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A B S T R A C T

The growing integration of renewable energy sources (RES) into power grids has introduced significant opera
tional variability, amplifying the need for robust flexibility solutions to maintain grid reliability. Demand-side 
resources, such as flexible loads and electric vehicle (EV) fleets, present cost-effective avenues for balancing 
supply and demand dynamics. This study proposes a decentralized bi-level optimization framework to enhance 
the utilization of demand-side flexibility and energy storage systems while ensuring market participant privacy. 
A Virtual Storage Plant (VSP) model is introduced to coordinate distributed energy storage assets under the 
supervision of the Transmission System Operator (TSO). The upper-level problem represents the TSO's strategic 
planning, while the lower-level problem addresses the operation of VSPs, EV parking facilities, and flexible loads. 
To optimize market interactions and minimize information exchange between the TSO and service providers, an 
adaptive Alternating Direction Method of Multipliers (ADMM) is employed. The proposed framework is validated 
using a 30-bus power transmission system, solved through the GUROBI solver within the GAMS environment. 
The results indicate an 18.7 % reduction in energy balancing costs and a 12 % decrease in transmission losses, 
alongside a 60 % improvement in convergence speed, demonstrating enhanced coordination, cost efficiency, and 
privacy preservation.

1. Introduction

1.1. Context and motivation

The integration of RESs and EV fleets provides economic and envi
ronmental benefits but also creates operational challenges for distribu
tion system operators, including supply–demand imbalances, voltage 
issues, and congestion [1–3]. To manage these challenges, renewable- 
based systems increasingly rely on flexible services. Prosumers with 
flexible loads (FLs) in smart buildings and EV parking lots can support 
balancing at low cost [4,5], while storage technologies such as batteries 
(BES), pumped hydro (PHES), and compressed air storage (CAES) offer 
additional flexibility [6,7]. Meanwhile, VSPs are known as interfaces 
that are able to control coordinated grid-connected storage systems 
according to the pulses received from system operators. In modern 
power systems, VSPs strategically manage the charging/discharging of 
covered storage systems to address the system's flexibility needs, thus 
mitigating energy production/consumption fluctuations and enhancing 
operational stability [8,9]. The marked rise in operational uncertainties 

in emerging renewable-based power systems underscores the urgency 
for new business models that exploit the potential of demand-side re
sources and VSPs [10]. These imperatives motivate this paper to propose 
a bi-level business model for flexibility markets, aiming to unlock the 
capacities of demand-side resources and VSP-supervised storage, ensure 
participant privacy, achieve market efficiency, and improve technical 
performance.

1.2. Literature review

The proliferation of RESs has intensified uncertainties in power 
systems, motivating extensive research on prosumer-integrated flexi
bility markets. In this context, [11] proposes a hierarchical model for the 
European balancing market, coordinating distribution and transmission 
networks with controllable resources such as distributed generation and 
EVs, achieving reduced planning costs under decentralized operation. 
[12] introduces a two-level Stackelberg game for cooperative trans
actions between distribution networks and VPPs, showing increased 
profits and improved cost efficiency. [13] provides a taxonomy of local 
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flexibility market solutions for congestion management, offering prac
tical recommendations based on ongoing implementations and expert 
input. Finally, [14] proposes a two-level model for flexible resource 
participation in energy, reservation, and balancing markets, showing 
higher profits through joint optimization of active and reactive services 
across grid levels.

Several studies have investigated the role of VSPs in modern power 
systems, underscoring their potential to deliver significant and cost- 
effective flexibility. [8] proposes a control approach for VSPs to 
manage non-programmable renewable sources by coordinating resi
dential loads and distributed batteries, achieving peak shaving and 
balancing without additional compensation actions. [15] develops a 
two-stage VSP model using thermostatically controlled loads (TCLs), 
where lower-stage scheduling ensures consumer comfort based on dis
tribution locational marginal price, and upper-stage coordination be
tween DSO and TSO enhances system flexibility and balance. [16] 
analyzes merchant-owned BESs acting as VSPs in the day-ahead market, 
formulating the problem as a mixed-integer linear program (MILP) and 
extending it to a multi-VSP game. Results on the IEEE RTS-96 system 
show their impact on locational marginal prices and highlight differ
ences between coordinated and competitive VSP participation.

Recent studies address flexibility and renewable uncertainty through 
different strategies. Demand response with telecom-based coordination 
reduces costs but depends on reliable communication [17], while large- 
scale multi-energy bases with storage and carbon capture improve long- 
term planning [18]. Hydrogen-based systems with fuzzy scheduling 
enhance operational flexibility [19], and game-theoretic models guide 
the deployment of charging stations for electric vehicles [20]. Integrated 
designs for hydrogen-ammonia production [21] and optimized 
hydrogen liquefaction [22] reduce costs and curtailment, while multi- 
timescale dispatch in solar charging stations [23] and carbon flow 
mapping [24] improve coordination and traceability. Further progress 
includes risk assessment of lightning in distribution systems [25], digi
talized demand response in industrial processes [26], electric bus 
scheduling with charging constraints [27], and wind power error 
correction considering load patterns [28].

The assessment of previous research reveals that while numerous 
researchers have applied the ADMM to establish decentralized coordi
nation in flexibility markets, there remains a need for enhancements to 
ensure rapid convergence and attainment of the global optimal solution. 
Several studies have utilized this algorithm for various purposes: For 
instance, [29] propose a decentralized ADMM-based algorithm for inter- 
DSO local electricity markets that preserves DSOs' privacy by 
exchanging limited aggregated signals, but they rely on fixed penalty 
parameters and do not provide adaptive penalty updates per interface or 
show empirical iteration savings as large as we report. [30] consider 
multiple TSO-DSO market models with different information sharing 
schemes and prove that common markets are more efficient; however, 
their ADMM decompositions still assume fixed coordination structures 
and do not exploit mixed integer storage or flexible loads jointly under 
changing coupling signals. In [31] the focus is on peer-to-peer energy 
trade and ancillary services in distribution grids, which emphasize to
pology and information sharing but not a full bi-level intraday balancing 
market with guarantee of global optimality under mixed integer con
straints. [32] explicitly address uncertainty in local flexibility markets 
and imbalance mitigation, but their model does not jointly coordinate a 
VSP managing BES, PHES and CAES in combination with EV parking lots 
and flexible loads under adaptive penalties. Finally, [33] consider in
vestment and distributed resource allocation for flexibility under TSO- 
DSO coordination, but their approach mostly centers on planning/in
vestment horizons and less on high-resolution intraday operational 
market clearing with strong convergence speed improvements. In 
contrast, our adaptive ADMM guarantees convergence to the same 
global optimum as the standard ADMM, achieves significantly faster 
convergence, and requires only the exchange of aggregated price and 
quantity coupling signals, without revealing detailed states, dual 

variables, or internal forecasts, making it more suitable for practical 
intraday balancing markets with strict privacy requirements.

