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Methods Brief/

Quantification and Analysis of Hydrograph
Behavior Using Groundwater Signatures
by Raoul A. Collenteur1 , Martin A. Vonk2,3 , and Ezra Haaf4

Abstract
The study of hydraulic head changes over time is a common task for groundwater hydrologists. Groundwater

signatures are numerical metrics, or statistical aggregates, that quantify the behavior observed in hydraulic
head hydrographs. Signatures can be helpful in a number of classical hydrological tasks, such as hydrograph
classification, clustering, change detection, and model evaluation, selection, and calibration. Despite the potential
benefits of using signatures in groundwater studies, their application has not yet been thoroughly explored. To
support research into the application of signatures in groundwater studies, we introduce the new groundwater
signatures module from the Pastas software. The signatures module is written in Python, fully tested and
documented, and available as open-source software under the MIT license. In this paper, it is shown how the
signatures are tested and can be used in practical applications through two examples. In the first example, signatures
are used to characterize and cluster monitoring wells in a nationwide monitoring network in Switzerland. In the
second example, signatures are used to evaluate how well different groundwater model structures simulate the
heads. Future research opportunities involving groundwater signatures are discussed.

Introduction
Groundwater signatures are numerical metrics or sta-

tistical aggregates that quantify the behavior observed in
hydraulic head hydrographs. These signatures can range
from simple statistics, such as the mean and range, to
more complex metrics such as the duration of low pulses,
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the seasonality, and the rise rate after recharge events.
The use of hydrological signatures (also referred to as
features, indices, or [fingerprint] metrics) is common in
other parts of the hydrological sciences (e.g., streamflow,
soil moisture, and eco-hydrology), with applications
ranging from process characterization and classification
to model calibration and evaluation (see McMillan 2021,
and references therein). Recently, the signature concept
has been translated and further developed for applications
in groundwater studies, among others, by Heudorfer
et al. (2019), Haaf et al. (2020), and Giese et al. (2020).

We examine two time series of hydraulic heads to
illustrate how signatures are used to quantify groundwater
system behavior. The time series are shown in Figure 1,
along with the cumulative frequency distributions and the
values of six groundwater signatures. Visually, these time
series are rather different, with the upper one showing
more flashy behavior compared to the lower one, which
shows a smoother hydrograph. The signature values in
the table in Figure 1 show clear differences that match
this visual interpretation. For example, the heads in the
upper hydrograph show a higher rise rate (the average
increase in head in cm d−1) and a lower base level
stability (a measure of how variable the head is compared
to a moving-average). This indicates a faster responding,
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Figure 1. Example of two head time series, the related cumulative frequency distributions, and different groundwater
signatures. Note how the signature values differ between the head time series.

flashier system, compared to the lower hydrograph. This
also results in a higher variability of the heads in the upper
plot, as quantified by the steeper negative slope of the
duration curve. The autocorrelation time, the number of
days it takes the autocorrelation function to drop below a
threshold (here, 0.8), and the duration of low pulses (head
events below the 0.8 quantile) are both larger for the lower
hydrograph, indicating a longer system memory. Finally,
the average day of the year when the maximum occurs
(date_max) is later for the lower hydrograph, suggesting
a more buffered system (both wells are in the same area).

In the example above, groundwater signatures were
used to compare two head time series and characterize
the groundwater systems (i.e., fast vs. slow). Research
so far has primarily focused on the use of signatures
for characterization and classification (e.g., Haaf and
Barthel 2018; Heudorfer et al. 2019; Rinderer et al. 2019;
Nolte et al. 2024), or identification of reference wells
(e.g., Wunsch et al. 2022). Haaf et al. (2020) and Giese
et al. (2020) showed that it is possible to relate ground-
water signatures to physical processes or environmental
and climatic descriptors. Such information can increase
our understanding of the underlying causes of observed
groundwater dynamics, and ultimately be used to predict
groundwater dynamics.

Signatures may also be useful in other common tasks
of groundwater hydrologists besides those outlined above,
similar to how they are used in other parts of hydrology.
Perhaps most notably, signatures may be helpful in var-
ious stages of groundwater modeling, that is, calibration,
evaluation, and selection. Open-source software, well-
documented and tested, would help a community effort
to explore such applications. Therefore, this paper intro-
duces the signatures module, part of the Python package
Pastas (Collenteur et al. 2019a), to compute signatures
of time series of hydraulic heads. The objectives of this
paper are to (1) familiarize readers with the groundwater
signature concept and the Pastas signatures module,
and (2) encourage the exploration and application of
signature-like concepts in groundwater studies through

example applications and the discussion of potential use
cases.

