
PINN inspired
Freeform
Design
Using Fraunhofer Diffrac-
tion to find Freeforms de-
scribed by B-spline Sur-
faces
L.H. Crijns

De
lft

U
ni
ve

rs
ity

of
Te

ch
no

lo
gy

PINN inspired
Freeform Design
Using Fraunhofer Diffraction to find

Freeforms described by B-spline Surfaces

by

L.H. Crijns

to obtain the degree of Bachelors of Science

at the Delft University of Technology,

Student number: 4912543
Project duration: March 1, 2021 – July 5, 2021
Thesis committee: Dr. A. Adam, TU Delft, Optics Group

Dr. M. Möller, TU Delft, Numerical Analysis Group
Ir. A. Heemels TU Delft, Optics Group
Dr. J. Dubbeldam, TU Delft, Mathematical Physics Group
Dr. Q. Tao TU Delft, Imaging Physics

Abstract

This project aims to recreate intensity patterns using Fraunhofer diffraction as a means of simulation. These
intensity patterns are created by phase shifting specific parts of an incoming field of light. These phase shifts
are determined by a B-spline surface, which is in turn controlled by so-called control points. Only a hand-
ful of control points can describe a whole surface. The position of these control points is then determined
using machine learning and specifically a technique inspired by ‘physics-informed neural networks’, which
were introduced last year by Raissi et al. [1]. With this method, simple experiments which sought to recre-
ate intensity patterns known to be in the solution space were carried out. These experiments showed some
success, but suffered from the fact that they used too sensitive parameters in the input of the machine learn-
ing model, reducing the sophisticated method to a Monte Carlo search, or they used no input at all, which
degraded the machine learning model to simple parameter optimization. Nevertheless, these experiments
showed that this method has the potential to be used in more flexible optical setups, where multiple con-
figurations can yield the same intensity pattern or where changing the parameters defining the setup do not
induce enormous changes in the resulting intensity pattern. In addition, the proposed method relies upon
Fraunhofer diffraction, which, when discretized for numerical computation, introduces aliasing issues when
the incoming field changes too rapidly. This phenomenon was especially apparent when using point sources
that create spherical wave fronts. A possible solution for this issue is to consider ray tracing techniques in
future research.

iii

Contents

1 Introduction 1

Nomenclature 3

2 Theory 5
2.1 Introduction . 5
2.2 Optics . 5

2.2.1 Maxwell’s equations and the wave equation . 5
2.2.2 Angular Spectrum of Plane waves . 6
2.2.3 Rayleigh-Sommerfeld diffraction integral . 7
2.2.4 Fraunhofer diffraction integral . 7
2.2.5 Discretisation of Fraunhofer Diffraction . 8
2.2.6 Altering the Phase of Incoming Light. 9

2.3 B-Splines Surface Description. 10
2.3.1 Knot vector . 10
2.3.2 Basis Functions . 10
2.3.3 B-Spline Curves . 11
2.3.4 B-Spline Surfaces . 11

2.4 Neural Networks . 12
2.4.1 Perceptrons . 12
2.4.2 Multilayer Perceptron . 13
2.4.3 Training . 14
2.4.4 Gradient Descent . 14
2.4.5 Physics Informed Neural Networks . 16

3 Experiment 19
3.1 Introduction . 19
3.2 Setup . 19

3.2.1 Optical Simulation . 19
3.2.2 Neural Network . 20
3.2.3 Loss functions . 21
3.2.4 Progressively increasing resolution . 22
3.2.5 Infrastructure . 23

3.3 Experiments . 23
3.3.1 Single perpendicular incident plane wave: solution space 24
3.3.2 Single point source: solution space . 25
3.3.3 Single variable angle incident plane wave: solution space 25
3.3.4 Single perpendicular incident plane wave: recreating the university logo 25
3.3.5 Two variable angle and amplitude incident plane waves: solution space. 25

4 Results 27
4.1 Introduction . 27
4.2 Single perpendicular incident plane wave: solution space . 27

4.2.1 Qualitative verification of simulation infrastructure . 27
4.2.2 Loss function comparison . 27
4.2.3 Solution space . 29
4.2.4 Progressively increasing resolution . 31

4.3 Single point source: solution space . 33
4.4 Single variable angle incident plane wave: solution space. 35

v

vi Contents

4.5 Single perpendicular incident plane wave: recreating the university logo 36
4.5.1 Results of using 5×5 control points . 37
4.5.2 Results of using 20×20 control points . 37
4.5.3 Loss function . 40

4.6 Two variable angle and amplitude incident plane waves: solution space 40

5 Discussion 45
5.1 Aliasing issues . 45
5.2 Focused loss function and background . 45
5.3 Physics-informed neural network and Monte Carlo search . 46
5.4 B-spline surfaces and the Gerchberg-Saxton algorithm . 46

6 Conclusion 47

Acknowledgements 49

Bibliography 51

A Appendix 53
A.1 SLM Specifications . 53
A.2 JSON configuration file format . 53
A.3 Git repository . 53
A.4 Extra Results . 53

1
Introduction

Light is all around us coming from the sun, artificial light and smartphone screens. To see images of objects
using light, it must be focused on some kind of sensor. In the case of human vision, the light enters the eye
through the cornea and is then focused using a lens, which ensures a proper image forms on the retina. Many
have seen such systems in high school physics when they constructed the image of an object using the focal
points of a convex lens. If the lens has a more complicated structure, focal points can no longer be used to
construct an image. Instead, techniques such as ray tracing and diffraction integrals can be used to find the
electromagnetic field directly behind the lens. The problem of finding the intensity distribution after a lens
can be readily solved using these techniques. However, one may wonder what kind of lens can be used to
obtain a desired intensity profile. This ‘inverse’ problem is much harder to solve and has no known exact
solution. In general, the shape of lenses necessary to construct a certain intensity distribution or image are
not the classically shaped convex or concave lenses, but a more ‘freely’ shaped lens, a so-called freeform lens.

Freeforms are already in use in the automotive and aerospace industry, where they are used in heads-up
displays. In the future, freeforms may be used in circuitry printing, more accurate sensors or augmented
reality headsets 1. What makes freeforms an attractive alternative to classical lenses, is the potential for them
to be smaller and do more, meaning that a single freeform may be able to replace multiple classical lenses in
cascade.

Recently, the idea of using machine learning to help solve the inverse problem emerged. A bachelor thesis
by Imhof [2] showed by proof-of-concept that it is possible to find 1D B-spline based freeforms using an
unsupervised machine learning approach inspired by the work of Raissi et al. [1]. An important limitation he
found is that it only works well for intensity profiles known to be in the solution space, which is quite small.

In this thesis the aim will be to improve upon the work done by Imhof, by extending the problem to 2D
freeforms. Specifically, a B-spline surface described by control points will represent the phase distribution
induced by a 2D freeform. The control points of this surface will be determined with the aid of machine
learning. Just as Imhof did, the machine learning technique used here will be a neural network that is trained
in an unsupervised fashion, similar to the work done by Raissi et al. [1] in their Physics informed neural
network. In contrast to Imhof’s work, in this thesis a network will be trained for a specific intensity profile
and optical setup. The inputs and outputs of the network will determine the parameters of the optical setup.
With this change, the hope is that more flexibility and a larger solution space can be achieved. Important to
note is that the Fraunhofer diffraction integral will be used for simulating the propagation of light, as this is
essentially a Fourier transform, allowing GPU computation to speed up the simulation immensely.

To start off, the Theory chapter will introduce the necessary background knowledge used in this thesis. After
this the Experiment chapter will introduce the setup used here and discuss what experiments will be carried
out. The results of these experiments and some light discussion of these results will be presented in the
Results chapter. Next, the Discussion chapter follows, in which main points of discussion will be elaborated

1TNO and Asphericon have articles outlinning possible use cases and future developments: https://www.tno.nl/en/
tno-insights/articles/optics-2-0-the-future-of-freeform-optics/ and https://www.asphericon.com/en/blog/
detail/freeform-optics-fields-of-application-and-future-opportunities-for-use, respectively.

1

https://www.tno.nl/en/tno-insights/articles/optics-2-0-the-future-of-freeform-optics/
https://www.tno.nl/en/tno-insights/articles/optics-2-0-the-future-of-freeform-optics/
https://www.asphericon.com/en/blog/detail/freeform-optics-fields-of-application-and-future-opportunities-for-use
https://www.asphericon.com/en/blog/detail/freeform-optics-fields-of-application-and-future-opportunities-for-use

2 1. Introduction

upon and recommendations regarding future research will be presented. And finally, the Conclusion chapter
will present the main findings of this thesis and shortly summarise important recommendations.

Nomenclature

Constants

µ0 Magnetic permeability in vacuum: 4π×10−7 N/A2

µ Magnetic permeability in a certain medium

ε0 Permittivity in vacuum: 8.8541878128×10−12 Fm−1

ε Permittivity in a certain medium

Operators

∇× (·) The curl operator working on R3

∇· (·) The divergence operator working on R3

∇(·) The gradient operator working on Rn , arbitrary number of dimensions

∇2(·) The laplacian operator working on R3

Re{·} Real part operator: Re{a +bi } = a

Optics

E Electric field vector

H Magnetic field vector

n Index of refraction

c Speed of light in vacuum

U Scalar field of light. In this thesis it will represent the length of the electric field vector E

f Frequency of the light in s−1

ω Angular frequency of a time harmonic solution; ω= 2π f

λ Wavelength of the light

k Wave number, k = 2π
λ

k Wave vector: ‖k‖ = k

U Complex amplitude

φ Phase factor

B-Splines

Ξ Knot vector with entries ξi

Ni ,p (ξ) B-spline basis function of order p

Bi B-spline curve control points

{Bi , j } B-spline surface control net

Neural Networks

x Input vector

σ(·) Activation function

w Weight vector

3

4 Nomenclature

θ Bias

P Perceptron

W Weight matrix

θ Bias vector

N Multilayer perceptron

oi Intermediate outputs

neti Pre-activation intermediate outputs

ŷp Prediction, output

yp Desired output

E Error

η Learning rate

2
Theory

2.1. Introduction
In this chapter the three basic topics this thesis relies on will be introduced. Firstly, optics is introduced.
This section will start from Maxwell’s equations and build up to the Fraunhofer diffraction integral. Secondly,
B-splines will be introduced and expanded to B-spline surfaces. Finally, neural networks will be discussed,
specifically how MLP’s, a type of neural networks, work.

2.2. Optics
Optics is the study of light and how it interacts with matter. Phenomena within optics can be described
with ray optics and physical optics/wave optics. In this thesis the focus is on physical optics. Specifically,
Fraunhofer diffraction, which will be derived, as it will be used throughout this thesis. To start with this, first,
Maxwell’s equations are presented. From these equations the wave equation will be derived. Secondly, this
is used to construct a superposition of plane waves using the angular spectrum. With plane waves a super-
position integral will be constructed. Finally, this integral will be used to derive the Fraunhofer diffraction
integral.

2.2.1. Maxwell’s equations and the wave equation
Physical optics is based around classical electrodynamics. To obtain the wave like nature of light, consider
Maxwell’s equations 2.1 - 2.4 [3, p. 36]. These equations relate the electric and magnetic field to each other
locally. In these equations E = E(x, y, z) is the electric field and H = H(x, y, z) is the magnetic field. The ∇×-
operator is the curl operator and the ∇·-operator is the divergence operator, both in 3D Cartesian coordinates.
µ denotes the magnetic permeability in a certain medium, in vacuum it would be µ0. Likewise, ε denotes
the permittivity of the medium, and ε0 denotes the permittivity in vacuum. Here, we consider Maxwell’s
equations in media, so µ and ε are used.

∇×E =−µ∂H

∂t
(2.1)

∇×H = ε∂E

∂t
(2.2)

∇·εE = 0 (2.3)

∇·µH = 0 (2.4)

If we now apply the curl operator ∇× to both sides of equation 2.1, we will obtain the result in equation 2.5.
If we assume that the medium is linear, isotropic and homogeneous, we will obtain equation 2.6. In this

equation n =
(
ε
ε0

)1/2
and c = 1p

µ0ε0
[3, p. 36].

5

6 2. Theory

∇×∇×E =∇(∇·E)−∇2E (2.5)

∇2E− n2

c2

∂2E

∂t 2 = 0 (2.6)

We have now derived the wave equation for the electric field, but analogously the equation also holds for
the magnetic field [3, p. 37]. In this thesis only linearly polarised light is considered, that is, the electric field
vector is confined to a single plane along the direction of propagation. Therefore, if the plane is known, only
the length of the vector is needed to fully describe the electric field vector. Hence, the wave equation can
be rewritten in terms of a scalar quantity U which denotes the length of the electric field vector. Since the
magnetic field is related to the electric field and can be found with Maxwell’s equations, we only consider the
electric field part from now on. The scalar wave equation is given in equation 2.7. This description of using a
single scalar variable to model light paves the way for scalar diffraction optics in the next sections.

∇2U − n2

c2

∂2U

∂t 2 = 0 (2.7)

If we assume that the light we use has a fixed frequency f , with corresponding angular velocity ω= 2π f , we
can use a time harmonic solution as an ansatz, displayed in equation 2.8:

U (r, t) = Re
{

U (r)e−iωt
}

(2.8)

In this equation, U ∈ C is called the complex amplitude and ω = 2π f . If we substitute this into the wave
equation in 2.7 we will obtain the Helmholz equation in equation 2.9 [3, p. 39]:

∇2U + n2ω2

c2 U = 0 ⇒ ∇2U +k2U = 0 (2.9)

where k = 2π
λ and where λ is the wavelength. Note that we omitted taking the real part in this equation. This

equation describes the dynamics of the complex amplitude U . The Helmholz equation can be used to derive
time-independent solutions of the wave equation, assuming a harmonic solution in time.

2.2.2. Angular Spectrum of Plane waves
With the earlier derived Helmholtz equation (Eq. 2.9), we can derive a plane wave solution in Cartesian co-
ordinates. If we use cylindrical or spherical coordinates, other types of waves can be found, but by taking
superpositions of them, one can obtain similar solutions. In Cartesian coordinates separation of variables
will lead to plane waves in equation 2.10:

U (x, y, z) = Ae i (kx x+ky y+kz z) (2.10)

Here, A ∈ R represents the amplitude. kx ,ky ,kz are the components of the wave vector k for which we have:
‖k‖ = 2π

λ . This solution is a plane wave that travels in the direction of the k-vector and has its wavefront in the
plane perpendicular to this vector.

