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ARTICLE INFO ABSTRACT

Keywords: The growing integration of renewable energy sources (RES) into power grids has introduced significant opera-
Distributed optimization tional variability, amplifying the need for robust flexibility solutions to maintain grid reliability. Demand-side
Flexibility

resources, such as flexible loads and electric vehicle (EV) fleets, present cost-effective avenues for balancing
supply and demand dynamics. This study proposes a decentralized bi-level optimization framework to enhance
the utilization of demand-side flexibility and energy storage systems while ensuring market participant privacy.
A Virtual Storage Plant (VSP) model is introduced to coordinate distributed energy storage assets under the
supervision of the Transmission System Operator (TSO). The upper-level problem represents the TSO's strategic
planning, while the lower-level problem addresses the operation of VSPs, EV parking facilities, and flexible loads.
To optimize market interactions and minimize information exchange between the TSO and service providers, an
adaptive Alternating Direction Method of Multipliers (ADMM) is employed. The proposed framework is validated
using a 30-bus power transmission system, solved through the GUROBI solver within the GAMS environment.
The results indicate an 18.7 % reduction in energy balancing costs and a 12 % decrease in transmission losses,
alongside a 60 % improvement in convergence speed, demonstrating enhanced coordination, cost efficiency, and
privacy preservation.

Virtual energy storage systems
Electric vehicle fleets
Renewable energy sources

1. Introduction in emerging renewable-based power systems underscores the urgency

for new business models that exploit the potential of demand-side re-

1.1. Context and motivation

The integration of RESs and EV fleets provides economic and envi-
ronmental benefits but also creates operational challenges for distribu-
tion system operators, including supply-demand imbalances, voltage
issues, and congestion [1-3]. To manage these challenges, renewable-
based systems increasingly rely on flexible services. Prosumers with
flexible loads (FLs) in smart buildings and EV parking lots can support
balancing at low cost [4,5], while storage technologies such as batteries
(BES), pumped hydro (PHES), and compressed air storage (CAES) offer
additional flexibility [6,7]. Meanwhile, VSPs are known as interfaces
that are able to control coordinated grid-connected storage systems
according to the pulses received from system operators. In modern
power systems, VSPs strategically manage the charging/discharging of
covered storage systems to address the system's flexibility needs, thus
mitigating energy production/consumption fluctuations and enhancing
operational stability [8,9]. The marked rise in operational uncertainties
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sources and VSPs [10]. These imperatives motivate this paper to propose
a bi-level business model for flexibility markets, aiming to unlock the
capacities of demand-side resources and VSP-supervised storage, ensure
participant privacy, achieve market efficiency, and improve technical
performance.

1.2. Literature review

The proliferation of RESs has intensified uncertainties in power
systems, motivating extensive research on prosumer-integrated flexi-
bility markets. In this context, [11] proposes a hierarchical model for the
European balancing market, coordinating distribution and transmission
networks with controllable resources such as distributed generation and
EVs, achieving reduced planning costs under decentralized operation.
[12] introduces a two-level Stackelberg game for cooperative trans-
actions between distribution networks and VPPs, showing increased
profits and improved cost efficiency. [13] provides a taxonomy of local
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flexibility market solutions for congestion management, offering prac-
tical recommendations based on ongoing implementations and expert
input. Finally, [14] proposes a two-level model for flexible resource
participation in energy, reservation, and balancing markets, showing
higher profits through joint optimization of active and reactive services
across grid levels.

Several studies have investigated the role of VSPs in modern power
systems, underscoring their potential to deliver significant and cost-
effective flexibility. [8] proposes a control approach for VSPs to
manage non-programmable renewable sources by coordinating resi-
dential loads and distributed batteries, achieving peak shaving and
balancing without additional compensation actions. [15] develops a
two-stage VSP model using thermostatically controlled loads (TCLs),
where lower-stage scheduling ensures consumer comfort based on dis-
tribution locational marginal price, and upper-stage coordination be-
tween DSO and TSO enhances system flexibility and balance. [16]
analyzes merchant-owned BESs acting as VSPs in the day-ahead market,
formulating the problem as a mixed-integer linear program (MILP) and
extending it to a multi-VSP game. Results on the IEEE RTS-96 system
show their impact on locational marginal prices and highlight differ-
ences between coordinated and competitive VSP participation.

Recent studies address flexibility and renewable uncertainty through
different strategies. Demand response with telecom-based coordination
reduces costs but depends on reliable communication [17], while large-
scale multi-energy bases with storage and carbon capture improve long-
term planning [18]. Hydrogen-based systems with fuzzy scheduling
enhance operational flexibility [19], and game-theoretic models guide
the deployment of charging stations for electric vehicles [20]. Integrated
designs for hydrogen-ammonia production [21] and optimized
hydrogen liquefaction [22] reduce costs and curtailment, while multi-
timescale dispatch in solar charging stations [23] and carbon flow
mapping [24] improve coordination and traceability. Further progress
includes risk assessment of lightning in distribution systems [25], digi-
talized demand response in industrial processes [26], electric bus
scheduling with charging constraints [27], and wind power error
correction considering load patterns [28].

