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Abstract

This paper tries to combat the food waste of straw-
berries during the harvesting steps. An automatic
pipeline must be established to combat this food
waste. One of the steps needed in this pipeline is
detecting strawberries in images. Therefore, this
paper aims to find out which Convolutional Neural
Network (CNN) can be best used to detect straw-
berries. Faster r-cnn, Mask r-cnn and RetinaNet are
compared against each other using different setting.
Mask r-cnn achieved the highest average bounding
box and segmentation mAP with 51.63 and 73.20
respectively.

1 Introduction

Strawberries are part of the soft fruits, making them highly
susceptible to waste. Research in Ontario, Canada, showed
that 56% of all edible strawberries are wasted. [1]

Battling part of this waste may be done by having a more
efficient and unbiased selection of which strawberries to har-
vest. Usually, humans, who are highly susceptible to personal
bias, have to make these quick decisions. This selection may
be improved by having an algorithm detect which strawber-
ries are ready to be harvested or predict when they will be
ready.

There first needs to be an algorithm that can segment straw-
berries from images. These segments can then later be used
to predict their ripeness. Some successful research has al-
ready been done on selecting fruits from images. [2; 3] There
are many models to detect objects [4]. Some research even
tackles strawberry detection using some of these models [5;
6]. However, many more of these models can be used to de-
tect strawberries.

Regardless, the following question remains: which CNN
model does the best segmentation for the dataset provided by
the supervisors? And as a sub-question, how do the training
settings influence the final results?

To answer these questions, we will look into the following
segmentation algorithms: Faster r-cnn [7], Mask r-cnn [8],
RetinaNet [9]. The best accuracy of their prediction capabili-
ties will be the primary goal of this research.

2 Methodology

An algorithm with visual prediction capabilities must be im-
plemented to detect strawberries in images. This algorithm
will then need data to train on so that the algorithm can make
correct decisions.

In the field of strawberry detection, there has already been
specific research to compare different algorithms to see which
one produces the best results [5]. Out of all these algorithms,
a CNN seemed the most promising, with an accuracy of 88
% However, this accuracy was achieved in different circum-
stances than our strawberries. That paper also only checked
the performance of one CNN. Therefore this research focuses
on comparing different CNNs by evaluating their accuracies.
How CNNs operate and which CNNs are chosen will be dis-
cussed in section 2.1 the motivation for why those specific

Figure 1: Left a 4 by 4 feature divided up in 2 by 2 areas can be
seen. Right of the arrow you can see the result of the max pooling

Figure 2: Left a 4 by 4 feature divided up in 2 by 2 areas can be seen.
Right of the arrow you can see the result of the average pooling

CNNs are chosen will also be discussed in their respective
subsection. After the CNNs are presented and motivated, the
data exploration will be discussed in section 2.2. Lastly, the
research setup will be discussed in section 2.3.

2.1 Convolutional Neural Networks (CNN)

A convolutional neural network is a deep learning algorithm.
This means that the algorithm consists of layers of neurons.
These neurons can process the information they get and pass
it on to the next layer. There are different types of layers
which can be used. Pooling, Convolutional and Fully con-
nected layers are the main layers used in such models.

Pooling layers reduce the resolution of the incoming image
by doing either max pooling or average pooling. Max pooling
is when, for example, a four-by-four feature comes in, and
they are sliced into two-by-two squares. The max value is
taken from this window and saved in the filtered output. This
can be seen in figure 1 Average pooling is when the average
of the window will be taken instead of the max. Which can
be seen in figure 2

Convolutional layers learn about spatial features by con-
volving a filter over the input feature. These filters learn to
detect specific features, for example edges. A convolution
can be seen in figure 3.

Doing all these operations on the whole image would be
time-consuming and inefficient. Therefore, most CNNs use
a region proposal network that predicts regions containing
objects. For this paper, a ResNet50 (based) backbone was
chosen since all models are compatible with this model and
ResNet50 is often used as Region Proposal Network (RPN).



Figure 3: Left a 9 by 9 matrix can be seen. The red square indicates
which values are taken into account for the current operation. In
the middle you can see the filter which will be convolved by. The
right most square contains the current results. Where the red square
indicates the result of the convolution of the original red square with
the filter.

Faster r-cnn

Faster r-cnn has been used to detect different kinds of fruits
[10]. One of which was the strawberry. However, this re-
search mainly focused on combining near-infrared and RGB
images to detect sweet peppers. Therefore further research
into faster r-cnn for strawberry detection is needed to know
how well it will perform.

