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Chapter One

Introduction

This chapter introduces the research background, research questions and an outline of the
dissertation.

1.1 Service Robots

In the near future, service robots are likely to share with humans household environments
and assist all kinds of human activities such as preparing breakfast, cleaning the house,
taking care of children, assisting elderly people, etc. Besides understanding what humans
exactly want, robots should also be able to autonomously perform actions to achieve desired
goals. Consider tasks like opening and closing refrigerator or oven doors in order to put
in or take out food, pouring water into a cup or a bowl to make tea or cereal, and so on.
Such tasks usually involve household objects which are composed of several parts and are
designed for a specific use. Therefore, robots should be able to obtain knowledge about
these objects and develop skills in order to handle them properly.

Manual programming of such knowledge and skills is only possible in carefully de-
signed settings. For example, in the case of manufacturing environments, software devel-
opers program action commands for industrial robots to manipulate objects in a desired
way. Robot arms can be preprogrammed to pick and place parts in assembly lines. In such
environments, robots can repeatedly perform the actions without any changes. However,
this would hardly work for service robots that are expected to solve a range of household
tasks. First, household environments are usually unstructured, complex, dynamic and par-
tially unknown. It is unrealistic for software developers to program perfect robot behaviors
for all kinds of tasks at the design time. In addition, household robot users usually do not
have the programming skills of robot developers. Therefore, a household robot, once de-
ployed, should be able to adapt to a new environment through exploration as well as through
natural interaction with the users. For these reasons, the learning capability is essential for
service robots to develop new skills and knowledge.

1



2 Introduction Chapter 1

1.2 State-of-the-art

Designing intelligent robots that can learn by themselves has taken inspiration from theo-
ries of neuroscience and psychology. The field of developmental robotics [1, 2, 3, 4] has
followed this path and became a paradigm for developing cognitive robots that can ac-
quire increasingly complex skills and competences. It is characterized by task-independent
learning mechanisms as well as open-ended development during long-term embodied robot
interactions with environments. Specifically, embodiment emphasizes the importance of a
physical body which enables information structuring for developing cognitive functions [5].
These functions include the discovery of body dynamics such as hand-eye coordination, lo-
comotion, and object manipulation. Currently, these are still open challenges in robotics.

Affordance in Robotics

One important topic in developmental robotics is learning object affordances. The concept
of affordance originates from the field of psychology [6]. It describes the relation between
an organism and its environment that affords the opportunity for an organism to perform
actions. For example, a door handle affords rotation by hand, a pedal affords pressing down
by foot, and a stair riser affords climbing [7]. Neurophysiological evidence has proved
that human perception of objects automatically suggests actions that can be applied on the
objects [8]. This point of view has provided meaningful insights into the integration of
perception and action for developing artificial cognition.

Such integration has been addressed by modeling affordances as the relations between
objects, robot actions and the consequent effects [9, 10]. Affordances capture the distinctive
features of objects in terms of what can be done with them. In other words, affordances
provide information about potential action effects on objects, and this information can then
be used to select actions to achieve task goals. In a kitchen scenario, objects with sharp
edges are likely to be used for cutting food, objects with hollow parts are likely to be
used as containers, and handle-like parts are likely to be grasped and pulled. Furthermore,
affordances are task-independent, so that they can be reused across a range of tasks. For
example, container-like objects can be used either for preparing cereal, or for preserving
left-overs in refrigerators. Therefore, object affordances are useful knowledge for service
robots to acquire.

In the literature, the use of affordances has been demonstrated beneficial compared with
alternative methods that do not use affordances. For example, considering affordances can
improve object recognition [11, 12] as well as human activities recognition [13, 14]. In
the scenario of language learning, the affordance-based approach predicts adjectives with
higher accuracy than the appearance-based approach [15]. In [16], the complexity of state
space representation can be reduced by using affordances. In a real world environment,
the navigation task can be learned faster for the affordance-based approach than the model-
based approach [17].

In the sequel, a brief review is given to provide insights on the research trends on
affordances for robotics. A more detailed literature survey will be given in Chapter 2.
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(a) Basic affordances (b) Multi-object interaction (c) Household tasks (d) High-level affordance

Figure 1.1: Affordances in robotics. (a) Basic affordances are learned by a single pushing
or grasping action [10, 20, 29]. (b) Affordance learning involves the interaction of multiple
objects [35, 36, 37]. (c) In cluttered household environments, robots learn how to push and
orient objects [38], open doors [13] and serve tea [14]. (d) High-level affordance knowledge
is manually provided for object manipulation [39, 40, 41].

Basic Affordances

As the first step, single objects have been used to learn basic affordances (see Figure 1.1(a)).
The objects are characterized by their shapes. The basic affordances include liftability [18],
rollability [19, 20], pushability [21], traversability [22, 23, 17], and graspability [24, 25,
26, 27, 28, 29, 30]. In case of learning object movability, round objects have been found
to move further than the cubic ones by applying the same pushing action on them. In
case of learning grasp affordances, the possibility of successful grasps can be estimated at
various locations on objects. The learned affordances have been used for action selection
in an imitation game [31, 10], as well as for planning a sequence of actions to achieve
given task goals [32, 33]. The learned affordances can also be used for language learning,
e.g., understanding adjectives and nouns such as “tall”, “short”, “box” and “ball” [15] or
sentences such as “tapped ball rolls” [34].

Multi-object Interaction

Recent research has taken into account affordances that involve multi-object interaction
(see Figure 1.1(b)). The affordance model introduced in [10] is combined with statistical
relational learning (SRL) to learn relational affordances [35]. It allows the reuse of single-
object affordance for learning two-object interaction as well as the generalization of two-
object interaction to more object cases. Also extending the previous model [33], single-
object affordance is first learned and then reused as an input to improve the prediction
accuracy of multi-object stackability [42]. In [36, 43, 37, 44], tool affordances have been
learned where tool objects are grasped by the robot in order to interact with other objects.
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For example, the iCub robot learns to retrieve an unreachable target object by choosing a
rack to get the object closer for grasping [37].

Household Tasks

Another trend is to develop affordance-based robot behaviors in household tasks rather
than in laboratory settings (see Figure 1.1(c)). In a cluttered environment [45], the robot
recognizes the table surface and the target object on it, e.g., a television remote control or a
dinner bowl. Then, different pushing strategies are systematically evaluated for positioning
the target object [38]. In another work, human activities and object affordances are learned
from RGB-D videos [13]. Reactive robot behaviors are developed to anticipate human
activities based on spatio-temporal trajectories [46]. For example, the robot would open
the refrigerator door if it observed a person holding an object and walking towards a fridge.
In a multi-step tea service task, the robot learns to deal with a teabag, a kettle and a cup.
The learning is based on human demonstration [47]. The robot learns dynamic motor
primitives (DMP) [48] as well as object affordances in a unified skill learning and inference
framework [49].

High-level Affordance Knowledge

By incorporating human guidance, robots can immediately acquire high-level affordance
knowledge for complex task execution, e.g., turning wheels and drilling the wall (see Fig-
ure 1.1(d)). In the scenario of DARPA Robotics Challenge (DRC)1, objects of interest are
associated with task-specific goals [39]. In this way, the robot interacts with the environ-
ment at the level of affordance knowledge instead of traditional low-level teleoperation.
Similarly, the concept of Affordance Template (AT) is proposed in [40, 41]. The AT frame-
work follows a supervisory control paradigm of Plan, Teach, Monitor, Intervene, and Learn
(PTMIL) [50], although the presented work does not support the Plan and Learn steps yet.
In the scenario of Robocup@Home2, functional affordances have been modeled in Descrip-
tion Logics (DL) for planning goal-directed tasks to assist human activities [51]. In case
that the human requested for drinking tea, the robot would search for a teabag, a teacup and
a kettle with hot water. If the teacup was not available, the robot would suggest substitute
it with a mug which shared similar functional affordance with a teacup.

1.3 Challenges

Previous research has progressed from learning basic affordances to learning multi-object
interaction, from laboratory settings to household environments, and from sensory-motor
level affordance learning to high-level reasoning with affordance knowledge. However,
several challenges still remain. In this dissertation, we address four challenges with regard
to affordance learning and use.

1http://www.theroboticschallenge.org/
2http://www.robocupathome.org/



Section 1.3 Challenges 5

Goal-directed Affordance Learning and Use

Many approaches are based on a staged development framework [19, 32, 22, 33, 23, 31,
10, 15, 29, 35, 42, 36, 43, 37, 44]. A robot would first go through a goal-free “motor bab-
bling” [19] stage, i.e., random action selection for a predefined number of trials. This is
basically an exercise with the sole purpose of collecting training data. Thereafter, affor-
dance models are learned by using the training data. In the second stage, the affordance
models are used to select actions to achieve goals. However, the staged framework sepa-
rates affordance learning and affordance use, so that there is no learning of affordances in
the latter phase. As a result, the staged framework has difficulties in handling the situations
that previously learned affordances do not hold any more when the affordances are used to
select goal-directed actions. For example, when the robot has learned that a box is pushable
during the training stage, it might end up repetitively trying to push the box even if the box
is pushed against a wall. It is a challenge to design a mechanism that allows the robot to
select reasonable goal-directed actions through affordance learning and use.

Exploration in Continuous Action Spaces

Discrete robot actions have been assumed effective for manipulating objects in well de-
signed environments [19, 32, 52, 22, 33, 35, 18, 27, 20, 23, 44, 42, 53]. This assumption
would hardly hold in general household settings where successful manipulation requires the
corresponding actions to be defined in continuous spaces. For example, drawers, cabinets,
ovens or refrigerators come with different designs. Predefined discrete actions can easily
fail opening them in order to put in or take out other objects. Therefore, a robot should
be able to learn effective manipulation skills through self-exploration in continuous action
spaces. However, a continuous action space provides infinitely many action choices which
makes random exploration time consuming. It is a challenge to find an efficient exploration
strategy for object manipulation in continuous action spaces.

Transfer of Learned Affordances

Learning affordances from scratch is not efficient because it takes time for an embodied
robot to perform exploratory actions on objects. Transferring learned affordances of known
objects may speed up the learning of a new object. In the literature, knowledge transfer
has been considered for effect prediction and action planning [33, 35, 54]. For instance,
round objects are all likely to roll by a pushing action. However, it has been assumed
that the source of knowledge transfer is known, and the previously effective actions are
still effective for similar objects. In other words, no transfer failure is anticipated, and the
robot would not recover from a failure and update its action selection strategy accordingly.
Besides, it is even more difficult to handle household objects that usually consist of several
parts than to handle simple toy objects. Therefore, it is a challenge for the robot to select
by itself the relevant objects as the knowledge transfer source, evaluate by itself the actual
outcomes of the transfer, and adjust by itself its action selection strategy if necessary. For
example, assume that the robot has learned how to pull open a refrigerator and push open a
door, it should be able to figure out how to open an oven by using its previous experience.
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Integration of Symbolic Reasoning and Affordance Learning

Service robots are expected to solve a range of real world tasks through learning and using
object affordances. Such a task can be characterized as achieving a goal through executing
several subtasks and a sequence of actions. In the case that the robot is asked to get a bot-
tle of beer from the refrigerator, it has to navigate to the refrigerator, open the refrigerator,
grasp the beer bottle, take it out, and close the refrigerator. This kind of task domain knowl-
edge is usually encoded in a symbolic form [39, 40, 41, 51]. This is because the symbolic
representation is convenient for high-level reasoning and task planning. Meanwhile, affor-
dances are learned from sensory-motor experience during embodied robot interaction with
environments. It is a challenge to bridge the gap between high-level symbolic reasoning
and sensory-motor level affordance learning. On one hand, learned affordances should be
represented in a symbolic form and used for reasoning. On the other hand, the symbolic
affordance knowledge must be verified by the robot through its own actions.

Each of these challenges will be addressed in detail in the dissertation.

1.4 Research Objectives

The overall aim of this dissertation is to improve the task performance of a robot through
affordance learning and use. The main research question is:

“How can object affordances be learned and used efficiently by an embodied robot in order
to improve its performance for solving goal-directed tasks?”

As a basic requirement, the robot must have a body that allows sensory-motor inter-
action with objects. The learning and the use of affordances are mentioned together be-
cause the learned affordances would be useless if they were not used for action selection to
achieve goals in tasks. Specifically, the efficiency of affordance learning is important due
to that the learning is usually time consuming. We investigate how to speed up the learning
of affordances as well as how to use the learned affordances to improve task execution.

In the sequel, we propose four sub-questions of the main research question that are
corresponding with the four challenges discussed in section 1.3.

First of all, the research is focused on designing an integration of affordance learn-
ing and affordance use rather than following the staged framework [19]. It results in the
following sub-question:

(i) How can affordances be learned and used on-line for solving a goal-directed task?

Second, the research is focused on efficient affordance learning in continuous action
spaces, i.e., to enable autonomous learning without manual coding of discrete actions as
solutions, which results in the following sub-question:

(ii) How can a robot explore efficiently in continuous action spaces to learn affordances
of a new object?

Third, assume that the robot is able to learn object affordances and use them to achieve
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task goals. Nevertheless, learning every object from scratch would not be necessary if the
robot had already obtained some knowledge about other objects. This takes into account
long-term robot interaction with environments. In this way, the performance of solving
the task at hand could be improved by reusing previously learned affordances of relevant
objects. Therefore, the following sub-question is considered:

(iii) How can the learned affordances be transferred across objects to speed up the
learning of a new object?

Finally, symbolic knowledge representation and reasoning play an important role of
solving complex household tasks. Meanwhile, affordance learning is based on sensory-
motor experience of the robot. The need of their integration results in the following sub-
question:

(iv) How can affordance learning be integrated with symbolic reasoning for solving
complex tasks?

1.5 Dissertation Outline

In accordance with the four sub-questions outlined above, the remainder of the disserta-
tion presents the corresponding chapters to answer these questions. An overview of this
dissertation is presented in Figure 1.2.

Chapter 2 first gives a brief introduction of machine learning techniques that are related
to robot learning of affordances. Then, a literature survey shows how sensory and motor
skills have been developed for robots along with how affordances have been learned by
robots. The survey also provides insights on how affordances should be learned and used
to improve robot performance for solving goal-directed tasks. Based on the insights, the
following chapters will propose four learning architectures with increasing difficulties as
the main contributions of this dissertation.

In Chapter 3, we propose the first architecture that deals with discrete object state and
robot action spaces (based on publication [55]). The architecture integrates simultaneously
on-line learning and the use of affordances in a reinforcement learning (RL) [56] frame-
work. Affordances are stored as interpretable triples in a table that can be updated and
reused across tasks. More specifically, affordances are acquired automatically during on-
line task learning whenever an action is performed. But, while being learned, they are also
used for action selection in solving the learning task at hand. In other words, we pay spe-
cial attention to the on-line use of affordances as well as on-line learning of affordances.
This distinguishes our approach from the approaches following the staged development
framework [19, 32, 22, 33, 23, 31, 10, 15, 29, 35, 42, 36, 43, 37, 44].

Chapter 4 extends the discrete state and action spaces in Chapter 3 to continuous spaces.
In other words, affordances are to be learned in continuous state and action spaces which
contain infinitely many data points. This makes the training data collection and affordance
learning much more difficult than in the discrete case. In purpose of collecting training
data efficiently, an active affordance learning architecture is introduced (based on publi-
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Figure 1.2: Dissertation overview
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cation [57]). In this architecture, an action selection module actively decides what action
is to be performed according to the observed object state. After an action is performed,
the corresponding training data are collected to learn affordances, and function approxima-
tion is used to generalize over the continuous spaces. Simultaneously, the action selection
module is updated. Compared with other approaches that have also addressed affordance
learning in continuous action spaces, our active learning architecture improves action ex-
ploration efficiency over random motor babbling [43, 28, 37]. Besides, the architecture
enables autonomous motor skill acquisition in a bottom-up manner in contrast to the tradi-
tional top-down manner, e.g., based on human demonstration [49, 14].

In Chapter 5, we further extend affordance learning of individual objects of Chapter 4 to
a multi-object scenario. A transfer learning architecture is proposed to make full use of the
robot’s past sensory-motor experience to improve its long-term task performance (based on
publication [58]). It aims at speeding up the learning of a new object through knowledge
transfer from relevant known objects. Object relevance is measured by comparing object
features such as shape and spatial relations between object parts. As a result, the robot is
able to select by itself the source of knowledge transfer rather than decided by a human as
it is done in the literature [33, 35, 54]. Then, the actual action effects are taken into account
to verify the prediction of an anticipated knowledge transfer. This allows the robot to revise
its action selection strategy if the transfer fails. In other words, it prevents the robot from
being stuck with a wrong action decision, e.g., keep pushing a pull-door which looks like
a push-door. This is an improvement over previous approaches which made predictions of
the transfer results without any verification [18, 12].

Chapter 6 proposes a cognitive robot control architecture that subsumes the three archi-
tectures proposed in the previous chapters. The cognitive architecture integrates affordance
learning with symbolic reasoning so that more complex tasks can be solved through af-
fordance learning and use. Using the GOAL agent programming language3, the cognitive
architecture enables the robot to keep track of its goals, beliefs, and the affordance knowl-
edge to structure its decision-making. First, the symbolic representation of affordance
knowledge in GOAL facilitates affordance-aware action selection to solve goal-directed
tasks. Second, the symbolic affordance knowledge can be verified by the robot through its
own actions. Third, affordance learning can be initiated autonomously by the robot under
certain conditions. These key features distinguish our cognitive robot control architecture
from other approaches in the literature [39, 40, 41, 51, 59].

Finally, Chapter 7 answers the main research questions and concludes the dissertation
by presenting the main contributions, limitations and suggestions for future work.

3http://mmi.tudelft.nl/trac/goal
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Chapter Two

Robot Learning

This chapter gives an overview of robot learning approaches that are relevant to affordance
learning. After a short introduction of machine learning techniques (section 2.1), the liter-
ature on affordance learning is reviewed (section 2.2). Then, further insights are given in
section 2.3.

2.1 Machine Learning

Situated in a physical environment, an embodied robot interacts with the environment by
processing sensory data and executing motor commands. For simple task settings, the
motor commands can be preprogrammed by humans. However, this would hardly work
in complex and dynamic environments where robot learning is necessary for developing
adaptive robot behaviors. Typically, machine learning techniques play a key role in the
generalization of sensory and motor experience, for accurate prediction and reliable deci-
sion making. This generalization ability enables a machine learner to handle new situations,
e.g., learning to grasp a novel object or to navigate in a new environment. In the sequel,
we introduce machine learning basics that are relevant to the robot learning tasks in this
dissertation.

2.1.1 Supervised Learning
Supervised learning deals with the problem of learning a mapping from a set of labeled
training data [60]. The training data are represented as paired input-output examples
{(x1, y1), ..., (xN , yN)}, each input xk corresponds to a desired output yk (k = 1, 2, ...,N).
The input xk is often represented as a feature vector in an input space X, and the output yk

is typically a known label or a measured value in an output space Y . Then, a supervised
learning algorithm is used to produce a function G : X → Y , where G is a mapping from
the input space X to the output space Y . When a new input x ∈ X is presented, the function
G is expected to generate an accurate prediction G(x) ∈ Y . The prediction accuracy of G
can be evaluated by a set of testing data. In addition, optimization can be carried out to
find an optimal function G among a set of possible candidates. Refer to [61] for a detailed
discussion about the representation, evaluation and optimization of learning algorithms.

11
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The choice of a learning algorithm depends on the actual learning problem at hand.
Popular supervised learning algorithms include Support Vector Machines (SVMs) [62],
Artificial Neural Networks (ANNs) [63], Linear Regression (LR) [64], Gaussian Processes
(GP) [65], Nearest Neighbor (NN) [66], Decision Trees (DTs) [67], etc. They have been
widely employed in classification and regression tasks. In the sequel, we briefly introduce
two examples of supervised learning tasks that are closely related to this dissertation.

Classification tasks involve the problem of assigning a discrete value, i.e., a class label,
to an observation. For example, an SVM classifier can be constructed to classify images as
door or non-door in a robot navigation task [68].

Regression tasks usually deal with function approximation problems in continuous
spaces, which require no human labeling or discretization as in classification tasks. For ex-
ample, ANNs can be used to approximate the relations between object states, robot actions
and the consequent effects in continuous state and action spaces (see Chapter 4).

2.1.2 Unsupervised Learning
Unsupervised learning attempts to find hidden structures in unlabeled data. In analogy to
the classification tasks mentioned above, clustering is an unsupervised learning task that
groups unlabeled data samples. Based on a chosen criterion (e.g., distance measure in the
data space), data samples in the same group (i.e. cluster) are expected to be more similar
(or closer) to each other than to those in other groups. For example, k-means [69] is a
popular clustering method that groups n observations into k clusters (k ≤ n). Each cluster
has a centroid so that each observation belongs to the cluster with the centroid closest to
the observation.

2.1.3 Reinforcement Learning
Reinforcement Learning (RL) addresses task learning through direct interaction between
an agent and its environment. The task is formulated in terms of states, actions and re-
wards. The RL agent learns to make optimal decisions, i.e., selects actions in given states
to maximize its cumulative rewards received from the environment.

An RL agent in an embodied robot also makes action decisions (see Figure 2.1). The
sensors and effectors of the robot are responsible for the interaction between its internal
environment and its external environment. The internal environment is manually pro-
grammed. It not only processes the sensations from the external environment (real world)
into a representation of states, but also sends action commands to robot effectors for ex-
ecution1. Most importantly, the internal environment contains the reward function that
provides rewards to the RL agent. In a goal-directed RL task, the reward function is always
related to the given goal, e.g., a destination in a navigation task (see chapter 3). It can also
be related to intrinsic motivation [70], e.g., a prediction error (see chapter 4).

RL algorithms are used to find solutions for RL agents in Markov Decision Processes
(MDPs). An MDP is formulated as a four-tuple (S,A,P,R). We now discuss in more
detail each of the four components of an MDP. Refer to [56] for a detailed overview of
reinforcement learning algorithms.

1In this dissertation, it is assumed that the robot can always execute the actions decided by the RL agent.
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Figure 2.1: Reinforcement learning for an embodied robot (based on [71]).

State describes the environment features that are relevant for a learning task. Formu-
lating an appropriate state representation is essential for the performance of the RL agent.
In other words, the RL agent cannot make good decisions without sufficient information
about the environment. With too many irrelevant details about the environment, the prob-
lem complexity would increase . The feature selection for state representation is usually
done by a human expert before the RL agent starts learning. In RL systems, discrete time
steps are used. At the time step t, the state is denoted by st ∈ S, where S is the set of all
possible states. For example, st can include low-level features such as raw sensor readings,
or high-level features such as interpreted readings, as well as other relevant information
about the task at hand.

Action is the way for the agent to influence its environment. The output of the RL
agent is an action decision to be executed in a given state. It can be a discrete value from
a predefined set, or a continuous value within a predefined range. For example, a discrete
action can be “walk 5 cm forward”. In the case of continuous actions, the RL agent has
to learn a continuous mapping from states to actions, rather than choose an action from a
discrete set. At time step t, the agent uses a policy π to calculate action at ∈ A in state st,
where A is the set of all possible actions. The action at leads to a state transition in the
environment: st+1 = P(st, at), where P : S ×A → S is the state transition function.

Reward shapes the behavior of an RL agent. In a goal-directed task, a positive reward
can be given to encourage state transitions toward the goal state, e.g., reaching the desti-
nation in a navigation task. In addition, negative rewards can be given to avoid unwanted
states, e.g., when colliding with obstacles during navigation. The rewards come from a
reward function R : S × A × S → R that maps a state st, an action at and the consequent
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state st+1 into a reward rt+1 = R(st, at, st+1). The agent aims to maximize the discounted
sum of rewards, which is also known as the return. The discounted return of a policy π is

given by the expectation E
{ ∞∑

i=0
γiri+1

∣∣∣ d0, π
}
, where 0 ≤ γ < 1 is the discount factor and d0

is the distribution of the initial state s0. Values of a state s or a state-action pair (s, a) are
stored to estimate the return. The value function Vπ : S → R captures the expected return
when starting in a state s under policy π:

Vπ(s) = E
{ ∞∑

i=0

γiri+1
∣∣∣ s0 = s, π

}
, (2.1)

and the Q-function Qπ : S × A → R captures the expected return received after taking
action a in state s and following the policy π afterwards:

Qπ(s, a) = E
{ ∞∑

i=0

γiri+1
∣∣∣ s0 = s, a0 = a, π

}
. (2.2)

Both functions satisfy the Bellman equation [56] and they have the following relation:

Qπ(s, a) = R(s, a, s′) + γVπ(s′) (2.3)

where s′ = P(s, a) is the next state of s. The optimal policy π∗ satisfies

π∗ = arg max
π

Vπ(s),∀s ∈ S (2.4)

and corresponds to the highest possible return

V∗(s) = max
π

Vπ(s),∀s ∈ S (2.5)

and
Q∗(s, a) = max

π
Qπ(s, a),∀(s, a) ∈ S ×A. (2.6)

Learning these functions is at the core of reinforcement learning. Details of specific RL
algorithms will be given in the corresponding chapters. For the ease of notation, we drop
the superscript π in the rest of this dissertation.

2.2 Affordance Learning in Robotics

2.2.1 Background
The concept of affordance was originally proposed by Gibson in the field of ecological
psychology [6]. Based on the studies of visual perception, Gibson defined affordance as
action possibilities offered to an organism by an environment. For example, if a stair riser
is less than a certain percentage of a person’s leg length, it means that the person can climb
that stair [7]. Such a relation has been believed to be directly perceived by the organism
in the environment . Following Gibson’s work, there have been a number of studies which
offer refinements of the affordance definition, such as [72, 73, 74, 75].
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However, it may require some flexibility on the definition of affordance to benefit the
field of robotics, as discussed in the survey [76]. Refer to [6, 77] for further reading about
affordance in ecological psychology, and refer to [78] for computational models related to
affordance.

2.2.2 Affordance Definitions in Robotics
There are three different perspectives to view and define affordances [9], i.e., human ob-
server perspective, robot perspective, and environmental perspective (see Figure 2.2).

Figure 2.2: Three perspectives to view affordances in the human-robot-environment sys-
tem. In this scene, a robot is expected to pick up the red ball and drop it into the garbage
can. This interaction is being observed by a human.

In the human observer perspective, affordances in the robot-environment system have
been believed to be perceivable by the human. In the case of Figure 2.2, the human would
say:“There is graspability affordance” in the robot-ball system. We note that the human
observer is invisible to the robot, and human-robot interaction is typically not considered.

In the robot perspective, the robot interacts with the environment and discovers the
affordances through its own actions. This view is the focus for robot learning of affordances
in this dissertation. The robot actions are usually programmed and tasks are defined to
establish whether the robot actions are suitable for affordance-based perception [79]. In
Figure 2.2, the robot would learn by itself whether there exists graspability after trying to
grasp the red ball.

In the environmental perspective, affordances are simply regarded as extended proper-
ties of the environment. For example, the garbage can offers liftability (to the human) and
pushability (to both the human and the robot).

In some cases, an affordance is defined as a description of an effect (e.g., traversed,
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rolling, grasped, lifted and stacked) which is both observable to the human observer and the
robot. The effect typically takes a binary value which is true or not true. The corresponding
affordances are called traversability, rollability, graspability, liftability and stackability (see
Table 2.1). This way of defining affordances takes into account only a single robot action
and its effect at a time. The focus is on the prediction of the effect. However, the robot
action is not included in the affordance definition.

Table 2.1: A summary of affordance definitions.
Affordance Definitions Related Papers Explanation

Traversability [22, 23, 80, 81] The robot predicts whether it is able to
traverse or not the given environment.

Rollability [19, 20] Round objects would roll and cubic ones
would not after being pushed or poked.

Graspability [27, 29] The robot predicts whether a given object
is graspable or not.

Liftability [18] Objects are classified as liftable or not
liftable based on their shapes and colors.

Stackability [42, 53] The rollability of single objects is used to
predict the stackability of paired objects.

Goal-based [36, 38, 39, 41] Emphasizes the importance of both objects
and actions to achieve goals.

One-directional model [9, 33, 37, 49, 59] It maps from a pair of object and action to
an effect. It supports both effect prediction
and action selection.

Bi-directional model [10, 35, 44] It is based on a network structure with
connected nodes. It supports both effect
prediction and action selection.

In contrast, the goal-based definition of affordance emphasizes the importance of not
only object properties, but also robot actions to achieve goals. In the scenario of tool
use, the tool’s affordances are defined in terms of robot actions and the statistics of goal
achievement, which are saved in an affordance table [36]. In [38], the task goal is to push
and orient any given object. An affordance is defined to exist between a robot and an object
if the robot can successfully perform the desired action to achieve the goal. In [39, 41],
affordance templates (AT) are defined for goal-directed object manipulation tasks. For
example, a wheel-turning template is defined for turning valves in the scenario of DARPA
Robotics Challenge. Different from the affordance definitions in the robot perspective,
the AT approach takes the environmental perspective and involves a human operator that
tele-operates the robot.

Considering both the effects and actions, two kinds of affordance models have been
defined (see Figure 2.3). One of them models an affordance as the one-directional relation
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between an (entity, behavior)2 pair and an effect [9]. The other one models affordances as
the bi-directional relations between objects, actions and effects [10].

(a) (b)

Figure 2.3: One-directional and bi-directional affordance models.

In general, the one-directional model maps from a pair of object and action to an ef-
fect. However, the formalisms of one-directional affordance models vary in the literature.
In [33], the robot arm interacts with several objects by using three push actions and one lift
action. Each action is bound with a model that predicts the effect of object movement. Sim-
ilarly, the movement of a toy car is predicted after being pushed in various directions [37].
In [49], an affordance is represented as a tuple of a precondition (object), an action and
a postcondition (effect) to configure task-relevant objects in a multi-step tea service task.
In [59], an Object-Action-Complex (OAC) captures the interaction between an object and
the robot using a prediction function about state changes (effect) caused by the execution
of a robot action.

In contrast, all the bi-directional models are based on a network representation which
has a structure of connected nodes [10]. Typically, the nodes take discrete values. For
example, the object nodes can represent objects by their colors (green, yellow), shapes (ball,
box) and sizes (small, medium, big); an action node takes values of grasp, tap and touch;
and an effect node describes object displacement (small, medium, big). Given the values
of object and action nodes, the model can infer the most likely values of the effect nodes.
Similarly, given the values of object and effect nodes, the model can infer the most likely
values of the action nodes. In [35], the same representation is used and combined with
statistical relational learning in a multi-object scenario. In [44], the network is extended
with nodes of “tool objects” in addition to the nodes of objects, actions and effects. Then,
intermediate object affordances are modeled towards the development of a tool concept.