The remainder of this paper is structured as follows.
In the following section, the Pastas signatures module is
introduced and tested using synthetic head data generated
with a numerical variably saturated groundwater model
(Vonk et al. 2024). In two example applications, the use of
signatures is exemplified. In the first example, signatures
are used to characterize and cluster monitoring wells in
a nationwide monitoring network in Switzerland. In the
second example, signatures are used to evaluate how well
different groundwater model structures simulate the heads.
The paper concludes with a discussion on the potential
applications of groundwater signatures and concluding
remarks.

The Pastas Signatures Module

Module Description
The signatures module is developed as part of

the open-source Python package Pastas to model and
analyze groundwater time series (Collenteur et al. 2019a).
The module can be used independently of other Pastas
modules and is accessible from the pastas.stats
sub-package. The module is written in pure Python
code, hosted on GitHub (www.github.com/pastas/pastas,
last accessed February 19, 2025). All signature methods
are fully documented, with references to the literature
describing the original signatures. An example notebook
is available to show how to compute the signatures
on the documentation website (pastas.readthedocs.io, last
accessed February 19, 2025).

The Pastas signatures module contains 31 signatures
at the time of publication. Table 1 provides an overview
of the available signatures, along with a brief descrip-
tion of the signature and its units. Many of the signatures
are based on the work of Heudorfer et al. (2019) and
the references therein, but were substantially modified
to pass a comprehensive set of tests discussed below.
For the complete descriptions, formulas, and references
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for the individual signatures, we refer to the documen-
tation website and the source code of the individual
signatures.

Basic Usage
The Pastas signatures module makes use of the open-

source Python package Pandas (McKinney et al. 2010).
Pandas is a popular tool for data analysis and can
easily read tabular data files (e.g., CSV-files) and
handle time series data. All signature methods take a
Pandas.Series with a DatetimeIndex as input.
The computation of individual signatures, for example, the
average duration of the low pulses, is done as follows:

which returns a single signature value (a float). An
advantage of this approach is that one can carefully
control the input arguments to the individual methods.
For example, one may adapt the lower quantile used to
determine when a low pulse starts (e.g., from 0.2 to 0.1 to
select more rare events). For the possible input arguments,
which differ per method, the reader is referred to the
documentation of the individual methods.

Often there is a need to compute a comprehensive set
of signatures for one or more head time series. This can
be done using the summary method as follows:

sigs = signatures.summary(head)

where the return variable sigs is a Pan-
das.DataFrame with the signature names as index,
and the signatures values as columns (number of
columns depending on the number of head time series
provided). A single time series may be provided as
a Pandas.Series, and a set of time series as a
Pandas.DataFrame, both with a DatetimeIndex.
By default, this method will compute all the available
signatures, but it is possible to compute a specified set of
signatures by providing a list with signature names.

Testing the Signatures
As noted by McMillan et al. (2023), it is important

to test signatures for good behavior before usage. This is
particularly true when designing or developing software

meant for wider usage, as is done here. In McMillan
et al. (2017), five guidelines for the design and choice
of (a set of) hydrological signature(s) are suggested. Four
of these, discriminatory power, identifiability, robustness,
and consistency, are adapted to groundwater signatures
and used here. The fifth guideline, representativeness,
relates to the spatial scale of the signatures. It requires
that the signatures reflect the average behavior across
a catchment or, in the case of groundwater, across an
aquifer. However, the head in a single well generally
does not represent the behavior of an entire aquifer and
is by definition sensitive to its location in the aquifer.
Investigating if signatures can be used to assess how
representative a well is of an aquifer is outside the
scope of this study. Therefore, the concept behind this
guideline was not applied in the analysis. The four applied
guidelines are as follows:

1. Discriminatory power : The signature should be able to
distinguish between different groundwater systems that
are identified by a hydrologist as different.

2. Identifiability : The uncertainty of the signature value
due to uncertainty in the head data should be small
compared to the range of the signature value.

3. Robustness: The value of the signature should be
robust to common characteristics of the time series
(e.g., different measurement frequencies and periods).
If the measurement frequency, period, or length is
changed, this should not substantially change the
signature value.