Faster r-cnn is based on the fast r-cnn, which is in itself
based on r-cnn. [11; 12] As the name suggests, Faster r-cnn
is a faster version of these algorithms and a more accurate
version [7].

A region proposal network is used to extract interesting lo-
cations in the image. These patches consist of different aspect
ratios and sizes. After the previously created anchor boxes by
the RPN, faster r-cnn filters these proposed regions by apply-
ing Non-Maximum Suppression (NMS). This makes sure that
there are no majorly overlapping anchor boxes.

These new regions are then fed into the Region Of Inter-
est (ROI) pooling layer. ROI pooling layer performs a max-
pooling operation so that the ROI can be transformed into the
correct size for the fully connected layers at the end. From
these fully connected layers, the prediction of whether it is a
strawberry or not is made.

Faster r-cnn was chosen because it has proven itself and its
accuracy by detecting different fruits in various studies [2].
However, strawberries were only tested in one study and only
on a low number of Google images. Therefore we are inter-
ested in seeing how this CNN will perform in a more con-
trolled environment with more data.

Mask r-cnn
Mask r-cnn has previously been used to detect ripe and unripe
strawberries [6]. This research provided a highly promising
precision rate of 95.78%. Therefore, in this research mask
r-cnn will be one of the algorithms tested for our setup.

Mask r-cnn follows a similar design as the faster r-cnn. The
main difference is that the CNN now does instance segmen-
tation as well. For instance segmentation, a pixel-by-pixel
classification is made. This classification is done in parallel
with the classification of the bounding box. So the classifica-
tion is not dependent on the mask but the original bounding
box.

Mask r-cnn was chosen since there was a paper which
mainly addressed this CNN using it for strawberry predic-

tions, and they achieved a great result [5].

RetinaNet

RetinaNet is a one-stage detector. That means that the model
produces the bounding box and predicts the class at the same
time. Both faster r-cnn and mask r-cnn do not do this.

RetinaNet introduces the use of focal loss. Due to the fo-
cal loss, RetinaNet can produce a magnitude more anchor
boxes than most CNNs. Usually, many small misclassifica-
tions could overwhelm the model. However, the focal loss
counteracts this by punishing misclassifications more harshly
and tiny errors less.

RetinaNet was chosen because it has previously proven its
usefulness by providing fast and accurate object detection[9].
It has even been used to detect apples with great success[13].
Now the question remains how well RetinaNet will do on
strawberry detection and how good it will be compared to
the other CNNs?

2.2 Data exploration

Now the models still need some data to be trained on. For this
research, a dataset is provided by the TU Delft!, Birds.ai’
and Delphy?®. This dataset contains images from May 2021
until November 2021 from 3 different cameras. These images
are taken every hour and in a controlled environment. The
camera is in the exact location and takes pictures of the same
strawberries. Then these pictures are taken every hour. So a
total of 24 pictures a day.

These images are accompanied by a large JSON file which
contains links between images and strawberry locations. This
pixel wise locating is done with a polygon A polygon con-
tains one strawberry and traces the outside of the strawberry.
Bounding box information is also provided. One bounding
box fits rectangularly around the accompanied polygon.
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(b) The ground truth of figure
4a

(a) One of the original images

Figure 4: Left in (a) you can see that the original image and (b) plots
the ground truth over this image

Data preparation

Not all images are useable due to missing ground truth or
a lack of strawberries. Thus, the data needs to be filtered.
This needs to be done so that the CNNs have valid data to be
trained on.

"https://www.tudelft.nl/
Zhttps://birds.ai/
*https://delphy.nl/



In total, 12.155 images are provided. These images are fil-
tered so that only images containing ground truths of straw-
berries are used. After this filtering, 4.370 images are left
containing a total of 130.665 strawberries. One of these im-
ages and the ground truth have been visualised, can be seen in
figure 4. As can be seen in this figure, the ground truth con-
tains the bounding box information and pixel segmentation.
This information will be used for the different CNN models.

The datasets of the different cameras are kept separate to
ensure that the test set is not contaminated by having train-
ing data inside. Therefore the same camera is always used
as the test dataset. This dataset contains 1.287 images and
33.274 strawberries. All other images can be used during the
training.

