
A Hybrid Framework for
Accelerating Linear Solvers for
Partial Differential Equations

by

Yuhan Wu
to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Tuesday August 26, 2025 at 15:00.

Student number: *******
Project duration: December 19, 2024 – August 26, 2025
Thesis committee: Dr. Alexander Heinlein, TU Delft, supervisor

Prof. dr. Victorita Dolean-Maini, TU Eindhoven, supervisor
Dr. Francesca Bartolucci, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Contents

1 Introduction 1

2 Numerical Methods for Solving Linear Systems 3
2.1 Direct Methods . 3
2.2 Stationary Iterative Methods . 4

2.2.1 Richardson Method. 4
2.2.2 Jacobi and Gauss-Seidel Methods . 4

2.3 Multigrid Method . 7
2.4 Krylov Subspace Methods . 8

2.4.1 Conjugate Gradient Method (CG) . 9
2.4.2 Generalized Minimal Residual Method (GMRES). 9

3 Introduction to Deep Operator Networks 11
3.1 Neural Networks . 11

3.1.1 Structure . 11
3.1.2 Training . 12
3.1.3 Universal Approximation Theorem. 13
3.1.4 Spectral Bias . 14

3.2 Deep Operator Networks. 14
3.2.1 Universal Approximation Theorem for Operators 15
3.2.2 Network Architecture of DeepONet . 15

4 Introduction to HINTS 17
4.1 Benchmark Problem Setup . 17
4.2 The General Framework of HINTS . 17
4.3 Introduction to the HINTS-MG . 19

4.3.1 Algorithm . 19
4.3.2 Coarsest-Grid Strategy. 20

4.4 Training Procedure of DeepONet for HINTS . 20
4.4.1 Data Generation . 21
4.4.2 Data Preprocessing for the Helmholtz Problem. 21
4.4.3 Network Architecture Design. 22
4.4.4 Loss Function. 22
4.4.5 Training Configuration and Results . 22

4.5 Numerical Results Validation and Discussion . 23
4.5.1 Performance of HINTS . 23
4.5.2 Performance of HINTS-MG . 27

5 Convergence Analysis of HINTS 31
5.1 Slow Convergence Plateau in HINTS . 31
5.2 The Principle of Superposition and Operator Approximation in HINTS 32

5.2.1 Error-Residual Equation in Linear PDEs . 32
5.2.2 DeepONet as an Inverse Operator and Spectral Bias 33
5.2.3 Distribution Shift during Iterations . 33

5.3 Spectral Radius of the DeepONet-based Preconditioner. 34
5.3.1 Spectral Loss in Neural Preconditioning. 34
5.3.2 DeepONet-based Preconditioner in HINTS . 35
5.3.3 Spectral loss of DeepONet-based Preconditioner 35
5.3.4 Performance of Low-frequency-focused loss . 36

iii

iv Contents

6 Gradient-Enhanced HINTS (GE-HINTS) 39
6.1 Motivation and the Anti-Frequency Principle . 39
6.2 Gradient-Enhanced Loss of DeepONet . 39
6.3 Results & Discussion . 40

6.3.1 Performance of Gradient-Enhanced HINTS. 40
6.3.2 Performance of Gradient-Enhanced MG-HINTS 41

7 HINTS-in-the-loop 45
7.1 Offline Pre-compute Strategy . 45

7.1.1 Algorithm . 45
7.1.2 Limitations . 46

7.2 Online In-loop Strategy. 46
7.2.1 Algorithm . 46
7.2.2 Loss Functions . 47

7.3 Results & Discussion . 48
7.3.1 Offline Pre-Compute Strategy . 48
7.3.2 Online In-loop Strategy. 50

8 Conclusion 55
8.1 Research Questions . 55
8.2 Future Work. 56

A Declaration 57
A.1 AI Disclosure Statement . 57
A.2 Code Availability Statement . 57

1
Introduction

Partial differential equations (PDEs) are equations involving multivariate functions and corresponding
partial derivatives. PDEs play a significant role in describing various phenomena across different dis-
ciplines of science and engineering, such as fluid dynamics [1], solid mechanics [2], materials science
[3], and thermal engineering [4]. For traditional numerical methods, such as the finite element, finite dif-
ferences, or spectral methods, the discretization of linear partial differential equations typically results
in a system of linear equations as the last step:

A𝑢 = 𝑓

where A is the stiffness matrix, 𝑢 represents the solution, and 𝑓 denotes the forcing term. When solving
large-scale linear systems, direct solvers face memory limitations and are challenging to parallelize
effectively. Consequently, iterative solvers are preferred due to their lower memory requirements and
better parallel scalability for large-scale linear systems.

Classical iterative methods, such as the Jacobi method and the Gauss-Seidel method [5], are typ-
ically suitable for well-conditioned or diagonally dominant problems. However, these stationary itera-
tive methods inherently suffer from slow convergence, particularly for low-frequency eigenmodes, and
might diverge when dealing with non-symmetric and indefinite systems [6]. Challenges in eliminating
low-frequency eigenmode errors have motivated the development of multigrid methods [7, 8] which
utilize a hierarchy of fine-to-coarse discretizations to effectively reduce eigenmode errors ranging from
low to high frequencies.

Krylov subspace methods, such as Conjugate Gradient (CG) and Generalized Minimal Residual
(GMRES) methods [5, 9, 10], are widely-used iterative solvers in solving large-scale and sparse linear
systems. Compared to classical stationary methods, Krylov subspace methods typically exhibit faster
convergence, especially in large-scale problems. However, the convergence of Krylov subspace meth-
ods strongly depends on the conditioning of the matrix and the distribution of eigenvalues. Therefore,
an appropriate preconditioner is often critical for the convergence performance.

Recently, Scientific Machine Learning (SciML) [11, 12] has emerged and rapidly developed as a
powerful framework for solving various problems in computational science and engineering. Recent
research has shown that it can be advantageous to solve differential equations by machine learning
techniques [11]. Specifically, Physics-Informed Neural Networks (PINNs) [13] have received substantial
attention. In contrast to data-driven approaches [14, 15] which rely on sufficient simulation or exper-
imental data, PINNs explicitly encode PDE constraints into the loss function to predict the solution to
PDEs. These neural network-based surrogate models, which are trained offline, can efficiently produce
approximate solutions to PDEs, without relying on traditional numerical solvers. In addition, neural op-
erators, a framework for learning mappings between functions, have emerged as a tool for learning the
solution operator associated with PDEs. Deep Operator Networks (DeepONets) [14] and Fourier Neu-
ral Operators (FNOs) [15] have been successfully employed to predict parameterized PDE solutions
with high computational efficiency.

However, deep neural networks typically exhibit a spectral bias [16], learning low-frequency com-
ponents more easily while struggling to capture high-frequency features during training. The spectral

1

2 1. Introduction

bias exists in many deep learning-based approaches for solving PDEs [17, 18, 19], such as PINNs
and DeepONets, making them efficient in approximating low-frequency solutions while inadequate in
learning high-frequency features.

To address this limitation, Zhang et al. [19] recently proposed the hybrid iterative numerical transfer-
able solver (HINTS), and its variant HINTS-MG which integrates HINTS with the multigrid method. The
HINTS approach combines the DeepONet with classical relaxation methods (e.g., Jacobi or Gauss-
Seidel). By alternating between neural networks and classical iterative methods, this hybrid method
leverages complementary frequency preferences of neural networks and traditional iterative solvers,
and achieves robust and effective error elimination across different frequency ranges.

However, the HINTS method still exhibits several issues such as the mismatch between training
and practical data distributions and mid-frequency errors that slow convergence. This thesis aims to
answer the question: ”How can the HINTS framework be further enhanced to improve its robustness,
convergence, and generalizability?” In this thesis, the Poisson equation and the indefinite Helmholtz
equation with homogeneous Dirichlet boundary conditions will be used as benchmark problems to
evaluate the performance of HINTS.

To address this question, the thesis first analyzes the convergence behavior of HINTS and investi-
gates the mechanisms underlying its late-stage slowdown. Motivated by these findings, two method-
ologies, Gradient-Enhanced HINTS (GE-HINTS) and HINTS-in-the-loop training approaches, are de-
veloped to restore rapid convergence. The effectiveness of these methods is substantiated through a
series of systematic numerical experiments.

The remainder of this thesis is structured as follows: Chapter 2 provides an overview of classical iter-
ative solvers, including the Jacobi and Gauss-Seidel methods, Krylov subspace methods, and multigrid
methods; Chapter 3 introduces the fundamental concepts of neural networks, demonstrates concepts
and examples of spectral bias, and details the architecture of DeepONet in solving PDEs; Chapter 4
provides a detailed introduction to HINTS and HINTS-MG methods and primarily validates their perfor-
mance on the Poisson and Helmholtz equations; Chapter 5 presents a detailed convergence analysis
of the HINTS framework, identifies the phenomenon of slow convergence plateau, investigates its un-
derlying causes, and reinterprets DeepONet’s role within the HINTS framework in the context of neural
preconditioning; Chapter 6 introduces the anti-frequency principle and proposes Gradient-Enhanced
HINTS (GE-HINTS) to mitigate DeepONet’s spectral bias; Chapter 7 presents the ”HINTS-in-the-loop”
training strategy to overcome the data distribution mismatch in the HINTS framework; Chapter 8 sum-
marizes the key contributions of this work, discusses limitations of the proposed methodologies, and
outlines promising directions for future research.

2
Numerical Methods for Solving Linear

Systems
Using different discretization methods such as the finite element method, finite difference methods, or
spectral methods, a linear partial differential equation with appropriate boundary conditions is typically
discretized into a system of linear equations as follows:

A𝑥 = 𝑏, A ∈ ℝ𝑛×𝑛, 𝑥, 𝑏 ∈ ℝ𝑛 (2.1)

In this chapter, we provide a review of classical numerical methods for solving linear systems, such
as the Jacobi and Gauss-Seidel methods, the multigrid method, and Krylov subspace methods.

2.1. Direct Methods
Direct methods, such as the LU decomposition (for nonsingular matrices) and the Cholesky decompo-
sition (for symmetric positive definite matrices), typically solve the linear system exactly (within machine
precision) by performing a matrix factorization to decompose the problem into simpler subproblems.

In the LU decomposition, a nonsingular matrix A can be factorized as:

A = LU,

where matrices L and U are lower and upper triangular, respectively. If A is symmetric and positive
definite, the Cholesky decomposition yields:

A = LL⊤

where L is a lower triangular matrix with positive diagonal entries.
These factorizations convert the original problem in Eq. (2.1) into the following simpler subproblems

with triangular matrices:

{ L𝑦 = 𝑏
U𝑥 = 𝑦 (or L⊤𝑥 = 𝑦). (2.2)

Eq. (2.2) can be solved by forward and backward substitution methods. For a dense matrix A, the fac-
torization typically costs 𝒪(𝑛3) arithmetic operations and 𝒪(𝑛2) storage. This leads to poor scalability,
as computational and memory costs increase rapidly as 𝑛 grows.

In the discretization of a PDE, the matrix A typically exhibits sparsity. However, factorization in
direct methods might cause significant fill-in [5], so that many zero entries in the original matrix A
become nonzero in the factorized matrices, thereby introducing substantially increased storage and
computational costs in the denser factorized matrices.

Over the years, many highly optimized libraries, such as MUMPS [20], UMFPACK [21], and Pardiso
[22], have been developed for the direct solution of linear systems and have been widely applied in
open-source and commercial simulation software such as COMSOL Multiphysics [23].

3

4 2. Numerical Methods for Solving Linear Systems

2.2. Stationary Iterative Methods
In contrast to direct methods, which yield the exact solution only in the final step, iterative methods
generate a sequence of intermediate solution approximations and terminate when a prescribed toler-
ance is satisfied. Iterative methods are generally advantageous for large, sparse linear systems due
to lower computational complexity and memory requirements.

Stationary iterative methods are a classical class of iterative solvers, which solve a linear system
using a stationary operator that approximates the original one [5]. At each iteration, the current approx-
imate solution is updated by solving a correction equation derived from the residual and the approx-
imate operator. Although the fixed-point iteration scheme underlying stationary iterative methods is
straightforward to implement, their convergence is typically slow and only guaranteed for certain types
of matrices, such as diagonally dominant or symmetric positive definite matrices [24].

2.2.1. Richardson Method
The Richardson method is one of the simplest iterative methods for solving the system of linear equa-
tions in Eq. (2.1). The basic iteration scheme for the Richardson method is defined as:

𝑥(𝑘+1) = 𝑥(𝑘) + 𝛼𝑟(𝑘), 𝑟(𝑘) = 𝑏 − A𝑥(𝑘), 𝑘 = 0, 1, 2, … (2.3)

The above iteration is equivalent to applying the gradient descent method in solving the linear sys-
tem, with 𝛼 representing the step size. Eq. (2.3) can also be written as:

𝑥(𝑘+1) = (I − 𝛼A)𝑥(𝑘) + 𝛼𝑏 (2.4)

Let 𝑥⋆ be the exact solution such that A𝑥⋆ = 𝑏, for the residual in the 𝑘 + 1th iteration 𝑟(𝑘+1) =
𝑏 − 𝐴𝑥(𝑘+1), we have:

𝑟(𝑘+1) = 𝑏 − A [(I − 𝛼A)𝑥(𝑘) + 𝛼𝑏]
= 𝑏 − A𝑥(𝑘) + 𝛼A2𝑥(𝑘) − 𝛼A𝑏
= (I − 𝛼A)𝑟(𝑘)

(2.5)

The general procedure of the Richardson method are shown in Algorithm 1.

Algorithm 1 Richardson Method [24]
Require: Matrix A ∈ ℝ𝑛×𝑛, vector 𝑏 ∈ ℝ𝑛, initial guess 𝑥(0) ∈ ℝ𝑛, step size 𝛼, tolerance 𝜖, maximum

iterations 𝑘max.
Ensure: Approximate solution 𝑥(𝑘)

1: for 𝑘 = 0, 1, 2, … , 𝑘max do
2: Compute residual: 𝑟(𝑘) = 𝑏 − A𝑥(𝑘)

3: if ‖𝑟(𝑘)‖ ≤ 𝜖 then
4: return 𝑥(𝑘)

5: end if
6: Update solution: 𝑥(𝑘+1) = 𝑥(𝑘) + 𝛼 𝑟(𝑘)

7: end for

2.2.2. Jacobi and Gauss-Seidel Methods
Matrix Splitting
The Jacobi and Gauss-Seidel methods, as two of the most commonly used iterative solvers, are based
on the splitting of the matrix A = M − N, with matrix M being an easily invertible approximation of the
matrix A. Let A = M − N with 𝑑𝑒𝑡(M) ≠ 0, we have the iterative scheme as follows:

𝑥(𝑘+1) = M−1N𝑥(𝑘) + M−1𝑏 = 𝑥(𝑘) + M−1𝑟(𝑘), 𝑘 = 0, 1, ⋯ (2.6)

Since the linear system with matrix M needs to be solved at low cost, this is typically satisfied with a
diagonal or a triangular matrix. The idea of splitting motivates the Jacobi method and the Gauss-Seidel
method as follows:

2.2. Stationary Iterative Methods 5

• Jacobi Method:
A = L + D + U; M = D; N = −(L + U)

where D = diag(A) with A𝑖𝑖 ≠ 0
• Gauss-Seidel Method:

A = L + D + U; M = L + D; N = −U
where L and U are the strictly lower and upper triangular components of A, with det(M) ≠ 0.

More flexibility and improvement of convergence behavior might be obtained by introducing a relaxation
parameter 𝛼 > 0 to the updating of Jacobi and Gauss-Seidel iterations:

𝑥(𝑘+1) = (I − 𝛼M−1A)𝑥(𝑘) + 𝛼M−1𝑏. (2.7)

where 𝛼 is the relaxation parameter, 𝛼 = 1 corresponds to the standard Jacobi and Gauss-Seidel
iterations.

Iteration Matrix

From the iterative scheme in Eq. (2.7), let 𝑥⋆ be the true solution such that A𝑥⋆ = 𝑏, and error 𝑒(𝑘) =
𝑥(𝑘) − 𝑥⋆, then we have:

𝑥(𝑘+1) − 𝑥⋆ = (𝐼 − 𝛼M−1A) 𝑥(𝑘) + 𝛼M−1𝑏 − 𝑥⋆

= (𝐼 − 𝛼M−1A) (𝑥(𝑘) − 𝑥⋆)
= (𝐼 − 𝛼M−1A) 𝑒(𝑘).

The iteration matrix T = 𝐼 − 𝛼M−1A directly governs the convergence behavior of Jacobi and Gauss-
Seidel methods.

Pseudocode

Algorithm 2 Jacobi / Gauss-Seidel Solver with Relaxation [24]
Require: Matrix A ∈ ℝ𝑛×𝑛, vector 𝑏 ∈ ℝ𝑛, initial guess 𝑥0 ∈ ℝ𝑛, relaxation coefficient 𝛼 > 0, tolerance

𝜖
Ensure: Approximate solution 𝑥𝑘
1: Decompose Matrix 𝐴 = M − N
2: for 𝑘 = 0, 1, … , 𝑛max do
3: Compute residual: 𝑟𝑘 = 𝑏 − A𝑥𝑘
4: if ‖𝑟𝑘‖ ≤ 𝜖 then
5: return 𝑥𝑘
6: end if
7: Compute update direction: 𝑒𝑘 = M−1(N𝑥𝑘 + 𝑏) − 𝑥𝑘
8: Relaxed update: 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑒𝑘
9: end for

Spectral Analysis and Error Modes
Assume that the iteration matrix T has 𝑛 eigenvalues 𝜆𝑗 with corresponding eigenvectors 𝑣𝑗, then we
can express the initial error 𝑒(0) = 𝑥(0) − 𝑥⋆ in terms of the eigenvector basis such that

𝑒(0) =
𝑛

∑
𝑗=1

𝛾𝑗𝑣𝑗

where 𝛾𝑗 are coefficients. Then, the error after 𝑘 iterations becomes:

𝑒(𝑘) = (M−1N)𝑘𝑒(0) =
𝑛

∑
𝑗=1

𝛾𝑗𝜆𝑘
𝑗 𝑣𝑗 (2.8)

6 2. Numerical Methods for Solving Linear Systems

The convergence of the Jacobi and Gauss-Seidel methods depends on the magnitude of eigenvalues
of the iteration matrix T. In particular, the Jacobi and Gauss-Seidel methods converge if and only if the
spectral radius satisfies:

𝜌(T) = max{|𝜆| ∶ 𝜆 is an eigenvalue of the iteration matrix T} < 1. (2.9)

For many elliptic partial differential equations, such as the Poisson equation, 𝜌(T) < 1 is satisfied
in most cases, thus ensuring convergence. However, for indefinite problems, such as the Helmholtz
equation, some eigenvalues of the iteration matrix may exceed 1, resulting in the divergence of Jacobi
or Gauss-Seidel methods.

