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Abstract

Magnetic resonance imaging (MRI) is often used to obtain qualitative images of the
human brain. Different kinds of tissues can be recognised from the different levels of
contrast. Multi-echo spin-echo T2 MR measurements can be used to obtain a quantitative
map of the brain where different tissues or components can be recognised based on a
certain tissue property, the T2 relaxation time this case. This quantitative approach is
also called parameter mapping. Multi-component parameter mapping makes it possible to
determine the concentrations of different tissues inside a certain region, this is mainly used
for the determination of the myelin water fraction. Myelin is a substance present in low
concentrations in the brain and can be related to certain neurodegenerative autoimmune
diseases.
Magnetic resonance fingerprinting (MRF) provides a new way to such qualitative mea-
surements. An advantage is that MRF is sensitive to both T1 and T2 relaxation times,
making it possible to distinguish more types of tissues. The drawback is, however, that
more combinations of the parameters are possible, leading to a more difficult problem
with longer computation times.
In this project a new method to perform a multi-component analysis in MRF and multi-
echo spin-echo T2 measurements is developed, which is faster and less sensitive to noise
than previous methods. The algorithm that is developed in this project, is called Sparsity
Promoting Iterative Joint Non-negative least squares (SPIJN). It finds a small number of
components throughout the region of interest without assumptions about the number
of components or their relaxation times by imposing a joint sparsity constraint. This
new method is compared to previously published methods in both numerical simulations
and in vivo experiments. The multi-component decomposition for brain data results in
meaningful structures on first sight, although further research would be required on the
meaning of the matched components. Moreover, the algorithm has been used for the
calculation of the myelin water fraction from multi-echo spin-echo T2 data. The obtained
maps are comparable to state-of-the-art methods, show improvements in some cases and
have significantly shorter computation times.





Zusammenfassung

Magnetresonanztomographie (MRT) wird häufig verwendet um qualitative Bilder des
menschlichen Gehirns zu machen. Verschiedene Gewebearten kann man durch die ver-
schiedenen Helligkeitsstufen unterscheiden. Multi-Echo Spin-Echo T2 MRT Messungen
können verwendet werden um bestimmte Gewebearten zu identifizieren, in diesem Fall
die T2 Relaxationszeit. Dieser quantitative Ansatz wird “parameter mapping” genannt.
Mehrkomponenten parameter mapping ermöglicht es die Konzentration von verschiede-
nen Geweben in einer Region zu bestimmen. Dies wird hauptsächlich dazu verwendet
um den Myelin-Wasseranteil zu bestimmen. Myeline ist eine Substanz die in niedrigen
Konzentrationen im Gehirn vorkommt und relevant für die Diagnose von bestimmten
neurodegenerativen Autoimmunerkrankungen ist.
Magnetresonanz-Fingerprinting (MRF) ist eine neue Methode um solche qualitativen Mes-
sungen durchzuführen. Ein Vorteil von MRF ist, dass sowohl T1 und T2 Relatationszeiten
betracht werden und so mehr verschiedene Gewebearten unterschieden werden können.
Ein Problem dabei sind allerdings die komplexeren und länger dauernden Berechnungen,
durch die erhöhte Anzahl an Kombinationen der Parameter.
In diesem Projekt wird eine neue Methode für diese Mehrkomponentenanalyse bei
MRF und Multi-Echo Spin-Echo T2 Messungen entwickelt, die schneller ist und weniger
rauschempfindlich als bisherige Methoden. Der Algorithmus der in diesem Projekt en-
twickelt wurde heißt “Sparsity Promoting Iterative Joint Non-negative least squares”
(SPIJN). Durch die Verwendung einer gemeinsamen Sparsity-Nebenbedingung findet
er eine kleine Anzahl an Komponenten im Interessenbereich ohne Annahmen über die
Anzahl der Komponenten oder deren Relaxationszeiten zu machen. Die vorgeschlagene
Methode wird mit bestehenden Methoden in numerischen Simulationen und in vivo Ex-
perimenten verglichen. Die Multikomponenten-Dekomposition von MRF-Daten erzeugt
auf den ersten Blick plausible Strukturen, deren Interpretation weiterer Forschungsarbeit
bedarf. Der Algorithmus wurde weiterhin verwendet, um den Myelin-Wasseranteil aus
Multi-Echo Spin-Echo T2 zu berechnen. Die erzeugten Bilder werden mit den Ergebnissen
der aktuellen Vergleichsmethoden verglichen und zeigen dabei Verbesserungen bei deutlich
reduzierten Berechnungszeiten.



Samenvatting

Magnetic resonance imaging wordt vaak gebruikt om kwalitatieve afbeeldingen van de
hersenen te maken, waarbij verschillende soorten weefsels verschillende contrasten laten
zien. Multi-echo spin-echo T2 metingen kunnen gebruikt worden om een kwalitatieve
weergave van de hersenen te verkrijgen, waarbij de verschillende soorten weefsel herkend
kunnen worden op basis van een bepaalde weefsel eigenschap, de T2-relaxatietijd in
dit geval. Deze kwalitatieve aanpak wordt ook wel parameter mapping genoemd. Een
meerdere componenten parameter mapping maakt het mogelijk om de concentratie van
verschillende weefsels in een bepaald gebied te bepalen. Dit wordt voornamelijk gebruikt
voor het bepalen van de myelinewaterfractie. myeline is een stofje dat in lage concentraties
voorkomt in de hersenen en dat gerelateerd is aan bepaalde neurodegeneratieve auto-
immuunziekten.
MR Fingerprinting (MRF) biedt een nieuwe mogelijkheid om een dergelijke meerdere
componenten analyse uit te voeren. Een voordeel is dat MRF zowel gevoelig is voor T1

als T2 relaxatie tijden en daardoor meer soorten weefsel kan onderscheiden. Het nadeel is
echter dat meer parameter combinaties mogelijk zijn, waardoor het op te lossen probleem
lastiger wordt, met langere rekentijden als gevolg.
In dit project is een nieuwe methode om een meerdere componenten analyse uit te voeren
voor MRF en multi-echo spin-echo T2 metingen gëıntroduceerd. De methode is sneller en
minder gevoelig voor ruis dan eerder voorgestelde methodes. Het algoritme ontwikkelt in
dit project heet Sparsity Promoting Iterative Joint Non-negative least squares (SPIJN).
Het algoritme zoekt een klein aantal componenten in het interessegebied, zonder verdere
aannames over het aantal of de relaxatietijden van de componenten, door het opleggen
van een gezamenlijke ijlheidsbeperking. In nummerieke simulaties en in vivo metingen is
de voorgestelde aanpak vergeleken met eerder gepubliceerde methoden. De decompositie
voor de MRF hersenmetingen laat enkele herkenbare structuren zien, alhoewel meer
onderzoek nodig is om een zekere mate van toeval hierbij uit te sluiten. Het algoritme is
ook toegepast voor het berekenen van de myelinewaterfractie op basis van T2 relaxatie
metingen. De verkregen afbeeldingen zijn vergelijkbaar met gebruikelijke methoden, laten
in sommige gevallen verbeterde resultaten zien en de rekentijden zijn aanzienlijk korter
dan met de gebruikelijke algoritmes.



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Theory and related work 5

2.1 Magnetic Resonance Imaging . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Magnetic fields and longitudinal and transverse relaxation . . . . 5

2.1.2 Gradient and spin echo, flip angle, echo time and repetition time 6

2.1.3 Measuring a signal, weighting, k-space and undersampling . . . . 8

2.2 The human brain in MRI . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Magnetic resonance relaxometry imaging . . . . . . . . . . . . . . . . . 11

2.4 Exponential multi-component analysis . . . . . . . . . . . . . . . . . . . 12

2.5 Magnetic Resonance Fingerprinting . . . . . . . . . . . . . . . . . . . . . 13

2.5.1 Single component matching . . . . . . . . . . . . . . . . . . . . . 16

2.5.2 Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5.3 Connection to relaxometry and Inversion Recovery balanced
Steady State Free Precession . . . . . . . . . . . . . . . . . . . . 17

2.6 Multi-component analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6.1 Voxel-by-voxel multi-component analysis . . . . . . . . . . . . . . 19

2.6.2 Joint sparsity approach . . . . . . . . . . . . . . . . . . . . . . . . 21

2.7 T2 multi-component analysis algorithms . . . . . . . . . . . . . . . . . . 23

2.7.1 T2NNLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.7.2 Spatial regularisation . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.7.3 Relaxation-Relaxation Correlation Spectroscopic Imaging . . . . 24

2.7.4 B1-compensated regularised NNLS . . . . . . . . . . . . . . . . . 25

2.7.5 B1-compensation and spatial smoothing . . . . . . . . . . . . . . 25

2.7.6 Multi-Gaussian models . . . . . . . . . . . . . . . . . . . . . . . . 26

2.7.7 Fixed dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.7.8 GAP-MRF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.7.9 Not dictionary based T2 relaxation multi-component methods . . 26

3 Numerical methods 29

3.1 Signal preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 From complex to real signals . . . . . . . . . . . . . . . . . . . . . 29



3.1.2 Image masking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.3 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.4 Overview of algorithms . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Voxel-by-voxel methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.1 Non-negative least squares algorithm . . . . . . . . . . . . . . . . 36
3.2.2 Bayesian approach . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.3 Reweighted `1-norm regularisation . . . . . . . . . . . . . . . . . 41
3.2.4 Non-Negative Orthogonal Matching Pursuit . . . . . . . . . . . . 43
3.2.5 SNNOMP-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Joint sparsity methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.1 Joint sparsity using NNOMP . . . . . . . . . . . . . . . . . . . . 47
3.3.2 Sparsity Promoting Iterative Joint NNLS (SPIJN) . . . . . . . . 49
3.3.3 Regrouped approach . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.4 Search around . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.5 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Fixed parameters for large dictionaries . . . . . . . . . . . . . . . . . . . 56

4 Experiments and results 59
4.1 Simulations voxel-by-voxel methods . . . . . . . . . . . . . . . . . . . . 59
4.2 Simulations joint methods . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3 Numerical simulations with three components . . . . . . . . . . . . . . . 74
4.4 Phantom measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.5 In vivo measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5.1 In vivo T2 measurements . . . . . . . . . . . . . . . . . . . . . . . 82
4.5.2 In vivo MRF measurements . . . . . . . . . . . . . . . . . . . . . 90

4.6 Further remarks and results on the joint algorithms . . . . . . . . . . . 100
4.6.1 Speed up the algorithms . . . . . . . . . . . . . . . . . . . . . . . 100
4.6.2 Regularisation parameter of the SPIJN algorithm . . . . . . . . . 101
4.6.3 Finding a joint basis with unrestricted basis signals . . . . . . . . 106

5 Discussion 109
5.1 Voxel-by-voxel methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.2 Joint methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2.1 JNNOMP and JRNNOMP . . . . . . . . . . . . . . . . . . . . . . 112
5.2.2 Sparsity promoting iterative joint non-negative least squares . . . 113

5.3 Joint sparsity constraint or a smooth spectrum . . . . . . . . . . . . . . 115
5.4 MRF compared to T2 relaxation . . . . . . . . . . . . . . . . . . . . . . . 116

6 Conclusions 117

Bibliography 126

A Appendix 127
A.1 Simulated images results T2 . . . . . . . . . . . . . . . . . . . . . . . . . 127



1. Introduction

This chapter gives an overview of the general setting of this thesis. Starting with the
motivation and the general problem which is attempted to solve, followed by the objective
this leads to, finished by an outline of the following chapters.

1.1. Motivation

The main objective of diagnostic imaging is to gain information about certain structures
in the body and visualise this information as an interpretable image. Magnetic resonance
imaging (MRI) offers a non-invasive method to produce two- or three-dimensional images
of the body. Compared to computed tomography, MRI has a better soft tissue contrast,
which makes it more applicable for usage in the brain or on other organs.
Regular MR images show different contrasts for different tissues, which is then used to
distinguish the different tissues. In a medical setting one tries to determine abnormalities
from these images. These images thus only offer a qualitative way to gain information on
the tissues.
One method which provides more quantitative information on the tissue types present in
the studied part of the body is MR fingerprinting (MRF). MRF measures a signal for a
certain area and then tries to recognise the tissue type which could be emitting such a
signal. Such a volume is called a voxel with a typical size of 1× 1× 3 mm3.
Typically a voxel contains more than one tissue, which leads to the partial volume effect.
The measured signal for the voxel is then formed by the mixture of the tissues present in
the volume. More information could thus be gained if it would be possible to recognise
the presence of multiple components (or tissues) present in one voxel and to indicate
the fractions in which these are present. Developing and testing effective and efficient
methods to do so will be the main goal of this thesis.
Being able to recognise the different tissues can be useful in several settings. In the brain
the axons of some nerve cells are surrounded by a fatty substance called myelin. Myelin
is related to brain development and essential for the functioning of the nerve system and
therefore the loss of myelin (demyelination) can be related to certain neurodegenerative
autoimmune diseases. Since myelin is never the mainly present component, it can only be
“seen” with multi-component methods. Being able to quantify the amount of myelin, could
lead to clinical improvements and earlier diagnoses. MR measurements are considered to
be sensitive for the water surrounding the myelin and therefore it is possible to determine
the myelin water fraction (MWF) from certain MR measurements [1, 2, 3, 4].
A second application in the brain would be the ability to get more information about the
border zone between grey and white matter, for example cortical dysplasia causes a slight
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grey- white matter blurring. A third clinical application is in the field of prostate cancer,
making it possible to get more insight how a tumour interacts with the surrounding
tissue. Aside from these examples there could be applications in muscles and more fields.
Multi-echo spin-echo T2 measurements, also known as T2 relaxation measurements, mea-
sures the relaxation of the transverse magnetisation for a certain time. The problem
setting to perform a T2 multi-component analysis based on this data, is comparable to
the MRF setting and for the kinds of applications just mentioned multi-echo spin-echo T2

measurements are currently used. Since MRF is sensitive to a combination of transverse
(T2) and longitudinal (T1) relaxation times, MRF would be able to recognise more tissues,
which would be necessary to distinguish white and grey matter.

1.2. Objective

The combination of MR fingerprinting and multi-component analysis is relatively new,
but some first approaches have been published [5, 6]. In these papers two methods have
been investigated to perform a multi-component analysis. An exhaustive analysis of the
different possible methods to perform a multi component analysis will be given in this
thesis. In the previous papers a voxel-by-voxel approach is used, gaining no advantage of
the information contained by the other voxels.
The current methods have relatively long computation times. With computation times of
1 to 10 seconds for a single voxel, the multi-component analysis will take hours for a single
slice and is therefore not practically applicable. A second drawback of the published
methods is that their results are hard to interpret. The resulting multi-component
matching uses a few components for each voxel, but hundreds for a complete slice of the
human brain. This makes it very hard to interpret the results and therefore requires
smart grouping strategies [7], which requires extra assumptions about the present tissues
and adds extra processing steps and time.
In this project a joint sparsity constraint will be introduced and algorithms to efficiently
solve the resulting minimisation problem will be developed. To do so, insights from
voxel-wise methods and joint-sparsity algorithms will be combined and where necessary
adapted to our problem setting which requires non-negative solutions and is based on
highly correlated dictionaries. The introduction of the joint sparsity constraint should
lead to easier interpretable results, without introducing an extra bias.
Multiple component analyses have been performed in many different ways for T2 re-
laxation [8, 9, 10, 11, 12], these methods have been investigated for a long time. It is
therefore useful to look into the methods used here and how these can be used in the
MRF case. The current state-of-the-art methods for multi-component T2 mapping have
high computation times as well, especially when compensation for B1 inhomogeneities are
included. Computation times of half an hour per slice can be considered as a bottleneck
for clinical applications. Since the multi-echo spin-echo T2 multi-component analysis is
closely related to MRF multi-component analysis the joint sparsity algorithms can be
applied to these measurements as well to compare the developed algorithm in a more

2 Master Thesis, TU Berlin, Scientific Computing, 2018
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mature field.
This project will use a combination of simulations and in vivo measurements to test the
current and proposed methods. Beside this, the application to undersampled measure-
ments will be considered. In the single component problem setting MRF is very robust
against the artefacts caused by undersampling. If the multiple component methods are
also robust against undersampling the measurements can be performed faster, which
makes clinical usage more likely. The developed methods will be applied to the field of
T2 multi-component analysis and myelin water mapping as well.
The aim of this work is thus to find a fast, stable algorithm to perform a multi-component
analysis with MRF and multi-echo spin-echo T2 measurements, with results which are
easy to interpret. The way to reach this goal would be by introducing a joint sparsity
constraint. A clear application of such an algorithm is in the field of myelin water
mapping, but there are also potentially more applications like prostate T2 mapping,
which would benefit from a fast and reliable multi-component analysis method.

1.3. Outline

Chapter 2 gives an introduction to MRI and will build up to the problem setting which is
considered in this project. The introduction to MRI will aim at introducing the necessary
concepts to understand the main topics of this project. To make it easier to interpret the
results as presented later, a short description about the human brain in MRI is included.
This is followed by the introduction of MR relaxometry, enabling the mapping of T1,
T1ρ, T2 or T ∗2 , and exponential T2 multi-component analysis. After discussing these
established methods, the main concepts of MR Fingerprinting are introduced, which can
then be combined with multi-component analysis. This leads to several minimisation
problems which are studied in the rest of the thesis. In the last section specific T2

mapping methods are named to give an overview of this field, without discussing them in
detail.
In Chapter 3 the different numerical methods used in this thesis are discussed in detail. It
starts with some methods to pre-process the data. This is followed by the voxel-by-voxel
algorithms which will be discussed in detail since they will often be used for comparisons
and insights from these methods were used in the rest of the thesis.
Section 3.3 is dedicated to different algorithms which incorporate the information of all
the voxels by introducing the joint sparsity constraint. This section could therefore be
considered as the core of this thesis. In this section two new algorithms are proposed:
the Sparsity Promoting Iterative Joint Non-negative least squares (SPIJN) and Joint
Regularised Non-Negative Orthogonal Matching Pursuit (JRNNOMP). In this joint
approach several modifications are considered such as a segmentation, based on the
mainly present tissue types followed by a regrouping and a relaxation of the number of
components, by selecting better similar combinations of relaxation times.
After discussing several possible methods, these are investigated in detail in Chapter 4. It
starts with a comparison between several voxel-by-voxel methods and the proposed joint
sparsity approaches in a numerical simulation including two components. Afterwards

Master Thesis, TU Berlin, Scientific Computing, 2018 3
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simulations are performed with three components where one component is intended to
represent myelin water.
The most promising methods are then applied to a phantom and in vivo measurement
with and without undersampling for MRF measurements. Beside that the results are
shown for the SPIJN algorithm applied to multi-echo spin-echo T2 measurements and
compared to a state-of-the-art method for myelin water mapping.
In Chapter 5 first the different voxel-by-voxel methods are discussed in detail, followed
up by the joint sparsity methods where most attention is paid to the SPIJN algorithm.
This is followed by a more general discussion of the effects of the assumption of a smooth
T2 spectrum compared to the introduction of the joint sparsity constraint.
The last chapter gives the conclusions of this project combined with a short recommen-
dations on which next steps could be made.

4 Master Thesis, TU Berlin, Scientific Computing, 2018



2. Theory and related work

This chapter will give an overview of the necessary theory and relevant related work. It
starts with the basic principles of Magnetic Resonance Imaging (MRI) in Section 2.1,
addressing the most important concepts. After the introduction of these basic concepts,
Section 2.2 is dedicated to MRI in combination with the human brain. This is followed by
the introduction of MR parameter mapping and multi-component analysis (Sections 2.3
and 2.4). After this Magnetic Resonance Fingerprinting (MRF) is introduced in Section
2.5and how it provides a quantitative mapping, focusing on the parts of MRF which are
relevant later on. In Section 2.6 a mathematical problem setting of multi-component
analysis is given, in the single pixel case as well as in the case where all pixels in the
image are considered at once .
The chapter ends with Section 2.7 giving an overview of current methods used for T2

multi-component analysis and a few words on MRF multi-component analysis methods
not addressed in this project.

2.1. Magnetic Resonance Imaging

Magnetic resonance imaging is based on the alignment of the hydrogen nuclei (protons)
in the body within a strong magnetic field and the possibility to excite these protons
to a higher energy state. MRI measures how the hydrogen nuclei slowly return to their
equilibrium state, parallel to the magnetic field. This section will give a short introduction
with the important subjects necessary to understand the work done in this project. No
attempt to give a complete overview has been made here, a more elaborate description
can be found in e.g. [13].

2.1.1. Magnetic fields and longitudinal and transverse relaxation

The human body is mainly composed of water molecules. These water molecules consist
of two hydrogen nuclei (protons) and one oxygen atom. The hydrogen nuclei act as little
magnets when placed in a magnetic field and just as the needle of the compass they
will try to align with the magnetic field. When the human body is placed in a strong
magnetic field B0 (typically 1 to 7 Tesla) a small part of the protons present in the body
align with the field. Placing the body in such a strong magnetic field does not do any
harm to the tissue, which is an advantage of MRI over other imaging methods.
When the protons are aligned to the magnetic field a net magnetisation M0 in the
direction of the field is formed. It is possible to apply an extra magnetic field B1, in a
perpendicular direction to the main magnetic field. If this extra field is only turned on
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for a short time, it can be seen as a radio-frequency (RF) pulse. One can choose the ω
frequency of a RF-pulse. The protons with this resonance frequency ω are excited to a
state which is not aligned with the main magnetic field any more. This so called Larmor
frequency ω is linearly depending on the strength of the main magnetic field B0:

ω = γB0, (2.1)

where γ is the gyromagnetic ratio. Before the RF pulse the net magnetisation of the
protons is in the z-direction, the RF pulse tips the net magnetisation away from the
z-axis with a certain flip angle α. Since the RF pulse is a electromagnetic pulse, it is a
magnetic field as well, which can be denoted as B1.
The time it takes to return to the equilibrium state is related to the longitudinal relaxation
time T1, this exponential behaviour can be described as

Mz(t) = M0 − (M0 −Mz(0))e−t/T1 (2.2)

where Mz(t) is the magnetisation in the z direction over time and M0 the magnetisation
in the equilibrium state. The value of this longitudinal relaxation time T1 is different
for different tissues, since the molecules surrounding the water molecules influence the
relaxation time. Water molecules which are able to freely flow around have very long
relaxation times, water molecules surrounded by fat molecules have very short relaxation
times in general. It is good to mention that the value of T1 also depends on the strength
of the magnetic field.
When the RF pulse has just been applied the nuclear spins of the protons are rotating
nicely in sync and together they have a magnetisation in the xy plane Mxy(0). At the
beginning all the spins thus have the same phase and they rotate with the same frequency.
However, after some time the proton spins start to get out of phase, leading to a decay
in the Mxy magnetisation. This decay also behaves exponentially

Mxy(t) = Mxy(0)e−t/T2 , (2.3)

where T2 is the transverse relaxation time. This transverse relaxation time depends
on the type of tissue and the molecules surrounding the water molecules, just as the
longitudinal relaxation time.
In any case the restriction holds that T2 ≤ 2T1 [14], but in almost all cases T1 is
greater than T2 and typically T1 is a order of 10 larger than T2. In the beginning of
a measurement typically T2 is dominant and when the transverse magnetisation has
disappeared T1 becomes increasingly important.
Unless explicitly stated differently the T1 and T2 relaxation times are in milliseconds.

2.1.2. Gradient and spin echo, flip angle, echo time and repetition time

The RF-pulse as mentioned in the previous section pushes the net magnetisation out of
the equilibrium state away from the z-axis with a certain angle. This angle with which
the proton spins are rotated, is called the flip angle.
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Figure 2.1.: The pulse sequence diagram for a gradient-echo sequence. RF is the used
RF pulse, Slice is the signal used to select the slice of interest, phase is used
for the phase encoding and readout corresponds to the gradient signal and
Echo shows the effective signal. The diagram is from [15]

The MR scanner can only measure the magnetisation in the transverse plane, however,
this magnetisation decays very rapidly with T ∗2 . To be possible to measure the magneti-
sation, the transverse magnetisation needs to be refocused forming an echo. This can
either be a gradient echo or a spin echo. The echo time TE is the moment at which the
magnetisation is refocused again or an echo occurs.
A gradient echo uses magnetic field gradients to refocus the magnetisation. The pulse
sequence to perform such a gradient-echo is shown in Figure 2.1. The refocused magneti-
sation is only available for a short time during which only a small amount of data can
be acquired. Therefore the pulse sequence in Figure 2.1 usually needs to be repeated
multiple time to obtain a whole image. The repetition time TR is illustrated as well,
which is the time between applying two successive RF pulses.
In a spin echo pulse sequence, initially a 90 degree pulse is applied to tip the magnetisa-

tion to the transverse place, after which a 180 degrees pulse is applied at time TE/2 ,
which changes the direction of the precision leading to refocusing in the signal (a spin
echo) at time TE . A pulse sequence diagram for a spin-echo scheme is shown in Figure
2.2. The spin echo pulse reverts the dephasing because of B0 field inhomogeneity effects
and creates an echo after time TE from the peak of the RF pulse.
It is also possible to measure the signal several times by sending multiple echo pulses,

possibly preceded by an RF pulse corresponding to a certain flip angle, leading to a
sequence of measurements. When several echos are created in the spin-echo scheme with
only one 90 degree RF pulse, a multi-echo spin-echo measurement is performed. The
normal choice is a constant echoing time, resulting in measurement of the measurement of
the exponentially decaying Mxy magnetisation with the relaxation time T2 with constant
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Figure 2.2.: The pulse sequence diagram for a spin-echo sequence. RF is the used RF
pulse, Slice is the signal used to select the slice of interest, phase is used for
the phase encoding and readout corresponds to the gradient signal and Echo
shows the effective signal. The signal decays exponentially with T2. The
diagram is from [15]

time intervals between the measurements.
A situation in which the RF-pulse as represented by the B1-field is not completely
homogeneous can occur. B1 inhomogeneity arises because the RF power is absorbed
differently across the patient, due to the changing permittivity and conductivity of tissues
and standing waves in tissues. This causes a variable flip angle across the patient. This
will be called the flip angle inhomogeneity (FAI) and is expressed as the ratio between
the effective flip angle and the intended flip angle. Since these inhomogeneities lead to an
RF-pulse which is not exactly at the resonance frequency, this is also called off-resonance
compensation.