4. Consistency : The signature values should be com-
parable between different aquifer systems. This is
often hampered by large differences in drainage bases
between aquifers, causing large absolute differences in
the heads.

All signatures were (re-)designed, implemented, and
thoroughly tested with the above four guidelines in mind.
Below, we discuss how the signatures were tested for the
first three guidelines. The fourth guideline, consistency,
can be dealt with through normalization of the heads
(when applicable) to values between zero and one by
subtracting the minimum and dividing over the range as
suggested in Heudorfer et al. (2019). Table 1 shows which
signatures are normalized by default or not.

Testing if the signatures behave in accordance with
the four guidelines using real-world data is challenging.
The primary causes are that it is unknown if a groundwater
system changes through time and if two systems are really
different. The signatures were therefore tested on synthetic
hydraulic head data generated with a variably saturated
groundwater model developed in Vonk et al. (2024). This
model simulates hydraulic heads in an aquifer between
two parallel canals, with recharge from above. Simulations
vary with three aquifer soil types: sand, sandy loam,
and silt loam, and nine constant river stages, causing
the unsaturated zone thicknesses to vary between zero
and approximately five meters. Five virtual boreholes,
evenly distributed from the middle of the aquifer toward
the river, are implemented to obtain the synthetic heads.

NGWA.org R.A. Collenteur et al. Groundwater 3
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Table 1
Signature Methods Currently Available From the Pastas Signature Module With a Description and the Units

Method Name Description Units Norm.

cv_period_mean Coefficient of variation (CV) of the mean heads over a period
(default monthly)

—

date_min/date_max Average day of the year when the minimum/maximum head
occurs, computed using circular statistics

T

cv_date_min/cv_date_max Coefficient of variation of the day of the year when the mini-
mum/maximum head occurs, computed using circular statistics

—

rise_rate/fall_rate Mean of the positive/negative head changes from 1 d to the next L/T
cv_fall_rate/cv_rise_rate Coefficient of variation of the fall/rise rate —
parde_seasonality Difference between the maximum and minimum Pardé coefficient,

which is the ratio of the mean monthly head to the mean annual
head

— �

avg_seasonal_fluctuation Mean annual difference between the averaged 3 highest monthly
heads per year and the averaged 3 lowest monthly heads per year

L

interannual_variation The average of the range in annually averaged 3 highest and 3
lowest monthly heads

L

high/low_pulse_count Average number of times the head is above/below a certain
quantile threshold per year (default is 0.2 for low pulses and 0.8
for high pulses)

—

high/low_pulse_duration Average duration of pulses where the head is above/below a
certain quantile threshold per year (default is 0.2 for low pulses
and 0.8 for high pulses)

T

bimodality_coefficient Squared product moment skewness plus one, divided by product
moment kurtosis

— �

mean_annual_maximum Mean of the annual maximum of the normalized heads — �
reversals_avg Average number of changes in direction (fall or rise) in the daily

heads per year
—

reversals_cv Coefficient of variation of the annual number of changes in
direction in the daily heads

—

colwell_contingency Colwell’s contingency, a measure for repeatability of seasonal
patterns

— �

colwell_constancy Colwell’s constancy, a measure how uniformly events happen
throughout all seasons

— �

recession_constant Value of the exponential decay constant in days, fitted on all
recession segments

T

recovery_constant Value of the exponential constant in days, fitted on all recovery
segments

T

duration_curve_slope Slope of the head duration curve between a lower quantile (default
0.1) and an upper quantile (default 0.9)

1/L

duration_curve_ratio Ratio of the head duration curve between the lower and upper
quantiles (default 0.1 and 0.9)

— �

richards_path length The path length of the time series, standardized by time series
length and median

— �

baselevel_index The total sum of the heads divided by the total sum of the base
level head. The base level head is defined as the minimum head
over a 30-day moving window

— �

baselevel_stability The difference of maximum and minimum annual base level. L �
magnitude Difference between the minimum and maximum heads, divided

by the minimum head
—

autocorr_times Number of days it takes the autocorrelation to drop below a
threshold (default is 0.8)

T

Note: The right column shows whether the heads are normalized before computing the signature or not.

In total, the three soil types, nine river stages, and five
borehole locations result in 135 daily head time series
over 30 years (1993 through 2023). It is noted here that
for our purpose, we re-ran the model to obtain head time
series for a period of 30 years, rather than the 22 years of
the original work. For further details on the model used
to generate this synthetic head data set, we refer to Vonk
et al. (2024).

