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Abstract

The generation of a 3D map of an unseen environment, obtained through solving the SLAM
problem, is a popular topic currently in the robotics domain. The Lunar Rover Mini (LRM)
at the German Aerospace Center solves this problem using a RGB-D camera system, which
is favourable in space applications due to its lightweight characteristics and energy-efficiency.
Performing SLAM based on camera images is based on visual odometry: the science of es-
timating the rover’s trajectory trough a sequence of images. However, the dependency on a
single sensor to perform mapping and navigation poses a threat to the reliability of the system.
To increase the reliability and robustness of the SLAM algorithm, an inertial measurement
unit (IMU) is incorporated in the robot hardware.
This thesis describes the design for a visual-inertial SLAM algorithm that incorporates both
visual and inertial measurements to solve the SLAM problem through performing tightly cou-
pled sensor fusion, which estimates and corrects for IMU biases. The solution is based on a
non-linear factor graph, which is a graphical model to represent the relationships between the
rover’s measurements and the unknown variables which are optimised for. This is done using
the open-source GTSAM framework. Using experimental data, the robustness of the novel
visual-inertial SLAM algorithm is demonstrated by simulating specific sensor failures. More-
over, the novel algorithm shows its capability to incorporate a degree of certainty regarding
specific areas of the generated map, closely resembling how a human being would generate a
map of an unknown area.
An additional use case for tightly coupled sensor fusion is the increased accuracy of the esti-
mated trajectory. Assuming Gaussian noise models for both measurement models, averaging
the two can yield a higher accuracy than either of the two sensors could have obtained by
itself. This hypothesis was tested in another experiment. As the main mechanism behind bias
estimation is reducing the error between visual and inertial measurements, bias estimation is
quickly affected by this drifting visual odometry, which in its turn deteriorates the accuracy of
the visual-inertial odometry module. This observation proves that the bias estimation is not
correlated to the underlying physical process, but is rather just a numerical value in the op-
timisation reducing the residual error. It raises the question whether this strategy of tightly
coupled sensor fusion can actually be used to increase the accuracy of a visual odometry
algorithm.
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Chapter 1

Introduction

In the light of exploration of our solar system, a lot of research has been conducted in the last
decades regarding Earth’s fellow planets. Because of its solid surface, polar ice caps, extinct
volcanoes and traces of liquid water, the planet Mars is of high interest to researchers and
space agencies. In order to explore the surface of this planet, robotic rovers have been sent
to the red planet, with the aim of gaining knowledge regarding the planet’s climate, surface
structure, soil composition and other characteristics, all with the aim to prepare mankind for
the first human step on another planet. A substantial part of this objective is to construct
a map of the explored terrain, which contains valuable information for future manned or
unmanned missions.

Due to the long round-trip communication time, which can take up to 20 minutes for Mars,
tele-operation of these robots from an Earth-based control station is impractical. It is there-
fore important that the rovers can navigate and explore the surface of distant celestial bodies
autonomously. To perform mapping and navigation tasks, the rover uses its sensors to answer
the following questions questions:

• "Where am I now?"

• "What does my environment look like?"

Finding the answers to these questions is commonly known in robotics as solving the lo-
calisation problem and the mapping problem, respectively. Assuming that the rover
is equipped with sensors that allow it to determine the distance to objects in its rover, the
generation a map of the environment might seem straightforward. It quickly becomes clear
however that the mapping problem can only be solved if the rovers exact location is known
at the time of making a depth measurement. On the other hand, exactly knowing one’s
location can only be done if a complete map is at hand, to which the depth measurements
can be compared to figure out what the current position is. The complexity of the problem
becomes evident now, as the problem starts to resemble a chicken-and-egg problem: to solve
the mapping problem, the localisation problem has to be solved, for which in its turn first the
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2 Introduction

(a) Localisation using the known position of
landmarks

(b) Mapping using the robot’s known position

Figure 1-1: The localisation and the mapping problem visualised

mapping problem has to be solved. This problem is illustrated in figure 1-1 [1]. Finding the
answers to the localisation and mapping problem thus requires a more sophisticated solution,
one that can jointly and simultaneously solve both problems at the same time. The problem is
hence referred to as the Simultaneous Localisation and Mapping problem, or shortly, SLAM.

In the domain of space exploration, boundaries exist to the amount of sensors that can be
utilised by a Mars rover. A commonly used sensor in autonomous cars for example is a LiDAR
(Light Detection and Ranging). These sensors are typically quite heavy and consume a lot of
energy, due to their measuring technique. As it is very costly to launch a rocket carrying a
rover equipped with heavy batteries, this type of sensor is not suitable for solving the SLAM
problem on distant planets. In the space domain, rovers are limited to the use of cameras or
a fusion of camera’s and inertial measurement units (IMU’s). Therefore, this thesis focuses
on what is called visual SLAM and visual-inertial SLAM.

The thesis project revolves around the improvement of an existing SLAM algorithm on the
Lunar Rover Mini, or LRM, in close collaboration with the German Aerospace Center (DLR)
in Oberpfaffenhofen, Germany. This small-ground based rover is a long-term project which
aims to serve as an open-source experimental robotic platform for researchers and students.
The LRM is equipped with a RealSense D435i carrying an RGB-D camera and an IMU. As
a product from a previous master thesis, the rover already utilised the camera measurements
into a visual SLAM pipeline to perform localisation and mapping. The inertial measurements
from the IMU were not utilised yet however. Herein lied an opportunity to improve the SLAM
capabilities of the rover. The research question considered throughout this thesis is as follows:

"How can an inertial measurement unit (IMU) assist to increase the robustness of a visual
SLAM pipeline?"

The next chapter presents a summary of preliminary knowledge regarding the material dis-
cussed in the thesis. In chapter 3, the issues related to pure visual SLAM and the initial state
of the thesis project is laid out. Chapter 4 elaborates on the theory behind visual-inertial
SLAM systems is discussed, which is needed to understand the methodology and software
architecture of the work done for this thesis, which is introduced in chapter 5. This chapter
also explains the experimental setup in which the performance of the algorithms is evaluated.
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The results from these experiments are presented in chapter 6 and lastly, the research question
is answered in the chapter 7, which offers the conclusion to this thesis and poses some points
of discussion.
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Chapter 2

Preliminary Knowledge

This chapter discusses some preliminary knowledge regarding the photogrammetry, the science
of extracting 3D information from a set of 2D images. The mathematics behind this topic
provide tools to understand how these cameras can serve as the main sensor for robots to
construct a 3D map of their environment, and estimate their position in it.

2-1 Pinhole Camera Model

In a mathematical sense, a camera performs a mapping of R3, the 3D world, to R2, the 2D
image plane. The pinhole camera model is the simplest mathematical model that describes
this mapping, i.e. the perception of 3D points through projection onto an image plane [2].
Let the location of a 3D point be denoted by X = {x, y, z}, as illustrated in figure 2-1. The
projection of X is the intersection between the line that connects the camera centre C and
the image plane. The coordinates of x, the mapping of X onto the image plane, are:

x =
[
f X

Z , f
Y
Z

]
(2-1)

Figure 2-1: Pinhole camera model

where the parameter f is the focal length of the camera. In matrix formulation, the general
expression of the pinhole model is as follows:
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2-2 Epipolar Geometry 5

uv
1

 =

fx ρ cx

0 fy cy

0 0 1


XY
Z

 , (2-2)

in which u and v are the pixel coordinates on the image plane, fx and fy are the focal lengths
in x- and y-direction, respectively, and ρ is a factor for skewness of the sensor. Notice here
that by performing a mapping from R3 to R2, information regarding one of the dimensions is
disregarded. This becomes clear by virtually moving point X in figure 2-1 along its projection
line. The coordinates of projection x on the image plane will not be affected by this linear
movement.

As described above, the pinhole camera model can be used to describe the 3D to 2D mapping
of points. However, in the domain of visual SLAM, the aim is to retrieve depth information
from 2D images. Recall that in the 3D-to-2D mapping, depth information is discarded. This
poses a problem for the reverse mapping, as it is impossible to retrieve this 3D information
solely from a 2D image, where the only information known about a point is its position in
the image plane, denoted by u, v. Figure 2-2 illustrates this information is just enough to
reconstruct the ray in the 3D world on which the point has to exist. The scaling factor λ
however is unknown, which determines where exactly on this ray the point resides [3]:

Figure 2-2: Inverse mapping of the pinhole camera model

2-2 Epipolar Geometry

The perception of depth from visual cues can be achieved by taking multiple viewpoints from
different locations into consideration. The biological analogy to this is the fact that human
beings are equipped with two "pinhole camera’s", being our eyes. Inspired by this feat of
biological evolution, the robotic domain mimics this principle by incorporating multiple view-
points to estimate depth in our environment. The geometry across two different viewpoints
is referred to as epipolar geometry, which is visualised in figure 2-3:
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6 Preliminary Knowledge

(a) Configuration of stereo vision (b) Triangulation for depth perception

Figure 2-3: Epipolar geometry for depth estimation by means of point triangulation

Figure 2-3a illustrates how the 3D location of point P is computed at the intersection of the
lines O1P and O2P [4]. The parallax d = x1 + x2 is a measure for the apparent shift of an
object due to observing this object from different viewpoints. Using this measure the location
of P is found by:

Zp = b ∗ f/d
Xp = Zp ∗ x1/f

Yp = Zp ∗ y1/f

(2-3)

where b is the baseline distance between the camera centres and f is the focal length of the
camera’s. This calculation requires knowledge about correspondences between features in the
left and right image. Chapter 3 will elaborate on the extraction and recognition of features
in both images.