In addition, Eq. (2.8) shows that the error modes with different eigenvalues exhibit distinct con-
vergence behaviors. To illustrate the convergence behaviors clearly, we consider the standard one-
dimensional Poisson equation on [0, 1] with homogeneous Dirichlet boundary conditions:

−𝑢″(𝑥) = 𝑓(𝑥), 𝑢(0) = 𝑢(1) = 0. (2.10)

The linear system derived from finite difference methods with a uniform mesh is shown below:

A𝑢 = f, where A = 1
ℎ2

⎡
⎢
⎢
⎢
⎣

2 −1 0
−1 2 −1

⋱ ⋱ ⋱
−1 2 −1

0 −1 2

⎤
⎥
⎥
⎥
⎦𝑛×𝑛

, f =
⎡
⎢
⎢
⎢
⎣

𝑓(ℎ)
𝑓(2ℎ)

⋮
𝑓(𝑛ℎ − ℎ)

𝑓(𝑛ℎ)

⎤
⎥
⎥
⎥
⎦𝑛

(2.11)

The eigenvalues and eigenvectors of A are given by [7]:

𝜆𝑘 = 2
ℎ2 (1 − cos

𝑘𝜋
𝑛 + 1) , (𝑣𝑘)𝑖 = sin(𝑖𝑘𝜋

𝑛 + 1), 𝑖, 𝑘 = 1, 2, … , 𝑛. (2.12)

where (𝑣𝑘)𝑖 denotes the 𝑖th component of the eigenvector 𝑣𝑘, and 𝑘 labels the eigenmodes. Eigen-
modes with a small 𝑘 correspond to low-frequency, smooth waves, while large values of 𝑘 correspond
to highly oscillatory waves.

For the Jacobi method with 𝑀 = 𝐷 = diag(𝐴) = 2
ℎ2 𝐼 and relaxation coefficient 𝛼 = 1, the Jacobi

iteration matrix 𝑇 𝐽 is:
𝑇 𝐽 = 𝐼 − 𝐷−1𝐴. (2.13)

𝐷−1𝐴 shares the same eigenvectors 𝑣𝑘 of 𝐴 and 𝐷−1𝐴 𝑣𝑘 = (1 − cos 𝑘𝜋
𝑛+1) 𝑣𝑘, the eigenvectors and

eigenvalues of 𝑇𝐽 are

𝜆𝐽
𝑘 = 1 − (1 − cos

𝑘𝜋
𝑛 + 1) = cos

𝑘𝜋
𝑛 + 1, (𝑣𝐽

𝑘)𝑖 = sin(𝑖𝑘𝜋
𝑛 + 1), 𝑖, 𝑘 = 1, 2, … , 𝑛. (2.14)

For the Gauss–Seidel method with 𝑀 = 𝐿 + 𝐷 and relaxation coefficient 𝛼 = 1, the Gauss–Seidel
iteration matrix 𝑇 𝐺𝑆 is:

𝑇 𝐺𝑆 = 𝐼 − (𝐿 + 𝐷)−1𝐴 = −(𝐿 + 𝐷)−1𝑈. (2.15)
The Gauss–Seidel iteration matrix has eigenvalues and eigenvectors [7]:

𝜆𝐺𝑆
𝑘 = cos2 𝑘𝜋

𝑛 + 1, (𝑣𝐺𝑆
𝑘)𝑖 = [cos 𝑘𝜋

𝑛 + 1]
𝑖
sin

𝑖𝑘𝜋
𝑛 + 1, 𝑖, 𝑘 = 1, 2, … , 𝑛. (2.16)

Eigenvectors of 𝑇 𝐺𝑆 do not coincide with the eigenvectors of 𝐴 and 𝑇 𝐽 . Therefore, the eigenvalue 𝜆𝐺𝑆
𝑘

gives the convergence rate for the 𝑘th eigenvector of 𝑇 𝐺𝑆 instead of the 𝑘th mode of 𝐴.
Fig. 2.1 demonstrates convergence behaviors of the Jacobi or Gauss-Seidel methods with three

different pure eigenmode errors, using eigenvectors 𝑣(𝑘), 𝑘 ∈ {1, 3, 6} of the corresponding iteration
matrix 𝑇 .

Generally, the convergence rate of the Jacobi and Gauss-Seidel methods is highly related to the fre-
quency of the error components. Low-frequency and smooth errors typically show slow convergence
as their corresponding eigenvalues are close to one, whereas high-frequency and oscillatory errors
usually can be effectively reduced due to their small associated eigenvalues in most cases. For indefi-
nite problems (e.g., the Helmholtz equation), some low-frequency components may even be amplified
when their corresponding eigenvalue |𝜆𝑘| ≥ 1, resulting in instability or divergence [6].

2.3. Multigrid Method 7

Figure 2.1: Convergence behavior of different eigenmodes using Gauss–Seidel and Jacobi methods (𝑛 = 64, 𝛼 = 1), where
low-frequency eigenmodes (e.g., 𝑘 = 1) decay slower than cases with higher frequency (e.g., 𝑘 = 6) and Gauss–Seidel exhibits
faster decay than Jacobi.

2.3. Multigrid Method
The multigrid method [7] is an efficient numerical algorithm extensively applied for solving large-scale
linear systems. Stationary iterative methods such as the Jacobi or Gauss-Seidel methods effectively
eliminate high-frequency components of errors but suffer from inefficiency in handling low-frequency
components, resulting in a slow overall convergence rate. To address this inefficiency, the multigrid
method utilizes a hierarchy of grids to accelerate the convergence.

In 1961, Federenko [8] proposed the first complete multigrid method by introducing an auxiliary grid
to annihilate the low-frequency components of the error. The remaining low-frequency error compo-
nents can be effectively eliminated on a coarse grid where they appear as higher-frequency compo-
nents. This strategy enables efficient error elimination across all frequency components, resulting in
fast convergence.

A classical implementation of the multigrid method is the V-cycle multigrid algorithm, including the
following key procedures:

• Pre-smoothing: Applying classical iterative methods such as Jacobi or Gauss-Seidel method as
a smoother on the current grid to reduce high-frequency errors.

• Residual computation: Computing the residual after the pre-smoothing.

• Restriction: Interpolating the residual from the fine grid to a coarser grid.

• Coarse-grid correction: Solving the error equation on the coarser grid to compute a correction
term.

• Prolongation: Interpolating the coarse-grid correction from the coarse grid back to the finer grid
and updating the solution.

• Post-smoothing: Performing additional smoothing on the finer grid to eliminate high-frequency
errors again.

Algorithm 3 details the implementation of a V-cycle multigrid solver with Jacobi as the smoother for
the linear system Aℎuℎ = fℎ:

8 2. Numerical Methods for Solving Linear Systems

Algorithm 3 Multigrid V-Cycle Solver with a Jacobi Smoother
Require: Matrix Aℎ, right-hand side fℎ, number of iterations 𝑛max, pre-smoothing steps 𝑛pre, post-

smoothing steps 𝑛post, and relaxation coefficient 𝛼
Ensure: Approximate solution vℎ

1: Initialize: vℎ ← 0
2: for 𝑘 = 1 to 𝑛max do
3: vℎ ← V_Cycle(Aℎ, fℎ, vℎ, 𝑛pre, 𝑛post, 𝛼)
4: if convergence criterion is met then
5: return vℎ

6: end if
7: end for
8: return vℎ

9: function V_Cycle(Aℎ, fℎ, vℎ, 𝑛pre, 𝑛post, 𝛼)
10: Pre-smoothing: vℎ ← Jacobi(Aℎ, fℎ, vℎ, 𝑛pre, 𝛼)
11: if Aℎ is not on the coarsest grid then
12: Residual computation: rℎ ← fℎ − Aℎvℎ

13: Restriction: r2ℎ ← 𝑅rℎ, A2ℎ ← 𝑅Aℎ𝑃
14: Recursive solve: e2ℎ ← V_Cycle(A2ℎ, r2ℎ, 0, 𝑛pre, 𝑛post, 𝛼)
15: Prolongation: eℎ ← 𝑃e2ℎ

16: Solution Update: vℎ ← vℎ + eℎ

17: else
18: Direct solve: Aℎeℎ = rℎ

19: end if
20: Post-smoothing: vℎ ← Jacobi(Aℎ, fℎ, vℎ, 𝑛post, 𝛼)
21: return vℎ

22: end function

Here Jacobi(𝐴, 𝑓, 𝑣, 𝑛, 𝛼) denotes 𝑛 applications of the Jacobi algorithm defined in Algorithm 2

𝑣 = 𝑣 + 𝛼 𝐷−1(𝑓 − 𝐴𝑣), 𝐷 = diag(𝐴),
𝑅 ∶ Ωℎ → Ω2ℎ and 𝑃 ∶ Ω2ℎ → Ωℎ denote the restriction and prolongation operators.

In addition to serving as a standalone solver for linear systems, the multigrid method is often used
as a preconditioner in Krylov subspace methods, further enhancing overall convergence and efficiency.

2.4. Krylov Subspace Methods
Krylov subspace methods [5] form an important class of iterative methods for solving the linear system
A𝑥 = 𝑏, which rely on projections onto Krylov subspaces of A. Considering the Richardson iteration
with a fixed step size 𝛼, as defined in Eq. (2.4):

𝑟(𝑘) = (I − 𝛼A)𝑟(𝑘−1)

= (I − 𝛼A)𝑘𝑟(0)

= 𝑃𝑘(A)𝑟(0)

where 𝑟(0) = 𝑏 − A𝑥0 is the initial residual, and 𝑃𝑘(A) = (I − 𝛼A)𝑘 is a matrix polynomial of degree 𝑘.
Starting from an initial guess 𝑥(0), the Richardson iteration yields:

𝑥(𝑘) = 𝑥(0) + 𝛼(𝑟(0) + 𝑟(1) + ⋯ + 𝑟(𝑘−1))

= 𝑥(0) + 𝛼
𝑘−1
∑
𝑗=0

𝑃𝑗(A)𝑟(0)

= 𝑥(0) + 𝑣

(2.17)

where 𝑣 = 𝛼 ∑𝑘−1
𝑗=0 𝑃𝑗(A)𝑟(0) ∈ span{𝑟(0),A𝑟(0), ⋯ ,A𝑘−1𝑟(0)}. This 𝑘-dimensional space spanned by

A𝑖𝑟(0) (0 ≤ 𝑖 ≤ 𝑘 − 1) is known as the 𝑘-dimensional Krylov subspace of A with respect to 𝑟(0), denoted

2.4. Krylov Subspace Methods 9

by:
𝒦𝑘(A, 𝑟(0)) = span{𝑟(0),A𝑟(0), … ,A𝑘−1𝑟(0)}.

Thus, the approximate solution in Eq. (2.17) lies in the following affine space:

𝑥(𝑘) ∈ 𝑥(0) + 𝒦𝑘(A, 𝑟(0)).

In the Richardson iteration, the polynomial 𝑃𝑘(A) is fixed by the form 𝑃𝑘(A) = (I−𝛼A)𝑘 and depends
only on the choice of 𝛼. This fixed polynomial in Richardson iterations limits its efficiency in reducing
residuals, often resulting in slow convergence. In contrast, the Krylov subspace methods seek ap-
proximations 𝑥(𝑘) ∈ 𝑥(0) + 𝒦𝑘(A, 𝑟(0)) by selecting the update vector according to specific optimality
principles such as residual or error norms, thereby significantly accelerating convergence.

2.4.1. Conjugate Gradient Method (CG)
The conjugate gradient (CG) method [10] applies when the matrix A is symmetric positive definite,
which seeks approximate solutions in the affine Krylov space

𝑥(𝑘) = 𝑥(0) + 𝒦𝑘(A, 𝑟(0)), 𝑟(0) = 𝑏 − A𝑥(0)

.
At each iteration, the approximate solution is chosen so that the residual is A-orthogonal to the

current Krylov subspace
𝑟(𝑘) ⟂𝐴 𝒦𝑘(A, 𝑟(0)),

which is equivalent to the following optimality condition, minimizing the A-norm of the error over the
affine Krylov space:

‖𝑥⋆ − 𝑥(𝑘)‖A = min
𝑧∈𝑥0+𝒦𝑘(A,𝑟(0))

‖𝑥 − 𝑧‖A, (2.18)

where 𝑥(𝑘) is the approximate solution at step 𝑘, 𝑥⋆ is the exact solution. The pseudocode for the
conjugate gradient method is listed in Algorithm 4.

Algorithm 4 Conjugate Gradient Method (CG)
Require: SPD matrix A ∈ ℝ𝑛×𝑛, vector 𝑏 ∈ ℝ𝑛, initial guess 𝑥0 ∈ ℝ𝑛, tolerance 𝜖, maximum iterations

𝑛max
Ensure: Approximate solution 𝑥𝑘
1: Set 𝑟(0) = 𝑏 − A𝑥(0), 𝑝0 = 𝑟(0)

2: for 𝑘 = 0, 1, … , 𝑛max − 1 do
3: 𝛼𝑘 = ⟨𝑟(𝑘), 𝑟(𝑘)⟩

⟨𝑝𝑘, A 𝑝𝑘⟩
4: 𝑥(𝑘+1) = 𝑥(𝑘) + 𝛼𝑘 𝑝𝑘
5: 𝑟(𝑘+1) = 𝑟(𝑘) − 𝛼𝑘 A 𝑝𝑘
6: if ‖𝑟(𝑘+1)‖ ≤ 𝜖 then
7: return 𝑥(𝑘+1)

8: end if
9: 𝜔𝑘 = ⟨𝑟(𝑘+1), 𝑟(𝑘+1)⟩

⟨𝑟(𝑘), 𝑟(𝑘)⟩
10: 𝑝𝑘+1 = 𝑟(𝑘+1) + 𝜔𝑘 𝑝𝑘
11: end for
12: return 𝑥(𝑛max)

2.4.2. Generalized Minimal Residual Method (GMRES)
The Generalized Minimal Residual Method (GMRES) [9] is applicable when the matrix 𝐴 ∈ ℝ𝑛×𝑛 is
nonsingular. Let the search space 𝒮𝑘 = 𝒦𝑘(A, 𝑟(0)), the constraint space 𝒞𝑘 = A𝒮𝑘, if 𝑟(0) = 𝑏 − A𝑥0
is of grade 𝑑 ≥ 1 with respect to the matrix A, then the GMRES method is well-defined at every step
𝑘 until convergence at step 𝑑 with 𝑟𝑑 = 0. Algorithm 5 shows the pseudocode for the GMRES method
[9].

10 2. Numerical Methods for Solving Linear Systems

The GMRES method seeks an approximate solution 𝑥(𝑘) by minimizing the ℓ2-norm of the residual
over the affine space 𝑥0 + 𝒦𝑘(A, 𝑟(0)):

‖𝑟(𝑘)‖2 = min
𝑧∈𝑥0+𝒦𝑘(𝐴,𝑟(0))

‖𝑏 − A𝑧‖2 (2.19)

where 𝑟(𝑘) = 𝑏 − A𝑥(𝑘).
This method is particularly suitable for solving general nonsingular linear systems, where the con-

jugate gradient method is not applicable.

Algorithm 5 Generalized Minimal Residual Method (GMRES)
Require: Nonsingular matrix A ∈ ℝ𝑛×𝑛, vector 𝑏 ∈ ℝ𝑛, initial guess 𝑥(0) ∈ ℝ𝑛, tolerance 𝜖, maximum

iterations 𝑛max
Ensure: Approximate solution 𝑥(𝑘)

1: Set 𝑟(0) = 𝑏 − A𝑥(0)

2: for 𝑘 = 0, 1, … , 𝑛max − 1 do
3: Perform the 𝑘th step of Arnoldi to generate V𝑘 and H𝑘+1,𝑘 such that

AV𝑘 = V𝑘+1 H𝑘+1,𝑘

4: Perform QR decomposition of the Hessenberg matrix 𝐻𝑘+1,𝑘: H𝑘+1,𝑘 = Q𝑘+1 R𝑘+1,𝑘
5: Compute the residual norm

‖𝑟(𝑘)‖2 = ‖𝑟(0)‖2(Q𝑇
𝑘+1𝑒1)𝑘+1,

6: if ‖𝑟(𝑘+1)‖ ≤ 𝜖 then
7: Compute the vector with pseudoinverse of H𝑘+1,𝑘

𝑡𝑘 = 𝐻+
𝑘+1,𝑘(‖𝑟0‖2𝑒1)

8: Return the approximate solution 𝑥(𝑘+1) = 𝑥(0) + 𝑉𝑘 𝑡(𝑘)

9: end if
10: end for
11: return 𝑥(𝑛max)

3
Introduction to Deep Operator Networks

Over the past decade, deep learning techniques have had a revolutionary impact on various disciplines
in science and engineering, including bioengineering [25], computer vision [26], natural language pro-
cessing [27]. In recent advances in scientific computing, neural network-based approaches for solving
partial differential equations (PDEs) have attracted significant interest, such as physics-informed neu-
ral networks (PINNs) [13], neural operators [14, 15], and their variants. Among these algorithms, the
Deep Operator Network (DeepONet) [14], proposed to learn solution operators of PDEs directly, has
emerged as an efficient solver with strong generalization capabilities for parametric PDE problems.

The goal of this chapter is to provide a comprehensive overview of the theoretical background,
structure, and implementation of neural networks and DeepONet, with an emphasis on the application
of DeepONet to PDEs.

3.1. Neural Networks
Neural networks, inspired by the biological nervous system in the brain, are composed of intercon-
nected neurons to learn complex nonlinear mappings between inputs and outputs. Traditional artificial
neural networks (ANNs) [28] have been extensively utilized across various fields for tasks such as
classification and regression.

3.1.1. Structure
The back-propagation (BP) neural network [29], first proposed by Rumelhart, Hinton, and Williams in
1986, remains one of the most fundamental and extensively adopted neural network architectures. A
typical BP neural network consists of the following components:

• An input layer: receives the input data.

• One or more hidden layers: perform nonlinear transformations on the input data.

• An output layer: produces the final output.