2.3 Research Setup

Multiple CNNs must be tested on the dataset provided to an-
swer the research question. Doing this efficiently will be done
mainly using the detectron2 framework [14]. This framework
is specifically designed for researchers. Detectron? is there-
fore created so that the researchers can easily tweak and edit
the models to fit the researchers’ needs. Using this frame-
work also provides a controlled environment for the models
and ensures that they are easily comparable. The models we
implemented using detectron2 are Mask r-cnn [8], Faster r-
cnn [7] and RetinaNet [9].

These models will be using the loss functions proposed in
their original papers. The models will be initialized with ran-
domized values as their weights. All other settings of the
CNN s are kept the as the original authors proposed. The only
real difference that is made is the learning rate.

The algorithms’ learning rate has been made the same to
make a more fair comparison. The new learning rate consists
of 4 stages. The first stage is the warm-up stage which lin-
early increases the learning rate from close to O to the base
learning rate value. This warm-up stage lasts for 10% of the
iterations. The warm-up stage is used so that the model does
not overtrain on the bias of the first few iterations. After 75%
and 90% of the iterations, the base learning rate decreases by
a factor of 10.

Training for all models will be done on the DelftBlue su-
percomputer [15]. The hardware on which all the models
have trained consists of 1x AMD EPYC 7402 CPUs with 24
cores running at 2.80 GHz and 1x NVIDIA Tesla V100S GPU
containing 32GB VRAM.

The comparison metrics used to analyze the different mod-
els will be discussed in the Results section of this paper. The
training loss and the validation loss are calculated by sum-
ming the different loss values produced by the model. The
FPN produces a localisation loss and a classification loss. The
losses are calculated by the smooth L1 loss* and the cross-
entropy loss’ respectively. These same losses are calculated
for the Bounding Box selection and classification part of the
CNN. All these losses are then summed into the total loss.
For mask r-cnn, the segmentation loss is also calculated by
the smooth L1 loss and cross-entropy loss.

4pytorch.org/docs/stable/generated/torch.nn.SmoothL1Loss
>pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss

_tr
tp+ fp

Figure 5: The formula of how to calculate the precision. With TP
being True Positive, and FP being False Positive.

Precision =

3 Results

After generating the models, they finally were compared
against each other. However, first, an objective measurement
must be established. This measurement will be done by com-
paring the precision of the models against each other. The
precision of a model is calculated by the formula above in fig-
ure 5. In this image TP = True positive, FP = false positive.
Therefore, it calculates how many of the predicted strawber-
ries are correct predictions and thus contain a strawberry.

However, the question remains: at what confidence level
should the precision be calculated? When the model is 50%
sure, it is a strawberry or at 90%? Choosing a specific confi-
dence level would add bias to the evaluation. Therefore, the
mean average precision (mAP) calculates the precision from
a 50% confidence interval to a 95% confidence level. This
is done in intervals of 0.05%. The average is then taken of
these values, which produces the mAP. In object detection,
the mAP is considered a standard metric to evaluate a model.
The Bounding Box (BBox) mAP will be calculated for all the
models. For mask r-cnn, the segmentation (segm) mAP will
also be calculated.

Since we have three cameras’ datasets, we established that
camera one is always the test set. Having a standard test set
makes sure that any difference in results is due to the train-
ing of the CNNs and not test data variability. Many different
training setups were used to gather data. All the generated
results can be found in the appendix.

3.1 Single camera training

To start the testing, we started by creating a baseline. This
baseline consisted of using one camera as a data set and test-
ing it with 100 epochs (training the model on all the data 100
times) using different learning rates. The results can be seen
in table 1. The training seemed to go well, and the training
loss decreased during the training, which seemed promising.
However, after further inspection, the model seemed to over-
fit. The overfitting can be seen in figure 6

Model mAP BBox mAPSeg LR Epoch
Faster r-cnn  44.73 - 0.2 100
Mask r-cnn ~ 44.87 66.71 0.2 100
RetinaNet 4591 - 0.2 100
Faster r-cnn  44.85 - 0.02 100
Mask r-cnn~ 44.88 67.07 0.02 100
RetinaNet 43.95 - 0.02 100
Faster r-cnn  43.06 - 0.002 100
Mask r-cnn~ 41.81 40.92 0.002 100
RetinaNet 43.64 - 0.002 100

Table 1: The results of training for 100 epoch on the data of camera
5.
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Figure 6: Left in (a) you can see that the validation loss increases
even though the training loss keeps on decreasing. This shows that
the model is overfitting. The training and validation loss is the same
as the total loss of the respective classes. The overfitting is confirmed
by the BBox mAP. At the start it increases, but after more training
it decreases again. The model shown is the faster r-cnn trained with
0.002 Lr and 100 epochs trained on one camera.

