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a b s t r a c t

In this paper, we consider the a priori traveling salesman problem in the scenario model.
In this problem, we are given a list of subsets of the vertices, called scenarios, along with
a probability for each scenario. Given a tour on all vertices, the resulting tour for a given
scenario is obtained by restricting the solution to the vertices of the scenario. The goal is
to find a tour on all vertices that minimizes the expected length of the resulting restricted
tour. We show that this problem is already NP-hard and APX-hard when all scenarios have
size four. On the positive side, we show that there exists a constant-factor approximation
algorithm in three restricted cases: if the number of scenarios is fixed, if the number of
missing vertices per scenario is bounded by a constant, and if the scenarios are nested.
Finally, we discuss an elegant relation with an a prioriminimum spanning tree problem.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In universal and a priori routing, we extend our classical routing problems to the case that the set of clients is uncertain or
changes regularly. Because reoptimizing over and over again might be inconvenient or impossible, we want to find a single
tour. Given a tour and a set of clients, the active set, we shortcut the tour to the active set. In universal routing, the goal is to
minimize the worst-case ratio of the value of the obtained solution and the deterministic optimal value. In a priori routing,
we want to be good on average. The problem we consider in this paper is formally defined as follows. A preliminary version
of this paper was published in [10].

In the a priori traveling salesman problem (a priori TSP) in the scenario model, we are given a complete graph G = (V , E)
with weights that form a metric and a set of scenarios S with S1, . . . , Sm ⊆ V . Scenario Sj has probability pj of being the
active set, where

∑
jpj = 1. We begin by finding an ordering on V , called the first-stage tour. When an active set is released,

the second-stage tour is obtained by shortcutting the first-stage tour on the vertices of the active set. The goal is to find a
first-stage tour that minimizes the expected length of the second-stage tour. Throughout this paper, we assume that the
edge weights obey the triangle inequality.

The a priori TSP has, for example, a direct application in the photo-lithography processes used in semi-conductor
manufacturing to transfer the geometric pattern of a chip onto a wafer [9]. This is done by putting UV-light through a
photomask on a photoresistant layer on top of the wafer. The entire wafer is not exposed at once, but one square at a
time. If certain parts of the square do not need to be exposed, blades are moved in to block the UV-light. Moving the
blades is a time-consuming, and hence costly, process. Since it often influences the total processing time of a wafer in the
lithography machine, minimizing the distance reduces the processing time. The blading positions are defined in a file. The
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blading positions are obtained from this file by reading it from top to bottom and the positions are used by the machine in
order of appearance. A product will visit the photolithography machine multiple times during its fabrication. Every time it
will use the same file that defines its blading positions, but it will not use all blading positions defined in the file in every
visit. For each visit, there is a given subset of the blading positions that has to be used. Hence minimizing the movement of
the blades comes down to finding an ordering of the blading positions such that the sum over all visits of the total distance
between the blading-positions is minimized. The authors of [9] show that this is precisely a form of the a priori TSP in the
scenario model.

A priori TSP has already been considered in the independent decision and black-box model. In the independent decision
model, vertex i is active with probability pi, independent of the other vertices. Shmoys and Talwar [29] showed that a
sample-and-augment approach gives a randomized 4-approximation, which can be derandomized to an 8-approximation
algorithm. This factor was improved by Van Zuylen [30] to 6.5. In the black-box model, we have no knowledge on the
probability distribution over the vertices, but we are able to sample from it, i.e., to query the probability of any subset of
the vertices. Schalekamp and Shmoys [28] showed that one can obtain a randomized O(log n)-approximation even without
sampling. A deterministic O(log2n)-approximation can be obtained by using the result for universal TSP [17]. It was shown
by [16] that there is an Ω(log n) lower bound for deterministic algorithms on general metrics. By using the result of [19] and
Theorem3 in [16], there is no deterministic algorithmwith guarantee o

(
6
√
log n/log log n

)
for planarmetrics. For randomized

algorithms, no lower bound is known for the black-box model.
The above mentioned results give us the first results for a priori TSP in the scenario model. First of all, we inherit the

randomized O(log n)-approximation. Secondly, we know that a deterministic algorithm that does not use the information
given in the scenarios will not achieve an approximation guarantee better than O(log n). The main question is whether we
can use the scenarios to improve upon the O(log n) upper bound and which restrictions we can put on the scenarios in order
to obtain constant-factor approximability. This question will be considered in this paper.