The assessment of previous research reveals that while numerous
researchers have applied the ADMM to establish decentralized coordi-
nation in flexibility markets, there remains a need for enhancements to
ensure rapid convergence and attainment of the global optimal solution.
Several studies have utilized this algorithm for various purposes: For
instance, [29] propose a decentralized ADMM-based algorithm for inter-
DSO local electricity markets that preserves DSOs' privacy by
exchanging limited aggregated signals, but they rely on fixed penalty
parameters and do not provide adaptive penalty updates per interface or
show empirical iteration savings as large as we report. [30] consider
multiple TSO-DSO market models with different information sharing
schemes and prove that common markets are more efficient; however,
their ADMM decompositions still assume fixed coordination structures
and do not exploit mixed integer storage or flexible loads jointly under
changing coupling signals. In [31] the focus is on peer-to-peer energy
trade and ancillary services in distribution grids, which emphasize to-
pology and information sharing but not a full bi-level intraday balancing
market with guarantee of global optimality under mixed integer con-
straints. [32] explicitly address uncertainty in local flexibility markets
and imbalance mitigation, but their model does not jointly coordinate a
VSP managing BES, PHES and CAES in combination with EV parking lots
and flexible loads under adaptive penalties. Finally, [33] consider in-
vestment and distributed resource allocation for flexibility under TSO-
DSO coordination, but their approach mostly centers on planning/in-
vestment horizons and less on high-resolution intraday operational
market clearing with strong convergence speed improvements. In
contrast, our adaptive ADMM guarantees convergence to the same
global optimum as the standard ADMM, achieves significantly faster
convergence, and requires only the exchange of aggregated price and
quantity coupling signals, without revealing detailed states, dual
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variables, or internal forecasts, making it more suitable for practical
intraday balancing markets with strict privacy requirements.

1.3. Research gaps

The review of existing literature highlights several important gaps:

Fragmented resource coverage. Previous works typically consider a
subset of flexible resources, such as distributed storage, EVs, or
flexible loads, but do not provide a unified market mechanism that
jointly integrates all of them. In particular, the joint coordination of
VSP-controlled BES, PHES, and CAES, together with EV parking fa-
cilities and flexible loads, within a single intraday balancing market
has not been comprehensively addressed.

Centralized or single-layer coordination. Many studies adopt
centralized clearing approaches or hierarchical structures with
extensive information exchange. This raises privacy concerns and
creates communication burdens that limit scalability. A fully
decentralized approach with limited information sharing across in-
dependent actors remains insufficiently developed.

Convergence limitations of standard ADMM. While ADMM has been
widely applied in flexibility markets, most implementations use fixed
penalty parameters, which often slow convergence or risk stalling in
large-scale problems. There is a need for adaptive mechanisms that
accelerate convergence without compromising optimality.
Insufficient empirical quantification. The literature does not
adequately quantify the combined technical and economic impacts
of integrating multiple demand-side and storage resources into
intraday balancing markets, nor does it benchmark the convergence
speed of adaptive vs. standard ADMM approaches.

1.4. Contributions
This paper addresses these gaps with the following contributions:

e A comprehensive bi-level market framework. We formulate the
intraday balancing market as a bi-level MIQCP, where the TSO
(upper level) minimizes balancing costs, and the balancing service
provider (lower level), namely VSP, maximize its profits.

e A VSP coordinating multiple technologies. The VSP jointly schedules
BES, PHES, and CAES systems, aligning charge/discharge actions
with TSO balancing signals, and thereby ensuring both VSP profit-
ability and system-level cost reductions.

e An adaptive ADMM algorithm. We introduce a novel variant of

ADMM where penalty coefficients are updated per coupling interface

and exchange prices are iteratively adjusted. This mechanism ac-

celerates convergence, achieving the same optimum as standard

ADMM but with up to 60 % fewer iterations.

Quantified benefits from integrated demand-side flexibility. Using a

modified IEEE 30-bus system with 15-minute resolution, we

demonstrate that sequentially activating VSP, flexible loads, and EV
parking lots yields a total 18.7 % reduction in daily TSO balancing
costs, a 12 % reduction in transmission losses, improved voltage
profiles, and a 60 % faster convergence compared to standard
ADMM.

Together, these contributions demonstrate that the proposed model
not only advances the state of the art in decentralized market design but
also provides measurable operational and economic advantages over
existing studies.

2. Proposed model outline
The focus of our model is on unlocking the maximum flexible

demand-side capacities, along with various storage systems, to meet the
cost-effective balancing needs of renewable-based power systems. These
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Fig. 1. The architecture of the proposed bi-level model.

needs arise from real-time changes in RESs production and system load
demand. We assume that the day-ahead (DA) energy market is already
settled, and its results are published. To simulate system unbalancing in
the intra-day horizon, we introduce white noise using the Gaussian
distribution function to the parameters related to RERs production and
load demand obtained from energy market. The proposed intra-day
balancing market addresses this production-consumption imbalance
with a 15-minute step.

In this paper, the VSP is defined as an aggregator that jointly co-
ordinates multiple large-scale storage technologies, namely BES, PHES,
and CAES. Rather than representing a single storage unit, the VSP acts as
an interface between these heterogeneous assets and the TSO, receiving
aggregated balancing signals (upward/downward capacity and prices)
and optimizing the charging/discharging schedules of its portfolio
accordingly. This interpretation is consistent with the general role of
VSPs in the literature as aggregation mechanisms, but here it is applied
specifically to the coordination of large-scale storage technologies,
ensuring both operational efficiency and limited information exchange
with the TSO.

