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A B S T R A C T

A novel and efficient numerical formulation for the modelling of multiple delaminations growth in laminated
composite materials subjected to quasi-static loading is presented. The proposed formulation alleviates the high
computational cost associated with models featuring cohesive elements by using a novel Adaptive Refinement
Scheme and an Adaptive Floating Node Method Element to refine the model effectively during the analysis
without modifying the global finite element connectivity. The formulation has been implemented in a MATLAB
finite element code and validated with single and multiple delamination numerical models with varying mode
mixities. The new formulation provides accurate results comparable to standard fully refined finite element
models while drastically lowering the computational time of the analysis.
1. Introduction

Delamination is one of the most common damage modes leading
to the final failure of laminated composite structures. Current models
accounting for delamination growth can be separated into those making
use of Linear Elastic Fracture Mechanics (LEFM) concepts and those
using cohesive formulations [1]. In the LEFM approach, the damage is
propagated when the energy release rate 𝐺 or the stress intensity factor
𝐾 is equal or larger than its critical values 𝐺𝑐 or 𝐾𝑐 [2,3]. The values of
𝐺𝑐 and 𝐾𝑐 are material parameters extracted from experiments while
𝐺 and 𝐾 may be calculated in numerical models with tools such as
the virtual crack closure technique [4] or the J-integral [5,6]. The
main disadvantages of the LEFM approach are its limitation to small
fracture process zones and the necessity of two separate criteria for
onset and propagation of delamination cracks. On the other hand,
Cohesive Zone Models (CZM) [7–9] combine the fracture mechanics
concepts with damage mechanics by defining a Damage Process Zone
(DPZ), where interface stiffness degradation occurs. The introduction of
a CZM avoids the oscillating stress singularity while unifying onset and
propagation in a single formulation. CZMs also enable a straightforward
and accurate evaluation of the mode decomposed energy release rate
for large DPZs using the J-integral [5,10,11]. Delamination is a complex
problem that depends on the structural geometry, material config-
uration and loading conditions. Therefore, Finite Element Analysis
(FEA) is typically used through the application of the aforementioned
mechanical models. Numerical solutions based on purely fracture me-
chanics concepts can be implemented directly in an FEA framework.
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The CZM based models are most commonly implemented in the finite
element method as zero thickness cohesive elements (CE) [12–24]. For
laminated composite materials, the cohesive elements normally use
standard isoparametric interpolation functions to represent the opening
displacement field between the crack surfaces of the two layers.

Even though cohesive elements are often preferred to model delam-
ination onset and growth, numerous challenges which limit their usage
remain. One of the most limiting factors is that large variations of the
traction field in the DPZ where damage is occurring, and its vicinity,
enforces the need for a fine element discretization. This particular zone
with a large variation of the traction field is referred hereafter as the
high gradient zone. The studies presented in [25,26] have shown that
fine meshes are needed to represent the large variations of the traction
profile in the high gradient zone. This problem is greatly reduced in
mode II due to a geometrically larger DPZ which implies a larger high
gradient zone. Studies in literature conclude that, depending on the
problem, between 3 to 10 cohesive elements are needed in the DPZ
to offer accurate results with acceptable convergence rates [25,27–30].
The remaining part of the traction profile, where tractions vary more
moderately is usually discretized with an equally fine mesh, which is
inefficient. The high gradient zone and the area with a more moderate
variation of the traction profile is often referred as the active part of the
cohesive zone, being the cohesive zone any area of the model meshed
with cohesive elements. Given the small size of DPZ for commonly
used composite material systems, the number of cohesive elements,
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and thus also adjacent solid finite elements, increases dramatically with
larger models making predictive delamination simulations of large scale
composite structures computationally costly or even infeasible.

The fine mesh requirement problem can be alleviated by tweaking
the interface properties, modifying the numerical integration of the
element or improving the kinematics of the element. In [25] a method
to reduce the strength of the interface to artificially enlarge the DPZ
allowing the use of coarser CEs is proposed. However, decreasing too
much the interface strength can produce inaccurate results [31,32].
Another possibility is using an element with an adaptive numerical
integration scheme, which is linked to the damage state of the ele-
ment, as proposed in [32–35]. This enables the use of slightly larger
cohesive elements, but the poor kinematic representation of the crack
opening and its implications on the tractions representation limits the
benefits. Element enrichments that improve the kinematics of the crack
opening profile for low order elements have been proposed in [36–38].
Although accurate results have been obtained, the enrichments are as-
sociated with a considerable computational cost [39]. Promising results
have been presented by combining accurate kinematic representation of
the crack opening using high order structural elements with an adaptive
integration scheme in [26].

Another approach to reduce the number of elements is to only have
a fine element discretization near the high traction gradient zone by
means of remeshing techniques. Remeshing techniques for refinement
have been applied successfully in [40–42], but with a limited increase
of the overall computational efficiency. The main drawback of remesh-
ing techniques is that a modification of the global connectivity matrix
of the finite element model is required when the remeshing operations
are performed, which can have an added computational cost depending
on the pursued implementation.

For all the aforementioned cohesive element based approaches all
the potential crack paths are predefined and discretized with cohesive
elements forming a cohesive zone where damage can propagate. How-
ever, for large scale structural analysis many of these potential crack
paths defined a priori will be inactive for a large part of the analysis or
even remain inactive for the entire analysis. For complex delamination
cases, such as those featuring multiple delaminations, it is difficult
if not impossible to estimate the final crack extension and location
prior to the analysis. To address this issue, methods that dynamically
add cohesive elements to specific interfaces during the execution of
the analysis have been suggested. Such methods include remeshing
based techniques for adding cohesive elements during analysis [43,44]
or element splitting formulations using local enrichments such as the
Phantom Node Method [45,46] and the X-FEM method [38,47].

An alternative formulation is the Floating Node Method (FNM) [48],
which can be used to dynamically add CEs as done in [49] for a
structural shell element or in [50,51] for solid elements. Compared
to X-FEM and the Phantom Node Methods the FNM is simpler as it
relies on standard finite element formulations and represents better
the geometry of the crack for the same number of degrees of free-
dom [48]. Operations are done on the element level and since global
connectivities are preserved throughout the analysis, the FNM can be
more efficient than remeshing techniques, depending on the specific
implementation. A refinement method for the FNM has been presented
for delamination in double cantilever beam (DCB) specimens with
possible crack migration [52]. In that work coarse CEs are placed a
priori at desired interfaces and a refinement region, also referred to as
a refinement mask, is introduced which moves across the structure as
damage evolves and the delamination crack tip propagates. The size of
the fixed refinement mask is however based on simple a priori theoret-
ical DPZ length calculations rendering the approach non-generalizable
for arbitrarily loaded composite structures.