1.3. Research gaps

The review of existing literature highlights several important gaps: 

• Fragmented resource coverage. Previous works typically consider a 
subset of flexible resources, such as distributed storage, EVs, or 
flexible loads, but do not provide a unified market mechanism that 
jointly integrates all of them. In particular, the joint coordination of 
VSP-controlled BES, PHES, and CAES, together with EV parking fa
cilities and flexible loads, within a single intraday balancing market 
has not been comprehensively addressed.

• Centralized or single-layer coordination. Many studies adopt 
centralized clearing approaches or hierarchical structures with 
extensive information exchange. This raises privacy concerns and 
creates communication burdens that limit scalability. A fully 
decentralized approach with limited information sharing across in
dependent actors remains insufficiently developed.

• Convergence limitations of standard ADMM. While ADMM has been 
widely applied in flexibility markets, most implementations use fixed 
penalty parameters, which often slow convergence or risk stalling in 
large-scale problems. There is a need for adaptive mechanisms that 
accelerate convergence without compromising optimality.

• Insufficient empirical quantification. The literature does not 
adequately quantify the combined technical and economic impacts 
of integrating multiple demand-side and storage resources into 
intraday balancing markets, nor does it benchmark the convergence 
speed of adaptive vs. standard ADMM approaches.

1.4. Contributions

This paper addresses these gaps with the following contributions: 

• A comprehensive bi-level market framework. We formulate the 
intraday balancing market as a bi-level MIQCP, where the TSO 
(upper level) minimizes balancing costs, and the balancing service 
provider (lower level), namely VSP, maximize its profits.

• A VSP coordinating multiple technologies. The VSP jointly schedules 
BES, PHES, and CAES systems, aligning charge/discharge actions 
with TSO balancing signals, and thereby ensuring both VSP profit
ability and system-level cost reductions.

• An adaptive ADMM algorithm. We introduce a novel variant of 
ADMM where penalty coefficients are updated per coupling interface 
and exchange prices are iteratively adjusted. This mechanism ac
celerates convergence, achieving the same optimum as standard 
ADMM but with up to 60 % fewer iterations.

• Quantified benefits from integrated demand-side flexibility. Using a 
modified IEEE 30-bus system with 15-minute resolution, we 
demonstrate that sequentially activating VSP, flexible loads, and EV 
parking lots yields a total 18.7 % reduction in daily TSO balancing 
costs, a 12 % reduction in transmission losses, improved voltage 
profiles, and a 60 % faster convergence compared to standard 
ADMM.

Together, these contributions demonstrate that the proposed model 
not only advances the state of the art in decentralized market design but 
also provides measurable operational and economic advantages over 
existing studies.

2. Proposed model outline

The focus of our model is on unlocking the maximum flexible 
demand-side capacities, along with various storage systems, to meet the 
cost-effective balancing needs of renewable-based power systems. These 
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needs arise from real-time changes in RESs production and system load 
demand. We assume that the day-ahead (DA) energy market is already 
settled, and its results are published. To simulate system unbalancing in 
the intra-day horizon, we introduce white noise using the Gaussian 
distribution function to the parameters related to RERs production and 
load demand obtained from energy market. The proposed intra-day 
balancing market addresses this production-consumption imbalance 
with a 15-minute step.

In this paper, the VSP is defined as an aggregator that jointly co
ordinates multiple large-scale storage technologies, namely BES, PHES, 
and CAES. Rather than representing a single storage unit, the VSP acts as 
an interface between these heterogeneous assets and the TSO, receiving 
aggregated balancing signals (upward/downward capacity and prices) 
and optimizing the charging/discharging schedules of its portfolio 
accordingly. This interpretation is consistent with the general role of 
VSPs in the literature as aggregation mechanisms, but here it is applied 
specifically to the coordination of large-scale storage technologies, 
ensuring both operational efficiency and limited information exchange 
with the TSO.

Fig. 1 provides an overview of the bi-level model proposed in this 
paper, with the TSO in the upper level and balancing service providers in 
the lower level. In our model, the TSO is responsible for addressing the 
balancing needs of its service area by utilizing the available capacities of 
balancing service providers, including FLs, EV parking lots, and the VSP. 
The TSO also controls the production planning of thermal units within 
the transmission network. VSP controls all storage systems connected to 
the grid, including BESs, PHESs, and CAESs, scheduling their charging 
and discharging to maximize profit from the balancing market, based on 
the balancing pulses received from the TSO. FLs and EV parking lots also 
function similarly to VSPs, maximizing profit based on pulses received 
from the TSO. These pulses express the required upward/downward 

active powers and exchange price of these services. To ensure conver
gence of the upper and lower levels at the global optimal point with 
limited information sharing, an adaptive ADMM is presented. Conver
gence is achieved iteratively, subject to a stopping condition. The ex
change price of balancing services, defined as an input parameter in the 
first iteration, is updated in each iteration based on the scheduling dif
ferences of the TSO and balancing service providers. Updating this price 
and penalty terms, included in the objective functions of all market 
players, leads to convergence of the proposed adaptive ADMM.

3. Mathematical formulation

In the following, the proposed bi-level model is formulated as a 
Mixed-Integer Quadratic Constrained Program (MIQCP). The indices f, 
v, p, g, w and s refer to FL, VSP, EV parking lot, dispatchable units, wind 
farm and PV farm, respectively. Additionally, indices t, i and l respec
tively refer to time, bus, and line. Note that letters adorned with a hat 
symbol (^) denote parameters obtained from the energy market.

3.1. Objective functions

In Eq. (a1), the upper level objective function is described, through 
which the TSO aims to minimize the balancing costs of the transmission 
system within the intraday balancing market. This function incorporates 
the costs paid to balancing service providers for covering energy im
balances in the transmission system. λFL

f , λEVPL
p , and λVSP

e represent the 
cost per megawatt of services purchased from FLs, EV parking lots, and 
VSP, respectively. These costs are input parameters in the initial itera
tion of the ADMM algorithm. In subsequent iterations, they are updated 
based on the ADMM penalty coefficients and the discrepancies between 
the upper and lower level planning outcomes. It is assumed that the 

Fig. 1. The architecture of the proposed bi-level model.
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Fig. 2. The implementation of the proposed model.
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Fig. 3. Use case: Modified IEEE 30-bus test system [38].
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operating points of dispatchable units are determined in the DA energy 
market. If their operating points are adjusted in the intraday balancing 
market, the TSO compensates them accordingly. Specifically, if their 
operating points increase, they are compensated at the CG,Penalty

g price, 
and vice versa.

