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SUMMARY

In an era where data-driven decision-making is becoming increasingly central
to societal progress, the ability to efficiently process and analyze vast amounts
of information is paramount. From healthcare and climate modeling to finan-
cial forecasting and autonomous systems, the demand for scalable and inter-
pretable machine learning models has never been greater. However, as the com-
plexity and dimensionality of data continue to grow, traditional machine learn-
ing approaches often struggle to keep pace. Kernel machines, a class of models
renowned for their theoretical elegance and practical effectiveness, are no excep-
tion. While they offer powerful tools for learning complex patterns, their compu-
tational and memory requirements often scale prohibitively with the dimension-
ality of the data, limiting their applicability to real-world problems. This chal-
lenge is particularly acute in domains where high-dimensional data is the norm,
such as medical imaging, genomics, and natural language processing.

At the heart of this issue lies the curse of dimensionality: as the number of fea-
tures or dimensions in the data increases, the computational resources required
to train and deploy kernel machines grow exponentially. This not only restricts
their use in resource-constrained environments but also hinders their adoption
in time-sensitive applications where rapid decision-making is critical. Moreover,
the interpretability of these models, essential for gaining trust and actionable in-
sights, often diminishes as their number of parameters grows. These limitations
underscore a need for innovative approaches that can enhance the scalability
and efficiency of kernel machines without compromising their predictive power.

This thesis addresses these challenges by exploring the intersection of Tensor
Networks (TNs) and kernel machines, two fields that have traditionally evolved in
parallel. Tensor networks, with their ability to efficiently represent high-dimensional
data through low-rank structures, offer a promising avenue for overcoming the
scalability limitations of kernel machines. By integrating the principles of TNs
into kernel-based learning, this thesis aims to unlock new possibilities for mod-
eling high-dimensional data while maintaining computational tractability and
interpretability which characterizes kernel machines.

The contributions of this thesis are organized around three central questions,
each addressing a critical aspect of the relationship between TNs and kernel ma-
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VIII SUMMARY

chines. First, we investigate how TNs can be used to accelerate and enhance
the scalability of kernel machines, while implicitly learning from a kernel func-
tion approximated to machine precision. Through a series of methodological
advancements, we demonstrate that imposing low-rank TN constraints on the
model weights can significantly reduce computational complexity while preserv-
ing the expressive power of kernel machines and enabling to learn from features
that approximate the kernel function up to machine precision for both stationary
and non-stationary kernels. Second, we explore the theoretical connections be-
tween TN-constrained kernel machines and Gaussian processes, shedding light
on the conditions under which these models converge and generalize. Finally,
we establish a novel optimization framework that characterizes a specific TN, the
Multilinear Singular Value Decomposition (MLSVD), in terms of primal and dual
problems, paving the way for new algorithmic developments and applications.

By exploring connections between TNs and kernel machines, this thesis not
only advances the theoretical foundations of machine learning but also provides
practical tools for addressing some of the most pressing challenges in data sci-
ence. The methodologies developed here have the potential to democratize ac-
cess to powerful machine learning models, enabling their use in a wider range
of applications and ultimately contributing to societal progress in fields where
data-driven insights are critical.



SAMENVATTING

In een tijdperk waarin datagestuurde besluitvorming steeds centraler staat in de
maatschappelijke vooruitgang, is het vermogen om grote hoeveelheden infor-
matie efficiént te verwerken en analyseren van cruciaal belang. Van gezondhei-
dszorg en klimaatmodellering tot financiéle voorspellingen en autonome syste-
men, de vraag naar schaalbare en interpreteerbare machine learning-modellen is
nog nooit zo groot geweest. Echter, naarmate de complexiteit en dimensionaliteit
van data blijven toenemen, hebben traditionele machine learning-benaderingen
vaak moeite om bij te blijven. Kernel machines, een klasse van modellen die
bekend staan om hun theoretische elegantie en praktische effectiviteit, vormen
hierop geen uitzondering. Hoewel ze krachtige tools bieden voor het leren van
complexe patronen, schalen hun reken- en geheugeneisen vaak onhoudbaar met
de dimensionaliteit van de data, wat hun toepasbaarheid op real-world prob-
lemen beperkt. Deze uitdaging is vooral acuut in domeinen waar hoogdimen-
sionale data de norm is, zoals medische beeldvorming, genomica en natuurlijke
taalverwerking.

De kern van dit probleem ligt in de zogenaamde vloek van dimensionaliteit:
naarmate het aantal kenmerken of dimensies in de data toeneemt, groeien de
benodigde rekenbronnen om kernel machines te trainen en in te zetten exponen-
tieel. Dit beperkt niet alleen hun gebruik in omgevingen met beperkte midde-
len, maar belemmert ook hun adoptie in tijdgevoelige toepassingen waar snelle
besluitvorming cruciaal is. Bovendien neemt de interpreteerbaarheid van deze
modellen, essentieel voor het verkrijgen van vertrouwen en bruikbare inzichten,
vaak af naarmate hun complexiteit toeneemt. Deze beperkingen onderstrepen
een dringende maatschappelijke behoefte aan innovatieve benaderingen die de
schaalbaarheid, efficiéntie en interpreteerbaarheid van kernel machines kunnen
verbeteren zonder in te leveren op hun voorspellende kracht.

Deze scriptie gaat deze uitdagingen aan door het snijvlak van Tensor Networks
(TNs) en kernel machines te verkennen, twee velden die traditioneel parallel zijn
geévolueerd. Tensornetwerken, met hun vermogen om hoogdimensionale data
efficiént weer te geven via laag-rang structuren, bieden een veelbelovende weg
om de schaalbaarheidsbeperkingen van kernel machines te overwinnen. Door
de principes van TNs te integreren in kernel-gebaseerd leren, streven we ernaar
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X SAMENVATTING

nieuwe mogelijkheden te ontsluiten voor het modelleren van hoogdimensionale
data, terwijl we rekenefficiéntie en interpreteerbaarheid behouden.

De bijdragen van deze scriptie zijn georganiseerd rond drie centrale vragen,
elk gericht op een kritisch aspect van de relatie tussen TNs en kernel machines.
Ten eerste onderzoeken we hoe TNs kunnen worden gebruikt om kernel ma-
chines te versnellen en hun schaalbaarheid te verbeteren, terwijl ze impliciet
leren van een kernelfunctie die tot machineprecisie wordt benaderd. Door een
reeks methodologische vooruitgangen tonen we aan dat het opleggen van laag-
rang TN-beperkingen aan de modelgewichten de rekencomplexiteit aanzienlijk
kan verminderen, terwijl de expressieve kracht van kernel machines behouden
blijft en het mogelijk wordt om te leren van kenmerken die de kernelfunctie be-
naderen tot op machineprecisie, zowel voor stationaire als niet-stationaire ker-
nels. Ten tweede verkennen we de theoretische verbanden tussen TN-beperkte
kernel machines en Gaussische processen, waardoor we inzicht krijgen in de
voorwaarden waaronder deze modellen convergeren en generaliseren. Tot slot
stellen we een nieuw optimalisatiekader op dat een specifiek TN, de Multilinear
Singular Value Decomposition (MLSVD), karakteriseert in termen van primale en
duale problemen, wat de weg vrijmaakt voor nieuwe algoritmische ontwikkelin-
gen en toepassingen.

Door de verbanden tussen TNs en kernel machines te verkennen, draagt deze
scriptie niet alleen bij aan de theoretische fundamenten van machine learning,
maar biedt het ook praktische tools om enkele van de meest urgente uitdagin-
gen in de datawetenschap aan te pakken. De hier ontwikkelde methodologieén
hebben het potentieel om toegang tot krachtige machine learning-modellen te
democratiseren, waardoor hun gebruik in een breder scala aan toepassingen mo-
gelijk wordt en uiteindelijk bijdraagt aan maatschappelijke vooruitgang in domeinen
waar datagestuurde inzichten cruciaal zijn.



INTRODUCTION

In an era where data-driven decision-making is becoming increasingly central
to societal progress, the ability to efficiently process and analyze vast amounts
of information is paramount [1]. From healthcare [2] and climate modeling [3]
to financial forecasting [4], the demand for scalable and interpretable machine
learning models has never been greater. These models are not only tools for
scientific discovery but also enablers of transformative technologies that impact
everyday life. For instance, in healthcare, they facilitate early disease detection
and personalized treatment plans by analyzing complex medical data. In climate
science, they help predict extreme weather events and inform mitigation strate-
gies by processing vast amounts of environmental data. In finance, they enable
real-time risk assessment and fraud detection by learning from high-dimensional
transactional data. Similarly, in autonomous systems, they underpin perception
and decision-making capabilities by interpreting sensory inputs in real time.
However, as the complexity and dimensionality of data continue to grow, tra-
ditional machine learning approaches often struggle to keep pace. Kernel ma-
chines, a class of models renowned for their theoretical elegance and practical
effectiveness, are no exception. While they offer powerful tools for learning com-
plex patterns, their computational and memory requirements often scale pro-
hibitively with the dimensionality of the data, limiting their applicability to real-
world problems. This challenge is particularly acute in domains where high-
dimensional data is the norm, such as medical imaging, genomics, and natu-
ral language processing. For example, in medical imaging, the analysis of high-
resolution scans requires models that can handle millions of voxels efficiently [5].
In genomics, the interpretation of gene expression data involves thousands of
features, necessitating models that can scale without sacrificing accuracy [6]. In
natural language processing, the representation of text data in high-dimensional
embedding spaces demands models that can operate effectively within these spaces



2 1. INTRODUCTION

[71.

At the heart of this issue lies the curse of dimensionality: as the number of fea-
tures or dimensions in the data increases, the computational resources required
to train and deploy kernel machines scale unfavourably [8, 9]. From a dual op-
timization perspective, said scaling is at least quadratic with the number of dat-
apoints. This scaling arises because kernel methods typically rely on pairwise
comparisons between data points, a fundamental operation that underlies their
ability to capture complex relationships in the data. Specifically, kernel methods
compute similarity measures between all pairs of data points, resulting in a ker-
nel matrix whose size scales quadratically with the number of datapoints. This
kernel matrix must be stored and manipulated, leading to significant computa-
tional and memory costs that quickly become intractable for large, possibly high-
dimensional datasets. This quadratic scaling makes kernel methods impractical
for modern datasets, which often consist of millions or billions of datapoints.

Moreover, the challenges of kernel methods extend beyond the kernel matrix
itself. In order to break down the aforementioned quadratic complexity from
quadratic to linear in the number of datapoints, a common strategy is to approx-
imate the kernel function in terms of basis functions [10, 11]. A large number of
basis functions are often required to approximate the kernel function effectively,
particularly for high-dimensional input data. In many cases, the number of basis
functions required to bound the approximation error grows exponentially with
the dimensionality of the input data. [12, 13]. This exponential growth in the
number of basis functions translates directly into an exponential increase in the
number of model parameters, making it infeasible to handle data that is even
moderately high-dimensional. As a result, while kernel methods are theoretically
powerful and capable of learning highly complex functions, their practical appli-
cation is limited by these scalability issues.

These limitations not only restrict the use of kernel machines in resource-constrained

environments, such as edge computing devices or low-power systems, but also
hinders their adoption in time-sensitive applications where rapid decision-making
is critical. In fields like autonomous driving or real-time fraud detection, de-
lays caused by computationally intensive models can have severe consequences,
ranging from safety risks to financial losses. These limitations underscore a need
for innovative approaches that can enhance the scalability and efficiency of ker-
nel machines without compromising their predictive power and explainability.
This thesis addresses these challenges by exploring the intersection of Tensor
Networks (TNs) and kernel machines, two fields that have traditionally evolved
in parallel. TNs, with their ability to efficiently represent high-dimensional data
through low-rank structures, offer a promising avenue for overcoming the scal-
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ability limitations of kernel machines [14]. By integrating the principles of TNs
into kernel-based learning, we aim to unlock new possibilities for modeling non-
linear high-dimensional and highly-sampled data while maintaining computa-
tional tractability. The methodologies developed here have the potential to de-
mocratize access to powerful machine learning models, enabling their use in a
wider range of applications and ultimately contributing to societal progress in
fields where data-driven insights are critical.

The remainder of this introduction are structured as follows. In Section 1.1
we briefly introduce the main concepts and notations regarding tensors adopted
throughout the remainder of the thesis. In Section 1.2 we introduce the funda-
mentals regarding TNs, while in Section 1.3 we touch on the fundamental themes
concerning kernel machines. Finally, in Section 1.4 we describe the layout of the
rest of this thesis.

1.1 NOTATION AND TENSORS

A tensor of order D is an array with entries indexed with D indices. Types of ten-
sors that are possibly familiar to the reader are tensors of order zero (scalars),
tensors of order one (vectors), and tensors of order 2 (matrices). Henceforth the
word tensors will generally refer to tensors of order higher than two. Throughout
this thesis, tensors are represented using uppercase bold italics, e.g. #', matrices
with uppercase bold letters, e.g. W, and vectors with lowercase bold letters, e.g.
w. Scalars are represented by lowercase letters, e.g. w, unless they denote the up-
per limit of an index, in which case they are uppercase. Element my, my,..., mp
of a tensor # € CM1*Mz2xxMb of grder D is denoted as Wy, m,,..m,- Vectoriza-
tion, i.e. the process of converting a tensor into a vector, is achieved by flattening
the tensor along a specified order of its indices. For a tensor # € CMi*Mzx-xMp_
its vectorized form is denoted as vec (¥#) € CM1Mz"Mp  gy1ch that

vecH ) m = Wy, my,...mp»

with m=my + Zgzz(md -1) szl M. Likewise, its inverse, the tensorization op-
erator ten (-, My, Ms, ..., Mp) : CM1Mz-Mp _, cMixMx..Mp ig defined such that

ten(w, My, Ma,..., MD) m,,my, . mp = Wm-

For simplicity, in the rest of the thesis it will be denoted in short form as ten () un-
less otherwise necessary. The mode-d unfolding of a tensor # € CM1*Mzx-xMp
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is denoted as W(g), and is defined such that

Zten(w)ml,mg,‘..,mD- (11)

W(d) Mg, mMiniz---mp

In the following, the left Kronecker product between two matrices W; € CM1*M2
and W, € CM*M2 js denoted with ® and defined such that

me WZ)mlflhm2ﬂ2 = Wimy,my W2ny,np- (1.2)

1.2 TENSOR NETWORKS

Tensor Networks (TNs) or Tensor Decompositions (TDs) extend the concept of rank
from matrices to tensors, also known as higher-order arrays. Any matrix W €
RMi*M2 can be decomposed as

w=w,Ww,, (1.3)
where W; € RM*R and W, € RM2*R and R is the matrix rank, upper bounded by
R <min(M;, M»). (1.4)

An important class of matrix decompositions are the so-called rank-revealing de-
compositions, which as their name suggests, decompose a matrix in terms of
other matrices which allow to infer the rank by inspection. The most well-known
one is the Singular Value Decomposition (SVD).

Definition 1.2.1 (SVD [15]). A matrix W € CM1*M2 hag a rank-R svD if

R

Wmy,my = Z Wimy,r W2my,r Sr»
r=1

where W, € CM1*R gnd W, € CM2*R gych that WITWI = WZTWZ = Iy are matrices
of singular vectors and s € RR, is the vector of singular values.

In tensors, there is not one unique concept of tensor rank. It is in fact possible
to decompose a tensor in multiple cores using a different approaches, which in
turn define their own notion of rank. Some of these decompositions are rank-
revealing, others are not. We will here briefly review the most common TNs,
which will be of use in the rest of this manuscript.
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CANONICAL POLYADIC DECOMPOSITION

The Canonical Polyadic Decomposition (CPD), also known as CANonical DECOM-
Position (CANDECOMP) or PARAllel FACtor (PARAFAC) analysis, was independently
introduced as a method to factorize a tensor into a sum of component rank-1 ten-
sors, gaining prominence as a a way to uncover unique hidden factors in multi-
way data, becoming foundational in tensor decomposition methods. The defini-
tion of the CPD is provided below.

Definition 1.2.2 (CPD [16]). A D-dimensional tensor # € CMi*MaxxMp Qg g
rank-R cpD if

o

R
Wimy,my,...mp = Z Wdmg,r Sr-
r=1

d=1

The cores of this particular network are D factor matrices W; € CMa*R and the
vector s € R¥ typically contains the norms of the columns of the factor matrices.
The storage complexity P = RZ?II M, of arank-R cPD is therefore G (DMR),
where M = max(Mi, Ms,..., Mp).

Compared to the SvD, the orthogonality constraint is absent. Notably, not all
tensor admit a CPD [17, Section 3.3], and determining the CPD rank is a Nondeter-
ministic Polynomial-hard (NP-HARD) problem [18]. The cpPD is however unique
under mild conditions (Krushkal conditions) [19]. The first applications of the
CPD are historically rooted in psychometrics and chemometrics. More recent
fields of application are signal processing (source separation, multichannel data
analysis), spectroscopy, image compression, recommendation systems, compres-
sion of Deep Neural Networks (DNNs), and others. We redirect the interested
reader in legacy applications to the comprehensive survey by Kolda and Bader
[20]. More recent applications can be found in the survey by Panagakis et al. [21].

TENSOR TRAIN DECOMPOSITION

The Tensor Train (TT) decomposition can be traced back to concepts developed
by White [22], particularly the Matrix Product State (MPS) in quantum physics,
which were introduced as a way to represent quantum states efficiently in high-
dimensional spaces. The idea of representing multi-dimensional data using low-
rank tensor factorizations was formalized as the TT decomposition, building on
previous tensor decomposition methods but optimizing for high-dimensional
data by expressing tensors as a sequence of smaller, lower-dimensional tensors.
This reinvention bridged a gap between quantum physics representations and
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numerical methods for high-dimensional data. We provide the definition of the
TT decomposition below.

Definition 1.2.3 (TT [23]). A D-dimensional tensor # € CM1*Mz2xxMp aqmjts a
rank-(Rl =1,Ry,...,Rp,Rp+1:=R)) TT if

R R Rg

D
Wmy,my,...mp = Z Z Z H Warg,mg,rge -

ri=1lro=1 rp=1ld=1

The cores of a TT are the D 3-dimensional tensors # ; € CRa*Ma*Ra+1 The case
R; > 1isalso called a Tensor Ring (TR) [24]. The values Ry, ..., Rp are called the TT
ranks and are upper bounded by R; < min (Hg;{ Mp,l'[f,’= 4+1 Mp). The storage
complexity P=Y2_| MyR;Rq.1 of a TT is then G (DMR?),
where M = max(M;, Ma,..., Mp).

Unlike the cpD, the TT decomposition is not unique under trivial rescaling,
meaning that the CPD might be a more suitable choice in certain circumstances,
e.g. in unsupervised learning. Applications of the TT decomposition are data
compression [25], deep learning [26, 27], signal processing [28], scientific com-
puting [29], multivariate data analysis [30], and recommendation systems [31].
The interested reader is redirected to the monograph by Cichocki et al. [32] sur-
vey by Panagakis et al. [21].

TUCKER DECOMPOSITION

The Tucker decomposition is a higher-order generalization of the svD for tensors,
where a tensor is factored into a core tensor multiplied by matrices along each
mode.

Definition 1.2.4 (Tucker Decomposition [33, 34]). A D-dimensional tensor # €
CMi*MoxxMp admits a rank-(Ry, Ry, ..., Rp) Tucker decomposition if

R R Rq

D
Wmy,my,...mp = Z Z Z H Wamg,rg Sri,r2,.tp-

r1:1r2:1 rD:Id:1

The cores of a Tucker decompositions are the D factor matrices W, € CMa*Ra
and the core tensor & € RV Rex*Rp  The values (Ry, Ry, ..., Rp) are called the

Tucker ranks and are upper bounded by R; < min (Md,]'[z;i M,y ]'[g:d+1 Mp).

The storage complexity P = ZdDzl MgR; +[14=1 R4 of a Tucker decomposition is
then O(RP).
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An important type of Tucker decomposition is the Multilinear Singular Value

Decomposition (MLSVD). The MLSVD encompasses two ulterior constraints, namely
the semi-orthogonality of the factor matrices, i.e. W; W, = I, and the all-orthogonality
of the core, i.e. S(4) Sy is a positive diagonal matrix with non-increasing en-
tries. Due to the semi-orthogonality of the factor matrices, it is hence sometimes
regarded as a generalization of Principal Component Analysis (PCA) to tensors.
Unlike the cpPD, determining the Tucker decomposition ranks of a tensor and car-
rying out its decompositions are operations that can be accomplished in polyno-
mial time e.g. using MLSVD algorithm [35]. Example applications are chemomet-
rics [36], signal processing [28] and deep learning [21]. As previously the case, the
interested reader is redirected to the surveys by Kolda and Bader [20] and Pana-
gakis et al. [21].

A TN is underparametrized if P < ]'[dD:1 My, i.e. it can represent a tensor with
fewer parameters than the number of entries of the tensor. Other TNs are the hier-
archical hierarchical Tucker [37, 38] decomposition, block-term decompositions
[39, 40], Projected Entangled Pair States (PEPS) [41] and Multi-scale Entanglement
Renormalization Ansatz (MERA) [42].

1.3 KERNEL MACHINES

Supervised learning is one of the main paradigms in Machine Learning (ML). In
its most standard setting, supervised learning is characterized by the presence
of a labeled dataset {(x;, yn)lryzl}, which consists of N i.d.d. inputs-output pairs,
where x,, € RP are the inputs and y,, € R are the outputs. The learning goal is to
find a model f(-, w) : RP — R, typically parameterized in terms of of weights w €
RP, which describes the relationship between inputs and outputs and enables to
make prediction on unseen inputs.

Training a model consists then in finding a model f (-, w*) such that the input-
output relationship is best described according to a measure of loss. One com-
mon approach to do so is by performing Regularized Loss Minimization (RLM),
i.e. seeking a set of weights which minimizes the regularized loss

N
w” :=argmin ) £(f (%), yn) + 1 (w). (1.5)
w =

n=1

Here 7(-,-) : RxR — R, is a measure of loss, sometimes called loss function which
penalizes models that deviate from the data, and r(-) : R” — Ris an explicit regu-
larization term, which penalizes the model complexity. For context, examples of
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model parametrization are Feed-Forward Neural Network (FNN), Convolutional
Neural Network (CNN) or Support Vector Machine (sVvM), while examples of reg-
ularization are lasso, ridge or elastic net. Other common optimization strategies
are Empirical Risk Minimization (ERM), Structural Risk Minimization (SRM).

1.3.1 LINEAR MODELS

As their names suggests, linear models model the relationship between the in-
puts and outputs as linear in both the data and the model weights

flx,w)=<(x,w). (1.6)

Linear models are foundational in both statistical learning and machine learn-
ing, due to their simplicity and interpretability. They assume that the relationship
between the inputs and the outputs is linear, which can be particularly useful in
situations where the underlying process governing the data is indeed linear, or
when the goal is to provide an interpretable approximation of a more complex
system. Notably, the computational cost of evaluating Eq. (1.6) and its gradient is
of G(D), i.e. the scaling is linear in the dimensionality of the input feature and of
model parameters. Examples of linear models which solve Eq. (1.5) with differ-
ent loss functions are Least-Squares Support Vector Machine (LS-SVM) [43], Ridge
Regression (RR) [44], Lasso Regression (LR) [45], and others such as linear discrim-
inant analysis (LDA) and Poisson regression [9].

1.3.2 KERNEL MACHINES

Kernel machines provide a straightforward strategy for linear models to handle
nonlinear data by mapping the inputs into a typically higher-dimensional space
using a nonlinear feature map ¢(-) : R® — RM

flx,w) =(px),w), (1.7)

where w € RM are the model weights. Arguably the most common choices of fea-
tures are polynomials or Fourier features, as they guarantee that kernel machines
can approximate any nonlinear function if the number of basis function is high
enough [46]. The computational cost associated with computing Eq. (1.7) and its
gradient is of G (M), i.e. linear with the number of features. Importantly, placing
anormal prior on the weights w ~ A4(0, A) yields the weight-space or parametric
formulation of Gaussian Processes (GPs) [11]. A GP is a normal distribution over
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a class of functions, parameterized in terms of a mean and covariance (kernel)
function.

1.3.3 TENSOR-NETWORK CONSTRAINED KERNEL MACHINES

TNs-constrained kernel machines, as the name suggests, add an additional con-
straint to Eq. (1.7) which forces the model weights to be a vectorized TN of low
rank, and considers features which have Kronecker product structure. The re-
sulting optimization problem is then

N
w” :=argmin ) £({1(xX) @ @2(x) ® -+ @ (x), w),y,) + r(w). (1.8)
w n=1
subject to: TN-rank (ten (w)) =r, (1.9

where r here indicates the vector containing the additional hyperparameters which
are the ranks of the TN, and each ¢,(-) : RP — RM4 maps the inputs or a subset
of the inputs to a higher space. Said models were first considered by Wahls et al.
[47] and Stoudenmire and Schwab [48] (TT and Fourier features), Chen et al. [49]
and Novikov, Oseledets, and Trofimov [50] (TT and polynomials). Said models
have the advantage of being able to learn from a large Hqul M, number of fea-
tures, with a restricted number of model parameters, which is fully determined
by the choice of TN and of TN rank. Additionally, said models have been shown to
posses some degree of regularization due to the imposed low-rank structure, of-
ten achieving better generalization than kernel machines without the additional
TN constraint [47, 49, 50].

1.3.4 PRIMAL-DUAL OPTIMIZATION AND KERNELIZATION

Training a kernel machine in a supervised learning setting amounts typically to
solve Eq. (1.5), which is also called the primal optimization. Due to the i.i.d.
assumption, training with a stochastic first-order gradient-based method has a
computational cost equal to the number of model parameters, i.e. ©(P), which is
independent of the number of inputs and outputs in the training set. If the loss
function and regularization term are convex, a global optimum can be found,
possibly closed form, e.g. if the loss function is the sum of squares and with lasso
or ridge regularization. Alternatively, one can solve the associated dual optimiza-
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tion problem, which requires to compute the inner products
k(x,x,):={p(x),(x,)), (1.10)

for all inputs in the training set. This requires a computational cost of at least
O(N), i.e. which is linear and fixed in terms of the size of the training set, render-
ing the dual optimization problem only advantageous if N < M. Importantly, it
is not necessary to compute the inner products in Eq. (1.10) explicitly as long as
we can compute the kernel function k(-,-) directly. This is the key idea behind the
kernel trick, which allows us to implicitly map the data into a high-dimensional
space without ever explicitly calculating the feature mapping ¢(-). As aresult, we
can perform optimization in the dual space without having to deal with the com-
putational burden of working with the potentially infinite-dimensional feature
space.

1.4 CONTRIBUTIONS OF THIS THESIS

In this thesis, we broadly explore the relation between TNs and kernel machines,
i.e. the models in Eq. (1.7). In particular we investigate:

How can tensor networks be used to accelerate and enhance the scalability
of kernel machines?
We explore this idea in Chapters 2 to 4, where we train kernel machines
with the additional constraint that the tensorized model weights are a low-
rank TN (Eq. (1.8)).