As shown in Fig. 3.1, each layer in the network consists of multiple neurons, with each neuron fully
connected to all neurons from the adjacent layers. A typical neuron in the hidden layer or output layer
computes a weighted sum of outputs of neurons in the previous layer, and then applies a nonlinear
activation function. The output 𝑎(𝑙)

𝑗 of neuron 𝑗 in layer 𝑙 is given by:

𝑎(𝑙)
𝑗 = 𝜎 (𝑧(𝑙)

𝑗) , where 𝑧(𝑙)
𝑗 =

𝑁(𝑙−1)

∑
𝑖=1

𝑤(𝑙)
𝑗𝑖 𝑎(𝑙−1)

𝑖 + 𝑏(𝑙)
𝑗 , (3.1)

where 𝑎(𝑙−1)
𝑖 denotes the output of neuron 𝑖 in the previous layer 𝑙 − 1, 𝑤(𝑙)

𝑗𝑖 is the trainable weight
connecting neuron 𝑖 in layer 𝑙 − 1 and neuron 𝑗 in layer 𝑙, 𝑏(𝑙)

𝑗 is the bias term in the current layer 𝑙, 𝑧(𝑙)
𝑗 is

the weighted sum of outputs from the previous layer 𝑙 − 1, and 𝜎(⋅) is the nonlinear activation function.

11

12 3. Introduction to Deep Operator Networks

Hidden

Layer 1

……

(2)
a

(2)
a

…

(2)
a

Hidden

Layer 1

…

(2)
a

Input

Layer

(1)
a

(1)
a

(1)
a

Input

Layer

(1)
a

Hidden

Layer 2

……

(3)
a

(3)
a

…

(3)
a

Hidden

Layer 2

…

(3)
a

Output

Layer

(4)
a

(4)
a

(4)
a

Output

Layer

(4)
a

Hidden

Layer 1

…

(2)
a

Input

Layer

(1)
a

Hidden

Layer 2

…

(3)
a

Output

Layer

(4)
a

Figure 3.1: Structure of a typical artificial neural network

The nonlinear activation functions introduce nonlinearity to neural networks, preventing them from
becoming naive linear models and enabling them to learn complex nonlinear relationships between
inputs and outputs. Common nonlinear activation functions are illustrated in Fig. 3.2:

8 4 0 4 8
x

0

2

4

6

8

f(x
)

(a) ReLU 𝑓(𝑥) = max(0, 𝑥)

8 4 0 4 8
x

0.00

0.25

0.50

0.75

1.00

f(x
)

(b) Sigmoid 𝑓(𝑥) = 1
1+𝑒−𝑥

8 4 0 4 8
x

1.0

0.5

0.0

0.5

1.0

f(x
)

(c) Tanh 𝑓(𝑥) = tanh(𝑥)

Figure 3.2: Common nonlinear activation functions

3.1.2. Training
As shown in Eq. (3.1), a large number of trainable parameters, such as weights and biases of each
layer, exist in a deep neural network. The process of iteratively adjusting these parameters to minimize
the difference between the network predictions and the target outputs is called training.

In the initial stage of training, the parameters of a neural network are usually initialized by sampling
from specific distributions, such as the common Xavier or Kaiming initialization strategies [30, 31].
After initialization, the neural network computes predictions through forward propagation. Then, the
difference between the neural network output and the target output is quantified by a loss function. The
choice of loss function depends on the specific task of the neural network.

In the context of solving PDEs with neural networks, two main categories of training losses are
commonly used:

Data-driven loss Data-driven loss quantifies the discrepancy between the predicted solutions and
the provided target values directly. A common example of data-driven loss in solution approximation is
the mean squared error (MSE), defined as follows:

𝐿data(𝜃) = 1
𝑛

𝑛
∑
𝑖=1

‖𝑢(𝑥𝑖) − 𝑢𝜃(𝑥𝑖)‖2, (3.2)

3.1. Neural Networks 13

where 𝑢(𝑥𝑖) represents the target solution at 𝑥𝑖, 𝑢𝜃(𝑥𝑖) denotes the predicted solution of the neural
network, and 𝑛 is the number of samples.

Physics-informed loss Physics-informed loss leverages physical laws to measure the accuracy of
the predicted solution by including partial differential equations (PDEs) as penalty terms.

Consider a general PDE of the form:

𝒩[𝑢](𝑥) = 𝑓(𝑥), 𝑥 ∈ Ω,
where 𝒩 represents the differential operator applied to the unknown solution 𝑢(𝑥). The physics-
informed loss is typically defined as the MSE of the PDE residual over a set of collocation points {𝑥𝑖}

𝑛𝑓
𝑖=1

in the PDE domain Ω:
𝐿PDE(𝜃) = 1

𝑛𝑓

𝑛𝑓

∑
𝑖=1

|𝒩[𝑢𝜃](𝑥𝑖) − 𝑓(𝑥𝑖)|
2 , (3.3)

where 𝑢𝜃 is the predicted solution of the neural network parameterized by trainable parameters 𝜃.
In many applications of physics-informed machine learning, supervised training data for solving

PDEs are available [32, 12], which can be obtained from initial and boundary conditions, experimental
measurements, or high-fidelity numerical simulations. Therefore, in many deep learning-based PDE
solvers such as PINNs [12, 13], a weighted sum of physics-informed loss and data-driven loss can be
adopted to balance data fidelity and physical consistency.

𝐿(𝜃) = 𝑤data𝐿data(𝜃) + 𝑤PDE𝐿PDE(𝜃) (3.4)

Once the loss is computed, the network parameters 𝜃 (weights and biases) can be updated itera-
tively based on the gradients of the loss function with respect to themselves. This process, known as
backpropagation [29], works in contrast to the forward propagation, such that forward propagation gives
predictions by passing data from the input layer to the output layer, while backpropagation computes
gradients inversely from the output layer to the input layer by the chain rule.

Optimization strategies such as gradient descent or its variants (e.g., Adam optimizer [33]), are
widely used to update parameters in neural networks. A typical gradient descent update step for the
network parameter 𝜃 is defined as follows:

𝜃(𝑡+1) = 𝜃(𝑡) − 𝜂 ⋅ ∇𝜃𝐿(𝜃(𝑡)) (3.5)
where 𝜂 is known as the learning rate that controls the step size in each update, and ∇𝜃𝐿(𝜃(𝑡)) rep-
resents the gradient of the total loss. The above process continues iteratively until some predefined
convergence criteria are satisfied, indicating that the network has sufficiently learned the underlying
patterns from the training data and physical constraints.

3.1.3. Universal Approximation Theorem
The theoretical underpinnings of neural networks largely rely on the mathematical guarantee provided
by the universal approximation theorem, which states that a neural network with sufficient network
complexity can approximate arbitrary continuous functions to a desired accuracy.

Theorem 3.1 (Universal Approximation Theorem [34, 35, 36]). Let 𝐶(𝑋, ℝ𝑚) denote the space of
continuous functions from a non-empty compact subset 𝑋 ⊆ ℝ𝑛 to ℝ𝑚. Let 𝜎 ∶ ℝ → ℝ be a continuous
non-polynomial activation function, applied component-wise. Then, for any function 𝑓 ∈ 𝐶(𝑋, ℝ𝑚) and
every 𝜀 > 0, there exist an integer 𝑘, a weight matrix 𝐴 ∈ ℝ𝑘×𝑛, a bias vector 𝑏 ∈ ℝ𝑘, and an output
matrix 𝐶 ∈ ℝ𝑚×𝑘 such that the neural network approximation

𝑔(𝑥) = 𝐶 (𝜎(𝐴𝑥 + 𝑏))
satisfies

sup
𝑥∈𝑋

‖𝑓(𝑥) − 𝑔(𝑥)‖ < 𝜀.

The universal approximation theorem guarantees that, with a continuous, non-polynomial activation
function and enough hidden units, a neural network can approximate any continuous function on a
compact domain arbitrarily well. Therefore, neural networks also have the potential to approximate
continuous PDE solutions, and thereby solve PDEs.

14 3. Introduction to Deep Operator Networks

3.1.4. Spectral Bias
Spectral bias (or frequency principle) [18, 16, 17, 19] is a significant phenomenon observed during
the training of deep neural networks; that is, neural networks preferentially fit target functions from
low-frequency components to high frequencies. Xu et al. [16] demonstrated this phenomenon by
approximating one-dimensional mixed frequency functions and image inpainting tasks in the review
of spectral bias, as shown in Figs. 3.3 and 3.4. Their results suggest that neural networks effectively
capture the smoother (low-frequency) component of the target function, but struggle to learn oscillatory
(high-frequency) structures.

(a) Epoch 0 (b) Epoch 18000 (c) Epoch 50000

Figure 3.3: Spectral bias in 1D function approximation taken from Xu et al. [16]

(a) True (b) Step 80 (c) Step 2000 (d) Step 58000

Figure 3.4: Spectral bias in 2D image inpainting taken from Xu et al. [16]

It should be noted that the concept of ”frequency” in spectral bias does not simply refer to the spatial
frequency of the input images or data itself, but the response frequency of the functional mapping from
input to output; that is, whether a small change in the input will induce a large change in the output
[16]. For function approximation tasks, this preference for low-frequency functions suggests that deep
neural networks have better generalization capabilities for smooth functions, but may be inefficient in
approximating high-frequency solutions.

Spectral bias also imposes high-frequency challenges on neural network-based methods for solving
partial differential equations (PDEs). Sifan Wang et al. [17] and Zhang et al. [19] revealed that physics-
informed neural networks (PINNs) and deep neural networks (DeepONet) suffer from spectral bias;
that is, these methods for solving PDEs often demonstrate slow convergence to the high-frequency
components of the target function. To enhance the learning of those PDE solutions containing high-
frequency oscillations, special neural structures or training strategies usually need to be considered
[17, 18].

3.2. Deep Operator Networks
PINNs approximate the PDE solution by incorporating the governing differential equations into the
training loss. However, PINNs are typically tailored to specific physical systems. Solving a new PDE
problem usually requires retraining or a new network architecture, which limits the flexibility and gen-
eralization of the model.

Unlike PINNs, Lu et al. [14] proposed the Deep Operator Network (DeepONet) based on the univer-
sal approximation theorem for operators. The DeepONet directly learns the nonlinear operator map-

3.2. Deep Operator Networks 15

Figure 3.5: Architecture of a DeepONet approximating the nonlinear operator 𝒢 ∶ 𝑢 ↦ 𝒢(𝑢)

ping from the input function space to the corresponding PDE solution space, instead of approximating
a single PDE solution.

A trained DeepONet establishes a new paradigm for fast solvers of parametric PDEs. This section
provides an overview of the DeepONet, which learns a nonlinear operator

𝒢 ∶ 𝑢 ↦ 𝒢(𝑢), 𝒢(𝑢)(𝑦) ∈ ℝ𝑘, (3.6)

where 𝑢 is the input function taken by the operator 𝒢, 𝒢(𝑢) is the corresponding output function. For
any point 𝑦 in the domain of the output function 𝒢(𝑢), 𝒢(𝑢)(𝑦) ∈ ℝ𝑘 represents the value of the output
function 𝒢(𝑢) evaluated at 𝑦.

3.2.1. Universal Approximation Theorem for Operators
DeepONet relies on the operator approximation theorem proposed by Chen and Chen [37], which in-
dicates that a neural network with a single hidden layer can accurately approximate both continuous
nonlinear functional mappings from a function space to scalar values and complex operator mappings
between distinct function spaces. This theorem extends the approximation capabilities of neural net-
works from functions to operators.

Theorem 3.2 (Universal Approximation Theorem for Operators [14, 37]). Suppose that 𝜎 is a contin-
uous non-polynomial function, 𝑋 is a Banach space, 𝐾1 ⊂ 𝑋, 𝐾2 ⊂ ℝ𝑑 are two compact sets in 𝑋
and ℝ𝑑, respectively, 𝑉 is a compact set in 𝐶(𝐾1), 𝒢 is a nonlinear continuous operator, which maps
𝑉 into 𝐶(𝐾2). Then for any 𝜀 > 0, there exist positive integers 𝑛, 𝑝, 𝑚 and constants 𝑐𝑘

𝑖 , 𝜉𝑘
𝑖𝑗, 𝜃𝑘

𝑖 , 𝜁𝑘 ∈ ℝ,
𝑤𝑘 ∈ ℝ𝑑, 𝑥𝑗 ∈ 𝐾1, 𝑖 = 1, ⋯ , 𝑛, 𝑘 = 1, ⋯ , 𝑝, and 𝑗 = 1, ⋯ , 𝑚, such that

∣
∣
∣
∣
∣

𝒢(𝑢)(𝑦) −
𝑝

∑
𝑘=1

𝑛
∑
𝑖=1

𝑐𝑘
𝑖 𝜎 (

𝑚
∑
𝑗=1

𝜉𝑘
𝑖𝑗𝑢(𝑥𝑗) + 𝜃𝑘

𝑖)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

branch

𝜎(𝑤𝑘 ⋅ 𝑦 + 𝜁𝑘)⏟⏟⏟⏟⏟⏟⏟
trunk

∣
∣
∣
∣
∣

< 𝜀 (3.7)

holds for all 𝑢 ∈ 𝑉 and 𝑦 ∈ 𝐾2. Here, 𝐶(𝐾) is the Banach space of all continuous functions defined on
𝐾 with norm ‖𝑓‖𝐶(𝐾) = max𝑥∈𝐾 |𝑓(𝑥)|.

3.2.2. Network Architecture of DeepONet
Motivated by the universal approximation theorem for operators, a typical DeepONet architecture con-
sists of two distinct subnetworks, the branch network and the trunk network. Fig. 3.5 illustrates the
network structure of the DeepONet approach.

For solving PDEs, the DeepONet learns the solution operator 𝒢 from two inputs: the PDE input
function 𝑢(𝑥) and the spatial coordinate 𝑦 ∈ ℝ𝑑 at which the solution 𝒢(𝑢)(𝑦) is evaluated. Specifically,
the input function 𝑢(𝑥) is represented discretely by evaluating 𝑢(𝑥) at a sufficient but finite number of
fixed sensor points 𝑥1, 𝑥2, ⋯ , 𝑥𝑚. For every function 𝑢(𝑥) in the training dataset, all input functions 𝑢(𝑥)
should be evaluated at the same sensor points. However, for the evaluation coordinates 𝑦 of the PDE

16 3. Introduction to Deep Operator Networks

Figure 3.6: Illustration of training data in DeepONet taken from Lu et al. [14]

solutions across the training dataset, no constraints are imposed. Fig. 3.6 illustrates the sensors points
and evaluation coordinates across the training samples.

The branch network outputs a vector 𝑏(𝑢) = [𝑏1(𝑢), 𝑏2(𝑢), ⋯ , 𝑏𝑝(𝑢)] ∈ ℝ𝑝, and the trunk network
generates another vector 𝑡(𝑦) = [𝑡1(𝑦), 𝑡2(𝑦), … , 𝑡𝑝(𝑦)] ∈ ℝ𝑝. The predicted PDE solution at 𝑦 is then
given by the inner product:

𝒢(𝑢)(𝑦) ≈
𝑝

∑
𝑘=1

𝑏𝑘(𝑢)𝑡𝑘(𝑦) (3.8)

DeepONet is flexible regarding network types; various classical neural network architectures, such
as fully connected neural networks (FCNs), recurrent neural networks (RNNs), convolutional neural
networks (CNNs), or residual networks (ResNets), can be applied in the branch network and the trunk
network. To improve generalization performance, DeepONet usually selects deep networks in practice,
and global bias terms can also be introduced in the final inner product:

𝒢(𝑢)(𝑦) ≈
𝑝

∑
𝑘=1

𝑏𝑘(𝑢)𝑡𝑘(𝑦) + 𝑏0 (3.9)

These designs ensure that the DeepONet is capable of learning nonlinear operators, thereby achiev-
ing high accuracy in solving a broad class of PDEs.

4
Introduction to HINTS

As discussed in Section 2.2.2, classical iterative solvers such as Jacobi and Gauss-Seidel methods
are effective in eliminating high-frequency components of errors, but converge slowly or even diverge
for low-frequency error modes. On the other hand, as discussed in Section 3.1.4, deep neural net-
works, including deep learning-based approaches for solving PDEs, suffer from the well-known spec-
tral bias [16]: they tend to be proficient at learning low-frequency components but struggle to learn
high-frequency and oscillatory components.

These different preferences across the error spectrum motivate the integration of deep learning-
based solvers with classical iterative methods for PDEs [19, 38, 39, 40]. By combining their comple-
mentary strengths, the hybrid solvers have the potential to achieve both accuracy and efficiency across
various error modes.

Among these approaches [19, 38, 39, 40], the Hybrid Iterative Numerical Transferable Solver
(HINTS), proposed by Zhang et al. [19], blends classical relaxationmethods such as Jacobi and Gauss-
Seidel methods with the Deep Operator Network (DeepONet). By utilizing a well-trained DeepONet as
an offline model, HINTS significantly improves the performance of classical iterative methods across
a broad class of PDEs. This hybrid framework not only accelerates the convergence performance
of classical iterative solvers in solving linear PDEs, but also maintains its effectiveness in indefinite
problems where traditional methods might fail.

In this chapter, we first present the HINTS framework, detailing its integration with classical relax-
ation methods. Subsequently, we introduce an integration of HINTS with multigrid methods (HINTS-
MG). We then validate the performance of these hybrid methods through numerical experiments con-
ducted on the same representative PDEs considered by Zhang et al. [19].