In Eqs. (a2)–(a4), the lower level objective functions are outlined, 
corresponding respectively to FLs, EV parking lots, and VSP. These 
objective functions aim to maximize the profit of the service providers. 
Eq. (a2) illustrates that the FLs' objective function is modeled as the 
difference between revenues from providing upstream/downstream 
services to the market and the costs associated with load demand in
creases/decreases. Following a similar approach, Eq. (a3) details the 
objective function for EV parking lots. Eq. (a4) indicates that the profit 
for VSPs is calculated as the difference between revenues from offering 
upward/downward services to the market and the costs for charging or 
discharging storage systems. 

maxOFFL
f =

∑

t

⎡

⎢
⎢
⎢
⎣

∑

f

λFL
f

(
PFL,Up

f ,t + PFL,Down
f ,t

)

−
∑

f

(
CFL,Up

f PFL,Up
f ,t + CFL,Down

f PFL,Down
f ,t

)

⎤

⎥
⎥
⎥
⎦

Δt (a2) 

maxOFEVPL
p =

∑

t

⎡

⎢
⎢
⎢
⎣

∑

p
λEVPL

p

(
PEVPL,Up

p,t + PEVPL,Down
p,t

)

−
∑

p

(
CEVPL,Up

p PEVPL,Up
p,t + CEVPL,Down

p PEVPL,Down
p,t

)

⎤

⎥
⎥
⎥
⎦

Δt

(a3) 

maxOFVSP
v =

∑

t

⎡

⎢
⎢
⎢
⎣

∑

v
λVSP

v

(
PVSP,Up

v,t + PVSP,Down
v,t

)

−
∑

v

(
CVSP,Up

v PVSP,Up
v,t + CVSP,Down

v PVSP,Down
v,t

)

⎤

⎥
⎥
⎥
⎦

Δt (a4) 

3.2. Operational constrains

3.2.1. Power flow program
Linearize AC optimal power flow (OPF) program is detailed in (b1)– 

(b8) [34]. Eq. (b1) expresses the relationship between the voltage 
characteristics of the busbars at the beginning and end of each line with 
active power. The corresponding relationship for reactive power is 

articulated in Eq. (b2). Eq. (b3) outlines the method for calculating 
losses, which considers the active and reactive power flowing through 
the lines as well as the resistance of the line. Eq. (b4) specifies the 
voltage magnitude limits for network buses. The voltage angle limits for 
grid busbars are given in Eq. (b5). Eq. (b6) caps the active and reactive 
power flows to line capacities. The power balance relationship for each 
bus is delineated in Eq. (b7), requiring that the power input to each bus 
equals the power output from that bus. Eq. (b8) models the balance of 
reactive power at each bus. Energy unbalancing is introduced into the 
model through a parameter generated using the Gaussian distribution 
function (ϖ), creating white noise on the load demand and RESs pro
duction parameters. It is noted that the proposed balancing market is 
held to address this energy unbalancing. 

PFlow
l,t

SBase = Gl
(
Vi,t − Vj,t

)
+Bl

(
θi,t − θj,t

)
+

PLoss
l,t

2
(b1) 

QFlow
l,t

SBase = Bl
(
Vi,t − Vj,t

)
− Gl

(
θi,t − θj,t

)
(b2) 

PLoss
l,t =

Rl

[(
PFlow

l,t

)2
+
(

QFlow
l,t

)2
]

SBase (b3) 

Vmin ≤ Vi,t ≤ Vmax (b4) 

θmin ≤ θi,t ≤ θmax (b5) 

(
PFlow

l,t

)2
+
(

QFlow
l,t

)2
≤
(

SFlow,max
l

)2
(b6) 

∑

g∈Ωg
i

(

P
⌢G

g,t+PG,Up
g,t − PG,Down

g,t

)

+
∑

s∈Ωs
i

(
ϖs,tPPV

s,t

)
+
∑

w∈Ωw
i

(
ϖw,tPWT

w,t

)

+
∑

p∈Ωp
i

(
PEVPL,Up

p,t − PEVPL,Down
p,t

)
+
∑

v∈Ωv
i

(
PBES,Up

v,t − PBES,Down
v,t

)

+
∑

v∈Ωv
i

(
PPHES,Up

v,t − PPHES,Down
v,t

)
+
∑

v∈Ωv
i

(
PPSU,Up

v,t − PPSU,Down
v,t

)

+
∑

v∈Ωv
i

(
PCAES,Up

v,t − PCAES,Down
v,t

)
=ϖi,tPD

i,t

⃒
⃒
⃒
i∕=f

+PD
i,t

⃒
⃒
⃒
i=f

+
∑

v∈Ωv
i

PCAES,S
v,t +

∑

l
κi,lPFlow

l,t

(b7) 

∑

g∈Ωg
i

QG
g,t +

∑

s∈Ωs
i

QPV
s,t +

∑

w∈Ωw
i

QWT
w,t = ϖi,tQD

i,t

⃒
⃒
⃒
i∕=f

+QD
i,t

⃒
⃒
⃒
i=f

+
∑

l

κi,lQFlow
l,t (b8) 

3.2.2. Generation units
Constraints related to the utilization of generation units are outlined 

in Eqs. (c1)–(c7). Eq. (c1) specifies the limitation on active power gen

eration by dispatchable units. P
⌢G

g,t represents the generation point of 

dispatchable unit g in the DA energy market; PG,Up
g,t and PG,Down

g,t respec
tively indicate the increase and decrease in the generation point of 

Table 1 
Specifications of case studies.

Case Balancing service providers Coordinator

Dispatchable 
units

VSP FLs EV parking 
lots

C1 ✓ ⨯ ⨯ ⨯
Proposed adaptive 
ADMM

C2 ✓ ✓ ⨯ ⨯
Proposed adaptive 
ADMM

C3 ✓ ✓ ✓ ⨯
Proposed adaptive 
ADMM

C4 ✓ ✓ ✓ ✓
Proposed adaptive 
ADMM

C5 ✓ ✓ ✓ ✓ Original ADMM

minOFTS =
∑

t

⎡

⎢
⎢
⎢
⎣

∑

f

λFL
f ,t

(
PFL,Up

f ,t + PFL,Down
f

)
+
∑

p
λEVPL

p,t

(
PEVPL,Up

p,t + PEVPL,Down
p,t

)

+
∑

v
λVSP

v,t

(
PVSP,Up

v,t + PVSP,Down
v,t

)
+
∑

g
CG,Penalty

g

(
PG,Up

g,t − PG,Down
g,t

)

⎤

⎥
⎥
⎥
⎦

Δt (a1) 
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dispatchable unit g in the intraday balancing market. The limit on 
reactive power for dispatchable units is defined in Eq. (c2). In Eq. (c3), 
the operating point of dispatchable unit g at time t is determined based 
on the upward and downward services it provides. Eq. (c4) calculates 
the power output of solar energy per hour. Given the dependency of the 
reactive power of solar power plants on its active power, Eq. (c5)
specifies the permissible range for injection/absorption of reactive 
power. Eq. (c6) determines the output active power of wind farms, 
considering the hourly wind speed and the technical specifications of the 
turbines. Eq. (c7), on the other hand, calculates the reactive power 
absorbed or injected by the wind farm. 

