newly established

primal formulation can be used to attain computational gains in the large sample

regime, and allows us to kernelize the MLSVD by means of feature maps. These

feature maps define the construction of a kernel tensor in the dual as opposed to

a kernel matrix in the case of PCA and SVD. Similarly to the SVD case, the tensor

kernel does not need to be symmetric or positive. We discuss possible choices

of kernel functions and applications, which range from signal analysis to deep

learning.

The remainder of the paper is structured as follows. In Section 6.2 we provide

the background related to the MLSVD as well as a theorem that will be useful to

prove our main result in Section 6.3. We discuss related work in Section 6.5 and

formulate recommendations for future work in Section 6.6.

6.2 BACKGROUND

In the remainder of this paper we denote tensors with uppercase calligraphic

bold e.g. X , matrices in uppercase bold e.g. X , vectors in lowecase bold x and

scalars in lowercase, e.g. x. We denote the mode-d unfolding of a tensor X [32]

with X(d), the Kronecker product with ⊗ and column-major vectorization with

vec(·).

The compact SVD of a rank-R matrix X ∈ R
N1×N2 can be written as vec(X) =

(U2 ⊗U1)vec(S), with semi-orthogonal matrices U1 ∈R
N1×R and U2 ∈R

N2×R such

that U
T
1 U1 = IR1 , U

T
2 U2 = IR2 and a square diagonal matrix S ∈ R

R×R of singular

values. The MLSVD, also known as the Higher-Order Singular Value Decomposi-

tion (HOSVD), is one way to generalize the SVD of matrices to higher-order tensors

[11], which expresses a Dth-order tensor in terms of D coupled orthogonal sub-

spaces. In order to simplify notation and increase the readability we will consider

from now on the case D = 3 without any loss of generality. For the general case

we refer the reader to Appendix A.

6

122 6. A KERNELIZABLE PRIMAL-DUAL FORMULATION OF THE MLSVD

Definition 6.2.1 (Multilinear Singular Value Decomposition (MLSVD) [11]). The

rank-(R1,R2,R3) MLSVD of a 3rd-order tensor X ∈R
N1×N2×N3 is

vec(X) = (U3 ⊗U2 ⊗U1)vec(S) , (6.1)

where U1 ∈ R
N1×R1 ,U2 ∈ R

N2×R2 ,U3 ∈ R
N3×R3 are semi-orthogonal factor matri-

ces and S ∈ R
R1×R2×R3 is the core tensor such that the matrices S(1)S

T
(1)

, S(2)S
T
(2)

,

S(3)S
T
(3)

are positive diagonal.

In practice, the MLSVD of a 3-rd order tensor can be computed by 3 SVD factor-

izations as elucidated in De Lathauwer, De Moor, and Vandewalle [11]. Each SVD

provides U1, U2 and U3 as the left-singular values of the respective unfoldings

X(1), X(2), X(3). The core tensor is then computed by solving Eq. (6.1) for S .

6.3 A PRIMAL-DUAL FORMULATION FOR THE MLSVD

Before presenting our main result, i.e. a primal-dual formulation of the MLSVD,

we need to generalize an important theorem by Lanczos [31], who defines shifted

eigenvalue problems which are equivalent to the SVD. Similarly, the MLSVD of a

3rd-order tensor X ∈ R
N1×N2×N3 can then be uniquely defined as a set of 3 cou-

pled matrix equations. A generalization of the proof to tensors of higher order is

straightforward and can be found in Theorem A.1.

Theorem 6.3.1 (Generalized Lanczos decomposition theorem). An arbitrary rank-

(R1,R2,R3) tensor X ∈R
N1×N2×N3 can be written in MLSVD form, i.e. as in Eq. (6.1)

with core tensor S ∈R
R1×R2×R3 and semi-orthogonal factor matrices U1 ∈R

N1×R1 ,

U2 ∈R
N2×R2 and U3 ∈R

N3×R3 defined by the following set of equations

U1 S(1) = X(1) (U3 ⊗U2) ,

U2 S(2) = X(2) (U3 ⊗U1) ,

U3 S(3) = X(3) (U2 ⊗U1) ,

(6.2)

with the additional constraint that S(1)S
T
(1)

, S(2)S
T
(2)

, S(3)S
T
(3)

are positive diagonal

matrices.

Proof. The proof is divided in two steps, first we show that the factor matrices

U1, U2, U3 are semi-orthogonal, second we show that indeed Eq. (6.2) implies the

MLSVD i.e. Eq. (6.1). We begin by left-multiplying each side of Eq. (6.2) respec-

6.3. A PRIMAL-DUAL FORMULATION FOR THE MLSVD

6

123

tively with U
T
1 , U

T
2 , U

T
3 , resulting in three equations of the form

U
T
1 U1S(1) =U

T
1 X(1) (U3 ⊗U2) :=D(1),

U
T
2 U2S(2) =U

T
2 X(2) (U3 ⊗U1) :=D(2),

U
T
3 U3S(3) =U

T
3 X(3) (U2 ⊗U1) :=D(3).

(6.3)

By construction, all three right-hand sides of Eq. (6.3) are different unfoldings of

the same tensor D ∈ R
R1×R2×R3 for any choice of X and U1, U2, U3. Vectorizing

both sides of the equations yields

(IR3 ⊗ IR2 ⊗U
T
1 U1)vec(S) = vec(D) ,

(IR3 ⊗U
T
2 U2 ⊗ IR1)vec(S) = vec(D) ,

(U T
3 U3 ⊗ IR2 ⊗ IR1)vec(S) = vec(D) ,

Equating any two out of the
(3

2

)
pairs of equations e.g. the first one with the sec-

ond one results in

(IR3 ⊗ IR2 ⊗U
T
1 U1)vec(S)

=(IR3 ⊗U
T
2 U2 ⊗ IR1)vec(S) .

This equality holds if U
T
1 U1 = U

T
2 U2 = 0 (trivial solution), which we do not con-

sider. If U
T
2 U2 is full-rank and thus invertible, the right-hand side is invertible.

Left-multiplying by the inverse of the right-hand side yields

(IR3 ⊗ IR2 ⊗ IR1)vec(S)

=(IR3 ⊗U
T
2 U2 ⊗ IR1)−1(IR3 ⊗ IR2 ⊗U

T
1 U1)vec(S)

=(IR3 ⊗ (U T
2 U2)−1

⊗U
T
1 U1)vec(S) ,

where the second equality follows from the mixed-product property, see Loan

[33]. The equality holds if and only if (U T
2 U2)−1

= IR2 and U
T
1 U1 = IR1 . Repeating

the argument with at least ⌈ 3
2
⌉ unique pairs out of the

(3
2

)
pairs of equations yields,

apart from the trivial U1 =U2 =U3 = 0 solution,

U
T
1 U1 = IR1 ,

U
T
2 U2 = IR2 ,

U
T
3 U3 = IR3 ,

(6.4)

6

124 6. A KERNELIZABLE PRIMAL-DUAL FORMULATION OF THE MLSVD

which implies that U1, U2 and U3 are semi-orthogonal. Right-multiplying both

sides of Eq. (6.2) by respectively S
T
(1)

U
T
1 , S

T
(2)

U
T
2 , S

T
(3)

U
T
3 yields

U1 S(1)S
T
(1)U

T
1 = X(1) (U3 ⊗U2)S

T
(1)U

T
1 ,

U2 S(2)S
T
(2)U

T
2 = X(2) (U3 ⊗U1)S

T
(2)U

T
2 ,

U3 S(3)S
T
(3)U

T
3 = X(3) (U2 ⊗U1)S

T
(3)U

T
3 .