More specifically, in Chapter 2 we consider models defined by weighted
products of Fourier features, which are commonly used in literature to ap-
proximate stationary kernel functions. These approximations can be very
accurate, but require an exponential number of basis functions in the di-
mensionality of the data. By casting the problem as a TN-constraint kernel
machine, i.e. by introducing the additional constraint that the tensorized
model weights are a low-rank TN, we enable learning kernel machines with
linear complexity in the dimensionality of the data from stationary kernel
functions which are implicitly approximated up to machine precision.

In Chapter 3, we explore the same idea in the context of Nystrém or induc-
ing point-based approximations of the kernel function, which can be re-
garded as choosing the kernel function itself as a basis function. In particu-
lar, we notice that when considering product kernels, placing the inducing
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points on a Cartesian grid yields features which have Kronecker product
structure. By imposing a low-rank TN constraint on the model weights, we
can develop kernel machines that achieve linear complexity with respect
to the dimensionality of the data. These models effectively learn from a
product kernel function that is approximated to machine precision.

In Chapter 4, we observe that some Fourier and polynomial basis func-
tions contain further latent product structure, i.e. can be quantized (not to
be confused with the practice of training models with lower machine pre-
cision), or in other words, tensorized along a number of fictitious modes.
As a consequence, the model parameters in the associated kernel machine
can be quantized as well. Thanks to low-rank TN constraint imposed on the
weight tensor characterized by an artificially increased number of modes,
the resulting quantized model is able to describe more patterns for the
same number of parameters. We show that, for the same number of model
parameters, the resulting quantized TN-constrained kernel machines have
a higher bound on the Vapnik-Chervonenkis (vC)-dimension (the largest
set of points that can be classified in all possible ways) as opposed to their
non-quantized counterparts, at no additional computational cost, while
learning from identical features. In simpler terms, this means that quan-
tized models can learn from the exact same functions of non-quantized
models and build a model which generalizes better with fewer model pa-
rameters and thus faster.

In which ways do the resulting tensor network-constrained kernel machines
relate to Gaussian processes?
In Chapter 5, we establish a formal connection between TN-constrained
kernel machines and GPs in a novel way, distinct from previous approaches
that treated the TN as a constraint on the Gp. We observe that the TN-
constrained models converge to a GP when the limit of the ranks tends
to infinity and when an appropriate prior is specified on their cores. A
cpD-constrained model converges faster to the Gp than a TT-constrained
model. The proposed priors, unlike the ones that are implicitly considered
in Chapters 2 to 4, are less strict, and allow the model to better generalize
or overfit more depending on the training regime the model is in, providing
an alternative regularization strategy to the interested practitioner.

Is it possible to characterize tensor networks in terms of a primal and dual
optimization problem?
In Chapter 6, we establish a primal optimization problem whose associated
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dual optimization problem is a Tucker decomposition (Definition 1.2.4)
with the additional constraints of semi-orthogonality on the factor matri-
ces, and all-orthogonality of the core tensors, in other words, the MLSVD. In
the spirit of kernel machines, said primal optimization problem describes
the MLSVD parametrically in terms of model weights, paving the way for
more computationally and memory efficient implementations and for the
kernelization of the decomposition. We also discuss several lines of appli-
cation.

Other Contributions Additional contributions that are not integral to this the-
sis can be found listed in the List of Publications.
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LARGE-SCALE LEARNING WITH FOURIER
FEATURES AND TENSOR DECOMPOSITIONS

Random Fourier features provide a way to tackle large-scale machine learning
problems with kernel methods. Their slow Monte Carlo convergence rate has mo-
tivated the research of deterministic Fourier features whose approximation error
can decrease exponentially in the number of basis functions. However, due to
their tensor product extension to multiple dimensions, these methods suffer heav-
ily from the curse of dimensionality, limiting their applicability to one, two or
three-dimensional scenarios. In our approach we overcome said curse of dimen-
sionality by exploiting the tensor product structure of deterministic Fourier fea-
tures, which enables us to represent the model parameters as a low-rank tensor
decomposition. We derive a monotonically converging block coordinate descent
algorithm with linear complexity in both the sample size and the dimensionality
of the inputs for a regularized squared loss function, allowing to learn a parsimo-
nious model in decomposed form using deterministic Fourier features. We demon-
strate by means of numerical experiments how our low-rank tensor approach ob-
tains the same performance of the corresponding nonparametric model, consis-
tently outperforming random Fourier features.

This chapter has been published as:

E Wesel and K. Batselier. “Large-Scale Learning with Fourier Features and Tensor Decompositions”.
In: Advances in Neural Information Processing Systems. Vol. 34. Curran Associates, Inc., 2021,
pp. 17543-17554
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2.1 INTRODUCTION

Kernel methods such as Support Vector Machines (svMs) and Gaussian Processes
(Gps) are commonly used to tackle problems such as classification, regression
and dimensionality reduction. Since they can be universal function approxima-
tors [2], kernel methods have received renewed attention in the last few years
and have shown equivalent or superior performance to Neural Networks (NNs) [3,
4, 5]. The main idea behind kernel methods is to lift the data into a higher-
dimensional (or even infinite-dimensional) Reproducing Kernel Hilbert Space by
means of a feature map ¢ (-) : R — RM. Considering then the pairwise similar-
ities between the mapped data allows to tackle problems which are highly non-
linear in the original sample space. This can be done equivalently by considering
a kernel function k (-,) : RM x RM — R such that (¢ (x), ¢ (x')) = k (x, x') and per-
forming thus said mapping implicitly. Although effective at learning nonlinear
patterns in the data, kernel methods are known to scale poorly as the number
of data points N increases. For example, when considering Kernel Ridge Regres-
sion (KRR), Gaussian Process Regression (GPR) [6] or Least-Squares Support Vec-
tor Machine (LS-SVM) [7, 8] training usually consist in inverting the Gram ma-
trix kij = k(x,-,xj), which encodes the pairwise relation between all data. As
a consequence, the associated storage complexity is O (Nz) and the computa-
tional complexity is @ (N?), rendering these methods unfeasible for large data.
In order to lower the computational cost, data-dependent methods approximate
the kernel function by means of M data-dependent basis functions. Due to their
reduced-rank formulation, the computational complexity is reduced to 6 (NM?)
for N > M. However, e.g. for the Nystrom method [9], the convergence rate
is only of @ (\/LM) (10] limiting its effectiveness. As the name suggests, data-
independent methods approximate the kernel function by M data-independent
basis functions. A good example is the celebrated Random Fourier Features (RFF)
approach by Rahimi and Recht [11], where the authors propose for stationary
kernels a low-dimensional random mapping z (-) : R® — RM such that

k(x,x")=(@x),p(x") = {zx),z(x)). 2.1

As in the case of data-dependent methods, the reduced-rank formulation allows
for a computational complexity of & (NM?) for N > M. Probabilistic error bounds

on the approximation are provided which result in a convergence rate of © (ﬁ),
which is again the Monte Carlo rate.

Improvements in this sense were achieved by considering deterministic fea-



2.2. RELATED WORK 19

tures resulting from dense quadrature methods [12, 13, 14] and kernel eigen-
functions [15, 16]. These methods are able to achieve exponentially decreasing
upper bounds on uniform convergence guarantees when certain conditions are
met. However, for a D-dimensional input space these methods take the tensor
product of D vectors, resulting in an exponential increase in the number of basis
functions and thus of model weights, effectively limiting the applicability of de-
terministic features to low-dimensional data. In this work we consider determin-
istic features. In order to take advantage of the tensor product structure which
arises when mapping the inputs to #, we represent the weights as a low-rank
tensor. This allows us to learn the inter-modal relations in the tensor product of
(low-dimensional) Hilbert spaces, avoiding the exponential computational and
storage complexities in D. In this way we are able to obtain a linear computa-
tional complexity in both the number of samples and in the input dimension
during training, without having to resort to the use of sparse grids or additive
modeling of kernels.

The main contribution of this work is in lifting the curse of dimensionality af-
fecting deterministic Fourier features by modeling the weights as a low-rank ten-
sor. This enables the efficient solution of large-scale and high-dimensional ker-
nel learning problems. We derive an iterative algorithm under the exemplifying
case of regularized squared loss and test it on regression and classification prob-
lems.

2.2 RELATED WORK

Fourier Features (FFs) are a collection of data-independent methods that lever-
age Bochner’s theorem [17] from harmonic analysis to approximate stationary
kernels by numerical integration of their spectral density p (-):

,y Stationarity

)" e ) L [ @) exp (i (x-x)) dwo = (200, 2(+)).
(2.2)

Rahimi and Recht [11] proposed to approximate the integral by Monte Carlo inte-
gration i.e. by drawing M random frequencies w ~ p (-). In their work they show
how the method converges uniformly at the Monte Carlo rate. See [18] for an
overview of RFF. In order to achieve faster convergence and a lower sample com-
plexity, a multitude of approaches that rely on deterministic numerical quadra-
ture of the Fourier integral were developed. These methods generally consider
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product kernels whose spectral density factors in the frequency domain, which
enables in turn to factor the Fourier integral. The resulting deterministic Fourier
features are then the tensor product of D one-dimensional deterministic fea-
tures.

For example, in [12] the authors give an analysis of the sample complexity
of features resulting from dense Gaussian Quadrature (GQ). In [13] the authors
present a similar quadrature approach for kernels whose spectral density factors
over the dimensions of the inputs. They provide an explicit construction for their
Quadrature Fourier Featuresrelying on a dense Cartesian grid, and note that their
method, as well as GQ, can attain exponentially decreasing uniform convergence
bounds in the total number of basis functions per dimensions M [13, Theorem 1].
To avoid the curse of dimensionality, they make use of additive modeling of ker-
nels. Variational Fourier Features (VFF) [15] are derived probabilistically in a one-
dimensional setting for Matérn kernels by projecting a GP onto a set of Fourier
basis. An extension to multiple dimensions when considering product kernels is
then achieved by taking the tensor product of the one-dimensional features, in-
curring however again in exponentially rising computational costs in D. In what
they call Hilbert-space Gaussian Process (HGP) [16] the authors diagonalize sta-
tionary kernels in terms of the eigenvalues and eigenfunctions of the Laplace op-
erator with Dirichlet boundary conditions. Due to the multiplicative structure
of the eigenfunctions of the Laplace operator, the complexity of the basis func-
tion increases exponentially in D when one considers product kernels. Like with
other deterministic approximations, bounds on the uniform convergence error
which decrease exponentially in M can be achieved [16, Theorem 8].

Tensor decompositions have been used extensively in machine learning in or-
der to benefit from structure in data [19], in particular to obtain an efficient rep-
resentation of the model parameters. In the context of GPR, the tensor prod-
uct structure which arises when the inputs are located on a Cartesian grid have
been exploited to speedup inference [20]. In their variational inference frame-
work, [21] proposed to parameterize the posterior mean of a GP by means of
a tensor decomposition in order to exploit the tensor product structure which
arises when interpolating the kernel function. In the context of NNs, [22] pro-
posed to represent the weights in deep NNs as a tensor decomposition to speed
up training. A similar approach was carried out in case of recurrent NNs [23] [24].

Tensor decompositions have also been used to learn from simple features. In [25]
multivariate functions are learned from a Fourier basis, which corresponds to
assuming a uniform spectral density in Eq. (2.2). Motivated by spin vectors in
quantum mechanics, [26] consider trigonometric feature maps which they ar-
gue induce uninformative kernels. On a similar note, [27] and [28] leverage the
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tensor product structure of polynomial mappings to induce a polynomial kernel
and consider model parameters in decomposed form. While these existing ap-
proaches are able to overcome the curse of dimensionality affecting tensor prod-
uct feature maps by modeling the parameter tensor as a tensor network, they
consider simple and empirical feature maps which induce uninformative ker-
nels. In the following section we show how deterministic Fourier features can
be used for supervised learning in both large and high-dimensional scenarios by
assuming that the model weights are a low-rank tensor, thereby linking tensor
decompositions with stationary product kernels.

2.3 LEARNING WITH FOURIER FEATURES

2.3.1 THE MODEL

In this article we assume models of the form
fx,w)=(px),w). (2.3)

Here x € R is the input vector, ¢ (-) : RP — RM is a feature map, w € RM are the
model weights, y € R is the corresponding available observation. Learning such
a kernelized model consists in finding as set of weights w such that

N
Y O(f % w), yn) +r(w), 2.4)
n=1

is minimized. Here, ¢(-,-) : R xR — R, is a symmetric and positive loss func-
tion and r(w) is a regularization term. A variety of primal machine learning for-
mulations arise when considering different combinations of loss functions and
regularization terms. For example, considering a ridge regularization term and
squared loss leads to KRR [8], while considering hinge loss leads to svM [29], and
so on. Furthermore, applying the kernel trick when considering ¢ (:) recovers
the nonparametric formulation which, depending on the choice of kernel, en-
ables to perform inference using infinitely many basis functions with a computa-
tional complexity of @(N®). Considering instead a low-dimensional finite map-
ping z () : RP — RM such as RFF or the Nystrém method leads a primal approach
and to computational savings with a computational complexity of @ (N M2) for
N > M. However, as already discussed, these low-dimensional random map-
pings converge at the slow Monte Carlo rate, motivating our approach.
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In order to approximate the kernel function with faster and possibly exponen-
tial convergence, we consider deterministic, finite-dimensional features which
are the tensor product of D vectors. For a given D-dimensional input point x we
define the deterministic feature mapping z () : RP — RM1Mz2--Mb 5

z2(x) =21 (x1)® 22 (x2):--®2p (Xp), (2.5)

where z; is a deterministic mapping applied to the d-th dimension. The dimen-
sion of the feature space is ]'[g= | My. It is easy to verify by applying the kernel
trick that the features of Eq. (2.5) yield product kernels. The mapping z(-) en-
compasses for instance the mappings derived by quadrature [12, 13, 14] and by
projection [15, 16]. Note that these mappings cover many popular kernels such as
the Gaussian and Matérn kernels. To give a concrete example, in the framework
of A. Solin and S. Sarkké [16, Equation 60], for input data centered in a hyperbox
[-U;,U;] x -+ x [-Up, Up], the Gaussian kernel is approximated by means of D
tensor products of weighted sinusoidal basis functions with frequencies lying on
a harmonic scale such that:

1 (ﬂid) . (m’d(xd+Ud)
— p| | sin| —————
VUg \2Uq 2Uy

Here p (-) is the spectral density of the Gaussian kernel with one-dimensional in-

puts, which is known in closed-form [6, page 83]. This deterministic mapping
then approximates the Gaussian kernel function [16, Equation 59] such that

Zd(xd)l-dZ ), ig=12,...,My,. (2.6)

k(x,x") = (z(x),z(x")) = (ten (2(x)) , ten (z(x))),

and converges uniformly with exponentially decreasing bounds [16, Theorem 8].
We therefore use z(-) instead of ¢(-) in Eq. (2.3) to obtain

f(x, w) =(z(x), w) = {ten(z(x)) ,ten (w))x. 2.7

Learning the exponential number of model parameters ten (w) in Eq. (2.7) under
a hinge loss leads to svM, while considering a squared loss leads to the primal
formulation of KRR, which we will consider as exemplifying case from here on:

N
argmin ) _ ((ten(z(x,)),ten (w))p — yn)z + )Lllten(w)llf:. (2.8)
w n=1

Since the number of elements M in ten (w) and ten (z) grows exponentially in D,
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this primal approach is advantageous compared to the nonparametric dual ap-
proach only if ]'[gz1 M, < N, limiting it to low-dimensional inputs. In order to lift
this curse of dimensionality, we propose to represent and to learn ten (w) directly
as a low-rank tensor decomposition. A low-rank tensor decomposition allows us
to exploit redundancies in ten (w) in order to obtain a parsimonious model with
a storage complexity that scales linearly in both M and D. The low-rank struc-
ture will, as explicitly shown in the experiments, act as a form of regularization
by limiting the total number of degrees of freedom of the model.

2.3.2 LOW-RANK TENSOR DECOMPOSITIONS

Tensor Networks (TNs) can be seen as generalizations of the Singular Value De-
composition (SVD) of a matrix to tensors [30]. Three common tensor decompo-
sitions are the Tucker decomposition [31, 32], the Tensor Train (TT) decomposi-
tion [33] and the Canonical Polyadic Decomposition (CPD) [34, 35], where each of
them encompasses different properties of the svD. In this subsection we briefly
discuss these three decompositions and list both their advantages and disadvan-
tages for modeling ten (w) in Eq. (2.8). For a detailed exposition on tensor de-
compositions we refer the reader to [36] and the references therein. An important
property of tensor decompositions is that they can always be written linearly in
their components, which implies that applying a block coordinate descent algo-
rithm to solve Eq. (2.8) results in a series of linear least-squares problems.

Arank-R cPD of # consists of D factor matrices W, € RMa*R and &7 e RR*Rx-xR
is a superdiagonal core tensor, whose entries typically scale the columns of the
factor matrices up to unit norm.

vec(#)=W1 oW, ®---® Wp)vec(F).

Note that the entries of the vec (%) vector were absorbed in one of the factor
matrices when writing the CPD as a sum of R terms. The cpD has been shown,
in contrast to matrix factorizations, to be unique under mild conditions [37].
The storage complexity comes mainly from the D factor matrices and is there-
fore G(RMD). The Tucker decomposition generalizes the CPD in two ways. First,
the Khatri-Rao product is replaced with a Kronecker product. The vec () vec-
tor has to grow in length accordingly from R to RP. Second, the R-dimension
of each of the factor matrices is allowed to vary, resulting in a multi-linear rank
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(RI)RZr---,RD):
w=WeW,®---9 Wp)s.

The Tucker decomposition is inherently non-unique and its storage complexity
0 (RP) is dominated by the s vector, which limits its use to low-dimensional input
data. For this reason we do not consider the Tucker decomposition any further
in this article.

The TT decomposition consists of D third-order tensors # ; € RRa*M*Ra+1 gyuch
that

Ry Rp+1

Wiyip-ip = Z Z Wiriivr, " " WDrpiprps: - 2.9)
n=l rpn=1

The auxiliary dimensions Rj, Ry,...,Rp+1 are called the TT-ranks. In order to
ensure that the right-hand side of Eq. (2.9) is a scalar, the boundary condition
Ry = Rp4+1 = 1is enforced. The TT decomposition is, just like the Tucker decom-
position, non-unique and its storage complexity R>MD is due to the D tensor
components # ¥ . Considering their storage complexity, both the cpD and TT
decomposition are viable candidates to replace # in Eq. (2.8). The cpD-rank R
and TT-ranks Ry, ..., Rp are additional hyperparameters, which favors the CPD in
practice. For the TT, one could choose R, = R3 = -+ = Rp to reduce the number
of additional hyperparameters but this constraint turns out in practice to lead
to suboptimal results. For these reasons we limit the discussion of the learning
algorithm to the CPD case.

2.3.3 TENSOR LEARNING WITH FOURIER FEATURES

We now wish to minimize the standard regularized squared loss function as in Eq. (2.8)

with the additional constraint that the weight tensor has a rank-R CPD structure:

N
argmin ) _ ((ten(z(x)),ten (w))y — yn)2 +)L||ten(w)||§, (2.10)
w n=1
subject to: cpPD-rank(ten(w)) = R. (2.11)

Note that if R equals the true cpD-rank of the underlying weight tensor then the
exact solution of Eq. (2.8) would be obtained. In practice a low-rank solution
for ten (w) achieves a sufficiently complex decision boundary that is practically
indistinguishable from the full-rank solution, as is demonstrated in the experi-
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ments. Imposing the rank-R reduces the number of unknowns from M” to RMD
and allows the application of a block coordinate descent algorithm (also known
as alternating linear scheme), which is shown to converge monotonically [38, 39].
Each of the factor matrices Wy is optimized in an iterative fashion while keeping
the others fixed. Such a factor matrix update is obtained by solving a linear least-
squares problem with MR unknowns. In what follows we derive the linear prob-
lem for the d-th factor matrix W;;. The data-fitting term (ten (z(x)), ten (w))r can
be rewritten linearly in terms of the unknown factor matrix as

R
(ten (z(x)), ten (w))p = (ten (21 ®zz---®zD),ten(Z W, ®W, ® @ wm))
r=1 F

Mg R M M
= Z Z Zdmy Z Wimy,r@lm """ Z WDmp,r @RDmp | Wdmyr
mg=1lr=1 i1=1 mp=1
T T T
= (Zd ® (Zl Wyoe---0zp WD)) vec (W)
=(ga(x),vec(Wy))g. (2.12)

where g, (%) := 24 ® (21T W) ©--- @ zp T Wp). Similarly, for the regularization term:

R R
|Iten (w)|[% = (ten(z Wi, ®Wr, ® ® wDr),ten(Z w,® wzp®-~®pr)>
F

r=1 p=1
Mg R R M, Mp
= Z Z Z wdmd,r( Z Wimy,r Wimy,p Z WDmp,r meD,p) Wdmy,p
mg=1r=1p=1 my;=1 mp=1
Mg R R

mz 1 ;1;1 wdmd,r (WITWI ©:-0 WEWD)r'p wdmd,p
q=1r=1p=

=vec (W) (In, ® Hy) vec(Wy). (2.13)
Here Hy = (WiTWy 0---0 W, TW)).

Substitution of the expressions Eq. (2.12) and Eq. (2.13) into Eq. (2.10) leads to a
linear least-squares problem for vec (Wy):

N
argmin ) (g4 (xn),vec(Wy))p + Avec (W) (In, ® Hd)Tvec (Wy). (2.14)
vec(Wy) n=1

Its unique solution can be computed exactly in an efficient manner by solving
the normal equations, requiring NM?R? + M>R3 operations. Since we are solv-
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ing a non-convex optimization problem that consists of a series of convex and
exactly solvable sub-problems, our algorithm is monotonically decreasing, and,
although it is not guaranteed to converge to the global optimum, it is the stan-
dard choice when dealing with tensor decompositions [30, 38]. The total com-
putational complexity of the algorithm when N > MR is then G (N DM?R?), ren-
dering it suitable for problems which are large in both N and D, provided that R
and M are small. The necessary memory is equal to RMD + 2R?> M? + 2RM (stor-
ing the weight tensor # in decomposed form, the rank-RM Gram matrix and
regularization matrix, the transformed responses and the solution of the linear
system), leading to a storage complexity of @ (NR? M?) for RM > D.

When learning, the selection of A and of the kernel-related hyperparameters
can be carried out by standard methods such as cross-validation. The choice of
M and the additional hyperparameter R which we introduce are directly linked
with the available computational budget. One should in fact choose M so that the
model has access to a sufficiently complex set of basis functions to learn from. In
practice we notice that for our choices of kernel function hyperparameters, at
most M = 40 basis functions per dimension suffice. R can then be fixed accord-
ingly in order to match the computational budget at hand. As we will show in the
next section, learning is possible with small values of M and R.

2.4 NUMERICAL EXPERIMENTS

We implemented our Tensor-Kernel Ridge Regression (T-KRR) algorithm in Math-
works MATLAB 2021a (Update 1) [40] and tested it on several regression and
classification problems. Our implementation can be freely downloaded from
https://github.com/fwesel/T-KRR and allows reproduction of all experiments in
this section. In our implementation we avoid constructing g, (-) and H,; from
scratch at every iteration by updating their components iteratively. With the ex-
ception of the first experiment 2.4.1, we further speedup our implementation
by considering only the diagonal of the regularization term H,;. All experiments
were run on a Dell Inc. Latitude 7410 laptop with 16 GB of RAM and an Intel Core
i7-10610U CPU running at 1.80 GHz. In all our experiments the Gaussian kernel
k (x,x") = exp (~Ilx-ll3/212) was approximated by considering the HGP [16] map-
ping of Eq. (2.6). In all experiments inputs were scaled to lie in a D-dimensional
unit hypercube. When dealing with regression, the responses were standardized
around the mean, while when considering binary classification inference was
done by looking at the sign of the model response (LS-svM [7]). One sweep of
our T-KRR algorithm is defined as updating factor matrices in the order 1 — D
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and then back from D — 1. All initial factor matrices were initialized with stan-
dard normal numbers and normalized by dividing all entries with their Frobe-
nius norm. For all experiments the number of sweeps of T-KRR algorithm are
set to 10. In the following three experiments it is shown how our proposed T-KRR
algorithm is stable and recovers the full KRR estimate in case of low number of fre-
quencies M and low rank R, consistently outperforming RFE. Finally, our model
exhibits very competitive performance on large-scale problems when compared
with other kernel methods.

2.4.1 BANANA CLASSIFICATION

The banana dataset is a two-dimensional classification problem [41] consisting
of N =5300 datapoints. Since the data is two-dimensional, we consider M = 12
frequencies per dimension, which enables us to compare T-KRR with HGP. Fur-
thermore since for tensors of order two (i.e. matrices) the cpPD-rank is the ma-
trix rank, we can deduce that our approach should recover the underlying HGP
method with R = M = 12. In this example we fix the kernel hyperparameters of
our method and of the HGP to [ = /2 and A = 10~° for visualization purposes. In
Figure 2.1 we plot the decision boundary of T-kRR (full line) and of the associ-
ated HGP (dashed line). We can see that already when R = 6 the learned decision
boundary is indistinguishable to the one of HGP, meaning that in this example
it is possible to obtain a low-rank representation of the model weights. From
a computational point of view, we solve a series of linear systems with MR un-
knowns instead of MP. However due to the low-dimensionality of the dataset, the
computational savings per iteration are very modest, i.e. for R =6 and M = 12, we
solve per iteration a linear system with 72 unknowns as opposed to the one-time
solve of a linear system with 144 unknowns as in case of HGP. As we show in Sub-
section 2.4.2, the linear computational complexity in D of our algorithm results
in ever-increasing performance benefits as the dimensionality of the problem be-
comes larger, where it becomes impossible to consider a full weight tensor.