2.1.3. Measuring a signal, weighting, k-space and undersampling

The measurement of a signal is based on the electric signal which is induced in a coil when
the magnetisation changes. The change in the magnetic field, which is caused by the
relaxation of the proton spins, creates an electrical signal in a coil dictated by Faraday’s
law, this effect is known as induction and can easily be measured. This measured signal

can then be related to the magnetisation M =
√
M2
z +M2

x,y of the protons.

This measured signal gives information about the state of the protons at the moment
of the measurement. The behaviour of the protons is, as described earlier, depending
on T1 and T2. As can be seen in equations 2.2 and 2.3 the measurement time t, which
corresponds to TR and TE respectively, the initial value of Mz(0) and Mxy(0) determine
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the outcome of the measurement and the respective influence of T1 and T2. When a
large t is used, the resulting image will mainly be determined by the T1 value and is thus
called T1-weighted. When a small t is used and approximately Mz(0) = 0 the resulting
image will mainly be determined by the T2 value and is thus T2 weighted.
When no further measures are taken in the measurement process, the protons in the
entire measured area would be excited and influencing the signal, making it impossible to
recognise different areas. The measured signal would be an average of the whole volume
and would not be spatially resolved. To be able to select certain volumes, methods as
slice selection, phase encoding and frequency encoding are used. In these methods the
magnetic field changes with a certain gradient throughout the area, making it possible
to selectively excite certain areas corresponding to their Larmor frequency ω. After the
slice encoding used during the excitation pulse, frequency and phase encoding are used
to measure only a certain (x, y) location in the slice.
So instead of measuring the total magnetisation of the area over time, one tries to measure
the magnetisation of certain areas by using the afore mentioned methods. As a result
of this, one does not directly measure the magnetisation M(x, y) in the area of interest
but the 2D Fourier transform of the signal, which can then be transformed back to the
magnetisation M(x, y). This measured 2D Fourier transform is measured in the so-called
k-space. The k-space can be considered as a grid with the same size as the image. To
be able to fully reconstruct the image, the full k-space needs to be sampled. This can
be done in several ways, for example in a Cartesian manner or using a spiral or radial
trajectories.
One way to speed-up the measurements is by using undersampling [16], which will be
explained here briefly. To reproduce a signal of N time-points, one needs a Fourier
transformed signal of N time-points as well, which is known as the Nyquist–Shannon
sampling theorem. The low frequencies give the general shape of the signal and the higher
frequencies represent the details of the signal and by removing a part of the Fourier
transform certain details will be lost. To fully reconstruct the image the same number of
points in k-space is needed as the number of pixels. When one only measures a part of
the k-space, the k-space is called undersampled. The inverse Fourier transform can still
be used to obtain an image based on the undersampled data, the image will, however,
contain aliasing artefacts because of the undersampling.

2.2. The human brain in MRI

As mentioned in the introduction, the different tissues in the brain play a central role in
this thesis. In this section a short background about the different tissues recognised in
the brain will be given, including their relaxation times.
In MRI typically 3 main components (tissues/fluids) can be recognised from T1- or
T2-weighted images. Figure 2.3 shows a brain measurement, with the different parts
annotated as follows; 1) grey matter, 2) white matter and 3) cerebrospinal fluid (CSF).
Grey matter is typically located at the outer parts of the brain and white matter more
to the centre, the centre of the brain is however formed by the CSF. An important
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4

Figure 2.3.: A brain image from an MRF measurement to show the different tissues. Grey
matter is annotated with 1, white matter with 2 and CSF with 3.

difference between white and grey matter is the presence of myelin in the white matter.
Myelin is a fatty substance surrounding nerve cell axons [17], which plays a role in the
communication between nerve cells. Since myelin is never the main component present
in a certain area, it is hard to detect.
In Figure 2.3 a vessel is annotated with 4, because of the blood flow different behaviour
is observed in this region. As explained in the previous section MR imaging is sensitive
to protons or water present in the field of view (FOV). Typically three groups of water
are recognised in the brain: free water which has very high relaxation times of several
seconds since the water molecules are not bound, intra- and extra-cellular water which
is the water in and surrounding the cells and as a third myelin water (MW), the water
surrounding the myelin. Intra- and extra-cellular water is found in both grey and white
matter. Since the myelin water is bound to the fatty myelin, the relaxation times of
myelin are assumed to be short (10-15ms).
Table 2.1 gives an overview of relaxation times in the brain from the database of tissue
properties [18] based on published measurements. This overview mainly contains white
and grey matter relaxation times. In general white matter has shorter relaxation times
than grey matter. The relaxation times as mentioned here were not taking multi-
component effects into account, which means that the white matter included myelin,
possibly leading to lower relaxation times. Since myelin can not be measured in a pure
form, its relaxation times are difficult to measure. In general T2 ≤ 40 ms is considered to
belong to myelin water. An estimate of the relaxation times of myelin at 1.5T are given
in [19] as T1 = 63ms and T2 = 13ms.
The myelin water fraction (MWF) gives the fraction of myelin water compared to the
total amount of water in a certain area. An overview of techniques to determine this

10 Master Thesis, TU Berlin, Scientific Computing, 2018



Martijn Nagtegaal Multi-component MR parameter mapping

Table 2.1.: An overview of relaxation times [ms] from [18]. The tables include the number
of literature values taken into consideration.

(a) T1 relaxation times at 1.5T.

Average Std # measurement Min Max

Grey matter 1260.82 178.4 8 1096.5 1531

White matter 999.85 443.3 7 612 1587

CSF 4627.25 788.1 2 4070 5185

(b) T1 relaxation times at 3.0T.

Average Std # measurement Min Max

Grey matter 1433.2 186.0 5 1275 1763

White matter 866.9 95.3 5 812 1110

(c) T2 relaxation times at 1.5T.

Average Std # measurement Min Max

Grey matter 109.4 52.9 4 77.9 217

White matter 112.3 82.9 4 66.2 282

(d) T2 relaxation times at 3.0T.

Average Std # measurement Min Max

Grey matter 92.6 16.9 5 66 110

White matter 60.8 13.1 4 49.5 79.6

are given in [20]. The measured cerebral white matter MWF is typically around 10% for
a healthy subject. In [20] an overview of MWF values is given, ranging from 6.9% to
15.6% (and one outlier of 29.5%) for 1.5T and 10.2% to 13.4% for 3.0 T.
The human brain is very interesting, but many things are still unknown, therefore it
can be easier to test new ideas on a more predictable object. Such an object is called a
phantom. This phantom consists of known structures and the measurement outcome is
therefore predictable and easier to verify. The phantom can be very similar to a human
head or have a simpler shape. It is also possible to use a numerical phantom, making
comparisons even more flexible. Numerical phantoms similar to a brain are available,
but do normally not contain myelin water.

2.3. Magnetic resonance relaxometry imaging

As explained in the previous section conventional MRI offers a way to get a qualitative
image where the image can be weighted for either T1 or T2 or a combination of the
two, to make it possible to recognise which different tissues are present in the image by
looking for intensity differences caused by their difference in T1 and T2. The information
obtained is thus qualitative on a voxel level.
After the pulse which excites the tissue, the magnetisation intensity decays exponentially
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over time. This exponential decay can be measured by measuring the magnetisation
intensity at different moments in time. Depending on the measurement type, the
exponential T1, T ∗2 or T2 decay can be measured. This idea forms the principle of
magnetic resonance relaxometry imaging [21, 22], also called parameter mapping. The
used measurement type for T2 is called a multi-echo spin-echo measurement.
The measured exponential decay is fitted to an exponential curve exp(−t/T2), where the
T2-value which represents the exponential decay the best is determined. By measuring
this exponential decay for all voxels over time it is possible to acquire several time signals
which can each be matched to a certain T2 value, giving a way to qualitative distinguish
different tissues.
When this qualitative parameter mapping is performed it becomes more important to
take certain effects such as the B1 or FAI inhomogeneities into account, as shortly
mentioned in Section 2.1.2. For multi-echo spin-echo measurements B1 inhomogeneities
cause deviation from the exponential decay, which can lead to large errors.

2.4. Exponential multi-component analysis

In the previous section the idea of T2 mapping has been introduced, where a mono-
exponential signal is fitted to the measured multi-echo spin-echo signal. This approach
assumes that only one tissue is present in each voxel. This is, however, often not the
case [23] and it is therefore more realistic to assume that multiple exponential curves are
present in one signal and thus possibly multiple tissues are present in one voxel. Therefore
a multi-exponential fit is performed [8, 24] determining a spectrum of relaxation times.
Determining a spectrum of relaxation times can be relevant in many physical applications
as described in [25]. To be able to discuss different methods in the next chapter, a more
theoretical setting will be given.
When the signal x(t) is assumed to be formed by a combination of exponentially decaying
curves with some noise ε, the signal can be described by

x(ti) = xi =

∫ Tmax

Tmin

c(T ) exp(−ti/T )dT + εi , i = 1, 2, ...M, (2.4)

where M data points xi are measured at M different times ti and c(T ) is the (unknown)
distribution of relaxation times T2 [8]. The spectrum of c(T ) can either consist of several
delta peaks or be a smooth distribution.
To discretize the system, it is assumed that the system can be written in the following
form:

c(T ) =

N∑
j=1

cjδ(T − Tj), (2.5)

where Tj are different relaxation times distributed over the interval [Tmin, Tmax]. It is
then possible to write eq. (2.4) as

xi =

N∑
j=1

cj exp(−ti/Tj). (2.6)
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This formulation can be rewritten as the matrix vector product x = Dc + ε, where D
is a matrix containing the signals as columns, thus with elements Dij = exp(−ti/Tj).
This matrix is called a dictionary and can also contain different types of signals, as will
be discussed later in the case of MR Fingerprinting. The vectors x and c contain the
measured signal and the weights for each component respectively. The goal is thus to
find a vector c which approaches the original distribution c(T ) as correct as possible.
The different methods used to find a solution for this problem are discussed in Chapter 3.
Since the exponential signals for similar relaxation times are very hard to distinguish,
the demands on the initial signal to noise ratio (iSNR or SNR) is rather high and lies
between 500 and 1000 for conventional methods [26], where the iSNR is defined as the
signal to noise ratio in the first echo.

Multi-component analysis and partial volume effect

With the introduction of multi-component analysis it is good to explain the difference
between the partial volume effect and the multi-component problem. The partial volume
effect means that the voxel which is taken into consideration is a combination of two
different volumes or tissues with a clear border between them. In a simplistic case the
left part of the voxel could contain white matter and the right part grey matter. It is
thus not considered that the different tissues are mixed.
Multi-component analysis covers a broader setting than the partial volume effect and
includes the case where two tissues are mixed, for example myelin and white matter or a
gradual transition between tissues.

2.5. Magnetic Resonance Fingerprinting

Magnetic Resonance Fingerprinting (MRF) has been introduced in 2013 by Ma et al. [27].
MRF provides a way to obtain quantitative information about the tissues or materials
and their properties present in the scanned region. The aim is to identify the properties of
each pixel or voxel present in the scanned region by identifying it as a certain combination
of tissue properties. MRF is an approach to quantitative MRI, where a multi-parameter
mapping is performed by measuring the signal evolution as a response to a pulse sequence
with constantly varying acquisition parameters in a transient state measurement.
Instead of performing one measurement with a certain combination of flip angle and
repetition time as in regular MRI, a series of measurements is taken in time, with varying
acquisition parameters, i.e. flip angles and/or repetition times. The idea in this method
is that each tissue or material reacts in a different way to this sequence of measurement
parameters. This sequence of measurement settings should be chosen in a way that each
tissue reacts as different as possible. Two flip angles sequences which will be used in this
project are shown in Figure 2.4.
Performing an MRF measurement using a certain MRF sequence thus results in a set of

images taken at different times with different measurement parameters. Typically a few
hundred images are taken and for each voxel a signal can be obtained from the series
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(a) A sequence of length 500, the phase angle
is constant 0◦.
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(b) A sequence of length 200, the phase angle
is alternating between 0◦ and 180◦.

Figure 2.4.: Two possible MRF sequences of length 500 and 200. A repetition time of
15 ms has been used. The sequences will be referenced as MRF500 and
MRF200.

of images. Each tissue can be characterised by its tissue properties as the longitudinal
relaxation time T1, the transverse relaxation time T2 and other properties as diffusion,
which are not considered in the parameter sets used here. Combined with the system
parameters as the B0 and B1 magnetic fields and possible inhomogeneities, it is possible
to calculate the signal response to an MRF sequence for different combinations of tissue
and system properties. The expected behaviour for several combinations of tissue and
system parameters can be calculated, these combinations form the building blocks for
a dictionary of signal evolutions. The so called dictionary is formed by these atoms,
each corresponding to a different combination of parameters. The calculation of these
dictionaries has already been implemented and will thus not be discussed much further.
When a measured signal is equal (or close) to a dictionary signal, the T1 and T2 values of
the corresponding voxel can be concluded, in Section 2.5.1 this is discussed in more detail.
This process of finding the corresponding dictionary atoms is called matching and a an
the maximum inner product is used to do so. This choice for performing the parameter
mapping in MRF has historical reasons, since the idea was adopted from using learned
dictionaries in compressed sensing reconstruction for MR parameter mapping [28], where
orthogonal matching pursuit (OMP) was used to find a sparse representation of a signal
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Figure 2.5.: Simulated signal evolution curves for four different relaxation time combina-
tions.

evolution in a model-based dictionary. In MRF the dictionary learning step is omitted
and the training data itself is used as a dictionary, reducing the signal representation to
a single step of the OMP algorithm which is finding the dictionary atom with the largest
inner product with the test signal.
In Figure 2.5 different simulated signal evolutions curves are shown. A dictionary can

contain many atoms and, as can be seen in Figure 2.5, the corresponding signals have
different shapes and they are more different than the exponential signals as measured
with a multi-echo spin-echo measurement. When the T1 and T2 values are close to
each other, the signals will become similar, just as with exponential signals with close
relaxation times. The number of dictionary atoms can differ largely, in the introducing
paper 563,784 [27] atoms were used, but for different implementations smaller dictionaries
have been tried. In the introducing paper the off-resonance frequency was included as a
characteristic system parameter.
Using the above described method, MRF provides a new way to perform quantitative
imaging measuring multiple tissue properties at the same time. The matching as described
above is essentially the first iteration of a model based compressed sensing reconstruction.
For spatio-temporally incoherent sampling and long sequences undersampled data can be
used for the matching, which gives a great improvement in the acquisition time. In the
general case on may need an iterative reconstruction [29].

Master Thesis, TU Berlin, Scientific Computing, 2018 15



Multi-component MR parameter mapping Martijn Nagtegaal

2.5.1. Single component matching

In the introducing paper [27] a simple pattern recognition algorithm was used to find
a single component. With a single component matching a process is meant in which
each pixel is matched to one dictionary atom. This simple pattern recognition algorithm
is based on the inner products between the measured signal and the calculated signals.
For each pixel a complex signal x ∈ CM consisting of M time points is measured. The
complete dictionary can be written as the matrix D := [d1,d2, ...,dN ] ∈ CM×N , where N
is the number of different parameter combinations. For N sets of characteristic parameters
the time signals di ∈ CM (i = 1, 2, ...N) are calculated and normalised to ‖di‖2 = 1. The
dot product between the measured time signal and the simulated dictionary entries gives
a measure of the similarity between x and each di. This results in the matching formula:

i∗ := arg max
i∈{1,2,...N}

|di · x∗|, (2.7)

where i∗ is the index of the matched dictionary atom and x∗ is the Hermitian conjugate
of x. This method has proven to give good results and has a certain degree of tolerance
for errors, as long as these errors are incoherent in time[30]. In Figure 2.6 the T1 and T2

maps from a single component matching are shown, which give an idea of the possibilities
of MRF.

Single component T1 map
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(a) T1 single component mapping.
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(b) T2 single component mapping.

Figure 2.6.: A single component mapping, based on the noise sequence of length 200.

2.5.2. Compression

The signal evolutions are usually compressible in the temporal direction and it is therefore
possible to compress the time signals of length M (typically 200-1000) to a length k
(typically 20 to 40), which allows speed-up in the vector-dot product with a small error.
The main method to do this compression is by using a singular value decomposition
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(SVD) as introduced by McGivney et al. for MRF [31].
The compression using an SVD is performed in the following way. First the SVD of the
transposed dictionary DT is determined,

DT = UΣV ∗ (2.8)

where Σ is a matrix with the singular values of DT on the diagonal ordered nonincreasingly,
the columns of U contain the left singular vectors of DT and similarly V the right singular
vectors. The matrices U and V are complex unitary matrices. When DT is real valued,
the SVD is also real valued. The rank of the matrix D is denoted by r and thus the first
r columns of V form an orthogonal basis for the rows of DT . By taking only the first k
right singular vectors of D a compression matrix Vk can be formed, which compresses
the dictionary D to a lower-dimensional matrix

DVk =: DT
k ∈ CN×k. (2.9)

The compression matrix can also be used to compress the measured time signal x to a
compressed signal of length k:

xk := xVk. (2.10)

Using the property that V is a unitary matrix, the product VkV
∗
k will thus approximate

the identity matrix, the inner product dix can be approximated as diVkV
∗
k x = dikxk,

which results in a small matching error. Since the compression of the dictionary has to be
performed only once, it is efficient to use this compression. Unless explicitly mentioned
differently it can be assumed that the compressed dictionary and signal are used.

2.5.3. Connection to relaxometry and Inversion Recovery balanced Steady
State Free Precession

Just as in the case where a multi-echo spin-echo is performed, multiple measurements
are taken over time in MRF measurements. Where the flip angle and repetition time are
normally varied in the MRF method, the T2 exponential analysis has certain similarities
to MRF. In the general case of MRF more parameters are encoded in the measured signal.
It can therefore be interesting to see how multi-component T2 analysis methods can be
used in the more general MRF setting to develop a general framework which is applicable
to both MRF and T2 multi-component analysis. There are however also methods, which
are specifically designed for exponential signals as discussed in Section 2.7.9.
For a multi-echo spin-echo T2 measurement the shape of the signal is determined by the
T2 relaxation:

S(t) = e−t/T2 , (2.11)

where t is the time and S is the signal. The scaling of the signal is determined by the
spin density.
One method for simultaneous T1 and T2 mapping is Inversion Recovery balanced Steady
State Free Precession (IR-bSSFP)[32, 33]. In this measurement a fixed flip angle α and
repetition time TR are used, but precessed by an RF-pulse with flip angle −α/2 and
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repetition time TR/2. This preparation pulse makes sure that the resulting signal is
exponential. As shown in [22] the measured signal encodes the T1 and T2 relaxation
times. Signal S(t) can be described by:

S(t) = Sstst

[
1− INV · exp

(
− t

T ∗1

)]
, (2.12a)

T ∗1 =

(
1

T1
cos2 α

2
+

1

T2
sin2 α

2

)−1

, (2.12b)

INV = 1 +
sin α

2

sinα

[(
T1

T2
+ 1

)
− cosα ·

(
T1

T2
− 1

)]
, (2.12c)

Sstst =
M0 sinα(

T1
T2

+ 1
)
− cosα ·

(
T1
T2
− 1
) , (2.12d)

where M0 is the proton density. When α = 180◦ the signal reduces to (2.11) with a
scaling of −M0, although this might not seem directly clear. The signal thus only depends
on the T1, T2 and M0 values and forms a step from the T2 single parameter mapping
and the multi parameter mapping as in MRF.
In the paper [34] the IR-bSSFP sequence with a constant flip angle was used to perform
a multi-component analysis for T ∗1 . The inversion recovery balanced SSFP sequence was
therefore considered as well in this thesis, since it forms a step between the exponential
signal only depending on T2 and the complicated sequences used in MRF decoding T1 and
T2. Instead of distinguishing T ∗1 values it was attempted to recover the underlying T1 and
T2 combination. However, it turned out while performing simulations that the IR-bSSFP
was not usable for multi-component analysis distinguishing between both T1 and T2

instead of only T ∗1 . This result is discussed in a conference abstract submitted for the
ISMRM (International Society for Magnetic Resonance in Medicine) 2019 conference[35].

2.6. Multi-component analysis

The aim of a multi-component analysis is to recognise the presence of multiple tissues in
one voxel and to determine which tissues are present in the considered volume with the
corresponding intensities of each tissue. As said before, this can be of relevance in several
cases, for example to detect tissues which do not dominate a voxel but are only present
in a low concentration, this would be the case for myelin in white matter. It would also
provide a better way to inspect the boundary zone between white and grey matter.
To perform such a multi-component analysis, the techniques and the dictionary of MRF
can be used. Instead of assuming that the measured signal can be represented by one
single dictionary atom, several dictionary atoms should be used. It is assumed that only
a small number of tissues are present in each voxel. The problem setting in which each
voxel is considered individually is discussed in the following section. Afterwards a more
generalised setting is discussed in which multiple voxels are considered at once. The
methods to solve these problems are discussed in the next chapter.
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In the following sections it is assumed that the dictionary contains many atoms and
the goal would thus be to find the atoms which provide a good representation of the
measured signal. When a small dictionary with only a few atoms [27] would be used, the
problem formulation would stay the same, but the dictionary would be less correlated.
Because of that simpler methods than considered here would probably work.

2.6.1. Voxel-by-voxel multi-component analysis

In this section each voxel is considered independently. The measured temporal signal
evolution for a single voxel is will be denoted as x, which can contain noise. The multi-
component analysis explained in Section 2.4, can be expanded to a multi-parameter
setting:

x(ti) = xi =

∫∫
P
S(p; ti)c(p)dp+ εi , i = 1, 2, ...M, (2.13)

where P is the parameter space, which consists of T1 and T2 values in this project. Similar
as in Section 2.4 it is assumed that the signal x is formed by a linear combination of
different tissues as represented by the dictionary atoms formed by signals corresponding
to the values in the discretised parameter space. Combined with noise e this leads to

x = Dc + e, (2.14)

where D is the dictionary and c a vector containing the weight of each dictionary atom.
The dictionary signals will only approximate the true tissue signals, since a dictionary can
not contain every possible combination of tissue parameters. To deal with the presence
of noise a least squares problem can be formulated:

min
c∈CN

‖x−Dc‖22, (LS)

where D ∈ CM×N is the dictionary. In this formulation the minimal solution can be
complex, which does not represent a proton density or concentration, as sought. Therefore
the solution is restricted to non-negative real values, denoted as R≥0:

min
c∈RN

≥0

‖x−Dc‖22, (NNLS)

where the dictionary D and signal x are expected to be real. It is assumed, as mentioned
earlier, that only a small number K of components should be present in each voxel. This
would lead to following problem formulations:

min
c∈RN

≥0

‖x−Dc‖22 subject to ‖c‖0 ≤ K, (NN`0a)

and

min
c∈RN

≥0

‖c‖0 subject to ‖x−Dc‖22 ≤ ε, (NN`0b)
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where ‖c‖0 denotes the `0 pseudo-norm which counts the number of non-zero elements
in c. The problem formulation (NN`0a) restricts the solution to a maximum number of
components, without any more generalisations and would therefore be the main problem
of interest. However, these problems can in general not be solved easily, since they have
been shown to be NP-hard [36].
The problem (NN`0b) can be simplified by changing from the `0-norm to the `1 norm,
which could then be written as

min
c∈RN

≥0

‖c‖1 subject to ‖x−Dc‖22 ≤ ε. (NN`1)

It has been shown by Donoho [37] that this problem has the same solution as (NN`0b)
when the matrix D is nearly orthonormal. In compressed sensing this is often the case,
since dictionaries are selected based on this property. In the MRF case, the dictionary is
however not close to orthonormal, meaning that there is no guarantee that the solutions
of (NN`0b) and (NN`1) are equivalent.

Regularisation

The constrained `1-norm minimisation problem (NN`1) can be reformulated in its La-
grangian form as a regularised least squares problem:

min
c∈RN

≥0

‖x−Dc‖22 + λ‖c‖1, (NNLS`1)

where λ is a regularisation parameter, determining how much weight is addressed to the
‖c‖1 term and thus how sparse the solution will become. The balancing of λ depends on
the amount of noise present in the signal.
Besides this regularisation other regularisation choices are possible. A general `2 regular-
isation, also called Tikhonov regularisation, can be written as

min
c∈RN

≥0

‖x−Dc‖22 + λ‖Sc‖22, (NNLS`2)

where S is a matrix which alters the way of Tikhonov regularisation. The following
Thikonov regularisations can be achieved in this way:

• Minimising the ”energy” of the spectrum, setting S to be the identity matrix, which
is equivalent to adding the constraint

M∑
j=1

c2
j . (2.15)

• Minimising the energy of the derivative, using a finite difference:

M−1∑
j=1

|cj+1 − cj |2. (2.16)

This regularisation is the common regularisation of choice used in T2NNLS.
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• Minimising the curvature of the spectrum:

M−2∑
j=1

|cj+2 − 2cj+1 − cj |2. (2.17)

This method, called rNNLS, was considered in [38] with the conclusion that the
non regularised method was giving better results.