Light can be seen as being composed of many plane waves, each with its own amplitude and wave vector.
To account for this, we construct the solution by taking a superposition of waves and integrating over the
respective wave vector components in equation 2.11 [3, p. 57-58]:

U (x, y, z) =
∫ +∞

−∞

∫ +∞

−∞
Ũ0(kx ,ky)e i kx x+i ky y e±i z

√
‖k‖2−k2

x−k2
y dkx dky (2.11)

Here, Ũ0(kx ,ky) is a weighting factor that describes how much a certain plane wave contributes to the solu-
tion. Also, as ‖k‖,kx ,ky is enough to fully describe the direction of a plane wave, we can find the following
from this:

kz =±
√

‖k‖2 −k2
x −k2

y (2.12)

Note, that the positive sign is used to indicate that a plane wave is propagating in the +z-direction and a nega-

tive sign is used to indicate that the plane wave is propagating in the−z-direction. In addition,
√
‖k‖2 −k2

x −k2
y

2.2. Optics 7

Figure 2.1: Schematic of the coordinate systems used in the Rayleigh-Sommerfeld diffraction integral.

can yield an imaginary number if ‖k‖2 < k2
x +k2

y . If this is the case, the resulting wave will be an evanescent
wave that decays exponentially in the +z- or −z-direction depending on the sign of kz [3, p. 58].

We can introduce a boundary condition at z = 0 to determine Ũ0(x, y). Let the boundary condition be defined
as follows: U (x, y,0) =U0(x, y). This yields the following in equation 2.13.

U (x, y,0) =U0(x, y) =
∫ +∞

−∞

∫ +∞

−∞
Ũ0(kx ,ky)e i kx x+i ky y dkx dky (2.13)

Not surprisingly, we recognize the 2D Fourier transform. So, we have found Ũ0(kx ,ky) = F {U0(x, y)}. The
Ũ0(kx ,ky) is called the angular spectrum of U0(x, y).

2.2.3. Rayleigh-Sommerfeld diffraction integral
When we introduced the boundary condition in equation 2.11, we found a away of determining the field at
any point in space. However, Ũ0 is the Fourier transform of U0. So, in fact we have a quadruple integral ex-
pression for U . To use this for simulations is computationally expensive. In fact, an equivalent formulation is
the Rayleight-Sommerfeld diffraction integral. This integral will yield identical fields as the angular spectrum
approach [3, p. 61]. This diffraction integral can be derived from the Helmholz equation, see equation 2.9.
For the derivation, the reader is referred to Goodman [3, §3.3-§3.5]. The integral is defined as follows:

U (x, y, z) = 1

iλ

∫ +∞

−∞

∫ +∞

−∞
U0(x ′, y ′)

z

r

e i‖k‖r

r
dx ′ dy ′ (2.14)

where we define r ≡
√

(x −x ′)2 + (y − y ′)2 + z2 and λ is the wavelength. The primed coordinates x ′ and y ′
specify the plane at z = 0. This plane is also called the pupil plane.

With the definition of r , one can readily recognize that the integral is essentially a superposition of spherical

waves: ei‖k‖r

r with amplitude Ũ0(kx ,ky) z
r . Note that z

r = cosθ, with θ the angle between the z-axis and the
line connecting to (x, y, z). To further illustrate this, consider figure 2.1 in which the primed and non-primed
coordinate systems are drawn.

2.2.4. Fraunhofer diffraction integral
To make things easier, we mostly consider the field far away from any sources. This is called the far field.
Specifically, we assume that z is very large. If we express r differently, by taking out the z2, we obtain:

8 2. Theory

r = z
√

1+ ((x −x ′)2 + (y − y ′)2)/z. Using the fact that z is large, we can do a Taylor expansion of
p

1+ s
for s small. This gives [4, p. 55]:

r u z + (x −x ′)2 + (y − y ′)2

2z
= z + x2 + y2

2z
+ x ′2 + y ′2

2z︸ ︷︷ ︸−
xx ′+ y y ′

z
u+x2 + y2

2z
− xx ′+ y y ′

z

At the brace we assume that x ′, y ′ are both small in comparison to 2z, so we can set that term to zero. We now
substitute this expression in the exponent of equation 2.14 and we set r u z in the rest of the integral. This
yields the Fraunhofer diffraction integral after some rearranging in equation 2.15 [3, p. 74]:

U (x, y, z) = e i kz e i k x2+y2

2z

iλz

∫ +∞

−∞

∫ +∞

−∞
U0(x ′, y ′)e−i k xx′+y y ′

z dx ′ dy ′ = e i kz e i k x2+y2

2z

iλz
F {U0}

(x

λz
,

y

λz

)
(2.15)

This diffraction integral can be easily computed, as it is effectively a Fourier transform. The use of coordinate
systems (x ′, y ′) and (x, y, z) is the same as in figure 2.1. It is important to emphasize that the Fraunhofer
diffraction integral is valid in the far field. More quantitatively, see the criterion in equation 2.16, where D is
the characteristic size for U0. In other words, the approximate size over which U0 is nonzero [3, p. 74].

z >
(

D

λ

)2

(2.16)

2.2.5. Discretisation of Fraunhofer Diffraction
To be able to numerically simulate Fraunhofer diffraction, the continuous Fourier transform needs to be
discretised. To this end, the Fourier transform is approximated by a Riemann sum, which in turn will lead
to the discrete Fourier transform [4, p. 18-20]. So for a function g (x, y), we can discretise it as g [n,m] =
g (n∆x,m∆y), for some sampling interval lengths ∆x and ∆y . In total:

F
{

g
}

(ξ,η) =
∫ +∞

−∞

∫ +∞

−∞
g (x, y)e−i xξe−i yηdx dy (2.17)

≈
∫ +Ly /2

−Ly /2

∫ +Lx /2

−Lx /2
g (x, y)e−i xξe−i yηdx dy (2.18)

≈
N /2−1∑

n=−N /2

M/2−1∑
m=−M/2

g
(
n∆x,m∆y

)
e−i n∆xξe−i m∆yη∆x∆y (2.19)

where the Fourier transform is taken on N ×M sampled points in the x- and y-direction, respectively. In ad-
dition, we assume that the function is approximately zero outside the rectangle [−Lx /2,Lx /2]×[−Ly /2,Ly /2].

This gives that ∆x = Lx
N and ∆y = Ly

M . By convention, the continuous frequency space is divided in evenly

spaced values: ξ= 2πp
N∆x and η= 2πq

M∆y , where p and q are the indices along the ξ- and η-direction, respectively.
This yields the discrete Fourier transform [4, p. 20]:

FD
{

g
}

(p, q) =
N /2−1∑

n=−N /2

M/2−1∑
m=−M/2

g [n,m]e−i 2π pn
N e−i 2π qm

M
Lx Ly

N M
(2.20)

With the discrete Fourier transform at hand, the Fraunhofer diffraction integral of equation 2.15 can be ap-
proximated in the following way:

U (x, y, z) = e i kz e i k x2+y2

2z

iλz
F {U0}

(x

λz
,

y

λz

)
(2.21)

≈ e i kz e i k x2+y2

2z

iλz
FD

{
U0

(
n

Lx

N
,m

Ly

M

)}(
k =

⌊
x

λz

Lx

2π

⌋
, l =

⌊
y

λz

Ly

2π

⌋)
(2.22)

where k =
⌊

x
λz

Lx
2π

⌋
and l =

⌊
y
λz

Ly

2π

⌋
are indices into the discrete Fourier transform. This approximation has

some interesting properties that are essential to understand when doing numerical simulations.

2.2. Optics 9

Firstly, consider the largest x we can have, that is k = N /2−1: x
λz = 2π

Lx
(N /2−1). This gives that the largest x

is xmax = λz 2π
Lx

(N /2−1). From this we can observe that a larger N will result in a larger xmax. In other words,
increasing the number of sampled points will increase the physical area being observed in the far field.

Secondly, suppose some feature has size d = ∆x
λz in the continuous Fourier transform based Fraunhofer diffrac-

tion along some axis; then it encompasses index range ∆k = ∆x
λz

Lx
2π . This relation is dependent on Lx , the size

of the field that is to be Fraunhofer diffracted. Consequently, enlarging the size of the field to be Fraunhofer
diffracted results in larger index ranges for a certain feature and thus more detail.

With these two properties the physical size and the amount of detail in the simulation can be tuned.

2.2.6. Altering the Phase of Incoming Light
In the previous section a certain initial distribution U0(x, y) was propagated in the positive z-direction. This
initial distribution can be anything from an incoming plane wave or a complicated setup involving multiple
(in-)coherent sources. To modify the incoming light and adjust it to our liking, we can modify the phase of
light in z = 0 by using a lens. This lens can be a classic spherical shape as used in paraxial light propagation
or a shape without any rotational symmetry, a so-called freeform lens. The lens can be described as having a
certain thickness d(x ′, y ′) at some location (x ′, y ′). In media light has a lower phase velocity than in vacuum.
That is, the propagation velocity of the phase of certain frequency component of the wave is slower than in
vacuum. Suppose that in the lens medium light has phase velocity: cm . The time it takes the phase of a
certain frequency component of light to propagate through the medium is then: ∆t = d

cm
. This results in the

following phase shift φ:

φ
(
d

(
x ′, y ′))= 2π∆t f = 2π

d(x ′, y ′) f

cm
= 2πd

λm
= kmd = k0nmd

(
x ′, y ′) (2.23)

where we define f to be the frequency of the wave, λm the wavelength of the wave in the lens medium, km

the wave vector of the wave in the lens medium and k0 the wave vector of the wave in vacuum. For a certain
incoming field Ubefore(x ′, y ′) we get after the lens, the field [3, p. 97]:

Uafter
(
x ′, y ′)=Ubefore

(
x ′, y ′)e iφ(d(x′,y ′)) =Ubefore

(
x ′, y ′)e i k0nm d(x′,y ′) (2.24)

Important to note that this only works in the limit of a thin lens, as otherwise translation of rays would become
evident due to Snell’s law of refraction [3, p. 97]. The φ(d(x ′, y ′)) is called the phase distribution of the lens.
Additionally, if the lens is smaller than the nonzero region of the incoming field Ubefore, an aperture function
P (x ′, y ′) is needed to constrain what light passes through. This aperture function is 0 outside the lens and 1
inside the lens [3, p. 102]. To illustrate this, consider a circular lens on which an infinite plane wave is incident.
Then only the light that passes through the circular lens is of interest, the rest of the light is blocked.

If we consider a thin lens with spherical surfaces, so lenses in the paraxial approximation, the phase distri-
bution of the lens becomes dependent on the focal length f of the lens. According to Goodman [3, p. 99] the
phase distribution becomes (excluding constant factors):

φ(x ′, y ′) =− k

2 f

(
x ′2 + y ′2) (2.25)

Note that it is assumed that the lens is positive, i.e. it has positive focal length f . If we apply this phase dis-
tribution to incoming light U0(x ′, y ′) and then propagate this in the positive z-direction until the focal length
f of the lens with Fresnel diffraction (based on Rayleigh-Sommerfeld diffraction), we obtain the following
(neglecting the aperture function) [3, p. 103]:

U (x, y, f) = e i k
2 f (x2+y2)

iλ f

∫ ∞

−∞

∫ ∞

−∞
U0(x ′, y ′)e−i 2π

λ f (xx′+y y ′) dx ′ dy ′ = e i k
2 f (x2+y2)

iλ f
F {U0}

(
x

λ f
,

y

λ f

)
(2.26)

From this equation it becomes apparent that one can use a lens to obtain a Fourier transform of the field
without letting the field propagate to the far field, as would be required in Fraunhofer diffraction, see equation
2.16 for the propagation distance criterion of Fraunhofer diffraction.

10 2. Theory

Without lenses it is also possible to add a certain phase distribution to an incoming field. This can be done
with so-called spatial light modulator devices, or SLMs for short. These devices have a certain resolution and
in each pixel they can modify the incoming phase of the field with a predefined phase shift. This allows one
to replicate the effect of a lens by setting the phase distribution.

2.3. B-Splines Surface Description
Surfaces in 3D can be described in a number of ways. For instance, with implicit formulas, like the unit
sphere: x2 + y2 + z2 = 1. However, in this thesis the aim is to describe phase distributions as a surface. There-
fore, a multi-valued function such as an implicit formula is of no use. Hence, surfaces described by functions
of the form f :R2 →Rwill be used. To build surfaces of this form, B-spline surfaces will be used. This method
has been chosen, because it allows describing smooth surfaces using a discrete number of so-called control
points. B-splines are in essence piecewise continuous polynomials, with higher order continuity between
pieces when desired.

In what follows, we first describe knot vectors and basis functions. With these preliminaries, B-spline curves
can be described using control points. Finally, this can be extended to B-spline surfaced where a control net
of points is used, i.e. a 2D mesh of control points.

2.3.1. Knot vector
To describe splines, a parameter space is needed. This space can be seen as the ‘domain’ of the polynomials.
The parameter space is an interval in R. Since splines are piecewise polynomial, the parameter space needs
to be partitioned in subdomains for each specific part. To do this, a knot vector is used. Specifically, a knot
vector is a non-decreasing set of scalar coordinates that partition the parameter space [5, p. 19]. It is denoted
as Ξ= {

ξ1,ξ2, . . . ,ξn+p+1
}
, where ξi ∈ R is called the i th knot. Here, i is the knot index and it ranges from 1 to

n +p +1, with p denoting the polynomial order and n denoting the number of polynomial pieces and basis
functions.

Knot vectors are called uniform if the knots are equally spaced. In contrast, non-uniform knot vectors have
unequally spaced knots [5, p. 20]. A knot vector is called open if the first and last knot value is repeated p +1
times. Open knot vectors result in interpolation in the endpoints of the spline [5, p. 20].

2.3.2. Basis Functions
With the defined knot vector the basis function of B-splines can be defined using the Cox-de Boor recursion
formula [5, p. 21] in equations 2.27 and 2.28. The recursion start with p = 0, a step function in parameter
space:

Ni ,0(ξ) :=
{

1 if ξi ≤ ξ< ξi+1

0 otherwise
(2.27)

For higher values of p, the recursion is given by:

Ni ,p (ξ) := ξ−ξi

ξi+p −ξi
Ni ,p−1(ξ)+ ξi+p+1 −ξ

ξi+p+1 −ξi +1
Ni+1,p−1(ξ) (2.28)

Important to note is that with open knot vectors knots at the start and end are repeated. This can result in a
division by zero as ξn−1 = ξn may occur. Therefore we define: 0

0
.= 0.

In addition, repeating knots allow for controlling the continuity of basis functions and their derivatives across
knots in the following way: Basis function of order p are C p−mi continuous across a knot ξi with mi denoting
the multiplicity of the value of the knot in the knot vector. As a consequence, a multiplicity of p +1 will result
in a discontinuity [5, p. 23].

To further illustrate these basis functions, consider the plot in figure 2.2. In this figure multiple basis functions
have been plotted with order 0, 1 and 2. Important to observe is that each basis function is nonnegative and
that each basis function of order p has p −1 continuous derivatives across the knots. For instance, N1,2 has
a continuous derivative in ξ= 0,1,2,3. In addition, each basis function of order p is supported by p +1 knot

2.3. B-Splines Surface Description 11

spans [5, p. 22]. To illustrate this, consider N2,2. This function is nonzero between ξ = 1 and ξ = 4, which
contains 3 units of knot spans.

Figure 2.2: Plot of basis function in parameter space of orders 0, 1 and 2 using a uniform knot vector Ξ =
{0,1,2,3,4, . . . }. This figure has been extracted from [5, p. 21, figure 2.3].