2.2.3 Sensory Functions and Motor Skills
As a prerequisite for affordance learning, sensory functions and motor skills have been
assumed available for a robot. In other words, the robot can recognize objects, perform

2The term entity refers to the perceptual representation of an object. It has been assumed that an object can
be segmented from the environment by computer vision algorithms. The term behavior denotes the executed
perception-action routine that enables embodied robot interaction with the environment [9]. In this dissertation,
we use object instead of entity, and action instead of behavior.
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elementary motor tasks, and obtains the consequent effects. In this section, we review how
these sensory functions and motor skills have been prepared for robots before introducing
affordance learning in the next section.

Object recognition

Object recognition is carried out through the extraction of object features. For example,
color and shape features can be extracted from camera images. The tracking of the features
enables the tracking of objects. This provides relevant information about object states, e.g.,
object position, orientation and speed in the world space. The representation of objects can
be classified into three types: fixed, discrete or continuous (see Table 2.2).

Table 2.2: Types of object representations for affordance learning.
Object representation Related papers

Fixed [19, 36, 37]
Discrete [10, 18, 27, 35, 38, 44]
Continuous [20, 21, 22, 23, 33, 43]

The fixed group only considers a fixed set of objects. In [19], four toy objects are
recognized and tracked by color features. In [36], five tool objects are labeled and the
affordances are saved in a look-up table. In [37], each object is segmented in 2D images
and tracked using a bounding box. The states of the object can be updated. However, this
representation considers only a specific object at a time. As a result, it has limitation for
reusing past experience to handle new objects.

In order to classify given objects, the discrete group describes objects with a set of
predefined labels. In [27], objects are described by shapes (cylinder, rectangle) and sizes
(small, medium, large). In [18], object parts are segmented by color recognition and con-
figured by top/bottom relations. In [10, 35, 44], the X-means [82] algorithm classifies
colors based on histograms, while shapes are classified by local shape descriptors such as
convexity, circularness and squareness.

Without prior discretization, the continuous group directly processes raw sensory data.
In [22, 33], distance and local shape features are extracted from depth sensors. In [23],
an object is described by distance features extracted from ultrasonic point clouds. In [21],
object contours and shape gradient features are extracted. In [20], continuous sensory data
is handled by a codebook vector layer with Euclidean distance metric. In [43], novel tools
are compared with a fixed set of tools based on local shape features.

In summary, the complexity of object representation increases from the fixed group to
the discrete and continuous groups. In this dissertation, we choose the object representa-
tions according to the research objectives in the corresponding chapters. Typically, objects
are segmented and tracked in 2D images, and object states are represented in discrete or
continuous spaces with consideration of new object states.
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Motor skills

The motor skills for learning affordances are usually programed as a set of discrete actions
or defined in continuous action spaces (see Table 2.3).

Table 2.3: Types of robot actions for affordance learning.
Action Type Related papers

Discrete [18, 19, 20, 22, 33, 35, 27, 23, 44, 42, 52, 53, 10, 28]
Continuous [21, 37, 38, 43]

Discrete actions have been assumed effective for affordance learning in well designed
environments. In [18], a lifting action is used for a magnetizable effector. In [22, 23],
mobile robots traverse in predefined directions with fixed distances. In [19, 52, 20, 33, 35],
robot arms push in given trajectories. In [27], the robot hand grasps at a certain height.
In [10, 28], grasping, tapping and touching actions are parameterized, but only discrete
actions are used in the experiments.

However, the discrete actions have limitations in handling novel objects that come with
unknown shapes and sizes. For example, pushing an object in a predefined direction would
fail if the object spin, e,.g., a round bowl. In order to solve this problem, controllers are
defined to continuously interpolate pushing direction to position and orient objects [21, 38].
In [43, 37], pushing parameters are chosen randomly from a uniform distribution.

In Table 2.3 that most of the approaches in the literature only consider discrete ac-
tions. One main reason is that continuous actions increase the difficulty for affordance
learning. In other words, it is more challenging to choose an effective action parameter
from a continuous space than to define a discrete action in a well designed environment. In
this dissertation, we will address the challenge of using continuous actions for affordance
learning in chapter 4-6.

Perception of Effects

The perception of effects is based on the representation of objects. Usually, effects have
been assumed to be the results of a robot’ own actions. An effect is obtained by tracking
an object and calculating the state changes of the object before and after an action. Effects
can be either predefined, or self-discovered by the robot (see Table 2.4).

Table 2.4: Types of effect representation for affordance learning.
Effect representation Related papers

Predefined [18, 19, 36, 10, 27, 81, 22, 35, 38, 37, 42]
Self-discovered [20, 33, 43, 52, 83, 84]

A popular way to define effects is to use labels, e.g., lifted or not, traversed or not,
grasped or not, stacked or not, etc. More detailed descriptions consider object displace-
ment, orientation change or object motion. In contrast, self-discovered effects are obtained
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as unlabeled clusters in continuous spaces via unsupervised learning. Specifically, the X-
means algorithm [82] has been widely used in the literature. In this dissertation, we define
effects as labels or values in continuous spaces according to the object representation in the
corresponding chapters.

2.2.4 Affordance Learning
Based on the prepared sensory functions and motor skills, affordances can be learned
through embodied robot interaction with objects. This has followed the principles in de-
velopmental robotics [1, 2, 3, 4]. The learning approaches depend on how affordances are
defined. Various machine learning algorithms have been employed to learn affordances
(see Table 2.5).

Table 2.5: A summary of affordance learning approaches.
Learning Types Related papers Learning methods

Table-based [36, 38] Table-lookup
[18] Q-Learning

Supervised [22, 23] Support Vector Machines
[10, 81, 35, 49, 44] Bayesian Networks

Unsupervised [20] Neural Networks
[33, 42, 37, 83] Support Vector Machines
[43, 52] Nearest Neighbors
[84] Decision Tree

In our classification, learning types are based on not only how affordances are defined,
but also how the learning is influenced by human. If data is stored in a table, it is clas-
sified into the “Table-based” type. If the effects or affordances are manually labeled, the
approaches are classified into the “supervised” type. If the effects are self-discovered by
the robot, the approaches are classified into the “unsupervised” group, though the machine
learning algorithms might be “supervised” ones.

Table-based affordance learning

In an early study [36], a fixed set of tool objects are assigned unique labels. Each object
label is associated with a set of actions and the statistics of goal achievement. All the data is
saved in an affordance table for future query. This approach is simple and straight forward,
but it can not generalize the learned affordances to handle novel objects. Therefore, it has
a limited learning ability.

In [38], the robot learns to achieve a goal by selecting a perceptual proxy, a behavior
primitive and a controller. Every combination of the three components and the consequent
result are saved in a table to evaluate the learning strategy. For example, a centroid/ellip-
soidal perceptual proxy, an overhead/sweep push behavior, and the centroid alignment/spin-
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correction controller are combined to learn how to push and position a television remote
and a dinner bowl.

In [18], reinforcement learning is used to learn object liftability. Rewards are assigned
to the visual features of objects according to the results of lifting them. Positive rewards are
given to encourage successful lifting; otherwise, negative values are given. These values
are saved in a table. In this way, the robot learns visual cues in a purposive manner that the
cue like states with high values are considered as good opportunities for future interactions.

Supervised learning of affordances

In [22, 23], the robot performs a set of discrete actions and a set of training data is col-
lected. The objects are represented by low-level shape features, and the effects are labeled
as movable or not. Each action is bound with a Support Vector Machine (SVM) that pre-
dicts the effect labels based on the observed shape features. This approach is able to predict
the movabilty of novel objects by using the learned SVM.

In [10], affordance models are represented as Bayesian Networks (BNs) that encode
the bi-directional dependencies between objects, actions and effects. Since the learning is
based on a probabilistic BN model, the approach is able to handle uncertainty, redundancy,
and irrelevant information. In the training stage, the robot also observes the effects of its
own actions on objects. The structure of a BN is estimated by the Markov Chain Monte
Carlo (MCMC) method. In [35], the BN model is extended to handle multiple objects by
integrating Statistical Relational Learning (SRL). One model is learned for inference of any
number of objects, without suffering from the structure learning of several BNs and switch-
ing between BNs for inferences. In [44], the BN is extended by including “tool objects” in
addition to non-tool objects. In [49], the BNs encode the relationship between precondi-
tion, motion primitive, and postcondition in order to configure task-relevant objects. Also
using BNs, a Category-Affordance model has an intermediate layer of object categories to
associate object features and predefined affordance labels [81].

Unsupervised learning of affordances

Unlike supervised learning of affordances, unsupervised approaches require no predefined
labels for training affordance models. Typically, these models are one-directional.

In [20], a cross-modal neural network is constructed by two sensory modalities. The in-
put modality encodes object shape features and the output modality encodes object motions
caused by a pushing action. Both layers are fully connected to each other. The collected
data is in the form of input-out pairs that are based on the co-occurrence of the two modal-
ities. No manual labeling of data is needed. The learned neural network can predict the
motion of an object when given its shape features.

In [33, 83], effect clusters are self-discovered by a robot using the X-means algorithm.
Similar with [22], SVMs are trained to associate object features with the effect clusters.
In [37], SVM regression is used to approximate the mapping from the continuous action
space (arm pushing direction) to the continuous effect space (object displacement).

In [52], objects are categorized as container or non-container according to the object
motion after pushing. First, the X-means algorithm is used to discover object similarities
by clustering the shape feature vectors. Then, a Nearest Neighbor classifier is trained with
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automatically generated labels. The classifier can classify novel objects as containers or
non-containers when given their shape features. Similarly, a Nearest Neighbor classifier is
trained to learn tool affordances [43].

In [84], the X-means algorithm is also used to obtain effect clusters, and a decision
tree classifier is trained to classify tools. The classifier is used to discover similar tools that
result in similar effects. The decision tree classifier has been found to generalize better than
the Nearest Neighbor classifier.

2.3 Discussion

In the previous section, we have reviewed the affordance definitions, along with how the
affordances can be learned. This section provides further insights of the literature review.

In the literature, affordance learning has been focused on associating object features
with the effects of actions. The main purpose is to discover the distinctive features that are
likely to result in the effects. In addition, learned affordances can also be used to select
actions to achieve goals. A typical example is that round objects are likely to roll while
cubic ones are not. If a goal is given to stack objects, then the cubic ones are likely to be
stacked [42, 53]. Novel objects can be classified not simply by their features, but by the
potential effects that can be achieved.

However, the efficiency of affordance learning has been neglected in the literature. Typ-
ically, random actions are performed to collect data before machine learning algorithms are
employed to learn affordances. This is not efficient because the learning is not even started
until sufficient data is available. Moreover, it is the human operator who decides how much
data is needed. This makes the learning even more inefficient, because the human can
hardly interpret the sensory-motor data of the robot to decide whether the learning should
be terminated or not. It is a challenge to improve the efficiency of data collection as well
as to improve the efficiency of affordance learning based on the available data.

Besides, the need for open-ended affordance learning has been neglected. Once the
learning stage is finished, the learned affordances are not updated anymore. It has been
assumed that the environment is static and the affordances do not change between the envi-
ronment and the robot (see Figure 2.2). Generally, this is not true in dynamic environments
that the robot has to handle a variety of novel objects and situations. The learning should
be enabled whenever necessary. It is a challenge for the robot to decide by itself when the
learning is necessary.

In this dissertation, our focus is on efficient and open-ended affordance learning. Specif-
ically, we aim to develop a novel framework that supports the following three learning
mechanisms:

• On-line learning. This mechanism enables on-line data collection whenever an effec-
tive interaction happens between the robot and the objects. Also, the affordances are
learned on-line with all the available data. As a result, the robot can keep on learning
in dynamic environments in which the affordances may change. Chapter 3 proposes
a table-based reinforcement learning framework for discrete state and action spaces.
Chapter 4 and Chapter 5 discuss on-line affordance learning in continuous state and
action spaces, which is more challenging than the discrete case. Chapter 6 not only
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supports on-line affordance learning, but also the verification of learned affordances.
Based on the verification result, affordance learning can be initiated and terminated
by the robot itself.

• Active learning. This mechanism enables active selection of actions rather than ran-
dom action selection. As a result, the data for affordance learning is collected actively
by the robot itself. The learning is carried out in an unsupervised manner. While the
affordances are learned, they are simultaneously used to adjust the action selection
strategy. In this way, the data collection becomes efficient by incorporating useful
information of the actual learning results. Chapter 4 will discuss active affordance
learning in detail.

• Transfer learning. This mechanism transfers the learned affordances to speed up the
learning of a novel task. A robot may encounter a variety of objects in dynamic
environments. Learning each object from scratch is an option, but it would take a
long time for the robot to try out every action on every object. It is more efficient to
directly reuse the learned affordances to select actions on the novel object. Chapter 5
will discuss transfer learning of affordances in detail.

Finally, we note that the learning of affordances are closely related to the use of the
learned affordances. The learned affordances not only can be used to select goal-directed
actions, but also can be used to speed up the learning, as mentioned above in the cases of
active learning and transfer learning. In the rest of the dissertation, we will discuss in detail
the close relation between the learning of affordances and the use of affordances.
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Chapter Three

On-line Affordance Learning and
Use in Goal-directed Tasks

A problem with regard to affordance learning and use in the literature is that the use of affor-
dances is addressed separately from affordance learning. As a result, there is no learning of
affordances while using them. On the other hand, goal-directed tasks can be formulated in
the reinforcement learning (RL) framework, in which learned affordances are useful for ac-
tion selection. This chapter proposes a cognitive robot learning architecture that supports
simultaneous learning and the use of affordances in effective solving of RL tasks. We
demonstrate the effectiveness of this approach by integrating affordances into an Extended
Classifier System (XCS) for learning general rules in a RL framework. The experimental
results show significant speedups in learning how a robot solves a given task.

3.1 Introduction

Many real world robotic tasks, like navigation or object manipulation, are dynamic and
require on-line learning capability. A fully preprogrammed approach is not sufficient to
handle the underlying uncertainties of environments. One solution is that robots learn au-
tonomously through observations and embodied interactions with environments. Specifi-
cally, a goal-directed task specifies a goal state that has to be achieved. The robot interacts
with objects in the environment, it learns to optimize its policy and select actions with a
higher chance of success. If the task or the objects are changed, the previously learned
policy will probably no longer be optimal. Relearning a new policy from scratch is not
effective. In order to efficiently construct a new optimal policy, it is useful to extract in-
formation from the previously learned tasks. The notion of affordance [6] provides robots
with information whether an object affords an action or not [9]. This information is useful
for action selection in on-line learning tasks in which repetitive trials are usually required
for learning an optimal policy. In this chapter, the main goal and contribution is to inves-
tigate and propose a cognitive architecture that combines on-line learning of affordances
and the use of affordances at the same time to improve the robot’s learning performance in
goal-directed tasks.

25
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Due to the complexity of real world environments and the limitations of robot plat-
forms, it is a big challenge to establish affordances for a multitude of robot actions [79].
In the literature, some approaches considered a fixed set of robot actions for affordance
learning under specific task settings (see section 2.2.3). For example, object movability is
learned by the same pushing action [20]. Affordances are learned as mappings from the
perception space of objects to the perception space of effects. The focus is on discovering
relevant object features in the perception space, e.g., shape features, for making predictions
of predefined effects. However, actions are not explicitly included in the representation of
affordances. Therefore, these affordances cannot be used by robots for selecting or per-
forming actions to achieve task goals.

Taking into account robot actions in addition to objects and effects, two major defini-
tions have been proposed and applied in robotics (see Figure 2.3). Both approaches have
followed the staged developmental framework of affordance learning and use. That is, a
robot first collects training data by embodied interaction with objects and self-observation
of the action effects. Then, the collected data is used to train affordance models by ma-
chine learning algorithms (see section 2.2.4). Afterwards, when a task goal is given,
the robot makes use of the learned affordance models for action selection. For example,
[32, 22, 33, 15, 42] use a one-directional affordance model. Each robot action is associated
with a Support Vector Machine (SVM) that maps from the perception space of objects to
the perception space of effects. When a set of objects and a goal effect are provided, the
robot predicts what effects could be generated by each action on the given objects, and then
plans a sequence of actions to generate the goal effect. In [31, 10, 35, 44], Bayesian Net-
works (BNs) are trained to capture the probabilistic dependencies between objects, actions
and effects. When a goal effect is demonstrated in an imitation game, the robot is able to se-
lect an object and an action which are most likely to result in the goal effect [10, 31]. Also,
the robot is able to select a tool object to interact with a target object in a goal-directed
way [44].

In these approaches, however, affordance learning is carried out in an off-line learning
manner after the collection of all training data. The learned affordances are believed to
still hold in the stage of affordance use. This is not always true because affordances may
change due to environmental changes. In order to address this problem, affordances have
to be learned on-line when new data is available for the learning. This means that an on-
line learning algorithm has to be employed for affordance learning. In addition, affordance
learning should also be allowed when the robot makes use of learned affordances to plan
and perform an action. Because after the action is performed, the robot observes the effect
and collects new training data for affordance learning.

The main contribution of this chapter is the proposal of an architecture that integrates
simultaneous on-line learning and use of affordances in goal-directed tasks. Affordances
are stored as interpretable triples in a table that can be updated and reused in a set of
tasks. More specifically, affordances are acquired automatically during on-line task learn-
ing. While being learned, they are also used to speed up the task learning. In our ap-
proach, affordance learning interacts with a task learning system, using an XCS classifier
system [85], within a reinforcement learning [56] framework. In addition, we pay special
attention to the on-line use of affordances. In contrast to previous approaches, we integrate
affordance learning and the use in a unified perception and action loop. Our architecture
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allows affordance learning while the robot performs a task, even in a dynamic environment.
The remainder of this chapter is organized as follows. Section 3.2 defines the affordance

model for the rest of this dissertation. Section 3.3 proposes the cognitive architecture that
allows the interaction between affordances and task learning. Then, sections 3.4 and 3.5
describe the robot platform and the task environments that we use in our experiments,
respectively. Finally, Section 3.6 concludes the chapter.

Parts of this chapter have been published in [55].

3.2 Affordance Model
Similarly to [9, 10], we formalize affordance as the relation between an embodied robot
and its environment.

Definition 3.1 An affordance is defined as the triple:(
Object,Action,Effect

)
(3.1)

where Object refers to the entity that can be interacted with, e.g., a box or a door knob;
Action refers to a behavior or repertoire of motor skills that can be used to interact with the
object, e.g., pushing and turning; and, Effect refers to the result of performing the action on
the object, e.g., the box has been moved or the door is opened. We note that affordances
provide general information about the effects of actions on objects and this information is
independent of the task at hand.

We now discuss in more detail each of the three components of an affordance.

3.2.1 Perception of Objects

A robot perceives its environment and extracts a set of features { fi}Ni=1 from its raw sensory
input. Currently, many robots are equipped with RGB cameras or RGB-D cameras as the
main source of visual perception. The extracted visual features can be at any level, e.g.,
from low-level KLT points [86], mid-level SURF [87] or SIFT [88] points to high-level
category labels [89].

An object is denoted by o ∈ O, where O denotes an attribute space which is defined
as a collection of properties with assigned values [59]. For example, these properties can
include object color, shape or size, and the associated values can be red/green/blue, round-
ness, or big/small. We note that the attributes can take continuous, discrete, or Boolean
values for different problem spaces. We assume these values are invariant for an individual
object. As a result, the size of the attribute space O decides the maximal number of differ-
ent objects that can be recognized and represented by the robot. We also assume that the
sensors can be used to extract the environmental state of an object which might be changing
with time, denoted as so ∈ Sob j, where Sob j is a state space. For example, so can be the
current location of the object in the world space.

3.2.2 Robot Actions
Denote by a ∈ A a robot action and A is the action space. Robot actions can be defined
in continuous spaces, e.g., in constrained joint space or in the Cartesian space with the as-
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sociated inverse kinematics. They can also be programmed as a discrete set of behaviors.
Generally, the continuous cases are more difficult than the discrete ones for affordance
learning. This is because a continuous action space has infinitely many possible actions
while a discrete set has a finite number of actions. Consequently, the relations between ob-
jects and actions are more complex for the continuous action case. The choice of an action
representation depends on the robot platform and on the task at hand. In this chapter, we
focus on discrete actions. In the next chapters, we will address the challenges of continuous
actions.

First of all, we need to make some assumptions about robot actions. We assume that
preconditions of actions are provided as domain knowledge. For example, an end-effector
should reach the object before grasping it. In addition, we assume that the action commands
defined in an action space can always be executed successfully by the robot. For example,
executing the “open hand” command will not result in a “close hand” action. Otherwise,
action failures would result in noisy training data which would hinder affordance learning.
Although our learning approaches have taken into account noise in data, handling the noise
is not the main focus of our research.

3.2.3 Perception of Effects
After performing an action a on the object o, the robot perceives a new state of the object
s′o ∈ Sob j, where Sob j is the attribute space of object states. By comparing s′o and so, the
consequent action effect e is calculated and it takes a value in an effect space E, which is
also an attribute space. The effect e is obtained as follows:

e = m(s′o, so) (3.2)

where m is a suitable measure. For example, a box is pushed and its location change is
measured in a real-valued continuous space. If a robot tries to open a door, the effect can
also be a binary state description that the door is opened or not.

3.3 Cognitive Architecture
The affordance model (AM) defined in (3.1) shares a same component of Action with the
formalism of an MDP (see section 2.1.3). The attribute space of Object also has a similar
representation to the state space of an MDP. The differences between an AM and an MDP
arise from how action effects are defined and associated with objects, and how actions are
selected for robot learning. Effects in an MDP are described by a state transition func-
tion and correspond to a reward function. The reward function provides actual rewards and
shapes the robot behaviors (a perception-action loop) by maximizing the expected accumu-
lation of future rewards. This decision making manner considers a long-term consequence
for action selection. In contrast, AM is usually learned from a set of training data which
is collected via “motor babbling” (i.e., random action exploration). Then, AM is used to
make an one-step prediction whether an object affords an action or not.

Based on the above comparison between an AM and an MDP, we propose that they can
be coupled together to benefit each other. On the one hand, training data can be collected
for affordance learning when an action is selected by the MDP and performed by the robot.
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On the other hand, learned affordances can be used to aid action selection in the MDP. In
this way, the learning and the use of affordances take place in the same loop while solving
a goal-directed learning task that is modeled as an MDP.

3.3.1 Architecture Overview

The overall approach is based on an architecture consisting of three components: an af-
fordance learning component, a common task learning component based on reinforcement
learning, and a component that feeds learned affordances into the action selection mecha-
nism of the task learning component. Figure 3.1 illustrates the architecture we propose.

Figure 3.1: An architecture for affordance learning and use during task learning.

In the affordance learning component, the robot perceives the environment via its sen-
sors. It extracts features and forms a representation of the environment (see section 3.2.1).
The robot is provided with a set of actions to learn affordances and perform tasks. Addi-
tionally, the conceptual input provides the robot with the knowledge on which of the actions
are related to affordance learning and how the effects of these actions are defined. For ex-
ample, when learning object movability, a push action towards the object is relevant as well
as a notion of distance and its change. Then, the robot can learn the movability of objects
by observing their displacement after a pushing action. In other words, by providing the
affordance learning component with a priori conceptual knowledge about general types of
affordances, actual affordances can be learned in association with particular objects and
robot actions. The affordances are updated on-line during the task learning, by collecting
data of the encountered object, the action performed and the resulting effect. In summary,
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with the sensory input, given actions, and the conceptual knowledge, the robot is able to
learn actual affordances during its embodied interaction with the environment.

In the affordance use component of Figure 3.1, the learned affordances are used to filter
out those actions which are likely to cause undesired effects. For this purpose, rules are
provided as task domain knowledge to construct the action filter. These rules can be related
to the current task goal, and common sense knowledge can also be included. As the general
problem of relating the undesired effects with goals is beyond the scope of this chapter, we
use a simple approach where we only use the common sense rules. We assume that if
an action has no effect on the object, performing the action is considered to be undesired.
For example, the robot pushes an unmovable box and learns that it cannot move the box,
thereafter it avoids pushing this box.

Finally, in the task learning component of Figure 3.1, the task is learned under a goal in
a reinforcement learning framework, which as usual consists of states, actions, and rewards.
The state vector contains sufficient information about the object for the current task, the set
of actions contains the set of behaviors for learning affordances, and the reward is derived
from a reward function related to the task goal. The task learning system makes use of
the affordances for action selection, avoiding inefficient actions and thus resulting in a
higher chance of selecting an action sequence to achieve the task goal. In other words, the
affordances bias the action selection and speed up the task learning process.

Even though affordances and task learning are coupled in our architecture, the learned
affordances are independent from task learning and can be reused in other tasks.

3.3.2 Tabular Affordance Learning
In this chapter, we only consider discrete object states, discrete robot actions and discrete
effects. Subsequent chapters will discuss the continuous cases. In the discrete case, the
knowledge of affordances is represented as an affordance table [T], consisting of triplets:

(o, a, e) (3.3)

in which o is the object, a is the action and e is the effect. Algorithm 1 updates [T] during
a task.

Initially, [T] is empty or loaded from a file which contains previously learned affor-
dances. Various mechanisms can be used to update the affordances. In this chapter, we use
a short term memory with a simple forgetting mechanism. That is, the robot obtains (o,
a, e) and searches (o, a) in [T]. If no match is found, (o, a, e) is added to [T]. Otherwise,
assume o = ok and a = ak, then (ok, ak, ek) is replaced by (o, a, e). In this way, the robot
is able to handle dynamic situations in which the action effect on the same object may
change. Although the current implementation is a simple affordance table, it allows further
generalization with additional techniques.

3.3.3 Extended Learning Classifier System (XCS)
The task learning component needs to have efficient on-line learning performance for the
robot to achieve its goal fast. This provides a good base for effective on-line affordance
learning and the use during task learning. For this purpose, we choose an Extended Classi-
fier System (XCS) for learning general rules in a reinforcement learning context.
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Algorithm 1: On-line tabular affordance learning during a task.
1: Initialize the affordance table [T] empty or load it from a file.
2: Observe the current object o and its state so.
3: Apply action a.
4: Observe a new state s′o.
5: Compute the effect e of a, e.g., e = m(s′o, so);
6: if (o, a) matches no item in [T] then
7: Add (o, a, e) to [T].
8: else
9: Replace (ok, ak, ek) by (o, a, e) if o = ok and a = ak.

10: end if
11: if Task is not terminated then
12: Goto Line 2.
13: end if

XCS classifier system [85] is a rule-based system for reinforcement learning problems
[56]. It can be regarded as a generalization of tabular Q-learning [90] by using a Genetic
Algorithm (GA) [91] to aggregate similar states in the Q-table [92]. In XCS, the GA pro-
duces rules that make prediction of the reward when selecting the associated actions. After
an action is performed and the actual reward is obtained, the prediction error is calculated
and used to update all the relevant rules. While tabular Q-learning updates a single state-
action pair, XCS updates multiple state-action pairs. For physical robot control, XCS has
shown satisfactory results without careful tuning of parameters [93]. So we choose XCS
for on-line robot learning tasks.

The knowledge of XCS is represented as a set of rules (called classifiers in the LCS
literature [94]). A rule maps a condition and an action to a prediction, with an associated
fitness as follows:

(condition, action)→ prediction : f itness (3.4)

The rules can use real numbers, symbols or the classical ternary representation {0,1,#}
to encode the conditions. The hash symbol # can be either 0 or 1. In this chapter, we choose
the ternary representation. We use binary strings to encode the actions. The hash symbol #
allows generalization and GA operations on the rule conditions with the same length.

For example, the rule

(0#0#11#11, 001)→ 1000 : 0.59 (3.5)

means if the current state string s meets the condition 0#0#11#11 and if action 001 is taken,
then a reward of 1000 is predicted. This rule has a fitness of 0.59. The mapping in equation
(3.5) is a value function, so the rules are value function fragments, and XCS uses GA
techniques to generalize the value function [95].

In this chapter, the current state of the environment (see Figure 3.1) only considers the
object, represented as:

s = (o, so) (3.6)
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which ignores the information about the robot itself, e.g., its distance to the object and its
joint angle values. We assume that the objects are within the robot’s reach and we assume
that the state of the robot does not have to be included for the tasks considered in this
chapter. However, in general, it may be included.

Assume [P] is the current set of rules of XCS. If s is obtained from the environment by
the robot sensors, then a subset of [P] forms a match set [M] whose rule conditions match
s. [M] can be further decomposed as a union of subsets:

[M] =

M⋃
i=1

[M]ai (3.7)

where [M]ai are the rules which advocate action ai. Then, a prediction of action ai is
calculated as

P(ai) =
Σl∈[M]ai

plFl

Σl∈[M]ai
Fl

(3.8)

in which pl is rule l’s prediction of reward and Fl is rule l’ fitness, based inversely on the
error εl in the prediction of pl. Based on equation (3.8), an action a j is selected by

a j = arg max
ai

P(ai) (3.9)

where a j is the action with maximal prediction. After a j is applied and reward r is obtained,
all the rules in [M]a j are updated by the Credit Assignment Algorithm [85], which uses a
version of Q-learning update to distribute r. For more information on updating p j, ε j and
F j, we refer the reader to Appendix A.

3.3.4 Affordance Use in XCS
Traditionally, the task learning system selects an action according to a criterion, e.g., ran-
dom action selection, greedy action selection or mixed. Some actions are efficient in the
learning task while some are not. Take a navigation task for example, the robot would pre-
fer pushing a movable obstacle to the side if this helps arrive at its destination faster than
by avoiding the obstacle, but trying to push the same unmovable obstacle for several times
is not desired. In the task learning system, however, there is no guarantee that this will not
happen.

We show that this problem can be solved with the aid of affordances. Under a specific
task goal, some effects are desired while some are not. In our case, if o matches ok in [T],
the related action ak is filtered out from the candidate actions if its effect ek satisfies:

ek ∈ E (3.10)

where E is the set of predefined undesired effects. For example, “unmoved” is not desired
in a task where the goal is to move objects to a location, while “moved” is not desired in
a task where the robot is not allowed to move anything when navigating to the destination.
In this way, affordances influence action selection of the task learning system. Algorithm 2
shows how the affordances are used by the XCS classifier system.
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Algorithm 2: Use affordances with an XCS task learning system.
1: Initialize the affordance table [T] and the population of XCS rules [P] empty or

load them from files.
2: Observe the current system state s = (o, so).
3: Form [M] ⊂ [P] whose rule conditions match s.
4: Calculate the prediction for each action using (3.8).
5: if o matches object ok of (ok, ak, ek) in [T] then
6: Filter ak by its effect ek using (3.10).
7: end if
8: Select an action a j by using (3.9).
9: Apply a j.