2-3 Bundle Adjustment

Bundle Adjustment is a process used in feature-based visual SLAM methods to estimate both
the camera motion between two sequential images, as well as the 3D location of photographed
features [5]. It does so by minimising the sum of squared reprojection errors. The reprojection
error is the distance between the location where feature fi is measured in an image, and the
location of the projection of the estimate of fi. This is visualised in figure 2-4:
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2-3 Bundle Adjustment 7

Figure 2-4: Bundle Adjustment through minimising the reprojection error

On the bottom of figure 2-4 a set of sequential images are shown, showing the measured
projection of a 3D point P in red. If this point P is only captured in two images, the
estimated location of this point in 3D is easily retrieved at the intersection of the two rays,
computed by triangulation. If the point is then observed in a third image, it is extremely
unlikely that the three projective rays (shown in red) from the three camera centres exactly
line up in the current estimate of point P . This means that the current estimate for the
location of P agrees with the measurements taken in the first two images, but not so much
with the third image. This is quantified by reprojecting the current estimate of P back onto
the image plane of the third image, as shown in green. The reprojection error is then defined
as the distance between the reprojection of the estimate and the actual measurement, as
shown in orange. By minimising the sum of the squares of all reprojection errors (four in the
example above), an optimal solution can be found, which tries to satisfy the evidence from
all four measurements as much as possible. It is clear that the estimated location of P can
be refined by adding more observations into the minimisation problem.

Besides refining the estimate of the 3D structure of the environment, bundle adjustment also
finds the optimal transformation between camera images by minimising the same reprojection
error. The reprojection error can be mathematically defined as:

ϵij(xij ; θi, ξj) =∥ xij − π
(
T(θi),X(ξj)

)
∥ (2-4)

in which xij actual measured location of point j in image i, θi contains the intrinsic and
extrinsic viewing parameter of the camera for image i and ξj is the best estimate of the world
coordinate of point j. π(·, ·) is the projection function.

The mathematical definition of bundle adjustment then becomes:

θ∗, ξ∗ = argmin
θi,ξj

∑
i=1

∑
j=1

1
2δijϵ

2
ij(xij ; θi, ξj) (2-5)

It finds the set of optimal camera transformations θ∗ and 3D points ξ∗ that are able to
most accurately explain the observed measurements xij . Bundle Adjustment can also be
used to retrieve a whole set of camera transformations, i.e. finding the robot trajectory. The
algorithm then serves as SLAM back-end, which is further elaborated on in chapter 5.

Bundle adjustment typically refers to 2D-2D image registration, meaning that the camera
movement is estimated through comparing visual features in two consecutive 2D images. In
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8 Preliminary Knowledge

SLAM applications, as an estimate of the 3D world is generated, it is useful to be able to
perform similar image registration, but based on the 3D world and the features recorded in
the last 2D image. This can be done using the Perspective-n-Point (PnP) algorithm, which
estimates the pose of the camera based on the correlations between features in the 2D image
and a set of 3D world points. The PnP problem is defined as:

s

uv
1


︸︷︷︸

pc

=

fx ρ cx

0 fy cy

0 0 1


︸ ︷︷ ︸

K

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3


︸ ︷︷ ︸

[R|T ]


x
y
z
1


︸︷︷︸

pw

(2-6)

In this equation, pc are the image coordinates of a 2D feature, pw are the world coordinates
of the corresponding 3D point, K is the calibration matrix of the camera and [R|T ] is the
transformation matrix that describes the camera pose in the world frame. To find a solution,
a minimum number of corresponding points is needed. For calibrated camera’s, with known
calibration matrix K, this amount of points is 5. For uncalibrated cameras, 8 points of
reference are needed. The PnP problem is hence often referred to as the 5-point algorithm or
the 8-point-algorithm.

2-4 Monocular and Stereo Camera

In order to make use of the epipolar geometric methods discussed before, images have to be
captured from different viewpoints, for which two different methods exist. The first method
uses a monocular camera setup, which is a single camera moving through space. It captures an
image at timestamp tn, then moves through space and captures the next image at timestamp
tn+1. The second method utilises a so-called stereo camera setup. In this setup two camera’s
are rigidly mounted to the moving platform with a known distance and orientation relative to
each other. The first SLAM systems however were primarily based on monocular setups [6–8].
As they already were limited in computational power by the available computers at that time,
utilising a stereo setup and analysing twice the amount of images was simply not feasible.

The main drawback for monocular camera setups is that absolute scale estimation is theo-
retically impossible. This is visualised in figure 2-5. It demonstrates that the camera trans-
formation Cc1 to capture the down-scaled object, results in the same image of performing
transformation Cc2 to capture the real object. Although the rotation between frame Cp and
Cci for i = {1, 2, 3...} and the direction of the translation can be found, but the actual distance
in this direction is impossible to determine [9]. A common workaround in monocular SLAM
methods like [6, 10, 11] is to perform a specific initialisation procedure with the aim to solve
the 5-point or 8-point algorithm, as covered in the previous section. This requires however a
scene or object with known dimensions, from which the scale can be determined and used as
reference later during operation.
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2-5 Filtering vs Optimisation based SLAM 9

Figure 2-5: Demonstration of scale ambiguity for monocular camera setups

Once a successful initialisation is complete, the algorithm has a reference for the scale of the
solution. If new points are observed with unknown 3D location, the algorithm can deduct
the camera motion from the set of already estimated points in previous timestamps. Then,
based on the optimised camera motion, the algorithm estimates the depth information of new
points by performing local BA. This poses a new problem however: since the algorithm is now
using an estimated camera translation based on the result of previous bundle adjustments,
any error in this estimated camera translation propagates into the estimation of 3D point
location, which in its turn again influences future estimations of camera translations. This is
a cycle in which the error builds up, leading to a phenomenon referred to as scale drift.
For a stereo camera setup the transformation (the baseline distance) between the two camera
centres is known, which eliminates the problem of direct scale estimation. Moreover, scale drift
is not an issue because the depth estimation can be performed directly from the known baseline
distance, instead of using an estimated transformation as baseline which is the cause of scale
drift in monocular camera setups. This helps to more accurately create 3D reconstructions
of the environment.

2-5 Filtering vs Optimisation based SLAM

The SLAM problem concerns the reconstruction of the environment, whilst localising the
robot in this map at the same time. Within the problem framework, the following is given:

• The robot’s control inputs: u1:t = {u1, u2, u3..., ut}

• The robot’s observations: z1:t = {z1, z2, z3..., zt}

The core of the SLAM problem boils down to estimating the entire trajectory of the robot
and the map of the environment, represented by a set of 3D feature locations. This can be
mathematically denoted as estimating the following probability distribution:

p(x0:t,m|z1:t, u1:t) (2-7)
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10 Preliminary Knowledge

Available literature distinguishes two main forms of the SLAM problem: the full SLAM
problem and the online SLAM problem. The full SLAM problem aims to estimate the
posterior probability over the entire robot path together with the map, as it is defined by 2-7.
The online SLAM problem though focuses on recovering the posterior probability distribution
of only the current state xt, instead of the full path x0 : t:

p(xt,m|z1:t, u1:t) (2-8)

By repeatedly solving the online SLAM problem for every timestamp, an solution to the
full problem is obtained. This is the strategy employed by filter-based SLAM algorithms.
The most filter-based approaches are based on Extended Kalman Filters and Particle Filters
[12,13]. Solutions that solve the full SLAM problem at once are optimisation or batch-solving
based solutions. Both strategies have advantages and drawbacks. Filter-based solutions tend
to have a lower computational load since old states are marginalised out. Optimisation based
algorithms on the other hand yield high accuracies, since the solution is estimated based on
áll evidence, instead of only the last measurements. Moreover, they allow for loop closure
detection, which effectively remove drift from the estimated trajectory. This is illustrated in
figure 2-6 [14]:

Figure 2-6: Example of a Loop Closure

In [15] is demonstrated that for an equal computational load, optimisation based approaches
obtain a higher accuracy. For this reason, in combination with the powerful loop closure tool,
this thesis work focuses on the implementation of optimisation-based SLAM algorithms.
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2-6 Bayesian Networks and Factor Graphs 11

2-6 Bayesian Networks and Factor Graphs

A complex probability density in problems such as optimisation-based SLAM can be described
by so-called probabilistic graphical models by exploiting the structure in them. A very useful
trick is that high-dimensional probability distributions often can be factorised into a product
of multiple factors, which all describe the probability distribution of a smaller domain of the
problem.