4.1. Benchmark Problem Setup
For validation purposes, we adopt the same boundary value problems taken from Zhang et al. [19],
which serve as benchmark problems throughout this chapter:

• Poisson equation:
−∇ ⋅ (𝑘(𝑥)∇𝑢(𝑥)) = 𝑓(𝑥), 𝑥 ∈ (0, 1)

𝑢(0) = 𝑢(1) = 0 (4.1)

• Helmholtz equation:
∇2𝑢(𝑥) + 𝑘2(𝑥)𝑢(𝑥) = 𝑓(𝑥), 𝑥 ∈ (0, 1)

𝑢(0) = 𝑢(1) = 0 (4.2)

4.2. The General Framework of HINTS
Consider the linear system from the FDM discretization of a linear PDE problem given in Eqs. (4.1)
and (4.2), defined as:

Aℎuℎ = fℎ, (4.3)

17

18 4. Introduction to HINTS

where uℎ denotes the discrete solution on the grid. Let vℎ,(𝑘) represent the approximation at the 𝑘th
iteration, and the corresponding residual is given by:

rℎ,(𝑘) = fℎ − Aℎvℎ,(𝑘) (4.4)

The core idea of the HINTS approach is to rapidly eliminate high-frequency components with Jacobi and
Gauss-Seidel methods and reduce low-frequency components with a pre-trained DeepONet model. At
each step 𝑘, the HINTS approach updates the current approximation vℎ,(𝑘) as follows:

vℎ,(𝑘+1) = vℎ,(𝑘) + Δvℎ,(𝑘) (4.5)

where the correction term Δvℎ,(𝑘) alternates between stationary iterative methods (e.g., the Jacobi or
Gauss-Seidel method) and DeepONet predictions. Let 𝑛𝑟 denote the iteration interval for the DeepONet
model such that it is applied every 𝑛𝑟 iterations:

Δvℎ,(𝑘) = { Stationary Iterative method, if 𝑘 mod 𝑛𝑟 ≠ 0,
DeepONet Prediction, if 𝑘 mod 𝑛𝑟 = 0, (4.6)

For the Jacobi or Gauss-Seidel method, as shown in Algorithm 2, the correction Δvℎ,(𝑘) is obtained
by solving a simplified linear system derived from matrix splitting:

M𝑒(𝑘) = rℎ,(𝑘)

Δvℎ,(𝑘) = 𝛼𝑒(𝑘) (4.7)

where M corresponds to the easily invertible matrix from the splitting and 𝛼 is the relaxation parameter.

For the DeepONet correction, consider the case for the Poisson and Helmholtz equations, a Deep-
ONet model should be trained offline in advance, taking the function values of 𝑘(𝑥) and 𝑓(𝑥) from
Eq. (4.1) or (4.2) at predefined sensor points as input. During a HINTS iteration where a DeepONet
model is applied, the discrete residual vector rℎ,(𝑘) = fℎ −Aℎvℎ,(𝑘), defined on the FDM grid, is mapped
to the predefined sensor points of the DeepONet model by linear interpolation, producing a vector of
function values 𝑟(𝑥). The vector 𝑟(𝑥) represents values of the residual on sensor points. To keep the
scale of the input consistent, the residual vector 𝑟(𝑥) needs to be normalized, defined as:

̃𝑟(𝑥) =
⎧{
⎨{⎩

𝑟(𝑥)
‖𝑟(𝑥)‖∞

, ‖𝑟(𝑥)‖∞ > 0,
0, ‖𝑟(𝑥)‖∞ = 0,

where the normalized residual function values ̃𝑟(𝑥), along with the parameter function values 𝑘(𝑥),
serve as the input to the pre-trained DeepONet model to predict the correction term Δvℎ,(𝑘):

𝑟(𝑥) ← fℎ − Aℎvℎ,(𝑘)

̃𝑟(𝑥) ← 𝑟(𝑥)/‖𝑟(𝑥)‖∞
Δvℎ,(𝑘) ← DeepONet(𝑘(𝑥), ̃𝑟(𝑥)) ⋅ ‖𝑟(𝑥)‖∞

(4.8)

Algorithm 6 provides the detailed implementation of the HINTS framework.

4.3. Introduction to the HINTS-MG 19

Algorithm 6 Hybrid Iterative Numerical Transferable Solver (HINTS)
Require: Parameter function 𝑘(𝑥), source function 𝑓(𝑥), PDE to be solved, number of iterations 𝑛it,

pre-trained DeepONet model, frequency 𝑛𝑟, (optionally) relaxation coefficient 𝛼
Ensure: Approximate solution 𝑣ℎ

1: Discretize the PDE to be solved by FDM: Aℎ, fℎ ← 𝑘(𝑥), 𝑓(𝑥),PDE
2: function HINTS(Aℎ, fℎ, 𝑣ℎ, 𝑘(𝑥), 𝑛it, 𝑛𝑟, 𝛼)
3: for 𝑖 = 1 to 𝑛it do
4: Compute residual: rℎ = fℎ − Aℎ𝑣ℎ

5: if 𝑖 mod 𝑛𝑟 = 0 then
6: Linear interpolation: 𝑟(𝑥) ← rℎ

7: Normalization: ̃𝑟(𝑥) ← 𝑟(𝑥)/‖𝑟(𝑥)‖∞
8: Predict increment: Δ𝑣ℎ ← DeepONet(𝑘(𝑥), ̃𝑟(𝑥)) ⋅ ‖𝑟(𝑥)‖∞
9: Update: 𝑣ℎ ← 𝑣ℎ + Δ𝑣ℎ

10: else
11: Matrix splitting: Aℎ = M − N
12: Solve: MΔ𝑣ℎ = rℎ

13: Relaxed update: 𝑣ℎ ← 𝑣ℎ + 𝛼Δ𝑣ℎ

14: end if
15: end for
16: return 𝑣ℎ

17: end function

4.3. Introduction to the HINTS-MG

Multigrid methods are one of the most extensively applied solvers in solving large-scale linear systems,
which use a hierarchy of grids to achieve significantly faster convergence. However, multigrid methods
often suffer from divergence when applied to indefinite problems such as the Helmholtz equation with a
large wavenumber. One of the reasons lies in the traditional smoother (e.g., the Jacobi or Gauss-Seidel
method) used in the multigrid method, which may amplify the low-frequency components of the error
for indefinite problems [6]. Developing an efficient multigrid method for the Helmholtz equation remains
an open and challenging problem [41, 6, 42, 43].

By integrating the HINTS approach into multigrid methods, a new hybrid multilevel solver, HINTS-
MG, is developed by Zhang et al. [19] to improve the performance of the classical multigrid method.

4.3.1. Algorithm

Algorithm 7 presents the detailed implementation of HINTS-MG with V-cycle. Instead of the traditional
Jacobi or Gauss-Seidel smoother, the HINTS approach is applied in both pre- and post-smoothing
stages at each level of the grid hierarchy. To guarantee that DeepONet is applied at least once per
smoothing phase, the number of pre- and post-smoothing iterations, 𝑛pre and 𝑛post, must both exceed
the activation frequency of DeepONet in the HINTS approach 𝑛𝑟.

This hybrid smoothing strategy ensures the efficient elimination of both high- and low-frequency
error modes across multiple levels of grid, which is particularly advantageous for indefinite problems
compared with the classical multigrid method, where low-frequency error components might be ampli-
fied in some cases.

20 4. Introduction to HINTS

Algorithm 7 Multigrid HINTS Solver with V-cycle Smoothing
Require: Parameter function 𝑘(𝑥), source 𝑓ℎ, PDE at level ℎ, number of outer iterations 𝑛cycle, smooth-

ing steps 𝑛pre, 𝑛post, DeepONet frequency 𝑛𝑟 < min(𝑛pre, 𝑛post), relaxation factor 𝛼
Ensure: Approximate solution 𝑣ℎ

1: Discretize the PDE to be solved: Aℎ, fℎ ← DISCRETIZE(𝑘(𝑥), 𝑓(𝑥),PDE)
2: Initialize: 𝑣ℎ ← 0ℎ

3: for 𝑖 = 1 to 𝑛cycle do
4: 𝑣ℎ ← HINTS_V_CYCLE(Aℎ, fℎ, 𝑣ℎ, 𝑘(𝑥), 𝑛pre, 𝑛post, 𝑛𝑟, 𝛼)
5: end for
6: return 𝑣ℎ

7: function HINTS_V_CYCLE(Aℎ, fℎ, 𝑣ℎ, 𝑘(𝑥), 𝑛pre, 𝑛post, 𝑛𝑟, 𝛼)
8: Pre-smoothing: 𝑣ℎ ← HINTS(Aℎ, fℎ, 𝑣ℎ, 𝑘(𝑥), 𝑛pre, 𝑛𝑟, 𝛼)
9: if Ωℎ is not the coarsest grid then
10: Compute residual: rℎ ← fℎ − Aℎ𝑣ℎ

11: Restrict: r2ℎ, A2ℎ ← RESTRICTION(rℎ), RESTRICTION(Aℎ)
12: Recursive solve: 𝑣2ℎ ← HINTS_V_CYCLE(A2ℎ, r2ℎ, 02ℎ, 𝑘(𝑥), 𝑛pre, 𝑛post, 𝑛𝑟, 𝛼)
13: Correction: 𝑣ℎ ← 𝑣ℎ + PROLONGATION(𝑣2ℎ)
14: end if
15: Post-smoothing: 𝑣ℎ ← HINTS(Aℎ, fℎ, 𝑣ℎ, 𝑘(𝑥), 𝑛post, 𝑛𝑟, 𝛼)
16: return 𝑣ℎ

17: end function

4.3.2. Coarsest-Grid Strategy
In the original implementation of the multigrid method and HINTS-MG by Zhang et al. [19], an uncom-
mon strategy was applied on the coarsest grid: using only 10 iterations of the smoother to approximate
the coarse-grid solution instead of solving the coarsest-grid problem exactly. This ”smoother-only”
strategy might degrade the accuracy of the coarse-grid correction and could unfairly favor HINTS-MG
in comparisons, as HINTS converges faster than the classical smoother on the coarsest level.

Fig. 4.1 presents the original results and the corresponding configuration from Zhang et al. [19]
for the 1D Poisson problem. Although their findings show a clear performance gain for HINTS-MG,
this advantage might be the result of the ”smoother-only” strategy instead of the HINTS smoother.
To comprehensively evaluate the improvement of HINTS-MG over the MG method, the performance
of both ”smoother-only” and ”direct solver” strategies on the coarsest grid will be investigated in the
numerical experiments presented in Section 4.5.2.

(a) V-cycle configuration. Each blue dot rep-
resents 10 iterations of the smoother.

(b) Error and residual norms for MG with
Gauss-Seidel relaxation.

(c) Error and residual norms for HINTS-MG
with HINTS relaxation.

Figure 4.1: Configurations and results of HINTS-MG taken from Zhang et al. [19] on the 1D Poisson equation with 𝑛 = 1025
grid points.

4.4. Training Procedure of DeepONet for HINTS
In the HINTS framework, the DeepONet is used to predict the low-frequency corrections in iterations,
which should be trained offline in advance to its deployment in HINTS. To validate the performance
of HINTS and HINTS-MG independently, we regenerated the training data and trained a DeepONet
for the one-dimensional Poisson equation (Eq. (4.1)) and Helmholtz equation (Eq. (4.2)). The detailed

4.4. Training Procedure of DeepONet for HINTS 21

training process of DeepONet, including data generation, pre-processing, and network architecture, is
presented in this section.

4.4.1. Data Generation
We use Gaussian Random Fields (GRFs) [44] to generate the parameter function 𝑘(𝑥) and the source
function 𝑓(𝑥) in the training data and testing data, which are independently sampled from GRF realiza-
tions governed by:

𝑘(𝑥) ∼ 𝒢𝒫 (𝑘0, 𝒦𝑘(𝑥1, 𝑥2)) , 𝒦𝑘(𝑥1, 𝑥2) = 𝜎2
𝑘 exp(−|𝑥1 − 𝑥2|2

2𝑙2𝑘
) ,

𝑓(𝑥) ∼ 𝒢𝒫 (0, 𝒦𝑓(𝑥1, 𝑥2)) , 𝒦𝑓(𝑥1, 𝑥2) = 𝜎2
𝑓 exp(−|𝑥1 − 𝑥2|2

2𝑙2𝑓
) ,

(4.9)

where each realization is discretized on a set of 𝑛 = 31 uniformly distributed grid points in [0, 1]. To
consider challenges in indefinite Helmholtz problems with a large wavenumber, a cutoff threshold 𝑘min
is imposed in the data generation, such that samples are retained only if they satisfy the condition
min𝑥 𝑘(𝑥) > 𝑘min. The configuration of 𝑘0, 𝑘min, 𝜎𝑘, 𝑙𝑘, 𝜎𝑓 , 𝑙𝑓 for Poisson and Helmholtz equations
taken from Zhang et al. [19] is summarized in Table 4.1.

Table 4.1: Parameters for GRF-based data generation in DeepONet training taken from Zhang et al. [19].

Case 𝑘0 𝑘min 𝜎𝑘 𝑙𝑘 𝜎𝑓 𝑙𝑓
1D Poisson 1.0 0.3 0.3 0.1 1.0 0.1
1D Helmholtz 8.0 3.0 2.0 0.2 1.0 0.1

To generate the target output 𝑢(𝑥) for supervised training, each PDE instance with generated 𝑘(𝑥)
and 𝑓(𝑥) is numerically solved using the finite difference method (FDM) on the same uniform grid with
spacing ℎ = 1/30. The values of 𝑘(𝑥), 𝑓(𝑥), and 𝑢(𝑥) evaluated at these grid points {𝑥𝑖}31

𝑖=1 are then
used to train DeepONet to approximate the underlying solution operator.

4.4.2. Data Preprocessing for the Helmholtz Problem
Discretizing the Helmholtz equation with the finite-differencemethod (FDM) on a uniform grid of spacing
ℎ yields the linear system

𝐴ℎ𝑢ℎ = 𝑓ℎ.

Here 𝐴ℎ = 𝐿ℎ + diag(𝑘(𝑥)2), where 𝐿ℎ is the discrete Laplacian. Numerical instability may occur due
to resonance. For example, when 𝑘(𝑥) ≡ 𝑘 is constant,

𝐴ℎ = 𝐿ℎ + 𝑘2𝐼 ⇒ 𝜆𝑗(𝐴ℎ) = 𝜆𝑗(𝐿ℎ) + 𝑘2.

If 𝑘2 is close to the negative of an eigenvalue of the discrete Laplacian −𝜆𝑗(𝐿ℎ) for some 𝑗, the smallest
singular value of 𝐴ℎ becomes very small and the matrix 𝐴ℎ is nearly singular, which can significantly
amplify numerical errors in the computed solution.

To avoid such ill-conditioned instances in the training set, the generated training data for the Helmholtz
equation is filtered based on the condition number of the matrix 𝐴ℎ

𝜅2(𝐴ℎ) = ‖𝐴ℎ‖2‖𝐴−1
ℎ ‖2

More specifically, cases with 𝜅2(𝐴ℎ) above the 80th percentile over all generatedmatrices are discarded
to exclude numerically unstable samples.

After 𝑘(𝑥) and 𝑓(𝑥) are generated and filtered, we solve the resulting linear systems using a direct
solver, which form the input-output pairs for the supervised learning of DeepONet:

(𝑘(𝑥), 𝑓(𝑥)) ↦ 𝑢(𝑥). (4.10)

22 4. Introduction to HINTS

4.4.3. Network Architecture Design
As demonstrated in Section 3.2.2, the DeepONet architecture consists of two sub-networks: the branch
network and the trunk network.

The branch network accepts values of input functions 𝑘(𝑥) and 𝑓(𝑥) evaluated at predefined sensor
points. In the training set, both 𝑘(𝑥) and 𝑓(𝑥) are discretized on a fixed uniform grid {𝑥𝑖}𝑛𝐷

𝑖=1 (e.g.,
𝑛𝐷 = 31). A fully connected neural network with multiple hidden layers is employed in the branch
network, using ReLU as the activation function.

The trunk network receives spatial coordinates 𝑥 at predefined sensor points, where tanh activation
function is used in all layers. The final output of the DeepONet is given by the inner product of the
output vectors from branch and trunk networks.

We use the same architecture for solving the 1D Poisson equation and the 1D Helmholtz equa-
tion. The detailed structure of the DeepONet for 1D Poisson and 1D Helmholtz equations is listed in
Table 4.2.

Table 4.2: Layer-wise architecture of the DeepONet used. Each sub-network is a fully connected feedforward neural network,
where ”FCN” denotes the fully connected layer.

Layer Branch Network Trunk Network
Input [𝑘(𝑥1), … , 𝑘(𝑥𝑛𝐷

), 𝑓(𝑥1), … , 𝑓(𝑥𝑛𝐷
)]𝑇 ∈ ℝ2𝑛𝐷 𝑥 ∈ ℝ

Hidden Layer 1 FCN(2𝑛𝐷 → 60) FCN(1 → 80)
Activation ReLU Tanh
Hidden Layer 2 FCN(60 → 60) FCN(80 → 80)
Activation ReLU Tanh
Output Layer FCN(60 → 80) FCN(80 → 80)
Activation None Tanh

We kept this architecture fixed across all experiments to isolate solver effects. Preliminary trials
indicated that deeper networks did not change conclusions.

4.4.4. Loss Function
For the Poisson equation, the mean squared error (MSE) loss is used.

ℒ = 1
𝑁𝑛𝐷

𝑁
∑
𝑗=1

𝑛𝐷

∑
𝑖=1

(𝑢̂(𝑗)(𝑥𝑖) − 𝑢(𝑗)(𝑥𝑖))2, (4.11)

where 𝑢̂(𝑗) is the DeepONet prediction, 𝑢(𝑗) is the reference solution obtained by a direct solver, 𝑁
represents the total number of training samples, and 𝑛𝐷 = 31 is the number of uniformly distributed
grid points in the domain Ω = [0, 1].

For the Helmholtz equation, the amplitude of 𝑢 varies markedly across the training data, compared
to that of the Poisson equation. To avoid optimization being dominated by large-magnitude samples,
we adopt the relative MSE used by Zhang et al. [19], which is defined as:

ℒ = 1
𝑁𝑛𝐷

𝑁
∑
𝑗=1

𝑛𝐷

∑
𝑖=1

(𝑢̂(𝑗)(𝑥𝑖) − 𝑢(𝑗)(𝑥𝑖))2

𝜖 + |𝑢(𝑗)(𝑥𝑖)|2
, (4.12)

where 𝜖 = 0.01 is a regularization constant.

4.4.5. Training Configuration and Results
Two DeepONet models with the same architecture were trained separately for solving the Poisson and
Helmholtz equations. As discussed in Section 4.4.1, The values of 𝑘(𝑥), 𝑓(𝑥), and 𝑢(𝑥) evaluated at the
same grid points {𝑥𝑖}31

𝑖=1 were used to train the DeepONet models. The key training hyperparameters
are summarized in Table 4.3:

4.5. Numerical Results Validation and Discussion 23

Table 4.3: Hyperparameters for DeepONet Training Process

Parameter Value
Batch size 1,024
Number of epochs 20,000
Learning rate 0.001
DeepONet Grid Resolution 31
Training dataset size 8,500

Figs. 4.2a and 4.2b illustrate the evolution of training and validation losses over 20,000 epochs
for the Poisson and Helmholtz equations, respectively. Both training and testing losses exhibit con-
vergence during training. The model obtained at the final epoch is used in the subsequent numerical
experiments, providing low-frequency error correction based on the residual.