Pmin,G
g ≤ P

⌢G
g,t +PG,Up

g,t − PG,Down
g,t ≤ Pmax,G

g (c1) 

Qmin,G
g ≤ QG

g,t ≤ Qmax,G
g (c2) 

PG
g,t = P

⌢G
g,t +PG,Up

g,t − PG,Down
g,t (c3) 

PPV
s,t ≤ ηPV Rt,ω

RSTCPRate
s (c4) 

− ϑsPPV
s,t ≤ QPV

s,t ≤ ϑsPPV
s,st (c5) 

Fig. 4. Information on load demand, wind, and irradiance.
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PWT
w,t ≤

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 , Vt,ω < Vci
w or Vt ≥ Vco

w

PRate
w

Vt − Vr
w

Vci
w − Vr

w
, Vci

w ≤ Vt < Vr
w

PRate
w , Vr

w ≤ Vt < Vco
w

(c6) 

− ϑwPWT
w,t ≤ QWT

w,t ≤ ϑwPWT
w,t (c7) 

3.2.3. EV parking lots
In Eqs. (d1)–(d9) the restrictions related to the parking of EVs are 

presented [2]. In Eq. (d1), the initial charge of EVs is determined using 
the normal distribution function with mean μ and variance σ. In Eq. (d2), 
the charge level in the battery of EVs is determined every hour. This 
charge level is a function of the charge level of the previous hour 
(SoCev,t− 1) and charge (PCh

ev,t) or discharge (PDis
ev,t) in the current hour. The 

maximum hourly charge and discharge limits are provided in Eqs. (d3) 
and (d4), respectively. The level of energy that can be stored in the EV 
battery is limited in Eq. (d5). It is stated in Eq. (d6) that the level of 
energy stored in the car when the EV leaves the parking lot must be 
within the predetermined allowed range. This value for energy and 
density markets is set equal to the average of the two minimum 
(SoCDeparture,min

ev ) and maximum (SoCDeparture,max
ev ) charging levels. In order 

to prevent simultaneous charging and discharging of the vehicle, the 
limit given in Eq. (d7) has been used. Considering that EV parking can 
participate in the balancing market, in Eq. (d8) their participation 
amount for flexibility services is calculated according to the change of 
their charge and discharge amount. It is assumed that each parking lot 

has a preferred schedule for charging (P
⌢Ch

ev,t) and discharging (P
⌢Dis

ev,t) its 
covered vehicles, which it needs to change in order to participate in the 
balancing market. Finally, in Eq. (d9), the reactive power injection/ 

Fig. 5. Load demand of FLs and EV parking loads.

Table 2 
Information on generation units, storage systems, FLs and EV parking lots.

Dispatchable units

Number Connected bus Capacity (MW) Marginal cost ($/MWh)

1 1 25 23
2 22 25 21
3 27 20 27
4 13 30 35

Renewable energy sources

Wind farms PV farms

Number Connected 
bus

Capacity 
(MW)

Number Connected 
bus

Capacity 
(MW)

1 2 20 1 23 10
2 20 10 2 15 7
3 29 20 3 28 10

VSP-controlled energy storage systems

Type Connected bus

BES 2-15-20-23-28-29
PHES 9-19
CAES 10-25

EV parking lots

Number Connected 
bus

Number of 
EVs

Number Connected 
bus

Number of 
EVs

1 3 400 4 16 370
2 5 500 5 24 520
3 11 400 6 26 475

Flexible loads

Type Connected 
bus

Load 
(MW)

Type Connected 
bus

Load 
(MW)

Residential 3 1 Industrial 4 1.5
Residential 20 0.9 Industrial 14 1.8
Residential 29 1.1 Industrial 21 2.1

Table 3 
Numerical results for case studies.

Case 
studies

Daily costs ($)

Dispatchable 
units

VSP FLs EV 
parking 
lots

Sum

C1 2132.9 – – – 2132.9
C2 1477.7 511.0416 – – 1988.7416
C3 1115.8 453.744 303.0825 – 1872.6265
C4 705.6 453.5784 303.5655 270.48 1733.2239
C5 705.6 453.5784 303.5655 270.48 1733.2239
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absorption limit by parking chargers is determined according to the 
active power consumption. 

SoCev,t=Arrival = FGaussian
(
μ, σ2) (d1) 

SoCev,t = SoCev,t− 1 +

(

PCh
ev,tηCh −

PDis
ev,t

ηDis

)

Δt (d2) 

0 ≤ PCh
ev,t ≤ PCh,max

ev,t ICh
ev,t (d3) 

0 ≤ PDis
ev,t ≤ PDis,max

ev,t IDis
ev,t (d4) 

SoCmin
ev ≤ SoCev,t ≤ SoCmax

ev (d5) 

Fig. 6. Operational Scheduling of energy storage systems.

Fig. 7. Balancing service providers.

S. Fatemi et al.                                                                                                                                                                                                                                  Journal of Energy Storage 140 (2025) 119107 

9 



SoCDeparture,min
ev ≤ SoCev,t=Departure ≤ SoCDeparture,max

ev (d6) 

ICh
ev,t + IDis

ev,t ≤ 1 (d7) 

PEVPL,Down
p,t − PEVPL,Up

p,t =
∑

ev∈Ωev
p

(

PCh
ev,t − P

⌢Ch
ev,t

)

+
∑

ev∈Ωev
p

(

P
⌢Dis

ev,t − PDis
ev,t

)

(d8) 

(
PEVPL,Down

p,t + PEVPL,Up
p,t

)2
+
(

QEVPL
p,t

)2
≤
(

SEVPL,Charger
p

)2
(d9) 

3.2.4. Flexible loads
In Eqs. (e1)–(e6), the constraints related to flexible industrial/resi

dential loads are detailed. Eq. (e1) specifies the amount of active load 
consumed at flexible points, including their participation in the 
balancing market (PUp,D

i,t,ω /PDown,D
i,t,ω ). Eqs. (e2) and (e3) establish the 

maximum allowable participation for reducing or increasing the load, 
respectively. To prevent the simultaneous increase and decrease of load, 
Eq. (e4) is introduced. Eq. (e5) prevents the load shedding in FLs. 
Finally, Eq. (e6) computes the variations in reactive power at flexible 
points, based on changes in active power. 