2.4.2 MODEL PERFORMANCE WITH BASELINE

We consider five University of California, Irvine (UCl) [42] datasets in order to
compare the performance of our model with RFF and the GPR/KRR baseline. For
each dataset, we consider 90% of the data for training and the remaining 10% for
testing. In particular, in all regression datasets, we first obtain an estimate of the
lengthscale of the Gaussian kernel / and regularization term A by log-marginal
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(@R=2 (b)R=4 (0R=6 dR=M=12

Figure 2.1.: Classification boundary of the two-dimensional banana dataset for increasing
cpD-ranks. In the last plot the chosen cPD-rank matches the true matrix rank.
The dashed line is the HGP, while the full line is T-KRR.

likelihood optimization over the whole training set using the GPLM toolbox [43].
We subsequently train GPR/KRR, RFF and our method with the estimated hyper-
parameter. In case of classification, we choose the lengthscale [ to be the sample
mean of the sample standard deviation of our data (which is the default choice
in the Matlab Machine Learning Toolbox and scikit-learn [44]) and A = 1075, We
repeat this procedure ten times over different random splits and report the sam-
ple mean and sample standard deviation of the predictive Mean Squared Error
(MsE) and the misclassification rate for regression and classification respectively.
In order to test the approximation capabilities of our approach, we set M and R
such that MR <« N in order to benefit from computational gains. Furthermore,
we note that due to the curse of dimensionality it is not possible to compare our
approach with RFF while considering the same total number of basis functions
M = MP. Hence we select My = MR such that the computational complexity of
both methods is similar. Table 2.1 shows the MSE for different ucI datasets. We
see that our approach comes close to the performance of full KRR and outper-
forms RFF on all datasets when considering the same number of model parame-
ters. This is because our approach considers implicitly MP frequencies to learn
a low-rank parsimonious model which is fully described by MRD parameters,
as opposed to RFF where the number of frequencies is the same as the number
of model weights. Similarly to what is reported in [45, Figure 2] we observe lower
performance of RFF on the Adult dataset than reported in [11]. Figure 2.2 plots the
monotonically decreasing loss function as well as the corresponding misclassifi-
cation rate while training with T-KRR on the Spambase dataset. After four sweeps
the misclassification rate has converged. Since T-KRR is able to obtain similar per-
formance as the KRR baseline on a range of small datasets, we proceed to tackle a
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large-scale regression problem.
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Figure 2.2.: Normalized loss and misclassification rate while training on the Spambase

dataset.
Dataset N | D M R RFF T-KRR KRR
Yacht 308 6 10 25 0.0021+0.0018 0.0009+0.0006 0.0007 +0.0004
Energy 768 9 20 10 0.0275+0.0075 0.0200+0.0066  0.0200 +0.0087
Airfoil 1503 5 20 10 0.2180+0.0336 0.1679+0.0258 0.1587 +0.0232
Spambase 4601 57 40 10 0.3620+0.0188 0.0935+0.0095 0.0909 +0.0115
Adult 45222 96 40 10 0.3976+0.0056 0.1596 +0.0046 N/A

Table 2.1.: Predictive MSE (regression) and misclassification rate (classification) with one
standard deviation for RFF, T-KRR and KRR on different ucCI datasets.

2.4.3 LARGE-SCALE EXPERIMENT

In order to highlight the ability of our method to deal with large data we consider
the Airline dataset. The Airline dataset [15, 46] is a large-scale regression prob-
lem originally considered in [46] which is often used to compare state-of-the-art
GPR approximations due to its large size and its non-stationary features. The goal
is in fact to predict the delay of a flight given eight features, which are the age
of the airplane, route distance, airtime, departure time, arrival time, day of the
week, day of the month, and month. We follow the same exact preprocessing
steps as in the experiments in [15], [16] and [47], which consider subsets of data
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of size N = 10000, 100000,1000000,5929413, each chosen uniformly at random.
Training the model is then accomplished with 2/3N datapoints, with the remain-
ing portion reserved for testing. The entire procedure is then repeated 10 times
with random initialization in order to obtain a sample mean and sample stan-
dard deviation estimate of the MSE. Following exactly the approach in HGP [16],
we consider M = 40 basis functions per dimension, with the crucial difference
that T-KRR approximates a standard product Gaussian kernel, as opposed to an
additive model. As was the case in the previous section for classification, we se-
lect the lengthscale of the kernel as the mean of the standard deviations of the
eight features and choose Ay = 100/N for the different splits, where the depen-
dency on N is suggested by standard learning theory. We then train four distinct
models for R = 5,10,15,20. Table 2.2 compares T-KRR with the best performing
models found in the literature, which all (except for GPR) rely on low-rank approx-
imation of the kernel function. The T-KRR method is able to recover the baseline
GPR performance already with R = 5 and remarkably outperform all other ap-
proaches although we choose the hyperparameters naively and consider equal
lengthscales [ for all dimensions. Interestingly, a higher choice of R does result
in better performance in all cases except for N = 10000, where model perfor-
mance very much depends on the random split (note that we consider different
splits for each experiment). The Stochastic Variational Inference Gaussian Process
(SVIGP) [46] achieves comparable results to T-KRR, indicating that a performance
gain is possible from product kernels. The difficulty with SviGP is however that
the kernel function is interpolated locally at M nodes in a data-dependent fash-
ion, requiring an increasing amount of interpolation nodes to cover the whole
domain to allow for good generalization. In contrast, T-KRR considers an expo-
nentially large amount of basis functions in the frequency domain, and learns
an efficient representation of the model weights. In light of the performance of
the additive HGP and additive VFF models, we expect similar performance when
considering other feature maps which induce stationary kernels. When consid-
ering the whole dataset, training our model with R =5 takes 1565 + 1 seconds on
a laptop, while for R = 20 it takes 7141 + 245 seconds. Reported training times
of sviGP indicate 18360 + 360 seconds [15] on a cluster. Variational Inducing
Spherical Harmonics (VISH) scales very favorably in terms of time, but since it is
a data-independent method, we expect the predictive performance to be inferior
for the same number of parameters. Since the computational complexity of our
algorithm is dominated by matrix-matrix multiplications, we expect significant
speedups when relying on GPU computations.
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N 10000 100000 1000000 5929413

T-KRR (R =5) 0.91+£0.10 0.82+£0.03 0.80+0.02 0.800+0.008
T-KRR (R =10) 0.89£0.05 0.80£0.05 0.79+£0.02 0.785+0.009
T-KRR (R =15) 0.90+£0.07 0.80+£0.04 0.78+0.02 0.773+0.007
T-KRR (R =20) 0.97+£0.15 0.78+£0.04 0.77+£0.01 0.763+0.007

Additive-HGP [16] 0.97+0.14 0.80+0.06 0.83+0.02 0.827+0.005
Additive-VFF [15] 0.89+0.15 0.82+0.05 0.83+0.01 0.827+0.004

SVIGP [46] 0.89£0.16 0.79+£0.05 0.79+£0.01 0.791£0.005
VISH [47] 0.90£0.16 0.81+£0.05 0.83+0.03 0.834+0.055
GPR [6] 0.89+0.16 N/A N/A N/A
Additive-GPR [48] 0.89+0.16 N/A N/A N/A

Table 2.2.: Predictive MSE with one standard deviation for T-KRR.

2.5 CONCLUSION

In this work a framework to perform large-scale supervised learning with tensor
decompositions which leverages the tensor product structure of deterministic
Fourier features was introduced. Concretely, a monotonically decreasing learn-
ing algorithm with linear complexity in both sample size and dimensionality was
derived. This algorithm leverages the efficient format of the CPD in combination
with exponentially fast converging FFs which allow to implicitly approximate sta-
tionary product kernels up to machine precision. Numerical experiments show
how the performance of the baseline KRR is recovered with a very limited number
of parameters. The proposed method can handle problems which are both large
in the number of samples as well as in their dimensionality, effectively enabling
large-scale supervised learning with stationary product kernels. The biggest lim-
itation of the current approach is that it is does not allow for uncertainty quan-
tification, which motivates further work in that direction.
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TENSOR-BASED KERNEL MACHINES WITH
STRUCTURED INDUCING POINTS FOR LARGE
AND HIGH-DIMENSIONAL DATA

Kernel machines are one of the most studied family of methods in machine learn-

ing. In the exact setting, training requires to instantiate the kernel matrix, thereby
prohibiting their application to large-sampled data. One popular kernel approxi-

mation strategy which allows to tackle large-sampled data consists in interpolat-

ing product kernels on a set of grid-structured inducing points. However, since the
number of model parameters increases exponentially with the dimensionality of
the data, these methods are limited to small-dimensional datasets. In this work we
lift this limitation entirely by placing inducing points on a grid and constraining
the primal weights to be a low-rank Canonical Polyadic Decomposition (CPD). We
derive a block coordinate descent algorithm that efficiently exploits grid-structured
inducing points. The computational complexity of the algorithm scales linearly
both in the number of samples and in the dimensionality of the data for any prod-

uct kernel. We demonstrate the performance of our algorithm on large-scale and
high-dimensional data, achieving state-of-the art results on a laptop computer.

Our results show that grid-structured approaches can work in higher-dimensional
problems.

This chapter has been published as:

E Wesel and K. Batselier. “Tensor-Based Kernel Machines with Structured Inducing Points for Large
and High-Dimensional Data”. In: Proceedings of The 26th International Conference on Artificial Intel-
ligence and Statistics. PMLR, Apr. 2023, pp. 8308-8320
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3.1 INTRODUCTION

Kernel machines, such as Support Vector Machines (svMms) [2] and Gaussian Pro-
cesses (GPs) [3] are a family of machine learning methods that handle inference of
nonlinear functions by lifting the data into a high and possibly infinite-dimensional
feature space and performing linear inference therein. Because of their elegant
formulation, their connection with reproducing kernel Hilbert spaces and the
guarantees which stem from their convex optimization setting, they have be-
come one of the most widely studied machine learning paradigms. Furthermore,
kernel machines are known for their connections with neural networks [4, 5, 6]
and for the fact that they can be universal function approximators for a suitable
choice of kernel [7].

The main limitation of kernel machines is that training involves instantiating
the kernel matrix which encodes the similarities between all mapped data. This
results in a cost of at least @ (N?), limiting their applicability to small datasets. To
obviate this problem, a number of low-rank approaches based on random fea-
tures [8, 9] and inducing points [10, 11, 12, 13, 14, 15, 16] have been developed.
Broadly speaking, these methods seek a rank-M « N approximation of the ker-
nel function, which enables faster inference at cost of @(INM?). However, this
scaling forces the modeler to trade-off accuracy of the kernel approximation with
the ability to process large-scale data.

A popular family of approaches that is based on the Nystrém approximation of
kernel functions is Structured Kernel Interpolation (sx1) [17, 18, 19, 20, 21]. SKI-
methods do not sacrifice accuracy for fast inference since they interpolate the
kernel function globally on a regularly spaced grid in order to exploit the ensu-
ing structure for computational gains. However, since the number of interpola-
tion points are placed on a regular grid, and therefore the number of model pa-
rameters increases exponentially with the dimensionality of the data, these ap-
proaches are limited to small-dimensional datasets.

Recently, the cPD [22], a tool from multi-linear algebra, has been applied in
the context of kernel machines to bypass the exponential growth of model pa-
rameters affecting Fourier features-based approximations of stationary kernels
[23] by constraining the model weights to be a CPD of low rank. This low-rank
constraint allows to learn a model with a linear number of model parameters
in the dimensionality D, but requires knowledge of the spectral representation
(Fourier transform) of the kernel of choice which in general can be unknown
or non-analytical, requiring then further approximations. In this paper we de-
velop a CPD-based approach to learn from any product kernel which allows grid-
structured inducing points methods to scale to both large-sampled and high-
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dimensional data. We exploit the tensor-product structure of grid-structured in-
ducing point by constraining the model weights to be a CPD of low-rank. Under
this constraint, we derive a block coordinate descent algorithm that allows for the
efficient training of kernel machines. Our algorithm has a computational com-
plexity of C(NDM 5 R?%) and storage complexity of @(NR), where R is the rank of
the tensor-decomposition which controls the time versus accuracy trade-off. We
show through experiments that competitive results in terms of performance can
be obtained on a laptop computer for data that is both large in sample size as well
as in dimensionality.

In the context of supervised learning, the goal is to estimate a function f(-) :
RP — R given only a finite set of i.i.d. input-output pairs (x;,, yn)],;[=1 s.t. x, €
RP, yeR, Vne{1,..., N} generated by some probability measure. After defining
ameasure ofloss 4 (:,-) : R x R — R, this can be accomplished by minimizing the
(regularized) empirical risk

N
O(f (xn, w), yp) + 1 (w). 3.1)
=1

n

3.1.1 KERNEL MACHINES

Kernel machines model f as linear in the mapped data, i.e.
fx,w) =(px),w). 3.2)

Here ¢ (-) : RP — RM is the feature map which lifts the data in a high (and possibly
infinite-dimensional) reproducing kernel Hilbert space where linear inference is
possible, and w € RM are the model weights. In practice, this explicit mapping
can be avoided by considering a kernel function k(-,-) : RM x RM — R such that
k(x,x') = (g (x),p(x')). By the representer theorem [24] we have in fact that:

N
fx@) =) akxx,), (3.3)

n=1

which implies that we only need to estimate multipliers & € RY. Depending on
the choice ofloss function different kernel machines arise, for instance hinge loss
leads to support vector machines, squared loss to Kernel Ridge Regression (KRR),
which is the same estimator as the GP regression posterior mean. In case of mean
squared error, Eq. (3.1) can be minimized exactly from the corresponding dual
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optimization problem:
(Kxx+ADa=y. (3.4)

In practice, since the kernel evaluations between all points need to be computed,
the computational cost of training in the dual is at least © (N?), limiting its use-
fulness to small-sampled data.

Structured Data One way to enable exact inference on large-scale data is to ex-
ploit existing structure in the data. A particular fortunate case arises when the
data lies on a Cartesian grid x; x x; x --- x xp where each x; € RNe such that
N= ngl Ny, and when considering product kernels of the form:

o

k(x,x") =[] ka (xa,x};), (3.5)

d=1

where x,x’ € RP. In this case the kernel matrix Kxx is the Kronecker product of
small matrices Ky ,x, € RNa*Na [25 Equation 5.7]:

Kxx = Ky, % ® Ky,x, ® - ® Ky} x - (3.6)

Storing the full kernel matrix Kxx € RV*Y can then be avoided by storing smaller

kernel matrices Ky, x,, ..., Kx,x,, without ever computing the tensor-products. Ex-
act training can then be accomplished with ¢ (DN 1+%) operations by exploiting
the properties of the Kronecker product [25, 26].

Unstructured Data One way to enable faster inference to unstructured data is
to consider the Nystrom method [10, 27], whose key idea is to approximate the
spectrum of the full kernel matrix Kx x by means of a restricted number of kernel
evaluations at a subset of M < N inducing points denoted by M, traditionally
sampled at random [10] from the data X, defining hence the Nystrém approxi-
mation [10, Equations 8-9]:

Kxx ~ KxyL™ "L Kyx= Knystrom, (3.7

where L is such that Ky = LLT. Embedding Eq. (3.7) in Eq. (3.1) under the
assumption of squared loss gives rise to a linear least-squares problem which can
be solved from the normal equations:

(L' KyxKxmL™ "+ A1) w = L' Kyxy, (3.8)
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This formulation enables training at the computational cost of @ (N M? + M3) and
storage cost of @(M?). As argued previously however, these complexities force to
chose between the accuracy of the approximation and the ability to process large-
scale data, as M <« N for any computational gains. When one considers station-
ary product kernels, one naive approach would be to locate a large number of
inducing points M > N on a Cartesian grid and to exploit the ensuing Toeplitz
(one-dimensional inputs) and Kronecker (higher-dimensional inputs) structures
for computational gains, as in Eq. (3.6). Since this alone only alleviates the com-
plexity associated with Ky, plenty of research has focused on approximating
Kxm which accounts for the dominant @ (NM?2) term. One of these methods is
SKI [17]. In SKI, the cross-covariance matrix Kxps is approximated by local inter-
polation, i.e. Kxp = PKpyp, where P is a sparse interpolation matrix with 2D
non-zero elements per row (in case of linear interpolation), giving rise to the SKI
kernel

Kxx = PKMMPTZZKSKI. (3.9)

When considering a stationary product kernel Kpsps has a Toeplitz structure (one-
dimension) or a Kronecker product structure of Toeplitz matrices (higher-dimensions).
sKI takes advantage of these structures by approximately solving (Ksx; + AI) "'y
using Krylov subspace methods which rely on matrix-vector products. Since P is
sparse and Kjsy is structured, each iteration of SK1 costs only & (N + Mlog M) op-
erations and €0 (N M) memory. However, since M scales exponentially in D, SKI is
limited to sets of data of small dimensionality D < 5 [17]. In order to mitigate this
exponential dependency in D, Gardner et al. [19] approximate the kernel matrix
of a stationary product kernel as the Hadamard product of rank-R SK1 kernel ma-
trices in order to perform fast matrix-vector products in a divide-and-conquer
fashion. Although this approach overcomes the curse of dimensionality, it re-
quires the storage of R copies (typically 30) of the dataset limiting its applicability
to data of moderate dimensionality.

Recent extensions and improvement of the SkI framework are the handling of
online data [20], its reformulation as a Bayesian linear regression problem [21]
and the use of a permutohedral lattice instead of a Cartesian grid [28]. This latter
approach reduces the number of neighboring points from 2° to D +1, alleviating
the curse of dimensionality by allowing training at @(D?(N + M)). However, this
latter approach is most effective only for D < 20 [28] due to the quadratic scaling
in D of the computational complexity and the decreasing accuracy of the kernel
approximation as D increases.
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3.1.2 TENSOR DECOMPOSITIONS

The most common tensor decompositions are the cPD [22, 29], the Tucker de-
composition [30] and the Tensor Train (TT) decomposition [31]. A rank-R CPD
decomposes a tensor ten (w) € RM1*Mz2>xxMp g ch that

w=WeW,®---® Wp)vec(¥). (3.10)

Here W; € RMa*R are the factor matrices and . € RR*R**R jg a superdiagonal
core tensor, whose entries typically scale the columns of the factor matrices up
to unit norm. The rank R is defined as the smallest R such that Eq. (3.10) holds
exactly [22, 29].

Storing ten (w) in decomposed form requires then only to store D factor matri-
ces, requiring R Zgzl M_; memory units as opposed to M = HdD=1 M. Because of
this compression, tensor decompositions have been used to reduce the number
of model parameters in deep learning models by tensorizing and decomposing
weights [32, 33, 34, 35], or compressing filters which have tensorial structure by
definition, e.g. convolutions [36, 37, 38].

Tensor decompositions have also been used to reduce the exponential num-
ber of parameters which arise when learning from tensor-product feature maps
by constraining the weight tensor to be a low-rank tensor decomposition. So
far these models have considered trigonometric [39], polynomial [40, 41] and
Fourier feature maps [23], where the latter are used to induce stationary prod-
uct kernels. Furthermore, in the context of Gps, tensor decompositions have
been used to reduce the complexity of multi-output GPs [42] and in the context of
stochastic variational GPs to compress the mean of the variational posterior dis-
tribution [43]. However the former method is not designed to handle data which
is larger in the number of samples, as it scales with @ (DNZ), while the latter does
not work for D > 10, as it becomes unpractical to store the interpolation grid,
forcing to train on D < 10-dimensional embeddings of the data.

In the following section, building on the works of [17] and [23], we derive in
the context of classical kernel machines a block-coordinate descent algorithm
whose computational complexity at training scales with G(NDM B R?) requiring
O(NR) memory, allowing to tackle large-scale and large dimensional problems
as demonstrated experimentally in Section 3.3.
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3.2 GRID-STRUCTURED KERNEL MACHINES

In our approach we consider product kernels (Eq. (3.5)) and Nystréom inducing
points (Eq. (3.7)), which inspired by Wilson and Nickisch [17] we place on a Carte-
sian grid m; x my x --- x mp, where each m, € RMa gand M = HdD:1 M. This ap-
proximation recovers the underlying kernel as M — oo [44, Theorem 1]. We have
already seen in Eq. (3.6) how Ky can be stored and manipulated efficiently by
considering its Kronecker-product structure by indexing it as a tensor. This al-
lows for the efficient computation of its Cholesky factor L [25, Theorem 5.2] from

Km1m1 ® ngmz ®:-® KmDmD

=L L\"® L, ® -9 LpLpT (3.11)
=(L1®®Lp) (L1 ®--®Lp)",
Y LT

as it inherits the Kronecker-product structure. Similarly, each row kxps of Kxu
has a tensor-product structure:

kxm = kxlml ® kxzmz ®:® kxDmD»

derivations can be found in the supplementary material. By the mixed-product
property of the Kronecker-product [25, Equation 5.10] we have that:

et L™ = ey, Ly @ ® kypmp LD

The computational benefits associated with this tensor-product structure can

however not be exploited without further assumptions, as model evaluations { kxm L™, w)

will require in fact still @(M) computations and the 'unpacking’ of the tensor-
product structure. In the next paragraph, we will show how one can leverage
fully the tensorial structure of kypL~" by assuming that the model weights are a
rank-R cPD tensor. This will allow to consider both large and high-dimensional
datasets with grid-structured inducing points, by effectively reducing the num-

ber of model parameters from M to RDM B,

We now wish to minimize the empirical risk Eq. (3.1) under a convex loss, with
the additional constraint that the weight tensor ten (w) has a rank-R CPD struc-
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ture:
N
rnui’n Y ¢({ten (kngLfT) ,ten (w))g, yu) + Allten (w)II%, (3.12)
n=1
subject to: cpD-rank (ten (w)) = R, (3.13)

where if R is chosen to be the true cpD rank of ten (w), the solution of Eq. (3.1)
associated with Eq. (3.7) is recovered. In this case, ten (w) is furthermore also
unique under mild conditions [45]. As we will see, this constraint enables to fully
exploit the rank-1 cPD structure of kyp L™" by allowing to optimize one CPD fac-
tor matrix Wy of ten (w) at a time, enabling to tackle large-sampled and large-
dimensional datasets with modest hardware. This is accomplished by exploiting
the multilinearity of tensor decomposition which allows to express the empirical
risk as a linear function of the d-th factor matrix W,;. Minimizing the risk succes-
sively for each factor matrix yields a well-known block coordinate descent [22, 46,
47] algorithm for which each subproblem is convex and exhibits local linear con-
vergence [48, Theorem 3.3]. Similar properties hold when constraining ten (w)
to be a low-rank tensor train decomposition or Tucker decomposition. However,
the number of elements in the Tucker decomposition scales exponentially in D,
while the tensor train decomposition models explicitly the correlations between
features, yielding for the same rank, different models depending on the ordering
of the features. In contrast to other decompositions, our cPD-based approach
enables to reduce the costs of storage by clever in-place updates. Furthermore,
recent theoretical advances in the domain of tensor decomposition show that
the Vapnik-Chervonenkis (vc) dimension and pseudodimension of models of the
form of Eq. (3.2), where ten (w) is a rank-R tensor decomposition, are indepen-
dent of the choice of decomposition of ten (w) and instead upper bounded by the
number of parameters [49, Theorem 7], further motivating the choice of model-
ing ten (w) as a cpD. Following [23], we begin by showing how the risk can be
expressed only as a function of W;. The model term can in fact be rewritten ex-
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actly as

(e LT, whp = (ten (kyymy Ly ™" ® kyymy Lo ® @ kpympLp ™),

R
ten| ) wi, @wy, ®---@wp, |)
r=1

W& T T
= Z Z(kxdmdLD:md Z wlmlrkxlmlLliml

mg=1r=1 my=1
Mp
’ Z meDl‘kxDmDLD:_r;FLD)wdmdr
mp=1
— =T -T -T T
- Vec(kxdmde ® (kx1m1 Ll Wl ©--0 kxDmDLD WD)) VeC(Wd)
=(ga(x),vec(Wy))x. (3.14)

Similarly, for the regularization term

R R
2
llten (w)||z = (ten| )" wy, @ w,, ®---® wDr),ten(Z wi,® w2p®---®wpp)>

r=1 p=1 F
My R R Mp
= Z Z Z Wdmy, r( Z Wimy,r Wimy,p ' Z WDmp,r meD,P)wdmd,p
mg=1r=1p=1 mi=1 mp=1

Z Z Z Wiy, W W10+ 0 WyWD) 1 pWam, »

mg=1r=1p=1

=vec (Wy)" (Ing, ® Hy) vec(W,). (3.15)

Here Hy := (WiTW; ©---© W;TWp). Substitution of Eq. (3.14) and Eq. (3.15) into
Eq. (3.12) leads to a convex optimization problem for vec (W), consisting in prac-
tice to training a kernel machine with RM  model parameters:

min ¢ ({ga (xn),vec(Wa)),yn)

vec(Wy)

+A{vec(W; " W,),vec(H,)), (3.16)

which in case of squared loss can be solved exactly by means of the normal equa-
tions
(64" G4+ A8 Hy)vec(Wy) =G, y, 3.17)

where [G4l;. = g4 (x;). The computational cost of solving Eq. (3.17) exactly is of
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O(NM BR2+MD R®), where the first term accounts for constructing the relevant
squared matrices and the second term accounts for solving the linear system.
The storage requirements are G (M B R?) if one builds up G;' G as a series of N
rank-1 updates. Alternating the minimization by iterating across all factor ma-
trices, i.e. for d = 1,2,..., D yields the a block coordinate algorithm which is well
studied in the tensor community [22, 48]. Section 3.3 shows how the algorithm
converges to suitable minima in all our experiments and is numerically stable.
The computational complexity of our proposed Algorithm CPD-Structured In-
ducing Points (CPD-SIP) is then G(NDMB R? + DM R3).

Implementation Details Note that we could have considered in Eq. (3.12) the
linearly equivalent feature map kyxps which e.g. under squared loss and without
rank constraints gives rise to the following regularized linear least-squares prob-
lem (Kxp" Kxp+Kyar) W = Kxp' y, where i = L~ w. However this formulation
is prone to numerical instability, as the singular values of Kx s are not scaled by L,
as discussed in [3, Chapter 3.4.3]. As a consequence when embedded in CPD-SIP,
G, has a higher condition number and spirals out of control after a few iterations.

The naive storage cost of G(ND(M B R?)) can be reduced by a factor D by up-
dating G; and H, in-place and by locating the inducing points on a dimension-
independent grid, see Algorithm cPD-SIP, where we denote these in-place up-
dated matrices as G and H respectively. Since these operations are @' (NR), they
do not affect the computational complexity. The storage complexity can be fur-
ther reduced by carrying out the updates for G (e.g. in line 9 of cpD-SIP) in
batches of one or more rows of ky,,, L™, which can be computed on-the-fly, bring-
ing it down to O (NR). Of course, if memory is not an issue, speedup up to a con-
stant factor can be easily obtained by caching kx,, L', however this is not a re-
quirement by any means. A summary of the computational and storage complex-
ities of various ski-related methods is given in Table 3.1, where we can observe
that the computational complexity of Algorithm scales linearly in N and D, while
having a storage complexity which is independent on D. All methods except the
Simplex-GP, whose complexity scales with @ (D?), place the inducing points on a
Cartesian grid. As a result, either an exponential number of computations or R
copies of the whole dataset are required, prohibiting to tackle large-dimensional
(in this case D > 20 [28]) data.

Selecting the hyperparameters In CPD-SIP, the CPD-rank R isintroduced as ad-
ditional hyperparameter, which similarly to other ski-based approaches [17, 19]
we advocate to select based on the computational budget at hand: M should



3.2. GRID-STRUCTURED KERNEL MACHINES 47

Algorithm cPD-SIP.