(a) SLAM example with three
poses and two landmarks

(b) Bayesian Network of the SLAM
example

In the example SLAM problem in figure 2-7a, two landmarks l1 and l2 are observed from
three robot states x1, x2, and x3, resulting in the state vector X = {x1, x2, x3, l1, l2}. A
Bayesian Network or Bayes Net helps to summarise the joint probability distribution over
all random variables, i.e: Θ = {X,Z} in which Z are the measurements. The Bayes Net is
a directed graph in which the nodes represent a set of variables θj and subsequently defines
a joint probability density on the full set, p(Θ) as the factorisation of conditional densities
associate with each variable θj and its parents πj :

p(Θ) ∆=
∏
j

p(θj |πj) (2-9)

Figure 2-7b shows the Bayes Net for the example from figure 2-7a. Note that between the
robot states x1 and x2, and between x2 and x3, no measurement nodes are included. In this
example, the movement of the robot is not measured, but the rover movement follow a certain
motion model providing information how the rover moves from one state to another. As the
example consists of nine nodes θj , the joint probability density consists of nine factors:

p(X,Z) = p(x1)p(x2|x1)p(x3|x2)
× p(l1)p(l2)
× p(z1|x1)
× p(z2|x1, l1)p(z3|x2, l1)p(z4|x3, l2)

(2-10)

In which p(x1)p(x2|x1)p(x3|x2) is the Markov chain, describing how the robot moves through
the environment, p(l1)p(l2) are the prior densities on the landmarks, p(z1|x1) is the prior
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12 Preliminary Knowledge

Figure 2-8: Factor graph example

density on the first pose, and p(z2|x1, l1)p(z3|x2, l1)p(z4|x3, l2) corresponds to the conditional
densities on the observations, given a robot position xn and landmark position lm.

In robotics, we are interested in the values of unknown state variables X, given the measure-
ments Z, in other words: we are looking for the probability distribution P (X|Z). Instead
of modelling a complete scenario, for which a Bayes Net is useful, we are interested in per-
forming inference: processing knowledge about the environment from their sensors. For this
task, the Factor Graph is suitable. A Bayes Net is easily converted into a Factor Graph by
removing the measurement variables, and instead of associating an unknown variable with a
conditional density, unknowns are connected by a new node type: factors. A factor node ϕj

describes how two unknown variables are related to each other. The complete factor graph
then again describes the factorisation of a global function ϕ(X), which corresponds to the
density P (X|Z):

p(X|Z) ∝
∏
j

ϕi(Xi) (2-11)

The factor graph from the earlier example is shown in figure 2-8.

The probability densities in the earlier Bayes Net are multivariate Gaussian distributions,
with probability density:

N (θ|µ,Σ) = 1√
2πΣ

exp
{

−1
2 ||θ − µ||2Σ

}
(2-12)

with:

||θ − µ||2Σ = (θ − µ)T Σ−1(θ − µ) (2-13)

Therefore, the factors can be assumed to be of the form:

ϕi(Xi) ∝ exp
{

−1
2 ||hi(Xi) − zi||2Σi

}
(2-14)
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2-6 Bayesian Networks and Factor Graphs 13

Here, hi(Xi) is a measurement prediction function and zi is the actual measurement of variable
i. To estimate the values of these variables, the Maximum a Posterior (MAP) estimate is
used, which maximises the posterior density p(X|Z) of the states X given the measurements
Z. MAP inference boils down to maximising the product of the factor graph potential, i.e.
the factorisation of all factors:

XMAP = argmax
X

ϕ(X) (2-15)

The combination of equations 2-14 and 2-15 yields the nonlinear least-squares problem:

XMAP = argmin
X

∑
i

||hi(Xi) − zi||2Σi
(2-16)

Given that the measurement functions hi(Xi) are nonlinear, the nonlinear least squares prob-
lem can be solved by methods such as Gauss-Newton or Levenberg-Marquardt to converge
to a global minimum using a succession of linearisations. Linearisation of the measurement
functions hi is done through a first order Taylor expansion:

hi(Xi) = hi(X0
i + ∆i) ≈ hi(X0

i ) +Hi∆i (2-17)

in which Hi is the measurement Jacobian, which is defined as:

Hi = ∂hi(Xi)
∂Xi

(2-18)

In equation 2-17, X0
i is the initial guess and ∆i = Xi−X0

i is the state update vector. The next
step is to substitute the linearised Taylor expansion from equation 2-17 into the nonlinear
least-squares problem as defined in 2-16 to obtain the following linear least-squares problem:

∆∗ = argmin
∆

∑
i

||Hi(∆i)−
{
zi − hi(X0

i )
}
||2Σi

(2-19)

After rearranging the Mahalanobis Distance term, the following standard least-squares prob-
lem is obtained:

∆∗ = argmin
∆

∑
i

||Ai∆i − bi||2

with:

Ai = Σ−1/2
i Hi

bi = Σ−1/2
i

(
zi − hi(X0

i )
)

(2-20)

The difference between Gauss-Newton and Levenberg-Marquardt is the way in which relin-
earisation occurs, and how getting stuck in local minima is prevented.
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14 Preliminary Knowledge

Since inference problems in the robotics domain are typically incremental, meaning that new
measurements continuously extend the size of the problem, one can wonder if it is necessary
to compute the full solution every time, or whether previous computations can be reused.
This is the core of iSAM [16] (incremental Smoothing and Mapping). Instead of refactorising
the problem for every new set of measurements, it updates the existing matrix A using Givens
rotations.
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Chapter 3

Problem Statement

The work in this thesis is based on a small robotic platform, the Lunar Rover Mini (LRM).
Inspired by ESA’s Rosalind Franklin Mars rover, the aim of the LRM-project is to establish
a low-cost development and testing platform, for the purpose of learning and experimenting.

Figure 3-1: The Lunar Rover Mini

As a product of earlier student projects, the LRM is already able to perform various au-
tonomous tasks such as locomotion, navigation and mapping. At the start of this thesis, the
mapping thread used to consist of a plain visual odometry pipeline, which makes use of the
onboard RealSense D435i sensor. This device provides the on-board computer (an Intel NUC)
with Red Green Blue and Depth (RGB-D) images. The visual SLAM algorithm was devel-
oped using the open-source available RTAB-map (Real-Time Appearance-Based Mapping)
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16 Problem Statement

software [17]. It is a framework for RGB-D, Stereo and LiDAR mapping, which employs an
incremental loop closure detector to obtain a good accuracy through harvesting the power of
loop closures. By using the Bag-of-Words approach, it generates a loop closure hypothesis
for every images. This hypothesis is based on how confident the algorithm is regarding a
potentially closed loop. If this hypothesis is accepted, an additional constraint is added to
the map, which closes the loop and reduces the drift error in that loop.
The reliability on a single sensor, being a camera in this case, poses a threat to the robustness
of the system. Although it can be assumed that the camera itself works all the time, scenarios
exist in which the visual odometry pipeline might fail to calculate motion estimates from the
sequence of images. An example of such a scenario is the traversing of a feature-poor environ-
ment, as illustrated in figure 3-2. Other examples could be a change in lighting conditions,
which occurs when directly looking into the sunlight, or quickly rotating around the vertical
axis of the rover, causing motion blur. As the visual odometry pipeline relies heavily on the
extraction of features, both the image quality and feature density of the environment directly
influence the rover’s capability to solve the SLAM problem. This introduces a major flaw in
the current implementation of visual SLAM on the LRM, as the scenario’s laid out above are
certainly not uncommon. The quality of the captured images potentially quickly deteriorates,
introducing a major weakness in pure visual SLAM systems. A failure in this crucial feature
detection mechanism may cause the complete SLAM system to fail.

Figure 3-2: Relocalisation after loss of features

The figure above illustrates the problems of the current implementation of SLAM when it
experiences a loss of features to track. In this figure, four sequential trajectories are indi-
cated. In the first trajectory, the rover traverses the beige, feature-rich area. The rover
successfully estimating its motion and trajectory through visual odometry and extends the
global environment map with every observation. The second trajectory however traverses a
very feature-poor area, which leaves the visual odometry module useless. No motion can be
estimated in this period and no new features are added to the map. The major loss occurs in
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the third trajectory, in which technically there are enough features to perform visual odome-
try and estimate the motion of the rover. The problem is that these motion constraints plus
the environment information gathered at these timestamps can not be added to the global
map, since the rover does not know where it was when it made those observations. For this
reason, all of the features observed in the third trajectory are essentially lost. It is only after
the rover visits a previously visited location at which it can relocalise itself, before the new
observations can be inserted to the global map.

The incorporation of an additional sensor that registers the motion of the rover could assist,
serving as a back-up sensor in case of a visual odometry failure and preventing the whole
SLAM algorithm from failing. An inertial measurement unit (IMU)is such a sensor and
provides a stable source of information regarding the accelerations and angular velocities of
the sensor. More importantly, the IMU is not sensitive to the failure modes of the visual
odometry pipeline as explained above. IMUs are well-known in the robotics community for
their light weight and energy efficiency, two crucial characteristics for robotic applications
in space. By combining visual data with inertial measurements, the system becomes more
robust and reliable in environments where pure visual odometry would have difficulties. The
following chapter goes into the specific details regarding the IMU measurement model, and
challenges that are introduced by the incorporation of this sensor.
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Chapter 4

Visual-Inertial SLAM

This chapter focuses on the theory behind visual-inertial SLAM algorithms. These algorithms
are based on a fusion of visual measurements from a camera and inertial measurements from an
Inertial Measurement Unit (IMU). This sensor consists of a set of gyroscopes, accelerometers
and sometimes magnetometers and provides information regarding the angular velocity and
the linear acceleration of the IMU. Visual-inertial SLAM algorithms can be categorised based
on the fusion type of IMU measurement into the camera measurement processing. Loosely
coupled methods process the IMU measurements separately from the image measurements
and use both measurements to track the robot pose. After tracking is computed separately,
the outputs are fused for both measurement types. Tightly coupled methods however find
a way to fuse the measurements before they are used to perform SLAM which enables the
algorithm to find the solution given these already fused measurements, which increases the
accuracy and robustness compared to loosely coupled algorithms [18]. For this reason, this
thesis focuses on tightly fusing the two datastreams.