2.3.3. B-Spline Curves
With the basis functions at hand, B-spline curves can be defined as explained in the following: B-spline curves
are constructed by taking a weighted linear combination of B-spline basis functions. The weights in this linear
combination are called the control points. More formally, given n basis functions Ni ,p for i = 1, . . . ,n and the
corresponding control points Bi ∈Rd again for i = 1, . . . ,n, the B-spline curve in d-dimensions is given by [5,
p. 29]:

C(ξ) =
n∑

i=1
Ni ,p (ξ)Bi (2.29)

Note that in the basis functions, a knot vector Ξ is used. As stated in section 2.3.1, the knot vector has length
n+p+1, where n is the number of polynomial pieces, which is equal to the number of control points Bi , and
p is the order of the polynomials. Additionally, as previously stated, open knot vectors result in interpolation
at the endpoints. Interpolation at intermediate points is also possible, by repeating knot values p+1 times [5,
p. 29].

To illustrate what a B-spline curve may look like and what the repetition of knot values does, consider figure
2.3. In this figure an open knot vector is employed, resulting in interpolation at the endpoints of the curve. In
addition, knot value ξ= 4 has been repeated 2 times, resulting in interpolation at the corresponding control
point, as the B-spline curve is of order 2.

2.3.4. B-Spline Surfaces
To construct B-spline surfaces a tensor product of B-spline curves is taken. This time, the control points are
arranged in a control net {Bi , j } with i = 1,2, . . . ,n and j = 1,2, . . . ,m. If polynomial orders p and q are used, the
knot vectors are defined as: Ξ= {

ξ1,ξ2, . . . ,ξn+p+1
}

and H = {
η1,η2, . . . ,ηm+q+1

}
. Then, the B-spline surface

is defined as [5, p. 32]:

12 2. Theory

(a) Curve with control points

(b) Curve with knots indicated

Figure 2.3: This is a plot of a B-spline curve in 2D with knot vectorΞ= {0,0,0,1,2,3,4,4,5,5,5}. In (a) the curve
is shown with its control points as red circles and in (b) the knots are shown as red squares. These figures
have been extracted from [5, p. 29, figure 2.10].

S(ξ,η) =
n∑

i=1

m∑
j=1

Ni ,p (ξ)M j ,q (η)Bi , j (2.30)

where Ni ,p (ξ) and M j ,q (η) are the B-spline basis function of order p and q that correspond to knot vector Ξ
and knot vector H , respectively.

2.4. Neural Networks
Neural networks are a family of powerful techniques inspired by biological neurons that can be used to solve
a wide range of tasks. Neural networks are a central technique in the field of machine learning. Due to
their nature, neural networks are well-equipped in use as universal function approximators [6, p. 98]. This
property makes neural networks especially apt for predictions on the behaviour of physical systems, as neural
networks can be optimized to approximate the underlying dynamics of those systems.

In this section neural networks, and specifically multilayer perceptrons will be introduced by starting at their
constituents: perceptrons. From this, multilayer perceptrons, a kind of neural networks, will be assembled.
Next, to optimize these kinds of networks, a process called training is needed. In this section the optimization
problem is posed. After this, gradient descent is described, a technique that can be used for optimizing.
Finally, physics-informed neural networks will be discussed.

2.4.1. Perceptrons
Biological neurons take inputs through dendrites, process them and then output through axons which con-
nect to other neurons. In artificial neurons, this principle is similar. The focus is specifically on so-called
perceptrons, which are a kind of artifical neurons [6, p. 81]. A schematic of a perceptron is shown in fig-
ure 2.4. In this figure, the xi ’s depict inputs to the perceptron, which are then weighted using the respective
weights wi ’s. To this, a bias θ is added.

The perceptron then performs its ‘activation’ σ, a kind of processing of the inputs, which yields the final
output. More rigorously, a perceptron P : Rn → R is defined as (x1, x2, . . .) 7→ σ(

∑
xi wi −θ) = wT x−θ, where

θ ∈R, w = (w1, w2, . . .) ∈Rn and x = (x1, x2, . . .) ∈Rn [6, p. 6].

Important to note is that the activation function σ is what introduces the non-linear behaviour of percep-
trons. These functions usually map real numbers into the range (0,1) or (−1,1) [6, p. 6].

2.4. Neural Networks 13

Figure 2.4: Schematic depiction of an artificial neuron.

2.4.2. Multilayer Perceptron
Just as in biology, arranging multiple neurons into a network structure creates a powerful instrument that
can be used to do complex computations. In this thesis, the focus is on feed-forward neural networks. That
is, the network will have clearly defined inputs and outputs and internally the connections between neurons
will only go one way. Usually, a feed-forward neural network is organized in layers, i.e. there is no connection
between neurons in the same layer. Such a network is called fully connected, if each neuron in a specific layer
is connected to all neurons in the next layer [6, p. 9]. Important to note here is, that types of neurons, other
than the one described above may be employed. If however, perceptrons are used, and the perceptrons are
arranged in layers, the resulting network is called a muiltilayer perceptron or MLP for short.

To illustrate a simple MLP, a small fully connected feed-forward neural network with perceptrons as neurons
is shown in figure 2.5. In this figure, two inputs are together denoted as the vector x and three outputs are
together denoted as the vector y. The inputs are fed into the first ‘hidden’ layer. Each connection has a
weight. These weights are in matrix W1 = [

w2
1 w2

1 w3
2

]
, where the indices of the weight vector wi

j denote to

which perceptron it belongs, specifically, the subscript indices denote the layer and the superscript indices
denote the perceptron in that layer. So w2

1 corresponds to the first perceptron in the hidden layer, and is
defined as w2

1 = (w1, w2) ∈ R2, where w1 is the weight that acts on the first input and w2 is the weight that
acts on the second input, just as defined in the previous subsection on perceptrons. Each perceptron has an
activation functionσ and a bias, which is denoted here with a vectorθ1 = (θ1

1 ,θ2
1 ,θ3

1) of size 3, one component
for each perceptron. After the perceptrons activated their inputs, the output of this layer is again fed to the
next layer with weights W2 = [

w1
2 w2

2 w3
2

]
and biases θ2 = (θ1

2 ,θ2
2 ,θ3

2) for the perceptrons. This layer yields
the final output ŷ of size 3. Hence, this network has function signature N : R2 → R3 and definition: x 7→
σ(W T

2 σ(W T
1 x−θ1)−θ2), where σ is elementwise applied to vectors [6, p. 97].

Figure 2.5: Schematic of a fully connected feed-forward neural network with input x and output y. It has
signature: N :R2 →R3.

In the example network in the figure each perceptron has the same activation function σ, but this is not
necessarily the case. Any combination of activation functions may be used. However, usually the activation
function used by perceptrons in a specific layer is the same. As discussed in the previous section, the acti-
vation function is what introduces the non-linearity in perceptrons. Even more so, it is vital in MLPs to have
non-linear activation functions when a universal function approximator is needed [6, p. 98].

In general, an MLP can be defined with intermediate outputs oi and pre-activation intermediate outputs
neti , with i the index of the layer. So, o0 = x for the input layer (zero-based indexing) and ŷ = oM for the last

14 2. Theory

layer at index M . The intermediate outputs are then defined recursively by [6, p. 97]:

oi =σi (neti) =σi (W T
i oi−1 +θi) ∀i = 1,2,3, . . . , M (2.31)

where Wi and θi are defined in the same way as in the example and σi is the activation function, which can
change per layer.

2.4.3. Training
As described in the introduction of this section, neural networks can be optimized to approximate the dy-
namics of physical systems. In machine learning the process of optimization done by a specific algorithm to
a network is usually called ‘learning’ or ‘training’ of the network. For training to be possible a network needs
to have adjustable parameters. In the case of MLPs, each perceptron is described by a bias θ, a weight vector
w and an activation function σ. The activation function stays usually fixed, while the bias and weight vector
can be freely changed by an optimization algorithm. As with all sorts of optimization some sort of objective
function is needed. In the case of MLPs, the mean squared error (MSE) is usually employed, where the er-
ror is taken between the network output N (xp) = ŷp and the desired output yp for (xp ,yp) ∈ S . This set S

represents the training pairs used for training. The error then becomes [6, p. 100]:

E = 1

N

∑
p∈S

Ep = 1

2N

∑
p∈S

∥∥ŷp −yp
∥∥2 (2.32)

where N is the size of the set S and Ep = 1
2

∥∥ŷp −yp
∥∥2. The resulting objective of this optimization problem

is then:
min

∀i :W i ,θi
E (2.33)

Note that in the previous objective function explicit training pairs, which are known in advance, are used.
Formally the network is trained to mimic the behaviour of some function f : X → Y of which samples S ={
(xp ,yp) : yp = f (xp),xp ∈X

}
are known. This learning task is known as supervised learning [6, p. 25]. In

contrast, unsupervised learning is a learning task without ‘targets’, meaning that only the input values are
available [6, p. 26]. For such learning tasks a different expression for the error is employed, one that is only
dependent on the input values and the output values of the network. In the section about physics-informed
neural networks, this will be made more concrete with an example.

2.4.4. Gradient Descent
An important technique used for optimizing the objective function is gradient descent. This technique will
also be employed in this thesis when training networks. This technique uses the gradient of the error with
respect to a parameter of the network to determine how to update that parameter. Formally, it updates a
parameter q with ∆q , with ∆q calculated from [6, p. 100]:

∆q
.=−η∂E

∂q
(2.34)

The η in this equation is called the learning rate and determines how much a parameter is changed in each
update. After a parameter is updated, the error is reevaluated and a new update occurs. This process contin-
ues iteratively until the error reaches a minimum, i.e. after each update the error does not change substan-
tially. What ‘substantially’ means is dependent on what stopping criterion is chosen. An example stopping
criterion can be to halt when no improvement in the error for seven updates is detected.

To illustrate the intuition behind these updates, consider figure 2.6. In this figure some error E is plotted as
a function of the parameter q . The optimization starts at q1. The negative gradient at this point is depicted
by the green arrow. This arrow is followed for a factor η to obtain a new point q2. For q3 the same is done,
following the negative gradient of q2 a factor η. In essence, gradient descent follows the gradient ‘downwards‘,
i.e. descending, in hopes of finding a minimum. Important to note is that this will be a local minimum, so
not the global minimum. This is also directly a major shortcoming of gradient descent. The start value of q
determines what optimum will be reached.

2.4. Neural Networks 15

Figure 2.6: Gradient descent in 1D, shown here for two updates of q using equation 2.34, where it starts off at
q1. η is the learning rate.

To apply this to the MLP of the previous section, define the matrix Q = [W1 W2 . . . WM θ1 θ2 . . . θM] of
all adjustable parameters. The update of parameters becomes then like in equation 2.34, but for multiple
parameters:

∆Q =−η ∂E

∂Q
=−η 1

N

∑
p∈S

∂Ep

∂Q
(2.35)

If S is used to sum over, the update of Q is influenced by all training samples. This way of updating is called
batched gradient descent. Another option is to use Ep directly as the error and update Q per training sample.
This is called stochastic gradient descent, because it is more influenced by the characteristics of a single
training sample [6, p. 104]. Both options can be used to train a neural network. The first one is slower, but
yields more accurate updates at each step. The second one is much faster, but can yield inaccurate updates
due to being dependent on a single training sample.

To illustrate how taking these kind of derivatives looks like, consider the following equations in which
∂Ep

∂W (u,v)
M−1

is calculated. W (u,v)
M−1 occurs in the expression of (netM−1)v = ∑

m W (m,v)
M−1 (oM−2)m , so the chain rule has to be

used to get to this expression [6, p. 100]. In total:

∂Ep

∂W (u,v)
M−1

=∇ŷp Ep · ∂ŷp

∂W (u,v)
M−1

=∑
k

∂Ep

∂(oM)k

∂(oM)k

∂W (u,v)
M−1

(2.36)

=∑
k

(
(oM)k − (y)k

) ∂(oM)k

∂(netM)k

∂(netM)k

∂W (u,v)
M−1

(2.37)

=∑
k

(
(oM)k − (y)k

)
σ̇

(
(netM)k

) ∂

∂W (u,v)
M−1

((
W T

M oM−1 +θM
)k

)
(2.38)

=∑
k

(
(oM)k − (y)k

)
σ̇

(
(netM)k

) ∂

∂W (u,v)
M−1

[∑
l

(WM)(l ,k)(oM−1)l + (θM)k

]
(2.39)

=∑
k

(
(oM)k − (y)k

)
σ̇

(
(netM)k

)[∑
l

(WM)(l ,k)σ̇
(
(netM−1)l

)∂(netM−1)l

∂W (u,v)
M−1

]
(2.40)

=∑
k

(
(oM)k − (y)k

)
σ̇

(
(netM)k

)
︸ ︷︷ ︸

I

(WM)(v,k)σ̇
(
(netM−1)v)︸ ︷︷ ︸

II

(oM−2)u (2.41)

In these equations k is used to index the vector oM and l is used to index the result of W T
M oM−1. Note that as

W (u,v)
M−1 only occurs in (netM−1)v , the other derivatives will yield zero.

16 2. Theory

This expression is rather lengthy and is expensive to calculate. However, a technique called backpropagation
can speed this up. Backpropagation works by caching the results of a so-called forward pass. A forward pass
is essentially calculating the output of the network. During this forward pass intermediate results such as neti

and oi are saved for later use. Then after a forward-pass has occurred, the intermediate results can be used
to calculate the gradient of the error with respect to all the parameters. What really defines backpropagation
is the caching of so-called ‘layer errors’, such as the one marked by underbrace (I). Each step deeper ‘back’
into the network adds an additional factor to this error, for instance the factor marked by underbrace (II). By
caching these layer errors, the gradient with respect to a certain parameter can be calculated by using these
cached factors [6, p. 101-102]. This immensely speed ups the calculation of these gradients and in turn the
updating of parameters.

Important to note is that backpropagation requires that activation functions σ are differentiable. Also, tak-
ing derivatives can be expensive for certain functions. That is why the tangent hyperbolic and the logistic
function are widely used, as these functions have derivatives that can be expressed in terms of their function
value, making it enough to store oi and omit neti [6, p. 101]:

σ1(x) = tanh x ⇒ σ̇1(x) = 1−σ1(x) (2.42)

σ2(x) = 1

1+e−x ⇒ σ̇2(x) =σ2(x)(1−σ2(x)) (2.43)

2.4.5. Physics Informed Neural Networks
Physics informed neural networks are a new type of neural networks introduced by Raissi et al. [1]. This new
technique can be used to solve PDEs of physical phenomena whilst respecting the laws of physics encoded
in these PDEs. This technique uses MLPs at its heart, as MLPs are efficient universal function approximators.