10: Observe the new system state s′ = (o, s′o).
11: Update [T] by Algorithm 1 (Line 6 to Line 11).
12: Receive a reward r from the environment.
13: Form the action set [M]a j ⊂ [M] which advocated a j.
14: Call the Credit Assignment Algorithm to update [M]a j .
15: if Task is not terminated then
16: Goto Line 2.
17: end if

At the first time step, the system initializes [T] and [P], both of which can be empty or
loaded from files. Line 2 starts a loop that the robot selects an action in explore or exploit
episode, alternating until the end of the task. In case of an endless loop, each episode ends
anyway after nstep steps. Line 4 and 5 are the standard XCS way of forming the match set
[M] and prediction of actions. Before selecting an action in Line 9, Line 6 checks [T] first.
If o matches an object ok of (ok, ak, ek) in [T], equation (3.10) filters ak by its effect ek.
After the robot performs the action a j, it observes the new system state s′ and updates [T]
by Algorithm 1. At last, the action set [M]a j ⊂ [M] which advocated a j is updated by the
Credit Assignment Algorithm [92]. Refer to Appendix I for details.

3.4 Robot Platform

3.4.1 Hardware

All experiments in this dissertation were carried out with a humanoid robot NAO1 (see
Figure 3.2). The NAO is about 58 cm tall and weights about 4.3 kilograms.

Sensors Two cameras are located vertically on the forehead and at the mouth position,
respectively. However, the cameras do not have an overlapping field of view and they
cannot be used at the same time. Therefore, a single camera with a chosen resolution
(e.g., 640×480) was used at one time. The sonars on the robot’s chest can return distance
readings (30 cm to 120 cm) to obstacles, and the tactile sensors on its head can be activated
by a touch.

1http://www.aldebaran.com
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Figure 3.2: Body frame definition in the Cartesian space of a robot NAO.

Motors The academic version of NAO H25 has 25 degrees of freedom. The head
has two motors (HeadYaw, HeadPitch), each arm has four motors (ShoulderPitch, Shoul-
derRoll, ElbowYaw, ElbowRoll), each hand has two motors (WristYaw, Hand), and each
leg has five motors (HipRoll, HipPitch, KneePitch, AnklePitch, AnkleRoll) along with
one HipYawPitch motor. In the experiments, different groups of motors were involved
for different tasks. For example, a visual searching task involved the head motors, and a
navigation task involved whole body motion (see Appendix I and II).

3.4.2 Software

The NAO ran an embedded Linux system which was remotely connected to a separate
computer via Wi-Fi or Ethernet. The NAO collected raw sensory data and sent the data to
the computer, where the data was processed and action commands were sent back to the
NAO. This created an action perception loop that supported the robot to learn how to act
based on sensory feedback. Machine learning algorithms were employed for processing
the raw data as well as for making decisions on action commands2. To carry out an actual
action command, default APIs were used. For example, “walking ahead” was defined as
walking along the positive X-axis in the NAO space (see Figure 3.2). Similarly, the arms
were controlled in the Cartesian space using available inverse kinematics.

3.5 Experiments and Results

In the experiments, the movability of objects with different weights and sizes was investi-
gated. The NAO used its whole body motion to push the object in front of it. It observed
the effect, which was the location change of the object before and after the action (see Fig-
ures 3.3 and 3.4). Then, an affordance table was learned. With the affordance table, the

2Implementation details will be discussed in corresponding chapters.
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(a) A navigation task. (b) NAO faced two boxes.

Figure 3.3: A humanoid robot NAO learned movability in a navigation task. Two boxes
blocked the NAO’s way and they were movable and not movable, respectively. The goal
was to reach the destination as fast as possible. After several trials, the locations of the
boxes were exchanged to show that the NAO were able to reuse the learned movability in a
different environmental setting.

(a) A stacking task. (b) NAO faced a piece of foam.

Figure 3.4: A humanoid robot NAO learned movability in a stacking task. The NAO stood
on the table edge and chose different pushing poses for a high box or a piece of low foam.
The goal was to push them off the table to make a stack as high as the table. The height of
a high box was 36 cm and the height of a low foam was 12 cm.
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robot was expected to operate more effectively and avoid making mistakes repeatedly in a
task, e.g., pushing the same unmovable box even though it had failed for several times.

Sequential goal-directed tasks were designed to test the proposed model on the NAO.
We assumed that the robot was able to detect the current state of the environment and of
itself by extracting features from its camera and sonars. In our setup, the NAO had a reper-
toire of preprogrammed behaviors to interact with the environment. We used XCSlib [96]
for task learning.

3.5.1 Environment and Tasks

Given a map and a landmark in the world space, the NAO was able to localize itself and
guaranteed its safety on a flat table. A marker was used on each object for object recogni-
tion and for measuring the relative object location and distance to the NAO.

3.5.2 Movability

As defined in equations (3.2) and (3.3), movability was learned automatically in a task
whenever the robot tried to interact with objects by pushing. In our case, pushing the
object o with the action a would make it move a distance of d j, which was thresholded to
be 1 or 0, meaning “moved” or “unmoved” respectively.

3.5.3 Sensory Input

The forehead camera was used as the main sensory input (640×480 resolution) and the
sonars on its chest confirmed there was an object in front of the robot. The NAO localized
itself by matching SIFT [88] features of the landmark with known 3D coordinate (xl, yl, zl)
in the world space. This provided the NAO its camera location (xr, yr, zr) in the world
space [68]. When the marker on the object was detected, the NAO calculated its relative
location to the object as (xr2o, yr2o, zr2o). The object’s location (xo, yo, zo) was then obtained,
which was discretized as a 4-bit binary string S xyz to represent so. Meanwhile, the height
of the object ho was obtained by:

ho = hr2t − |zr2o| (3.11)

where hr2t was assumed known as the height of the NAO’s camera relative to the table
surface in its normal standing pose, and |zr2o| was the approximate vertical distance from
the camera to the object. Then, ho was represented by oheight where 1 meant the object was
high and 0 meant low. The colors of the boxes were represented by a 3-bit binary string
ocolor. In total, s in equation (3.12) was a 8-bit string:

s =
(
o, sxyz

)
(3.12)

in which

o = (oheight, ocolor) (3.13)
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3.5.4 Actions
The NAO was provided with eight actions represented as a 3-bit binary string shown in
Table 3.1. In the navigation task, the first four actions were used. The NAO moved a
distance of dwalk left, right, ahead, or pushed when walking ahead. In the stacking task, the
NAO stood on the table edge and chose the latter four actions in Table 3.1. To simplify
the process of finding and taking an object to the table edge, the NAO chose an object
by requesting the human operator with an “text-to-speech” command. Then, the NAO
confirmed that the requested object was in front before trying to push it in two different
poses, standing or squatting.

Table 3.1: Actions of the NAO for the tasks
Binary ID Actions

000 walk (dwalk) left
001 walk (dwalk) ahead
011 walk (dwalk) right
010 push (dwalk) ahead
100 push (stand)
101 push (squat)
110 choose (object 1)
111 choose (object 2)

3.5.5 Action Filter
The action filter in equation (3.10) filtered those actions which were predicted to have the
“unmoved” effect on the object, e.g., pushing an unmovable object or pushing a movable
low object in a wrong pose.

3.5.6 Reward Function
After the action a j was performed at the previous time step, the NAO received an immediate
reward of r in the current time step.

In the navigation task, if its current distance to the destination d was smaller than a
threshold ddst, a final reward of 1000 was given. If its location change ∆d was less than
dmove, it was punished by −100. This is described by the following reward function:

r =


1000 if d < ddst

−100 if ∆d < dmove

0 otherwise
(3.14)

In the stacking task, if the stack was as high as the table, the goal was achieved and a
final reward of 1000 was given. Whenever the robot chose an object to push, it received a
punishment of −100. Otherwise, r = 0. This is described in equation (3.15):

r =


1000 if stacked
−100 if a j = choose (object)
0 otherwise

(3.15)
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When each explore/exploit trial terminated, the rewards obtained in this trial were
summed up to be the accumulated payoff :

payoff = Σ r (3.16)

3.5.7 Experimental Setting

In both tasks, an experiment consisted of alternated explore and exploit trials. They used
the same parameter setting of XCS (Refer to Appendix A for the details). The number of
action steps in one trial was limited to the maximum of nstep = 10. If the goal was achieved
or nstep actions were performed, the trial was terminated and the environmental setting was
initialized as before.

During the first 10 explore/exploit trials in the navigation task, the unmovable box was
put on the left side of the movable one (see Figure 3.3(b)). Then, the boxes were exchanged
and the remaining 10 trials were performed. In this task, the table area was 0.75 m× 0.6 m,
and dwalk = 0.15 m. The NAO was allowed to start from anywhere on one side of the area
aiming for the destination which was 0.4 m away on the other side of the area. The standard
XCS and the affordance-based XCS were used in this task to compared the required number
of actions for achieving the task goal.

A video is available at http://youtu.be/1yH6TwWtByU.

3.5.8 Results

In the sequel, XCS rules will be given to illustrate what have been learned in the naviga-
tion task. Then, we show the advantage of our cognitive architecture that learns and uses
affordances to aid task learning.

XCS Rules

Table 3.2 lists a typical population of XCS rules learned in one experiment. The rules with
larger ID were generated after the rules with smaller ID.

The meaning of the rules is according to equations (3.12) and (3.13). Take rule 19 for
example, when facing the object “10#0” (high and probably a white box) which was in the
area “#110” (the middle part of the table, either left or right), if the NAO took the action
“010” (push 0.15 m ahead), the predicted reward would be 1000 (goal achieved), and the
error of this prediction was 1.0. This rule had a fitness of 0.59, and the average action set
size was 3.3. It had been activated for 4 times and the numerosity of this rule was three.

In the first 10 trials, if the NAO faced the object “1000” in the area “1000”, it was most
likely to choose rule 7, 9 and 19 to push the movable box. In the second 10 trials, if the
NAO faced “1111” also in the area “1000”, it was inclined to choose rule 14 and 137 to
move 2 steps left to avoid pushing the unmovable box. In this area, old specific rules like 7
and 9 did not match any more, but more general rules like 2 and 19 still matched. Besides,
new specific rules like 45, 94, 106,146 also suggested the pushing action.
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Table 3.2: XCS Rules learned in the navigation task.
ID Condition Act. Pred. Error Fit. Size E. N
2 1####000 010 138.1 137.9 0.15 6.9 10 3
5 ###01000 011 -94.0 0.5 0.30 2.5 2 2
7 ###01100 010 850.0 75.0 0.37 1.0 2 2
9 ##0#10## 010 241.7 154.0 0.68 2.6 5 2
12 1#00#010 000 -33.6 29.7 0.29 2.5 2 3
14 1#1##### 000 24.3 71.7 0.32 5.6 11 5
19 10#0#110 010 1000 1.0 0.59 3.3 4 3
21 100#1010 011 -33.6 29.7 0.17 2.5 2 3
23 1000#### 001 12.5 54.8 0.31 3.7 3 3
24 10000### 001 -44.0 25.5 0.02 3.0 0 1
25 1011#### 001 10.0 1.0 0.01 1.0 0 1
26 #1#000#0 011 -111.9 9.5 0.37 1.5 2 2
30 #1100#00 000 -93.0 1.0 0.37 3.0 2 3
36 #11#0010 001 -93.0 1.0 0.37 1.0 1 1
39 1111#### 010 -93.0 1.0 0.37 1.0 1 1
45 1###001# 010 493.1 138.4 0.23 3.6 5 2
60 11#1#### 001 10.0 1.0 0.01 1.0 0 1
94 1###00#0 010 456.0 93.0 0.33 7.4 6 2

106 #00001#0 010 917.3 89.6 0.07 6.3 4 1
137 1#1##### 000 109.9 24.8 0.15 7.3 3 1
146 1#####00 010 672.1 163.0 0.14 8.7 3 1

Figure 3.5: Average payoff in the navigation task.
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Figure 3.6: Average number of steps in the navigation task.

Affordance-Based XCS versus Standard XCS

As mentioned in Section 3.5.7, odd trials were always exploratory while even trials were
exploiting. Figures 3.5 and 3.6 show the average payoff defined in equation (3.16) and the
average number of action steps in each trial. The maximal payoff is 1000, and the maximal
number of action steps is 10. The result was averaged over 5 experiments.

In the first 10 trials, both affordance-based XCS and standard XCS were able to solve
the problem from the 4th trial. It was not difficult for the NAO to find the two-step solution
to push the movable box. In some cases, the NAO reached the boundaries of the table
and the trial was terminated. When the robot ran into the unmovable box, affordance-
based XCS performed better than standard XCS because the NAO would avoid pushing
the unmovable again. However, on average, there were not much differences in payoff

or number of steps because of some lucky trials in which the NAO did not run into the
unmovable box.

However, the differences became obvious in the next 10 trials. Affordance-based XCS
succeeded in finding the way to the destination while the standard XCS failed within 10
trials. This was due to that overly general rules were learned in the first 10 trials which
suggested the NAO to push the object as before. But the affordance-based approach did not
suffer from this problem, because it filtered undesired action effects in every step of action
selection. Therefore, it had a better chance to achieve the optimal performance than the
traditional XCS.

We can compare the success chance between the two approaches in the second 10 trials.
In this case, the NAO started from facing the unmovable box and needed to move 2 steps
left (would otherwise received a punishment of -200) and push the movable box for 3 steps
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forward. Without considering the influence of XCS rules, the chance of moving 2 steps left
would be 1/16 for standard XCS and 1/4 for affordance-based XCS after having learned the
movability.

Learned Movability

Table 3.3 shows the learned movability of the objects.

Table 3.3: Movability learned in the navigation and the stacking task.
ID Object Action Effect
1 1100 010 0
2 1111 010 0
3 1000 010 1
4 1011 010 0
5 0000 100 0
6 0000 101 1
7 1000 100 1

Similar to the XCS rules, the triplets with larger ID were generated later. Actually,
we can find the relations between the triplets in Table 3.3 and the rules in Table 3.2. For
example, triplet 1 in Table 3.3 is related to rule 39 in Table 3.2. They suggest that action
“010” did not move the object “1111” and a reward of −93 is predicted, respectively.

In the navigation task, Table 3.3 filtered unwanted actions by triplets 1, 2 and 4 which
meant that the NAO pushed the unmovable box or part of it with no effect. In contrast,
triplet 3 meant that the NAO pushed the movable box forward. As a result, the NAO
avoided the unmovable box and pushed the movable one to arrive at the destination.

In the stacking task, the NAO first failed to move the low object in a normal standing
pose, as illustrated by triplet 5. Then, the NAO tried to squat first before pushing the low
object. Finally, the NAO succeeded in learning the policy to choose the high box rather than
the low foam. Because choosing a high box required less actions to achieve the stacking
goal which would result in a higher accumulated reward.

3.6 Conclusions and Open Issues
In this chapter, we have proposed an architecture to learn and use affordances in goal-
directed tasks. We have integrated task learning, affordance learning and affordance use in
a general framework, in which affordances can be obtained and used automatically during
on-line task learning. In the architecture, the task is learned given a goal, and affordances
are learned by means of updating an affordance table, while affordances are used to select
actions for task learning.

An experimental evaluation of the proposed architecture has been carried out. Rein-
forcement learning has been chosen as the approach for on-line task learning, specifically
the XCS classifier system has been used. The affordance-based XCS has shown a good
performance in real-world tasks. Compared with standard XCS, the affordance-based XCS
shows various improvements. In the navigation task, changing the locations of movable
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and unmovable boxes has resulted in failures for standard XCS that suggested to keep
pushing the unmovable box, while the affordance-based XCS has succeeded to achieve
the goal by pushing the movable box. This indicates that using affordances is more effi-
cient for avoiding the selection of wrong actions that would not contribute to achieving the
goal. Selecting the same actions repeatedly is common for RL systems such as XCS even
though the actions are undesired. It usually takes some time for RL systems to change the
action selection policy until rewards are given. In contrast, the additional knowledge of
affordances directly provides suggestions on action selection, without the need to wait for
rewards. For this purpose, designing a proper action filter is the key to decrease the number
of candidate actions. The action filter in this chapter filters out the actions that result in
no object displacement in the navigation task. However, it is difficult to design a generic
action filter for a wide range of goal-directed tasks. It is interesting to investigate how to
design action filters based on given goals. One possible approach is using high-level action
rules as will be discussed in Chapter 6.

In the proposed architecture, only the task-relevant affordances are learned and used.
The process of data collection for affordance learning is on-line during task learning when-
ever an action is performed on an object. The learned affordances are also simultane-
ously used to speed up the task learning. In contrast, the two-staged developmental frame-
work [33] requires a robot to interact with objects with all its actions (called “motor bab-
bling” [43, 28, 37]) to learn affordances before it can use the affordances to achieve a goal.
In such a case, it is not known a priori what the goal is going to be, therefore all kinds
of affordances are initially learned. As a result, the robot can spend much time learning
affordances which might be irrelevant to the goal. This indicates that our approach is more
efficient for solving a goal-directed task than the two-staged approach.

This chapter has used a binary representation of object features, and the affordances of
known objects are used for action selection. The affordance table keeps the latest data of
learned triplets, and the latest data replaces the old data if there is a conflict. This means
that our approach is able to adapt to dynamic environments in which the affordances may
change. Maintaining the long-term statistics of the affordances is also useful for handling
uncertainty, e.g., by using probabilistic models [10]. A direct extension of the current
approach would be to replace the binary representation of objects with a ternary repre-
sentation as used in the XCS rules (see equation(3.4)). As a result, the affordances could
generalize in the same way as the XCS rules generalize over state spaces. However, the
generalization of affordances comes at the price of computational complexity compared to
the simple affordance table.

While the proposed architecture has been shown effective for discrete object states and
actions, in principle there is no obstacle to handling continuous spaces. In particular, the
continuous version of object representation (see section 2.2.3) could be used to capture the
distinctive object features, function approximators could be used to learn affordances, and a
continuous version of task learning algorithm could be used. However, continuous actions
would be difficult to handle in the proposed architecture, because there are infinitely many
data points in continuous spaces. We will further address this issue in Chapter 4.



Chapter Four

Active Affordance Learning in
Continuous State and Action Spaces

This chapter introduces an active affordance learning architecture that works in continu-
ous spaces. We use function approximation to model the relations between object states,
robot actions and effects, which allows generalization in continuous spaces. While learning
affordance models, a continuous version of the actor-critic reinforcement learning module
enables the update of exploration policies as well. We address the challenge of active explo-
ration in continuous action spaces, unlike previous approaches from the literature, which
typically use a set of discrete actions to perform random exploratory actions. Also, our
architecture allows a robot to decide by itself when the learning can terminate, based on the
convergence of the actor-critic module. The learned affordance models can be reused to
acquire a range of manipulation skills in a bottom-up manner. Robot experiments have been
carried out to solve garbage can manipulation tasks using a one dimensional state space and
three dimensional action space. In these experiments, the robot efficiently learns affordance
models and reliably makes use of them to open and close garbage cans of different types.

4.1 Introduction
In the previous chapter, we proposed a cognitive architecture that supports affordance learn-
ing and use in discrete state and action spaces. The present chapter concerns continuous
spaces without manual discretization of the state space or manual tuning of the action pa-
rameters. The main motivation is that the discrete representation of object states or robot
actions is not always effective in solving real-world tasks. In such tasks, not only object
states have to be configured in the continuous world space, but also successful manipula-
tion requires the corresponding action parameters to be learned by the robot. For example,
garbage cans come with different designs, shapes and sizes (see Figure 4.1). When opening
the garbage can in Figure 4.1(b), the robot needs to learn where on the lid and in which di-
rection a force should be exerted, as well as how much the lid should be opened to dispose
a given item. It is not intuitive to provide by human a representation of every household
object along with preprogrammed motor skills for handling it. Therefore, it is necessary to
develop a robot learning approach for object manipulation in continuous spaces.

43
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(a) “lift" lid (b) “push" lid (c) swing lid (d) pedal

Figure 4.1: Examples of garbage cans with movable lids. (a) a bucket handle affords grasp-
ing and lifting, (b) a lid affords pushing forward, or (c) downward, and (d) a pedal affords
pressing it downward, typically by a foot.

There has been much research on robot skill learning via human demonstration [47, 97].
Complex robot motions can be learned by mixing basic motor primitives [98, 99], which
is quite effective for object manipulation with human-provided training samples. Robots
are able to learn skills such as how to flip a pan cake [100], throw a dart [101], play table
tennis [102], serve tea [49], etc. However, these approaches require significant human
efforts to provide a library of high-quality motor primitives. Such human guidance is not
always available or is too expensive to obtain. Moreover, these robot skills are targeted at
specific tasks for handling specific objects. The focus is on the generation of robot motions,
without much consideration of object representation. Consequently, the learned skills can
hardly be transferred for handling novel objects. In general, it is still an open challenge for
autonomous robot learning of object manipulation skills.

This chapter proposes an active robot learning approach without human demonstration.
Through intrinsically motivated action exploration, the robot can actively collect training
data by itself for efficient affordance learning and skill acquisition in continuous state and
action spaces. In psychology, intrinsic motivation refers to the doing of an activity for the
enjoyment of the activity itself, while extrinsic motivation, in contrast, refers to the doing
of an activity in order to attain some separable outcome, e.g., external rewards [103]. In-
trinsically motivated activities include playing games for fun, learning because of curiosity,
etc. They favor the development of broad competence rather than being driven by specific
task goals. In our case, the intrinsic motivation is to learn an accurate affordance model that
predicts action effects on objects. In other words, the robot aims to reduce the prediction
errors of the affordance model. This drives the robot to actively explore uncertain areas in
the state and action spaces in which the prediction errors are high. The active exploration
process will be terminated when the learned model makes accurate enough predictions.
Thereafter, the learned model is used to select actions to achieve goals, during which a
range of manipulation skills are acquired autonomously.

The remainder of this chapter is structured as follows. Section 4.2 gives a brief overview
of the literature related to our approach. Section 4.3 proposes the robot learning architec-
ture that supports active affordance learning and manipulation skill acquisition. Section 4.4
describes the details of active affordance learning in continuous state and action spaces.
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Section 4.5 discusses how manipulation skills can be acquired by using the learned affor-
dances. Section 4.6 reports the results of real robot experiments, in which our learning
architecture is used for manipulating garbage cans. Section 4.7 concludes the chapter.

4.2 Related Work

Affordance learning in continuous action spaces has been considered in [43, 10, 28, 38, 37].
However, the affordance learning conditions have been strongly controlled by program-
mers, and this restricts the autonomy of the robot. Usually, the amount of needed data is
decided before the robot actually starts learning. In addition, the data is collected through
random motor babbling [19]. This is not efficient in continuous state and action spaces that
contain infinitely many data points.

In machine learning, active learning is a technique that allows active selection of train-
ing data for learning prediction models [104]. In robotics, active learning has been applied
for efficient acquisition of the training data for learning knowledge and skills. For exam-
ple, a robot actively generates uncertain situations and queries a human teacher [105, 106]
to reduce the amount of training data for learning symbolic concepts. In [107], the robot
also actively asks human about how to handle novel situations to speed up the learning of
goal-oriented hierarchical tasks. However, in this chapter, we do not assume that interactive
human guidance is available. In other words, human intervention is not allowed when the
robot starts learning.

Without human guidance, active learning can be driven by intrinsic reward signals in
the framework of intrinsically motivated reinforcement learning [71, 108]. Such reward
signals include curiosity, surprise, fear, etc. [109, 70, 110]. Heuristics typically direct active
exploration towards the regions where uncertainty or prediction errors are maximal [111].
However, problem spaces can be too difficult to learn or are unlearnable by the robot,
which means the prediction errors are always high1. In this case, the change of prediction
error is used instead of the prediction error as the intrinsic reward to optimize the learning
progress [112, 113]. Then, the robot intends to explore the motor spaces with medium-level
prediction errors. In this chapter, however, we consider affordance learning with household
objects that are assumed manipulable and learnable by the robot. Therefore, we take the
approach of using prediction errors as the reward signal. Nevertheless, we do not exclude
other approaches for providing reward signals. Our active learning architecture is flexible
enough to handle a variety of reward signals.

Another relevant approach [114] proposes active learning of controllable environmental
contexts for object manipulation. However, the motor skills are preprogrammed and high-
level control programs are given. In contrast, we assume no preprogrammed manipulation
skills or high-level control programs. In our approach, a range of manipulation skills are
acquired in a bottom-up manner without manual discretization of the continuous state space
or robot action space.

The main contribution of this chapter is that we propose an architecture that facilitates
active affordance learning and manipulation skill acquisition in continuous spaces. We
choose the framework of intrinsically motivated reinforcement learning for active affor-

1Refer to [112, 113] for such examples.
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dance learning. Specifically, we use the actor-critic reinforcement learning (RL) architec-
ture [56] to learn action exploration policies. Forward models [115] are learned through
function approximation and used to predict action effects in continuous state and action
spaces. The prediction error is not only a means to update the forward models, but it also
serves as the intrinsic reward signal to update the critic and the actor. Then, the learned
forward models are reused to select goal-directed actions, during which a range of manip-
ulation skills are acquired in a bottom-up manner. In this way, the robot learns to handle
objects through its own sensory and motor experience.

4.3 Active Learning Architecture

The overall architecture we propose for active affordance learning and manipulation skill
acquisition is illustrated in Figure 4.2. It consists of three components: affordance learning,
active exploration, and model exploitation.

Figure 4.2: An architecture of active affordance learning and goal-directed skill acquisition.

Affordance Learning Component

In the affordance learning component, we define an affordance model that associates the
three elements of Object, Action, and Effect, the same as in Definition 3.1. However, unlike
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the previous chapter that considers discrete object states and robot actions, this chapter
handles continuous spaces. Due to that there are infinitely many data points in continuous
spaces, the memory for storing the triplets in equation (3.3) would increase dramatically
as the robot collects more and more data after interacting with objects. Therefore, we take
the approach of function approximation to represent an affordance model in continuous
spaces. As a result, the affordance model can generalize over the entire state and action
spaces based on the collected data.

The affordance model is represented as a forward model [115] that produces a predic-
tion of an effect, based on the state of object and the selected action. An object is repre-
sented by a bounding box perceptual proxy2 (see Figure ??). In this way, we can obtain
the state of object as the size and location of the bounding box. Consequently, affordance
learning is to learn a forward model which is associated with a perceptual proxy of an ob-
ject. The learning of the forward model is based on the current object state, the robot action
performed, and the model prediction error, i.e., the difference between the predicted effect
and the observed effect. Supervised learning algorithms can be used for learning forward
models [116]. Specifically, we choose a feed-forward neural network as the model and use
back-propagation to update the model parameters based on the prediction error. For exam-
ple, a robot trains the feed-forward neural network to predict object displacement as a result
of its arm movement. Object state is represented as the current location of the object in the
world space, e.g., as done in the experiments of chapter 3. Whenever a pushing action is
applied to the object, the neural network makes a prediction about the consequent object
displacement. After the next object state is observed, the actual displacement is measured
by comparing the object states before and after the action, i.e., by calculating the location
change in the world space. Then, the prediction error of the displacement is calculated and
used to update the parameters of the neural network.

Active Exploration Component

In the active exploration component, the output is an action for the affordance learning
component. The action is not only to be performed on the object, but also sent to the
affordance model for effect prediction. As a baseline, a random action can be selected.
However, random exploration is not efficient in a continuous action space. We propose to
use an actor-critic reinforcement learning (RL) module for active selection of exploratory
actions. In the actor-critic RL architecture, the actor plays the key role that determines the
new samples for learning the affordance model. The critic learns to predict the value of
each state and computes the Temporal Difference (TD) error [56], which is used by the
actor to output optimal actions that will maximize the accumulated future rewards.

The reward signal comes from the affordance learning module. This is a kind of intrin-
sically motivated RL that the reward function is not designed for specific goals such as nav-
igating to a destination. In this chapter, the prediction error of the affordance model serves
as the reward signal. The intrinsic motivation of the robot is to make better prediction of
action effects using the affordance model. The underlying heuristic is straightforward: the
affordance model is maximally corrected when the sampled state and action spaces have
the highest prediction error. In other words, sampling in state and action spaces with higher

2Other options include centroid perceptual proxy and ellipse perceptual proxy. Refer to [54] for details.
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prediction error is more rewarding than sampling in the already well-predicted area. As a
result, the prediction error of the affordance model is expected to decrease and become sta-
ble after sufficient data have been collected. Finally, active exploration can terminate when
the TD errors converge, which means there is not much change in the actor-critic module.

We note that the two components of affordance learning and active exploration interact
with each other in a loop. An affordance model is learned simultaneously with an explo-
ration policy. The affordance learning is carried out in an active manner in the sense that the
robot actively decides by itself what actions are to be performed to collect data for learning
the affordance model. We will discuss the details in section 4.4.

Model Exploitation Component

In the model exploitation component, the learned affordance model is used to acquire ma-
nipulation skills. In order to acquire useful skills, the learned models are used to solve
goal-directed tasks. We propose an approach to self-generate goals and select a sequence
of actions to achieve the goals.

The generation of a goal can be done in several ways. A straightforward approach is
to program a goal manually as a specific condition, e.g., having arrived at the destination
in a navigation task (see section 3.5.6). However, this requires that the human programmer
has the complete knowledge of the task environment. Another interactive approach is to
demonstrate the goal to the robot. By observing human demonstration, a robot can emulate
a goal in the object state space [33], or interpret a goal in the effect space [10].

In this chapter, we take a more autonomous approach involving less human supervi-
sion. Based on the observation of the current object state and the learned forward model,
the robot samples its action space and estimates the maximal possible change of the object
state, i.e., the effect on the object. This effect is selected as the current goal, and the corre-
sponding action that is expected to achieve the goal is the desired manipulation skill. For
example, pushing a door in different directions results in different door opening sizes. After
having tried various pushing directions and learned a forward model, the robot generates a
goal to maximize the door opening size by finding the most effective pushing direction.

By achieving this goal, a skill is acquired. The skill consists of three elements: 1) the
initial object state, 2) the selected action to achieve the goal, and 3) the actual effect of the
action. The skill acquisition process continues until a termination condition is satisfied,
i.e., the effect is not changed anymore. A range of skills can be acquired by exploiting the
learned forward model in various configurations of initial states. In this way, the robot can
develop object manipulation skills autonomously when no task is specified by a human. In
the case of garbage can manipulation, a robot can learn to open the garbage can when it is
closed or half-open, close it when it is open, or move it around to desired locations. We
will discuss the details in section 4.5.

4.4 Active Affordance Learning in Continuous Spaces

We now discuss in detail the affordance learning component and the active exploration
component in Figure 4.2.
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4.4.1 Affordance Model in Continuous Spaces
We follow the definition of affordance model in Section 3.2. Unlike in the previous chap-
ter, we instantiate the three elements Object, Action, and Effect in continuous spaces, and
introduce the forward models that are used to model affordances in continuous spaces.