Discriminatory Power
To assess the discriminatory power of the signatures,

the signatures were calculated for three of the synthetic
head time series from Vonk et al. (2024), generated
using three different aquifer soil types (sand, silt-loam,
and sand-loam, see Figure 2a). These were identified as
hydrologically different by the Authors, and the signatures
are expected to be able to discriminate between them,

4 R.A. Collenteur et al. Groundwater NGWA.org

 17456584, 0, D
ow

nloaded from
 https://ngw

a.onlinelibrary.w
iley.com

/doi/10.1111/gw
at.13486 by T

echnical U
niversity D

elft, W
iley O

nline L
ibrary on [03/06/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Figure 2. Three selected time series of hydraulic heads (a)
and the related normalized groundwater signatures (b).
To test the discriminatory power of the signatures, the
signatures were normalized by dividing by the mean of each
signature for the three heads. The virtual boreholes of the
selected time series are located at 1/4 of the distance between
the parallel rivers (see Vonk et al. 2024, for more details).

even though the time series are a result of the same
meteorological time series. The plot in Figure 2b shows
the signature values for the three head time series,
normalized by the mean of the three signature values per
signature. This analysis shows that most of the signatures
have different values for these three time series. The
signature values range between 10% and 250% of the
mean signature, which indicates that signature values for
these three time series are diverse and can potentially
discriminate between these three groundwater systems.

Testing Identifiability and Robustness
To test the identifiability, the signatures computed on

the original synthetic head time series were compared
to the signatures computed on noisy head time series.
To construct noisy head time series, normally distributed
errors with a mean of zero and a standard deviation equal
to 5% of the standard deviation of the heads were added
to the heads.

The robustness of the signatures was tested for three
common characteristics of hydraulic head time series:
different measurement frequencies, periods, and time
series lengths, as follows:

1. The impact of the measurement frequency was tested
by computing the signatures on all 135 time series
of 30 years sampled with three commonly used mea-
surement frequencies: daily, weekly, and monthly val-
ues. Signatures calculated on weekly and monthly data
were normalized by dividing through the signatures
computed on daily values. The daily signatures were
thus used as a benchmark here.

2. The impact of using different measurement periods was
tested by computing the signatures on a moving 10-
year window from 1993 to 2023, for three selected

head time series (shown in Figure 2a). The signature
values were normalized by the average value of each
signature over all periods for each time series.

3. The impact of the time series length was tested by
computing the signature values on different slices of
all the 135 time series with different lengths (2, 5, and
10 calendar years). The values were normalized by the
signature values computed over the entire 30-year time
series length.

Detailed results from these analyses can be found in
the Supporting Information. Here we provide a summary
of the results, with the aim of aiding the selection of
signatures for a particular data set or use case. A highlight
table summarizing how well signatures adhere to the
principles of identifiability and robustness is provided
in Figure 3. The values in the table show the median
absolute percentage deviation calculated from the “true”
to modified signature, for each test case, as described
above. It is noted here that the wording “true” signature
value is only used here to indicate the value that would be
computed for the entire or unmodified time series (here
30 years). The larger the deviation (yellow and red colors),
the less identifiable or robust the signature is to the tested
time series characteristic.

As depicted in Figure 3, the majority of signatures
exhibit high identifiability both when the hydrographs are
smoothed or noisy. There are exceptions, however, when
the signatures computed on noisy or smoothed data sub-
stantially differ from the ‘true’ signatures. These generally
are signatures calculated based on the characteristics of
the groundwater response to individual stress pulses, such
as recharge events. Examples include the low and high
pulse counts, the average number of reversals, and the
recession and recovery constant. These signatures should
thus be avoided when working with noisy data. Smooth-
ing the data may help improve the estimation of some
signatures, for example the low and high pulse counts and
durations.

The robustness of signatures to changes in measure-
ment frequencies, the time periods used for their compu-
tation, and the time series length is more intricate. The
analysis suggests that all signatures can be computed on
a weekly basis instead of daily, with minimal impact on
the signature value. Using monthly values, however, will
substantially affect approximately one-third of the signa-
tures (here defined as median deviation exceeding 10%).
As a guideline, we recommend that these sensitive sig-
natures should only be used to compare time series with
approximately monthly values exclusively, or daily and
weekly values. Using either of these frequencies should
work, but mixing them should be avoided.