3.2 Multi camera training

One hundred epochs and one camera as training data pro-
duced overfitting results. A new training setup was created to
test if this is due to too few training data. Adding the dataset
of an additional camera will create a more varied training set
and could therefore improve the accuracy of the models and
maybe negate some of the overfitting. However, training for
100 epochs with twice the data would be a bad comparison
since the training iterations are not comparable. Therefore
the training was done with 50 epochs. The result of this train-
ing can be seen in table 2

Model mAP BBox mAP Seg LR Epoch
Faster r-cnn DIV - 0.2 50
Mask r-cnn DIV DIV 0.2 50
RetinaNet DIV - 0.2 50
Faster r-cnn  48.14 - 0.02 50
Mask r-cnn~ 47.41 69.28 0.02 50
RetinaNet 48.68 - 0.02 50
Faster r-cnn  47.03 - 0.002 50
Mask r-cnn ~ 47.69 67.91 0.002 50
RetinaNet 47.90 - 0.002 50

Table 2: The results of training for 50 epochs on the data of two
different cameras. DIV means that during training, the training loss
kept increasing and thus diverged.

When the double camera setup produces a result, it has
a better mAP. Sometimes, the training on the two camera
dataset did not provide a final model. No final model was
reacted training loss diverged. The following formula was
used to compare the one dataset results against the two cam-
era dataset:

1 n APacam(€,lr)—AP1cam (2xe,lr)
AVGimprovement —n Zl CamAPuam(?*Fj:S * 100

Figure 7: The formula used to calculate the average improvement of
the model with two cameras as training data against one camera.

Individual improvements produced for all different CNN

setups can be found in the appendix C.

The overall average improvement with the use of two cam-
eras was 8.42%. The improvement from a one camera dataset
to a two cameras dataset is slightly more significant for lower
learning rates. For a learning rate of 0.002, the two camera
setup was on average 9.13% better. While

However, the models are still overfitting as can be seen in
figure 8.
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Figure 8: Left in (a) you can see that the validation loss increases
even though the training loss keeps on decreasing. This shows that
the model is over fitting. This is confirmed by the BBox mAP which
at the start increases but after a while it decreases after more training.
The model shown is the faster r-cnn trained with 0.002 Ir and 50
epochs and trained on 2 cameras

3.3 Epochs

The 100 epochs with one camera and 50 epochs with two
cameras were overfitting the data. Therefore one of the solu-
tions could be to train the models for fewer epochs. Training
was done for all training configurations. A selection of these
results is shown in table 3.

Model mAP BBox mAPSeg LR Epoch
Faster r-cnn  47.03 - 0.002 50
Faster r-cnn  49.22 - 0.002 25
Faster r-cnn  50.63 - 0.002 10
Faster r-cnn  51.00 - 0.002 5
Mask r-cnn~ 47.69 67.91 0.002 50
Mask r-cnn~ 50.22 70.83 0.002 25
Mask r-cnn ~ 50.75 69.54 0.002 10
Mask r-cnn = 51.63 70.03 0.002 5
RetinaNet 47.90 - 0.002 50
RetinaNet 47.89 - 0.002 25
RetinaNet 48.80 - 0.002 10
RetinaNet 48.45 - 0.002 5

Table 3: The results of training on the data of camera 3 and 5.

This table shows that decreasing the amount of epoch for
Faster r-cnn and Mask r-cnn improves the BBox mAP score.
RetinaNet has one outlier to this rule. The 10 epoch produces
better results than the 5 epoch RetinaNet.

3.4 Learning rate

The last training variable that has been adjusted is the learn-
ing rate. This was done because the learning rate can influ-
ence the training models. Therefore different baseline learn-
ing rates have been tested. As discussed in section 2.3 the
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Figure 9: The Learning rate during training respective to the itera-
tion for a base learning rate of 0.02

learning rate changes (warms up and drops) during training.
This learning rate over time is visualised in Figure 9.

The accuracy of the learning rate for the single-camera test
setup with 10 epoch shows that a higher base learning rate
produces slightly better results. This can be seen in Table 4.