The scenario model has not been studied extensively for other optimization problems. Immorlica et al. [21] investigated
scenario versions of Vertex Cover and Shortest Path. Ravi and Sinha [26] also looked at these problems and also defined
scenario versions of Bin Packing, Facility Location and Set Cover. The problems in [26] differ from our setting in the sense
that the weights used in the instance differ between scenarios. Further, the authors of [6] investigates a two-stage stochastic
scheduling problem, where the set of jobs to be processed is uncertain. Finally, in [12], the classical scheduling problem of
minimizing the makespan on two machines is considered in the a priori model with scenarios. It would be interesting to
consider other stochastic combinatorial optimization problems in the a priori framework.

A priori TSP can be considered as a stochastic version of TSP. Alternatively, one could consider a robust version where we
want to minimize the maximum length over all scenarios. We will refer to this problem as Min-Max TSP. When applicable,
we will state to which extend the theorems for a priori TSP also hold for the Min-Max TSP. An easy observation is that
the approximation ratios for universal TSP carry over directly to MinMax-TSP. Hence, we have an O(log2n)-approximation
algorithm.

In this paper, we will first examine the most natural lower bound that we call the master tour lower bound. We use this
lower bound to show that there exists a constant-factor approximation algorithm for the problem if the number of scenarios
is fixed. However, we also show that this lower bound cannot be used to improve upon the O(log n)-approximation when
the number of scenarios is unrestricted. We then look at several natural restrictions on the scenarios, namely small, big
and nested scenarios. We give strong inapproximability results for small scenarios, a constant-factor approximation for
big scenarios (where a constant number of vertices is missing per scenario) and a 9-approximation algorithm for nested
scenarios. Finally, we show that there exists an elegant connection to an a priori minimum spanning tree problem. We end
with a discussion on some open problems.

2. Master tour lower bound

In this section, we explore the master tour lower bound. Here, we use that the contribution of scenario Sj to the objective
value of an optimal solution, denoted byOpt, is at least pjT ∗

j , where T ∗

j is the length of the optimal tour on Sj, soOpt ≥
∑

jpjT
∗

j .
Two natural algorithms for a priori TSP in the scenario model are the following. For each scenario, find an α-approximate

tour, where α is the best approximation ratio available for TSP, and sort the scenarios on their resulting tour lengths Tj.
Rename the scenarios such that T1 ≤ T2 ≤ · · · ≤ Tm. Now traverse the tours 1, 2, . . . ,m, skipping already visited vertices,
resulting in tour τ1. Alternatively, rename the scenarios such that p1 ≥ p2 ≥ · · · ≥ pm and traverse the tours 1, 2, . . . ,m,
skipping already visited vertices, resulting in tour τ2. We get the following result.

Theorem 1. Tours τ1 and τ2 are (2m −
1
2 )-approximations for a priori TSP in the scenario model, where m ≥ 2 is the number of

scenarios.

Proof. Let us analyze tour τ1. Consider an arbitrary scenario Sj. Let Dj be the diameter of G restricted to Sj, so we have
T ∗

j ≥ 2Dj. Note that when analyzing the contribution of scenario Sj, we only have to consider tours that contain vertices in
Sj. Further, it might happen that two scenarios, say Sx and Sy, with x, y < j, Sx ∩ Sj ̸= ∅ and Sy ∩ Sj ̸= ∅, are disjoint and all
scenarios Sz with x < z < y have an empty intersection with Sj. In this case, we have to move from a vertex in Sx to a vertex
in Sy. If d(A, B) denotes the maximum distance between a vertex in A and a vertex in B, then this move costs at most an extra



M. van Ee et al. / Discrete Applied Mathematics 250 (2018) 331–341 333

d(Sx ∩ Sj, Sy ∩ Sj) ≤ Dj. For j = 1, the contribution is just p1T1 ≤ αp1T ∗

1 . For j ≥ 2, the contribution of Sj to the objective value
of our solution is at most

pj(T1 + Dj + T2 + · · · + Tj−1 + Dj + Tj)

≤ pj(jTj + (j − 1)Dj) ≤ pj

(
αjT ∗

j + (j − 1)
1
2
T ∗

j

)
=

((
α +

1
2

)
j −

1
2

)
pjT ∗

j .