In this paper a novel efficient adaptive mesh and solution strategy
for the analysis of progressive delamination growth in laminated ma-
terials is proposed. This work draws inspiration from previous work
2

on the A-FNM element [50,52], but proposes novel improvements that
allow the handling of multiple simultaneous delaminations, the use
of a transition zone (with CEs but no longitudinal refinement) and
the automatic adaptation of the refined area length to changes in the
DPZ’s length during the analysis. The adaptive finite element mesh is
effectively achieved by the Floating Node Method (FNM) [48] exploit-
ing the key properties of maintaining the finite element bookkeeping
for efficient manipulation during the execution of the analysis while
relying on underlying standard finite element formulations. The core
of the formulation includes a new Adaptive FNM based element (A-
FNM) that can be partitioned with cohesive interface elements and
refined when needed, and a novel Adaptive Refinement Scheme (ARS).
Moreover, unlike the work proposed in [50,52] a single A-FNM element
can model the entire thickness of a laminate. The adaptive refinement
scheme is capable of efficiently tracking changes in the DPZ length
during the analysis without user intervention, enabling the possibility
of simulating complex multiple delamination scenarios with a limited
zone of cohesive elements. In addition, the presented formulation al-
lows efficient analysis without any prior knowledge of the final crack
extension and location.

The article is organized as follows. The A-FNM element is pre-
sented in Section 2 together with the general details of the FEA frame-
work developed for its implementation. Next, Section 3 introduces
the new adaptive refinement scheme. Finally, Section 4 provides a
series of benchmarks to show the accuracy of the results, the improve-
ment in computational time, and the capabilities of the formulation.
Conclusions are outlined in Section 5.

2. The Adaptive-FNM element

The A-FNM element can automatically refine, coarsen and split itself
into 2D solid and interface elements to improve accuracy, convergence
and numerical efficiency during execution, while obeying compati-
bility to non-refined zones by auto-generated Multi-Point Constraints
(MPC). The underlying element technologies for the framework are
a 2D layered 4-noded, geometrically linear, plane strain, Enhanced
Assumed Strains stabilized solid element (EAS-4) based on [53,54],
and a 4-noded zero-thickness interface element [22,55], which includes
a progressive interlaminar damage formulation based on a bilinear
cohesive law and is formulated by an updated Lagrangian approach
accounting for geometrically non-linear effects. Remark that the main
methodologies used for the A-FNM element are inherited from the
original work presented in [48] with additions to obtain the desired
formulation for the A-FNM element.

2.1. Floating node method implementation for local mesh refinement

As proposed in [48], the A-FNM element is initialized with a set
of standard nodes that are active throughout the analysis and a set
of floating nodes (FNs) which can be activated and deactivated as
required. Initially, the FNs do not have an assigned position and can
be initialized, for instance, at the global origin of coordinates. All
the FNs are connected to an element meaning that their activation
and deactivation does not change the global FE connectivity. Upon
activation, each FN is assigned a position in the element as well as
a displacement value which is interpolated from standard nodes or
already active FNs. Once activated, the FNs and the standard nodes
are used to build sub-elements (SEs) in the A-FNM element which use
standard element formulations to assemble the A-FNM element stiffness
matrix. The A-FNM element uses two types of FNs (Fig. 1a) with specific
roles and restrictions [48]:

• Edge floating nodes: An edge FN is connected to two different
A-FNM elements and is restricted to be floating on a specific
edge without being able to be positioned out of it upon ac-
tivation. In this particular implementation, an interface and a
position top/bottom are assigned to them upon activation to

avoid incompatibilities.
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Fig. 1. (a) A 4-layer A-FNM element with 3 interfaces (𝐼𝑛) initialized with 8 edge FNs and 8 internal FNs. (b) The A-FNM element with a cohesive sub-element in interface 2
(𝐼2). (c) The A-FNM element with interface 𝐼2 refined with three cohesive sub-elements.
Fig. 2. A-FNM element tangent stiffness matrix 𝒌𝒆
𝒕 calculation.
• Internal floating node: Internal FNs are used to refine the ele-
ment and have no restrictions apart from belonging to the A-FNM
element they are assigned into.

The A-FNM element is initialized as a 4-node, 𝑛-layered element
with 𝑛−1 interfaces as shown in Fig. 1a, for a 4 layers and 3 interfaces
lay-up. This differs from the original A-FNM element from [50,52]
where each A-FNM element may only contain 1 interface. During
the analysis, the A-FNM element can be split with cohesive SEs in
the interfaces (Fig. 1b) and refined with both cohesive and solid SEs
(Fig. 1c). The element can be split in more than one interface, making
it suitable for multiple delamination analysis with a single A-FNM
element through the thickness.

The A-FNM element stiffness matrix is built in the sequence of
operations shown in Fig. 2. If none of the interfaces requires to be
refined nor split, a standard 4-node solid element subroutine is used
to calculate the element tangent stiffness matrix 𝐤𝐞𝐭 . If any of the
element interfaces requires a discretization change by means of split-
ting, refining or both at the same time, 4 operations are performed
sequentially:

1. Calculate divisions
2. Activate FNs
3. Sub-element tangent stiffness matrix calculation
4. Application of Multi-Point Constraints (if needed)

Two types of divisions are needed depending on the refinement
requirements: through the thickness of the laminate and longitudinal
divisions along the interfaces. The number of through the thickness
divisions (𝑛𝑡ℎ𝑐𝑘) is calculated based on the number of interfaces needing
a discontinuity (𝑛𝑑𝑠𝑐). In the case a refinement in the longitudinal
direction of the element is needed, the number of longitudinal divisions
(𝑛𝑙𝑛𝑔) is calculated. This depends on the cohesive sub-element length
specified by the user (𝑙𝑐𝑜ℎ), which is translated into a number of
cohesive sub-elements in the longitudinal direction per A-FNM element.
Thus, 𝑛𝑡ℎ𝑐𝑘 and 𝑛𝑙𝑛𝑔 can be calculated as:

𝑛𝑡ℎ𝑐𝑘 = 2 ⋅ 𝑛𝑑𝑠𝑐 − 1

𝑛𝑙𝑛𝑔 = ⌈𝑙𝑒𝑙∕𝑙𝑐𝑜ℎ⌉ If refinement is needed
𝑛 = 1 If no refinement is needed
3

𝑙𝑛𝑔
where 𝑙𝑒𝑙 is the length of the A-FNM element and ⌈.⌉ is the ceiling
function. The element divisions define a number of sub-elements 𝑛𝑆𝐸
as sown in Fig. 1b and c. A sub-element type is assigned to discern
between cohesive and solid sub-elements.