Model mAP BBox mAP Seg LR Epoch
Faster r-cnn  48.21 - 0.2 10
Faster r-cnn  47.98 - 0.02 10
Faster r-cnn  47.53 - 0.002 10
Mask r-cnn ~ 48.05 71.56 0.2 10
Mask r-cnn =~ 47.91 70.34 0.02 10
Mask r-cnn =~ 47.82 66.12 0.002 10
RetinaNet 45.39 - 0.2 10
RetinaNet 44.92 - 0.02 10
RetinaNet 44.59 - 0.002 10

Table 4: The results of training for 10 epochs run on different learn-
ing rates. These results were from CNNs, which were trained on
only the camera 5 dataset.

In this table, all higher learning rates produce better re-
sults than the 10 times lower counterparts. This trend is the
same for most of the CNNs of the one camera training set,
except for the 100 epochs. However, the CNNs trained on a
two camera dataset seem to gravitate towards a lower learning
rate. They sometimes prefer the lowest learning rate of 0.002
(Faster and Mask r-cnn for 10 epoch), the middle learning
rate of 0.02 (all models on 50 epoch), but never 0.2. More on
this in the discussion.

3.5 Bounding Box

Now that all of the settings have been explored, the final re-
sult can be analysed. In table 5 you can find the best mAP
produced by each model family with the respective learning
settings. validation loss

Model mAP BBox LR Epoch no. cams
Faster r-cnn ~ 51.00 0.002 5 2
Mask r-cnn  51.63 0.002 5 2
RetinaNet 49.36 0.002 10 2

Table 5: The results of training on the dataset of one camera.

3.6 Segmentation

All that is left is to compare which model produces the best
segmentation. Only Mask r-cnn contains the functionality
to make pixel-wise predictions. All mask r-cnn results are
shown in table 6. The best result is produced with the follow-
ing settings: epoch: 10, learning rate:0.02, cameras:2.

Model mAP Seg LR Epoch No. cams
Mask r-cnn  73.20 0.02 10 2
Mask r-cnn ~ 71.56 0.2 10 1
Mask r-cnn ~ 71.27 0.02 5 1
Mask r-cnn ~ 70.83 0.002 25 2
Mask r-cnn~ 70.34 0.02 10 1
Mask r-cnn  70.03 0.002 5 2
Mask r-cnn 69.54 0.002 10 2
Mask r-cnn ~ 69.28 0.02 50 2
Mask r-cnn =~ 67.91 0.002 50 2
Mask r-cnn ~ 67.07 0.02 100 1
Mask r-cnn~ 66.83 0.002 5 1
Mask r-cnn~ 66.71 0.2 100 1
Mask r-cnn 66.12 0.002 10 1
Mask r-cnn~ 60.78 0.002 100 1
Mask r-cnn DIV 0.2 50 2
Mask r-cnn DIV 0.02 25 2
Mask r-cnn DIV 0.2 10 2
Mask r-cnn =~ DIV 0.02 5 2
Mask r-cnn DIV 0.2 5 1
Mask r-cnn DIV 0.2 5 2

Table 6: All the Mask r-cnn results ordered on mAP Segmenta-
tion. DIV means that the training loss diverged and therefore no
final model was created.

3.7 Visual Results

After all the technical analysis, it is time to see the visual
results of the CNNSs. First of all some images of the predicted
strawberries from the best performing CNN. These images
can be seen in Figures 10 and 11.

4 Discussion

As seen in the paper’s results section, some models do not
have an mAP. Instead, they have DIV as a result. The lack of
mAP happened because the training did not produce a final
model due to a diverging training loss. This divergence can
occur when the learning rate is too large. The model then
overshoots the local minima it is trying to learn towards and
ends up higher on the loss curve than it previously was. Since
the initial weights are initialized randomly for the main parts
of the model, the divergence may happen due to unfortunate
starting weights. An effort was made to ensure that all models
have three tries to obtain a final model. If those three attempts
were not enough, then the result of divergence was registered.

It can get stuck in a local minimum with only one run per
hyperparameters. Therefore, the reported precisions may not
be the best results a model could have achieved. Due to time
constraints and hardware availability, testing each model mul-
tiple times was not an option.



(d) RetinaNet

Figure 10: These images show the discrepancy between the ground
truth and the predicted results of the best performing CNN in each
category. These images show the overlap prediction capabilities (On
the right of the images).