The objective value is at most

αp1T ∗

1 +

m∑
j=2

((
α +

1
2

)
j −

1
2

)
pjT ∗

j ≤

((
α +

1
2

)
m −

1
2

)
Opt.

Since the currently best approximation guarantee for TSP is 1.5 [7], we get a (2m−
1
2 )-approximation algorithm. The analysis

for τ2 is similar and the proof is omitted here. □

Since in the proof of Theorem 1 we bound the length of each tour by 2m − 1 times the optimal tour for that scenario, it
is obvious that τ1 and τ2 are also (2m − 1)-approximations for Min-Max TSP.

It turns out that the master tour lower bound will not give a constant-factor approximation for a priori TSP on general
metrics. This can be deduced from Theorem 2 in [16], which roughly states the following. Suppose you are given a d-regular
Ramanujan graph G on n vertices with girth g ≥

2
3 logd−1n [25] and consider the shortest-path metric induced by this graph.

Take a randomwalk of length 70g in G and let S be the vertices visited in this walk. Now, consider a TSP-tour on the vertices
of G. Theorem 2 in [16] states that for each of the first g/2 steps of the tour restricted to S, the probability that the edge has
length Ω(log n) is bounded from below by a constant.

Theorem 2. There is a family of instances of a priori TSP in the scenario model such that Opt = Ω(log n)
∑

jpjT
∗

j and
Opt = Ω(logm)

∑
jpjT

∗

j .

Proof. We use Theorem 2 from [16] as discussed above. Let G be a d-regular Ramanujan graph on n vertices with girth
g ≥

2
3 logd−1n and consider the shortest-path metric induced by this graph. The set of scenarios is the set of all vertex

sets of walks of length 70g . The probability pj of scenario Sj is equal to the probability that Sj is the vertex set of a random
walk of length 70g . For a fixed first-stage tour, Theorem 2 in [16] states that in each of the first g/2 steps of the second-
stage tour, there is a constant probability that the second-stage tour uses an edge of length Ω(log n). This implies that
the expected length of the first g/2 steps of the tour have expected length Ω(log n). Since T ∗

j = O(g), the first g/2 steps
are a constant fraction of all the steps and so the lower bound also holds for the entire tour. Hence, we have an instance
such that Opt = Ω(log n)

∑
jpjT

∗

j . The number of scenarios is equal to the number of possible walks of length 70g . This is
equal to n · d70g = O(ndlog n) = O(nlog d+1). Since d is a constant, this number is polynomially bounded. Hence, we have
Θ(logm) = Θ(log n), which gives us the second lower bound. □

A natural question one can ask is whether a given instance has an optimal value that is equal to the master tour lower
bound. Stated differently, is there a tour such that if we shortcut on the vertices of a scenario, we get the optimal solution
for that scenario? Deineko et al. [8] studied this problem for the case where every possible subset is a scenario. They called
this the master tour problem and showed that it is polynomially solvable. We can reformulate the problem to the case
where we are given a set of scenarios and we only have to be optimal for these scenarios. It turns out that this problem is
∆

p
2-complete [11].

3. Small scenarios

We start with showing that a priori TSP is still NP-hard when all scenarios are very small. We reduce from the Max Cut
problem [14]. Here, we are given a graph G = (V , E) and our goal is to find a set X ⊆ V such that |δ(X)| is maximized, where
δ(X) is the set {(i, j) ∈ E : i ∈ X, j ̸∈ X}.

Theorem 3. A priori TSP is NP-hard even when |Sj| ≤ 4 for all j.

Proof. We reduce from the Max Cut problem. Given an instance G = (V , E) of Max Cut, we create an instance of a priori
TSP by making a complete graph G′ on V ∪ {s, t}. All edges with s or t as endpoint, except edge (s, t), have length 1 and all
other edges have length 2 (see Fig. 1). For every edge (a, b) ∈ E, we create a scenario {a, b, s, t}. All scenarios have equal
probability. Note that the second-stage tour on a scenario either has a length of 4 or length 6. We say that a scenario is
satisfied if its resulting tour has length 4. Hence, minimizing the expected length is equivalent to maximizing the number
of satisfied scenarios. We will show that OptTSP = 6|E| − 2OptCUT, where OptTSP and OptCUT are the optimal sum (instead of
the average) of tour lengths of a priori TSP in the created instance and the optimal value of Max Cut in the original instance
respectively.