(a) RealSense D435i (b) BMI044 IMU

Figure 4-1: RealSense D435i and the internal BMI055 IMU
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4-1 IMU Measurement Model 19

4-1 IMU Measurement Model

The first step in the process of sensor fusion is understanding which information is contained
withing the IMU measurements, i.e. comprehending the IMU measurement model. The
IMU has a 3-axis accelerometer and a 3-axis gyroscope, and may contain a magnetometer to
detect the Earth’s magnetic field. This feature is not needed for the purpose of visual-inertial
SLAM. The measured linear acceleration ã(t) and angular velocity ω̃(t) are affected by white
noise η and a sensor bias b:

ã(t) = RT (t)
(
a(t) − g

)
+ ba(t) + ηa

ω̃(t) = ω(t) + bg(t) + ηg
(4-1)

The white noises ηa and ηg are assumed to be Gaussian white noise. Therefore, they can
hardly be estimated. The sensors biases ba and bg for the accelerometer and the gyroscope,
respectively, are influenced by external factors such as temperature and vary slowly through
time. They are modelled as random walk, which means that the derivatives are modeles as
Gaussian white noise.

ḃa ∼ N (0, σba), ḃg ∼ N (0, σbg ) (4-2)

Due to this slowly varying character, the biases are almost constant over a small time in-
terval. Therefore, if the bias from timestamp tk−1 is known, the IMU measurements from
timestamp tk can be cleaned up by removing this bias. This is exactly why tightly coupled
algorithms perform better than loosely coupled systems: by jointly optimising over both the
visual measurements and the inertial measurements, the IMU biases can be estimated and
deducted from the next measurement to approximately filter out the biases. Bias estimation
is performed by incorporating the as unknown parameters in the state vector (EKF-based al-
gorithms) or the cost function (optimisation based smoothing algorithms), and then figuring
out which bias best fits the newly observed measurements, given the estimated biases from
the previous timestamp.

4-2 IMU Pre-integration

The frequency of incoming IMU measurements can reach 200Hz and is often much higher
than the frequency at which a camera collects data, which is often around 24Hz. The high
IMU frequency may lead to problems regarding the computational capacity of the computing
device. For all SLAM applications, it is beneficial to summarise the sequence of IMU messages
in between two camera frames to reduce the computational load. This process is called IMU
pre-integration and yields one single IMU observation that summarises the information about
the movement of the IMU in between two sequential states. To understand this method, some
preliminary knowledge regarding two Riemannian manifolds is needed: the Special Orthogonal
Group SO(3) and the Special Euclidean Group SE(3). A manifold is mathematically defined
a topological space, that locally approximates a Euclidean (Rn) space [19]. An example is the
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20 Visual-Inertial SLAM

round Earth, which was unthinkable in early days because of the scale of the Earth, which
gave the illusion of flatness.

The SO(3) group is the group of 3×3, 3D rotation matrices. This group forms a smooth
manifold. The tangent space to this manifold is known as the Lie Algebra, denoted as so(3),
which coincides with the group of 3×3 skew symmetric matrices. Every vector in R3 can be
mapped to a skew symmetric matrix using the hat operator:

ω∧ =

ω1
ω2
ω3


∧

=

 0 −ω3 ω2
ω3 0 −ω1

−ω2 ω1 0

 ∈ so(3) (4-3)

The reverse operator of the hat operator is the vee operator, which maps a skew symmetric
matrix to a vector in R3. Now two other maps will be introduced: the exponential map and
the logarithm map. The exponential map associates a skew symmetric matrix from the Lie
Algebra to a rotation matrix in SO(3), following Rodrigues’ formula [20]:

exp(ϕ∧) = I + sin(|ϕ|)
|ϕ|

ϕ∧ + −cos(|ϕ|)
|ϕ|2

(ϕ∧)2

exp(ϕ∧) ≈ I + (ϕ∧)
(4-4)

The logarithm map is the reversed operator of the exponential map and associates a matrix
in SO(3) with a skew symmetric matrix:

log(R) = ψ(R−RT )
2sin(ψ) with ψ = cos−1

(tr(R) − 1
2

)
(4-5)

In the following equations, a more convenient notation will be used in which Exp and Log
operate on vectors rather than on elements from the Lie Algebra:

Exp(ϕ) = exp(ϕ∧)
Log(ϕ) = log(R)∨ (4-6)

During the derivation of IMU pre-integration equations, the following first-order approxima-
tion will turn out very useful, which helps to relate a small additive perturbation δϕ in the
Lie Algebra to a multiplicative perturbation on the manifold SO(3), which is visualised in
figure 4-2:

Exp(ϕ+ δϕ) ≈ Exp(ϕ)Exp(Jr(ϕ)δϕ) (4-7)

Similarly, for the logarithm map the following approximation holds:

Log (Exp(ϕ)Exp(δϕ)) ≈ ϕ+ J−1
r (ϕ)δϕ (4-8)
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4-2 IMU Pre-integration 21

Figure 4-2: The exponential and logarithm map. The right Jacobian Jr is used to translate an
additive perturbation δϕ from so(3) to the manifold SO(3)

In these equations, Jr(ϕ) and J−1
r are the right Jacobian and its inverse of SO(3) respectively.

They are defined as:

Jr(ϕ) = I − 1 − cos(||ϕ||)
||ϕ||2

ϕ∧ + ||ϕ|| − sin(||ϕ||)
||ϕ||3

(
ϕ∧)2

J−1
r (ϕ) = I + 1

2ϕ
∧ +

( 1
||ϕ||2

+ 1 + cos(||ϕ||)
2||ϕ||sin(|ϕ|)

) (
ϕ∧)2 (4-9)

The following kinematic model is introduced from [21]:

Ṙ = R ω∧, v̇ = a, ṗ = v (4-10)

By integrating the equations from this kinematic model, the state at time t+ ∆t is obtained,
which is purpose of IMU pre-integration. The method described above is utilised by the
majority of visual-inertial SLAM systems that perform IMU pre-integration.

R(t+ ∆t) = R(t)Exp
(∫ t+∆T

t
ω(τ)dτ

)

v(t+ ∆t) = v(t) +
∫ t+∆t

t
a(τ)dτ

p(t+ ∆t) = p(t) +
∫ t+∆t

t
v(τ)dτ +

∫∫ t+∆t

t
a(τ)dτ2

(4-11)
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22 Visual-Inertial SLAM

4-3 RealSense Calibration

For any visual-inertial SLAM system that is designed for real-time missions, it is of great
importance to determine the noise characteristics of the sensors. The hardware used in this
thesis is a RealSense D435i, which carries multiple RGB and infrared camera’s to provide
RGB-D images to the on-board computer. The IMU incorporated in the RealSense is a
BMI055. The calibration procedure consists of three main steps: calibration of the camera
intrinsics, calibration of the IMU and finally a joint camera-IMU calibration.

Figure 4-3: Calibration target utilised by the Kalibr tool

For the calibration of the intrinsic camera parameters, the open-source Kalibr1 [22–26] toolkit
was used. Using a calibration pattern of known dimensions, which is the input to the Kalibr
tool, the intrinsic parameters of the camera can be determined. This calibration pattern
is depicted in figure 4-3. Because the dimensions of the calibration target are known, the
intrinsic camera parameters can be determined with great accuracy, which is needed for the
camera-IMU extrinsic calibration.

Secondly, the noise parameters of the IMU inside the RealSense are retrieved using the open-
source Allan Variance package2. This requires a ROS-bag containing IMU measurements
from a long, static IMU session, to make sure that the noise characteristics of the sensor can
be directly retrieved from the measured accelerations. In our case, a ROS-bag 13 hours was
recorded. The resulting Allan Deviation (AD) plots are given below:

Parameter Unit Value
Accelerometer noise density m

s2
1√
Hz

0.009972179
Accelerometer random walk m

s3
1√
Hz

0.0015407493
Gyroscope noise density rad

s
1√
Hz

0.00639172965
Gyroscope random walk rad

s2
1√
Hz

0.0000847221059

Table 4-1: IMU noise model parameters

1https://github.com/ethz-asl/kalibr
2https://github.com/ori-drs/allan_variance_ros
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4-3 RealSense Calibration 23

Figure 4-4: Allan Deviation plots for IMU accelerometers and gyroscopes

The third calibration is the camera-IMU calibration, for which again the Kalibr tool was used.
The results of this calibration are included in Appendix A.
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Chapter 5

Methodology

As introduced in chapter 3, the design objective for this thesis to establish a more robust
and failure-resilient SLAM pipeline, through the incorporation of IMU measurements into
the solution. As this idea is not necessarily unique, several frameworks and solvers have been
published in literature. To justify to choice for the chosen strategy of building a non-linear
factor graph, several other frameworks are discussed below.

Popular visual-inertial SLAM frameworks are VINS-Mono [27] and ORB-SLAM3 [28]. Al-
though these methods both demonstrate impressive results regarding accuracy and efficiency,
they are very rigid in a sense that they have little room for adjustments, if needed. RTAB-map
on the other hand is a much more flexible framework that adapts to incorporate a wide range
of combinations of different sensors, such as RGB-D, stereo or monocular camera setups, as
well as inertial information and even LiDAR measurements. As it is designed to be modular,
it is a suitable framework for experimenting with various sensor setups. A major advantage
is that it solves the SLAM problem using the factor graph strategy.