The first kind of regularisation, where S is the identity matrix is often used to promote
small solutions with respect to the `2-norm. In this setting there is no guarantee that
sparse solutions are favoured over any other solution. The result of this regularisation is
that the energy of the solution is minimised, which can be favourable. Another beneficial
property is that the problem (NNLS`2) can be rewritten as

min
c∈RN

≥0

‖y −Ac‖22, (2.18)

where A =

[
D√
λS

]
and y =

[
x
0N

]
with 0N the zero vector of length N . In this case

general methods used for non-negative least square problems can be used. However, it
results in a matrix A of size (N +M)×N and since N �M the problem is much larger
than the original problem.
A third regularisation is of the form

min
c∈RN

≥0

‖x−Dc‖22 + λ‖c‖21, (NNLS`21)

where the `2-norm is replaced by an `1-norm, but is still squared. This problem can be

rewritten [39] in the form of (2.18), but with A =

[
D√

λ ...
√
λ

]
and y =

[
x
0

]
. This

can be done since

‖c‖21 =

(
N∑
i=1

ci

)
=
[
1 ... 1

]
c (2.19)

for c ≥ 0. Where in the previous regularisation N rows were added to the system, only 1
row is added to the system in this regularisation method, making it computationally less
intensive.

2.6.2. Joint sparsity approach

In the previous section a voxel-wise approach was used. It might however be useful to
consider multiple voxels at once. By doing so, it can be possible to include the assumption
that the region of interest contains only a small number tissues and that the relaxation
times don’t vary too much in one tissue. This core idea can be applied by introducing a
joint sparsity constraint, meaning that all the measured signals can be represented by a
small common group of dictionary atoms.

Master Thesis, TU Berlin, Scientific Computing, 2018 21



Multi-component MR parameter mapping Martijn Nagtegaal

When a set of voxels is considered, the set of measured signals xj (j = 1, ...J), where
J is the number of voxels, can be combined in the matrix X =

[
x1 ... xJ

]
. The

non-negative least squares problem (NNLS) can than be written as a joint problem:

min
C∈RN×J

≥0

‖X −DC‖2F , (JNNLS)

where C is the matrix containing the voxel-wise solutions and ‖·‖2F denotes the Frobenius
norm. Again the assumption that only a small number of components is present in
the solution is made. The resulting problem is known by different names: the joint
sparsity model with common sparse support (JSM-2) [40], the multiple measurement
vector (MMV) problem with a common sparsity profile[41], the simultaneous sparse
approximation problem (SSA) [42, 43] or joint sparse recovery [44]. All these problem
settings, do not contain the non-negativity constraints, which are added here:

min
C∈RN×J

≥0

‖X −DC‖2F subject to: the matrix C has at most K nonzero rows. (SSA)

This means that all of the signals X can be approximated with the fixed set of K
dictionary atoms. The requirement that C has at most K nonzero rows, can also be
written as

‖C‖row−0 := |rowsupp (C)|,

where rowsupp (C) := {ω ∈ Ω : cωk 6= 0 for some k}. This can be written as:

min
C∈RN×J

≥0

‖X −DC‖2F subject to ‖C‖row−0 ≤ K (SSAa)

or in the different form:

min
C∈RN×J

≥0

‖C‖row−0 subject to‖X −DC‖2F ≤ ε. (SSAb)

Since this problem is, just as the (NN`0a) problem, NP hard, it can be interesting to
look into a family of relaxed problems [41, 43]:

min
C∈RN×J

≥0

‖X −DC‖2F + λJp,q(C), (2.20)

where

Jp,q(C) :=

N∑
i=1

 J∑
j=1

|cij |q
p/q

.

Typically p ≤ 1 and q ≥ 1. The row-0 norm is the case where p = 1 and q =∞. This
relaxation family is convex when p, q ≥ 1.
The problem on which will be focused on most (or relaxations of this) can be written as:

min
C∈RN×J

≥0

‖X −DC‖2F + λ
N∑
i

‖ci‖0, (2.21)
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where ci denotes the ith row of C.
The problem formulations 2.20 and SSAa lead to multiple directions to find a joint
solution for a larger set of voxels. Methods to do so will be discussed in the next chapter.

2.7. T2 multi-component analysis algorithms

In this section several algorithms which are not implemented in this project are discussed,
to give a more complete overview of the field.
Exponential T2 multi-component analysis methods have been applied for a long time
[8, 26, 45, 46]. In the T2 approach it is assumed in general that the T2 values are
distributed as a smooth spectrum, where in the here discussed approach it is assumed
that the T2 spectrum is sparse. The smoothness assumption is based on the thought
that the relaxation times vary naturally and do not have exactly one value. Adding the
smoothness also gives a better posed problem, making the problem solving more robust.
At the same time the final result is often that the smooth peaks which are found are
grouped as one, only noting the mean relaxation time of the grouped peak, leading to a
sparse interpretation in the end.

2.7.1. T2NNLS

When an exponential multiple component analysis is performed, several methods are
possible. A general method is the T2NNLS [8, 47, 26] method based on the NNLS
algorithm where the total energy of the derivative of the spectrum is minimised, which is
the same as a Tikhonov regularisation as NNLS`2. The regularisation is used to smooth
the results and to prevent a too sparse solution, containing only some peaks. The value
of the regularisation parameter is chosen based on the value of the misfit

χ2 =

M∑
i=1

(xi − x̃i)2

σ2
, (2.22)

where x̃ is the approximated solution and σ the standard deviation of the noise. The
goal is then to find a λ such that

χ2 = M + x
√

2M

with 0 ≤ x ≤ 1 and where M is the number of time points measured. In this method the
absolute value of the signal is used, since the exponential decay is assumed to return a
positive, real signal. If one wants to use compression, the absolute value of the signal
should be taken before the compression. However, the use of compression is less necessary
because of the shorter time signals used in relaxography.
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2.7.2. Spatial regularisation

In the previously introduced joint problem setting information of all the voxels is used,
without considering the spatial location of the voxels. It is also be possible to only use
the information from neighbouring voxels and the components present in these voxels,
instead of using all voxels.
One method used for T2 relaxation multiple component analysis is proposed in [9], where
it is assumed that the distributions of relaxation times in neighbouring voxels are similar.
The spatially regularised NNLS problem is introduced as follows:

min
c∈RN

≥0

‖x−Dc‖22 + λ‖Sc− p‖22, (2.23)

where p is the a priori spectrum. The a-priori spectrum used in [9] is the average over
the spectra of the 8 closest pixels and the pixels itself when the (NNLS`2) has been
solved for a smooth spectrum. For the regularisation matrix S the identity matrix has
been used. Using this Thikhonov regularisation leads to a smooth spectrum of relaxation
times. This is different from the problem settings on which the focus lies in this thesis,
since the proposed methods in this thesis are searching for a sparse solution, instead of a
smooth spectrum. To include this spatial regularisation either one should search for a
smooth solution or use a relatively coarse dictionary, making it more likely that solution
in the neighbouring pixels contain the same dictionary atoms.

2.7.3. Relaxation-Relaxation Correlation Spectroscopic Imaging

In the paper [48] a comparable method is proposed, using a 2 dimensional parameter
space consisting of the T1 and T2 relaxation times and addressing all the voxels at once
instead of performing one iteration in the method of [9]. Although the method is not
explicitly applied to MRF measurements, it uses a 2D parameter space just as MRF.
The proposed method is called Relaxation-Relaxation Correlation Spectroscopic Imaging
(RR-CSI). The problem is formulated as

{c1, c2, ..., cJ} = arg min
{ci∈RN

≥0}
J
i=1

[
J∑
i=1

ti‖xi −Dci‖22 + λ
∑
l∈∆i

‖ci − cl‖22

]
, (2.24)

where ti is either 0 or 1 and indicates whether a voxel is taken into account or not.
The ∆i gives the set of neighbouring voxels. This problem is solved with an alternating
directions method of multipliers (ADMM) algorithm. No notions about the computation
times are made, but from the method as mentioned in [9] it is known that the method is
computationally rather expensive, which is expected here as well, but unconfirmed.
In [48] results are shown for MRI scans of the brain, where they find a smooth spectrum
consisting of 6 peaks, which are translated to six components. Four components are
located around T1 = 1s, T2 = 100ms, one component coupled to myelin is located
around T1 = 100ms and T2 = 10ms and the last component seems to resemble CSF
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around T1 = 2s and T2 = 300ms. It is noted here that the relaxation times of these
two last components do not correspond to the relaxation times reported in different
literature[4, 49].

2.7.4. B1-compensated regularised NNLS

One of the first papers which includes the correction for B1 inhomogeneities is [10]
by Prasloski et al.. This algorithm will be referred to as B1-compensated regNNLS.
The extended phase graph (EPG) [50] is used to calculate the signal evolution for a
given B1 variation (noted as A ) for different T2 evolutions. In the matching a range of
logarithmically spaced T2 values from 10ms to 2s is used. The algorithm is applied voxel
wise and works as follows:

1. Determine the B1 correction value A

a) T2 dictionaries for eight different A values are calculated.

b) For each of the eight dictionaries a NNLS multi-component matching is
performed.

c) For each matching and A value the sum of squares (SoS) of the residuals is
determined.

d) A smooth curve along the A and SoS values is determined.

e) The optimal A Â is determined from this smooth curve.

2. Â is used to compute a dictionary for this B1 correction value.

3. Using regularised T2NNLS a multi-component matching is performed.

In each of the T2NNLS computation steps the regularisation as in equation 2.16 is used.
The regularisation parameter is determined with the method as discussed in Section 2.7.1
based on the χ2 value. The regularisation parameter is determined independently for
each voxel, making it necessary to use the NNLS algorithm with different regularisation
parameters several times per voxel.
Besides this, the algorithm is relatively slow since the T2 dictionaries with different B1

compensation are calculated in each iteration. It would probably lead to a significant
speed-up when the T2 dictionaries with a range of B1 values would be calculated on
forehand.

2.7.5. B1-compensation and spatial smoothing

A method similar to the method in Section 2.7.3 for T2 relaxation is proposed in [12]
and followed up by [51], where this method includes the correction of B1 errors using
extended phase graphs. This method thus proposes a combination of spatial and temporal
regularisation and correction for flip angle inhomogeneities, caused by B1. The processing
of full brain data (80× 80× 64 voxels) took 15-16 hours using Matlab on a computer
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with 5 cores and 32 GB RAM.

2.7.6. Multi-Gaussian models

Some other methods assuming spatially smooth T2 spectra have been published as well.
A spatially constrained Multi-Gaussian model for T2 relaxation is proposed in [11]. The
computation time for 8 slices with 256 × 256 pixels is reported to take 1.2 hours in
this implementation. Another Bayesian method has been proposed in [52] reporting a
processing time of 5 hours for the same problem size.

2.7.7. Fixed dictionary

The first approach to a multi-component decomposition was proposed in the supplemental
material of the original MRF paper [27]. It was proposed to use a dictionary D with only
3 dictionary atoms. The decomposition was then determined as c = D†x, where D† is
the pseudo inverse of D and thus giving the least square solution. This approach is very
sensitive to the assumptions on the chosen relaxation times for the dictionary atoms.

2.7.8. GAP-MRF

An arXiv preprint [53] came on-line in the second half of this project proposing a greedy
approximate projection algorithm for MRF with partial volumes. This method aims at
finding a few signals representing the different pure tissues. The five resulting tissues
are white- and grey matter, CSF, muscle and fat tissue. These five components, forming
the dictionary, are determined through a Greedy algorithm. In this algorithm the Bloch
equations are solved several times, to take different combinations of T1 and T2 into
account. As indicated by the term partial volume, this method is mainly focusing on
components which are somewhere present in a pure form and is thus not sensitive to
myelin water.

2.7.9. Not dictionary based T2 relaxation multi-component methods

EASI-SM A method which is specifically aimed at exponential signals is the EASI-
SM (Exponential Analysis via System Identification using Steiglitz-McBride) algorithm
[54, 55, 56]. The EASI-SM tries to find the appropriate T2 values to be used to form the
dictionary, which is a difference with the T2NNLS method, where the T2 values forming
the dictionary are chosen on forehand. This algorithm is compared in [57] to the T2NNLS
algorithm and it is shown to give better results. This method uses a voxel-by-voxel
approach and does not include information about neighbouring voxel.

mcDESPOT A specific method used to find two components and therefore aimed at
the determination of the myelin water fraction is called mcDESPOT (multicomponent
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driven equilibrium single pulse observation of T1/T2) [58]. This multi-component method
assumes that the signal can be decomposed to two underlying species, a fast relaxing and
a slow relaxing component. These two components are sought in two pools of possible
values using a non-linear least squares fitting, making it relatively dependent on the
initial conditions. As a result T1, T2 and a fraction for the fast and slow component are
found for each voxel. The fraction of the fast component is normally seen as the myelin
water fraction.
In [59] a comparison between the T2NNLS and mcDESPOT method is made. The
conclusion here is that the resulting MWF maps can not be compared one-to-one and
that the myelin fractions are higher in the mcDESPOT method than in the T2NNLS
method.
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3. Numerical methods

Based on the different problem settings as given in Chapter 2 the main methods to
perform a multi-component matching on an MR fingerprinting signal are addressed. This
chapter starts with an intermezzo about the preparation of the signals in Section 3.1, this
includes the change from complex to real signals and the decision concerning which pixels
relevant. Afterwards different methods for voxel-by-voxel analysis are discussed in Section
3.2 and algorithms including the joint sparsity constraint in Section 3.3. This chapter
ends with a short remark how to include the compensation of flip angle inhomogeneities
or other inhomogeneities in the region of interest in Section 3.4.

3.1. Signal preparation

For certain algorithms it can be necessary to first restructure or slightly change the
measured signals. This will be explained in this section.

3.1.1. From complex to real signals

The measured and simulated signals are in general complex valued, as discussed in Section
2.1. The algorithms discussed in the following sections are however not always able to
deal with complex signals and dictionaries, especially when non-negative solutions are
sought. To overcome this difficulty, it is necessary to transform each complex valued
signal to a real valued signal. In this section it will be discussed how to perform such a
transformation, without losing useful properties.
As discussed before, caused by the MR techniques and properties, each measured voxel
signal is rotated with a voxel dependent angle. This angle φ is caused by several factors
and is therefore difficult to calculate, but is assumed to be constant for each voxel over
time. The signal x can thus be written as

x = eiφxr, (3.1)

where xr is the signal without the phase shift. In the single component matching, this
phase shift is no problem since the constant phase shift does not influence the inner
product.
A first approach would be to take the absolute value of each signal and use that as input
for the used algorithms. However, when the dictionary signals are partly negative, which
is normally the case, the order of summation of the signals and taking the absolute value
influences the outcome, which is not a desired behaviour. For example when two summed
signals contain 1 and -1 at a certain time point, the sum would be 0, but the absolute
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Figure 3.1.: The distribution (dotted) in the complex plane of a rescaled, measured signal
of length 200, before rotation to the real axis (a) and after rotation (b) .

sum would be 2, leading to completely different results.
A second approach would be to split the complex signal in its real and imaginary part
and to combine it in to one vector of length 2M . However, this approach does neither
result in a behaviour similar to a complex method and it would mean that the length of
the signals would become twice as long, increasing the calculation times.
It is however possible to make the step from a complex signal to a real signal in a different
way, the idea of this approach can be seen in the notation as in equation (3.1). When an
angle φ can be determined such that xr is dominantly real-valued, taking the real values
of xr would give all the desired properties.
In Figure 3.1a the distribution in the complex plane of a rescaled, measured signal is
shown. As can be seen the measured values are approximately on one line in the complex
plane, with a certain angle φ. This φ can be used to determine the rotation axis, which is
rotated to the real axis. In Figure 3.1b the distribution of the corrected signal is shown.
The rotation angle has been determined using the newly introduced algorithm 1. In

determining this rotation angle a possible problem is that the signal can either be alter-
nating with a phase of 180 degrees or not, it is relatively easy to detect this and thus to
compensate for this.
If the signal xr is completely non-negative, the signal x is completely located in one half
of the complex plane. It is then possible to determine the rotation angle by taking the
mean of the phases of the original signals. When the signal x is not located in one half
of the complex plane, this leads to an error in the determined angle. A short example
would help here again, if half of the signal is 1 and the other half -1, the resulting average
phase will be π (or −π) which is clearly incorrect.
This can be prevented by first flipping the signal to one half of the complex plane. The
flipping to the other complex halve is equivalent to a multiplication by -1 and is performed
in line 7 of the algorithm. To perform this flipping a flipping angle α is determined,
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which is used to divide the complex plane in two halves.
This flipping angle is a rough guess of an angle which is far away from the rotation angle
and therefore the mean phase of the signal is fine for an alternating signal and for a
non-alternating signal, this angle is rotated by 90 degrees.
After flipping the signal, the phases should be close to each other and close to the rotation
angle. When the rotation angle is however close to π (or −π), taking the mean angle
can give wrong results. To explain this a bit better, an example will be given. Assume
that the phase of a signal is slightly smaller than π, a small amount of noise can cause a
part (one quarter for example) of the phases to be π + ε, which corresponds to a phase
of −π + ε since the phase is always between −π and π. Assuming that one fourth of
the signal has a phase of −π + ε and the rest π, the resulting average phase will be 1

2π,
which is not the expected phase of −π.
When this problem occurs the whole signal can better be flipped, leading to a rotation
angle close to 0, which is done in line 10. When the rotation angle has been determined,

Algorithm 1 Algorithm to find the rotation angle

INPUT: x - a complex signal
OUTPUT: φ - the phase to rotate x to the real axis

1: α← mean(angle(x))
2: if signal is not alternating then α← α+ π

2
3: end if
4: n← len(x)
5: for i in range(n) do:
6: if α ≤ angle(x[i]) ≤ 2π − α then
7: x[i]← −x[i] . Flip the signal
8: end if
9: end for

10: if angle(x) is close to π then x← −x
11: end if
12: φ← mean(angle(x))
13: return φ

the real signal can be determined as

xr = Re(e−iφx). (3.2)

In this step it is assumed that the complex part of the signal only contains noise.
There is however one problem in this approach. It might be that the rotation angle φ is π
off, resulting in a sign difference with the true signal. By comparing the determined signal
xr with the simulated dictionary atoms, it is possible to correct for this sign difference.
If most of the dictionary atoms have a large negative inner product with the signal xr it
can be assumed that the rotation angle φ was π off.
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3.1.2. Image masking

Often only the centre of the image contains the relevant information. The rest of the
image can either contain air (in the case of a brain scan) or less interesting tissues and
organs. It can therefore be beneficial to mask these uninteresting areas.
In Figure 3.2a the relative intensity for each pixel is shown of a measurement of the brain,
the signal intensities are calculated as the 2-norm of the signal and it is rescaled such
that the largest signal has value 1. It can be seen that the brain is located in the centre
of the image. The surrounding area contains almost no signal.
The first method to mask the part of the image which contains no information is by
choosing a minimum value of the signal intensity. In Figure 3.2b the pixels with an
intensity below 0.4 are skipped. This leads to a mask where 75% of the pixels are skipped.
It can be seen that the air around the head and the skull are masked, however the tissue
of the outer side of the skull is still considered as relevant.
To mask the surrounding tissue as well, a different method is used. When the resolution of
the image is high enough and the right minimum intensity value is chosen, the surrounding
tissue and the brain should be separated by a masked area. Using the label function
from the scipy.ndimage.measurements package in Python it is possible to identify and
label the different groups of pixels separated by a masked pixels. Using this labelling the
largest group can be selected, which should correspond to the pixels corresponding to
the brain. The result of this is shown in Figure 3.2c.

Signal intensity plot

(a) The original image intensity.

Signal intensity plot

(b) The masked image, pixels with a
relative signal strength below 0.4
are skipped.

Signal intensity plot

0.0

0.2

0.4

0.6

0.8

1.0

(c) The final masked image, only the
largest group is maintained.

Figure 3.2.: The masking procedure of the image. In the final image 81% of the pixels
are skipped.
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3.1.3. Segmentation

When a joint signal approach is used, it is assumed that the signals are similar and the
that the voxels contain similar tissues. When for example the brain is considered different
areas can contain completely different tissue types, only showing the effect of mixture at
the boundaries of these areas. It can therefore be beneficial to segment the image in to
multiple segments, which can be considered sequentially in these joint approaches.
This segmentation can be done using a single component matching with a dictionary
containing only a few atoms. These atoms should represent the main tissues present in
the brain. In Figure 3.3 a segmentation based on three T1, T2 combinations is shown.

Different segments

T1 = 615
T2 = 75

T1 = 1060
T2 = 165

T1 = 1800
T2 = 950

Figure 3.3.: The segmentation of a brain image in three segments.

The selection of the three tissues is however a difficult step. The chosen atoms should
lead to a correct segmentation, where a segmentation is considered to be correct when
each segment only contains a small number of tissues and at the differs from the other
segments. One approach can be to choose a set of tissue parameters based on literature
values or experience, which are used to form this small dictionary.
A different approach is by using information from the single component matching. For
each voxel it is possible to determine which n (in this case 10) dictionary atoms are most
similar to the measured signal. The number of times each of this dictionary atoms is
represented in this top-n is counted, leading to a histogram. Since each atom corresponds
to a combination of T1 and T2 a 3D-representation of the histogram can be retrieved. This
3D-histogram is shown in Figure 3.4. In this distribution it is possible to determine the
local peaks, hopefully representing the main tissues and leading to meaningful segments.
The red dot in Figure 3.4 indicate the selected peaks. The selection of the peaks is in
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this case done by using the maximum filter function from the scipy.ndimage.filters

Python package.
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Figure 3.4.: The distribution of the use of the dictionary atoms as present in the whole
image. The red dots indicate the selected dictionary atoms to be used for
the segmentation.

3.1.4. Overview of algorithms

In the next sections several algorithms which can form the machinery of a multi-component
analysis are discussed. In this section a short of overview of the different methods is
given, to make it easier to keep the general overview.

• Voxel-by-voxel multi-component analysis algorithms

– Non-Negative least squares algorithm (NNLS) of Lawson and Hanson
Section 3.2.1.
NNLS is used to denote this general algorithm to solve a NNLS problem and is
a so-called active set algorithm, which normally tends to give sparse solutions,
with short computation times.

– Bayesian approach from [5] Section 3.2.2.
Is an algorithm based on bayesian statics and a-priori knowledge about the
distributions. To obtain a sparse solution pruning of the dictionary is used
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and for the main solving step a conjugate gradient method is used. To obtain
non-negative solutions the absolute value is taken in the end. The shape
parameters α, β of the distributions and the regularisation parameter needs
to be chosen in this method.

– Reweighed `1-norm regularisation from [6] Section 3.2.3 .
A reweighed `1-norm method is proposed, which uses a log-barrier method
to obtain non-negative result and an interior point method where a Newton
system is solved is used. To obtain sparse solutions the reweighting is of
importance, multiple reweighting schemes are proposed to do so. Again the
regularisation parameter needs to be optimised.

– Non-Negative Orthogonal Matching Pursuit (NNOMP) from [61, 62]
Section 3.2.4. A combination of Orthogonal Matching Pursuit and the NNLS
algorithm can be used to find a basis with a chosen number of components.

– Variants on NNOMP

∗ Support shrinkage NNOMP (SNNOMP)
When an element of the found support is not used any more, it is removed
from the basis. This support shrinkage step also finds a basis with a
pre-set size.

∗ Regularised NNOMP (RNNOMP)
The RNNOMP method expands the found NNOMP basis with one more
element, to check whether this element improves the solution, removing
the least used basis element to retrieve the required basis size again.

• Algorithms including the joint sparsity constraints, developed as part of this thesis

– Joint NNOMP (JNNOMP) based on [42] and NNOMP. Section 3.3.1
This algorithm combines the greedy simultaneous sparse approximation algo-
rithm with the non-negativity restriction.

– Joint RNNOMP (JRNNOMP) based on [63] and NNOMP. Section 3.3.1
This algorithm combines the regularised NNOMP with the non-negativity
restriction.

– Sparsity Promoting Iterative Joint NNLS (SPIJN) a combination of
the NNLS algorithm and `2 reweighting schemes from [64] Section 3.3.2.
This algorithm combines joint sparsity with non-negative least squares by a
joint reweighting scheme.

– Search Around Section 3.3.4
To relax the joint sparsity constraint, relaxation times close to the matched
T1 and T2 are considered to improve the found basis voxel-wise.
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3.2. Voxel-by-voxel methods

In this section several methods to solve the problem (NNLS) or relaxations of this
problem are discussed. Starting with an old, general method, continuing with two
methods designed for the multi-component MRF problem implemented in previously
published papers, followed by two matching pursuit based methods.