Fig. 1 provides an overview of the bi-level model proposed in this
paper, with the TSO in the upper level and balancing service providers in
the lower level. In our model, the TSO is responsible for addressing the
balancing needs of its service area by utilizing the available capacities of
balancing service providers, including FLs, EV parking lots, and the VSP.
The TSO also controls the production planning of thermal units within
the transmission network. VSP controls all storage systems connected to
the grid, including BESs, PHESs, and CAESs, scheduling their charging
and discharging to maximize profit from the balancing market, based on
the balancing pulses received from the TSO. FLs and EV parking lots also
function similarly to VSPs, maximizing profit based on pulses received
from the TSO. These pulses express the required upward/downward

active powers and exchange price of these services. To ensure conver-
gence of the upper and lower levels at the global optimal point with
limited information sharing, an adaptive ADMM is presented. Conver-
gence is achieved iteratively, subject to a stopping condition. The ex-
change price of balancing services, defined as an input parameter in the
first iteration, is updated in each iteration based on the scheduling dif-
ferences of the TSO and balancing service providers. Updating this price
and penalty terms, included in the objective functions of all market
players, leads to convergence of the proposed adaptive ADMM.

3. Mathematical formulation

In the following, the proposed bi-level model is formulated as a
Mixed-Integer Quadratic Constrained Program (MIQCP). The indices f,
v, p, & w and s refer to FL, VSP, EV parking lot, dispatchable units, wind
farm and PV farm, respectively. Additionally, indices t, i and [ respec-
tively refer to time, bus, and line. Note that letters adorned with a hat
symbol (") denote parameters obtained from the energy market.

3.1. Objective functions

In Eq. (al), the upper level objective function is described, through
which the TSO aims to minimize the balancing costs of the transmission
system within the intraday balancing market. This function incorporates
the costs paid to balancing service providers for covering energy im-
balances in the transmission system. A", 25", and ;%"
cost per megawatt of services purchased from FLs, EV parking lots, and
VSP, respectively. These costs are input parameters in the initial itera-
tion of the ADMM algorithm. In subsequent iterations, they are updated
based on the ADMM penalty coefficients and the discrepancies between
the upper and lower level planning outcomes. It is assumed that the

represent the
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Fig. 3. Use case: Modified IEEE 30-bus test system [38].
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Table 1
Specifications of case studies.
Case  Balancing service providers Coordinator
Dispatchable VSP  FLs EV parking
units lots
Proposed adaptive
c ’ * * * ADMM
Proposed adaptive
Cc2 4 v x x ADMM
Proposed adaptive
C3 4 4 v x ADMM
Proposed adaptive
C4 v v v v ADMM
C5 v v v v Original ADMM

operating points of dispatchable units are determined in the DA energy
market. If their operating points are adjusted in the intraday balancing
market, the TSO compensates them accordingly. Specifically, if their

. o Pendlty .
operating points increase, they are compensated at the Cf W price,
and vice versa.

LU LD , .
;l}‘l{ <P}7t Py PfF 0wn> T Z}*ﬁ‘rm (P§¥PL U | P§¥PLDuwn)
P
minOF™ = Z

In Egs. (a2)-(a4), the lower level objective functions are outlined,
corresponding respectively to FLs, EV parking lots, and VSP. These
objective functions aim to maximize the profit of the service providers.
Eq. (a2) illustrates that the FLs' objective function is modeled as the
difference between revenues from providing upstream/downstream
services to the market and the costs associated with load demand in-
creases/decreases. Following a similar approach, Eq. (a3) details the
objective function for EV parking lots. Eq. (a4) indicates that the profit
for VSPs is calculated as the difference between revenues from offering
upward/downward services to the market and the costs for charging or
discharging storage systems.

FL { pFL.U] .De
§f At (PR )
maxOFfL = E At (a2)
L,Up pFL.Up .Down pFL.Down
BRICACARTI

Z lﬁVPL (PII;ZYPL,UP i PSYPL,DUWH)
maxOFfVPL:Z P At
EVPL.Up pEVPL,Uj EVPL.D VPL D
e s g
P
@3)

Z 4VSP ( pVSPUP 4 PVSP,Dawn)

v vt vt

maxOF/*f = Z Y At (a4)
n 72 ( C“,/SP‘Up PXL?P‘UP T C|\//SP.Down P|\//fP.Down)

v

3.2. Operational constrains

3.2.1. Power flow program

Linearize AC optimal power flow (OPF) program is detailed in (b1)-
(b8) [34]. Eq. (bl) expresses the relationship between the voltage
characteristics of the busbars at the beginning and end of each line with
active power. The corresponding relationship for reactive power is

n _,’_Z /IK“EP ( P]\:fP,Up + PKfP.Down) + ch,Penalty (Pg.tUp _ Pg,tDown)
v &
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articulated in Eq. (b2). Eq. (b3) outlines the method for calculating
losses, which considers the active and reactive power flowing through
the lines as well as the resistance of the line. Eq. (b4) specifies the
voltage magnitude limits for network buses. The voltage angle limits for
grid busbars are given in Eq. (b5). Eq. (b6) caps the active and reactive
power flows to line capacities. The power balance relationship for each
bus is delineated in Eq. (b7), requiring that the power input to each bus
equals the power output from that bus. Eq. (b8) models the balance of
reactive power at each bus. Energy unbalancing is introduced into the
model through a parameter generated using the Gaussian distribution
function (w), creating white noise on the load demand and RESs pro-
duction parameters. It is noted that the proposed balancing market is
held to address this energy unbalancing.