(a) MSE loss for the Poisson equation. (b) Relative MSE loss for the Helmholtz equation.

Figure 4.2: Training and testing losses in the training process of DeepONet

4.5. Numerical Results Validation and Discussion
To demonstrate and independently validate the performance of these hybrid solvers, following the train-
ing procedure described in Section 4.4, numerical experiments on 1D Poisson and Helmholtz equations
were conducted to compare HINTS and HINTS-MG against classical iterative solvers such as Jacobi
and multigrid (MG).

4.5.1. Performance of HINTS
1D Poisson Equation
We first apply HINTS to the 1D Poisson equation discretized on 𝑛 = 31 uniformly spaced grid nodes,
matching the sensor points used in the DeepONet training process. Fig. 4.3 shows two representative
samples: one with a low-frequency source term 𝑓(𝑥) = sin(𝜋𝑥) and another with a slightly higher-
frequency source term 𝑓(𝑥) = sin(6𝜋𝑥). In both cases, HINTS converges to machine precision in about
200 iterations, outperforming the Jacobi method which converges slowly. In addition, a standalone
DeepONet prediction is accurate for the low-frequency case but deteriorates for the higher-frequency
case due to its spectral bias.

Fig. 4.4 shows the results of the same representative samples on a finer grid (𝑛 = 1025). HINTS
still reduces the error rapidly in early iterations; however, after some iterations, its overall convergence
rate rapidly slows down to that of the Jacobi method. One possible reason is the mid-range spectral
components in the error, which are difficult to eliminate by either the Jacobi method or the DeepONet
model. As the mesh is refined, the gap between the spectral ranges effectively handled by Jacobi
(high-frequency) and DeepONet (low-frequency) becomes more significant, leaving mid-range error
modes unresolved, which prevents further acceleration. A detailed analysis to validate this hypothesis
is presented in Chapter 5.

24 4. Introduction to HINTS

(a) Case 1: 𝑘(𝑥) = 1.5 − 𝑥; 𝑓(𝑥) = sin(𝜋𝑥) (b) Case 2: 𝑘(𝑥) = 1.5 − 𝑥; 𝑓(𝑥) = sin(6𝜋𝑥)

Figure 4.3: Performance of HINTS vs. Jacobi on 1D Poisson Equation with 𝑛 = 31 grid points. Each subfigure includes (top)
approximate solution comparison, (middle) error norm over iterations, and (bottom) error norm over time.

(a) Case 1: 𝑘(𝑥) = 1.5 − 𝑥; 𝑓(𝑥) = sin(𝜋𝑥) (b) Case 2: 𝑘(𝑥) = 1.5 − 𝑥; 𝑓(𝑥) = sin(6𝜋𝑥)

Figure 4.4: Performance of HINTS vs. Jacobi on 1D Poisson Equation with 𝑛 = 1025 grid points. Each subfigure includes (top)
approximate solution comparison, (middle) error norm over iterations, and (bottom) error norm over time.

4.5. Numerical Results Validation and Discussion 25

1D Helmholtz Equation
The performance of HINTS on the 1D Helmholtz equation (Eq. (4.2)) is investigated on a uniform grid
with 𝑛 = 201. This indefinite problem is significantly more challenging than the Poisson equation.

Experiments show that the performance of HINTS on the Helmholtz problem is not always robust.
Fig. 4.5 presents representative results of HINTS on the Helmholtz problem. The Jacobi method di-
verges in both cases, while HINTS sometimes achieves stable and rapid convergence, as shown in
Fig. 4.5a. However, in the case shown in Fig. 4.5b, the hybrid solver becomes unstable and diverges,
even in the initial stage of iterations.

(a) Convergence case (b) Divergence case

Figure 4.5: Performance of HINTS vs. Jacobi on 1D Helmholtz Equation with 𝑛 = 201 grid points. Each subfigure includes (top)
approximate solution comparison, (middle) error norm over iterations, and (bottom) error norm over time.

To further investigate the instability of HINTS for the Helmholtz equation, we tested the impact
of training data. We trained a new DeepONet model with a more stringently filtered dataset, where
samples with a matrix condition number 𝜅2(𝐴ℎ) above the 50th percentile were replaced with new data
satisfying the criterion, instead of the 80th percentile used for the baseline model in Fig. 4.5.

Fig. 4.6 shows the performance of HINTS using the newmodel on the same examples as in Fig. 4.5.
Compared to the performance of the baseline model shown in Fig. 4.5, the new DeepONet model
achieves better performance, exhibiting faster convergence and avoiding divergence. However, for
more challenging cases in Fig. 4.7, this new model still exhibits instability and divergence.

In conclusion, HINTS combines the complementary strengths of stationary iterativemethods (Jacobi
or Gauss-Seidel) and DeepONet to achieve faster and more robust convergence, particularly in some
cases where stationary iterative methods fail to converge. Furthermore, the robustness of HINTS is
highly related to the training data of the DeepONet model: filtering out samples with large matrix condi-
tion numbers 𝜅2(𝐴ℎ) improves the performance. Nevertheless, problems of divergence and robustness
still exist in challenging cases.

26 4. Introduction to HINTS

(a) Convergence case same with Fig. 4.5a (b) Divergence case same with Fig. 4.5b

Figure 4.6: Performance of HINTS with the improved DeepONet (trained on 50th percentile filtered data) on the same samples
from Fig. 4.5. Each subfigure includes (top) approximate solution comparison, (middle) error norm over iterations, and (bottom)
error norm over time.

(a) Case 1 (b) Case 2

Figure 4.7: Challenging case where HINTS with the improved model still exhibits divergence or instability. Each subfigure
includes (top) approximate solution comparison, (middle) error norm over iterations, and (bottom) error norm over time.

4.5. Numerical Results Validation and Discussion 27

4.5.2. Performance of HINTS-MG
1D Poisson Equation
Similar to the configuration of HINTS-MG from Zhang et al. [19] on the 1D Poisson Equation, Fig. 4.8
illustrates the two V-cycle setups in our experiments on the 1D Poisson problem with a refined grid
(𝑛 = 1025) where the HINTS approach struggles to converge. The corresponding representative results
of MG and HINTS-MG are illustrated in Fig. 4.9.

(a) ”Smoother-only” V-cycle configuration. (b) ”Direct-solver” V-cycle configuration.

Figure 4.8: Seven-level V-cycle configurations used in our experiments. Each solid dot represents 10 iterations of the smoother
on that level, and a hollow dot denotes a direct solver. For HINTS-MG, 𝑛𝑟 = 10.

Under the “smoother-only” strategy, HINTS-MG outperforms MG, reproducing the speed-up ob-
served in Fig. 4.1. When both methods use an exact solver on the coarsest grid, HINTS-MG shows
only a slight advantage for the smooth case and exhibits a similar convergence performance as MG
for the oscillatory case. The results confirm that much of the performance gain of HINTS-MG in the
1D Poisson Equation reported by Zhang et al. [19] stems from the sub-optimal coarsest-grid strategy
rather than the hybrid smoother itself.

(a) Smooth solution (b) Oscillatory solution

Figure 4.9: Error Norms for MG and HINTS-MG using direct solver and smoother on 1D Poisson Equation with 𝑛 = 1025 grid
points using the V-cycle configuration in Fig. 4.8.

1D Helmholtz Equation
Using the V-cycle configurations in Fig. 4.8 (coarsest grid ≈15 nodes), 200 samples from the validation
set of DeepONet were used to compare the performance of MG and HINTS-MG for the 1D Helmholtz
equation, with the ”smoother-only” and ”direct solver” coarse-grid strategies. Two representative results
of MG and HINTS-MG are shown in Fig. 4.10.

Under the “smoother-only” coarse-grid strategy, the classical MG diverges in most cases from the
validation set due to inaccurate coarse-grid correction. In contrast, HINTS-MG converges rapidly but
finally stagnates at an error norm around 10−13. When both methods employ a direct solver on the
coarsest grid, HINTS-MG retains the same performance, eventually stagnating at an error plateau of
around 10−13 and outperforming the convergence rate of MG. However, in some cases, the final error

28 4. Introduction to HINTS

norm of MG can drop below that of HINTS-MG, but only at very low error levels after a sufficient number
of iterations.

(a) HINTS-MG outperforms MG. (b) MG outperforms HINTS-MG.

Figure 4.10: Performance comparison of MG and HINTS-MG on the 1D Helmholtz equation discretized with 𝑛 = 1025 grid
points using seven-level V-cycle configuration as shown in Fig. 4.8.

We then increase the number of levels so that only three nodes remain on the coarsest grid, as
shown in Fig. 4.11, which is more challenging for MG and HINTS-MG as a coarsest grid with only three
grid points makes it difficult to produce an accurate coarsest grid correction. In our experiment, we
observe that MG diverges under both strategies, while HINTS-MG converges in approximately 86.5%
of the tested samples. Representative convergence and failure cases are shown in Fig. 4.12.

(a) ”Smoother-only” V-cycle configuration. (b) ”Direct-solver” V-cycle configuration.

Figure 4.11: Nine-level V-cycle configurations used in our experiments. Each solid dot represents 10 iterations of the smoother
on that level, and a hollow dot denotes a direct solver. For HINTS-MG, 𝑛𝑟 = 9.

(a) HINTS-MG converges; standard MG diverges. (b) Both HINTS-MG and MG diverge.

Figure 4.12: Performance comparison of MG and HINTS-MG on the 1D Helmholtz equation discretized with 𝑛 = 1025 grid
points with Nine-level V-cycle configuration as shown in Fig. 4.11.

4.5. Numerical Results Validation and Discussion 29

In conclusion, HINTS-MG integrates the hybrid HINTS smoother within a multigrid V-cycle. Exper-
imental results show that employing a “smoother-only” strategy on the coarsest grid degrades both
MG and HINTS-MG. When the coarsest grid is solved exactly, HINTS-MG offers only a slight advan-
tage over the standard MG on the 1D Poisson problem. However, on indefinite Helmholtz equations,
HINTS-MG substantially outperforms the standard MG, exhibiting faster and more robust convergence
in most cases.

In addition, as a nonlinear operator, the DeepONet within the HINTS framework does not preserve
properties of the system matrix 𝐴, such as symmetry, linearity, or positive definiteness. Consequently,
unlike a standard MG method, the HINTS-MG or HINTS cannot be used as a preconditioner for Krylov
subspace methods except for the flexible-GMRES (F-GMRES) [38].

5
Convergence Analysis of HINTS

This chapter investigates the convergence behavior of the HINTS method, highlighting its fast conver-
gence at the initial stage and subsequent slowdown or even plateauing at a convergence rate com-
parable to stationary iterative methods. Specifically, we investigate why DeepONet works within the
HINTS framework, explain why HINTS exhibits a significant slowdown in the convergence rate in later
iterations, and provide spectral analysis to interpret DeepONet’s effectiveness in HINTS.

5.1. Slow Convergence Plateau in HINTS
Taking the one-dimensional Poisson equation for illustration, Fig. 5.1 replots the convergence behavior
of HINTS over the first 200 iterations (originally shown in Fig. 4.4 within 2000 iterations). The result
reveals a sharp decline in the convergence rate after approximately 80 iterations, limiting overall ac-
celeration in later stages.

Figure 5.1: Error norm convergence over the first 200 iterations of HINTS compared to the Jacobi method.

To further understand this behavior, we analyze the input fed to the DeepONet model during each
HINTS iteration. Within the HINTS framework, the residual function 𝑟(𝑥) is normalized before being
passed to the DeepONet model. The normalized residual function, denoted by ̃𝑟(𝑥), is defined as:

̃𝑟(𝑥) =
⎧{
⎨{⎩

𝑟(𝑥)
‖𝑟(𝑥)‖∞

, ‖𝑟(𝑥)‖∞ > 0,
0, ‖𝑟(𝑥)‖∞ = 0,

This normalization scales the residual function at each iteration to [−1, 1], ensuring comparable
input scales across different convergence stages and allowing for a clear comparison of the spatial
profile independent of its decreasing magnitude. Fig. 5.2 displays normalized residual functions ̃𝑟(𝑥)

31

32 5. Convergence Analysis of HINTS

at different stages (0, 20, 40, 60, 80, 100, 120, and 200th iterations). As observed in these figures,
we found that the residual function stabilizes after iteration 80, maintaining an almost consistent shape
thereafter. This stability corresponds directly to the sharp decrease in convergence speed near iter-
ation 80. After iteration 80, the stabilized residual functions are difficult for both neural networks and
stationary iterative solvers to address efficiently.

(a) iteration 0 (b) iteration 20 (c) iteration 40 (d) iteration 60

(e) iteration 80 (f) iteration 100 (g) iteration 120 (h) iteration 200

Figure 5.2: Normalized residual function ̃𝑟(𝑥) at selected iterations in the HINTS method.

5.2. The Principle of Superposition and Operator Approximation in
HINTS

The capacity and limitation of the HINTS framework are rooted in the principle of superposition and
how well the DeepONet model approximates them. can be understood through the principle of super-
position.

Theorem 5.1 (Principle of Superposition [45]). Let 𝐷 and 𝛿 be linear differential operators acting on
spatial variables (𝑥1, … , 𝑥𝑛). For any constants 𝑐1, 𝑐2 and any source terms 𝑓1, 𝑓2:

• If 𝑢1 solves the linear PDE 𝐷𝑢 = 𝑓1 and 𝑢2 solves 𝐷𝑢 = 𝑓2, then 𝑢 = 𝑐1𝑢1 + 𝑐2𝑢2 solves
𝐷𝑢 = 𝑐1𝑓1 + 𝑐2𝑓2.

• If 𝑢1 satisfies the linear boundary condition 𝛿𝑢|𝐴 = 𝑓1|𝐴 and 𝑢2 satisfies 𝛿𝑢|𝐴 = 𝑓2|𝐴, then 𝑢 =
𝑐1𝑢1 + 𝑐2𝑢2 satisfies 𝛿𝑢|𝐴 = 𝑐1𝑓1|𝐴 + 𝑐2𝑓2|𝐴.

5.2.1. Error-Residual Equation in Linear PDEs
For a linear PDE operator 𝑃 with exact solution 𝑢⋆ satisfying 𝑃𝑢⋆ = 𝑓 , let 𝑢̃(𝑘) denote the approximate
solution. The relationship between the error, defined as 𝑒(𝑘) = 𝑢⋆ − 𝑢̃(𝑘) and the residual, defined as
𝑟(𝑘) = 𝑓 − 𝑃 𝑢̃(𝑘), can be derived from Theorem 5.1:

𝑃𝑒(𝑘) = 𝑟(𝑘). (5.1)

Ideally, if an inverse operator 𝑃 −1 was available, a single iteration would yield the exact solution
based on the residual

𝑢⋆ = 𝑢̃(𝑘) + 𝑒(𝑘) = 𝑢̃(𝑘) + 𝑃 −1𝑟. (5.2)

However, in many applications, it is challenging to explicitly find or apply the inverse operator 𝑃 −1.
The HINTS approach approximates 𝑃 −1 by combining two complementary operators: a fixed approx-
imate inverse operator from classical stationary iterative methods, which effectively eliminates high-
frequency errors, and a learned DeepONet model, which is trained to reduce low-frequency compo-
nents.

5.2. The Principle of Superposition and Operator Approximation in HINTS 33

By alternating between these two specialized operators, HINTS constructs a more effective approx-
imation of the ideal inverse operator 𝑃 −1. However, since the DeepONet provides an approximation
for its target components rather than the exact inverse operator 𝑃 −1, its effectiveness is subject to
limitations such as spectral bias and distribution shift.

5.2.2. DeepONet as an Inverse Operator and Spectral Bias
DeepONet [14] approximates the PDE solution operator through supervised learning on a dataset of
PDE solutions. In the HINTS framework, the DeepONet model approximates the inverse operator 𝑃 −1

. Let DON𝜃 denote the trained DeepONet, the update at each iteration is:

̃𝑒(𝑘) = ‖𝑟(𝑘)‖∞ DON𝜃(̃𝑟(𝑘)), 𝑢̃(𝑘+1) = 𝑢̃(𝑘) + ̃𝑒(𝑘), 𝑟(𝑘) = 𝑓 − 𝐴𝑢̃(𝑘), (5.3)

where 𝑢̃(𝑘) denotes the current iterate, 𝑟(𝑘) is the residual vector, ̃𝑟(𝑘) ∶= 𝑟(𝑘)/|𝑟(𝑘)|∞ is the normalized
residual vector, 𝐴 is the discrete PDE operator matrix, and 𝑓 is the vector of the source term.

However, as discussed in Section 3.1.4, deep neural networks often exhibit difficulties in learning
high-frequency features. Consequently, the predicted error ̃𝑒(𝑘) produced by the DeepONet model
might underfit high-frequency components of the true error 𝑒(𝑘). When 𝑒(𝑘) is dominated by high-
frequency components, the update ̃𝑒(𝑘) may degrade convergence, resulting in stagnation or even
divergence.

5.2.3. Distribution Shift during Iterations
In addition to spectral bias, using DeepONet as an inverse operator also encounters challenges re-
lated to distribution shift. After iterative applications of smoothing steps (e.g., Jacobi) and DeepONet
updates, residual functions 𝑟(𝑥) gradually shift toward stationary states dominated by mid-frequency
modes, due to the different spectral preferences of neural networks and stationary iterative solvers.

As shown in Fig. 5.3, the discrete Fourier transform (DFT) of the residual function reveals a clear
shift in spectral energy as the number of DeepONet updates increases within the HINTS framework.
Specifically, the dominant frequency components of the residual migrate from low-frequency modes
toward the mid-frequency range, where they gradually stabilize. This shift brings residual functions
into frequency ranges where DeepONet has limited prior exposure.

Figure 5.3: DFT amplitudes of the residual at selected iterations (iter = 0, 20, 40, 100, 200), where the amplitude |𝑅𝑡(𝑘)| is
normalized by its maximummax| 𝑅𝑡(𝑘)| for comparison across different iterations.

Our neural network is trained on initial source terms generated by GRFs, which are generally low-

34 5. Convergence Analysis of HINTS

frequency dominant (shown in blue in Fig. 5.3). During iterations, actual residual functions encountered
differ significantly from training data distributions, causing a mismatch and further reducing the overall
effectiveness of HINTS. Augmenting the training set with residual snapshots collected across HINTS
iterations or making the DeepONet model ”aware” of the residual distributions it will actually encounter
during inference will be helpful in mitigating this issue. Chapter 7 explores strategies for this data
enrichment, including both offline and online methods.

