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Abstract. The accuracy of airfoil polar predictions is limited by the usage of imperfect
turbulence models. Can machine-learning improve this situation? Will airfoil polars teach the
effect of turbulence on skin-friction? We try to answer these questions by refining turbulence
treatment in the Rfoil code: boundary layer closure relations are learned from airfoil polar data.
Two turbulent closure relations, for skin friction and energy shape factor, are parametrized with
a class-shape transformation. An experimental database is then used to define code inaccuracy
measures that are minimized with an interior point gradient algorithm. Results show that
airfoil polars contain exploitable information about turbulent phenomena. Inferred closures
agree with direct numerical simulation results of skin friction and the new code predicts drag
more accurately. Maximum lift remains under-predicted but Rfoil maintains its robustness and
suitability for optimization of wind energy airfoils.

1. Introduction
Wind turbine airfoils operate in high Reynolds flows with intricate eddies that cannot be resolved
in practical simulations. Flow solvers model the effect of unresolved turbulent phenomena by
combining mechanistic insight with closure relations. Closures inject empirical knowledge into
simulations and dominate errors in airfoil predictions [1–3] – be it for Viscous-Inviscid (VII) [4,5],
Reynolds Averaged Navier-Stokes (RANS) [6], Large-Eddy (LES) [7] or Lattice-Boltzman [8]
environments. But good closures matter: less uncertainty means better design optimization and
lower cost of wind energy [9].

Current understanding of turbulence is shaped by a century of dialogue between statistic
[10–13], structural [14, 15], and deterministic [16, 17] perspectives [18, 19]. But advances in
turbulence thinking have limited impact on engineering approaches despite industrial demand
[6, 20, 21]; and direct numerical simulations (DNS) of high Reynolds flows are still two decades
from maturity [22]. How can models improve until then? Tracey [23, 24], Durasaimy [25, 26]
and Ling [27, 28] are advocating for data-driven approaches: using minimization algorithms to
learn turbulent closures from high-fidelity simulations and experimental data [21,29,30]. Results
for RANS [31–34] and LES [35–37] frameworks are encouraging, but applications of machine-
learning to viscous-inviscid frameworks remain sparse.

Can data teach the effect of turbulence on skin-friction? Are airfoil polars exploitable for
this purpose? Viscous-inviscid interaction (VII) codes like Rfoil [5] and Xfoil [4] are ideal to
answer these questions: they have modest computational requirements, take a structural view on
turbulence, and use the eN method [38] to predict laminar-turbulent transition accurately [2,39].

http://creativecommons.org/licenses/by/3.0
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δ∗ =
∫∞
0

(
1− U

Ue

)
dy Displacement Thickness H = δ∗

θ Shape Factor

θ =
∫∞
0

U
Ue

(
1− U

Ue

)
dy Momentum Thickness H∗ = δ∗∗

θ Energy Factor

δ∗∗ =
∫∞
0

U
Ue

(
1− U2

U2
e

)
dy Energy Thickness Cf Friction Coeff.

Reθ = Ueθ
ν Momentum Reynolds CD Dissipation Coeff.

Table 1. Integral boundary layer variables (see reference [43] for detailed definitions)

That is why we use experimental airfoil polars to learn new turbulent closure relations for the
Rfoil code. Section 2 reviews Rfoil’s error sources to identify machine-learning opportunities.
Section 3 describes the supervised learning method: it is crude by modern standards and does not
use neural networks. Results comprise a tailored Rfoil code and closure relations for turbulent
skin friction (Cf ) and energy shape factor (H∗). Section 4 checks the physical consistency of
the new closures and their impact on polar predictions.

2. Boundary layer treatment in Rfoil
Rfoil is derived from Xfoil and solves an approximate form of the Navier-Stokes (NS) equations
obtained by truncating a matched asymptotic expansion [40,41]. The outer expansion concerns
convectively-dominated flow in the far field whereas the inner expansion deals with shear-flow
near the airfoil surface. Outside deep-stall, the inner flow is approximately governed by the
boundary-layer partial-differential-equations (BL-PDE) [41,42]:{

U ∂U
∂x + V ∂U

∂y = −1
ρ
∂P
∂x + ν

(
∂2U
∂y2

)
∇ ·U = 0 ∧ ∂P

∂y = 0
with BCs =

{
prescribed Ue
edge velocity

}
(1)

The boundary-layer (BL) flow is solved with an integral method based on the Von Karman
equations [41, 43]:{

∂θ
∂x =

Cf

2 − (H12 + 2) θ
Ue

∂Ue
∂x

∂H32
∂x = 2CD

θ − H32
θ

Cf

2 + (H12 − 1) H32
Ue

∂Ue
∂x

with BCs =

{
prescribed
Ue = f(X)

}
(2)

These equations (2) are obtained by integrating the BL-PDEs (1) analytically in the normal
direction (x). No approximations are involved in this procedure. But while the BL-PDEs (1)
are closed, system (2) comprises two ordinary differential equations (ODEs) that depend on five
variables (see table 1 for notation). Solving system (2) therefore requires additional connections
between variables, and these are known as closure relations.