L
PFlaw Pl.‘tm

Shase = G1(Vie—= Vi) +Bu(0uc — 030) +—— 1)
Qfl["w =Bi(Vi: -V, G (6. —0 (b2)
SBase l( it — j.t) - l( it — j,[)
At (al)
2 2
R {(Pﬂw) + (@) }
Pﬁ)ss = sBa_se (bS)
V<V < VR (b4)
o < Gy, < O™ (b5)
2 2 2
(Plf:iow> + (Q{'ltow) < (Sflow,max) (b6)

S (B pem ) S (Pl ) 4 3 (bl

ge0f seQf weQy
+ Z (PIIE}[/PL,UP 7PPE‘\t/PL.Down) + Z (Pffs,Up _ PffS.Down)
pe@f veQy
+ Z (PSI;IES‘UP _ P‘ijES.Down) + Z (Pll}’iU.Up _ PgﬁU.Down)
veQy veqy
+ Z (PE/[{ES.UP _ PS:?ES.Down) A Pft 4 Z peAEss +Z’<il Pﬁow
veqy # = veqy 1
®7)
SN ADY Q@+ QN =w.Qh LTt > kaQr” (b8)
1 1= l

5 W
geﬂf 5€Q8 weQ)

3.2.2. Generation units

Constraints related to the utilization of generation units are outlined
in Egs. (c1)—(c7). Eq. (c1) specifies the limitation on active power gen-
eration by dispatchable units. ﬁgt represents the generation point of
dispatchable unit g in the DA energy market; Pg'tUp and Pg'[D oW respec-
tively indicate the increase and decrease in the generation point of
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Fig. 4. Information on load demand, wind, and irradiance.

dispatchable unit g in the intraday balancing market. The limit on
reactive power for dispatchable units is defined in Eq. (c2). In Eq. (c3),
the operating point of dispatchable unit g at time ¢ is determined based
on the upward and downward services it provides. Eq. (c4) calculates
the power output of solar energy per hour. Given the dependency of the
reactive power of solar power plants on its active power, Eq. (c5)
specifies the permissible range for injection/absorption of reactive
power. Eq. (c6) determines the output active power of wind farms,
considering the hourly wind speed and the technical specifications of the
turbines. Eq. (c7), on the other hand, calculates the reactive power
absorbed or injected by the wind farm.

minG _ pG G.Up __ pG.Down ax.G
ppinG < pg + PGP — pEPov < P (cD)

Q;nin.G S Qgt S leax,G

_ pG G,Up G.Down
P§, = Pg, +P5” —Pg

P < pvRew Srate
st — 7’] RSTC s

— 9P

IA

QY < 9P,

.St

(c2)

(c3)

(ch

(c5)
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Table 2 Table 3
Information on generation units, storage systems, FLs and EV parking lots. Numerical results for case studies.
Dispatchable units Case Daily costs ($)
tudi
Number Connected bus Capacity (MW) Marginal cost ($/MWh) studies Dispatchable VSP FLs EV Sum
1 1 25 23 units ﬁ)atrsklng
2 22 25 21
3 27 20 27 C1 21329 - - - 2132.9
4 13 30 35 c2 1477.7 511.0416 - - 1988.7416
C3 1115.8 453.744 303.0825 - 1872.6265
C4 705.6 453.5784 303.5655 270.48 1733.2239
C5 705.6 453.5784 303.5655 270.48 1733.2239
Renewable energy sources
Wind farms PV farms
Number  Connected Capacity Number  Connected Capacity 0 L Ve < chvl or V, > V‘CV“
bus (MW) bus (MW) Vv
e — .
1 2 20 1 23 10 Pyl < Pf,“terv",' , VWSVe<y, (c6)
2 20 10 2 15 7 w w
ate T 0
3 29 20 3 28 10 prae L VSV <V
— 9P < QYT < 8uP)T (7
VSP-controlled energy storage systems
Type Connected bus 3.2.3. EV parking lots
BES 2-15-20-23-28-29 In Egs. (d1)-(d9) the restrictions related to the parking of EVs are
PHES 9-19 presented [2]. In Eq. (d1), the initial charge of EVs is determined using

CAES 10-25 the normal distribution function with mean y and variance ¢. In Eq. (d2),

the charge level in the battery of EVs is determined every hour. This
charge level is a function of the charge level of the previous hour
(SoCe ;1) and charge (ngft) or discharge (vai_st) in the current hour. The
maximum hourly charge and discharge limits are provided in Egs. (d3)
and (d4), respectively. The level of energy that can be stored in the EV
1 3 400 4 16 370 battery is limited in Eq. (d5). It is stated in Eq. (d6) that the level of

EV parking lots

Number  Connected Number of Number  Connected Number of
bus EVs bus EVs

§ 1‘;’ igg 2 52 i?g energy stored in the car when the EV leaves the parking lot must be

within the predetermined allowed range. This value for energy and

density markets is set equal to the average of the two minimum

Flexihle loads (SoCDepartureminy and maximum (SoCOPT™ M) charging levels. In order

T p ond - 9 ond to prevent simultaneous charging and discharging of the vehicle, the
t t N . 1 -

ype gz:nec ¢ (13;/\1) ype EE:HEC € (1\(:[?/\/) limit given in Eq. (d7) has been used. Considering that EV parking can

— - participate in the balancing market, in Eq. (d8) their participation

Residential 3 ! Industrial - 4 L5 amount for flexibility services is calculated according to the change of
Residential 20 0.9 Industrial 14 1.8 . . . .

