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A B S T R A C T

Rainfall-runoff modelling is essential for short- and long-term decision-making in
the water management sector. The accuracy of streamflow predictions of hydrologic
models increases with the availability of and the access to streamflow observations.
Therefore, one of the key challenges in the field of hydrology is to produce Predic-
tions in Ungauged Basins (PUB), where observations are lacking. Recent research has
shown the potential of deep learning neural networks as an alternative approach to
conceptual and process-based hydrologic models for this purpose.

In this study, the existing Multi-Timescale LSTM (MTS-LSTM) architecture is used to
investigate if such a deep learning network is able to learn universal hydrologic be-
haviour. Therefore, a MTS-LSTM is trained on a large variety of >500 US catchments
and subsequently tested outside the US, in the European Meuse river basin. The
model is not re-trained or finetuned to simulate an ungauged situation and to asses
whether the streamflow predictions can compete with those from the uncalibrated
distributed model wflow sbm.

Results indicate that the MTS-LSTM trained on US data cannot compete with wflow sbm
in the Meuse catchments. The simulated streamflow time series can be unrealisti-
cally shifted and scaled compared to the time series of observed streamflow due to
sensitivity regarding static model input. This means, the values for catchment char-
acteristics cannot be extremer in the testing data than in the training data. Therefore,
it is recommended to select catchments for the model training such that the most
extreme conditions are covered. In the case that the MTS-LSTM is trained for a specific
region, results clearly compete with or outperform the distributed model. For the
Meuse test catchments, the neural network achieves Nash-Sutcliffe Efficiency (NSE)
values >0.46 where the application of wflow sbm is problematic and yields negative
NSE values. To exploit the potential of an LSTM, the model should be trained on all
available data of the entire Meuse basin instead of on the subset of catchments used
here. For some water management applications it is important to accurately predict
high flow events. Training the MTS-LSTM with the Mean Quadrupled Error (M4SE)
loss function showed that the peak flow representation can improve for catchments
where the use of a NSE loss already leads to good predicting performance. Thus
– for gauged and ungauged catchments – an implementation of a combined loss
function appears a valuable follow-up research.

For ungauged catchments, these results imply that the global neural network model
as tested in this study should be supplemented with finetuning. Thereby, the global
model could not yet be applied everywhere, however, in regions where only few
years of streamflow records are available. Alternatively, a regional neural network
model trained on nearby catchments could be applied for PUB, if streamflow obser-
vations are accessible in the surrounding area. Finally, it is of high importance to
maintain and extend the network of streamflow gauging stations globally, and to
ensure easy access to the data.
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1 I N T R O D U C T I O N

1.1 research motivation
Hydrologic modelling of streamflow plays a key role in answering a variety of wa-
ter resource related questions. The extreme flooding this summer (2021) in Western
Europe and extremely high water levels in rivers like the Meuse river and tribu-
taries of the Rhine river have demonstrated the importance of timely and precise
streamflow forecasting to react and evacuate accordingly. Furthermore, decision
making for flood-prevention and the development of emergency plans depends on
good knowledge of the upstream catchment and how the discharge will change in
the near and far future.

The current streamflow can be monitored with different gauging methods and these
momentary observations support real-time decision making. These collected obser-
vations over many years serve to calibrate hydrologic models which then aim to
predict the river discharge. Despite being widely applied, modelling and forecast-
ing methods are exposed to various uncertainties rooted in the complex structure
of the water cycle. Gaining in-depth understanding of the underlying, strongly in-
terconnected processes like e.g. evaporation, infiltration in the root zone or surface
and sub-surface flow is still a major challenge in the field of hydrology and hydro-
logic modelling (Blöschl et al., 2019).

This challenge is even greater when no field observations of present river discharge
are available and when historical streamflow records are scarce, because then the
calibration and evaluation of a hydrologic model becomes difficult or impossible
and streamflow predictions are exposed to high uncertainties (Bouaziz et al., 2021;
Hrachowitz et al., 2013). While Europe and North America show a great coverage
of gauging stations for meteorological data and streamflow, data collection in other
parts of the world is comparably low (see Figure 1.1) (Kratzert et al., 2019b).
Missing data complicates the development and calibration of physically based con-
ceptual hydrologic models as hydrologic processes are hypothesised without possi-

Figure 1.1: Global distribution of streamflow gauging stations (GRDC, 04.11.2021)
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bilities for adequate validation (Bouaziz et al., 2021). Further, the transfer of existing
models calibrated in a sufficiently gauged catchment into an ungauged region re-
quires available data for re-calibration of the model as the characteristics of runoff
behavior differ with each basin (Kratzert et al., 2019b).

However, the problem of accurate rainfall-runoff predictions has recently been suc-
cessfully approached from a different perspective. The observed data – streamflow
and meteorological parameters – incorporates much more than the measured value
but tells about the combination and interaction of processes related to the charac-
teristics of a catchment. Thus, the challenge is to extract this additional information
from the observed data (Luce, 2014; Kratzert et al., 2019b).
Artificial Neural Network (ANN) models have shown in various fields their abil-
ity to ”learn” from data and mimic non-linear relations - without implementation
of physics-based processes or hydrologic knowledge of the programmer. While
process-driven models perform best when calibrated with catchment specific obser-
vational data, a single neural network can learn rainfall-runoff relations with data
from a variety of catchments at the same time, thus obtaining knowledge on pat-
terns in a large range of different climatic and geological conditions. Kratzert et al.
(2019a) and Ayzel et al. (2020) have shown that a so called Long Short-Term Mem-
ory (LSTM) neural network can outperform process-based hydrologic models. Long
Short-Term Memory (LSTM)s are a special form of ANNs, allocated to the field of
Deep Learning (DL).

The recent experiences with LSTM models offer opportunities to counteract the dis-
advantages for ungauged regions. The results of Kratzert et al. (2019b) and Ayzel
et al. (2020) have proven that LSTM networks are able to yield on average good
performances in ungauged basins. By creating reasonable streamflow forecasts for
data-scarce basins with models trained on data from a variety of gauged catchments,
the need for calibration data from the basins of interest decreases significantly. Re-
gionalization or re-training of a model becomes obsolete if a global model can suc-
cessfully be trained with sufficient data from other basins.

Investigating the potential of LSTM models to enhance streamflow predictions in re-
gions with reduced access to observational data is very important. Those regions
are to a significant share found in African, Asian and South-American countries
with poor economies, political instabilities, social equality and equity problems,
where prospects to extension of gauging station network are considerably low (Hra-
chowitz et al., 2013). Even when the network of stations can be extended it is not
possible to gather historical meteorological and runoff data over the past decades
which would be required to calibrate a (process-based) hydrologic model. There-
fore, a global trained model ready to be applied in any place on earth with only
requiring recent meteorological data can be a tool to counteract these societal injus-
tices by enabling access to enhanced streamflow predictions.

1.2 problem statement
Commonly applied methods to predict streamflow in ungauged basins are hydro-
logic model parameters regionalization or nearest-neighbour regionalization (Ayzel
et al., 2020). However, results of different methods are very catchment dependent
(Razavi and Coulibaly, 2013; Ayzel et al., 2020) and the question of how to estimate
runoff in ungauged basins as in how spatial heterogeneity in hydrologic processes
is created remains one of the unsolved problems in hydrology (Blöschl et al., 2019).
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The work of Kratzert et al. (2019b) and Ayzel et al. (2020) has shown the poten-
tial of LSTM networks to enhanced predictions in ungauged basins. However, these
researchers worked with regionally trained networks, i.e. a model trained on US
catchments tested in other US catchments or a model trained on Russian catchments
tested in other Russian catchments. Testing a model in a completely different geo-
graphical region has not been done to our knowledge. Investigating the possibility
of a readily trained model to be applied independently from the training region and
identifying regional characteristics of catchments that affect model performance can
contribute to enhanced access to Predictions in Ungauged Basins (PUB).

A prerequisite for neural network models to learn the relation between meteorolog-
ical conditions and streamflow magnitude is the coverage in the training data of
diverse hydrologic behaviours and climatic and environmental conditions that in-
fluence the streamflow generation. To allow for a globally applicable model, input
data from a global dataset is required, such that the model input comes from the
same data source regardless of the catchment to model. So far, LSTMs for hydrologic
application have been trained with local datasets.

As the calibration and application of a process-based hydrologic model requires
large amount of time, another reason to explore the suitability of neural networks
in the field of hydrology is an extreme reduction in training and computing time
while being able to work with a larger amount of input data. A short computing
time is very important in cases of real-time streamflow predictions for e.g. the
assessment of impact-based flood forecasting.

1.3 research objective
The overall goal of this research is to investigate the generalization of a LSTM model
for streamflow predictions across continents. As for operational cases like e.g.
flood forecasting modelled streamflow time series on a sub-daily time scale are
required, this research is done with the Multi-Timescale LSTM (MTS-LSTM) devel-
oped by Gauch et al. (2021). A single MTS-LSTM model is trained on data from a
large variety of catchments to then generate streamflow predictions without further
training for an arbitrary catchment anywhere around the globe. It is hypothesised
that the performance is at least comparable to the distributed model wflow sbm.

Since a spatially and temporal consistent data source is required for the model input,
the first research objective is to assess the applicability of the global meteorological
dataset ERA5. By comparing the performance of an MTS-LSTM model trained with
ERA5 data in US catchments to previously achieved performance of the same model
with the regional dataset NLDAS-2 through Kratzert et al. (2018), the suitability of
the ERA5 dataset is assessed. Due to the coarser spatial resolution of ERA5 a deteri-
oration in model performance is expected, however comparable performance to the
process-based distributed model wflow sbm is hypothesised. Wflow sbm is consid-
ered as benchmark model, as it is regularly operated within Deltares and generated
streamflow predictions are input for further hydrologic and hydraulic models.

The second research objective is the potential of the model trained on US ERA5

data to function as a globally applicable hydrologic model for streamflow predic-
tions. The research is based on the assumption that a large variety of US catchments
covers enough climate zones to represent the diversity in globally occurring hydro-
logic behaviour. Therefore, the MTS-LSTM model trained on US catchments functions
as global model and is then tested in catchments outside of the US, more precisely
in individual catchments of the Meuse basin in Europe. Here, hourly streamflow
observations and predictions from the process-based distributed model wflow sbm
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are available to differentiate the performance of the neural network model. Further,
a regional MTS-LSTM will be trained exclusively on Meuse data to (1) quantify the
difference in performance between gauged and ungauged conditions and (2) work
out the difference in performance and computing efficiency compared to wflow sbm.

As the MTS-LSTM of the reference studies is trained on a NSE loss function, the third
research objective of this study is to investigate model performance when training
on a different loss function that is more sensitive to the magnitude of high flows.

With this research it is aimed to take a step towards improved access to streamflow
predictions for ungauged basins with the approach of a globally applicable model.
Moreover, the potential of neural networks in general and LSTM models in particular
to supplement process-based hydrologic model approaches is investigated.

1.4 research questions
Does a MTS-LSTM trained on data from US catchments prove to be globally applica-
ble as a hydrologic model?

The research question will be addressed by answering the following sub-questions:

• SQ1: How is model performance affected when using a globally available but
lower resolution dataset (ERA5) as model forcing compared to a regional high
resolution dataset (NLDAS-2)?

• SQ2: How does the trained MTS-LSTM model perform when applied in catch-
ments in the Meuse river basin, simulating ungauged catchments?

• SQ3: Can model performance regarding high flow representation be improved
by training the MTS-LSTM with a different loss function?

The model performance of the MTS-LSTM is benchmarked against the performance
of the process-based distributed model wflow sbm from Deltares.

Explanation of used terms:
River basin or basin refers to the the whole area from which rainfall contributes to the
streamflow of a main river such as the Meuse. The term catchment is used to refer
to a smaller unit within a river basin, describing the contributing area upstream of
a streamflow gauge. Ungauged basins refers to basins where access to streamflow
observations is not given. Globally applicable means that a single LSTM network is
trained with data of a number of catchments with diverse characteristics and then
ready to be applied in ideally any arbitrary basin of choice around the globe. Here,
this is tested exemplary in catchments where actually observations are available to
validate the predictions against.

1.5 reading guide
The structure of the report is as follows: Chapter 2 gives theoretical information on
hydrologic modelling approaches and background on machine learning methods in
general and the chosen model in particular. Chapter 3 presents the study domain
and used datasets including pre-processing methods, and describes the methodol-
ogy for each research sub-question. Chapter 4 serves to present and discuss the
results of the data analysis and the experiments for each sub-question to answer
the overall research aim. The last Chapter 5 concludes the findings and states rec-
ommendations for ongoing research in the field.
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2 T H E O R E T I C A L B A C KG R O U N D

In this chapter, background information is given on the principles of hydrologic
modelling and on the differences between conceptual or physics-based to data-
driven approaches in Section 2.1. The spatially distributed hydrologic model
wflow sbm model is described as it serves as benchmark model for the experiments
of this research. The concept of Machine Learning (ML) is introduced in Section
2.2 and related to the field of hydrology. The underlying principle of a Recurrent
Neural Network (RNN) leads to the functioning of LSTMs and the special form of
MTS-LSTMs.

2.1 hydrologic modelling

2.1.1 Conceptual and Physics-based Hydrologic Models

Hydrologic models are a simplified mathematical representation of the water cycle
in the way the modeler perceives the hydrologic processes. Therefore, a model is a
conceptualization of reality, which requires comprehension of interactions between
rainfall-runoff relations and storage of water. Physically based approaches attempt
to comply with the laws of conservation of mass, energy and momentum which
demand knowledge of boundary conditions, system stages and system parameters
(Hrachowitz and Clark, 2017). The accurate representation of how the water moves
and distributes on local, basin, regional or global scale requires knowledge on ge-
ographical and geological parameters like climate zone, surface cover, vegetation
and soil type, pores, slope and elevation.
In conceptual modelling, the before mentioned system parameters are regionalised
or generalised, and processes or storages are spatially lumped and can be repre-
sented by empirically found relations. Thereby, what is perceived as reality is sim-
plified and described with a higher degree of abstraction (Hrachowitz and Clark,
2017).

Hydrologic models in practice combine both physical-based (or process-driven) and
conceptual methods to a certain degree in their representation of the water cycle.
Thus, there exist various approaches diverging in how to deal with non-linearity
of the rainfall-runoff relation and heterogeneity of system parameters (e.g. land
cover, hydraulic conductivity, areal and temporal rainfall distribution) (Hrachowitz
and Clark, 2017; Bouaziz et al., 2021). The chosen model structure and equations
determine a number of parameters with unknown value which are calibrated with
observational data of mostly rainfall, evaporation and streamflow. This introduces
uncertainty due to the problem of equifinality, as one model can result in the same
output with different constellations of parameter values, without knowledge on
which parameter set is the representation closest to reality. As well, many models
can yield the same or similar outputs despite distinctive internal structures. Bouaziz
et al., 2021 compared a variety of process-driven conceptual models for the Meuse
catchment and found “substantial dissimilarities [. . . ] for annual and seasonal evap-
oration and interception rates, days of year with water stored as snow, mean annual
max snow storage, size of root zone storage capacity”.
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2.1.2 Deltares wflow sbm Process-based Hydrologic Model

The wflow sbm model is a spatially distributed hydrologic model, based on to-
pog sbm, a process-based storm flow generation model by Vertessy and Elsenbeer
(1999), schematised in Figure 2.1 (Verseveld et al., 2020). Distributed models work
with a grid structure and raise the lumped representation to a higher resolution,
e.g. from catchment-scale to one kilometer grid cells. Distributed models are an
approach that is a combination of lumped conceptual and physics-based models.

Figure 2.1: Overview of lumped processes and storages per grid cell and lateral flow repre-
sentation in the wflow sbm model (Verseveld et al., 2020)

Based on spatial time series of precipitation, Potential Evaporation and Transpira-
tion (PET) and temperature the processes in each grid cell are computed and the
discharge at the catchment outlet is modelled. The area of the catchment is deter-
mined from a Digital Elevation Model (DEM) and the derived flow direction of each
cell in the raster grid which covers the catchment area. In wflow sbm the hydrologic
processes are represented by storage units which are connected through equations
representing water fluxes. By modelling how the water moves through a grid cell,
the discharge at the catchment outlet can be determined as a combined runoff from
all grid cells with the help of kinematic wave routing for lateral subsurface, overland
and river flow (Imhoff et al., 2020). Processes modelled by wflow sbm are mentioned
briefly in Table 2.1.

Process Implementation
reference evaporation determined based on input of potential evaporation and land use

snow air temperature threshold (e.g. 0◦C) to determine rate of snow melt,
rate of refreezing and Snow Water Equivalent (SWE)

glaciers based on snow modelling snowpack and thickness threshold (≤
10mm) to determine ice fraction of snowpack and rate of glacier melt

interception analytical Gash model (daily time steps) or numerical Rutter model
(sub-daily): NetInterception = Precipitation - Throughfall - Stemflow

soil soil water accounting scheme, as in Topog sbm (Vertessy and Elsen-
beer, 1999)

kinematic wave overland and river flow kinematic wave routing to determine flow
across grid cells

Table 2.1: Model processes of wflow sbm (Verseveld et al., 2020)
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2.1.3 Data-driven Hydrologic Models

A distinct method of hydrologic modelling uses data-driven approaches which do
not consider natural processes and physical laws however statistically determine a
relation between input and output data i.e. between a set of meteorological forc-
ing parameters and streamflow observations. However, those methods are limited
in their ability of recognizing and reproducing non-linearity between rainfall and
runoff which naturally occurs in the hydrologic system when rainfall events cause
flushing of different storage types associated with their activation thresholds. For
example, effective precipitation describes the through-fall of precipitation to the
ground initiated when the interception storage of the vegetation cover is filled. Here,
concurrent evaporative processes have to be considered and introduce further non-
linearity. Therefore, it is not realistic to infer a runoff value from one unique value
of rainfall amount or intensity. Observations show that similar rainfall events can
cause significantly different response in river water levels depending on previous
conditions within the catchment and the spatial rainfall distribution.

Where the statistical analysis of linear rainfall-runoff relations has its boundaries,
ANNs allow to represent complex non-linearity between input and output through
ML methods (Kratzert et al., 2018). With ML a system can identify patterns between
independent input variables (meteorological parameters) and a dependent output
variable (streamflow) and based on these learned patterns predict values for the
output.

Since in nature the runoff can depend on processes in the water cycle of the preced-
ing days, weeks or months, a special type of RNN finds application in the field of
hydrologic modelling, the so called LSTM. While LSTM networks have been widely
and successfully used for speech recognition or language modelling, the past years
have proven that the memory function in the network is applicable for rainfall-
runoff modelling, as well. Research has shown that hydrologic modelling with LSTM

networks yield as good or better runoff predictions compared to process-driven hy-
drologic models (Kratzert et al., 2018).