About a third of the signatures are substantially
influenced by the choice of the period used for computa-
tion (i.e., 1995–2005 or 2010–2020). This factor should
be considered when analyzing signatures extracted from
non-concurrent time series. The length of the time series
also impacts the signatures values (i.e., 2, 5, or 10 years),
compared to using the entire 30-year period. Clearly,
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Figure 3. Highlight table of median signature test scores in terms of percentage deviation from “true” signature value (i.e.,
the unmodified or full 30-year time series). The larger the deviation (yellow and red colors), the less identifiable or robust
the signature is to the tested time series characteristic. The color scale is capped off at 100% deviation.

the signature values get closer to those computed on the
entire 30-year period when using longer time series. Large
deviations are still observed for most signatures for 2-and
5-year time series lengths, but substantially smaller dif-
ferences are generally found when using 10 years of data.
These results add nuance to the findings of Heudorfer
et al. (2019) who found that, based on shorter (20 years)
but measured time series, the signatures tend to stabilize
after 8 years. Based on the results of the tests using syn-
thetic data and the results from Heudorfer et al. (2019) we
recommend computing the signatures on approximately
10 years of data or longer, as a general rule of thumb.

Example Applications
Below, two examples are given of how signatures

may be used to help solve common hydrological tasks.
The first task is to characterize and cluster monitoring

wells into separate clusters based on their hydrological
behavior. The second task is to evaluate the performance
of different groundwater models, each representing a
different conceptualization of the groundwater system.

Characterization and Clustering
In this example, it is shown how to characterize and

cluster monitoring wells using groundwater signatures.
Data from the Swiss national groundwater monitoring
network (NAQUA), operated by the Swiss Federal
Office for the Environment (FOEN), are used as an
example. One advantage of using signatures instead of
the raw time series for this task is that time series with
different measurement periods can also be clustered on
their behavior (see Figure 2, Robustness, 10y Moving
Window). The data set contains head time series from
28 monitoring wells throughout Switzerland, covering
different climates and aquifer types. A more detailed

6 R.A. Collenteur et al. Groundwater NGWA.org
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description of the dataset and the hydrogeological settings
is provided in Collenteur et al. (2023).

The clustering is performed as follows. First, all avail-
able signatures are computed for the data. Second, the
signatures values are normalized to values between zero
and one by subtracting the minimum and dividing by the
value range. This ensures that the signatures have equal
weights in the clustering algorithm. Third, Spearman cor-
relations between the signatures are computed to identify
highly correlated and thus non-unique signatures. These
correlations are used to select a set of signatures with
correlations less than 0.8 (an arbitrary threshold chosen
for illustrative purposes). In the fourth step, the agglom-
erative hierarchical clustering (AHC) approach using
Ward’s method (available from Scikit-learn, Pedregosa
et al. 2011) is applied for the clustering. This is a common
approach for clustering based on signatures (e.g., Haaf and
Barthel 2018; Nolte et al. 2024), but it is noted here that
other algorithms or approaches (e.g., Wunsch et al. 2022)
can be used as well. The monitoring wells were clustered
into five clusters of different sizes. The final number of
clusters was determined by testing different numbers of
clusters and visually analyzing the result.

Figure 4 shows the results from the clustering
exercise. The plot on the left-hand side shows a tree
diagram (or dendrogram) of the different clusters, and the
right-hand side shows the normalized head time series
for each cluster. We emphasize that the clustering was
done on the signatures and not on the head time series.
The time series in the clusters should thus show similar
behavior, not necessarily temporal resemblance. The
clusters generated by the AHC approach indeed appear
to show similar behavior. For example, cluster C0 shows
slowly responding heads, while cluster C3 shows heads
that respond faster. Cluster C4 contains one monitoring

well (Wila) with capped off heads. This unique time
series in the data set has a high bimodality coefficient.
The approach outlined above can be used to cluster large
data sets of hydraulic head time series with different
measurement frequencies and periods.

Groundwater Model Evaluation
In the example above, signatures were used only

to quantify the behavior observed in the measured
heads. Signatures are also helpful in conjunction with
groundwater models. In this example, signatures are used
to evaluate three models used to simulate hydraulic
heads. This form of model evaluation is already common
in streamflow modeling (see, e.g., Euser et al. 2013).
The core idea is to evaluate how well the signatures
computed on the simulated heads mimic the signatures
computed on the measured heads. To illustrate this
use case, we use three different lumped parameter
groundwater models from the Pastas package (Collenteur
et al. 2019a) to simulate one of the synthetic heads from
Vonk et al. (2024). It is noted, however, that signature
evaluation can also be used for other types of groundwater
models.