3.2.1. Non-negative least squares algorithm

The non-negative least squares method has been introduced by Lawson and Hanson in
1974 [60], where they provided a Fortran implementation1, which lead to it becoming an
often implemented standard non-negative least squares solver. The algorithm is included
in Matlab as lsqnonneg and in Python in the package scipy.optimize as nnls with
the earlier mentioned Fortran implementation. The NNLS algorithm is the most used
algorithm to perform T2 relaxation multiple component analysis [1, 8, 45, 46].
The algorithm has been discussed and rewritten in many papers (e.g. [65, 66, 39]). In
Algorithm 2 the NNLS algorithm is given.
Here D† denotes the pseudo inverse of the matrix D. The notation DP means that the

matrix D is restricted to the columns indicated by the set P and cP indicates that only
the elements of c with indices in P are considered.
The NNLS algorithm is an active set algorithm [67]. This means that the algorithm
searches for a set which is the support of the non-negative least square solution (S)
and a complementary set of active equations (Z). Active refers here to the fact that
∀i ∈ Z : ci = 0 , thus that the equality is active, contrary to ∀i ∈ S ci > 0 which are
the in-active equalities. When this support of the NNLS solution has been found, the
solution to D†Sx must be a positive solution and since the pseudo inverse always results
in a least squares solution, the result is the NNLS solution.
This section continues now with a more structured discussion of the NNLS algorithm.
The algorithm takes as input the dictionary D and signal x and optionally an initial
non-negative solution h to give the algorithm a “warm start”. If no initial solution is
provided, the zero vector is taken as initial solution. The support set and active set can
be determined from the initial solution h, if the initial solution is the 0-vector, the initial
support set is empty.
In line 6 the residual r is determined, which is then used to determine a = DT r =
DT (Dh−x). The vector a is relevant since it is equal to the gradient which is minimised
apart from a factor -2:

f(c) = ‖x−Dc‖22 (3.3a)

f ′(c) = 2DT (Dc− x) (3.3b)

f ′(c)
∣∣
c=h

= −2a. (3.3c)

1The code can be found here https://github.com/scipy/scipy/blob/v0.18.1/scipy/optimize/

nnls/nnls.f
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Algorithm 2 The NNLS algorithm [60]

INPUT:
x - a real valued signal
D - a real valued dictionary
h - a non-negative initial solution (optional)

OUTPUT: c - the non-negative least square solution to (NNLS)

1: if h not provided then
2: h = 0 . Set initial feasible solution
3: end if
4: Z = {i|hi = 0} . Set of active equations
5: S = {i|hi > 0} . Support set of the solution
6: r = x−Dh . Residual
7: a = DT r
8: while |Z| > 0 and ∃i ∈ Z : ai > 0 do . Expand Z by one atom if possible
9: i∗ = arg maxa . The element used for the expansion

10: Z ← Z\i∗
11: S ← S ∪ i∗
12: cS = D†Sx . Find a LS solution within S
13: cZ = 0 . The elements in Z are set to zero
14: while ∃j ∈ S : cj < 0 do . Check if the solution is feasible
15: α = mink∈S hk/(hk − ck)
16: h← h + α(c− h) . Adjust feasible solution
17: Z ← {i|hi = 0} . Update Z
18: S ← {i|hi > 0} . Update S

19: cS = D†Sx . Find new solution
20: cZ = 0
21: end while
22: h← c . Update h to feasible solution c
23: r = x−Dh
24: a = DT r
25: end while
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Since the gradient has to be minimised, it can be seen that the optimal solution has been
found if

ai = 0, i ∈ S (3.4a)

ai < 0, i ∈ Z (3.4b)

holds. When (3.4a) holds the solution found in the set S is an optimal solution, since no
improvements can be made to decrease f(cS). The requirement (3.4b) implies that if ci
(i ∈ Z) would be changed from 0 to a positive value, f(c) would increase since f ′(ci) > 0.
Since a is formed as the product of the dictionary and the residual in line 24, 3.4a will
be fulfilled for all the elements in Z. Line 8 checks then if (3.4b) is fulfilled which means
that the solution c is the optimal solution, if this is not the case, the element which
improves f(h) the most is added to C and removed from Z. With this expanded set S a
new LS solution cS is calculated. It is possible that this LS solution contains negative
elements, which is corrected by the while loop started at line 14.
The value α as picked in line 15 is used to change the feasible solution h such that one
or more positive values in the feasible solution become zero and the set S thus can be
shrunk. The value of α is always positive and corresponds to the element i ∈ S where
the difference hi − ci is relatively the largest compared to hi. The updated hi will then
be zero and i will thus be removed from S, possibly with more elements j ∈ S for which
hj = 0.
After shrinking S a new least squares solution is calculated, which is then checked whether
it is feasible. If this is the case, the feasible solution h is set equal to c and requirement
(3.4a) is thus fulfilled. When ai < 0∀i ∈ Z, the requirement (3.4b) is fulfilled as well and
the algorithm can thus be ended.
To make the algorithm more robust and prevent small c-values the while-conditions in
lines 8 and 14 can be changed to ai > tol and cj < tol respectively.
The convergence of this algorithm can be summarised in the following corollary from
[68], where |S| denotes the number of elements in the set S:

Corollary 3.0.1 Let S be a subset of column indices of the dictionary matrix D such
that |S| = L ≤ N . If the inequalities

(x−DScS)Tdj < 0 ∀j ∈ SC (3.5)

hold for the solution cS ∈ RJ of the restricted NNLS problem over the column subset S,
then all solutions to the general NNLS have their supports contained in S.

Simultaneous NNLS

The use of algorithms to solve joint problems as discussed in Section 2.6.2 will be discussed
in a later section, however a small remark about the NNLS algorithm can be made here.
The NNLS algorithm can be used to solve the (JNNLS) problem, but will not result in
a solution with advantages of a joint solution. To do so the individual columns of X
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are used as input for the NNLS problem resulting in the vectors which combine to the
matrix C.
This can be computationally demanding, because of the pseudoinverses calculated in lines
12 and 19. This step can be made more efficient by saving the computed D†S and reusing
them when the same set S is used. An efficient way of doing so is proposed in [69].

3.2.2. Bayesian approach

In the paper [5] a Bayesian approach to performing a multiple component analysis with
MRF is proposed. In this section the outlines of this method will be given, for more
background the original paper is recommended. The authors mention that the method
is aimed at the problem of partial volumes, where the components in the considered
area have distinct boundaries and not a setting where the components are on a scale
which are smaller than the diffusion distance. No prior knowledge of the individual tissue
components is assumed, thus every tissue in the dictionary is equally likely on forehand.
In a Bayesian approach all the unknowns c are modelled as random variables with
associated probability density functions. Based on that model a posterior density
function is formed, which gives the probability for a certain combination of variables
based on the measured values x. It is then possible to determine which combination of
variables is most likely.
First the construction of the posterior density function will be discussed, followed by the
method to solve the problem. In this method the dictionary and signal can be complex
and therefore the coefficients can be complex too. A non-negative solution is obtained by
taking the absolute value of the found coefficients. All the dictionary signals and the
measured signal are assumed to be normalised.
The posterior density function π(c|x) can be determined using Bayes’ law:

π(c|x) ∝ π(x|c)π(c), (3.6)

where ∝ denotes proportionality. First the likelihood density π(x|c) can be determined.
Assuming that the variable c is known, the probability for a certain measured signal with
Gaussian noise with a constant variance is given by

π(x|c) ∝ exp

(
− 1

2σ2
‖x−Dc‖22

)
. (3.7)

The values cj are assumed to be independent and normally distributed with zero mean
and variance θj . The prior density is

π(c) =
detT

−1/2
θ

2π
exp

(
−1

2
‖T−1/2

θ c‖2
)
, (3.8)

with the covariance matrix Tθ = diag(θ1, ..., θN ). Since the variance is unknown as well,
this is modelled as a collection of random variables as well. These are assumed to be
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distributed according to a Gamma distribution with shape and scale parameters α and β
respectively as:

π(θj) ∝ θα−1
j exp

(
−θj
β

)
. (3.9)

Using Bayes’ formula the posterior density function can be written as:

π(c,θ|x) ∝ exp

− 1

2σ2
‖x−Dc‖22 −

1

2
‖T−1/2

θ c‖2 − 1

β

N∑
j=1

θj −
(
α− 3

2

) N∑
j=1

log θj

 .

(3.10)
To determine which x and θ are most likely, the posterior density function (3.10) needs
to be maximised, which is equivalent to minimising the negative logarithm of (3.10).
This leads to the Bayesian minimisation problem:

arg min
c,θ

 1

2σ2
‖x−Dc‖22 +

1

2
‖T−1/2

θ c‖2 +
1

β

N∑
j=1

θj +

(
α− 3

2

) N∑
j=1

log θj

 . (3.11)

A solution to this problem is determined is by alternatingly solving for θ and c. The
initial solution is set to be the zero vector (c(0) = 0) and the initial dictionary the
complete dictionary (D(0) = D). The variance can be updated through an analytic
solution each iteration k:

θ
(k)
j = β

η +

(
(c

(k−1)
j )2

2β
+ η2

)1/2
 , (3.12)

where η = (α − 3/2)/2. The next step is to solve for c(k) with fixed θ. To do so, a
conjugate gradient method for least squares2 with prior conditioning and a change of
variables are used:

w(k) = arg min

{
‖x−D(k−1)

(
T

(k)
θ

)1/2
w‖2 + µw2

}
. (3.13)

To improve the sparsity of the solution a Tikhonov regularisation scheme is used here,
depending on the regularisation parameter µ Then c is updated as

c(k) =
(
T

(k)
θ

)1/2
w(k). (3.14)

A second measure to improve the sparsity of the solution and to improve the speed
is pruning the dictionary. After each iteration the the columns corresponding to the
smallest weights in c are removed. In this application the smallest 5% is pruned.

2Implemented based on the code from http://web.stanford.edu/group/SOL/software/cgls/
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Remarks

The above described method needs many iterations before a sparse solution is obtained.
In the original paper a running time of 12 seconds for each voxel is reported when 130
iterations are used to reduce the dictionary from 5970 to 8 entries. By revisiting the
method and using compression of the dictionary it was possible to reduce the matching
time with a factor of at least 50, while still using the pruning.
The complete method can be seen as a reweighted least squares method using Tikhonov
regularisation. In this method the reweighting is based on the values of θ. Different
reweighting schemes to do this are proposed in [64]. An `2-reweighted least squares
method will therefore be considered in the comparison as well, using the weights

wi =
1

|ci|+ ε
(3.15)

where epsilon is small (10−5).
The choice of α seems to be depending on the tissue types considered, the used values
in the analysis where 1.75 and 3.5, for β 0.1 is used. For the regularisation parameter
µ = 0.01 is used.
The method is compared to the fast iterative shrinking tresholding algorithm (FISTA)
[70] which seems to give rather poor results, as observed in later analysis [6] as well,
where with a poor performance it is meant that the obtained solution is not an accurate,
sparse representation. This poor behaviour can be explained by the high coherence in
the MRF dictionaries and therefore the non-uniqueness of the solution. In the typical
FISTA or LASSO [71] applications it is assumed that the dictionary is incoherent, as
based on wavelet or random Gaussian signals.

3.2.3. Reweighted `1-norm regularisation

In the paper by Tang et al. [6] a different method to find a multiple component solution
is proposed and analysed. A first attempt is done by solving the problem (NNLS`1) with
the fast iterative shrinking tresholding algorithm (FISTA) [70] which is not able to solve
the problem decently. It is therefore proposed to solve a sequence of weighted `1-norm
regularised problems:

min
c∈RN

≥0

1

2
‖x−Dc‖22 + λ

N∑
i=1

w
(k)
i ci, (3.16)

where w
(k)
i are the weights for each iteration. The entries of weights in the first iteration

are 1. In the following iterations the weights are updated. Two different schemes are
proposed for this. The first scheme, proposed in [72] approaches a `0-norm and promotes
sparse solutions:

w
(k)
i :=

1

ε+ |c(k−1)|
, 1 ≤ i ≤ N, (3.17)

where ε is a fixed parameter to prevent division by zero. This parameter should be set
slightly smaller than the smallest expected nonzero value of c. This first reweighting
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method can be related to the FOCUSS method by Gorodnitsky and Rao [73], where a
reweighted `2-norm regularisation is proposed with ε = 0.
The second reweighting scheme, originally proposed in [64], is a non-separable reweighting
scheme in which the correlation between dictionary entries is considered. The scheme is
of the form:

w
(k)
i :=

(
diT

(
εIM +DC−1WDT

)−1
di
) 1

2
(3.18a)

C := diag
(
c(k−1)

)
, (3.18b)

W := diag
(
w(k−1)

)
. (3.18c)

The parameter ε is used to prevent the matrix
(
εIM +DC−1WDT

)
of being singular.

The weights produced by this scheme are more smooth in the sense that weights for
similar dictionary signals are similar.
To solve the reweighted non-negative `1 minimisation problem (3.16), without the reweight-
ing, at first an interior point method is proposed in [6] using a log-barrier function [74, 75].
In this method a sequence of cost functions is used

φt(c) :=
1

2
t‖Dc− x‖22 + tλ

N∑
i=1

ci −
N∑
i=1

log ci, (3.19)

where t > 0 is a parameter which varies from 0 to ∞. The minimisers of φt form the
central path of this interior point scheme. The interior point scheme finds the minimisers
c(1), c(2), ... for increasing values of t which leads to a, sparse non-negative solution. This
is done by iteratively solving the Newton system

(
Z + tDTD

) (
c(k) − c(k)

)
= −∇φt

(
c(k−1)

)
(3.20)

where

Z := diag

 1(
c

(k)
1

)2 , ...,
1(

c
(k)
N

)2

 . (3.21)

This approach is proposed in [76, 77]. Solving (3.20) is the computationally most intensive
step, which can be accelerated by using a preconditioner or the Woodburry inversion
lemma [78]. This method imposes the non-negativity by the log-barrier, which pushes the
solution away from 0, at the same the sparsity has to be promoted by the regularisation
pushing small values in the solution to zero. This thus forms a complex balancing exercise.
The code is implemented based on an example as given in [79].
The proposed unweighted method is applied to the weighted problem by applying a
change of variables; c′ = Wc and D′ = DW−1.
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3.2.4. Non-Negative Orthogonal Matching Pursuit

The Non-Negative Orthogonal Matching Pursuit (NNOMP) [61, 62] is an adaptation of
Orthogonal Matching Pursuit (OMP) [80, 81] which tries to solve the problem (NN`0a) as
introduced in Section 2.6.1. NNOMP is meant to solve a problem with a real signal and
a real dictionary. This section will start with a short description of the OMP algorithm,
followed by a description of the NNOMP algorithm, which will also address the differences
with OMP.
Orthogonal Matching Pursuit tries to find a solution to

min
c∈CN

‖Dc− x‖22 subject to ‖c‖0 ≤ K. (3.22)

This is done by obtaining a the best selection of atoms from a normalised dictionary D
for the signal x by expanding the elements of the basis through several iterations.

Algorithm 3 The OMP algorithm [80]

INPUT:
x - a complex valued signal
D - a complex valued dictionary
K - the maximal number of components

OUTPUT: c - the returned solution to (NN`0a)

1: S ← ∅ . Support set of the solution
2: r← x . Residual
3: a← DT r
4: while |S| < K and ∃ i ∈ SC : |ai| > 0 do
5: c← 0
6: i∗ ← arg max |a| . The element used for the expansion
7: S ← S ∪ i∗
8: cS ← D†Sx . Gives the least squares solution using the basis S
9: r← x−Dc

10: a← DT r
11: end while

A description of the algorithm is given in Algorithm 3. Each iteration a residual r is
determined which is used to determine the atom i∗ which should be added to the basis
S. This selection is done according to the following selection rule:

i∗ = arg max
i∈{1,...,N}

|diT · r|. (3.23)

After determining this new basis the least squares solution is determined as cS =
D†Sx, cSC = 0) and the residual is updated as r = x−DScS . The number of iterations
determines the size of the basis in this method, unless the iterations are stopped earlier
because no more significant improvements can be made (|diT · r| < δ for some small δ).
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The NNOMP algorithm is given in Algorithm 4 omitting line 10. In this description
the set S contains the indices of the used basis, where SC is the complementary set,
containing the indices not part of the basis. The NNOMP algorithm is very similar to the
OMP algorithm, it differs however in two steps because of the non-negativity constraint.
The first difference is the selection rule in line 5, where in OMP the absolute value is
used, here the largest positive value of a as formed in line 3 is selected. The second
difference is that the non-negative least squares solution in the basis S is sought instead
of the least squares solution in line 7, as a result of this the method can only deal with
real valued dictionaries and signals.
The NNLS solution can be found using the NNLS-algorithm as discussed in Section

Algorithm 4 The NNOMP (without line 10) and SNNOMP algorithm [62]

INPUT:
x - a real valued signal
D - a real valued dictionary
K - the maximal number of components

OUTPUT: c - the returned solution to (NN`0a)

1: S ← ∅ . Support set of the solution
2: r← x . Residual
3: a← DT r
4: while |S| < K and ∃ i ∈ SC : ai > 0 do
5: i∗ ← arg maxa . The element used for the expansion
6: S ← S ∪ i∗
7: z ← arg minz≥0‖x−DSz‖22 . Using the NNLS algorithm with a warm start
8: r← x−DSz
9: a← DT r

10: S ← S(supp(z))

11: end while
12: cS ← z
13: cSC ← 0

3.2.1. The improvement by Nguyen et al. on the NNOMP algorithm is to note that
the computational efficiency can be increased by using a different initial solution than

the 0-vector in the NNLS algorithm. The initial solution to be used is the vector

[
z
0

]
,

which makes it possible to use information from the previous iteration, leading to a faster
solution to the NNLS problem.
Because of the non-negativity constraint it is possible that some of the elements of z
become 0. This behaviour does not occur in the OMP algorithm. These vanishing
elements can thus be removed from the set S, without changing the solution c. This
step of shrinking the set S to the support of z is done in line 10 and leads to the
support shrinkage non-negative orthogonal matching pursuit (SNNOMP) algorithm. This
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adjustment leads to a smaller set S while having the same or a smaller error, which is in
general a desirable behaviour, but it can increase the number of iterations drastically.

3.2.5. SNNOMP-2

When one compares the descriptions of NNLS algorithm and the SNNOMP algorithm,
it can be seen that these two are very similar. It is therefore even possible to combine
the two algorithms into one algorithm, combing these two would simply mean that the
NNLS algorithm is stopped when S has a certain size. This leads to the SNNOMP-2
algorithm, Algorithm 5, which tries to find a solution for the problem (NN`0a), just as
the SNNOMP algorithm does. This is also proposed in [66] in the area of non-negative
matrix factorisation.
However, the earlier stop of the SNNOMP-2 algorithm when |S| = K is reached, can

mean that the optimal solution was not found at the moment of termination. To find the
optimal solution one should keep track of the optimal solution for a certain basis size,
while different options are sought. However, this is computationally highly inefficient.

Other OMP variants

Improvements of the OMP algorithm in the setting of compressed sensing are regularised
OMP (ROMP [82]), stage-wise OMP (StOMP) [83] and compressive sampling matching
pursuit (CoSaMP) [84]. These algorithms select multiple atoms at once to add to the
basis, making the methods possibly faster. However, these algorithms are aimed at
systems where the dictionaries are highly incoherent, which is in general not the case in
the MR fingerprinting problem setting.
In these algorithms one starts with a basis of size K, this basis can be found with
the normal OMP algorithm or by taking the largest K elements in the selection of
equation 3.23. A solution using this basis is then sought and the corresponding residual
is determined. This basis is then expanded with the K̃ atoms with the largest inner
product with the residual. This expanded basis is then used to find a new solution which
is used to restrict the basis to the K largest coefficients in this solution, leading to a
basis of size K. This step can be repeated several times, leading to better results for
incoherent dictionaries.
In the rest of this thesis a variant of this will be used where first a basis of size K is
found using the SNNOMP algorithm, which is then expanded with K̃ = 1 element each
iteration. This variant will here be called regularised NNOMP (RNNOMP).

3.3. Joint sparsity methods

As described in Section 2.6.2 improvements could be made by using a method which uses
not only information from a single voxel, but information of other voxels as well. This
means that one tries to solve the problem (JNNLS), where a joint sparsity constraint
could be added to retrieve a sparse solution for every voxel, using the same basis for all
of the voxels. This section will discuss several methods to solve such a joint problem.
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Algorithm 5 A combination of the SNNOMP and NNLS algorithm

INPUT:
x - a real valued signal
D - a real valued dictionary
K - the maximum number of components

OUTPUT: c - a non-negative least square solution to (NN`0a)

1: h← 0
2: Z ← {1, ..., N} . The same a SC
3: S ← ∅
4: r← x
5: a← DT r
6: while |Z| > 0 and |S| ≤ K and ∃i ∈ Z : ai > 0 do . Difference with the NNLS alg.
7: i∗ ← arg maxa
8: Z ← Z\i∗
9: S ← S ∪ i∗

10: cS ← D†Sx
11: cZ ← 0
12: while ∃j ∈ S : cj < 0 do
13: α← mink∈S hk/(hk − ck)
14: h← h + α(c− h)
15: Z ← {i|hi = 0} . Support shrinkage step
16: S ← {i|hi > 0}
17: cS ← D†Sx
18: cZ ← 0
19: end while
20: h← c
21: r← x−Dh
22: a← DT r
23: end while
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In these approaches all the relevant signals can be considered at once in the matrix X or
X might only contain one segment based on the segments as proposed in 3.1.3. After this
segmentation it can be better to relax the boundaries between the segments as discussed
in the next Section 3.3.3.

3.3.1. Joint sparsity using NNOMP

In the paper by Tropp et al. [42] the simultaneous orthogonal matching pursuit (S-OMP)
algorithm is proposed. This algorithm is based on the OMP algorithm, however it tries
to solve the problem (SSAa), which includes the joint sparsity constraint, using a small
common basis for the representation of the measured signals. Just as with OMP the
algorithm tries to form a basis consisting of a maximum number of elements which gives
an optimal representation C of the measured signals X.
Each iteration the residual R = X −DC is calculated, where C is the solution found in
that iteration, which is initiated as a zero-matrix. The matrix R consists of the vectors
representing the individual residuals, r1, ..., rJ of the individual signals x1, ...,xJ with
sparse representations c1, ..., cJ . Based on these residuals the basis S is expanded with
the element

i∗ = arg max
i∈{1,...,N}

‖R∗di‖pp, (3.24)

where R∗ denotes the complex conjugate of R and p is the order of the norm used for the

selection. In the paper [42] p = 1 is used,this results in ‖R∗di‖pp =
∑J

j=1 r
jT ḋi, which

will be taken here as well. When the basis is expanded, the orthogonal projector P onto
the span of the selected dictionary atoms can be calculated. This projector can be used
to determine the newest approximation to the sparse solution.
This S-OMP approach can be altered to a joint non-negative OMP (JNNOMP) algorithm,
although this has not been done before for as far as we know. This algorithm is given in
Algorithm 6. In the J-NNOMP the selection of the new atom is based on the positive
values of A, the negative values are set to 0. To find the voxel-wise solutions the NNLS
algorithm is used with a warm start, just as in the NNOMP algorithm. Including the
support shrinkage as in the SNNOMP algorithm, could be done, but it is highly unlikely
that for each voxel a previously selected atom is not used. The S-OMP was compared
to a joint version of CoSaMP (see Section 3.2.5) called M-CoSaMP in [85] leading to
the conclusion that for dictionaries with increased correlation the S-OMP algorithm
is preferred. The main reason for the conclusion is the similarity in solutions and the
poor convergence behaviour for the M-CoSaMP, where S-OMP stops after K iterations.
However, these considerations were for methods allowing negative solutions.
A possible way to implement the M-CoSaMP is by stopping after a fixed number of
iterations or when the found solution basis is not changed by adding the extra basis
element. This modification, including non-negativity, to JNNOMP will thus be considered
as well as Joint Regularised NNOMP (JRNNOMP), where the found basis of size K
is expanded with the best K̃ (normally taken equal to 1) elements, leading to a new
solution which is then restricted again to a basis of size K. This whole procedure is
repeated at most T times. This non-negative version is proposed here in Algorithm 7 for
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Algorithm 6 The joint NNOMP algorithm, which is a combination of the S-OMP and
NNOMP algorithms as developed in this thesis.

INPUT:
X =

[
x1 . . . xJ

]
- real valued signals

D - a real valued dictionary
K - the maximal number of components

OUTPUT: C - the returned solution to (SSAa)

1: S ← ∅ . Support set of the solution
2: R← X . Residual
3: A← DTR �3
4: A← max{0, A} . Set all negative values of A to 0
5: while |S| < K and ∃ i ∈ SC , j ∈ {1, ..., J} : ai,j > 0 do

6: i∗ ← arg maxi∈{1,...,M}
∑J

j=1 aij . The element used for the expansion
7: S ← S ∪ i∗
8: for j in range(J) do
9: zj ← arg minz≥0‖xj −DSz‖22 . Using the NNLS algorithm with a warm

start for each signal
�

10: end for
11: Z =

[
z1 . . . zJ

]
12: R← X −DSZ �
13: A← DTR �
14: A← max{0, A} . A only contains non-negative values
15: end while
16: CSS ← Z
17: CSC ← 0
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the first time. Here arg partition
K

v returns the indices of the K largest elements in v.

The S-OMP algorithm has been compared in the paper [86] with the iterative support
detection based joint sparsity algorithm (ISDJS). In this comparison the S-OMP algorithm
is preferred for signals with a very small joint basis, which is the case in this project.

3.3.2. Sparsity Promoting Iterative Joint NNLS (SPIJN)

Another way to impose joint sparsity restrictions is by using a reweighting scheme as in
Section 3.2.3. The first proposed method to do so is M-FOCUSS, based on FOCUSS [73]
(FOCal Underdetermined System Solver) as mentioned before. The FOCUSS algorithm
can be expanded to an implementation to solve the problem (2.20) with p ≤ 1 and q = 2.
This leads to the M-FOCUSS algorithm [41], dealing with multiple measurement vectors.
This algorithm can be seen as a reweighted least squares solver. It uses a specific scheme
of weights and is calculated iteratively. The algorithm for iteration k is summarised as

Wk+1 = diag((w)
1/2
k+1) (3.25a)

Qk+1 = D†k+1X, where Dk+1 = DWk+1 (3.25b)

Ck+1 = Wk+1Qk+1, (3.25c)

where (wi)k+1 are the weights for each dictionary atom, which will be discussed later.
The algorithm is terminated once a convergence criterion is satisfied, e.g.