Suppose there is a cut, say Q ⊆ V , such that δ(Q ) contains at least k edges. First, visit s. Then, visit the vertices of Q in
arbitrary order. After that,we visit t . Finally,we visit the vertices not inQ in arbitrary order. It is easy to see that every scenario
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Fig. 1. Graph G′ as in the proof of Theorem 3.

corresponding to an edge in δ(Q ) has length 4, whereas other scenarios have length 6. Hence, there is a tour satisfying at
least k scenarios.

On the other hand, suppose that we have a tour in G′ satisfying at least k scenarios. Without loss of generality, the tour
can be written as (s, R1, t, R2), where R1 and R2 are sequences of vertices. The only way to satisfy a scenario {a, b, s, t} is by
putting one vertex of {a, b} in R1 and one vertex in R2. Hence, the k satisfied scenarios correspond to edges in the cut δ(R1)
which has size at least k. □

By adjusting the proof of Theorem 3, we can prove that the master tour problem with scenarios is NP-complete when
|Sj| ≤ 5. This is done by reducing from Set Splitting instead of Max Cut and using that 3-Set Splitting is NP-complete [24].
In 3-Set Splitting, we are given n elements and a collection Σ of sets containing three distinct elements. The question is
whether we can partition the elements such that each set is splitted, i.e., there is a partition (X, V \ X) such that neither
σ1, σ2, σ3 ∈ X nor σ1, σ2, σ3 ∈ V \ X for all {σ1, σ2, σ3} ∈ Σ . This also shows that Min-Max TSP is NP-hard when |Sj| ≤ 5
for all j. Moreover, when |Sj| ≤ 5 for all j, we cannot approximate Min-Max TSP within a factor of 4

3 , unless P = NP. This is
because a splitted set will correspond to a scenario with tour length 6, whereas an unsplitted set corresponds to a scenario
with tour length 8. The complexity of the master tour problem with scenarios is still open for |Sj| ≤ 4.

Note that the graph we used in the proof of Theorem 3 is obtained by taking the metric completion of K2,n. This graph
is planar, bipartite and it has treewidth equal to 2. Deterministic TSP would be polynomially solvable on such a graph with
bounded treewidth. Furthermore, there is a PTAS for deterministic TSP in planar graphs [2]. The next theorem shows that
this is not the case for a priori TSP (since the proof uses the same graph as before, a metric completion of K2,n). This theorem
relies on the fact that Max Cut, given the unique games conjecture (UGC), cannot be approximated by a factor above the
Goemans–Williamson [15] constant, i.e., approximately 0.878567, unless P = NP [23]. Without this conjecture, Håstad [20]
showed that it cannot be approximated above a factor 16

17 , unless P = NP.

Theorem 4. There is no 1.0117-approximation for a priori TSP with |Sj| ≤ 4, unless P = NP. Assuming UGC, there is no 1.0242-
approximation, unless P = NP.

Proof. Consider the reduction from the proof of Theorem 3. As a result, we have OptTSP = 6|E| − 2OptCUT. If we have an
(1 + α)-approximation algorithm, we get a tour with total length at most (1 + α)(6|E| − 2OptCUT). This implies that there
are at least η satisfied scenarios, where

4η + 6(|E| − η) = (1 + α)(6|E| − 2OptCUT)
− 2η = −2(1 + α)OptCUT + 6α|E|

η = (1 + α)OptCUT − 3α|E|.

These correspond to edges in the cut, hence we have

Size of cut ≥ (1 + α)OptCUT − 3α|E|

≥ (1 + α)OptCUT − 6αOptCUT
= (1 − 5α)OptCUT,

where the second inequality follows from OptCUT ≥ |E|/2. Hence, assuming P̸=NP, there is no (1 + α)-approximation for
1 − 5α ≥

16
17 , i.e., there is no 1.0117-approximation. If we also assume that the unique games conjecture holds, there is no

(1 + α)-approximation for 1 − 5α ≥ 0.878567, i.e., there is no 1.0242-approximation. □

Since graph G′ in Fig. 1 used in Theorem 4 is the metric completion of K2,n, we get the following corollary.