After division, solid sub-elements are assigned a sub-laminate from
the original full thickness laminate. Each sub-laminate contains the nec-
essary lay-up information to assemble the layered sub-element tangent
stiffness matrix. In Fig. 1c, for instance, SE1, SE2 and SE3 are assigned
the same sub-laminate containing layers 1 and 2 whereas SE7, SE8 and
SE9 are assigned a sub-laminate with layers 3 and 4.

Each sub-element uses different FNs that are activated when needed.
Activating an FN requires assigning it a position and displacement [48],
as well as including it in the internal A-FNM element connectivity,
which relates FNs to sub-elements. Edge FNs are activated first as they
are constrained by the neighbouring A-FNM elements. Interfaces which
require the inclusion of a cohesive discretization are looped to check
for active FNs in each edge of the element. If activation is needed, each
edge FN is assigned a position in the interface (top/bottom) that ensures
compatibility between A-FNM elements. An example is provided in
Fig. 3 where A-FNM element 2 contains one active interface and shares
FNs 5 and 6 with A-FNM element 1. FNs 7 and 8 are active in the same
interface and are shared with A-FNM element 3. All FNs are assigned
to Interface 2 with FNs 5 and 7 belonging to the top position while
FNs 6 and 8 belonging to the bottom position, respectively. Without
the top/bottom consideration, the same FN could be placed at the top
surface of the interface for one A-FNM element and at the bottom
of the same interface for a neighbouring A-FNM element, leading to
inconsistency in the definition of crack opening directions. Initiation
of the positions and current displacements of the newly activated edge
FNs needs to be performed using interpolation between master nodes.
Linear interpolation between the sub-laminate surrounding nodes is
exemplified in Fig. 4 for Interface 1 (𝐼1) which uses nodes 1 & 5 and 4
& 9 as master nodes:
𝒙𝟕,𝟖 = 𝒙𝟏𝑁1 + 𝒙𝟓𝑁5 𝒖𝟕,𝟖 = 𝒖𝟏𝑁1 + 𝒖𝟓𝑁5

𝒙𝟏𝟏,𝟏𝟐 = 𝒙𝟒𝑁4 + 𝒙𝟗𝑁9 𝒖𝟏𝟏,𝟏𝟐 = 𝒖𝟒𝑁4 + 𝒖𝟗𝑁9
(1)

where 𝑁𝑖 is the isoparametric shape function evaluated at node 𝑖.
The activation of the internal FNs is done only when a change in

the internal refinement occurs. In such case all internal FN data is
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Fig. 3. Example of an A-FNM element (2) connected to two other A-FNM elements (1)
and (3) with one active interface.

Fig. 4. Interface 1 (𝐼1) activation process from inactive (left) to active (right).

erased and all values are re-interpolated. The internal FNs are linearly
interpolated similarly to the edge FNs using different interpolation
nodes as exemplified in (Fig. 5):

𝒙𝟗,𝟏𝟏 = 𝒙𝟏𝑁1 + 𝒙𝟒𝑁4 𝒖𝟗,𝟏𝟏 = 𝒖𝟏𝑁1 + 𝒖𝟒𝑁4

𝒙𝟏𝟎,𝟏𝟐 = 𝒙𝟓𝑁5 + 𝒙𝟕𝑁7 𝒖𝟏𝟎,𝟏𝟐 = 𝒖𝟓𝑁5 + 𝒖𝟕𝑁7

𝒙𝟏𝟏,𝟏𝟑 = 𝒙𝟔𝑁6 + 𝒙𝟖𝑁8 𝒖𝟏𝟏,𝟏𝟑 = 𝒖𝟔𝑁6 + 𝒖𝟖𝑁8

𝒙𝟏𝟐,𝟏𝟒 = 𝒙𝟐𝑁2 + 𝒙𝟑𝑁3 𝒖𝟏𝟐,𝟏𝟒 = 𝒖𝟐𝑁2 + 𝒖𝟑𝑁3

(2)

where 𝑁𝑖 is the isoparametric shape function of node 𝑖 evaluated at the
FN isoparametric position.

2.2. Multi-point constraint equations

In case an A-FNM element contains an interface which changes
from active to inactive at one of its edges, as exemplified in Fig. 6a,
an incompatibility may occur (Fig. 6b) as suggested in [48]. This
incompatibility arises due to the FN being only active in one of the two
elements sharing the edge. Multi-Point Constraint equations (MPC’s)
are applied to the FNs of the interface to correct the incompatibility as
shown in Fig. 6c. The MPC’s are defined using a master–slave approach
re-using the interpolation scheme, in Eq. (1), which is also used for
activation of the edge floating nodes.

2.3. Standard element formulations

Once the A-FNM element has been divided and active FNs defined,
the sub-element tangent stiffness matrices 𝒌𝒔𝒆𝒕 and internal force vectors
𝒇 𝒔𝒆 for implicit analysis are computed using standard FEA subroutines.
These are subsequently assembled at the A-FNM element level to obtain
4

the A-FNM element tangent stiffness matrix 𝒌𝒆𝒕 and the internal element
force vector 𝒇 𝒆, respectively.

Two finite elements have been formulated in this work adapting
existing formulations: a 4-node cohesive element and a 4-node plane
strain layered element with the possibility of an Enhanced Assumed
Strains (EAS) formulation to avoid shear locking. The solid element fol-
lows the standard isoparametric formulation when the EAS formulation
is deactivated.

The cohesive formulation applied in this work is based on [22,55]
and adapted to a 2D zero-thickness 4-node cohesive element, referred
to Coh4. Remark, different CZMs having more complicated mixed-mode
cohesive laws, e.g. trilinear [56] and multilinear [23] CZ laws, could
be implemented in the constitutive formulation of the CE subroutine
without any modifications to the adaptive framework, i.e the ARS
or the A-FNM element. A short outline of the Coh4 formulation is
provided in the following for completeness. The interfacial constitutive
model is based on a bilinear cohesive law, Fig. 7b, relating traction
to separations. The critical energy release rate and onset traction are
in general mode dependent and interpolated using a modified BK-
criterion [22,57]. An updated Lagrangian formulation is employed in
the Coh4 element, and the opening between crack faces of the element
is decomposed into a mode I opening and mode II shearing component
at the deformed mid surface between crack faces, see Fig. 7a, and
interpolated using linear isoparametric shape functions. Numerical in-
tegration of the element tangent stiffness matrix and the internal force
vector, respectively, is done by a 2-point Newton–Cotes integration
scheme.