PD
i,t,ω = PLoad

i,t,ω − PUp,D
i,t +PDown,D

i,t (e1) 

0 ≤ PUp,D
i,t ≤ αUp

i PLoad
i,t IUp

i,t (e2) 

0 ≤ PDown,D
i,t ≤ αDown

i PLoad
i,t IDown

i,t (e3) 

IUp
i,t + IDown

i,t ≤ 1 (e4) 

∑

t
PUp,D

i,t Δt =
∑

t
PDown,D

i,t Δt (e5) 

QD
i,t,ω = QLoad

i,t,ω
PD

i,t

PLoad
i,t

(e6) 

3.2.5. Virtual storage plant
Energy storage systems under VSP control, including BESs, PHESs, 

and CAESs, are modeled in Eqs. (f1)–(h8). The operation of BES is 
detailed in Eqs. (f1)–(f7). Eq. (f1) calculates the energy stored in the 
battery each hour, based on the hourly charge and discharge activities 
by the end of each hour. Eq. (f2) establishes the hourly charging limit, 
while the hourly discharge limit is defined in Eq. (f3). Eq. (e4) prohibits 
simultaneous charging and discharging of the BES. Eq. (f5) delineates 

the BES's capacity limit. Eq. (f6) guarantees that the energy level at the 
conclusion of the scheduling period is equal to or exceeds the initial 
energy level of the BES. Finally, Eq. (f7) specifies the initial energy level 
in the BES. 

EBES
v,t = EBES

v,t− 1 +

(

PBES,Down
v,t ηCh −

PBES,Up
v,t

ηDis

)

Δt (f1) 

0 ≤ PBES,Down
v,t ≤ PBES,Ch,max

v IBES,Ch
v,t (f2) 

0 ≤ PBES,Up
v,t ≤ PBES,Dis,max

v IBES,Dis
v,t (f3) 

IBES,Ch
v,t + IBES,Dis

v,t ≤ 1 (f4) 

EBES,min
v ≤ EBES

v,t ≤ EBES,max
v (f5) 

Ev,t=T ≥ EIn,BES
v (f6) 

Ev,t=0 = EIn,BES
v (f7) 

Eqs. (g1)–(g10) describe the operational dynamics and constraints 
for PHES [35]. Eqs. (g1) and (g2) calculate the upper and lower energy 
levels of PHES at time t, factoring in the energy generated (PPHES,Up

v,t ) and 
consumed (PPHES,Down

v,t ) for pumping and generation, adjusted by their 
respective efficiency (γGen and γPump), over the time increment Δt. Con
straints (g3) and (g4) ensure these energy levels stay within predefined 
upper and lower bounds. Eqs. (g5) and (g6) set the maximum pumping 
and generation activities based on the system's operational limits and 
indicator functions (IPump

v,t and IGen
v,t ), ensuring activities do not exceed 

maximum capacities. Constraint (g7) prevents simultaneous generation 
and pumping. Eqs. (g8) to (g10) establish initial and final conditions for 
energy levels, ensuring the final upper energy level is at least equal to 
the initial input and defining initial upper and lower energy levels at the 
start of the period. 

VUp
v,t = VUp

v,t− 1 +
(

PPHES,Down
v,t γPump − PPHES,Up

v,t γGen
)

Δt (g1) 

VDown
v,t = VDown

v,t− 1 +
(

PPHES,Up
v,t γGen − PPHES,Down

v,t γPump
)

Δt (g2) 

VUp,min
v ≤ VUp

v,t ≤ VUp,max
v (g3) 

VDown,min
v ≤ VDown

v,t ≤ VDown,max
v (g4) 

Fig. 8. Voltage profile at 21:45 in C1 & C2.
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0 ≤ PPHES,Down
v,t ≤ PPump,max

v IPump
v,t (g5) 

0 ≤ PPHES,Up
v,t ≤ PGen,max

v IGen
v,t (g6) 

IGen
v,t + IPump

v,t ≤ 1 (g7) 

VUp
v,t=T ≥ VIn

v (g8) 

VUp
v,t=0 = VIn,Up

v (g9) 

VDown
v,t=0 = VIn,Down

v (g10) 

The operation of the CAES is detailed in Eqs. (h1)–(h8) [36]. Eqs. 
(h1) and (h2) define the charging and discharging limits of the system, 
respectively. The energy stored within the CAES is computed using Eq. 
(h3). Eq. (h4) computes the power required to maintain the pressure in 
the system's tank. The allowable range of capacity for storage in the tank 
is specified in Eq. (h5). Eq. (h6) stipulates that the storage system 
operates exclusively in either charging or discharging mode at any given 
time. Eq. (h7) ensures that the pressure in the tank at the end of the 
planning period is equal or greater than the initial pressure. Lastly, Eq. 

Fig. 9. Load demand curve of FLs.
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(h8) sets the initial pressure of the tank. 

0 ≤ PCAES,Down
v,t ≤ PCAES,Ch,max

v ICAES,Ch
v,t (h1) 

0 ≤ PCAES,Up
v,t ≤ PCAES,Dis,max

v ICAES,Dis
v,t (h2) 

ECAES
v,t = ECAES

v,t− 1 +
(

PCAES,Down
v,t γCh − PCAES,Up

v,t γDis
)

Δt (h3) 

PCAES,S
v,t =

ECAES
v,t + ECAES

v,t− 1

2
γS (h4) 

ECAES,min
v ≤ ECAES

v,t ≤ ECAES,max
v (h5) 

ICAES,Ch
v,t + ICAES,Dis

v,t ≤ 1 (h6) 

ECAES
v,t=T ≥ EIn,CAES

v (h7) 

ECAES
v,t=0 = EIn,CAES

v (h8) 

3.3. Convergence process using the proposed adaptive ADMM

The proposed adaptive ADMM algorithm is described in Eqs. (i1)– 
(i16). In Eqs. (i1)–(i3), the quadratic penalty terms related to service 
providers are detailed. These terms should be incorporated into the 
objective functions of FLs, EV parking lots, and VSP, respectively. 
Additionally, all three of these penalty terms should be included in the 
TSO's objective function. Incorporating these penalty terms into the 
objective functions at both the upper and lower levels fosters conver
gence of their respective programs. The penalty terms are formulated 
based on the discrepancy between the schedule requested by the 
transmission network and the final contribution from each source. 
During each iteration of the proposed ADMM, the coefficients pertaining 
to each service provider (φFL/φEVPL/φVSP) are updated individually. It is 
important to note that, unlike in the original ADMM method where this 
coefficient remains constant, in the proposed adaptive version, it is 
dynamically updated [37]. 