To illustrate this technique, consider the following abstract PDE with boundary conditions as an example:

L (u)(x) = f (u(x), x) x ∈ [0,L] (2.44)

u(0) = A (2.45)

u(L) = B (2.46)

In this example L is some operator that takes derivatives of u. Raissi then uses an MLP N : [0,L] → R in the
place of u to obtain:

L (N)(x)− f (N (x), x) = 0 x ∈ [0,L] (2.47)

N (0) = A (2.48)

N (L) = B (2.49)

The aim is then to train the MLP N such that it mimics the solution u of this PDE. To do this, g :=L (N)(x)−
f (N (x), x) is first defined. Then the following MSE is used for the optimization:

MSE = MSEu +MSEg (2.50)

where,

MSEu = 1

2

(|N (0)|− A|2 +|N (L)−B |2) (2.51)

MSEg = 1

N

N∑
i=1

|g (xi)|2 (2.52)

Effectively, there are two MSEs: one for the boundary conditions MSEu that tries to let the solution satisfy
the boundary condition and one for the interior MSEg that tries to let the solution satisfy the PDE itself. The
latter uses sampled training points xi ∈ (0,1) with i = 1, . . . , N to obtain an estimate of the error. When the
total MSE is minimized by algorithms such as gradient descent with backpropagation, the MLP is effectively
trained to become the solution u, as is the aim of Raissi et al. [1].

2.4. Neural Networks 17

Important to note is that using PINNs to find the solution of a PDE is a perfect example of an unsupervised
learning task, as only the inputs (sample points) are known and the error is determined only using the inputs
and outputs of the network.

In figure 2.7 a schematic overview of the architecture of PINNs is shown. In this figure the MLP and PDE
part are indicated alongside with the loss calculation. The paper of Raissi et al. [1] shows accurate results of
applying this technique to a multitude of different PDEs, making it an interesting alternative to established
alternatives such as the finite element method.

One may wonder how the gradients required for gradient descent are taken when other operations such as in
the differential operator L and function f are used. Modern machine learning frameworks, such as PyTorch
use an internal graph that records every operation applied to a variable [7, Documentation]. Backpropagation
is then used to traverse the graph and calculate the gradients. This is exactly the same as the example posed
in the subsection on gradient descent, but it is now extended to generic operations.

Inspired by this, one can extend physics informed neural networks to other types of problems. In the case of
this thesis, it will be extended to Fraunhofer diffraction simulations. In figure 2.7, this would mean that the
PDE part will be replaced with a simulation and that the input and output of the MLP are parameters of this
simulation. The loss will then be based on what intensity profile is desired.

Figure 2.7: Schematic overview of a PINN, with the MLP and PDE part of the network. The same notation is
used as in the subsection on PINNs. The three dots represent that there can be arbitrary inputs xi or arbitrary
derivatives. In addition, x = (x1, x2, . . . , xn).

3
Experiment

3.1. Introduction
In this chapter the details of the experimental method and the experiments that were carried out will be
discussed. To recapitulate, the general aim of the experiments is to find the phase distribution of a freeform
lens in terms of B-spline surfaces such that a certain incoming field configuration results in a desired intensity
pattern in the far field.

In the setup section the experimental method and required infrastructure will be described. After this de-
scription, the experiments section describes what experiments are done and what to expect in the results
chapter.

3.2. Setup
The setup used for experiments is mainly composed of two components: An optical simulation and a Neural
Network. The optical simulation uses Fraunhofer diffraction to simulate the light propagation. The Neu-
ral Network will be an MLP. The parameters used in the optical setup, such as the control net of the phase
distribution and other parameters determining the initial field, will be provided by the MLP.

3.2.1. Optical Simulation
The optical simulation consists of two parts: The first part constructs the scalar field U0(x ′, y ′) and applies the
phase distribution. The second part propagates the incoming field to the far field using Fraunhofer diffrac-
tion.

In the first part, where construction of U0(x ′, y ′) occurs, the field is created by using a superposition of plane
waves and point sources placed at a specific distance to an SLM, the configuration of which is depending on
the specific experiment. The SLM is the physical device that is capable of adjusting the phase of incoming
light. The specific SLM (Pluto 2 VIS-096), on which this simulation is based, has a resolution of 1920×1080
(full HD) with pixel size 8.0µm and maximum phase shift of 2.5π to 4π depending on the wavelength, as
specified by manufacturer Holoeye Photonics AG [8]. In essence, the SLM alters the incoming field U0(x ′, y ′)
in the following way:

U ′
0(x ′, y ′) =U0(x ′, y ′)e iφ(x′,y ′) (3.1)

where φ(x ′, y ′) is the phase adjustment carried out by the SLM. Since the SLM has a finite resolution, the
phase is actually a discrete function that is sampled from some continuous function:

φ[n,m] =φ(
n · (8.0µm),m · (8.0µm)

)
(3.2)

where the n,m are the zero-based indices, meaning n,m ∈N∪{0}, in the x- and y-direction, respectively. And
the square brackets signify that it is a discrete function. Important to note is that the SLM itself is rectangular
and does not extend to infinity. Therefore, the rectangular shape of the SLM acts as an aperture function on
the incoming field, meaning that everything outside its rectangle will vanish.

19

20 3. Experiment

As described earlier, the continuous phase distribution will be based on a B-spline surface that is created
using a 2D control net of control points. To illustrate this, suppose that

{
Bi , j

}
with i = 1,2, . . . ,n and j =

1,2, . . . ,m is such a control net. Note that
{
Bi , j

} ∈ R is not in bold face, as the phase distribution surface only
has one value per x- and y-coordinate. In all experiments we use the same polynomial order p along both
indices. The knot vectors Ξ and H along both indices will partition the unit interval [0,1] ⊆ R uniformly,
meaning that each part in the partition has equal length. The resulting B-spline surface S(ξ,η) will represent
the phase distribution the SLM will have. To do so, the B-spline surface is used in the following way:

φ[n,m] = S
(n

1920
,

m

1080

)
(3.3)

where n,m are again zero-based indices.

After the SLM has phase adjusted the incoming field, the second part commences. In this part the resulting
field is propagated to the far field using the Fraunhofer diffraction integral, as seen in equation 2.15 in section
2.2.4. For Fraunhofer diffraction to work properly, the criterion of equation 2.16 must be satisfied. In simu-
lations this criterion is easily satisfied by specifying a large enough propagation distance and using a small
aperture. In practice this is difficult, as large propagation distances become infeasible in a laboratory setting.
Therefore, as mentioned in section 2.2.6, one can use a classical convex lens to obtain a Fourier transform
of the field without letting the field propagate to the far field, effectively executing Fraunhofer diffraction. In
this thesis simulations will be carried out with a propagation distance of 20 cm for Fraunhofer diffraction.
Physically, this is too short of a distance to satisfy the criterion, so this will correspond to using a lens of focal
length f = 20cm. In the results chapter 4 ‘far field’ will refer to the result obtained in the focal plane of the
lens used to execute Fraunhofer diffraction.

The aforementioned parts in the optical setup are also depicted in figure 3.1, where U0 is the initially con-
structed field, φ(x ′, y ′) is the phase distribution used by the SLM. After the SLM a positive lens with focal
length f is placed, which results in Fraunhofer diffraction with a propagation distance f .

Since the Fraunhofer diffraction is executed numerically, it will be discretised. As described in section 2.2.5,
this is done by using the discrete Fourier transform instead of the continuous Fourier transform. Specifically,
the Fast Fourier Transform, or FFT for short, of the PyTorch library is used, as this library implemented the
algorithm such that it preserves gradients, allowing backpropagation to update the weights and biases in the
MLP that led to the parameters given to the optical simulation. In this thesis the FFT will be used with an
aspect ratio of 1 : 1 and resolutions that are powers of 2. Since the SLM already has a resolution of 1920 on
its longest side, a resolution of 2048 must already be used in the FFT. To increase the resolution of features
in the far field, the size of the incoming field that is to be Fraunhofer diffracted must be increased. This can
be done in two ways: One way is by adding padding around the SLM, and thus increasing the size of the
incoming field, but at the cost of adding more resolution to the FFT. The other way is by downsampling the
SLM but keeping the resolution the same. In other words, each pixel in the near field will cover a larger area.
For instance, when downsampling with a factor of 2, a pixel in the near field will correspond with four pixels
on the SLM. The specific approach used to increase the resolution of features is dependent on the specific
experiment and this will be elaborated upon in section 3.2.4.

3.2.2. Neural Network
Each experiment will have a neural network specific to its optical setup. The inputs and outputs of the neural
network will be parameters of the optical simulation. For instance, a network can have 5×5 control points as
output for the B-spline surface phase distribution and as input the angle with which a plane wave is coming
in. The neural network will be an MLP with the layer configuration dependent on the complexity needed
for the experiment. The activation function will default to the tangent hyperbolic function. This function is
applied to intermediate layer values, but not to the output. The Adam optimizer will be used during training
to optimize the weigths.

To detect convergence of the loss and stop training the network, an early stopping criterion is used. This cri-
terion works by the use of two parameters: A delta parameter and a patience parameter. The delta parameter
is used to classify whether an update is an improvement. Specifically, an update is an improvement if the
loss has gone down by at least delta. If the delta parameter is zero, then every arbitrary decrease in loss is
considered an improvement. The patience parameter determines how many stagnating updates may occur
before the training is stopped. To illustrate this, suppose delta is 0 and the patience parameter is 10. Then, if
during training the loss does not decrease for consecutive 10 training steps, the training is halted.

3.2. Setup 21

Figure 3.1: General setup used in experiments. The left coordinate system describes the incoming field
U0(x ′, y ′), this field is phase altered by the SLM at z = 0 with functionφ(x ′, y ′), then with the aid of of a positive
lens with focal distance f , the field is Fourier transformed. Hence, the field is ‘Fraunhofer diffracted’ to the
far field at a distance f .

The complete setup of both the optical simulation and the neural network is depicted in figure 3.2. The MLP
receives an input, it computes an output, then both inputs and outputs are fed into the optical simulation and
serve as parameters. The optical simulation will produce an intensity distribution based on the parameters
it was fed. This intensity distribution is compared to the desired intensity distribution, which gives a loss
value. This loss value is then used to adjust the weights and biases in the MLP. Important to note is that the
optical simulation will only do operations on its parameters that are gradient preserving (this means that the
simulation only contains operations that are differentiable and therefore the gradient with respect to a certain
trainable parameter can be found after simulation), as otherwise no training would have been possible. This
is also exactly what physics informed neural networks are based on.

3.2.3. Loss functions
The loss as a result of comparing the predicted intensity profile and the desired intensity profile can be calcu-
lated in a multitude of ways. In this thesis a variation of the mean squared error between the squared moduli

of the predicted field
∣∣Ûp

∣∣2
and desired field

∣∣Up
∣∣2 will mainly be used:

E = 1

N 2

N∑
n=0

N∑
m=0

∣∣∣∣∣
∣∣Ûp [n,m]

∣∣2

max{i , j}
∣∣Ûp [i , j]

∣∣2 −
∣∣Up [n,m]

∣∣2

max{i , j}
∣∣Up [i , j]

∣∣2

∣∣∣∣∣ (3.4)

where N ×N is the resolution of the Fraunhofer diffraction. Other loss functions can be used as well. Specifi-
cally, in the previous equation

∣∣Ûp
∣∣ and

∣∣Up
∣∣ can be used instead of the intensities. The motivation for such a

loss function is that it will prioritize smaller differences more ‘equally’, as larger differences are not blown up
by squaring the field. This gives the following loss function:

E = 1

N 2

N∑
n=0

N∑
m=0

∣∣∣∣∣
∣∣Ûp [n,m]

∣∣
max{i , j}

∣∣Ûp [i , j]
∣∣ −

∣∣Up [n,m]
∣∣

max{i , j}
∣∣Up [i , j]

∣∣
∣∣∣∣∣ (3.5)

Another possible loss function can be based on the fact that the perception of light in terms of brightness
is logarithmic in nature for human vision, as described by Kenneth and Fellers [9]. With this in mind a loss
function with a logarithm of the difference between two intensity distributions or the absolute value of the
field can be constructed. This idea yields the following two loss functions, with the intensity of the field first
and the modulus of the field second:

E = 1

N 2

N∑
n=0

N∑
m=0

log

(∣∣∣∣∣
∣∣Ûp [n,m]

∣∣2

max{i , j}
∣∣Ûp [i , j]

∣∣2 −
∣∣Up [n,m]

∣∣2

max{i , j}
∣∣Up [i , j]

∣∣2

∣∣∣∣∣+ε
)

(3.6)

22 3. Experiment

Figure 3.2: The adopted setup of the MLP and the optical simulation. In this figure the parameters used by
the optical simulation are determined by the inputs and outputs of the neural network.

E = 1

N 2

N∑
n=0

N∑
m=0

log

(∣∣∣∣∣
∣∣Ûp [n,m]

∣∣
max{i , j}

∣∣Ûp [i , j]
∣∣ −

∣∣Up [n,m]
∣∣

max{i , j}
∣∣Up [i , j]

∣∣
∣∣∣∣∣+ε

)
(3.7)

where ε = 10−15 is added to avoid reaching −∞ when using floating point numbers that have limited preci-
sion. Obtaining −∞ will result in ‘Not a Number’ values for the weights and biases when training continues
with such a value for the loss.

To compare these four loss functions, we will run them on the same optical setup with the same initialization
of the weights and biases in the MLP. Since comparing them requires some sort of objective metric, we will
use the first loss function for that. This is not ideal, but this loss function seems to make the least assumptions
on the input, whereas the exponential based loss functions do. In the experiments section it will be described
what experiment will be used to compare them. To make distinguishing them easier, consider the following
table of abbreviations:

Table 3.1: Naming convention for the different loss functions.

Abbreviation Equation number
Intensity MSE 3.4
MSE 3.5
Logarithmic intensity MSE 3.6
Logarithmic MSE 3.7

3.2.4. Progressively increasing resolution
Since working at large resolution requires more computational power, it is preferable to work on resolutions
as low as possible for the least amount of iterations. One way that may achieve this, is to start of with a lower
resolution and once convergence has been reached there, start increasing the resolution of the simulation.
After each increase in resolution training commences again and is done until convergence is reached. The
convergence is defined here as triggering the early stopping criterion as described in section 3.2.2.

As described in section 3.2.1, there are two ways to achieve more detail in the resulting Fraunhofer diffraction.

3.3. Experiments 23

Figure 3.3: Sampling of the SLM for lower and higher resolution. The specific choice of what pixel is preserved
or duplicated is in accordance with the ‘nearest’ sampling specification of the [10] library.

One way is to add more padding around the SLM and the other way is to downsample the SLM. Both methods
result in a larger margin to SLM size ratio. Since the SLM works at a fixed resolution of 1920×1080, we must
either sample the phase distribution down or up. When downsampling it is important to make sure that no
averaging occurs, as to stay as close as possible to the original phase distribution. When upsampling, no
interpolation can occur, as the SLM cannot work at higher resolutions. Hence, ‘nearest’ interpolation is used.
That is, when sampling up or down, replicate the closest available value. To illustrate this, consider figure
3.3. In this figure, the center square that is divided in four parts depicts the SLM at original resolution. When
downsampling, only the red upper left pixel is preserved and when upsampling, the pixels are repeated. This
method ensures that the result of simulations will be applicable to a physical SLM.