The 2D plane strain Enhanced Assumed Strains (EAS) equivalent
single layer 4-node element, named EAS4 hereafter, uses a unique
formulation adapted from the shell and solid-shell elements [53,54].
To the knowledge of the authors, the combination of formulations
presented in this work is not available in literature for a 2-D case and
thus, is outlined in the following. The EAS enhancement avoids shear
locking on the unrefined areas of the model, while utilizing a layered
element approach improves computational efficiency in multi-layered
models.

In the EAS4 formulation, the compatible strains 𝜺 are enhanced with
a second set of incompatible strains 𝜺𝑖𝑛𝑐 :

𝜺𝑒𝑛ℎ = 𝜺 + 𝜺𝑖𝑛𝑐 (3)

It is demonstrated in [53] that in order to obtain a stable element, the
enhancing term of the strains needs to be calculated at the centre of the
isoparametric space. This allows interpolating the strains in a geometry
that is always a 1 × 1 square, but makes the element susceptible to
distorted geometries. The enhanced strains at the centre of the element
in the isoparametric space �̃�𝑖𝑛𝑐 are calculated from 5 internal DOFs 𝜶
using the matrix 𝑴 [53]:

�̃�𝑖𝑛𝑐 = 𝑴𝜶 where 𝑴 =
⎡

⎢

⎢

⎣

𝑟 0 0 0 𝑟𝑠
0 𝑠 0 0 −𝑟𝑠
0 0 𝑟 𝑠 𝑟2 − 𝑠2

⎤

⎥

⎥

⎦

(4)

The transformation of the incompatible strains from the centre of the
isoparametric space to any point of the element in the physical space
(𝜺𝑖𝑛𝑐) yields the �̃� matrix:

𝜺𝑖𝑛𝑐 =
|𝑱 𝟎|

|𝑱 |
𝑻 −𝑇
𝟎 �̃�𝑖𝑛𝑐 ⇒ �̃� =

|𝑱 𝟎|

|𝑱 |
𝑻 −𝑇
𝟎 𝑴 (5)

𝑱 and 𝑱 𝟎 are the Jacobians of the isoparametric transformation at
any point within the element and at the element centre, respectively.
The quotient of the determinants of these Jacobians scales the strains,
correcting for any difference in the element distortion at the centre and
the current point. Notice that the transformation matrix 𝑻 𝟎 transforms
the enhanced strains from the isoparametric space to the physical space
and is calculated from the terms in 𝑱 𝟎:

𝑻 𝟎 =
⎡

⎢

⎢

𝐽 2
11 𝐽21𝐽12 2𝐽11𝐽12

𝐽12𝐽21 𝐽 2
22 2𝐽21𝐽22

⎤

⎥

⎥

(6)

⎣𝐽11𝐽21 𝐽12𝐽22 (𝐽11𝐽22 + 𝐽12𝐽21)⎦𝑟=𝑠=0
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Fig. 5. Interpolation for the internal FNs.
Fig. 6. (a) FNs that need MPCs are marked green. (b) Edge incompatibility created by the active/inactive interface transition. (c) Edge compatibility restored by enforcing MPC’s.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 7. (a) Representation of the kinematics of the deformed surface �̄�. (b) Bilinear cohesive law used in the formulation. (c) Cohesive element nodal numbering in the isoparametric
space.
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Following the variational formulation from [53], three stiffness sub-
matrices are defined which lead to the sub-element stiffness matrix
𝒌𝒔𝒆, obtained through static condensation of the internal degrees of
freedom:

𝒌𝒖𝒖 = ∫𝑠𝑒
𝑩𝑇𝑪𝑩𝑑𝑟𝑑𝑠

𝒌𝜶𝒖 = ∫𝑠𝑒
�̃�𝑇𝑪𝑩𝑑𝑟𝑑𝑠 ⇒ 𝒌𝒔𝒆 = 𝒌𝒖𝒖 − 𝒌𝜶𝒖𝑇 𝒌𝜶𝜶−1𝒌𝜶𝒖

𝜶𝜶 = ∫𝑠𝑒
�̃�𝑇𝑪�̃�𝑇 𝑑𝑟𝑑𝑠

(7)

here 𝑩 is the standard isoparametric strain displacement matrix of a
-D 4-Node solid element.

Numerical through the thickness integration is performed to cal-
ulate the expressions in Eq. (7) adapting the solid-shell formulation
n [54] to 2D. Each layer is integrated using a full 2 × 2 Gauss
uadrature. Two isoparametric mappings are needed (Fig. 8) to bring
he integration limits of each layer to ±1 and be able to perform
umerical integration using Gauss Quadrature. The first isoparametric
apping is applied to all the nodes of the sub-element in a standard
anner. The second isoparametric mapping is applied to each layer

hrough a change of variable from 𝑠 to 𝑡𝑙:

= −1 + 1
(

2
𝑙

∑

ℎ𝑖 − ℎ𝑙(1 − 𝑡𝑙)

)

⇒ 𝑑𝑠 =
ℎ𝑙 𝑑𝑡𝑙 (8)
5

ℎ 𝑖=1 ℎ t
where ℎ𝑙 is the thickness of the 𝑙’th layer and 𝑡𝑙 is the isoparametric
ayer variable. The layer integration can be regarded as treating each
ayer as an element itself. The numerical integration of the element
tiffness matrices from Eq. (7) at each layer is then carried out:

𝒌𝒍𝒖𝒖 = ∫

1

−1 ∫

1

−1
𝑩𝑇𝑪𝑩

ℎ𝑙
ℎ

𝑑𝑟𝑑𝑡𝑙 ≈
4
∑

𝑖=1
𝑩𝑇𝑪𝑩

ℎ𝑙
ℎ
|𝐽 |𝑙𝑖𝑤𝑖 (9)

𝒌𝒍𝜶𝒖 = ∫

1

−1 ∫

1

−1
�̃�𝑇𝑪𝑩

ℎ𝑙
ℎ

𝑑𝑟𝑑𝑡𝑙 ≈
4
∑

𝑖=1
�̃�𝑇𝑪𝑩

ℎ𝑙
ℎ
|𝐽 |𝑙𝑖𝑤𝑖 (10)

𝒌𝜶𝜶𝑙 = ∫

1

−1 ∫

1

−1
�̃�𝑇𝑪�̃�𝑇 ℎ𝑙

ℎ
𝑑𝑟𝑑𝑡𝑙 ≈

4
∑

𝑖=1
�̃�𝑇𝑪�̃�

ℎ𝑙
ℎ
|𝐽 |𝑙𝑖𝑤𝑖 (11)

where |𝐽 |𝑙𝑖 is the determinant of the standard isoparametric trans-
ormation Jacobian calculated at GP 𝑖 of the layer 𝑙 and 𝑤𝑖 is the

weight factor. The sub-element stiffness matrices 𝒌𝒖𝒖, 𝒌𝜶𝒖 and 𝒌𝒖𝒖 are
alculated by addition of the layer stiffness matrices:

𝒖𝒖 =
𝐿
∑

𝑙=1
𝒌𝒍𝒖𝒖 𝒌𝜶𝒖 =

𝐿
∑

𝑙=1
𝒌𝒍𝜶𝒖 𝒌𝜶𝜶 =

𝐿
∑

𝑙=1
𝒌𝒍𝜶𝜶 (12)

here 𝐿 is the total number of layers.