Corollary 1. A priori TSP in the scenario model on planar bipartite graphs does not admit a PTAS, unless P = NP.
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Fig. 2. Gadgets used in proofs of Theorems 6 and 7.

When |Sj| ≤ 6, we can slightly strengthen the result of Theorem 4, by reducing from Max E4-Set Splitting, which cannot
be approximated with a factor above 7

8 , unless P = NP [20]. This gives an inapproximability of 1.0265 when |Sj| ≤ 6.
We can strengthen the inapproximability of a priori TSP by using strong results on Permutation CSP’s [18]. The problem

that we need we will call 4-Undirected Cyclic Ordering (4-UCO). To the best of our knowledge, the problem has never
been considered. In this problem, we are given a ground set U and a set of 4-tuples ∆UCO using elements from U . Our
goal is to construct an ordering on U that maximizes the number of satisfied 4-tuples. We say that 4-tuple (a, b, c, d) is
satisfied if one of the following sequences is a subsequence of the total ordering: (a, b, c, d), (b, c, d, a) , (c, d, a, b), (d, a, b, c),
(d, c, b, a), (c, b, a, d), (b, a, d, c), (a, d, c, b). In otherwords, we get a collection of cycles andwewant to find a cyclic ordering
maximizing the number of cycles that can be embedded in it. For completeness, we first show that deciding whether all
4-tuples can be satisfied is NP-complete by using a reduction from Cyclic Ordering. In this problem, we are given a set of
ordered triples ∆CO of ground set U . The question is whether there exists a cyclic ordering on all elements such that each
triple is ordered in the right direction. This problem is NP-complete [13].

Theorem 5. 4-Undirected Cyclic Ordering is NP-hard.

Proof. Given an instance of Cyclic Ordering, we create elements a1 and a2 for every element a ∈ U and three additional
elements, x, y and z. For every element a ∈ U we create 4-tuples (x, y, a1, a2), (x, z, a1, a2) and (y, z, a1, a2). For every triple
in ∆CO, we create one 4-tuple by splitting an arbitrary element. For example, we create 4-tuple (a1, b1, b2, c1) for triple
(a, b, c).

If there exists a cyclic ordering, say (a, b, . . . , q), we can construct the following satisfying solution for 4-UCO: (x, y, z, a1,
a2, b1, b2, . . . , q1, q2).

On the other hand, suppose that we have a satisfying solution for 4-UCO. Without loss of generality, we may assume
that (x, y, a1, a2) is visited in this direction. We will show that x, y and z are visited consecutively. Suppose this is not the
case and x, y and z are placed at different positions on the solution. This splits the solution into three segments. It is easy
to see that for any u ∈ U , we must have u1 and u2 in the same segment. Now, suppose that these elements are visited in
the segment between x and y. This implies that the tour has to visit (x, u2, u1, y) in this order. However, this conflicts with
4-tuple (y, z, u1, u2). Similarly, placing u1 and u2 between y and z implies visiting (y, u2, u1, z) in this order. This conflicts
with 4-tuple (x, y, u1, u2). Thus, we know that the solution visits x, y and z consecutively. We now fix the positions of u1
for all u ∈ U and we move u2 to the position next to u1. This does not conflict with any of the scenario’s. The resulting
arrangement of the u1 vertices corresponds to an arrangement consistent with ∆CO. □

In [18], it is shown that every Permutation CSP of constant arity is approximation resistant. This means that, under the
unique games conjecture, the best we can do is constructing a random ordering. Classical problems like Cyclic Ordering and
Betweenness are in this class of problems. One can check that 4-UCO is also in this class. A corollary of thework of Guruswami
et al. [18] is that for any ϵ > 0 it is hard to distinguish between instances where at least a (1 − ϵ) fraction of the 4-tuples
can be satisfied from instances where at most a ( 13 + ϵ) fraction of the 4-tuples can be satisfied, assuming the unique games
conjecture is true. The natural generalization of 4-UCO is 5-UCO. For this problem, there is no algorithm having a guarantee
larger than 1

12 . This gives the following results.

Theorem 6. Under UGC, there is no α-approximation for a priori TSP with

(a) α < 10
9 when |Sj| ≤ 6,

(b) α < 4
3 when |Sj| ≤ 8,

(c) α < 41
30 when |Sj| ≤ 10,

unless P = NP.