‖Ck+1 − Ck‖F
‖Ck‖F

< δ, (3.26)

where δ is a chosen tolerance, in the introducing paper δ = 0.01 was chosen.
The M-FOCUSS algorithm gives weight to the atoms which are used often and penalises
the use of atoms which are not used often.
Different variants on this reweighting for the FOCUSS algorithm have been proposed
[64, 87] which can also be applied to the M-FOCUSS algorithm.
The first variant [85] would be

(wi)k+1 = ‖Ck,[i,:]‖2 + εk, (3.27)

where εk > 0 (here has been used ε = 10−4) is a parameter used to prevent division by
zero, which can be varied each iteration and is recommended to be decreasing, staying
larger than zero. Ck,[:,i] notates the ith row of the matrix Ck. This reweighing scheme will
be referenced to as the first reweighting scheme from now on. The original M-FOCUSS
algorithm sets ε = 0. This second scheme will not be used often, since the division by
zero is unwanted. A non-separable reweighting scheme [64], related to the second scheme
proposed in [6] and given in Equation (3.18) is:

(wi)k+1 = ‖Ck,[:,i]‖22 + (wi)k − ((wi)k)
2 diT

(
εI +DW̃kD

T
)−1

di, (3.28)
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Algorithm 7 The joint RNNOMP algorithm (JRNNOMP), which is a combination of
the S-OMP, ROMP and NNOMP algorithms, as developed in this thesis.

INPUT:

X =
[
x1 . . . xJ

]
- a real valued signals

D - a real valued dictionary
K - the maximal number of components

K̃ - the number of added components (normally 1)
T - the maximum number of iterations

OUTPUT: C - the returned solution to (SSAa)

1: S ← ∅ . Support set of the solution
2: R← X . Residual
3: A← DTR �
4: A← max{0, A} . Set all negative values of A to 0
5: k ← 0 . Counter for the number of iterations
6: while k < T and ∃ i ∈ SC , j ∈ {1, ..., J} : ai,j > 0 do

7: I ← arg partition
K̃

∑J
j=1 aij . The K̃ elements used for the expansion

8: S0 ← S; S ← S ∪ I
9: for j in range(J) do

10: zj ← arg minz≥0‖xj −DSz‖22 . Using the NNLS algorithm with a warm
start for each signal

�

11: end for
12: Z ←

[
z1 . . . zJ

]
13: if S > K then
14: for p in range(|S|) do
15: vp ←

∑
Z[:,p] . Taking the row sum of Z

16: end for
17: T ← arg partition

K
v . The indices of the largest K̃ elements in v

are determined
18: S ← ST ; Z ← ZT
19: if S = S0 then
20: Stop while loop

21: end if
22: end if
23: R← X −DSZ �
24: A← max{0, DTR} . A only contains non-negative values �
25: end while
26: for j in range(J) do
27: zj ← arg minz≥0‖xj −DSz‖22 �
28: end for
29: CSS ← Z
30: CSC ← 0
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where W̃k is a diagonal matrix with the vector wk on the diagonal. In this reweighting
scheme the coherence between different dictionary elements is taken into consideration,
punishing the selection of similar atoms less than the selection of non-similar atoms. To
this reweighting scheme will be referenced as the third reweighting scheme.
The schemes as provided here are all based on general least squares solutions. It is
however easy to change the algorithm to a non-negative algorithm, by replacing the
pseudo-inverse with the NNLS solver. It was not possible to find such an application in
literature, which is surprising since the change can be made rather easy.
To enable the reweighing schemes to deal with the noise present in the signals, it is
recommended to use some form of regularisation. The most efficient regularisation is the
`21 regularisation based on NNLS`21. This regularisation method is less computationally
intensive than `1 or `2 (Tikhonov) regularisation, since the `21 regularisation requires only
a single added row to the dictionary. This regularisation leads a new algorithm, from now
on called Sparsity Promoting Iterative Joint NNLS abbreviated as SPIJN. The SPIJN
algorithm iterations can be summarised as:

Wk+1 = diag((w)
1/2
k+1), (3.29a)

D̃k+1 =

[
DWk+1

λ1T

]
, (3.29b)

X̃ =

[
Xk+1

0T

]
, (3.29c)

C̃k+1 = JNNLS(X̃, D̃), , (3.29d)

Ck+1 = Wk+1C̃k+1, (3.29e)

where JNNLS(X,D) gives the joint NNLS solution to the problem ‖X −DC‖2F .
The discussed reweighting schemes are compared in the paper [64] leading to the conclusion
that the non-separable scheme 3.28 shows the best results. In this comparison also
computationally more demanding `1 methods [72] and the grouped Lasso method [88]
are discussed and compared, showing no better results for basis pursuit problems. In
these comparisons the S-OMP algorithm was not considered and the dictionaries were
highly non-correlated, in contrast to the MRF-implementations. This thus leaves room
for further research.
A method to speed up this algorithm would be by pruning the dictionary by removing
elements which are unused. Dictionary atoms can be considered to be unused when
‖Ck,[i,:]‖1 < δ̃, where δ̃ is a parameter with a small value, here taken to be 10−8 × J (J
is the number of voxels considered). This step is justified if the unused dictionary atoms
are not “reactivated” later on. The pruning can either be performed every iteration
or after a fixed number of iterations. While testing this on data the pruning did not
influence the end results when the first reweighting scheme was used and accelerated the
computations significantly. For the third reweighting scheme it was not possible to draw
immediate conclusions.
The complete SPIJN algorithm including the pruning step is given in Algorithm ??.
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Algorithm 8 The Sparsity Promoted Iterative Joint NNLS (SPIJN) algorithm to perform
a multi-component analysis for an MRF measurement.

INPUT:

X - a real valued signals
D - a real valued dictionary
T - maximum number of iterations

p, δ̃ - pruning takes place at this iteration, using this treshhold
δ - convergence treshhold
λ - regularisation parameter

OUTPUT: C - the matched solution

1: k ← 1 . Counter for the number of iterations
2: C1 ← arg minC∈RN×J

≥0
‖X −DC‖2F . Initial solution �

3: w1 ← 1
4: d← 1
5: while k ≤ T and d > δ do
6: if k = p then Prune D, C and c according to ‖Ck,[i,:]‖1 < δ̃
7: end if
8: wk+1,i ← ‖cik‖2 + ε ∀i ∈ {1, ..., N}
9: Calculate wk+1 from C and wk with the desired scheme

10: D̃k+1 ←
[
DWk+1

λ1T

]
11: X̃ ←

[
Xk+1

0T

]
12: C̃k+1 ← arg minC∈RN×J

≥0
‖X̃ − D̃C‖2F �

13: Ck+1 ←Wk+1C̃k+1

14: d← ‖Ck+1−Ck‖F
‖Ck‖F

15: k ← k + 1
16: end while
17: if k > p then
18: Fill Ck with zeros at pruned dictionary atoms.
19: end if
20: C ← Ck
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3.3.3. Regrouped approach

When the JNNOMP or JRNNOMP algorithm are applied on the different segmented
groups, hard boundaries between the segments exist. This is not a wanted behaviour
since the boundary zones between tissue types are exactly the regions of interest.
When the JNNOMP or JRNNOMP is applied on a segmented image, for each group p
(p = 1, ..., P ) K indices are selected to form a basis DSp . In total at most K · P atoms
are selected to form these bases. These sets Sp can be combined to one set S = ∪Pp=1Sp.
This combined set can be used to form the basis DS , which can be used to solve the
(JNNLS) problem. Since the basis is expanded, the solution can only be improved, with
the drawback that the basis is larger.
This regrouping leads to a solution where the basis can be found easily and the boundaries
between the segments disappear.

3.3.4. Search around

In some of the previously proposed methods it was attempted to restrict the large
dictionary to only a few dictionary atoms, forming a small basis, which hopefully
represents the present tissues. In these approaches it was assumed that the tissue types
have the same T1 and T2 combination in each voxel. This is not necessarily the case,
which makes this framework possibly a bit too rigid.
A way to improve the results when such a small basis S0 = {s1, ..., sK} with weights cS
has been found, is by searching around these T1 and T2 combinations. In this approach
the dictionary atoms C with comparable relaxation times to the values of atom si are
selected and used to form the dictionary DC . In Figure 3.5 an example of the considered
dictionary atoms is shown. This small dictionary D̃si is used to find the best atom to
replace the original atom si in the set S.
The reproduced signal is given by

x̃ =
∑
s∈S

csd
s. (3.30)

The approximation error is thus given by

e = x− x̃. (3.31)

The goal is to find a better set of atoms S∗ such that the error decreases. This can be
done by trying to improve each of the atoms of S. By performing a single component
matching based on dictionary D̃si with the signal

ȳi = csid
si + e (3.32)

a new atom s∗i can be found and added to S∗. This set S∗ can be used to find a new
NNLS solution. When this is done the error can be determined again and this procedure
can be repeated for all the elements in S. In this method it matters however in which
order the atoms in S are updated. A logical choice would be to start with updating
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Figure 3.5.: The considered dictionary atoms to replace the originally selected atom. The
small dictionary contains the atoms at a distance of at most 3 on the grid
formed by the dictionary atoms.

s1 trying to compensate for error e1, then s2 compensating error e2 etc. However, one
can also choose to start with s2 compensating error ẽ1 and updating s1 in the next step
based on ẽ2. In this second step e1 6= ẽ2 and thus probably leads to a different s∗1.
To prevent this order dependency, it is preferred to first update all the elements in S,
which then leads to a new non-negative least squares problem. Updating all the elements
of S can again be done by performing a single component matching with dictionary D̃si

on the signal ȳi as in Equation 3.32, this could however lead to unwanted behaviour as
well. When several of the new indices s∗i are able to completely remove the error on their
own, the combination of them would lead to a solution which is compensating too much
in the direction of the error. To prevent this behaviour the signal

yi = csid
si +

e

K
(3.33)

is used for the single component matching. This whole procedure can be repeated several
times, until the set S is stable or when a maximum number of iterations is reached.
This leads to algorithm 9, where NNLS(x, D) solves the problem NNLS with the NNLS
algorithm as given before.
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Algorithm 9 An algorithm to search around an initial basis to find a better basis.

INPUT:

x - a real valued signal
D - a real valued dictionary
S - the indices of the initial basis
T - number of iterations

OUTPUT:
c - the improved solution
S∗ - the improved basis

1: K ← |S|
2: k ← 0 . Counter for the number of iterations
3: while k < T do
4: cS∗ ← 0
5: cS ← NNLS(x, DS)
6: S∗ ← ∅
7: e← x−

∑
s∈S csd

s

8: for s ∈ S do
9: Determine neighbouring dictionary atoms C of atom s

10: y← csd
s + 1

K e
11: s∗ ← arg maxi∈C d

iTy
12: S∗ ← S∗ ∪ s∗
13: end for
14: k ← k + 1
15: cS∗ ← 0
16: cS ← NNLS(x, DS∗)
17: S ← S∗
18: end while
19: c∗S ← z
20: cS∗C ← 0
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3.3.5. Remarks

Disadvantages of the joint approach might be that it is more likely to miss tissue types
which are only present in a small number of voxels and would therefore be suppressed
by the restriction to have a small number of components. In the SPIJN algorithm this
would be caused by choosing a high regularisation parameter. The J(R)NNOMP have a
similar problem because the number of tissue has to be set on forehand, making it likely
to identify non-existing tissues or mixing tissues into one.
With the introduction of the joint sparsity constraint, the masking becomes more
important. When for example muscle on the outer part of the head is included and not
masked, it will be necessary to include a component in the matching representing this
tissue.

3.4. Fixed parameters for large dictionaries

In the previous sections it was assumed that the signal only depends on the relaxation
times T1 and T2 and that the dictionary only contained these combinations of parameters.
However, to obtain better result it can be necessary to compensate for other unwanted
effects such as inhomogeneities in the B1 field by introducing an extra parameter in the
signal calculation. In this section, it is discussed how to include such extra parameters in
the methods discussed before. Here B1 inhomogeneities are considered, but other voxel
dependent system parameters can be included as well.
The relative error of the B1 field can be taken into account when calculating the dictionary
containing the signal behaviour. This thus leads to a three dimensional parameter space,
where the first two dimensions are formed by the T1 and T2 values and the third by the
extra parameter, in this case relative error in the B1 field. When a single component
matching is performed, it will lead to a certain combination of the three parameters, where
the relaxation times are giving information about the tissue and the third parameter
only about a property of the voxel, but not about the tissues contained by the voxel.
When this dictionary containing the extra parameter values is used for the multi-
component analysis, it would be possible to find multiple off-resonance values for one
voxel, which seems incorrect, especially when the values are not close to each other. To
make the preceding algorithms useful it is necessary to restrict the parameter space to
one system parameter value for each voxel and determine the restricted dictionary from
this for each voxel.
The relative error in the B1 field for each voxel can either be determined from a separate
measurement [89] or approximated from the measured MRF signal, for example using
the single component matching as discussed before.
For the voxel-by-voxel methods this fixed parameter can be implemented relatively easily
by restricting the dictionary to the determined parameter value without changing the
algorithms any further. When the joint methods are used, this cannot be done that easily.
At each step where the dictionary is used in combination with the signals or their residuals,
the dictionary needs to be restricted to the voxel depending fixed parameter. Assuming
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that the T1 and T2 values are ordered in the same way for different fixed parameter
values, the row sums used for the atom selection in JNNOMP and JRNNOMP algorithms
and for the reweighting in the SPIJN can still be used. In the SPIJN, JNNOMP and
JRNNOMP algorithms the steps which need to be changed are marked with �.
In the SPIJN algorithm the simple, separable reweighting scheme can easily be adapted,
but the non-separable reweighting scheme from Equation (3.28) can not be changed to
the fixed parameter setting.
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4. Experiments and results

In this chapter the different methods as discussed in the previous chapter are analysed.
The chapter starts with presenting results for the voxel-by-voxel methods using simulated
signals with different noise levels in Section 4.1. This analysis is done for different
sequence types: an MRF sequence and exponential signals.
Afterwards the results from the joint methods applied to a numerical phantom with
two components are shown in Section 4.2. The most promising methods are then tested
with a numerical phantom containing three components in Section 4.3. A real phantom
phantom is then used to test the effects of undersampling in Section 4.4, this is followed
by the results of the application of the methods to in vivo measurements in Section 4.5.2.
Section 4.5.2 shows the effects of undersampling for a different in vivo measurement with
the found decomposition. The chapter ends with some side-results in Section 4.6.

4.1. Simulations voxel-by-voxel methods

An image consisting of 25 voxels each containing two components with equal weights
(50%-50%) is analysed using 12 different methods. Tables 4.1 and 4.2 show the results for
this analysis using the MRF500 sequence and a multi-echo spin echo T2 mapping sequence.
The different subtables show the results for different noise levels. The combination of
relaxation times T1 = 305 ms,T2 = 50.3 ms and T1 = 1005 ms,T2 = 205 ms are used as a
test case. For different relaxation time combinations similar results were obtained.
The different tested methods are as follows:

1. the non-negative least squares algorithm (NNLS)(Section 3.2.1);
2. the support shrinkage non-negative orthogonal matching pursuit (SNNOMP) algo-

rithm (Section 3.2.4);
3. the regularised non-negative orthogonal matching pursuit (RNNOMP) algorithm

(Section 3.2.5)
4. the Bayesian method (Section 3.2.2)
5. a reweighted least squares method from equation 3.15 for comparison with the

Bayesian method;
6. the `1 reweighted method with two reweighting schemes:

a) from Equation 3.17 noted as Reweighted `1 1;
b) from Equation 3.18 noted as Reweighted Reweighted `1 2;

7. a reweighted NNLS methods with two reweighting schemes:
a) based on Equation 3.27 noted as reweighted NNLS 1;
b) based on Equation 3.28 noted reweighted NNLS 2;
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8. the sparsity promoting iterative joint NNLS (SPIJN) algorithm with two reweighting
schemes:

a) the simple, first scheme based on Eq. (3.27)
b) the third, non-separable reweighting scheme from Eq. (3.28);

9. the joint regularised non-negative orthogonal matching pursuit (JRNNOMP) algo-
rithm.

The analysed signals consist of two tissue types with different T1 and T2 values, which are
not part of the used dictionary. To this signal Gaussian complex noise is added, where
the signal to noise (SNR) ratio is related to the standard deviation of the noise according
to

σ =
M

SNR
, (4.1)

where M is the maximum absolute value of the simulated signal. When a method uses
a regularisation parameter, it is set equal to the standard deviation. When there is no
noise the regularisation parameter is set to 10−5.
In the case that the matched decomposition consists of more than two components,
the components are considered to belong to the closest simulated component. For the
exponential signal decoding only T2 this is done with T2 = 125 as the boundary between
the two true components. For the MRF signal a component is considered to belong to the
first component with T1 = 305, T2 = 50.3 if the matched T1 is smaller than 650 and T2 is
smaller than 125, if the matched component has relaxation times larger than 650ms and
125ms it is considered to belong to the second component. If the matched component
is not part of these two ranges, it is considered as an outlier. After the grouping the
weighted average is used to determine the matched relaxation times.
The dictionaries were formed as follows. The MRF dictionary contained 6280 T1/T2

combinations, with T1 ranging from 10ms to 2950ms (10 to 90 with stepsize 5, to 1000
with stepsize 10, to 1500 with stepsize 20 and to 2950 with stepsize 50) and T2 ranging
from 2ms to 500 ms (2 to 10 with stepsize 2, to 150 with stepsize 5, to 200 with stepsize
10 and to 500 with stepsize 50). The T2 relaxation dictionary contained the same 43
T2 values, without T1. The T2 simulation uses 32 echoes. The relaxation times of the
simulated components are not contained in this dictionary.
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Table 4.1.: The solving behaviour of the different algorithms for 25 voxels containing two equally mixed
components with different noise levels for the MRF500 sequence. Every entry represents the mean
value and its standard deviation - when applicable - between brackets.

(a) SNR = 1000

Method
Weights:
0.5,0.5

T1 [ms]:
305, 1005

T2 [ms]:
50.3, 205.0

Number of
components

One
comp. [%]

Relative
error

Time per
voxel [s]

NNLS

0.50 (0.01)

0.50 (0.01)

303.79 (1.13)

1005.77 (5.49)

50.07 (0.76)

203.91 (0.87)
4.80

(0.98) 0
1.40e-03

(8.24e-05) 4.805e-02

SNNOMP

0.50 (0.01)

0.50 (0.01)

303.77 (1.19)

1005.73 (5.30)

50.03 (0.78)

203.89 (0.85)
4.48

(1.14) 0
1.38e-03

(4.55e-05) 2.281e-01

RNNOMP

0.50 (0.00)

0.50 (0.00)

303.77 (1.16)

1005.59 (6.15)

50.15 (0.65)

203.68 (0.86)
4.56

(0.98) 0
1.38e-03

(4.57e-05) 3.028e-01

Bayesian

0.50 (0.04)

0.50 (0.04)

303.08 (8.99)

1001.52 (55.26)

51.53 (5.63)

198.22 (3.66)
4.84

(0.37) 0
3.47e-02

(8.36e-02) 8.115e-02

Reweighted
LS

0.50 (0.00)

0.50 (0.00)

300.00 (0.00)

1043.91 (32.48)

51.19 (1.07)

202.00 (4.20)
2.76

(0.76) 0
4.07e-03

(3.33e-03) 2.485e-01

Reweighted
`1 1

0.49 (0.00)

0.51 (0.00)

300.00 (0.00)

1000.00 (4.90)

50.00 (0.00)

200.00 (0.00)
2.00

(0.00) 0
1.73e-03

(1.72e-04) 2.890e-01

Reweighted
`1 2

0.49 (0.00)

0.51 (0.00)

300.00 (0.00)

993.42 (4.64)

50.00 (0.00)

200.00 (0.00)
2.04

(0.20) 0
1.76e-03

(7.15e-05) 4.275e-01

Reweighted
NNLS 1

0.49 (0.00)

0.51 (0.00)

301.20 (3.25)

977.20 (7.76)

50.00 (0.00)

200.00 (0.00)
2.00

(0.00) 0
2.30e-03

(4.56e-04) 5.493e-02

Reweighted
NNLS 2

0.37 (0.00)

0.63 (0.00)

278.40 (0.50)

870.56 (3.49)

40.49 (0.15)

183.70 (0.40)
2.00

(0.00) 0
3.68e-03

(9.40e-05) 1.797e-01

SPIJN 1
λ = 0.10

0.49 (0.00)

0.51 (0.00)

300.00 (0.00)

1000.00 (0.00)

50.00 (0.00)

200.00 (0.00)
2.00

(0.00) 0
3.27e-03

(2.49e-05) 9.328e-02

SPIJN 3
λ = 0.45

0.49 (0.00)

0.51 (0.00)

300.00 (0.00)

1000.00 (0.00)

50.00 (0.00)

200.00 (0.00)
2.00

(0.00) 0
1.75e-03

(4.67e-05) 6.936e-02

JRNNOMP

0.50 (0.00)

0.50 (0.00)

304.84 (0.63)

1009.43 (2.82)

50.18 (0.39)

203.40 (0.67)
3.00

(0.00) 0
1.39e-03

(4.59e-05) 5.722e-02
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(b) SNR = 50

Method
Weights:
0.5,0.5

T1 [ms]:
305, 1005

T2 [ms]:
50.3, 205.0

Number of
components

One
comp. [%]

Relative
error

Time per
voxel [s]

NNLS

0.49 (0.06)

0.48 (0.06)

291.56 (19.05)

1047.08 (77.02)

46.88 (6.62)

190.21 (11.42)
5.76

(1.84) 0
2.73e-02

(9.88e-04) 3.822e-02

SNNOMP

0.49 (0.06)

0.48 (0.06)

292.60 (16.55)

1050.77 (77.67)

47.63 (6.65)

190.18 (11.71)
5.88

(1.70) 0
2.72e-02

(8.42e-04) 1.794e-01

RNNOMP

0.49 (0.06)

0.48 (0.06)

292.10 (19.18)

1044.93 (76.92)

47.20 (6.92)

190.76 (10.77)
5.24

(1.30) 0
2.72e-02

(8.43e-04) 2.798e-01

Bayesian

0.50 (0.17)

0.50 (0.17)

291.52 (28.33)

954.47 (118.14)

49.66 (10.11)

184.22 (14.31)
5.00

(0.00) 16
1.59e-01

(4.22e-01) 9.436e-02

Reweighted
LS

0.50 (0.07)

0.45 (0.06)

299.69 (32.11)

1193.24 (178.16)

51.73 (7.29)

210.99 (30.78)
3.56

(0.98) 0
4.23e-01

(1.72e+00) 2.919e-01

Reweighted
`1 1

0.45 (0.04)

0.55 (0.04)

269.20 (16.95)

995.20 (69.40)

45.20 (4.58)

194.80 (9.00)
2.00

(0.00) 0
2.82e-02

(1.24e-03) 2.879e-01

Reweighted
`1 2

0.44 (0.04)

0.56 (0.04)

275.60 (14.99)

950.80 (73.26)

46.40 (4.36)

186.00 (10.20)
2.00

(0.00) 0
2.76e-02

(8.70e-04) 3.382e-01

Reweighted
NNLS 1

0.48 (0.06)

0.50 (0.07)

290.90 (17.14)

1035.94 (80.29)

48.36 (6.79)

190.84 (11.96)
2.56

(0.75) 0
2.73e-02

(8.36e-04) 6.430e-02

Reweighted
NNLS 2

0.39 (0.06)

0.61 (0.06)

281.01 (18.24)

881.95 (57.87)

41.91 (5.59)

186.24 (9.71)
2.08

(0.27) 0
2.75e-02

(8.58e-04) 1.678e-01

SPIJN 1
λ = 0.15

0.52 (0.00)

0.48 (0.00)

300.00 (0.00)

1100.00 (0.00)

55.00 (0.00)

200.00 (0.00)
2.00

(0.00) 0
2.82e-02

(7.67e-04) 3.713e-02

SPIJN 3
λ = 1.01

0.52 (0.00)

0.48 (0.00)

300.00 (0.00)

1100.00 (0.00)

55.00 (0.00)

200.00 (0.00)
2.00

(0.00) 0
2.76e-02

(7.85e-04) 5.095e-02

JRNNOMP

0.53 (0.07)

0.45 (0.06)

311.48 (35.21)

1068.35 (37.23)

55.17 (9.26)

191.21 (9.82)
5.36

(1.02) 0
2.73e-02

(8.37e-04) 3.083e-02
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(c) SNR = 10

Method
Weights:
0.5,0.5

T1 [ms]:
305, 1005

T2 [ms]:
50.3, 205.0

Number of
components

One
comp. [%]

Relative
error

Time per
voxel [s]

NNLS

0.50 (0.15)

0.38 (0.16)

290.82 (74.91)

1137.33 (470.85)

36.87 (22.91)

180.63 (28.24)
5.64

(1.20) 0
1.39e-01

(5.07e-03) 3.472e-02

SNNOMP

0.50 (0.15)

0.37 (0.16)

290.39 (76.50)

1137.33 (470.85)

36.85 (22.95)

180.63 (28.24)
5.60

(1.17) 0
1.39e-01

(5.07e-03) 1.415e-01

RNNOMP

0.49 (0.14)

0.39 (0.16)

290.86 (76.02)

1142.02 (467.45)

38.25 (22.93)

180.50 (28.17)
5.12

(1.14) 0
1.39e-01

(5.07e-03) 1.985e-01

Bayesian

0.72 (0.31)

0.09 (0.20)

395.15 (126.14)

938.19 (192.27)

84.68 (24.21)

192.45 (43.46)
4.94

(0.24) 32
1.68e-01

(3.44e-02) 7.611e-02

Reweighted
LS

0.28 (0.17)

0.15 (0.12)

273.89 (115.13)

2166.97 (685.92)