(6.5)

The left-hand side is the eigendecomposition of the right-hand side of Eq. (6.5)

due to the assumption that S(1)S
T
(1)

, S(2)S
T
(2)

, S(3)S
T
(3)

are positive diagonal matrices

(eigenvalues) and the above proof that U1, U2, U3 are semi-orthogonal matrices

(eigenvectors). From Eq. (6.5) it follows that U1 is an orthogonal basis for the

column space of X(1), and likewise for the other unfoldings. We can therefore

write

U1 S(1)S
T
(1)U

T
1 =U1R1 (U3 ⊗U2)S

T
(1)U

T
1 ,

U2 S(2)S
T
(2)U

T
2 =U2R2 (U3 ⊗U1)S

T
(2)U

T
2 ,

U3 S(3)S
T
(3)U

T
3 =U3R3 (U2 ⊗U1)S

T
(3)U

T
3 ,

(6.6)

where R1 ∈ R
R1×N2N3 , R2 ∈ R

R2×N1N3 and R3 ∈ R
R3×N1N2 are general coefficient

matrices. From Eq. (6.6) follows that

S(1) = R1 (U3 ⊗U2) ,

S(2) = R2 (U3 ⊗U1) ,

S(3) = R3 (U2 ⊗U1) ,

(6.7)

which by the semi-orthogonality of U1, U2 and U3 is satisfied if and only if

R1 = S(1)

(
U

T
3 ⊗U

T
2

)
,

R2 = S(2)

(
U

T
3 ⊗U

T
1

)
,

R3 = S(3)

(
U

T
2 ⊗U

T
1

)
.

(6.8)

Substitution of Eq. (6.8) into X(1) =U1 R1, X(2) =U2 R2, X(3) =U3 R3 we conclude

that vec(X) = (U3 ⊗U2 ⊗U1)vec(S), which is the defining Eq. (6.1) of the MLSVD

as in Definition 6.2.1.

Equipped with Theorem 6.3.1, we can now formulate the MLSVD as a primal-

dual optimization problem by defining the primal MLSVD optimization problem

6.3. A PRIMAL-DUAL FORMULATION FOR THE MLSVD

6

125

in its most general context.

Definition 6.3.2 (Primal MLSVD optimization problem). Given three feature ma-

tricesΦ1 ∈R
N1×M1 ,Φ2 ∈R

N2×M2 ,Φ3 ∈R
N3×M3 , a compatibility tensor C ∈R

M1×M2×M3

and regularization parameters S ∈R
R1×R2×R3 such that S(1)S

T
(1)

, S(2)S
T
(2)

and S(3)S
T
(3)

are positive diagonal matrices, we define the primal optimization problem as

max
W1,W2,W3,E1,E2,E3

J (W1,W2,W3,E1,E2,E3) :=

1

2

3∑

d=1

Tr
(

Ed (S(d)S
T
(d))

−1
E

T
d

)

−2 vec(C)T (W3 ⊗W2 ⊗W1) vec(S)

+

1

2
vec(C)T

(
Φ

T
3Φ3 ⊗Φ

T
2Φ2 ⊗Φ

T
1Φ1

)
vec(C)

s.t.: E1 =Φ1 C(1) (W3 ⊗W2) S
T
(1),

E2 =Φ2 C(2) (W3 ⊗W1) S
T
(2),

E3 =Φ3 C(3) (W2 ⊗W1) S
T
(3).

(6.9)

In Eq. (6.9) we seek weights matrices W1 ∈ R
M1×R1 , W2 ∈ R

M2×R2 , W3 ∈ R
M3×R3

and error matrices E1 ∈ R
N1×R1 , E2 ∈ R

N2×R2 , E3 ∈ R
N3×R3 that maximize an ob-

jective function J composed of a term that maximizes the variance associated

with each feature matrix, a regularization term that acts on the weights and an

optional constant term that ensures that the cost at the optimum is zero. For

now we assume that the features Φ, compatibility tensor C and the regulariza-

tion parameter S are given and not necessarily data-dependent, we will later ex-

amine relevant choices. We now establish a link between the primal MLSVD opti-

mization problem presented in Definition 6.3.2 and the dual MLSVD optimization

problem.

Theorem 6.3.3. The dual optimization problem associated with the primal opti-

mization problem of Definition 6.3.2 is the MLSVD of the kernel tensor K ∈C
N1×N2×N3 .

The kernel tensor K is defined as

vec(K) := (Φ3 ⊗Φ2 ⊗Φ1) vec(C) . (6.10)

Proof. Consider the Lagrangian L associated with the primal optimization prob-

6

126 6. A KERNELIZABLE PRIMAL-DUAL FORMULATION OF THE MLSVD

lem of Definition 6.3.2,

L (W1,W2,W3,E1,E2,E3,U1,U2,U3)

= J (W1,W2,W3,E1,E2,E3)

−Tr
((

E1 −Φ1 C(1) (W3 ⊗W2) S
T
(1)

)
U

T
1

)

−Tr
((

E2 −Φ2 C(2) (W3 ⊗W1) S
T
(2)

)
U

T
2

)

−Tr
((

E3 −Φ3 C(3) (W2 ⊗W1) S
T
(3)

)
U

T
3

)
,

where U1 ∈ R
N1×R1 , U2 ∈ R

N2×R2 , U3 ∈ R
N3×R3 are Lagrange multiplier matrices.

The Karush-Kuhn-Tucker (KKT) conditions result in

ÇL

ÇW1
= 0 ⇐⇒ 2C(1)(W3 ⊗W2)S

T
(1) =C(1)

(
W3 ⊗Φ

T
2U2 +Φ

T
3U3 ⊗W2

)
S

T
(1),

ÇL

ÇW2
= 0 ⇐⇒ 2C(2)(W3 ⊗W1)S

T
(2) =C(2)

(
W3 ⊗Φ

T
1U1 +Φ

T
3U3 ⊗W1

)
S

T
(2),

ÇL

ÇW3
= 0 ⇐⇒ 2C(3)(W2 ⊗W1)S

T
(3) =C(3)

(
W2 ⊗Φ

T
1U1 +Φ

T
2U2 ⊗W1

)
S

T
(3),

ÇL

ÇE1
= 0 ⇐⇒ E1 =U1S(1)S

T
(1),

ÇL

ÇE2
= 0 ⇐⇒ E2 =U2S(2)S

T
(2),

ÇL

ÇE3
= 0 ⇐⇒ E3 =U3S(3)S

T
(3),

ÇL

ÇU1
= 0 ⇐⇒ E1 =Φ1 C(1) (W3 ⊗W2) S

T
(1),

ÇL

ÇU2
= 0 ⇐⇒ E2 =Φ2 C(2) (W3 ⊗W1) S

T
(2),

ÇL

ÇU3
= 0 ⇐⇒ E3 =Φ3 C(3) (W2 ⊗W1) S

T
(3).

The equality of the first three KKT conditions holds for the trivial solution W1 =

0,W2 = 0,W3 = 0 or when

Φ
T
1U1 =W1, ΦT

2U2 =W2, ΦT
3U3 =W3.

6.3. A PRIMAL-DUAL FORMULATION FOR THE MLSVD

6

127

These expressions can be used to eliminate W1 and E1 to obtain

U1S(1)S
T
(1) =Φ1 C(1)

(
Φ

T
3 ⊗Φ

T
2

)
(U3 ⊗U2) S

T
(1)

= K(1) (U3 ⊗U2) S
T
(1).

The definition of K in Eq. (6.10) was used to write the second equality. Similarly

we obtain expressions for the Lagrange multipliers U2 and U3 leading to

U1S(1) = K(1) (U3 ⊗U2) ,

U2S(2) = K(2) (U3 ⊗U1) ,

U3S(3) = K(3) (U2 ⊗U1) ,

which by Theorem 6.3.1 is the MLSVD of the tensor K ∈R
N1×N2×N3 .

Theorem 6.3.3 establishes that instead of computing the MLSVD of a tensor K ,

one can alternatively solve the optimization problem in Definition 6.3.2. Equa-

tion (6.10) can be understood as a generalization of the conventional kernel equa-

tions to asymmetric kernel functions of more than two arguments. In partic-

ular, it can be interpreted as the dot product of features of three different fea-

ture spaces. Likewise, e.g. the primal E1 matrix can be interpreted as contain-

ing the dot product between the features of the first feature space with the pri-

mal weights in the second and third feature spaces. In contrast, KPCA considers

only one feature space, where kernel functions are dot products within this sin-

gle feature space. The E1 score variables in KPCA are the dot product between

the features and their own corresponding primal weights. Our results general-

ize these notions to multiple data sources and feature spaces. We discuss these

connections more in depth in the remainder of the paper. We now prove that the

objective function J is equal to zero in the MLSVD solution.

Corollary 6.3.4. The MLSVD solution of the dual problem in Theorem 6.3.3 result

in a zero objective function (J = 0) in the primal optimization problem of Defini-

tion 6.3.2.