(d) RetinaNet

Figure 11: These images show the discrepancy between the ground
truth and the predicted results of the best performing CNN in each
category. These images represent strawberries of multiple scales.
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Figure 12: Left in (a) you can see that the validation loss increases
even though the training loss keeps on decreasing. Right (b) shows
that the mAP is stabilizing during training. The model shown is the
Mask r-cnn trained with 0.002 Lr and 5 epochs on 2 cameras.

In the end, the CNNs seemed to prefer a lower amount of
epochs due to overfitting at higher epochs. The best model
for both BBox mAP and Segmentation mAP turned out to be
a version of mask r-cnn. Moreover, they do not show over-
fitting, as shown in figure 12. In contrast to the initial tests
using higher epoch training.

(d) RetinaNet

(c) Faster r-cnn

Figure 13: The ground truth (a) is missing some annotations for the
smaller strawberries at the top. Both faster and mask r-cnn seem to
detect these strawberries. While RetinaNet predicts some and misses
others.

Lastly the data provided has some flaws. Some of the
strawberries have not been annotated. This will hurt all the
CNNss training, and the final scores will be lower when our
models predict these strawberries. Figure 13 shows one of
these instances.

5 Responsible Research

5.1 Ethical implications

The main goal of this project is to help combat food waste.
The waste of strawberries can be partially attributed to the

harvesting stages of the strawberries. By detecting the straw-
berries from images, other algorithms will be able to extract
features from them and predict their ripeness score so that the
strawberries that are ripe enough to be harvested are automat-
ically detected. One of the downsides of an automatic system
for strawberry harvesting is that in the future, strawberry har-
vesting jobs will possibly be done by machines. Therefore,
humans can lose their (part-time) job.

5.2 Trustworthy results

To keep the results of this research as trustworthy as possible
multiple things were taken into account while doing this re-
search. All the implemented CNN5s use the standard settings
from the original papers of the proposal of the network. If any
changes were made to these settings, these have been men-
tioned in this paper. An explanation of this deviation is then
also provided. The precision of the CNNs was done with ob-
jective measurements, which are used in many of the original
papers. This was done to remove as much bias as possible.

5.3 Reproducibility

During this research, a conscious effort has been made to
build the system from an open-source library specifically
designed for researchers. Doing this ensures that any re-
searchers who want to implement the same system can easily
access the same settings, making the research easier to repro-
duce. The code of the developed system is available on the
TU Delft GitHub servers, and the images used for the training
are also in possession of the TU Delft.

6 Conclusions

This paper aimed to find which CNN produces the best pre-
diction data on where strawberries are located on the images.
Multiple CNNs needed to be implemented and tested to ar-
rive at this conclusion. For this research, we have chosen the
following 3 CNNs: Faster r-cnn [7], Mask r-cnn [8] and Reti-
naNet [9].

Different learning rates and amounts of epochs have been
tested. Moreover, from these results, the CNN with the most
accuracy according to the bounding box mAP is Mask r-cnn
with the following hyperparameters: LR: 0.002, epochs: 5,
cameras used: 2, which resulted in an mAP of 51.63. And for
the segmentation mAP, the best model is Mask r-cnn with the
following hyperparameters: LR: 0.02, epochs: 10, cameras
used: 2, which resulted in an mAP of 73.20.

7 Future Works

Due to limited time constraints, not all promising CNNs were
able to be tested. Therefore we propose for future research to
see how other CNNs like YOLOvVS5 perform [16]. A model
which can be compared against the segmentation of mask r-
cnn would be preferred.

Due to the random nature of the training, only a local min-
imum may have been reached. The models are only trained
once per combination of hyperparameters. Rerunning the ex-
periments may therefore result in slightly different results.
Therefore, it would also be beneficial to research how start-
ing weights influence the final prediction capabilities of the
model.
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A All single camera results