Residential 29 11 Industrial 21 21 their charge and discharge amount. It is assumed that each parking lot

Ch
ev.t

covered vehicles, which it needs to change in order to participate in the
balancing market. Finally, in Eq. (d9), the reactive power injection/

has a preferred schedule for charging (PS") and discharging (P25) its
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absorption limit by parking chargers is determined according to the

0 < P, < PGrma SR, d3
active power consumption. ent == ent (d3)
SOCev,L:Am'val = FGaussian( ,0'2) (dl) 0 < PIe’vut — P[e)ftmaxlepvlst (d4)

is SoC™™ < S0C,y,; < SoCR™ (d5)

Dis

PD
50C,y; = S0Cpy,—1 + (PC" n n”‘) At (d2)
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SOC]ijarmre,min S SOCeV.t:Deparrure S Socgveparture.max (d6)
I+l <1 7
oo pper 5 (o) 3 (PR -pR) @)
eveszf;" eveﬂ;v
2 2 2
(PII:;‘[/PL‘DDWH + PSXPL.Up) n (QS‘[/PL) < (S§VPL.ChmgW) (d9)

3.2.4. Flexible loads

In Egs. (el)-(e6), the constraints related to flexible industrial/resi-
dential loads are detailed. Eq. (el) specifies the amount of active load
consumed at flexible points, including their participation in the

balancing market (Pi[_]g ;UD /P? fu“)'"’D ). Egs. (e2) and (e3) establish the
maximum allowable participation for reducing or increasing the load,
respectively. To prevent the simultaneous increase and decrease of load,
Eq. (e4) is introduced. Eq. (e5) prevents the load shedding in FLs.
Finally, Eq. (e6) computes the variations in reactive power at flexible

points, based on changes in active power.

P, =Py — PP P (e1)

0 < PPP < ol plocdp? (€2)

0 < PP < ™ P (e3)

L+ <1 (e4)

> PPPAr =Y PiPar (e5)
: :

o - it (e6)

3.2.5. Virtual storage plant

Energy storage systems under VSP control, including BESs, PHESs,
and CAESs, are modeled in Egs. (f1)-(h8). The operation of BES is
detailed in Egs. (f1)-(f7). Eq. (f1) calculates the energy stored in the
battery each hour, based on the hourly charge and discharge activities
by the end of each hour. Eq. (f2) establishes the hourly charging limit,
while the hourly discharge limit is defined in Eq. (f3). Eq. (e4) prohibits
simultaneous charging and discharging of the BES. Eq. (f5) delineates

10

the BES's capacity limit. Eq. (f6) guarantees that the energy level at the
conclusion of the scheduling period is equal to or exceeds the initial
energy level of the BES. Finally, Eq. (f7) specifies the initial energy level
in the BES.

BES _ p:BES wspown cn Pt "
EJS =EJF, + (Pfit Downy an) At (f1)
0 < PEESDown < pBES Ghamax pBES.Ch (£2)
0 < PEESUp < pBES Dismax BES Dis (£3)
[EESCh y pBESDEs < (f4)
EPFSmin < BES < pESmax (£5)
Eyer > EJ"PS (f6)
Eyio = EJ"P% 7)

Egs. (g1)-(g10) describe the operational dynamics and constraints
for PHES [35]. Egs. (g1) and (g2) calculate the upper and lower energy

levels of PHES at time t, factoring in the energy generated (PffES‘U" ) and

consumed (PY7EP"™) for pumping and generation, adjusted by their

respective efficiency (y°" and y™™), over the time increment At. Con-
straints (g3) and (g4) ensure these energy levels stay within predefined
upper and lower bounds. Egs. (g5) and (g6) set the maximum pumping
and generation activities based on the system's operational limits and
indicator functions (Iﬁ‘"’*’ and I%"), ensuring activities do not exceed
maximum capacities. Constraint (g7) prevents simultaneous generation
and pumping. Egs. (g8) to (g10) establish initial and final conditions for
energy levels, ensuring the final upper energy level is at least equal to
the initial input and defining initial upper and lower energy levels at the
start of the period.

ng _ Vg‘r’—l + (P‘Ij?ES.DoWnyPunm _ PsIgES.UpyGen) At (g1)
V\IZ?WH _ Vf‘zLWT n (PiltiES.,Up Joen PE‘IEES‘DOWH }/Pump) At (£2)
Vipmn < v < Ve (6
V‘['Jown.min S Vf‘fwn S Veownmax (g4)
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The operation of the CAES is detailed in Egs. (h1)-(h8) [36]. Egs.
(h1) and (h2) define the charging and discharging limits of the system,
respectively. The energy stored within the CAES is computed using Eq.
(h3). Eq. (h4) computes the power required to maintain the pressure in
the system's tank. The allowable range of capacity for storage in the tank
is specified in Eq. (h5). Eq. (h6) stipulates that the storage system
operates exclusively in either charging or discharging mode at any given
time. Eq. (h7) ensures that the pressure in the tank at the end of the
planning period is equal or greater than the initial pressure. Lastly, Eq.
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(h8) sets the initial pressure of the tank.

0 < PCABSDown o pCAES.Chmax [CAES.Ch (h1)
0 < PCAES.Up < pCAES Dismax [CAES Dis (h2)
ECABS _ pOAES | (PCAES \Down, Ch _ pCAES, UpyDu> (h3)
peAESS _ B + EvC?Ef /5 (h4)
ECABSmin o FCABS o FCABS max (h5)
JCABS.Ch | JCABSDis < (h6)
Ef’?E? > EIn CAES (h7)
ECABS _ pinCABS (h8)

3.3. Convergence process using the proposed adaptive ADMM

The proposed adaptive ADMM algorithm is described in Egs. (i1)-
(i16). In Egs. (i1)-(i3), the quadratic penalty terms related to service
providers are detailed. These terms should be incorporated into the
objective functions of FLs, EV parking lots, and VSP, respectively.
Additionally, all three of these penalty terms should be included in the
TSO's objective function. Incorporating these penalty terms into the
objective functions at both the upper and lower levels fosters conver-
gence of their respective programs. The penalty terms are formulated
based on the discrepancy between the schedule requested by the
transmission network and the final contribution from each source.
During each iteration of the proposed ADMM, the coefficients pertaining
to each service provider (¢ /pFVPL /V5P) are updated individually. It is
important to note that, unlike in the original ADMM method where this
coefficient remains constant, in the proposed adaptive version, it is
dynamically updated [37].