The basic workflow for the evaluation of groundwater
models using signatures is as follows. First, the goal of
the modeling is defined. Here, we aim to better understand
which model structure better simulates the groundwater
behavior important for groundwater droughts, and in turn,
which processes should be included in the model. Second,
the heads were simulated using three alternative models
(M1, M2, and M3) from the Pastas software. The first
model (M1) computes recharge as a linear combination
of precipitation and potential evaporation. The other two
models (M2 and M3) use a soil-water balance approach
to compute nonlinear recharge from these two fluxes. The
difference between M2 and M3 is that M2 does not allow

Figure 4. Results of the clustering exercise using groundwater signatures into five clusters of hydraulic head time series.
The left-hand plot shows the dendrogram of the clustering, and the right-hand plot shows the five clusters of time series as
identified here.

NGWA.org R.A. Collenteur et al. Groundwater 7
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Figure 5. Measured and simulated heads with three differ-
ent lumped parameter models (M1, M2, and M3). The inset
plot shows the head during the 2003 drought event.

uptake of groundwater for evaporation, while M3 does
include this process in a simplified way, by subtracting
the leftover potential evaporation from the recharge
flux. The measured and simulated heads are shown
in Figure 5.

The third step is to select the signatures to be used
and to compute the signatures on the measured heads
(S n (hobs)) and the simulated heads (S n (hsim)). Here, six
signatures are selected that quantify behavior thought to
be related to drought events: the rise rate, the fall rate,
the autocorrelation time, the base level stability, the low
pulse duration, and the average date of the minimum head.
To evaluate how well a modeled signature compares to
the measured signature, an evaluation criterion (E n ) for
each individual signature is calculated in the fourth step.
The following evaluation criterion (adapted from Euser
et al. 2013) is used here:

En = max

(
0, 1 −

∣∣∣∣1 − Sn (hsim)

Sn (hobs)

∣∣∣∣
)

(1)

where if En equals one, the simulated and measured
signatures are equal and the model mimics perfectly the
observed behavior. The lower bound of the evaluation
criterion is set to zero, as simulations with values below
zero either grossly over- or underestimate the signatures
and indicate no skill of the model to reproduce the
signature. Importantly, this helps the inter-comparison of
performance between signatures.

The fifth and final step is then to aggregate the
individual evaluation criteria into a single metric that is
applied in the evaluation and selection process. A common
approach is to use the Euclidean Distance (E d , see, for
example, Hrachowitz et al. 2014), computed as follows:

Ed =
√∑N

n=1 (1 − En)
2

N
(2)

where N is the number of signatures used in the evalua-
tion. The performance Ed ranges between zero and one,
where a value of one indicates a perfect model, that is,

TABLE 2
Evaluation Criteria for the Different Signatures

(E sig for Each Model, the Euclidean Distance
Metric, and Nash-Sutcliffe Efficiency (NSE)

M1 M2 M3

E rise_rate 0.81 0.87 0.83
E fall_rate 0.99 0.77 0.85
E autocorr_time 0.92 0.96 1.00
E baselevel_stability 0.48 0.97 0.91
E low_pulse_duration 0.80 0.86 0.77
E date_min 0.93 1.00 0.91
E d 0.84 0.91 0.88
NSE 0.96 0.93 0.98

Note: The best score for each row is highlighted with a bold font.

all modeled signatures mimic the measured signatures per-
fectly. Both the individual evaluation criteria (Equation 1)
and the aggregate scores (Equation 2) can be used for
model evaluation.

Table 2 shows the results of this analysis for the data
shown in Figure 5. The value of a common goodness-
of-fit metric, the Nash-Sutcliffe efficiency (NSE), is
provided as well for comparison. The result shows that
none of the models can perfectly mimic all the selected
signatures simultaneously. Most signatures are, however,
satisfactorily modeled by one or more of the models.
Interestingly, the model with the lowest performance in
terms of NSE (M2), scores best on the aggregate metric
for the signatures (ED), and many of the individual
signatures.