2.2 hydrologic modelling with lstm neural net-
works

2.2.1 Structure of Neural Networks

The internal structure of a neural network is not related to the hydrologic cycle but
consists of nodes ordered into layers. Each node has a hidden state h that deter-
mines the processing of the input data. The hidden state of a neuron is composed
of its weight wi and a bias term bi. Figure 2.2 depicts how input information is
processed in a single neuron, described by the following equation:

y = ϕ(b +
m

∑
i=1

(ωixi)) (2.1)

where m different input variables xi, also called features, reach the neuron simulta-
neously, are multiplied by a weight wi, summed up and added to the bias b. An
activation function ϕ subsequently transforms the weighted field into a continuous
output signal y (Nielsen, 2015). Different functions can be chosen as activation func-
tion, among them sigmoid, ReLU, tanh or Softmax (Sharma, 2017).

Each network has one input layer with a neuron for each input feature, one out-
put layer with a neuron for each variable to predict and at least one hidden layer
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with an arbitrary number of neurons as shown in Figure 2.3 for a Feed-forward
Neural Network (FNN). The sum of all weight and bias terms in a network is the
number of trainable parameters which are tuned during the training of the network.
In a FNN each neuron of a layer is connected to all neurons of the previous layer.
Feed-forward denotes that information is only passed one-directional and no back-
propagation or feedback loops are involved like in LSTM networks (LeCun, Bengio,
and Hinton, 2015). A network with two or more hidden layers is called deep neural
network, as the level of abstraction increases with the number of neurons and layers
and thereby enabling to represent more complex patterns between input and out-
put. However, a deeper network or a higher number of neurons per layer does not
necessarily result in improved pattern recognition and depends on the amount of
available training data. The optimal architecture in terms of number of layers and
neurons therefore has to be determined for each application individually through
hyperparameter-tuning.

Figure 2.2: Artificial Neuron

Figure 2.3: Basic FNN with 2 layers (blue). Adding information flow from previous time
step changes the network into an RNN (red). Own figure.

2.2.2 Recurrent Neural Networks

Recurrent Neural Networks are suitable to process sequential data. Additional
to optimization through backpropagation, previous hidden states are considered
when updating the weights and bias values. Thereby, a memory function is added
to the network which enables analysis of time series, as the output for the current
input depends also on the hidden state resulting from input of the previous time
step which is shown in Figure 2.3 in red and in Figure 2.4 on the left.
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Vanishing gradient problem
Backpropagation as a method for updating model parameters of an RNN introduces
the problem of vanishing gradients (Shen, 2018). The further away from the output
layer a layer is located in the network, the more terms are multiplied when updat-
ing the parameters of its neurons. This results in exponentially small differences
between current and new hidden states which slows down the training process
significantly (Shen, 2018).

2.2.3 Long Short-Term Memory Neural Networks

Long Short-Term Memory neural networks are a specific form of RNNs with the
ability to solve the vanishing gradient problem through an adjusted structure of the
neurons. A neuron does not only have a hidden state but additionally has three
gates which determine the information flow through the neuron and define an ad-
ditional cell state. This cell state turns the short-term memory function of a simple
RNN into a memory over longer time-periods. Thus providing an essential feature
for modelling of rainfall-runoff relations where runoff depends on meteorological
conditions over the past months or years (Kratzert et al., 2018).

Figure 2.4: Simple RNN (left) and LSTM cell (right) (Karim, 2018)

The three gates determine if information is deleted (forget gate), if information is
added (input gate) and which information is outputted (output gate) (Kratzert et al.,
2018). Figure 2.4 shows the information flow through a LSTM cell at time t and how
hidden ht and cell ct state are updated based on the current input xt as well as on
ht−1 and ct−1. The information flow through the three gates is influenced by the
sigmoid or tanh activation function shown by S and T respectively. The current in-
put xt can thereby be composed of various features, in the figure exemplary shown
by three green nodes.

The following equations describe how each element x[t] of the input sequence x =
[x[1], ..., x[T]] at a time step 1 ≤ t ≤ T is processed through a LSTM network, while
x[t] is composed of a number of time-evolving input features (Kratzert et al., 2019c):

i[t] = σ(Wix[t] + Uih[t − 1] + bi) (2.2)

f [t] = σ(W f x[t] + U f h[t − 1] + b f ) (2.3)

g[t] = tanh(Wgx[t] + Ugh[t − 1] + bg) (2.4)

o[t] = σ(Wox[t] + Uoh[t − 1] + bo) (2.5)

c[t] = f [t]⊙ c[t − 1] + i[t]⊙ g[t]h[t] = o[t]⊙ tanh(c[t]) (2.6)
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with:

i[t], f [t], o[t] = input, forget and output gate
g[t] = cell input
h[t − 1] = recurrent input (hidden state of previous time step)
c[t − 1] = cell state of previous time step
W, U, b = learnable parameters per gate
σ(·) = sigmoid activation function
tanh(·) = hyperbolic tangent activation function
⊙(·) = element-wise multiplication

Dynamic and static input
The LSTM is further able to work with both input evolving over time xd and static
input xs simultaneously. In that case, the equation for the input gate i changes as
follows:

i[t] = σ(Wixs + bi) (2.7)

All other equations remain as mentioned before while x[t] is to be replaced with
xd[t]. Thus, the input gate does not change over time anymore but is initially deter-
mined by the static input xs. When using an LSTM for hydrologic applications, static
inputs can be characteristics describing the conditions within a catchment e.g. the
average vegetation cover, soil composition or slope. The additional input results in
the mapping of the meteorological time-series into streamflow being conditioned
by the values of the static input and begin different for each catchment (Kratzert
et al., 2019c).

2.2.4 Multi-Timescale LSTM

Multi-Timescale LSTM is a LSTM network with an individual branch for each time
scale introduced by Gauch et al. (2021) and is used for all experiments in the here
presented research study. The model is available in the GitHub repository of Neu-
ralHydrology (2020). In the case of predicting streamflow on a daily and hourly
scale, the MTS-LSTM network has two branches. First, the coarser branch processes
daily input time series with a look-back window of TD (e.g. 365 days) to produce a
streamflow prediction for one day. Then, to get hourly streamflow predictions for
the same day, the hidden and cell states of the daily branch from point TD − TH/24
are transferred to the hourly LSTM branch. TH is the look-back window based on
which the hourly predictions for one day are generated, e.g. 2 weeks = 336 hours.
See an exemplary visualization with TH = 72 hours in Figure 2.5.

Advantage over regular LSTM
This architecture brings the advantage of producing predictions on temporal higher
resolutions without an extreme increase in the size of the input time series, assum-
ing an unchanged look-back window: A regular LSTM would have to process 8760

hourly sequences of meteorological forcing time series to produce 24 hourly stream-
flow predictions of a single day. The MTS-LSTM generates those predictions with
365 daily + 336 hourly = 701 sequences and has proven to be more than twice as
efficient regarding computation time (Gauch et al., 2021).

Multiple time scale input datasets
Moreover, as depicted in Figure 2.5, each of the branches can work with an indi-
vidual input forcing dataset. Meaning, that the input to the daily branch can be
an entirely different forcing dataset with other meteorological parameters than the
hourly branch. Additionally, all branches can process meteorological forcing from
multiple datasets simultaneously.
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Loss function and consistency across time scales
Neural Networks are optimized with a loss function (Nielsen, 2015). The loss func-
tion is chosen by the user and can e.g. be the Mean Squared Error (MSE). For
conceptual hydrologic models the NSE is often used to calibrate and optimise the
model parameters. Also for neural networks the NSE is a possible loss function
to assess if the simulated streamflow matches the real, observed streamflow. The
MTS-LSTM with each one model branch for daily and hourly streamflow predictions
is evaluated on both time scales with the NSE loss function (Gauch et al., 2021). To
ensure that the daily predictions match with the daily mean of the hourly predic-
tions, Gauch et al. (2021) implemented a regularization in the loss function of the
MTS-LSTM model:

NSED,H
reg =

1
2 ∑

τ∈{D,H}

(
1
B

B

∑
b=1

NT
b

∑
t=1

(ŷT
t − yT

t )
2

(σb + ϵ)2

)
︸ ︷︷ ︸

NSE per time scale

+
1
B

B

∑
b=1

1
ND

b

ND
b

∑
t=1

(
ŷD

t − 1
24

24

∑
h=1

ŷH
t,h

)2

︸ ︷︷ ︸
mean squared difference regularization

(2.8)

with:

B = number of basins
NT

b = number of samples for basin b at time scale τ

yT
t = observed streamflow values

ŷT
t = predicted streamflow values

σb = observed streamflow variance of basin b over whole training period
ϵ = small value to guarantee stability

Figure 2.5: MTS-LSTM architecture with one branch for daily and one branch for hourly
predictions. Here with TD = 365 days and TH = 72 hours. The model weights
from the daily branch are shared with the hourly branch through a linear state
transfer layer FC{c,h} (Gauch et al., 2021).
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3 M AT E R I A L S A N D M E T H O D S

In this chapter, the underlying data for the research is described. In section 3.1 the
study domain, the sources of the input and output datasets and the pre-processing
methods applied to this data are specified. The model performance is assessed
by catchment clustering, evaluation metrics and hydrologic signatures which are
presented in Section 3.2. Then, Sections 3.3, 3.4 and 3.5 explain the methodology
used to answer each of the three research sub-questions.

3.1 data

3.1.1 Study Domain

For the training of the MTS-LSTM 516 catchments included in the Camels US dataset
are chosen. Those catchments are headwater catchments with an area smaller 2000

km2. Due to little to no reservoir presence and their upstream location the catch-
ments are considered as near natural. This is important as the neural network is
supposed to learn and mimic natural water cycle processes. Anthropogenic inter-
vention in the rainfall-runoff process would ingest irregularities in the input-output
relation and thereby deteriorate model performance. The Conterminous United
States (CONUS) are structured into 18 Hydrologic Response Unit (HRU) which can
be identified by a 2-digit Hydrologic Unit Code (HUC). Figure 3.1 depicts the dis-
tribution of size and number of catchments per HRU used for this study. Only 2 (5)
catchments of HRU 9 (16) are included in this study and all catchments of this unit
have the overall largest (smallest) area. The catchment area and shape are derived
based on the global digital elevation model Merit DEM with a resolution of 3 arc
seconds (Yamazaki et al., 2017) and the resulting flow direction is computed with
the package pyflwdir1.

To test the trained model regarding its applicability in out-of-sample catchments,
five near-natural headwater catchments in a European river basin, the Meuse basin,
are chosen (see Figure 3.2). The Meuse is a rain-dominated river with seasonal
runoff varying largely throughout the year, mainly due to large evaporation dif-
ferences between summer (high) and winter (low) (Bouaziz et al., 2020). The Bel-
gian catchments can have snow every year, however, the contribution to runoff is
low with maximum 15 mm/yr SWE (Bouaziz et al., 2020). The catchments are de-
scribed more detailed in Table 3.1. Catchment 6, Treignes has the highest forest
fraction, largest area and no fissured aquifers. Opposed to that, catchment 702,
Yvoir, shows fissured aquifers and agricultural land use. The two catchments 701

and 703, Hastiere and Warnant, have been part of the severe floods in July, 2021.
In Hastiere, fissured aquifers occur, the forest fraction is high and less land is used
by agriculture. In Warnant, no fissured aquifers occur while agriculture is more
present and forest area smaller. The flashiness index is higher for catchment 701.
Catchment 13, Huccorgne, has the smallest forest fraction and highest agricultural
use and is located in the flattest area. Mean precipitation and streamflow are here
lowest from those five selected catchments while the silt fraction in the soil is high-
est.

1 https://github.com/Deltares/pyflwdir

12



Figure 3.1: Number and size of Camels US catchments of each HRU, data source: Addor
et al. (2018)

Name ID P PET Q PET
P

Q
P flash. forest agriculture

- mm
a

mm
a

mm
a % % % % %

Treignes 6 985 579 398 60 41 28 54 27

Huccorgne 13 737 593 181 82 25 19 3 80

Hastiere 701 802 582 285 73 36 32 41 40

Yvoir 702 865 577 264 68 31 13 16 60

Warnant 703 819 586 275 72 34 12 20 64

Name ID fissures clay sand silt area slope
- % % % % km2 %

Treignes 6 0 22 21 57 551 6.6
Huccorgne 13 16 21 9 70 307 2.6
Hastiere 701 0 24 21 55 169 5.4
Yvoir 702 71 24 13 63 226 6.4
Warnant 703 56 24 15 61 127 6.2

Table 3.1: Attributes for selected catchments of Meuse basin, from (Bouaziz et al., 2020).
flash.: Flashiness-index, fissures: fissural aquifers.

Figure 3.2: Five test catchments from the Meuse river basin in the Belgian Ardennes.
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3.1.2 Datasets

Streamflow
Neural Networks and process-based hydrologic models require streamflow obser-
vations over many years for calibration. The United States Geological Survey (USGS)
Water Information System provides sub-daily streamflow observations for the 516

selected US catchments. Gauch et al. (2020) provide the time series averaged to
hourly and daily time steps over the period from 01.10.1979 until 30.09.2018. The
time series from 1990 until 2003 serves as training data. For ten catchments the time
series starts not before 2008 (see catchment IDs in Appendix B.1), which therefore
are treated as ’ungauged catchments’ within the US.
For the Meuse test catchments, streamflow observations are required to assess
model performance when using the US trained MTS-LSTM to simulate ungauged
catchments, as well as for the training of the regional Meuse MTS-LSTM. Observa-
tions are available from the Global Runoff Data Centre (GRDC) 2.

Catchment attributes
The Camels US dataset provides a range of catchment characteristics describing cli-
mate, topography, soil, land cover and hydrology of US catchments. Kratzert et al.
(2019c) performed an attribute ranking based on the sensitivity of an Entity-Aware -
LSTM (EA-LSTM) regarding 27 Camels US attributes shown in Table 3.2. The climatic
indices are calculated from the Daymet dataset over the period from 01.10.1989 until
30.09.2009. The hydrologic indices are based on USGS streamflow data over the same
period, the land-cover data is derived from MODIS over the period from 2002 until
2014 and PET is determined using Priestley-Taylor method calibrated per catchment
(Addor et al., 2017).
To work on a global scale, global datasets are used to derive equal or similar at-
tributes. For this purpose, the HydroMT package3 from Deltares is used. Therefore,
the created static attributes dataset is referred to as HydroMT dataset. All underly-
ing data sources are shown in Table 3.2. Attributes describing the soil composition
are excluded since, in addition to their lower sensitivity ranks, the soil composition
is respected when determining the Saturated hydraulic conductivity with the pedo-
transfer functions that are implemented in HydroMT (Imhoff et al., 2020). As the
Precipitation seasonality is an attribute with lower sensitivity (0.27) and is derived
from temperature and precipitation, which are included in the forcing, it was de-
cided to exclude this attribute. Although some attributes are derived from the
forcing time series (e.g. mean precipitation or mean PET) or dependent on other
attributes (e.g. aridity as the ratio of mean precipitation to mean PET) they are not
excluded due to higher sensitivity rankings. As this study focuses on the generaliza-
tion of an MTS-LSTM and applicability in the case of ungauged basins, the search for
independent attributes with the execution of a new sensitivity analysis is refrained
from.

Meteorological parameters
To predict streamflow, the input parameters for the MTS-LSTM need to describe me-
teorological conditions over time. Process-based hydrologic models require specific
input parameters depending on the implemented conceptualisation of the water
cycle. The forcing for the wflow sbm model includes precipitation, PET and temper-
ature time series. The forcing parameters are derived from the ERA5 dataset, as
it is globally available. As the performance of the LSTM model trained with ERA5

data will be compared to the same model trained with NLDAS-2 data, the forcing
parameters available from NLDAS-2 are chosen.

2 https://www.bafg.de/GRDC/EN/Home/homepage node.html
3 https://github.com/Deltares/hydromt
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Catchment Sensi- depen- ex- Camels US HydroMT
Rank characteristic tivity dent cluded data source data source

1 Mean precipitation 0.68 yes Daymet ERA5

2 Aridity 0.56 yes Daymet ERA5

3 Area 0.50 USGS Merit Hydro
4 Mean elevation 0.46 USGS Merit Hydro
5 High precipitation

duration
0.41 yes Daymet ERA5

6 Fraction of snow 0.41 yes Daymet ERA5

7 High precipitation
frequency

0.38 yes Daymet ERA5

8 Mean slope 0.37 USGS Merit Hydro
9 Geological perme-

ability
0.35 GLHYMPS GLHYMPS

10 Fraction of carbonate
sedimentary rock

0.34 GLiM GLiM

11 Clay fraction 0.33 yes STATSGO
12 Mean PET 0.31 yes Daymet ERA5

13 Low precipitation fre-
quency

0.30 yes Daymet ERA5

14 Soil depth to bedrock 0.27 yes Pelletier
15 Precip. seasonality 0.27 yes Daymet yes
16 Fraction of forest 0.27 yes USGS
17 Sand fraction 0.26 yes STATSGO
18 Saturated hydraulic 0.24 STATSGO soilgrids,

conductivity p.transfer
19 Low precip. duration 0.22 yes Daymet ERA5

20 Max. GVF 0.21 MODIS vito
21 Annual GVF diff. 0.21 MODIS vito
22 Annual LAI diff. 0.21 MODIS MODIS
23 Volumetric porosity 0.19 STATSGO GLHYMPS
24 Soil depth 0.19 STATSGO soilgrids
25 Max. LAI 0.19 MODIS MODIS
26 Silt fraction 0.18 yes STATSGO
27 Max. water content 0.16 STATSGO soilgrids

Table 3.2: Camels US catchment characteristics used as static attributes by Kratzert et al.
(2019c) who determined model sensitivity. Attributes that depend on forcing time
series or other attributes are indicated as dependent. Attributes which are not used
in the range of this study are indicated as excluded. The right column shows the
data sources from which the attributes are derived for the HydroMT attribute
dataset.

NLDAS-2: The North American Land Data Assimilation System Phase 2 Dataset
(NLDAS-2) provides hourly data for eleven different forcing parameters from 1979 to
present with a spatial resolution of 0.125 degree (∼ 12km). This reanalysis dataset
is based on different infiltration, soil moisture and land surface models (Xia et
al., 2012). Precipitation is based on temporal disaggregation of daily observations
supported with disaggregation-weights derived from hourly radar precipitation es-
timates.

ERA5: The ERA5 dataset is the climate reanalysis (fifth generation) of the European
Center for Medium-Range Weather Forecasts (ECMWF) providing atmospheric pa-
rameters with global coverage. All parameters are available from 1979 to present,
but a preliminary back-extension to January 1950 is already available (Bell et al.,
2020). Moreover, climate prediction datasets up to the end of the 21st century4

based on the ERA5 dataset are in development. This facilitates research on climate
scenarios and developments with a model trained on ERA5 data . ERA5 is of 0.25

4 https://climate.copernicus.eu/high-resolution-climate-projections

15



degree (∼ 31km) resolution and provides forcing time series on hourly time steps.
The data origins from the reanalysis of observations and the model output from the
ECMWF Integrated Forecast System.

Table 3.3 shows all eleven forcing parameters included in the NLDAS-2 dataset and
the equivalent parameters derived from the ERA5 dataset. Seven of the parameters
are the same in both datasets, given in identical units. Precipitation, and evapora-
tion as well as convective precipitation from ERA5 are measured in m instead of mm
and are converted to the same unit as given in the NLDAS-2 data. The convective
fraction of precipitation is the ratio of convective precipitation to the total precipita-
tion. Specific humidity is not provided in ERA5, however, the possible amount of
water taken up by the air depends on the dew point temperature which is available
in the ERA5 data. The correlation between both parameters can be seen exemplary
in Figure 3.3 for one catchment with a correlation coefficient of 0.92. Not exactly
matching absolute values but a strong correlation between the two parameters is
required, since the output of the neural network depends on the relative change of
the input parameters over time, not on the absolute values.