PenFL =
φFL

2

⃦
⃦
⃦
⃦P

FL,Up
f ,t − P

⌢FL,Up
f ,t + P

⌢FL,Down
f − PFL,Down

f

⃦
⃦
⃦
⃦

2

2
(i1) 

PenEVPL =
φEVPL

2

⃦
⃦
⃦
⃦P

EVPL,Up
p,t − P

⌢EVPL,Up
p,t + P

⌢EVPL,Down
p,t − PEVPL,Down

p,t

⃦
⃦
⃦
⃦

2

2
(i2) 

PenVSP =
φVSP

2

⃦
⃦
⃦
⃦P

VSP,Up
v,t − P

⌢VSP,Up
v,t + P

⌢VSP,Down
v,t − PVSP,Down

v,t

⃦
⃦
⃦
⃦

2

2
(i3) 

In Eqs. (i4)–(i9), primal (RFL
Primal/REVPL

Primal/RVSP
Primal) and dual residuals 

(RFL
Dual/REVPL

Dual /RVSP
Dual) are calculated based on the discrepancies between the 

upper and lower levels. According to these equations, it is evident that 
the value of the primal residuals is determined by the disparity between 
the services requested by the TSO and those provided by the service 
provider. Meanwhile, the residual value of the dual problem is derived 
from the variation in the exchange price of services across two consec
utive iterations of the algorithm. 

RFL
Primal =

⃦
⃦
⃦
⃦P

FL,Up
f ,t − P

⌢FL,Up
f ,t + P

⌢FL,Down
f − PFL,Down

f

⃦
⃦
⃦
⃦

2
(i4) 

RFL
Dual =

⃦
⃦
⃦λFL,k

f ,t − λFL,k− 1
f ,t

⃦
⃦
⃦

2
(i5) 

REVPL
Primal =

⃦
⃦
⃦
⃦P

EVPL,Up
p,t − P

⌢EVPL,Up
p,t + P

⌢EVPL,Down
p,t − PEVPL,Down

p,t

⃦
⃦
⃦
⃦

2
(i6) 

REVPL
Dual =

⃦
⃦
⃦λEVPL,k

p,t − λEVPL,k− 1
p,t

⃦
⃦
⃦

2
(i7) 

RVSP
Primal =

⃦
⃦
⃦
⃦P

VSP,Up
v,t − P

⌢VSP,Up
v,t + P

⌢VSP,Down
v,t − PVSP,Down

v,t

⃦
⃦
⃦
⃦

2
(i8) 

RVSP
Dual =

⃦
⃦
⃦λVSP,k

v,t − λVSP,k− 1
v,t

⃦
⃦
⃦

2
(i9) 

In Eqs. (i10)–(i12), the exchange price of balancing services at 
coupling points between the TSO and service providers is updated. 
Meanwhile, Eqs. (i13)–(i15) are responsible for updating the penalty 
coefficients of the proposed adaptive ADMM based on the differences 
between primal and dual residuals. This updating mechanism enhances 
the convergence speed of the proposed adaptive ADMM, thereby 
reducing the solution time. Eqs. (i13)–(i15) specify that if the primal 
residual is significantly larger than the dual residual, then the penalty 
coefficient increases. Conversely, if the dual residual is significantly 
larger than the primal residual, then the penalty coefficient decreases. 
Additionally, if the difference between the primal and dual residuals is 
not substantial, the penalty coefficient remains unchanged. The stop
ping criterion is presented in Eq. (i16), based on which the algorithm 
stops if the sum of primal and dual residuals is equal to or less than Φ. 
Φis assumed to be 2e− 6. 

λFL,k
f ,t = λFL,k− 1

f ,t +φFL,k
(

PFL,Up
f ,t − P

⌢FL,Up
f ,t + P

⌢FL,Down
f − PFL,Down

f

)

(i10) 

Fig. 10. Balancing service providers.
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λEVPL,k
p,t = λEVPL,k− 1

p,t +φEVPL,k
(

PEVPL,Up
p,t − P

⌢EVPL,Up
p,t + P

⌢EVPL,Down
p,t − PEVPL,Down

p,t

)

(i11) 

λVSP,k
v,t = λVSP,k− 1

v,t +φVSP,k
(

PVSP,Up
v,t − P

⌢VSP,Up
v,t + P

⌢VSP,Down
v,t − PVSP,Down

v,t

)

(i12) 

⎧
⎪⎪⎨

⎪⎪⎩

φFL,k+1 = φFL,k × β , RFL
Primal >> RFL

Dual

φFL,k+1 = φFL,k/β , RFL
Dual >> RFL

Primal

φFL,k+1 = φFL,k , Otherwise
(i13) 

⎧
⎪⎪⎨

⎪⎪⎩

φEVPL,k+1 = φEVPL,k × β , REVPL
Primal >> REVPL

Dual

φEVPL,k+1 = φEVPL,k/β , REVPL
Dual >> REVPL

Primal

φEVPL,k+1 = φEVPL,k , Otherwise
(i14) 

⎧
⎪⎪⎨

⎪⎪⎩

φVSP,k+1 = φVSP,k × β , RVSP
Primal >> RVSP

Dual

φVSP,k+1 = φVSP,k/β , RVSP
Dual >> RVSP

Primal

φVSP,k+1 = φVSP,k , Otherwise
(i15) 

RFL
Primal +RFL

Dual +REVPL
Primal +REVPL

Dual +RVSP
Primal +RVSP

Dual ≤ Φ (i16) 

Fig. 11. EV parking lots program.
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Relation to adaptive ADMM literature. Unlike global adaptive 
schemes that tune a single penalty parameter from aggregate residual 
ratios, the proposed mechanism performs interface-specific penalty 
updates for each market coupling (TSO-VSP, TSO-EV, TSO-FL) and co- 
updates the exchange price at every iteration. This joint penalty-price 
update embeds the market's economic signal directly into the dual 
step, improving stability when coordinating heterogeneous actors 
(storage portfolios, EV parking, and flexible loads) within the bi-level 
intraday balancing formulation. Importantly, the algorithm operates 
with privacy-preserving aggregated signals (price/quantity) only, yet 
converges to the same centralized optimum under our modeling as
sumptions. This combination, per-interface adaptation, dual updates 
aligned with market prices, and operation under strict information- 
sharing limits, distinguishes our approach from existing adaptive 
ADMM variants.