5.3. Spectral Radius of the DeepONet-based Preconditioner
This section positions the DeepONet module used within the HINTS framework in the context of neural
preconditioning research, which seeks to optimize the spectral properties of iterative solvers. In this
section, we review common spectral losses used in neural preconditioning research, derived the iter-
ation matrix associated with the HINTS approach, and provide insights into why DeepONet exhibits a
preference for low-frequency components from the perspective of neural preconditioning.

5.3.1. Spectral Loss in Neural Preconditioning
A neural preconditioner can be viewed as a parametric mapping 𝑃𝜃 ≈ 𝐴 designed to improve the
spectral properties of the preconditioned matrix 𝑃 −1

𝜃 𝐴, thereby accelerating iterative solvers such as
the conjugate gradient [46, 47, 48, 38].

Directly optimizing spectral properties such as the largest or smallest eigenvalues of the precondi-
tioned matrix 𝑃 −1

𝜃 𝐴 is challenging, due to high computational and memory costs in computing eigen-
values for large matrices. Hence, existing works on neural preconditioning avoid direct eigenvalue
computation and instead employ inexpensive surrogate spectral losses, which are summarized as fol-
lows:

• Frobenius loss: Häusner et al. [47] proposed a graph neural network-based preconditioner
that produces an explicit, easily invertible, and matrix-form preconditioner 𝑃𝜃, and minimizes the
difference between the given preconditioner 𝑃 −1

𝜃 and the matrix 𝐴 as below:

ℒF(𝜃) = ‖𝑃𝜃 − 𝐴‖2
𝐹 (5.4)

This Frobenius loss is related to an upper bound on the largest singular value of the preconditioner
matrix 𝐴𝑃𝜃

• Stochastic Frobenius loss: Häusner et al. [47] also use Hutchinson’s trace estimator [49] to
estimate the Frobenius norm in Eq. (5.4).

ℒSF(𝜃) = 𝔼𝑤‖𝑃𝜃𝑤 − 𝐴𝑤‖2
2, 𝔼[𝑤𝑤𝑇] = 𝐼 (5.5)

where the random vector 𝑤 satisfying 𝐸[𝑤𝑤𝑇] = 𝐼 provides an unbiased estimation of the Frobe-
nius norm.

• Solution-weighted Frobenius loss: Li et al. [48] introduced an inductive bias by modifying the
distribution of vectors used for the expectation. Instead of random vectors, this loss uses a dataset
of actual PDE solutions 𝑢 and their corresponding right-hand sides 𝑓 = 𝐴𝑢, thus benefiting from
the actual data distribution:

ℒData(𝜃) = 𝔼(𝑢,𝑓)‖𝑃𝜃𝑢 − 𝑓‖2
2, 𝔸𝑢 = 𝑓 (5.6)

where 𝑢, 𝑓 are from a precomputed dataset containing actual solution and actual source term.

• Low-frequency-focused loss: Trifonov et al. [46] derived a loss function similar to the Solution-
weighted Frobenius loss (Eq. (5.6)) from the Frobenius loss (Eq. (5.4)) based on the inverse of
system matrix 𝐴−1 such that:

ℒLF(𝜃) = ‖(𝑃𝜃 − 𝐴)𝐴−1‖2
𝐹

= 𝔼𝑤‖(𝑃𝜃 − 𝐴)𝐴−1𝑤‖2

= 𝔼𝑤‖𝑃𝜃𝐴−1𝑤 − 𝑤‖2
, 𝔼[𝑤𝑤𝑇] = 𝐼 (5.7)

Trifonov et al. [46] conjecture that optimizing Eq. (5.7) will primarily emphasize low-frequency
modes in the preconditioned equation system, and have similar effects as Solution-weighted
Frobenius loss.

5.3. Spectral Radius of the DeepONet-based Preconditioner 35

The Frobenius loss and its stochastic counterpart aim for a globally accurate approximation of the
original matrix 𝐴. In contrast, solution-weighted and low-frequency-focused losses introduce an induc-
tive bias by sampling from the PDE solution space or 𝐴−1, emphasizing low-frequency components
where classical stationary iterative solvers struggle instead of creating a universal preconditioner.

5.3.2. DeepONet-based Preconditioner in HINTS
For a discretized linear PDE

𝐴𝑢 = 𝑓, 𝐴 ∈ ℝ𝑛×𝑛, 𝑓 ∈ ℝ𝑛, (5.8)

a typical HINTS iteration is equivalent to alternating between two distinct preconditioners within a
Richardson method (Algorithm 1):

• Jacobi/Gauss-Seidel Preconditioner

𝑢(𝑘+1) = 𝑢(𝑘) + 𝛼𝑀−1(𝑓 − 𝐴𝑢(𝑘)) (5.9)

where 𝑀 is the Jacobi or Gauss-seidel preconditioner of the matrix 𝐴, which effectively damps
the high-frequency components of the error.

• DeepONet-based Preconditioner

𝑢(𝑘+1) = 𝑢(𝑘) + DON𝜃(𝑓 − 𝐴𝑢(𝑘)) (5.10)

where D𝜃 is the DeepONet model, which approximates 𝐴−1 on the low-frequency band of the
spectrum.

5.3.3. Spectral loss of DeepONet-based Preconditioner
The iteration matrix corresponding to the DeepONet preconditioner is given by:

𝑇𝜃 = 𝐼 − DON𝜃𝐴 (5.11)

The convergence rate of the HINTS framework therefore depends on the spectral radius 𝜌(𝑇𝜃).
However, due to the nonlinear and implicit nature of DeepONet, it is infeasible to explicitly compute
eigenvalues directly. Instead, we optimize the upper bound of the spectral radius

𝜌(𝑇𝜃) ≤ ‖𝑇𝜃‖2 ≤ ‖𝑇𝜃‖𝐹 (5.12)

As discussed in Section 5.3.1, stochastic estimations (biased and unbiased) can be applied to
minimize the Frobenius norm ‖𝑇𝜃‖𝐹 . Specifically, the following strategies are available for estimating
and optimizing ‖𝑇𝜃‖𝐹 :

• Stochastic Frobenius loss

ℒSF(𝜃) = 𝔼𝑤‖𝑇𝜃𝑤‖2
2 = 𝔼𝑤‖𝑤 − D𝜃𝐴𝑤‖2

2, where 𝔼[𝑤𝑤𝑇] = 𝐼 (5.13)

• Solution-weighted Frobenius loss

ℒData(𝜃) = 𝔼𝑢‖𝑢 − D𝜃𝐴𝑢‖2
2 = 𝔼(𝑢,𝑓)‖𝑢 − D𝜃𝑓‖2

2, where 𝔸𝑢 = 𝑓 (5.14)

• Low-frequency-focused loss

ℒLF(𝜃) = ‖(𝑃 −1
𝜃 − 𝐴)𝐴−1‖2

𝐹 = 𝔼𝑤‖𝑃 −1
𝜃 𝑥 − 𝑤‖2, where 𝑥 = 𝐴−1𝑤, 𝔼[𝑤𝑤𝑇] = 𝐼 (5.15)

Notably, the solution-weighted Frobenius loss Eq. (5.14) coincides with the standard mean square
error loss Eq. (4.11) used during DeepONet training, revealing that conventional DeepONet training im-
plicitly optimizes a biased estimation of 𝜌(𝑇𝜃). In practice, DeepONet training within HINTS is trained on
GRF-generated, low-frequency-dominant residuals and their solutions. This biases DeepONet towards
accurately approximating low-frequency modes while inadequately optimizing mid- and high-frequency
components.

36 5. Convergence Analysis of HINTS

Conversely, the stochastic Frobenius loss, although theoretically considering all spectral bands,
might overly amplify high-frequency components in the random vector during training. For the 1D
Poisson equation with Dirichlet boundary conditions, the discretization 𝐴 has eigenvalues

𝜆(𝐴) = 4
ℎ2 sin

2(𝑘ℎ𝜋
2), 𝑘 = 1, … , 𝑛,

which grows from ≈ 𝜋2 to ≈ 4/ℎ2. Hence, for a random vector 𝑤, the training input–output ratio
‖𝐴𝑤‖2/‖𝑤‖2 is typically large and dominated by high-frequency modes. In contrast, we use input and
output pairs (𝑓, 𝑢) during inference, with 𝑢 = 𝐴−1𝑓 . Since eigenvalues of 𝐴−1 range from ≈ ℎ2/4 to
≈ 1/𝜋2, the inference input–output ratio ‖𝑓‖2/‖𝐴−1𝑓‖2 becomes much smaller. Figure 5.4 compares

these two ratios, showing a significant magnitude mismatch between training ‖𝐴𝑤‖
‖𝑤‖ and inference ‖𝑓‖

‖𝑢‖ .
The scale mismatch during training and inference leads to unstable optimization and poor transferability
from training to inference, making the stochastic Frobenius loss impractical for the HINTS.

Figure 5.4: Ratio of Norm between Inputs and Expected Outputs of the DeepONet model using the stochastic Frobenius loss.
Blue: training ‖𝐴𝑤‖2/‖𝑤‖2 with random vector satisfying 𝔼[𝑤𝑤𝑇] = 𝐼; red: inference ‖𝑓‖2/‖𝑢‖2 with 𝑢 = 𝐴−1𝑓.

5.3.4. Performance of Low-frequency-focused loss
Trifonov et al. [46] claimed that the low-frequency-focused loss ℒLF would exhibit similar effectiveness
to the solution-weighted Frobenius loss ℒData, as both implicitly emphasize low-frequency modes in
the preconditioned system. To empirically validate this hypothesis in HINTS, we conducted numeri-
cal experiments on the one-dimensional Poisson equation, comparing the performance of DeepONet
models trained using the low-frequency-focused loss ℒLF and the conventional mean squared error
(MSE) loss in Eq. (4.11).

Fig. 5.5 illustrates the convergence behavior of HINTS iterations under these two loss functions.
The DeepONet model optimized using the low-frequency-focused spectral loss (HINTS-LF) slightly
outperformed the baseline model trained with the MSE loss (HINTS-Baseline), demonstrating a slightly
more rapid reduction in both error norm and residual norm.

We also embedded the trained DeepONet models into a multigrid (MG) framework, the perfor-
mance of which is shown in Fig. 5.6. The model trained by the low-frequency-focused loss, HINTS-MG
(LF), showed slightly faster convergence rates compared to the baseline model, HINTS-MG (Baseline),
trained by a MSE loss, while both HINTS-MG models outperformed the classical multigrid method.

5.3. Spectral Radius of the DeepONet-based Preconditioner 37

Figure 5.5: Comparison of convergence behavior between DeepONet models trained with low-frequency-focused loss, HINTS
(LF), and mean squared error loss, HINTS (Baseline), within the HINTS framework.

Figure 5.6: Comparison of average convergence rate over the testing data using classical multigrid (MG) and HINTS-MG with
DeepONet models trained with the MSE and low-frequency-focused loss (Baseline & LF).

38 5. Convergence Analysis of HINTS

These experimental results indicate that DeepONet training implicitly optimizes a biased estimation
of spectral properties. In addition, the choice of training data and associated loss functions influences
the performance of the model. Specifically, the performance of the low-frequency-focused loss indi-
cates that the trained DeepONet is able to effectively resolve low-frequency components, thus leading
to a convergence performance comparable to MSE in HINTS, confirming the statement of Trifonov et
al. [46].

6
Gradient-Enhanced HINTS (GE-HINTS)

This chapter extends the original HINTS framework by incorporating first-order derivative information
into the training of the DeepONet model. We show that the resulting gradient-enhanced HINTS (GE-
HINTS) mitigates the issue of spectral bias in the DeepONet model and therefore exhibits better per-
formance.

6.1. Motivation and the Anti-Frequency Principle
The residual plateau in the standard HINTS, as discussed in Chapter 5, originates from the different
spectral preferences between the DeepONet model (low frequency) and stationary iterative methods
(high frequency). Due to spectral bias, deep neural networks tend to learn low-frequency components
first and struggle with high-frequency ones [16, 19]. Hence, mitigating the spectral bias can narrow the
gap between the frequency ranges of the DeepONet model and stationary iterative methods.

In contrast to the spectral bias that is common in training neural networks, the anti-frequency prin-
ciple refers to cases in which high-frequency components have equal or higher priority in learning than
low-frequency ones [16]. A common way to alleviate the effect of the spectral bias or even induce the
anti-frequency principle is to impose a high priority on high-frequency components. Whether the anti-
frequency principle can be observed is determined by the competition between the activation regularity
and the loss function [16]. When the loss function has a higher priority for high-frequency components
than the low-frequency priority induced by the activation function, the anti-frequency principle emerges.

A practical way to impose a high priority on high-frequency components is to add derivative terms
to the loss [16]:

ℒGE = ‖𝑢𝜃 − 𝑢⋆‖2 + 𝛼 ‖∇𝑢𝜃 − ∇𝑢⋆‖2, (6.1)
where {𝑥𝑗}𝑁

𝑗=1 are evaluation points and 𝛼 > 0 is the weight that balances data and gradient terms. In
the Fourier domain, the derivative is given by:

ℱ[∇𝑢](𝜉) = 𝑖 𝜉 ℱ[𝑢](𝜉).
Hence, the mean squared error of the gradient contributes a frequency factor |𝜉|2 to each mode [16]. As
a result, higher frequencies are penalized more with a higher weight and tend to converge earlier [50,
51]. When the weight of the gradient penalty is sufficiently large, it may mitigate or even overcome the
network’s spectral bias, exhibiting the anti-frequency principle [16]. Motivated by this, we designed a
gradient-enhanced loss for the DeepONet model to mitigate its spectral bias and, consequently, the
overall performance of HINTS.

6.2. Gradient-Enhanced Loss of DeepONet
To incorporate first-order derivatives, labels for both the predicted solution 𝑢𝜃 and its first-order spatial
derivatives are required during training. The following gradient-enhanced loss function can be adopted
for the DeepONet model:

ℒGE(𝜃) = 1
𝑁

𝑁
∑
𝑗=1

(∣𝑢𝜃(𝑦𝑗) − 𝑢⋆(𝑦𝑗)∣
2 + 𝛼 ∣∇𝑢𝜃(𝑦𝑗) − ∇𝑢⋆(𝑦𝑗)∣

2). (6.2)

39

40 6. Gradient-Enhanced HINTS (GE-HINTS)

where ∇𝑢𝜃(𝑦𝑗) is the gradient of the DeepONet model’s output, which can be obtained by automatic
differentiation, ∇𝑢⋆(𝑦𝑗) is the pre-computed reference gradient, which can be obtained by finite differ-
ences, and 𝛼 denotes the weight of the derivative term. For a 1D PDE’s solution, the reference gradient

of the solution at 𝑦𝑗 on Ωℎ = { 𝑗
𝑛 + 1}

𝑛+1

𝑗=0
is computed as follows:

∇𝑢⋆(𝑦𝑗) ≈

⎧{{{
⎨{{{⎩

𝑢⋆(𝑦𝑗 + ℎ) − 𝑢⋆(𝑦𝑗)
ℎ , if 𝑗 = 0,

𝑢⋆(𝑦𝑗 + ℎ) − 𝑢⋆(𝑦𝑗 − ℎ)
2ℎ , if 1 ≤ 𝑗 ≤ 𝑛,

𝑢⋆(𝑦𝑗) − 𝑢⋆(𝑦𝑗 − ℎ)
ℎ , if 𝑗 = 𝑛 + 1,

where ℎ = 1/(𝑛 + 1) is the mesh size. Figure 6.1 provides a schematic of these forward, central, and
backward difference stencils.

(a) Forward difference (𝑗 = 0) (b) Central difference (1 ≤ 𝑗 ≤ 𝑛) (c) Backward difference (𝑗 = 𝑛+1)

Figure 6.1: Schematic of the finite difference stencils used to compute the reference gradient ∇𝑢⋆ at boundaries and interior
points.

The gradient is required only for training. At the inference stage, since no labels or predictions
of gradient are required, GE-HINTS behaves exactly like the original model and the cost per solver
iteration remains the same.

6.3. Results & Discussion
In this section, we present numerical experiments to evaluate the effectiveness of theGradient-Enhanced
HINTS (GE-HINTS) framework. We consider the standard 1D Poisson equation and apply different grid
resolutions of the DeepONet’s sensor points (31, 51, 81). To investigate the influence of the gradient-
loss weight parameter 𝛼, we conduct a parametric study with 𝛼 set to 0.1, 0.2, and 0.5. Table 6.1
summarized the hyperparameters for training these DeepONet models.

Table 6.1: Hyperparameters for Gradient-Enhanced DeepONet

Parameter Value
Batch size 1,024
Number of epochs 10,001
Learning rate 0.0001
DeepONet grid resolution 31, 51, 81
Training dataset size 8,500
Gradient-loss Weight 𝛼 0.1, 0.2, 0.5

6.3.1. Performance of Gradient-Enhanced HINTS
For each configuration, we compare GE-HINTS with the original HINTS method (denoted as HINTS-
base).

Figures 6.2 summarize the experimental results by plotting the convergence history of the error norm
and residual norm against the iteration number when applying GE-HINTS to the 1D Poisson equation
(𝑛 = 201). As depicted, the gradient-enhanced training significantly improves the convergence speed

6.3. Results & Discussion 41

of both error and residual norms compared to the HINTS-base. In addition, all tested values of the
gradient-loss weight 𝛼(0.1, 0.2, 𝑎𝑛𝑑0.5) yield a clear improvement, while the performance difference
among them is relatively small.

(a) DeepONet grid resolution = 31 (b) DeepONet grid resolution = 51

(c) DeepONet grid resolution = 81

Figure 6.2: Convergence of error norm and residual norm for GE-HINTS with varying grid resolutions and gradient-loss weights
𝛼. HINTS-base denotes the baseline DeepONet model without the loss term based on gradient; HINTS-𝛼 is the GE-HINTS with
the gradient-loss weight 𝛼; DeepONet Grid resolution represents the number of sensor points in the DeepONet model

Another observation is the robustness of GE-HINTS across varying grid resolutions. For different
sizes of sensor points (DeepONet grid resolution = 31, 51, 81), GE-HINTS consistently outperforms the
baseline HINTS, demonstrating its effectiveness in enhancing DeepONet’s capabilities and speeding
up the convergence rate of the HINTS framework.

6.3.2. Performance of Gradient-Enhanced MG-HINTS
To further assess the generalizability of GE-HINTS and its compatibility with multilevel solvers, we em-
bed the trained gradient-enhanced DeepONet preconditioners into the Multigrid-HINTS (MG-HINTS)
framework. This hybrid solver leverages multigrid cycles to resolve different spectral components

42 6. Gradient-Enhanced HINTS (GE-HINTS)

across grid levels, while using learned DeepONet-based smoothers to accelerate convergence. For
comparison, we also evaluate the performance of the classical multigrid (MG) method under the same
test settings.