Proof. Plugging in the KKT conditions for E1,E2,E3 and W1,W2,W3 into the pri-

6

128 6. A KERNELIZABLE PRIMAL-DUAL FORMULATION OF THE MLSVD

mal objective function J results in

1

2

3∑

d=1

Tr
(

Ed (S(d)S
T
(d))

−1
E

T
d

)

−2vec(C)T (W3 ⊗W2 ⊗W1) vec(S)+
1

2
vec(K)T vec(K) ,

=

1

2

3∑

d=1

Tr
(

Ud S(d)S
T
(d) U

T
d

)

−2vec(C)T
(
Φ

T
3U3 ⊗Φ

T
2U2 ⊗Φ

T
1U1

)
vec(S)+

1

2
vec(K)T vec(K)

=

(
3

2
−2+

1

2

)

vec(K)T vec(K) = 0.

The first three variance terms are simplified using the cyclic permutation invari-

ance of the Frobenius trace norm. The regularization term is simplified using the

definition of the kernel tensor K and its MLSVD. The third term in the objective

function is also simplified using the definition of the kernel tensor K .

M1 M2 M3

R1

R2 R3

N1

C

S

Φ1 W2 W3

M2
M1 M3

R2

R1 R3

N2

C

S

Φ2

W1 W3

M3
M1 M2

R3

R1 R2

N3

C

S

Φ3

W1 W2

(a) Primal formulation (P), from left to right of E1, E2 and E3.

Figure 6.1.: Primal formulation (Fig. 6.1a) and dual formulation (Fig. 6.1b) in tensor net-

work diagram notation. In these diagrams, each circle represent a tensor and

each edge departing from a circle represents an index of the corresponding

tensor. A connecting edge denotes then a summation along the correspond-

ing index, an unconnected edge denotes a free index, see Cichocki et al. [34]

for a more in-depth explanation.

The primal optimization problem of Definition 6.3.2 defines explicitly a model-

based approach in terms of primal weights, which is equivalent to the MLSVD

but operates in the vector space R
M1×M2×M3 instead of in the usual vector space

R
N1×N2×N3 . Just like other learning problems that admit a primal-dual formula-

6.3. A PRIMAL-DUAL FORMULATION FOR THE MLSVD

6

129

tion, each representation has its own advantages in terms of computational com-

plexity.

Remark 6.3.5 (Primal and dual model representation). The MLSVD is character-

ized by a primal (P) representation in terms of weights W1, W2, W3 and feature

maps Φ1, Φ2, Φ3 and a dual (D) representation in terms of a kernel tensor K

defined in Eq. (6.10) and Lagrange multipliers U1, U2, U3:

E1 =Φ1 C(1) (W3 ⊗W2)S
T
(1),

E2 =Φ2 C(2) (W3 ⊗W1)S
T
(2), (P)

E3 =Φ3 C(3) (W2 ⊗W1)S
T
(3),

E1 = K(1) (U3 ⊗U2)S
T
(1),

E2 = K(2) (U3 ⊗U1)S
T
(2), (D)

E3 = K(3) (U2 ⊗U1)S
T
(3).

An alternative representation of Eqs. (P) and (D) in tensor networks diagram

notation is presented in Fig. 6.1. After precomputing Φ1 C(1), Φ2 C(2) and Φ3 C(3),

the primal formulation in Eq. (P) is more convenient in terms of storage and

computation when the number of samples is larger than the feature space one

operates in, i.e. N ≫ M , requiring a computational and storage complexity of

O (N M 2) with N :=max(N1, N2, N3), M :=max(M1, M2, M3). Alternatively, when

the feature space is larger than the number of samples, the dual formulation

in Eq. (D) is more attractive, requiring a computational and storage complexity

of O (N 3). In particular, the dual formulation allows to operate implicitly in an

infinite-dimensional feature space, as long as the kernel tensor K can be com-

puted in closed form. We illustrate this trade-off through a numerical example.

Example 6.3.6. Suppose we have a data tensor X ∈R
100×100×100 and the goal is to

compute its rank-(5,5,5) MLSVD. The storage complexity of the MLSVD in terms of

the dual variables is then 53
+3·100·5 = 1625. As discussed in detail in section 6.4.1

we have that M1 = M2 = M3 = 1002. The storage complexity of the MLSVD in terms

of the primal weights is then 53
+ 3 · 1002

· 5 = 150125, which is 92 times more

expensive than the dual form.

Now suppose we have 3 datasetsΦ1,Φ2,Φ3, each being a 100×5 matrix. Choos-

ing the compatibility tensor C ∈ R
5×5×5 a unit diagonal tensor allows us to com-

pute the corresponding rank-(5,5,5) kernel tensor K ∈ R
100×100×100. Its dual

MLSVD incurs a storage cost of 53
+3 ·100 ·5 = 1625, whereas the dual representa-

6

130 6. A KERNELIZABLE PRIMAL-DUAL FORMULATION OF THE MLSVD

tion requires an 8-times smaller storage cost of 53
+3 ·5 ·5 = 200.

The situation becomes a bit more involved when the data tensor is non-cubical.

Suppose we want to compute the rank-(5,5,5) MLSVD of X ∈ R
100×10×5. Then

M1 = 50, M2 = 500, M3 = 1000. The primal representation would then have a stor-

age cost of 53
+5(50+500+1000) = 7875, while the dual 53

+5(100+10+5) = 700. A

mixed representation in terms of W1,U2,U3 would incur an even smaller storage

cost of 53
+5(50+10+5) = 450. Such a mixed representation would be obtained by

removing the E1 constraint from Definition (6.3.2) and solving the corresponding

optimization problem.

6.4 CONNECTION WITH OTHER METHODS

We will now examine possible choices of features and compatibility tensors C , in

particular such that the output of Definition 6.3.2 is equivalent to the MLSVD of a

known data tensor X , as well as nonlinear extensions and the relationships with

other methods.

6.4.1 LINEAR MLSVD OF A DATA TENSOR

Theorem 6.3.3 requires that the data that is fed into the primal optimization prob-

lem comes in the form of matrices. Its dual optimization problem is then the

MLSVD of K in Eq. (6.10). We will now see how the MLSVD of a general data ten-

sor X can be obtained with suitable choices of features and compatibility tensor.

The linear MLSVD of a general data tensor X ∈ R
N1×N2×N3 follows from Theo-

rem 6.3.3 if one considers as features the mode-d unfoldings of said tensor.

Theorem 6.4.1 (Linear MLSVD of a data tensor). Consider the data tensor X ∈

R
N1×N2×N3 with linear feature maps

Φd = X(d), (6.11)

which correspond to each unfolding of X . If the compatibility tensor C ∈C
N2N3×N1N3×N1N2

satisfies

vec(X) =
(

X(3) ⊗X(2) ⊗X(1)

)
vec(C) , (6.12)

then solving the primal problem in Definition 6.3.2 yields the MLSVD of data tensor

X ∈C
N1×N2×N3 .

Proof. The compatibility condition of Eq. (6.12) associated with the linear fea-

tures of Eq. (6.11) satisfies the assumptions of Theorem 6.3.3, yielding thus the

6.4. CONNECTION WITH OTHER METHODS

6

131

MLSVD of data tensor X .

The linear compatibility condition of Eq. (6.12) can always be satisfied when

the dimensionalty of the data tensor D ≥ 3, as the right-hand-side is then under-

determined and thus yields infinitely many solutions. A standard choice is then

to choose the C with minimal Frobenius norm. In the D = 2 case, the compatibil-

ity condition reduces to vec(X) = (X
T
⊗X)vec(C), recovering the pseudoinverse-

based compatibility condition of the primal-dual formulation of the SVD identi-

fied by Suykens [9].

6.4.2 KERNEL MLSVD

The Kernel Multilinear Singular Value Decomposition (KMLSVD) of a data tensor

X ∈R
N1×N2×N3 is defined by means of a set of general nonlinear feature maps

Φd =Φd (Xd) ∈R
Nd×Md , (6.13)

which map each dataset or unfolding to a higher-dimensional nonlinear space

R
Md . Solving the primal optimization problem of Definition 6.3.2 is then equiv-

alent to the MLSVD of the kernel tensor K ∈ C
N1×N2×N3 in Theorem 6.3.3, whose

defining equation we provide once more:

vec(K) := (Φ3 ⊗Φ2 ⊗Φ1) vec(C) .