Proof.

(a) Given an instance of 4-UCO, we create |U | + 2|∆UCO
| vertices, one for each element of U and two for each 4-tuple

in ∆UCO. We create edges that correspond to 4-tuples in ∆UCO in the following way. For 4-tuple δ = (a, b, c, d), we
have vertices a, b, c, d and vertices sδ and tδ . We create edges (a, sδ), (sδ, b), (b, tδ), (tδ, c), (c, d) and (d, a), as in Fig. 2.
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The scenarios correspond to these six vertices for every tuple. Finally, the distances correspond to the shortest path
distances in the created graph. A tuple is satisfied if and only if the tour restricted to the scenario has length 6. A solution
satisfying 1

3 of the scenarios has value at least 1
3 · 6 +

2
3 · 7 =

20
3 . A solution satisfying all scenarios has a value of 6.

Since it is hard to distinguish between these two cases, we obtain an inapproximability of 20
18 =

10
9 for a priori TSP with

|Si| ≤ 6.
(b) We use a similar reduction. Instead of adding two vertices per tuple, we create four new vertices. In Fig. 2, these

vertices are called si, ti, qi and ri. The scenarioswill therefore have size 8. Again, a tuple is satisfied if and only if the tour
restricted to the scenario has length 8. However, if we restrict the tour to a scenario corresponding to a non-satisfied
tuple, it must have length at least 12. A similar calculation gives an inapproximability of ( 13 · 8 +

2
3 · 12)/8 =

4
3 .

(c) We now reduce from 5-UCO. We add 5 dummy vertices for each scenario and place them between consecutive
elements on the cycles. The scenarios will therefore have size 10. Again, a tuple is satisfied if and only if the tour
restricted to the scenario has length 10. If we restrict the tour to a scenario corresponding to a non-satisfied tuple, it
must have length at least 14. A similar calculation gives an inapproximability of ( 1

12 · 10 +
11
12 · 14)/10 =

41
30 . □

Finally, we note that by using twice the diameter of a scenario as a lower bound, we can show that taking an arbitrary
tour as a solution is a c/2-approximation when |Sj| ≤ c. A random tour gives a value of at most (c2 − 3c + 4)/(2c − 2) times
the optimal value in expectation. This factor approaches c/2 for c large.

3.1. Path-version

One could also consider the path-version of a priori TSP. In fact, the application on photolithography is modeled as the
path-version. It is easy to see that this problem is trivial when |Sj| ≤ 2 for all j. If we delete t from the graph created in
the reduction of Theorem 3, we can use this graph and the same reduction to show that the path-version of a priori TSP is
NP-hard when |Sj| ≤ 3. It is easy to see that this graph can be obtained by taking the metric completion of the star graph.
Note that, we can also adjust Theorem 4 to the path-version which will give the same inapproximability result, i.e., there is
no 1.0117-approximation, unless P = NP, and there is no 1.0242-approximation if we also assume that the UGC holds.

We can strengthen previous results by using hardness results for Betweenness. In this problem, we are given a set of
triples ∆B from elements of U . The triple (a, b, c) is satisfied if (a, b, c) or (c, b, a) is a subsequence of the total ordering.
The goal is to find an ordering on U maximizing the number of satisfied triples. By [18], the best approximation ratio is 1

3 ,
assuming UGC. Without this conjecture, there is no approximation for Betweenness with a factor better than 1

2 , unless P =

NP [3].

Theorem 7. There is no 9
8 -approximation for a priori path-TSP with |Sj| ≤ 5, unless P = NP. Assuming UGC, there is no 7

6 -
approximation, unless P = NP.

Proof. Given an instance of Betweenness, we create a graph with |U | + 2|∆B
| vertices. A scenario contains the elements

used in a triple and two extra vertices. The edges are drawn in the following way. For triple δ = (a, b, c), we add edges
(a, sδ), (sδ, b), (b, tδ) and (tδ, c) (Fig. 2). A triple is satisfied if and only if the path restricted to the scenario has length 4.
Assuming UGC, we get that there is no approximation algorithmwith guarantee smaller than ( 13 ·4+

2
3 ·5)/4 =

7
6 for a priori

path-TSP with |Sj| ≤ 5, unless P = NP. Without assuming UGC, there is no approximation algorithm with guarantee smaller
than ( 12 · 4 +

1
2 · 5)/4 =

9
8 , unless P = NP. □

4. Big scenarios

In this section, we investigate the special case of big scenarios, i.e., the case when each scenario has size at least n − c ,
for small c. One would expect that simply taking the optimal tour on the entire vertex set V would perform well on these
instances. Here, we analyze this option. Let us denote Opt(S) for the optimal value of a tour on S ⊆ V . Further, let Opt(V )|S
denote the value of the optimal tour on V shortcutted to S. As before, let DS denote the diameter of the graph restricted to S.