2.1. Laminar and turbulent closure relations
Rfoil resorts to different closure relations for each flow region – laminar BL, turbulent BL and
wake. Transition between flow regions is predicted with a supplementary ODE for the growth
of Tollmien-Schlichting waves [38] and matching laws are used at interfaces – near stagnation,
laminar-turbulent transition and the trailing edge.

Laminar closure relations are backed by solid theory [44]. Similarity conditions allow the
construction of two-state velocity profiles [45, 46] that originate accurate closure datasets [47].
These closures are only exact for specific pressure histories [48] but laminar flows have limited
memory. Departure from similarity has negligible effects in the absence of turbulent eddies [49].

The theory of turbulent closure relations is weaker [50–52]. Rfoil uses two-state closures for
turbulent skin friction (Cf ) and energy factor H∗:

Corgf = f(H,Reθ) , H∗org = f(H,Reθ) (3)
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Figure 1. Transition location on a 24% thick airfoil measured in TU-Delft’s LTT.

Bivariate closures of this kind assume Clauser equilibrium [53] but airfoil pressure histories
[54, 55] often drive flow away from equilibrium [56, 57]. Turbulent boundary layers require
additional descriptors for history effects, and that is acknowledged with the shear-lag equation:

δ

Cτ

∂Cτ
∂x

= KC

(
C

1
2
τ − C

1
2
τEQ

)
+

{
diffusive
terms

}
(4)

This ODE adds a state related to flow memory, the turbulent shear stress coefficient (Cτ ). It
is derived from Green’s approximation [58] of Bradshaw’s equation [59] for the transport of
turbulent kinetic energy; and enables computation of the dissipation coefficient (CD) with a
(Cτ ) that lags behind equilibrium values (Ceqτ ) inferred from the Clauser G− β relation [60,61].

G = A
√

1 +Bβ (5)

But the shear-lag approach is attackable [1, 62]: it depends on a shear stress profile that
contradicts experimental evidence [56, 57], its diffusive term is debated [61, 62] and the KC

factor encompasses substantial uncertainty [5].

2.2. Sources of prediction error
Accurate load predictions require accurate closures at every flow stage, and the mechanistic
arguments of section 2.1 suggest that turbulent closures are the greatest source of error. Rfoil
underestimates drag in most conditions [63], and the issue is greatest on airfoils with short
laminar runs. Longer turbulent runs seem to correlate with to greater drag underprediction.

Accurate prediction of the transition location requires accurate flow solutions of every flow
region but the turbulent boundary layer and wake. And Rfoil predicts transition accurately, as
can be seen on the illustrative case of figure .. . That case corresponds to an airfoil with 24%
thickness measured in TU-Delft’s LTT, and it provides experimental evidence for the problematic
nature of Rfoil’s turbulent closures.

Airfoil designers circumvent turbulence modeling shortcommings with various workarounds.
Some designers tailor the G − β relation (5) to specific cases, others use custom skin-friction
relations (3), and yet others correct the polar curve directly. Typical corrections depend on
airfoil thickness, leading-edge radius, extent of laminar run or Reynolds number [63]. Semi-
empirical correction methods suggest airfoil polar data can reveal systematic trends that remain
unexploited by closure relations.
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2.3. Machine learning opportunities
Unexploited information and epistemic uncertainty signal machine-learning opportunities. But
what exactly is machine-learning? According to Mitchell [64]:

“A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance at tasks in T, as measured by
P, improves with experience.” [64]

Think of a task (T ) that consists in predicting airfoil polars. Learning could use experience
(E, predictions with different settings) to modify a flow solver (Rfoil) in ways that improve its
performance (P, accuracy against reference results).

Such a setup is typical of supervised-learning and could be used to improve several terms in
Rfoil’s turbulent closure:

(i) Matching rules at boundary layer interfaces

(ii) Shape and coefficients of the G− β closure relation (5)

(iii) Diffusive terms and slip-velocity closure of the shear-lag equation (4)

(iv) Enhanced skin friction (Cf ) and energy shape-factor (H∗) closure relations (3)

The present contribution narrows its scope to the last, and simplest, option of the above list.