In practice the following procedure will be used for increasing the resolution in the far field of the problem:
The resolution will be doubled in either direction, so (N ·2)× (N ·2). Then, the physical size of the near field
will be doubled. So the near field that is sampled and then diffracted will have new size: (Lx · 2)× (Ly · 2).
To understand this procedure, consider section 2.2.5. There it is stated that a feature of size d = ∆x

λz in the

continuous Fourier transform has index range ∆k = ∆x
λz

Lx
2π . So doubling the resolution Lx , and homologously

doubling Ly , will result in a larger index range in either direction and thus more detail. However, this will
result in a smaller area that is seen in the far field, as the largest x-value is determined by xmax =λz 2π

Lx
(N /2−1),

which gives that xmax will halve in size. To counteract this, N (simulation resolution) is doubled in either
direction. This procedure makes sure that the spatial scale of the far field stays approximately the same.

3.2.5. Infrastructure
To join the optical simulation and the neural network together, infrastructure that does the plumbing be-
tween the two is necessary. In this thesis a modular approach is taken, which consists of a ‘Scenario’ that is
essentially the optical simulation and a ‘Model‘ that is the neural network and instructs the Scenario what
parameters and resolution to use. Both of these components are configured in a configuration file. This con-
figuration file uses Javascript Object Notation, or JSON for short, as its syntax. Each experiment has a specific
configuration file. In this file the model and scenario to use is specified, along with model and scenario spe-
cific configuration options. These options include the specification of the desired intensity distribution, here
referred to as a profile. This intensity profile can be anything from an image to a solution known to be in the
solution space. Additionally, in the configuration file it is specified what ‘topology’ is used for the experiment.
This topology describes how parts of the input and output of the neural network are related to parameters in
the optical simulation that is carried out in a scenario. For an example configuration file, see appendix section
A.2.

To visualize this infrastructure, consider figure 3.4. In this figure each modular component is shown in a
flowchart. The result of running an experiment will be a set of optimal parameters that can be used in the
optical simulation to achieve a result as close as possible to the desired intensity profile.

3.3. Experiments
As described in the introduction, the general aim will be to improve upon the work of Imhof [2] by extending
the problem to 2D and using a neural network that is specifically trained for a certain optical setup. To check
the feasibility and correctness of the proposed setup we will verify that a solution that is certainly in the
solution space can be found. To obtain such a solution in the solution space, we will use the optical setup of a
specific experiment and feed it randomized parameters. The neural network is then tasked with finding these

24 3. Experiment

JSON file
Execute run function

Runner

Settings
Topology

Sample generator

Size of profile

Model to load

Scenario to load
Configuration

Loss

Scenario

Data to simulate

Optional resolution update
Model

python -m experiments.runner <configuration>

Trained network

Profile tensor

Profile

Optimal parameters

Figure 3.4: Modular infrastructure used to carry out all experiments described in the experiment section.

parameters. This will be done for each experiment. After we have done this for a few different setups, we will
try to see if the setup is able to recreate advanced images that are not necessarily in the solution space.

3.3.1. Single perpendicular incident plane wave: solution space
In this experiment a single perpendicular incident plane wave to the SLM will be used. The SLM will have a
phase distribution that is created by an order 3 B-spline with 5×5 control points. The desired intensity profile
will be generated by selecting 25 control points at random and running the simulation to obtain a profile.
Since this optical simulation only has control points as its input, the neural network that is trained on this
will only have 25 outputs and no inputs. The input will simply be a constant 1 value. In essence, the neural
network is then merely an advanced optimization algorithm and is no longer like a ‘physics informed‘ neural
network, as no inputs are varied and the output of the network is expected to converge to a constant solution.
Nevertheless, if this approach works, it proves that the simulation infrastructure is written in such a way that
gradients are indeed preserved and backpropagation can work on it. In addition, this experiment will show if
optimizing the network for a specific problem is a feasible strategy.

In section 3.2.3 multiple loss functions have been described. In this experiment these loss functions will be
tested to see their performance. As described in that section, it is difficult to compare them, as for the same
desired profile they can all yield different solutions. Therefore, the Intensity MSE loss function will be used
as a baseline comparison between the different solutions. When comparing them it is important to make
sure that the network and random control points are initialized in the same way. This can be achieved by
setting a so-called ‘random seed’. Since it can occur that a specific loss function is better suited to a certain
initialization, the experiment with all four loss functions will be carried out 5 times with a different seed.

In addition, in section 3.2.4 a procedure for increasing the resolution of the simulation without changing the
physical size of the far field domain was introduced. During training it can be advantageous to start off with
a small resolution and increase the resolution when convergence is reached, as doing training on a smaller
resolution is much faster. This experiment will be used to test this.

3.3. Experiments 25

3.3.2. Single point source: solution space
This experiment will make use of a single point source placed at a distance d from the SLM. The SLM will
have a phase distribution that is created by an order 3 B-spline with 5×5 control points. The topology of the
neural network will be: distance d as a single input and 5×5 = 25 control points as output. For some random
distance d and 25 random control points a simulation will be ran. The output of this simulation will become
the desired intensity profile. The neural network is then tasked with finding the parameters to achieve this.
If the network is able to find these parameters, this experiment will show that the network is able to find and
converge towards a solution that is known to be in the solution space.

3.3.3. Single variable angle incident plane wave: solution space
In this experiment a plane wave with its wavefront parallel to the y ′-axis is tilted by some angle α to the
optical axis, the z-axis. This plane wave is incident to the SLM. Just as before, the SLM will have a phase
distribution created by an order 3 B-spline with 5×5 control points. The network will then have the following
topology: the angle α as an input and the 25 control points as an output. The desired intensity profile will be
the resulting profile of an optical simulation with random angle and control points. An important limitation
is that the angle α will be constrained to the range −30° till 30°, as to ensure the setup can be replicated in
a physical experiment and to ensure the paraxial approximation is satisfied. The paraxial approximation is
what is used in the derivation of the Fraunhofer diffraction and results in the assumption that r u z in section
2.2.4. Hence, we must not violate this assumption by allowing greater angles. The network will be trained
with random input angles in the aforementioned range.

3.3.4. Single perpendicular incident plane wave: recreating the university logo
Here the same optical setup will be used as in the experiment described in section 3.3.1. That is, there is
a single perpendicular incident plane wave to the SLM. The phase distribution of the SLM is created with
an order 3 B-spline surface. The desired profile will be based on the logo of Delft University of Technology,
specifically the truncated logo that consists of three shapes. For reference, the logo is shown in figure 3.5.
The number of control points is yet to be determined, depending on the amount of complexity needed to
reconstruct the logo. In this experiment the network topology will consist of no inputs (only a 1) and n ×n
control points, where n is yet to be determined.

Figure 3.5: The to be replicated university logo.

3.3.5. Two variable angle and amplitude incident plane waves: solution space
In this experiment two incoherent plane waves will be used. Since these plane waves are incoherent, these
plane waves will not interfere with each other. Therefore, to simulate this, the Fraunhofer diffraction will
be calculated for each plane wave separately after which the resulting intensities are added together. Each
plane wave will have a variable amplitude and variable incidence angles. In figure 3.6 a wavefront of the
planewave, indicated in gray, is shown. The plane wave can be rotated along the x ′- or y ′-axis with angles
α and β, respectively. So each plane wave has three adjustable parameters, two angles and one amplitude.
For this experiment the SLM will have a phase distribution created by an order 3 B-spline surface with 5×5
control points. Hence, the topology of the neural network becomes: 6 inputs and 25 outputs. Just as in the
experiment described in section 3.3.3, where only a single plane wave had one variable angle, the angles will
be restricted to the range −30° till 30°.

26 3. Experiment

Figure 3.6: Rotating a plane wave along the x ′-axis with angle α and along the y ′-axis with angle β. The grey
area depicts a wave front of the plane wave.

4
Results

4.1. Introduction
In this section the results of the experiments described in section 3.3 will be presented. Experiment specific
discussion will be described after the results of that experiment have been presented. Overall discussion of
experiments will be described in chapter 5, which is the next chapter.

The program and its configurations are available in a git repository. See section A.3 in the appendix for the
link.

4.2. Single perpendicular incident plane wave: solution space
This experiment consists of three parts. The first part verifies whether the simulation infrastructure is working
correctly. Secondly, with this in mind the different loss function are benchmarked and a best loss function is
picked for use in the rest of the experiments. Lastly, with the chosen loss function, the results of an experiment
aiming to find a phase distribution known to be to in the solution space, are presented.

4.2.1. Qualitative verification of simulation infrastructure
To start off, we first assess qualitatively whether the simulation gives the expected result. The simplest case
is to to set the control points in the B-spline surface all to zero, i.e. not altering the phase of the incoming
field of the planewave. Then the SLM will act as a rectangular aperture. For a perfectly square aperture the
Fraunhofer diffraction simulation result should look like the pattern in figure 4.1. Not that in this figure Voelz
boosted the image contrast to better show the side lobes of the pattern. In addition, he works on a different
length scale than we do here. Since the SLM is not a square but a rectangle with aspect ratio 16 : 9 with its
long side along the horizontal axis, we expect that in the horizontal direction the pattern is squished and it
is stretched in the vertical direction. And indeed this is what we observe in figure 4.2, where the result of
the simulation has been plotted. The plot uses a sequential color map, where the brightness indicates the
value for the intensity, that is |U |2 is plotted. This simulation used a resolution of 1024×1024 pixels with the
resolution of the SLM scaled to 38×21, giving a near field size of 41cm×41cm and far field size of 0.03cm×
0.03cm when a propagation distance of 20 cm is used. In addition, this simulation used a wavelength of
633 nm. The far field size may seem small, but keep in mind that the SLM has dimensions 1.536cm×0.864cm.

From this comparison we can conclude that the simulation is working and correctly implements the Fraun-
hofer diffraction integral in numerical form. Therefore, we continue with comparing the different loss func-
tions.

4.2.2. Loss function comparison
The results of the loss function comparisons are shown in table 4.1, where the abbreviations of table 3.1 in the
experiments chapter have been used. The experiments have been run with the same settings as mentioned
in the first paragraph, which is paragraph 4.2.1. The results in the table are the averages of running the exper-
iment with five different seeds. The seed determines the control points used for the B-spline surface phase

27

28 4. Results

Figure 4.1: Fraunhofer diffraction pattern (contrast is boosted) as a result of a rectangular aperture. This
figure has been extracted from Voelz [4, p. 81, figure 5.7a]. It does not come with a color scale, but it does
indicate the overall pattern.

(a) Original normalized intensity distribution. (b) Zoomed in normalized intensity distribution.

Figure 4.2: Intensity distribution created using a B-spline phase distribution of 5 × 5 zero-valued control
points.

distribution that will give the desired intensity profile. The seed also determines how the weights and biases
in the MLP are initialized. Using a seed ensures that the results presented here are reproducible and that the
comparison between different loss functions is fair. The MLP consists of 1 input and 25 outputs. It has two
hidden layers of size 20. The tangent hyperbolic function is used as an activation function, except for the
final output. To detect convergence, the early stopping criterion, as described in section 3.2.2, is used with a
patience of 10 updates and no delta parameter. The delta parameter is not used, as each of the loss functions
will work in widely different orders of magnitude, which makes setting a fair delta parameter infeasible. The
loss value shown in the table is calculated with the Intensity MSE loss function. The measured runtime is the
runtime of the whole script, not only the optimization time. Therefore, a small amount of the runtime will
be constant time, which is independent of the chosen loss function. The experiments have been run on a
high-performance computer using the PyTorch library. The PyTorch library was configured to use CUDA on
a single NVIDIA GeForce RTX 2080 Ti GPU.

From the results in the table we can conclude that the loss functions without a logarithm perform best in
terms of lowest loss value. This is to be expected when the baseline comparison is done using the Intensity
MSE loss function. Interestingly, the loss functions based on a logarithm give faster convergence, in the sense
of the early stopping criterion, on average than their non-logarithmic counterparts. Also worth noting is

4.2. Single perpendicular incident plane wave: solution space 29

the fact that the plain MSE loss function gives a better loss value than the Intensity MSE, while both final
loss values have been calculated with the Intensity MSE loss function. This difference may be explained by
the fact that the MSE loss function took much longer on average for the early stopping criterion to trigger,
continuing with its optimization.

To further investigate these results we will consider the loss values of the respective loss functions over the
epochs. For this, consider figure 4.3, where the runs with seed 1.0 have been plotted. In this figure all four
loss functions with their values over the epochs have been plotted. Here, an epoch consists of 5 updates
grouped together. The value plotted here is the average of 5 consecutive updates, as to smooth the loss curves.
In addition, note the difference in the amount of epochs for each plot. This difference is the result of the
early stopping criterion with a patience parameter of 10. Since these loss functions have widely different
definitions, comparing their specific values has no use. Therefore, instead, we only consider the general
shape.

From the general shape, we can conclude that the non-logarithm based loss functions, in figures (a) and
(b), show exponential like convergence. Important to note is that while the MSE loss function looks like it
converges much faster, it may not be the case, as the figure shows more epochs on the x-axis. To compare
their speed of convergence properly, we will compare them by using the amount of epochs it took to decrease
the loss value by 90%. For the intensity MSE this took 16 epochs and for the MSE this took 10 epochs. From
this comparison it seems that the MSE loss function converges faster. To further substantiate this claim, we
will calculate an average speed of convergence for the 5 different seeds using the aforementioned criterion.
This yields the following results: 16.2 (8.0) epochs on average for the MSE loss function and 32.6 (15.9) for
the intensity MSE loss function, where the value between brackets is the sample standard deviation. For the
results per seed, consider table A.2 in the appendix. Hence, the MSE loss function does indeed converge
faster. Since this comparison may not be entirely fair when using different types of loss functions, we will also
calculate the average convergence of the intensity MSE loss when training with the MSE loss function. This
gives a value of 29.6 (9.2) epochs for convergence when using the MSE loss function to optimize, again with
the sample standard deviation between brackets. The results used for this are in table A.2 in the appendix.
Therefore, with a value of 32.6 (15.9) for the intensity MSE and a value of 29.6 (9.2) for the MSE, when using
the same baseline intensity MSE loss function, we cannot conclude which one has faster convergence.

In figure 4.3 and then specifically figures (c) and (d), we see the result of the logarithm based loss functions.
From these plots we can observe that their behaviour is much more oscillatory than for their non-logarithm
counterparts. In fact, the logarithmic intensity MSE loss function does not seem to converge at all, while the
logarithmic MSE loss function does seem to converge, but then starts oscillating. For the logarithmic inten-
sity MSE it is useless to use the 90%-decrease criterion for comparison, as this is never reached. Instead, we
will use the intensity MSE loss function to check the convergence when training with either of the logarithm
based loss functions. In figure 4.4, the progression of the intensity MSE loss function values as a function of
the number of epochs have been plotted. From the first plot in (a), we can conclude that no clear conver-
gence occurs for the logarithmic intensity MSE loss function, as most of the curves stay relatively constant,
albeit with oscillatory behaviour. For the logarithmic MSE loss function in figure (b), we also observe the rel-
ative constantness of the intensity MSE loss value, except for the red curve (seed 1.0). Nevertheless, we can
conclude that on average no definitive convergence occurs.