26.58 (17.38)

266.59 (87.67)
7.21

(1.97) 44
5.01e+00

(5.39e+00) 1.008e+00

Reweighted
`1 1

0.76 (0.27)

0.22 (0.27)

252.38 (59.67)

978.89 (423.88)

34.52 (24.51)

215.56 (61.30)
1.48

(0.50) 16
2.09e-01

(7.07e-02) 2.866e-01

Reweighted
`1 2

0.45 (0.28)

0.41 (0.30)

318.60 (120.83)

858.24 (264.60)

47.77 (37.83)

178.53 (58.05)
1.88

(0.52) 0
1.41e-01

(5.09e-03) 3.235e-01

Reweighted
NNLS 1

0.50 (0.16)

0.38 (0.16)

292.44 (78.19)

1129.34 (474.01)

37.62 (23.61)

180.21 (29.01)
2.96

(0.72) 0
1.39e-01

(5.07e-03) 6.017e-02

Reweighted
NNLS 2

0.54 (0.19)

0.33 (0.23)

310.77 (81.68)

1541.31 (799.67)

40.98 (27.05)

240.44 (90.71)
2.52

(0.64) 0
1.39e-01

(5.06e-03) 2.365e-01

SPIJN 1
λ = 0.15

0.50 (0.01)

0.50 (0.01)

310.00 (0.00)

1000.00 (0.00)

60.00 (0.00)

170.00 (0.00)
2.00

(0.00) 0
1.40e-01

(5.36e-03) 3.084e-02

SPIJN 3
λ = 1.01

0.49 (0.01)

0.51 (0.01)

310.00 (0.00)

1000.00 (0.00)

60.00 (0.00)

170.00 (0.00)
2.00

(0.00) 0
1.40e-01

(5.36e-03) 4.884e-02

JRNNOMP

0.67 (0.14)

0.26 (0.10)

350.84 (53.60)

1293.41 (396.74)

60.48 (22.37)

204.63 (28.43)
5.00

(1.02) 0
1.39e-01

(5.08e-03) 1.887e-02
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(d) SNR = 5

Method
Weights:
0.5,0.5

T1 [ms]:
305, 1005

T2 [ms]:
50.3, 205.0

Number of
components

One
comp. [%]

Relative
error

Time per
voxel [s]

NNLS

0.45 (0.19)

0.26 (0.21)

202.17 (131.50)

1442.20 (768.97)

22.24 (24.60)

229.96 (108.96)
4.80

(1.10) 0
2.94e-01

(2.45e-02) 3.249e-02

SNNOMP

0.46 (0.20)

0.26 (0.21)

202.15 (131.53)

1442.20 (768.97)

22.17 (24.66)

229.96 (108.96)
4.80

(1.10) 0
2.94e-01

(2.45e-02) 1.107e-01

RNNOMP

0.43 (0.18)

0.31 (0.23)

198.51 (127.91)

1420.68 (757.19)

23.26 (24.10)

225.45 (108.81)
4.64

(1.29) 0
2.94e-01

(2.45e-02) 1.636e-01

Bayesian

0.60 (0.31)

0.19 (0.26)

363.17 (203.25)

901.02 (204.85)

59.15 (50.89)

171.86 (47.49)
5.00

(0.00) 56
3.06e-01

(2.30e-02) 7.436e-02

Reweighted
LS

0.48 (0.22)

0.11 (0.10)

236.58 (61.22)

2187.65 (208.71)

16.23 (4.97)

300.63 (22.13)
9.00

(0.71) 84
1.29e+01

(2.60e+00) 2.742e+00

Reweighted
`1 1

0.57 (0.26)

0.32 (0.29)

188.80 (163.13)

1250.00 (667.53)

29.76 (39.95)

268.12 (124.36)
1.84

(0.37) 0
3.11e-01

(4.11e-02) 4.050e-01

Reweighted
`1 2

0.48 (0.27)

0.35 (0.31)

258.14 (171.14)

1144.12 (612.32)

36.40 (43.07)

233.53 (109.11)
2.36

(0.74) 0
2.95e-01

(2.45e-02) 4.722e-01

Reweighted
NNLS 1

0.44 (0.20)

0.29 (0.24)

199.52 (131.47)

1435.74 (771.34)

21.90 (24.92)

229.91 (109.24)
2.96

(0.72) 0
2.94e-01

(2.45e-02) 6.567e-02

Reweighted
NNLS 2

0.49 (0.21)

0.32 (0.26)

228.03 (141.99)

1439.82 (828.81)

22.11 (25.74)

240.86 (109.80)
2.64

(0.62) 0
2.94e-01

(2.44e-02) 2.392e-01

SPIJN 1
λ = 0.15

0.54 (0.05)

0.46 (0.05)

370.00 (0.00)

940.00 (0.00)

75.00 (0.00)

180.00 (0.00)
2.00

(0.00) 0
2.96e-01

(2.45e-02) 3.163e-02

SPIJN 3
λ = 1.01

0.54 (0.05)

0.46 (0.05)

370.00 (0.00)

940.00 (0.00)

75.00 (0.00)

180.00 (0.00)
2.00

(0.00) 0
2.96e-01

(2.45e-02) 4.761e-02

JRNNOMP

0.66 (0.13)

0.20 (0.08)

229.12 (124.69)

1494.88 (665.22)

36.12 (28.74)

210.86 (106.46)
4.20

(1.06) 0
2.94e-01

(2.44e-02) 1.511e-02
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Table 4.2.: The solving behaviour of the different algorithms for 25 voxels containing two equally
mixed components with different noise levels for the T2 sequence. The mean values
and between brackets the standard deviation are shown when applicable.

(a) SNR = 1000

Method
Weights:
0.5,0.5

T2 [ms]:
50.3, 205.0

Number of
components

One
comp. [%]

Relative
error

Time per
voxel [s]

NNLS

0.54 (0.06)

0.46 (0.06)

44.28 (8.17)

205.77 (2.33)
3.52

(1.30) 0
1.61e-03

(2.23e-04) 2.146e-03

SNNOMP

0.54 (0.06)

0.46 (0.06)

44.28 (8.17)

205.77 (2.33)
3.52

(1.30) 0
1.61e-03

(2.23e-04) 3.460e-02

RNNOMP

0.54 (0.06)

0.46 (0.06)

44.28 (8.17)

205.77 (2.33)
3.52

(1.30) 0
1.61e-03

(2.23e-04) 2.034e-02

Bayesian

0.30 (0.07)

0.70 (0.07)

37.27 (2.49)

168.15 (22.16)
4.00

(0.00) 56
1.15e-01

(1.02e-01) 1.687e-02

Reweighted
LS

0.50 (0.00)

0.50 (0.00)

49.83 (0.43)

203.73 (1.24)
2.16

(0.37) 0
1.95e-03

(1.22e-03) 1.617e-01

Reweighted
`1 1

0.48 (0.00)

0.52 (0.00)

47.60 (2.50)

200.00 (0.00)
2.00

(0.00) 0
4.89e-03

(2.14e-03) 9.309e-02

Reweighted
`1 2

0.49 (0.00)

0.51 (0.00)

50.00 (0.00)

200.00 (0.00)
2.00

(0.00) 0
2.97e-03

(2.99e-04) 4.341e-01

Reweighted
NNLS 1

0.49 (0.00)

0.51 (0.00)

50.00 (0.00)

200.00 (0.00)
2.00

(0.00) 0
2.95e-03

(3.00e-04) 3.917e-01

Reweighted
NNLS 2

0.49 (0.00)

0.51 (0.00)

50.00 (0.00)

200.00 (0.00)
2.00

(0.00) 0
3.00e-03

(2.95e-04) 1.582e-02

SPIJN 1
λ = 0.45

0.41 (0.00)

0.59 (0.00)

50.00 (0.00)

200.00 (0.00)
2.00

(0.00) 0
7.12e-02

(2.16e-05) 6.680e-01

SPIJN 3
λ = 0.45

0.48 (0.00)

0.52 (0.00)

50.00 (0.00)

200.00 (0.00)
2.00

(0.00) 0
4.16e-03

(2.17e-04) 8.737e-04

JRNNOMP

0.54 (0.06)

0.46 (0.06)

43.56 (8.27)

205.18 (1.49)
3.56

(1.27) 0
1.61e-03

(2.23e-04) 1.943e-02

Master Thesis, TU Berlin, Scientific Computing, 2018 65



Multi-component MR parameter mapping Martijn Nagtegaal

(b) SNR = 100

Method
Weights:
0.5,0.5

T2 [ms]:
50.3, 205.0

Number of
components

One
component [%]

Relative
error

Time per
voxel [s]

NNLS

0.65 (0.18)

0.35 (0.18)

36.05 (18.61)

222.60 (48.55)
3.24

(0.91) 0
1.60e-02

(2.24e-03) 2.006e-04

SNNOMP

0.65 (0.18)

0.35 (0.18)

36.05 (18.61)

222.60 (48.55)
3.24

(0.91) 0
1.60e-02

(2.24e-03) 1.159e-02

RNNOMP

0.65 (0.18)

0.35 (0.18)

36.05 (18.61)

222.60 (48.55)
3.24

(0.91) 0
1.60e-02

(2.24e-03) 7.420e-03

Bayesian

0.87 (0.00)

0.13 (0.00)

103.88 (0.07)

450.00 (0.00)
4.00

(0.00) 16
4.68e-02

(3.99e-03) 5.495e-03

Reweighted
LS

0.88 (0.16)

0.12 (0.16)

12.20 (13.64)

244.19 (78.36)
2.35

(1.46) 8
1.22e+00

(1.34e+00) 9.638e-02

Reweighted
`1 1

0.59 (0.07)

0.41 (0.07)

49.00 (6.63)

262.00 (53.44)
2.00

(0.00) 0
3.11e-02

(7.31e-03) 2.910e-02

Reweighted
`1 2

0.47 (0.08)

0.53 (0.08)

49.53 (7.57)

201.77 (39.32)
2.28

(0.45) 0
1.84e-02

(2.77e-03) 3.453e-02

Reweighted
NNLS 1

0.64 (0.18)

0.36 (0.18)

37.86 (18.72)

220.82 (41.36)
2.56

(0.64) 0
1.62e-02

(2.28e-03) 2.948e-03

Reweighted
NNLS 2

0.50 (0.04)

0.50 (0.04)

51.40 (5.39)

203.60 (17.86)
2.00

(0.00) 0
1.76e-02

(2.69e-03) 6.379e-03

SPIJN 1
λ = 0.45

0.41 (0.01)

0.59 (0.01)

50.00 (0.00)

200.00 (0.00)
2.00

(0.00) 0
7.32e-02

(5.87e-04) 6.818e-04

SPIJN 3
λ = 0.45

0.48 (0.01)

0.52 (0.01)

50.00 (0.00)

200.00 (0.00)
2.00

(0.00) 0
1.74e-02

(2.31e-03) 6.618e-04

JRNNOMP

0.65 (0.18)

0.35 (0.18)

35.79 (19.26)

214.72 (16.22)
3.32

(0.84) 0
1.61e-02

(2.23e-03) 8.342e-03
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(c) SNR = 50

Method
Weights:
0.5,0.5

T2 [ms]:
50.3, 205.0

Number of
components

One
component [%]

Relative
error

Time per
voxel [s]

NNLS

0.69 (0.20)

0.31 (0.20)

34.89 (21.65)

241.82 (59.67)
2.92

(1.23) 0
3.21e-02

(4.46e-03) 2.406e-04

SNNOMP

0.69 (0.20)

0.31 (0.20)

34.89 (21.65)

241.82 (59.67)
2.92

(1.23) 0
3.21e-02

(4.46e-03) 1.009e-02

RNNOMP

0.69 (0.20)

0.31 (0.20)

34.89 (21.65)

241.82 (59.67)
2.92

(1.23) 0
3.21e-02

(4.46e-03) 7.179e-03

Bayesian

0.41 (0.09)

0.59 (0.09)

101.21 (1.21)

141.25 (1.28)
4.00

(0.00) 92
7.90e-02

(9.83e-04) 5.314e-03

Reweighted
LS

0.96 (0.07)

0.04 (0.07)

6.88 (5.38)

291.89 (107.61)
2.54

(1.34) 48
4.67e+00

(3.89e+00) 2.339e-01

Reweighted
`1 1

0.61 (0.09)

0.39 (0.09)

51.20 (10.70)

285.60 (74.68)
2.00

(0.00) 0
4.22e-02

(6.14e-03) 2.932e-02

Reweighted
`1 2

0.50 (0.15)

0.50 (0.15)

53.66 (13.05)

227.88 (75.32)
2.12

(0.32) 0
3.55e-02

(5.04e-03) 3.632e-02

Reweighted
NNLS 1

0.68 (0.21)

0.32 (0.21)

37.04 (22.67)

240.94 (60.10)
2.20

(0.57) 0
3.22e-02

(4.46e-03) 2.286e-03

Reweighted
NNLS 2

0.54 (0.10)

0.46 (0.10)

56.00 (11.66)

224.80 (49.49)
2.00

(0.00) 0
3.37e-02

(4.08e-03) 7.680e-03

SPIJN 1
λ = 0.50

0.45 (0.01)

0.55 (0.01)

70.00 (0.00)

200.00 (0.00)
2.00

(0.00) 0
9.42e-02

(3.27e-03) 1.181e-03

SPIJN 3
λ = 0.80

0.52 (0.01)

0.48 (0.01)

70.00 (0.00)

200.00 (0.00)
2.00

(0.00) 0
4.53e-02

(6.41e-03) 3.389e-03

JRNNOMP

0.70 (0.20)

0.30 (0.20)

35.10 (22.30)

244.92 (61.86)
2.92

(1.23) 0
3.21e-02

(4.45e-03) 9.224e-03
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(d) SNR = 25

Method
Weights:
0.5,0.5

T2 [ms]:
50.3, 205.0

Number of
components

One
component [%]

Relative
error

Time per
voxel [s]

NNLS

0.73 (0.21)

0.27 (0.21)

37.58 (27.49)

295.16 (107.49)
2.68

(1.38) 0
6.41e-02

(8.81e-03) 1.811e-04

SNNOMP

0.73 (0.21)

0.27 (0.21)

37.58 (27.49)

295.16 (107.49)
2.68

(1.38) 0
6.41e-02

(8.81e-03) 9.305e-03

RNNOMP

0.73 (0.21)

0.27 (0.21)

37.58 (27.49)

295.16 (107.49)
2.68

(1.38) 0
6.41e-02

(8.81e-03) 6.658e-03

Bayesian

0.87 (0.19)

0.13 (0.19)

106.38 (2.01)

143.76 (1.24)
4.00

(0.00) 76
1.15e-01

(6.54e-03) 5.317e-03

Reweighted
LS Only one components was matched in this case

Reweighted
`1 1

0.65 (0.13)

0.35 (0.13)

53.00 (18.75)

312.08 (100.58)
1.96

(0.20) 4
7.15e-02

(1.24e-02) 3.040e-02

Reweighted
`1 2

0.54 (0.25)

0.46 (0.25)

53.59 (23.31)

245.20 (96.59)
1.88

(0.32) 0
6.84e-02

(9.67e-03) 3.349e-02

Reweighted
NNLS 1

0.72 (0.22)

0.28 (0.22)

37.73 (27.32)

295.73 (109.41)
2.00

(0.69) 0
6.42e-02

(8.81e-03) 2.025e-03

Reweighted
NNLS 2

0.61 (0.15)

0.39 (0.15)

59.72 (19.60)

278.00 (105.49)
2.08

(0.27) 0
6.55e-02

(8.82e-03) 1.019e-02

SPIJN 1
λ = 0.40

0.58 (0.03)

0.42 (0.03)

85.00 (0.00)

200.00 (0.00)
2.00

(0.00) 0
9.42e-02

(1.01e-02) 7.018e-04

SPIJN 3
λ = 0.80

0.59 (0.03)

0.41 (0.03)

85.00 (0.00)

200.00 (0.00)
2.00

(0.00) 0
8.06e-02

(1.17e-02) 5.855e-04

JRNNOMP

0.72 (0.23)

0.28 (0.23)

37.91 (27.92)

290.74 (105.61)
2.68

(1.26) 0
6.43e-02

(8.82e-03) 4.793e-03
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In general, the Bayesian algorithm and the reweighted least squares show the largest
errors and return most often only one component, both of these methods do not include
the non-negativity constraint. Another general behaviour is that the reweighting used for
the NNLS does not improve the multi-component matchings compared to the unweighted
NNLS.
Most methods give accurate and precise results for SNR=1000. The Bayesian method
and reweighted LS show relatively high standard deviations in the relaxation times. For
the T2 sequence the matched relaxation times show the largest error for the Bayesian
method. In general the variation is larger for the smaller component than for the second
component at SNR=1000.
With decreasing SNR the voxel-by-voxel methods including non-negativity show similar
behaviour. When the MRF sequence is used with a low SNR the SPIJN algorithm
gives the best results. For the T2 sequence the SPIJN algorithm gives the best results
as well, although the relaxation times of the short component is for SNR=50 and 25
overestimated. The longer component is estimated correctly.
It can be seen here that the T2 measurement is more sensitive to noise than the MRF500
sequence. This can partly be larger number of echoes used for the MRF sequence (500
echoes) compared to the T2 measurement (32 echoes).
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4.2. Simulations joint methods

In order to evaluate the effectiveness of the joint methods it is necessary to consider a
group of pixels. In this section a set of 17× 7 pixels is considered, which all contain one
or two components. The eleven columns in the centre contain different combinations of
the two components. The three outer columns on both sides contain only one component.
The distribution of the two components is shown in Figure 4.1. The same dictionaries as
in the previous section were used.
For each of the pixels the corresponding mixture of signals is calculated and a certain

level of noise is added, just as in the previous section. In Figure 4.2 the result of a single
component match is shown with an SNR of 5 using sequence MRF500. It can be seen
that the matched intensity is approximately 1 throughout the matching. In the centre
mixed area the matching results in an averaged value of the true relaxation times.
In Figures 4.3, 4.4 and 4.5 the results for SNR values of 100,10 and 3 respectively are
shown using the SPIJN method with the reweighting scheme from Equation 3.27 and
the JRNNOMP algorithm using two segments using the MRF500 sequence. The figures
show the absolute error in the matched weights for the two simulated components and
also shown the matched relaxation times.
The SPIJN algorithm finds the two closest components with each noise level. The SPIJN
algorithm has also been tried with the reweighting scheme of Equation 3.28 with λ = 2,
which leads to similar results.
The JRNNOMP algorithm has also been tried without the segmentation, the offset in
the matched relaxation times as well as the matched weights is larger for the method
without segmentation. When using the JRNNOMP algorithm the maximum number of
components was set to 4.
In Section A.1 of the Appendix the results of applying the joint algorithms for T2

relaxation signals on the same true distributions as for the MRF500 signal are shown.
The differences between the two methods are smaller than for the MRF500 sequence. In
general the SPIJN algorithm gives a better approximation of the relaxation times.
Something which can not be seen from the shown images, but was observed in the
simulations, is that the JRNNOMP selects smaller T2 values for both components for the

T1 = 300.0, T2 = 50.3 T1 = 1000.0, T2 = 205.0

0.0

0.2

0.4

0.6

0.8

1.0

Ground truth, intensity of 2 components

Figure 4.1.: The distribution of the two components in the simulated image.
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Matched intensity
SNR = 5

0.95

1.00

1.05

1.10

1.15

(a) The matched scales

T1 mapping
SNR = 5

300
400
500
600
700
800
900
1000

(b) The matched T1 values

T2 mapping
SNR = 5

50
75
100
125
150
175
200
225
250

(c) The matched T2 values.

Figure 4.2.: The result of a single component MRF500 matching with a signal to noise
ratio of 5.

signals with more noise. The SPIJN algorithm does not show this behaviour. Following
on this the shorter T2 values are given a relatively high weight, leading to a sum of
weights above 1.
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T1 = 300.0, T̃1 = 300.0

T2 = 50.3, T̃2 = 50.0

T1 = 1000.0, T̃1 = 1020.0

T2 = 205.0, T̃2 = 200.0

0.000

0.005

0.010

0.015

0.020

0.025

0.030

SNR = 100

(a) Using the SPIJN algorithm the reweighting
scheme from Equation 3.27 with λ = 0.25.

T1 = 300.0, T̃1 = 289.2

T2 = 50.3, T̃2 = 49.7

T1 = 1000.0, T̃1 = 1052.8

T2 = 205.0, T̃2 = 198.9

0.005

0.010

0.015

0.020

0.025

0.030

0.035

SNR = 100

(b) Using the JRNNOMP algorithm with two
segments.

Figure 4.3.: The multi-component matching for the simulated image using the MRF500
sequence with SNR=100. The true T1 and T2 values and matched T1 and
T2 values (T̃1, T̃2) are given. In the images the absolute difference of the
matched weights compared to the true weights as shown in Figure 4.1 are
visualised. Notice that the two colourbars have different scales.

T1 = 300.0, T̃1 = 290.0

T2 = 50.3, T̃2 = 50.0

T1 = 1000.0, T̃1 = 1000.0

T2 = 205.0, T̃2 = 200.0

0.00

0.01

0.02

0.03

0.04

0.05

SNR = 10

(a) Using the SPIJN algorithm the reweighting
scheme from Equation 3.27 with λ = 0.25.

T1 = 300.0, T̃1 = 284.1

T2 = 50.3, T̃2 = 43.6

T1 = 1000.0, T̃1 = 1057.2

T2 = 205.0, T̃2 = 198.8

0.0

0.1

0.2

0.3

0.4

0.5

SNR = 10

(b) Using the JRNNOMP algorithm with two
segments.

Figure 4.4.: The multi-component matching for the simulated image using the MRF500
sequence with SNR=10. The true T1 and T2 values and matched T1 and
T2 values (T̃1, T̃2) are given. In the images the absolute difference of the
matched weights compared to the true weights as shown in Figure 4.1 are
visualised. Notice that the two colourbars have different scales.
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T1 = 300.0, T̃1 = 280.0

T2 = 50.3, T̃2 = 50.0

T1 = 1000.0, T̃1 = 1180.0

T2 = 205.0, T̃2 = 200.0

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

SNR = 3

(a) Using the SPIJN algorithm the reweighting
scheme from Equation 3.27 with λ = 0.25.

T1 = 300.0, T̃1 = 611.0

T2 = 50.3, T̃2 = 112.0

T1 = 1000.0, T̃1 = 2950.0

T2 = 205.0, T̃2 = 53.3

0.0

0.2

0.4

0.6

0.8

1.0

SNR = 3

(b) Using the JRNNOMP algorithm with two
segments.

Figure 4.5.: The multi-component matching for the simulated image using the MRF500
sequence with SNR=3. The true T1 and T2 values and matched T1 and
T2 values (T̃1, T̃2) are given. In the images the absolute difference of the
matched weights compared to the true weights as shown in Figure 4.1 are
visualised. The two plots use different colour scales.
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4.3. Numerical simulations with three components

In order to analyse the effectiveness of the joint sparsity constraint, the NNLS algo-
rithm, reweighted `1 algorithm and Bayesian approach are compared to the SPIJN and
JRNNOMP algorithms. These numerical simulations now including a myelin water like
component. For these simulations the MRF500, MRF200 and T2 exponential sequences
were used. In both the reweighed `1 and the SPIJN algorithm the simple reweighting
was used. The numerical simulations assume three T1/T2 combinations to be present; a
short component T1=110ms, T2=20ms present in every signal with 10 percent related
to myelin water, a mid-range component T1=1100ms, T2=130ms related to intra and
extracellular water and a long component T1=2000ms, T2=500ms related to free water.
The last two components vary from 0% to 90% in 10 steps. To the simulated MRF signals
Gaussian noise with SNR=50 was added, for the T2 exponential signals Gaussian noise
with SNR=100 was added.
A logarithmically spaced dictionary was used in this section. T1 and T2 ranged both from
10 ms to 5 seconds in 80 logarithmic steps, with the restriction T2 ≤ T1.
Matched components are assumed to belong to the first component when T1 < 200ms and
T2 < 30ms, to the second component when 200ms< T1 < 1800ms, 30ms< T2 < 200ms
and to the third component when T1 > 850ms and T2 > 200ms. The matched components
and the grouping for the different algorithms are visualised in Figure 4.6 for the MRF
sequences. In Figure 4.7, Figure 4.8 and Figure 4.9 the matched weights are shown for
the different methods and the three sequence types.
From these distributions it can be seen that the distributions from the MRF500 sequence
are more concentrated around the true components than the MRF200 distributions. The
Bayesian approach shows a broader spread in the matched components and this results in
a larger error in the grouped, matched weights. The NNLS and reweighted `1 algorithms
give very similar results. For each of the methods the short component is most difficult
to estimate.
The results of the algorithms including the joint sparsity constraints show less variation in
the matched components. The SPIJN algorithm gives a better result than the JRNNOMP
algorithm, especially for the short component.
The approximation for the T2 signal show an increased sensitivity to noise, as observed
in the single voxel simulations as well. The Bayesian method does not give a meaningful
MW-map any more, the other methods give reasonable results in which the SPIJN
algorithm is closest to the true solution.
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(a) MRF500

(b) MRF200

Figure 4.6.: The distribution of the matched components for the numerical phantom with
the different algorithms for the two MRF sequences. The boxes indicate how
the components are grouped. The blue box is the short component, the green
box the middle component and the red box the long component. The size of
the dots corresponds to the relative abundance the different components in
the multi-component matching. The three crosses give the locations of the
true components.