3. Supervised learning of closure relations
We use airfoil polar data to learn new closure relations for turbulent skin friction (Cf ) and energy
shape-factor (H∗). The two-state dependency f (H,Reθ) is maintained despite its shortcomings
and the new closures are defined parametrically.

C learnf = f(H,Reθ;ψcf) , H∗learn = f(H,Reθ;ψ∗) (6)

Learning consists in finding parameters (ψ) that lead to improved closure relations. But what
are better closures? Traditional approaches [43,53] emphasize agreement with detailed boundary
layer measurements. Recent work [1, 5, 24] defends that better closure relations lead to better
flow predictions. The two definitions are not contradictory and we assume they correlate well.
The outcomes of the learning process will tell if that holds true.

Formally, we seek to learn by minimizing the expectation (E) of a measure for Rfoil’s
inaccuracy (L) in the prediction of airfoil polar curves (fp(x,β)). The problem is formalized

after Goodfellow [65]:

min
ψ

E(x,y)∼pdata L
(
fp(x,ψ),y

)
≈ min

ψ∈D
1

m

i=m∑
i=1

L
(
fp(xi,ψ)

,yi

)
(7)

Experimental reference (y - reference aerodynamic coefficients) and conditions (x - airfoil
coordinates, Mach, Reynolds) would ideally span the entire data generating distribution (pdata)
of the physical world. This is impossible, so the expected inaccuracy norm of Rfoil’s polar
predictions is approximated over a discrete collection {xi,yi} of i = 1...m of experimental
samples.

3.1. Experimental reference
Reference data is sampled from airfoil polar curve measurements of Abbot and Van Doenhoff [66].
A database was constructed using digitized data [67] from the NACA TR824 report [66] that
spans several 4, 5 and 6 digit NACA airfoils. Reynolds numbers range from 3 to 9 million and
airfoil coordinates were regenerated with the NACA456 code [68]. Rough leading edge and thin
airfoil (t/c < 0.1) cases were excluded to limit overcompensation risks. Aerodynamic coefficients
were reinterpolated into Cl − α , Cd − α and Cm − α curves but the data was left uncorrected
to ease reproducibility.
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3.2. Inaccuracy measure
Inaccuracy is measured with a combination of least square error norms that confront Rfoil’s
predictions with a training datased sampled from the experimental reference. The global
inaccuracy measure L = f(ψ) is a scalar that combines topical error norms for lift, drag and
moment coefficients.

Norms for each coefficient (LCl , LCd and LCm) are scaled with reference values
(
LC...
ref

)
computed at the beginning of the learning process.

L =

(
LCl

LCl
ref

)2

+

(
LCd

LCd
ref

)2

+

(
LCm

LCm
ref

)2

(8)

Coefficient norms
(LC...

)
are computed separately for each aerodynamic coefficient and combine

inaccuracy measures from all experimental cases
(
LC...
i

)
in the training set:

LC... =

(
1

m

i=m∑
i=1

(
LC...
i

)2) 1
2

(9)

Each experimental case represents a unique combination of airfoil and Reynolds number. Case

inaccuracy norms
(
LC...
i

)
consist in the root mean square integral of the difference between

predicted (Cnum... ) and measured (Cexp... ) aerodynamic coefficients over the range of experimental
angles of attack (α):

LC...
i =

⎛
⎜⎝
∫ (

Cnum....(xi,ψ)
− Cexp....(xi)

)2
dα∫

dα

⎞
⎟⎠

1
2

(10)

3.3. Parametric closure relations
Closure relations are parametrized with a variant of the Class Shape Transformation (CST) [69].
The idea consists in using a shape function (SdM ) that modifies the original closure relations
(Corgf and H∗org ) in arbitrary ways:

C learn
f
(
H,Reθ,ψ

cf
i

) = SdM(
H,ψcf

i

)
(
Corgf(H,Reθ)

+ δCf

)
− δCf with δCf = 0.004

H∗learn
(H,Reθ,ψ∗

i )
= SdM

(H,ψ∗
i )

(
H∗org(H,Reθ)

+ δH
∗
)
− δH∗

with δH
∗
= 0

The SdM function is constructed by linear combination of the M th degree Bernstein polynomial

basis. Its behavior is controlled by M + 1 parameters (ψcfi , ψ
∗
i ∈ R

M+1 ):

SdM(H,θi) =

⎧⎪⎨
⎪⎩
A0 0 < η(H)∑i=M

i=0 θi+1B
Mi
(η(H))

0 < η(H) < 1

AM+1 1 < η(H)

with

⎧⎨
⎩ BMi

(x) =

(
M
i

)
xi (1− x)M−i

η(H) =
H−Hlb
Hub−Hlb

Closure relation modifications are confined to a relatively narrow interval [Hlb, Hub] of shape
factors. The lower bound is set at the vanishing boundary layer limit (Hlb = 1) and the upper
bound corresponds to separated flow (Hub = 6). Two constraints are enforced:
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Figure 2. Effect of learning on standard deviation of lift and drag predictions over training set.