Model mAP BBox mAPSeg LR Epoch
Faster r-cnn  44.73 - 0.2 100
Mask r-cnn =~ 44.87 66.71 0.2 100
RetinaNet 4591 - 0.2 100
Faster r-cnn  44.85 - 0.02 100
Mask r-cnn ~ 44.88 67.07 0.02 100
RetinaNet 43.95 - 0.02 100
Faster r-cnn  43.06 - 0.002 100
Mask r-cnn =~ 41.81 60.78 0.002 100
RetinaNet 43.64 - 0.002 100
Faster r-cnn  48.21 - 0.2 10
Mask r-cnn ~ 48.05 71.56 0.2 10
RetinaNet 45.39 - 0.2 10
Faster r-cnn  47.98 - 0.02 10
Mask r-cnn ~ 47.91 70.34 0.02 10
RetinaNet 44.92 - 0.02 10
Faster r-cnn  47.53 - 0.002 10
Mask r-cnn =~ 47.82 66.12 0.002 10
RetinaNet 44.59 - 0.002 10
Faster r-cnn DIV - 0.2 5
Mask r-cnn DIV DIV 0.2 5
RetinaNet DIV - 0.2 5
Faster r-cnn  49.36 - 0.02 5
Mask r-cnn =~ 48.96 71.27 0.02 5
RetinaNet DIV - 0.02 5
Faster r-cnn  47.83 - 0.002 5
Mask r-cnn ~ 48.53 66.83 0.002 5
RetinaNet 44.58 - 0.002 5

Table 7: The results of training on the data of one camera.

B All multi camera results

Model mAP BBox mAPSeg LR Epoch
Faster r-cnn DIV - 0.2 50
Mask r-cnn = DIV DIV 0.2 50
RetinaNet DIV - 0.2 50
Faster r-cnn  48.14 - 0.02 50
Mask r-cnn~ 47.41 69.28 0.02 50
RetinaNet 48.68 - 0.02 50
Faster r-cnn  47.03 - 0.002 50
Mask r-cnn 47.69 67.91 0.002 50
RetinaNet 47.90 - 0.002 50
Faster r-cnn  46.67 - 0.02 25
Mask r-cnn DIV DIV 0.02 25
RetinaNet 48.12 - 0.02 25
Faster r-cnn  49.22 - 0.002 25
Mask r-cnn~ 50.22 70.83 0.002 25
RetinaNet 47.89 - 0.002 25
Faster r-cnn DIV - 0.2 10
Mask r-cnn = DIV DIV 0.2 10
RetinaNet DIV - 0.2 10
Faster r-cnn  49.86 - 0.02 10
Mask r-cnn = 50.48 73.20 0.02 10
RetinaNet 49.36 - 0.02 10
Faster r-cnn  50.63 - 0.002 10
Mask r-cnn  50.75 69.54 0.002 10
RetinaNet 48.80 - 0.002 10
Faster r-cnn DIV - 0.2 5
Mask r-cnn - DIV DIV 0.2 5
RetinaNet DIV - 0.2 5
Faster r-cnn DIV - 0.02 5
Mask r-cnn DIV DIV 0.02 5
RetinaNet 49.34 - 0.02 5
Faster r-cnn  51.00 - 0.002 5
Mask r-cnn =~ 51.63 70.03 0.002 5
RetinaNet 48.45 - 0.002 5

Table 8: The results of training on 2 camera datasets.



C The improvement percentage achieved by
using the images of 2 cameras as training

set
Model mAP BBox mAP Seg LR Epoch
Faster r-cnn DIV - 0.2 100-50
Mask r-cnn DIV DIV 0.2 100-50
RetinaNet DIV - 0.2 100-50
Faster r-cnn ~ 7.34% - 0.02 100-50
Mask r-cnn 5.64% 4.29% 0.02 100-50
RetinaNet 10.76% - 0.02 100-50
Faster r-cnn  9.22% - 0.002 100-50
Mask r-cnn 14.06% 11.73% 0.002 100-50
RetinaNet 9.10% - 0.002 100-50
Faster r-cnn DIV - 0.2 10-5
Mask r-cnn DIV DIV 0.2 10-5
RetinaNet DIV - 0.2 10-5
Faster r-cnn DIV - 0.02 10-5
Mask r-cnn DIV DIV 0.02 10-5
RetinaNet DIV - 0.02 10-5
Faster r-cnn 6.35% - 0.002 10-5
Mask r-cnn =~ 7.97% 5.91% 0.002 10-5
RetinaNet 8.66% - 0.002 10-5

Table 9: The improvement in percentage of using two cams instead
of one. The first number in the epoch column represents the number
of epochs of the one camera trained models and the second number
in the epoch column is the number of epochs for the models trained
on the two camera data set. DIV means either the one camera setups
training diverged, the two camera setup diverged or both.
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