Figure 6.3 presents the convergence of the error norm across multigrid cycles for MG-HINTS using
DeepONet models trained at different resolutions (31, 51, 81) and various gradient-loss weights 𝛼. All
experiments are conducted on the 1D Poisson equation with 𝑛 = 1024 grid points on the finest level.

Results demonstrate that regardless of the mesh on which the DeepONet corrector is trained, the
resulting HINTS-MG solver converges faster than the classical MG method. Furthermore, for any
grid resolution, the influence of gradient-enhanced loss and the choice of gradient-enhanced weight
𝛼 ∈ 0.1, 0.2, 0.5 on multigrid convergence is insignificant. This observation suggests that gradient-
enhanced training is most advantageous in single-level HINTS, whereas its impact on HINTS-MG is
negligible. The reason might be that the additional spectral coverage gained from gradient supervision
becomes less critical when embedded into a multigrid scheme.

In summary, while gradient-enhanced loss significantly improves single-level HINTS solvers, its
impact becomes less prominent in the multigrid context. Nonetheless, HINTS-MG remains competitive
and surpasses classical MG among all tested resolutions, highlighting the effectiveness of DeepONet
preconditioners.

6.3. Results & Discussion 43

(a) MG grid resolution = 31

(b) MG grid resolution = 51

(c) MG grid resolution = 81

Figure 6.3: Convergence performance of Gradient-Enhanced MG-HINTS for varying grid resolutions and gradient-loss weights
𝛼.

7
HINTS-in-the-loop

As a hybrid solver that incorporates a data-driven neural network model, the HINTS framework relies
heavily on the similarity between the training data distribution and the actual residual functions encoun-
tered during the iterative solving process. However, discrepancies in these distributions can severely
compromise the accuracy of the neural network’s prediction as iterations progress, leading to a situa-
tion where the solver performs well only in the early stages of the iterative process, but stagnates or
even diverges in later iterations.

This chapter aims to address the issue of data distribution shift discussed in Chapter 5. We introduce
and evaluate two training strategies designed to mitigate the negative impact of distribution shift by
making the DeepONet model ”aware” of the actual residuals in the iterative process during training.
Motivated by the ”Solver-in-the-loop (SOL)” concept [52], two strategies were explored to mitigate the
negative impact of distribution shift:

1. Offline pre-compute strategy: augments the training data with pre-calculated residual snapshots.

2. Online in-loop strategy: integrates the HINTS iterative process directly into a differentiable training
pipeline.

Numerical validation is provided along with detailed discussions on their performance.

7.1. Offline Pre-compute Strategy
The offline pre-compute (PRE) strategy aims to alleviate the distribution shift through offline data re-
sampling. The core idea is to simulate the HINTS iterative process using a pretrained DeepONet and
collect actual residuals and corresponding target increments (𝑟(𝑘), Δ𝑢(𝑘)) along the iterative trajecto-
ries of HINTS. The newly collected dataset is then used to fine-tune the pretrained DeepONet model
to further adapt it to the residual distribution encountered during inference.

7.1.1. Algorithm
Given an initial DeepONet model DON𝜃0

, the process of PRE strategy is summarized in Algorithm 8:

45

46 7. HINTS-in-the-loop

Algorithm 8 Offline Pre-compute Strategy

Require: Pre-trained network DON𝜃0
, original dataset 𝐷ORI = {(𝐴𝑖, 𝑓𝑖, 𝑢⋆

𝑖)}𝑁𝑓
𝑖=1, look-ahead size 𝐾,

Jacobi iterations per cycle 𝑛𝑟
Ensure: Fine-tuned network DON𝜃PRE
1: Initialize the augmented dataset 𝒟PRE ← 𝐷ORI
2: for each source term vector 𝑓𝑖 and exact solution 𝑢⋆

𝑖 in 𝐷ORI do
3: Set initial guess for the HINTS 𝑢cur ← 0.
4: for 𝑘 = 1, … , 𝐾 do
5: for 𝑗 = 1, … , 𝑛𝑟 − 1 do
6: Apply Jacobi: 𝑢cur ← 𝑢cur + 𝐷−1(𝑓𝑖 − 𝐴𝑖𝑢cur).
7: end for
8: Compute the residual that will be fed into DeepONet: 𝑟(𝑘) ← 𝑓𝑖 − 𝐴𝑢cur.
9: Compute the target increment (true error): Δ𝑢(𝑘) ← 𝑢⋆

𝑖 − 𝑢cur.
10: Collect data: 𝒟PRE ← 𝒟PRE ∪ (𝑟(𝑘), Δ𝑢(𝑘))
11: Apply DeepONet: 𝑢cur ← 𝑢cur + DON𝜃0

(𝑟(𝑘))
12: end for
13: end for
14: Fine-tune network: 𝜃PRE ← argmin

𝜃
𝔼(𝑟,Δ𝑢)∼𝒟PRE

‖DON𝜃(𝑟) − Δ𝑢‖2
2

15: return DON𝜃PRE

7.1.2. Limitations
Although the PRE strategy provides a resampled dataset to alleviate the gap of data distribution be-
tween training and inference, two major limitations still exist.

Drift after Parameter Update Fine-tuning on 𝒟PRE yields an updated DeepONet model DON𝜃PRE .
However, the updated DeepONet model will have a different residual trajectory in subsequent solves.
As a result, the encountered residuals for the new network might have a distribution that lies outside
the dataset 𝒟PRE on which it has recently been trained. This mismatch is inherent to the PRE strategy
and is hard to be eliminated using a single offline fine-tuning step.

Network Model Prerequisite The data collection phase in Algorithm 8 requires a pre-trained Deep-
ONet model DON𝜃0

to generate residuals 𝑟(𝑘) encountered in the HINTS iterative process. However,
the entire procedure, including pre-training, data resampling, and fine-tuning, requires training the
DeepONet model at least twice.

7.2. Online In-loop Strategy
Unlike the offline PRE strategy, the in-loop (IL) strategy incorporates the entire iterative HINTS process,
including Jacobi and DeepONet iterations, into a differentiable computational graph. For each data
sample, the algorithm simulates the HINTS iterative process for 𝐾 cycles (denoted by the look-ahead
size in Algorithm 9), starting from a zero initial guess 𝑢(0) = 0. The loss is computed over all 𝐾 HINTS
cycles. Gradients are obtained by backpropagation through the computational graph, which are then
used to update the neural network parameters. The IL strategy ensures that the residuals for training
evolve as the model is updated, rather than relying on a static, pre-computed dataset. Furthermore,
the IL strategy ensures that the model only needs to be trained once.

7.2.1. Algorithm
In the IL strategy, each HINTS cycle is a single differentiable step in the algorithm, which consists of
two main stages:

1. DeepONet Update: 𝑢(𝑘+𝑛𝑟) = 𝑢(𝑘) + DON𝜃(𝑟(𝑘+𝑛𝑟))

2. Jacobi Updates: 𝑢(𝑘+𝑖) = 𝑢(𝑘+𝑖−1) + 𝐷−1𝑟(𝑘+𝑖−1), for 𝑖 = 1, ⋯ , 𝑛𝑟 − 1

7.2. Online In-loop Strategy 47

These steps form a differentiable computational graph, enabling end-to-end training. The network
parameters are optimized by minimizing a loss function defined over future 𝐾 steps (the ”look-ahead”
size), as detailed in Section 7.2.2. Alg. 9 summarizes the main process of an IL strategy using solution
deviation as the loss function for the HINTS framework.

Algorithm 9 Online In-loop Strategy

Require: Initialized DeepONet model DON𝜃; training set 𝒟ORI = {(𝐴𝑖, 𝑓𝑖, 𝑢⋆
𝑖)}𝑁𝑓

𝑖=1; Jacobi iterations
per cycle 𝑛𝑟; look-ahead size 𝐾; epochs 𝐸; learning rate 𝜂

Ensure: Updated network DON𝜃
1: for epoch = 1 to 𝐸 do
2: for each (𝐴𝑖, 𝑓𝑖, 𝑢⋆

𝑖) in 𝒟ORI do
3: Initialize solution: 𝑢cur ← 0.
4: Initialize loss: ℒsol(𝜃) = 0
5: for 𝑘 = 1 to 𝐾 do
6: Apply DeepONet: Δ𝑢 ← DON𝜃(𝑓𝑖 − 𝐴𝑖 𝑢cur).
7: Update solution: 𝑢cur ← 𝑢cur + Δ𝑢.
8: Compute residual: 𝑟(𝑘) ← 𝑓𝑖 − 𝐴𝑖 𝑢cur.
9: Update loss: ℒsol(𝜃) ← ℒsol(𝜃) + ‖𝑢cur − 𝑢⋆

𝑖 ‖2
2

10: for 𝑗 = 1, … , 𝑛𝑟 − 1 do
11: 𝑢cur ← 𝑢cur + 𝐷−1(𝑓𝑖 − 𝐴𝑖𝑢cur).
12: end for
13: end for
14: Back Propagation: 𝜃 ← 𝜃 − 𝜂 ∇𝜃ℒsol(𝜃)
15: end for
16: end for
17: return DON𝜃

When the look-ahead size 𝐾 = 1 and the initial guess 𝑢(0) = 0, one IL cycle using solution deviation
as the loss function is equivalent to the standard supervised training of a DeepONet. The IL strategy
with the look-ahead size 𝐾 = 1 and the loss function of solution deviation is:

𝑢(1) = 𝑢(0) + DON𝜃(𝑓 − 𝐴 𝑢(0)) = DON𝜃(𝑓), ℒsol(𝜃) = ‖𝑢(1) − 𝑢⋆‖2
2 .

In this case, the training objective is identical to training a standard DeepONet designed to learn the
mapping (𝑘, 𝑓) ↦ 𝑢⋆.

7.2.2. Loss Functions
To train the DeepONet model DON𝜃 with the IL strategy, we evaluated three different loss functions,
each designed to optimize a different property of the HINTS solver: the accuracy of the solution, the
magnitude of the residual, and the rate of convergence.

1. Solution loss

ℒsol(𝜃) = 1
𝐾

𝐾
∑
𝑘=1

∥𝑢(𝑘) − 𝑢⋆∥2
2. (7.1)

The solution loss directly penalizes the deviation from the ground-truth solution 𝑢⋆. Because
the reference solution 𝑢⋆ must be pre-computed, this loss is limited to settings where reference
solutions are available.

2. Residual loss

ℒres(𝜃) = 1
𝐾

𝐾
∑
𝑘=1

∥𝑟(𝑘)∥2
2. (7.2)

The residual loss minimizes the magnitude of the residual at each step of the trajectory. The
residual is available during the iteration and therefore requires no reference solution.

48 7. HINTS-in-the-loop

3. Convergence loss

ℒcon(𝜃) = 1
𝐾

𝐾
∑
𝑘=1

‖𝑟(𝑘)‖2
‖𝑟(𝑘−1)‖2

2
, (7.3)

The convergence loss is designed to directly optimize the speed of convergence, where ‖𝑟(𝑘)‖2/‖𝑟(𝑘−1)‖2
represents the convergence rate per DeepONet update. The convergence loss can be interpreted
as a weighted sum of residual norms ‖𝑟(𝑘)‖2 with dynamic weights, which encourages faster con-
vergence.

7.3. Results & Discussion
In this section, numerical experiments on the 1D Poisson equation were conducted to evaluate the
effectiveness of pre-compute and in-loop strategies.

7.3.1. Offline Pre-Compute Strategy
In the pre-compute experiments, we reuse the baseline DeepONet from Section 4.5.1, collect residual–
update pairs for the first five DeepONet calls, and fine-tune the model on this trajectory data. All tests
are carried out on the 1D Poisson equation discretized by different meshes.

Training & Validation Loss

Figure 7.1 shows the loss curves during fine-tuning. The loss on the newly collected data (blue) de-
creases within the first 5000 epochs and then plateaus, indicating that the network has adapted to the
in-loop residual distribution. The validation loss on the original dataset (orange) remains almost un-
changed, demonstrating that the fine-tunedmodel retains its predictive capability on the original training
data and does not overfit to the resampled residual trajectory.

Figure 7.1: Fine-tuning loss on resampled data (blue) and validation loss on the original dataset (orange).

Impact on HINTS & HINTS-MG

Figure 7.2 compares the average convergence histories of HINTS with and without the pre-compute
strategy on 1D Poisson equations with uniform grids of 𝑛=81, 201, 501, and 801. On the coarsest grid
(𝑛 = 81) the two curves almost coincide. As the grid is refined, the performance gain of the pre-compute
strategy can be observed. This might be because on the coarsest grid (𝑛 = 81), the gap between the
frequency preferences of the DeepONet and stationary iterative solvers is not significant. The results

7.3. Results & Discussion 49

confirm that the precompute strategy can be advantageous in the case where a mid-range frequency
plateau exists.

(a) n = 81 (b) n = 201

(c) n = 501 (d) n = 801

Figure 7.2: Error and residual norms of HINTS with (orange) and without pre-compute (blue) for different grid sizes.

We also embedded the fine-tuned DeepONet into a HINTS-MG framework and compared it with
the baseline HINTS-MG and the classical multigrid (MG) method. Figure 7.3 shows the error norm
versus multigrid cycles for grid size 𝑛 = 2001. Results show that MG-HINTS substantially outperforms
classical MG in all three cases. However, the extra performance gain from the pre-compute strategy is
marginal.

In conclusion, the pre-compute strategy efficiently bridges the distribution gap for single-level HINTS,
especially on finer grids, where the gap between the distribution of residual functions and the original
training data becomes more significant. However, in the HINTS-MG framework, its effect is negligi-
ble, indicating that the pre-compute resampling strategy is redundant once the multilevel hierarchy is
considered.

50 7. HINTS-in-the-loop

Figure 7.3: Comparison of performance of MG-HINTS with and without the pre-compute strategy on the 1D Poisson Equation
with grid size 𝑛 = 2001.

7.3.2. Online In-loop Strategy
In this section, we investigate the performance of the in-loop strategy, evaluating different loss functions
and look-ahead sizes on 1D Poisson equations from the testing data.

Training and Validation Loss

We employ the same training dataset as in previous sections 4.5.1 and compare three distinct loss
functions—solution loss, residual loss, and convergence loss—as described in Section 7.2.2 with var-
ious look-ahead sizes 𝐾 ∈ {1, 3, 5}. Figure 7.4 reports the validation loss on the same validation set,
defined as the MSE loss between the model prediction and the reference solution

ℒval = 1
𝑁val

𝑁val

∑
𝑖=1

‖DON𝜃(𝑓𝑖) − 𝑢⋆
𝑖 ‖2.

As observed in Figure 7.4, employing the solution loss in the in-loop strategy achieves a perfor-
mance comparable to the baseline DeepONet model, with a slight improvement seen at a look-ahead
size of 5. For the solution loss with a look-ahead size of 1, the DeepONet model is theoretically equiv-
alent to the baseline DeepONet model, as they use the same data and loss function.

In contrast, models trained using residual or convergence losses exhibit higher validation losses,
as they do not directly penalize the solution deviation. Larger look-ahead sizes (𝐾 = 3, 5) for the
convergence loss improve the performance of solution prediction in the validation set, yet remain worse
than the baseline model.

Training Cost

Table 7.1 reports the training cost of the in-loop strategy with different look-ahead sizes𝐾, alongside the
conventionally trained baseline DeepONet, where all runs are performed on a single NVIDIA GeForce
RTX 4080 GPU.

The per-epoch training cost and peak memory of the in-loop strategy grows approximately linearly
with the look-ahead size 𝐾 (about 0.032 s and 4.35 MB per extra look-ahead step). The baseline
DeepONet has a lower per-epoch cost and peak memory. For the inference stage, since the trained
DeepONet will be applied separately, there is no difference among the baseline and in-loop strategies.

7.3. Results & Discussion 51

Figure 7.4: Losses on the validation set ℒval of the in-loop strategy with different loss functions (from top to bottom: Solution,
Residual, Convergence loss) and look-ahead sizes 𝐾 ∈ {1, 3, 5}, compared with standard DeepONet training (red).

Table 7.1: Training cost of the in-loop strategy with different look-ahead sizes 𝐾.

Method Time/epoch (s) Peak GPU mem (MB)

In-loop (𝐾 = 1) 0.0510 31.1
In-loop (𝐾 = 2) 0.0869 34.8
In-loop (𝐾 = 3) 0.1205 39.3
In-loop (𝐾 = 4) 0.1552 43.9
In-loop (𝐾 = 5) 0.1808 48.5
Baseline DeepONet 0.01795 19.9

Impact on HINTS Performance

Figure 7.5 illustrates the convergence histories of HINTS adopting the IL strategy using solution, resid-
ual, and convergence losses for the 1D Poisson equation with grid size 𝑛 = 301.

52 7. HINTS-in-the-loop

(a) Solution loss (b) Residual loss

(c) Convergence loss (d) Comparison of best cases

Figure 7.5: Comparison of convergence performance for HINTS using various in-loop training strategies (solution, residual, and
convergence loss). HINTS-Base denotes the baseline HINTS model trained with the MSE loss (Eq. (4.11)) and without using
the in-loop strategy; HINTS-IL𝑘 denotes the model using the in-loop strategy with a look-ahead size 𝐾=𝑘. All experiments are
conducted with the same grid (𝑛 = 301) and the same interval of DeepONet update 𝑛𝑟 = 20

Solution loss When the DeepONet model is trained with the solution loss, all models trained with the
IL strategies perform similarly to the baseline model. Among them, the model trained by the IL strategy
with the look-ahead size 𝐾 = 3 achieves the fastest decay, slightly faster than all other models.

Residual loss Training on the residual loss leads to a pronounced acceleration, with all models
trained with the residual loss achieving faster decay than the baseline model. The model using the
IL strategy with the look-ahead size 𝐾 = 5 achieves the fastest decay and is significantly faster than
the other models using smaller look-ahead sizes 𝐾 = 1, 2, 3, 4.

Convergence loss Using the convergence loss for all look-ahead sizes𝐾 also outperforms the base-
line model. The model using the IL strategy with the look-ahead size 𝐾 = 3 achieves the best perfor-
mance, while performance gains over all other models using the IL strategy are small.