(i) First derivative discontinuities at the upper bound are limited by aggregating the last shape

parameters (ψcfM = ψcfM+1 and ψ∗M = ψ∗M+1)

(ii) Original closure relation values at the vanishing boundary layer limit are maintained

(ψcf1 = ψ∗1 = 1) to preserve asymptotic behavior

Bernstein polynomials of very modest order (M + 1 = 6) were used, but these shape functions
allow progressive refinement across multivariate polynomial spaces and the generality of the
method can be proven [69].

We hope these choices will not mislead readers into considering the CST method overly
restrictive. Shape functions can be designed to allow progressive refinement across multivariate
polynomial spaces and the generality of the method can be proven [69].

3.4. Solution algorithm
Closure relations are learned by changing the parameters until the inaccuracy norm is minimized.
This is achieved with a gradient descent algorithm based on the interior point method [70,71]: the

algorithm starts from the original closures (ψcfi = ψ∗i = 1 , ∀i) and combines conjugate gradient
steps with line search iterations to find sensible moves [71]. Gradients are estimated with fixed-
step central differences, the hessian matrix is approximated through the dense BFGS method[]
and numerical noise is carefully attenuated. Together with a parsimonious parametrization and
tractable dataset, these measures enable the obtention of formally converged minima.

4. Results and Discussion
The minimization algorithm reduced the scalar inaccuracy measure (8) from an initial value of√
3 ≈ 1.7321 to 1.5725. Coefficient accuracy measures, defined in expression 9, improved for all

three aerodynamic coefficients:

Before learning After learning Improvement

Lift innacuracy measure LCl 0.0813 0.0667 18.0%

Drag innacuracy measure LCd 8.7649e-04 8.0302e-04 8.40%

Moment innacuracy measure LCm 0.0178 0.0174 1.90%

The training dataset comprised 1524 datapoints spread over 33 experimental cases for NACA
4-series airfoils with relative thickness above 10%. Innacuracy measures improved differently for
each experimental case and figure 2 shows histograms of drag and lift prediction errors at the
case level, as given by expression 10. Learning shifted the error histograms to the left and that
is desirable. The drag innaccuracy measure improved for all but two cases in the training set.
The two spurious points of the drag histogram correspond to situations in which Rfoil predicted



7

1234567890 ‘’“”

The Science of Making Torque from Wind (TORQUE 2018) IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1037 (2018) 022009  doi :10.1088/1742-6596/1037/2/022009

-5 0 5 10 15 20
 (deg.)

0

0.5

1

1.5

2

C
l

Lift Polar - NACA2415 @ Re =9e6

Langley LTPT
Original Rfoil
Learned Rfoil

50 100 150

Cd x 104

0

0.5

1

1.5

2

C
l

Drag Polar - NACA2415 @ Re =9e6

Langley LTPT
Original Rfoil
Learned Rfoil

Figure 3. Effect of learning on polar prediction for airfoil in training set.

transition too early. The width of the laminar drag bucket was then underestimated, and led
to a paradoxal situation in which turbulence model improvements degraded the overall drag
accuracy measure.

Future efforts might resolve the above artifact by selecting the transition threshold more
carefully. The present work used a critical amplification factor of N = 9 for all simulations, but
different values are probably more appropriate for the Langley LTPT tunel.

4.1. Effect on Polar Predictions
Polar predictions improved in qualitative terms for all airfoils in the training set. Figure 3
shows the effect of learning on the NACA2415 airfoil at a Reynolds number of 9 million.
Rfoil’s traditional drag under-prediction was attenuated and maximum-lift approached the
experimental reference. Differences in the slope of the lift curve remained throughout
the learning process but that is probably due to experimental shortcommings: early lift
measurements in the Langley LTPT were obtained by integrating wall pressures over a small
number of orifices. Combined with primitive correction methods, that probably lead to
systematic understimation of the lift curve slope [63].