Regarding the choice for the solver, options such as the Ceres [29] and G2O [30] exist. While
these are very powerful tools to solve large optimisation problems, GTSAM (Georgia Tech
Smoothing and Mapping) [31] distinguishes itself because it is tailored towards SLAM ap-
plications. It is a C++ library that incrementally solves the SLAM problem, which yields a
high computational efficiency through re-using previous calculations as explained in chapter
2.

Section 5-1 elaborates on the design of the non-linear factor graph. Section 5-2 discusses
which parameters play a significant role during the optimisation. Section 5-3 elaborates on the
general layout of the novel software infrastructure and section 5-4 discusses the experimental
data that was gathered in order to demonstrate the behaviour of the novel visual inertial
SLAM algorithm.
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5-1 Nonlinear Factor Graph 25

5-1 Nonlinear Factor Graph

As explained in section 2-6, the factor graph consists of values that are connected by factors.
Note that a value is a vector of variable size, corresponding to the dimension of the optimised
variable. The values in the graph are the unknown solution variables which are optimised for.
In the implementation of this thesis, three different types of values exist: pose x, velocity y
and bias b. The factors connect the values in the graph and contain information regarding
the relationships between the individual values. The design of this graph is inspired on the
graph presented in [32]:

Figure 5-1: Schematic overview of the constructed factor graph

The factors are all associated with a noise model represented by a covariance matrix, the size
of which depends on the dimensions of the value. This noise model captures the probabilis-
tic information about the error in the measurements. This directly reflects on the level of
confidence the optimiser will have in the data summarised by the corresponding factor.

The visual odometry factor is the most straightforward factor in the graph, providing infor-
mation on how the rover moved from the previous pose xt−1 to the current pose xt, according
to the visual odometry module. As the pose of the rover is a 6-dimensional vector, the noise
model is a 6 by 6 diagonal matrix, as shown in equation 5-1:

ηV O =


[
σrotV O

]
3×3

0

0
[
σtransV O

]
3×3

 (5-1)

The values for these parameters σrotV O and σtransV O can be set manually, which will be
elaborated on in section 5-2.

The second factor type in the factor graph is the IMU factor. The GTSAM-library is leveraged
to perform IMU measurement pre-integration. This generates a single pre-integrated IMU
measurement which contains the information how the rover has moved according to the IMU.
The IMU factor is a five-ways factor connecting the previous pose, velocity and bias with
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the current pose and velocity. The covariance matrix on the IMU factors is a non-diagonal
9 by 9 matrix, calculated by the GTSAM toolbox, which describes the covariance between
pre-integrated rotation, position and velocity. This noise model can be influenced however on
the diagonal by setting the values for the covariances σrotIMU , σtransIMU and σvelIMU

. This
factor is then incorporated into the factor graph as well.

ηIMU =


[
σrotIMU

]
3×3 [

σtransIMU

]
3×3 [

σvelIMU

]
3×3

 (5-2)

The third factor type is the bias factor. This bias factor is a two-way factor connecting the
previous and the current bias. When creating the bias factor, we set the inter-bias change to
zero, implementing the suggestion that the bias does not change. A crucial principle of the
optimisation scheme is that the optimiser however will apply some ∆b between two consecutive
biases, íf this minimises the residual optimisation error by reducing the difference between
VO- and IMU-factors. This will result in a slowly varying bias over time, which is exactly
the goal. By varying the covariance on the bias constraint, which is a 6 by 6 diagonal matrix
as shown in equation, the rate of change can be controlled: a low covariance on the constant
bias yields a very slowly varying bias, as the constraint indicates that the bias should be
kept constant, and vice versa. Recall that the ’random walk’ of the biases is sensor specific.
The values for this bias stability are determined by the Allen Deviation plots, as explained
in chapter 4.

η =


[
σba

]
3×3

0

0
[
σbg

]
3×3

 (5-3)
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Parameter Symbol Default value
Variance on prior pose σppos 0.001
Variance on prior velocity σpvel

0.001
Variance on prior bias σpbias

0.001
Accelerometer noise density σa 0.00997
Gyroscope noise density σg 0.00639
Integration uncertainty σi 0.001
Accelerometer random walk σba 0.001541
Gyroscope random walk σbg 0.00008472
Visual odometry rotational variance σrotV O 0.00030625
Visual odometry translational variance σtransV O 0.0001
Loop closure rotational variance σrotLC 0.00030625
Loop closure translational variance σtransLC 0.0001

Table 5-1: Optimisation parameters with default values

5-2 Optimisation Parameters

As mentioned before, the noise models on the individual factors determine how much the
optimiser relies on the information provided by that specific factor. Hence, the behaviour of
the final solution is influenced by the values of these parameters. An overview of the most
important parameters are given in table 5-1. How these parameters affect the solution is
discussed below.

(a) Low IMU covariance (b) Low VO covariance

The estimated motion represented by the VO and IMU factors is never perfectly the same
due to error and noise in the measurement models of these sensors. To unify these motion
constraints, the optimiser takes the noise models on both factor types into consideration,
resulting with a weighted estimate somewhere in between these two factors. If a factor has
a noise model with low covariances, deviation from this factor will contribute a lot to the
residual optimisation cost. Hence, the optimiser prefers not to deviate as much from low-
covariance factors rather than factors with a higher covariance, which contribute less to the
optimisation cost. The resulting effect is that factors with a lower covariance noise model are
trusted more. Figure 5-2a shows an example for an optimiser with low covariance in the IMU
noise model, trusting the IMU factors more. Figure 5-2b shows the opposite effect.

A similar strategy is used for loop closure constraints, as illustrated in the figures 5-3a and
5-3b below. It might seem tempting to set a very low covariance for the noise model on the
loop closure constraints. Recall however that the mechanism behind a loop closure is exactly
the same as regular visual odometry: from two images, features are extracted and used for
in a bundle adjustment scheme to determine the motion of the camera from one image to
the other. The only actual difference between visual odometry constraints and loop closure
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(a) High loop closure covariance (b) Low loop closure covariance

constraints is that one image is the direct successor of the other one, while in detecting a loop
closure constraint any two images are compared. For this reason, the noise models for loop
closure constraints and visual odometry factors are equal.

Other important parameter that affect the solution behaviour are related to the IMU bias
estimation. As explained in section 4-1, these biases should be modelled as Brownian motion,
meaning that they randomly "walk" up or down. This is achieved through constraining two
consecutive bias values to be constant. The optimiser will definitely deviate from this constant
constraint, if it reduces the error between pre-integrated IMU poses and VO poses. The
covariance on the bias constraints determines how much the optimiser is allowed to deviate
from keeping the biases constant. The figures 5-4a and 5-4b below visualise this:

(a) Low bias constraint covariance (b) High bias constraint covariance

In these figures, the grey bias values represent the constraint, i.e. keeping the bias constant
over time. The green values represent the ideal bias, i.e. the bias that if corrected for in the
IMU measurements would lead to the perfect fit between the visual odometry and inertial
navigation. The black values are the final estimated bias values, balancing the increase of
the optimisation cost due to the deviation from constant-bias-constraint and the optimisation
cost due to the VO-IMU discrepancy.

The last parameters to be discussed are the noise models on the priors for rover pose, velocity
and initial bias. The prior on rover pose determines where in the global space the first pose is
located. For a new SLAM session, this prior is set to zero. If the rover starts in a stationary
position (as is always the case in our experiment), the prior on the velocity is also set to
zero. The prior on the biases is not so easily determined, since we had to experiment with
the initialisation of the estimated IMU biases.

Figure 5-5 illustrates that if the RealSense device is kept perfectly level, the gravity vector
coincides perfectly with the y-axis of the IMU. Important to note here is that the RealSense
device does not measure forces, but accelerations: since the gravity force results in the same
forces on the IMU as an upwards acceleration of 9.81m/s2, in the opposite direction of the
IMU y-axis, the IMU would register gravity as an acceleration in negative y-direction. During
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Figure 5-5: Gravity vector coinciding with IMU y-axis in level orientation

the construction of the GTSAM pre-integration pipeline, the direction of the gravity vector
is needed, to enable GTSAM to distinguish the actual accelerations from the gravity-induced
forces in the raw IMU measurements. As seen in the raw IMU measurements in figure 5-12,
during the stationary period in the beginning of the recording the gravity vector is reflected
on all three IMU axis, which corresponds to the fact that the RealSense was slightly tilted to
the back (positive rotation around x-axis) and to the side (negative rotation around y-axis).

Although GTSAM maintains and updates this gravity direction according to the measured
angular velocities, no stable solutions could be obtained. Upon inspection of the estimated
IMU biases, it was clear that the solver could not correctly estimate these biases. An error in
the bias estimation inevitably results in IMU drift. Running different datasets all showed the
same instability in bias estimation. In the subsequent attempts, the dataset’s first 20 seconds
were cut to ensure that at the start of the recording the IMU is in the upright position, but
to no avail.