The information in Table 2 can be used to learn about
the causes of model defects, by relating the signatures to
hydrological processes (i.e., the fall rate can be related
to processes causing declines), or to select the more
adequate model for the modeling purpose (i.e., if we
are interested in the duration of a drought event). For
example, the rise rate is best approximated by M2, while
the fall rate is best approximated by M1. The fall rate is
impacted by groundwater evaporation, which may cause
a faster decline of the head. This process is missing from
model M2, causing a lower fall rate. Interestingly, the
average day of the year of the minimum head is perfectly
mimicked by the M2 model, while the absolute value is
not (see inset plot in Figure 5). Model M1 scores low on
the base flow stability, caused by too many head variations
due to an instant head response to precipitation. Models
M2 and M3 perform better in this regard. This example
shows how signatures can be used to identify potential
routes for enhancing the models.

Potential Applications and Challenges
of Signatures

Groundwater signatures can contribute to solv-
ing many common tasks of groundwater hydrologists.
Below, we discuss several (potential) applications of
groundwater signatures for the analysis and modeling of

8 R.A. Collenteur et al. Groundwater NGWA.org
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groundwater data. The different use cases are subdivided
into three categories: (1) characterization and clustering,
(2) improved understanding, and (3) groundwater model-
ing. The discussion presented below serves as a source
of inspiration for incorporating groundwater signatures in
subsequent research.

Characterization and Clustering
The first category of applications is to apply signa-

tures for the purposes of characterization, comparison,
and clustering (or classification) of groundwater systems.
In this application, a set of signatures is computed for
each head time series, which may then be compared and
clustered. The example in the previous section illustrated
how this is done for the national monitoring network
in Switzerland. This was also done, for example, in
Heudorfer et al. (2019) and Wunsch et al. (2022) for
monitoring networks in Germany. This method may
be preferred over methods directly using the head time
series (see, e.g., Haaf and Barthel 2018), as they do not
necessarily need overlapping time series and focus on
groundwater behavior rather than absolute values. Giese
et al. (2020) showed how signatures can distinguish
between local, intermediate, and regional groundwater
flow systems. Challenges here lie in the selection of
the signatures used for characterization and the clus-
tering algorithm used for the clustering. Future studies
should systematically compare the outcomes of different
approaches.

Improved Understanding
The second category of applications of groundwater

signatures is their use to increase our understanding of
the observed groundwater dynamics and the underlying
processes causing these different dynamics (see also
McMillan 2020). For this purpose, the signature values
may be related to other observable properties, such as
the climatic (e.g., temperature and precipitation patterns)
and physiographic descriptors (e.g., depth to water table,
altitude), that may explain part of the dynamics. Haaf
et al. (2020) already showed that (perhaps unsurprisingly)
clear relationships between many of such variables exist.
These relationships can, for example, help us better
understand how different groundwater systems respond to
climatological changes.

Signature values can change over time, both due to
system changes and changes in stresses on the ground-
water. By computing signatures over different periods
and comparing the values, signatures may be used to
detect hydrological change. This type of application
was illustrated in Barthel et al. (2021) for changing
hydrological behavior due to dam developments, an
example of human intervention in the hydrological
system. Such analyses may also reveal more subtle
changes, for example, changes in the first peak due
to changing snowmelt patterns (e.g., as done by Bard
et al. 2015, for streamflow data). This type of application
may help uncover the impact of climate change on
changing groundwater dynamics.

Groundwater Modeling
The third and final category of application of

signatures is their use in different stages of groundwater
modeling. In the initial stage, signatures may help to
determine appropriate model structure(s) or candidates.
David et al. (2022) tested the use of signatures to identify
the required model complexity (i.e., structure) for rainfall-
runoff modeling. Similar exercises can be performed
for groundwater, where signatures are used to identify
important processes and related model structures. Studies
testing multiple model structures, that is, comparing
different recharge process conceptualizations in Pastas
(e.g., Brakenhoff et al. 2022; Collenteur et al. 2023;
Jemel.janova et al. 2023) could potentially benefit from
such an approach. For this purpose, clear relationships
between the physiographic and climatic descriptors and
the signatures need to be established. Additionally,
signatures could enhance initial parameter estimates such
as the hydraulic conductivity or storativity in numerical
groundwater models or the gain in lumped parameter
models. For this purpose, it needs to be explored if con-
sistent empirical relationships exist between parameters
and signatures. Promising results in this direction were
found in Collenteur (2022, Chapter 5) for lumped param-
eter models. Such relationships can then be exploited to
predict initial parameter values from signature values.