. Adaptive refinement scheme for multiple cracks

An Adaptive Refinement Scheme (ARS) has been developed to con-
inuously monitor and provide each interface of the A-FNM elements



Composites Part A 156 (2022) 106846G.G. Trabal et al.

w
e
A
b
d

d
s
D
r
i
o
a
i
c
a
c
l
g
i
v
a
e
w
t

t
w
r

A
r
c
a
s
i
F
a
i
p

Fig. 8. Mappings used for the through the thickness numerical integration.
b
t

l
c
c
t
i

T
i
s
t
f
l
b
c
a
𝑙
s
a
r
N
b
E
i
s

4

c
f
m
r
a
R
p
t
b
r
a
g
b
m
m

ith a desired discretization throughout the analysis. The ARS is an
ssential novelty to model multiple delaminations with the aid of the
-FNM element presented in Section 2. The discretization is updated
y the ARS at every iteration of the Newton–Raphson solver and is
ependent on the CZ traction profile and current state of damage.

The traction profile in Fig. 9a may be classified into distinct zones
epending on the traction value and its gradient. It has been demon-
trated in [25,27–30] that a fine mesh containing 3–10 elements in the
PZ is necessary for accurate results and fast convergence. This mesh

equirement ensures that the high gradient zone of the traction profile
s correctly discretized. As it is also indicated in Fig. 9a, the position
f the high gradient zone of the traction profile and its extension for
given crack tip is determined by the extension of the DPZ, which

s defined as the length where 𝑑 ∈ ]0, 1[. Remark, that in this work
rack tip refers to the onset of damage point as shown in Fig. 9. In
general delamination problem, the DPZ length may vary during the

ourse of the analysis due to variations in geometry, material, and
oading conditions. Thus, to accurately track the position of the high
radient zone of the traction profile, the cohesive damage variable, 𝑑,
s defined as the main driver within the ARS. The cohesive damage
ariable is readily available during the analysis without the need of
dditional post-processing steps, making it desirable for computational
fficiency. Notice that a small part of the high gradient traction zone,
hich still needs a fine discretization, falls out of the DPZ just before

he coarse zone begins.
The traction profile in Fig. 9a can be split into four zones defined by

he damage variable 𝑑 and the expected traction gradients associated
ith it. Discretization of each zone is done separately to ensure accurate

esults and convergence, and defined by the following four states:

• Full damage state: The fully damaged zone (𝑑 = 1) is dis-
cretized with fully damaged coarse cohesive elements to avoid
interpenetration of the crack faces.

• Refined state: The ongoing damage and high traction gradient
zone (1 > 𝑑 ≥ 0) is modelled with a fine mesh of active cohesive
elements.

• Coarse state: The undamaged (𝑑 = 0) and low gradient zone of
the traction profile is modelled with coarse undamaged cohesive
elements to capture the stored elastic energy, which is important
for smooth and accurate results during the ARS adaptive updates.

• Idle state: The undamaged (𝑑 = 0) and very low gradient zone
of the traction profile is considered inactive and thus does not
require cohesive elements.

RS provides each interface in each A-FNM element with a single
efinement state as illustrated in Fig. 9b. In a multiple delamination
ase, two delamination cracks may enter in the same interface within
n A-FNM element and thus provide two refinement states for the
ame interface. In such an event, the following refinement hierarchy
s defined to select the proper discretization of the interface in the A-
NM element: Full damage >Refined >Coarse >Idle. Please notice that
multiple delamination case may also include delaminations at several

nterfaces within the same A-FNM element. In such case, the refinement
6

lanning is done at the A-FNM element level, described in Section 2,
y selecting the longitudinal A-FNM element divisions (𝑛𝑙𝑛𝑔) according
o the most refined interface included in the A-FNM element.

The sole user input for the ARS algorithm is the coarse discretization
ength (𝑙𝑐𝑜𝑟) for the low gradient zone of the traction profile. This dis-
retization length is set prior to execution of the analysis and may be set
onservatively as it has little impact on the computational cost. During
he analysis the ARS algorithm makes use of the following definitions,
.e. internal logical variables, at the A-FNM Element Interface (EI) level:

• Interface in the DPZ: An interface is in the DPZ if any of its
integration points has a damage value between 0 and 1 (𝑑 ∈
]0, 1[).

• Damaged interface: An interface in the element is damaged
when all its integration points have damage values of 1 (𝑑 = 1).

• Crack tip interface: An interface contains a crack tip when an
integration point is undamaged (𝑑 = 0) and others are partly or
fully damaged (0 < 𝑑 ≤ 1).

The main actions of the ARS algorithm are shown in Fig. 10.
he output of the algorithm is the interface refinement states for all

nterfaces in all A-FNM elements of the model. Initially, the algorithm
aves the current EI states of the model Fig. 11a and resets all EI states
o Idle state Fig. 11b. A succession of operations is then performed
or each interface in the model defined by the layup of the analysed
aminate (interface loop). All crack tips in the interface are determined
y looping the active cohesive sub-elements of the interface. For each
rack tip, the EI states in the DPZ and its immediate EI neighbour
re set to a Refined state Fig. 11c. EIs within the user defined length,
𝑐𝑜𝑟, measured from the uttermost refined element, are set to Coarse
tate Fig. 11d. To improve convergence and reduce oscillations of the
daptive refinement, EIs that have been set to a Refined state cannot
evert to a Coarse or Idle state during the equilibrium iterations of the
ewton–Raphson solver Fig. 11e. This condition avoids EIs oscillating
etween refined and non-refined states when the DPZ enters a new
I. Remark that the condition only prevails within the equilibrium
teration loop of the Newton–Raphson solver and is reset at every new
olution step.