Nr. NLDAS-2 name Unit ERA5 name Unit

1 Total precipitation kg
m2h Total precipitation m

h

2 2m air temperature K 2m air temperature K

3 Surface pressure Pa Surface pressure Pa

4 Surface downward longwave
radiation

W
m2 Mean surface downward

longwave radiation flux

W
m2

5 Surface downward shortwave
radiation

W
m2 Mean surface downward

shortwave radiation flux

W
m2

6 2m specific humidity kg
kg 2m dew point temperature K

7 Convective Available Poten-
tial Energy (CAPE)

J
kg CAPE J

kg

8 Potential evaporation kg
m2h Potential evaporation m

h

9 Convective fraction − Convective precipitation m
h

10 10m u wind component m
s 10m u-component of wind m

s

11 10m v wind component m
s 10m v-component of wind m

s

Table 3.3: Forcing parameters available from NLDAS-2 and equivalent parameters from
ERA5 dataset. Parameters with gray background differ between both datasets
in their unit or definition.

Figure 3.3: Time series plot of 2m dew point temperature in [K] (blue, ERA5) and specific
humidity in [kg/kg] (orange, NLDAS-2) for catchment 07208500 with a correla-
tion coefficient of 0.92.
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3.1.3 Data Pre-processing

The data preparation for training the MTS-LSTM requires a check for missing values
and outliers in observed streamflow, catchment attributes and dynamic forcing. As
the NLDAS-2, Camels US and USGS data has been used by the NeuralHydrology
(2020) group, a quality check showed that the provided data does not require fur-
ther pre-processing. A comparison of monthly and yearly climatologies based on
NLDAS-2 and ERA5 forcing revealed deviation in monthly means and yearly sums
of e.g. precipitation, however, the differences were in the expected range.
For the Meuse, the forcing of two catchments (701 and 703) required handling of
outliers. Values above or below a certain threshold or within a range around the
mean are replaced with the mean of the whole time series. The forcing raw and
cleaned time series for catchment 703 are exemplary shown in Appendix D.3.

Scaling
The units of the different input parameters often differ from each other (e.g. mm/h,
◦C, Pa) which can result in different scales for each input parameter. If one parame-
ter varies in units, e.g. from m to km, and contains a large range of values across all
catchments, the model sensitivity to this parameter would suffer and subsequently
the model performance would decrease. A crucial step of data pre-processing is
therefore the scaling of numerical input parameters. Here, the scaling is done by
standardization. The time series of the input parameters are taken over the training
period only, excluding all data from validation and testing period, and the mean x̄d
and standard deviation σxd are calculated for each parameter. Then, for each value
in the time series the standardised value xd,scaled is calculated with Equation 3.1.
The scaler determined with the training data for a parameter thus consists of its
mean and standard deviation and is stored to the local drive to later scale the input
data for validation and testing purposes with this exact scaler. The same scaling
method is applied to the target parameter y (streamflow). ȳ and σy of observed
streamflow are determined over the training period of all catchments included in
the model training. The scaler is first applied to back-scale the modeled stream-
flow predictions in the training process and compare the output with the observed
streamflow. Later, the back-scaling is applied in the same way during validation
and testing with Equation 3.2. The same standardization is applied on the static
attributes.

xd,scaled =
xd − x̄d

σxd

(3.1)

y = yscaled ∗ σy + ȳ (3.2)

3.2 evaluation methods
To enable the analysis of the large group of 516 US catchments, a clustering of these
catchments based on their characteristics is done before the model performance
assessment. The modeled streamflow time series is compared to the observed time
series and analysed by the means of metrics and flow signatures, with a focus
on the representation of high flow events. Grouping the US catchments based on
the metrics and signatures will show if and where the model performance can
be related to the catchment characteristics. In this section, the clustering method,
applied metrics and signatures are described.
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3.2.1 Clustering based on Catchment Characteristics

The selected 516 US catchments are clustered based on the 21 attributes described
under 3.1.2. The chosen clustering method is k-means clustering where k describes
the number of clusters to divide the given data into. The goal is to find a number
of catchments with similarities across certain attributes that build a cluster. Further-
more, these clusters are plotted together in the Budyko Framework.

K-means clustering
To determine the optimal number of clusters, the silhouette coefficient5 is calculated.
The higher the coefficient the better the individual clusters are distinguishable. Fig-
ure 3.4 shows the silhouette coefficient for clustering the 516 catchments based on
Camels US attributes and HydroMT attributes in up to ten clusters. With the Camels
US attributes, clustering into six or seven clusters has the highest silhouette coeffi-
cient (disregarding the option of only two clusters). As grouping into seven clusters
still leads to groups with more than 30 catchments, k=7 is chosen. For HydroMT
the optimal choice is k=8 clusters. The clustering is done with the sklearn.cluster and
sklearn.metrics module from scikit-learn 6.

Figure 3.4: Silhouette coefficients for clustering 516 US catchments on 21 Camels US at-
tributes (left) and 21 HydroMT attributes (right)

Budyko Framework
The Budyko Framework, developed by Budyko (1974), is based on the hypothe-
sis that the long term water balance of a catchment is the partitioning of mean
precipitation P̄ into mean evaporation and transpiration ĒT and discharge Q̄. The
underlying assumption is that storage changes impact the water balance on a short
term time scale but balance out over long time periods ¯∆(S) = 0. Thus,the water
balance equation results in:

P̄ = ĒT + Q̄ (3.3)

The Budyko curve then sets the evaporative index AET
P , as the fraction of Actual

Evaporation and Transpiration (AET) to mean precipitation P, in relation to the arid-
ity index PET

P , signifying the PET as fraction of mean precipitation:

AET
P

=

√
PET

P
∗ tanh

PET
P

−1
∗ (1 − e−

PET
P ) (3.4)

The Budyko Framework is limited by the water limit and the energy limit. The
former means that not more water can evaporate or be transpired than is available
through precipitation (AET ≤ P ⇔ AET

P ≤ 1). The energy constraint means that the
available thermal energy through radiation can maximally result in the potentially
possible evaporation and transpiration PET, therefore AET ≤ PET ⇔ AET

P ≤ PET
P .

When a catchment plots higher in the Budyko frame on the vertical axis, it is an
indication for less mean discharge and larger mean evaporation and transpiration.

5 https://scikit-learn.org/stable/auto examples/cluster/plot kmeans silhouette analysis.html
6 https://scikit-learn.org/stable/modules/classes.html
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Catchments plotting between 0 and 1 on the horizontal axis are energy limited,
catchments plotting > 1 are water limited while a shift to the right signifies a change
in climate towards less precipitation and warmer temperatures.
Annual values of AET

P as a function of PET
P can deviate from the long term value

towards more arid or humid conditions. Furthermore, the partitioning of P in AET

and Q can fluctuate depending on the meteorological conditions in each year (Jones
et al., 2012). Reasons for catchments not plotting on or close to the Budyko curve
are missing and low quality measurements of precipitation, temperature, evapora-
tion and streamflow, anthropogenic interventions like land use change, or effects of
and response to climate change. Existing methods to determine evaporation con-
sider different meteorological parameters (temperature, radiation, wind speed and
direction) and vary in results for PET. Changing climatological conditions result in
variations of rainfall and temperature magnitudes, patterns, frequencies and dura-
tion upon which the natural system responds. Subsequently, the main vegetation
type can change and affect evaporation, transpiration, storage and runoff processes.

3.2.2 Evaluation Metrics

Evaluation metrics help to assess model performance by describing how well the
simulated streamflow represents the observed streamflow. In hydrology, a multi-
criteria assessment of model performance is required as similarity of both hydro-
graphs (simulated and observed) can be interpreted regarding various indicators,
depending on the overall modelling goal and intended application for the stream-
flow time series. Therefore, not only the commonly used NSE and its further de-
velopment the Kling-Gupta Efficiency (KGE), but also metrics regarding peak flows
are considered and described subsequently. The following notation is chosen for all
equations:

Qs = simulated flow
Qo = observed flow
t = time step
σ = standard deviation
h = index for high flow

To assess the impact on model performance when using a lower resolution dataset
to derive forcing parameters, the results are systematically analysed. First, all US
catchments are divided into groups regarding the peak timing, high flow bias and
peak magnitude as shown in Table 3.4. In addition to the metrics used for group-
ing, NSE and KGE are considered for the analysis. Then, the differences between
model results from NLDAS-2 forcing and from ERA5 forcing are determined and
quantified per group. The metrics are described in more detail in the following
sections.

Metric or Signature Performance groups
Best Lowest

Peak timing error, daily [days] ∆t < 1 2 ≤ ∆t
Peak timing error, hourly [hours] ∆t < 3 6 ≤ ∆t
High flow bias (FDC) [%] FHV < |±15| |±30| < FHV
Peak magnitude, rel. difference [ - ] ϵrel < 0.1 0.5 < ϵrel

Table 3.4: Grouping catchments according to model performance based on different metrics.

NSE
The Nash-Sutcliffe Efficiency (NSE) is a broadly used measure of performance for
hydrologic models. The dimensionless score describes how good the simulated val-
ues fit the observed flow values. The MSE between observation and simulation is
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normalised to the sum of the observations’ variance σ2
o (Eq. 3.5) (Gupta et al., 2009).

Subtracting this ratio from 1 results in NSE values ranging from −∞ to 1 while a
value closer to 1 indicates a better fit. An NSE > 0.75 is regarded as ”very good”
while NSE values below 0 indicate that the observed average is a better fit than the
simulated values (Nash and Sutcliffe, 1970).
The assessment of a model on a large number of catchments is done by determina-
tion of the mean NSE and visualization in a cumulative density function of all NSE

values.

NSE = 1 − ∑T
t=1(Q

t
s − Qt

o)
2

∑T
t=1(Qt

o − Qo)
2
= 1 − MSE

σ2
o

(3.5)

KGE
The Kling-Gupta Efficiency (KGE) is a performance measure developed from a de-
composition of the NSE (Eq. 3.6). The NSE has been criticised to overestimate model
performance in highly seasonal regions and therefore being less suitable for com-
parison of model performance across basins with different seasonality (Gupta et
al., 2009). The three components of the NSE are the linear correlation coefficient r
(Eq. 3.7), the bias α as the ratio of standard deviations of observed and simulated
flow (Eq. 3.8) and the coefficient of variances β as the ratio of mean observed and
simulated flow (Eq. 3.9). For r, values can reach from −1 to 1 while values closer
to 1 indicate a stronger correlation, 0 means no correlation and negative values an
inverse correlation. The αNSE can range from 0 to ∞ and values closer to 1 are
desirable. The βNSE can range from −∞ to ∞ and values closer to 0 indicate better
performance.

KGE = 1 −
√
(r − 1)2 + (α − 1)2 + (β − 1)2 (3.6)

r = ∑T
t=1(Q

t
o − Qo)(Qt

s − Qs)√
∑T

t=1(Qt
o − Qo)2(Qt

s − Qs)2
(3.7)

αNSE = σs/σo (3.8)

βNSE = (µs − µo)/σo (3.9)

Flow duration curve
The Flow Duration Curve (FDC) is a representation of all flows of a hydrograph
over a certain period of time in descending order, disregarding their time of oc-
currence (Searcy, 1959). An FDC is more expressive when based on longer time
series. Thereby, full hydrologic years should be considered to not capture e.g. a wet
winter without the corresponding dry summer season. FDCs can be computed for
different time scales like individual months, years, decades or the entire length of
an available time series. The time scale should be considered when analysing and
interpreting the FDC. The curve shows which percentage of the time the flow rate
is equal to or higher than a certain value. Q95 refers to the flow rate equalled or
exceeded in 95% of the time i.e. the low flows, Q5 respectively refers to the high
flow rates equalled or exceeded in 5% of the time. Additional model performance
metrics are deduced from the FDC and explained in the following.
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Figure 3.5: Typical FDC shapes with logarithmic y-axis.

High flow bias
To assess how well the magnitude and occurrence of peak flows are represented in
the simulated flow, the peak flow bias of the FDC is determined. The sum of all de-
viations between simulated and observed high flows with a maximum exceedance
percentage of 2% is related to the sum of the observed 2% exceedance flow rate (Eq.
3.10). The closer the bias is to 0, the better is the peak flow fit. As simulations can
be higher or lower than the observations, the peak flow bias can range from −∞ to
∞ (Yilmaz, Gupta, and Wagener, 2008). FHV stands for FDC High Segment Volume.

FHV =
∑Th

th=1(QS,h − QO,h)

∑Th
th=1 QO,h

∗ 100 (3.10)

Peak timing error
The time difference between observed and modeled peak flows is determined with
the same method as implemented by NeuralHydrology (2020). All flows higher
than the mean flow plus one standard deviation in the observed streamflow time
series are selected. Only peaks with a distance of 100 days (hours) are kept for
the analysis. Therefore, the lowest peaks are rejected until the distance criterion is
fulfilled. Then, the simulated time series is searched for a peak around the same
point in time ± three days (twelve hours), for all peaks found in the observed daily
(hourly) time series. The peak timing error is the mean of all absolute time differ-
ences between observed and simulated peaks for the analysed time series of one
catchment.

Peak magnitude error
The peaks are found with the same method as for the peak timing error metric.
Then the absolute and relative differences between the observed and the simulated
peak are determined, with Equation 3.11 and 3.12. The final metric is the average of
the absolute ϵabs and ϵrel values per catchment. Additionally, in the simulation the
recognised peaks are counted and the sum of peaks that are higher (lower) than the
observed time series is determined, referred to as count, sim<obs (sim>obs).

ϵabs = Qo − Qs (3.11)

ϵrel =
ϵabs
Qo

(3.12)

3.2.3 Hydrologic Signatures

The following five flow signatures regarding high flows are calculated based on the
observed and the modeled streamflow time series. A comparison of both values
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per signature (observed and modeled signature) serves as model performance in-
dicator. For the US model a correlation coefficient between observed and modeled
signatures can be calculated based on the results of a large number of catchments
to see if and which parts of the high flow are better represented by the model. For
the model evaluation with signatures, methods from NeuralHydrology (2020) are
used.

High flow frequency describes how often the threshold · Q̄ is exceeded continuously.
The threshold is set to 0.9. High flow frequency is the average frequency measured
in d/a.

High flow duration describes how many time steps on average the threshold · Q̄ is
exceeded continuously. The threshold is set to 0.9. High flow duration is measured
in d or h according to the modeled time scale.

95 % flow quantile (Q95) describes the flow magnitude which occurs in 95 % of the
time. This is the streamflow value in m3/s (or mm/h or mm/d) of the FDC at 5 % on
the x-axis, as it is exceeded in 5 % of the time.

Mean half flow date (HFD) describes the day of the year at which half of the cumu-
lative yearly discharge is reached. The resulting day is the average of all considered
hydrologic years starting on October, 1st.

Runoff ratio (Q̄/P̄) describes the unit-less ratio of mean discharge to mean precipi-
tation over the considered time period.

3.3 sq1: us mts-lstm model
The first research sub-question is dedicated to the comparison of the model per-
formance when training on data of the global dataset ERA5 compared to a model
trained on the local dataset NLDAS-2. Figure 3.6 shows a scheme of the applied
methodology. The number (1) shows the location of the 516 training catchments
within the US which are clustered into groups showing similar characteristics (2),
see Section 3.2.1. The characteristics serve as static model input (3), once derived
from the Camels US dataset, once from HydroMT. The meteorological data from
NLDAS-2 and ERA5 serve as dynamic model input (4). All models are trained with
(calibrated against) observed streamflow from USGS stations (5). To assess the effect
on model performance, all four combinations of dynamic and static inputs are used
to train a MTS-LSTM, resulting in the four models A1, A2, B1, and B2 (6). These
models receive spatially averaged data as input. The simulated streamflow time
series from the benchmark model wflow sbm (7) are obtained with gridded ERA5

and HydroMT input data. The performance of all models is analysed using metrics
and hydrologic signatures defined in Section 3.2 (8) and the 516 catchments are then
clustered again based on these metrics (9). Thus, the overlap between previously ob-
tained clusters based on catchment characteristics and the clusters based on model
performance can be assessed (10).
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Figure 3.6: Overview of methodology for sub-question 1.

3.3.1 Training - Validation - Testing Ratio

The available time range covered by the forcing parameter datasets NLDAS-2 and
ERA5 and by the observed streamflow for the US catchments reaches from 1979

until 2018. This data is split into three sets, one for training, one for validation
during the training process and one for testing of the model, see Figure 3.7. These
ratios are chosen to make results more comparable with those from (Gauch et al.,
2021) who have used the same ratios with NLDAS-2 forcing data and Camels US
attributes.

Figure 3.7: Training - Validation - Testing ratio for data from US catchments

3.3.2 Hyperparameter Tuning

The tuning of hyperparameters is a method to improve model performance through
adjustments of parameters that define the learning process of the model. Those hy-
perparameters can be selected manually by the user or optimised through methods.
Opposed to internal model states (the weight and bias values, cell states of LSTM net-
works) the hyperparameters do not change throughout the model training. As the
hyperparameters of the MTS-LSTM have been optimised by Gauch et al. (2021), a less
extensive tuning is performed for the hyperparameters and values shown in Table
3.5. MTS-LSTM networks with all possible combinations of hyperparameter values
are trained and evaluated and the configuration with the best results regarding the
mean NSE of all US catchments is chosen as the final hyperparameter configuration.
Due to time limitations, not all hyperparameters are tuned again for this study and
thus some parameters are taken over from Gauch et al. (2021), shown in Table 3.6.

The entire configuration set-up for model training and evaluation is defined in a
.yml file. An exemplary configuration file for one of the models of this research can
be found in Appendix (A).
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Hyperparameter Values MTS-LSTM
NLDAS-2 ERA5 Gauch

hidden size 32 64 128 128 64 64

dropout 0.2 0.4 0.6 0.2 0.2 0.4
epochs 30 50 30 30 30

batch size 256 2048 6000 2048 2048 256

Table 3.5: Values for hyperparameter tuning of MTS-LSTM with NLDAS-2 forcing and
Camels US statics, ERA5 forcing and HydroMT statics and values resulting from
tuning by Gauch et al. (2021). Values in bold are used for all model training exper-
iments with US data.

Hyperparameter Values

regularization yes
sequence length 365 days, 336 hours
learning rate* 1: 5e−4, 10: 1e−4, 25: 5e−5

loss NSE
optimiser Adam

Table 3.6: Values for hyperparameters taken over from tuning by Gauch et al. (2021).
*learning rate for epochs 1 to 9, 10 to 24 and 25 to final epoch

3.3.3 Training Experiments

To allow for an assessment of the effect on model performance when using a lower
resolution dataset, the MTS-LSTM has to be trained two times, ones with each forcing
dataset. For this purpose the combined data of all US catchments is used, no data
from the European test catchments is included. To also assess the quality of the
HydroMT dataset for catchment attributes, two experiments with NLDAS-2 and
ERA5 as forcing are performed.