Master Thesis, TU Berlin, Scientific Computing, 2018 75



Multi-component MR parameter mapping Martijn Nagtegaal

Myelin water
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Reweighted `1
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Bayesian
RMSE = 3.80e-02 e

SPIJN
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JRNNOMP
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gT1 = 1100, T2 = 110
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k
RMSE = 2.12e-02
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RMSE = 6.55e-02

Free water
850 < T1

200 < T2

mT1 = 2000, T2 = 500 nRMSE = 7.00e-02 oRMSE = 7.40e-02 pRMSE = 8.92e-02 qRMSE = 1.15e-02 rRMSE = 5.73e-02

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

SNR = 50

Figure 4.7.: A numerical phantom containing three different components was simulated with an SNR of 50 for
sequence MRF500. The numerical phantom consists of 100 pixels, the first component is present in
each pixel with ten percent, the other two components are range in the horizontal direction from 0
to 90% in 10 steps. The first column shows the ground truth for the distribution of the weights for
the different components and the other columns show the retrieved matchings with the different
algorithms. The first row has a different colour scale than the other rows.
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Figure 4.8.: A numerical phantom containing three different components was simulated with an SNR of 50 for
sequence MRF200. The numerical phantom consists of 100 pixels, the first component is present in
each pixel with ten percent, the other two components are range in the horizontal direction from 0
to 90% in 10 steps. The first column shows the ground truth for the distribution of the weights for
the different components and the other columns show the retrieved matchings with the different
algorithms. The first row has a different colour scale than the other rows.
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Figure 4.9.: A numerical phantom containing three different components was simulated with an SNR of 100
for the T2 exponential signal. The numerical phantom consists of 100 pixels, the first component
is present in each pixel with ten percent, the other two components are range in the horizontal
direction from 0 to 90% in 10 steps. The first column shows the ground truth for the distribution
of the weights for the different components and the other columns show the retrieved matchings
with the different algorithms. The first row has a different colour scale than the other rows.
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4.4. Phantom measurements

To analyse the proposed methods a phantom has been used. The phantom was made of
a vessel containing a solution of CuSo4 in which a plastic glove filled with water with a
different concentration of CuSo4 was placed. The glove contained a higher concentration
of CuSo4 leading to shorter relaxation times [90] and was used as thin barrier between
the two compartments allowing partial volume effects.
Different measurements were performed on this phantom:

1. T2 relaxation with and echo time TE=10ms, repetition time TR=2.5s and echo
train length of 60 echoes;

2. The MRF500 sequence, fully sampled and undersampled (1 out of 34 spiral inter-
leaves).

The measurement were performed on a 1.5T MR-Scanner with the following parameters:
FOV = 240× 240× 5mm3, resolution = 1.875× 1.875× 5mm3.
Measuring fully- and undersampled data makes it possible to compare the effects of
undersampling on the quality of the matching. Undersampling leads to a large decrease in
measurement time and is therefore necessary when an in vivo measurement is performed.
It would therefore be good to know how this affects the results.
These MRF measurements lead to a simultaneous multi-parametric matching, measure-
ment 1 measures T2 in a more classical way. This gives a reference measurement and at
the same time it is interesting to know what the performance is of the SPIJN method. A
single component matching was used to form a B1 map, the B1 values ranged from 0.75
to 1.25, T1 values ranged from 5ms to 1s with step size 5 up to 150, 10 up to 300 and 30
up to 1000. The T2 values ranged from 4ms to 500ms with step size 2 up to 10, 5 up to
150 and 10 up to 500, including the restriction T2 ≤ T1.
In Figure 4.10 the components matched with the SPIJN algorithm are shown for the three
different measurements. The matched relaxation times are given above the corresponding
image. The m notation gives the distance from the matched relaxation time to the closest
relaxation times and thus indicating the step size in this part of the parameter space.
When the highest or lowest relaxation time is used, ⇓ and ⇑ are used respectively.
As assumed, the T2 SPIJN matching results in exactly two components. Between the
two components there is a smooth transition, which can be seen in the green transition
zone between the fingers of the glove and the surrounding fluid.
The fully sampled MRF data also results in two components, with lower T2 relaxation
times. The fully sampled MRF data results in mixtures of the two components in the
surrounding fluid, which does not correspond to the phantom. A fraction of 0.1 to 0.2 of
the short component is matched in the surrounding fluid. This might also explain why
the matched relaxation times are lower than in the T2 measurement, combined with the
experience that relaxation times measured with MRF are typically lower than relaxation
times measured with multi-echo spin-echo measurements.
The undersampled data results in a noisier matching than the fully-sampled measurement
and the relaxation times are slightly different as well. The third component could not
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be suppressed by increasing the regularisation without changing the other components.
This resulted in combining the first and component component.
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(a) The components as determined with the SPIJN algorithm for the T2 phantom measurement.
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(b) The components as determined with the SPIJN algorithm for the fully sampled MRF500
phantom measurement.
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(c) The components as determined with the SPIJN algorithm for the undersampled MRF500
phantom measurement.

Figure 4.10.: The multi-component matching for the glove phantom measurement with
three different measurement types. The multi-component matching has
been performed with the SPIJN algorithm.
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4.5. In vivo measurements

In this section the results of the here proposed algorithm are shown for different available
datasets, compared to published methods. For multi-echo spin-echo T2 measurements
the SPIJN algorithm is compared to results of the NNLS algorithm and the algorithm
proposed by Prasloski et al. [10]. For the MRF measurement the NNLS, Bayesian and
reweighted-`1 algorithms are compared to the SPIJN, JRNNOMP and search around
algorithms as was done in Section 4.3.

4.5.1. In vivo T2 measurements

Measurements including B1 compensation for a healthy brain

In this section the proposed SPIJN algorithm is used for multi-echo spin-echo T2 mea-
surements to produce a myelin water fraction map. The results shown here are for 3
out of 9 slices of one measurement of a healthy volunteer. Different healthy datasets are
examined as well and they produce similar results, with similar decompositions.
To obtain a MWF map, an estimation of the flip angle inhomogeneities (FAI) caused
by B1 inhomogeneities is needed. To obtain an estimation of the FAI map, a single
component matching is performed as explained in Section 2.5.1. This FAI map is used as
fixed parameter map for the NNLS algorithm and the SPIJN algorithm. These results are
compared to the the B1-compensated regularised NNLS method, regNNLS for short, as
proposed in [10]. The dataset was acquired on a 3T MR scanner (Ingenia 3.0T, Philips,
Best, The Netherlands) with the following parameters: 48 echoes, ∆TE=8 ms, TR=1200
ms, FOV=240× 205× 72 mm3, resolution=1.25× 1.25× 8 mm3 and 9 slices.
Figures 4.11 and 4.12 show the estimated flip angle inhomogeneity (FAI) maps and MWF
maps for the 3T data for three slices. NNLS took 10 seconds per slice, regNNLS 22
minutes, and SPIJN 45 seconds on a simple laptop (IntelCore i5-6300U CPU @2.40GHz
2 cores, 4 threads). The used T2 threshold for myelin water is T2 = 40ms. The NNLS
and SPIJN algorithm use a pre-computed dictionary, this calculation took a few minutes
and can be reused for other measurements. The used dictionary contained B1 values
ranging from 0.6 to 1 in 50 steps and T2 ranging from 10ms to 5s in 141 on a logarithmic
scale. The regNNLS uses a T2 values ranging from 10ms to 2s in 101 steps.
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Figure 4.11.: The FAI maps as determined with the B1-compensated regularised NNLS method [10] and the
single component matching for multi-echo spin-echo T2 data at 3T from a healthy volunteer.
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Figure 4.12.: The MWF maps calculated with the NNLS algorithm, the B1-compensated regularised NNLS
method [10] and the SPIJN algorithm for multi-echo spin-echo T2 data at 3T from a healthy
volunteer. The NNLS and SPIJN algorithm use the FAI-map from the single component matching.
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Although the FAI maps of both methods look similar, the proposed FAI maps show some
brain structure. This could be a drawback of this relatively simple approach assuming
a single component. In the ventricles such B1 offset has been observed before [91]. To
prevent this, especially in the outer area, spatial smoothing could be applied to the FAI
map.
The NNLS MWF maps show noise amplification, which is reduced by the regNNLS
method, with the drawback of longer computation times. The SPIJN MWF maps show
better left-right symmetry than the regNNLS maps and a smoother behaviour in general.
It seems that the structures in the FAI map do not influence the MWF maps.
The components as resulting from the SPIJN algorithm are shown in Figure 4.13 for the
fifth slice. The first component seems related to MW, the second component belongs to
the intra- and extracellular water and the fourth component resembles free water. The
third component does not seem to resemble a specific tissue, but is mainly located in
locations were CSF is present. As said before, the decompositions for different slices or
measurements are similar. This matching was also performed for a measurement with
less masking and were a part of the muscle outside of the skull was included. This lead
to 5 components, the myelin water component was separated in 2 components at 10ms
and 29ms. However, this did not change the MWF map.
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Figure 4.13.: The components as matched with the SPIJN algorithm for a 3T multi-echo
spin-echo measurement, slice 5 is shown here.
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Multi-echo T2 measurement including B1 compensation on a patient with Krabbe
disease

In this section the results for a multi-echo spin-echo measurement for a patient with
Krabbe disease are presented. Krabbe disease is a lysosomal disorder that affects the
white matter of the central and peripheral nervous systems [92], the effects of the Krabbe
disease are showing in the myelin water fraction [93]. The MWF for a brain from a
patient with Krabbe disease shows a wide-spread lower MWF.
The dataset from the last paper is used to test the SPIJN algorithm. The dataset was
obtained with a 3DT2 Gradient Echo Spin Echo sequence (32 echoes, TR = 1.200 s, TE
= 10 ms, resolution = 1.0× 1.0× 5 mm3, slices = 10). In the mentioned paper the MWF
is determined using the B1 compensated regNNLS method. This method includes an
estimation of the FAI map. In this thesis the FAI map is obtained through the single
component matching including T2 and B1 which is then used for the different algorithms.
The FAI maps obtained with these two methods are shown in Figure 4.14. The same
dictionary as in the previous section was used.
The FAI maps show some differences especially at the outer parts of the brain.
To identify how the differences in the FAI map influence the SPIJN algorithm Figure 4.15
shows the results from the B1 compensated regNNLS algorithm, the results from the
SPIJN algorithm with the FAI map from the regNNLS algorithm and with the FAI map
from the single component matching.
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Figure 4.14.: The FAI maps determined the B1-compensated regularised NNLS method
[10] and the single component matching including B1 and T2 algorithm for
multi-echo spin-echo T2 data at 3T for a patient with Krabbe disease.
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Figure 4.15.: The MWF maps for a patient with Krabbe disease. The Krabbe disease leads to a decrease
in myelin water. The plots on the right use the FAI map from the single component matching.
The other plots use the FAI map from the B1-compensated regNNLS. The MWF maps are
calculated with the following algorithms from left to right (using the mentioned FAI maps):
B1-compensated regularised NNLS, SPIJN and SPIJN.
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These MWF maps show several interesting effects, which are annotated and numbered in
the figure, starting with the MWF maps based on the regNNLS FAI map. In the centre
of the MWF maps with the regNNLS annotated at 1, the MWF shows higher intensities
which are not shown in the SPIJN maps. Furthermore the SPIJN maps show a more
smooth MWF for example at annotation 2 and makes it easier to recognise structures as
annotated by 3. The remark must be made that it is not known whether these structures
represent something meaningful. In general the SPIJN MWF map seems a bit calmer
than the regNNLS map, although no spatial smoothing is used.
There are also differences between the two SPIJN MWF maps. These differences are
mainly at the outer part of the brain. At some place (annotated as 4) the MWF is
high in the single component-based map, which could be considered as unexpected. The
opposite effect is also observed and annotated with 5, where the regNNLS based maps
show myelin water, the MWF from the single component matching does not show this
myelin water.
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4.5.2. In vivo MRF measurements

Comparison of algorithms

A fully sampled MR measurement with sequence MRF200 has been performed. The
measurement was performed at 1.5T with the following settings: FOV = 300× 300× 8
mm3, resolution = 2.01× 2.01× 8 mm3, 1 slice. This measurement is used in this section
to compare the results obtained with the following 6 algorithms: the NNLS algorithm,
the Bayesian approach, the reweighted `1 method, the SPIJN algorithm, the search
around method based on the components found by SPIJN and the JRNNMOP algorithm,
one time without segmentation instructed to find 7 components and one time with the
segmentation in 3 segments from Section 3.1.3. A logarithmically spaced dictionary was
used with T1 ranging from 10ms to 4s in 100 steps and T2 ranging from 4ms to 2s in 100
steps, with the restriction T2 ≤ T1 leading to a total of 6219 dictionary elements.
The NNLS algorithm took 26 seconds per slice, the reweighted-`1 method 4384 seconds,
the Bayesian 1324 seconds, the SPIJN algorithm 33 seconds, the search around 104
seconds and the JRNNOMP 23 and 21 (with segmentation) seconds, all performed on a
simple laptop.
Figure 4.16 shows how the matched components are distributed for each of the algorithms
and also shows how they are grouped. The results for NNLS and reweighted-`1 are
exactly similar for this multi-component analysis. The Bayesian approach shows a broad
spread, although still 3 groups, present in the other methods, could be recognised.
The JRNNOMP without segmentation and SPIJN algorithm both return 7 components
in similar areas, but these components have different relaxation times. The components
matched by SPIJN can directly be related to the distributions of components in the
voxel-by-voxel methods. The component at T1 = 780ms, T2 = 104ms, matched by the
JRNNOMP, is not matched by any of the voxel-by-voxel methods. The JRNNOMP
with segmentation returns 9 components, with most interestingly no component around
T1=10ms and T2=10ms and two components with very small T2 and large T1. The
search around as performed on the components found by the SPIJN algorithm shows that
most voxels still used the initial components and some are matched to the surrounding
components. This spreading around mainly occurs in the T2 values and less in the T1.
Figure 4.17 shows the results of the multi-component matching when the matched
components are grouped in the same way as described in Section 4.3. As an indication of
the quality of the matching the normalised relative mean square error (NRMSE) is given.
The Bayesian method and the joint methods (SPIJN and JRNNOMP) show a higher
NRMSE than the voxel-by-voxel methods. For the Bayesian method this might be caused
by the lack of the non-negativity constraint, which will be discussed in more detail in
Section 5.1. For the joint method this is probably an effect of the introduction of the
joint sparsity constraint. Introducing the segmentation and the regrouping afterwards
increased the NRMSE even more.
For the intra- and extracellular water and free water the differences between the algorithms
are minimal. Only the SPIJN algorithm, the search around and the segmented JRNNOMP
show a structure in the myelin water.
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The 7 components found by the SPIJN algorithm are shown in Figure 4.18. The second
component is the component grouped to myelin water. The third and fourth component
seem to resemble white and grey matter, although the T1 relaxation times are shorter
than expected. The first component does not seem meaningful, the fifth could be related
to the third component in the T2 joint sparsity matching as shown in Figure 4.13. The
sixth and seventh component both seem to represent CSF.
The search around algorithm was applied to the five main components of the SPIJN
results the matched components show a small spread as mentioned before. As a result
of this the grouping for myelin water in Figure 4.17 shows less structure compared to
the SPIJN result. The result for the other two groups do not seem to be changed. The
components previously matched to the third (white matter) and the fourth component
(grey matter) are however moving towards each other and the white and grey components
do not show the structures any more which were observed before.
The 7 components matched by the JRNNOMP algorithm are shown in Figure 4.19.
Compared to the components from the SPIJN algorithm these matches show more voxels
containing a mixture of components, also at places in the white or grey matter where
a more dominant tissue would be expected. The second, short component related to
myelin water does not show structures like the matching of the SPIJN algorithm. The
fourth component shows a white matter structure, but different from the white matter
component from the SPIJN algorithm.
Figure 4.20 shows the 9 components as matched with the JRNNOMP algorithm, using
a segmentation into 3 segments and 3 components per segment. After finding the
nine components, the regrouping as discussed in Section 3.3.3 was performed. These
components are more difficult to interpret. The fourth component seems to include all
the intra- and extracellular water. Components 5, 7, 8 and 9 are located in the centre of
the brain and could be related to free water, just as component 2. Component 3 seems
to be related to white matter or myelin water, which could also be said for component 1.
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Figure 4.16.: The distribution of the matched components for the different algorithms
is shown. The blue box is the short component (myelin water), the green
box the middle component (white and grey matter) and the red box the
long component (CSF). The size of the dots corresponds to the relative
abundance the T1/T2 components in the multi-component matching. For
the search around the initial T1/T2 combinations are shown with black
crosses.
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Figure 4.17.: The results of the multi component matching for an in vivo brain MRF
measurement. The shown intensities represent the fraction of the component.
The rows correspond to the different grouped components and the columns
to the different algorithms. The first row has a different colour scale than
the lower two rows.
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Figure 4.18.: The results of the multi component matching for an in vivo brain MRF
measurement with the SPIJN algorithm.
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Figure 4.19.: The results of the multi-component matching for an in vivo brain MRF
measurement with the JRNNOMP algorithm, where the desired number of
components was set to 7.
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Figure 4.20.: The results of the multi-component matching for an in vivo brain MRF mea-
surement with the JRNNOMP algorithm, where the brain was segmented
in 3 segments and in each segment 3 component were sought. The 9 found
components were then regrouped to remove the separation of the different
segments.
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Effects of undersampling

To evaluate the effect of undersampling on the multi-component analysis for in vivo
measurements, several undersampled and a fully sampled measurement were performed
on a healthy volunteer. A fully sampled measurement with the MRF200 sequence was
performed, with the following parameters: FOV = 240 × 240 × 15mm3, resolution =
1× 1× 5mm3 and 3 slices. Beside this fully sampled measurement several undersampled
measurements were performed. The measurements were performed with a spiral trajectory,
out of the 34 spiral interleaves needed to fully sample the k-space, only 1 or 2 interleaves
were sampled. The undersampled measurement were performed with the MRF200 and
MRF500 sequence, using a repetition time of 15ms and a relaxation interval of 15ms.
The acquisition times were as follows:

• MRF200 fully sampled: 359 seconds;

• MRF500 1 out of 34: 88 seconds;

• MRF500 2 out of 34: 175 seconds;

• MRF200 1 out of 34: 65 seconds;

• MRF200 2 out of 34: 130 seconds.

A logarithmically spaced dictionary was used with T1 ranging from 10ms to 4s in 100
steps and T2 from 4ms to 2s in 80 steps, with the restriction T2 ≤ T1 this leads to 4974
dictionary atoms. The components from the matching using the SPIJN method for
the fully sampled data are shown in Figure 4.21. The multi-component matchings for
the undersampled MRF200 data showed severe spiral artefacts. The results from the
MRF500 sequence were better and 2 interleaves show less artefacts than 1 interleave.
Figure 4.22 shows the components found with the SPIJN algorithm for the MRF500
sequence with 2 out of 34 interleaves.
The first component matched to (T1, T2) = (10, 9.5) in the fully sampled data could be

related to myelin water and a similar component is found in the undersampled data at
(42.7,42.4). The second component at (691,54) seems related to white matter and is found
in the undersampled data at (829,68). The third component at (936,63) is related to the
grey matter and is partly reflected in the undersampled data at (1122,93). The fourth
component at (1429,383) seems to be complementary to the first component and might
be related to free water. This component seems also related to the fifth component in
Figure 4.18.The fifth component at (1821,841) would be related to free water and seems
related to component matched to the longest component (4000,2000) in the undersampled
data.
The first two components in the undersampled data can not be directly related to the
components in the fully sampled data. The first component (262,4) seems only present
in the white matter and could partly explain the higher relaxation times for the white
matter in the undersampled data. The second component (4000,4) matched in the
undersampled data shows a similar effect as observed in Section 4.4 and resembles an
unrealistic combination of relaxation times.
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Figure 4.21.: The components from the multi-component matching using the SPIJN
algorithm for fully sampled data with the MRF200 sequence. For each
component the matched relaxation times are given in milliseconds, including
the distance to the closest relaxation times.
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Figure 4.22.: The components from the multi-component matching using the SPIJN
algorithm for undersampled data with the MRF500 sequence. 2 out of 34
interleaves were used in the sampling. For each component the matched
relaxation times are given in milliseconds, including the distance to the
closest relaxation times.
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4.6. Further remarks and results on the joint algorithms

Beside the main results as given in the sections before, some additional results and
remarks will be given in this section.

4.6.1. Speed up the algorithms

Several strategies to decrease the computation times of the joint algorithms are proposed
and were investigated in simple test cases, as discussed briefly in this section. The SPIJN
and JRNNOMP algorithms come down to finding a common basis selected from the
dictionary atoms which represent the present tissues. If this basis would be known, the
dictionary can be restricted and the best solution would be found using the simple NNLS
algorithm with these restricted dictionaries, which is rather fast. One could think of
several ways to find this restricted dictionary, which will be discussed below.

Fourier transforming the image

One option to speed up the basis selection would be by performing an FFT on the images.
The idea would be that the central points in k-space contain the general behaviour of
the data. However, the resulting Fourier transform is a complex signal, which can not be
projected to the real axes as done before, since the Fourier signal is truly complex and
not only a rotated real signal. This makes it therefore impossible to obtain useful results
from the Fourier transformed data.

Downscaling the image

Another method is to downscale the images, so by reducing the number of voxels by
taking the average over blocks of voxels. As a result of this a smaller number of voxels is
considered, making the SPIJN faster and improving the SNR. With the selected basis,
the NNLS algorithm can be ran for each voxel. For a simulated image consisting of 3
components this gives faster results and there does not seem to be a negative effect on
the solution. This has been tested when the groups of voxels which where combined had
size 4 and for SNR≥ 50.
As a variant on this it would also be possible to combine this with the idea from the
previous section. By taking the inverse Fourier transform from the central part of the
k-space as and using low resolution images it is possible to obtain similar results.

Reuse the basis from different slices

Another interesting option to use the information obtained in different slices as an initial
guess for the basis. A drawback of this would be that tissues present in one slice but not
in another could be missed.
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4.6.2. Regularisation parameter of the SPIJN algorithm

The behaviour of the SPIJN algorithm has been analysed with respect to the regular-
isation parameter λ in a simulation with 2 components. Multiple conclusions can be
drawn from these results. The used regularisation value does not influence the matched
relaxation times in general. A second observation is that the relative error compared to
the regularisation parameter has a critical point at which the relative error drastically
increases to a plateau. After a short increase of λ the relative error rises further to
one. This behaviour is related to the number of components. It can be seen that the
point where the error drastically increases is the point where the number of components
decreases from two to one. This increase in the error makes sense, since one component
is not enough to estimate the true signal. The desired value of λ lies somewhere before
the point where the relative error starts to increase.
Figures 4.23b and 4.23d show the number of iterations needed to reach the convergence
tolerance as in Equation 3.26. When the regularisation parameter leads to the true
number of components, the convergence is faster than when the regularisation parameter
is too large or too small. The number of iterations is the smallest at the value of λ when
the number of components has just dropped to the true number of components. In the
optimal case only 5 iterations are needed to reach convergence.
In Figures 4.23 and 4.24 the two different reweighting schemes have been compared with
the MRF500 sequence and the T2 exponential decay sequence. When the regularisation
is too strong, it can happen that zero components are matched, thus the zero solution is
returned. From these plots it can be seen that the behaviour of the different reweighting
schemes is similar, but the λ value where the relative error starts to increase is larger for
the third scheme than for the first scheme. Another difference is that the third reweighting
scheme needs more iterations for convergence when the regularisation parameter is not
in the right range.
In Figure 4.25 the behaviour of the SPIJN algorithm with the first reweighting scheme,
using different numbers of voxels and different regularisation parameters has been shown.
It can be seen that the behaviour is similar for different numbers of voxels. The only
difference is that the curve is shifted to the right with a constant spacing in this log-log
plot. This constant shift value on a log scale indicates a constant factor of log J where
J is the number of voxels. In Figure 4.26 the relative error against different values of
λ̄ with different number of voxels is shown. The value λ̄ is the scaled version of the
regularisation parameter λ = λ̄/ log J . In this figure it can be seen that the rescaling of
the regularisation parameter results in a similar behaviour for each number of voxels.
This would make it possible to test different regularisation parameters on a small number
of voxels, which can be done rather fast and then to rescale the found regularisation
parameter to the larger number of voxels. By doing so, it is not necessary to do the
computation for the large number of voxels several times.
For the third reweighting scheme there is not such a clear relation between the regulari-
sation behaviour for different numbers of pixels.
In Figure 4.27 the regularisation behaviour for different SNR levels is shown. For all
the different noise levels the relative errors show a same behaviour without a shift as in
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the case for different numbers of voxels. The behaviour of the number of components
found is however different. The plateau where the number of components is correct, 2 in
this case, is larger for the larger SNR values, which could be expected, since it would be
easier to recognise the true components in the less noisy images. The third reweighting
scheme shows exactly the same behaviour.
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(c) The behaviour for the mean number of com-
ponents and relative error with error bars.
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Figure 4.23.: The SPIJN algorithm with reweighting schemes 1 and 3 has been used for
different values of the regularization parameter λ for the MRF500 sequence.
An image consisting of 25 voxels, containing 2 components with SNR = 20
has been analysed.
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Figure 4.24.: The SPIJN algorithm with reweighting scheme 1 and 3 has been used for
different values of the regularization parameter λ for the T2 sequence. An
image consisting of 25 voxels, containing 2 components with SNR = 20 has
been analysed.
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Figure 4.25.: The SPIJN algorithm with reweighting scheme 1 has been used for different
values of the regularization parameter λ for the T2 sequence. Different
numbers of voxels have been tried to analyse the shift of the optimal λ
value.
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Figure 4.26.: The behaviour for the relative error values with error bars. The SPIJN
algorithm with reweighting scheme 1 has been used with regularization
parameter λ̄ for the T2 sequence. The regularization parameter used in the
algorithm is defined as λ = λ̄/J , where J is the number of voxels.
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Figure 4.27.: The SPIJN algorithm with reweighting scheme 1 has been used for different
values of the regularization parameter λ for the T2 sequence. The behaviour
for different SNR values is shown.
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4.6.3. Finding a joint basis with unrestricted basis signals

To illustrate the special properties of the joint-sparsity problem with a given dictionary,
a short experiment has been performed as described in this section.
In the multi-component matching as considered in this project a highly coherent dictionary
with a non-negativity constraint is used to reconstruct the signal. When the dictionary
is allowed to contain any kind of signals, a small common basis would be sufficient to
represent the signal. This has been tested for the dataset as discussed in Section 4.5.2
Using the singular value decomposition (SVD) of the matrix containing all the measured
signals, can lead to such an unrestricted dictionary. The singular values are sorted on
their size and the right singular vectors corresponding to the largest singular values are
used as the joint basis signals. With this unrestricted, joint basis an approximation of
the original signals can be made. The norm of the difference between the approximated
signal and the measured signal, the residual, for each voxel is taken as a measure of the
matching quality.
The NNLS algorithm has been used to obtain a multi-component matching as well. The
relative residuals of this NNLS approximation with the fixed dictionary are compared to
the residuals for the SVD approximation when only 2 joint basis signals are used in Figure
4.28. The relative residual of the NNLS approximation is 7.9%, the SVD approximation
5.6%, although this large difference is mainly caused by the CSF. It can be seen from the

Difference between SVD with 2 components and NNLS
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Figure 4.28.: The difference between the residual from an SVD based approximation
using two joint basis signals and the NNLS algorithm without joint sparsity
restrictions. A negative value (red) indicates that the SVD approximation is
better than the multi-component approximation with a realistic dictionary.

figure that the SVD approximation, even with only two singular vectors, gives a better
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approximation of the measured signals. The areas where the NNLS approximation is
better are mainly the areas where the signal is very different from the rest of the image,
mainly in the blood vessel in the lower part of the image.
Using only two signals as a common basis gives very good approximation of the measured
signal. Therefore, this test gives an indication of how similar the measured MRF signals
are and how difficult it can be to find the different components.
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5. Discussion

In this chapter the methods and results as described and shown in the previous chapters
will be discussed. This chapter starts with the discussion of the voxel-by-voxel methods,
followed by the discussion of the joint methods and their results for simulated, phantom
and in vivo measurements.