. Simulation studies

The presented formulation has been implemented in a Matlab FEA
ode which uses ANSYS Mechanical 2020 R2 for preprocessing, i.e. de-
ine geometry, material properties, layup, boundary conditions, and
esh. Addition of the pre-cracks, FNs and specific formulation pa-

ameters is done in a second pre-processing phase in Matlab. The
nalysis is executed in Matlab using a displacement controlled Newton–
aphson solution method to trace the nonlinear softening equilibrium
ath during progressive advancement of single or multiple delamina-
ions. A separate, but equivalent, Matlab implementation using the
ase element technologies presented in Section 2.3 without adaptive
efinement and FNM is used as reference for assessing the performance
nd accuracy of the adaptive formulation. This section presents three
roups of results. Firstly, simulations of the standard double cantilever
eam (DCB) specimen, end notched flexure (ENF) specimen, and mixed
ode bending (MMB) specimen are conducted to verify the imple-
entation and prove the accuracy and computational efficiency of
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Fig. 9. (a) Traction profile, in purple, induced by the damage state, in green, with the 4 proposed classification zones. (b) Example of refinement states for a specimen with three
interfaces of which only the first interface is delaminating. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
Fig. 10. Flowchart of the adaptive refinement scheme algorithm executed at every equilibrium iteration in the Newton–Raphson solver.
the formulation on well-known examples. Secondly, three simulation
studies are presented to demonstrate the unique capabilities of the
adaptive refinement scheme formulation: A simulation of a case with
varying length of the damage process zone as the crack progress and
two simulations featuring multiple delaminations. Finally, parametric
studies demonstrate that the coarse discretization length (𝑙𝑐𝑜𝑟), is the
only discretization variable affecting the results as long as the cohesive
sub-element length (𝑙𝑐𝑜ℎ) is kept at a reasonable value meaning that
3–10 CEs are placed in the DPZ.

4.1. Validation and verification

Validation of methods and verification of the implementation is
conducted by performing a simulation of DCB, ENF, and MMB tests
which are performed using the geometry and boundary conditions
shown in Fig. 14 and the material properties stated in Table 1. A two
layer unidirectional layup (0, 0) is used in the three analyses. For
7

the MMB test, the lever is modelled using MPCs. Mesh size related
parameters for the models are stated in Table 2 together with the
user defined coarse discretization length, 𝑙𝑐𝑜𝑟, needed for the ARS.
The chosen cohesive sub-element length 𝑙𝑐𝑜ℎ, is selected to provide
accurate results and fast convergence rates in both the adaptive FE
implementation, which makes use of the A-FNM element and the ARS,
and the reference FE implementation and provides a minimum of 10
cohesive elements in the DPZ throughout the analysis. The DPZ length
obtained in the DCB and ENF analysis is approximately 0.923 mm and
4.210 mm, respectively. The reference FE models are defined using
standard element formulations, i.e., Coh4 and EAS4 elements, and iden-
tical mesh parameters and material definitions as the models simulated
using the adaptive framework. Note that the EAS stabilization of the 2D
solid elements is only utilized for the coarse solid mesh and deactivated
for the fine solid mesh. Pre-cracked areas of the reference FE models are
meshed using the element size used in the adaptive refinement cases for
direct comparison, resulting in the mesh in Fig. 13. It is assumed that
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Fig. 11. Application of the ARS algorithm for the traction profile on top from the existing interface states (a) to the outputted element interface states (e) for 𝑛𝑖𝑡𝑒𝑟 > 1.
Fig. 12. Basic A-FNM element mesh used in the analyses. Remark that the thickness of the specimen varies for some of the numerical tests.
Fig. 13. Mesh of the reference model used for the performance and accuracy comparisons. Remark that the thickness of the specimen varies for some of the numerical tests.
Fig. 14. Geometry and boundary conditions for the DCB (left), ENF (middle) and MMB (right) tests. Dimensions are stated in [mm].
Table 1
Material properties for the DCB, ENF and multiple delamination numerical tests.
Source: Penalty stiffness 𝐾0 taken from [26]

DCB [25] ENF/MMB [58] Mult. Delam. [20]

𝐸11 150 [GPa] 120 [GPa] 115 [GPa]
𝐸22 = 𝐸33 11 [GPa] 10.5 [GPa] 8.5 [GPa]
𝜈12 = 𝜈13 0.45 0.5 0.29
𝜈23 0.25 0.3 0.3
𝐺12 = 𝐺13 6 [GPa] 5.25 [GPa] 4.5 [GPa]
𝐺23 3.7 [GPa] 3.48 [GPa] 4.5 [GPa]
𝐺𝐼 352 [ J

m2 ] 260 [ J
m2 ] 330 [ J

m2 ]

𝐺𝐼𝐼 1000 [ J
m2 ] 1002 [ J

m2 ] 800 [ J
m2 ]

𝜏𝐼0 60 [MPa] 30 [MPa] 16.5 [MPa]
𝜏𝐼𝐼0 – 58.9 [MPa] 35 [MPa]
𝜂 – 2 2
𝐾0 5.55e14 [ N

mm3 ] 5.55e14 [ N
mm3 ] 5.55e14 [ N

mm3 ]

the user does not have previous knowledge of the final crack extension
and location meaning that the reference model refinement spans the
entire potential crack path.
8

Load–displacement curves for the three numerical tests are shown
in Fig. 15. Agreement between the reference FEA implementation and
the adaptive implementation is perfect and no jumps or oscillations in
the response plots may be observed as the mesh refinement adaptively
occurs during the analyses. The speedup using the adaptive implemen-
tation is reported in Table 3 based on CPU time to avoid influence from
parallel execution of the FEA codes. Reported CPU times are average
times obtained from 4 executions of each numerical test. The speedup
of the adaptive FEA implementation compared to the reference is a
factor of 4–5.5 for the simulated cases. The speedup is expected to
increase dramatically for larger models, i.e., geometry and laminate
layers, as the number of DOFs would increase substantially for the ref-
erence FEA implementation compared to the adaptive implementation,
which still would exploit a coarse discretization in most of the model.
This statement is supported by a DCB numerical test performed with
a specimen of the same thickness as the one shown in Fig. 14 but 10
times longer, reaching a total length of 1.5 m. The same material for the
DCB test shown in Table 1 is used together with the same ARS and mesh
parameters listed in Table 2. This test resulted in a speedup factor of
93 with respect to a simulation in the reference model with an equally

long DCB specimen and equivalent mesh characteristics.
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Fig. 15. Comparison between the reference and the adaptive formulation for the DCB, ENF and MMB tests. Analytical solution extracted from the ASTM standard [59].
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Table 2
Mesh parameters and ARS 𝑙𝑐𝑜𝑟 parameter used in the DCB, ENF and MMB numerical
ests.
Parameter [mm] DCB ENF MMB

Cohesive elem. length 𝑙𝑐𝑜ℎ 0.119 0.208 0.104
A-FNM elem. length 1.66 1.66 1.66

ARS 𝑙𝑐𝑜𝑟 parameter 6.66 6.66 6.66

Table 3
Comparison of the computational performance between the reference and the adaptive
formulation.