Experiment Dynamic forcing dataset Static attributes
1A ERA5 HydroMT
1B ERA5 Camels US
2A NLDAS-2 HydroMT
2B NLDAS-2 Camels US

Table 3.7: MTS-LSTM training for dataset comparison.

3.3.4 Benchmark Predictions of wflow sbm

To benchmark the MTS-LSTM results against a process-based model, already existing
results from the distributed model wflow sbm are considered for the US catchments
and the Meuse catchments. The model is uncalibrated but parameters are estimated
through pedotransfer functions for each grid-cell (see Section 2.1.2) (Imhoff et al.,
2020).
For the US, the model has been applied over 484 of the 516 catchments that are
basis for the MTS-LSTM experiments. The grid cell size is 1 km and the wflow sbm
simulations reach from 2009 to 2019. The model input is derived from HydroMT
datasets like soilgrids, vito and MODIS and the catchment area is determined with
Merit Hydro, similar to the procedure for the static attributes for the MTS-LSTM

model (see Table 3.2). The PET is determined with the method of Bruin et al. (2016).
The precipitation forcing data comes from the MSWEP dataset (Beck et al., 2017),
PET and temperature from the ERA5 dataset. The results are on daily time scale.
For the Meuse wflow sbm, the forcing data comes from the ERA5a dataset and PET

is determined with the Makkink formula. The grid cell size is 600 m x 925m and
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used datasets are among others CORINE land cover7, soilgrids and MODIS for Leaf
Area Index (LAI). Streamflow predictions and observations for the years from 2013

to 2018 are available.

3.4 sq2: testing us mts-lstm for pub
The second research sub-question targets the applicability of the trained MTS-LSTM

outside the US with the example of the Meuse basin. Figure 3.8 illustrates the
methodology to answer this sub-question. The number of catchments in the Meuse
basin (1) is limited to five to allow for a more in-depth analysis of the tested models.
Each of these catchments is assigned to one of the clusters from SQ1 according
to the present characteristics, such that a statement regarding the expected model
performance can be made (2). The trained MTS-LSTM model 1A from SQ1 is tested
on these catchments with input from ERA5 and HydroMT (3). Additionally, a new
MTS-LSTM is trained explicitly regional on the data from the Meuse catchments (4).
The resulting streamflow time series are compared against observed streamflow and
against streamflow predictions from wflow sbm simulations obtained with ERA5

and HydroMT data (5). The performance analysis includes assessment of metrics
and hydrologic signatures (6) to answer the question of whether the US trained
MTS-LSTM is suitable as model for PUB and if a regional MTS-LSTM can compete with
wflow sbm.

Figure 3.8: Overview of methodology for sub-question 2.

The US model trained with ERA5 forcing and HydroMT statics is tested on five test
catchments in the Meuse basin to simulate an ungauged situation. Therefore, noth-
ing is changed on the model, it receives the same eleven meteorological parameters
derived from ERA5 that have been used for training and the same static attributes
derived from HydroMT as input. Each test catchment is assigned to a cluster from
the previous catchment clustering of the US catchments to find out to which US
region the Meuse catchments share most similarities in their characteristics.

The model results for the Meuse catchments are assessed regarding high flow met-
rics and signatures and compared to those achieved with the w f lowsbm model. Ad-
ditionally, the results are compared to a regional MTS-LSTM trained on ERA5 forcing
data and HydroMT statics. This regional model is once trained on data from all five
test catchments and then tested on a test period of each catchment, see Table 3.8.
An individual hyperparameter tuning based on the validation results resulted in
the model configuration shown in Table 3.9. Subsequently, five models of the same
configuration are trained on four catchments, each time excluding one of the five
Meuse catchments which then serves as independent test catchment to simulate an

7 https://land.copernicus.eu/pan-european/corine-land-cover
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ungauged situation, see Table 3.10. The training and validation period for these four
models is the same as for the regional model. However, the testing is performed on
the whole available time series from 2005 to 2017 of the excluded catchments. With
this approach, the model is tested for streamflow predictions in the same period as
the training data but also over five years lying ahead of the training period.

Period Start End
Training 10.10.2005 30.09.2012

Validation 01.10.2012 30.09.2013

Testing 01.10.2013 30.09.2017

Table 3.8: MTS-LSTM training, validation, testing periods for the Regional Meuse model.

Hyperparameter Values
hidden size 32 64 128
dropout 0.2 0.4
epochs 30 50
batch size 256 512
learning rate* 1: 5e−4, 2: 1e−4, 5: 5e−5

1: 5e−4, 10: 1e−4, 20: 5e−5

Table 3.9: Values for hyperparameter tuning of MTS-LSTM with ERA5 forcing and HydroMT
statics for the Regional Meuse model. Bold values are used for subsequent model
training.

Meuse 1 2 3 4 5

PUB Train Test Train Test Train Test Train Test Train Test
6 x x x x x
13 x x x x x
701 x x x x x
702 x x x x x
703 x x x x x

Table 3.10: Method to test the Regional Meuse MTS-LSTM for PUB. Each of the five models
is trained with data from four catchments and then tested on the fifth catchment.

3.5 sq3: different loss function
The third research sub-question tries to answer if replacing the NSE loss function
leads to an improved high-flow representation. A loss function is chosen that
is more sensitive to magnitude differences between observed and predicted peak
height. Streamflow values are not normally distributed but can be better approxi-
mated through e.g. a Gumbel distribution due to extremely high values occurring
less often than the baseflow. This has the effect that a NSE loss function leads to a
better fit for the baseflow and neglection of peak height in the case that peaks are
stronger related to the baseflow. Only, in catchments with a naturally high baseflow
and less extreme peaks, the NSE loss function can result in a better fit regarding
both baseflow and peaks. Therefore, a different loss function is tested to yield bet-
ter performance regarding peak height, also in catchments with low baseflow and
high peaks.
Figure 3.9 shows a scheme of the applied methodology. The chosen loss function
is the Mean Quadrupled Error (M4SE) and is implemented in the NeuralHydrology
(2020) code base. The experiments from SQ1 with ERA5 and HydroMT (1A) and
with NLDAS-2 and Camels US (2B) are repeated. Each time a MTS-LSTM is trained
on 516 catchments with the same training, validation and testing periods as for
SQ1 and same hyperparameter settings. Equally, a regional MTS-LSTM for the Meuse
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basin is trained as in SQ2 but with the new loss function. The model performance
is analysed by means of the metrics and hydrologic signatures described in Section
3.2.2 and 3.2.3 to see if improvements regarding high flow can be observed. Further,
differences in the clusters built for SQ1 are investigated.

Figure 3.9: Overview of methodology for sub-question 3.

To answer the first two research questions, MTS-LSTM neural networks trained with
the NSE as loss function are used. However, the NSE is not particularly sensitive re-
garding the magnitude of high flows. Therefore, a different loss function is chosen
to see if model performance regarding metrics and signatures of high flow improve.
The M4SE replaces the NSE as loss function, see Equation 3.13. As the difference
between Qs and Qo is taken to the power of four instead of two, large differences
in magnitude are translated into larger loss values with the M4SE compared to the
MSE or NSE. Thus, a larger loss results in more internal weight and bias adjustments
and a training with respect to the magnitude of higher flows instead of the overall
overlap between simulated and observed streamflow.

M4SE =
1
N

∗
N

∑
i=1

(Qs − Qo)
4 (3.13)

The new loss is implemented by extending the BaseLoss class in the neuralhydrology
repository. The new loss function is tested by repeating experiments 1A and 2B from
Table 3.7, ERA5 forcing with HydroMT statics and NLDAS-2 forcing with Camels
US statics. Further, the new loss function is tested on a regional model trained on
Meuse data with ERA5 forcing and HydroMT statics.
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3.6 overview of models

SQ Model name Model type Training Testing Comments

1A MTS-LSTM US US ERA5, HydroMT
1B MTS-LSTM US US ERA5, Camels US
2A MTS-LSTM US US NLDAS-2, HydroMT
2B MTS-LSTM US US NLDAS-2, Camels US

1

wflow US wflow sbm US US ERA5, HydroMT
1A PUB MTS-LSTM - Meuse Model 1A from SQ1

US no MTS-LSTM - Meuse no static input
US less MTS-LSTM - Meuse less static input
Regional Meuse MTS-LSTM Meuse Meuse
PUB Meuse MTS-LSTM Meuse, 4 Meuse, 1 4 different models

2

wflow Meuse wflow sbm Meuse Meuse
M4SE US MTS-LSTM US US Like 1A and 2B (SQ1)

3

M4SE Meuse MTS-LSTM Meuse Meuse Like Regional Meuse (SQ2)

Table 3.11: Overview of models used for each research sub-question (SQ). The same colors
are used in plots and tables.
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4 R E S U LT S A N D D I S C U S S I O N S

In this chapter, the results are presented and discussed in five sections: 4.1 Analysis
of the datasets, 4.2 Clustering based on catchment characteristics, 4.3 Performance
analysis of US MTS-LSTM (SQ1), 4.4 Performance analysis in Meuse basin (SQ2) and
4.5 Analysis of using a different loss function (SQ3). The first two sections each
end with a summary of the relevance for the overall research focus. The three
last sections each deal with one of the research sub-questions, first presenting the
findings and then the discussion in the context of the research aim. The final section
of this chapter points out relevant limitations of the research method.

4.1 dataset analysis

4.1.1 Dynamic Input: Comparison NLDAS-2 and ERA5 Forcing

To compare the two forcing datasets NLDAS-2 and ERA5, the year long time se-
ries are re-sampled to create a monthly and yearly climatology per HRU. For this
purpose the whole available time series from 01.10.1981 until 30.09.2018 are used.
The most significant differences regarding monthly precipitation occur in the HRUs
17 and 18, see Figure 4.1. Here, ERA5 underestimates precipitation compared to
NLDAS-2 mean monthly values during wet winter months. However, the convec-
tive precipitation of ERA5 is up to two times as high as the NLDAS-2 convective
precipitation. Reversely, in a region with dry and small catchments (e.g. HRU 13)
ERA5 precipitation is overestimated compared to NLDAS-2 precipitation during
wet months in summer. These two regions are located in the Northwest US in
mountainous areas west of the Rocky Mountains.
Regarding temperature, the maximum difference between ERA5 and NLDAS-2
mean monthly values occurs in HRU 9 and 16 during warm summer months, see
Figure 4.1. In HRU 9 ERA5 the mean monthly temperature is lower, in HRU 16 higher
(up to 3◦C). However, of HRU 9 only two large catchments are considered and of
HRU 16 only five. For all other HRUs, the mean monthly temperature of ERA5 is
comparable to the one of NLDAS-2.
Yearly precipitation climatologies (see Appendix D.2) show that the ERA5 long
term mean precipitation deviates in a range from 0 to 100 mm/yr from the NLDAS-
2 long term mean. Only for HRU 17 the ERA5 mean is around 400 mm/yr lower,
resulting from larger discrepancies especially from 1981 until 2010. Later, until 2018

the yearly precipitation mean approaches the NLDAS-2 mean. HRU 17 is the region
with the highest precipitation compared to all other HRUs with yearly means of
>2500 mm/a (with NLDAS-2, >2100 mm/yr with ERA5).
Additionally, several iterations of a visual inspection showed satisfying overlap be-
tween ERA5 and NLDAS-2 time series. During each iteration, 20 catchments out
of the 516 US catchments were selected and the ERA5 time series of each forcing
parameter was plotted together with the NLDAS-2 time series. The correlation co-
efficient for each forcing parameter can be found in Table 3.3.
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Figure 4.1: Monthly climatology for HRU 16, 9, 17 and 18. Continuous lines based on ERA5

forcing, dashed lines based on NLDAS-2 forcing. Blue: precipitation in mm/h,
green: convective precipitation in mm/h, red: temperature in ◦C.

Summary and relevance of comparison:
The two meteorological datasets are compared regarding the eleven chosen forcing
parameters. Significant differences were mainly found regarding the total precipita-
tion and convective precipitation. In HRU 3 and 8, located in the South-East of the
US precipitation of NLDAS-2 is slightly lower than ERA5 precipitation (monthly
mean, and yearly sum). This accounts as well for HRU 13 located in the South at the
border to Mexico. Here NLDAS-2 shows lower mean precipitation in the wet sum-
mer months. In mountainous and coastal regions in the Western US the monthly
and yearly ERA5 precipitation is lower, especially in wet winter months. For those
regions, the trend of the yearly precipitation sums approach each other for the more
recent years. As well, the absolute difference seems larger than for other HRUs, how-
ever, those are the regions with the highest yearly precipitation and relatively seen
the difference is not higher than for other HRUs.
The same pattern of ERA5 over- or underestimating monthly precipitation com-
pared to the NLDAS-2 product is depicted in the convective part of the precipitation,
while the relative difference between ERA5 and NLDAS-2 convective precipitation
is larger than the difference in total precipitation. As convective precipitation is
caused through the lifting of warm air, a difference in the monthly temperature
between ERA5a and NLDAS-2 could be expected. However, differences of up to
5◦C can only be observed for the two HRUs with two and five catchments. Thus,
a deviation between the two datasets for one catchment is more relevant in these
HRUs than in those with climatologies build from data of many catchments. For all
other regions, ERA5 and NLDAS-2 do not differ significantly in temperature.
The comparison reveals that the main difference between the two datasets is not
in the mean or cumulative precipitation but in capturing the absolute daily pre-
cipitation height. ERA5 smooths out precipitation height due to the coarser reso-
lution. Due to the majority of catchments having an area smaller than a grid cell
of the ERA5 raster (31x31km2) and the NLDAS-2 precipitation being mainly based
on observations, individual rainfall events are captured less precisely with ERA5.
Therefore, it is expected that the lower precipitation precision affects the stream-
flow predictions negatively as this parameter is one of the most important forcing
parameters.
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4.1.2 Static Input: HydroMT Catchment Attributes

The 21 catchment attributes derived from global datasets with HydroMT are com-
pared to the same attributes from the Camels US dataset to assess similarities and
differences. For each attribute, a histogram shows its value distribution and the
overlap between the two datasets (Figure 4.2). Those attributes which differ signifi-
cantly in distribution and value range between the two datasets are shown again in
separate histograms in Figure 4.3.
The high precipitation duration is lower (below one day) for the HydroMT than for
Camels US (one to two days) and the high precipitation frequency has a narrower
range (15 to 25 days) compared to Camels US (5 to 30 days). This results from
ERA5 not capturing rainfall peaks as well as a dataset like NLDAS-2 which is based
on ground observations. As ERA5 smooths out high and low extreme values, also
the low precipitation duration is shorter for HydroMT (0 to 2.5 days) compared to
Camels US (2 to 17 days). This results from the low precipitation being defined
as values below 20% of the mean precipitation. With a lower mean, the baseflow
threshold drops and thus the duration of continuous low precipitation events can
shorten while the frequency increases.
The average value of each attribute per HRU and how those mean values differ across
the HRUs is shown in Appendix B.3. An example is shown in Figure 4.4, revealing
that the mean precipitation per HRU is up to 1mm/d higher in the Camels US data
compared to HydroMT mean precipitation for 13 of 18 HRUs. In the remaining five
HRUs, the mean precipitation is maximal 0.3mm/d higher than Camels US mean
precipitation. Despite these differences, the differences between the HRUs are of the
same range in both datasets,i.e. HRU has the highest mean precipitation and HRU 15

the lowest.
For the catchment slope, the mean value per HRU differs more significantly between
the two datasets, as shown in the right plot of Figure 4.4. The slope derived from
Merit DEM with HydroMT is up to 300 % higher than the Camels US slope. However,
again the differences between the HRUs are represented similarly in both datasets.
HRUs 6 and 13 to 18 have the steepest terrain while 4, 7 and 9 are flatter regions.

Summary and relevance of comparison:
The same pattern as observed in the comparison of the forcing precipitating time
series can be seen in the mean precipitation attribute, as the ERA5 derived mean
is lower for the mountainous regions in the Western US, but higher for e.g. HRU 9

with only two catchments. The lower recognition of extreme precipitation values
from ERA5 becomes visible in the histograms of the attributes describing high and
low precipitation frequency and duration.
Two other important attributes describing flow behavior and differing between the
Camels US and the HydroMT dataset are the saturated hydraulic conductivity and
the volumetric porosity of the soil. The HydroMT attributes show a broader dis-
tribution which could lead to a better differentiation of catchments and positively
affect streamflow modelling with the MTS-LSTM. This could be counteracted by a
narrower distribution of maximum water content values for the HydroMT dataset.
However, the water content attribute is ranked lowest regarding the influence on
LSTM streamflow predictions.
Further, differences in the mean slope per catchment between Camels US and Hy-
droMT hint towards quality differences between different DEM datasets and ap-
proaches. The same accounts for the soil depth. However, as both slope and soil
depth show distributions in the histograms of the same shape, little effect on the
LSTM model performance is expected. This expectation is amplified through the
same relative distribution of mean slope per HRU (see Figure B.3) for both attribute
datasets and the low ranking of the soil depth attribute (see Table 3.2). The differ-
ence in mean PET originates from the chosen method to determine PET. Although
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the height of this attribute differs between the two datasets, the distribution shown
in the histograms is still comparable, as well as the mean value per HRU.

Figure 4.2: Histogram per catchment attribute based on data from US catchments.
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Figure 4.3: Histogram per catchment attribute based on data from 516 Camels US catchments
for attributes that are significantly different between HydroMT (red) and Camels
US (blue). Fraction of carbonate sedimentary rock with log-scale on y-axis.

Figure 4.4: Mean attribute value per HRU, example plots for mean precipitation and slope.
All other plots are in Appendix B.3
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4.2 clustering based on catchment characteris-
tics

Clustering the US catchments results in seven (eight) clusters based on Camels US
(HydroMT) attributes as shown in the maps in Figure 4.5. The additional cluster that
results from the HydroMT attributes combines the most south catchments of cluster
6 and most north catchments of cluster 7 (pink and turquoise Camels US cluster,
left map) into a new cluster located at the West Coast (black HydroMT cluster,
right map). Catchments falling under cluster 5 with the Camels US attributes (left
map), appear in cluster 2 or 3 with the HydroMT attributes (right map). Despite
differently assigned groups of catchments and individual catchments, the general
picture created through the HydroMT k-means clustering overlaps with the Camels
US based clustering. Table 4.1 shows how many catchments belong to each cluster.
Figure 4.6 shows where the catchments per cluster plot in the Budyko Framework,
an individual Budyko Framework per cluster is shown in Appendix C.1.

Figure 4.5: Clustering by Camels US (left) in k=7 clusters and HydroMT (right) catchment
attributes in k=8 clusters.

Figure 4.6: Clusters based on Camels US attributes plotted in Budyko Framework. Greater
marker size relates to higher mean elevation.

34



Cluster Camels US HydroMT

1 67 55

2 46 65

3 164 192

4 54 61

5 89 54

6 38 14

7 58 47

8 - 28

Table 4.1: Number of catchments per cluster.