Require: Inputs X € RV*?, outputs y € RV, kernel function k(-,-) : Rx R — R, loss
¢(-,) :R xR — R, number of basis M e N, : M := M%, cPD-rank R € N, max
iterations S e N, A

Ensure: Factor matrices W; e RM*R gd=1,2,...,D

s—0

G — ones(M, R)

H — ones(N, R)

: Compute Ky, using Eq. (3.6)

: L — chol (K, ;) from Eq. (3.11)

: ford=D,D-1,...,1do

W, — randn(M, R)

Wy — W/ [IWyll

G —Go (KxmL™"Wy)

100 H<—Ho(W;TWy,)

11: end for

12: repeat

13: s—s+1

14: ford=1,2,...,Ddo

15: H—HoW;Twy)

16: G—Go(KxmL TWy)

17: Solve Eq. (3.16) for vec (Wy)

18: W@ — ten(vec (Wy))

19: H— Ho (W;Twy)

20: G—Go (KxmL TWy

21: end for

22: until Convergenceor s =S

© e N DD R

be chosen first as to provide an accurate representation of the kernel, possibly to
machine precision. This can be ensured for instance by means of cross-validation
on a portion of unseen data. R can then be chosen in order to fill in the remainder
of the available computational and memory budget.
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Method Complexities
Computational Storage
KRR [27] O(N3) O(N?)
SKI (17, 21] O(N + Mlog M) O(NM)
SKIP [19] O(NDR+RMT logM + NR¥logD + NR%) G(DNR)
Simplex-GP [28] O@(ND+ MD?)) G(MD)
CPD-SIP O(DINMB R? + M R%) G(NR)

Table 3.1.: Computational and storage complexities of various Ski-based approaches
when exploiting stationary structure. For Scalable Kernel Interpolation for Prod-
ucts (SKIP) R is typically chosen to be between 20 and 100 [28].

3.3 EXPERIMENTS

We implemented cpD-sipin MathWorks MATLAB. The implementation and in-
structions to reproduce the results are available at https://github.com/fwesel/
CPD-SIP. We scale the inputs in order to lie in the unit hypercube [0, 11°. In case
of regression problems, we standardize the responses to have zero mean and unit
variance. In case of binary classification, we consider only the sign +1 of the re-
sponses [50]. We initialize the factor matrices W; with standard normal numbers
and normalize them to have unit norm. In all our experiments we set the num-
ber of iterations to S = 20 (consistent with Wesel and Batselier [23], as we define
iterations as half a sweep). All the experiments were run on the Intel Core i7-
10610U 1.8GHz (cpu) of a Dell Inc. Latitude 7410 laptop with 16 GB of RAM.
In what follows we present a series of three numerical experiments. Therein we
demonstrate how our algorithm is stable and recovers the underlying KRR base-
line with small values of R. We show how it compares with other grid-structured
approaches managing to extend their applicability to data large in dimensional-
ity (D = 384) or sample-size (N =5000000).

3.3.1 NON-STATIONARY KERNEL

The Banana dataset [51] is a two-dimensional binary classification dataset which
is often used in the context of low-rank kernel machines to visually demonstrate
their characteristics. The dataset comprises N = 5300 data points roughly splitin
two classes. We consider the non-stationary separable polynomial kernel k(x, x") =
ngl 1+ xdx;l)5, A =1x10"%x and consider M = 2500 inducing points, 50 per di-
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mension, located on an equidistant Cartesian grid. We then proceed to train a
KRR classifier of Eq. (3.4) and cpD-SIP with the same hyperparameter A. Since
the problem is two-dimensional, ten (w) is a matrix and has rank R = M B =50.
In Fig. 3.1 we can observe that for low values of R the classification boundary is
similar to the one of the KRR baseline where there is more data. This is because
CPD-SIP seeks to minimize the empirical risk, and when provided with very few
parameters it will seek to improve the classification boundary where the data is
denser. We notice that already for R = 6 the classification boundary is indistin-
guishable from the one of KRR. As we will see next, the assumption of a small rank
is valid also when dealing with higher-dimensional and large-sampled data.

3.3.2 COMPARISON WITH SKI

In order to compare our method with SKI, we consider seven University of Cal-
ifornia, Irvine (UCl) datasets [52], five of which are considered also by [28]. We
compare our approach against skiP [19] and Simplex-GP [28]. We consider the
Gaussian kernel and locate M = 10” inducing points on a equidistant Cartesian
grid and model w as a rank-20 cPD. In order to train a model in approximately
the same function space, we select our hyperparameters / and A by means of
maximizing the log-likelihood of an exact Gp model [53] constructed on a small
random uniform subset of 2000 points. We then validate our model by means
of 3-fold cross validation and report in Table 3.2 the standardized Root Mean
Squared Error (RMSE) with one standard deviation. While training we keep track
of the quality of our inducing-point approximation k,yL™" by sampling uni-
formly at random a subset E of 1000 points and computing the relative error
IKee—KemL "L~ Kuell/||Kggll, which we report in Table 3.2. Here we can observe
that the quality of the approximation approaches machine precision on many
datasets, allowing the modeler to chose R according to the remaining computa-
tional budget.

In Table 3.2 we can observe that notwithstanding the sub-optimal choice of hy-
perparameters, our model is competitive in term of performance with the other
inducing-points based approaches. Notably, although the seven considered datasets
range vastly in the number of samples, they do not do so in the dimensionality, as
all methods pay a heavy computational or storage-related price when scaling to
higher-dimensional data. This is not the case of cPD-SIP which contrary to sKip,
does not require the contemporary storage of D N x R matrices, which allows
us to tackle datasets of large dimensionality such as Slice with D = 384. Train-
ing our model on the laptop CPU requires then 11274(189) s for the Song dataset
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— — — 1
R=2 R=3 R=6 R=MD =50

Figure 3.1.: Classification boundary of the two-dimensional Banana dataset for increasing
cpD-ranks R for the non-stationary product kernel k(x, x') = 1'[3:l 1+ xdxzi)5 .
The dashed line is the KRR decision boundary while the full line corresponds
to cpD-sIP. The black crosses are the locations of the inducing points. In the
last plot the chosen cpD-rank matches the true (matrix) rank of ten (w).

and 4724(198) s for the HouseElectric, compared to a per-epoch 1075(176) s of
Simplex-GP [28, Table 4] on a Titan RTX (GPU) with 24 GB of RAM. Training on
the Slice dataset took 226(2) s.

3.3.3 LARGE-SCALE CLASSIFICATION

In order to demonstrate the favorable complexity of CPD-SIP when dealing with
a larger number of samples, we consider the SUperSYmmetry (SUSY) dataset [52,
54], an binary classification 18-dimensional dataset consisting of 5000000 sam-
ples, whose first 8 features consist of particle detector measurements, while the
following 10 are high-level features engineered from the first 8. We consider
M = 20P inducing points, and R = 5,10,15,20. As is standard on this dataset,
training is performed on the first 4500000 points and test on the remainder. We
train both on only low-level and low-level plus high-level features. We use the
Guassian kernel with / as the mean of the standard deviations of the features and
A =2x107%/n and report in Table 3.3 the Area Under the Curve (AUC), misclassifi-
cation error and training time of our and other methods in literature. In Table 3.3
we can see that already for R = 5 our CPD-SIP scores similarly to Variational In-
ducing Spherical Harmonics (VISH) [55], whose reliance on numerically unstable
spherical harmonics prohibits it however to be deployed on data with D > 9. For
higher values of R, the performance rivals with Deep Neural Networks (DNNS).
Others results on the dataset are from [56] where the authors obtain a misclassi-
fication rate of 20.1 % in 2400 s on a cluster with IBM POWERS 12-core CPUs and
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512 GB RAM.

3.4 CONCLUSION

In this work we build on the idea of placing inducing points on a Cartesian grid
in order to exploit the computationally favorable arising tensorial structure. This
allows us to obtain a good approximation of the kernel function on the whole
domain, without sacrificing accuracy or the ability to tackle large-dimensional
problems. In contrast to skI and inducing points-related literature, we are in fact
able to overcome the curse of dimensionality which affects both computational
and storage-related complexities of these structured approaches by modeling the
weights as a rank-R CcPD. We show by means of numerical experiments how our
approach is viable even on modest hardware. Note that all operations in CPD-
SIP can be expressed as a series of matrix-vector products, enabling for efficient
(multi-)GPU implementations. Furthermore, since our approach allows to learn
from any product kernel, it allows to consider the skI kernel of Eq. (3.9), which
can be a product kernel depending on the the choice of interpolation strategy
[17]. This could then allow for cheap caching of the features and further speedup
by exploiting to the sparse structure in combination with stationary product ker-
nels. One limitation of our approach is that its computational complexity scales
with O(ND), prohibiting its application to data with a large number of samples
and dimensionality, e.g. in case of categorical features. Another limitation, which
we did not encounter in the experiments, is that the low-rank hypothesis is cer-
tainly not always justified, especially when dealing with highly complicated func-
tions. We think that a possible remedy might be to seek for a different kernel
space where the low-rank assumption would hold. Furthermore, although our
approach is inherently non-probabilistic, our work allows to approximately carry
out one of the two GP tasks, namely data fitting. Interesting further directions
would be to investigate the regularizing effects of the low-rank constraint, to in-
corporate this exact approach in a probabilistic framework allowing for uncer-
tainty quantification and possibly Bayesian model selection.
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QUANTIZED FOURIER AND POLYNOMIAL
FEATURES FOR MORE EXPRESSIVE TENSOR
NETWORK MODELS

In the context of kernel machines, polynomial and Fourier features are commonly
used to provide a nonlinear extension to linear models by mapping the data to a
higher-dimensional space. Unless one considers the dual formulation of the learn-
ing problem, which renders exact large-scale learning unfeasible, the exponential
increase of model parameters in the dimensionality of the data caused by their
tensor-product structure prohibits to tackle high-dimensional problems. One of
the possible approaches to circumvent this exponential scaling is to exploit the ten-
sor structure present in the features by constraining the model weights to be an un-
derparametrized tensor network. In this paper we quantize, i.e. further tensorize,
polynomial and Fourier features. Based on this feature quantization we propose to
quantize the associated model weights, yielding quantized models. We show that,
for the same number of model parameters, the resulting quantized models have
a higher bound on the VC-dimension as opposed to their non-quantized coun-
terparts, at no additional computational cost while learning from identical fea-
tures. We verify experimentally how this additional tensorization regularizes the
learning problem by prioritizing the most salient features in the data and how it
provides models with increased generalization capabilities. We finally benchmark
our approach on large regression task, achieving state-of-the-art results on a lap-
top computer.

This chapter has been published as:

E Wesel and K. Batselier. “Quantized Fourier and Polynomial Features for More Expressive Tensor
Network Models”. In: Proceedings of The 27th International Conference on Artificial Intelligence and
Statistics. PMLR, Apr. 2024, pp. 1261-1269
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4.1 INTRODUCTION

In the context of supervised learning, the goal is to estimate a function f (-) : RP —
R given N input-output pairs {x, J’n}l,;]:p where x € RP and y € R. Kernel ma-
chines accomplish this by lifting the input data into a high-dimensional feature
space by means of a feature map z (-) : R® — R and seeking a linear relationship
therein:

fx,w) =(zx),w). 4.1)

Training such a model involves the minimization of the regularized empirical risk
given a convex measure of loss ¢ (-,+) : RM xR — R,

1 N
Rempirical () = = 3 € ((2 (%), w), yn) +Allwl>. (4.2)

n=1

Different choices ofloss yield the primalformulation of different kernel machines.
For example, squared loss results in Kernel Ridge Regression (KRR) [2], hinge loss

in Support Vector Machines (SvMms) [3], and logistic loss yields logistic regression.

Different choices of the feature map z allow for modeling different nonlinear be-

haviors in the data. In this article we consider tensor-product features

D
z2(x) = @ va(xq), 4.3)
d=1

where v;(-) : C — CMd is a feature map acting on each element of the d-th com-
ponent x; of x € CP. Here ® denotes the left Kronecker product [4]. This tensor-
product structure arises when considering product kernels [5, 6, 7], Fourier fea-
tures [8], when considering B-splines [9] and polynomials [5].

Due to the tensor-product structure in Eq. (4.3), z(-) maps an input sample x €
CP into an exponentially large feature vector z(x) € CM1M2=Mb - Ag g result, the
model is also described by an exponential number of weights w. This exponential
scaling in the number of features limits the use of tensor-product features to low-
dimensional data or to mappings of very low degree.

Both these computational limitations can be sidestepped entirely by consider-
ing the dual formulation of the learning problem in Eq. (4.2), requiring to com-
pute the pairwise similarity of all data respectively by means of a kernel function
k(x,x") = (z(x),z(x")). However, the dual formulation requires to instantiate the
kernel matrix at a cost of @(N?) and to estimate N Lagrange multipliers by solv-
ing a (convex) quadratic problem at a cost of at least O (N?), prohibiting to tackle
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large-scale data (large N). To lift these limitations, a multitude of research has
focused on finding low-rank approximations of kernels by considering random
methods such as polynomial sketching [10, 11, 12] and random features [13, 14,
15], which approximate the feature space with probabilistic approximation guar-
antees.

One way to take advantage of the existing tensor-product structure in Eq. (4.3)
is by imposing a tensor network [16, 17] constraint on the weights w. For ex-
ample, using a polyadic rank-R constraint reduces the storage complexity of the
weights from @ (MP) down to @(DMR) and enables the development of efficient
learning algorithms with a computational complexity of G(DMR) per gradient
descent iteration. This idea has been explored for polynomial [18, 19, 20, 21, 22]
pure-power-1 polynomials [23], pure-power polynomials of higher degree [24],
B-splines [9], and Fourier features [8, 25, 26, 27, 28, 29].

In this article, we improve on this entire line of research by deriving an ex-
act quantized representation [30] of pure-power polynomials and Fourier fea-
tures, exploiting their inherent Vandermonde structure. It is worth noting that in
this paper quantized means further tensorized, and should not be confused with
the practice of working with lower precision floating point numbers. By virtue
of the derived quantized features, we are able to quantize the model weights.
We show that compared to their non-quantized counterparts, quantized models
can be trained with no additional computational cost, while learning from the
same exact features. Most importantly, for the same number of model parame-
ters the ensuing quantized models are characterized by higher upper bounds on
the Vapnik-Chervonenkis (vC)-dimension, which indicates a potential higher ex-
pressiveness. While these bounds are in practice not necessarily met, we verify
experimentally that:

1. Quantized models are indeed characterized by higher expressiveness. This
is demonstrated in Section 4.5.1, where we show that in the underparam-
eterized regime quantized models achiever lower test errors than the non-
quantized models with identical features and identical total number of model
parameters.

2. This additional structure regularizes the problem by prioritizing the learn-
ing of the peaks in the frequency spectrum of the signal (in the case of
Fourier features) (Section 4.5.2). In other words, the quantized structure is
learning the most salient features in the data first with its limited amount
of available model parameters.

3. Quantized tensor network models can provide state-of-the-art performance




64 4. QUANTIZED FEATURES AND TENSOR DECOMPOSITIONS

on large-scale real-life problems. This is demonstrated in Section 4.5.3,
where we compare the proposed quantized model to both its non-quantized
counterpart and other state-of-the-art methods, demonstrating superior
generalization performance on a laptop computer.

4.2 BACKGROUND

We denote scalars in both capital and non-capital italics w, W, vectors in non-
capital bold w, matrices in capital bold W and tensors, also known as higher-
order arrays, in capital italic bold font #'. Sets are denoted with calligraphic
capital letters, e.g. .. The m-th entry of a vector w € CM is indicated as w,y,
and the m;m;... mp-th entry of a D-dimensional tensor # € CMi*MzxxMp aq
Wiy my...mp- We denote the complex-conjugate with superscript * and ® denotes
the left Kronecker product [4]. We employ zero-based indexing for all tensors.
The Frobenius inner product between two D-dimensional tensors 7, # € CM1*Mzx
is defined as

M;-1M,-1 Mp-1
(7/1W>F = Z Z Z V:nlmzu,memlmz...mD- (4.4)
0

my=0my=0 mp=

We define the vectorization operator as vec(:) : CcMixMpx-xMp _, cMiMaMp

such that
vec (W)m = wm1 my...mp»

with m=my +ZdD:2 mg Hi;i M;.. Likewise, its inverse, the tensorization operator
ten (-, My, M>, ..., Mp) : CM1Mz=-Mp _, cMixMax..Mp g defined such that

ten (w, My, Ma, ..., MD) my my-mp = Wm-

4.2.1 TENSOR NETWORKS

Tensor Networks (TNs) [4, 16, 31, 32] express a D-dimensional tensor

ten(w, My, M>, ..., Mp) = # as a multi-linear function of C core tensors, see Def-
inition A.1 for a rigorous definition. Two commonly used TNs are the Canonical
Polyadic Decomposition (CPD) and Tensor Train (TT).

Definition 4.2.1 (cPD [16, 33]). A D-dimensional tensor # € CM1*Max-xMp Qg

—xMp
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arank-R cPD if

R-1 D
Wmymy..mp = Z H Wamgr-
r=0d=1

The cores of this particular network are C = D matrices W; € CMa*R_ The
storage complexity P = Rzgzl M, of a rank-R cPD is therefore G(DMR), where
M =max(My, M>,..., Mp).

Definition 4.2.2 (TT [34]). A D-dimensional tensor # € CM*MzxxMp aqmits a
rank-(Ry :=1,Ry,...,Rp,Rp+1:= Ry) TTif

Ri-1Ry-1 R;-1 D

Wmymy...mp = Z Z Z H Wargmaras -

r1:0 r2:0 rD:Od:1

The cores of a TT are the C = D 3-dimensional tensors # ; € CRa*Ma*Ra+1_The
case R; > 1lisalso called a Tensor Ring (TR) [35]. Throughout the rest of this article
we will simply refer to the TT rank as R = max(Ry, - - -, Rp). The storage complexity
P= 23:1 MyR, Ry, of a TT is then G(DMR?). A TN is underparametrized if P <
]'[f;:1 My, i.e. it can represent a tensor with fewer parameters than the number of
entries of the tensor.

Other TNs are the Tucker decomposition [36, 37], hierarchical hierarchical Tucker
[38, 39] decomposition, block-term decompositions [40, 41], Projected Entan-
gled Pair States (PEPS) [42] and Multi-scale Entanglement Renormalization Ansatz
(MERA) [43].

4.2.2 TENSORIZED KERNEL MACHINES

The tensor-product structure of features in Eq. (4.3) can be exploited by imposing
a tensor network structure onto the tensorized model weights

ten(w, My, M>,...,Mp).

Although generally speaking the tensorized model weights are not full rank, mod-
eling them as an underparametrized tensor network allows to compute fast model
responses when the feature map z (:) is of the form of Eq. (4.3).

Theorem 4.2.3 (Tensorized kernel machine (TKM)). Supposeten (w, My, My, ..., Mp)
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is a tensor in CPD, TT or TR form. Then model responses and associated gradients

D
F@xw) =(@va(xq), w) ,
d=1 F

can be computed in O (P) instead of@’(]'[ld)=1 M), where P = DMR in case of CPD,
and P = DMR? in case of TT or TR.

Proof. See Section B.1. O

Results for more general TNs can be found in Section B.1. This idea has been
explored for a plethora of different combinations of tensor-product features and
tensor networks [8, 23, 24, 25, 28, 29, 44]. A graphical depiction of a TKM can be
found in Fig. 4.1a: a full line denotes a summation along the corresponding in-
dex, while a dotted line denotes a Kronecker product. Training a kernel machine
under such constraint yields the following nonconvex optimization problem:

1 N D
min — > (@) va(xa), w) ,yn) + Mwlig, (4.5)
wo NuZ a5 F

s.t. ten(w, My, M>, ..., Mp) is a tensor network.

Common choices of tensor network-specific optimizers are the Alternating Least-
Squares (ALS) [16, 45, 46, 471, the Density Matrix Renormalization Group (DMRG)
[48] and Riemannian optimization [23, 49]. Generic first or second order gradient-
based optimization method can also be employed.

4.3 QUANTIZING POLYNOMIAL AND FOURIER
FEATURES

Before presenting the main contribution of this article, we first provide the defi-
nition of a pure-power polynomial feature map.

Definition 4.3.1 (Pure-power polynomial feature map [24]). For an input sample
x € CP, the pure-power polynomial features z(-) : C? — cMMzMp
of degree (M; — 1, M, —1,..., Mp — 1) are defined as

D
z2(x) = Q) va(xq),
d=1
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0D

WlR—ZWzR—3W3

a) TKM with TT-constrained
weights.

000000

3,1 R_G 3,2

1,1 R_2 1,2 R_s 1,3 R_4 2,1

Rs

(b) Corresponding QTKM with Q-quantized TT-constrained
weights.

Figure 4.1.: TKM (Fig. 4.1a), and QTKM (Fig. 4.1b) with TT-constrained model weights.
In these diagrams, each circle represent a vector which constitutes the pure-
power feature map of Definition 4.3.1, and each square represents a TT core
(Definition 4.2.2). The color coding relates the d-th feature with its quantized
representation. A full connecting line denotes a summation along the corre-
sponding index, while a dotted line denotes a Kronecker product, see Cichocki
et al. [4] for a more in-depth explanation. Figure 4.1b depicts the case where
Ky = Q% Ky = Q and K3 = Q2. Notice how quantization allows to model corre-
lations within each particular mode of the model weights, in this case explicitly
by means of the TT ranks (1, Ro,..., Rg,1).

with v, (-) : C — CMd the Vandermonde vector
My-1
vi(xg) = 1,xd,x;‘;,...,xd”’

The mg4-th element of the feature map vector v (xg) is

Ud(xd)md:(xd)Mdy md:OJI)"'YMd_]"
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The definition of the feature map is given for degree (M; —1,M> —1,...,Mp —1)
such that the feature map vector z(x) has a length M; M, --- Mp. The Kronecker
product in Definition 4.3.1 ensures that all possible combinations of products of
monomial basis functions are computed, up to a total degree of ZdDzl(Md -1).
Compared to the more common affine polynomials, which are basis functions
of the polynomial kernel k(x,x') = (b + (x,x'))M, pure-power polynomial fea-
tures contain more higher-order terms. Similarly, their use is justified by the
Stone-Weierstrass theorem [50], which guarantees that any continuous function
on a locally compact domain can be approximated arbitrarily well by polynomi-
als of increasing degree. Fourier features can be similarly defined by replacing
the monomials with complex exponentials.

Definition 4.3.2. (Fourier Features) For an input sample x € C”, the Fourier fea-
ture map ¢(-) : CP — CcMMzMp with M, basis frequencies —Ma/2, ..., Ma/2—1 per
dimension is defined as

D 2mjxg
Px)= ®(Cdvd(e_ 2 ))

d=1
.. . . . o iy M . T
where j is the imaginary unit, c; = e“"/* 2L € C, L € R is the periodicity of the
function class and v'? () are the Vandermonde vectors of Definition 4.3.1.

Fourier features are ubiquitous in the field of kernel machines as they are eigen-
functions of D-dimensional stationary product kernels with respect to the Lebesgue
measure, see [51, Chapter 4.3] or [6, 7]. As such they are often used for the uni-
form approximation of such kernels in the limit of L — co and M1, My, ..., Mp —
oo [8, Proposition 1].

We now present the first contribution of this article, which is an exact quan-
tized, i.e. further tensorized, representation of pure-power polynomials and Fourier
features. These quantized features allows for the quantization of the model weights,
which enables to impose additional tensor network structure between features,
yielding more expressive models for the same number of model parameters.

4.3.1 QUANTIZED FEATURES

In order to quantize pure-power polynomial features we assume for ease of no-
tation that M, can be written as some power M, = QX4, where both Q, K, € N.
The more general case involves considering the (prime) factorization of M; and
follows the same derivation steps albeit with more intricate notation.
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Definition 4.3.3 (Quantized Vandermonde vector). For Q, k € N, we define the
quantized Vandermonde vector sy () : C — cQ as

k-1 k-1
) Q-1
Sak (Xa) = l,xg ,...,de Q.

The g-th element of s x(x4) is therefore

k-1
sakxa), = (xa)?9, q=0,1,...,Q-1.
Theorem 4.3.4 (Quantized pure-power-(M,; — 1) polynomial feature map). Each
Vandermonde vector v'? (x,;) can be expressed as a Kronecker product of K, factors

Ky
v4(xq) = ® Sak(xq),
k=1

where M, = QXa,
Proof. From Definition 4.3.1 we have that
Vg (xd)md = (xd)md.

Assume that M, = Q4. We proceed by tensorizing v, (x,) along K; dimensions,
each having size Q. Then

vd(xd)md = ten(vd’ Q) Q! "')Q)qlqz."qu
K, _
= (xg) Tl Q™!

K,
= l_d[ (xd)q"QIﬁ1
k=1

Kq
= [ saxxa)g,-
k=1

The last equality follows directly from Definition 4.3.3. Hence by the definition of
Kronecker product, we have that

Kq
va(xg) = ® Sdk (Xq) .
k=1
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Note once more that in principle it is possible to tensorize with respect to K,
indices such that My = Q1 Q>+ Qg,, but we restrain from doing so not to need-
lessly complicate notation. Theorem 4.3.4 allows then to quantize pure-power
and Fourier features.

Corollary 4.3.5 (Quantized pure-power polynomials). For an input sample x €
CP, the pure-power polynomial feature map can be expressed as

D K{l

z2(x) = Q@ Q) sa,k (xa)-

d=1k=1

Corollary 4.3.6 (Quantized Fourier feature map). For an input sample x € CP,
the Fourier feature map can be expressed as

D K¢ L _amjxg
w1 = @@ ey sur(e 1),
d=1k=1

o 2+Mg
where cy = e "/ ¥d 2L,

Note that when quantized, both pure-power and Fourier features admit an
efficient storage complexity of G(DK) = €(Dlog M) instead of G(DM), where
K =max(Ky,...,Kp).

Example 4.3.7. Consider D =2, M; = 8 = 23 M, = 4 = 22, then the Vandermonde
vector of monomials up to total degree 10 is constructed from

z(x)=[Lxi1®[1, ] ®[1, x{]®[L, x2]®[1, x5].

We now present the second contribution of this article, which is the quanti-
zation of the model weights associated with quantized polynomial and Fourier
features. As we will see, these quantized models are more expressive given the
number of model parameters and same exact features.

4.4 QUANTIZED TENSOR NETWORK KERNEL
MACHINES
When not considering quantization, model weights allow for tensorial index-

ing along the D dimensions of the inputs, i.e. ten(w, M), My,...,Mp). Corol-
lary 4.3.5 and Corollary 4.3.6 allow to exploit the Kronecker product structure



4.4. QUANTIZED TENSOR NETWORK KERNEL MACHINES 71

of pure-power polynomial and Fourier features by further tensorizing the model
weights of the tensor network-constrained kernel machines of Eq. (4.5)

ten(w, Q,Q,...,Q).
———

):[’1):1 K, times

These further factorized model weights can then be constrained to be a ten-
sor network, and learned by minimizing the empirical risk in the framework of
Eq. (4.5). Training a kernel machine under this constraint results in the following
nonlinear optimization problem:

D Ky

min Z (R & s,k (xa), w) ,yn) + Mlwli2, 4.6)
d=1k=1 F

s.t. ten(w, Q, Q,..., Q) is a tensor network.