CPU Time [s] DCB ENF MMB Double Triple

Reference 2099 2603 13 597 39 483 678 410
A-FNM 394 604 3251 3691 48 984

Speed-up 5.32 4.30 4.18 10.6 13.84

Fig. 16. DCB test with an abrupt change of interfacial properties.

.2. Formulation capabilities

To demonstrate the adaptive capabilities of the A-FNM element
ormulation and ARS a case is considered in which the DPZ length
aries as the crack propagates. Furthermore, two cases with multiple
elaminations propagating simultaneously are presented: a double and
triple delamination model.

.2.1. Damage process zone length change
The length of a DPZ may vary during delamination propagation

ue to many factors such as variations in geometry, constitutive and
nterfacial properties, and mode-mixity. To verify that the adaptive
ormulation can successfully tackle changes in length of the DPZ during
imulation an artificial DCB is analysed. The definition of the DCB
odel is identical to that studied in Section 4.1 except the cohesive
roperties of the dark grey region marked in Fig. 16, which are set to
𝐼 = 1000 J/m2 and 𝜏𝐼 = 10 MPa enlarging the DPZ in this region.
imulated response curves from the reference and adaptive implemen-
ation, respectively, are shown in Fig. 17. The sudden enlargement of
he DPZ is captured accurately by the ARS. From the initial state (o)
he ARS enforces a minimal refinement as the DPZ grows until the
aximum load level at the first limit point (A). The delamination crack

hen propagates (softening) with a constant DPZ length until it reaches
9

he section with reinforced interfacial properties (B). Next, the response a
reverts to hardening as the DPZ grows until fully developed at the
second limit point (C). Again, a softening response is encountered as
the delamination crack propagates in the reinforced interface (D). The
ARS adequately captures the variations in the DPZ during the execution
of the analysis.

4.2.2. Double delamination
A multiple delamination numerical test has been performed fol-

lowing the benchmarking in [20]. The geometry of the test specimen,
which features a second delamination, is shown in Fig. 18. The material
used is slightly modified following [26] to obtain traction profiles from
a more realistic material than the one in [20], where low onset stresses
are used to enlarge the DPZ. The analysis is performed with the same
coarse mesh of 90 elements as the one used in the previous analysis
Fig. 12. A cohesive element size (𝑙𝑐𝑜ℎ) of 0.11 mm is chosen and the
ength of the coarse mesh (𝑙𝑐𝑜𝑟) is kept at 6.66 mm.

Simulated results in Fig. 19 show almost perfect agreement between
he reference and the adaptive implementation. In the first stage of the
nalysis, after reaching the first limit point, delamination propagation
nly occurs in the first interface at crack tip 1⃝, marked in Fig. 19.
hen the propagating crack tip 1⃝ reaches the position of crack tip 2⃝

ery unstable crack propagation of crack tip 1⃝ takes place resulting in
a deflection limit point in the equilibrium curve. During the unstable
growth, crack tip 1⃝ surpasses crack tip 2⃝ (A) and onsets the second
delamination at crack tip 3⃝. A second nearly linear loading path until
the limit point (B) is a consequence of further propagation of crack tip
1⃝ while a second DPZ is formed at crack tip 3⃝. Hereafter a softening

response is caused by combined delamination propagation at interface
1 and 2 at respectively crack tip 1⃝ and 3⃝. By considering the final
deformed shape and associated mesh in Fig. 21 (C), it is clear that the
ARS algorithm conforms perfectly to the three different DPZ lengths in
the problem. A short refinement zone covering two A-FNM elements is
observed at crack tip 2⃝ since the DPZ here is not fully developed. At
crack tip 1⃝, a fully developed but relatively short DPZ is encountered
since delamination propagation is due to peeling off a thin layer with
low bending stiffness and thus only needs a refinement zone three A-
FNM elements long. Finally, a larger DPZ is encountered at crack tip 3⃝
ue to thicker and thus stiffer adjacent sub-laminates, which is captured
y a refinement zone covering four A-FNM elements. The performance
omparison between the adaptive formulation and the reference model
s stated in Table 3 under the name ‘‘Double’’.

.2.3. Triple delamination
A case displaying three delaminations is defined with the geometry

nd boundary conditions shown in Fig. 20. The test case is a further
xtension of the double delamination case by adding a third initial
rack. The same material and mesh properties, including the ARS user
arameter 𝑙𝑐𝑜𝑟, from the double delamination test are applied.

Results from reference FEA and using the adaptive FNM formulation

re shown in Fig. 21, and again the adaptive FNM formulation provides
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Fig. 17. Load–displacement equilibrium curves for test case with varying DPZ length.
Fig. 18. Geometry and boundary conditions for the double delamination test.
Fig. 19. Left: Double delamination load displacement curve. Right: Deformed shape at three stages of the analysis.
Fig. 20. Geometry and boundary conditions for the triple delamination test.
accurate results. Due to the presence of a third delamination, and thus
a total of five crack tips, which results in a more compliant structure,
the final propagation phase from point (B) is delayed. This test case
further demonstrates the robustness of the adaptive formulation being
that it can deal with several DPZs of different and varying lengths while
being computationally effective since it is based on an initial equivalent
single-layered coarse mesh. The performance comparison between the
adaptive formulation and the reference model is stated in Table 3 under
the name ‘‘Triple’’.