The compatibility tensor C determines whether the kernel tensor function (and

tensor kernel) are subject to any kind of symmetry or permutational invariances

and together with the choice of feature map, positivity. The tensor kernel does

not need to be symmetric or positive-definite, meaning that the MLSVD can rep-

resent asymmetric relationships that arise between the orthogonal subspaces

where the high-dimensional data lives in terms of the core tensor.

The explicit computation of the kernel tensor scales exponentially in the di-

mensionality of the original data tensor X when carried out explicitly. This lim-

itation can instead be bypassed by means of the so-called kernel trick, which

carries out the computations implicitly in the features spaces. Two examples of

kernel functions whose inputs live in the same space are the tensor-variate gen-

eralizations of the polynomial and exponential kernels described first by Salzo,

Rosasco, and Suykens [35] and Salzo and Suykens [36] in the context of Lp -regularized

learning problems. We report here their slightly adjusted definition.

6

132 6. A KERNELIZABLE PRIMAL-DUAL FORMULATION OF THE MLSVD

Example 6.4.2 (Polynomial and exponential kernel [35, 36]). The polynomial ten-

sor kernel function of degree p ≥ 1 is defined as

vec
(

K
p

polynomial

)
:= ((X3 ⊗X2 ⊗X1)vec(I))p

where X1 ∈ R
N×M , X2 ∈ R

N×M , X3 ∈ R
N×M and I ∈ C

M×M×M is the 3rd-order

diagonal identity tensor. It is implicitly assumed that the inputs live in the same

space and can hence be coupled by means of the identity tensor. The exponential

tensor kernel is then defined as

K exponential :=exp(K 1
polynomial).

When p is odd then the kernels are not positive-definite. The exponential kernel

is defined implicitly by an infinite-dimensional power series feature map [35].

Following Suykens [9], it is straightforward to define the features and compati-

bility tensor which yields a kernel tensor of elementwise nonlinearities.

Example 6.4.3 (Elementwise nonlinear kernel). Elementwise nonlinear kernels

of a data tensor X ∈R
N1×N2×N3 are defined as

K elementwise := f (X),

where f (·) is any elementwise nonlinear function. The features are the linear

features of Theorem 6.4.1 and the compatibility tensor C ∈ R
M1×M2×M3 satisfies

Eq. (6.12).

The primal optimization problem of Definition 6.3.2 encompasses many de-

compositions. In what follows we provide a brief overview of some examples.

6.4.3 KERNEL ORTHOGONAL CPD

The kernel Canonical Polyadic Decomposition (CPD) can be interpreted as a spe-

cial case of the MLSVD where the core S ∈ R
R×R×R is a cubical diagonal tensor

with nonzero entries and the factor matrices are not orthogonal. The orthogonal

CPD [37, 38] retains the orthogonality of the factor matrices and is obtained from

Theorem 6.4.1 by choosing linear feature maps and a compatibility tensor such

that the compatibility equation Eq. (6.12) is satisfied.

6.4. CONNECTION WITH OTHER METHODS

6

133

6.4.4 KERNEL SVD

The KMLSVD generalizes the KSVD to higher-order tensors. It is therefore straight-

forward to obtain the KSVD of a matrix K from Theorem 6.3.3 by considering two

data sources Φ1 and Φ2 and a positive diagonal regularization matrix S. Said pri-

mal KSVD optimization problem coincides with the one identified by Suykens [9].

Theorem 6.3.3 then results in the shifted eigenvalue problems

U1 S = K U2,

U2 S
T
= K

T
U1,

where K =Φ1CΦ
T
2 is the kernel matrix, which is not required to be symmetric or

positive-definite. The solution of the shifted eigenvalue problem is then the SVD

of K , i.e. K =U1 S U
T
2 [31]. Similarly, the linear SVD [9] is also recovered by addi-

tionally considering as features rows and columns of the data matrix X ∈R
N1×N2

and as compatibility matrix C ∈ R
M1×M2 as defined in Section 6.4.2. Notably in

contrast with the KMLSVD case detailed in Section 6.4.1, in the 2-dimensional

KSVD case it is possible to easily define an asymmetric kernel function κ(x1,C x2)

based on a predefined symmetric (positive-definite) kernel function κ(·, ·), ex-

ploiting the fact that the compatibility matrix maps one input space to the other,

as proposed by Tao et al. [10].

6.4.5 KERNEL PCA

Consider a feature matrix Φ ∈ R
N×M . In the primal problem of Definition 6.3.2

we are now interested in finding two weight matrices W1,W2 that project the data

to score variables ΦW1,ΦW2 with maximal variance. The compatibility matrix

C is chosen to be a positive diagonal matrix, and the regularization parameter

matrix S is chosen diagonal with positive entries. Theorem 6.3.3 then results in

the shifted eigenvalue problems

U1S = KU2,

U2S = KU1,

where K = ΦCΦ
T is a symmetric positive-definite kernel matrix. The symme-

try of the kernel matrix implies that U1 = U2, ensuring that the dual problem is

the eigenvalue decomposition of the kernel matrix i.e. K =U SU
T. Linear PCA is

recovered by choosing Φ= X .

6

134 6. A KERNELIZABLE PRIMAL-DUAL FORMULATION OF THE MLSVD

6.4.6 HIGHER-ORDER KPCA

Theorem 6.3.3 makes it possible to define a higher-order KPCA which considers

higher-order interactions between the (mapped) data. Consider e.g. three identi-

cal features Φ1 =Φ2 =Φ3 =Φ and akin to KPCA a supersymmetric compatibility

tensor C and positive superdiagonal regularization S . Then by Theorem 6.3.3

the dual optimization problem is

U1S = K (U3 ⊗U2) ,

U2S = K (U3 ⊗U1) ,

U3S = K (U2 ⊗U1) ,

where K = K(1) = K(2) :=K(3) and S(1) = S(2) = S(3) :=S by construction. Conse-

quently by the orthogonality of U1, U2 and U3 it follows that U1 = U2 = U3 :=U ,

resulting in U S = K (U ⊗U). Examples of kernel tensors that encode said higher-

order interactions are the polynomial and exponential kernels in Example 6.4.2

[35, 36].

6.5 RELATED WORK

As already mentioned, the development of a primal-dual formulation of PCA was

carried out by Suykens et al. [8], but the idea to kernelize the method is older and

generally attributed to Mika et al. [7].

The SVD was cast in the primal-dual framework by Suykens [9], who proposed

to kernelize the approach. This idea was recently further developed by Tao et al.

[10], who proposed to use the compatibility matrix to build asymmetric kernels

departing from standard symmetric and positive-definite kernels. Tao et al. [10]

also extended the Nyström method in order to efficiently approximate said asym-

metric kernels, enabling to fully exploit the computational advantages that stem

from the primal KSVD optimization problem. Chen et al. [39, 40] proposed to

decompose the self-attention kernel matrix in Transformer networks [41] using

the primal formulation of the KSVD. This enables to fully capture its asymmet-

ric nature in contrast with the existing alternatives, which consider only the row

or column-space and are therefore effectively discarding information. He et al.

[42] considered asymmetric kernels in the LS-SVM primal-dual formulation and

consider applications in the context of directed graphs, where asymmetry is nat-

urally present. He et al. [43] extended the celebrated Random Fourier Features

(RFF) [44] kernel approximation framework to handle asymmetric kernels.

6.6. CONCLUSIONS, FURTHER RESEARCH AND APPLICATIONS

6

135

The MLSVD and the related Tucker decomposition [45, 46], which relaxes the

orthogonality constraint on the factor matrices, has applications in signal and

image processing, computer vision, chemometrics, finance, human motion anal-

ysis, data mining, machine learning and deep learning. We redirect the interested

reader to the survey papers of Kolda and Bader [32], Cichocki et al. [34], Cichocki

et al. [47], and Panagakis et al. [48]. Kernelizing the MLSVD was attempted by Li,

Du, and Lin [49] and Zhao et al. [50] who proposed to map each unfolding of a

data tensor to the same feature space, whose left-singular vectors are the factor

matrices of the decomposition. The approach can be easily encompassed in Def-

inition 6.3.2, which is more general as it allows for asymmetry and permutational

variance by selecting the core tensor appropriately.