Hence, from the previous results, we conclude that the logarithm based loss functions do not yield proper
convergence. This leaves us with the intensity MSE and MSE loss functions. As previously found, these loss
functions have similar convergence speeds. From table 4.1 we find that the MSE loss function takes on aver-
age longer, but gives a better loss in the end, while the intensity MSE loss function has it the other way around.
Since the intensity MSE is the most useful loss value, i.e. it makes the most physical sense, we will use that
loss function for the rest of the experiments. In addition, the better loss value of the MSE loss function can
explained by it not triggering the early stopping criterion as early as the intensity MSE loss function. This can
be corrected for the intensity MSE loss function by adjusting the patience and delta parameter of the early
stopping criterion.

4.2.3. Solution space
As stated in the last paragraph of the previous subsection, the intensity MSE loss function will be used from
now on. With the same settings as described in the first paragraph of this experiment, we will use a seed of
1.0 to generate the control points that are used to create the intensity profile. This intensity profile is certainly

30 4. Results

0 10 20 30 40 50
Epochs

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012
Lo

ss

Loss over epochs of function Intensity MSE

(a) Intensity MSE loss function change over epochs.

0 10 20 30 40 50 60 70
Epochs

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

0.00035

0.00040

Lo
ss

Loss over epochs of function MSE

(b) MSE loss function change over epochs.

0 5 10 15 20
Epochs

12.15

12.10

12.05

12.00

11.95

Lo
ss

Loss over epochs of function Logarithmic intensity MSE

(c) Logarithmic intensity MSE loss function change over
epochs.

0 10 20 30 40
Epochs

20

19

18

17

16

15

14

Lo
ss

Loss over epochs of function Logarithmic MSE

(d) Logarithmic MSE loss function change over epochs.

Figure 4.3: Comparison of loss function convergence for all four loss functions, initialized with seed 1.0 and
using an early stopping criterion with a patience of 10.

(a) Logarithmic intensity MSE loss function. (b) Logarithmic MSE loss function.

Figure 4.4: These plots show how the intensity MSE loss values evolve over time when training with the log-
arithmic intensity MSE loss function an the logarithmic MSE loss function. On the horizontal axis the epoch
index is shown and on the vertical axis the intensity MSE loss value is shown. Each line in the plot corresponds
with the seeds 1.0, 2.0, 3.0, 4.0 and 5.0.

4.2. Single perpendicular incident plane wave: solution space 31

Table 4.1: Average results for loss (in terms of Intensity MSE) and runtime until convergence for different loss
functions. The abbreviations used here are the same as in table 3.1. The average has been calculated over 5
runs with random seeds 1.0,2.0,3.0,4.0 and 5.0.

Loss function Loss Runtime
Intensity MSE 6.53 ·10−5 31 s
MSE 1.98 ·10−5 56 s
Logarithmic intensity MSE 1.40 ·10−3 15 s
Logarithmic MSE 8.69 ·10−4 28 s

in the solution space. Then, the network is trained to find the control points that create this intensity profile.
The result of this is shown in figure 4.5. The first figure uses a sequential color map and shows the intensities
in the far field. The second figure uses a non-sequential color map and shows the moduli of the field in the
far field. Both figures show the desired profile that has been calculated by using a random 5×5 control net
of control points. Then the second plot in both figures is the result after training and the last plot in both
figures shows the difference between the two. Important to note is that for comparison the fields have been
normalized, i.e. their maximum is put at 1 and their minimum is put at 0. The final loss value for the intensity
MSE is 3.46 · 10−5 and it took 58 epochs of 5 updates for the early stopping criterion to trigger. From both
figures in figure 4.5, we can see that the found control points result in an intensity profile pattern that is very
much alike to the desired profile. In addition, we see that the greatest difference between the two patterns is
around 0.012 in the center (in figure (a)), so around 1.2% of the maximum intensity.

From these results we can conclude that backpropagation is working correctly, even across the simulation, as
the training is able to modify the weights and biases such that the network outputs control points that give
an intensity profile very close to the desired profile. In addition, we can conclude that the proposed setup is
able to replicate solutions in its solution space.

To further investigate the solution that has been found, we will create an image of the B-spline surface phase
distribution. This image will be modulo 2π with a cyclic color map, as the control points can lay outside
the range −π to π. On top of this image the control net will be drawn. This results in figure 4.6, where in
subfigure 4.6a the desired phase distribution is drawn and in subfigure 4.6b the found phase distribution
is drawn. When observing these plots, it is clear that, due to their equal color maps, that these two phase
distributions are not some multiple of 2π apart. Otherwise, plotting both phase distributions modulo 2π
would have resulted in the same image. In addition, we observe that where the image is kind of red in (a), we
have a kind of blue color in (b) and vice versa. An important exception to this observation is the black color
in (a), which signifies a π or −π value, whereas in (b) these areas are white and signify a 0 value. This seems
to suggests that the found phase distribution is the same as the desired phase distribution, but shifted by a
factor π. To verify this, consider figure 4.6c, where the difference between the desired phase distribution and
the found phase distribution is plotted and taken modulo 2π. And indeed, the found phase distribution is
now almost exactly equal to the desired phase distribution, except for a global phase difference of ±π. The
extra phase difference does not lead to a different intensity profile in the far field, as a factor e±iπ can be taken
out of the integral expression of the Fraunhofer diffraction integral in equation 2.15 in the Theory chapter.
From this result we can conclude that the proposed setup is able to replicate a solution known to be in the
solution space of the problem.

4.2.4. Progressively increasing resolution
In section 3.2.4 a procedure for increasing the resolution without changing the physical size of the far field
was introduced. In practice, we will use the following approach: we will start at a resolution of 256×256 and
train until convergence, i.e. when the early stopping criterion with a patience parameter of 10 is triggered;
then we will double the resolution to 512×512 and again train until convergence; and finally we will do the
same for 1024×1024, which is the same resolution as used in the previous subsection.

This method resulted in a loss value of 2.86 ·10−5 in terms of the intensity MSE loss function. This is a better
result than training at a single resolution, because we previously obtained a loss value of 3.46 ·10−5. To make
the comparison more fair, we will consider their running times. For the resolution update method training
took 45 s with three updates and three times convergence. For the static resolution training took 27 s, which is
significantly shorter. However, the static resolution took 58 epochs and the resolution update method took 45

32 4. Results

0.00015 0.00005 0.00005 0.00015
x [m]

0.00015

0.00005

0.00005

0.00015

y
[m

]

Desired profile

0.00015 0.00005 0.00005 0.00015
x [m]

0.00015

0.00005

0.00005

0.00015

y
[m

]

Simulated profile

0.00015 0.00005 0.00005 0.00015
x [m]

0.00015

0.00005

0.00005

0.00015

y
[m

]

Difference

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.000

0.002

0.004

0.006

0.008

0.010

0.012

Comparison between simulated and desired profile

(a) Using a sequential color map for the intensities and their
differences.

0.00015 0.00005 0.00005 0.00015
x [m]

0.00015

0.00005

0.00005

0.00015

y
[m

]

Desired profile

0.00015 0.00005 0.00005 0.00015
x [m]

0.00015

0.00005

0.00005

0.00015
y

[m
]

Simulated profile

0.00015 0.00005 0.00005 0.00015
x [m]

0.00015

0.00005

0.00005

0.00015

y
[m

]

Difference

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.002

0.004

0.006

0.008

0.010

Comparison between simulated and desired profile

(b) Using a non-sequential color map for the moduli of the
fields and their differences. This gives more contrast.

Figure 4.5: Results after training for 58 epochs with initialization done using a seed 1.0 and using the intensity
MSE loss function.

4.3. Single point source: solution space 33

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Desired phase distribution

1
2

0

1
2

(a) The desired phase distribution.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Found phase distribution

1
2

0

1
2

(b) The found phase distribution.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Found phase distribution

1
2

0

1
2

(c) Difference between the plots in figures 4.6a and 4.6b
taken modulo 2π.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Found phase distribution

1
2

0

1
2

(d) Image of the found phase distribution using the resolu-
tion update method.

Figure 4.6: Images of the desired and found phase distribution with and without the resolution update
method. In these plots the white dots represent the location of control points. The ξ-axis corresponds with
the long side of the SLM and η-axis corresponds with the short axis of the SLM.

epochs at 1024×1024 resolution. So the resolution update method takes a shorter time at full resolution, but it
still took longer because of the convergence at the other resolutions. This runtime comparison used the GPU
for training, where working at larger resolutions for the Fourier transform does not result in much longer
execution, as most of the calculations can be done in parallel. Therefore, when using a CPU as compute
device, which has less parallelization options, it may prove useful to use this resolution update method, as it
can shorten runtime.

To test this hypothesis, we will run both setups on the CPU. This results in a runtime of 160 s for the static
resolution and a runtime of 149 s for the resolution update method. Note that running on a different compute
device results in a different internal random state on which the seed is imposed. Therefore, these running
times cannot be compared to the GPU running times, as the networks and desired profiles are differently
initialized. These results confirm the hypothesis that on a CPU it may be beneficial to use this method of
updating resolution. However, more runs need to be carried out to make this claim more substantiated. Since
this is a bit outside the scope of this thesis, we will carry on with investigating the found phase distribution.

In figure 4.6d the phase distribution as found by the resolution update method on the GPU is shown. From
this figure we immediately observe that it looks very similar to figure 4.6a, where the desired phase distribu-
tion is shown. This is in contrast to the first phase distribution we found, see figure 4.6b, which was shifted
by approximately π in phase, as illustrated in figure 4.6c.

4.3. Single point source: solution space
Before we start training a network to find a solution, we first verify that the simulation implementation for a
point source is working well. To do so, we set all control points to zero and simulate merely the light of a point
source going through a rectangular aperture, the SLM in this case. For this setup, we put a point source at
8 cm from the SLM, which is a typical distance. This simulation will start with the SLM unscaled, so the SLM
has its original resolution of 1920×1080. Then the simulation will have a resolution of 2048×2048, as to fit the

34 4. Results

SLM. This gives the result of figure 4.7a. In this figure we see horizontal and vertical bands occurring. With
a point source and the SLM as aperture we would expect the center to have the greatest intensity, instead
we have the greatest intensity where the horizontal and vertical bands cross. At first glance it may look like
the algorithm does some bad Fourier frequency shifting, as we expect the bottom and top part to be in the
center, but this is not the case. This discrepancy can be explained by aliasing. To illustrate this, consider the
other plots in figure 4.7. The second plot, in figure 4.7b, has no aliasing occurring and we observe the pattern
we expect to observe. Note that the pattern is close to the borders of the domain. If we now consider the
third plot, in figure 4.7c, we can see that at the edges the pattern starts to ‘fold’ over. Then, if we decrease the
distance even more to 15 cm, we obtain figure 4.7d, in which it has folded more. If we continue with this, we
will eventually get the result we saw in figure 4.7a.

(a) 8 cm (b) 20 cm

(c) 18 cm (d) 15 cm

Figure 4.7: Image in the far field for point sources at different distances to the SLM. This figure shows aliasing
occurring as the point source is brought closer. Note that the SLM does not induce any phase shift.

Aliasing occurs when a certain signal, in this case the incoming field of the point source, is sampled with
too little samples, resulting in certain high and low frequency components becoming indistinguishable. In
the case of the discrete Fourier transform, carried out here as part of Fraunhofer diffraction, this results in
higher frequency components outside the domain being ‘folded’ back into the domain resulting in the curi-
ous banding patterns seen in figure 4.7a and the progression we see in figure 4.7. One may wonder why we
did not encounter this phenomenon in the previous experiment, but in fact we did, albeit not so prominent.
Consider figure A.2 in the appendix, where the desired profile of the previous experiment has been plotted on
a logarithmic scale. In this figure we can clearly see the repetitive pattern in all four quadrants. This pattern
is characteristic of aliasing. However, note that we are looking at very small values there, so we may neglect

4.4. Single variable angle incident plane wave: solution space 35

this.

The difference between both experiments is, that with a point source we add additional high frequency com-
ponents to the near field, namely the spherical shape of the wave front. This spherical wave front is created by
multiple high frequency components, which, due to limited resolution, experience aliasing. When a simple
plane wave is used, the wave front of it is simply a zeroth order frequency, resulting in no aliasing. Hence, the
aliasing effects we did observe in figure A.2 in the appendix, are due to the phase distribution imposed by the
SLM.

To mitigate the effects of aliasing, a higher resolution for the simulation must be used. Trying out multiple
higher resolutions, resulted in needing a resolution larger than 8192 × 8192 to obtain an acceptable level
of aliasing. Unfortunately, when employing backpropagation, an enormous amount of computer memory
is needed to keep track of each operation. At resolutions higher than 8192× 8192, the amount of memory
needed becomes infeasible to allocate. Therefore, the rest of this experiment will not be carried out, as lower
resolutions do not yield the accuracy that is desired. In the discussion chapter recommendations for future
research regarding this issue will be presented.

4.4. Single variable angle incident plane wave: solution space
This experiment has been carried out with the following settings: Simulation resolution of 2048×2048 with
the SLM scaled down to 192×108, so a near field size of 16.4cm×16.4cm and a far field size of 0.16cm×0.16cm
due to a propagation distance of 20 cm. This simulation uses a wavelength of 633 nm. In the description of
the experiment it was said that angles in the range −30° till 30° would be used, but this range is too big for
the chosen far field size. If the angle becomes too large, this will result in the profile being ‘folded’ back
into the far field domain. In reality, the profile will just appear outside the far field domain. Therefore, the
maximum angle range we can have is: tan−1

(0.0016m
0.2m

)= 0.45°. Hence, the range will be restricted to −0.22° till
0.22°. During training the samples that produce the lowest loss are kept. Once training is done, by means of
triggering the early stopping criterion with an update parameter of 10, the best sample is selected. Important
to note is that the early stopping criterion stops training after 10 epochs have not improved the loss. Since
different angles can result in large loss values, due to the zeroth order being located somewhere else, the
number of samples per epoch is increased from 5 to 20 samples.

This setup results in the following images, as seen in figure 4.8a. For this experiment an angle of −0.0019rad =
−0.11° was chosen at random. Together with 5×5 random control points this resulted in the desired intensity
profile shown first in the figure. After training for 19 epochs, with each epoch being 20 samples, a loss value of
3.31 ·10−5 was obtained. The best angle was found to be −0.019 rad, rounded to two significant figures, which
is equal to the initial value.

Since the pattern is quite small in the plot, we further investigate the pattern with the use of figure 4.8b, where
the pattern is zoomed in and the contrast boosted. The contrast is boosted by plotting |U | instead of |U |2 and
by the use of a non-sequential color map. From this figure we can immediately see that only the central spot
corresponds well, but the surrounding areas have no meaningful similarity. This can be explained by the fact
that during training the network was optimized for different random angles. If the angle is not the desired
angle the whole pattern will be shifted left or right from the desired position. The network is then trying to
optimize this by tweaking the control points such that the pattern is smeared in the direction of the desired
spot. Hence, the network is on average very little trained in obtaining the right pattern when it is at the right
angle.