Cluster description
Cluster 1: The catchments of this cluster are located in the lowest elevation and
have the flattest slope. Here, almost no snow occurs as the climate is subtropical
and humid. The region has a forest cover of 50% and evaporation and transpiration
are high and energy limited, as can be seen in the Budyko Framework in Figure 4.6.
The soil conductivity is high compared to other clusters.

Cluster 2: The catchments of this cluster have the largest mean area and the dri-
est climate conditions with high aridity. The cluster extends like a channel from
north to south central US. In this region in the mid-latitude desert and semiarid
steppe, the vegetation cover is low. Not only mean precipitation is low but also
mean streamflow, the baseflow index, Q95 and Q5 are very low. The periods of low
flow are longest as well as periods with no flow.

Cluster 3: These catchments of humid continental and subtropical climate are en-
ergy limited as they plot very to the left in the Budyko Framework ( PET

P < 1. They
are located in the Appalachian mountains (with 500 m mean elevation), have a
high vegetation cover indicated by high forest fraction, high Green Vegetation Frac-
tion (GVF) and high LAI. Vegetation cover changes with the seasons. A steep FDC

indicates surface runoff dominated flow processes.

Cluster 4: As the catchments of this cluster are located in the Rocky Mountains in
the North-West US, the mean elevation is highest and the mean slope steepest. This
cluster has on average the smallest catchments with the highest daily snow fraction.
The snow storage leads to a late HFD. The climate is dry with high aridity in more
eastern catchments with semi-arid steppes. The western catchments have a more
humid climate and count to the alpine highlands.

Cluster 5: These catchments lie in a region with a humid continental climate where
summers are warm and rainfall peaks occur during summer. Vegetation cover is
relatively high compared to other clusters. Catchments are rather large on average,
with the flattest slope. The carbonate rock fraction, soil porosity and maximum
water content of the soil are highest in this cluster, indicating hydrologic subsurface
processes which can cause difficulties for streamflow modeling.

Cluster 6: This region is characterised by a low LAI and little changes in GVF through-
out the year. The climate is Mediterranean with high aridity and evaporation pro-
cesses are mainly water limited. Periods of low precipitation and low streamflow
last longest of all clusters, no streamflow period as well. Snow occurrence is very
little. A flat FDC slope indicates the presence of surface or groundwater storage
which regulates runoff processes (see also map in Appendix E.1).

Cluster 7: Those catchments are located at the north marine West-coast, west of
the Rocky Mountains. The elevation is relatively high with on average 760 m, daily
snow fraction is high compared to other clusters while the mean precipitation is
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highest in this cluster. These catchments show energy limited conditions ( PET
P < 1

in the Budyko Framework), as the mean streamflow is very high as well as the
runoff ratio. Rainfall peaks occur in winter, thus the half flow date occurs early in
the year (average on day 145) for these catchments. A steep FDC indicates towards
highly variable runoff response to rainfall and domination of surface runoff process
over subsurface flow. These catchments show a high vegetation cover which does
not differ extremely throughout the year. In the Budyko Framework it can be ob-
served that some of the catchments plot below 0 ET

P . This means that Q(+ET) > P,
thus the catchment runoff (in sum with actual evaporation) exceeds the incom-
ing precipitation. A reason explaining this can be storage release through melting
glaciers and long-term snow storage.

Cluster 8: The above cluster descriptions are based mostly on the clustering with
Camels US attributes but relate as well with little deviations to the HydroMT clus-
ters. This additional HydroMT cluster combines catchments from the cluster 6 and
seven of the Camels US clusters. Elevation and slope are similar to cluster 6, while
the vegetation cover is higher. Snow occurrence and mean precipitation are higher
and aridity less intense than in cluster 6, but not as extreme as in cluster 7.

Summary and relevance of clustering results:
The resulting clusters and their spatial distribution overlap well with spatial group-
ing, although no information on latitude and longitude is included in the clustering
approach. This underlines that geographical regions can be identified and sepa-
rated by their climate, soil, vegetation and hydrology characteristics. The clustering
is not strongly influenced through individual attributes but by combinations of at-
tributes. Elevation and slope differ significantly between the clusters and attributes
related to aridity and humidity play an important role as well, which also accounts
for vegetation attributes. The attribute histograms already show an overall similar
distribution with presence of some differences between individual attributes (see
4.1.2). This is also pictured in the overall congruence between Camels US and Hy-
droMT clusters with little deviations for individual catchments.

4.3 sq1: us mts-lstm model
First, Section 4.3.1 presents the results from the US model experiments. Then, in
Section 4.3.2 the findings are discussed to answer the first research sub-question:

How is model performance affected when using a globally available but lower resolution
dataset (ERA5) as model forcing compared to a regional high resolution dataset

(NLDAS-2)?

4.3.1 US Model Experiments

The individually achieved NSE values per catchment are shown in the US maps in
Figure 4.7 and in the Budyko plot in 4.8. The Cumulative Density Function (CDF) of
NSE values is plotted for all four models 1A, 2A, 1B and 2B, trained on ERA5 and
NLDAS-2 with Camels US or HydroMT statics, see Figure 4.9. In the plots, the grey
horizontal line marks the accumulation of 50% of the catchments, the vertical red
line marks an NSE of 0.7 as a lower boundary for general good model performance.
The plots in Figure 4.9 show that the performance is not significantly affected when
replacing the static attributes from Camels US with those from HydroMT. The light
and dark blue lines overlap (2A and 2B, NLDAS-2 forcing) as well as the light
and dark green lines (1A and 1B, ERA5 forcing). This accounts for daily (left plot)
and hourly (right plot) results. Only for higher NSE values, the models with Hy-

36



droMT statics perform slightly better than those with Camels US statics, as the CDF

is shifted minimally to the right (green compared to blue).

Figure 4.7: NSE per US catchment for model trained on NLDAS-2 and HydroMT (model
2A) and for model trained on ERA5 and HydroMT data (model 1A). NSE values
below 0 are shown in same color as NSE=0. Green ellipses show regions where
model 1A is better, blue ellipses show regions where model 2A is better.

Figure 4.8: 516 US catchments in Budyko Framework, colored by NSE values. Upper plot:
trained on NLDAS-2 data (model (2A). Lower plot: trained on ERA5 data (model
1A). Mean P, mean PET and mean Q from Camels US dataset (Addor et al., 2017).
Budyko plots per cluster for model 1A can be found in Appendix C.1.
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Figure 4.9: CDF of NSE of 516 US catchments based on test-period for all four combinations
of forcing and statics as input for MTS-LSTM (models 1A, 1B, 2A, 2B). Continu-
ous graphs for daily results, dashed graphs for hourly results. CDF for wflow sbm
results in orange.

However, the performance drops more significantly, when comparing ERA5 (mod-
els 1A, 1B) to NLDAS-2 forcing (models 2A, 2B): 50 % of the catchments have an
NSE above 0.55 with ERA5 forcing compared to above 0.7 with NLDAS-2 forcing.
Only for NSE values above 0.8 the model with ERA5 forcing is better (green lines
shifted to the right of blue lines). The right plot shows that daily results (continuous
lines) are better regarding the NSE compared to hourly results (dashed lines). This
accounts especially for the 50 % of catchments with a lower NSE (below 0.7 with
NLDAS-2 forcing and below 0.5 with ERA5 forcing).
The comparison with the wflow sbm CDF reveals that all MTS-LSTM models outper-
forms the process-based model on daily and hourly results as the orange line ap-
pears to be most left in the plots. With 50 % the neural network models (2A, 2B)
achieve a higher percentage of catchments with a good NSE compared to wflow sbm
with 15%. This confirms results of earlier research by Kratzert et al. (2019c) who
showed that LSTM models are able to outperform several calibrated process-based
hydrologic models in the US, among others the Sacramento Soil Moisture Account-
ing Model (SAC-SMA). The CDF plots give an indication to overall performance re-
garding the NSE, however do not exclude the possibility of the wflow sbm or the
ERA5 trained MTS-LSTM (1A) showing better results than the NLDAS-2 trained
model (2A) for individual catchments.
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The mean model performance is determined by averaging the metrics from all 516

US catchments over the test period or the models trained with HydroMT statics,
as shown in Table 4.2. As already seen in the CDF plots, the performance of the
ERA5 model is lower compared to the NLDAS-2 model regarding NSE which is also
reflected in a lower KGE. Further, more catchments have a NSE < 0 with the ERA5

model while the number of catchments with a KGE < −0.41 remains similar to the
NLDAS-2 model. Regarding the peak flow metrics, the NLDAS-2 model performs
better, as well: Peak timing is more accurate, FHV is lower and the absolute and
relative peak magnitude errors are lower compared to the ERA5 model.

NSE KGE NSE<0 KGE<-
0.41

FHV Peak-
Timing

ϵabs ϵrel

Model Freq

1A ERA5

1D 0.54 0.60 31 11 -21 0.45 7.75 0.53

1H 0.50 0.58 36 15 -21 4.89 0.28 0.53

2A NLDAS-2
1D 0.70 0.71 20 11 -15 0.39 5.77 0.41
1H 0.68 0.71 28 16 -12 4.38 0.24 0.46

wflow sbm 1D 0.46 0.52 136 85 -1 0.67 27.08 0.54

Qhigh freq. Qhigh duration Q95 HFDmean Q̄/P̄
Model Freq [d/a] or [h/a] [d] or [h] [mm/h] [d] [ - ]
1A ERA5 1D 6 2.31 3.70 170 0.39
2A NLDAS-2 1D 8 2.60 3.77 171 0.37

wflow sbm 1D 17 3.56 4.57 158 -
Obs. Q 1D 12 2.51 4.45 176 0.40

1A ERA5 1H 160 28.80 0.15 171 0.38
2A NLDAS-2 1H 231 35.53 0.16 175 0.37

Obs. Q 1H 280 34.91 0.18 176 0.41

Table 4.2: Median metrics and high flow signatures for US MTS-LSTM models 1A and 2A.
Static attributes from HydroMT. Signatures based on observed streamflow shown
in gray rows. As the precipitation input for wflow sbm is MSWEP, no runoff ratio
is determined with ERA5 precipitation. Best daily (1D) and hourly (1H) values
shown in blue.

To assess for which catchments the US model performs best and worst, results
are sorted into the groups with (1) a low peak timing error, low FHV and a low
relative peak magnitude error and (2) higher peak timing error, high FHV and high
relative peak magnitude error. An overview is given in Table 4.3. For the ERA5

trained model, more catchments fulfill the criteria for best performance as well as
for lowest performance compared to the NLDAS-2 trained model. All catchments
are performing well regarding the peak flow metrics show high NSE and KGE values.
Likewise, low performance regarding the peak flow metrics correlates with NSE

values below 0.5 and negative median KGE values. The simulated peak magnitude
is on average more often underestimated (around 70% of the recognised peaks)
than overestimated (around 30%), for daily and hourly predictions, for high and
low performance, for the model trained with NLDAS-2 and ERA5 forcing.
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Perf. Peak- FHV ϵrel Model Nr. of catchm. NSE median
Timing 1D 1H both KGE

Best
<0.5d <| ± 15| <30% 1A ERA5 28 21 6 >0.8 0.88

<3h 2A NLDAS-2 26 9 4 >0.7 0.84

Worst
>1d >| ± 30| >50% 1A ERA5 13 29 7 <0.4 <0

>6h 2A NLDAS-2 10 15 4 <0.5 <0

Table 4.3: Best and lowest performance of US MTS-LSTM models 1A and 2A. Peak-Timing,
FHV and ϵrel are conditions for best (worst) performance. Column both gives
number of overlap between catchments with best (worst) performance on daily
and hourly time scale. See also Figure 4.7 for location of catchments with good
and poor performance.

4.3.2 Discussion of Results for SQ1

To answer the first research sub question, the effect on model performance of the
global but lower resolution dataset ERA5 is compared to the use of NLDAS-2. The
experimental modelling setup with the four different models, i.e. A1, A2, B1 and
B2, allows to estimate the effect of the applied dataset which is used as the dynamic
model input. Additionally, the effect of the choice of dataset for the static model
input can be assessed and the quality of the composed HydroMT dataset of catch-
ments attributes can be quantified. Finally, the clustering on model performance
enables the derivation of conditions under which the MTS-LSTM can be expected to
perform best, sufficiently well or poor, measured by the general metrics NSE and
KGE as well as high flow metrics and flow signatures.

The use of the ERA5 forcing time series leads to a significant drop in NSE, visualised
in the CDFs in Figure 4.9. As the predictions of more catchments show a negative
NSE compared to the NLDAS-2 model and the average NSE and KGE are significantly
lower with 0.54 and 0.60 respectively (see Table 4.2, it is concluded that ERA5 is not
suitable as a forcing dataset for a model with the aim to model any catchment in
the US. The model trained on the NLDAS-2 dataset (2A) scores on average higher
for all high flow metrics i.e. the peak timing error is smaller and the magnitude of
peaks is closer to the observed height as for ERA5 results (1A). This is confirmed
with the average high flow signatures from the NLDAS-2 model which are closer to
the signatures calculated on observed flow than those from the ERA5 results.
However, the CDF plots (Figure 4.9) reveal that for catchments with a high NSE

larger than 0.8 general performance increases when using ERA5 forcing instead
of NLDAS-2, regardless the choice of dataset for the static input. The catchment
clustering based on the performance metrics uncovers that this increase can be ob-
served for catchments of clusters 4, 7 and 8 (see Figure 4.7). This means, in the
regions in the north-western US (cluster 4, 7 and 8) the ERA5 model (1A) outper-
forms the NLDAS-2 model (2B) on average. Here, the climatology discussed in
Section 4.1.1 has shown that ERA5 monthly and yearly precipitation is lower com-
pared to NLDAS-2. Thus, the latter could overestimate precipitation values in those
regions, compared to the true unknown precipitation height, subsequently leading
to less good streamflow predictions.

The distribution of NSE values over the US maps (see Figure 4.9 and Budyko plots
in Figure 4.8) reveals that for cluster 2 (central US) the model performance is the
worst of all clusters for either of the four models. Regions with an arid climate
and little to no streamflow through the course of a year are subsequently those ar-
eas where the MTS-LSTM is not suited for rainfall-runoff modelling. Comparing the
results to the wflow sbm model shows, that also a process-based hydrologic model
has difficulties in achieving acceptable streamflow predictions close to the observed
values. This phenomena results inevitably from the missing signal in the observed
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streamflow time series in periods where rivers are dried out entirely. From the re-
sults of these experiments, it can be concluded that the MTS-LSTM cannot learn which
rainfall event of the few occurring events causes peaks in the streamflow based on
the provided data. It can be hypothesised that a MTS-LSTM trained only for all catch-
ments of cluster 2 together or for each of the catchments individually can achieve
better performance, since the data from other climate zones would not be influenc-
ing the learning process of the network. However, as the main cause for the low
NSE values is the magnitude of the simulated streamflow peaks, it is questionable
if a regional or individual MTS-LSTM would be able to predict the peak height more
accurately.
Additionally, for the central US long-term groundwater depletion has been ob-
served and is caused by water withdrawals exceeding the refilling through natural
processes (Richey et al., 2015). For catchments located in the widespread area where
groundwater depletion occurs (see US map by (Konikov, 2013) in Appendix E.1),
the water mass balance is likely to be disturbed. Such human influenced processes
are difficult to respect within a hydrologic model of either type – process-based or
data-driven – since the dynamics do not follow the physical laws present under
near natural conditions but include a certain level of randomness.

That the model performance is lower in catchments of cluster 6 and the most south-
western catchments of cluster 2, can be related to the flat slope of the FDCs for those
catchments. This hints towards the presence of surface or groundwater storages
regulating the runoff behaviour. Additionally, groundwater depletion occurs in the
regions of these clusters (see Appendix E.1).

In the eastern half of the US, the NLDAS-2 model (2A) performs better than the
ERA5 model (1A). This is especially true for catchment cluster 3 which has a humid
continental subtropical climate with high but seasonally changing vegetation cover.
Similar to the north-western US, these catchments are surface runoff dominated
which appears to results in acceptably good model performance of the MTS-LSTM,
given that the input forcing data is of good quality.

High performance with both models (1A, 2A) is only achieved in the north-western
US for catchments of cluster 4, 7 and 8. Thus, good performance can be related
to mountainous regions or alpine highlands with humid climate and occurrence of
large vegetation cover, where runoff processes are surface dominated.

In conclusion, the ERA5 dataset does not lead to sufficiently good performance, so
that it would be suitable for a MTS-LSTM (trained on US data) that is generally appli-
cable within and outside of the US. The results imply that the model, if applied in
catchments outside the US, will only perform acceptably in catchments similar to
those in the north-western US, unless the the model is retrained (finetuned) on local
data. Ungauged basins with characteristics similar to a cluster located in the east-
ern US (cluster 1 or 3) can potentially result in acceptable streamflow predictions,
however with a higher uncertainty.

For the static model input, the catchment attributes which are derived from the
datasets included in HydroMT prove to be similarly suitable compared to the Camels
US attributes. In conclusion, an in depth research on the choice of relevant catch-
ment attributes would be beneficial to clarify the influence of attributes (1) derived
from the forcing time series, like mean precipitation, (2) attributes already respected
through the derivation of other attributes, like the soil composition, and (3) at-
tributes largely differing among different datasets. The latter is seen e.g. in the
histogram of the maximum GVF and the annual difference in GVF, which show a
significant different shape (Figure 4.2). GVF is derived from MODIS for the Camels
US dataset and from the vito dataset for the HydroMT dataset.
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4.4 sq2: testing us model for pub
Firstly, in Section 4.4.1 the Meuse catchments are categorised according to the US
catchment clustering. Then, the results from the testing of the US model in the
Meuse are presented in Section 4.4.2, followed by the results for the Meuse catch-
ments with a regional MTS-LSTM in Section4.4.3 and the testing of this regional model
for PUB in Section 4.4.4. Finally, in Section 4.4.5 these results are discussed to answer
the second research sub-question:

How does the trained MTS-LSTM model perform when applied in catchments outside the
US, simulating ungauged catchments?

4.4.1 Meuse Catchment Classification

To estimate what model performance of the US trained MTS-LSTM model can be ex-
pected in the Meuse catchments (serving for the simulation of ungauged basins),
they are assigned to a cluster based on their catchment characteristics. For the
Meuse catchments catchment attributes are only available from the HydroMT dataset,
therefore the clusters based on the HydroMT dataset are considered. Using the
kmeans.predict() function on the Meuse attributes after fitting to the US HydroMT
attributes, the Meuse catchments are all assigned to cluster 1 (see US map in Fig-
ure 4.5). The similarity of the individual attributes from the Meuse catchments to
those of the catchments in cluster 1 is visualised with box-plots in Appendix D.4. A
number of attributes are outside of the range of the values from the US catchments,
namely mean precipitation, soil porosity, mean elevation, GVF, mean PET, aridity,
low precipitation duration and frequency and soil depth.