6.6 CONCLUSIONS, FURTHER RESEARCH AND

APPLICATIONS

In this paper we extend the Lanczos decomposition theorem to the tensor case,

enabling us to cast the MLSVD as a primal-dual optimization problem. This al-

lows for a straightforward nonlinear extension in terms of feature maps in the

primal, whose associated dual optimization problem is then the MLSVD of a ker-

nel tensor. Importantly, the presented optimization framework recovers as spe-

cial cases both SVD and PCA. Besides the nonlinear extension, the benefits of

having the MLSVD defined in terms of a primal and a dual optimization problem

are computational in nature. In particular, the practitioner can opt for solving

the cheapest optimization problem given the circumstances. The primal formu-

lation, as typically the case in kernel methods, is more convenient when deal-

ing with large sample sizes and relatively small features, while the dual allows to

tackle the case where the features are large w.r.t the number of samples, or even

infinite-dimensional.

In our opinion, further research is needed, specifically focusing on the theory,

analysis, and design of kernel functions with more than two vector inputs. This

research could explore the design of generally applicable kernel functions, such

as the e.g. the ubiquitous Gaussian kernel in the two input case, or be driven by

specific applications. An interesting research direction would then also consist

in investigating the possible decomposition or approximation of said kernels us-

ing feature maps and core tensors, in order to fully leverage the computational

advantages of the primal formulation. The proposed approach can in principle

be utilized as a nonlinear extension of MLSVD and thus be employed whenever its

6

136 6. A KERNELIZABLE PRIMAL-DUAL FORMULATION OF THE MLSVD

linear counterpart is used, which means e.g. for feature extraction, signal anal-

ysis, image processing and computer vision. An notable area of possible appli-

cation is deep learning, where the primal formulation of the MLSVD could be

applied to approximate nonlinear kernel tensors which often arise. Two exam-

ples are the activated convolution kernel in Convolutional Neural Network (CNN),

which thus far has been trained decomposed in Tucker form before being acti-

vated, or generalizations of the self-attention mechanism in Transformer having

multiple attention vectors instead of only queries, values and keys.

REFERENCES

[1] F. Wesel and K. Batselier. A Kernelizable Primal-Dual Formulation of the Multilinear

Singular Value Decomposition. Oct. 2024. arXiv: 2410.10504.

[2] B. E. Boser, I. M. Guyon, and V. N. Vapnik. “A Training Algorithm for Optimal Margin

Classifiers”. In: Proceedings of the Fifth Annual Workshop on Computational Learn-

ing Theory. COLT ’92. New York, NY, USA: Association for Computing Machinery,

July 1992, pp. 144–152.

[3] B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector Machines, Regu-

larization, Optimization, and Beyond. Adaptive Computation and Machine Learn-

ing. Cambridge, Mass: MIT Press, 2002.

[4] J. Suykens and J. Vandewalle. “Least Squares Support Vector Machine Classifiers”.

In: Neural Processing Letters 9.3 (June 1999), pp. 293–300.

[5] C. Saunders, A. Gammerman, and V. Vovk. “Ridge Regression Learning Algorithm

in Dual Variables”. In: Proceedings of the Fifteenth International Conference on Ma-

chine Learning. ICML ’98. San Francisco, CA, USA: Morgan Kaufmann Publishers

Inc., July 1998, pp. 515–521.

[6] V. Roth. “The Generalized LASSO”. In: IEEE Transactions on Neural Networks 15.1

(Jan. 2004), pp. 16–28.

[7] S. Mika, B. Schölkopf, A. Smola, K.-R. Müller, M. Scholz, and G. Rätsch. “Kernel PCA

and De-Noising in Feature Spaces”. In: Advances in Neural Information Processing

Systems. Vol. 11. MIT Press, 1998.

[8] J. Suykens, T. Van Gestel, J. Vandewalle, and B. De Moor. “A Support Vector Machine

Formulation to PCA Analysis and Its Kernel Version”. In: IEEE Transactions on Neu-

ral Networks 14.2 (Mar. 2003), pp. 447–450.

[9] J. A. K. Suykens. “SVD Revisited: A New Variational Principle, Compatible Feature

Maps and Nonlinear Extensions”. In: Applied and Computational Harmonic Analy-

sis 40.3 (May 2016), pp. 600–609.

[10] Q. Tao, F. Tonin, P. Patrinos, and J. A. K. Suykens. Nonlinear SVD with Asymmetric

Kernels: Feature Learning and Asymmetric Nyström Method. June 2023. arXiv: 2306.

07040 [cs].

[11] L. De Lathauwer, B. De Moor, and J. Vandewalle. “A Multilinear Singular Value De-

composition”. In: SIAM Journal on Matrix Analysis and Applications 21.4 (Jan. 2000),

pp. 1253–1278.

137

6

138 REFERENCES

[12] M. A. O. Vasilescu and D. Terzopoulos. “Multilinear Analysis of Image Ensembles:

TensorFaces”. In: Computer Vision — ECCV 2002. Ed. by A. Heyden, G. Sparr, M.

Nielsen, and P. Johansen. Berlin, Heidelberg: Springer, 2002, pp. 447–460.

[13] M. Vasilescu. “Human Motion Signatures: Analysis, Synthesis, Recognition”. In: 2002

International Conference on Pattern Recognition. Vol. 3. Aug. 2002, 456–460 vol.3.

[14] Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin. “Compression of Deep Con-

volutional Neural Networks for Fast and Low Power Mobile Applications”. In: 4th

International Conference on Learning Representations, ICLR 2016, San Juan, Puerto

Rico, May 2-4, 2016, Conference Track Proceedings. Ed. by Y. Bengio and Y. LeCun.

2016.

[15] A.-H. Phan, K. Sobolev, K. Sozykin, D. Ermilov, J. Gusak, P. Tichavský, V. Glukhov, I.

Oseledets, and A. Cichocki. “Stable Low-Rank Tensor Decomposition for Compres-

sion of Convolutional Neural Network”. In: Computer Vision – ECCV 2020. Ed. by

A. Vedaldi, H. Bischof, T. Brox, and J.-M. Frahm. Cham: Springer International Pub-

lishing, 2020, pp. 522–539.

[16] S. Jie and Z.-H. Deng. “FacT: Factor-Tuning for Lightweight Adaptation on Vision

Transformer”. In: Proceedings of the AAAI Conference on Artificial Intelligence 37.1

(June 2023), pp. 1060–1068.

[17] E. Zangrando, S. Schotthöfer, G. Ceruti, J. Kusch, and F. Tudisco. “Geometry-Aware

Training of Factorized Layers in Tensor Tucker Format”. In: Advances in Neural In-

formation Processing Systems 37 (Jan. 2025), pp. 129743–129773.

[18] M. Filipović and A. Jukić. “Tucker Factorization with Missing Data with Application

to Low-$$n$$-Rank Tensor Completion”. In: Multidimensional Systems and Signal

Processing 26.3 (July 2015), pp. 677–692.

[19] I. Balažević, C. Allen, and T. M. Hospedales. “TuckER: Tensor Factorization for Knowl-

edge Graph Completion”. In: Proceedings of the 2019 Conference on Empirical Meth-

ods in Natural Language Processing and the 9th International Joint Conference on

Natural Language Processing (EMNLP-IJCNLP). 2019, pp. 5184–5193. arXiv: 1901 .

09590 [cs].

[20] T. Wen, E. Chen, and Y. Chen. “Tensor-View Topological Graph Neural Network”.

In: Proceedings of The 27th International Conference on Artificial Intelligence and

Statistics. PMLR, Apr. 2024, pp. 4330–4338.

[21] N. Cohen, O. Sharir, and A. Shashua. “On the Expressive Power of Deep Learning: A

Tensor Analysis”. In: Conference on Learning Theory. PMLR, June 2016, pp. 698–728.

[22] P. Milanesi, H. Kadri, S. Ayache, and T. Artières. “Implicit Regularization in Deep

Tensor Factorization”. In: 2021 International Joint Conference on Neural Networks

(IJCNN). July 2021, pp. 1–8.