In addition, the approach of training with a random angle each time results in erratic loss behaviour as seen
in figure 4.9. This can be explained by the fact that a wrong angle has a loss in the order of 10−4 and a correct
or close to correct angle has a loss in the order of 10−5. If we take averages of 20 samples per epoch to calculate
the loss, then certain average values will be pulled down when a correct or close to correct angle is present.
This also explains why the loss function seems relatively constant when omitting big downward jumps.

In conclusion, this experiment illustrates that using an angle as an input to the network does work, but the
network does not really learn from it. The angle of a plane wave is simply too sensitive, meaning that changing
the angle results in enormous changes in the far field, as the zeroth order shifts with it. Therefore, the network
does not really add much, as the network itself cannot control this parameter. In essence, we are doing a
random Monte Carlo search on the best angle, as we save the sample that has the lowest loss during training.

36 4. Results

In the discussion chapter recommendations regarding this problem will be presented.

0.0006 0.0002 0.0002 0.0006
x [m]

0.0006

0.0002

0.0002

0.0006

y [
m

]
Desired profile

0.0006 0.0002 0.0002 0.0006
x [m]

0.0006

0.0002

0.0002

0.0006

y [
m

]

Simulated profile

0.0006 0.0002 0.0002 0.0006
x [m]

0.0006

0.0002

0.0002

0.0006

y [
m

]

Difference

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Comparison between simulated and desired profile

(a) In the first two plots the field intensity is plotted using a
sequential color map. In the last plot the absolute difference
between these two intensities is shown.

x [m]

y [
m

]

Desired profile

x [m]

y [
m

]

Simulated profile

x [m]

y [
m

]

Difference

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.0

0.1

0.2

0.3

0.4

Comparison between simulated and desired profile

(b) In the first two plots the moduli of the field are plotted
using a non-sequential color map. The last plot is the differ-
ence between the two. The spatial axis labels are omitted in
this figure, as this is purely for pattern comparison.

Figure 4.8: Result of finding the optimal angle and control points for a variable angle plane wave experiment.
The left figure is the full scale result with a sequential color map. The right figure is a contrast boosted (|U |
plotted instead of |U |2 and using a non-sequential color map) zoomed in depiction of the pattern without
scale indicated axes.

4.5. Single perpendicular incident plane wave: recreating the university
logo

In this experiment recreating the university logo was attempted. The to be replicated logo was shown in
figure 3.5 in chapter 3. For this experiment the logo was adjusted to be purely binary black and white, i.e.

4.5. Single perpendicular incident plane wave: recreating the university logo 37

Figure 4.9: Plot of the loss over the epochs for the variable angle incident plane wave. On the horizontal
axis the epoch index is shown and on the vertical axis the loss value as calculated by the intensity MSE loss
function is shown.

where blue or black is present the value is one and otherwise it is zero. This experiment was carried out
at a resolution of 4096× 4096 and the SLM at full scale, meaning each pixel in the resolution of the SLM,
1920×1080, corresponds one to one with a pixel in the near field. A perpendicular incident plane wave was
used to construct the near field. The resulting intensity profile was created by a propagation distance of
20 cm.

4.5.1. Results of using 5×5 control points
When using 5 × 5 control points for an order 3 B-spline surface phase distribution, we obtain the plot in
figure 4.10. The loss value is 3.38 · 10−3 in terms of the intensity MSE loss function. This figure shows the
resulting intensity profile on a sequential color scale with left the result of the simulation and right a zoomed
in version. In these images we can see that the neural network was able to find the control points such that
the intensity profile resembles the general outline of the logo, but not the finer details. However, this is to be
expected when it can only control 25 control points. For further analysis, we will consider the found phase
distribution. This is plotted in figure 4.11, where we use a cyclic color map and the values have been taken
modulo 2π. Observing this image we see immediately that we have a lot of fast changing values, indicated
by the bands that occur. When the B-spline jumps between two control points with large values outside the
−π and π range, we get an area with a steep slope between them. When such an area is taken modulo 2π,
we get that it oscillates rapidly between −π and π. To further substantiate this claim, consider figure 4.12. In
this figure the B-spline surface is plotted in 3D and we readily observe that it jumps from −100 rad to 100 rad,
which explains the oscillatory we observe in figure 4.11.

Interesting to note is that this oscillatory behaviour looks analogous to Fresnel lenses. A Fresnel lens has
an enormously small focal length, resulting in a very thick lens. To mitigate the issue of having to use large
amounts of glass, circular discontinuities are introduced where jumps of multiples of 2π in phase are taken
to reduce the thickness of the lens. To illustrate this, consider figure 4.13, where a cross section of a Fresnel
lens and its corresponding thick lens are shown schematically.

4.5.2. Results of using 20×20 control points
To further improve the results obtained using 5×5 control points, we increase the number of control points
to 20× 20. Increasing this number much more is not feasible as for each update in the neural network the
whole B-spline has be to regenerated, which is computationally expensive. Therefore, this amount of control
points was chosen as a maximum. Using this amount results in each update taking approximately 1 second
on a GPU, whereas the 5×5 number of control points has a throughput of 16 updates per second on a GPU.

The results of using 20×20 control points are shown in figure 4.14. In this figure, the first subfigure is the full
scale result and the second subfigure is a zoomed in version. When looking at the zoomed in version we see
that the simulated result actually does read ‘TU’, but very faintly. There is a streak of scattered light from the
bottom of the ‘U’ up to the top of the flame that degrades the overall image quality.

The loss value is 3.58 · 10−3 in terms of the intensity MSE loss function. This loss value is higher than the
earlier found loss value of 3.38 ·10−3 for the 5×5 control points case. In the description of this experiment in
the experiments chapter, it was said that the number of control points was yet to be determined depending on

38 4. Results

0.006 0.002 0.002 0.006
x [m]

0.006

0.002

0.002

0.006

y
[m

]

Desired profile

0.006 0.002 0.002 0.006
x [m]

0.006

0.002

0.002

0.006

y
[m

]

Simulated profile

0.006 0.002 0.002 0.006
x [m]

0.006

0.002

0.002

0.006

y
[m

]

Difference

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Comparison between simulated and desired profile

(a) Full scale result.

0.001 0.000 0.001
x [m]

0.0015

0.0010

0.0005

0.0000

0.0005

0.0010

0.0015

y [
m

]

Desired profile

0.001 0.000 0.001
x [m]

0.0015

0.0010

0.0005

0.0000

0.0005

0.0010

0.0015
y [

m
]

Simulated profile

0.001 0.000 0.001
x [m]

0.0015

0.0010

0.0005

0.0000

0.0005

0.0010

0.0015

y [
m

]

Difference

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Comparison between simulated and desired profile

(b) Zoomed in result.

Figure 4.10: Result of recreating the university logo with a 5×5 control points order 3 B-spline surface phase
distribution. The intensities are plotted on a sequential color scale and are normalized such that the maxi-
mum intensity is 1.

4.5. Single perpendicular incident plane wave: recreating the university logo 39

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Found phase distribution

1
2

0

1
2

Figure 4.11: Image of the found phase distribution for recreating the university logo with 5×5 control points.
In this plot the white dots represent the location of control points.

0.00
0.25

0.50
0.75

1.00

0.00
0.25

0.50
0.75

1.00

150
100
50
0

50
100
150

Surface plot of the B-spline surface phase distribution

100

50

0

50

100

Figure 4.12: The 3D surface of the found B-spline surface for recreating the university logo with 5×5 control
points. The blue points indicate the control points used to construct the B-spline surface. The values shown
here are the phase in radians.

Figure 4.13: Example of a Fresnel lens. In (1) the Fresnel lens is shown and in (2) the corresponding thick lens
is shown. This figure was created by Pko [11].

40 4. Results

the complexity needed. This statement implicitly assumed that more control points would result in a better
image. Visually, we can see that the letters themselves are now readable with more control points, but the loss
value is worse. This discrepancy may be explained by this specific run, as each neural network is initialized
with random weights and biases.

Next, we will further investigate the phase distribution that was found by the neural network. For this re-
sult, consider figure 4.15, where the phase distribution is plotted modulo 2π with a cyclic color map. We can
observe that this phase distribution is much rougher than the one for 5×5 control points, which probably ex-
plains why the result in figure 4.14b looks so dotted. The increased ‘roughness’ of this phase distribution may
be a general trend when increasing the number of control points, as more fine grained control of the sharp
edges in the logo requires precise control over the phase. This is a consequence of the fact that Fraunhofer
diffraction relies on the Fourier transform. In figure A.4 in the appendix the result of using the Gerchberg-
Saxton algorithm [12] for finding the optimal phase distribution is shown. This method can fine tune each of
the 1920×1080 pixels of the SLM directly, instead of using control points. Important to observe in this image
is how rough and pixelated this image looks in comparison to the B-spline surfaces. However, it can almost
perfectly reconstruct the university logo, as seen in figure A.5 in the appendix.

In figure A.3 in the appendix the B-spline surface is plotted in 3D along with its control points. In this figure
we can see that the values range from -40 to 40, which explains the banding behaviour we see in figure 4.14.
This is homologous to the banding behaviour we saw in the previous subsection.

4.5.3. Loss function
Although it was said in section 4.2.2 that the intensity MSE loss function would be used from now on, it
proved to be visually better for the university logo to use the MSE loss function for optimizing the network.
Therefore, in the previous two results the MSE loss function was used. A possible explanation for this result is
the fact that the intensity MSE loss function prioritizes larger differences in intensity over smaller differences
in intensity, while the MSE loss function uses the moduli of the field and therefore puts less emphasis on
larger differences. This last property is especially useful when larger areas need to be lit uniformly, as is the
case with the university logo.

4.6. Two variable angle and amplitude incident plane waves: solution space
This experiment is similar to the variable angle experiment in section 4.4, but with extra degrees of freedom.
Specifically, two plane waves can have differing amplitudes and each plane waves can be rotated along two
axes, as depicted in the description of this experiment by figure 3.6. In the previous variable angle experiment,
we saw that the angle needs to be restricted, as to make sure the zeroth order spot lays inside the far field
domain and does not fold over. Since the variable angle experiment displayed the intensity pattern as quite a
small dot, we will use the settings of the first experiment. These settings make the far field domain smaller and
hence the range of possible angles, but it makes the pattern better visible. The resulting angle range becomes
then: tan−1

(0.000316m
0.2m

) = 0.091°, which results in the range −0.045° to 0.045°. Like before, the sample with
the lowest loss value is kept and an early stopping criterion with patience parameter 10 is used. So after 10
epochs of no improvement the training will be halted. During training the loss will fluctuate much, as angles
are sensitive parameters. Therefore, each epoch will consist of 20 samples.

The results of this experiment are shown in figure 4.16. In the desired profile plot we can see that one plane
wave yields the bright spot just off center and next to it is a fainter plane wave. In the simulated profile we
observe that the network got the bright spot almost right, but completely missed the fainter spot. This can be
explained by the fact that the network is trained on many randomly generated samples. If no input sample
has the perfect angle, then the network will fail to optimize. Hence, just as described before, we are essentially
carrying out a Monte Carlo search. In the discussion chapter recommendations regarding this issue will be
done.

4.6. Two variable angle and amplitude incident plane waves: solution space 41

0.006 0.002 0.002 0.006
x [m]

0.006

0.002

0.002

0.006

y
[m

]

Desired profile

0.006 0.002 0.002 0.006
x [m]

0.006

0.002

0.002

0.006

y
[m

]

Simulated profile

0.006 0.002 0.002 0.006
x [m]

0.006

0.002

0.002

0.006

y
[m

]

Difference

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Comparison between simulated and desired profile

(a) Full scale result.

0.0010 0.0005 0.0000 0.0005 0.0010
x [m]

0.0010

0.0005

0.0000

0.0005

0.0010

y [
m

]

Desired profile

0.0010 0.0005 0.0000 0.0005 0.0010
x [m]

0.0010

0.0005

0.0000

0.0005

0.0010

y [
m

]

Simulated profile

0.0010 0.0005 0.0000 0.0005 0.0010
x [m]

0.0010

0.0005

0.0000

0.0005

0.0010

y [
m

]

Difference

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Comparison between simulated and desired profile

(b) Zoomed in result.

Figure 4.14: Result of recreating the university logo with a 20× 20 control points order 3 B-spline surface
phase distribution. The intensities are plotted on a sequential color scale and are normalized such that the
maximum intensity is 1.

42 4. Results

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Found phase distribution

1
2

0

1
2

Figure 4.15: Image of the found phase distribution for recreating the university logo with 20 × 20 control
points. In this plot the white dots represent the location of control points.

4.6. Two variable angle and amplitude incident plane waves: solution space 43

0.0001 0.0000 0.0001
x [m]

0.00015

0.00010

0.00005

0.00000

0.00005

0.00010

0.00015
y

[m
]

Desired profile

0.0001 0.0000 0.0001
x [m]

0.00015

0.00010

0.00005

0.00000

0.00005

0.00010

0.00015

y
[m

]

Simulated profile

0.0001 0.0000 0.0001
x [m]

0.00015

0.00010

0.00005

0.00000

0.00005

0.00010

0.00015

y
[m

]

Difference

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

Comparison between simulated and desired profile

Figure 4.16: Result of finding the optimal angles, amplitudes and 5× 5 control points for two plane waves.
The intensities are plotted on a sequential color scale and are normalized such that the maximum intensity
is equal to 1.

5
Discussion

In this chapter issues that arose in the results chapter will be discussed. During this discussion recommen-
dations for future research will be presented.

5.1. Aliasing issues
In section 4.3 we saw that using a point source yields a spherical wave front, which in turn leads to aliasing
issues when working at a limited resolution. This phenomenon is inherent to using a discrete Fourier trans-
form when carrying out Fraunhofer diffraction. A possible solution one may think of is using the Rayleigh-
Sommerfeld diffraction integral directly and then use numerical techniques to calculate this integral. How-
ever, this still requires discretization of the problem that may result in aliasing effects.

A better way to mitigate this issue might be with the use of ray tracing techniques. In such techniques classical
ray optics is used to construct an image. With ray tracing we need to reinterpret the construction of an image,
as ray tracing does not simulate interference or diffraction, since it does not capture the phase of rays but
merely their angles and positions. For that matter, lenses can be thought of as bending incoming rays with
Snell’s law of refraction, instead of adjusting the phase of an incoming field. In the case of the point source
experiment, a ray originates from the point source, it passes through the SLM which bends it and then it
ends at the screen. The image is then formed by where the rays hit the screen. Such images are also called
‘caustics’. Important to note is that, unlike Fraunhofer diffraction, ray tracing does not need some minimum
propagation distance for the approximation to hold.