4.4.1 COMPUTATIONAL COMPLEXITY

In case of cPD, TT or TR-constrained and quantized model weights, model re-
sponses and associated gradients can be computed at the same cost as with non-
quantized models:

Theorem 4.4.1 (Quantized tensorized kernel machine (QTKM)). Consider pure-
power and Fourier feature maps factorized as in Corollary 4.3.5 and Corollary 4.3.6
and suppose ten (w,Q, Q, ..., Q) is a tensor in CPD, TT or TR form. Then by Theo-
rem 4.2.3, model responses and associated gradients

fquantlzed (x, w) = <® ® Sak (xq), w) ,

=1k=1 F

can be computed in O (P) instead of@’(]‘[fi):1 M), where P = KDQR in case of CPD,
and P = KDQR? in case of TT or TR.

Proof. See Section B.2. O

Results for more general TNs can be found in Section B.2. A graphical depic-
tion of a QTKM can be found in Fig. 4.1b. Furthermore, when considering tensor
network-specific optimization algorithms, the time complexity per iteration of
training when optimizing Eq. (4.6) is lower compared to Eq. (4.5), as these meth-
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ods typically optimize over a subset (typically one core) of model parameters, see
Section C.

4.4.2 INCREASED MODEL EXPRESSIVENESS
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Figure 4.2.: Plots of the test mean squared error as a function of the number of model pa-
rameters P, for different real-life datasets. In blue, random Fourier features
[14], in red tensorized kernel machines with Fourier features [8, 25, 27, 29],
in yellow quantized kernel machines with Fourier features, with quantization
Q = 2. The gray horizontal full line is the full unconstrained optimization prob-
lem, which corresponds to KRR. The grey vertical dotted line is set at P = N. It
can be seen that for P < N case, quantization allows to achieve better general-
ization performance with respect to the non-quantized case.

Constraining a tensor to be a tensor network allows to distill the most salient
characteristics of the data in terms of an limited number of effective parame-
ters without destroying its multi-modal nature. This is also known as the bless-
ing of dimensionality [31] and is the general underlying concept behind tensor
network-based methods. In the more specific context of supervised kernel ma-
chines, these well-known empirical considerations are also captured in the rig-
orous framework of vC-theory [52]. Khavari and Rabusseau [44, theorem 2] have
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recently shown that the vc-dimension and pseudo-dimension of tensor network-
constrained models of the form of Eq. (4.6) satisfies the following upper bound
irrespectively of the choice of tensor network:

vC(f) = 2Plog(12|V]),

where | V] is the number of vertices in the TN (see Definition A.1). Since quantiza-
tion of the model weights increases the number of vertices in their tensor network
representation, quantized models are characterized by higher upper bounds on
the vc-dimension and pseudo-dimension for the same number of model param-
eters. For example, in the non-quantized case, parametrizing the TN as a CPD, TT
or TR yields

vC(f) <2Plog(12D),

while for the quantized case
VC(fquantized) < 2Plog(12Dlog M).

Hence, in case of CPD, TT and TR this additional possible model expressiveness
comes at no additional computational costs per iteration when training with gra-
dient descent (Theorems 4.2.3 and 4.4.1). Setting Q = 2 provides then in this
sense an optimal choice for this additional hyperparameter, as it maximizes the
upper bound. In the more general case where My is not a power of 2, this choice
corresponds with the prime factorization of M. It should be noted that a higher
vc-dimension does not imply better performance on unseen data. However as
we will see in Sections 4.5.1 and 4.5.2 quantized models tend to outperform their
counterparts in the underparameterized regime where TKMs are typically em-
ployed, as the gained expressiveness is put fully to good use and does not result
in overfitting.

4.5 NUMERICAL EXPERIMENTS

In all experiments we consider a squared loss Z(f (x), y) = |f (x)— y|2, scale our in-
puts to lie in the unit box, and consider Fourier features (Definition 4.3.2) as they
notably suffer less from ill-conditioning than polynomials. In all experiments we
model the weight tensor as a CPD of rank R. We do not consider other TNs in
the numerical experiments for three reasons: first, it has been shown that TTs
are more suited to model time-varying functions such as dynamical systems and
time series, as opposed to CPD [53]. Second, CPD adds only one hyperparameter
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R =10, P =260 R =25, P =650 R =50, P =1300 R =100, P = 2600
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Figure 4.3.: Sound dataset. In red, plot of the magnitude of the quantized Fourier coeffi-
cients for different values of R and total number of model parameters P. The
magnitude of the full unconstrained Fourier coefficients is shown in black. It
can be observed that increasing the CPD rank R recovers the peaks of frequen-
cies with the highest magnitude.

to our model as opposed to D hyperparameters for the TT or TR. Choosing these
hyperparameters (TT ranks) is not trivial and can yield models with very different
performance for the same total number of model parameters. Third, cPD-based
models are invariant to reordering of the features as opposed to TT. We believe
that this invariance is very much desired in the context of kernel machines. We
solve the ensuing optimization problem using ALS [46]. The source code and data
to reproduce all experiments is available at https://github.com/fwesel/QFF.

4.5.1 IMPROVED GENERALIZATION CAPABILITIES

In this experiment we verify the expected quantization to positively affect the
generalization capabilities of quantized models. We compare QTKM (our ap-
proach) with TKM [8, 25, 27, 29], Random Fourier Features (RFF) [14], and with
the full, unconstrained model (KRR) which is our baseline, as we are dealing in
all cases with squared loss). For our comparison we select eight small Univer-
sity of California, Irvine (UCI) datasets [54]. This choice allows us to train KRR by
solving its dual optimization problem and thus to implicitly consider HdD=1 My
features. For each dataset, we select uniformly at random 80% of the data for
training, and keep the rest for test. We set Q = 2 and select the remaining hyper-
parameters (A and L) by 3-fold cross validating KRR. We set the number of basis
functions M, = 16 uniformly for all d for all models, so that they learn from the
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same representation (except for RFF, which is intrinsically random). We then vary
the rank R of the non-quantized tensorized model from R =1, 2,...,6 and train all
other models such that their number of model parameters P is at most equal to
the ones of the non-quantized model. This means that for TKM P = RZ?ZI My,
for QTKM P = 2R Zgzl log, M, and for RFF P equals the number of random fre-
quencies. To make sure that TKM and QTKM converge, we run ALS for a very
large number of iterations (5000). We repeat the procedure 10 times, and plot the
mean and standard deviation of the test Mean Squared Error (MSE) in Fig. 4.2.

In Fig. 4.2 one can observe that on all datasets, for the same number of model
parameters P and identical features, the generalization performance of QTKM is
equivalent or better in term of test MSE. An intuitive explanation for these results
is that for equal P, quantization allows to explicitly model correlations within
each of the D modes of the feature map, yielding models with increased learn-
ing capacity. We notice that while on most datasets the tensor-based approaches
recover the performance of KRR, in one case, namely on the yacht dataset, the
performance is better than baseline, pointing out at the regularizing effect of the
quantized cPD model. Furthermore, on all datasets examined in Fig. 4.2 it can be
observed that QTKM switches from underfitting to overfitting regime (first local
optimum of the learning curve) before TKM, indicating that indeed its capacity
is saturated with fewer model parameters. At that sweet spot, TKM is still un-
derfitting and underperforming with respect to QTKM. For a further increase in
model parameters both models exhibit double descent, as can be observed on
the gsar, gsar_fish and airfoil datasets. Note that QTKM outperforms TKM in
a similar fashion on the training set (Fig. 4 in the appendix), corroborating the
presented analysis. In Fig. 4.2 it can also be seen that except on the examined 2-
dimensional dataset, both tensor network are consistently outperforming RFF. As
we will see in Section 4.5.2, these tensor network-based methods are able to find
in a data-dependent way a parsimonious model representation given an expo-
nentially large feature space. This is in contrast to random methods such as RFF,
which perform feature selection prior to training and are in this sense oblivious
to training data.

4.5.2 REGULARIZING EFFECT OF QUANTIZATION

We would like to gain insight in the regularizing effect caused by modeling the
quantized weights as an underparametrized tensor network. For this reason we
investigate how the Fourier coefficients are approximated as a function of the
cpD rank in a one-dimensional dataset. In order to remove other sources of reg-
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ularization, we set A = 0. The sound dataset [55] is a one-dimensional time series
regression task which comprises 60000 sampled points of a sound wave. The
training set consists of N = 59309 points, of which the remainder is kept for test.
Based on the Nyquist-Shannon sampling theorem, we consider M = 2!3 = 8192
Fourier features, which we quantize with Q = 2. We model the signal as a hav-
ing unit period, hence set L = 1. The Fourier coefficients are modeled as a CPD
tensor, with rank R = 10, 25,50, 100 in order to yield underparametrized models
(P < M). We plot the magnitude of the Fourier coefficients, which we obtain by
minimizing Eq. (4.6) under squared loss.

We compare the magnitude of the quantized weights with the magnitude of the
unconstrained model response, obtained by solving Eq. (4.2), in Fig. 4.3. From
Fig. 4.3 we can see that for low values of R the quantized kernel machine does
not recover the coefficients associated with the lowest frequencies, as a data-
independent approach would. Instead, we observe that the coefficients which
are recovered for lower ranks, e.g. in case of R = 10, are the peaks with the highest
magnitude. This is explained by the fact that the additional modes introduced
by Q = 2-quantization force the underparametrized tensor network to model the
nonlinear relation between different basis which under squared-loss maximize
the energy of the signal. As the rank increases, the increased model flexibility
allows to model more independent nonlinearities. We can see that already for
R =100 the two spectra become almost indistinguishable. We report the relative
approximation error of the weights and the standardized mean absolute error on
the test set in Section D.2.

4.5.3 LARGE-SCALE REGRESSION

In order to showcase and compare out approach with existing literature in the
realm of kernel machines, we consider the airline dataset [56], an 8-dimensional
dataset which consists of N = 5929413 recordings of commercial airplane flight
delays that occurred in 2008 in the USA. As is standard on this dataset [57], we
consider a uniform random draw of 2/3N for training and keep the remainder for
the evaluation of the MSE on the test set and repeat the procedure ten times. In
order to capture the complicated nonlinear relation between input and output,
we resort to consider M, = 64 Fourier features per dimension, which we quantize
with Q = 2. For this experiment, we set L = 10, A = 1 x 107'% and run the ALS
optimizer for 25 epochs. We train three different QTKMs with R = 20, 30,40.

We present the results in Table 4.1, where we can see that QTKM (our approach)
is best at predicting airline delay in term of MSE. Other grid-based approaches,
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such as Variational Fourier Features (VFF) [6] or Hilbert—space Gaussian Process
(HGP) [7], are forced to resort to additive kernel modeling and thus disregard
higher-order interactions between Fourier features pertaining to different dimen-
sion. Other inducing points-based methods such as Stochastic Variational Infer-
ence Gaussian Process (SVIGP) [56] or Variational Inducing Spherical Harmonics
(visH) [58] struggle find meaningful features in their exponentially large space.
In contrast, QTKM is able to construct R data-driven explanatory variables based
on an exponentially large set of Fourier features. When compared with its non-
quantized counterpart TKM, we can see that our quantized approach outper-
forms it with approximately half of its model parameters. Training QTKM on the
Intel Core i7-10610U CPU of a Dell Inc. Latitude 7410 laptop with 16 GB of RAM
took 6613(40) s for R = 20 and took 13039(114)s for R=40.

Method M P\ MSE

VFF [6] 40 320 0.827 +0.004
HGP [7] 40 320 0.827 +£0.005
VISH [58] 660 660 0.834 +0.055
SVIGP [56] 1000 1000 0.791 +0.005
Falkon [59] 10000 10000 0.758+0.005
TKM (R =4) 64 2048 0.789 + 0.005
TKM (R =6 64 3072 0.773+0.006
TKM (R =8) 64 4096 0.765 +0.007

QTKM (R = 20) 64 1920 0.764 +£0.005
QTKM (R =30) 64 2880 0.754 +£0.005
QTKM (R = 40) 64 3840  0.748 +0.005

Table 4.1.: MSE for different kernel machines on the airline dataset with one standard de-
viation. We report the number of basis functions M per dimensions (in case
of random approaches we simply report the total number of basis) and model
parameters P. Notice that QTKM is able to parsimoniously predict airline delay
with a restricted number of model parameters, achieving state-of-the art per-
formance on this dataset.

4.6 CONCLUSION

We proposed to quantize Fourier and pure-power polynomial features, which al-
lowed us to quantize the model weights in the context of tensor network-constrained
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kernel machines. We verified experimentally the theoretically expected increase
in model flexibility which allows us to construct more expressive models with the
same number of model parameters which learn from the same exact features at
the same computational cost per iteration.

Our approach can be readily incorporated in other tensor network-based learn-
ing methods which make use of pure-power polynomials or Fourier features.
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A DEFINITIONS

Definition A.1 (TN [44]). Given agraph G = (V, E,dim) where V is a set of vertices,
E is a set of edges and dim : E — N assigns a dimension to each edge, a tensor
network assigns a core tensor €, to each vertex of the graph, such that €, €
®ceE, cdim(® | Here E, ={e€ E|v € e} is the set of edges connected to vertex v. The
resulting tensor is a tensor in ®,c 5y CAM©@  The number of parameters of the
tensor network is then P =3 ,cy [[ocg, dim(e).

B PROOFS

B.1 TENSOR NETWORK KERNEL MACHINE

Theorem B.1. Supposeten(w, M, M, ..., M) is a tensor network. Then the depen-
—— ——

D times
dency on M of the computational complexity for the model responses

D
F@)=(Qvaxa), w) ,
d=1

F

isC(M?"), where t is the maximum number of singleton edges per core.

Proof. Let t be the maximum number of singleton edges per core. Since taking
the Frobenius inner product (Eq. (4.4)) involves summing over all singleton edges
M, M, ..., M, the required number of floating point operations will be @(M?"). O
—_——

D times
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Corollary B.2. Supposeten(w,M,M,..., M) is a tensor network with t = 1 maxi-
—_——

D times
mum number of singleton edges per core. Then the dependency on M of the com-

putational complexity for the model responses

D
F@)=(Q@vq(xa),w) ,
d=1

F
isof O (M).

Note that most used tensor networks such as cPD, Tucker, TT/TR, MERA, PEPS
have t = 1. An example of a tensor network where ¢ can be ¢ = 2 or higher is
hierarchical Tucker. In what follows we derive the computational complexity of
the model responses of CPD and TT networks.

Theorem 4.2.3 (Tensorized kernel machine (TKM)). Supposeten (w, My, M>, ..., Mp)
is a tensor in CPD, TT or TR form. Then model responses and associated gradients

D
F@xw) =(@va(xq), w) ,
d=1 F

can be computed in O (P) instead of@’(l'[g=1 M), where P = DMR in case of CPD,
and P = DMR? in case of TT or TR.

Proof. Letten(w,M;, My, ...,Mp) be a tensor in CPD form. Then

D
F@®) =(Q va(xq), w)
2 .
M;-1  Mp-1

=2 L 1 v, Z H Wamgr

my= mDOdl
-1Mi-1 Mp-1 D

1
Z Z Z Hvdmdwdmdr
0my mp=0d=1

D My-1

H Udmdwdmdr'

-1 11

Gradlents can be computed efficiently by caching Hd 1 Zmd o VdmgWdry mgrgr T =
., R. Hence the computational complexity of the model responses and associ-
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ated gradients is of ©(DMR). Now let ten (w, M1, M>, ..., Mp) be a tensor in TT/TR
form. Then

D
F @) =(Q va(xa), w)

d=1 E
M;-1 Mp-1 R -1 Rp—-1

= Z Z H Vdmg Z Z H Wary_ymgry
m=0 mp=0d=1 1=0  rp=0d=1

Ri-1 Rp-1M;-1 Mp-1

= Z Z Z Z H VamgWdry_ymgrg

r1=0 rp=0 m;=0 mg=0d=1
R1—-1 Rp—-1 D My-1

= Z Z H Z VamgWdrg_ymgrg>

r1=0 rp=0 d=1my=0

which is a sequence of matrix-matrix multiplications. Gradients can be com-
puted efficiently by caching Z%Z;é VamyWdry mgrg» Td = 1,--,Rq, d =1,...,D.
Hence the computational complexity of the model responses and associated gra-
dients is of @(DMR?), where M = max(M;, M, ..., Mp) i.e. G (P) for both cPD and
TT/TR. O

B.2 QUANTIZED TENSOR NETWORK KERNEL MACHINE

Theorem B.3. Suppose ten(w,Q,Q,...,Q) is a tensor network. Then the depen-
—_——

DK times
dency on M on the computational complexity of model responses

f(x)—<®®sdk(xd),w>,

d=1k=1

_r
is of O (M50 log M), where t is the maximum number of singleton edges per core.

Proof. Let Q be chosen such that K =log, M. Let ¢ be the maximum number of

singleton edges per core. Taking the Frobenius inner product (Eq. (4.4)) involves

summing over all singleton edges Q,Q,...,Q . Since Q = ﬁ/p the required
——— 8Q

Dlogy M times

number of floating point operations will be @(QtlogQ M)=G (M™% logM). 0O
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Corollary B.4. Suppose ten(w,Q,Q,...,Q) is a tensor network with t = 1 maxi-
———
DK times
mum number of singleton edges per core. Then the dependency on M on the com-
putational complexity of model responses

D Ky

[ =(Q Q) sk (xq), w)

d=1k=1 1:’
isof O(logM).

Theorem 4.4.1 (Quantized tensorized kernel machine (QTKM)). Consider pure-
power and Fourier feature maps factorized as in Corollary 4.3.5 and Corollary 4.3.6
and suppose ten (w, Q, Q,...,Q) is a tensor in CPD, TT or TR form. Then by Theo-
rem 4.2.3, model responses and associated gradients

D Ky

Jauantized (%, w) = <® ® Sa .k (xq), w) ,
d

=1k=1 F

can be computed in O (P) instead of@’(l_[f;:1 M), where P = KDQR in case of CPD,
and P = KDQR? in case of TT or TR.

Proof. The proof follows from the proof of Theorem 4.2.3. Since instead of sum-
ming R times over Mj, M>,..., Mp we are summing R times over Q,Q,...,Q, a
N——
DK times
model response can be evaluated in QKDR floating point operations for CPD
and QK DR? floating point operations for TT. Since Q is a constant which does
not dependent on M and K =log, M, we have that the computational complex-
ities are respectively @ (log MDR) and @(logMDRz) for cPD and TT/TR, where
K =log M = max(log M,log My, ...,log Mp),i.e. ©(P) for both cPD and TT/TR. O

C FASTER MULTI-CONVEX OPTIMIZATION
ALGORITHMS

Quantized features allow to speedup Eq. (4.6) for a large class of multi-convex
solvers such as ALS [16, 45, 46, 47], the DMRG [48] and Riemannian optimiza-
tion [23, 49]. These solvers exploit the multi-linearity of tensor networks in order
to express the empirical risk as a function of only one core of the weight tensor
in tensor network form per iteration, also known as sub-problem. After solving
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the ensuing optimization sub-problem, this procedure is repeated for for the re-
maining cores, defining one epoch. The whole procedure is then repeated until
convergence. When a convex quadratic loss function is used, computational ben-
efits associated with quantization arise as it enables to solve a series of quadratic
problems exactly. This is common practice in literature, see for instance Wahls
et al. [8], Novikov, Oseledets, and Trofimov [23], Chen et al. [24], and Wesel and
Batselier [29].

In the exemplifying case of CPD, TT and tensor ring, for a fixed number of model
parameters P, quantization allows to solve each sub-problem at a reduced com-
putational cost of @ (P*/p?) compared to a cost of & (P?/D?(ogM)?). This yields a
sub-problem complexity which is independent of M. A similar reduction follows
for other one-layered networks. Quantifying the computational gains for other
structures of tensor networks is less straightforward.

D NUMERICAL EXPERIMENTS

D.1 IMPROVED GENERALIZATION CAPABILITIES

We report in Fig. 4 the training error on the examined datasets in Section 4.5.1. As
one can observe, QTKM outperforms TKM in terms of training error (Fig. 4) and
test error (Fig. 4.2).

D.2 REGULARIZING EFFECT OF QUANTIZATION

In Table 2 we repeat the number of model parameters P = 2log, MR, the com-
pression ratio of the quantized model weights M/p, as well as the relative approx-
imation error of the weights llw—wcepll/||jw|| and the standardized Mean Absolute
Error (MAE) of the reconstruction error on the test set as a function of the CpPD
rank.
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Figure 4.: Plots of the train MSE as a function of the number of model parameters P, for dif-
ferent real-life datasets. In blue, random Fourier features [14], in red tensorized
kernel machines with Fourier features [8, 25, 27, 29], in yellow quantized kernel
machines with Fourier features, with quantization Q = 2. The gray horizontal
full line is the full unconstrained optimization problem, which corresponds to
KRR. The grey vertical dotted line is set at P = N. It can be seen that for P < N
case, quantization allows to achieve better performance with respect to the non-
quantized case on the training set (this figure) and on the test set (Fig. 4.2).

R P M/p  llw—wcppll/||w|| MAE
10 260 315 0.841 0.579
25 650 12.6 0.712 0.571
50 1300 6.3 0.528 0.451
100 2600 3.1 0.310 0.182

Table 2.: Model parameters, compression ratio and relative approximation error of the
weights, and standardized mean absolute error on the test data as a function of
the cpD rank.



TENSOR NETWORK-CONSTRAINED KERNEL
MACHINES AS GAUSSIAN PROCESSES

In this paper we establish a new connection between Tensor Network (TN)-constrained
kernel machines and Gaussian Processes (GPs). We prove that the outputs of
Canonical Polyadic Decomposition (CPD) and Tensor Train (TT)-constrained ker-
nel machines converge in the limit of large ranks to the same product kernel Gp
which we fully characterize, when specifying appropriate i.i.d. priors across their
components. We show that TT-constrained models convergence faster to the GP
compared to their CPD counterparts for the same number of model parameters.
The convergence to the GP occurs as the ranks tend to infinity, as opposed to the
standard approach which introduces TNs as an additional constraint on the pos-
terior. This implies that the newly established priors allow the models to learn
features more freely as they necessitate infinitely more parameters to converge to a
GP, which is characterized by a fixed learning representation and thus no feature
learning. As a consequence, the newly derived priors yield more flexible models
which can better fit the data, albeit at increased risk of overfitting. We demonstrate
these considerations by means of two numerical experiments.

This chapter has been published as:

E Wesel and K. Batselier. “Tensor Network-Constrained Kernel Machines as Gaussian Processes”. In:
Proceedings of The 28th International Conference on Artificial Intelligence and Statistics. PMLR, Apr.
2025, pp. 2161-2169
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5.1 INTRODUCTION

Tensor Networks [TNs, 2, 3, 4], a tool from multilinear algebra, extend the concept
of rank from matrices to tensors allowing to represent an exponentially large ob-
ject with a linear number of parameters. As such, TNs have been used to reduce
the storage and computational complexities by compressing the model parame-
ters of a range of models such as Deep Neural Networks (DNNs) [5], Convolutional
Neural Networks (CNNs) [6, 71, Recurrent Neural Networks (RNNs) [8], Graph Neu-
ral Networks (GNNs) [9] and transformers [10].

Similarly, TNs have also found application in the context of kernel machines
for supervised learning [11, 12, 13] as an additional constraint on the model pos-
terior. Such models learn a low-rank nonlinear data-dependent representation
from an exponentially large number of fixed features by means of a restricted
number of parameters, and are as such characterized by an implicit source of
regularization. Furthermore, storage and the evaluation of the model and its gra-
dient require a linear complexity in the number of parameters, rendering these
methods promising candidates for applications requiring both good generaliza-
tion and scalability. Because of their intrinsic nonlinearity which prohibits closed-
form Bayesian inference, the training of these models is typically accomplished
in the Maximum Likelihood (ML) and Maximum A Posteriori (MAP) framework
where the low-rank TN assumption is introduced as an additional nonlinear con-
straint in the optimization problem. In this setting the ensuing estimator recov-
ers the solution that would be obtained without the TN constraint when the low-
rank assumption is satisfied exactly, i.e. for finite rank.

In contrast, Gaussian Processes [GPs, 14] are an established framework for mod-
eling functions which naturally allows the practitioner to incorporate prior knowl-
edge. When considering i.i.d. observations and Gaussian likelihoods, GPs allow
for the determination of the posterior in closed-form, which considerably facili-
tates tasks such as inference, sampling and the construction of sparse approxi-
mations among many others.

In this paper we establish a direct connection between TN-constrained kernel
machines and GPs, thus solving an open question considered by Wesel and Bat-
selier [13, 15]. We prove that the outputs of Canonical Polyadic Decomposition
(cpD) and Tensor Train (TT)-constrained kernel machines converge in the limit
of large ranks to the same product kernel Gp which we fully characterize, when
specifying appropriate i.i.d. priors across their components. This result allows
us to derive that when placing such priors on their parameters, TT-constrained
models achieve faster convergence to the GP compared to their CPD counterparts
for the same number of model parameters. The convergence to the GP occurs
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as the ranks tend to infinity, as opposed to the standard approach which intro-
duces TNs as an additional constraint on the model posterior. This implies that
the newly established priors allow the models to more autonomously learn fea-
tures as they necessitate infinitely more parameters to converge to a Gp, which
is characterized by a fixed learning representation and thus no feature learning.
Consequently, the newly derived priors yield more flexible models which can bet-
ter fit the data and have a higher chance of overfitting. We showcase the conver-
gence properties of both newly derived priors and their effect on MAP estimation
by means of numerical experiments.

The rest of this paper is organized as follows. In Section 5.2 we provide a brief
introduction to Gps and their approximations, TNs and TN-constrained kernel
machines. In Section 5.3 we present our main result, i.e. the equivalence in the
limit between TN-constrained kernel machines and product kernel Gps. In Sec-
tion 5.4 we showcase the different convergence rates to the Gp of cPD and TT and
their effect on MAP estimation. We then provide a review of related work (Sec-
tion 5.5) and a conclusion (Section 5.6). We discuss the notation used throughout
the paper in Section A.1.

5.2 BACKGROUND

GPs are a collection of random variables such that any finite subset has a joint
Gaussian distribution [14]. They provide a flexible formalism for modeling func-
tions which inherently allows for the incorporation of prior knowledge and the
production of uncertainty estimates in the form of a predictive distribution. More
specifically, a GP is fully specified by a mean function u(-) : R” — R, typically cho-
sen as zero, and a covariance or kernel function k(-,-) : R? x RP — R:

fx) ~92(ux), k(x,-)).

Given a labeled dataset {(x;, yn)}l,;’:1 consisting of N inputs x; € RP and i.i.d.
noisy observations y, € R, GPs can be used for modeling the underlying func-
tion f in classification or regression tasks by specifying a likelihood function. For
example the likelihood

P | f(xp) = N (f(xn),0%), (5.1)

yields a GP posterior which can be obtained in closed-form by conditioning the
prior GP on the noisy observations. Calculating the mean and covariance of such
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a posterior crucially requires instantiating and formally inverting the kernel ma-
trix K such that kj, ,, := k(x,, x,). These operations respectively incur a compu-
tational cost of @(N?) and @ (N®) and therefore prohibit the processing of large-
sampled datasets.