Summary and relevance of catchment classification
All five test catchments from the Meuse basin are allocated to the same cluster,
meaning they are, despite their differences, more similar to each other than to any
other region in the US. This confirms the observation that the catchment clustering
based on the selected characteristics leads to geographically cohere groups. The
fact, that the Meuse catchments fall in cluster 1, hints towards topographically flat
catchments with low elevation and little snow occurrence while being covered with
forest up to around 50%. Looking at the before mentioned boxplots shows that
elevation and slope are steeper for the Meuse catchments than for the average of
the cluster 1 US catchments. The classification of the Meuse catchments into this
cluster originates mainly from the catchment size, a relatively high LAI and a low
daily snow fraction.
These results indicate that the conditions in the Meuse catchment are not entirely
represented with the 516 US catchment, since the similarity of the Meuse catchments
to the US catchments in cluster 1 is rather low. It can be hypothesised that other
combinations of catchment characteristics are not sufficiently represented with the
selected US catchments. Subsequently, a higher number of catchments with even
more variability in catchment attributes and climate conditions could be used to
train a MTS-LSTM model, to improve the PUB.

4.4.2 Performance of US Model in Meuse Basin

Testing the US MTS-LSTM trained on ERA5 and HydroMT data (model 1A) in the
Meuse catchments resulted in the time series shown exemplary in Figure 4.10. The
simulated time series covers a longer time-span, as the forcing is available from 1981

onward while the observed streamflow is only available from 2005 onward. The
simulated streamflow shows unexpectedly negative values in a very small range of
streamflow values compared to the observed streamflow.
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This shifting and squeezing of the time series is assumed to be caused by the scaling
of the input data. Therefore, the Meuse input data is analysed more in depth and
compared to the distribution of forcing parameters from the US ERA5 data. The
forcing parameters do not show any striking difference to the US data, which can
be seen in histograms in Appendix F.1. Results for catchment 703 in the upper plot
of Figure 4.10 show how the streamflow prediction react on outliers in the forcing
time series. The peaks in the orange graphs are also visible in the forcing time
series. After such a peak, the predicted streamflow drops lower compared to the
rest of the time series. Furthermore, the Meuse static attributes are compared to
the distribution of values per attribute for the US catchments. The attributes that
fall out of the range from the US catchments are shown in Figure 4.11. All other
Meuse attributes lay within the range of the US catchment attributes, as shown in
the box-plots in Appendix D.5.

Re-training the US model
Based on the findings, a new MTS-LSTM is trained once without all static input (re-
ferred to as US no in the following) and once with less static attributes (US less)
than the initial model 1A from SQ1, excluding mean PET, max. GVF and GVF dif-
ference. Apart from this, the training procedure is the same as for the models 1A
and 2B from SQ1 on the 516 US catchments. The resulting time series plots are not
shifted and squeezed anymore and lie in a similar value range like the observations.
All plots are shown in Appendix F.6 and the resulting streamflow hydrograph for
catchment 703 is shown in the lower plot of Figure 4.10. All metrics are given in Ta-
ble F.1. Table 4.4 shows the NSE per catchment. The model without static attributes
results in good daily (0.48) and hourly (0.53) performance for catchment six, while
wflow sbm is still better (0.75 and 0.78). The model with less static attributes gives
good results for catchment 13, where agriculture is high and fissured aquifers are
present, while wflow sbm shows negative NSE values on both time scales. For all
other catchments both US-trained models show negative NSE values.

Figure 4.10: Upper plot: First result for test catchment 703 in Meuse basin with MTS-LSTM
trained on ERA5 and HydroMT data of US catchments (model 1A from SQ1).
Observed Q in blue, simulated Q in orange, in mm/h on the y-axis. Lower
plot: Results with retrained US model without static input (US no, dark green,
dashed) and with less static attributes (US less, lime).
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Figure 4.11: Attributes box-plots based on US catchments. Colored dots show values of
Meuse catchments. These three attributes (mean PET [mm/yr], max. GVF [-]
and GVF difference [-]) are subsequently excluded from the static attributes for
model training and testing.

4.4.3 Regional Meuse MTS-LSTM

A regional MTS-LSTM neural network trained on all five test catchments is compared
to the wflow sbm model. Table 4.4 shows the NSE per catchment as an indicator
for the overall performance. The resulting time series plots over the test period
are shown in Appendix F.8 for both models compared to observed streamflow. All
performance metrics are shown in Table F.1 and the peak flow signatures based on
MTS-LSTM, wflow sbm and observed streamflow are shown in Table F.3.

The MTS-LSTM out-performs the wflow sbm model for the Meuse catchments 13, 702

and 703 (Huccorgne, Hastiere and Warnant) regarding all determined metrics. The
NSE values are >0.45 for the MTS-LSTM while NSE values for wflow sbm are around 0

or <0 for these catchments. The hydrographs for wflow sbm show many peaks up
to four times higher than the observed peak flow and are much spikier than the
MTS-LSTM hydrographs. These three catchments (13, 702 and 703) are those with
agriculture and fissured aquifers.
For catchment 701 (Hastiere) the MTS-LSTM shows a higher NSE for the daily results
(0.53) than wflow sbm (0.51), the KGE however is lower (0.60 opposed to 0.70). Both
NSE and KGE are higher for wflow sbm on the hourly time scale (NSE: 0.58 <0.74,
KGE: 0.68 <0.86). For the hourly results, the wflow sbm scores better on all metrics
apart from the average peak timing error, which is 0.7 days larger compared to the
peak timing error with the MTS-LSTM. This accounts as well for catchment 6 (highest
forest fraction) on the daily time scale where wflow sbm has a peak timing error of
1 day opposed to 0.71 days for the MTS-LSTM model, while the prior scores better
on all other metrics. For the hourly time scale, the peak timing and magnitude are
better for wflow sbm while KGE and FHV are better for MTS-LSTM. NSE and KGE are
high for both models (>0.7).

4.4.4 Regional Meuse MTS-LSTM for PUB

The regional Meuse MTS-LSTM is further tested in a simulated ungauged basin situa-
tion. Therefore, each of the five Meuse catchments is excluded once from the model
training. The five resulting models (see Table 3.10) are each tested in the excluded
catchment. Table 4.4 shows the NSE per catchment as an indicator for the overall
performance. The performance metrics are shown in Appendix F.1 and the peak
flow signatures based on MTS-LSTM, wflow sbm and observed streamflow are shown
in Appendix F.3 to allow for direct comparison with the metrics and signatures of
the US models (1A, US no, US less), the regional Meuse model and wflow sbm.

On the daily time scale, positive NSE values are achieved for all catchments. How-
ever, on the hourly time scale NSE values fall <0 for catchments 701, 702 and 703

(Hastiere, Yvoir, Warnant). Where wflow sbm shows negative NSE values for the daily
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Catchm. wflow sbm US no US less Regional Meuse PUB Meuse

6 0.75 0.48 -1.89 0.6 0.30

13 -4.21 -2.98 0.47 0.55 0.13

701 0.51 0.12 -2.53 0.53 0.31

702 -0.50 -2.93 -0.92 0.47 0.25

703 -0.34 -1.48 -1.03 0.61 0.33

Catchm. wflow sbm US no US less Regional Meuse PUB Meuse

6 0.78 0.53 -0.56 0.7 0.23

13 -3.65 -0.92 -71.02 0.46 0.07

701 0.74 0.39 -0.21 0.58 -1.80

702 0.01 -0.61 -17.44 0.33 -0.64

703 0.22 -0.13 -30.55 0.59 -0.61

Table 4.4: NSE of all models tested in Meuse catchments, based on daily results in upper
table, based on hourly results in lower table. Dark blue indicates best result, light
blue good result, red negative NSE values. The MTS-LSTM trained on US data
without statics is US no, the one with less statics is US less.

results, the MTS-LSTM achieves positive NSE values (13: 0.13, 702: 0.25 and 703: 0.33).
All peak metrics deteriorate in comparison to the regional MTS-LSTM. For catchment
6, Treignes, the hydrograph of the predicted streamflow shows peaks of too little
amplitude while the baseflow is too high. Both, peaks and baseflow, are much better
represented with the regional MTS-LSTM. For catchment 13, Huccorgne, this behav-
ior is even more extreme and the hydrograph approaches a horizontal line, where
the baseflow is too high. For catchments 701, 702 and 703 the simulated streamflow
follows the curse of the observed streamflow better, however, peaks are simulated
too low and the baseflow deviates from the observed one in many periods.
Due to the very flat hydrographs of predicted streamflow, the applied method and
chosen thresholds to determine frequency and duration of high flow events does
not enable to recognise peaks and thus the signatures cannot be calculated. There-
fore, these values are missing in Table F.3.

4.4.5 Discussion of Results for SQ2

The application of the US MTS-LSTM in catchments of the Meuse basin in Europe
enables to answer the second research sub-question How does the trained MTS-LSTM

model perform in catchments in the Meuse river basin, simulating ungauged catchments?
This experiment has the intention to simulate the situation of an ungauged basin
where no access to historical records of streamflow is given to train or calibrate a
hydrologic model. To assess the model performance against a reference, not only
simulations from the model wflow sbm are considered as benchmark but also those
from a regional Meuse MTS-LSTM.

The classification of the Meuse catchments into a cluster from the US based on
catchment characteristics reveals that the similarity is given for a minority of the 21

characteristics. Therefore, it is hypothesised that the selected US catchments do not
cover sufficient combinations of the 21 characteristics to serve as a training base for
a globally applicable model. The results indicate that other regions across the world
could show as little similarity to US catchments as the Meuse. Since similarity to
the training data and catchments is a pre-requisite for the global model to be trans-
ferable, this consequently reduces the (expected) model performance of PUB and the
number of catchments outside of the US where the model is applicable.
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Testing the MTS-LSTM in the five Meuse catchments results in scaled and shifted
streamflow predictions far off from the observed streamflow when using the US
model trained on ERA5 forcing and HydroMT static attributes (A1). The poor
model performance is caused by a few Meuse attributes lying outside of the at-
tribute range from the US catchments. This shows the restricted applicability of
the US MTS-LSTM outside of the US and highlights again the under-representation
of existing catchment types through the US catchments. Already one or a few static
attributes being of different height influences the activation of different parts of the
neural network in such a way that the resulting prediction is shifted and scaled sig-
nificantly. Such errors can be caused through dataset specif biases (e.g. a different
bias for ERA5 data in the US than in Europe). Subsequently, the high importance
of model inputs originating from the same data source for training and testing pur-
pose is proven.

Re-training the US MTS-LSTM with no static input and once with excluding the
problematic static inputs yielded two models that give more reasonable streamflow
predictions in the Meuse basin. However, regarding the NSE, the regional Meuse
MTS-LSTM as well as the wflow sbm outperform both US MTS-LSTM. Individual results
are acceptable with a NSE of 0.48 (catchment 6) for the model without static input
and 0.47 (catchment 13) with the model with less static attributes. This shows on one
hand the potential of the global model approach, on the other hand indicates that
the approach requires more research for improvement. Results for other catchments
showing streamflow prediction too far off from the observed streamflow highlight
the uncertainty inherent in the approach, especially for the operational PUB case
where no observed streamflow are available to evaluate the prediction. As the
Meuse test catchments are not very similar to the US catchment groups with best
model performance (north-western US), it is suggested to search for catchments
with similar characteristics and repeat the experiments for PUB. Thereby, it could
be further assessed if the catchment attributes are a suitable quantifier for model
performance.

The problematic results regarding PUB lead to the suggestion of adjusted approaches
regarding the chosen datasets. A global dataset with static attributes should be used
entirely to determine the scaler for data pre-processing. Then, the catchments for
training should be chosen such that the entire value range of each attribute is cov-
ered and the global distribution is represented. This reduces the risk of attribute
values of test catchments lying outside the range of the attribute distribution. The
same method should be applied for the forcing parameters. However, decade-long
time series on a sub-daily scale with global coverage would be an enormous amount
of data to derive a scaler from. Therefore, the feasibility of the approach remains
questionable regarding the forcing time series. The same problem holds for the
streamflow observations. Theoretically, all available streamflow observation data
should be used to determine the scaler of the worldwide distribution. However,
as these observations are not originating from one dataset like static and dynamic
forcing, the approach is unrealistic. Thus, expert knowledge is required to make a
selection of catchments with extreme conditions that should serve as training catch-
ments.

A regionally trained MTS-LSTM model for PUB seems to be a functional method to
achieve reasonable well streamflow predictions for an ungauged catchment in the
same basin. Following up on the idea of regionally trained models for PUB means
to refrain from the goal of setting up a globally applicable model. Especially for
the daily time scale and for catchments where the process-based model wflow sbm
shows negative NSE values, the regional approach performs well. However, the re-
sults from training a regional Meuse model on four of the selected test catchments
and testing it on the fifth have shown that individual catchments can differ signifi-
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cantly in their properties and runoff-behavior. Then, also the regional approach is
not resulting in good performance, indicating that a thorough analysis of the catch-
ment similarities within one basin is required to assess the expected performance
for PUB of such a regional model.

The regional model trained on all five test catchments can compete with wflow sbm
or outperforms the process-based model on both time scales. This indicates that
a regional model trained on the data of all catchments in the Meuse basin could
perform even better. Alternatively, one MTS-LSTM model for each catchment can be
trained individually with local datasets. A third option is a regional Meuse model,
initially trained on all Meuse catchments together, then fine-tuned individually for
each catchment. Which solution works best has to be assessed with appropriate ex-
periments. Previous results from Kratzert et al. (2018) indicate that the best results
are achieved with the third option.

Considering the more extreme conditions of meteorological parameters as well as
catchment characteristics and streamflow height developing in the upcoming years
due to changing climate conditions, the question evolves whether a MTS-LSTM could
be suitable for streamflow forecasting and future scenario studies. Based on the
conclusion that the distribution of the input parameters should ideally cover the
full range of possible values, the training data for a forecasting scenario should
be a composition of the meteorological forecast. This means the training data is a
synthetic time series that represents more extreme events and does not come from
historical data. The scalers for the forcing should be determined based on the whole
forecasting time series. The static attributes are average values over several years,
averaged for a whole catchment. To capture land-use change, vegetation cover
change, climate change and other changing characteristics, the attribute value per
catchment should be re-calculated regularly e.g. every year over the past 20 years.
20 years is the period over which the climate indices of the Camels US dataset have
been computed. Otherwise, static attributes could be converted into dynamic input
if time series are available. Then, a sensitivity analysis should be done to assess if
the added value is larger compared to using the attributes statically.

4.5 sq3: different loss function
The first part of this Section 4.5.1 presents the results for the US model trained
with the M4SE loss function, ERA5 forcing and HydroMT statics and tested in the
US catchments. In the second part 4.5.2, the results for the regional Meuse model
trained with the M4SE loss function, ERA5 forcing and HydroMT statics are pre-
sented. Here, the entire set of 21 static attributes is used. The last part 4.5.3 dis-
cussed the findings to answer the third research sub-question:

Can model performance regarding high flow representation be improved by training the
MTS-LSTM with a different loss function?

4.5.1 US MTS-LSTM

All median performance metrics are shown in Table 4.5. Compared to the model of
SQ1, the median NSE for the model trained on ERA5 drops by 0.3 (0.35) for daily
(hourly) results, for the NLDAS-2 trained model the NSE drops by 0.2 (0.23) respec-
tively. The KGE drops less by 0.3 for the ERA5 model and 0.17 for the NLDAS-2
model for both time scales. The number of catchments with a negative NSE increase
up to over 200 for ERA5 and over 120 for NLDAS-2. Averaged over all catchments,
peak timing and absolute error in peak magnitude increase slightly for the NLDAS-
2 model while the absolute error improves slightly for the ERA5 model. For the
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relative error in peak magnitude no significant change occurs. The median FHV
improves by 12 (19) mm/h for daily (hourly) ERA5 results and by 11 (10) mm/h
for NLDAS-2 results. The ratio of peaks that are underestimated in the modeled
streamflow compared to the overestimated peaks is more balanced with the M4SE

loss function, still more peaks are simulated lower compared to the observed peak
height.

The results per US catchment cluster show improvements on high flow metrics for
clusters where model performance has already been good with the NSE as a loss
function. These were, in decreasing performance order, cluster 7, 3 and 5. All
metrics per cluster are shown in Table E.1.
For cluster 7 all peak flow metrics improve with the M4SE loss function, while the
median NSE drops by 0.03 for all time scales and both models. The KGE drops as well
by 0.03 for the ERA5 model and is not affected for the NLDAS-2 model. For cluster
3 improvements occur for the FHV for all models and both time scales. The peak
timing error decreases only for the NLDAS-2 model. The absolute peak magnitude
error decreases, for the daily results more significantly (1.27 mm/h for ERA5 results)
than for hourly results. The relative peak magnitude error decreases minimal (0 for
hourly ERA5 up to -0.09 for daily ERA5 results). For cluster 5 the relative peak
magnitude error decreases for ERA5 results. The FHV improves for all models and
both time scales. All other high flow metrics do not improve with the M4SE loss
function for catchments of this cluster. The ratio of under- and overestimated peaks
balances out with the new loss function for all clusters while still more peaks are
underestimated compared to the true, observed peak height.

M4SE US NSE KGE NSE<0 KGE<-
0.41

FHV Peak-
Timing

ϵabs ϵrel

Model Freq
1A ERA5 1D 0.54 0.60 31 11 -21 0.45 7.75 0.53

1D 0.24 0.31 171 115 -8 0.46 6.87 0.48

1H 0.50 0.58 15 -21 36 4.89 0.28 0.53

1H 0.15 0.28 207 139 -2 5.05 0.27 0.54

2A NLDAS-2 1D 0.70 0.71 20 11 -15 0.39 5.77 0.41

1D 0.50 0.55 110 66 -4 0.41 5.94 0.41

1H 0.68 0.71 28 16 -12 4.38 0.24 0.46

1H 0.45 0.54 129 65 -1 4.80 0.25 0.48

Table 4.5: Median performance metrics for MTS-LSTM models trained on data from 516 US
catchments with M4SE as loss function. Static attributes from HydroMT. Com-
pared to results from models 1A and 2A (see Table 4.2) here shown in gray rows.

M4SE US Qhigh freq. Qhigh duration Q95 HFDmean Q̄/P̄
Model Freq [d/a], [h/a] [d], [h] [mm/h] [d] [ - ]
1A ERA5 1D 0.38 0.01 0.99 0.87 0.97

1D 0.45 0.04 0.95 0.84 0.82

2A NLDAS-2 1D 0.45 0.03 0.97 0.91 0.94

1D 0.39 0.09 0.95 0.84 0.87

1A ERA5 1H 0.34 -0.01 0.99 0.91 0.96

1H 0.41 0.01 0.93 0.81 0.78

2A NLDAS-2 1H 0.47 -0.02 0.97 0.93 0.94

1H 0.21 -0.05 0.95 0.80 0.86

Table 4.6: Resulting correlation between simulated signatures and signatures from observed
streamflow for US catchments with MTS-LSTM models 1A and 2A. Results from
model with M4SE loss function in white rows, results from model with NSE loss
function in gray rows. When two units are given, the first one applies to daily (1D)
results, the second one to hourly (1H).
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4.5.2 Meuse MTS-LSTM

Hydrograph plots for the Meuse catchments with the regional Meuse MTS-LSTM

model and the new loss function are shown for the test period in Appendix F.10.
All resulting metrics and signatures can be found in Table F.1 and F.3 (model: M4SE).