A creative solution was found which confirms the understanding into the mechanism of bias
estimation, but it requires the RealSense to maintain an upright orientation throughout the
whole experiment. Since the gravity vector has to be removed from the raw IMU biases
to obtain the actual IMU accelerations, we decided to set a gravity vector of [0, 0, 0]T . As
the optimiser now registers a high acceleration on the y-axis whilst observing from visual
measurements that no acceleration in this direction takes place, the gravity vector will be
processed as acceleration bias. In this way, the algorithm is still able to distillate the actual
accelerations from the raw IMU measurements, which is ultimately the goal of removing the
gravity component from the measurements. The estimated IMU biases showed much more
plausible results now, which are discussed in chapter 6.
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5-3 Software Architecture

The RTAB-Map software provides a convenient rtabmap_ros wrapper for usage with ROS
(Robot Operating Software). Figure 5-6 gives an overview of the ROS infrastructure. The
SLAM pipeline relies on the interaction between two ROS nodes: rgbd_odometry and rtabmap.
The rgbd_odometry node is responsible for collecting the visual measurements. Subsequently,
it calculates the rover’s motions using visual odometry, based on the sequence of depth images
from the RealSense. At a frequency of 1Hz, these visual odometry constraints, as well as the
cached raw IMU measurements received since in the last second, are communicated to the
rtabmap node. This node is the core of the SLAM solution, implementing the optimisation
strategy of building a non-linear factor graph and solving it.

Figure 5-6: ROS architecture
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5-3-1 ROS Node: rgbd_odometry

The rgbd_odometry node calculates the rover’s motions based on the sequence of received
images. Upon initialisation, the node creates a global coordinate frame ’odom’ at the same
position and orientation as the rover’s own body coordinate frame, base_link. This is now
the global reference frame with respect to which all future robot poses will be calculated. By
subscribing to the ROS-topic camera/color/image_raw, the latest RGB-D image is fetched.
A GFTT-feature (Good Features to Track) [33] detector extracts keypoints from this RGB-D
image, as visualised in figure 5-7. The local environment around the keypoints are described
using BRIEF-descriptors [34]. Using this description, a feature can be across two different
images. This is how a single feature can be matched in multiple images, which is detrimental
to perform visual odometry.

Figure 5-7: Extracted features from a scene in the experiment

In the previous implementation of the SLAM algorithm, a Frame-to-Map (F2M) strategy
is used to perform visual odometry, as visualised in figure 5-8b. It keeps track of a small
pointcloud of 3D features, consisting of the 3D keypoints for the last couple of depth images.
Based on this local map and the 2D keypoints in the image, 3D-2D image registration is
performed using a PnP (Perspective-n-Point) approach, which returns the estimated motion
of the camera since the previous image. This strategy however does not work in the event
of a loss of visual odometry, which is exactly the reason why this novel SLAM algorithm
is needed. The reason why it does not work is that if the visual odometry fails due to a
lack of recognised features, there will be no new features added to the local map. When
visual odometry is regained after a while and new features are recognised, none of these
new features will have correspondences to the local map because the new features are all yet
unobserved. Since the 3D-2D image registration relies on these correspondences, the visual
odometry pipeline will fail to extract the rover’s motions, even when located in a feature-rich
area.
To solve this issue, the Frame-to-Frame (F2F) strategy is adopted. In this solution, instead
of performing 3D-2D image registration, 2D-2D registration is performed. The latest image
frame is compared to the last saved keyframe. Through bundle adjustment, the motion
between the two frames can be estimated. By constantly setting the keyframe to the second-
to-last image, the visual odometry node is able to still perform its task, even after it has gone

Master Thesis Sam Marijn Bekkers



32 Methodology

(a) Frame-to-Map odometry (b) Frame-to-Frame odometry

Figure 5-8: Difference between F2M and F2F strategy

through a feature-poor and a new feature-rich area. Although it is unknown how these new
odometry constraints are connected to the rest of the map, they can be connected to the
global map using the found IMU factors during the period of VO-absence.

5-3-2 ROS Node: rtabmap

The second running node is the rtabmap node, which’s core responsibility is the initialisation,
expanding and solving of the non-linear factor graph. Upon initialisation, the NonlinearFac-
torGraph object is created. The first three values for pose, velocity and bias are created and
inserted into the factor graph, along with the corresponding prior values.

After initialisation, the same two-step cycle of creating and appending VO- and IMU-factors
to the factor graph is executed. The first step is to pre-integrate the batch of approximately
200 IMU-measurements. The GTSAM toolbox includes the software logic to perform this
pre-integration, and returns the fresh IMU factor. For the VO-factor, the relative motion
estimate between the previous and the current pose is needed. This is obtained by fetching
the previous and current unoptimised poses, as they are provided by the rgbd_odometry node.
The mathematics behind this operation are described by equation 5-4 and figure 5-9:

pG
2 = v12 ∗ pG

1

v12 = pG
2 (pG

1 )−1 (5-4)

Not only does the rtabmap node receive unoptimised rover poses, the rgbd_odometry node
also keeps track of a quality score for the odometry. This score is determined by the amount
of matched features in the PnP registration. If this value drops below a certain threshold, the
feature extraction works poorly and switching to pure inertial odometry should be considered.
This score is a good measure of how accurate a motion constraint is, and thus how much the
optimiser can rely on it. By dynamically setting and changing the values of the covariances
in the noise model, this layer of awareness can be incorporated in the factor graph.

The expected behaviour of the algorithm in a scenario of complete loss of visual odometry is
that the estimated biases will not change during the period where only inertial measurements
are received by rtabmap. This makes sense since there is no visual evidence that can be used
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Figure 5-9: Derivation of relative transform based on two consecutive global poses

to update the biases. However, when the VO module is working again, the old, constant bias
values are automatically updated by GTSAM, to minimise the residual error. In theory, this
should even further reduce the the buildup of error due to the constant biases, which are in
reality never constant.
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Figure 5-10: Test environment at DLR-RMC

5-4 Experimental Data

The visual-inertial algorithm was tested in a realistic setting in the testbed at the DLR-
RMC institute, as seen in figure 5-10. This testbed is a reconstructed Moon environment,
including the fine soil and recognisable rocks. The main experiment that was conducted was
a trajectory in the shape of an ’8’, hence the session name ’Figure_8’. During the test, the
trajectory was repeatedly travelled in order to enforce some detected loop closures. Necessary
data to perform SLAM was recorded using a ROS-bag to replay the experiment afterwards.
The recorded ROS-topics are:

/lrm2/camera/color/image_raw
/lrm2/camera/color/camera_info
/lrm2/camera/depth/image_rect_raw
/lrm2/camera/imu
/lrm2/odom
/tf

The majority of developments was done on the rtabmap node. To work efficiently, the function
calls to the main processor in rtabmap were stored in text- and imagefiles. The content of
these files was then directly parsed to rtabmap, eliminating the need to constantly replay
ROS-bags, which would occupy much more time as they are replayed at real-time speed.

To evaluate the performance and accuracy of the visual-inertial odometry, some knowledge
about the true trajectory is needed. This ground truth data can be acquired by tracking
the rover from an external reference frame, since it directly measures robot’s position and
hence does not accumulate errors which leads to drift. For this task, the Advanced Realtime
Tracking (ART) system is used, available at the DLR-RMC institute. This system is installed
on the ceiling of the testbed. The ART system consists of 10 infrared camera’s tracking
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the position of silver-coloured reflective markers. By observing the position of a marker by
multiple camera’s, the absolute position of the tracker can be accurately calculated through
triangulation. Attaching these trackers to the rover then gives a good ground truth trajectory
to evaluate the performance of new SLAM solutions. The ground truth trajectory is visualised
in figure 5-11.

Figure 5-11: The ground truth trajectory measured by the ART tracking system

The raw IMU measurements from this experiment are plotted in figure 5-12. This plot shows
the starting position in rest, in which only the gravity vector leads to a measured force.

Figure 5-12: Raw IMU measurements during first 160 seconds of the experiment
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Results

Generally, in order to be able to calculate any metric on two different trajectories and evaluate
the performance of a novel odometry system, these trajectories have to be expressed in the
same coordinate frame. Since the visual-inertial estimate is generated in the camera frame of
the first pose and the ground truth is generated in a global coordinate frame, it is necessary
to align the trajectories of the estimate and the ground truth. Although the orientation of
the marker in the global frame easily can be extracted from the tracking data, alignment is
not possible since there is no accurate transformation from the tracker itself to the camera
frame, as the tracker was taped to the camera during the experiments. Therefore, direct
alignment through a concatenation of known transformations is not possible. For uncalibrated
experiments such as the one performed in this thesis, the trajectories have to manually aligned
for performance evaluation. This is done using Horn’s method [35]:

R, t = argmin
R,t

N∑
i=1

∥(R ∗ pslam,i + t) − pgt,i∥2 (6-1)

Horn’s method finds the rotation matrix R and translation vector t to manipulate the es-
timated trajectory, which minimises the residual error. The downside however is that the
absolute drift can not be estimated using this method, as part of the drift in a trajectory
will be compensated for during an alignment based on Horn’s method. Nevertheless, an esti-
mator with low drift will generate a trajectory that more closely fits the ground truth than
an estimator with high drift does. Therefore, calculating the deviation of each pose from its
corresponding pose in the ground truth will provide useful information about the accuracy of
the algorithm. The Root Mean Squared Error is a a metric that does this, which is defined
by:

RMSE =

√∑N
i=1∥pslam,i − pgt,i∥2

N
(6-2)
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6-1 Main Experiment

To evaluate the behaviour of the novel visual-inertial odometry, and especially the resiliency
towards a camera failure, a scenario was simulated based on the gathered experimental data.
As explained in the problem statement in chapter 3, a (short) period of absence of camera
measurements causes the mapping and localisation activities to be disrupted. By manually
disabling the visual odometry module, such a scenario can be simulated. This was done at
specific moments during the simulation, as visualised in figure 6-1 and explained below:

Figure 6-1: Setup for the testcase

From the start until timestamp 68, the full visual-inertial system with all necessary sensors
are functional. This period is needed to allow the optimiser to correctly estimate the values
for the IMU biases. At timestamp 68 the visual odometry pipeline is manually disabled,
to simulate the event of loss of feature detection. At t=71, the visual odometry module is
providing VO-constraints again. In theory, the full system is now operational, and also the
loop closure detector is enabled. However, as this is an area that has not been visited before,
no loop closures will be detected. To clarify this in the results, the trajectory up to pose 97
(when the first loop closure will be detected) is coloured in a lighter shade of blue, to illustrate
that this part of the trajectory consists of visual-inertial odometry without the correction of
a loop closure.
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This section describes the test results of the main experiment as explained above. In figure
6-2, the ground truth data is plotted with a grey dashed line, and the estimated trajectory is
plotted in various colours corresponding to the experiment setup as described above.