4.3. Parametric studies of key ARS and mesh parameters

To test the robustness and generality of the ARS algorithm em-
bedded in the adaptive implementation a set of parametric studies
are conducted by varying key parameters influencing the adaptive
10
refinement. The parameters studied are the user inputted coarse dis-
cretization length (𝑙𝑐𝑜𝑟), the length of the refined area, and the refined
cohesive sub-element element length (𝑙𝑐𝑜ℎ) defined by the user. Albeit
the initial A-FNM element mesh size and the cohesive element length
parameter may be argued not to be specific parameters related to
ARS they are included for completeness. The parametric studies are
conducted on the DCB (mode I) and ENF (mode II) examples from
Section 4.1 by varying the aforementioned four parameters from their
base values. At first, the internally fixed extra refinement length in
front of an identified crack tip, which through the ARS refines a
single neighbouring element to the element containing the crack tip
(Section 3), is studied. This means studying the effect of increasing the
number of elements that are refined by increasing the refinement length
ARS internal variable. The results of the parametric study are shown in
Figs. 22a and 22b, and by considering that the coarse A-FNM element
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Fig. 21. Left: Triple delamination load displacement curve. Right: Deformed shape at three stages of the analysis.
Fig. 22. Effect of changing the size of the refined area in front of the crack tip. Analytical solution extracted from the ASTM standard [59].
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length is 1.66 mm, it may be observed that further refinement than the
first A-FNM element neighbour is unnecessary. In Figs. 23a and 23b
results from varying the user inputted coarse discretization length are
shown. The base value for 𝑙𝑐𝑜𝑟 = 6.66 mm, which corresponds to four

-FNM elements, has been varied to cover 1–6 A-FNM elements. The
im of the coarse discretization is the insertion of coarse undamaged
ohesive elements to capture the stored elastic energy ahead of the DPZ,
efer to definition in Section 3. As may be observed in Figs. 23a and 23b
too coarse discretization length may lead to erroneous and oscillating

quilibrium solutions, which also results in increased computational
ime due to the additional iterations needed by the solver for reaching
quilibrium. A coarse discretization length of 10 times the expected size
f the DPZ seems appropriate. However, a conservative large value for
he coarse discretization length may be inputted as it has little impact
n the computational cost since it just adds a few DOFs when inserting
ohesive elements in the coarse discretization. The robustness of the
RS algorithm concerning discretization of the initial coarse mesh of
-FNM elements is tested and results are reported in Figs. 24a and 24b.
rom the baseline mesh with an element size of 1.66 mm, the initial
esh size has both been increased and decreased with a factor of two

nd four, respectively. As demonstrated in the response plots the ARS
mplemented in the adaptive formulation is unaffected by the initial
esh size. However, a too coarse initial mesh would cause inaccuracies

n representing the correct deformation state of the non-refined regions
f the structure despite the use of an EAS formulation within the solid
lements. Finally, a study is conducted to demonstrate that the ARS is
nsensitive to the cohesive element size (𝑙𝑐𝑜ℎ) of the refined regions.
onsidering that the length of the DPZ for the DCB and ENF example
pproximately is 0.923 mm and 4.210 mm, respectively, the cohesive
lement length (𝑙𝑐𝑜ℎ) has been varied providing 3–9 cohesive elements
ithin the DPZ for the DCB numerical test and 10–35 cohesive elements

or the ENF case. The results of this study are presented in Figs. 25a
11
nd 25b, and confirm that as long the rule of thumb is followed by
iscretizing the DPZ with 3–10 elements, accurate results and good
onvergence properties are achieved.

. Conclusions

In the present paper, a new formulation for efficient simulation of
ultiple delamination crack growth under static loading in laminated

omposites is presented. The formulation relies on an Adaptive Floating
ode Method adaptive element (A-FNM) and an Adaptive Refinement
cheme (ARS). The A-FNM element is capable of efficiently split-
ing, refining and coarsen itself adaptively during the analysis without
odifying the global model connectivity, while maintaining model

ompatibility through auto-generated multi-point constraint equations.
he underlying finite element formulations used by the A-FNM element
re a linear cohesive element and a 4-noded plane strain EAS layered
lement (EAS4) allowing an initial coarse mesh of A-FNM elements
hile ensuring accurate results.

The adaptive refinement of the A-FNM element is driven by the
RS, which during analysis adaptively updates the A-FNM element

nterface discretizations ensuring accurate results, fast convergence and
ow solution times. The ARS algorithm only requires a single user input
𝑙𝑐𝑜𝑟) and solely relies on the cohesive damage variable, 𝑑, to assess

the discretization needs in each interface of the model. The A-FNM
element single user input is the cohesive element length 𝑙𝑐𝑜ℎ, which may
be set in accordance with traditional guidelines proposed for standard
delamination analysis using cohesive elements. Remark, that 𝑙𝑐𝑜ℎ could
automatically and adaptively be defined by tracking the current DPZ
length at every converged substep and using the guidelines proposed
in [25,27–30] to ensure a certain number of CEs discretize the DPZ.

Numerical studies of standard DCB, ENF and MMB analysis cases

utilizing the ARS and the A-FNM element prove the validity and
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Fig. 23. Effect of changing the coarse discretization length 𝑙𝑐𝑜𝑟. Analytical solution extracted from the ASTM standard [59].
Fig. 24. Effect of changing the size of the A-FNM elements in the initial coarse mesh (Fig. 12). Analytical solution extracted from the ASTM standard [59].
Fig. 25. Effect of changing the cohesive sub-element size 𝑙𝑐𝑜ℎ. Analytical solution extracted from the ASTM standard [59].
accuracy of the formulation while decreasing the computational time
by a factor of 4 to 5. Furthermore, it is expected that for larger finite
element models having cohesive interfaces speedups of hundreds or
even higher can be achieved. More advanced numerical cases involving
an abrupt change of interfacial properties in a DCB specimen as well
as double and triple delamination cases demonstrate the generality of
the formulation. The accurate results obtained on these advanced cases
prove that the presented formulation can adaptively refine, coarsen,
split, and insert cohesive elements when needed during the analysis
of general multiple delamination growth models having varying DPZ
12
lengths. Speedups of 10.6 and 13.84 were achieved for double and
triple multiple delamination cases.

The robustness and accuracy of the presented formulation are veri-
fied by parametric studies of key ARS and mesh parameters and clearly
show that the user input coarse discretization length, 𝑙𝑐𝑜𝑟, is the sole
mesh related parameter affecting the accuracy, given a sufficient small
𝑙𝑐𝑜ℎ is chosen, while its impact on computational cost is very limited.
It is therefore recommended to set this parameter conservatively large
according to the expected size of the DPZ. Natural future extensions of

the adaptive framework would be to expand it to 3D FEA and include
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damage onset for delaminations. Both extensions would increase the
complexity of both ARS and the A-FNM element, but the authors do
not foresee any unsolvable problem in that regard.

The presented formulation is a step towards real-life engineering
simulation and design purposes involving progressive delamination in
larger composite structures. The A-FNM and ARS combination pre-
sented in this work provides the same accuracy as traditional FEA
models having cohesive interfaces but at a fraction of the computa-
tional cost since potential crack paths do not need to be defined and
discretized prior to executing the analysis.
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