5.2.1 BASIS FUNCTION APPROXIMATION

Aside from variational inference [16, 17] and iterative methods [18], a common
approach in literature to circumvent the @ (N®) computational bottleneck is to
project the GP onto a finite number of Basis Functions (BFs) [e.g., 14, 19]. This is
achieved by approximating the kernel as

k(x,x") =~ p(x)"A @(x), (5.2)

where here ¢ (x) : R — RM are (nonlinear) basis functions and A € RM*M are the

BF weights. This finite-dimensional kernel approximation ensures a degenerate
kernel [14], as it characterized by a finite number of non-zero eigenvalues. Its
associated GP can be characterized equivalently as

f® =(px),w), w~HN0OAN), (5.3)

wherein w € RM are the model weights and A is the associated prior covari-
ance. Once more considering a Gaussian likelihood (Eq. (5.1)) yields a closed-

form posterior GP whose mean and covariance require only the posterior covari-
ance matrix (Zf;[:l @(x,)p(x,) T+ A1) "L, This yields a computational complexity
of ©(NM? + M?), which allows to tackle large-sampled data when N > M.

5.2.2 PRODUCT KERNELS

In the remainder of this paper we consider Gps with product kernels.

Definition 5.2.1 (Product kernel [14]). A kernel k(x, x') is a product kernel if
Q
k(x, x") = [] kP (x, x", (5.4)
g=1

where each k9 (-,-) : R? x RP — R is a valid kernel.

While many commonly used kernels are product kernels e.g. the Gaussian ker-
nel and the polynomial kernel, product kernels provide a straightforward strategy
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to extend one-dimensional kernels to the higher-dimensional case [14, 20]. The
basis functions and prior covariance of product kernels can then be determined
based on the basis function expansion of their constituents as follows.

Lemma 5.2.2 (Basis functions and prior covariances of product kernels). Con-
sider the product kernel of Definition 5.2.1. Denote the basis functions and prior
covariance of each factor k9D (x,x") as (p(q) (x) e RMa and AP e RMqa*Mq respec-
tively, then the basis functions and prior covariance of k(x,x') are

P =02 07 (x), (5.5)

and
A=0Y A@, (5.6)

The inherent challenge in this approach stems from the exponential increase
of the number of basis functions M and thus of model parameters as a function
of the dimensionality of the input data, thereby restricting their utility to low-
dimensional datasets.

Such structure arises for instance when dealing with Mercer expansions of prod-
uct kernels, in the structured kernel interpolation framework [18, 21] variational
Fourier features framework [20] and Hilbert-GP framework [22]. Alternative im-
portant approximation strategies which avoid this exponential scaling are ran-
dom features [23, 24], inducing features [17, 19, 25, 26, 27, 28] and additive GPs
[29, 30] which circumvent the outlined computational issue. All those approaches
can be interpreted as projecting the GP on a set of BFs.

The performance of these methods however tends to deteriorate in higher di-
mensions, as they need to cover an exponentially large domain with a linear
number of random samples or inducing points. These issues are some of the
computational aspects of the curse of dimensionality, which renders it difficult to
operate in high-dimensional feature spaces [31].

5.2.3 TENSOR NETWORKS

A recent alternative approach to remedy said curse of dimensionality affecting
the exponentially increasing weights of the linear model in Eq. (5.3) consists in
constraining the tensorized models weights ten (w) to be a low-rank tensor net-
work. TNs express a Q-dimensional tensor #” as a multi-linear function of a num-
ber of core tensors. Two commonly used TNs are the CPD and TT, defined as fol-
lows.
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Definition 5.2.3 (cPD [32]). A Q-dimensional tensor # € RM1*MaxxMq }aq g
rank-R cpD if

R Q
Wmy,my,...mq = Z H w(q) mg,r+ (5.7)
r=1qg=1

The cores of a CPD are the matrices W@ € RMa*R_ Since a cpD tensor can be
expressed solely in terms of its cores, its storage requires Pcpp = Rzgzl M, pa-

rameters as opposed to 1'[3:1 My.

Definition 5.2.4 (TT [33]). A Q-dimensional tensor # € RM1*Mz2xxMq admits a
rank-(Rg:=1,Ry,..., Rp:=1) tensor train if

Ry R Rq

Q
Wmy,my,...mq = Z Z Z H w(q)r,,fl,m,,,rq' (5.8)

ro=1r=1 ro=1g=1

The cores of a tensor train are Q 3-dimensional tensors # (© € RRa-1*Ma*Rq which
yield Pt = 23:1 Ro-1MgR( parameters.

In the following we denote by TN(#') a tensor which admits a general TN format,
by CPD(#') a tensor which is a rank-R cPD form and by TT(#) a tensor in rank-
(Ro:=1,Ry,...,Ro:=1) TT form. Lastly, we denote by R; (#') a tensor which is rank-
1 cpD form or rank-(1,1,...,1) TT, as both are equivalent. Importantly, we refer to
a tensor in general TN format TN(#) € RM*MzxxMq a5 ynderparametrized if its
rank hyperparameters, e.g. R in case of CPD, are chosen such that its storage cost
isless than ]'[g=1 M. This is crucial in order to obtain storage and computational
benefits.

5.2.4 TENSOR NETWORK-CONSTRAINED KERNEL MACHINES

TNs have been used to reduce the number of model parameters in kernel ma-
chines (Eq. (5.3)) by tensorizing the BFs ¢(:) and model weights w and by con-
straining both to be underparameterized TNs. This approach lays its foundations
on the fact that the Frobenius inner product of a tensorized vector is isometric
with respect to the Euclidean inner product, i.e.

f(x)=(px), w) = (ten (p(x)), ten (w)). (5.9)

This isometry allows then to constrain the BFs and the model weights to be an
underparameterized TN. Since product kernels yield an expansion in terms of
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Kronecker-product BFs (Eq. (5.5)), they are a rank-1 TN by definition after ten-
sorization. Embedding these relations yields an approximate model

f(x) = fou(x) = Ry (ten (@ (x))), TN(ten (w))), (5.10)

characterized by lower storage and computational complexities. This approach
has been proposed mostly for weights modeled as cpD [13, 15, 34] or TT [11, 12,
35, 36, 37] as they arguably introduce fewer rank hyperparameters (only one in
case of CPD) and thus are in practice easier to work with compared to other TNs
such as the Multi-scale Entanglement Renormalization Ansatz (MERA) [38].

We define such models as we will need them in detail in the next section, where
we present our main contribution.

Definition 5.2.5 (CPD-constrained kernel machine). The cPD-constrained kernel
machine is defined as

fepp (%) = (Ry (ten (g(x))), CPD(ten (w)))y; (5.11)
R
=) h), (5.12)
r=1

where the intermediate variables &, € R are defined as

Q
he)=[] P w?,,. (5.13)
q=1
Similarly, we provide a definition for the TT-constrained kernel machine.

Definition 5.2.6 (TT-constrained kernel machine). The TT-constrained kernel
machine is defined as

Jrr(%):= Ry (ten ((x))), TT(ten (w))) (5.14)
Rq  Rq-1 Ry

Q
=3 Y ) e ,m (5.15)

rQZITQ,1:1 ro:lqzl

where the intermediate variables Z(? € RRa-1*Rq are defined element-wise as

My
) . (@) (@)
Zry y,r, (%)= E l(pmq X)Wy, "\ mg,r,- (5.16)
Mq:

Evaluating CcPD and TT-constrained kernel machines (Eq. (5.11), Eq. (5.14)) and
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their gradients can be accomplished with & (Pcpp) and € (Prr) computations, re-
spectively. This allows the practitioner to tune the rank hyperparameter in order
to achieve a model that fits in the computational budget at hand and that learns
from the specified BFs.

From an optimization point-of-view, models in the form of Eq. (5.10) are con-
sidered in the ML [11, 36] and in the MAP setting [12, 13, 15, 34, 35, 37] and in
the context of GP variational inference [39] where TTs are used to parameterize
the variational distribution. In all these scenarios, TNs appear as an additional
constraint to the optimization problem, and do hence not define a probabilistic
model but merely approximate the chosen estimator (ML, MAP, etc.).

In the following section we present the main contribution of our work: we
show how when placingi.i.d. priors on the cores of these CPD and TT-constrained
model, they converge to a Gp which we fully characterize. As we will see, beside
connecting the TN-constrained kernel machines with GPs, this probabilistic char-
acterization defines a different and less stringent type of regularization for such
models.

5.3 TN-CONSTRAINED KERNEL MACHINES AS GPsS

Figure 5.1.: Histograms of the empirical Probability Density Function (PDF) of CPD (blue)
and TT (orange) models specified in Theorems 5.3.1 and 5.3.2 evaluated at a
random point as a function of model parameters P for D = 16. The black line
is the PDF of the Gp. Notice how TT converges faster to the Gp for the same
number of model parameters P.

We commence to outline the correspondence between TN-constrained kernel
machine and GPs, which makes use of the Central Limit Theorem (CLT). We begin
by elucidating the simplest case, i.e. the CPD.
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Theorem 5.3.1 (CPD-constrained kernel machine as GP). Consider the CPD-constrained
kernel machine
fepp (%) = (Ry (ten (g(x))), CPD(ten (w)))r.

Ifeach of the R columns w'? ., e RMa of each cPD core is an i.i.d. random variable
such that

E [w:(z)] =0,
E[ w0 :@T] —RUAD,

then fepp(x) converges in distribution as R — oo to the GP

Q
Jepp (%) ~ 942 (0, [T x) A D@ (,)) ‘
g=1

Proof. See Section B.1. O

A similar result can be constructed for the TT case. _

Theorem 5.3.2 (TT-constrained kernel machine as GP). Consider the TT-constrained
kernel machine
frr(®):= Ry (ten (g(x))), TT(ten (w))) .

If each of the Ry-1 Ry fibers W7
variable such that

Fg-17q € RMq of each 1T core is an i.i.d. random

@ _
[E[qu 1)vrq] =0,
@ @ T_ 1 @
[E[qu 1”qurq LHTg ]— R R AT,
q-1Rq

then frr(x) converges in distribution as sequentially Ry — 0o, Ry — oo, ..., Rg-1 —
oo to the Gaussian process

Q T
Jfrr(x) ~92 (0, [Te""® A(q)(p(q)(.)).

g=1
Proof. See Section B.1. -

Theorem 5.3.2 guarantees the convergence in distribution of frr(x) to the Gp
of Eq. (5.3) by taking successive limits of each TT rank. Importantly, the same
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convergence results also holds true if the TT ranks grow simultaneously, see Sec-
tion B.3.

Both Theorems 5.3.1 and 5.3.2 are remarkable, as they imply that a Gp which
can be defined in terms of a finite number of ngl M, weights w can be also ob-
tained with an infinitenumber of model parameters P using the CPD-constrained
model of Definition 5.2.5 or the TT-constrained model of Definition 5.2.6. Fur-
thermore, Theorems 5.3.1 and 5.3.2 suggest that when the priors of Theorems 5.3.1
and 5.3.2 are placed on the model weights, CPD and TT-based models exhibit Gp
behavior in the overparameterized regime as their ranks tend towards infinity. Gp
behavior is characterized by a fixed learning representation ¢(-), which in case of
the kernel in Theorems 5.3.1 and 5.3.2 is fully defined by the BFs and is hence
data-independent. On the contrary, as we will see, in the finite rank regime both
cpD and TT models are able to craft nonlinear features from the provided BFs,
learning nonlinear latent patterns in the mapped data.

5.3.1 CONVERGENCE RATE TO THE GP

While both Theorem 5.3.1 and Theorem 5.3.2 guarantee convergence in distribu-
tion to the Gp of Eq. (5.3), they do so at rates that differ in terms of the number of
model parameters. Let us assume, for simplicity, that the number of basis func-
tions is the same along each dimension, i.e., M, and that the Q — 1 TT ranks equal
R. It follows then that the number of CPD model parameters Pcpp = MQRcpp and
the number of TT model parameters Pry = M(Q —2)R2. +2MRyr = O(MQR3,).
Given the convergence rate of the CLT for the expression in Eq. (5.11) to the GP in
Eq. (5.3), denoted as & (1//R,) with respect to the variable Pcpp, we can establish
the following corollary by substituting Repp as a function of Pgpp.

Corollary 5.3.3 (Convergence rate for CPD). Under the conditions of Theorem 5.3.1,
the function fcpp(x) converges in distribution to the GP defined by Eq. (5.3). The
convergence rate is given by:

fotr 0 (2]

CPD

Due to their hierarchical structure, TT models are a composition of R?T_l vari-
ables, but can be represented in a quadratic number of model parameters in Ryt,
since Pty =0 (M QR%T). Expressing then the CLT convergence rate of G (1/ \/R_TTQ’I)
as a function of Pyt yields the following corollary.
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Corollary 5.3.4 (Convergence rate for TT). Under the conditions of Theorem 5.3.2,
the function frr(x) converges in distribution to the GP defined by Eq. (5.3). The

convergence rate is given by:
Q-1
=N
Prr .

Therefore, when dealing with identical models in terms of the number of basis
functions (M), product kernel terms (Q), and the number of model parameters
(Pcpp = Pr7), frr(x) will converge at a polynomially faster rate than fepp(x), thus
exhibiting Gp behavior with a reduced number of model parameters. In particu-
lar, based on Corollaries 5.3.3 and 5.3.4 we expect the GP convergence rate of TT
models to be faster for Q = 3.

frr(x) =0

0=2 0=4 0=8 0=16

— CPD 1T

x10°
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Figure 5.2.: Mean and standard deviation of the Cramér—von Mises statistic W2 evaluated
between the empirical Cumulative Density Function (CDF) of CPD and TT mod-
els specified in Theorems 5.3.1 and 5.3.2 evaluated at N = 10 random points as
a function of model parameters P for Q = 2,4,8,16. The two models are equiv-
alent for Q = 2. Notice how TT converges faster to the GP as the dimensionality
of the inputs Q increases.

These insights are relevant for practitioners engaged with TN-constrained ker-
nel machines, as they shed light on the balance between the Gp and (deep) neu-
ral network behavior inherent in these models. Notably, when using the priors
of Theorems 5.3.1 and 5.3.2 cPD and TT-constrained models, akin to shallow and
DNNSs respectively, have the capacity to craft additional nonlinearities beyond the
provided basis functions. This characteristic can result in more expressive model
when dealing with a limited number of parameters. However, as the parameter
count increases, we expect these models to transition towards Gp behavior, char-
acterized by a fixed feature representation and static in comparison.
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Figure 5.3.: Mean and standard deviation of the test Root Mean Squared Error (RMSE) of
CcPD and TT models for regularization Eqgs. (5.17) and (5.18) (green and red
curves respectively) as a function of model parameters P as well as their tar-
get Kernel Ridge Regression (KRR) (dotted line). In the plots, the probabilis-
tic regularization of Eq. (5.18) and its TT counterpart are denoted by a blue
and orange line respectively. The dotted line corresponds to the KRR (GP pos-
terior mean) baseline. The proposed regularization which stems from Theo-
rems 5.3.1 and 5.3.2 achieves lower test RMSE with fewer parameters, with the
notable exception of the concrete datasets where it leads to overfitting.

5.3.2 CONSEQUENCES FOR MAP ESTIMATION

Asdiscussed in Section 5.2.4, TN-constrained kernel machines are typically trained
in the ML or MAP framework by constraining the weights w in the log-likelihood
or log-posterior to be a TN. In said MAP context, and e.g. when specifying a nor-
mal prior on the model weights w ~ .47 (0, A), the resulting regularization term Q
(log-prior) is approximated by Qry as

1 2 1 2
Q:=A"Zw|| =Qqy ::||TN(ten(A’z w))ll )
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where A = ®3= lA(q) . For example, in case of CPD-constrained models we have

Qcpp = ||@§=1 (W(q)TA(q)_IW(q))HZ- (5.17)
This form of regularization is considered for TT by Novikov, Oseledets, and Trofi-
mov [12], Wahls et al. [35], and Chen et al. [37] and for cPD by Wesel and Bat-
selier [13, 15]. It provides a Frobenius norm approximation of the regulariza-
tion term which recovers the original MAP estimate as the hyperparameters of
TN(ten (Aw)) are chosen such that TN(ten (Aw)) = ten (Aw). If we now consider
the log-posterior of Theorem 5.3.1 we end up with

1 Q _1 2
Qeppi=RC )_[IAD 2w @) . (5.18)
q=1

This regularization has been employed without the scaling factor R% and with
AP = IM, in the work of Kargas and Sidiropoulos [34], who may not have been
aware of the underlying connection with GPps at that time. Contrary to the regu-
larization Qry in Eq. (5.17), it provides an approximation which recovers the log-
prior Q and thus the MAP, which in combination with a Gaussian likelihood and
squared-loss is equivalent to the GP posterior mean in the limit of large ranks.
These considerations point to the fact that if the practitioner is interested only
in a MAP estimate which recovers the GP posterior mean as faithfully as possible
given the computational budget at hand, he might be more interested in the es-
tablished regularization of Eq. (5.17). On the contrary, the choice of Eq. (5.18) in
combination with squared-loss recovers the GP MAP in the limit, yielding models
that can fit the data more closely albeit with an increased possibility of overfitting
with respect to the associated GP baseline. Furthermore, sampling the priors in
Theorems 5.3.1 and 5.3.2 provide a sensible initial guess for gradient-based opti-
mization which adjusts to the dimensionality of the inputs and the choice of rank
hyperparameters [40].

5.4 NUMERICAL EXPERIMENTS

We setup two numerical experiments in order to respectively empirically observe
the claims in Theorems 5.3.1 and 5.3.2 by evaluating the convergence to the prior
GP in Eq. (5.3), and to evaluate the Gp behavior of such models at prediction in
the finite rank case. In all experiments we made use of the Hilbert-space Gaussian
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Process (HGP) [22] BFs which approximate stationary tensor product kernels of the
form H’;Zl k(xg, x’[,), and opt for M, = 10 basis functions per dimension. We ran
all experiments on a Dell Inc. Latitude 7410 laptop computer with 16 GB of RAM.
The Python implementation is available at github.com/fwesel/tensorGP.

5.4.1 GP CONVERGENCE

In order to empirically verify the convergence to the Gp of Eq. (5.3) we sample
10000 instances of the cPD and TT models specified in Theorems 5.3.1 and 5.3.2
for increasing cPD and TT ranks yielding up to P = 10000 model parameters.
Since the target distribution is Gaussian with known moments, we record the
Cramér-von Mises statistic W2 [41] which gives a metric of closeness between the
target and our sampled empirical CDF. We repeat this for 10 randomly sampled
data points and for Q = 2,4, 8,16 and report the mean and standard deviation of
the results in Fig. 5.2. Therein it can be observed that for the same number of
model parameters, TT converges more rapidly than CpD as the dimensionality of
the inputs grows. Both approaches however need exponentially more parameters
to converge at the same rate for increasing dimensionality of the inputs. Note that
for Q = P =4 cPD, contrary to what stated in Section 5.3.1 still converges faster
due to the approximation made when considering Pry = QMR?. Histograms of
the empirical cDF for one datapoint are shown in Fig. 5.1. This behavior stems
from the fact that for a fixed combination of Q, M and P, TT captures an expo-
nential R9~! range of model interactions in contrast to the R linear interactions
exhibited by cPD.

5.4.2 GP BEHAVIOR AT PREDICTION

To investigate whether CPD and TT-constrained kernel machines trained with the
priors of Theorems 5.3.1 and 5.3.2 indeed exhibit less GP behavior compared to
the standard cPD and TT-constrained prior we tackle four small University of
California, Irvine (UCI) regression problems [42]. We consider 70% of the data
for training and the remaining for test and train a KRR model (equivalent to the
GP posterior mean) on the training data and chose its kernel and regularization
hyperparameters by 3-fold cross-validation. With the found KRR hyperparame-
ters we then train two CPD-constrained kernel machines with Alternating Least-
Squares (ALS) for an increasing number of ranks and thus of parameters, one such
model with the standard regularization (Eq. (5.17)) and one with the regulariza-
tion that follows from Theorem 5.3.1 (Eq. (5.18)). We repeat the same procedure
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for TT-constrained kernel machines. We report the RMSE on test data in Fig. 5.3
and on train in Fig. 4 in the appendix. In Fig. 5.3 one can observe that on all
datasets the predictions on unseen data of both cpD and TT models trained with
the standard regularization (green and red curves respectively) converge to the
KRR baseline (dotted line) for P << N. On the contrary, the CPD and TT models
trained with the regularization term of Eq. (5.18) (blue and orange respectively)
with the exception of the concrete dataset fare better in terms of test error, as they
have been trained with a regularization that recover the KRR baseline in the limit.
Plots of the training errors can be found in Fig. 4 in Section C.1, where it can be
seen that the regularization enforced by Theorems 5.3.1 and 5.3.2 yields overall
models that fit the data better and, with the exception of the concrete dataset,
generalize better.

5.5 RELATED WORK

Our contribution is closely tied to the links between Bayesian neural networks
and GPs, first established for single-layer single-output neural networks [43, 44]
having sigmoidal [45], Gaussian [46] and rectified linear unit [47] as activation
function. This idea was extended to DNNs by Lee et al. [48] and Matthews et al.
[49] for the most common activation functions. Further extensions have been
proposed to CNNs where the number of channels tends to infinity [50, 51], to
RNNSs [52] and to DNNs having low-rank constraints on the weight matrices [53].
In particular Theorem 5.3.1 resembles the results of Neal [43, 44] and Williams
[46] which relate infinite-width single layer neural networks to Gps. The CPD rank
corresponds exactly to the width of the neural network. The crucial difference
lies however in the Kronecker product structure, which is not present in neu-
ral networks and introduces a nonlinearity of different kind than the activation
function. TTs on the other hand resemble DNNs as they map the output of each
core to the next one. However, in contrast to DNNs, the inputs are processed over
the depth of the network. For a more in depth discussion we refer the reader
to [54]. Likewise Theorem 5.3.2 is the TN counterpart to the works of Lee et al.
[48] and Matthews et al. [49] which relate finite depth neural networks to Gps.
The priors we propose are also used in practice as a sensible initial guess for
gradient-based optimization of TN-constrained models [40]. The results related
to TT-constrained kernel machines in Theorem 5.3.2 were also derived by Guo
and Draper [55, 56] from a quantum mechanical perspective, though a theoret-
ical and experimental comparison with cpD-constrained kernel machines was
not provided.
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5.6 CONCLUSION

In this paper we proved that cPD and TT-constrained kernel machines are prod-
uct kernel GPs in the limit of large TN ranks when placing suitable priors on their
parameters. We characterized the target GP and showed that compared to CPD,
TT-based models converge faster to the GP when dealing with higher-dimensional
inputs. The proposed priors can be used in case of finite rank to train more flex-
ible models that better fit the data compared to the standard approach which
seeks instead to approximate the posterior with the addition of a TN constraint.
One important limitation is that the ensuing models are more susceptible to over-
fitting and have thus to be tuned with more care. We empirically demonstrated
these observations by means of numerical experiments.
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A INTRODUCTION

A.1 NOTATION

Throughout this paper we denote scalars in both capital and non-capital ital-
ics w, W, vectors in non-capital bold w, matrices in capital bold W and tensors
in capital italic bold font #. The m-th entry of a vector w € RM is indicated as
wp, and the mymy ... mq-th entry of a Q-dimensional tensor # € RM*Mzx>Mg
as Wmy,my,..,mq- We employ the column notation to indicate a set of elements
of tensor given a set of indices, e.g. Wy, . m, and Wy, 1.3,m, represent respec-
tively all elements and the first three elements along the second dimension of
tensor # with fixed indices m; and m,. The Kronecker product is denoted by
® and the Hadamard (elementwise) by ®. We employ one-based indexing for
all tensors. The Frobenius inner product between two Q-dimensional tensors
V, W e RM>*MzxxMg jg

My, M Mo
T 6= ) D D Umymyamo Winy,my,..mo»
mi=1mp=1 mQ:I
and the Frobenius norm of # € RM1*M2xxMgq ig denoted and defined as

WP =W, W g

We define the vectorization operator as vec (-) : RM1>*MzxxMq _, pMiMz-Mq gyych
that

vec (W)m = wml,mz,...,mQ;
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with m=m; + Zgzz(mq -1) HZ: M. Likewise, its inverse, the tensorization op-

erator ten (-) : RMiMzeMq _, cMixMzx..Mq ig defined such that

ten(w)ml,mz,...,mQ = Wpn.

B TN-CONSTRAINED KERNEL MACHINES AS GPsS

B.1 GP OF CPD-CONSTRAINED KERNEL MACHINE

Theorem 5.3.1 (CPD-constrained kernel machine as Gp). Consider the CPD-constrained
kernel machine
fepp (%) = (Ry (ten ((x))), CPD(ten (w)))r.

Ifeach of the R columns w'?. , e RMa of each cPD core is an i.i.d. random variable
such that

E [W:(,'Z)] =0,
T _1
E[wPw? | =R 7A@,
then fcpp(x) converges in distribution as R — oo to the Gp

Q
Jepp (%) ~ 92 (0, [T x) A D@ (.)) ‘
g=1

Proof. Consider the R intermediate functions &, of Eq. (5.13) which constitute
the cpD-constrained model of Eq. (5.11). Due to the i.i.d. assumption on w'@. ,
each addend is the same function of i.i.d. random variables and thus is itself
i.i.d.The mean of each addend is

Q T
[T 7@ w,,
q=1

Elh,(x)] =E =0, (.19)
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due to thei.i.d. assumption and the linearity of expectation. Its covariance is

E [hy (x) R (2] (.20a)
Q
(q) (x)TwW):,r l_[ (pW) (x’)Tw(q):'r] (zob)
q=1 q=1
< (@ 4\ L4y, (@ @ T @
H‘Pq(x) wq:,rwq:,r @' P (x) (.20c)
q=1
Q
= ]"[ D) Elw?,w?., | @ ) (:20d)

q:

Q
_% H @ ()" AD @ (x).