After a groundwater model is developed, it can be
calibrated to groundwater signatures. An example of
using signatures for calibration of streamflow models
can be found in Kavetski et al. (2018). After model
calibration, signatures may be used to evaluate model
performance and to select a model if alternative models
are available. This is already a relatively common
approach in rainfall-runoff modeling (see, e.g., Euser
et al. 2013; Viglione et al. 2013; Schaefli 2016). In
both of these applications, the modeler may select the
signatures that represent groundwater behavior that is
important for the research question. One could thus adapt
the calibration, evaluation, or selection criteria to obtain
the best model for a specific purpose.

A final application of signatures in modeling ground-
water dynamics is the prediction of groundwater dynam-
ics in unmonitored aquifers, as proposed by Barthel
et al. (2021). An initial proof-of-concept study from Haaf
et al. (2023) showed potential for this method to pre-
dict heads in unmonitored (parts of) aquifers. In this
approach, signatures (of the head duration curve) are used
to characterize groundwater systems and predict ground-
water dynamics based on similarity between aquifers. We
refer to Haaf (2020) and Barthel et al. (2021) for detailed
descriptions of the proposed approach.

Challenges and Limitations
One of the major challenges of using groundwater

signatures lies in the selection of the signatures applied
in an analysis. A good understanding of the meaning
of the individual signatures is required to select (a set
of) signatures that are focused on a specific part of the
hydrograph or behavior. Table 1 and the documentation

NGWA.org R.A. Collenteur et al. Groundwater 9
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of the Pastas signature module and the references therein
can be used for this purpose and help to select useful
signatures. For larger sets of signatures, the correlations
between signatures should be considered to ensure that
the selection is not skewed toward one part of the
behavior. Here, it is worth noting that these relationships
may be nonlinear, requiring more complex methods such
as singular value decomposition to uncover them and
select uncorrelated signatures (Heudorfer et al. 2019;
Nolte et al. 2024). More research is required into how
to select signatures and which signatures are best to
quantify specific parts of the hydrograph behavior.

The current set of signatures is primarily focused on
signals at a lower frequency and more natural systems.
For investigations into head time series characterized by
higher frequency signals (i.e., daily pumping variations,
tides), the applicability of the current set of signatures is
probably limited, although this has not (yet) been tested.
In the presence of such signals, another option would
be to use standard capabilities of Pastas to filter out the
contribution of higher frequency signals and analyze the
signatures of the head fluctuations of the natural system.
To use groundwater signatures to quantify the behavior
of time series with high-frequency signals, the more
interesting option is, however, to develop new signatures
that are applicable to such time series and signals.

Finally, most published applications of groundwater
signatures were aimed at and have shown success for
larger scales, for example, regional scale hydrogeologic
characterization, jointly in a large data set. In this study,
we have provided an example of use for groundwater
model evaluation that is useful for local scale modeling.
However, more studies are needed that demonstrate how
the concept of signatures can be useful on the local scale,
where the core work of many hydrogeologists lies.

Concluding Remarks
In this paper, the Pastas groundwater signatures

module is introduced. The module currently contains 31
fully documented and tested signatures. This number is
intended to grow over time. Several tests were conducted
and are available to test the identifiability, robustness,
discriminatory power, and consistency of these signatures.
The results of this analysis (Figures 2 and 3) may be used
to make informed decisions on signatures selections in
future studies. The tests indicate that many of the signa-
tures perform well when tested on head data with different
characteristics, but some are sensitive to measurement
frequencies, time series lengths, and historic periods.

We believe groundwater signatures have many poten-
tial applications in groundwater studies. To encourage
others to explore the use of signatures, two examples were
provided to (1) cluster head time series and (2) eval-
uate groundwater models using signatures. Many more
(potential) use cases were identified and discussed, and
the Pastas signatures module is aimed at supporting future
research into their use in the groundwater field. The mod-
ule is part of the open-source Pastas software and freely

available under the MIT license. We welcome contribu-
tions and feedback to the module from the open-source
community, as well as newly developed groundwater-
specific signatures. We highlight the need to develop a
good signature for quantifying recession behavior, a sig-
nature that is of particular interest to our community and
beyond, but remains difficult to robustly estimate in an
automated way.
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