FI 2
n_? HPFL Up FL Up + PFL .Down PFLDDWn (i1)
2 2
gDEVPL . . 2
EVPL __ VPL.Up __ pEVPL,Up EVPL.Down __ VPL,Down :
Pen®™ == P A P (i2)
2
S| " || s DS DS & :
vsp __ VSP,.Up __ pVSP,Up VSP.Down __ pVSP,Down :
Pen - 2 ‘ Pv.t Pv.t + Pv.t Pv.t (13)
2

12

In Egs. (i4)-(19), primal (RE, ./REVEL /RySP ) and dual residuals
(REL . /REVEL /RYSP ) are calculated based on the discrepancies between the
upper and lower levels. According to these equations, it is evident that
the value of the primal residuals is determined by the disparity between
the services requested by the TSO and those provided by the service
provider. Meanwhile, the residual value of the dual problem is derived
from the variation in the exchange price of services across two consec-
utive iterations of the algorithm.

L,Uj FL Uj DFL.D 'L,De :

Rpvima = HPF P — pfyP 4 pflbovn _ prt-boun (i4)
2

FL FLk FL k-1 .
RDual - j’ft lft H2 (i5)

EVPL __ VPLUp _ DEVPLUp _ pEVPLDown _ pEVPL.Down s
RPn'mal - Hpﬁt Pp‘t + Pp.t P§ (16)

2

EVPL EVPLk EVPLk-1 :
RDual - /Ip.t - j'p.): H i7)

VSP VSP.Up __ DVSPUp | DVSP.Down __ pVSP.Down .
Ranal ‘ P Pv,t + Pv,t Pv.t (18)

2

VSP __ || ,VSPk VSPk—1 .

RDual =4 t A t H (19)

In Egs. (i10)-(i12), the exchange price of balancing services at
coupling points between the TSO and service providers is updated.
Meanwhile, Egs. (i13)-(i15) are responsible for updating the penalty
coefficients of the proposed adaptive ADMM based on the differences
between primal and dual residuals. This updating mechanism enhances
the convergence speed of the proposed adaptive ADMM, thereby
reducing the solution time. Egs. (i13)-(i15) specify that if the primal
residual is significantly larger than the dual residual, then the penalty
coefficient increases. Conversely, if the dual residual is significantly
larger than the primal residual, then the penalty coefficient decreases.
Additionally, if the difference between the primal and dual residuals is
not substantial, the penalty coefficient remains unchanged. The stop-
ping criterion is presented in Eq. (i16), based on which the algorithm
stops if the sum of primal and dual residuals is equal to or less than ®.
®is assumed to be 2e®

FLk

FLk—1 k L,Uj DFL.Up “DFL.D LD :
/‘lfr _j'f.t +¢H (P;t p_Pf_t P+Pf own_P}:‘ OW") (i10)
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Fig. 13. Voltage profile and transmission losses.

Relation to adaptive ADMM literature. Unlike global adaptive
schemes that tune a single penalty parameter from aggregate residual
ratios, the proposed mechanism performs interface-specific penalty
updates for each market coupling (TSO-VSP, TSO-EV, TSO-FL) and co-
updates the exchange price at every iteration. This joint penalty-price
update embeds the market's economic signal directly into the dual
step, improving stability when coordinating heterogeneous actors
(storage portfolios, EV parking, and flexible loads) within the bi-level
intraday balancing formulation. Importantly, the algorithm operates
with privacy-preserving aggregated signals (price/quantity) only, yet
converges to the same centralized optimum under our modeling as-
sumptions. This combination, per-interface adaptation, dual updates
aligned with market prices, and operation under strict information-
sharing limits, distinguishes our approach from existing adaptive
ADMM variants.

4. Solution method

A flowchart presented in Fig. 2 illustrates the implementation pro-
cess of the proposed adaptive ADMM-enabled bi-level model. In the first
step, the day-ahead market results (generation schedules, load forecasts,
and network data) are provided to the GAMS environment as initial
inputs. In the second step, Gaussian white noise is applied to the RES
production parameters and load demand to reflect forecast errors and
create imbalances that must be addressed in the intraday balancing

market. The third step initializes the coupling variables (denoted as Af’; k)

14

AﬁXPL‘k and A“,ffp k), which represent the exchanged quantities and prices
between the TSO and the service providers (VSP, EV parking, and FLs).
These variables are updated iteratively following the rules of the pro-
posed adaptive ADMM (Egs. (i10)-(i12)). In the fourth step, the upper-
level problem is solved by the TSO to determine the required upward
and downward balancing capacities at the coupling nodes. These re-
quirements are then communicated to the service providers as aggre-
gated balancing signals. In the fifth step, each service provider (VSP, EV,
FL) solves its local optimization problem, considering the TSO's
requested capacities, its own technical and operational constraints, and
expected profits. The providers then submit their available balancing
services back to the TSO. In the sixth step, the primal and dual residuals
are calculated at each coupling node, reflecting the difference between
the TSO's required capacities and the service providers' offered sched-
ules. In the seventh step, the stopping criterion is checked: if the re-
siduals are within tolerance (®), the algorithm converges and stops;
otherwise, the penalty parameters and exchanged prices are adaptively
updated, and the process repeats from the fourth step.