Perception of object and parts

We consider household objects that have movable parts, e.g., refrigerators, microwave
ovens, kitchen cupboards, drawers, etc. We assume that based on known markers and
color segmentation3. The robot then recognizes a household object as a combination of all
observed parts.

Denote by o a household object represented by the bounding box perceptual proxy. We
still use so ∈ Sob j to denote the state of the object o, where Sob j is a predefined continuous
attribute space. Denote by Ψ the set of all known object parts (body, lid, handle, pedal,
etc.). As not all objects necessarily contain the same parts, denote by Ψo ⊆ Ψ the set of
parts that the object o is composed of. We note that Sob j usually describes an object as
one whole piece, e.g., its location and its center of mass in the world space. Sob j may also
include the states of individual object parts if necessary.

Continuous Action Spaces

Robot actions can be defined in the constrained joint space as well as in the Cartesian space.
In this chapter, we control a robot arm in 3D Cartesian space using inverse kinematics. This
does not exclude other continuous action representations in our active learning architecture.

Denote by sr = (x, y, z)T ∈ R3 the current state of a robot’s end-effector in the 3D space.
Denote by a = (∆x,∆y,∆z)T ∈ A ⊂ R3 a bounded action that changes the position of the
end-effector. In our case, the robot interacts with only one part of the object using one
end-effector at a time. The robot always approaches the vicinity of the chosen object part
before interacting with it. The reaching and grasping behaviors are assumed available in
the robot’s motor skill repertoire.

Continuous Effect Spaces

The effect of action a on object o is denoted by eo ∈ Eo, where Eo is a continuous effect
space. An effect is measured by equation (3.2).

Forward models

A forward model is an internal model that produces a predicted output based on a given
input [115]. In our case, the input is the current object state and the applied action, and
the output is the predicted effect. Then, object affordances are encoded in the following
forward models Fψ:

eo = Fψ(so, a, w) for ψ ∈ Ψo (4.1)

3Refer to [117], the robot can identify object parts using an RGB camera for a sophisticated computer vision
method to recognize object parts with a RGB-D camera. As our focus is on active learning, such a method is
beyond the scope of this chapter.
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where ψ indicates that the robot interacts with a specific part ψ ∈ Ψo. In our case, Fψ is a
feed-forward neural network and w is the weight vector.

4.4.2 Learning Forward Models
In continuous state and action spaces, affordance learning is translated to learn the forward
model (4.1) by updating the model parameters based on prediction errors. We use an on-line
version of neural networks. Denote by (sk

o, a
k, ek

o), k ∈ N the collected data after applying
an action ak, where sk

o and ek
o are the corresponding object state and consequent effect. The

decision of data sampling and its termination will be discussed in Section 4.4.3.
When learning a forward model Fψ, denote by êk

o the predicted effect of ak in the state
sk

o, i.e.,
êk

o = Fψ(sk
o, a

k, wk) (4.2)

where wk is the current weight vector. The prediction error ηk is obtained as follows:

ηk = ek
o − êk

o (4.3)

where ek
o = m(sk

o, s
k+1
o ) is obtained from equation (3.2). Then, the new model parameter

wk+1 is updated as follows:

wk+1 = wk + α ηk∇Fψ(sk
o, a

k, wk) (4.4)

where 0 ≤ α ≤ 1 is the step size parameter, and ∇Fψ is the gradient of the output of the
network to the weight vector.

4.4.3 Active Learning with Intrinsic Motivation
The goal of active affordance learning is to autonomously learn the relations between ob-
jects, actions and effects in an efficient manner. Meanwhile, the policy of selecting ex-
ploratory actions should also be learned to optimize the affordance learning process. A
baseline to be compared with is the random action selection policy.

In order to learn the exploration policy, we integrate an RL component in the affordance
learning loop (see Figure 4.2). A conventional RL scheme requires the definition of a
reward function to develop goal-directed exploration behaviors for a specific goal. In our
architecture, the reward signal is generated intrinsically by using the prediction error of a
forward model, whose maximization is expected to result in an optimal action selection
policy.

Specifically, we have chosen Continuous Actor-Critic Learning Automation (CACLA)
because it has been proved to have good performance for RL problems in continuous action
spaces [118]. Like other actor-critic algorithms, CACLA is based on the simultaneous on-
line approximation of two structures, the actor and the critic. The actor corresponds to
an action selection policy, mapping states to actions in a probabilistic manner. The critic
corresponds to a value function, mapping states to expected cumulative future reward.

An actor is represented as a function approximator Actk that approximates the function
Act∗ : S → A, where Act∗(sk

o) denotes the optimal action for state sk
o. The critic is repre-

sented as a function approximator Vk that approximates a state value function V : S → R
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which stores the expected sum of discounted rewards for states. The strategy of active
exploration is learned as follows.

During exploration, an action ak is sampled from the Gaussian probability density func-
tion G(x, µ, σ) centered around the output of the current actor Actk(sk

o):

G(x, Actk(sk
o), σ) =

1
√

2πσ
e−(x−Actk(sk

o))2/2σ2
(4.5)

where σ is an exploration parameter. IfA is more than one dimensional, σ could be chosen
separately for each dimension.

After action ak is applied on the object, the new state sk+1
o is observed, and the actual

effect is compared with the predicted effect to get the prediction error by equation (4.3).
The current reward is given as the absolute value of this prediction error:

r = |ηk | (4.6)

Then, the TD error [56] is obtained as follows:

δk = r + γVk(sk+1
o ) − Vk(sk

o) (4.7)

where 0 ≤ γ < 1 is the discount factor.
The current actor Actk is updated only if δk > 0, which means that the performed action

ak is better than expected and should therefore be reinforced. The actor Actk is then updated
towards this action:

Actk+1(sk
o) = Actk(sk

o) + ζ(ak − Actk(sk
o)) (4.8)

where 0 ≤ ζ ≤ 1 is a step size parameter.
The critic is always updated with the TD error:

Vk+1(sk
o) = Vk(sk

o) + β δk (4.9)

where 0 ≤ β ≤ 1 is also a step size parameter.
The action exploration process terminates when the RL almost stops, i.e., there is not

much change in the actor-critic RL component. This is measured by the convergence of the
TD error, when the following condition is satisfied:

|δ̄k+1 − δ̄k | < ε (4.10)

where ε is a small positive threshold, and

δ̄k =
1
N

Σk
i=k−N+1|δ

i| (4.11)

is the averaged absolute TD error of recent N time steps.
The whole loop of active affordance learning is summarized in Algorithm 3. In case of

endless exploration, the loop terminates anyway after a maximal number Ns of time steps.
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Algorithm 3: Active affordance learning in continuous state and action spaces.
Require: An object o; Maximal time steps Ns;

1: for all ψ ∈ Ψo do
2: Initialize k = 1;
3: while k ≤ Ns and (4.10) is not satisfied do
4: Observe the object state sk

o;
5: Select an exploratory action ak using (4.5);
6: Predict the action effect êk

o using (4.2);
7: Apply ak and observe the resulted object state sk+1

o ;
8: Calculate the prediction error ηk using (4.3);
9: Update the parameter wk of Fψ using (4.4);

10: Calculate the intrinsic reward r using (4.6);
11: Calculate the TD error δk using (4.7);
12: if δk > 0 then
13: Update Actk using (4.8);
14: end if
15: Update the critic Vk using (4.9);
16: k ← k + 1;
17: end while
18: end for

4.5 Goal Generation and Skill Acquisition
A goal is generated in the continuous effect space Eo. Denote by so the current object
state, e.g., the opened width of a door. In each dimension of the effect space Eo, the robot
rehearses internally by sampling actions in the continuous spaceA and making prediction
of corresponding effects. Then, it finds the maximal effect it can make and defines this
effect as the current goal ego, e.g., maximal door opening. In other words, ego is calculated
as follows:

ego = max
a∈AM

Fψ(so, a, w), ψ ∈ Ψo (4.12)

where AM ⊂ A is a selected set of M actions, e.g., evenly sampled in A. Then, the robot
selects and performs the corresponding action a∗ that is predicted to result in the effect ego:

a∗ = arg max
a∈AM

Fψ(so, a, w), ψ ∈ Ψo (4.13)

The consequent object state s′o is observed, and the actual effect eo is calculated using
equation (3.2).

We represent the acquired manipulation skill as follows:

SK∗ = {so, a∗, eo} (4.14)

The process of maximizing effects continues until no more effect is observed, which is
measured by the following termination condition:

|eo| < τ (4.15)
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where τ is a small positive real number.
Then, the skill acquisition process continues by minimizing effects in the current di-

mension of Eo, e.g., to close the door. Accordingly, equation (4.12) is changed into

ego = min
a∈AM

Fψ(so, a, w), ψ ∈ Ψo (4.16)

and the corresponding action a∗ is selected by

a∗ = arg min
a∈AM

Fψ(so, a, w), ψ ∈ Ψo (4.17)

We still use equation (4.15) as the termination condition.
We represent this new skill as follows:

SK∗ = {so, a∗, eo} (4.18)

In this way, SK∗ and SK∗ can be acquired as paired skills, e.g., open the door and close
the door. These skills can be reused directly when a specific task goal is given later on.

4.6 Experiments
We used a humanoid robot NAO and two garbage cans to test our approach (see Figure 4.3).

4.6.1 Task Setting
In our experiment, the garbage cans were presented to NAO separately. One had a pushable
lid (Figure 4.3(a)), and the other had a pullable handle (Figure 4.3(b)). In each learning
task, a garbage can was positioned approximately 10 to 12 cm in front of NAO and the area
to be explored was about 25 to 45 cm high. These values agreed with the capabilities of
NAO according to its height and the length of its arms. Only the left arm of NAO was used
to interact with the garbage cans. The garbage cans were reachable and manipulatable by
NAO.

The bottom camera on NAO’s head was used as the main sensory input, with a resolu-
tion of W ×H (e.g., 320× 240). For each garbage can, the same blue marker (5 cm× 2 cm)
was used for the recognition of lid (with a NAO marker at its center), and a green marker
for the recognition of the handle (10 cm × 1 cm), if there was one. The markers were rec-
ognized based on color segmentation. As a result, the set of object parts was Ψ = {ψl, ψh}

where ψl denoted a lid, and ψh denoted a handle. Each ψ ∈ Ψ was located by a bounding
box.

The state of a garbage can was described by the size of its openness. To detect the
opened area, we put a black plastic bag in each garbage can and calculated the area of the
dark part in an captured image. The opened area was also located by a bounding box with
a size of w × h in pixels. Then, so was the percentage of opened area in an image:

so =
w × h

W × H
(4.19)

where 0 ≤ so ≤ 1.
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(a) Push to open

(b) Pull to open

Figure 4.3: An illustration of different actions (push and pull) and their effects on the lid
opening. Note that these motor skills are to be learned by the robot rather than prepro-
grammed. A video is available at http://youtu.be/oluLDwMaVoY. The sub-images at the
up right corner of (a) and (b) show the view from the NAO’s camera.
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At each time step, a robot action a was selected from A = {(x, y, z)T ∈ R3| − 0.01 ≤
x, y, z ≤ 0.01} (in meters)4. After an action was performed, the robot captured another
image and obtained the new state of object s′o in the same way as (5.14). The effect was
obtained as follows:

eo = s′o − so (4.20)

To approximate each forward model in equation (4.1), we used a feed-forward neural
network with four input neurons (one neuron for so and three neurons for a), one hidden
layer with 10 neurons and one output neuron for eo. We also used two neural networks
to approximate the actor and critic. We normalized the action values to [−1, 1] in each
dimension. For the three layers of all neural networks, we used linear, hyperbolic tangent
and linear transfer functions, respectively. All weights of neural networks were initialized
randomly in [−0.3, 0.3]. The learning rates in equation (4.4), (4.8) and (4.9) were α = 0.3,
ζ = 0.3, β = 0.3. The Gaussian exploration parameter in equation (4.5) was δ = 0.2 for
each action dimension. The discount factor in equation (4.7) was γ = 0.9. The TD errors
were averaged over N = 20 actions in equation (4.10) and ε = 1 × 10−4.

We tested the active exploration approach against the baseline of random exploration.
In the case of random exploration, we used a random actor and its output was a random
number in A. We ran experiments in both 1D action space (X axis of NAO space) and
3D Cartesian space for the two garbage cans. In all experiments, the garbage cans were
initially closed. We set N = 20 in equation (4.11), and NAO performed the first 20 actions
randomly. Then, it continued random exploration or switched to the active learning mode.
The maximal allowed exploration steps were Ns = 100 and Ns = 300 for the 1D action
space and 3D action space, respectively.

4.6.2 Results

Learned Forward Models

For purpose of visualization, we have plotted the forward models learned in 1D state space
and 1D action space (see Figure 4.4 and Figure 4.5).

For both the push-lid and the pull-handle, we bound the state space to [0, 0.2] which
covers object states from closed-lid to open-lid with the size of openness 0.2 (see equation
(5.14) for the definition of openness). For any given object state, the action space A is
[−0.01, 0.01] (in meters). They are meshed into 10 × 10 grids for plotting the surface
of predicted effects. For example, state = 0 corresponds to zero openness, i.e., a closed
lid, state = 10 corresponds to openness 0.2; similarly, action = 0 corresponds to a =

(−0.01, 0, 0)T (contract arm backward), and action = 10 corresponds to a = (0.01, 0, 0)T

(stretch arm forward). In other words, the robot can choose any actions from the continuous
space [−0.01, 0.01] in any given object state within the continuous space [0, 0.2]. The effect
also takes value in continuous space. A positive value corresponds to lid opening effect, a
negative value corresponds to lid closing effect, and effect = 0 means no effect.

Both Figure 4.4 and Figure 4.5 show the near linear relations between object states,
robot actions and the predicted effects. For the push-lid (see Figure 4.4), stretching the

4In the Cartesian space of NAO, the X axis is positive toward NAO’s front, the Y from right to left and the Z
is vertical (see Figure 3.2). At each time step, an action was constrained in A to avoid potential motor damage,
e.g., pushing too hard against an unmovable object.
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(a) random exploration (b) active exploration

Figure 4.4: The learned forward models with the push-lid in 1D state space and 1D action
space using (a) random exploration, (b) active exploration (0 ≤ state ≤ 0.2, −0.01 ≤
action ≤ 0.01).

(a) random exploration (b) active exploration

Figure 4.5: The learned forward models with the pull-handle in 1D state space and 1D
action space using (a) random exploration, (b) active exploration (0 ≤ state ≤ 0.2, −0.01 ≤
action ≤ 0.01).
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arm (action > 5) is likely to result in the opening effect (effect > 0), and stretching further
would result in more opening. Besides, the opening effect decreases when the current state
of opening increases. This prediction agrees with the hinged design of the push-lid. Sim-
ilarly, the closing effect is predicted when contracting the arm (action < 5). Both forward
models, either learned through random exploration (Figure 4.4(a)) or active exploration
(Figure 4.4(a)), are able to predict the opening and closing effect. For the pull-handle (see
Figure 4.5), in contrast, stretching the arm (action > 5) is likely to result in the closing
effect (effect < 0), and contracting the arm would result in the opening effect (effect > 0).
This also agrees with the hinged design of the lid.

In both groups of “random exploration versus active exploration”, all forward models
can approximately predict the trend of lid opening or closing. However, the predicted
effect values are different for a same state and a same action between the two models
within the same group. This difference is caused by the distribution of collected data in
the continuous state and action spaces. In the case of random exploration, random actions
are distributed evenly in [−0.01, 0.01], which means that the robot stretches or contracts its
arm with the same chance. As the initial state of a garbage can is always closed, many data
points are likely to be collected near the initial object state. Moreover, some actions are
very close to 0, which result in insignificant movement of the arm and insignificant state
change of the garbage can. Consequently, such data contributes little to the learning of the
forward model. In contrast, active exploration prefers to select actions that have resulted
in high effect prediction errors. These actions are enforced to be selected and the Gaussian
exploration is centered around these actions. In this way, the actions have a high chance to
be close to the boundaries of the action space, i.e., -0.01 or 0.01. In the experiments, the
robot continued to stretch its arm until the arm was fully stretched, and then it started to
contract the arm. This process went on until the termination condition was satisfied. As
a result, the state space was explored more thoroughly than random exploration within the
same number of action steps.

Comparison of Averaged Absolute TD errors

The averaged absolute TD errors (see equation (4.11)) are compared in Figure 4.6 - 4.9
between random exploration and active exploration in 1D and 3D action spaces. In all
experiments, they converge for active exploration while they fail to converge for random
exploration within allowed number of action steps.

In the active exploration mode, the robot intends to explore the most uncertain spaces
in an organized way. It is likely to end up with its arm fully stretched or contracted, i.e.,
when a lid is maximally opened or tightly closed. In this case, the object state becomes
stable and no more effect is observed, which gives the TD errors good chance to converge.
In contrast, the random exploration is less efficient. It occasionally runs into situations
with high prediction errors so that the TD errors would hardly converge within given action
steps. Active exploration requires much less data samples under the proposed criteria.

We note that the TD errors converge much faster for active exploration in 1D action
space than in 3D action space for both garbage cans. Intuitively, the dimension of an action
space influences the convergence of TD errors. The higher the dimension, the more difficult
the learning problem is. Consequently, it would take more exploratory actions to learn an
accurate forward model.
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Figure 4.6: Experimental result with the push-lid in 1D action space.

Figure 4.7: Experimental result with the push-lid in 3D action space.
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Figure 4.8: Experimental result with the pull-handle in 1D action space.

Figure 4.9: Experimental result with the pull-handle in 3D action space.
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Skill Acquisition

The acquired motor skills using 8 forward models (FM) are shown in Table 4.1.
The 8 forward models correspond to the 8 combinations of two garbage cans (push-lid

ψl and pull-handle ψh), two action exploration modes (random and active), and two action
spaces (1D and 3D). In all cases, skill learning started with a tightly closed lid (so = 0).
A sequence of actions were selected to maximize the opening effect first, then minimizing
the opening effect. We set τ = 0.01 in equation (4.15). Consequently, 16 action sequences
were performed to open and close the garbage cans. We list the first and the last actions in
each action sequence. Besides, all values are rounded to three decimal points.

In the first two cases of the push-lid (FM 1 and FM 2), the same sequence of 6 pushing
actions a = (0.008, 0, 0) were performed until the lid was maximally opened (|eo| < τ),
with the robot arm fully stretched. In this way, a “push lid open” skill has been acquired.
Then, the robot started the acquisition of a “close lid” skill by contracting its arm, i.e.,
a = (−0.01, 0, 0), until no more state change was observed (|eo| < τ). We note that the
push-lid could not be closed completely by NAO due to the friction between the lid and the
body part. This happened in all 4 experiments with the push-lid.

In the other two cases of the push-lid (FM 3 and FM 4), the action sequences for lid
opening are different with the 1D cases. NAO not only stretched its left arm forward, but
also moved the arm left and upward, e.g., a = (0.008, 0.010, 0.010) proposed by FM 3, and
a = (0.008, 0.008, 0.002) proposed by FM 4. Because such movements would increase the
camera view of observed size of openness.

In all the four cases of pull-handle (FM 5, FM 6, FM 7, FM 8), NAO have acquired
the skills to pull the handle for lid opening and push the handle for lid closing. Also, the
3D actions are different from the 1D actions. When pulling the handle, the arm also moved
downward, e.g., a = (−0.010, 0,−0.010) proposed by FM 7, and a = (−0.010, 0,−0.008)
proposed by FM 8. This result agrees with the constrained movement of the handle.

4.7 Conclusions and Open Issues

This chapter proposed an architecture for active affordance learning in continuous state and
action spaces along with manipulation skill acquisition. We have used function approxima-
tion to model and generalize affordances in the continuous spaces. Affordance models can
be learned using the prediction error of action effects. The prediction error also serves as
a reward signal to update the action exploration policy using an actor-critic reinforcement
learning structure. The termination of affordance learning is based on the convergence of
the actor-critic module. Then, the learned affordance models can be reused to acquire a
range of manipulation skills by generating and achieving goals.

We have carried out an experimental evaluation of the proposed active learning architec-
ture. Feed-forward neural networks have been used to model affordances, and continuous
actor-critic learning automation (CACLA) has been chosen to learn the action exploration
policy. The proposed active affordance learning algorithm has shown a good performance.
Compared with the commonly used random action exploration baseline, our algorithm has
required less exploratory actions for the convergence of the averaged absolute TD errors
in both the one dimensional and three dimensional action space cases. This indicates that



Section 4.7 Conclusions and Open Issues 61

Table 4.1: The acquired motor skills in different states (so) using 8 forward models (FM),
1D or 3D actions (a), self-generated goals (ego), and observed effects (eo).

FM ψ policy so a (m) ego eo

1 ψl random 0 (0.008, 0, 0) 0.018 0.009
0.114 (0.008, 0, 0) 0.003 0.002

1D 0.117 (-0.010, 0, 0) -0.031 -0.009
0.018 (-0.010, 0, 0) -0.020 0

2 ψl active 0 (0.008, 0, 0) 0.033 0.025
0.124 (0.008, 0, 0) 0.020 0.004

1D 0.135 (-0.010, 0, 0) -0.019 -0.002
0.035 (-0.010, 0, 0) -0.008 0

3 ψl random 0 (0.008,0.008,0.002) 0.034 0.016
0.072 (0.008, 0.008, 0) 0.024 0

3D 0.071 (-0.010, 0.008, -0.010) -0.012 -0.021
0.005 (-0.010, 0.008, -0.010) -0.005 -0.001

4 ψl active 0 (0.008, 0.010, 0.010) 0.031 0.019
0.112 (0.008, 0.010, 0.010) 0.021 0

3D 0.094 (-0.010, -0.010, -0.010) -0.044 -0.035
0.024 (-0.010, -0.010, -0.010) -0.039 0

5 ψh random 0 (-0.010, 0, 0) 0.008 0.007
0.134 (0.008, 0, 0) 0.022 0.016

1D 0.135 (-0.010, 0, 0) -0.019 -0.017
0.035 (-0.010, 0, 0) -0.008 0

6 ψh active 0 (-0.010, 0, 0) 0.017 0.011
0.101 (-0.010, 0, 0) 0.014 0

1D 0.101 (0.008, 0, 0) -0.006 -0.044
0 (0.008, 0, 0) -0.004 0.001

7 ψh random 0 (-0.010, 0, -0.010) 0.017 0.007
0.119 (-0.010, 0, -0.010) 0.010 0.001

3D 0.123 (0.008, 0, 0.008) -0.019 -0.038
0 (0.008, 0, 0.008) -0.012 0

8 ψh active 0.012 (-0.010, 0, -0.008) 0.009 0.012
0.094 (-0.010, 0, -0.008) 0.012 0.001

3D 0.095 (0.008, 0, 0.008) -0.003 0.001
0 (0.008, 0, 0.008) -0.003 0
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the active exploration is more efficient than random exploration. The reason is that active
exploration is carried out in a more organized way by sampling in the most uncertain areas.
In contrast, the random exploration occasionally samples an action resulting in high TD
error which makes the averaged absolute TD errors more difficult to converge. Besides, the
experimental results have shown that the number of exploratory actions needed increases
with the dimension of the action space. In other words, the higher the dimension of the
action space, the more difficult the learning problem is. It will be important to consider the
scalability of the active affordance learning algorithm to further speed up the learning in
higher dimensional action spaces.

In the model exploitation component, manipulation skills are acquired automatically
by generating a sequence of goals in the effect space and selecting actions to achieve the
goals. Using the learned affordance models, the goal generation process continues un-
til there is no significant effect observed. Meanwhile, corresponding actions are selected
to achieve the goals. In the garbage can manipulation task, a humanoid robot NAO has
successfully learned how to open and close two types of garbage cans. These skills are
associated with initial states and goal states, therefore they are immediately reusable when
other goal-directed tasks are given later on. Unlike Chapter 3 addressed with on-line model
learning and use, this chapter did not consider model learning in the model exploitation
component. Nevertheless, it is still possible to enable the interaction between the model
learning component and the model exploitation component. It is an interesting research
topic to combine active generation of goals [119] and active exploration in the action space
for affordance learning.

The proposed architecture is generic for active affordance learning and is flexible for
implementation. Trying and comparing different instantiations of the modules in the archi-
tecture is an immediate extension of the current research. The architecture provides support
for any perceptual proxy for representing objects, action space for representing actions, and
forward model for representing affordances in continuous spaces. We have chosen the 2D
bounding box perceptual proxy, the 3D Cartesian action space and the feed-forward neu-
ral networks, respectively. These are not necessarily the best choices. It is possible to
use more sophisticated representations of objects such as 3D point clouds [117], actions in
high-dimensional joint space [119], and forward models that require less data to train. In
addition, any actor-critic RL algorithm can be chosen for the active exploration component
as long as the algorithm supports continuous states and actions. It would be interesting
to compare the results of various actor-critic RL algorithms. Moreover, other intrinsically
motivated RL algorithms can be employed if they also make use of prediction errors as
the reward signals, such as intelligent adaptive curiosity (IAC) [113] and robust intelligent
adaptive curiosity (R-IAC) [112].

Finally, this chapter has considered affordance learning of a single object. We have cho-
sen to use a perceptual proxy representation of objects [38] which provides the opportunity
to generalize the relations between object representation and object manipulation. This en-
ables to transfer learned affordances across objects. As a result, the acquired manipulation
skills can be transferred to handle new objects. We will further discuss this in Chapter 5.



Chapter Five

Transfer Learning of Affordances
for Complex Objects

This chapter introduces a robot learning architecture that enables the transfer of learned
affordances to speed up the learning of a new object. We develop a part-based affordance
model for handling household objects that are composed of several parts. Through embod-
ied robot interaction with every object part, the robot can learn affordance models to predict
the action effects of all the parts. As a result, functional part(s) can be chosen to achieve
desired effects when a goal is given. This chapter addresses the challenge of speeding up
the identification of functional part(s) of a new object by referring to relevant known ob-
jects. The selection of relevant objects is based on the measure of object similarities, and
the prediction of a functional part is based on the use of the corresponding affordance mod-
els. Potential functional part(s) of the new object can be found along with the associated
manipulation skills. Besides, the robot not only evaluates by itself the actual outcomes of
the prediction of affordance models, but also adjusts by itself its action selection strategy if
necessary. We demonstrate through real-world experiments with the humanoid robot NAO
that our method is able to speed up the learning of a new type of garbage can by transferring
the affordances learned previously from similar garbage cans.

5.1 Introduction
In the previous chapter, we have proposed an active affordance learning approach in con-
tinuous state and action spaces. It deals with only a single object at a time. However,
learning every object from scratch is not efficient because it takes time for a robot to per-
form exploratory actions on objects. The current chapter considers multiple objects and
their similarities. The main motivation is to speed up the learning of how to manipulate
a new object by transferring the robot’s past interaction experience with relevant objects.
In other words, we aim at reducing the number of exploratory actions for learning how
to manipulate the new object. For instance, the robot may speed up the learning of how
to open an oven by transferring the learned affordances with doors, refrigerators, drawers,
cabinets, etc.

In the literature, transfer learning [120] is defined as the improvement of learning in a
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target task through the transfer of knowledge from related source task(s). In this chapter,
we combine the concepts of transfer learning and affordance to speed up the learning of a
target task. For the ease of description, the term source object(s) refers to the object(s) that
have been encountered in the course of learning the source task(s), and target object refers
to the object that has been encountered in the target task. We define transfer learning of af-
fordances as robot learning of a target task with data and additional sources of information:
affordances related to one or more source objects (see Figure 5.1).

Figure 5.1: An illustration of transfer learning of affordances.

Reusing learned affordances has been considered to solve a target task. Typically, the
target object is first classified into one category of the source objects, and the action effects
are predicted according to the learned affordances of the source objects. Then, action selec-
tion is carried out to achieve desired effects with the target object. For example, a tapping
action is selected to make a ball roll in an imitation task [10]. In [33], a sequence of actions
are selected to push and position a target object to a goal location. However, only simple
toy objects have been considered in the literature, and a fixed set of discrete actions have
been used. This chapter considers complex household objects composed of several parts,
along with parameterized robot actions in continuous spaces. In addition, knowledge trans-
fer in the literature simply assumes that the previously effective actions are still effective
for similar objects. There is no learning in the target task. In contrast, this chapter proposes
transfer learning of affordances to structure the search for effective actions for the target
object.

The main contribution of this chapter is that we propose a robot learning architecture
that improves the learning of a target object through knowledge transfer from similar source
objects. We extend affordance learning of individual objects to a multi-object scenario. A
part-based affordance model is proposed, and object similarity is measured by comparing
the features of object parts. For each object part, a regression model is learned to ap-
proximate the relation between actions and effects in continuous spaces. By reusing the
corresponding affordances of the source objects, the robot actively selects object parts to
interact with, and evaluates the actual action effects on-line. In case that the knowledge
transfer does not work as anticipated, the robot changes its exploration strategy accord-
ingly. This prevents the robot from being stuck with a wrong action, e.g., keep pulling a
door handle which has to be turned.

The remainder of this chapter is structured as follows. Section 5.2 gives a brief overview
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of the literature related to our approach. Section 5.3 describes the part-based affordance
model, followed by the affordance learning and use approaches in Section 5.4. Section
5.5 proposes the transfer learning method. Section 5.6 introduces the task environment for
evaluation and the experimental results. Section 5.7 concludes the chapter.

5.2 Related Work

In machine learning, transfer learning approaches have close relation with task learning
algorithms [120]. One approach of transfer learning is in the context of inductive learning,
where classification and inference algorithms are extended. Typically, a predictive model
is learned with generalization capability from a set of training data, whose true distribution
is assumed with an inductive bias by the learning algorithm. Transfer learning works by
affecting the inductive bias of the target task with the knowledge from source tasks. It aims
to speed up the model learning or to improve its generalization capability. For example, the
search for neural network parameters of a target task is sped up by using the slope infor-
mation obtained with gradient-descent algorithm in the source tasks [121]. For Bayesian
learning methods, source-task knowledge is naturally incorporated to produce an informa-
tive prior distribution that combines the target-task data to make predictions [122, 123]. As
we have modeled affordance learning as learning a predictive affordance model, transfer
learning of affordances is related to the inductive transfer approach. Specifically, we reuse
affordance models learned in the source tasks to select actions to achieve the desired effect
in the target task.