Figure 6-2: Results

The calculated RMSE for this testcase is 0.1361 meter. In the first semi-loop, both the visual
odometry module and the IMU are providing motion constraints, establishing plain visual-
inertial odometry. At pose 68, the visual odometry is manually disabled, which leaves the
algorithm with just inertial measurements to navigate on. As visible, the estimated location
of the rover quickly drifts off. However, as soon as the visual odometry module is functional
again at pose 72, it is clear that also the previous poses are updated. This is fully in accordance
to the expected behaviour, as explained in section 5-3.

In the subsequent poses, from pose 72 until 95, it is clear that the visual odometry module
is working as desired again, since the shape of the light-blue trajectory seems to match the

Sam Marijn Bekkers Master Thesis



6-1 Main Experiment 39

ground truth. At pose 100, something remarkable takes place: the light-blue loop seems to
have shifted away from the ground truth. This is caused by an detected loop closure between
poses 97 and 35. In this scenario, the covariance on IMU factors was set relatively high,
meaning that we allow the optimiser to deviate from the IMU constraints relatively much.
Any error in the detected loop closure at the end of the light-blue loop, will be reflected on
all poses in this loop, with an increasing effect as the distance to these poses increases. The
problem however solves itself when additional loop closures are detected, correcting for the
single erroneous loop closure at pose 97. Section 6-3 goes into more detail regarding this
behaviour.

The major contribution of this thesis to the LRM is the resiliency to the failing visual odometry
module. In figure 6-2, the third figure on the left concerning the trajectory until pose 95, shows
that after a disruption of visual measurements the light-blue trajectory can be inserted with
decent accuracy into the complete trajectory, without the need to perform relocalisation. In
the old visual SLAM algorithm, none of the visual measurements in this light-blue trajectory
could have been appended to the global map. Therefore, the novel visual-inertial SLAM
solution offers a higher level of robustness to generate more complete maps of the environment.

Figure 6-3: Bias estimated over time

Using to the graphs in figure 6-3, the behaviour of the bias estimation is discussed. The sharp
point in the graphs of the y- and z-axis happening at pose 25 are caused by the prior bias
value set to constrain the biases towards the expected values of [0, -9.81, 0], as explained in
chapter 5. The most interesting result can be observed in the three detailed figures on the
right. These plots show that the estimated biases do not change (as expected) in the period
between t-68 and 71, where visual information is lacking. The more exciting observation is
that at pose 72, as soon as the visual odometry works again, the optimiser realises that there
is a new optimal bias estimate. Hence, all of the previous biases are updated, which influences
the pre-integrated IMU measurements, which in its turn updates the red trajectory in figure
6-2.
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Since the goal for the DLR is to have a working algorithm able to execute the novel visual-
inertial SLAM algorithm on the LRM during real-time missions, it is important to investigate
the computational effort of the novel algorithm. In the current implementation, the non-linear
factor graph is updated at a frequency of 1 Hz. Logically, the optimiser then has 1 second
to solve the problem, before the new measurements are received. The graph in figure 6-4
illustrates that the computational time slowly increases as the size of the nonlinear factor
graph increases over time, but that the computational time per round is still well below 1
second. The spikes in this graph are caused by detected potential loop closures: in order to
confirm one, the current image is compared to a range of potential matches. The amount of
potential matches widely varies and is based on the amount of previously visited states in
the vicinity of the current pose, that are at a distance within a certain threshold. In the case
that the time-limit of 1 second is neared, due to the ever growing size of the problem, several
actions can be undertaken to reduce the computational load. For starters, to reduce the
height of the spikes, reduce the threshold for loop closure hypotheses, to reduce the amount
of comparisons to previous states that have to be done. If the actual computational time of
solving the non-linear factor graph becomes too long, a solution is to incorporate a sliding
window approach, that optimises only the last subset of states, rather than the full problem.
As the factor graph grows, it is very likely that the first couple of states and the information
contained within the corresponding factors, does not change anymore. Removing them from
the optimised window logically reduces the computational load.

Figure 6-4: Duration of the computations for every optimisation round
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6-2 Increased duration of VO absence

The main experiment illustrated that the novel visual-inertial SLAM algorithm is able to
handle a complete absence of visual measurements. This was demonstrated on a relatively
short period of 3 seconds. In the following experiment the duration of absence of visual
measurements is increased to 8 seconds, in order to determine the boundaries of this novel
algorithm’s potential.

Figure 6-5: IMU drift for longer period of VO absence

The graphs in figure 6-5 show that the IMU drift is substantial, at least enough to completely
displace the subsequent light-blue trajectory from the ground truth. Similarly to the main
experiment, in the right figure is observable that over time this drift decreases as the biases are
re-optimised at every computation. In figure 6-6 is illustrated that the loop closure between
pose 97 and 35 again very heavily translates the complete light-blue trajectory to a wrong
location. However, as more loop closures are detected afterwards, this problematic effect is
minimised. Eventually, the final trajectory estimate is still quite accurate with an RMSE of
0.2635 meter.

Figure 6-6: IMU drift for longer period of VO absence

The observable difference from this result in comparison to the results discussed in the previous
section, is that after the visual odometry is regained (at the beginning of the light-blue
trajectory), the red trajectory is not completely corrected. As the duration of pure inertial
navigation was much longer in the second experiment, the damage done to the estimated
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trajectory due to the inability to update the estimated biases is larger. An important insight
from this experiment however is that through setting a high enough covariance on IMU
factors, the problematic IMU poses in the red trajectory can be fully accounted for by loop
closure constraints that would be detected in the future. This is yet another key takeaway
from the work done in this thesis: through varying the covariances in the noise models on the
individual factors, the optimiser can incorporate a level of awareness regarding how certain
it is of specific areas in a map. The novel visual-inertial SLAM algorithm very conveniently
allows for updating an area of the map which the rover is uncertain about.

During a normal mission it is of course impossible to know how long the period of pure inertial
navigation will be. As an overall strategy, it seems to be wise to generate the factor graph
with high variances on IMU factors and low variances on VO and LC factors.
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6-3 Experimental Testcases

In the previous section, the results of the main testcase are discussed. During the execution of
this experiment, the default/optimal values for all parameters are used, as listed in table 5-1.
The following section illustrates how varying the parameter values affects the final solution,
demonstrating the importance of setting the correct values for the optimisation parameters.

Figure 6-7 shows the estimated trajectory for the same experiment, with a much higher
covariance on the loop closure constraints. In comparison to figure 6-2, it is clear that at
pose 100 the loop closure constraint (97-35) now has a much smaller impact on the light-blue
trajectory. Although this initially seems positive for the trajectory accuracy, especially since
a erroneous loop closure constraint potentially ruins the accuracy of map sections, it soon
becomes evident that the trajectory on the right side of the figure 8 deviates a lot from the
ground truth. This demonstrates the power of these loop closure constraints and why it is
typically not beneficial to set a high variance on these constraints, which lowers the trust
the optimiser has in these constraints. With an RMSE of 0.2460 meter, this strategy clearly
performs worse than a strategy where loop closure constraints are weighed more heavily in
the optimisation.

Figure 6-7: Results with a higher covariance on loop closures

Setting a very low covariance on these loop closure constraints is sub-optimal as well, as shown
in figure 6-8. Similar to the results of the main experiment, one can see that the first loop
closure on pose 97 has a detrimental effect on the light-blue trajectory. This makes sense as
the covariance in the noise model are even lower, making the optimiser trust this single loop
closure constraint even more. Similarly to the main experiment, this error is compensated
for later in the trajectory. However, the calculated RMSE = 0.5264 meter, which is definitely
higher than in the main experiment. The most probable explanation for this behaviour is
the fact that VO-factors and the loop-closure-factors are computed using the exact same
mathematical algorithm, being 2D-2D image registration. The noise models on them should
therefore be equal, as it is the same measurement model estimating a certain value. If the
noise models are not equal, as is the case in this example, it shifts the estimation into one
direction, which clearly does not benefit the final solution.
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Figure 6-8: Results with a lower covariance on loop closures

Other parameters that should influence the final solution are the covariances on the noise
models of the IMU-factors and the VO-factors, or at least the ratio between these two. The
theoretical influence on the estimate is already illustrated in section 5-2. In this experiment
however, there was no clear difference between the two parameter setups visible. This is
caused by the loop closure constraints, which is yet another indication of how powerful these
loop closures are. Imagine the IMU factors tend to drift in one direction, and VO factors
drift in the opposite direction. It does not matter whether the optimiser relies more on IMU
measurements or visual measurements, since a loop closure will always eliminate this drift.
This idea is illustrated in figure 6-9:

Figure 6-9: Regardless of drift direction, a loop closure will yeild similar trajectories
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6-4 Improvements on accuracy

The novel visual-inertial SLAM algorithm has demonstrated an increased robustness, as it is
able to handle a temporary loss of visual measurements, temporarily relying on pure inertial
navigation. An additional potential benefit of fusing two sensors is that the accuracy of
the algorithm increases. To investigate whether this is the case, a new experiment should
be conducted in which loop closures are disabled, for the same reason as discussed in the
previous section. A loop closure will always overrule the effects of estimation drift. However,
it is not always possible to enforce a loop closure. Besides, having an algorithm that does not
need to rely on loop closures to yield a high accuracy is desirable.