Here the step from Eq. (.20b) to Eq. (.20c) exploits the fact that the transpose of a
scalar is equal to itself, the step from Eq. (.20c) to Eq. (.20d) is due to the linear-
ity of expectation. As the variances of each intermediate function #, are appro-
priately scaled, by the CLT the partial sum fpp(x) converges in distribution to a
multivariate normal distribution, which is fully specified by its first two moments

E [ ferp(x)] =0,

Q
E [ fern @) forp )] = [] 0P 0)' AD @ ().
q=1

Since any finite collection of { fzpp (X), ..., fepp (x)} will have a joint multivariate
normal distribution with the aforementioned first two moments, we conclude
that fcpp(x) is the Gaussian process

Q
fern @) ~92 |0, [| @D (x) A D@ ().
g=1
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B.2 GP OF TT-CONSTRAINED KERNEL MACHINE IN THE
SEQUENTIAL LIMIT OF THE TT RANKS

Theorem 5.3.2 (TT-constrained kernel machine as GP). Consider the TT-constrained
kernel machine
frr(x):= (R (ten (@ (x))), TT(ten (w))) 5

If each of the R;—1 Ry fibers w@ rg-1urg € RMa of each TT core is an i.i.d. random
variable such that

(q) _
[E[qu 1,,rq] =9
@ @ T_ 1 @
[E[Wr 1,rWr 5T, ]——A ’
q- q q- q /Rq—qu
then frr(x) converges in distribution as sequentially Ry — oo, Ry — oo, ..., Rg_1 —

oo to the Gaussian process

Q
q=1

Proof. Define the vector of intermediate function h'9*! € RRa+1 recursively as

+1 +1
h(q )' Z Z(q ) (xq+ )h(q)

Tg+1 g Tg+1

with 1@ := 1. Note that the first two moments of intermediate variable Zr(,, rqﬂ (xXg+1)
are

(g+1) —
[zrq,rqﬂ(x)] =
(g+1) LAt o
[E[qu rq+1 "qyrq+1( )]

(51) (x)TA(q)(p(q) (x’)_

1
\/ RqRq+1

We proceed by induction. For the induction step suppose that hﬁz) is a Gp, iden-
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tical and independent for every r, such that
@ U 0T A )
bt ~42(0,— [[ ¢ (x) AP 9" ()|.
Rg p=1

The scalar h(rzrll) is the sum of R i.i.d. terms having mean

E [h(qﬂ)

T'g+1

1
k|27, @] =0,

and covariance

E [h(q+1) h(q+1)

Tg+1 Tg+1

_ (g+1) (q) _(g+1) 1. ()
=E[47) @h? 27 )y

=E[57 ) @zl O |E [ h? |

Z”q:rqﬂ Tg)Tg+1

1 q+1 T
— H (p(P) (x) A(P)‘p(l’) (x')'

VRg+1 p=1
h(q+1)

Since the assumptions of the CLT are satisfied the partial sum ren converges
in distribution to the normal distribution, fully specified by the above mentioned

first two moments. Since any finite collection of {hiZfll) (X1:g+41)s-- 0 h(,Z:rll) (x{: q )l
will have a joint multivariate normal distribution with the aforementioned first

(g+1) .
hrZ+1 (x1:4+1) is the GP

two moments, we conclude that

1 q+1 T
h(q+ ) ~GoP 0, H (p(p)(x) A(p)(p(p)(,) .

1
Tq+1
" VRg+1 p=1

For the base case, consider the R; outputs of the first hidden function hg) They
are i.i.d. with mean

E[n{) @)] =0.

and covariance

E[1Y A (x)] = \/LR_(”(D(JC)TA(D(P(D(JC’)-

r
1
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We now consider the R, outputs of the second hidden function h(é)

2 _ 2 1)
hrz Z ZV] 2 (x)hrl ’
r=1

which are i.i.d. as they are the same function of the R; i.i.d. outputs of hm (x).
More specifically, their mean and covariance are

E[h?]=0
E [h(Z) (x)h(z) x"]

T
- 1_[ (p(li) (x) A(q)(p(d) x".
Rz q=1

Once more by the CLT, the partial sum hg) converges in distribution to the nor-
mal distribution with the above first two moments. Since any finite collection
of {h(z) (x),..., hg) (x'} will have a joint multivariate normal distribution with the
aforementioned first two moments, we conclude that héz) (x) is the GP

h;Z) 4|0, — (q)(x)TA(o/) (q)())
( 7% H )

which is our base case. Hence by induction frr(x) = h(Q converges in distribu-
tion as Ry — oo, Ry — 00, ..., Rg_1 — co to the GP

Q
q=1

B.3 GP OF TT-CONSTRAINED KERNEL MACHINE IN THE
SIMULTANEOUS LIMIT OF THE TT RANKS

In Theorem 5.3.2 we prove by induction that the TT-constrained kernel machine
converges to a GP by taking successive limits of the TT ranks. This result is analo-
gous to the work of Lee et al. [48], who prove that for the DNNs, taking sequentially
the limit of each layer. A more practically useful result consists in the conver-
gence in the simultaneous limit of TT ranks.
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In deep learning Matthews et al. [49, theorem 4] prove convergence in the con-
text of DNNs over the widths of all layers simultaneously. Said theorem has been
employed to prove GP convergence in the context of convolutional neural net-
works [51] and in the context of DNNs where each weight matrix is of low rank
(53].

Seeing the similarity between TT-constrained kernel machines (Eq. (5.14)) and
DNNs and the technicality of the proof, similarly to [51, 53] we draw a one-to-one
map between the TT-constrained kernel machines and the DNNs considered in
Matthews et al. [49, theorem 4]. Convergence in the simultaneous limit is then
guaranteed by Matthews et al. [49, theorem 4].

We begin by restating the definitions of linear envelope property, DNNs, lin-
ear envelope property and normal recursion as found in Matthews et al. [49]. To
make the comparison easier for the reader, we change the indexing notation to
match the one in this paper.

Definition B.1 (Linear envelope property for nonlinearities [49]). A nonlinearity
t: R — R is said to obey the linear envelope property if there exist ¢,/ = 0 such
that the following inequality holds

[t(w)| <c+llul|VueR. (.25)

Definition B.2 (Fully connected DNN [49]). A fully connected deep neural with
one-dimensional output and inputs x € R®0 is defined recursively such that the
initial step is

T

Ro
W= 3, (26
1

ro=

the activation step by nonlinear activation function ¢ is given by

g =t(f;"), (27)

and the subsequent layers are defined by the recursion

Rq
(g+1) _ (g+1) (q) q+1
Prgn = lerqﬂ'rdgrq +Dr (.28)
rq=

so that h(Q is the output of the network. In the above, Z? € RRs-1*Rs and b9 €
RR4 are respectively the weights and biases of the g-th layer.

Definition B.3 (Width function [49]). For a given fixed input n € N, a width func-
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tion v : N — N at depth g specifies the number of hidden units R, at depth
q.

Lemma B.4 (Normal recursion [49]). Consider zﬁ‘j)_l,,q ~ N0, C,(ff)) and b(rZ) ~
N(0, C;}m). If the activations of the q-th layer are normally distributed with mo-
ments

E [hﬁf{”] =0 (.29)
E [hﬁj) hij)] = K(x,x), (.30)

then under recursion Egs. (.27) and (.28), as Rg—1 — oo, the activations of the next
layer converge in distribution to a normal distribution with moments

E[nd'] =0 (31)
1 1 1 1
B[] = Gl B en-rom [Hen e + G (32)

We can now state the major result in Matthews et al. [49].

Theorem B.5 (GP in the simultaneous limit of fully connected DNNs [49]). Con-
sider a random DNN of the form of Definition B.2 obeying the linear envelope con-
dition of Definition B.1. Then for all sets of strictly increasing width functions v'?
and for any countable input set {x,...,x'}, the distribution of the output of the net-
work converges in distribution to a GP as n — oo. The GP has mean and covariance
functions given by the recursion in Lemma B.4.

Corollary B.6 (GP in the simultaneous limit of TT-constrained kernel machines).
Consider a random TT-constrained kernel machine of the form of Definition 5.2.6
obeying the linear envelope condition of Definition B.1. Then for all sets of strictly
increasing width functions v'? and for any countable input set {x, ..., x'}, the dis-
tribution of the output of the network converges in distribution to a Gp as P — oo.
The Gp has mean and covariance functions given by the recursion in Lemma B.4
and stated in Theorem 5.3.2.

Proof. When examining Definition B.2 and comparing it with Definition 5.2.6 it
becomes clear that both models are similar. In the special case of involving linear
activation function and zero biases, the models are structurally identical if one
considers unit inputs x = 1 in Eq. (.26). The normal recursion in Lemma B.4 is
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satisfied by TT-constrained kernel machines, as we have that

t(w:=uvVueR,
cl97 2o,
1
ClOVm @ () A D@ (x,
vV RqRq+1
L o) T A D) ()
K=——= ][] " x AP " ()

VR p=1

Eey,e0)~H 0,50 [E(€1) E(€2)] =K.

Hence by Theorem B.5, for all sets of strictly increasing width functions v and
for any countable input set {x,...,x'}, the distribution of the output of the net-
work converges in distribution to a GP, fully specified by the output of the normal
recursion in Lemma B.4, which equals the Gp in Theorem 5.3.2. O

C NUMERICAL EXPERIMENTS

C.1 GP BEHAVIOR AT PREDICTION

We provide the training RMSE related to Section 5.4.2 in Fig. 4, where it can be
seen that the new priors yield model that provide a better fit on all datasets.
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Figure 4.: Mean and standard deviation of the training RMSE of CPD and TT models for reg-
ularization Eqgs. (5.17) and (5.18) (green and red curves respectively) as a func-
tion of model parameters P as well as their target KRR (dotted line). In the plots,
the probabilistic regularization of Eq. (5.18) and its TT counterpart are denoted
by a blue and orange line respectively. The dotted line corresponds to the KRR
(Gp posterior mean) baseline. The proposed regularization which stems from
Theorems 4.2.3 and 5.3.2 achieves lower test RMSE with fewer parameters, with
the notable exception of the concrete datasets where it leads to overfitting.



A KERNELIZABLE PRIMAL-DUAL
FORMULATION OF THE MLSVD

The ability to express a learning task in terms of a primal and a dual optimiza-
tion problem lies at the core of a plethora of machine learning methods. For ex-
ample, Support Vector Machine (svM), Least-Squares Support Vector Machine
(Ls-svM), Ridge Regression (RR), Lasso Regression (LR), Principal Component
Analysis (PCA), and more recently Singular Value Decomposition (SvD) have all
been defined either in terms of primal weights or in terms of dual Lagrange mul-
tipliers. The primal formulation is computationally advantageous in the case of
large sample size while the dual is preferred for high-dimensional data. Crucially,
said learning problems can be made nonlinear through the introduction of a fea-
ture map in the primal problem, which corresponds to applying the kernel trick
in the dual. In this paper we derive a primal-dual formulation of the Multilin-
ear Singular Value Decomposition (MLSVD), which recovers as special cases both
PCA and SvD. Besides enabling computational gains through the derived primal
formulation, we propose a nonlinear extension of the MLSVD using feature maps,
which results in a dual problem where a kernel tensor arises. We discuss potential
applications in the context of signal analysis and deep learning.

This chapter has been submitted to the Journal of Machine Learning Research (JMLR) and archived
as:

F Wesel and K. Batselier. A Kernelizable Primal-Dual Formulation of the Multilinear Singular Value
Decomposition. Oct. 2024. arXiv: 2410.10504
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6.1 INTRODUCTION

The linear Support Vector Machine (SvM) was for the first time extended to the
nonlinear case by Boser, Guyon, and Vapnik [2], giving rise to modern svMm the-
ory. Central to this extension is the primal-dual formulation of the learning prob-
lem, which allows for a nonlinear extension in terms of a primal feature map
¢ () : RN — RM that maps an inputs x € RN to a higher (possibly infinite) dimen-
sional space RM. Solving the corresponding dual problem requires then the eval-
uation of all pairwise kernel evaluations « (X, X,/) := ¢ (x,)" ¢(x,,). The so-called
kernel trick ensures that these kernel evaluations can be computed without ever
explicitly mapping the inputs to the higher-dimensional space.

This approach has been applied to a plethora of methods [3], e.g. Least-Squares
Support Vector Machine (LS-SVM) [4], Ridge Regression (RR) [5], Lasso Regression
(LR) [6], Principal Component Analysis (pCA) [7, 8] and more recently to the Sin-
gular Value Decomposition (SvD) [9] in order to yield their kernelized variants.

Among those, PCA is an ubiquitous unsupervised learning approach which seeks
an orthogonal subspace that maximizes the covariance between the samples of
data. Its kernelized counterpart, Kernel Principal Component Analysis (KPCA),
seeks an orthogonal subspace which maximizes the covariance of samples of
data mapped into a higher dimensional space. By construction, KpCA does not
provide any information regarding the row subspace of the data matrix, meaning
that if there is any asymmetry in the data, it will not be captured. A related but
different method is the svD, which factors a data matrix in terms of orthogonal
row and column subspaces linked by a positive diagonal matrix of so-called sin-
gular values. The svD has been cast in the primal-dual framework by Suykens
[9], who also proposed a Kernel Singular Value Decomposition (KSVD) extension
in terms of feature maps of both rows and columns of the data matrix, coupled
together by a compatibility matrix. In contrast with KPCA, said construction gives
rise to kernel functions that can be asymmetric and non-positive and thus are
arguably better suited to model real-life data, which often is nonlinear and asym-
metric [10]. The Multilinear Singular Value Decomposition (MLSVD) [11] extends
the concept of the svD to higher-order arrays, also known as tensors. In simple
terms, the MLSVD factors a data tensor in terms of orthogonal subspaces corre-
sponding to each mode coupled by a core tensor, which unlike in the SVD case,
does not need to be diagonal. The research stream of the MLSVD and the closely
associated Tucker decomposition, which relaxes the orthogonality constraint, fol-
lows the trends of most other tensor decompositions. Early literature focuses on
applications in chemometrics and psychometrics. Landmarks in the literature
explored applications in facial [12] and gait recognition [13] and explored the
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method as an extension of PCA to tensorial data. More recently, the decompo-
sition has been research as a tool for the compression of layers of deep learning
models [14, 15, 16, 17], in the setting of tensors completion [18] knowledge graph
completion [19], graph classification [20]. The decomposition has also been used
as a theoretical tool for the study of deep learning models [21, 22, 23]. Other re-
cent areas of active research tackle the issues of scalability [24, 25, 26, 27, 28] and
Bayesian extensions [29, 30].

In this paper we extend the Lanczos decomposition theorem of matrices [31] to
the tensor case. This allows us to derive a primal-dual formulation of the MLSVD,
which recovers as special cases both PCcA and the svD. The newly established
primal formulation can be used to attain computational gains in the large sample
regime, and allows us to kernelize the MLSVD by means of feature maps. These
feature maps define the construction of a kernel tensor in the dual as opposed to
a kernel matrix in the case of pcA and SvD. Similarly to the SvD case, the tensor
kernel does not need to be symmetric or positive. We discuss possible choices
of kernel functions and applications, which range from signal analysis to deep
learning.

The remainder of the paper is structured as follows. In Section 6.2 we provide
the background related to the MLSVD as well as a theorem that will be useful to
prove our main result in Section 6.3. We discuss related work in Section 6.5 and
formulate recommendations for future work in Section 6.6.

6.2 BACKGROUND

In the remainder of this paper we denote tensors with uppercase calligraphic
bold e.g. &, matrices in uppercase bold e.g. X, vectors in lowecase bold x and
scalars in lowercase, e.g. x. We denote the mode-d unfolding of a tensor & [32]
with X(4), the Kronecker product with ® and column-major vectorization with
vec (+).

The compact SvD of a rank-R matrix X € RM>*M2 can be written as vec (X) =
(U, ® Uy) vec (S), with semi-orthogonal matrices U; € RM*X and U, € RN2*R such
that UlT U = Iy, U2T U, = Ip, and a square diagonal matrix S € REXR of singular
values. The MLSVD, also known as the Higher-Order Singular Value Decomposi-
tion (HOSVD), is one way to generalize the SVD of matrices to higher-order tensors
[11], which expresses a Dth-order tensor in terms of D coupled orthogonal sub-
spaces. In order to simplify notation and increase the readability we will consider
from now on the case D = 3 without any loss of generality. For the general case
we refer the reader to Appendix A.
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Definition 6.2.1 (Multilinear Singular Value Decomposition (MLSVD) [11]). The
rank-(R;, R, R3) MLSVD of a 3rd-order tensor & € RN *N2xNs jg

vec (%) = Uz U, ® U;)vec(H), 6.1)

where U; € RN>*R1 U, e RN2*R: 73 € RN3*Bs are semi-orthogonal factor matri-

ces and # € Rf1*®>%s i the core tensor such that the matrices S1)S(}), S8y,
T i .

883, are positive diagonal.

In practice, the MLSVD of a 3-rd order tensor can be computed by 3 svD factor-
izations as elucidated in De Lathauwer, De Moor, and Vandewalle [11]. Each SvD
provides U;, U, and Us as the left-singular values of the respective unfoldings
Xa), X(2), X(3). The core tensor is then computed by solving Eq. (6.1) for .

6.3 A PRIMAL-DUAL FORMULATION FOR THE MLSVD

Before presenting our main result, i.e. a primal-dual formulation of the MLSVD,
we need to generalize an important theorem by Lanczos [31], who defines shifted
eigenvalue problems which are equivalent to the SvD. Similarly, the MLSVD of a
3rd-order tensor & € RN *N2*Ns can then be uniquely defined as a set of 3 cou-
pled matrix equations. A generalization of the proof to tensors of higher order is
straightforward and can be found in Theorem A.1.

Theorem 6.3.1 (Generalized Lanczos decomposition theorem). An arbitrary rank-
(R1, Ry, R3) tensor & € RNVN2XN3 cqp be written in MLSVD form, i.e. asin Eq. (6.1)
with core tensor & € REVR*Bs and semi-orthogonal factor matrices Uy, € RN R,
U, € RV*R2 gnd Uz € RN B3 defined by the following set of equations

U, Sq) =Xq) (Us e U>),
U280 = Xp) (U3 @ Uh), (6.2)
Us S = X3 (U@ U1),

with the additional constraint that S(l)S(Tl), S S(Tz), Si) S(TS) are positive diagonal
matrices.

Proof. The proof is divided in two steps, first we show that the factor matrices
Uy, U,, U; are semi-orthogonal, second we show that indeed Eq. (6.2) implies the
MLSVD i.e. Eq. (6.1). We begin by left-multiplying each side of Eq. (6.2) respec-
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tively with U, UJ, U}, resulting in three equations of the form

UlTUl S(l) = UiFX(l) (U3 ® Ug) :ID(I),
UZT U, S(g) = UgX(z) (U3 Uq) :ZD(Z), (6.3)
U:;FU3S(3) = UZ;FX(g) (U2 ® Ul) ZID(g).
By construction, all three right-hand sides of Eq. (6.3) are different unfoldings of
the same tensor @ € R *R2*Bs for any choice of 2 and Uy, U,, Us. Vectorizing
both sides of the equations yields
(Ip, ® Ip, ® UITUI)VeC (&£) =vec (D),
(Ig; ® U2TU2 ® I,) vec (&) =vec (D),
(U; U3 ® Iy, ® Ig,) vec () = vec(2),
Equating any two out of the G) pairs of equations e.g. the first one with the sec-
ond one results in
(Ig, ® Iz, ® U} Uy) vec (&)
=(Ig, ® U; U, ® Ip,) vec ().
This equality holds if U Uy = U} U, = 0 (trivial solution), which we do not con-
sider. If UzT U, is full-rank and thus invertible, the right-hand side is invertible.
Left-multiplying by the inverse of the right-hand side yields
(IR3 ® IR2 ® IRI)VBC(y)
=(Ip, ® U, Uy ® Ip,) ' (Ip, ® Iz, ® U} Uy) vec (&)
=(Ip, ® (U U,) ' @ Ul Uy vec (),
where the second equality follows from the mixed-product property, see Loan
(33]. The equality holds if and only if (UZT U,)! = Iy, and UlTUl = Iy, . Repeating
the argument with at least [%] unique pairs out of the (g) pairs of equations yields,
apart from the trivial U; = U, = Us = 0 solution,
UU, = Iy,
U, U, = Iy,, (6.4)
U5 Us = I,
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which implies that U;, U, and Us are semi-orthogonal. Right-multiplying both

sides of Eq. (6.2) by respectively S\, U}, S, Uy, S5, Uy yields

U, S(I)Sa) Uir = X(l) (U3 U>) Sa) Uir,
U>S2)S U, =X (U3 @Uy) Sy Uy, (6.5)
Us 8(3) Sé) U:;r = X(3) (U, ®Uy) S(l;)) U;r

The left-hand side is the eigendecomposition of the right-hand side of Eq. (6.5)

due to the assumption that 1y S}, S Sy, S3) S, are positive diagonal matrices

(eigenvalues) and the above proof that U;, U», U; are semi-orthogonal matrices
(eigenvectors). From Eq. (6.5) it follows that U is an orthogonal basis for the
column space of X(;), and likewise for the other unfoldings. We can therefore
write
U1 S)S Ul =UR (U3 @U,) S|, U],
U,S2)S Uy = Uz Ry (U3 @ UY) Sy, Uy, (6.6)
UsSi3)Si5 U3 = UsR; (U2 @ UY) S(3, U3,
where R; € RF*N2Ns Ry € RR:*NiNs and Ry € RFS*N1N2 are general coefficient
matrices. From Eq. (6.6) follows that
Sq) =R (U39U>),
S =R (U39 Uy), (6.7)
S =Rs (U290 U1),
which by the semi-orthogonality of U;, U, and Us is satisfied if and only if

Rl = S(l) (U;r ® Ug),
R, =S (U3 o U)), (6.8)
R;=S3 (U;F ® Uir) .

Substitution of Eq. (6.8) into X1y = Uy Ry, X(2) = U> R, X3) = U3 R3 we conclude

that vec (%) = (U3 ® U, ® Up) vec (#), which is the defining Eq. (6.1) of the MLSVD
as in Definition 6.2.1. |

Equipped with Theorem 6.3.1, we can now formulate the MLSVD as a primal-
dual optimization problem by defining the primal MLSVD optimization problem
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in its most general context.

Definition 6.3.2 (Primal MLSVD optimization problem). Given three feature ma-
trices @; € RN *M1 @, € RN2XMz2 @y e RN3*M3 o compatibility tensor € € RM1xMzxMs
and regularization parameters.# € RR1 *R2*Rs gych that 81, S}, , S2S%,, and S(3) S,

1)’ (2) (3)
are positive diagonal matrices, we define the primal optimization problem as

max ](erWZ)IA/B)ElyEZyEfS) =
Wi, W,, W3, E, E, E3

1 > T -1 5T
Ed;Tr(Ed(s(d)s(d)) E})

—2vec(®)" (W3 @ W, ® W;) vec ()

1 (6.9)
+ 5 vec(€) T (@039 ®)®, ® D] ®;)vec ()

s.t: By = @1 Co) (W3 @ Wa) Sy,
E; = ®,Cpy) (W30 W) S(Tz),
E3 =®3 C(g) (Wr @ Wy) Sé).

In Eq. (6.9) we seek weights matrices W) € RMxRy i, € RM2xR2 |y, ¢ RM3xRs
and error matrices E; € RN R E, e RN2*R2 | Fo e RM3*Rs that maximize an ob-
jective function J composed of a term that maximizes the variance associated
with each feature matrix, a regularization term that acts on the weights and an
optional constant term that ensures that the cost at the optimum is zero. For
now we assume that the features ®, compatibility tensor € and the regulariza-
tion parameter . are given and not necessarily data-dependent, we will later ex-
amine relevant choices. We now establish a link between the primal MLSVD opti-
mization problem presented in Definition 6.3.2 and the dual MLSVD optimization
problem.

Theorem 6.3.3. The dual optimization problem associated with the primal opti-
mization problem of Definition 6.3.2 is the MLSVD of the kernel tensor & € CN1 N2> Ns |

The kernel tensor X is defined as

vec (A )= (P30 ®, ®D;) vec(6). (6.10)

Proof. Consider the Lagrangian £ associated with the primal optimization prob-
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lem of Definition 6.3.2,

£ (W, W, W3, Ey, Ey, E3, Uy, Uz, Us)
=J (W1, W,, W3, Ey, E, E3)

~Tr((E1 - @1 Co) (W3 © Wa) S,)) UY)
~Tr((E2 - @2 C) (W3 @ WY) S ) U3 )
—Tr((B3 - ®3Cg3) (Wo® W) S(3)) U3),

where U; € RM R g, e RNV2*Re | 73 € RNs*Rs are Lagrange multiplier matrices.
The Karush-Kuhn-Tucker (KKT) conditions result in

gfé =0 < 2CH (W58 Wp) S}y = Cpy (W3 @ D, Uz + @I Us © W) S,
0¥ T
w0 = 2C) (W3 @ W1) S, = Cp) (W3 @ @[ Uy + DL U3 © W) Sy,
0¥ T
w0 2C3 (W8 W1) Sy, = Ca) (Wa @ @[ Uy + @y Uz © W1) S,
% 6 — E =U,SyS},

JE; 1)’

02 =0 = E2 = UgS(g)S

3E, @’

02 =0 = E3 = Ugs(g)S

3E; @)

0z =0 < E;=®,Cy) (W30 W>) S|

oU; 1’

82 0= E; = ®,Cp) (W30 Wy) S,

aUZ (2)’

02 =0 = E3—(I)3C(3) (W, @ Wy) S

U, @

The equality of the first three KKT conditions holds for the trivial solution W; =
0,W, =0, W5 = 0 or when

QU =W, D U, = W, @3 U3 = W3,
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These expressions can be used to eliminate W) and E; to obtain

U1S1S(y, = @1 C) (@5 0 @) (Us 0 Up) S,
= K(l) (U3 ® U>) S(Tl).

The definition of £ in Eq. (6.10) was used to write the second equality. Similarly
we obtain expressions for the Lagrange multipliers U, and Us leading to

U1Sq) =K (Us e U>),
U>S0) =Kp) (UseUh),
UsS) = K) (U9 U)),

which by Theorem 6.3.1 is the MLSVD of the tensor % € RN *N2xNs O

Theorem 6.3.3 establishes that instead of computing the MLSVD of a tensor %,
one can alternatively solve the optimization problem in Definition 6.3.2. Equa-
tion (6.10) can be understood as a generalization of the conventional kernel equa-
tions to asymmetric kernel functions of more than two arguments. In partic-
ular, it can be interpreted as the dot product of features of three different fea-
ture spaces. Likewise, e.g. the primal E; matrix can be interpreted as contain-
ing the dot product between the features of the first feature space with the pri-
mal weights in the second and third feature spaces. In contrast, KPCA considers
only one feature space, where kernel functions are dot products within this sin-
gle feature space. The E; score variables in KPCA are the dot product between
the features and their own corresponding primal weights. Our results general-
ize these notions to multiple data sources and feature spaces. We discuss these
connections more in depth in the remainder of the paper. We now prove that the
objective function J is equal to zero in the MLSVD solution.

Corollary 6.3.4. The MLSVD solution of the dual problem in Theorem 6.3.3 result
in a zero objective function (J = 0) in the primal optimization problem of Defini-
tion 6.3.2.

Proof. Plugging in the KKT conditions for Ej, E,, Es and W), W,, W3 into the pri-
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mal objective function J results in

The first three variance terms are simplified using the cyclic permutation invari-
ance of the Frobenius trace norm. The regularization term is simplified using the
definition of the kernel tensor .Z" and its MLSVD. The third term in the objective
function is also simplified using the definition of the kernel tensor .£". O

\ M3

(@) \ J (@)

() (W) (W) () To
R3 Ry »
R3

(a) Primal formulation (P), from left to right of E1, E> and E3.