5. Simulation results

In this study, the simulation framework begins with the cleared
schedules of the day-ahead energy market, which are taken as the
baseline input. To reflect forecast uncertainty, Gaussian white noise is
applied to load demand and renewable generation profiles, thereby
creating production-consumption imbalances. These imbalances trigger
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Fig. 14. Convergence process of original and proposed adaptive ADMM algorithms.

the intraday flexibility market, where the proposed bi-level model co-
ordinates demand-side resources and storage systems to restore balance.
The case study is conducted on the modified IEEE 30-bus test system
[38], whose structure is illustrated in Fig. 3. This model has been tested
in five different case studies, the details of which are presented in
Table 1. These case studies are designed to evaluate the effects of
unlocking the flexible capacities of demand-side resources and storage
systems on the technical and economic indicators of the system in the
balancing market, as well as to assess the accuracy and speed of
convergence of the proposed adaptive ADMM. Fig. 4a—f depicts pa-
rameters related to load demand, wind speed, and solar radiation in both
the DA energy and intra-day balancing markets. Parameters related to
the DA energy market are provided with an hourly step, while those of
the intra-day balancing market are provided with a 15-minute step. To
generate parameters for the balancing market, the energy market pa-
rameters are first converted into 96 steps using interpolation, and then

15

white noise is applied to them using the Gaussian distribution function
to create unbalancing production-consumption conditions in the system.
The load demand curves of FLs and EV parking lots before participating
in the balancing market are shown in Fig. 5a and b, respectively. Table 2
provides information on the location and capacity of generation units,
storage systems under VSP control, FLs, and EV parking lots.

Table 3 represents the numerical results obtained from C1-C5. In C1,
the only providers of balancing services are the dispatchable units of the
transmission network, while in C2, the VSP is also activated as a pro-
vider of balancing services in the market. According to the results in
Table 3, the activation of the VSP in the balancing market has led to a
6.7 % reduction in daily TSO costs, which highlights the direct economic
benefit of mobilizing aggregated storage resources.

Fig. 6a—-d depicts the resulting schedules for the storage systems
under VSP control. Examination of these schedules reveals that the
charging and discharging of BSSs, CAESs, and PHESs are in complete
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alignment with TSO balancing requirements. Specifically, these units
absorb electricity during periods of downward balancing requirements
and discharge electricity during periods of upward balancing re-
quirements. This behavior reflects the fundamental physical mechanism
of energy storage systems in balancing supply and demand: they act as
energy buffers that shift consumption and injection across time, thereby
reducing the need for expensive redispatch of conventional thermal
units and improving the overall cost-effectiveness of system operation.
Fig. 6d provides further insight into the operational dynamics of PHES
by illustrating the water levels in the upper and lower reservoirs. As
shown, during downward balancing periods, PHES utilizes electricity to
pump water from the lower to the upper reservoir. Conversely, during
upward balancing periods, the stored water is released back down to the
lower reservoir through turbines, generating electricity and supporting
the TSO in covering peak upward balancing demand. This cycle dem-
onstrates how PHES enables the storage of surplus renewable energy and
its later deployment when demand rises, directly contributing to grid
reliability, reducing curtailment of renewables, and providing inertia-
like support to the system.

Fig. 7a and b illustrates the balancing service providers in C1 and C2.
Fig. 7a shows that the dispatchable units alone provided all the required
balancing capacities for the TSO in C1, resulting in higher costs and
greater reliance on thermal resources. Conversely, Fig. 7b demonstrates
that the activation of the VSP in the balancing market in C2 redistributes
part of the balancing provision to storage systems. Among these, PHES
contributes the most, owing to its large capacity and flexibility in both
pumping and generation modes. This redistribution has important en-
gineering implications: it indicates that deploying storage as a coordi-
nated portfolio under the VSP reduces dependence on thermal
generation, substitutes expensive peaking resources with cost-effective
flexibility, and increases the robustness of the system to renewable
variability.

Finally, Fig. 8 compares the voltage profile at 21:45 in C1 and C2,
which corresponds to the time with the highest upward balancing de-
mand. The results show that the activation of the VSP in C2 improves the
system's voltage profile, particularly at buses connected to the storage
systems. This improvement is not only a numerical outcome but also
reflects a physical mechanism: when storage discharges during upward
balancing, it injects active power locally, which helps maintain bus
voltages and reduces stress on remote transmission lines. The engi-
neering implication is that distributed storage, when coordinated
through a VSP, can enhance local voltage stability, alleviate congestion,
and improve system resilience under high renewable penetration.

In C3, FLs are incorporated into the pool of balancing service pro-
viders. The numerical data in Table 3 indicate that the participation of
FLs decreases the TSO's daily balancing costs by 12.2 % compared to C1
and by 5.8 % compared to C2. This reduction confirms that demand-side
flexibility can replace part of the expensive balancing capacity tradi-
tionally provided by dispatchable units. Fig. 9a-h shows the load de-
mand curves of FLs before and after their engagement in the balancing
market. These figures demonstrate the essential mechanism by which
FLs contribute: when the TSO requires upward balancing services, the
FLs reduce their load consumption, and when downward balancing
services are required, they increase consumption. This bidirectional
adjustment provides a dual benefit. On the one hand, it enables the TSO
to meet balancing requirements at lower cost through distributed and
responsive loads. On the other hand, it creates financial opportunities
for FL owners by allowing them to monetize their flexibility. The engi-
neering implication is that flexible demand not only substitutes for
conventional generation in providing balancing but also strengthens
system resilience by absorbing variability where it physically occurs in
the network.