Reinforcement Learning (RL) is another major context of transfer learning. Trans-
fer methods can be distinguished according to several aspects such as assumptions about
source task selection, allowed task differences, identification of transferable information,
metrics to measure successful transfer, etc. [124]. Transfer in RL aims to speed up the
learning process, since RL may take many exploratory episodes before acquiring a rea-
sonable value function or policy. One straightforward method of transfer in RL is to set
the initial solution in a target task based on knowledge from a source task. In a starting-
point method [125] used for transfer in temporal-difference RL, the final value function
of the source task is used as the initial solution for the target task. Another type of RL
transfer involves imitation of the source task policy for action selection while learning the
target task. The intuition is that the learned policy in a source task is more informative
than the random exploration policy or ill-formed exploitation in the early steps of the target
task [126]. These methods can be used to transfer the value functions or policies discussed
in chapter 3 and 4. However, this chapter focuses on the inductive transfer approach, and
we leave the RL transfer approach for future work. Nevertheless, we take inspirations from
the RL transfer approach. Specifically, we will discuss the selection of source tasks and the
measure of a successful transfer.

5.3 Part-based Affordance Model

We follow the definition of affordance model in section 3.2. In this chapter, we extend
the affordance definition (3.1) to the case of objects composed of several parts. Throughout



66 Transfer Learning of Affordances for Complex Objects Chapter 5

this chapter, we discuss transfer learning of affordances by using the example of lid opening
task (see Fig. 5.2).

5.3.1 Perception of Objects, Parts and States
The robot perceives its environment and extracts visual features from its camera image.
We assume that the robot can identify object parts based on known features (markers in
our experiments) and color segmentation to retrieve connected components of 2D pixels
called blobs [127]. Each blob corresponds to an object part and is bounded by a minimum-
enclosing rectangle (see Fig. 5.2). Based on a segmented blob and its bounding box, we
use shape descriptors to describe each part of an object (see Table 5.1).

Table 5.1: Shape descriptors.
Descriptor Definition

area ratio between pixel number of the blob and pixel number of the image
rectangleness ratio between the short side and long side of the bounding box

squareness ratio between blob area and bounding box area

The robot then recognizes a household object as a combination of its parts, without
necessarily knowing which of them are essential for the given task. Refer to [127] for more
2D shape descriptors, and refer to [117] for a more advanced method to recognize object
parts with a RGB-D camera.

Denote by O the set of objects, by Ψ the set of all known object parts (container, lid,
handle, pedal, etc.). As not all objects necessarily contain the same parts, we denote by
Ψo ⊆ Ψ the set of parts that object o ∈ O is composed of. For an object o and its part ψ ∈ Ψo,
we use so ∈ S o and sψ ∈ S ψ to denote the state of the object and the part, respectively. The
states change with time and are continuously measured by robot’s sensors. In our case, so

is the current size of the garbage can opening, and sψ is the current position of the lid or
handle. The time index is omitted for the ease of notation.

5.3.2 Robot Actions
Denote by a(θ) an action parameterized by a real parameter vector θ, where a ∈ A is the
type of action (push, pull, lift, etc.) and θ = (x, y, z)T ∈ Θ ⊆ R3 is the action parameter that
takes real values in the 3D Cartesian space. The robot always approaches the vicinity of an
object’s part before interacting with it. We note that the the parametrized actions defined
in this section is not the same with the actions defined in section 4.4.1. The actions defined
in the previous chapter are in random direction. In contrast, the action type a indicates the
general direction of the action, e.g., push is moving the arm forwards, and pull is moving
the arm backwards. The action type can be defined according to the skills acquired in
section 4.5. The action parameter θ is also important which indicates how much an action
should be performed. As household objects come with different designs, it will be useful
to learn the action parameters to handle the objects properly. For example, the garbage
cans with different push-lids are opened wide enough with different push parameters (see
Figure 5.2(a) and Figure 5.2(c)).
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(a) Push to open (b) Lift to open (c) Push to open

(d) Lift to open (e) Pull to open

Figure 5.2: An illustration of different action types (push, lift and pull) and their effects in
the lid opening task.
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5.3.3 Action Effects

The effects of action a(θ) on part ψ ∈ Ψo and object o are denoted by eψ ∈ Eψ and eo ∈ Eo,
respectively. They are measured by

eψ = m1(sψ, s′ψ) (5.1)

and
eo = m2(so, s′o) (5.2)

where s′ψ and s′o are the states of ψ and o after a(θ) was applied, m1 and m2 are suitable
metrics. For example, lifting a handle results in the displacement of the handle as well
as the change of the opening size (see Fig. 5.2(b)). In this chapter, the effect spaces are
Eψ ⊆ R and Eo ⊆ R and m2 simply is subtracting the previous state from the new state:

eo = s′o − so (5.3)

5.4 A Baseline Without Transfer Learning

We assume that the robot already has a plan for executing a task with a given household
object. The task plan consists of an initial condition and a termination condition. For
example, in the case of lid opening, a lid is initially closed and has to be opened wide
enough. The same as the previous chapters, we define affordance learning as the process of
learning prediction models of action effects except that we take into account object parts in
this chapter.

5.4.1 Functional Parts

We call a part functional if it can be manipulated to achieve a desired effect. For example,
the lids in Figure 5.2(a) and Figure 5.2(c) are functional because they can be pushed open.
The handles in Figure 5.2(b), Figure 5.2(d) and Figure 5.2(e) are functional because they
can be lifted/pulled to open the lids. The bodies of the garbage cans are also functional if
they are pushable to move the garbage cans to desired locations.

During affordance learning with an object, the robot interacts with each part of the
object without knowing which part is functional. Later on, the learned affordances can be
used to select a part as well as to select a corresponding action to achieve a desired effect
(see Table 5.2).

Table 5.2: Affordance learning and use based on relations between object (P)arts, (A)ctions,
and (E)ffects.

Inputs Outputs Functions
(P, A) E Learn prediction models

E (P, A) Select a functional part and an action
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5.4.2 Learn Object-Part Relation

Prediction Models

In order to learn affordances of each part ψ of an object o, the robot needs to learn both the
effect of performing an action on a part and also what this effect does to the object’s state.
First, a prediction model go maps from the parameterized action spaceA × Θ to the effect
space Eψ for each part ψ ∈ Ψo:

go : A× Θ→ Eψ (5.4)

The model go captures the relationship between a parameterized action and the effect on ψ.
Besides, a mapping ha models the relation between the effect spaces Eψ and Eo:

ha : Eψ → Eo (5.5)

In other words, the model ha captures the functional relationship between a part ψ and an
object o.

Data collection

Whenever an effective interaction between the robot and an object part ψ took place, the
following data tuple is collected: (

o, so, ψ, sψ, a, θ, eψ, eo
)

(5.6)

where o ∈ O, ψ ∈ Ψo and a ∈ A take discrete values, while so ∈ S o, sψ ∈ S ψ, θ ∈ Θ,
eψ ∈ Eψ and eo ∈ Eo take real values in continuous spaces.

In an exploration stage, an action of type a is typically carried out maximally n times
on a given part ψ ∈ Ψo with various parameters selected from Θ. The learned model (5.4) is
allowed to be generalized in Θ for effect prediction. Besides, data collection for a pair (ψ, a)
will stop if the learned model is accurate enough to predict the effect of a on ψ. Denote by
Do,ψ,a(k), k ≤ n the set of collected data (5.6) after having performed a(θ1), ..., a(θk) on ψ.

Function approximation

By usingDo,ψ,a(n), the prediction models (5.4) and (5.5) can be learned as:

eψ = ĝo(a, θ) (5.7)

and

eo = ĥa(eψ) (5.8)

where ĝo and ĥa are the approximation of go and ha. Standard regression methods, e.g.,
linear regression [64] or Gaussian Process Regression [128], can be used to obtain ĝo and
ĥa.
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5.4.3 Part Selection and Action Selection

Denote by sgo ∈ S o the goal object state. We assume that sgo is known and a specific action
that can achieve sgo exists. In a given task, sgo can be hard coded or provided to the robot by
demonstration [33]. The task is terminated by the following condition:

||so − sgo|| ≤ δ1 (5.9)

where so ∈ S o is the current object state, ||.|| is the distance metric in state space S o, and δ1
is a positive real value.

Given an initial object state si
o, the robot aims to select a part ψ∗ and an action a∗(θ∗)

to achieve the goal state sgo, i.e., the condition (5.9). Combining (5.3), (5.8) and (5.9), the
following condition should be satisfied:

||ĥa(eψ) − (sgo − si
o)|| ≤ δ1 (5.10)

First, the robot selects a pair of part and action type (ψ∗, a∗) along with the associated
eψ which are most likely to result in (5.10):

(ψ∗, a∗, e∗ψ) = arg min
ψ∈Ψo,a∈A,eψ∈Eψ

||ĥa(eψ) − (sgo − si
o)|| (5.11)

Then, the action parameter θ∗ is selected which corresponds to the minimal change of
the end-effector in the action parameter space:

θ∗ = arg min
θ∈Θ

{||θ||
∣∣∣ ||ĝo(a∗, θ) − e∗ψ|| ≤ δ2} (5.12)

where δ2 is a positive real value.
The above process of affordance learning and use is summarized in Algorithm 4.

Algorithm 4: Affordance learning and use with an object.

inputs A set of object parts Ψo, an initial object state si
o and a goal object state sgo;

outputs ψ∗ ∈ Ψo, a∗ ∈ A, θ∗ ∈ Θ;
1: for all ψ ∈ Ψo do
2: for all a ∈ A do
3: k = 1;
4: while k ≤ n do
5: Select θk ∈ Θexp randomly, apply a(θk) on part ψ, observe effects and

collect data sample (5.6) ;
6: Learn (5.7) and (5.8) based on data Do,ψ,a(k);
7: k ← k + 1
8: end while
9: end for

10: end for
11: Select ψ∗ and a∗ using (5.11);
12: Select θ∗ using (5.12);

Finally, a∗(θ∗) is performed on ψ∗. If (5.9) is satisfied, the learning is considered a suc-
cess; otherwise, the learning continues by collecting more data samples (5.6) or terminates
after a certain number of actions.



Section 5.5 Transfer Learning of Affordances 71

5.5 Transfer Learning of Affordances

Denote by otar the target object, and Okn the set of source objects.

5.5.1 Why to Transfer
Affordance learning in Algorithm 4 involves robot interaction with every part ψ ∈ Ψotar

using every action type a ∈ A. The required number of exploratory actions is calculated as
follows:

N(otar) =
∑

ψ∈Ψotar ,a∈A

∣∣∣Dotar ,ψ,a(n)
∣∣∣ (5.13)

where |.| is the Cardinality of a set, and Dotar ,ψ,a(n) is the data set of applying action a on
part ψ. The more parts the target object otar has, and the more action types the robot has,
the more exploratory actions are needed. For a given part ψ and an action type a, sufficient
data have to be sampled in the action parameter space Θ. The higher the dimension of Θ,
the bigger the data set Dotar ,ψ,a(n). Therefore, it can take a very long time to learn all the
prediction models (5.7) and (5.8) before the goal condition (5.9) is achieved.

We propose that N(otar) can be reduced through transfer learning of affordances. The
purpose is not to learn every prediction model ĝo or ĥa, but is to achieve the goal condition
(5.9) as fast as possible. By taking reference of how Okn were manipulated in the past,
the robot does not have to try every part ψ ∈ Ψotar or every action type a ∈ A. It may
be beneficial to initialize the learning by selecting a part from Ψotar which looks similar to
a functional part of Okn. The corresponding action type and action parameter can also be
actively selected rather than randomly selected. If lucky, the functional part of otar along
with the parameterized action will be found faster than exploring randomly in Ψotar ,A and
Θ. Even if the learned affordances with Okn are not helpful for the target task, N(otar) will
be no more than the case without any knowledge transfer.

5.5.2 Transfer Learning Architecture
In the sequel, we develop a framework for learning about the target object through transfer
learning of affordances. The main challenge is the selection of source objects that are rele-
vant to the target object, as well as how the affordances of the source objects can contribute
to the target task. The overall architecture for transfer learning of affordances is illustrated
in Figure 5.3.

The Action Selection module is at the core of the transfer learning architecture. The
robot is provided with the initial and termination conditions for the target task, e.g., the
initial and goal states for the lid opening task. Action selection continues until the task
goal is achieved. Without transfer learning, the robot has to select exploratory actions to
learn affordances (exploration) before it can use the learned affordances to select goal-
directed actions (exploitation). Through transfer learning, the robot can choose either the
exploration mode or the exploitation mode by reusing the affordances of the source objects.
We propose that the robot starts with the exploitation mode and continues to explore/exploit
alternatively until the goal is achieved. It is an aggressive strategy that the robot always tries
to exploit the learned affordances to select goal-directed actions whenever possible.
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Figure 5.3: An architecture for transfer learning of affordances.

Before taking any actions, the robot first observes the target object otar and processes
the sensory input in the Sensory Input Processing module. The Object Recognition module
is responsible for recognizing the set of object parts Ψotar . Then, the database of known
objects is queried to search for source objects that are likely to be relevant to the target
task. A set of source objects Osrc is selected in the Source Object Selection module. The
selection of Osrc is based on measuring the similarity of object parts. Those objects which
have functional parts that look similar to a part of otar are added to Osrc. We will further
discuss the selection of source objects in section 5.5.3.

If Osrc is not an empty set, it means that there exists at least one source object. Initially,
the robot selects the exploitation mode and transfers the past experience to select goal-
directed actions. The intuition is straightforward: the effective action for the functional part
of a source object is anticipated to be still effective for the similar part of the target object.
This action along with the action parameter can be found by reusing the learned affordance
models of the source object. After performing the action, the robot observes the actual
effect. If the anticipated effect is not achieved, the robot can continue the exploitation mode
by referring to other source objects. Otherwise, the robot switches to the exploration mode,
i.e., the Affordance Learning module learns the predictive affordance models as detailed in
section 5.4.2. After having collected some data about otar, the Transfer Evaluation module
evaluates whether the transfer of affordances is successful or not. This prevents the robot
from following a wrong action selection policy. We will further discuss how the affordances
of the source objects are transferred in section 5.5.4.

5.5.3 Source Object Selection

The robot has to decide by itself whether the transfer of affordances should happen. This
decision is made in the Source Object Selection module, whose output is a set of source
objects Osrc. If Osrc was an empty set, there would be no source objects for transfer learn-
ing; otherwise, the transfer learning would be initiated. Algorithm 5 describes how Osrc is
decided.

Lines 2 through 11 search for the set of source objects Osrc from a set of known objects
Okn. For each known object o ∈ Okn, it takes two steps to decide whether o is relevant to
the target task.

The first step is to find the functional part ψ∗ of o. A task rehearsal is carried out for
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Algorithm 5: Find relevant source objects.
inputs A set of known objects Okn and a target object otar;

An initial object state si
otar

and a goal state sgotar ;
Learned models eo = ĥa(eψ), where o ∈ Okn, ψ ∈ Ψo, a ∈ A;

outputs A subset of objects Osrc ⊂ Okn sorted by similarity with otar;
1: Initialize Osrc = ∅;
2: Observe otar and obtain the set of its parts Ψotar ;
3: for all o ∈ Okn do
4: si

otar
→ si

o, sgotar → sgo;
5: Find the functional part ψ∗ ∈ Ψo using (5.11);
6: for all ψ ∈ Ψotar do
7: if ψ is similar with ψ∗ then
8: Add o to Osrc;
9: end if

10: end for
11: end for
12: if |Osrc| > 1 then
13: Sort Osrc by the similarity with otar;
14: end if

this purpose. The initial state si
otar

and the goal state sgotar of the target object otar are directly
assigned to the corresponding states si

o and sgo of the known object o (Line 4). Then, a
functional part ψ∗ can be found for achieving the goal sgo using equation (5.11). In other
words, the affordance model eo = ĥa(eψ) is used to find ψ∗ that is predicted to result in the
closest effect to the desired effect sgo − si

o. The underlying intuition is that the target task
could be solved by manipulating the part ψ∗ as if o was the target object.

The second step is to decide whether otar has a part that looks similar with ψ∗. It is
anticipated that such a part of otar is likely to be a functional part for the target task. The
measure of part similarity is based on the shape descriptors introduced in Table 5.1. Similar
parts are classified into the same group. The k-Nearest Neighbor algorithm or the X-means
algorithm can be used to classify the parts. This allows generalization to new parts that
have not been seen before. If there exists a part ψ ∈ Ψotar such that ψ looks similar with ψ∗,
then o is considered to be a source object, and is added to Osrc (Line 8).

At this point, if there exists more than one source object, i.e., |Osrc| > 1, then the source
objects will be sorted by comparing their similarity with otar (Line 13). The similarity
is measured according to spatial relations between object parts. The reason for using the
spatial information is that the position of a part is typically designed for a particular type
of use. For example, a top lid is likely to be lifted up or pushed down, while a side lid is
likely to be pulled back or pushed forward. The spatial relation between any two parts ψi

and ψ j is measured by their relative position in the captured image. In our case, denote
by above(ψi, ψ j) the relation “part ψi is above part ψ j”. Then, the similarity between two
objects is measured by counting such relations between the parts.



74 Transfer Learning of Affordances for Complex Objects Chapter 5

5.5.4 How to Transfer

We now discuss the Action Selection and Transfer Evaluation modules in Figure 5.3. Al-
gorithm 6 discusses how the affordances of the selected source objects can be transferred
to aid the learning of the target task.

Assume that the robot has already found a set of similar objects Osrc by Algorithm 5.
The most similar object osrc ∈ Osrc is selected as the source object for transfer learning.
The goal state sgotar is predefined, and the initial object state si

otar
is observed by the robot.

The aim is to achieve the task goal sgotar and find the functional part ψ∗tar ∈ Ψotar along with
the action type a∗tar ∈ A and the action parameter θ∗tar ∈ Θ.

A subset of parts Ψsim ⊂ Ψotar keeps a record of the similar parts of otar compared
with osrc. These parts are likely to include the functional part that can be used to solve
the target task. The set Ψsim is initialized empty in Line 1. Before taking any actions,
the robot first carries out a task rehearsal with osrc to find its functional part as if osrc was
being manipulated. The initial state and the goal state of otar are assigned to the states of
osrc (Line 2). Then, the functional part ψ∗src is found along with the corresponding action
type a∗src and parameter θ∗src (Line 3 and 4). By comparing object features, the potential
functional part ψ∗tar ∈ Ψotar is selected and added to Ψsim (Line 5 and 6). Accordingly, the
action type a∗tar and the action parameter θ∗tar are initialized by assigning the values of a∗src
and θ∗src.

The robot interacts with the part ψ∗tar using the action type a∗tar from Lines 8 to 16.
The action parameter θk is initialized in Line 8. This is the result of direct transfer of
the source object affordances, i.e., the exploitation mode is turned on. Then, the transfer
result will be evaluated by performing the action a∗tar(θk) and checking the goal condition
(Line 10 and 11). If the goal is achieved, the transfer learning succeeds and terminates.
This is likely to happen when osrc has a similar functional part with otar (see Figure 5.2).
However, the required action parameters can vary for similar functional parts. For example,
the pushable lids in Figure 5.2(a) and Figure 5.2(c) need different pushing parameters to be
opened wide enough. If the goal is not achieved, the robot continues to explore the action
parameter space Θ. Based on the collected data Dotar ,ψ

∗
tar ,a

∗
tar

(k), the affordance models (5.7)
and (5.8) are learned. Line 13 makes use of the source object’s affordance model that
provides a gradient direction ∇ĝosrc (a

∗
tar, θk) for searching effective action parameters. The

parameter λk > 0 is a step size that guarantees θk ∈ Θ. The action parameter space Θ is
explored until the maximal number of actions have been performed or the goal condition is
satisfied. After the exploration, the exploitation mode is switched on (transfer evaluation).
The learned model ĝotar (a

∗
tar, θ) is used to select an action parameter and check whether the

goal can be achieved (Line 16).
If the goal is not achieved, Lines 17 through 23 continue interacting with ψ∗tar using

other action types. The selected part ψ∗tar is still believed to be a functional part, but the
action type a∗tar is not effective any more as a∗src was effective for ψ∗src. For each action
type a ∈ A\ {a∗tar}, Line 14 selects one action parameter and checks whether the prediction
ĝosrc (a, θ) is consistent with the actual observation. Actually, ĝosrc (a, θ) predicts that all
the candidate action types in A \ {a∗tar} are ineffective. Only when the actual observation
is inconsistent with the prediction of ĝosrc (a, θ), the current action type a is likely to be
effective for ψ∗tar. For example, the handles in Figure 5.2(b) and Figure 5.2(e) are lift-able
and pull-able, respectively. Other action types such as sliding left or right are ineffective
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Algorithm 6: Transfer learning of affordances across objects.
inputs A source object osrc ∈ Osrc and a target object otar;

An initial object state si
otar

and a goal state sgotar ;
Learned models eψ = ĝosrc (a, θ) and eosrc = ĥa(eψ), where ψ ∈ Ψosrc , a ∈ A.

outputs ψ∗tar ∈ Ψotar , a∗tar ∈ A, θ∗tar ∈ Θ;
1: Initialize Ψsim = ∅;
2: si

otar
→ si

osrc
, sgotar → sgosrc ;

3: Select ψ∗src and a∗src using (5.11);
4: Select θ∗src using (5.12);
5: Find ψ∗tar ∈ Ψotar that is similar with ψ∗src;
6: Add ψ∗tar to Ψsim;
7: a∗src → a∗tar, θ

∗
src → θ∗tar;

8: k = 1; θ1 = θ∗tar;
9: while k ≤ n do

10: Apply a∗tar(θk) on ψ∗tar;
11: Check the goal condition (5.9);
12: Learn (5.7) and (5.8) based on data Dotar ,ψ

∗
tar ,a

∗
tar

(k);
13: θk ← θk + λk∇ĝosrc (a

∗
tar, θk);

14: k ← k + 1;
15: end while
16: Use ĝotar (a

∗
tar, θ) and check the goal condition (5.9);

17: for all a ∈ A \ {a∗tar} do
18: Select θ̃ ∈ Θ, apply a(θ̃) on ψ∗tar and observe effect;
19: if the observation is inconsistent with ĝosrc (a, θ) then
20: Collect more data and learn (5.7) and (5.8) for (ψ∗tar, a);
21: Use ĝotar (a, θ) and check the goal condition (5.9);
22: end if
23: end for
24: for all ψ̃src ∈ Ψosrc \ {ψ

∗
src} do

25: Find ψ̃tar ∈ Ψotar that is similar with ψ̃src;
26: Add ψ̃tar to Ψsim;
27: for all a ∈ A do
28: Repeat Line 17 through 21 substituting ψ∗tar with ψ̃tar;
29: end for
30: end for
31: Use Algorithm 4 to interact with Ψotar \ Ψsim.
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for both of them. Assume the object in Figure 5.2(b) is the source object, and the object
in Figure 5.2(e) is the target object. Each ineffective action type is only needed to be tried
once to be confirmed. When the handle is pulled (Figure 5.2(e)), the displacement of the
handle is found inconsistent with the prediction. In this case, the pull action is likely to be
effective for ψ∗tar. Accordingly, more pull parameters are selected to learn the affordance
model (Line 20). Then, the learned model ĝotar (a, θ) is used to select an action parameter
and check whether the goal can be achieved (Line 21).

Till Line 23, the part ψ∗tar ∈ Ψotar has been proved nonfunctional. Lines 24 through 29
continue to check other similar parts between osrc and otar. These parts are predicted to be
nonfunctional, and the prediction needs to be verified by the robot. The action selection
for each part in Ψsim \ {ψ

∗
src} is done in the same way as Line 18. Finally, Line 31 uses

Algorithm 4 to interact with the other parts Ψotar \ Ψsim that seem to be novel compared
with osrc.

We note that the robot makes full use of the affordance models of the source object. In
other words, it not only uses the successful experience with the functional part (Line 3 to
15), but also uses the unsuccessful experience with the functional part (Line 19) as well as
the non-functional parts (Line 25 to 29).

5.6 Experiments

We still use the humanoid robot NAO in an actual household task. We focus on transfer
learning of affordances in order to open different types of lids. We assume that all the lids
are openable for the NAO.

5.6.1 Task Setting
In our experiment, we used the five garbage cans in Figure 5.2 to test the part-based af-
fordance model and the transfer learning architecture. The set of objects was denoted
by O = {o1, o2, o3, o4, o5}, in which o1 and o3 had pushable lids (Figure 5.2(a) and Fig-
ure 5.2(c)), o2 and o4 had liftable lids (Figure 5.2(b) and Figure 5.2(d)), and o5 had a
pullable lid (Figure 5.2(e)). They were presented to NAO in sequence, and NAO learned
about one garbage can at a time. In each learning task, a garbage can was positioned ap-
proximately 10 to 12 cm in front of NAO and the area to be explored was about 25 to 45
cm high. These values agreed with the capabilities of NAO due to its height and the length
of its arms. The left arm of NAO was used to interact with the garbage cans.

The bottom camera on NAO’s head was used as the main sensory input (640 × 480
resolution). For each garbage can, a blue marker (5 cm×2 cm) was used for the recognition
of lid (with a NAO marker at its center), and a red marker (5 cm× 2 cm) for the recognition
of the garbage can body, and a green marker for the recognition of the handle (10 cm ×
3 cm×1 cm), if there was one. The camera images were transformed into HSV color space.
Color blobs and the bounding boxes were obtained using the OpenCV library1. As a result,
object parts were denoted by Ψoi = {ψli , ψbi }, i = 1, 3, and Ψoi = {ψli , ψbi , ψhi }, i = 2, 4, 5
where ψli denoted a lid, ψhi denoted a handle, and ψbi denoted a body. For each ψ ∈ Ψoi , its

1http://opencv.org/



Section 5.6 Experiments 77

state sψ = (xψ, yψ) was described by the 2D coordinates of the bounding box center, based
on which the spatial relation between two parts were obtained.

The set of action types for learning affordances was A = {a1, a2, a3, a4, a5, a6}, which
were {sweep left, sweep right, push forward, pull back, lift up, sweep down}. Each action
type ai ∈ A was constrained by the action parameter θ ∈ Θ ⊆ R3. For example, in the
Cartesian space of NAO, a push action was defined in the parameter space Θ = {R3|0 < x <
0.10, y = 0, z = 0} (in meters).

To detect the opened area, we put a black plastic bag in each garbage can and calculated
the area of the dark part in a captured image. The opened area was also located by a
bounding box with a size of w × h in pixels. Then, so was the absolute value of opened
width in meters:

so = αh (5.14)

where α was used to normalize h according to the relative size of known markers. In all
experiments, initial object states were the same si

o = 0 when the lids were tightly closed,
and the goal states were also the same sgo = 0.1 m.

After an action was performed on ψ, the new states s′ψ = (x′ψ, y
′
ψ) and s′o were extracted

from a new image. The displacement of eψ was calculated from (5.1)

eψ = α
√

(x′ψ − xψ)2 + (y′ψ − yψ)2 (5.15)

For this learning problem, we chose a linear regression model to approximate go and
ha:

ĝo j (ak, θ) = b j,k + c j,k θ (5.16)

ĥak (eψ) = d j,k + e j,k eψ (5.17)

The reason for this choice was due to the character of the functional parts operation, i.e.
pushing or lifting further results in more opening.

The parameters in (5.16) were estimated by minimizing the residual sum of squares
(RSS) using m observation samples:

S m = Σm
l=1

(
el − ĝo j (ak, θl)

)2 (5.18)

We obtained the parameters of (5.17) in the same way. We set n = 5 in Algorithm 4 and 6.
The regressions (5.16) and (5.17) were considered accurate when the following condition
was met:

|S m+1 − S m| < δ3 (5.19)

where δ3 was a small positive real value.

5.6.2 Results
As a baseline, we first ran Algorithm 4 for five garbage cans without transfer learning.
Then, we used the learned affordances to evaluate the transfer results. In total, 156 regres-
sion models were learned in the form of (5.16) and (5.17). Some of the results are shown
in Table 5.3.
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Table 5.3: Learned affordance models with the five objects.
O ψ a ĝo j (a, θ) ĥa(eψ)
o1 ψl1 push −0.004 + 0.574 θ 0.008 + 1.833 eψ
o2 ψh2 push 0.588 θ 0.003 + 0.663 eψ
o2 ψh2 pull −0.001 + 0.452 θ 0.006 + 0.475 eψ
o2 ψh2 lift −0.013 + 1.866 θ 0.010 + 0.508 eψ
o3 ψb3 push 0.659 θ 0.003 + 0.364 eψ
o3 ψl3 push −0.001 + 0.642 θ 0.013 + 2.014 eψ
o4 ψh4 push 0.001 + 0.069 θ 0.006 + 1.435 eψ
o4 ψh4 lift −0.009 + 2.891 θ 0.003 + 0.590 eψ
o5 ψh5 sweep −0.002 + 3.205 θ 0.009 + 1.314 eψ
o5 ψh5 pull 0.001 + 0.240 θ 0.017 + 1.923 eψ
o5 ψh5 lift 0.522 θ 0.011 + 1.324 eψ
o5 ψl5 push 0.006 + 1.070 θ 0

The five functional parts were all found out correctly using the learned models. Also,
effective action types (marked in bold) and associated parameters were selected to achieve
the task goal. Due to sensory noise and the design of garbage cans, some pairs of part
and action type also resulted in the observation of opening, e.g., (ψh4 , pull) and (ψb3 , push).
However, the selection of action parameter was out of the allowed action parameter range
or the predicted opening size could not satisfy the goal condition.

Table 5.4 illustrates the number of required exploratory actions with affordance transfer
(Ntran) and without transfer (Notar ), together with the chosen source objects (osrc), if there
was one.

Table 5.4: Comparison of the required number of actions for learning target object otar

without transfer (Notar ) and with transfer (Ntran) from a source object osrc.
otar Notar Ntran osrc

o1 36 - -
o2 65 29 o1
o3 53 1 o1
o4 83 3 o2
o5 80 11 o2

Without Transfer Learning

NAO typically interacted with every object part with all 6 action types. If an action type
resulted in no significant displacement of a part, this action would be considered ineffec-
tive. For example, sweeping left over a pushable lid for 3 times was enough to learn an
accurate prediction model that this action was ineffective for this type of lid. It required 36
exploratory actions, which was less than executing each action type for n = 5 times, i.e.,
collecting 2 × 6 × 5 = 60 samples for o1.
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Transfer Learning

The most difficult case was learning o2 when o1 was selected as the source object. NAO
started with pushing the lid, which was found ineffective. Thereafter, other action types
were tried on the lid to check whether they were still ineffective as anticipated. Then, the
robot found o1 and o2 shared a similar body. checked the body part of o1 with a small
number of actions (Lines 24 through 29 in Algorithm 6). Finally, the robot interacted with
the handle which was not seen before. In total, it took 29 exploratory actions, still fewer
than 65 without transfer.