4. Solution method

A flowchart presented in Fig. 2 illustrates the implementation pro
cess of the proposed adaptive ADMM-enabled bi-level model. In the first 
step, the day-ahead market results (generation schedules, load forecasts, 
and network data) are provided to the GAMS environment as initial 
inputs. In the second step, Gaussian white noise is applied to the RES 
production parameters and load demand to reflect forecast errors and 
create imbalances that must be addressed in the intraday balancing 
market. The third step initializes the coupling variables (denoted as λFL,k

f ,t , 

λEVPL,k
p,t and λVSP,k

v,t ), which represent the exchanged quantities and prices 
between the TSO and the service providers (VSP, EV parking, and FLs). 
These variables are updated iteratively following the rules of the pro
posed adaptive ADMM (Eqs. (i10)–(i12)). In the fourth step, the upper- 
level problem is solved by the TSO to determine the required upward 
and downward balancing capacities at the coupling nodes. These re
quirements are then communicated to the service providers as aggre
gated balancing signals. In the fifth step, each service provider (VSP, EV, 
FL) solves its local optimization problem, considering the TSO's 
requested capacities, its own technical and operational constraints, and 
expected profits. The providers then submit their available balancing 
services back to the TSO. In the sixth step, the primal and dual residuals 
are calculated at each coupling node, reflecting the difference between 
the TSO's required capacities and the service providers' offered sched
ules. In the seventh step, the stopping criterion is checked: if the re
siduals are within tolerance (Φ), the algorithm converges and stops; 
otherwise, the penalty parameters and exchanged prices are adaptively 
updated, and the process repeats from the fourth step.

5. Simulation results

In this study, the simulation framework begins with the cleared 
schedules of the day-ahead energy market, which are taken as the 
baseline input. To reflect forecast uncertainty, Gaussian white noise is 
applied to load demand and renewable generation profiles, thereby 
creating production-consumption imbalances. These imbalances trigger 

Fig. 12. Balancing service providers.

Fig. 13. Voltage profile and transmission losses.
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the intraday flexibility market, where the proposed bi-level model co
ordinates demand-side resources and storage systems to restore balance. 
The case study is conducted on the modified IEEE 30-bus test system 
[38], whose structure is illustrated in Fig. 3. This model has been tested 
in five different case studies, the details of which are presented in 
Table 1. These case studies are designed to evaluate the effects of 
unlocking the flexible capacities of demand-side resources and storage 
systems on the technical and economic indicators of the system in the 
balancing market, as well as to assess the accuracy and speed of 
convergence of the proposed adaptive ADMM. Fig. 4a–f depicts pa
rameters related to load demand, wind speed, and solar radiation in both 
the DA energy and intra-day balancing markets. Parameters related to 
the DA energy market are provided with an hourly step, while those of 
the intra-day balancing market are provided with a 15-minute step. To 
generate parameters for the balancing market, the energy market pa
rameters are first converted into 96 steps using interpolation, and then 

white noise is applied to them using the Gaussian distribution function 
to create unbalancing production-consumption conditions in the system. 
The load demand curves of FLs and EV parking lots before participating 
in the balancing market are shown in Fig. 5a and b, respectively. Table 2
provides information on the location and capacity of generation units, 
storage systems under VSP control, FLs, and EV parking lots.

Table 3 represents the numerical results obtained from C1–C5. In C1, 
the only providers of balancing services are the dispatchable units of the 
transmission network, while in C2, the VSP is also activated as a pro
vider of balancing services in the market. According to the results in 
Table 3, the activation of the VSP in the balancing market has led to a 
6.7 % reduction in daily TSO costs, which highlights the direct economic 
benefit of mobilizing aggregated storage resources.

Fig. 6a–d depicts the resulting schedules for the storage systems 
under VSP control. Examination of these schedules reveals that the 
charging and discharging of BSSs, CAESs, and PHESs are in complete 

Fig. 14. Convergence process of original and proposed adaptive ADMM algorithms.
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alignment with TSO balancing requirements. Specifically, these units 
absorb electricity during periods of downward balancing requirements 
and discharge electricity during periods of upward balancing re
quirements. This behavior reflects the fundamental physical mechanism 
of energy storage systems in balancing supply and demand: they act as 
energy buffers that shift consumption and injection across time, thereby 
reducing the need for expensive redispatch of conventional thermal 
units and improving the overall cost-effectiveness of system operation. 
Fig. 6d provides further insight into the operational dynamics of PHES 
by illustrating the water levels in the upper and lower reservoirs. As 
shown, during downward balancing periods, PHES utilizes electricity to 
pump water from the lower to the upper reservoir. Conversely, during 
upward balancing periods, the stored water is released back down to the 
lower reservoir through turbines, generating electricity and supporting 
the TSO in covering peak upward balancing demand. This cycle dem
onstrates how PHES enables the storage of surplus renewable energy and 
its later deployment when demand rises, directly contributing to grid 
reliability, reducing curtailment of renewables, and providing inertia- 
like support to the system.

Fig. 7a and b illustrates the balancing service providers in C1 and C2. 
Fig. 7a shows that the dispatchable units alone provided all the required 
balancing capacities for the TSO in C1, resulting in higher costs and 
greater reliance on thermal resources. Conversely, Fig. 7b demonstrates 
that the activation of the VSP in the balancing market in C2 redistributes 
part of the balancing provision to storage systems. Among these, PHES 
contributes the most, owing to its large capacity and flexibility in both 
pumping and generation modes. This redistribution has important en
gineering implications: it indicates that deploying storage as a coordi
nated portfolio under the VSP reduces dependence on thermal 
generation, substitutes expensive peaking resources with cost-effective 
flexibility, and increases the robustness of the system to renewable 
variability.

Finally, Fig. 8 compares the voltage profile at 21:45 in C1 and C2, 
which corresponds to the time with the highest upward balancing de
mand. The results show that the activation of the VSP in C2 improves the 
system's voltage profile, particularly at buses connected to the storage 
systems. This improvement is not only a numerical outcome but also 
reflects a physical mechanism: when storage discharges during upward 
balancing, it injects active power locally, which helps maintain bus 
voltages and reduces stress on remote transmission lines. The engi
neering implication is that distributed storage, when coordinated 
through a VSP, can enhance local voltage stability, alleviate congestion, 
and improve system resilience under high renewable penetration.