Fig. 10a and b compares the share of balancing service providers in
C2 and C3. The results reveal that the activation of FLs reduces the
dependence on dispatchable units. Among the FLs, industrial loads
located at buses 7, 8, and 9 capture a larger market share than
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residential loads, reflecting their greater ability to shift or curtail de-
mand. In the model, residential FLs are assumed to adjust consumption
by up to 12 %, while industrial FLs can vary demand by up to 20 %,
either increasing or decreasing depending on the balancing signal. This
difference in capability reflects real-world physical constraints: indus-
trial loads typically have more controllable processes and larger baseline
demands, while residential loads are limited by consumer comfort and
lifestyle requirements. These results underline the importance of
recognizing heterogeneity among FLs when designing market
mechanisms.

In C4, EV parking lots are introduced as additional providers of
balancing services. The data in Table 3 show that their participation
reduces TSO's daily balancing costs by 7.4 % compared to C3. This
reduction results from substituting part of the capacity of costly dis-
patchable units with the more affordable flexibility of EV parking lots.
Fig. 11a-f depicts the schedules of parking lots after participating in the
balancing market. These figures highlight that EV parking lots adjust
their initial charging/discharging patterns in direct response to TSO
balancing signals. Specifically, during upward balancing periods, the
parking lots discharge stored energy from EV batteries into the grid,
while during downward balancing periods, the EVs are switched to
charging mode to absorb excess electricity. This response reflects the
intrinsic physical mechanism of EV batteries as distributed storage as-
sets: they can rapidly alter their charging state to provide short-term
balancing capacity.

It is important to note, however, that the operation of EV parking lots
is bounded by practical constraints, including the expected departure
times of vehicles and the requirement that batteries maintain sufficient
charge for users at departure. These factors reduce the absolute flexi-
bility available, yet the results confirm that EV parking lots can still
deliver meaningful balancing services within these constraints. Fig. 12a
and b compares the composition of balancing capacities in C3 and C4,
clearly showing that the inclusion of EV parking lots further reduces the
reliance on dispatchable units. Moreover, the EV parking lots achieve a
direct financial return of $270.48, illustrating the potential of this
resource to generate revenue streams while contributing to system-level
cost reductions.

Fig. 13a and b compares the voltage profiles and transmission losses
between C4 and C1 to assess the broader technical impacts of simulta-
neous participation of demand-side resources and VSP-controlled stor-
age. Fig. 13a shows a notable improvement in the voltage profile,
especially at buses directly connected to these resources. This
improvement is a result of the localized injection or absorption of power,
which reduces stress on the transmission system and mitigates voltage
drops at critical nodes. Fig. 13b indicates that system losses decrease in
C4 compared to C1, especially when demand-side and storage resources
contribute significant amounts of balancing power.

Finally, Fig. 14a and b compares the convergence processes of the
proposed adaptive ADMM and the original version. Both reach the
global optimum, but the adaptive ADMM achieves convergence in 146
fewer iterations, corresponding to a 60 % reduction in solution time. The
advantage stems from the adaptive updating of penalty coefficients per
coupling interface, which accelerates the reconciliation between TSO
and service providers at each iteration. The engineering implication is
significant: faster convergence is crucial for intraday and near-real-time
markets, where decisions must be taken within limited time windows.
Thus, the adaptive ADMM not only ensures theoretical optimality but
also enhances the practical applicability of the framework in real-world
market environments.

6. Conclusion

This paper presents a bi-level structure designed to harness the po-
tential of demand-side resources and grid-connected storage systems in
the flexibility market of renewable-based power systems. At the upper
level, the TSO is modeled, while at the lower level, balancing service
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providers, including FLs, EV parking lots, and VSP, are modeled. The
proposed model enables the VSP to execute charge/discharge planning
for the grid-connected storage systems, including BESs, CAESs, and
PHESs, in response to flexibility requests from the TSO. To ensure
convergence of the upper and lower levels within a decentralized opti-
mization space with minimal information sharing, an adaptive version
of the ADMM algorithm has been introduced. The proposed model is
implemented using the GUROBI solver in GAMS on a 30-bus trans-
mission system. The highlights of its achievements are as follows:

e The adaptive ADMM version not only meets the market efficiency
standard while ensuring limited information sharing but also ach-
ieves convergence of the upper and lower levels with 146 fewer it-
erations than the original version of the algorithm, saving 60 % in
solving time.

The proposed structure effectively unlocks all available flexible ca-
pacities on the demand side, including those provided by FLs and EV
parking lots in the balancing market. In addition to ensuring their
market profitability, the structure reduces system balancing costs by
12.8 %. This cost reduction results from substituting expensive
flexible capacities of dispatchable units with the more affordable
capacities offered by FLs and EV parking lots. The results also
highlight that the deployment of demand-side capacities in the
flexibility market reduces transmission losses by about 12 % and
enhances voltage profile.

The proposed bi-level model enables the VSP to operate various
storage systems, including BESs, CAESs, and PHESs, in perfect
alignment with the TSO's balancing needs, significantly contributing
to the provision of flexible capacities. This mechanism not only en-
sures profitability for the VSP but also reduces system balancing costs
by 6.7 %.

While the findings highlight the potential of the proposed frame-
work, several limitations should be acknowledged. First, the use of a
linearized power flow introduces approximation errors compared to a
full AC formulation, which may affect the accuracy of results in heavily
loaded or highly meshed networks. Second, although our mechanism
minimizes the amount of information exchanged between the TSO and
service providers, we have not introduced a formalized privacy metric to
quantify confidentiality levels. These limitations point to future research
directions. Extending the approach to non-convex AC-power flow for-
mulations would improve modeling fidelity and enable testing in more
realistic operating conditions. Developing and integrating privacy-
preserving techniques, such as differential privacy or secure multi-
party computation, could provide stronger confidentiality guarantees
while maintaining efficiency. Finally, testing the framework on larger-
scale systems with real operational data would further validate its
scalability and practical relevance.
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