REFERENCES

6

139

[23] K. Hariz, H. Kadri, S. Ayache, M. Moakher, and T. Artières. “Implicit Regularization in

Deep Tucker Factorization: Low-Rankness via Structured Sparsity”. In: Proceedings

of The 27th International Conference on Artificial Intelligence and Statistics. PMLR,

Apr. 2024, pp. 2359–2367.

[24] O. A. Malik and S. Becker. “Low-Rank Tucker Decomposition of Large Tensors Us-

ing TensorSketch”. In: Advances in Neural Information Processing Systems. Vol. 31.

Curran Associates, Inc., 2018.

[25] A. Traore, M. Berar, and A. Rakotomamonjy. “Singleshot : A Scalable Tucker Tensor

Decomposition”. In: Advances in Neural Information Processing Systems. Vol. 32.

Curran Associates, Inc., 2019.

[26] K. Ghalamkari and M. Sugiyama. “Fast Tucker Rank Reduction for Non-Negative

Tensors Using Mean-Field Approximation”. In: Advances in Neural Information Pro-

cessing Systems. Vol. 34. Curran Associates, Inc., 2021, pp. 443–454.

[27] T. Heo and C. Bajaj. “Sample Efficient Learning of Factored Embeddings of Ten-

sor Fields”. In: Proceedings of The 27th International Conference on Artificial Intelli-

gence and Statistics. PMLR, Apr. 2024, pp. 4591–4599.

[28] J. Hood and A. J. Schein. “The AL0CORE Tensor Decomposition for Sparse Count

Data”. In: Proceedings of The 27th International Conference on Artificial Intelligence

and Statistics. PMLR, Apr. 2024, pp. 4654–4662.

[29] S. Fang, R. M. Kirby, and S. Zhe. “Bayesian Streaming Sparse Tucker Decomposi-

tion”. In: Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial

Intelligence. PMLR, Dec. 2021, pp. 558–567.

[30] S. Fang, A. Narayan, R. Kirby, and S. Zhe. “Bayesian Continuous-Time Tucker De-

composition”. In: Proceedings of the 39th International Conference on Machine Learn-

ing. PMLR, June 2022, pp. 6235–6245.

[31] C. Lanczos. “Linear Systems in Self-Adjoint Form”. In: The American Mathematical

Monthly (Nov. 1958).

[32] T. G. Kolda and B. W. Bader. “Tensor Decompositions and Applications”. In: SIAM

Review 51.3 (Aug. 2009), pp. 455–500.

[33] C. F. V. Loan. “The Ubiquitous Kronecker Product”. In: Journal of Computational

and Applied Mathematics. Numerical Analysis 2000. Vol. III: Linear Algebra 123.1

(Nov. 2000), pp. 85–100.

[34] A. Cichocki, N. Lee, I. Oseledets, A.-H. Phan, Q. Zhao, and D. P. Mandic. “Tensor

Networks for Dimensionality Reduction and Large-Scale Optimization: Part 1 Low-

Rank Tensor Decompositions”. In: Foundations and Trends® in Machine Learning

9.4-5 (2016), pp. 249–429.

[35] S. Salzo, L. Rosasco, and J. Suykens. “Solving Lp-Norm Regularization with Tensor

Kernels”. In: Proceedings of the Twenty-First International Conference on Artificial

Intelligence and Statistics. PMLR, Mar. 2018, pp. 1655–1663.

6

140 REFERENCES

[36] S. Salzo and J. A. K. Suykens. “Generalized Support Vector Regression: Duality and

Tensor-Kernel Representation”. In: Analysis and Applications 18.01 (Jan. 2020), pp. 149–

183.

[37] T. G. Kolda. “Orthogonal Tensor Decompositions”. In: SIAM Journal on Matrix Anal-

ysis and Applications 23.1 (Jan. 2001), pp. 243–255.

[38] M. Sørensen, L. D. Lathauwer, P. Comon, S. Icart, and L. Deneire. “Canonical Polyadic

Decomposition with a Columnwise Orthonormal Factor Matrix”. In: SIAM Journal

on Matrix Analysis and Applications 33.4 (Jan. 2012), pp. 1190–1213.

[39] Y. Chen, Q. Tao, F. Tonin, and J. Suykens. “Primal-Attention: Self-attention through

Asymmetric Kernel SVD in Primal Representation”. In: Advances in Neural Informa-

tion Processing Systems 36 (Dec. 2023), pp. 65088–65101.

[40] Y. Chen, Q. Tao, F. Tonin, and J. A. K. Suykens. Self-Attention through Kernel-Eigen

Pair Sparse Variational Gaussian Processes. May 2024. arXiv: 2402.01476 [cs, stat].

[41] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. ukasz

Kaiser, and I. Polosukhin. “Attention Is All You Need”. In: Advances in Neural In-

formation Processing Systems. Vol. 30. Curran Associates, Inc., 2017.

[42] M. He, F. He, L. Shi, X. Huang, and J. A. K. Suykens. “Learning With Asymmetric

Kernels: Least Squares and Feature Interpretation”. In: IEEE Transactions on Pattern

Analysis and Machine Intelligence 45.8 (Aug. 2023), pp. 10044–10054.

[43] M. He, F. He, F. Liu, and X. Huang. “Random Fourier Features for Asymmetric Ker-

nels”. In: Machine Learning (Sept. 2024).

[44] A. Rahimi and B. Recht. “Random Features for Large-Scale Kernel Machines”. In:

Proceedings of the 20th International Conference on Neural Information Processing

Systems. Curran Associates Inc., Dec. 2007, pp. 1177–1184.

[45] L. R. Tucker. “Implications of Factor Analysis of Three-Way Matrices for Measure-

ment of Change”. In: Problems in measuring change 15.122-137 (1963), p. 3.

[46] L. R. Tucker. “Some Mathematical Notes on Three-Mode Factor Analysis”. In: Psy-

chometrika 31.3 (Sept. 1966), pp. 279–311.

[47] A. Cichocki, A.-H. Phan, Q. Zhao, N. Lee, I. V. Oseledets, M. Sugiyama, and D. Mandic.

“Tensor Networks for Dimensionality Reduction and Large-Scale Optimizations. Part

2 Applications and Future Perspectives”. In: Foundations and Trends® in Machine

Learning 9.6 (2017), pp. 249–429. arXiv: 1708.09165.

[48] Y. Panagakis, J. Kossaifi, G. G. Chrysos, J. Oldfield, M. A. Nicolaou, A. Anandkumar,

and S. Zafeiriou. “Tensor Methods in Computer Vision and Deep Learning”. In: Pro-

ceedings of the IEEE 109.5 (May 2021), pp. 863–890.

[49] Y. Li, Y. Du, and X. Lin. “Kernel-Based Multifactor Analysis for Image Synthesis and

Recognition”. In: Tenth IEEE International Conference on Computer Vision (ICCV’05)

Volume 1. Vol. 1. Oct. 2005, 114–119 Vol. 1.

A. A PRIMAL-DUAL FORMULATION FOR THE MLSVD 141

[50] Q. Zhao, G. Zhou, T. Adali, L. Zhang, and A. Cichocki. “Kernelization of Tensor-

Based Models for Multiway Data Analysis: Processing of Multidimensional Struc-

tured Data”. In: IEEE Signal Processing Magazine 30.4 (July 2013), pp. 137–148.

A A PRIMAL-DUAL FORMULATION FOR THE MLSVD

For completeness we present the generalized Lanczos and primal MLSVD opti-

mization problem for any tensor of order D .

Theorem A.1 (Generalized Lanczos decomposition theorem). An arbitrary rank-

(R1,R2, . . . ,RD) tensor X ∈ R
N1×N2×···×ND can be written in MLSVD form, i.e. as in

Eq. (6.1) with core tensor S ∈R
R1×R2×···×RD and D semi-orthogonal factor matrices

Ud ∈R
Nd×Rd defined by the following set of equations

Ud S(d) = X(d) (UD ⊗UD−1 ⊗Ud+1 ⊗Ud−1 ⊗·· ·⊗U1) , (.14)

with the D additional constraint that S(d)S
T
(d)

are positive diagonal matrices.