Table 4.7 gives an overview of the general performance and improvements with
the new loss function compared to the NSE loss function (for the Regional Meuse
MTS-LSTM from SQ2). While the NSE is lower for all cases, apart from catchment 701

on the hourly time scale, the KGE improves for some catchments with the new loss
function. Overall, the peak magnitude error improves for each catchment, however,
only for catchment 13 on the hourly time scale all metrics improve. The FDCs in
Appendix F.3 show that the baseflow representation deteriorates for all catchments
and the high flow segment of the FDC is a similar or slightly better fit compared to
the results of the model trained with the NSE loss.

Catchment Loss (1D) Loss (1H) Improvements
NSE M4SE NSE M4SE

6 0.60 0.50 0.70 0.63 KGE, FHV, peak magnitude (1D)
13 0.55 0.40 0.46 0.40 All peak metrics (1H)

701 0.53 0.32 0.58 0.59 Peak magnitude (1D, 1H)
702 0.47 0.25 0.33 0.32 KGE, peak magnitude (1D, 1H)
703 0.61 0.34 0.59 0.49 Peak magnitude (1D, 1H)

Table 4.7: NSE values per catchment for MTS-LSTM trained with M4SE loss function com-
pared to the model trained with the NSE loss, for daily (1D) and hourly (1H)
results. Dark blue indicates similar good NSE values, light blue indicates good
but lower NSE values, beige indicates much lower NSE values with the new loss
function.

4.5.3 Discussion of Results for SQ3

Replacing the NSE loss function with the M4SE loss function results in an overall dete-
rioration in general model performance, measured by NSE and KGE. When however
considering regions in the US where the initial model trained on the NSE loss func-
tion showed best performance, the new loss function results in little to now general
deterioration but partly to improved high flow metrics and signatures. Thus, for an
application of the MTS-LSTM with focus on peak flow representation, the new loss
function is suitable. A combination of both loss functions could lead to a higher
general performance, regarding high flows as well as low flows. Then, an assess-
ment of how to condition the application of either one of the loss functions during
the training of a LSTM is required. For example, the M4SE loss could be applied to
values in the upper quartile of the observed streamflow distribution, while for all
lower values the NSE loss determines the training procedure.
The metrics of the MTS-LSTM trained on and tested in the Meuse catchments do in-
dicate towards an improvement regarding high flow representation on the hourly
time scale when training with the M4SE loss. The hydrographs and FDCs however
show that the improvement is not valid for all test catchments and the baseflow rep-
resentation deteriorates. The results confirm the observation that improvement is
mainly achieved when the model the is trained with the NSE loss function performs
well already.
For the experiment with the new loss function, no additional hyperparameter tun-
ing has been done. This could potentially lead to improved results compared to the
here presented streamflow simulations and metrics.
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4.6 limitations
The findings and interpretations resulting from this research have to be seen in the
scope of the selected methodology and the reader should be aware of the following
limitations and remarks.

The US and European catchments chosen as training and testing catchments are to a
high degree near natural, small headwater catchments. The findings are not proven
to be scalable to significantly larger catchments or to be applicable to catchments
which are under strong human influence.
The wflow sbm model serves as a benchmark. A direct and ’fair’ comparison is not
feasible due to the internal structures of a process-based model and the training
(calibration) concept behind a ML model being of very different nature. By choosing
data sources for the MTS-LSTM that are regularly used in simulations with wflow sbm
and have mainly been used for the production of the benchmark results referred to
in this research, it is intended to approximate a reasonable base for a delimitation
between the results of the two model types.
As the wflow sbm results for the US catchments have not been explicitly computed
for this study but have been provided from a different project, the training, valida-
tion and testing periods do not match exactly with those applied in this research.
However, the general picture of MTS-LSTM results outperforming wflow sbm results
is expected to be correct and not differ significantly when matching those periods
exactly.
All streamflow predictions and performance metrics computed with the MTS-LSTM

for US and Meuse catchments are results from a single model run. A method
to reduce the generalization error of the predictions is ensemble modeling. Then the
same model is trained on different training datasets and the results of each iteration
are aggregated to get the final prediction.
For testing the M4SE loss function no tuning of the hyperparameters is done. An
additional tuning could improve the achieved results. Especially the learning rate,
number of epochs and batch size can have an effect on the model performance.
All results and conclusions related to the Meuse catchments are based on a selection
of five test catchments. Thus, generalization and scalability to other river basins has
to be shown individually, while the findings of this research serve as an indication
which performance can be expected under the here applied research setting.
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5 C O N C L U S I O N & R E C O M M E N DAT I O N S

This research aims to investigate the transferability of LSTM neural networks trained
to predict rainfall-runoff relations. Predicting streamflow in ungauged catchments
is a major challenge in the field of hydrologic modelling. When no streamflow
observations are available, process-based models can face uncertainties in their rep-
resentation of hydrologic processes and chosen model parameters. Recent research
with LSTM models establishes a new approach to PUB as such networks seem to learn
hydrologic behavior exclusively from the training data. Supposing this detected be-
havior is equivalent to physical laws determining the processes of the water cycle,
such a model trained on data from a large number of variant catchments should be
able to apply this hydrologic knowledge to any other geographical region, thus be-
ing transferable and ideally globally applicable. State of the art research has tested
spatial transferability of a US LSTM model to other catchments within the US or
from a Russian LSTM to other Russian catchments (Kratzert et al., 2019b; Ayzel et al.,
2020). The scope of this research goes beyond previous experiments and tests a US
trained LSTM in European catchments to answer the research question:

Does a MTS-LSTM trained on data from US catchments prove to be globally applicable as
hydrologic model?

5.1 conclusion
For the purpose of global model applicability, datasets with worldwide coverage are
required and therefore, in this research, their suitability is assessed by demarcating
performance of a MTS-LSTM model trained on the global datasets (Era5 and a compi-
lation of HydroMT datasets) against a MTS-LSTM model trained on local datasets for
which good performance is documented in state-of-the-art literature.
The experiments to test the suitability of the ERA5 dataset in US catchments have
shown that using global datasets as dynamic and static model input does not per-
form equally good like a model trained on a high resolution local dataset (NLDAS-
2). Nevertheless, the neural network trained with ERA5 still outperforms the process-
based distributed model wflow sbm for US catchments. For humid and surface-
runoff dominated catchments the MTS-LSTM model achieves average NSE values of
> 0.8. Poor model performance occurs in arid regions, regions with groundwater
depletion and high soil conductivity.

Subsequent application of the US trained model for streamflow predictions in catch-
ments of the Meuse basin confirms these findings as catchments with fissured
aquifers are more difficult to simulate than those with higher yearly precipita-
tion and streamflow and with widespread forest cover. However, the US trained
MTS-LSTM only leads to a higher NSE value (0.48) compared to the process-based
model wflow sbm (negative NSE) for one of the test-catchments. In the other catch-
ments either none of the two models results in a positive NSE or the wflow sbm is the
better choice.
Initially, the US trained MTS-LSTM produced an unrealistic shifted and compressed
streamflow hydrograph compared to the observed streamflow of the Meuse catch-
ments, due to 3 out of 21 static input parameters not lying within the range of the
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training data distribution. From the strong influence of single static parameters it
is deduced that the use of a global dataset together with a training dataset derived
from more than 500 catchments is not suitable to create a globally applicable model.
First, a global dataset could show a different bias compared to reality per continent
or climate zone due to incorporation of different local data products or varying
model settings. Second, the training data does not include sufficient extreme at-
tribute values and should therefore be composed of catchments covering the most
extreme conditions to prevent offsets in the predicted streamflow time series.

Concluding, to improve the applicability of a MTS-LSTM model in ungauged basins,
it follows that (1) the forcing dataset should be a global dataset providing sub-daily
meteorological information of higher spatial resolution than Era5, e.g. the Era5

land dataset. (2) the most extreme catchments with accessible data worldwide – re-
garding the catchment characteristics represented in static attributes and regarding
extreme events captured in the meteorological forcing – should function as training
catchments while (3) the standardization of the model input data – as one of the
most important prepossessing step for a machine learning model – should be done
based on the mean and standard deviation of the entire global distribution for each
static and dynamic parameter.

The promising performance of the MTS-LSTM within the US when trained on US
data, as well as results from previous studies with locally trained LSTM models,
were the reason for training a regional MTS-LSTM for the Meuse basins. The aim is
to benchmark the regional Meuse MTS-LSTM against results from the process-based
model wflow sbm. Results confirm the hypothesis and show that the MTS-LSTM can
compete with wflow sbm and additionally achieve good NSE values of minimum
0.46 where the process-based model shows negative NSE values. In conclusion, this
proves the ability of LSTM models to mimic local hydrologic processes at least as
good and in some cases better than a process-based model. As these results are
based on a model trained with merely a subset of the available data for the Meuse
basin, accompanied by the use of the low resolution Era5 data as forcing, the possi-
bly achievable performance with an LSTM model is far from being fully exploited.

For the case, that a hydrologic model is applied in a catchment with the intention to
predict streamflow correctly with focus on the high flow peaks, a different loss func-
tion for the training of the MTS-LSTM has been tested. The M4SE yielded even more
accurate peak height representation in the cases where already the model trained
with a NSE loss function worked well. As the baseflow representation deteriorates
compared to the model trained with the NSEloss function, a combination of both
resulting streamflow time series could lead to an overall improvement. Thus – for
gauged and ungauged catchments – an implementation of a combined loss function
appears a valuable follow-up research.

Despite the model performance for PUB being lower than initially hypothesised,
the here presented research findings have already further implications for the de-
velopment of a model for PUB. According to the presented results, a regional or
local trained LSTM model is the best choice for rainfall-runoff modelling and thus a
model should always be tried to be fitted best to the catchment where it is applied.
As for many catchments long historical time series of streamflow observations are
not accessible the prerequisites to train an individual local model are not fulfilled.
However, in the case that few years of streamflow observations are available, a
global LSTM model pre-trained on a variety of catchments offers the advantage to be
finetuned with these short time series of local data. Thereby fitting a global model
to the local conditions comes closest to setting up a local model trained with long
historical streamflow records.
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5.2 recommendations
Based on the conclusions of this research regarding the applicability of a global
MTS-LSTM as hydrologic model for streamflow predictions in gauged and ungauged
basins, the following summarises the recommended actions for improvement and
further research in the field.

Regarding the static model input, a sensitivity analysis should be performed to
assess which attributes add hydrologic relevant information and how redundant
information given by attributes derived from the forcing time series influences the
model output.

For a Meuse MTS-LSTM, all available data from each catchment should be used as
training data for a Meuse basin model. Alternatively, one model per Meuse catch-
ment should be set up, if possible with local high resolution forcing data.

In order to improve accurate modelling of high flows, the implementation of a loss
function combining the NSE and a loss function more sensitive to high signals, like
the M4SE, should be investigated.

For PUB with a global LSTM the training dataset should be of higher resolution than
the Era5 dataset. The model should be trained on catchments representing the most
extreme values of all forcing parameters and catchment characteristics. The result-
ing model should be finetuned locally if short time series of observed streamflow
are accessible.

Last but not least, to improve streamflow predictions for ungauged basins, to coun-
teract the development or increment of societal inequalities resulting from restricted
access to such predictions, and to enhance our understanding of hydrologic pro-
cesses, it is of high importance to continue measuring streamflow in the field. The
global coverage with gauging stations should grow instead of shrink and the access
to observational data should be easy and free.
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A C O N F I G U R AT I O N F I L E E X A M P L E

Figure A.1: Configuration file for model 1A with ERA5 forcing and HydroMT static input.
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B U S C ATC H M E N T S

b.1 us ungauged catchments

Figure B.1: US catchments without streamflow observations in training period, therefore
functioning as ungauged basins within the US in the experiments of SQ1:
01552000, 01552500, 01567500, 07301410, 07346045, 08050800, 08101000, 08104900,
08109700, 08158810

b.2 catchment attribute per hru

Figure B.2: Mean catchment attribute per HRU (part 1).
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Figure B.3: Part 2 of Figure B.2. Red bars for HydroMT values, blue bars for Camels US,
overlap in purple.
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C C ATC H M E N T C L U S T E R I N G

c.1 budyko plot per us catchment cluster

Figure C.1: Budyko plot per catchment cluster. Y-axis: ¯AET
P̄ , x-axis: ¯PET

P̄ . Colored by NSE
achieved with model 1A on daily time scale.
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Figure C.2: Catchments with negative ET
P in Budyko plot: 06746095, 12040500, 12041200,

12054000, 12056500, 12167000, 12175500, 12178100, 12186000, 12147500, 14400000.

c.2 mean catchment attributes per cluster
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Table C.1: Mean attribute values per cluster. Maximum values per attribute in blue, mini-
mum values in red.
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D DATA S E T C O M PA R I S O N

d.1 era5 vs. nldas-2 forcing per hru in us

Figure D.1: Monthly climatology per HRU in US. Continuous line based on ERA5 forcing
data, dashed line based on NLDAS-2 forcing data. Blue: precipitation in mm/d,
green: convective precipitation in mm/d, red: temperature in ◦C.
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Figure D.2: Yearly climatology per HRU in US. Continuous line based on ERA5 forcing data,
dashed line based on NLDAS-2 forcing data.
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d.2 input data meuse catchments

Figure D.3: Time-series of forcing parameters for Meuse catchment 703. Orange graphs are
cleaned time series, blue vertical lines show outliers that were previously in-
cluded in time series. Black dashed horizontal lines show thresholds applied to
find outliers and replace with mean. Thresholds given in title of each subplot, if
outliers were present. SD = standard deviation.
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Figure D.4: Attributes box-plots based on US catchments of cluster 1. Red stars show values
of Meuse catchments.
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Figure D.5: Attributes box-plots based on all US catchments. Red stars show values of Meuse
catchments.
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E U S M T S - L S T M P E R F O R M A N C E

e.1 groundwater depletion us

Figure E.1: US map showing cumulative groundwater depletion, 1990 - 2008 (Konikov, 2013).
Strongest depletion of 150 - 400 km3 in red.
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e.2 performance metrics per cluster
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Table E.1: Median performance metrics for MTS-LSTM models 1A and 2A trained on US
data. Static attributes from HydroMT. Bold forcing dataset name marks model
with better results per cluster. Number of catchments per cluster in parenthesis
behind cluster number. Last to columns refer to identified peaks in testing pe-
riod. Peak Timing in [d] ([h]), FHV and absolute magnitude error ϵabs in [mm/d]
([mm/h]), other metrics unit-less.
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F M E U S E R E S U LT S

f.1 performance metrics and signatures

NSE KGE FHV Peak ϵabs ϵrel
Nr. Freq Model Timing

6

1D
wflow 0.75 0.80 -16 1.0 0.14 0.29
US no 0.48 0.64 12 0.54 3.85 0.40

US less -1.92 -0.45 63 0.65 4.13 0.59

LSTM 0.60 0.67 -31 0.71 5.97 0.58

PUB 0.30 0.21 -67 0.96 6.54 0.63

M4SE 0.50 0.72 -7 1.71 5.15 0.52

1H
wflow 0.78 0.72 -20 4.23 0.07 0.30
US no 0.53 0.68 -12 5.95 0.14 0.49

US less -0.93 -0.06 34 7.70 0.24 0.98

LSTM 0.70 0.77 -12 5.08 0.10 0.44

PUB 0.23 0.14 -70 7.91 0.21 0.64

M4SE 0.63 0.73 -17 5.67 0.12 0.45

13

1D
wflow -4.21 -0.96 158 0.57 0.19 1.87

US no -2.98 -0.66 129 0.92 2.46 1.03

US less 0.47 0.64 -3 0.92 0.97 0.41
LSTM 0.55 0.55 -38 0.71 1.42 0.54

PUB 0.13 0.04 -70 1.22 1.82 0.64

M4SE 0.40 0.55 -40 1.14 1.59 0.59

1H
wflow -3.65 -0.79 159 9.90 0.13 1.72

US no -0.92 0.12 63 7.91 0.05 0.54

US less -71.18 -6.97 770 8.46 0.23 2.61

LSTM 0.46 0.48 -35 7.10 0.05 0.54

PUB 0.07 0.01 -71 6.44 0.05 0.54

M4SE 0.40 0.57 -28 6.95 0.04 0.40

701

1D
wflow 0.51 0.70 1 1.17 0.13 0.31
US no 0.12 0.29 26 0.76 4.33 0.53

US less -2.55 -0.93 46 1.14 3.39 0.38

LSTM 0.53 0.60 -37 0.50 5.44 0.57

PUB 0.31 0.24 -46 1.37 5.77 0.59

M4SE 0.32 0.57 -20 1.33 5.03 0.52

1H
wflow 0.74 0.86 -10 6.40 0.09 0.39
US no 0.39 0.58 -4 6.83 0.12 0.49

US less -0.52 -0.10 -25 9.01 0.19 0.82

LSTM 0.58 0.68 -18 5.71 0.11 0.49

PUB -1.80 -1.03 -9 6.25 0.11 0.58

M4SE 0.59 0.71 -22 7.18 0.10 0.40

Table F.1: Metrics for Meuse catchments with wflow sbm, US-trained model without statics
(US no) and with less statics (US less), regional Meuse MTS-LSTM (LSTM), re-
gional PUB simulations (PUB) and regional MTS-LSTM with M4SE loss function
(M4SE). Best value per metric is marked in blue per catchment and time scale.
(Part 1)

66



NSE KGE FHV Peak ϵabs ϵrel
Catchm. Freq Model Timing

702

1D
wflow -0.50 0.14 64 0.86 0.07 0.50
US no -2.93 -0.55 130 0.96 2.69 0.78

US less 0.92 0.06 73 0.96 2.17 0.63

LSTM 0.47 0.48 -42 0.43 1.94 0.50
PUB 0.25 0.47 -42 1.29 2.08 0.54

M4SE 0.25 0.50 -42 0.86 1.96 0.52

1H
wflow 0.01 0.39 48 5.11 0.07 0.63

US no -0.61 0.24 65 4.99 0.06 0.59

US less -17.46 -2.77 342 6.00 0.22 2.19

LSTM 0.33 0.43 -31 3.91 0.07 0.55

PUB -0.64 0.33 24 6.0 0.05 0.56

M4SE 0.32 0.50 -36 5.47 0.06 0.45

703

1D
wflow -0.34 0.16 67 1.00 0.07 0.61

US no -1.48 -0.18 103 0.91 2.23 0.62

US less -1.03 0.05 77 0.95 2.32 0.68

LSTM 0.61 0.59 -31 0.57 2.06 0.55
PUB 0.33 0.41 -50 1.60 2.61 0.62

M4SE 0.34 0.65 -18 1.14 2.01 0.61

1H
wflow 0.22 0.43 50 7.91 0.07 0.60

US no -0.13 0.45 47 4.67 0.07 0.56

US less -30.60 -3.98 453 6.71 0.31 2.50

LSTM 0.59 0.62 -22 5.44 0.05 0.43

PUB -0.61 0.04 -55 6.22 0.08 0.58

M4SE 0.49 0.59 -33 4.50 0.06 0.39

Table F.2: Part 2 of Table F.1

Qhigh frequency Qhigh duration Q95 HFDmean Q̄/P̄
Catchm. Freq Model [d/yr] [d], [h] [mm/h] [d] [ - ]