The most efficient transfer learning happened for learning o3 and o4 after o1 and o2 had
been learned. Because o1 and o3 had the similar pushable lid which was above the body
part, while o2 and o4 had the similar liftable handle as well as the same spatial relations.
In the case of learning o3, object o1 was selected as the source object because o1 was more
similar with o3 than o2. The lid (ψl3 ) and the “push” action (a3) were selected, with a
parameter 0.087 applied, which resulted in the state of opening s′o = 0.14 > sgo. The goal
state was achieved with only one single action. In the case of learning o4, object o2 was
selected as the learning source because it was more similar than o1 and o3. NAO tried
the lift action (a5) on the handle (ψh4 ) to achieve the desired opening, each time with a
bigger lift parameter given by Line 13 in Algorithm 6, where ∇ĝo2 (a5, θ) = 1.866 (see
Table 5.3). This parameter selection policy suggested that lifting ψh4 more would result in
more opening.

However, lifting the handle did not work for o5 when o2 was selected as the learning
source. Then, NAO tried action types a ∈ A \ {a5} (Lines 17 through 23 in Algorithm 6).
It happened to find that pulling (a4) the handle generated a different effect than model
ĝo2 (a4, θ) predicted. Therefore, it tried several more pulling parameters to learn an accurate
prediction model ĝo4 (a4, θ). The goal condition was satisfied in Line 17 and the learning
was terminated.

5.7 Conclusions and Open Issues

In this chapter, we have investigated a transfer learning approach to handle a new object
with additional affordance knowledge of known objects. We have developed a part-based
model to represent the affordances of complex household objects composed of several parts.
Each part is associated with a set of affordance models learned through performing the
corresponding set of parameterized actions. Based on the predictions of the learned models,
a pair of part and action can be selected to achieve a desired effect. When the new object
is given in a goal-directed task, the potential functional part can be found by measuring its
similarity with the functional parts of known objects. The associated action parameters can
also be found to achieve the goal.

An experimental evaluation of the proposed method has been carried out in a lid open-
ing task. The state space and the action space are both one-dimensional continuous spaces.
Linear regression models have been used to approximate the affordance models. In the
baseline experiments, the robot has to learn from scratch without knowledge transfer. It
interacts with every object part to learn the associated affordance models, and then uses the
models to find the functional part along with the action parameter. In contrast, our trans-
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fer learning approach always manages to directly reuse the affordance models of relevant
known objects, not necessarily having to try every object part. Compared with the baseline,
transfer learning has largely reduced the number of actions that are needed to achieve the
lid opening task. This indicates that transfer learning is more efficient than learning from
scratch because it avoids unnecessary exploratory actions whenever possible. Specifically,
transfer learning is most efficient when the new object has a more similar way of manipu-
lation with a known object. However, transfer learning can suggest to select inappropriate
actions when the new object looks similar to a known object, yet has a different way of
manipulation. It is interesting to investigate how to improve the performance in case of
such a negative transfer [120].

The linear regression models have shown good performance in the lid opening task
under the assumption that the lid was initially closed. In chapter 4, we have used neural
networks to model affordances considering any possible initial state of a lid, and we have
shown that affordance models are not necessarily linear. Such a non-linear model would be
more appropriate than the linear regression models for describing the movement patterns
of the functional parts of general household objects. However, our focus in this chapter has
been to show the effectiveness of the transfer learning approach. In principle, there is no
obstacle to use non-linear models to represent and transfer affordances. It is an immediate
extension to the current research to use non-linear regression models to deal with higher
dimensional continuous state and action spaces. Active learning discussed in chapter 4
could be combined with transfer learning to further speed up the exploration in the action
spaces.

We have assumed that the goal states are exactly the same in this chapter, i.e., the goals
are opening the lids wide enough for all garbage cans. It will be useful to also consider
transfer learning with different goals. For instance, the experience of opening a lid could be
helpful for learning how to close a door. Also, it is interesting to consider transfer learning
with a sequence of goals with progressively increasing complexity. Methods to do these
have been developed in the multi-task reinforcement learning (MTRL) framework [129] in
which the agent needs to solve a sequence of Markov Decision Processes (MDPs) chosen
randomly from an unknown distribution. Techniques that reuse the previously learned
distribution over MDPs as an informed prior, such as hierarchical Bayesian MTRL [130],
are a promising approach.

This chapter has considered the manipulation of a single object part at a time. We have
separately modeled the movement of the part and the part-object relation. Consequently,
it is possible to first find the functional part, and then the action parameters to achieve
the given goal. However, we have not considered the relations between multiple parts.
For example, lift/pull the handle in Figure 5.2 not only moves the handle, but also moves
the lid. In the future, it is interesting to investigate the co-movement of object parts and
discover their underlying relations. It will be useful to also consider more complex objects
with more than one functional part.



Chapter Six

Integration of Affordance Learning
and Symbolic Reasoning

This chapter introduces a robot control architecture that subsumes the three architectures
proposed in previous chapters. This architecture facilitates affordance learning and rea-
soning at different cognitive levels. As discussed in the previous chapters, affordance
learning takes place at the sub-symbolic level through embodied robot interaction with
environments. In contrast, reasoning takes place at a higher, symbolic level. The proposed
cognitive control architecture integrates these two levels so that they can effectively inter-
act. Specifically, we use the agent programming language GOAL to program the cognitive
layer which supports symbolic knowledge representation and high-level action selection.
The knowledge base includes task domain information as well as affordances.The action
selection is based on the knowledge base, task goals and the world states. After performing
the selected actions and observing the actual effects, affordances are obtained and sent back
to the cognitive layer to update the knowledge base. In this way, the affordance knowledge
in the cognitive layer is grounded in the robot’s own sensory-motor learning experience,
while affordance learning is controlled by the cognitive layer. The proposed architecture
is a step towards long-term affordance learning and enhances the robot’s ability to solve
complex real world tasks. We demonstrate how the architecture works through a garbage
disposal task with the humanoid robot NAO.

6.1 Introduction
The previous chapters of this thesis have focused on the sensory-motor level robot interac-
tion with environments. Affordances can be learned and used for action selection to achieve
a desired goal. However, these approaches suffer from two limitations that restrict the learn-
ing and use of affordances in more complex tasks. First, reasoning is not supported. This
hinders the use of affordances for action selection in multi-step tasks and uncertain task
environments. Second, we have assumed so far that the robot is always in learning mode.
Because affordance learning involves exploration in the action space of the robot, it can
be very time consuming to execute actions and collect data needed for learning. It would
be better if the robot could decide itself when to initiate affordance learning, and when to
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terminate the learning. To address these limitations, this chapter proposes a cognitive robot
control architecture that facilitates sophisticated reasoning as well as efficient affordance
learning. Specifically, we provide solutions for the following problems:

• How can affordances be used by a cognitive agent to select actions based on symbolic
reasoning? In the previous chapters, affordances are represented at the sub-symbolic
level, and they are directly learned from sensory-motor data. Task goals are repre-
sented in the perceptual space, and then affordances are used to select low-level mo-
tor actions to achieve the goals. However, this approach of affordance learning and
use provides limited support for symbolic reasoning, e.g., [131, 132]. Such reason-
ing is based on symbolic representation of goals and task domain knowledge. In this
chapter, we represent affordances as symbolic knowledge. We use an environment
interface to obtain a symbolic representation of an affordance from a non-symbolic
representation. Then, the symbolic affordance knowledge is taken into account by
the action selection mechanism that is based on symbolic reasoning.

• How can reliable affordances be maintained for solving tasks effectively? The
reliability of an affordance should be sufficiently high for effective task execution.
Otherwise, the robot would easily fail to achieve desired effects by using the affor-
dance. In other words, affordances should not be used unless the effects of actions
on objects have been established to a sufficient degree. Besides, affordances may
change in dynamic environments. We need to update the reliability of affordances
based on the long-term sensory-motor experience of the robot.

• How can a robot decide to switch between an exploration mode (learn affordances)
and an exploitation mode (use affordances to achieve a goal)? It is a challenge for
the robot to take control over the affordance learning process during task execution.
There is no need for the robot to explore the sensory-motor space if the robot al-
ready has the relevant knowledge to solve a task. We need to identify the relevant
conditions that settle the question whether a robot should continue to learn or not.

In this chapter, we propose a cognitive robot control architecture that combines rea-
soning at the symbolic level and affordance learning at the sub-symbolic level. We take
the approach of agent-oriented programming that supports the programming of cognitive
agents. Specifically, we use the agent programming language GOAL1 [133] to program
the cognitive agents. A GOAL agent maintains its goals, beliefs and knowledge in a sym-
bolic form for high-level action selection and reasoning. Using the Environment Interface
Standard (EIS) [134], the agent in the cognitive layer can communicate with lower sub-
symbolic layers that are responsible for robot behavior control. The agent maintains sym-
bolic affordance knowledge that can be created in a top-down manner [39, 40] or learned
from the sensory-motor experience in a bottom-up manner [33, 135]. The symbolic affor-
dance knowledge can be used by the agent for action selection through affordance-aware
reasoning. In addition, the reliability of the affordance knowledge is updated to reflect its
long-term success for achieving desired effects. Finally, conditions are introduced for the
agent to activate and terminate the learning of affordances.

1https://github.com/goalhub
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The remainder of this chapter is structured as follows. Section 6.2 briefly discusses the
related work. Section 6.3 introduces the cognitive robot control architecture. Section 6.4
describes the experiments and evaluation. Finally, Section 6.5 concludes the chapter.

6.2 Related Work

In the literature, several cognitive architectures have been proposed such as SOAR [136,
137] and CRAM [138]. Both SOAR and CRAM are similar to the BDI-based [139] cog-
nitive architecture that our approach is based on. Our contribution is the integration of
affordance learning into the cognitive architecture. In our architecture, not only the learn-
ing of affordances is allowed for handling novel objects and developing novel skills, but
also affordances can be used for sophisticated reasoning and action selection.

Based on bottom-up robot learning and use of affordances, affordance-aware reason-
ing has been addressed at the sub-symbolic level. In [33], affordances are learned from
sensory-motor experience of the robot, and then they are used for multi-step action plan-
ning through forward chaining2. Similarly, based on the learned affordances, a one-step
action is selected with the highest probability to achieve the demonstrated goal in an imi-
tation task [10]. Chapter 3, 4 and 5 have also followed this path of affordance learning and
use at the sub-symbolic level. However, these approaches have not represented affordances
at the symbolic level, which limits the use of powerful artificial intelligence (AI) techniques
for symbolic reasoning with affordances. In this chapter, cognitive agents maintain affor-
dance knowledge at the symbolic level, and these agents support sophisticated symbolic
reasoning by using the affordance knowledge.

Different with the bottom-up learning and use of affordances at the sub-symbolic level,
functional affordances have been used for reasoning only at the symbolic level. In [131],
object functionalities are considered to find substitute objects to achieve task goals, e.g.,
using a mug instead of a glass for water service. In [41], affordance template (AT) is
proposed to represent objects (e.g., turnable wheels and climbable ladders) for efficient
teleoperation of robots by human operators. However, these approaches currently do not
support affordance learning. Similar with [131, 41], the approach of [132] has assumed
the use of high-level action rules without considering low-level robot control problems.
In other words, the high-level affordance knowledge cannot be verified by the sensory-
motor experience of a real robot. In contrast, our architecture supports the verification
of affordance knowledge through embodied robot interaction with objects in real world
environments.

Our work is closely related to the research on object-action complexes (OACs) [59].
We share the same motivation to bridge the gap between low-level robot control problems
and high-level symbolic reasoning through affordance learning and use. We also both take
into account the verification of symbolic affordance knowledge. An OAC captures the in-
teraction between an object and the robot in terms of: 1) an action execution specification,
2) a prediction function about state changes caused by the execution of robot actions, and

2Forward chaining uses a tree structure with nodes representing the perceptual states and edges corresponding
to object-action pairs. An object-action sequence is found to transform an initial state into a goal state in the
continuous perceptual state space [33].
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3) a statistical measure of the success of the OAC. Similarly, the robot actions in our archi-
tecture are executed in a low-level control space, and our affordance model predicts action
effects as well. We also maintain long-term success/failure statistics about the affordance
knowledge. However, the OAC approach separates the learning and the use of affordances.
As a result, affordances are learned off-line and they are not verified on-line during task
execution. In contrast, we use autonomous agents to take control of affordance learning
and use. Affordance learning can be initiated whenever the learning is required during task
execution.

The recent work [135] is also related to our research. It proposes bottom-up learning
of affordance-based logical rules. Symbols and operators are learned from low-level ex-
ploitative manipulation experience of the robot. The representation of object categories
is based on unsupervised clustering of action effects. Then, these discrete categories are
used to generate logical rules that make predictions of action effects associated with object
features. However, this approach does not support the on-line learning and verification of
affordances. In addition, unlike our architecture, the bottom-up approach does not allow
humans to provide symbolic affordance knowledge as done in [41, 131, 132].

The main contribution of this chapter is that we propose an agent-based robot control
architecture that facilitates both affordance-aware reasoning at the symbolic level and af-
fordance learning at the sub-symbolic level. In this chapter, a cognitive agent maintains
affordances as symbolic knowledge that is not only used for symbolic reasoning, but also
is updated by the sensory-motor experience of the robot during on-line task execution. In
addition, the learning of affordances is controlled by the agent without human interven-
tion. These key features distinguish our cognitive robot control architecture from other
approaches in the literature.

6.3 Cognitive Affordance Learning Architecture

This section introduces our cognitive robot control architecture. We discuss several issues
including how the sensory data and action commands are processed (section 6.3.1), how
symbolic affordance knowledge is used for action selection (section 6.3.2), how the up-
date of affordance knowledge is carried out (section 6.3.3), and how affordance learning is
controlled by the architecture (section 6.3.4).

6.3.1 Architecture Overview
The main components of our architecture are illustrated in Figure 6.1, which includes a
symbolic layer for cognitive control, and a sub-symbolic layer for embodied-robot behavior
control.

Agent-based Cognitive Control

The symbolic layer provides support for symbolic reasoning and high-level decision mak-
ing. It functions as a task manager for the robot. In our architecture, we choose the goal-
oriented agent language (GOAL) [133] to program cognitive agents for robot control. A
GOAL agent uses a symbolic, logical language (e.g., Prolog [140]) to represent information
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Figure 6.1: The overall design of the architecture.
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about the environment. Based on such information, high-level action choices are derived
to achieve task goals. Refer to Appendix B for details about GOAL agents.

First of all, we use a symbolic representation of affordance knowledge, and we maintain
the statistics of the affordance knowledge. The statistics include the counts of times that an
affordance has been used and proved successful, along with the reliability of the affordance
knowledge calculated from these counts (see section 6.3.2). Based on this representation,
the agent can use the affordance knowledge to select actions. Whenever an affordance is
used for action selection, the actual action effect is observed and the statistics of the affor-
dance are updated (see section 6.3.3). In our architecture, affordance learning is controlled
by a GOAL agent that makes high-level decisions to switch on/off the learning. We intro-
duce decision rules for this purpose. For example, if there exists reliable affordance knowl-
edge for action selection, then the agents exploits the knowledge and affordance learning is
unnecessary. Otherwise, the learning is switched on (see section 6.3.4).

Environment Interface

The interaction between the symbolic and sub-symbolic layers is managed by the environ-
ment interface standard (EIS) [134] implemented in Java. As these layers may use different
programming languages to represent symbolic and sub-symbolic information, an interface
is needed to translate between the symbolic and sub-symbolic representations. For this
purpose, EIS acts as a bridge between high-level cognitive control and low-level behavior
control. It deals not only with symbolic representation required for logical reasoning in the
cognitive layer, but also with the translation of high-level decisions into low-level control
programs. Moreover, sensory data can be mapped into a symbolic form which can be used
by cognitive agents.

The interaction between the agent and the environment interface is twofold. First, the
agent sends action commands to the environment interface for execution. A robot is as-
sumed to have a sufficient repertoire of motor skills to carry out manipulation tasks such
as reaching, grasping, pushing, lifting, pulling, and so on. Each motor skill is associated
with an action defined in the action specification section of an agent (see Appendix B). In
this way, an action of the agent can be executed by the robot in the real world environment.
Second, the environment interface sends back new information to update the belief base of
the agent. This involves the transformation from low-level raw sensory data to high-level
symbolic representation. The sensory data is processed into a feature vector which is de-
scribed in an attribute space (see section 3.2.1). Then, a message describing this feature
vector is sent to the environment interface, where the feature vector is mapped into a label.
In this way, a symbolic percept is derived from the label and used to update the belief base
of the agent. Such a discrete representation of objects is convenient for reasoning at the
symbolic level.

Behavior Control

The sub-symbolic layer is responsible for robot behavior control at the sensory-motor level.
A behavior is the executed perception-action routine that enables embodied robot interac-
tion with its environment [9]. In order to develop robot behaviors, sensory functions have
to be prepared such as object recognition, object tracking, self-localization, etc. At the
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same time, motor skills should be available such as controlling the end-effectors in Carte-
sian spaces. These sensory functions and motor skills are developed using available APIs,
in our case, within the .NET framework (C#). These functions and skills are also basic
requirements for affordance learning, as discussed in previous chapters. We note that the
learning of affordances can be seen as a behavior as well because it involves sensory-motor
coordination in a perception-action loop.

Robot Platform

We use a humanoid robot NAO that runs an embedded Linux system. It is remotely con-
nected to a separate computer via Wi-Fi or Ethernet. The NAO collects raw sensory data
and sends the data to the computer, where the data is processed and action commands are
sent back to the NAO. Refer to section 3.4 for more details.

6.3.2 Affordance-aware Action Selection
Affordance-aware action selection makes use of affordance knowledge for effective and
efficient achievement of task goals.

Representation of Affordance Knowledge

In previous chapters, we have modeled an affordance as the relation between Object, Ac-
tion, and Effect (see Definition 3.1). The affordance formalism concerns the coupling of
object features and robot actions for achieving desired effects. Object encodes sensory
information about object attributes (e.g., color, shape, size and location), and Effect is a
concept based on object state changes. As it is in general unknown what effects would
be achieved before the robot actually interacts with objects, we should not hard code af-
fordances as static and unchanged facts in the knowledge base of a GOAL agent. Instead,
we represent affordances in the belief base of the agent, because facts that may change at
runtime should be stored there (see Appendix B).

In this chapter, we extend the concept of an affordance in Definition 3.1 with a record
of the statistics of the results of applying the affordance. This allows the agent to make
reasonable decisions when using affordances for action selection. Affordance knowledge
in the belief base of a GOAL agent is represented as follows:

afford(Obj,Act,Eff,Tot,Suc,Rel) (6.1)

where afford specifies that this belief describes affordance knowledge, Obj denotes an
object, Act denotes an action, and Eff denotes the consequent effect. In addition, the vari-
able Tot counts the total times that the affordance has been used, Suc counts the times of
successful results of using the affordance, and Rel is the reliability of the affordance. The
calculation of Rel is based on Tot and Suc. Each affordance is initiated with a reliability
value, and then the reliability is updated according to the sensory-motor experience of the
robot. The details of how to update the reliability will be discussed in section 6.3.3. In our
garbage can manipulation example (see Figure 5.2), afford(lid,push,opened,2, 1, 0.5)
means the agent believes that the lid can be opened by a push action, and the lid has been
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pushed for two times, one of which results in the opened effect. The reliability of the af-
fordance is 0.5.

The representation (6.1) is similar to the representation of object-action complexes
(OACs) [59] that maintains a statistical measure of the success of how a robot action can
change an object state. Both OACs and our approach consider symbolic reasoning as well
as sub-symbolic control problems, unlike Affordance Templates [41] that only consider
sub-symbolic robot control or high-level action rules [132] that only consider symbolic
reasoning. Compared with the OACs, our approach has a clearer separation between the
symbolic layer and the sub-symbolic layer (see Figure 6.1). In addition, the reliability of
affordance knowledge is updated and used in a more sophisticated way for action selection.

Action Selection

Following the rule-based action selection mechanism in GOAL (see Appendix B), we take
into account affordances when programming action rules. Such an affordance-aware action
rule is of the form

if bel(obs(Obj)), goal(des(Obj,Eff)),
bel(afford(Obj,Act,Eff,Tot,Suc,Rel),Rel≥ τ)

then select(Act).
(6.2)

where the mental state condition consists of the following elements:

• an object Obj that is observed and being manipulated, e.g., handle, lid, wheel, etc.

• a goal des(Obj,Eff) which describes the desired effect Eff on the object Obj.

• available affordance knowledge afford(Obj,Act,Eff,Tot,Suc,Rel)which sug-
gests the effect Eff can be achieved by performing Act on Objwith a reliability Rel.

• a condition Rel≥ τ that makes sure an affordance is reliable enough to be used for
action selection, where 0 < τ < 1 is a given threshold.

When an object Obj is observed, the agent inspects the mental state condition to check
whether there exists relevant affordance knowledge to achieve the goal Eff. If the reliability
is high enough (Rel ≥ τ), the agent predicts that the corresponding action Act is still
effective to achieve the goal, therefore the action Act is selected for execution. The higher
the value of τ, the stricter the condition is to use the affordance. We encourage the agent to
use the affordance knowledge, meanwhile the threshold should not be too low. Therefore,
we instantiate τ = 0.6 by default.

Assume there is an affordance afford(lid,push,opened,2,2,1), which suggests
push open a lid has been tried twice and verified twice. In the case of Figure 5.2(a), the
agent observes the lid, and it believes the action push is reliable enough to achieve the
opened effect. Therefore, the agent selects the action push.

We note that the reliability of affordances should be compared for action selection when
there are several affordances available. These affordances make different predictions about
action effects, and suggest different actions for selection. The agent must choose from the
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affordances and select an action for execution. We propose that the agent choose the affor-
dance with highest reliability, which is a reasonable choice. In case that there are two affor-
dances afford(handle,pull,opened,5, 4, 0.8)) and afford(handle,lift,opened,
2, 2, 1)), the agent would select the action lift rather than pull.

If the reliability of the affordance knowledge is not high enough (Rel< τ), the agent
will not use the affordance knowledge for action selection. In this case, affordance learning
is necessary. We will discuss the details of affordance learning in section 6.3.4.

6.3.3 Updating Affordance Knowledge
In order to maintain useful symbolic affordance knowledge, the agent’s beliefs of the af-
fordance knowledge should be updated through embodied robot interaction with the real
world. The importance of verifying symbolic knowledge for embodied robots has been
addressed in the literature [4, 59].

In the belief base of a GOAL agent, affordance knowledge can either be created in
a top-down manner, or learned bottom-up by the robot itself. In the former case, the
agent creates a initial set of affordance knowledge before the learning starts. For exam-
ple, afford(lid,push,opened,0, 0, 0.1)) suggests that a lid might be opened by a push
action, the reliability is 0.1< τ and this affordance has not been verified yet. In the latter
case, affordance knowledge is learned from the sensory-motor data, sent to the agent via
EIS.

As discussed in section 6.3.2, the reliability of an affordance is important for affordance-
aware action selection. In the sequel, we explain how the reliability is updated through
information flow between the symbolic layer and the sub-symbolic layer in our proposed
cognitive control architecture (see Figure 6.1). The process takes the following three steps:

• Action Selection: By using affordance knowledge, a cognitive agent selects an ac-
tion that is likely to result in a goal, as introduced in section 6.3.2.

• Action Execution: The selected action that is expected to achieve the goal is sent
through the environment interface to the behavior control module for execution.

• Effect Verification: After the action is performed, the actual effect is observed.
Then, a new percept is sent back to the agent through the environment interface,
and the statistics of Tot, Suc and Rel are updated.

In the action selection step, the agent believes that the selected affordance knowledge
φ = afford(Obj,Act,Eff,Tot,Suc,Rel) correctly predicts the action effect. Such a
prediction is going to be verified through executing exactly the same action on the object.
In the verification step, the actual effect Enew is obtained in the sub-symbolic layer. The
agent decides whether the affordance knowledge φ is verified or falsified by comparing
Eff and Enew. If the effect Enew matches with the predicted effect Eff, the latest verified
affordance knowledge φ′ = afford(Obj,Act,Eff,1,1,1) is added to the database of
percepts via EIS. Otherwise, φ′ = afford(Obj,Act,Eff,1,0,0) is added. Then, φ and
φ′ are merged, and the new reliability Relnew is calculated as follows:

Relnew = Relφ + (Relφ′ − Relφ)
1

Tot + 1
(6.3)
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where Relφ′ is the reliability of φ′. It means that the new reliability is updated towards
Relφ′ . If Relφ′ > Rel, the reliability increases; otherwise, the reliability decreases. The
update strategy gives more weight to the earlier results when Tot is small. It encourages
an early success by quickly raising the reliability above the threshold τ if an effective ac-
tion has been found. Specifically, this approach is efficient for verifying preprogrammed
affordances that are likely to be true but have not been verified yet.

We note that the variables Eff and Enew both take discrete values such as opened,
unopened, moved, unmoved, etc. The discretization of effects is conducted in the environ-
ment interface. The categories of effects can be predefined as labels [55] or can be obtained
by robot in a bottom-up manner [135].

6.3.4 Switching On/Off Affordance Learning
In goal-directed tasks, a robot is expected to achieve task goals as soon as possible. Af-
fordance learning is not always needed because it takes time for the robot to interact with
objects and collect data for the learning. If the robot already has acquired reliable enough
affordance knowledge for object manipulation, it is more efficient to exploit its knowledge
than to spend time on the learning. Therefore, we propose that affordance learning should
be carried out under certain conditions.

Learning From Scratch

In case that no reliable affordance knowledge is available, affordance learning can be initi-
ated by the GOAL agent. This happens when a given object is a novel one that has never
been manipulated before. The following rule

if goal(des(Obj,Eff)),bel(obs(Obj),afford(Obj,Act,Eff,Tot,Suc,Rel),Rel<τ)
then learn(Eff,Obj,mode).

(6.4)
indicates that if the agent believes there is no reliable affordance knowledge (Rel<τ) about
the observed object Obj, then affordance learning is required. The learning command
learn(Eff,Obj,mode) consists of the behavior name learn, the goal des(Obj,Eff),
the current object Obj being manipulated, and an action exploration mode mode that in-
dicates how to explore in the continuous parameter space of an action type. For exam-
ple, random exploration mode, active learning mode (Chapter 4) or transfer learning mode
(Chapter 5) can be chosen as the learning mode.

The agent has to select a robot action a ∈ A to learn affordances. First of all, the agent
initiates a set of unverified affordances in the form of:

afford(Obj,Act,Eff,0, 0, r0) (6.5)

where Act ∈ A, and r0 < τ is a small positive real number so that the condition of the rule
(6.4) can be satisfied to initiate affordance learning. For example, we instantiate r0 = 0.1
in our experiments. Similar to the Roulette Wheel Selection used for action selection in
XCS [85] (see chapter 3), the agent selects an action Act with a probability proportional
to the reliability of the corresponding affordance. Then, affordance learning continues by
exploring in the parameter space of Act.
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In accordance with Chapter 4 and 5, we focus on learning affordance models that predict
action effects in continuous action spaces. In this chapter, a prediction model H maps from
Θ to the effect space E:

H : Θ→ E (6.6)

We note that the mapping (6.6) can be seen as the combination of the mappings (5.4) and
(5.5). The prediction model H can be learned as:

e = Ĥ(θ) (6.7)

where e ∈ E, θ ∈ Θ, and Ĥ is the approximation of H. We use linear regression to obtain
Ĥ. The maximal effect emax is calculated as follows:

emax = max
θ∈Θ

Ĥ(θ) (6.8)

The desired effect Eff is achieved when the following condition is satisfied:

e ≥ δ (6.9)

where δ is a threshold. Combining equations (6.8) and (6.9), the effect Eff is predicted to
be true under the following condition:

emax ≥ δ (6.10)

Then, the following message

afford(Obj,Act,Eff,0, 0, r1) (6.11)

is sent to the symbolic layer to update the belief base of the agent. On receiving the new
percept (6.11), the agent merges it with the affordance (6.5) using equation (6.3). We note
that the value r1 should be bigger than r0 which suggests the agent select the affordance
(6.11) rather than the initiated affordances (6.5). Meanwhile, r1 should be smaller than τ
because (6.11) is not verified yet. By default, we instantiate r1 = 0.3 in our experiments.
The following rule

if goal(des(Obj,Eff)),bel(obs(Obj),afford(Obj,Act,Eff,_,_,Rel),
Rel≥ r1,Rel< τ)) then learn(Eff,Obj,mode).

(6.12)
indicates that the affordance learning should continue by performing Act when the relia-
bility is higher than r1 and lower than τ. The reliability of the affordance is updated by
equation (6.3). The action parameter θmax is selected as follows:

θmax = arg max
θ∈Θ

Ĥ(θ) (6.13)

which is expected to generate the maximal effect.
If the condition (6.10) cannot be satisfied, it is predicted that Act is not effective for

achieving Eff. Therefore, the following message

afford(Obj,Act,Eff,0, 0, r2) (6.14)

is sent to the symbolic layer, where 0 < r2 < r0. By default, we instantiate r2 = 0.05. It
means this affordance has a relatively low reliability for action selection. The affordances
(6.5) and (6.14) are also merged using equation (6.3).
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Learning when Reliability Decreases

Affordance learning can also be initiated in case that the reliability of an available affor-
dance decreases below the threshold τ. In this case, the affordance being used for action
selection is proved to be ineffective. This is likely to happen when the environment changes
and the affordances change accordingly.

Termination of Affordance Learning

The learning can be terminated under certain conditions. Typically, the learning is termi-
nated when the learned affordance is reliable enough to be used for action selection. In
order to avoid endless learning, the learning will be terminated anyway if the reliability of
all affordances is smaller than the threshold r2.

6.4 Experiments
In this chapter, we investigate the integration of affordance learning and symbolic reason-
ing. We design a real world task to test the information flow between the symbolic layer and
sub-symbolic layer in the cognitive robot control architecture (see Figure 6.1). The GOAL
agent is expected to perform affordance-aware action selection, and update the statistics of
the affordance knowledge through embodied robot interaction with the objects. In addition,
the agent should be able to switch on/off the affordance learning process, and achieve task
goals as soon as possible.

6.4.1 Task Settings
A humanoid robot NAO is used to perform a garbage disposal task (see Figure 6.2 and
Figure 6.3). Two types of garbage cans are used in two experiments. In both experiments,
the robot has to solve the same sequence of sub-tasks: grasp and object, open the lid, drop
the object, and close the lid. The sub-task of lid opening may require affordance learning,
which is decided by the robot itself.

Actions

For this task, the following parameterized actions are defined for the agent :

• grasp object: close the hand to grasp a given object.

• drop object: open the hand to drop the grasped object.

• extend arm: move the arm forward.

• contract arm: move the arm backward.

• sweep left: move the arm left.

• sweep right: move the arm right.

• lift up: move the arm upwards.
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(a) Grasp an object. (b) Open the lid.

(c) Drop the object. (d) Close the lid.

Figure 6.2: Experiment 1: A humanoid robot NAO solves a garbage disposal task by push-
ing open the lid (two camera views). In this task, the NAO grasps an object (a red toy ball),
opens the lid, drops the object, and closes the lid. It is assumed that the object is graspable
and the garbage can is openable.