Figure 4 compares polar curves for the DU96-W180 airfoil at a Reynolds number of 3e6, as
measured in TU-Delft’s Low Turbulence Tunnel (LTT) [72]. Improvements in drag prediction
are clear and suggest that learning enhanced the predictive power of Rfoil: the DU96-W180 case
functions as a verification because it did not belong to the training set.

Maximum-lift predictions deteriorated slightly for the verification case. The origin of
underpredictions in maximum-lift is still misunderstood: it could be due to biases in the training
set, over-compensation, under-fitting, or simply the price to pay for better drag predictions.
Future efforts can elucidate these hypotheses by using more dependable datasets and by allowing
wider modifications in Rfoil’s turbulent closure.

4.2. Learned Closure Relations
Figure 5 shows the effect of learning on closure relations. A modest momentum Reynolds number
was chosen to enable comparison with the closures of the Eppler airfoil prediction code [73].Even
if these changes had substantial effect on polar predictions, they remained within the range of
uncertainty associated with historical boundary layer measurements [43].
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Figure 5. Learned skin friction and H∗ closures compared to original Rfoil and Eppler code
closures.

The new closure predicts higher skin friction values than the original one. This makes
sense because older boundary layer studies [53, 60] underestimated skin friction in adverse
pressure gradients: skin friction was traditionally estimated by extrapolation pitot or hot-wire
measurements with incorrect law-of-the-wall assumptions [56, 57, 74]. Oil film interferometry
measurements and direct numerical simulations (DNS) do not depend on law of the wall
assumptions, and produce higher skin friction estimates that thought to be more accurate.

Figure 6 compares the learned skin friction closure with a recent DNS result published by
Vinuesa et al. [75]. Agreement also improves for the other datapoints published of reference [75].
Improved agreement of closure relations with detailed BL data seems to correlate well with
improvements in airfoil polar prediction, as we had hoped in the beginning of section 3. The
effects of turbulence on skin friction can indeed be learned from airfoil polar data.

4.3. Learning exercises
Several learning exercises were conducted to understand the effect of different training sets,
performance norms and algorithm settings. Variations in the learning method did not affect
learning outcomes in substantial ways, and lead to the following insights:
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Figure 6. Comparison of learned skin friction closure with DNS data of Vinuesa et al. [75].

• Inaccuracy norm: The approach described here provides stable gradients and agrees well
with heuristic understandings of code accuracy. Most importantly, it uses all available data
points. This may appear inefficient because some data points hold limited information
about what we want to learn. Think of lift measurements in the linear region: we know
what they should be and already trust our codes on this matter. But these points are
important for machine-learning because they teach what we don’t want to forget.

• Parametric representation: The current parametrization is restrictive and leads to some
underfitting. Future studies should use more parameters by increasing the order of the H
parametrization, using a bivariate shape function that includes Reθ effects, or accounting
for equilibrium departure with a trivariate closure. Extension of the parametrization is
straightforward, but broader design spaces are only advantageous if the training set contains
sufficient information. We decided not to learn an Reθ dependency from the TR824 dataset
because its coverage of the data-generating distribution seemed too narrow: low Reθ values
are heavily correlated with low shape factors because all airfoils were measured at high
chord Reynolds numbers.

• Solution Algorithm: Results obtained with different full batch deterministic gradient
algorithms are similar. The learning problem (7) is formally non-convex but the original
convergence basin seems wide and slightly shallow. Alternative convergence basins were
identified with a simulated annealing algorithm [76] but these lead to narrow unphysical
minima. Stochastic gradient (SGD) [65] algorithms are inefficient on small datasets [77] like
the ones used here, but future studies should benefit from their scalability.

5. Final Note
Airfoil polars contain exploitable information about turbulent boundary layers. A relatively
small dataset was able to teach a better skin friction closure to the Rfoil code. The new closure
relation agrees with direct numerical simulation data that was not used for training, and leads to
better drag predictions for airfoils inside and outside the training set. Lift predictions remained
identical for the linear region but a decrease in maximum-lift estimations was observed. The
extent to which this is desirable, or physically sound, remains unclear.

Reliable data is scarce, but it seems more important to learn from reliable data than from
big data. When that holds true, turbulence learning will benefit from the use of parsimonious
parametric representations. Variants of the CST parametrization could be appealing compared
to neural-networks. CST methods are less general than modern machine-learning predictors,
but that could be an advantage when the inaccuracy norm is computationally expensive and
susceptible to robustness issues. Applications extend beyond viscous-inviscid interaction: future
efforts can build on the current method to improve RANS or LES predictions of airfoil flows
and wind turbine wakes.
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