6 1D

wflow 7 2 3.84 124 0.42

US no 6 3 5.91 141 0.69

US less 2 2 7.63 137 0.96

LSTM 4 4 3.72 128 0.39

PUB 0 - 2.42 149 0.52

M4SE 6 5 4.23 121 0.48

obs 17 2 3.89 125 0.42

1H

wflow 11 28 0.14 128 0.37

US no 6 1 0.20 139 0.57

US less 166 1 0.10 102 0.20

LSTM 9 30 0.16 128 0.39

PUB 0 - 0.07 153 0.30

M4SE 3 33 0.14 123 0.41

obs 17 36 0.16 125 0.42

Table F.3: Hydrologic signatures with wflow sbm, US-trained model without statics (US no)
and with less statics (US less), regional Meuse MTS-LSTM (LSTM), regional MTS-
LSTM for PUB simulations (PUB), regional MTS-LSTM with M4SE loss function
(M4SE) and observed streamflow (obs). In case two units are given, the first one
applies to daily (1D) results and the second one to hourly (1H). Best value per
metric is marked in blue per catchment and time scale. (Part 1)
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Qhigh frequency Qhigh duration Q95 HFDmean Q̄/P̄
Catchm. Freq Model [d/yr] [d], [h] [mm/h] [d] [ - ]

13 1D

wflow 59 5 4.23 109 0.38

US no 5 3 4.00 138 0.50

US less 1 1 2.02 149 0.30

LSTM 0 - 1.22 146 0.18

PUB 0 - 0.81 174 0.24

M4SE 0 - 1.44 141 0.26

obs 2 2 1.70 134 0.23

1H

wflow 58 96 0.16 108 0.33

US no 4 1 0.12 137 0.38

US less 58 5 0.50 138 0.38

LSTM 0.3 23 0.05 149 0.18

PUB 0 - 0.03 178 0.23

M4SE 0 - 0.06 138 0.25

obs 2 22 0.07 135 0.23

701 1D

wflow 17 2 3.53 120 0.37

US no 6 3 5.45 141 0.65

US less 0 1 6.54 168 0.92

LSTM 7 4 2.46 131 0.29

PUB 0 - 2.94 146 0.49

M4SE 0 1 3.37 129 0.40

obs 16 2 2.96 121 0.31

1H

wflow 22 46 0.13 120 0.32

US no 6 1 0.18 139 0.52

US less 24 1 0.04 139 0.12

LSTM 13 33 0.11 126 0.28

PUB 0 - 0.25 140 0.94

M4SE 4 27 0.12 118 0.33

obs 17 30 0.12 122 0.31

702 1D

wflow 2 2 3.07 129 0.44

US no 6 2 4.76 139 0.56

US less 2 2 3.21 154 0.46

LSTM 0 - 1.32 155 0.26

PUB 0 - 1.48 150 0.25

M4SE 0 - 1.56 129 0.25

obs 0 1 1.96 151 0.32

1H

wflow 2 16 0.11 134 0.38

US no 5 1 0.14 138 0.42

US less 31 2 0.30 149 0.66

LSTM 0 - 0.05 156 0.25

PUB 7 36 0.11 135 0.27

M4SE 0 - 0.06 139 0.28

obs 1 16 0.08 152 0.32

703 1D

wflow 5 1 3.24 126 0.41

US no 6 3 4.52 141 0.56

US less 2 2 3.42 152 0.48

LSTM 0 - 1.48 150 0.29

PUB 0 - 1.42 156 0.26

M4SE 0 - 2.02 129 0.30

obs 0 1 2.11 145 0.33

1H

wflow 6 24 0.12 131 0.35

US no 5 1 0.14 140 0.43

US less 66 3 0.41 153 0.81

LSTM 0 - 0.06 153 0.29

PUB 14 26 0.05 147 0.12

M4SE 0 - 0.07 136 0.29

obs 0 8 0.09 145 0.34

Table F.4: Part 2 of Table F.3
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f.2 histograms of era5 forcing parameters

Figure F.1: Histograms of ERA5 forcing parameters based on data from 516 US catchments
(blue) and 5 Meuse catchments (red).
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f.3 flow duration curves

Figure F.2: Logarithmic FDCs for Meuse catchments with US-trained MTS-LSTM without
static input (US no, dark green) and with less static attributes (US less, lime).
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Figure F.3: Logarithmic FDCs for Meuse catchments, derived from observed streamflow
(blue), predictions from wflow sbm (orange), regional Meuse MTS-LSTM trained
with NSE loss function (red) and regional Meuse MTS-LSTM trained with M4SE
loss function (brown).
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f.4 time series plots

Figure F.4: First result of shifted and scaled streamflow simulations for test catchments in
Meuse basin with MTS-LSTM trained on ERA5 and HydroMT data of US catch-
ments
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Figure F.5: Hydrographs for streamflow from US-trained MTS-LSTM with no static input
(US no, dark green, dashed plot) and less static input parameters (US less, lime)
compared to observations, daily results.
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Figure F.6: Hydrographs for streamflow from US-trained MTS-LSTM with no static input
(US no, dark green, dashed plot) and less static input parameters (US less, lime)
compared to observations, hourly results.
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Figure F.7: Hydrographs for streamflow for Meuse catchments from observed streamflow
(blue) and streamflow modeled with wflow sbm (orange) and the regional Meuse
MTS-LSTM (red), daily results.
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Figure F.8: Hydrographs for streamflow for Meuse catchments from observed streamflow
(blue) and streamflow modeled with wflow sbm (orange) and the regional Meuse
MTS-LSTM (red), hourly results.
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Figure F.9: Hydrographs for streamflow from MTS-LSTM with M4SE as loss function
(brown) compared to observations (blue), daily results.
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Figure F.10: Hydrographs for streamflow from MTS-LSTM with M4SE as loss function
(brown) compared to observations (blue), hourly results.
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Blöschl, G. et al. (2019). “Twenty-three unsolved problems in hydrology (UPH) – a

community perspective”. In: Hydrological Sciences Journal 64.10, pp. 1141–1158.
doi: 10.1080/02626667.2019.1620507.

Bouaziz, L. J. E. et al. (2020). “Improved Understanding of the Link Between Catchment-
Scale Vegetation Accessible Storage and Satellite-Derived Soil Water Index”. In:
Water Resources Research 56.3. doi: 10.1029/2019WR026365.

Bouaziz, L. J. E. et al. (2021). “Behind the scenes of streamflow model performance”.
In: Hydrology and Earth System Sciences Discussions 25, 1069–1095. doi: 10.5194/
hess-25-1069-2021.

Bruin, H. A. R. de et al. (2016). “A Thermodynamically Based Model for Actual
Evapotranspiration of an Extensive Grass Field Close to FAO Reference, Suit-
able for Remote Sensing Application”. In: Journal of Hydrometeorology 17.5, pp. 1373

–1382. doi: 10.1175/JHM-D-15-0006.1.
Budyko, M. I. (1974). Climate and life. Academic press.
Gauch, M. et al. (Oct. 2020). Data for ”Rainfall-Runoff Prediction at Multiple Timescales

with a Single Long Short-Term Memory Network”. doi: 10.5281/zenodo.4072701.
Gauch, M. et al. (2021). “Rainfall–runoff prediction at multiple timescales with a sin-

gle Long Short-Term Memory network”. In: Hydrology and Earth System Sciences
25.4, pp. 2045–2062. doi: 10.5194/hess-25-2045-2021.

GRDC (4.11.2021). GRDC stations with monthly data. Accessed: 2021-11-14. url: https:
//www.bafg.de/GRDC/EN/Home/homepage node.html.

Gupta, H. V. et al. (2009). “Decomposition of the mean squared error and NSE
performance criteria: Implications for improving hydrological modelling”. In:
Journal of Hydrology 377.1, pp. 80–91. issn: 0022-1694. doi: 10.1016/j. jhydrol.
2009.08.003.

Hrachowitz, M. and M. P. Clark (2017). “HESS Opinions: The complementary merits
of competing modelling philosophies in hydrology”. In: Hydrology and Earth
System Sciences 21.8, pp. 3953–3973. doi: 10.5194/hess-21-3953-2017.

Hrachowitz, M. et al. (2013). “A decade of Predictions in Ungauged Basins (PUB)—a
review”. In: Hydrological Sciences Journal 58.6, pp. 1198–1255. doi: 10 . 1080 /

02626667.2013.803183.

79

https://doi.org/10.5194/hess-21-5293-2017
https://doi.org/10.1029/2018WR022606
https://doi.org/10.1051/e3sconf/202016301001
https://doi.org/10.1051/e3sconf/202016301001
https://doi.org/10.5194/hess-21-589-2017
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels-preliminary-back-extension?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels-preliminary-back-extension?tab=overview
https://doi.org/10.1080/02626667.2019.1620507
https://doi.org/10.1029/2019WR026365
https://doi.org/10.5194/hess-25-1069-2021
https://doi.org/10.5194/hess-25-1069-2021
https://doi.org/10.1175/JHM-D-15-0006.1
https://doi.org/10.5281/zenodo.4072701
https://doi.org/10.5194/hess-25-2045-2021
https://www.bafg.de/GRDC/EN/Home/homepage_node.html
https://www.bafg.de/GRDC/EN/Home/homepage_node.html
https://doi.org/10.1016/j.jhydrol.2009.08.003
https://doi.org/10.1016/j.jhydrol.2009.08.003
https://doi.org/10.5194/hess-21-3953-2017
https://doi.org/10.1080/02626667.2013.803183
https://doi.org/10.1080/02626667.2013.803183


Imhoff, R. O. et al. (2020). “Scaling Point-Scale (Pedo)transfer Functions to Seam-
less Large-Domain Parameter Estimates for High-Resolution Distributed Hy-
drologic Modeling: An Example for the Rhine River”. In: Water Resources Re-
search 56.4. doi: 10.1029/2019WR026807.

Jones, J. A. et al. (Apr. 2012). “Ecosystem Processes and Human Influences Regu-
late Streamflow Response to Climate Change at Long-Term Ecological Research
Sites”. In: BioScience 62.4, pp. 390–404. issn: 0006-3568. doi: 10.1525/bio.2012.
62.4.10.

Karim, R. (2018). Animated RNN, LSTM and GRU. url: https://towardsdatascience.
com/animated-rnn-lstm-and-gru-ef124d06cf45.

Konikov, L.F. (2013). “Groundwater depletion in the United States (1900-2008): U.S.
Geological Survey Scientific Investigations Report 2013-5079”. In: url: http :

//pubs.usgs.gov/sir/2013/5079.
Kratzert, F. et al. (2018). “Rainfall–runoff modelling using Long Short-Term Memory

(LSTM) networks”. In: Hydrology and Earth System Sciences 22.11, pp. 6005–6022.
doi: 10.5194/hess-22-6005-2018.

Kratzert, F. et al. (2019a). “NeuralHydrology – Interpreting LSTMs in Hydrology”.
In: Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. Springer,
pp. 347–362.

Kratzert, F. et al. (2019b). “Toward Improved Predictions in Ungauged Basins: Ex-
ploiting the Power of Machine Learning”. In: Water Resources Research 55.12,
pp. 11344–11354. doi: 10.1029/2019WR026065.

Kratzert, F. et al. (2019c). “Towards learning universal, regional, and local hydro-
logical behaviors via machine learning applied to large-sample datasets”. In:
Hydrology and Earth System Sciences 23.12, pp. 5089–5110. doi: 10.5194/hess-23-
5089-2019.

LeCun, Y., Y. Bengio, and G. Hinton (2015). “Deep learning”. In: Nature 521, pp. 436–
44. doi: 10.1038/nature14539.

Luce, C. (2014). “Runoff Prediction in Ungauged Basins: Synthesis Across Processes,
Places and Scales”. In: Eos, Transactions American Geophysical Union 95.2, pp. 22–
22. doi: 10.1002/2014EO020025.

Nash, J.E. and J.V. Sutcliffe (1970). “River flow forecasting through conceptual mod-
els part I — A discussion of principles”. In: Journal of Hydrology 10.3, pp. 282–
290. issn: 0022-1694. doi: 10.1016/0022-1694(70)90255-6.

NeuralHydrology (2020). neuralhydrology. https://github.com/neuralhydrology.
Nielsen, M. (2015). Neural Networks and Deep Learning. Determination Press. url:

http://neuralnetworksanddeeplearning.com/.
Razavi, T. and P. Coulibaly (2013). “Streamflow Prediction in Ungauged Basins: Re-

view of Regionalization Methods”. In: Journal of Hydrologic Engineering 18.8,
pp. 958–975. doi: 10.1061/(ASCE)HE.1943-5584.0000690.

Richey, A. S. et al. (2015). “Quantifying renewable groundwater stress with GRACE”.
In: Water Resources Research 51.7, pp. 5217–5238. doi: 10.1002/2015WR017349.

Searcy, J. K. (1959). Flow-duration curves. 1542. US Government Printing Office. doi:
10.3133/wsp1542A.

Sharma, S. (2017). “Activation Functions in Neural Networks”. In: towards data
science. url: https : / / towardsdatascience . com / activation - functions - neural -

networks-1cbd9f8d91d6.
Shen, C. (2018). “A Transdisciplinary Review of Deep Learning Research and Its

Relevance for Water Resources Scientists”. In: Water Resources Research 54.11,
pp. 8558–8593. doi: 10.1029/2018WR022643.

Verseveld, W. van et al. (2020). “Wflow.jl”. In: doi: 10.5281/zenodo.5679039. url:
https://github.com/Deltares/Wflow.jl.

Vertessy, R. A. and H. Elsenbeer (1999). “Distributed modeling of storm flow genera-
tion in an Amazonian rain forest catchment: Effects of model parameterization”.
In: Water Resources Research 35.7, pp. 2173–2187. doi: 10.1029/1999WR900051.

80

https://doi.org/10.1029/2019WR026807
https://doi.org/10.1525/bio.2012.62.4.10
https://doi.org/10.1525/bio.2012.62.4.10
https://towardsdatascience.com/animated-rnn-lstm-and-gru-ef124d06cf45
https://towardsdatascience.com/animated-rnn-lstm-and-gru-ef124d06cf45
http://pubs.usgs.gov/sir/2013/5079
http://pubs.usgs.gov/sir/2013/5079
https://doi.org/10.5194/hess-22-6005-2018
https://doi.org/10.1029/2019WR026065
https://doi.org/10.5194/hess-23-5089-2019
https://doi.org/10.5194/hess-23-5089-2019
https://doi.org/10.1038/nature14539
https://doi.org/10.1002/2014EO020025
https://doi.org/10.1016/0022-1694(70)90255-6
https://github.com/neuralhydrology
http://neuralnetworksanddeeplearning.com/
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000690
https://doi.org/10.1002/2015WR017349
https://doi.org/10.3133/wsp1542A
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://doi.org/10.1029/2018WR022643
https://doi.org/10.5281/zenodo.5679039
https://github.com/Deltares/Wflow.jl
https://doi.org/10.1029/1999WR900051


Xia, Y. et al. (2012). “Continental-scale water and energy flux analysis and valida-
tion for the North American Land Data Assimilation System project phase 2

(NLDAS-2): 1. Intercomparison and application of model products”. In: Journal
of Geophysical Research: Atmospheres 117.D3. doi: 10.1029/2011JD016048.

Yamazaki, D. et al. (Dec. 2017). “MERIT DEM: A new high-accuracy global digital
elevation model and its merit to global hydrodynamic modeling”. In: AGU Fall
Meeting Abstracts. Vol. 2017, H12C–04. url: https://ui.adsabs.harvard.edu/abs/
2017AGUFM.H12C..04Y.

Yilmaz, K. K., H. V. Gupta, and T. Wagener (2008). “A process-based diagnostic
approach to model evaluation: Application to the NWS distributed hydrologic
model”. In: Water Resources Research 44.9. doi: 10.1029/2007WR006716.

81

https://doi.org/10.1029/2011JD016048
https://ui.adsabs.harvard.edu/abs/2017AGUFM.H12C..04Y
https://ui.adsabs.harvard.edu/abs/2017AGUFM.H12C..04Y
https://doi.org/10.1029/2007WR006716

	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Research Motivation
	1.2 Problem Statement
	1.3 Research Objective
	1.4 Research Questions
	1.5 Reading Guide

	2 Theoretical Background
	2.1 Hydrologic Modelling
	2.1.1 Conceptual and Physics-based Hydrologic Models
	2.1.2 Deltares wflow_sbm Process-based Hydrologic Model
	2.1.3 Data-driven Hydrologic Models

	2.2 Hydrologic Modelling with LSTM Neural Networks
	2.2.1 Structure of Neural Networks
	2.2.2 Recurrent Neural Networks
	2.2.3 Long Short-Term Memory Neural Networks
	2.2.4 Multi-Timescale LSTM


	3 Materials and Methods
	3.1 Data
	3.1.1 Study Domain
	3.1.2 Datasets
	3.1.3 Data Pre-processing

	3.2 Evaluation Methods
	3.2.1 Clustering based on Catchment Characteristics
	3.2.2 Evaluation Metrics
	3.2.3 Hydrologic Signatures

	3.3 SQ1: US MTS-LSTM Model
	3.3.1 Training - Validation - Testing Ratio
	3.3.2 Hyperparameter Tuning
	3.3.3 Training Experiments
	3.3.4 Benchmark Predictions of wflow_sbm

	3.4 SQ2: Testing US MTS-LSTM for PUB
	3.5 SQ3: Different Loss Function
	3.6 Overview of Models

	4 Results and Discussions
	4.1 Dataset Analysis
	4.1.1 Dynamic Input: Comparison NLDAS-2 and ERA5 Forcing
	4.1.2 Static Input: HydroMT Catchment Attributes

	4.2 Clustering based on Catchment Characteristics
	4.3 SQ1: US MTS-LSTM Model
	4.3.1 US Model Experiments
	4.3.2 Discussion of Results for SQ1

	4.4 SQ2: Testing US Model for PUB
	4.4.1 Meuse Catchment Classification
	4.4.2 Performance of US Model in Meuse Basin
	4.4.3 Regional Meuse MTS-LSTM
	4.4.4 Regional Meuse MTS-LSTM for PUB
	4.4.5 Discussion of Results for SQ2

	4.5 SQ3: Different Loss Function
	4.5.1 US MTS-LSTM
	4.5.2 Meuse MTS-LSTM
	4.5.3 Discussion of Results for SQ3

	4.6 Limitations

	5 Conclusion & Recommendations
	5.1 Conclusion
	5.2 Recommendations

	A Configuration file example
	B US Catchments
	B.1 US ungauged catchments
	B.2 Catchment attribute per HRU

	C Catchment Clustering
	C.1 Budyko Plot per US Catchment Cluster
	C.2 Mean Catchment Attributes per Cluster

	D Dataset Comparison
	D.1 ERA5 vs. NLDAS-2 Forcing per HRU in US
	D.2 Input Data Meuse Catchments

	E US MTS-LSTM Performance
	E.1 Groundwater Depletion US
	E.2 Performance Metrics per Cluster

	F Meuse Results
	F.1 Performance Metrics and Signatures
	F.2 Histograms of ERA5 Forcing Parameters
	F.3 Flow Duration Curves
	F.4 Time Series Plots

	G Bibliography