5.1. Voxel-by-voxel methods

Non-negative least squares as by Lawson and Hanson The standard method as used in
the field of T2 multi-component analysis leads to good approximations in both simulations
and measurements. The NNLS algorithm intrinsically finds a sparse solution because of
the active set method of the algorithm. Since the NNLS algorithm does not require any
prior information besides the dictionary, the NNLS algorithm can easily be used.
Another benefit of the NNLS algorithm is the fast FORTRAN implementation of the
algorithm available in the SciPy package as used in this project. This implementation
uses a QR decomposition and Householder transformations to perform this as efficient as
possible. The Matlab implementation of the NNLS algorithm (lsnonneg) relies on the
backslash operator for the calculation of the least square solution, which is possibly less
efficient than the Fortran implementation of this algorithm.
In Section 4.1 reweighted forms of the NNLS algorithm were considered as well. These
modifications lead often to 2 components instead of the 4 components on average without
regularisation. The differences in the relaxation times are minimal. A drawback of
imposing this regularisation is the need to determine a regularisation parameter and the
regularisation can possibly lead to a bias.

Bayesian method The Bayesian algorithm as published in [5] was the first proposal for
a multi-component method in MRF and is therefore taken into consideration in most
comparisons. The Bayesian method is effectively a reweighted least squares algorithm
and therefore comparing this method with a LS algorithm with a simple reweighting
in Section 4.1 was interesting. The Bayesian approach could be considered as a special
reweighting scheme and for the SNR values of 5 and 10 the Bayesian method gave better
results than the reweighted least squares implementation.
In this approach it is assumed that each weight for each voxel is independent and is
normally distributed with zero mean and a variance taken from a Gaussian distribution.
The assumption of a normal distribution with zero mean leads to negative components
and many small components. The assumption that all weights are independent from
each other and from other voxels could be doubted as well.
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The Bayesian method has three parameters which should be chosen, the shape parameters
α and β and the regularisation parameters µ. The parameters as recommended in the
original paper [5] were used as a starting point, but it was difficult to obtain a sparse
solution by increasing the regularisation. The main way to obtain a sparse solution was
the pruning of the dictionary. That the `2 Tikhonov regularisation is not very effective
to obtain a sparse solution is a known problem that occurs here as well.
The method does not take non-negativity into account, this also leads to some disad-
vantages as can be seen in the in vivo measurement in Figure 4.17 in the myelin water
component. Components with short relaxation times are matched to the area of the
brain which consists of CSF, which is unexpected since CSF is known to have long
relaxation times. This is caused by the lack of a non-negativity constraint, which can
be seen from the matching results. In Figure 5.1 the signal evolution for very short and
very long relaxation times are shown. This is illustrative for what can happen when the
non-negativity is not taken into account. The signal of CSF with long relaxation times
looks similar to the component with very short relaxation times, with the difference of a
factor -1.
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Figure 5.1.: The signal evolution for short relaxation times and long relaxation times.

It is interesting that the algorithm as implemented here is a factor of 63 faster for the in
vivo MRF measurement than the computation times as mentioned in the original paper
(both were performed on a desktop computer). This could partly be explained by the use
of compression of the measured signals, in the original paper it is not clear whether this
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is used. Besides this, it could be that the Scipy sparsity and Numpy packages as used
are faster than the standard Matlab tools used in the original implementation. Just as in
the original paper a conjugate gradient least squares implementation was used and this
CGLS solving step takes approximately 50 percent of the computation time, combined
with the large number of iterations needed (> 100) because of the slow convergence to a
sparse solution, the method is not as fast as could be expected from a reweighted least
squares method.
The Bayesian approach gives an interesting first try, but shows several drawbacks. In
the field of T2 multi-exponential analysis more sophisticated Bayesian approaches were
proposed [52, 94] and show the possibilities a Bayesian approach can offer.

Reweighted-`1 algorithm The reweighted `1-norm regularised method as proposed
in [6] implements both a non-negativity constraint and `1-norm regularisation. The
implemented `1-norm regularisation is an effective way to obtain sparse solutions and
as seen in the simulations in Section 4.3 the results are reasonable. The non-separable
reweighting scheme shows small differences with the simple reweighting scheme, as can be
seen in the results in Section 4.1. The original paper does not conclude which reweighting
scheme is preferable and this lack of clarity is understandable from the here performed
simulations.
The most interesting outcome is that results from this specifically designed algorithm
are very similar to the general purpose NNLS algorithm. An advantage over the NNLS
is that the regularisation offers a way to improve the sparsity of the solution, with the
drawback that this regularisation parameter has to be determined, probably leading
to increased computation times. However, this small advantage does not outweigh the
increase of computation time with a factor 168 (from the computation times as in Section
4.5.2).
The original paper does not explicitly mention the computation times, but from a figure
comparing different inversion methods the computation time per voxel is between 0.1 and
1 second, which is comparable to the computation times measured here. The reweighting
in this algorithm seems very effective, only 3 or 4 outer iterations are needed on average,
however, many inner iterations are needed for the interior point solver. This solver
needs to balance between the log-barrier keeping the solution away from negative values
and the sparsity which tries to push the small components back to 0. To improve the
calculation times, it would probably be necessary to find an algorithm which includes the
non-negativity and the `1-regularisation in a more effective way. The Woodburry inversion
as proposed in the original paper gave a serious improvement in the computation times.
The weight calculation of the non-separable reweighting scheme takes approximately 8
percent of the computation time, which is rather high.

(Regularised) Support shrinkage Non-Negative OMP SNNOMP provides a different
approach to find a multi-component matching, making it possible to directly set the
number of components. OMP-like algorithms are in general designed for uncorrelated
dictionaries and this leads to certain disadvantages with the highly correlated MRF-
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dictionaries as used here.
SNNOMP finds a basis consisting a small number of dictionary atoms, which is then
used to find a NNLS solution with this basis. SNNOMP expands the basis every
iteration by picking the atom which improves the approximation as most as possible.
The effect of this is that the first basis element is the result of the single component
matching, the components picked afterwards try to compensate for the errors by this
rough approximation by picking component with more extreme relaxation times than
necessary. An effect of this is that the SNNOMP uses the components with the largest
and smallest relaxation times more often than the other algorithms. When the maximum
number of components is very small this effect occurs more often. By switching to
the RNNOMP algorithm this effect is partly tackled, with the drawback of increased
computation times, since more iterations are needed.
When the maximum number of components is increased the results of the SNNOMP
and RNNOMP become the same as the results of the NNLS algorithm on which the
SNNOMP relies heavily. When the number of components was set to exactly 2 in the
single voxel simulations, the results were very different from the results as shown in
Section 4.1 where the maximum number of components was set to 7.

5.2. Joint methods

The core of this project is the introduction of the joint sparsity constraint in the field of
multi-component analysis. Both in T2-relaxation and MRF multi-component analysis
this was not done before. In section 4.3 it can be seen that the introduction of the joint
sparsity constraint gave an improvement in the noise-robustness. Two different methods
to impose this joint sparsity constraint were considered in this project, which will be
discussed below.

5.2.1. JNNOMP and JRNNOMP

The JNNOMP and JRNNOMP algorithms, developed in this project, implement the
joint sparsity constraint such that the number of components can be set on forehand.
While performing the first experiment with the JNNOMP and JRNNOMP algorithm,
it turned out that the regularised version (JRNNOMP) gave improved results just as
observed for the SNNOMP and RNNOMP algorithms. However, in all simulations the
JRNNOMP algorithm was outperformed by the SPIJN algorithm.
A drawback by the JRNNOMP method is that the algorithm will always find the number
of components as set, even if the true number of components is lower. It tends to pick
extreme values, a behaviour which was already observed with the RNNOMP algorithm,
to form a better approximation of the signal. An effect of this is that many voxels contain
a mixture of components, as can be seen in the results for in vivo data in Figure 4.19.
The component as found for the measured MRF data in Figure 4.16 shows that the
components found by the JRNNOMP do not always correspond from the components as
found by the single-voxel methods.
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The segmentation and regrouping gave improvements in the simulations and had a
clear, but questionable effect on the in vivo data. This lead to several components with
unrealistic combinations of relaxation times (e.g. T1 = 4s and T2 = 4ms) and again gave
mixtures in most voxels.
The introduction of the joint sparsity constraint in the RNNOMP algorithm gave a small
improvement in the computation times, which is a beneficial effect. The S-CoSAMP
(without non-negativity) or JRNNOMP might be effective for incoherent dictionaries,
but for the coherent dictionaries as required in MRF the approximation effects of the
orthogonal matching pursuit lead to clear drawbacks for measured data.

5.2.2. Sparsity promoting iterative joint non-negative least squares

The SPIJN algorithm as introduced in this project combines the fast and robust NNLS
algorithm with the joint sparsity constraint. The performance in simulations and for the
in vivo data will be discussed here, followed by a discussion of the implementation.

Simulations In the comparison with the voxel-by-voxel methods, the SPIJN algorithm
showed to be more precise and more accurate than the voxel-by-voxel methods. The
SPIJN algorithm shows to give am even better high noise performance in the simulations
of Section 4.2. This improved performance might be caused by the variance of the weights
of the two components. An interesting effect can be seen in Figure 4.3a where the largest
error in the matched weight, around 1 percent, is in the part where the first component
is the only component. With a lower SNR this effect can still be seen and indicates that
the SPIJN algorithm does not always recognise a pure tissue.
The comparison of Section 4.3 show as clear advantage of the SPIJN algorithm over the
voxel-by-voxel methods and the JRNNOMP algorithm. The SPIJN solution showed a
smaller error compared to the ground truth and a smaller variation in the myelin water
like component. From Figure 4.6 it can be seen that the SPIJN algorithm groups the
matched components from the individual voxels, which thus results in a lower error.

Fully sampled MRF data The results from the fully sampled MRF data in Section 4.5.2
confirm the observation from the simulations that the NNLS or reweighted `1 algorithms
give similar grouped results to the SPIJN algorithm. All the methods find a component
with short relaxation times, which could be related to myelin water. However, in the
MW-like component from the SPIJN algorithm certain structures seem to be present,
which was not recognised with the other algorithms.
From Figure 4.16, showing the components for the MRF brain measurement for different
methods, it can be seen that it is difficult to distinguish the white and grey matter in
the intra- and extracellular water from the component matched by the NNLS algorithm.
The decomposition from SPIJN between white and grey matter as shown in Figure 4.18
is therefore an interesting result. The matched relaxation times are much shorter than
the relaxation times as expected from literature, although this effect has been observed
earlier for single component matching in MRF. Another problem is that not all of the
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matched components can be related to known tissues. The distribution of the found
components are similar to the components as found by [53], however the relaxation times
mentioned there are very different.
The results from the second MRF measurement in Section 4.5.2 show a similar decompo-
sition as in the first MRF measurement. The matched relaxation times are close to the
relaxation times from the previous measurement. Both of these measurements used the
same MRF-sequence and it would be good to investigate the effect of different sequences
on the matched relaxation times.
The importance of the correctness of the matched relaxation times can however be
questioned. The value of the relaxation times does not reveal specific information about
the tissue and could therefore be considered as just a tool to distinguish different tissues
from each-other, not to recognise a tissue based on the relaxation times.

Undersampled MRF data The undersampling of the data resulted in different relaxation
times and more noise in the weight maps. Out of the four undersampled measurements
performed, only the measurement with the highest SNR resulted a decomposition which
could be related to the fully sampled measurement. The weights maps show more noise
than the fully sampled measurements and the relaxation times are slightly different,
although this could also be caused by the different MRF sequences used here.
The use of undersampled data thus probably requires some pre-processing of the data,
for example iterative reconstruction to remove the undersampling artefacts, before the
SPIJN algorithm can effectively be applied. When the voxel-by-voxel methods were used
the results were not interpretable or groupable.

MWF from multi-echo spin echo T2 data The MWF maps as obtained using the SPIJN
algorithm for the multi-echo spin echo measurements as shown in Section 4.5.1 show
more symmetry than the state of the art regNNLS method, which could be considered
as an improvement. For the Krabbe data the differences were smaller and the greatest
improvement by the SPIJN algorithm is the reduced computation time. The SPIJN
algorithm resulted in MWF maps which were in general smooth, although no spatial
smoothing was involved.
The matched components are more difficult to interpret and unfortunately the white and
grey matter can not be distinguished from their T2 relaxation times. A component with
a relaxation time around 204 ms is found as well, which is not expected from literature.
This component is mainly present in the areas related to grey matter and CSF, but
attempting to assign a certain meaning would only be guessing.

Implementation of SPIJN The SPIJN algorithm stands out compared to the other
algorithms because of the short computation times. Only the NNLS algorithm is faster.
The speed of the algorithm can mainly explained by the speed of the used NNLS algorithm
and the small number of iterations (less than 20) needed for convergence. The pruning
which is implemented also gives a drastic increase in the computation times, since for large
dictionaries more than 90 percent of the components can be pruned after 2 iterations. A
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last novelty which helps for the fast computation time is the use of the `21-regularisation
as explained in Eq. (2.19), leading to the use of only 1 extra row instead of N , where N
is the number of components. The adding of these thousands of rows would increase the
computation times drastically and make the benefits from compression negligible.
The speed of the SPIJN algorithm could even be further improved when the NNLS step
would be performed in parallel and when the results from certain calculations would be
exchanged between the NNLS solve for different voxels. Steps like this were tried to be
implemented in Python, but the NNLS as implemented in FORTRAN and used was still
much faster.
An advantage of the SPIJN algorithm over the voxel-by-voxel methods as implemented
here is that certain preparation steps can be performed for the complete image at once,
instead of voxel by voxel. The NNLS algorithm using the same voxel-by-voxel framework
as the Bayesian and reweighted-`1 method took approximately 21 seconds for a complete
image, when the SPIJN algorithm with only 1 iteration was used it took 10 seconds,
showing a speed up of 11 seconds. For the Bayesian and `1-reweighted algorithm these
11 seconds are however negligible.
In the current use case the regularisation parameter has to be chosen manually, which
is a drawback when many datasets are considered. However, the results are not that
sensitive to the regularisation parameter and the same regularisation can be used for
different slices when the parameter is scaled with respect to the number of pixels. In
section 4.6.1 some strategies to further speed up the algorithm were mentioned.

Reweighting Two reweighting schemes were proposed and compared. The first was
a simple scheme and the other a non-separable scheme which included the similarity
between the different dictionary signals. The non-separable scheme only showed small
improvements and was unfortunately not applicable to problems were a fixed parameter
map was considered. Another advantage of the simple scheme was the option to include
the pruning and the easier interpretable behaviour with respect to the regularisation
parameter.

5.3. Joint sparsity constraint or a smooth spectrum

The SPIJN algorithm heavily relies on the joint sparsity constraint. The main premise
for the joint sparsity constraint is that the tissues throughout the region of interest can
be represented by a small group of T1/T2 combinations. A similar assumption was made
in [53]. This constraint could be considered as the opposite of a smooth spectrum as
used in T2 multi-component analysis.
To test the effect of the joint-sparsity constraint the search around method (Algorithm
9) was used to see how this influenced the found solution, as showed in Section 4.5.2.
Loosening this condition did not improve the solution. Not all structures as found by the
the SPIJN matching are recognisable after the application of the search around algorithm.
The assumption that the T2 distribution is smooth as used in myelin water mapping from
T2 data was introduced in [8] and confirmed in [24] as an effective way to address the
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ill-posed nature of the inversion problem. The smooth spectrum is found through this
regularisation and no publications could be found indicating that a smooth spectrum
has a physical explanation. A smooth spectrum only seems to occur when smoothness
improving methods are used. That these results are more reliable can be explained from
introduction of additional assumptions and the regularisation as an effect of this.
The proposed joint sparsity constraint is another form of introducing extra assumptions
and lead to similar results for the MW-mapping. It raises, however, questions how some of
the found components should be interpreted, since they do not always seem to represent
known structures. At the same time there is only a little knowledge on the relaxation
times in multi-component matching and which assumptions can be made or not. The
observation that similar structures were observed for different slices and measurement,
has an affirmative effect.
Since each voxel influences the outcome in the joint sparsity constraint, the masking
becomes more important. The method as proposed in this project gives decent results,
but more advanced skull-stripping methods could be considered.

5.4. MRF compared to T2 relaxation

Using the varying flip angle as proposed by MRF was expected to lead to several positive
effects in the multi-component analysis compared to T2 multi-component analysis.
From the multi-component decomposition as showed in Figure 4.13 and Figure 4.18 it
can be seen that more tissue types can be recognised because of the sensitivity for T1.
Using MRF it becomes possible to distinguish white and grey matter.
From the simulations it can be observed that the MRF500 signal is less sensitive to
noise than the MRF200 signal which is again less sensitive to noise than the T2 signal.
There might be several reasons for this behaviour. The MRF500 sequence contains more
measurements and is therefore less sensitive to noise than the MRF200 sequence or the
T2 measurements using 32 up to 60 echoes. Another explanation is the larger variation
in the signals for the MRF dictionary than for an exponential dictionary.
The phantom measurements show a slightly different effect, namely that the SPIJN
algorithm was more effective to correctly determine the pure components for the T2 data
then for the MRF500 measurements. Where the voxels consisted of a pure component it
was estimated as an approximately 90-10% mixture. This behaviour was not expected
based on the simulations, it could be that there were additional effects present in
this measurement that were not explained by the signal model used in the dictionary
computation.
The in vivo MRF measurements and their multi-component matching (Figures 4.18 and
4.21) resulted in a component with short relaxation times as expected from myelin water,
however the MWF of this component (around 5 %) is surprisingly low. More measurement
would be necessary to obtain a proper comparison between the MWF-map obtained by
MRF and a reference MWF-map obtained by multi-echo multi-spin T2 measurements.
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6. Conclusions

This project was aimed at the of sparsity promoting algorithms for multi-component
parameter mapping, for data obtained with magnetic resonance fingerprinting and multi-
echo spin-echo T2 measurements. Multi-component parameter mapping makes it possible
to measure the concentration of different components or tissues in a voxel or a certain
region. By using a sparsity constraint only a small number of components are found
for each voxel and the hope is that these components can be related to different tissues.
Two methods to perform such a multi-component analysis in MRF have been published
recently [5, 6] and the NNLS algorithm [8, 60], as used for T2 measurements, incorporates
this restriction.
These methods perform the analysis on a voxel-wise basis and do not take information
about the rest of the region of interest, for example a human brain, in consideration. As
an effect of this, it can be that hundreds of different components are matched throughout
the region of interest. To include the notion that only a few number of tissues are present
in the region of interest, the joint sparsity constraint is introduced. This joint sparsity
constraint enforces to use the same, small set of components (related to different tissues)
for each voxel. The Joint Regularised Non-Negative OMP (JRNNOMP) algorithm
and the Sparsity Promoting Iterative Joint NNLS (SPIJN) algorithm were developed
to implement this joint sparsity constraint including non-negativity for the matched
components.
In this project the Bayesian approach from [5] and the reweighted `1-norm algorithm
from [6] were compared to the NNLS algorithm [60, 8] and the two new algorithms with
the joint sparsity constraint. The inclusion of the non-negativity constraint as in the
reweighted-`1 and NNLS algorithms showed an improvement compared to the Bayesian
approach. The NNLS algorithm as commonly used in T2 multi-component analysis leads
to results comparable to the reweighted-`1 algorithm with improved computation times.
The voxel-by-voxel methods, however, require grouping of the matched components to
obtain insights over a larger region of interest.
The joint-sparsity constraint was introduced to implement the notion that only a few
tissues are present in the region of interest, making grouping of the matched component
easier or even unnecessary. In simulations both algorithms with the joint sparsity
constraint showed improvements compared to the voxel-by-voxel methods. For measured
data the results from the SPIJN algorithm showed more meaningful structures than the
JRNNOMP algorithm and is therefore preferred. The joint sparsity constraint as used
by the SPIJN algorithm leads to a small number of components, making grouping of the
component, which would require extra assumptions and processing steps, unnecessary.
The SPIJN algorithm was used for the calculation of the myelin water fraction (MWF) for
multi-echo spin-echo T2 measurements and showed similar or improved results compared
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to state-of-the-art methods in this field. Combined with the proposed approximation
of the flip angle inhomogeneity map from the single component matching, the SPIJN
algorithm was a factor 50 faster than the B1 compensated regNNLS algorithm. A
conference abstract about this new algorithm, used for the calculation of myelin water
fractions, has been submitted for the 2019 conference of ISMRM (International Society
for Magnetic Resonance in Medicine) [95]. A paper, showing a more exhaustive analysis
for the results for MWF-mapping, is planned on this topic as well.
The introduction of the joint sparsity constraint in the MRF multi-component analysis
leads to easy interpretable results without further grouping of the components. The
matched components from the SPIJN algorithm show structures which can be related to
myelin water, white matter, grey matter and CSF. It is possible to distinguish white and
grey matter, which could not be done easily with the single component methods. An
abstract on these results has been submitted for the ISMRM 2019 conference as well[96].
There are, however, also components found which do not directly represent a known
tissue. It could be that the joint sparsity constraint makes it more difficult to detect
small anomalies, which are repressed by the joint sparsity constraint. It would be very
interesting to perform a multi-component analysis on a measurement set in which such
anomalies are present.
The SPIJN algorithm requires a regularisation parameter and the choice of this parameter
determines the number of components as found by the algorithm. Some first tests have
been performed how the regularisation parameter can be chosen, implementing algorithms
to optimise the choice of this parameter will, however, lead to increased computation
times. Some ideas to do this efficiently were proposed, but not fully tested.
The multi-component analysis by the SPIJN algorithm is not as robust to undersampling
effects as the single component matching and therefore probably needs pre-processing of
the data to make the use of undersampled data possible.
To find whether the proposed multi-component MRF analysis gives meaningful and
consistent results more comparisons should be made. Especially comparisons to the
MWF as obtained from multi-echo spin-echo measurements would be useful. A paper,
giving more insight in the implementation of the SPIJN algorithm and how it is used for
MRF multi-component analysis, including some first results, is planned.
The joint sparsity constraint implemented through the SPIJN algorithm as proposed
in this thesis and used for multi-component analysis both in MRF and T2 relaxation
leads to easy interpretable results with meaningful structures within short computation
times. Since the computations can be performed in less than a minute on a normal
computer it would be possible to use the multi-component analysis in a clinical setting
and show the results within a feasible time frame. Where a myelin water fraction map
from T2-relaxation is currently only available after hours of calculations, the proposed
SPIJN algorithm would make it possible to calculate these maps for a full brain scan in
the time of getting a cup of coffee. This will hopefully lead to improved clinical usage,
just as the application of the SPIJN algorithm with multi-component MRF hopefully
leads to other new insights.
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A. Appendix

A.1. Simulated images results T2
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Figure A.1.: The result of a single component T2 exponential matching with a signal to
noise ratio of 5.
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scheme from Equation 3.27 with λ = 0.25.
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Figure A.2.: The multi-component matching for the simulated image using the T2 expo-
nential sequence with SNR=100. The true T2 values and found T2 values
(T̃2) are given.
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Figure A.3.: The multi-component matching for the simulated image using the T2 ex-
ponential sequence with SNR=10. The true T2 values and found T2 values
(T̃2) are given.
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Figure A.4.: The multi-component matching for the simulated image using the T2 expo-
nential sequence with SNR=3. The true T2 values and found T2 values (T̃2)
are given.
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