(a) Grasp an object. (b) Open the lid.

(c) Drop the object. (d) Close the lid.

Figure 6.3: Experiment 2: A humanoid robot NAO solves a garbage disposal task by lifting
up the handle (two camera views). In this task, the NAO grasps an object (a red toy ball),
opens the lid, drops the object, and contracts its arm to close the lid. It is assumed that the
object is graspable and the garbage can is openable.
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• sweep down: move the arm downwards.

• learn: acquire the relation between a lid/handle, an action and the opened effect.

The actions of arm movement are associated with low-level control programs in the
environment interface (see section 6.3.1). For example, the action extend arm is associated
with the action command “changePositionArm(θ,0,0)”, where θ ∈ Θ and Θ is the
corresponding parameter space of the action extend arm. In our case, Θ = {θ | 0 < θ ≤ θ0},
and θ0 is the maximal action parameter. The action command can be executed in the sub-
symbolic layer to move the robot arm in the 3D Cartesian space (see Figure 3.2 for the
NAO frame definition in the Cartesian space). The learning is carried out through random
exploration in the continuous parameter space Θ. The same with chapter 5, the following
action set A={sweep left, sweep right, push forward, pull back, lift up, sweep down} is
used for affordance learning.

Goals

In the task, the agent is programmed to achieve a sequence of goals. Among them, we
focus on the goal of lid opening. This goal is described by the effect of opened, which is
defined by the opened width of the lid (bigger than a given threshold, see equation (6.9)).
In order to achieve this goal, the agent is expected to decide by itself whether to learn or to
use the affordance knowledge in order to open the lid.

Beliefs

The agent’s beliefs of the lid and the opened effect are derived from the available sensory
functions in the sub-symbolic layer (NAO markers for lid recognition and color segmenta-
tion for lid openness recognition).

When the lid or handle is observed by the NAO’s camera, a message “percept(lid)”
or “percept(handle)” is sent to the symbolic layer. Then, “obs(lid)” or “obs(handle)”
is inserted into the agent’s belief base. As a result, the mental state condition bel(obs(lid))
or bel(obs(handle)) becomes true (see Appendix B).

The opened width of the lid is measured by equation (5.14). An effect e ∈ E ⊆ R is
calculated by subtracting the opened width after and before an arm movement (see equa-
tion (5.3)). For this task, we set δ = 0.1 m in equation (6.9). In other words, bel(opened)
would become true if the opened width was more than 0.1 m. Refer to Table 2.4 for how
discrete effects can be obtained.

Affordance Knowledge

In the task, affordance knowledge encodes the relation between a lid/handle, an action, and
the opened effect. If the conditions of rule (6.4) are satisfied, then affordance learning is
necessary (Experiment 1). In contrast, previously learned affordance knowledge can be
directly reused. In Experiment 2, the affordance knowledge learned in Experiment 1 will
be used for action selection. Relearning might be needed if the reliability of the available
affordance knowledge drops below the threshold τ.
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A Trial

In each trial, the NAO starts in the same initial standing posture. It raises its arm to its
camera field and grasps a given object (see Figure 6.2(a) and Figure 6.3(a)). Then, the
NAO observes the garbage can and confirms that the lid is closed3. In order to open the
lid (see Figure 6.2(b) and Figure 6.3(b)), the agent searches in its belief base for relevant
affordance knowledge. If there was no affordance knowledge about how to open the lid,
the agent initiates affordance learning. Otherwise, the agent selects an action to try to open
the lid according to the available affordance knowledge. In this case, the selected action is
sent to the sub-symbolic layer for execution, and the statistics of the affordance knowledge
is updated. If the lid was opened, the NAO would drop the object (see Figure 6.2(c) and
Figure 6.3(c)). Otherwise, the NAO would continue to try to open the lid. Affordance
learning would be necessary if certain conditions were satisfied. Finally, the NAO closes
the lid (see Figure 6.2(d) and Figure 6.3(d)). After finishing the trial, the NAO starts all
over again.

6.4.2 Results

In each experiment, the NAO performs the task repeatedly in five trials, with the beliefs of
affordance knowledge being updated. The robot continues a trial until it achieves the goal.
In the first trial of the experiment, the robot may need to learn affordances. Later on, the
robot simply uses the learned affordances to select actions, unless learning is necessary.

Experiment 1: Learning From Scratch

In this experiment, the agent initially created a set of affordances in its belief base for the
lid and all actions in the action set A. An example of affordance is afford(lid,push
forward,opened,0, 0, 0.1) (see (6.5)).

In the first trial, the robot grasped the given object. In order to open the lid, the agent
decided to initiate affordance learning according to rule (6.4). The agent selected the action
sweep left fromA. Then, random exploration was carried out in the continuous parameter
space of the action sweep left, i.e., in the Cartesian space (0, θ, 0), 0 < θ ≤ 0.1 m. The
NAO moved the arm left with random distances for several times. Then, the following
regression function was learned: Ĥ(θ) = 0.006 + 0.053 θ. According to the condition
(6.10), the predicted maximal value emax = 0.011 m < δ = 0.1 m. In other words, the
learned model predicted that the lid could not be opened by the action sweep left. According
to equation (6.14), a message afford(lid,sweep left,opened,0, 0, 0.05) was sent to
the agent. According to equation (6.3), the updated reliability of the affordance was 0.05.
As a result, the action sweep left had a lower chance to be selected than the other actions.

The agent continued the learning and the action contract arm was selected. The action
parameter space was (θ, 0, 0), −0.1 m ≤ θ < 0. The learned regression function was Ĥ(θ) =

0.003 − 0.021 θ. According to the condition (6.10), the predicted maximal value emax =

0.005 m < δ = 0.1 m. This prediction meant that the lid could not be opened by the

3The lid is initially closed. The openness of the lid is recognized by color segmentation as described in the
previous chapters.
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action contract arm either. Similarly, the corresponding affordance was updated to be
afford(lid,contract arm,opened,0, 0, 0.05).

After several ineffective actions were selected, the action extend arm had a higher
chance to be selected. The action parameter space was (θ, 0, 0), 0 < θ ≤ 0.1 m. The
learned regression function was Ĥ(θ) = 0.007 + 1.293 θ. According to the condition
(6.10), the predicted maximal value emax = 0.136 m > δ = 0.1 m. In other words, the
learned model predicted that the lid could be opened by the action extend arm. Accord-
ing to equation (6.11), a message afford(lid,extend arm,opened,0, 0, 0.3) was sent
to the agent. According to equation (6.3), the updated reliability of the affordance was
0.3. Currently, the conditions of rule (6.12) were satisfied. Therefore, the agent contin-
ued the learning by selecting the action extend arm. According to equation (6.13), the
action parameter θmax = 0.1 was selected. After performing the action, an actual open-
ness of 0.156 m > δ = 0.1 m was observed. According to section 6.3.3, a message
afford(lid,extend arm,opened,1, 1, 1) was sent to the agent. According to equa-
tion (6.3), the updated affordance was afford(lid,extend arm,opened,1, 1, 1). Then,
the termination condition of affordance learning was satisfied. The agent switched off the
learning mode and switched on the exploitation mode. According to rule (6.2), the robot
extended the arm, and the lid was opened. The object was dropped into the garbage can,
and the robot contracted its arm to close the lid. The first trial ended successfully.

Since the second trial, the agent directly selected the action extend arm to open the lid
according to rule (6.2). No learning was needed. After the 5th trial, the learned affordance
became afford(lid,extend arm,opened,5, 5, 1).

Experiment 2: Relearning When Reliability Decreases

In this experiment, two object parts lid and handlewere observed. The affordance knowl-
edge learned in Experiment 1 was reused by the agent for action selection. In order to
open the lid, the agent selected the action extend arm upon the lid. However, this action
turned out to be ineffective for lid opening. As a result, a message afford(lid,extend
arm,opened,1, 0, 0) was sent to the agent. According to equation (6.3), the updated af-
fordance was afford(lid,extend arm,opened,6, 5, 0.83). The reliability of this affor-
dance was still higher than the threshold τ = 0.6, which meant the agent still believed ex-
tend arm was effective to open the lid. Therefore, the agent continued to select the action ex-
tend arm until the updated affordance became afford(lid,extend arm,opened,8, 5, 0.57).
The reliability 0.57 is lower than the threshold τ = 0.6. At this moment, affordance learn-
ing learn(lid,opened,random) was initiated. However, performing all the actions in
A upon the lid would not result in lid opening. After a few more actions upon the lid,
the reliability of all affordances decreased below r2 = 0.05. Therefore, the agent stopped
affordance learning with the lid.

Then, the agent started the interaction with the handle. A new set of affordances
was created in the belief base for the handle and all actions in the action set A, e.g.,
afford(handle,push forward,opened,0, 0, 0.1) (see (6.5)). The learning continued
in the similar way with Experiment 1. Finally, the affordance afford(handle,lift
up,opened,5, 5, 1) was learned to open the lid by lifting up the handle.
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6.5 Conclusions and Open Issues

In this chapter, a generic cognitive control architecture has been proposed for robot learn-
ing with the use of affordances. In this architecture, we have integrated affordance learn-
ing and symbolic reasoning that are carried out at different cognitive levels. Affordances
are represented as symbolic knowledge maintained by a cognitive agent. The affordance
knowledge can be used by the agent to select affordance-aware actions through symbolic
reasoning. In addition, the symbolic affordance knowledge is updated according to a robot’s
own sensory-motor experience. The update of the statistics of the affordance knowledge
is carried out on-line during task execution. The agent can autonomously decide when to
learn or use affordances.

An experimental evaluation of the proposed architecture has been carried out. We use
the agent programming language GOAL [133] to program cognitive agents in the cognitive
layers, and we use Environment Interface Standard (EIS) [134] to communicate between
the agents and the sub-symbolic layers. Unlike the previous chapters in which both the
learning and the use of affordances take place in the sub-symbolic layers, in this chapter,
the agents are responsible for using affordances to achieve goals. As a result, the agent
can reason when and how to learn or use affordances in complex tasks that consists of sev-
eral subtasks (e.g., garbage disposal in this chapter), rather than solving a single task (e.g.,
lid opening in Chapter 5). In the garbage disposal task, we have shown that the proposed
architecture supports robot learning of the lid opening subtask. There is in principle no
obstacle for the robot to learn other subtasks if necessary, i.e., reaching/grasping an object,
dropping an object into a container, etc. However, due to the limitation of the sensory and
motor functions of the NAO robot, learning all these subtasks from scratch is very challeng-
ing, especially in continuous state and action spaces. In the future, more advanced robots
should be tested in more complex tasks to show the generality of the proposed architecture.

In the literature, affordances are usually learned from the sensory-motor experience in
a bottom-up manner [33, 135]. We have also followed this approach throughout the earlier
part of this dissertation. In contrast, the agent in this chapter maintains symbolic affordance
knowledge that can be created in a top-down manner. In other words, it is possible to di-
rectly provide affordances as the additional source of knowledge to the agent, without the
need of affordance learning. In such a case, assumptions are made that the affordances in
the environment are well known without uncertainty, e.g., wheels are turnable and ladders
are climbable [41]. However, this may not work due to environmental changes. We have
shown in the second experiment that the symbolic affordance knowledge can be wrong for
handling a new object. Similar to the object-action complexes (OACs) [59], we also em-
phasize the importance of verifying affordance knowledge before using it to achieve goals.
Compared with OACs, the verification mechanism in this chapter is on-line during task
execution, and the verification results will decide whether to relearn or use the affordances.

Deciding the reliability of affordance knowledge is another opportunity for future re-
search to improve affordance-aware action selection. Currently, the initial reliability r0,
r1, r2 and the reliability threshold τ are assigned with default values. These values can be
more adaptive to the task at hand. Consequently, the agent would make more reasonable
decisions to switch between the exploration mode and the exploitation mode.

In this chapter, random exploration in continuous action parameter space has been em-
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ployed, but it is possible to apply any other action exploration strategies as well. In partic-
ular, active exploration (Chapter 4) and transfer learning (Chapter 5) could be used instead.



Chapter Seven

Conclusions and Outlook

This chapter summarizes the main contributions of this dissertation and revisits the research
questions posed in chapter 1. Limitations and open issues are also discussed.

7.1 Summary and Conclusions

One main objective of this dissertation is to improve the task performance of a robot
through affordance learning and use. We have taken into account the efficiency of both
the learning and the use of affordances to speed up task learning. Increasing the efficiency
of affordance learning is important because learning may otherwise be too time consum-
ing in practical applications. We have investigated how to speed up the learning of af-
fordances through on-line learning (chapter 3), active learning (chapter 4), and transfer
learning (chapter 5). While discussing affordance learning, we have also paid attention to
the use of affordances for achieving goals. Specifically, a cognitive robot control architec-
ture has been proposed to integrate affordance learning at the sensory-motor level and the
use of affordances at the symbolic level to solve complex tasks (chapter 6). In the remain-
der, we summarize the main contributions of this dissertation and answer the corresponding
research questions posed in chapter 1.

• How can affordances be learned and used on-line for solving a goal-directed
task?

Chapter 3 has introduced an approach to learn and use affordances in goal-directed
tasks. We have integrated task learning, affordance learning and affordance use in
a general framework, in which affordances can be obtained and used automatically
during on-line task learning. Reinforcement learning (RL) has been chosen for goal-
directed task learning, specifically the XCS classifier system has been used. The
affordance-based XCS has shown better performance than standard XCS in real-
world tasks. This is due to that the additional knowledge of affordances directly
provides suggestions on action selection, without the need to wait for rewards to
change the action selection policy in RL systems such as XCS. In the navigation
task, we have designed a proper action filter to decrease the number of candidate
actions. The experiment results have shown that using affordances is more efficient
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for avoiding the selection of wrong actions that would not contribute to achieving
the goal. However, it is difficult to design a generic action filter for a wide range of
goal-directed tasks.

The process of data collection for affordance learning is on-line during task learning
whenever an action is performed on an object. The learned affordances are also
simultaneously used to speed up the task learning. Only the task-relevant affordances
are learned and used, which is more efficient for solving a goal-directed task than
the two-staged approach [33] that requires a robot to learn all kinds of affordances
(including affordances that are irrelevant to achieving the goal) before it can use the
affordances to solve the task.

We have used an affordance table to keep the latest triplets of learned affordance. It
can handle dynamic environments in which the affordances may change. We have
used a simple binary representation of object features without the ability to gener-
alize over the feature space. A ternary representation used in the XCS rules can
generalize learned affordances to handle new objects. However, it comes at the price
of computational complexity compared to the simple affordance table.

The proposed method has been shown effective for discrete object states and robot
actions, in principle there is no obstacle to handling continuous spaces. Object states
and robot actions can be defined in continuous spaces, function approximators can
be used to learn affordances, and a continuous version of RL algorithm can be used
for task learning. However, it would be more difficult to design an action filter in
continuous action spaces than in discrete action spaces.

• How can a robot explore efficiently in continuous action spaces to learn affor-
dances of a new object?

Chapter 4 has introduced active affordance learning of a new object in continuous
state and action spaces. We have used function approximation to model affordances,
and these models can be learned using the prediction error of action effects. Mean-
while, the prediction error also serves as a reward signal to update the action explo-
ration policy using an actor-critic reinforcement learning structure. We have chosen
feed-forward neural networks and continuous actor-critic learning automation (CA-
CLA) to model affordances and to learn the action exploration policy, respectively.
The experimental results have shown that the proposed active learning approach re-
quires less number of exploratory actions than the random exploration baseline for
the convergence of the averaged TD errors. The reason is that active exploration is
carried out in a more organized way by sampling in the most uncertain areas. In con-
trast, random exploration occasionally samples an action resulting in high TD error
which makes the averaged TD errors more difficult to converge. However, we have
not considered the scalability of the active affordance learning algorithm. It will be
important to further speed up the learning in higher dimensional continuous state and
action spaces.

The learned affordance models have been reused to acquire a range of manipulation
skills by generating a sequence of goals in the effect space and selecting actions to
achieve the goals. The goal generation continues until there is no significant effect
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observed. In our experiments, a humanoid robot NAO has successfully learned how
to open and close two types of garbage cans. These skills are associated with initial
and goal states, therefore they are immediately reusable when other goal-directed
tasks are given later on. Unlike Chapter 3 that has addressed on-line model learning
and use, Chapter 4 has not considered affordance learning when using affordances to
achieve goals. Nevertheless, it is still possible to enable the interaction between the
learning and the use of affordances, e.g., combining active generation of goals [119]
and active learning of affordances.

The proposed active affordance learning is generic and flexible that supports any per-
ceptual proxy for representing objects, any action representation, any forward model
for representing affordances, and any actor-critic RL algorithm for continuous state
and action spaces. We have chosen the 2D bounding box perceptual proxy, the 3D
Cartesian action space and the feed-forward neural networks, and the CACLA algo-
rithm, respectively. However, these are not necessarily the best choices. Trying and
comparing different instantiations of the modules would be interesting, e.g., using 3D
point clouds to represent objects [117] and considering actions in high-dimensional
spaces [119].

• How can the learned affordances be transferred across objects to speed up the
learning of a new object?
Chapter 5 has investigated a transfer learning approach to handle a new object with
additional affordance knowledge of known objects. We have developed a part-based
model to represent the affordances of complex household objects composed of sev-
eral parts. Each part is associated with a set of affordance models and the corre-
sponding set of parameterized actions. When the new object is given, the potential
functional part can be found by measuring its similarity with the functional parts
of known objects. An experimental evaluation has shown that transfer learning of
affordances is more efficient than learning from scratch because it avoids unneces-
sary exploratory actions whenever possible. Specifically, transfer learning is most
efficient when the new object has a more similar way of manipulation with a known
object. However, transfer learning can suggest to select inappropriate actions when
the new object looks similar to a known object, yet has a different way of manipula-
tion. It is interesting to investigate how to avoid such a negative transfer.

We have chosen linear regression models to represent affordances in the garbage can
manipulation task. Non-linear models such as neural networks used in Chapter 4
would be more appropriate to describe the movement patterns of the functional parts
of general household objects. However, our focus in Chapter 5 is to show the ef-
fectiveness of the transfer learning approach. There is no obstacle to use non-linear
models to represent and transfer affordances. Furthermore, active learning discussed
in chapter 4 could be combined with transfer learning to further speed up the explo-
ration in the parameterized action spaces.

We have assumed that both the initial and goal states are exactly the same, i.e., the
lids are initially closed and the tasks are opening the lids wide enough. It will be
necessary to consider transfer learning across objects and tasks. For instance, the ex-
perience of opening a lid could be helpful for learning how to close a door. However,
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it is very challenging for the robot to acquire the concepts of a wide range of objects
and tasks. The multi-task reinforcement learning (MTRL) framework [129], espe-
cially hierarchical Bayesian MTRL [130] that reuses the previously learned distribu-
tion over MDPs as an informed prior, is a promising approach to transfer learning of
multiple tasks.

• How can affordance learning be integrated with symbolic reasoning for solving
complex tasks?

Chapter 6 has proposed a generic cognitive control architecture that integrates affor-
dance learning and symbolic reasoning. Affordances are represented as symbolic
knowledge maintained by a cognitive agent that selects affordance-aware actions
through symbolic reasoning. The symbolic affordance knowledge is updated accord-
ing to a robot’s own sensory-motor experience during on-line task execution. We
have used the agent programming language GOAL [133] to program cognitive agents
which are responsible for using affordances to achieve goals. The agent can reason
when and how to learn or use affordances in complex tasks that consists of several
subtasks, e.g., garbage disposal. Although we have only shown that the proposed
architecture supports robot learning of the lid opening subtask, there is in principle
no obstacle for the robot to learn other subtasks if necessary, i.e., reaching/grasping
an object, dropping an object into a container, etc. However, due to the limitation of
the sensory and motor functions of the robot NAO, learning all these subtasks from
scratch is very challenging, especially in continuous state and action spaces. More
capable robots can be tested in more complex tasks to show the generality of the
proposed architecture.

The GOAL agent maintains symbolic affordance knowledge that can either be cre-
ated in a top-down manner, or learned from the sensory-motor experience in a bottom-
up manner, unlike our previous chapters or the literature that only supports the latter
case [33, 135]. It means that it is possible to directly provide affordances as the ad-
ditional source of knowledge to the agent, without the need of affordance learning.
Nevertheless, we have also emphasized the importance of verifying the affordance
knowledge before using it to achieve goals. This idea is similar with object-action
complexes (OACs) [59]. However, OACs separate affordance learning and use, re-
sulting in drawbacks that have been discussed in Chapter 3. In contrast, our verifi-
cation mechanism supports on-line task execution, and the verification results can be
used to decide whether to continue learning or to use the affordances.

The cognitive control architecture supports the three learning approaches proposed
in the previous chapters, i.e., on-line learning (Chapter 3), active learning (Chapter 4)
and transfer learning (Chapter 5). By providing high-level action rules to the GOAL
agent, affordance learning can be activated during on-line task execution whenever
necessary. In addition, the high-level action rules can also specify the learning mode
for the agent. For example, if the agent is learning to handle a new object, either the
active learning mode or the transfer learning mode can be selected. However, it is
still challenging for the agent to make such decisions without human intervention.
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7.2 Open Issues and Future Research

We conclude this dissertation by reflecting on limitations of our work, and presents some
interesting open issues regarding the techniques proposed in this dissertation, together with
ideas of future research on learning and using affordances.

In Chapter 3, we have discussed affordance learning and use for discrete representation
of states and actions, where an affordance table keeps updating the learned triplets in the
form of (object, action, effect). However, this approach only maintains the latest triplet
if there exist two triplets with the same pair of (object, action) but a different effect. As
a result, it does not make full use of all the collected data, and it has limited support for
action selection in uncertain environments. In contrast, we have considered the long-term
statistics of the triplets in Chapter 6 to handle uncertainty. In other words, the reliability
of an affordance is updated according to the total times and successful times of applying
the affordance to select actions. Currently, we simply initialize the reliability of affordance
knowledge to default values. More sophisticated mechanisms can be employed to recalcu-
late the reliability of the affordance knowledge. For this purpose, the mechanism introduced
in Chapter 3 that updates the fitness of XCS rules could be an interesting choice. Another
possible choice is to use probabilistic models such as Bayesian Networks [10, 35, 44].

In Chapter 4 and 5, we have discussed active learning and transfer learning in contin-
uous spaces, respectively. The results of chapter 4 have shown that the learning time in-
creases with the dimension of action spaces. In our experiments, however, the state space,
action space, and the effect space do not have more than three dimensions. It is necessary
to consider how to scale learning in higher dimensional spaces. Besides, the models we
have chosen, i.e. feed-forward neural networks and linear regression, are not guaranteed to
be the most efficient ones for function approximation. Non-linear models such as Gaussian
Regression is a possible choice for learning in high dimensional continuous spaces.

Chapter 4 has used forward models to represent affordances that maps from the con-
tinuous state and action spaces to the continuous effect space. Then, actions are selected
using the learned forward models to generate the predicted maximal effect through an in-
ternal rehearsal mechanism. However, this involves extra computation by sampling in the
action space, calculating the predicted effects, and selecting the maximal effect. It would
be more convenient to use an inverse model that directly maps from the state and effect
space to the action space. In our active affordance learning framework, there is no obstacle
to simultaneously learn an inverse model while learning the corresponding forward model.
In other words, whenever a sample of (object, action, effect) is obtained for learning the
forward model by using the prediction error of effects, the same sample of (object, effect,
action) can be used for learning the inverse model by using the prediction error of actions.
Both of the prediction errors can be used as the reward signal for updating the actor-critic
reinforcement learning module. One possible drawback of considering the inverse model
is that the learning would require more training data than only learning the forward model,
because the averaged TD errors are likely to converge slower.

Chapter 5 has assumed that there is only one specific goal and an object has only one
functional part for the goal. More complex tasks have to be considered that there are
different functional parts for different goals. We have separately modeled the movement
of the part and the part-object relation. However, we have not considered the relations
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between multiple parts. For example, lift/pull the handle in Figure 5.2 not only moves the
handle, but also moves the lid. In the future, it is interesting to investigate the co-movement
of various object parts and discover their underlying relations. Also, it will be challenging
to consider the simultaneous or sequential manipulation of more than one functional parts.

The cognitive architecture proposed in Chapter 6 enables the robot to solve complex
tasks that consist of several subtasks. However, the affordance learning is simply switched
on and off by means of preprogrammed if-then action rules. An interesting research direc-
tion is to let the agent learn by itself how to control the learning to further improve the task
performance. This is related to the topic of learning to learn [141]. The agent should be
able to learn the high-level action rules. Reinforcement learning algorithms can be used to
learn such rules, as has been done in Chapter 3. Nevertheless, the learning would take a
long time if the robot has to learn simultaneously the symbolic level task-related concepts
and action rules as well as the sensory-motor level affordances and control policies. It is
necessary to focus on different aspects of the learning, following the principles of open-
ended and non-task specific learning in the field of developmental robotics [1, 2, 3, 4].

This thesis has focused on fully autonomous affordance learning that does not involve
human intervention once the learning is initiated. However, human-in-the-loop is required
for life-long robot learning to develop human-level robotic behaviors. The supervisory
control paradigm of Plan, Teach, Monitor, Intervene, and Learn (PTMIL) [50] can be con-
sidered in the future. It is an interesting topic to investigate how affordance learning can
be further improved through human guidance, e.g., by observation, demonstration or tele-
operation. Specifically, observing how humans use household objects can help the robot
understand object affordances [13] and assist humans [46]. Demonstration is an efficient
way of providing complex manipulation skills for affordance learning [49]. Tele-operation
is still necessary for robots to carry out complex tasks such as turning wheels, climbing
ladders and drilling a wall [41, 132]. However, the challenge of natural human-robot in-
teraction still remains that hinders robots to learn and use affordances efficiently under
human supervision. The latest progress on natural language processing (NLP) could possi-
bly provide a common understanding for humans and robots on the concept of affordances.
Previous research that associates language and affordances [15] can be extended for this
purpose. In this way, robots can understand from human’s perspective the meanings of
objects and what can be done with them.
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et al. Object–action complexes: Grounded abstractions of sensory–motor processes.
Robotics and Autonomous Systems, 59(10):740–757, 2011.

[60] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of ma-
chine learning. MIT press, 2012.

[61] Pedro Domingos. A few useful things to know about machine learning. Communi-
cations of the ACM, 55(10):78–87, 2012.

[62] Vladimir Vapnik, Steven E Golowich, and Alex Smola. Support vector method for
function approximation, regression estimation, and signal processing. Advances in
neural information processing systems, pages 281–287, 1997.

[63] Dan W Patterson. Artificial neural networks: theory and applications. Prentice Hall
PTR, 1998.

[64] George AF Seber and Alan J Lee. Linear regression analysis, volume 936. John
Wiley & Sons, 2012.

[65] Carl Edward Rasmussen. Gaussian processes for machine learning. MIT Press,
2006.

[66] Thomas Cover and Peter Hart. Nearest neighbor pattern classification. Information
Theory, IEEE Transactions on, 13(1):21–27, 1967.

[67] J. Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.

[68] Changyun Wei, Junchao Xu, Chang Wang, Pascal Wiggers, and Koen V. Hindriks.
An approach to navigation for the humanoid robot nao in domestic environments. In
14th Towards Autonomous Robotic Systems (TAROS), pages 298–310, 2013.

[69] Tapas Kanungo, David M Mount, Nathan S Netanyahu, Christine D Piatko, Ruth Sil-
verman, and Angela Y Wu. An efficient k-means clustering algorithm: Analysis and
implementation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
24(7):881–892, 2002.

[70] Pierre-Yves Oudeyer, Frederic Kaplan, et al. How can we define intrinsic motiva-
tion? In proceedings of the 8th international conference on epigenetic robotics:
modeling cognitive development in robotic systems, 2008.

[71] Andrew G Barto, Satinder Singh, and Nuttapong Chentanez. Intrinsically motivated
learning of hierarchical collections of skills. In Proceedings of the 3rd International
Conference on Development and Learning (ICDL), pages 112–19, 2004.

[72] MT Turvey. Affordances and prospective control: An outline of the ontology. Eco-
logical psychology, 4(3):173–187, 1992.

[73] M. Steedman. Plans, affordances, and combinatory grammar. Linguistics and Phi-
losophy, 25(5):723–753, 2002.



Bibliography 111

[74] T.A. Stoffregen. Affordances as properties of the animal-environment system. Eco-
logical Psychology, 15(2):115–134, 2003.

[75] A. Chemero. An outline of a theory of affordances. Ecological Psychology,
15(2):181–195, 2003.

[76] T.E. Horton, A. Chakraborty, and R.S. Amant. Affordances for robots: a brief survey.
The Journal of the Philosophical-Interdisciplinary Vanguard, pages 70–84, 2012.

[77] K.S. Jones. What is an affordance? Ecological Psychology, 15(2):107–114, 2003.

[78] Serge Thill, Daniele Caligiore, Anna M Borghi, Tom Ziemke, and Gianluca Bal-
dassarre. Theories and computational models of affordance and mirror systems: an
integrative review. Neuroscience & BioBehavioral Reviews, 37(3):491–521, 2013.

[79] R.R. Murphy. Case studies of applying gibson’s ecological approach to mobile
robots. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and
Humans, 29(1):105–111, 1999.

[80] E. Erdemir, C.B. Frankel, K. Kawamura, S.M. Gordon, S. Thornton, and B. Ulutas.
Towards a cognitive robot that uses internal rehearsal to learn affordance relations. In
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 2016–
2021. IEEE, 2008.

[81] J. Sun, J.L. Moore, A. Bobick, and J.M. Rehg. Learning visual object categories
for robot affordance prediction. The International Journal of Robotics Research,
29(2-3):174–197, 2010.

[82] Dan Pelleg, Andrew W Moore, et al. X-means: Extending k-means with efficient
estimation of the number of clusters. In ICML, pages 727–734, 2000.

[83] B. Akgun, N. Dag, T. Bilal, I. Atil, and E. Sahin. Unsupervised learning of affor-
dance relations on a humanoid robot. In 24th International Symposium on Computer
and Information Sciences(ISCIS), pages 254 –259, sept. 2009.

[84] J. Sinapov and A. Stoytchev. Detecting the functional similarities between tools us-
ing a hierarchical representation of outcomes. In 7th IEEE International Conference
on Development and Learning (ICDL), pages 91–96, aug. 2008.

[85] Stewart W Wilson. Classifier fitness based on accuracy. Evolutionary Computation,
3(2):149–175, June 1995.

[86] Jianbo Shi and Carlo Tomasi. Good features to track. In Computer Vision and
Pattern Recognition, 1994. Proceedings CVPR’94., 1994 IEEE Computer Society
Conference on, pages 593–600. IEEE, 1994.