The same dataset as in the main experiment of this chapter is used, but a different scenario is
simulated. After one full loop of the figure-8 trajectory, the loop closure detection module is
disabled. This simulates an scenario in which the rover first drives around for a while in the
same area, detecting loop closures to reduce the trajectory drift. This allows the algorithm
to correctly estimate the IMU biases. Then, the rover enters a new area in which no loop
closures can be detected. The point of this experiment is to investigate whether the novel
visual-inertial SLAM algorithm shows a higher accuracy than the pure visual odometry, under
the absence of loop closure constraints.

Figure 6-10: Estimated trajectories of visual and visual-inertial odometry without loop closures

Estimator RMSE (m)
Visual odometry 1.1503

Visual-inertial odometry 1.0522

Table 6-1: RMSE scores for both estimators when mapping an unknown area

The calculated RMSE scores for both estimators are given in table 6-1. These metrics point
out that the visual-inertial pipeline generates a trajectory that more closely fits the ground
truth than the plain visual odometry. From this result, a conclusion could be that the drift
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is therefore lower, which means that the incorporation of IMU measurements has improved
the performance of the odometry. However, it is still obvious that the estimated trajectory
drifts off, also for the visual-inertial odometry module. Upon visual inspection it is clear that
it indeed shows less drift than the visual odometry, but the improvement is minimal. An
explanation for this observation is the following: Even if the IMU factors are very close to
the truth, as the visual odometry starts to drift off after pose 106, the visual-inertial pipeline
’notices’ that the disagreement between IMU factors and VO factors increases. The way the
algorithm deals with this discrepancy is to update the IMU biases, in order to minimise the
error between the IMU- and VO-factors. This illustrates an inherent flaw of this type of
tight sensor fusion: the estimation of the biases is performed by minimising the difference
between IMU- and VO-factors. So as soon as the visual odometry module starts to drift off,
the inertial measurements might offer some resistance and reduce this drift (assuming that
the bias estimation until that point in time is done correctly). But as the VO further drifts
off, it will influence the values of the estimated biases and hence influence the pre-integrated
IMU measurements, deteriorating the accuracy of the IMU-factors. The main insight that
can be gained from these results is the fact that the mathematical process of estimating these
bias values is not correlated to the underlying physical process. The bias is just a measure
of minimising the residual errors in the optimisation problem as best as possible, instead of
reflecting the true bias values in the physical sensor.
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Conclusions

The generation of a 3D map of an unseen environment, obtained through solving the SLAM
problem, is a popular topic currently in the robotics domain. In space applications, the
hardware options are limited due to restrictions regarding weight and energy consumption,
which is the reason why camera systems are favourable. Performing SLAM based on the
visual measurements from a camera relies on visual odometry: the science of estimating the
rover’s motion through a sequence of visual measurements. The reliability on a single sensor
however poses a threat to the robustness of the SLAM algorithm. The image quality can
quickly degenerate in scenario’s with varying lighting conditions, feature-poor environments
or quick rotations around the rover’s vertical axis. The visual odometry pipeline then loses
track of the rovers current location, leaving the mapping thread unable to add any new
visual observations to the global map until a relocalisation has taken place. Although such
relocalisations are a reliable solution to the problem, it discards the information gathered
between the moment tracking is lost and the relocalisation has taken place, which results in
gaps in the global map of the environment.

The work done in this thesis aims to investigate how adding a second motion sensor can
address this problem and establish a more robust and failure-resilient odometry pipeline.
In the domain of space robotics, an inertial measurement unit (IMU) is a popular sensor
due to its energy-efficiency and light weight. However, as IMU measurements tend to be
contaminated with measurement biases, directly integrating the measured angular velocities
and linear accelerations would quickly lead to the build up of errors in the estimated poses. A
method to estimate these biases, in order to remove them from the raw IMU measurements,
is called tightly coupled sensor fusion. This is done by comparing the motions found through
visual odometry with the motions found through integration of IMU measurements, in which
the bias is an yet unknown parameter. Theoretically, by optimising for the unknown biases
over the full SLAM problem, these biases can be estimated by minimising the difference
between the resulting motion from the two sensors.
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To answer the research question, an IMU can serve as a temporary primary sensor to per-
form navigation in the event of a loss of visual measurements. A solution is proposed that
involves constructing a non-linear factor graph, a graphical tool to model complex probabilis-
tic distributions. This solution allows for the incorporation of various sensor types through
summarising their measurements in so-called factors. These factors connect the unknown
variables which are optimised for and contain information on how these variables are related.
By building on the open-source GTSAM framework, leveraging an incremental smoothing
algorithm, an efficient visual-inertial SLAM algorithm is developed that is able to run in
real-time on the Lunar Rover Mini.
We were able to demonstrate that the novel algorithm is more failure-resilient than the pure
visual algorithm, by simulating a scenario in which the visual odometry module temporarily
fails to provide motion estimates to the optimiser. The visual-inertial odometry successfully
handles a duration of absence of visual measurements of 3 seconds, showing the expected
behaviour that during pure inertial navigation, the values of the estimated biases does not
change. When visual odometry is regained, the optimiser is able to update all of the previous
biases as well, yielding an even higher accuracy during the period where only inertial mea-
surements are available. For a longer period of absence of visual measurements of 8 seconds,
the plotted trajectories show more drift. However, by enforcing a loop closure this drift can
be eliminated and sections of the estimated trajectory can be updated.
We were also able to demonstrate the sensitivity of the solution to variance parameters. A
key parameter in updating the map is the noise models on the individual factors. As high
covariance values in the noise models indicate a high uncertainty regarding that specific factor,
the optimiser will trust this specific factor less, and vice versa. This dynamic covariance
setting can be leveraged to include a certain level of certainty to the map. This valuable
insight results in a much more useful and deeper understanding of the environment, which
can be easily updated if new measurements provide additional evidence regarding this map.
The generated map is now not merely a simple collection of points in a pointcloud anymore,
but rather a reflection of a rover’s understanding of his environment. This similarity to how
human beings would behave if tasked to draw a map of an unknown environment is beautiful,
indicating that computers are capable of imitating human beings in some aspects.
The developed SLAM algorithm based on tightly coupled sensor fusion, theoretically allows
for more applications than only increasing the robustness of a single-sensor system. Adding
another sensor to the estimation could increase the accuracy of the algorithm. Assuming
Gaussian noise models for both measurement models, averaging the two can filter out potential
outliers and errors that would have influenced the trajectory if the estimation relied on just
one of the two sensors. This theory was tested in another experiment, in which loop closure
detections were disabled. This experiment illustrated that the novel visual-inertial algorithm
shows slightly lower drift than the pure visual odometry, but after a couple of seconds also
drifts off. Recall that the main mechanism behind bias estimation is to figure out which
biases causes the inertial navigation to resemble the visual navigation as much as possible.
It therefore makes sense that as soon as the visual odometry starts to drift off, cause by the
lack of loop closures, the biases will quickly be erroneously estimated in order to reduce the
residual error in the optimisation as much as possible. This illustrates the main flaw of this
type of visual-inertial navigation, as the bias estimation is not correlated to the underlying
physical process, but is merely a variable in the optimisation problem which can be used by
the optimiser to reduce the residual error.
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The added value of this thesis to the DLR first and foremost is that the novel algorithm can
serve as a framework or base to continue performing research on. The increased robustness
of the algorithm, the primary result of this thesis, is only just a result of what is actually
interesting to them: a novel method to perform visual-inertial SLAM. This perfectly fulfils
the purpose of the Lunar Rover Mini, which is to serve as a experimental testing platform for
new ideas and software designs. Although the idea of visual-inertial SLAM is certainly not
new to them, the strategy of tightly coupled sensor fusion based on a non-linear factor graph
has not been studied and implemented to this extend yet, as other rovers at DLR perform
visual-inertial SLAM using a filtering approach.

A suggestion for future research concerns the further investigation into the estimation of
biases. As the true biases are always unknown, it is very difficult to verify the degree to
which they can successfully be estimated. By performing a simulated experiment with known
values for the biases, a lot of insight can be gained into the estimation of these volatile
parameters. In [21], researchers simulated a trajectory and the corresponding visual and
inertial measurements, including the IMU biases and noise. A follow-up research involving
such simulated experiments can provide a lot of understanding into the true capabilities of
estimating them through non-linear factor graphs.
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IMU-camera calibration report
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