Ray tracing is a computationally intensive process, but with the advent of faster GPUs that promise ‘realtime’
ray tracing, like the recent GPUs produced by NVIDIA [13], it may be possible. There are two main types of ray
tracing, forward ray tracing and backward ray tracing [14]. In backward ray tracing, a ray originates from the
camera, or in this case the screen, and is then propagated backwards, as described by Lu et al. [14]. If the ray
hits a light source, the pixel in the camera from which it originated is colored. This method is more efficient
for complex scenes with many light sources and where lots of rays will never reach the camera. However, this
is not what happens physically and with the addition of optimization tricks, the result of such a simulation
will not be reproducible in the real world. Therefore, ‘forward’ ray tracing is needed, where the ray originates
from light sources. What is more, to render caustics properly, bi-directional ray tracing is needed. In this
technique forward and backward ray tracing are combined to render the caustic.

In addition, when these techniques need to be combined with machine learning , it is required that these sim-
ulations are gradient preserving for backpropagation to be possible. This has already been done for backward
ray tracing by Mirman [15], but not yet for forward ray tracing. Therefore, using ray tracing in conjunction
with machine learning will require future work to create a gradient preserving forward ray tracing simulation.

5.2. Focused loss function and background
In section 4.4 the results of the variable angle experiment are presented. In this section we saw that getting
the angle wrong results in a loss value in the order of 10−4 and getting the angle right results in a loss value of

45

46 5. Discussion

10−5. This is quite a small difference due to taking the average over N ×N points. In addition, in that specific
case we might only care for the result we obtain inside a certain radius around the center of the intensity
distribution. The same applies for the experiment in which we tried to recreate the university logo. How the
intensity behaves far away from the center is not relevant. Therefore, it might prove useful to create the loss
function such that it only considers a certain area of importance and neglects the outer regions. This should
increase the difference in loss values for a ‘good’ and ‘bad’ result, which in turn allows training to occur more
targeted.

Another useful addition might be blurring the university logo’s intensity profile, as it is hard to recreate the
sharp edges the logo is composed of with the limited resolution we have available when using a B-spline
surface. This will hopefully reduce the emphasis on recreating sharp edges, which might focus the attention
to better coloring of the logo.

5.3. Physics-informed neural network and Monte Carlo search
The first experiment did not use an input for the network, but simply a 1 as input. Therefore, this architecture
does not qualify for the definition of phsyics-informed neural network; it is simply an optimization algorithm.
When we did try to make it ‘physics-informed’ in the experiment with a variable angle, the network did not
really learn how to adjust the parameters to obtain the desired profile. Instead, we selected the sample with
the lowest loss at the end, and this was largely determined by the angle. Hence, this architecture essentially
reduces to a Monte Carlo like search algorithm.

From this we conclude that the experiments chosen did not show the true potential of the specific physics-
informed neural network inspired architecture employed here. This is mainly due to the fact that we chose
static experiments, where only the control points change, and that we chose experiments with inputs to the
network that were too sensitive. For future research it may be interesting to consider more advanced experi-
ments in which an intensity profile can be generated with multiple different configurations.

In addition, if one wants to find an optimal angle, or any parameter that is sensitive to change, a preemptive
Monte Carlo search can be carried out. The result of this search can then be used as a static parameter when
training the network for a specific optical setup. In the case of the double plane wave experiment, a Monte
Carlo search on the angle can be carried out in the following way: First, the control points of the SLM are
simply kept at zero, as changing the phase does not alter the location of the intensity spot too much. Then
the first plane wave is incident under some random angles. When after a certain number of tries a lowest loss
value has been found, the resulting spot is subtracted from the desired intensity profile, as to avoid obtaining
the same angles for the other plane wave for the same spot. On this new profile an extra Monte Carlo search is
carried out, until the second plane wave has a lowest loss after a certain number of tries. These found angles
are then set as static parameters and a neural network can then be trained to find the remaining parameters.

5.4. B-spline surfaces and the Gerchberg-Saxton algorithm
In the experiment on recreating the university logo we saw that phase distributions based on B-spline sur-
faces were able to recreate the university logo to some extent, but nowhere near as good as was possible with
the Gerchberg-Saxton algorithm [12]. This discrepancy can be explained by the fact that control points allow
far less fine tuned control over each pixel in the SLM. We can already observe that adding more control points
results in a rougher phase distribution, when we compare the results of the 20× 20 and 5× 5 case. These
results seem to indicate that using B-spline surfaces for such tasks is futile. However, B-spline surfaces have
their use, as using B-spline surfaces results in smoother phase distributions and hence smoother freeforms
when physically produced. The resulting phase distribution of the Gerchberg-Saxton algorithm is harder to
produce as it requires enormous discontinuities in the material, which itself can result in unintended aber-
rations. Nevertheless, an important observation is that when the control points of B-spline surfaces get arbi-
trarily large, areas of steep slope occur in the phase distribution, which makes producing a freeform based on
it harder. Then, perhaps, discontinuities need to be introduced to recreate such steep areas. As pointed out
in the results of the experiment, this is analogous to the construction of a Fresnel lens.

6
Conclusion

The setup proposed in this thesis, with a neural network, B-spline surface and Fraunhofer diffraction to recre-
ate a desired intensity profile, is promising, but does have its issues. This thesis is therefore a useful extension
on the work dony by Imhof, but it does not necessarily supersede the work of Imhof. When using a simple per-
pendicular incident plane wave, the setup is able to recreate solutions in the solution space and even recreate
the university logo to some extent. However, in these experiments the neural network was used with a 1 as
input, reducing the setup to merely an optimization algorithm, which is not actually ‘physics-informed’.

In two experiments it was attempted to have plane waves incident under an angle and this angle was then the
input of the neural network. In one case the setup was able to find the desired angle, while in the other case
it did not. Since the angle is such a sensitive parameter, in terms of shifting the pattern much in the far field,
training on random input angles reduces the setup to a simple Monte Carlo search. This also explains why
the setup failed to find the solution in the second experiment, as that specific combination of angles must
not have occurred randomly during training.

The problem of the setup not being ‘physics-informed’ or merely being a Monte Carlo search in these specific
instances, can be resolved by considering experiments with more variable parameters that are not too sen-
sitive. For instance, an experiment with an array of lights or an experiment in which multiple solutions will
produce the same intensity profile.

In one experiment the setup failed completely. In this experiment a point source was used to create a spher-
ical wave. When the point source is close to the SLM, its wave front will curve rapidly when viewed from the
SLM. Fraunhofer diffraction is based on the Fourier transform, which results in the discrete Fourier transform
being used when simulating it numerically. This method fundamentally suffers from aliasing issues when the
to be transformed field, has too many high frequency components. For the spherical wave fronts emanating
from the point source, this was the case. Therefore, experiments using point sources in this thesis have been
stopped, as the simulation results cannot occur physically.

A possible solution for this, is to use ray tracing instead of Fraunhofer diffraction for simulating the intensity
profile. With the advent of new GPUs it has become feasible to do ray tracing in a reasonable amount of time.
However, current techniques running on the GPU do ray tracing ‘backwards’, while ‘forward’ is needed for a
physical simulation. In addition, this ‘forward’ technique needs to be adjusted as to make sure it preserves
gradients across operations.

In this thesis the focus was on using B-spline surfaces for the phase distributions of the SLM. Using B-spline
surfaces limits the resolution and sharpness of images in the far field. Algorithms such as Gerchberg-Saxton
are able to tweak each individual pixels of the SLM, which results in a larger solution space in the far field
and therefore better reconstruction of images. However, freeforms based on phase distributions created by
the Gerchberg-Saxton algorithm require many discontinuities, which can be difficult to construct physically.
Therefore, B-spline surfaces are a natural way of limiting the amount of discontinuities needed for construc-
tion.

47

Acknowledgements

I would like to thank my supervisors Dr. Aurele Adam and Dr. Matthias Möller for guiding me in this project
using discussions during our meetings and their invaluable feedback on my thesis. They assisted me in re-
searching my topic and helped me shape my goal. In addition, I would like to thank Alex Heemels for our
discussions and helping me out when I had issues in my program. He was always readily available when I
could not figure out what was wrong. All three were of immense support during my research and enabled
me to work on my thesis at home during the COVID-19 pandemic. Also, I would like to thank my friends and
fellow students Otto Broers and Hidde de Bos for pre-reading my thesis and the discussions we had about
my thesis. Lastly, I would also like to thank my parents for supporting me in the last three years. Without the
support of all these people, this thesis would not lay before you now.

49

Bibliography

[1] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial differential
equations. Journal of Computational Physics, 378:686–707, 2019.

[2] J. Imhof. Freeform lens predictions by a neural network and b-splines. 2021.

[3] J.W. Goodman. Introduction to Fourier Optics. McGraw-Hill physical and quantum electronics series.
W. H. Freeman, 2005.

[4] David George Voelz. Computational Fourier optics: a MATLAB tutorial. SPIE, 2011.

[5] T. J. R. Hughes J. A. Cottrell and Y. Bazilevs. Isogeometric Analysis: Toward integration of cad and fea.
Wiley, 2009.

[6] Ke-Lin Du and M. N. S. Swamy. Neural Networks and Statistical Learning. Springer, 2019.

[7] PyTorch. Autograd mechanics, 2019.

[8] HOLOEYE Photonics AG. Pluto-2, phase only spatial light modulators, 2020. manual version 4.5.

[9] Kenneth R. Spring and Thomas J. Fellers. Human vision and color perception.

[10] PyTorch. Upsamples, 2019.

[11] Pko. Fresnel lens.svg from wikimedia commons, 2006.

[12] R.W. Gerchberg and W.O. Saxton. A practical algorithm for the determination of phase from image and
diffraction plane pictures. 1972.

[13] NVIDIA Corporation. Nvidia rtx ray tracing, 2021.

[14] Charity Lu, Alex Roetter, and Amy Schultz. Types of ray tracing, 1997.

[15] Matthew B. Mirman. Mentisoculi: Mentisoculi pytorch path tracer, 2018.

51

A
Appendix

A.1. SLM Specifications
This thesis simulates an SLM modeled after the Pluto 2 (VIS-096) SLM. It has the following specifications:

Table A.1: Specifications of the SLM on which this thesis is based. Extracted from [8].

Active area 15.36 mm×8.64 mm
Resolution nominal 1920×1080
Pixel pitch 8.0µm
Wavelength (nm) 450-650
Maximum phase shift @ 633 nm 2.5π

A.2. JSON configuration file format
In figure A.1 an example JSON configuration file is shown. It consists of two important sections: topology
and settings. The topology section describes what the inputs and outputs of the network are, including
the suitable ranges, shape and type. The settings section describes what scenario and profile are used.
In addition, it describes what model is used and what hyperparameters the model will use. In this specific
example a network with two hidden layers of size 20 is used.

A.3. Git repository
The code used throughout this thesis to run experiments and simulations can be found on the official Delft
University of Technology GitLab instance: Gitlab repository.

A.4. Extra Results
In this appendix section results that are too much to fit into the results chapter are displayed. This concerns
figures A.2 to A.5 and table A.2.

53

https://gitlab.tudelft.nl/anmheemels/pinn-based-freeform-design

54 A. Appendix

Figure A.1: Example JSON configuration file used in this project.

1 {
2 "topology": {
3 "inputs": {
4 "bias": {
5 "type": "binary",
6 "size": [1],
7 "range": [1, 1]
8 }
9 },

10 "outputs": {
11 "control_z": {
12 "type": "float",
13 "size": [5, 5],
14 "range": [0, 6.148]
15 }
16 }
17 },
18 "settings": {
19 "imports": ["base/slm"],
20 "N": 1024,
21 "slm_scale": 0.02,
22 "patience": 10,
23 "profile": "random_profile",
24 "scenario": "slm_planewave",
25 "model": "basic_PINN",
26 "layers": [20, 20],
27 "lossfunction": "MSEIntensity",
28 "_seed": 1.0
29 }
30 }

A.4. Extra Results 55

Table A.2: Comparison of convergence speed for the MSE and Intensity MSE loss function. The following
criterion is used: the amount of epochs it takes for the loss to have decreased by at least 90%. For the MSE loss
function the value between brackets indicates what the criterion does when the intensity MSE loss function
is used. This gives averages: 16.2 (8.0) epochs for the MSE loss function and 32.6 (15.9) for the Intensity MSE
loss function. The values between brackets denote the sample standard deviation. For the MSE loss function,
we additionally have on average 29.6 (9.2) when using the intensity MSE to calculate the criterion.

Seed MSE Intensity MSE
1.0 10 (19) 16
2.0 12 (22) 25
3.0 21 (30) 56
4.0 28 (41) 41
5.0 10 (36) 25

Figure A.2: Plot of the intensity profile with seed 1.0 in the single planewave experiment, but plotted on a
logarithmic scale to enhance the hidden aliasing effect.

0.0
0.2

0.4
0.6

0.8
1.0 0.0

0.2
0.4

0.6
0.8

1.0

40

20

0

20

40

Surface plot of the B-spline surface phase distribution

20

10

0

10

20

Figure A.3: The 3D surface of the found B-spline surface for recreating the university logo with 20×20 control
points. The blue points indicate the control points used to construct the B-spline surface. The values of the
phase shown here are in radians.

56 A. Appendix

Figure A.4: Phase distribution as found by the Gerchberg-Saxton algorithm [12] to recreate the university
logo. The values shown are the phase in radians. This image has been created using the script in the Gitlab
Repository created by Alex Heemels.

Figure A.5: Result of recreating the university using the Gerchberg-Saxton algorithm. This is the result in the
far field using the phase distribution shown in figure A.4.

https://gitlab.tudelft.nl/anmheemels/hologram-design
https://gitlab.tudelft.nl/anmheemels/hologram-design

	Introduction
	Nomenclature
	Theory
	Introduction
	Optics
	Maxwell's equations and the wave equation
	Angular Spectrum of Plane waves
	Rayleigh-Sommerfeld diffraction integral
	Fraunhofer diffraction integral
	Discretisation of Fraunhofer Diffraction
	Altering the Phase of Incoming Light

	B-Splines Surface Description
	Knot vector
	Basis Functions
	B-Spline Curves
	B-Spline Surfaces

	Neural Networks
	Perceptrons
	Multilayer Perceptron
	Training
	Gradient Descent
	Physics Informed Neural Networks

	Experiment
	Introduction
	Setup
	Optical Simulation
	Neural Network
	Loss functions
	Progressively increasing resolution
	Infrastructure

	Experiments
	Single perpendicular incident plane wave: solution space
	Single point source: solution space
	Single variable angle incident plane wave: solution space
	Single perpendicular incident plane wave: recreating the university logo
	Two variable angle and amplitude incident plane waves: solution space

	Results
	Introduction
	Single perpendicular incident plane wave: solution space
	Qualitative verification of simulation infrastructure
	Loss function comparison
	Solution space
	Progressively increasing resolution

	Single point source: solution space
	Single variable angle incident plane wave: solution space
	Single perpendicular incident plane wave: recreating the university logo
	Results of using 55 control points
	Results of using 2020 control points
	Loss function

	Two variable angle and amplitude incident plane waves: solution space

	Discussion
	Aliasing issues
	Focused loss function and background
	Physics-informed neural network and Monte Carlo search
	B-spline surfaces and the Gerchberg-Saxton algorithm

	Conclusion
	Acknowledgements
	Bibliography
	Appendix
	SLM Specifications
	JSON configuration file format
	Git repository
	Extra Results