[87] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust features.
In Computer Vision–ECCV 2006, pages 404–417. Springer, 2006.

[88] David G Lowe. Distinctive image features from scale-invariant keypoints. Interna-
tional journal of computer vision, 60(2):91–110, 2004.



112 Bibliography

[89] S. Ivaldi, Sao Mai Nguyen, N. Lyubova, A. Droniou, V. Padois, D. Filliat, P.-Y.
Oudeyer, and O. Sigaud. Object learning through active exploration. IEEE Transac-
tions on Autonomous Mental Development, 6(1):56–72, March 2014.

[90] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-
4):279–292, 1992.

[91] John H. Holland. Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control, and Artificial Intelligence. A Brad-
ford Book, April 1992.

[92] Tim Kovacs. Strength or Accuracy: Credit Assignment in Learning Classifier Sys-
tems. Springer, London, UK, 2004.

[93] M. Studley and L. Bull. X-tcs: accuracy-based learning classifier system robotics.
In The 2005 IEEE Congress on Evolutionary Computation, volume 3, pages 2099 –
2106, sept 2005.

[94] Pier Luca Lanzi. Learning classifier systems: then and now. Evolutionary Intelli-
gence, 1:63–82, 2008.

[95] Chang Wang, P. Wiggers, K. Hindriks, and C.M. Jonker. Learning classifier system
on a humanoid nao robot in dynamic environments. In 12th International Conference
on Control, Automation, Robotics and Vision (ICARCV), pages 94–99, 2012.

[96] Pier Luca Lanzi and Daniele Loiacono. Xcslib: The xcs classifier system library,
2009.

[97] B.D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of robot learning
from demonstration. Robotics and Autonomous Systems, 57(5):469–483, 2009.

[98] Stefan Schaal, Peyman Mohajerian, and Auke Ijspeert. Dynamics systems vs. opti-
mal control–a unifying view. Progress in brain research, 165:425–445, 2007.

[99] Jens Kober and Jan R Peters. Policy search for motor primitives in robotics. In
Advances in neural information processing systems, pages 849–856, 2009.

[100] Petar Kormushev, Sylvain Calinon, and Darwin G Caldwell. Robot motor skill co-
ordination with em-based reinforcement learning. In 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 3232–3237. IEEE,
2010.

[101] Jens Kober, Andreas Wilhelm, Erhan Oztop, and Jan Peters. Reinforcement learn-
ing to adjust parametrized motor primitives to new situations. Autonomous Robots,
33(4):361–379, 2012.

[102] Katharina Mülling, Jens Kober, Oliver Kroemer, and Jan Peters. Learning to select
and generalize striking movements in robot table tennis. The International Journal
of Robotics Research, 32(3):263–279, 2013.



Bibliography 113

[103] Richard M Ryan and Edward L Deci. Intrinsic and extrinsic motivations: Classic
definitions and new directions. Contemporary educational psychology, 25(1):54–67,
2000.

[104] Burr Settles. Active learning literature survey. Computer Sciences Technical Report
1648, University of Wisconsin–Madison, 2009.

[105] Johannes Kulick, Marc Toussaint, Tobias Lang, and Manuel Lopes. Active learning
for teaching a robot grounded relational symbols. In Proceedings of the Twenty-
Third international joint conference on Artificial Intelligence, pages 1451–1457.
AAAI Press, 2013.

[106] Maya Cakmak, Crystal Chao, and Andrea L Thomaz. Designing interactions for
robot active learners. IEEE Transactions on Autonomous Mental Development,
2(2):108–118, 2010.

[107] Shiwali Mohan and John E. Laird. Learning goal-oriented hierarchical tasks from
situated interactive instruction. In Proceedings of the Twenty-Eighth AAAI Confer-
ence on Artificial Intelligence, pages 387–394, 2014.

[108] Andrew G Barto. Intrinsic motivation and reinforcement learning. In Intrinsically
Motivated Learning in Natural and Artificial Systems, pages 17–47. Springer, 2013.

[109] Gianluca Baldassarre and Marco Mirolli. Intrinsically motivated learning systems:
an overview. In Intrinsically Motivated Learning in Natural and Artificial Systems,
pages 1–14. Springer, 2013.

[110] Goren Gordon, Ehud Fonio, and Ehud Ahissar. Learning and control of exploration
primitives. Journal of computational neuroscience, pages 1–22, 2014.

[111] David A Cohn, Zoubin Ghahramani, and Michael I Jordan. Active learning with
statistical models. arXiv preprint cs/9603104, 1996.

[112] Adrien Baranès and P-Y Oudeyer. R-iac: Robust intrinsically motivated explo-
ration and active learning. IEEE Transactions on Autonomous Mental Development,
1(3):155–169, 2009.

[113] P-Y Oudeyer, Frédéric Kaplan, and Verena Vanessa Hafner. Intrinsic motivation
systems for autonomous mental development. IEEE Transactions on Evolutionary
Computation, 11(2):265–286, 2007.

[114] Stephen Hart and Roderic Grupen. Intrinsically motivated affordance discovery and
modeling. In Intrinsically Motivated Learning in Natural and Artificial Systems,
pages 279–300. Springer, 2013.

[115] Michael I Jordan and David E Rumelhart. Forward models: Supervised learning
with a distal teacher. Cognitive science, 16(3):307–354, 1992.

[116] Daniel M Wolpert and Mitsuo Kawato. Multiple paired forward and inverse models
for motor control. Neural Networks, 11(7):1317–1329, 1998.



114 Bibliography

[117] Simon Christoph Stein, Florentin Wörgötter, Markus Schoeler, Jeremie Papon, and
Tomas Kulvicius. Convexity based object partitioning for robot applications. In
IEEE International Conference on Robotics and Automation (ICRA), pages 3213–
3220. IEEE, 2014.

[118] Hado van Hasselt and Marco A Wiering. Using continuous action spaces to solve
discrete problems. In International Joint Conference on Neural Networks (IJCNN),
pages 1149–1156. IEEE, 2009.

[119] Adrien Baranes and Pierre-Yves Oudeyer. Active learning of inverse models with in-
trinsically motivated goal exploration in robots. Robotics and Autonomous Systems,
61(1):49–73, 2013.

[120] Lisa Torrey and Jude Shavlik. Transfer learning. Handbook of Research on Machine
Learning Applications. IGI Global, 3:17–35, 2009.

[121] S. Thrun and T. Mitchell. Learning one more thing. In Proceedings of the Fourteenth
International Joint Conference on Artificial Intelligence (IJCAI), San Mateo, CA,
1995. Morgan Kaufmann.

[122] Rajat Raina, Andrew Y. Ng, and Daphne Koller. Constructing informative priors
using transfer learning. In In Proceedings of the 23rd International Conference on
Machine Learning, pages 713–720, 2006.

[123] Wenyuan Dai, Gui-Rong Xue, Qiang Yang, and Yong Yu. Transferring naive bayes
classifiers for text classification. In Proceedings of the national conference on arti-
ficial intelligence, volume 22, pages 540–545. AAAI, 2007.

[124] Matthew E Taylor and Peter Stone. Transfer learning for reinforcement learning
domains: A survey. The Journal of Machine Learning Research, 10:1633–1685,
2009.

[125] Matthew E Taylor, Peter Stone, and Yaxin Liu. Value functions for rl-based behav-
ior transfer: A comparative study. In Proceedings of the National Conference on
Artificial Intelligence, volume 20, pages 880–885. AAAI, 2005.

[126] Lisa Torrey, Jude Shavlik, Sriraam Natarajan, Pavan Kuppili, and Trevor Walker.
Transfer in reinforcement learning via markov logic networks. In AAAI Workshop
on Transfer Learning for Complex Tasks, 2008.

[127] A Goncalves, G. Saponaro, L. Jamone, and A Bernardino. Learning visual affor-
dances of objects and tools through autonomous robot exploration. In 2014 IEEE In-
ternational Conference on Autonomous Robot Systems and Competitions (ICARSC),
pages 128–133, May 2014.

[128] Joaquin Quiñonero-Candela and Carl Edward Rasmussen. A unifying view of sparse
approximate gaussian process regression. The Journal of Machine Learning Re-
search, 6:1939–1959, 2005.



Bibliography 115

[129] S. P. Singh. Transfer of learning by composing solutions of elemental sequential
tasks. Machine Learning, 8:323–339, 1993.

[130] Soumya Ray Prasad Tadepalli Aaron Wilson, Alan Fern. Multi-task reinforcement
learning:a hierarchical bayesian approach. In Proceedings of the 24 th International
Conference on Machine Learning, pages 1015–1022. ACM, 2007.

[131] Iman Awaad, Gerhard K Kraetzschmar, and Joachim Hertzberg. Affordance-based
reasoning in robot task planning. In Planning and Robotics (PlanRob) Workshop
ICAPS-2013, 2013.

[132] Gabriel Barth-Maron, David Abel, James MacGlashan, and Stefanie Tellex. Affor-
dances as transferable knowledge for planning agents. In 2014 AAAI Fall Symposium
Series, 2014.

[133] Koen V Hindriks. Programming rational agents in goal. In Multi-Agent Program-
ming:, pages 119–157. Springer, 2009.

[134] Tristan M Behrens, Koen V Hindriks, and Jürgen Dix. Towards an environment
interface standard for agent platforms. Annals of Mathematics and Artificial Intelli-
gence, 61(4):261–295, 2011.

[135] Emre Ugur and Justus Piater. Bottom-up learning of object categories, action effects
and logical rules: From continuous manipulative exploration to symbolic planning.
In IEEE International Conference on Robotics and Automation (ICRA), pages 2627–
2633. IEEE, 2015.

[136] John E Laird, Allen Newell, and Paul S Rosenbloom. Soar: An architecture for
general intelligence. Artificial intelligence, 33(1):1–64, 1987.

[137] John Laird. The Soar cognitive architecture. MIT Press, 2012.

[138] Michael Beetz, Lorenz Mosenlechner, and Moritz Tenorth. Cram–a cognitive robot
abstract machine for everyday manipulation in human environments. In 2010
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
1012–1017. IEEE, 2010.

[139] Anand S Rao, Michael P Georgeff, et al. Bdi agents: From theory to practice. In
Proceedings of the First International Conference on Multiagent Systems (ICMAS).
AAAI, 1995.

[140] Leon Sterling. The art of Prolog: advanced programming techniques. MIT press,
1994.

[141] Sebastian Thrun and Lorien Pratt. Learning to learn. Springer Science & Business
Media, 2012.



116



Appendix A
Extended Classifier System (XCS)

Parts of this section have been published in [95]. An overview of XCS used on NAO is
given in Figure 7.1.

Figure 7.1: An overview of XCS

Performance Component

The performance component controls the system’s behavior. In Wilson’s XCS, either a
pure explore trial or a pure exploit trial is performed on each time step. Usually, the system
alternates between the two. In other words, learning happens only in explore mode while
evaluation happens in exploit mode.
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Explore Trials

A random action is usually selected from the rules in the match set [M] to match the current
sensory input. However, random actions are inefficient for robots, e.g., moving back and
forwards without changing its current state. Therefore, consistent actions are adopted to
avoid learning in situations where the state of the robot remains the same after one action.
In other words, LCS matches an input to create a match set [M] and an action set [A],
then performs the selected action until there is a significant change in sensory input. If the
new input still matches all the classifiers in [A], then it continues with the current action.
Else if none of the classifiers in [A] matches the current input, [A] is deleted. Otherwise, a
probabilistic selection takes place among them.

Exploit Trials

The system deterministically selects the highly recommended action with the highest pre-
diction so that an optimal action sequence is chosen to achieve the goal state. However,
if the environment changes, the system needs to relearn the optimal policy. Traditionally,
when some accurate classifiers suddenly become inaccurate, the system decides that the
environment has changed. But this change might be not significant enough that the old
optimal policy still applies to achieve the goal state. A more natural way is to carry out the
old optimal action sequence after the environmental change and check if the goal state is
still achieved. This requires a change of the explore/exploit framework such that an extra
exploit trial is needed after the goal state is achieved in one exploit trial. Otherwise, the
system needs to keep a record of every action sequence and store the optimal one, which is
also possible but involves additional memory operations. As XCS has no internal memory,
external memory is needed to store the goal state and the number of action steps towards it.

Reinforcement Component

The reinforcement (or credit assignment) component distributes the incoming reward among
the classifiers. For sequential tasks, updates only occur in the previous time step’s action set
[A]−1 because they make use of the prediction array on the following time step (see equa-
tion (7.2)), except that during the last trial of an episode, both [A] and [A]−1 are updated.
General Widrow-Hoff learning rule is used:

p j(a)← p j(a) + βp(P − p j(a)) (7.1)

where p j(a) is the system prediction of classifier j in [A]−1 if its action a is performed, and
0 < βp ≤ 1 is the learning rate controlling the prediction updates. P is the weighted sum of
the previous time step’s reward rt−1 and the maximal system prediction P(ai) for action ai:

P = rt−1 + γmax
i

P(ai) (7.2)

where γ is the discount rate [92].

Rule Discovery Component

A rule discovery component applies a Genetic Algorithm (GA) to the classifiers to up-
date the current knowledge. In sequential tasks, GA invocations occur in [A]−1 where the
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Niche GA is triggered, which is a restricted mating scheme only happening among related
classifiers. This process is described as :

Σx∈[A](t −GAx) × numerosity(x)
Σx∈[A] numerosity(x)

> θGA (7.3)

where t is the current time step and GAx is the time step when the classifier x was created
but never been in such an [A] or was last in an action set in which the GA was invoked. The
numerosity of x indicates the number of classifiers with the same conditions and actions.
θGA is a threshold.

When Niche GA is triggered, two parent classifiers are selected with a probability pro-
portional to their fitnesses, usually Roulette Wheel Selection is used in practice [85]. Stan-
dard crossover and mutation operators perform on them to get two offspring classifiers.
Then, GA subsumption takes over to check if the condition part is logically subsumed by
the condition of an accurate and sufficiently experienced parent.

The fitness calculation is the main difference between accuracy-based XCS and tradi-
tional strength-based LCS. When a classifier j is created, its initial prediction is denoted
as p0

j , prediction error as ε0
j and fitness as F0

j . Then, p j is updated by equation (7.1), ε j

updated by equation (7.4), and F j updated by equation (7.5).

ε j ← ε j + βe(|P − p j| − ε j) (7.4)

where ε j is the prediction error of classifier j, βe is the error learning rate, |P − p j| is the
target prediction error towards which ε j is updated.

F j ← F j + β f (κ
′

j − F j) (7.5)

where β f is the fitness learning rate, classifier j’s fitness F j is updated towards its relative
accuracy κ

′

j calculated by equation (7.6) and (7.7):

κ j =

{
1 if ε j < ε0
α(ε j/ε0)−v otherwise (7.6)

where ε0 is a threshold that decides all classifiers’ accuracies are equal if their prediction
errors are below it, or decreased by α and v. Once κ j, j ∈ [A] have been updated, each
classifier’s relative accuracy κ

′

j is updated by:

κ
′

j =
κ j × numerosity( j)

Σx∈[A] κx × numerosity(x)
(7.7)

which normalizes the accuracies so that they sum up to 1. In short, a classifier’s fitness is
an inverse function of its prediction error, which is ignored if below ε0.

Parameter Settings

The parameter settings take a reference of Wilson’s woods2 example [85] (see Table 7.1).
The main difference is the separate learning rates that βp is for prediction update, βε for
error update and β f for fitness update. All of them are initialized with the default learning
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Table 7.1: XCS parameter settings for NAO Searching Task
Parameter Notation Value

Population size N 100

discount factor γ 0.7

Prediction learning rate βp 0.2

Error learning rate βε 0.2

Fitness learning rate β f 0.2

Crossover probability χ 0.8

Mutation probability µ 0.04

Accuracy criterion ε0 10

Accuracy falloff rate α 0.1

Accuracy exponent v 5

Prediction initial p0 10

Error initial ε0 0

Fitness initial f 0 0.01

Trial step limit Ns 20

Hash probability P# 0.6

GA threshold θGA 5

Deletion threshold θDel 20

rate 0.2 and can be changed in dynamic experiments. Other changes of the parameters
include the population size limit and GA threshold, both are decreased due to much less
experiment trials compared with the thousands of trials in woods2. In our experiments, the
movement boundary is [−0.5, 0.5]×[−0.5, 0.5], in other words, it is a 11×11 maze in which
the NAO always starts from (0, 0). In case of endless search, the maximal step in one trial
is no more than Ns = 20.

Object searching and tracking

In the second experiment, NAO was placed on a table and the task was to find and track a
target object in the camera view (see Figure 7.2). At first, NAO moved its head to search
for the object. Then, the object location would be changed after NAO had confirmed to find
it. NAO was expected to learn an action selection policy to quickly find the target object in
such a dynamic environment.

As this sequential decision problem involved multi-step actions towards a task goal,
reinforcement learning (RL) provided a good framework to solve such a problem. The
state, action and reward were defined as follows:

• A state was represented as a 9-bit binary string. Each bit of the string was associated
with a segmented part of an input image (see Figure 7.2(c) - 7.2(d)). A bit took value
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(a) NAO on a table (b) GUI (c) Part of target found (d) One goal state

Figure 7.2: Object searching and tracking task environment.

1 if there was a color blob in the corresponding image part; otherwise, it took value
0. For example, the strings of Figure 7.2(c) and Figure 7.2(d) were ‘100000000’ and
‘110110000’, respectively.

• An action was encoded as a 2-bit binary string. Each bit corresponded to a head
motor. The head pitched or yawed within the range of [-0.67, 0.51] or [-2.079, 2.079]
(in radials). The two motors were initiated to the resting position (0 radial). On
each head movement, 0.1 radial was changed on one motor. As a result, the four
actions were ‘00’ (look up), ‘01’ (look right), ‘10’ (look down) and ‘11’ (look left).
Whenever the motor limits were reached, the head was reset to the initial state.

• A reward of 1000 was given when the object was observed at the image center, i.e.,
the fifth bit of the state string was 1. Otherwise, no reward was given.

Specifically, an Extended Classifier System (XCS) [85] was implemented1 for policy
learning in this RL task. XCS is a rule-based system. It can be regarded as a generalization
of tabular Q-learning by using a Genetic Algorithm (GA) [91] to aggregate equivalent
states in the Q-table [92]. Besides, for physical robot control, XCS does not require careful
tuning of parameters to achieve satisfactory behavior [93]. Therefore, XCS was chosen for
the current task as well as for the RL tasks in Chapter 3.

The knowledge of XCS is represented as a set of rules2. In this dissertation, the classical
ternary representation {0,1,#} is used to encode the conditions and binary strings to encode
the actions. The hash symbol # can be either 0 or 1 which allows generalization and GA
operations on the rule conditions with the same length. An XCS rule maps a condition and
an action to a prediction, with an associated fitness as follows:

(condition, action)→ prediction : fitness (7.8)

For example, the rule (0#0#11#11, 01) → 1000 : 0.59 means if the current state string
meets the condition 0#0#11#11 and if action 01 is taken, then a reward of 1000 is predicted.
This rule has a fitness of 0.59.

In XCS, the rules are value function fragments, and XCS generalizes over its value
function using GA techniques. The GA produces rules which are used by Q-learning to up-
date the prediction of reward. Then, based on the error of prediction, the rules are evaluated

1http://sourceforge.net/projects/xcslib/
2They are also called classifiers in the LCS literature [94]



122 Bibliography

by their fitness values and updated by the GA. Besides, while tabular Q-learning updates a
single state-action pair, XCS updates multiple state-action pairs.

An experiment consisted of several trials and NAO started a trial from the resting state.
While the goal state was not achieved and the motor limits were not reached, NAO was in
the exploration mode3. It captured an image to obtain the current state before selecting one
action and observing the consequent state. This perception and action loop continued till
the end of the experiment. In case of endless searching, a trial ended anyway after a certain
number of action steps. Table 7.2 lists some of the learned rules.

Table 7.2: An example of XCS rules
Condition Action Prediction Error Fitness Exp. Num.

1001#0000 01 10 0 0.01 0 1

#0###0##0 11 355.7 95.1 0.99 13 5

1#00#0### 00 453.6 116.2 0.94 11 1

0##00#00# 01 262.6 40.1 0.41 16 9

0#0#01##0 01 524.9 139.4 0.62 14 3

At first, the object was located on the up left side of NAO. It took 4 action steps, i.e., 2
action looking left (‘11’) and 2 actions looking up (‘00’) , to achieve the task goal. The first
rule was initiated and not updated yet. The second rule was the most experienced one and
had the highest fitness value. It advocated action ‘11’ ( look left ) when the target object
was out of the camera view. The third rule encouraged action ‘00’ ( look up ) when the
target object was observed in the left up corner (the first bit of the state string was 1).

Then, the object was moved to the right side of NAO which needed 3 actions looking
right to find it. In this new case, some of the learned rules gave wrong suggestions for
action selection, e.g., the second rule in Table 7.2. In the beginning, NAO always looked
left using this rule without finding the object. As a result, this rule became inaccurate and
its fitness value dropped. Meanwhile, the fitness of the fourth rule in Table 7.2 increased
and suggested turn right (‘01’). The last rule also encouraged turning right when the object
was observed in the right part of the camera view. This rule had a high prediction value
because this state was near the goal state.

This experiment has showed how an RL system solved a goal-directed task through on-
line interaction between the robot and the environment. The innate generalization mech-
anism of XCS enables learning general and accurate rules, which are at the same time
readable for humans. This provides a good framework for the reuse of learned knowledge
in the long term robot development.

3A variety of exploration strategies were also tested in the experiments. Refer to [95] for the details.



Appendix B
Programming GOAL Agents

In the sequel, we introduce the basic features of a GOAL agent program. Refer to [133]
for details about GOAL agents.

Programming GOAL agents can be seen as programming with mental states. The men-
tal state of a GOAL agent consists of its knowledge, beliefs and goals. The knowledge base
contains conceptual or domain knowledge which is assumed to be static and unchanged
in the given task. Unlike the knowledge base, the belief base contains the agent’s beliefs
about the current state of its environment. The beliefs are dynamic and changing according
to environmental changes. Another feature of GOAL is that multiple declarative goals can
be maintained that are to be achieved sequentially by the agent. A blind commitment strat-
egy is used by GOAL agents, which means that an agent commits to its goals and drops the
goals only when they have been achieved.

A GOAL agent needs to be able to inspect its current mental state. For this purpose,
special conditions called mental state conditions have to be programmed. These conditions
are useful in rules to specify a strategy for action selection. A mental state condition con-
sists of conditions on the belief base or the goal base. It can be represented as a conjunction
of mental atoms of the form bel(φ) and goal(φ), where φ is a conjunction of literals. For
example, bel(openness(Size)) expresses “the agent believes that the size of openness
is Size”.

In order to achieve its goals, an agent needs to choose actions to interact with its en-
vironment. These actions are programmed in a symbolic form which will be translated
into low-level control programs and executed by the robot’s end-effectors. For example, a
push action push(Dist) means to push an object Obj forward with a distance of Dist. In
an action specification section of a GOAL agent, preconditions and postconditions can be
specified for each action. The precondition is a conjunction of literals that are used to eval-
uate whether it is possible to perform the action. Only when the precondition is believed
to hold, the corresponding action is enabled to be selected by the agent. For example, hav-
ing reached an object is the precondition of pushing it, and having grasped a handle is the
precondition of pulling it. Similar to a precondition, a postcondition is also a conjunction
of literals. It specifies the action effects that are expected to change the mental state of the
agent.

By means of action rules, the strategy is specified for the agent to select actions. An
action rule informs a GOAL agent when it is an opportunity to perform an action. Such a
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rule is of the form if msc then action, where msc is a mental state condition, and action
is an action. The mental state condition msc must be checked before the corresponding
action can be selected. The action is said to be applicable if an instantiation of msc is true.
In addition, the action can be selected only if it is also enabled, i.e., its precondition is
satisfied.

After action selection, the agent needs to update its belief base for new decision making.
The event module of an agent program is responsible for this update. Specifically, the belief
base can be updated by querying the belief base as well as the database of percepts. This
database maintains the perceptual knowledge about the environment. A rule of the form if
bel(percept(φ)) then insert φ can be used to add new beliefs to the belief base after
performing the query bel(percept(φ)). Also, a belief φ can be deleted from the belief
base using the command delete(φ).



Summary

The learning capability is essential for service robots to develop useful manipulation skills
and solve household tasks. It is useful for robots to learn object affordances, which provide
information about potential action effects on objects. This information is task-independent
and can be used to select actions for solving a variety of tasks. In this dissertation, we
are interested in efficient robot learning and use of affordances. The learning and the use
of affordances are considered together rather than separated as two independent stages.
Robots have to cope with changing environments that require affordance learning when-
ever necessary. In addition, the efficiency should be taken into account because affordance
learning through embodied robot interaction with objects is typically time-consuming in
order to collect enough training data. Continuous action spaces provide infinitely many
action choices which make the data collection more difficult. Moreover, it is not efficient
for the robot to learn every object from scratch. The robot needs to reuse relevant past
experience to improve its current performance of task execution.

This dissertation aims to improve the efficiency of affordance learning and use. We
have considered three learning mechanisms that can speed up collecting data and solving
tasks. First, we have proposed on-line learning of affordances that enables on-line data
collection whenever the robot applies an effective action on the objects. Meanwhile, the
learned affordances can be used to avoid undesired actions in the reinforcement learning
framework in which goal-directed tasks are formulated. Second, we have proposed active
learning of affordances that speeds up the data collection by active exploration in contin-
uous action spaces. Affordance models are learned to predict action effects in continuous
spaces while the prediction error is served as the reward signal to update the action se-
lection policy. Third, we have proposed transfer learning of affordances that reuses the
learned affordances of relevant objects to speed up the learning of a new task. The robot
decides by itself not only whether the transfer learning should happen, but also how to ad-
just its action selection strategy. We have demonstrate through real-world experiments with
the humanoid robot NAO that the proposed affordance learning methods are more efficient
than previous approaches in the literature.

Finally, we have proposed an agent-based robot control architecture that facilitates af-
fordance learning and reasoning at different cognitive levels. In contrast to affordance
learning that takes place at the sub-symbolic level through embodied robot interaction with
objects, reasoning takes place at a higher symbolic level. These two levels effectively in-
teract that affordance learning is controlled by the cognitive layer, while the affordance
knowledge saved in the cognitive layer is grounded in the robot’s own sensory-motor ex-
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perience. The agent can autonomously decide by itself when to switch on/off affordance
learning. This approach is efficient for task execution because it is not always necessary
to spend time on affordance learning if the available affordance knowledge is sufficient to
solve the task. The proposed architecture enhances the robot’s ability to solve complex real
world tasks.



Samenvatting

De mogelijkheid om nieuwe dingen te leren is essentieel voor een robothulp om nuttige
manipulatie vaardigheden te ontwikkelen en zo huishoudelijke taken op te lossen. Het is
nuttig voor robots om de handelingsmogelijkheden (affordance) van objecten te leren om
zo te kunnen voorspellen welke mogelijke effecten een handeling heeft. Deze informatie is
taak-onafhankelijk en kan worden gebruikt voor het selecteren van acties om een verschei-
denheid aan taken op te lossen. In dit proefschrift gaat onze interesse naar het efficiënt
leren door robots en het hierbij gebruikmaken van handelingsmogelijkheden. Het leren
van en het gebruikmaken van handelingsmogelijkheden zullen wij als een enkel proces
beschouwen, in plaats van als twee verschillende fases.

Robots moeten kunnen omgaan met veranderende omgevingen wat vereist dat ze op
elk moment handelingsmogelijkheden van objecten moeten kunnen leren. Bovendien moet
rekening gehouden worden met de efficiëntie van het leerproces, want het is meestal een
tijdrovend proces om de robot genoeg leerervaringen te laten opdoen door eigen handelin-
gen. Een continue bereik van mogelijke bewegingen leid tot oneindig veel keuzemogeli-
jkheden voor acties, hierdoor wordt het verzamelen van data nog moeilijker. Bovendien is
het niet efficiënt om alle mogelijke objecten vanaf nul te leren gebruiken. De robot moet
zijn eerdere ervaringen hergebruiken bij het leren gebruiken van nieuwe objecten.

Dit proefschrift ambieert om het leren en gebruiken van handelingsmogelijkheden effi-
ciënter te maken. Wij hebben drie leermechanismes bestudeert die het verzamelen van data
en oplossen van taken versnellen. Ten eerste, wij hebben voorgesteld om handelingsmo-
gelijkheden te leren door altijd direct elke nieuwe succesvolle ervaring mee te gebruiken
als leerervaring. Deze ervaringen kunnen ook gebruikt worden om het selecteren van de
verkeerde actie te voorkomen in het zelfversterkende leermechanisme waar doelgerichte
acties worden geformuleerd. Ten tweede stellen wij voor om actief handelingsmogelijkhe-
den te leren, waarbij het opdoen van ervaringen word versnel d door actief nieuwe acties
te verkennen. Modellen van handelingsmogelijkheden worden gebruikt om te voorspellen
welke uitwerking een actie zal hebben en de nauwkeurigheid van de voorspelling wordt
gebruikt als beloning voor het leermechanisme. Ten derde stellen wij voor om eerdere ge-
bruikservaringen van relevante andere objecten te hergebruiken voor het sneller leren van
vergelijkbare objecten. De robot beslist niet alleen zelf of het hergebruiken van ervaringen
nodig is, maar ook welke aanpassingen aan het actie selectie mechanisme nodig zijn. Wij
hebben laten zien, door experimenten met NAO robots, dat de voorgestelde methodes om
handelingsmogelijkheden te leren efficiënter zijn dan eerder beschreven aanpakken.

Tot slot hebben wij een voorstel gedaan voor een agent-gebaseerde robot aansturing,
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die het leren van handelingsmogelijkheden faciliteert en op meerdere cognitieve niveaus
redeneert. Wij maken gebruik van redeneermechanismes op hoog abstractie niveau, in
tegenstelling tot het leren van handelingsmogelijkheden op laag abstractieniveau door mid-
del van fysieke interacties. De interactie tussen de abstractie niveaus wordt geregeld door
de agent-gebaseerde aansturing. Hoewel de handelingsmogelijkheden worden opgeslagen
op het hoge abstractie niveau, zijn deze gekoppeld aan fysieke bewegingen die worden
opgeslagen op laag abstractie niveau. De agent kan autonoom besluiten om het leermech-
anisme aan of uit te zetten. Deze aanpak is efficiënt omdat het niet altijd nodig is om hier
tijd in te steken als er al genoeg eerdere ervaringen zijn om de taak op te kunnen lossen. De
voorgestelde aanpak verbetert de mogelijkheden van de robot om ingewikkelde taken op te
lossen in de echte wereld.
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