Figure 6.1.: Primal formulation (Fig. 6.1a) and dual formulation (Fig. 6.1b) in tensor net-
work diagram notation. In these diagrams, each circle represent a tensor and
each edge departing from a circle represents an index of the corresponding
tensor. A connecting edge denotes then a summation along the correspond-
ing index, an unconnected edge denotes a free index, see Cichocki et al. [34]
for a more in-depth explanation.

The primal optimization problem of Definition 6.3.2 defines explicitly a model-
based approach in terms of primal weights, which is equivalent to the MLSVD
but operates in the vector space RM1 *M2*Ms jnstead of in the usual vector space
RN >N2xNs st like other learning problems that admit a primal-dual formula-
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tion, each representation has its own advantages in terms of computational com-
plexity.

Remark 6.3.5 (Primal and dual model representation). The MLSVD is character-
ized by a primal (P) representation in terms of weights W;, W,, W3 and feature
maps ®;, ®,, @3 and a dual (D) representation in terms of a kernel tensor %
defined in Eq. (6.10) and Lagrange multipliers U, U>, Us:

E =@, Cy) (W32 Wh) S}y,

E; = @, Cp) (W3 @ W) Sy, (P)
E3=®3C5 (Wo@ W1) S}y,

Ey =Ky (Us0Uy) Sy,

Ey = K (U3 U1) Sy, (D)
Eg = K(g) (U Uh) Sé).

An alternative representation of Egs. (P) and (D) in tensor networks diagram
notation is presented in Fig. 6.1. After precomputing ®; C(;), ®, C(2) and @3 C(3),
the primal formulation in Eq. (P) is more convenient in terms of storage and
computation when the number of samples is larger than the feature space one
operates in, i.e. N > M, requiring a computational and storage complexity of
G (NM?) with N:=max(Ny, Ny, N3), M:=max(M;, Ms, M3). Alternatively, when
the feature space is larger than the number of samples, the dual formulation
in Eq. (D) is more attractive, requiring a computational and storage complexity
of G(N®). In particular, the dual formulation allows to operate implicitly in an
infinite-dimensional feature space, as long as the kernel tensor . can be com-
puted in closed form. We illustrate this trade-off through a numerical example.

Example6.3.6. Suppose we have a data tensor & € R100%100x100 and the goal is to

compute its rank- (5,5,5) MLSVD. The storage complexity of the MLSVD in terms of
the dual variables is then 53+3-100-5 = 1625. As discussed in detail in section 6.4.1
we have that M; = M, = M3 = 100°. The storage complexity of the MLSVD in terms
of the primal weights is then 5 + 3 - 1002 - 5 = 150125, which is 92 times more
expensive than the dual form.

Now suppose we have 3 datasets ®@;, ®,, ®3, each being a 100 x5 matrix. Choos-
ing the compatibility tensor € € R°*°*® a unit diagonal tensor allows us to com-
pute the corresponding rank-(5,5,5) kernel tensor £ € [R100x100x100 = 1¢g [qyal
MLSVD incurs a storage cost of 5° +3-100-5 = 1625, whereas the dual representa-




130 6. A KERNELIZABLE PRIMAL-DUAL FORMULATION OF THE MLSVD

tion requires an 8-times smaller storage cost of 53 +3-5-5 = 200.

The situation becomes a bit more involved when the data tensor is non-cubical.
Suppose we want to compute the rank-(5,5,5) MLSVD of & € R190%10%5 " Then
M, =50, M, =500, M3 = 1000. The primal representation would then have a stor-
age cost of 53 +5(50+500+ 1000) = 7875, while the dual 53 +5(100+10+5) = 700. A
mixed representation in terms of W, U, Us would incur an even smaller storage
cost of 53+5(50+10+5) = 450. Such a mixed representation would be obtained by
removing the E; constraint from Definition (6.3.2) and solving the corresponding
optimization problem.

6.4 CONNECTION WITH OTHER METHODS

We will now examine possible choices of features and compatibility tensors €, in
particular such that the output of Definition 6.3.2 is equivalent to the MLSVD of a
known data tensor &, as well as nonlinear extensions and the relationships with
other methods.

6.4.1 LINEAR MLSVD OF A DATA TENSOR

Theorem 6.3.3 requires that the data that is fed into the primal optimization prob-
lem comes in the form of matrices. Its dual optimization problem is then the
MLSVD of £ in Eq. (6.10). We will now see how the MLSVD of a general data ten-
sor & can be obtained with suitable choices of features and compatibility tensor.
The linear MLSVD of a general data tensor & € RN *N2*Ns follows from Theo-
rem 6.3.3 if one considers as features the mode-d unfoldings of said tensor.

Theorem 6.4.1 (Linear MLSVD of a data tensor). Consider the data tensor & €
RNN2xNs yithy linear feature maps

q)d =X(d), (611)

which correspond to each unfolding of % . If the compatibility tensor € € CN2N3*NiNsxNi N

satisfies
vec(X) = (X ® X2 ® X)) vec (€), (6.12)

then solving the primal problem in Definition 6.3.2 yields the MLSVD of data tensor
X e CleNz ><N3.

Proof. The compatibility condition of Eq. (6.12) associated with the linear fea-
tures of Eq. (6.11) satisfies the assumptions of Theorem 6.3.3, yielding thus the
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MLSVD of data tensor &'. O

The linear compatibility condition of Eq. (6.12) can always be satisfied when
the dimensionalty of the data tensor D = 3, as the right-hand-side is then under-
determined and thus yields infinitely many solutions. A standard choice is then
to choose the € with minimal Frobenius norm. In the D = 2 case, the compatibil-
ity condition reduces to vec (X) = (X' ® X) vec (C), recovering the pseudoinverse-
based compatibility condition of the primal-dual formulation of the SvD identi-
fied by Suykens [9].

6.4.2 KERNEL MLSVD

The Kernel Multilinear Singular Value Decomposition (KMLSVD) of a data tensor
& € RN>N2xNs s defined by means of a set of general nonlinear feature maps

@, =0, (X,) e RNa*Ma, (6.13)

which map each dataset or unfolding to a higher-dimensional nonlinear space
RMa, Solving the primal optimization problem of Definition 6.3.2 is then equiv-
alent to the MLSVD of the kernel tensor & € CN1*N2xNs i Theorem 6.3.3, whose
defining equation we provide once more:

vec (A )= (P3® Py @ @) vec(6).

The compatibility tensor ¢ determines whether the kernel tensor function (and
tensor kernel) are subject to any kind of symmetry or permutational invariances
and together with the choice of feature map, positivity. The tensor kernel does
not need to be symmetric or positive-definite, meaning that the MLSVD can rep-
resent asymmetric relationships that arise between the orthogonal subspaces
where the high-dimensional data lives in terms of the core tensor.

The explicit computation of the kernel tensor scales exponentially in the di-
mensionality of the original data tensor & when carried out explicitly. This lim-
itation can instead be bypassed by means of the so-called kernel trick, which
carries out the computations implicitly in the features spaces. Two examples of
kernel functions whose inputs live in the same space are the tensor-variate gen-
eralizations of the polynomial and exponential kernels described first by Salzo,
Rosasco, and Suykens [35] and Salzo and Suykens [36] in the context of L, -regularized
learning problems. We report here their slightly adjusted definition.
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Example6.4.2 (Polynomial and exponential kernel [35, 36]). The polynomial ten-
sor kernel function of degree p = 1 is defined as

vec (J,’ P

polynomial) =((X3® X, ® X)) vec ()P

where X; € RVM ) X, e RVM | X3 € RV*M and . € CM*M*M ig the 3rd-order
diagonal identity tensor. It is implicitly assumed that the inputs live in the same
space and can hence be coupled by means of the identity tensor. The exponential
tensor kernel is then defined as

" )
polynomial’*

K exponential ‘= €Xp (A

When p is odd then the kernels are not positive-definite. The exponential kernel
is defined implicitly by an infinite-dimensional power series feature map [35].

Following Suykens [9], it is straightforward to define the features and compati-
bility tensor which yields a kernel tensor of elementwise nonlinearities.

Example 6.4.3 (Elementwise nonlinear kernel). Elementwise nonlinear kernels
of a data tensor & € RN *N2*1s are defined as

K elementwise := f (),

where f(-) is any elementwise nonlinear function. The features are the linear
features of Theorem 6.4.1 and the compatibility tensor € € RM1 *M2*Ms gatisfies
Eq. (6.12).

The primal optimization problem of Definition 6.3.2 encompasses many de-
compositions. In what follows we provide a brief overview of some examples.

6.4.3 KERNEL ORTHOGONAL CPD

The kernel Canonical Polyadic Decomposition (CPD) can be interpreted as a spe-
cial case of the MLSVD where the core . € RR*®*R i5 a cubical diagonal tensor
with nonzero entries and the factor matrices are not orthogonal. The orthogonal
CPD [37, 38] retains the orthogonality of the factor matrices and is obtained from
Theorem 6.4.1 by choosing linear feature maps and a compatibility tensor such
that the compatibility equation Eq. (6.12) is satisfied.
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6.4.4 KERNEL SVD

The KMLSVD generalizes the KSVD to higher-order tensors. It is therefore straight-
forward to obtain the KsvD of a matrix K from Theorem 6.3.3 by considering two
data sources ®@; and @, and a positive diagonal regularization matrix S. Said pri-
mal KSVD optimization problem coincides with the one identified by Suykens [9].
Theorem 6.3.3 then results in the shifted eigenvalue problems

U, S=KU>,
U,S'=K"u,

where K = @, Ct‘Dg is the kernel matrix, which is not required to be symmetric or
positive-definite. The solution of the shifted eigenvalue problem is then the SvD
of K, i.e. K =U; SU; [31]. Similarly, the linear svD [9] is also recovered by addi-
tionally considering as features rows and columns of the data matrix X € RN *2
and as compatibility matrix C € RM1*M2 a5 defined in Section 6.4.2. Notably in
contrast with the KMLSVD case detailed in Section 6.4.1, in the 2-dimensional
KSVD case it is possible to easily define an asymmetric kernel function x (x;, Cx,)
based on a predefined symmetric (positive-definite) kernel function «(,-), ex-
ploiting the fact that the compatibility matrix maps one input space to the other,
as proposed by Tao et al. [10].

6.4.5 KERNEL PCA

Consider a feature matrix ® € RVN*M In the primal problem of Definition 6.3.2
we are now interested in finding two weight matrices W;, W, that project the data
to score variables ®W;, ® W, with maximal variance. The compatibility matrix
C is chosen to be a positive diagonal matrix, and the regularization parameter
matrix § is chosen diagonal with positive entries. Theorem 6.3.3 then results in
the shifted eigenvalue problems

U,S=KU-,
U,S=KU,

where K = ®C®" is a symmetric positive-definite kernel matrix. The symme-
try of the kernel matrix implies that U; = U, ensuring that the dual problem is
the eigenvalue decomposition of the kernel matrix i.e. K = USU". Linear PCA is
recovered by choosing @ = X.
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6.4.6 HIGHER-ORDER KPCA

Theorem 6.3.3 makes it possible to define a higher-order kpcaA which considers
higher-order interactions between the (mapped) data. Consider e.g. three identi-
cal features ®@; = ®, = ®3 = ® and akin to KPCA a supersymmetric compatibility
tensor € and positive superdiagonal regularization .. Then by Theorem 6.3.3
the dual optimization problem is

U1S=K (U3 U>),
U,S=KU;oU),
U3S=K U, o U;),

where K = K1) = Kp)=:K) and Sy = Si2) = S3)=:§ by construction. Conse-
quently by the orthogonality of U, U, and Us it follows that Uy = U, = U3 =:U,
resulting in US = K(U ® U). Examples of kernel tensors that encode said higher-
order interactions are the polynomial and exponential kernels in Example 6.4.2
[35, 36].

6.5 RELATED WORK

As already mentioned, the development of a primal-dual formulation of PCA was
carried out by Suykens et al. [8], but the idea to kernelize the method is older and
generally attributed to Mika et al. [7].

The svD was cast in the primal-dual framework by Suykens [9], who proposed
to kernelize the approach. This idea was recently further developed by Tao et al.
[10], who proposed to use the compatibility matrix to build asymmetric kernels
departing from standard symmetric and positive-definite kernels. Tao et al. [10]
also extended the Nystr6m method in order to efficiently approximate said asym-
metric kernels, enabling to fully exploit the computational advantages that stem
from the primal KSVD optimization problem. Chen et al. [39, 40] proposed to
decompose the self-attention kernel matrix in Transformer networks [41] using
the primal formulation of the kSvD. This enables to fully capture its asymmet-
ric nature in contrast with the existing alternatives, which consider only the row
or column-space and are therefore effectively discarding information. He et al.
[42] considered asymmetric kernels in the Ls-svM primal-dual formulation and
consider applications in the context of directed graphs, where asymmetry is nat-
urally present. He et al. [43] extended the celebrated Random Fourier Features
(RFF) [44] kernel approximation framework to handle asymmetric kernels.
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The MLSVD and the related Tucker decomposition [45, 46], which relaxes the
orthogonality constraint on the factor matrices, has applications in signal and
image processing, computer vision, chemometrics, finance, human motion anal-
ysis, data mining, machine learning and deep learning. We redirect the interested
reader to the survey papers of Kolda and Bader [32], Cichocki et al. [34], Cichocki
et al. [47], and Panagakis et al. [48]. Kernelizing the MLSVD was attempted by Li,
Du, and Lin [49] and Zhao et al. [50] who proposed to map each unfolding of a
data tensor to the same feature space, whose left-singular vectors are the factor
matrices of the decomposition. The approach can be easily encompassed in Def-
inition 6.3.2, which is more general as it allows for asymmetry and permutational
variance by selecting the core tensor appropriately.

6.6 CONCLUSIONS, FURTHER RESEARCH AND
APPLICATIONS

In this paper we extend the Lanczos decomposition theorem to the tensor case,
enabling us to cast the MLSVD as a primal-dual optimization problem. This al-
lows for a straightforward nonlinear extension in terms of feature maps in the
primal, whose associated dual optimization problem is then the MLSVD of a ker-
nel tensor. Importantly, the presented optimization framework recovers as spe-
cial cases both svD and pcA. Besides the nonlinear extension, the benefits of
having the MLSVD defined in terms of a primal and a dual optimization problem
are computational in nature. In particular, the practitioner can opt for solving
the cheapest optimization problem given the circumstances. The primal formu-
lation, as typically the case in kernel methods, is more convenient when deal-
ing with large sample sizes and relatively small features, while the dual allows to
tackle the case where the features are large w.r.t the number of samples, or even
infinite-dimensional.

In our opinion, further research is needed, specifically focusing on the theory,
analysis, and design of kernel functions with more than two vector inputs. This
research could explore the design of generally applicable kernel functions, such
as the e.g. the ubiquitous Gaussian kernel in the two input case, or be driven by
specific applications. An interesting research direction would then also consist
in investigating the possible decomposition or approximation of said kernels us-
ing feature maps and core tensors, in order to fully leverage the computational
advantages of the primal formulation. The proposed approach can in principle
be utilized as a nonlinear extension of MLSVD and thus be employed whenever its




136 6. A KERNELIZABLE PRIMAL-DUAL FORMULATION OF THE MLSVD

linear counterpart is used, which means e.g. for feature extraction, signal anal-
ysis, image processing and computer vision. An notable area of possible appli-
cation is deep learning, where the primal formulation of the MLSVD could be
applied to approximate nonlinear kernel tensors which often arise. Two exam-
ples are the activated convolution kernel in Convolutional Neural Network (CNN),
which thus far has been trained decomposed in Tucker form before being acti-
vated, or generalizations of the self-attention mechanism in Transformer having
multiple attention vectors instead of only queries, values and keys.
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A A PRIMAL-DUAL FORMULATION FOR THE MLSVD

For completeness we present the generalized Lanczos and primal MLSVD opti-
mization problem for any tensor of order D.

Theorem A.1 (Generalized Lanczos decomposition theorem). An arbitrary rank-
(R1,R>,...,Rp) tensor & € RNVN2*Nb can be written in MLSVD form, i.e. as in
Eq. (6.1) with core tensor.# € RV Rex*Ro gnd D semi-orthogonal factor matrices
U, € RNa*Ra defined by the following set of equations

UiS@a)=XaUp®Up-1©Ug41©Ug-1 -0 U), (.14)
with the D additional constraint that S[d)S(T «) are positive diagonal matrices.

Proof. The proof is divided in two steps, first we show that the D factor matrices
U, are semi-orthogonal, second we show that indeed Eq. (.14) implies the MLSVD
i.e. Eq. (6.1). We begin by left-multiplying each side of Eq. (.14) respectively with
Ug, resulting in equations of the form

U U8 =U;Xa)(Up®Up_18Uz 18Uy ®---0UY), (.15)

By construction, the right-hand sides of Eq. (.15) are different unfoldings of the
same tensor 2 € RR1*F2x*Ro for any choice of 2 and Uy;. Vectorizing both sides
of the equation yields

g, ®Ig, ,® - ®UsU;®--® I ) vec(¥) = vec (D),

Equating any two left-hand sides out of the (? ) pairs of equations results in Ug U, =
d (trivial solution), which we do not consider, or if U;Ud is full-rank and thus
invertible, and by from the mixed-product property, see Loan [33] the equality
holds if and only if (Ug Up'l=1Iz ,- Repeating the argument with at least [%]
unique pairs out of the ([2) ) pairs of equations yields, apart from the trivial U; = 0
solution,

U U, =1y, (.16)

which implies that any Uy is semi-orthogonal. Right-multiplying both sides of
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Eq. (14) by §{, U] yields

UaSa)SiyUy=XaUp®Up 180Uz ®Uy_1®---U)S,Uy.  (17)

The left-hand side is the eigendecomposition of the right-hand side of Eq. (.17)
due to the assumption that S, S(T ) are positive diagonal matrices (eigenvalues)
and the above proof that U, are semi-orthogonal matrices (eigenvectors). From
Eq. (.17) it follows that U, is an orthogonal basis for the column space of X4,

and likewise for the other unfoldings. We can therefore write
UaSa)SiyUy=UqRy(Up&Up 18---8Us,18Us_18---U)S U, (18)

where R; € RRa*NpNp-1-Naw1Na-1Ni gre general coefficient matrices. From Eq. (.18)
follows that

Say=Ry(Up®Up-1®--0U; 10U, 1©---U1), (.19)
which by the semi-orthogonality of Uy is satisfied if and only if
R;=84(Up®Up-1®---0U 19U, 1®---U1), (.20)

Substitution of Eq. (.20) into X(4) = U; R; we conclude that
vec(¥X) = (Up®Up-_1 ®---® Uy)vec(¥), whichis the defining Eq. (6.1) of the MLSVD
as in Definition 6.2.1. O

Definition A.2 (Primal MLSVD optimization problem). Given D feature matrices
®; e RNM @, e RN2M2 | @y e RVND*MD a compatibility tensor 6 € RM1xMx--xMp
and regularization parameters . € Rf1*R2**Rp e define the primal optimiza-
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tion problem as

max ](Wl,...,WD,El,...,ED)IZ
w,...,Wp,Ey,...Ep

1 D
32 Tr(Ed (s(d)s(Td))—lE},“) —(D-1)vec(©)T Wp®---® W) vec ()
d=1

+ Vec(<€)T(<I)1T)(I>D®~-®<I){<D1)Vec(<€)
such that: E; = @, Cqoy (Wpe---ea W38 W) Sa),

EZZ(I)ZCQ) Wpe--- W30 W) Sé),

Ep=®p C(D) (Wp_1®---0 Wr @ W) SEFD)'

Definition A.2 reduces to Definition 6.3.2 when D = 3.

Theorem A.3. The primal optimization problem of Definition A.2 is equivalent to
the MLSVD of the tensor & € CNV*Nox*Nb The tensor & is defined as

vec(A)=(®Pp®---0 D, ® D) vec(F). (.21)

Proof. The corresponding Lagrangian for the optimization problem in A.2 has
D Lagrange multiplier matrices Uy, ..., Up. We write out the KKT conditions for
W1, E; and Uj, as the remaining conditions are similar.

8z _ _ T _ o ® Uyt et @
oW, =0 <<= (D-1) C(l)(WD® ®W2) S(l) = C(l) (WD® ®(I)2U2+ +(I)DUD®
1 .

(D-1) terms

The KKT conditions for the remaining weight matrices will have similar form and
all equalities are trivially satisfied when W; =0 or W; = CI)Z U, (1 =d < D). Setting
the partial derivative of the Lagrangian with respect to E; to zero results in the
condition

0Z

_ _ T
B_El =0 E; = Uls(l)S(D,

and likewise for the other error matrices. Substitution of Wj and E; into the con-

T
S
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straint results in

UIS(US(TU =@,Cyp Wpe---eW;8 W>) Sa),
=@, Cy) ()@ 0®;y) (Upe---aUs)S),,
=K(1) Up®---0U>) S(l)'

which is the first equation of the generalized Lanczos theorem. A similar con-
struction applies for the remaining equations. O

Corollary A.4. The MLSVD solution of the dual problem in Theorem A.3 results
in a zero objective function (J = 0) in the primal optimization problem of Defini-
tion A.2.

Proof. Plugging in the KKT conditions for Ej,..., Ep and Wi, ..., Wp into the pri-
mal objective function J results in

- Z T (Ea (Sta) Siy) ™" Ey) - (D=1 vec ()T (Wp -+ © Wa @ i) vec ()
d

(D- 2)
+

vec (Jf )" vec (X))

2
D
== Y Tr(UaSw Sty Uj | - (D= Dvec(#)" (@) Up 9 -+ @ @)U 8 @] Uy) vec ()
d=1

+— Vec(Jf) vec (A)

N»—tl\:l»—a

D (D-2) T
:(E_(D—1)+ 5 )vec(J,f) vec(A) =0.



CONCLUSION

This thesis has made contributions to the understanding and application of Ten-
sor Networks (TNs) in the context of kernel machines. By exploring the interplay
between TNs and kernel machines, we have developed novel methodologies that
enhance the scalability and efficiency of kernel-based models, while also uncov-
ering theoretical connections to Gaussian Processes (GPs) and optimization.

The first major contribution of this work lies in demonstrating how TNs can
be leveraged to accelerate and scale kernel machines. By imposing low-rank
TN constraints on the tensorized model weights, we have shown that it is pos-
sible to learn kernel machines with linear complexity in the dimensionality of
the data while implicitly approximating kernel functions up to machine precision.
This was achieved through the exploration of Fourier features for the approxima-
tion of stationary product kernels in Chapter 2, Nystr6m approximations for the
approximation of arbitrary product kernels in Chapter 3, and quantized mod-
els in Chapter 4. The quantized TN-constrained models, in particular, offer a
compelling advantage by achieving higher Vapnik—Chervonenkis (vC)-dimension
bounds with fewer parameters, enabling faster learning without sacrificing any
model expressivity.

The second key contribution is the establishment of a theoretical connection
between TN-constrained kernel machines and Gps. In Chapter 5, we demon-
strated that under appropriate priors, CPD and Tensor Train (TT)-constrained mod-
els converge to GPs as the ranks of the TNs approach infinity. This result not only
provides a deeper understanding of the relationship between these models but
also offers insights into their generalization behavior, depending on the training
regime.

Finally, in Chapter 6, we characterized the MLSVD in terms of primal and dual
optimization problems. This formulation opens new avenues for kernelizing TNs
and paves the way for future applications in machine learning and data analysis.
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In summary, this thesis has advanced the field by providing scalable and ef-
ficient methods for training kernel machines using TNs, uncovering theoretical
connections to GPs, and offering new perspectives on optimization problems in
tensor decompositions. These contributions not only enhance the practical util-
ity of kernel machines but also deepen our theoretical understanding of their un-
derlying structures.

G.1 FURTHER WORK

Several promising directions for future research emerge from this work, which

can further deepen the understanding and expand the applicability of TN-constrained

models.

One of the most compelling avenues for future research is the development
of probabilistic TN-constrained kernel machines and TN-constrained Gps. While
this thesis has established a theoretical connection between TN-constrained mod-
els and GPs in the infinite-rank limit, further research could focus on developing
different kinds of TN-based probabilistic models e.g. by approximating the full
or weight-space GP posterior using tools such as variational inference or Monte
Carlo Markov Chain (MCMC) in conjunction with the priors developed in this
thesis. Importantly, developing such probabilistic TN-constrained kernel ma-
chines could enable uncertainty quantification, which is critical for applications
in decision-making and risk-sensitive domains. Future work could also explore
the integration of hierarchical priors or non-Gaussian likelihoods to enhance the
flexibility and expressiveness of these models.

The scalability and efficiency of TN-constrained models, in particular when
quantized, make them particularly well-suited for applications where memory
and computational resources are limited. An example of such application is the
field of seizure detection, where models that can operate with reduced memory
and computational requirements are crucial for real-time processing on portable,
low-power devices. These devices, such as wearable EEG monitors, must effi-
ciently process large amounts of data without draining the battery or requiring
constant access to cloud-based resources. The reduced size and complexity of
quantized TN-constrained models make them an ideal candidate for deployment
in such resource-constrained environments, allowing for faster response times
and improved user experience without compromising accuracy. The early re-
search by De Rooij, Wesel, and Hunyadi [1] provides a strong foundation for fur-
ther development and optimization of such models for deployment in resource-
constrained environments. Future research should focus on identifying and de-
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veloping new applications where such simple yet powerful models are necessary.
For example, in edge computing, mobile devices, embedded systems, internet of
things devices, or real-time systems, the ability to deploy compact models with-
out sacrificing performance is crucial.

The primal-dual formulation of the MLSVD introduced in this thesis opens up
exciting possibilities for its application. Future work can focus on developing
optimization algorithms that leverage the primal-dual formulation of the MLSVD
allowing to fully reap the computational and storage benefits of the primal for-
mulation. Another logical line of research lies in embedding the primal formula-
tion of the MLSVD into deep learning architectures to approximate latent tensorial
structures within these models, similarly to what has been done with the svD [2].
For instance, investigating how the MLSVD can be used to impose low-rank struc-
tures on the weights of deep neural networks could lead to more efficient training
and inference, while exploring its use for interpretability and compression could
reduce the memory and energy footprint of large-scale models.

Finally, further theoretical and algorithmic advancements are needed to fully
realize the potential of TN-constrained models. Key areas of focus include auto-
matic rank adaptation, where adaptive methods for selecting the ranks of TN-
constrained models could balance expressiveness and efficiency, scalable op-
timization, where designing algorithms for training TN-constrained models on
large-scale datasets could leverage distributed computing or stochastic optimiza-
tion techniques, and generalization bounds, where deriving tighter bounds com-
pared to the state-of-the-art ones by Khavari and Rabusseau [3] could lead to
better understanding of the learning capabilities and limitations of these mod-
els. In conclusion, the research presented in this thesis has opened up numerous
exciting directions for future work. By exploring these avenues, we can further
advance the field of TNs and kernel machines, enabling the development of more
efficient, interpretable, and powerful models for a wide range of applications.







(1]

[2]

(3]
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