Figure 7.5d reports the best-case comparison for models using different loss functions. The in-loop
model trained with residual loss and look-ahead size 𝐾 = 5 achieves the best performance, followed by
the residual loss with 𝐾 = 2 (”IL2-Residual”) and the convergence loss with 𝐾 = 3 ”IL3-Convergence”.
Although models trained with residual and convergence losses exhibit worse performance in predicting
the solution in the validation set than models using the solution loss, these models significantly out-
perform models using the solution loss in the HINTS framework. Even ”IL1” models trained with the
residual or convergence loss significantly outperform the baseline model. These results indicate that
residual-based objectives are better aligned with the iterative goal of HINTS than the MSE of solutions,
which further facilitates the IL strategy in achieving better performance.

7.3. Results & Discussion 53

Impact on HINTS-MG Performance
We further evaluate the in-loop strategy within the MG-HINTS framework on a 1D Poisson equation
with grid size 𝑛 = 2001. The corresponding results are shown in Figure 7.6. Similar to the pre-compute
strategy, the performance gain introduced by the in-loop strategy in this experiment is limited when
integrated into the HINTS-MG framework.

Figure 7.6: Performance comparison of MG-HINTS using different models trained by in-loop strategies and the classical MG
method.

In summary, the in-loop strategy markedly improves the performance of single-level HINTS when
using residual or convergence losses, reflecting its effectiveness in bridging the data distribution mis-
match problem during the iterative solving stage. However, in the HINTS-MG context, these benefits
become less pronounced.

8
Conclusion

This thesis investigated the HINTS framework [19], a novel, hybrid, and iterative solver that combines
advantages from stationary iterative solvers and the Deep Operator Network (DeepONet) to achieve
faster convergence in solving linear systems derived from partial differential equations (PDEs). Aiming
to further enhance the HINTS framework, our research focused on the following four research questions
with theoretical analysis and numerical experiments.

8.1. Research Questions
Research Question 1: What is the actual performance of HINTS compared with classical stationary
iterative methods?

In Chapter 4, we validated the performance of HINTS through numerical experiments on benchmark
problems. Compared with stationary iterative methods, the HINTS framework exhibits significantly
faster convergence in solving Poisson equations. For challenging indefinite Helmholtz equations, al-
though not robust, the HINTS framework maintained convergence on some problems where stationary
iterative methods diverged and showed better convergence behavior. In addition, the thesis also vali-
dates the performance of HINTS-MG. Comparing the ”smoother-only” strategy with a direct solver on
the coarsest grid , we verified its accelerated performance on Helmholtz equations.

Research Question 2: Why is the HINTS method able to accelerate solving PDEs, and what are its
current limitations?

We explained the iterative process of HINTS from two perspectives: the superposition principle and
neural preconditioning. Within the HINTS framework, the DeepONet can be viewed not only as an
approximation of the solution operator but also as a preconditioner for the Richardson method acting
on low-frequency components of the error. However, two main limitations exist for this approach:

• Spectral bias: As an approximation of the solution operator, the spectral bias of DeepONet pre-
vents it from effectively eliminating error components beyond the low-frequency range. This leads
to the gradual accumulation of mid-frequency error components that cannot be efficiently handled
by either the stationary iterative method or the DeepONet, finally resulting in the ”slow conver-
gence plateau” of HINTS in later iterations.

• Data distribution shift: The accumulation of mid-frequency components leads to a discrepancy
between data distributions in the training and inference stages. The DeepONet is trained on
low-frequency-dominated data, but has to deal with mid-frequency-dominated residuals in the
iterative process of HINTS, resulting in a decline in network performance.

Research Question 3: How can the spectral bias in the DeepONet be mitigated to further enhance
the performance of HINTS?

55

56 8. Conclusion

To mitigate the common issue of spectral bias in deep neural networks, motivated by the anti-frequency
principle, we introduced a penalty on the first-order gradient term during training. This encourages the
DeepONet to prioritize higher-frequency features, thereby improving the overall performance of HINTS.

Research Question 4: How to mitigate the issue of residual distribution shift in the HINTS method?

For the problem of data distribution shift, we introduced the ”HINTS-in-the-loop” training strategy, which
allows themodel to be aware of the actual distribution of residuals in the inference stage, thus improving
the performance of HINTS. Two specific strategies were explored in this thesis:

• Pre-compute: An offline method where a pre-trained DeepONet model is applied in the HINTS
framework and collect actual residual data to fine-tune the model.

• In-loop: An online approach embedding the whole HINTS iterative process as a differentiable,
computational graph, which is then optimized over multiple HINTS steps.

Experiments demonstrated that both strategies can alleviate the problem of data distribution shift
and improve the convergence speed of HINTS.

8.2. Future Work
This thesis has shown several limitations and improvements of the HINTS framework, yet several ques-
tions remain. This section will briefly discuss several directions and questions that were not explored
in this report for future research.

Generalization to other problems The current research was primarily focused on one-dimensional
Poisson equations on structured grids. The next step is to extend these strategies to more complex
problems such as indefinite Helmholtz problems, two- and three-dimensional domains, and unstruc-
tured grids. Besides, for indefinite Helmholtz equations where this study only offered preliminary in-
sights on the relationship between training data quality and robustness, enhancing the robustness of
HINTS on indefinite Helmholtz equations is an important direction for future work.

Improvement of HINTS-MG While the proposed strategies significantly enhanced the performance
of HINTS, their performance gains were limited when used in the HINTS-MG framework. Future re-
search could investigate the robustness issues of HINTS-MG in the Helmholtz problem, analyzing the
conditions that lead to divergence. Beyond improving the smoother within the multigrid framework,
another promising direction is to use DeepONet to learn other components of the multigrid framework,
such as the interpolation and restriction operators [38].

Adaptive Correction and Advanced Network Architectures: The current HINTS framework ap-
plies the DeepONet correction at a fixed interval, as in Zhang et al. [19]. However, as the residual
shifts towards the mid-frequency range in later iterations, the standard DeepONet may become less
effective and even have a negative impact. Future work should explore adaptive strategies to determine
when to use the DeepONet model. This could be complemented by developing specialized networks
for handling mid-frequency errors or by integrating alternative neural operators, such as the Fourier
Neural Operator [15], to enhance performance.

Refinement of the Interpolation Scheme: Following Zhang et al. [19], this thesis adopted the same
linear interpolation to map residuals to sensor points of the DeepONet. Since the accuracy of this pro-
jection directly impacts the network’s input, thus influencing the quality of the subsequent correction. A
systematic investigation into the effects of different interpolation methods is warranted.

In conclusion, this thesis positions HINTS as a substantive bridge between classical solvers and operator-
learning networks. By revealing its convergence plateau, recasting the DeepONet in a neural precondi-
tioning view, and introducing GE-HINTS and HINTS-in-the-loop training strategies, this thesis provides
both mechanistic understanding and practical recipes for accelerating linear PDE solvers. We hope
these insights will aid researchers seeking effective hybrid iterative solvers and will contribute to fur-
ther progress in this area.

A
Declaration

A.1. AI Disclosure Statement
During the preparation of this thesis, the author has utilized ChatGPT to assist with translating, grammar
and spelling checks, and enhancing language. After using this tool, the author thoroughly reviewed,
edited, and revised the content as needed. The author takes full responsibility for the content and
conclusions presented in this thesis.

A.2. Code Availability Statement
The code used to reproduce all the numerical experiments and related algorithms in this thesis will
be publicly available on GitHub at https://github.com/HNU-WYH/HINTS_in_PDEs_Yuhan_Wu
before defense.

57

https://github.com/HNU-WYH/HINTS_in_PDEs_Yuhan_Wu

Bibliography
[1] Anthony T Patera. “A spectral element method for fluid dynamics: laminar flow in a channel ex-

pansion”. In: Journal of computational Physics 54.3 (1984), pp. 468–488.
[2] Singiresu S Rao. The finite element method in engineering. Elsevier, 2010.
[3] Michel Rappaz et al. Numerical modeling in materials science and engineering. Vol. 20. Springer,

2003.
[4] Theodore L Bergman. Fundamentals of heat and mass transfer. John Wiley & Sons, 2011.
[5] Henk A Van der Vorst. Iterative Krylov methods for large linear systems. 13. Cambridge University

Press, 2003.
[6] Oliver G Ernst and Martin J Gander. “Why it is difficult to solve Helmholtz problems with classical

iterative methods”. In: Numerical analysis of multiscale problems (2011), pp. 325–363.
[7] William L Briggs, Van Emden Henson, and Steve F McCormick. A multigrid tutorial. SIAM, 2000.
[8] Radii Petrovich Fedorenko. “A relaxation method for solving elliptic difference equations”. In:

USSR Computational Mathematics and Mathematical Physics 1.4 (1962), pp. 1092–1096.
[9] Youcef Saad andMartin H Schultz. “GMRES: A generalizedminimal residual algorithm for solving

nonsymmetric linear systems”. In: SIAM Journal on scientific and statistical computing 7.3 (1986),
pp. 856–869.

[10] Jonathan Richard Shewchuk et al. “An introduction to the conjugate gradient method without the
agonizing pain”. In: (1994).

[11] Christopher Rackauckas et al. “Universal differential equations for scientific machine learning”.
In: arXiv preprint arXiv:2001.04385 (2020).

[12] George Em Karniadakis et al. “Physics-informed machine learning”. In: Nature Reviews Physics
3.6 (2021), pp. 422–440.

[13] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. “Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations”. In: Journal of Computational physics 378 (2019), pp. 686–707.

[14] Lu Lu et al. “Learning nonlinear operators via DeepONet based on the universal approximation
theorem of operators”. In: Nature machine intelligence 3.3 (2021), pp. 218–229.

[15] Zongyi Li et al. “Fourier neural operator for parametric partial differential equations”. In: arXiv
preprint arXiv:2010.08895 (2020).

[16] Zhi-Qin John Xu, Yaoyu Zhang, and Tao Luo. “Overview frequency principle/spectral bias in deep
learning”. In: Communications on Applied Mathematics and Computation (2024), pp. 1–38.

[17] Sifan Wang, Xinling Yu, and Paris Perdikaris. “When and why PINNs fail to train: A neural tangent
kernel perspective”. In: Journal of Computational Physics 449 (2022), p. 110768.

[18] Sifan Wang, Hanwen Wang, and Paris Perdikaris. “Improved architectures and training algo-
rithms for deep operator networks”. In: Journal of Scientific Computing 92.2 (2022), p. 35.

[19] Enrui Zhang et al. “Blending neural operators and relaxation methods in PDE numerical solvers”.
In: Nature Machine Intelligence (2024), pp. 1–11.

[20] Patrick R Amestoy et al. “A fully asynchronous multifrontal solver using distributed dynamic
scheduling”. In: SIAM Journal on Matrix Analysis and Applications 23.1 (2001), pp. 15–41.

[21] Timothy ADavis. “Algorithm 832: UMFPACKV4. 3—an unsymmetric-patternmultifrontal method”.
In: ACM Transactions on Mathematical Software (TOMS) 30.2 (2004), pp. 196–199.

[22] Olaf Schenk and Klaus Gärtner. “Solving unsymmetric sparse systems of linear equations with
PARDISO”. In: Future Generation Computer Systems 20.3 (2004), pp. 475–487.

59

60 Bibliography

[23] COMSOL BV and COMSOLOY. “COMSOLMultiphysics Reference Guide©COPYRIGHT 1998–
2010 COMSOL AB.” In: (1998).

[24] Yousef Saad. Iterative methods for sparse linear systems. SIAM, 2003.
[25] John Jumper et al. “Highly accurate protein structure prediction with AlphaFold”. In: nature 596.7873

(2021), pp. 583–589.
[26] Peiyuan Jiang et al. “A Review of Yolo algorithm developments”. In: Procedia computer science

199 (2022), pp. 1066–1073.
[27] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural information processing

systems 30 (2017).
[28] Ian Goodfellow et al. Deep learning. Vol. 1. 2. MIT press Cambridge, 2016.
[29] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. “Learning representations by

back-propagating errors”. In: nature 323.6088 (1986), pp. 533–536.
[30] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training deep feedforward neu-

ral networks”. In: Proceedings of the thirteenth international conference on artificial intelligence
and statistics. JMLR Workshop and Conference Proceedings. 2010, pp. 249–256.

[31] Kaiming He et al. “Delving deep into rectifiers: Surpassing human-level performance on imagenet
classification”. In: Proceedings of the IEEE international conference on computer vision. 2015,
pp. 1026–1034.

[32] Ameya D Jagtap, Ehsan Kharazmi, andGeorge EmKarniadakis. “Conservative physics-informed
neural networks on discrete domains for conservation laws: Applications to forward and inverse
problems”. In: Computer Methods in Applied Mechanics and Engineering 365 (2020), p. 113028.

[33] Diederik P Kingma and Jimmy Ba. “Adam: Amethod for stochastic optimization”. In: arXiv preprint
arXiv:1412.6980 (2014).

[34] George Cybenko. “Approximation by superpositions of a sigmoidal function”. In: Mathematics of
control, signals and systems 2.4 (1989), pp. 303–314.

[35] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedforward networks are uni-
versal approximators”. In: Neural networks 2.5 (1989), pp. 359–366.

[36] Moshe Leshno et al. “Multilayer feedforward networks with a nonpolynomial activation function
can approximate any function”. In: Neural networks 6.6 (1993), pp. 861–867.

[37] Tianping Chen and Hong Chen. “Universal approximation to nonlinear operators by neural net-
works with arbitrary activation functions and its application to dynamical systems”. In: IEEE trans-
actions on neural networks 6.4 (1995), pp. 911–917.

[38] Alena Kopaničáková and George Em Karniadakis. “Deeponet based preconditioning strategies
for solving parametric linear systems of equations”. In: SIAM Journal on Scientific Computing
47.1 (2025), pp. C151–C181.

[39] Bar Lerer, Ido Ben-Yair, and Eran Treister. “Multigrid-augmented deep learning for the helmholtz
equation: Better scalability with compact implicit layers”. In: arXiv preprint arXiv:2306.17486
(2023).

[40] Chen Cui et al. “Fourier neural solver for large sparse linear algebraic systems”. In: Mathematics
10.21 (2022), p. 4014.

[41] Yogi A Erlangga, Cornelis Vuik, and Cornelis Willebrordus Oosterlee. “On a class of precondi-
tioners for solving the Helmholtz equation”. In: Applied Numerical Mathematics 50.3-4 (2004),
pp. 409–425.

[42] Vandana Dwarka and Cornelis Vuik. “Scalable convergence using two-level deflation precondi-
tioning for the Helmholtz equation”. In: SIAM Journal on Scientific Computing 42.2 (2020), A901–
A928.

[43] Jinqiang Chen, Vandana Dwarka, and Cornelis Vuik. “A matrix-free parallel two-level deflation
preconditioner for two-dimensional heterogeneous Helmholtz problems”. In: Journal of Compu-
tational Physics 514 (2024), p. 113264.

Bibliography 61

[44] Matthias Seeger. “Gaussian processes for machine learning”. In: International journal of neural
systems 14.02 (2004), pp. 69–106.

[45] Lawrence C Evans. Partial differential equations. Vol. 19. American Mathematical Society, 2022.
[46] Vladislav Trifonov et al. “Learning from linear algebra: A graph neural network approach to pre-

conditioner design for conjugate gradient solvers”. In: arXiv preprint arXiv:2405.15557 (2024).
[47] Paul Häusner, Ozan Öktem, and Jens Sjölund. “Neural incomplete factorization: learning pre-

conditioners for the conjugate gradient method”. In: arXiv preprint arXiv:2305.16368 (2023).
[48] Yichen Li et al. “Learning preconditioners for conjugate gradient PDE solvers”. In: International

Conference on Machine Learning. PMLR. 2023, pp. 19425–19439.
[49] Michael F Hutchinson. “A stochastic estimator of the trace of the influence matrix for Laplacian

smoothing splines”. In: Communications in Statistics-Simulation and Computation 18.3 (1989),
pp. 1059–1076.

[50] Chao Ma, Lei Wu, et al. “Machine learning from a continuous viewpoint, I”. In: Science China
Mathematics 63.11 (2020), pp. 2233–2266.

[51] L Lu et al. A deep learning library for solving differential equations. 2020.
[52] Kiwon Um et al. “Solver-in-the-loop: Learning from differentiable physics to interact with iterative

pde-solvers”. In: Advances in neural information processing systems 33 (2020), pp. 6111–6122.

	Introduction
	Numerical Methods for Solving Linear Systems
	Direct Methods
	Stationary Iterative Methods
	Richardson Method
	Jacobi and Gauss-Seidel Methods

	Multigrid Method
	Krylov Subspace Methods
	Conjugate Gradient Method (CG)
	Generalized Minimal Residual Method (GMRES)

	Introduction to Deep Operator Networks
	Neural Networks
	Structure
	Training
	Universal Approximation Theorem
	Spectral Bias

	Deep Operator Networks
	Universal Approximation Theorem for Operators
	Network Architecture of DeepONet

	Introduction to HINTS
	Benchmark Problem Setup
	The General Framework of HINTS
	Introduction to the HINTS-MG
	Algorithm
	Coarsest-Grid Strategy

	Training Procedure of DeepONet for HINTS
	Data Generation
	Data Preprocessing for the Helmholtz Problem
	Network Architecture Design
	Loss Function
	Training Configuration and Results

	Numerical Results Validation and Discussion
	Performance of HINTS
	Performance of HINTS-MG

	Convergence Analysis of HINTS
	Slow Convergence Plateau in HINTS
	The Principle of Superposition and Operator Approximation in HINTS
	Error-Residual Equation in Linear PDEs
	DeepONet as an Inverse Operator and Spectral Bias
	Distribution Shift during Iterations

	Spectral Radius of the DeepONet-based Preconditioner
	Spectral Loss in Neural Preconditioning
	DeepONet-based Preconditioner in HINTS
	Spectral loss of DeepONet-based Preconditioner
	Performance of Low-frequency-focused loss

	Gradient-Enhanced HINTS (GE-HINTS)
	Motivation and the Anti-Frequency Principle
	Gradient-Enhanced Loss of DeepONet
	Results & Discussion
	Performance of Gradient-Enhanced HINTS
	Performance of Gradient-Enhanced MG-HINTS

	HINTS-in-the-loop
	Offline Pre-compute Strategy
	Algorithm
	Limitations

	Online In-loop Strategy
	Algorithm
	Loss Functions

	Results & Discussion
	Offline Pre-Compute Strategy
	Online In-loop Strategy

	Conclusion
	Research Questions
	Future Work

	Declaration
	AI Disclosure Statement
	Code Availability Statement