Proof. The proof is divided in two steps, first we show that the D factor matrices

Ud are semi-orthogonal, second we show that indeed Eq. (.14) implies the MLSVD

i.e. Eq. (6.1). We begin by left-multiplying each side of Eq. (.14) respectively with

U
T
d

, resulting in equations of the form

U
T
d Ud S(d) =U

T
d X(d) (UD ⊗UD−1 ⊗Ud+1 ⊗Ud−1 ⊗·· ·⊗U1) , (.15)

By construction, the right-hand sides of Eq. (.15) are different unfoldings of the

same tensor D ∈R
R1×R2×···×RD for any choice of X and Ud . Vectorizing both sides

of the equation yields

(IRD ⊗ IRD−1 ⊗·· ·⊗U
T
d Ud ⊗·· ·⊗ IR1)vec(S) = vec(D) ,

Equating any two left-hand sides out of the
(D

2

)
pairs of equations results in U

T
d

Ud =

d (trivial solution), which we do not consider, or if U
T
d

Ud is full-rank and thus

invertible, and by from the mixed-product property, see Loan [33] the equality

holds if and only if (U T
d

Ud)−1
= IRd

. Repeating the argument with at least ⌈D
2
⌉

unique pairs out of the
(D

2

)
pairs of equations yields, apart from the trivial Ud = 0

solution,

U
T
d Ud = IRd

, (.16)

which implies that any Ud is semi-orthogonal. Right-multiplying both sides of

142 REFERENCES

Eq. (.14) by S
T
(d)

U
T
d

yields

Ud S(d)S
T
(d)U

T
d
= X(d) (UD ⊗UD−1 ⊗·· ·⊗Ud+1 ⊗Ud−1 ⊗·· ·U1)S

T
(d)U

T
d

. (.17)

The left-hand side is the eigendecomposition of the right-hand side of Eq. (.17)

due to the assumption that S(d)S
T
(d)

are positive diagonal matrices (eigenvalues)

and the above proof that Ud are semi-orthogonal matrices (eigenvectors). From

Eq. (.17) it follows that Ud is an orthogonal basis for the column space of X(d),

and likewise for the other unfoldings. We can therefore write

Ud S(d)S
T
(d)U

T
d
=Ud Rd (UD ⊗UD−1 ⊗·· ·⊗Ud+1 ⊗Ud−1 ⊗·· ·U1)S

T
(d)U

T
d

. (.18)

where Rd ∈R
Rd×ND ND−1···Nd+1Nd−1···N1 are general coefficient matrices. From Eq. (.18)

follows that

S(d) = Rd (UD ⊗UD−1 ⊗·· ·⊗Ud+1 ⊗Ud−1 ⊗·· ·U1) , (.19)

which by the semi-orthogonality of Ud is satisfied if and only if

Rd = S(d) (UD ⊗UD−1 ⊗·· ·⊗Ud+1 ⊗Ud−1 ⊗·· ·U1) , (.20)

Substitution of Eq. (.20) into X(d) =Ud Rd we conclude that

vec(X) = (UD ⊗UD−1 ⊗·· ·⊗U1)vec(S), which is the defining Eq. (6.1) of the MLSVD

as in Definition 6.2.1.

Definition A.2 (Primal MLSVD optimization problem). Given D feature matrices

Φ1 ∈R
N1×M1 ,Φ2 ∈R

N2×M2 , . . . ,ΦD ∈R
ND×MD , a compatibility tensor C ∈R

M1×M2×···×MD ,

and regularization parameters S ∈R
R1×R2×···×RD , we define the primal optimiza-

A. A PRIMAL-DUAL FORMULATION FOR THE MLSVD 143

tion problem as

max
W1,...,WD ,E1,...,ED

J (W1, . . . ,WD ,E1, . . . ,ED) :=

1

2

D∑

d=1

Tr
(

Ed (S(d)S
T
(d))

−1
E

T
d

)

− (D −1) vec(C)T (WD ⊗·· ·⊗W1) vec(S)

+

D −2

2
vec(C)T

(
Φ

T
DΦD ⊗·· ·⊗Φ

T
1Φ1

)
vec(C)

such that: E1 =Φ1 C(1) (WD ⊗·· ·⊗W3 ⊗W2) S
T
(1),

E2 =Φ2 C(2) (WD ⊗·· ·⊗W3 ⊗W1) S
T
(2),

...

ED =ΦD C(D) (WD−1 ⊗·· ·⊗W2 ⊗W1) S
T
(D).

Definition A.2 reduces to Definition 6.3.2 when D = 3.

Theorem A.3. The primal optimization problem of Definition A.2 is equivalent to

the MLSVD of the tensor K ∈C
N1×N2×···×ND . The tensor K is defined as

vec(K) := (ΦD ⊗·· ·⊗Φ2 ⊗Φ1) vec(C) . (.21)

Proof. The corresponding Lagrangian for the optimization problem in A.2 has

D Lagrange multiplier matrices U1, . . . ,UD . We write out the KKT conditions for

W1,E1 and U1, as the remaining conditions are similar.

ÇL

ÇW1
= 0 ⇐⇒ (D −1)C(1)(WD ⊗·· ·⊗W2)S

T
(1) =C(1)

(
WD ⊗·· ·⊗Φ

T
2U2 +·· ·+Φ

T
DUD ⊗·· ·⊗W2

)

︸ ︷︷ ︸
(D−1) terms

S
T
(1).

The KKT conditions for the remaining weight matrices will have similar form and

all equalities are trivially satisfied when Wd = 0 or Wd =Φ
T
d

Ud (1 ≤ d ≤ D). Setting

the partial derivative of the Lagrangian with respect to E1 to zero results in the

condition

ÇL

ÇE1
= 0 ⇐⇒ E1 =U1S(1)S

T
(1),

and likewise for the other error matrices. Substitution of W1 and E1 into the con-

F

144 REFERENCES

straint results in

U1S(1)S
T
(1) =Φ1 C(1) (WD ⊗·· ·⊗W3 ⊗W2) S

T
(1),

=Φ1 C(1)

(
Φ

T
D ⊗·· ·⊗Φ

T
2

)
(UD ⊗·· ·⊗U2)S

T
(1),

= K(1) (UD ⊗·· ·⊗U2)S
T
(1),

which is the first equation of the generalized Lanczos theorem. A similar con-

struction applies for the remaining equations.

Corollary A.4. The MLSVD solution of the dual problem in Theorem A.3 results

in a zero objective function (J = 0) in the primal optimization problem of Defini-

tion A.2.

Proof. Plugging in the KKT conditions for E1, . . . ,ED and W1, . . . ,WD into the pri-

mal objective function J results in

1

2

D∑

d=1

Tr
(

Ed (S(d)S
T
(d))

−1
E

T
d

)

− (D −1)vec(C)T (WD ⊗·· ·⊗W2 ⊗W1) vec(S)

+

(D −2)

2
vec(K)T vec(K)

=

1

2

D∑

d=1

Tr
(

Ud S(d)S
T
(d) U

T
d

)

− (D −1)vec(C)T
(
Φ

T
DUD ⊗·· ·⊗Φ

T
2U2 ⊗Φ

T
1U1

)
vec(S)

+

1

2
vec(K)T vec(K)

=

(
D

2
− (D −1)+

(D −2)

2

)

vec(K)T vec(K) = 0.

G
CONCLUSION

This thesis has made contributions to the understanding and application of Ten-

sor Networks (TNs) in the context of kernel machines. By exploring the interplay

between TNs and kernel machines, we have developed novel methodologies that

enhance the scalability and efficiency of kernel-based models, while also uncov-

ering theoretical connections to Gaussian Processes (GPs) and optimization.

The first major contribution of this work lies in demonstrating how TNs can

be leveraged to accelerate and scale kernel machines. By imposing low-rank

TN constraints on the tensorized model weights, we have shown that it is pos-

sible to learn kernel machines with linear complexity in the dimensionality of

the data while implicitly approximating kernel functions up to machine precision.

This was achieved through the exploration of Fourier features for the approxima-

tion of stationary product kernels in Chapter 2, Nyström approximations for the

approximation of arbitrary product kernels in Chapter 3, and quantized mod-

els in Chapter 4. The quantized TN-constrained models, in particular, offer a

compelling advantage by achieving higher Vapnik–Chervonenkis (VC)-dimension

bounds with fewer parameters, enabling faster learning without sacrificing any

model expressivity.