In C3, FLs are incorporated into the pool of balancing service pro
viders. The numerical data in Table 3 indicate that the participation of 
FLs decreases the TSO's daily balancing costs by 12.2 % compared to C1 
and by 5.8 % compared to C2. This reduction confirms that demand-side 
flexibility can replace part of the expensive balancing capacity tradi
tionally provided by dispatchable units. Fig. 9a–h shows the load de
mand curves of FLs before and after their engagement in the balancing 
market. These figures demonstrate the essential mechanism by which 
FLs contribute: when the TSO requires upward balancing services, the 
FLs reduce their load consumption, and when downward balancing 
services are required, they increase consumption. This bidirectional 
adjustment provides a dual benefit. On the one hand, it enables the TSO 
to meet balancing requirements at lower cost through distributed and 
responsive loads. On the other hand, it creates financial opportunities 
for FL owners by allowing them to monetize their flexibility. The engi
neering implication is that flexible demand not only substitutes for 
conventional generation in providing balancing but also strengthens 
system resilience by absorbing variability where it physically occurs in 
the network.

Fig. 10a and b compares the share of balancing service providers in 
C2 and C3. The results reveal that the activation of FLs reduces the 
dependence on dispatchable units. Among the FLs, industrial loads 
located at buses 7, 8, and 9 capture a larger market share than 

residential loads, reflecting their greater ability to shift or curtail de
mand. In the model, residential FLs are assumed to adjust consumption 
by up to 12 %, while industrial FLs can vary demand by up to 20 %, 
either increasing or decreasing depending on the balancing signal. This 
difference in capability reflects real-world physical constraints: indus
trial loads typically have more controllable processes and larger baseline 
demands, while residential loads are limited by consumer comfort and 
lifestyle requirements. These results underline the importance of 
recognizing heterogeneity among FLs when designing market 
mechanisms.

In C4, EV parking lots are introduced as additional providers of 
balancing services. The data in Table 3 show that their participation 
reduces TSO's daily balancing costs by 7.4 % compared to C3. This 
reduction results from substituting part of the capacity of costly dis
patchable units with the more affordable flexibility of EV parking lots. 
Fig. 11a–f depicts the schedules of parking lots after participating in the 
balancing market. These figures highlight that EV parking lots adjust 
their initial charging/discharging patterns in direct response to TSO 
balancing signals. Specifically, during upward balancing periods, the 
parking lots discharge stored energy from EV batteries into the grid, 
while during downward balancing periods, the EVs are switched to 
charging mode to absorb excess electricity. This response reflects the 
intrinsic physical mechanism of EV batteries as distributed storage as
sets: they can rapidly alter their charging state to provide short-term 
balancing capacity.

It is important to note, however, that the operation of EV parking lots 
is bounded by practical constraints, including the expected departure 
times of vehicles and the requirement that batteries maintain sufficient 
charge for users at departure. These factors reduce the absolute flexi
bility available, yet the results confirm that EV parking lots can still 
deliver meaningful balancing services within these constraints. Fig. 12a 
and b compares the composition of balancing capacities in C3 and C4, 
clearly showing that the inclusion of EV parking lots further reduces the 
reliance on dispatchable units. Moreover, the EV parking lots achieve a 
direct financial return of $270.48, illustrating the potential of this 
resource to generate revenue streams while contributing to system-level 
cost reductions.

Fig. 13a and b compares the voltage profiles and transmission losses 
between C4 and C1 to assess the broader technical impacts of simulta
neous participation of demand-side resources and VSP-controlled stor
age. Fig. 13a shows a notable improvement in the voltage profile, 
especially at buses directly connected to these resources. This 
improvement is a result of the localized injection or absorption of power, 
which reduces stress on the transmission system and mitigates voltage 
drops at critical nodes. Fig. 13b indicates that system losses decrease in 
C4 compared to C1, especially when demand-side and storage resources 
contribute significant amounts of balancing power.

Finally, Fig. 14a and b compares the convergence processes of the 
proposed adaptive ADMM and the original version. Both reach the 
global optimum, but the adaptive ADMM achieves convergence in 146 
fewer iterations, corresponding to a 60 % reduction in solution time. The 
advantage stems from the adaptive updating of penalty coefficients per 
coupling interface, which accelerates the reconciliation between TSO 
and service providers at each iteration. The engineering implication is 
significant: faster convergence is crucial for intraday and near-real-time 
markets, where decisions must be taken within limited time windows. 
Thus, the adaptive ADMM not only ensures theoretical optimality but 
also enhances the practical applicability of the framework in real-world 
market environments.

6. Conclusion

This paper presents a bi-level structure designed to harness the po
tential of demand-side resources and grid-connected storage systems in 
the flexibility market of renewable-based power systems. At the upper 
level, the TSO is modeled, while at the lower level, balancing service 
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providers, including FLs, EV parking lots, and VSP, are modeled. The 
proposed model enables the VSP to execute charge/discharge planning 
for the grid-connected storage systems, including BESs, CAESs, and 
PHESs, in response to flexibility requests from the TSO. To ensure 
convergence of the upper and lower levels within a decentralized opti
mization space with minimal information sharing, an adaptive version 
of the ADMM algorithm has been introduced. The proposed model is 
implemented using the GUROBI solver in GAMS on a 30-bus trans
mission system. The highlights of its achievements are as follows: 

• The adaptive ADMM version not only meets the market efficiency 
standard while ensuring limited information sharing but also ach
ieves convergence of the upper and lower levels with 146 fewer it
erations than the original version of the algorithm, saving 60 % in 
solving time.

• The proposed structure effectively unlocks all available flexible ca
pacities on the demand side, including those provided by FLs and EV 
parking lots in the balancing market. In addition to ensuring their 
market profitability, the structure reduces system balancing costs by 
12.8 %. This cost reduction results from substituting expensive 
flexible capacities of dispatchable units with the more affordable 
capacities offered by FLs and EV parking lots. The results also 
highlight that the deployment of demand-side capacities in the 
flexibility market reduces transmission losses by about 12 % and 
enhances voltage profile.

• The proposed bi-level model enables the VSP to operate various 
storage systems, including BESs, CAESs, and PHESs, in perfect 
alignment with the TSO's balancing needs, significantly contributing 
to the provision of flexible capacities. This mechanism not only en
sures profitability for the VSP but also reduces system balancing costs 
by 6.7 %.

While the findings highlight the potential of the proposed frame
work, several limitations should be acknowledged. First, the use of a 
linearized power flow introduces approximation errors compared to a 
full AC formulation, which may affect the accuracy of results in heavily 
loaded or highly meshed networks. Second, although our mechanism 
minimizes the amount of information exchanged between the TSO and 
service providers, we have not introduced a formalized privacy metric to 
quantify confidentiality levels. These limitations point to future research 
directions. Extending the approach to non-convex AC-power flow for
mulations would improve modeling fidelity and enable testing in more 
realistic operating conditions. Developing and integrating privacy- 
preserving techniques, such as differential privacy or secure multi- 
party computation, could provide stronger confidentiality guarantees 
while maintaining efficiency. Finally, testing the framework on larger- 
scale systems with real operational data would further validate its 
scalability and practical relevance.
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