The second key contribution is the establishment of a theoretical connection

between TN-constrained kernel machines and GPs. In Chapter 5, we demon-

strated that under appropriate priors, CPD and Tensor Train (TT)-constrained mod-

els converge to GPs as the ranks of the TNs approach infinity. This result not only

provides a deeper understanding of the relationship between these models but

also offers insights into their generalization behavior, depending on the training

regime.

Finally, in Chapter 6, we characterized the MLSVD in terms of primal and dual

optimization problems. This formulation opens new avenues for kernelizing TNs

and paves the way for future applications in machine learning and data analysis.

145

G

146 G. CONCLUSION

In summary, this thesis has advanced the field by providing scalable and ef-

ficient methods for training kernel machines using TNs, uncovering theoretical

connections to GPs, and offering new perspectives on optimization problems in

tensor decompositions. These contributions not only enhance the practical util-

ity of kernel machines but also deepen our theoretical understanding of their un-

derlying structures.

G.1 FURTHER WORK

Several promising directions for future research emerge from this work, which

can further deepen the understanding and expand the applicability of TN-constrained

models.

One of the most compelling avenues for future research is the development

of probabilistic TN-constrained kernel machines and TN-constrained GPs. While

this thesis has established a theoretical connection between TN-constrained mod-

els and GPs in the infinite-rank limit, further research could focus on developing

different kinds of TN-based probabilistic models e.g. by approximating the full

or weight-space GP posterior using tools such as variational inference or Monte

Carlo Markov Chain (MCMC) in conjunction with the priors developed in this

thesis. Importantly, developing such probabilistic TN-constrained kernel ma-

chines could enable uncertainty quantification, which is critical for applications

in decision-making and risk-sensitive domains. Future work could also explore

the integration of hierarchical priors or non-Gaussian likelihoods to enhance the

flexibility and expressiveness of these models.

The scalability and efficiency of TN-constrained models, in particular when

quantized, make them particularly well-suited for applications where memory

and computational resources are limited. An example of such application is the

field of seizure detection, where models that can operate with reduced memory

and computational requirements are crucial for real-time processing on portable,

low-power devices. These devices, such as wearable EEG monitors, must effi-

ciently process large amounts of data without draining the battery or requiring

constant access to cloud-based resources. The reduced size and complexity of

quantized TN-constrained models make them an ideal candidate for deployment

in such resource-constrained environments, allowing for faster response times

and improved user experience without compromising accuracy. The early re-

search by De Rooij, Wesel, and Hunyadi [1] provides a strong foundation for fur-

ther development and optimization of such models for deployment in resource-

constrained environments. Future research should focus on identifying and de-

G.1. FURTHER WORK

G

147

veloping new applications where such simple yet powerful models are necessary.

For example, in edge computing, mobile devices, embedded systems, internet of

things devices, or real-time systems, the ability to deploy compact models with-

out sacrificing performance is crucial.

The primal-dual formulation of the MLSVD introduced in this thesis opens up

exciting possibilities for its application. Future work can focus on developing

optimization algorithms that leverage the primal-dual formulation of the MLSVD

allowing to fully reap the computational and storage benefits of the primal for-

mulation. Another logical line of research lies in embedding the primal formula-

tion of the MLSVD into deep learning architectures to approximate latent tensorial

structures within these models, similarly to what has been done with the SVD [2].

For instance, investigating how the MLSVD can be used to impose low-rank struc-

tures on the weights of deep neural networks could lead to more efficient training

and inference, while exploring its use for interpretability and compression could

reduce the memory and energy footprint of large-scale models.

Finally, further theoretical and algorithmic advancements are needed to fully

realize the potential of TN-constrained models. Key areas of focus include auto-

matic rank adaptation, where adaptive methods for selecting the ranks of TN-

constrained models could balance expressiveness and efficiency, scalable op-

timization, where designing algorithms for training TN-constrained models on

large-scale datasets could leverage distributed computing or stochastic optimiza-

tion techniques, and generalization bounds, where deriving tighter bounds com-

pared to the state-of-the-art ones by Khavari and Rabusseau [3] could lead to

better understanding of the learning capabilities and limitations of these mod-

els. In conclusion, the research presented in this thesis has opened up numerous

exciting directions for future work. By exploring these avenues, we can further

advance the field of TNs and kernel machines, enabling the development of more

efficient, interpretable, and powerful models for a wide range of applications.

REFERENCES

[1] S. J. De Rooij, F. Wesel, and B. Hunyadi. “Efficient Patient Fine-Tuned Seizure De-

tection with a Tensor Kernel Machine”. In: 2024 32nd European Signal Processing

Conference (EUSIPCO). IEEE, 2024, pp. 1372–1376.

[2] Y. Chen, Q. Tao, F. Tonin, and J. Suykens. “Primal-Attention: Self-attention through

Asymmetric Kernel SVD in Primal Representation”. In: Advances in Neural Informa-

tion Processing Systems 36 (Dec. 2023), pp. 65088–65101.

[3] B. Khavari and G. Rabusseau. “Lower and Upper Bounds on the Pseudo-Dimension

of Tensor Network Models”. In: Advances in Neural Information Processing Systems.

May 2021.

149

CURRICULUM VITÆ

Frederiek WESEL

2 August 1994 Born in Bordighera, Italy.

EDUCATION

2020–2025 PhD in Machine Learning

Delft University of Technology, Delft, The Netherlands

Thesis: Tensor-Based Kernel Methods

Promotors: Dr. ir. K. Batselier

Dr. B. Hunyadi

Prof. dr. ir. J.W. van Wingerden

2016–2019 Master of Science in Applied Mathematics

Delft University of Technology, Delft, The Netherlands

2013–2016 Bachelor of Science in Advanced Technology

University of Twente, Enschede, The Netherlands

2008–2013 Diploma di Superamento dell’Esame di Stato Conclusivo

Liceo Scientifico A. Aprosio, Ventimiglia, Italy

EXPERIENCE

2025–Present Senior Data Scientist at Equinor, Oslo, Norway

2023–2023 Visiting Researcher at Simula Research Laboratories, Oslo, Norway

2018–2019 Machine Learning Intern at ABN AMRO, Amsterdam, The Netherlands

2017–2018 Software Engineering Intern at DRG, Zoetermeer, The Netherlands

151

LIST OF PUBLICATIONS

In this thesis

1. F. Wesel and K. Batselier. “Large-Scale Learning with Fourier Features and Tensor

Decompositions”. In: Advances in Neural Information Processing Systems. Vol. 34.

Curran Associates, Inc., 2021, pp. 17543–17554

2. F. Wesel and K. Batselier. “Tensor-Based Kernel Machines with Structured Inducing

Points for Large and High-Dimensional Data”. In: Proceedings of The 26th Interna-

tional Conference on Artificial Intelligence and Statistics. PMLR, Apr. 2023, pp. 8308–

8320

3. F. Wesel and K. Batselier. “Quantized Fourier and Polynomial Features for More

Expressive Tensor Network Models”. In: Proceedings of The 27th International Con-

ference on Artificial Intelligence and Statistics. PMLR, Apr. 2024, pp. 1261–1269

4. F. Wesel and K. Batselier. A Kernelizable Primal-Dual Formulation of the Multilinear

Singular Value Decomposition. Oct. 2024. arXiv: 2410.10504

5. F. Wesel and K. Batselier. “Tensor Network-Constrained Kernel Machines as Gaus-

sian Processes”. In: Proceedings of The 28th International Conference on Artificial

Intelligence and Statistics. PMLR, Apr. 2025, pp. 2161–2169

Other publications

1. E. Memmel, C. Menzen, J. Schuurmans, F. Wesel, and K. Batselier. “Position: Tensor

Networks Are a Valuable Asset for Green AI”. in: Proceedings of the 41st Interna-

tional Conference on Machine Learning. PMLR, July 2024, pp. 35340–35353

2. F. M. Viset, A. Kullberg, F. Wesel, and A. Solin. “Exploiting Hankel-Toeplitz Struc-

tures for Fast Computation of Kernel Precision Matrices”. In: Trans. Mach. Learn.

Res. (Jan. 2024)

3. S. J. De Rooij, F. Wesel, and B. Hunyadi. “Efficient Patient Fine-Tuned Seizure De-

tection with a Tensor Kernel Machine”. In: 2024 32nd European Signal Processing

Conference (EUSIPCO). IEEE, 2024, pp. 1372–1376

153