Lemma 1. For S ⊆ V and c ≤ n such that |S| = n − c, we have

Opt(V )|S ≤ Opt(S) + cDS .

Proof. When shortcutting the optimal tour on V to S we delete paths where only the endpoints are in S. Denote these paths
by Pi for i = 1, . . . , c ′, with c ′

≤ c . Let Li be the length of path Pi and let |Pi| be the number of internal vertices on path Pi.
We can extend the optimal tour on S to a tour on V by adding these paths. If |Pi| ≥ 2, we addPi and an extra edge connecting
the endpoints. If |Pi| = 1, then we add the cheapest edge from this single internal vertex to a vertex in S twice, which costs
us at most Li. This results in

Opt(V ) ≤ Opt(S) +

∑
i:|Pi|≥2

(DS + Li) +

∑
i:|Pi|=1

Li. (1)



M. van Ee et al. / Discrete Applied Mathematics 250 (2018) 331–341 337

Fig. 3. Instance for which inequality of Lemma 1 is asymptotically tight for c = 2, where B is the set of black (non-white) vertices.

On the other hand, we can relate Opt(V ) and Opt(V )|S in the following way. Note that, when shortcutting, we delete each
of the Pi and replace it by an edge between two vertices in S, which costs at most DS . Hence, we have

Opt(V )|S ≤ Opt(V ) +

∑
i

(DS − Li). (2)

Suppose there are c2 paths with |Pi| ≥ 2 and c1 paths with |Pi| = 1. Note that c ≥ c1 + 2c2. Combining Eqs. (1) and (2)
we get

Opt(V )|S ≤ Opt(V ) +

∑
i:|Pi|≥2

(DS − Li) +

∑
i:|Pi|=1

(DS − Li)

≤ Opt(S) + 2
∑

i:|Pi|≥2

DS +

∑
i:|Pi|=1

DS

= Opt(S) + (2c2 + c1)DS ≤ Opt(S) + cDS . □

The inequality is tight for the graph in Fig. 3 with c = 2.We can generalize this tight instance for c ≤ n/2 by addingmore
diagonal paths.

Theorem 8. The optimal solution on V is a (1 +
c
2 )-approximation for a priori TSP with |Si| ≥ n − c, where c ≤ n.

Obviously, these results extend to the Min-Max TSP.

5. Nested scenarios

Let us now consider the case of nested scenarios, i.e., S1 ⊆ S2 ⊆ · · · ⊆ Sm. Here, the following algorithm gives a constant-
factor approximation. First, compute an 1.5-approximate tour Tj for scenario Sj for all j. Let α1 = 1. Next, for h = 2, 3, . . .
let αh be the largest number k > αh−1 for which Tk ≤ 2Tαh−1 . If no such k exists then let αh = αh−1 + 1. The first-stage tour
is obtained by visiting vertices in the order Tα1 , Tα2 , . . . .

Theorem 9. The algorithm above is a 9-approximation for nested scenarios.

Proof. Consider scenario Sj. The last vertices of this scenario will be visited on the tour Tαh , where h is the smallest index
such that αh ≥ j. Note that for any h ≥ 2, we have Tαh > 2Tαh−2 . Hence, we can decompose the concatenated tour up to
Tαh into two parts which correspond to even and odd h respectively, such that both parts have geometrically increasing tour
lengths. The length of the concatenated tour up to Tαh is therefore at most

2Tαh−1 + 2Tαh .

If αh = j then the length of the tour is at most 2Tαh−1 + 2Tαh ≤ 4Tαh = 4Tj ≤ 6T ∗

j .
If αh > j, then j > αh−1. So, we must have Tαh ≤ 2Tαh−1 and the length of the tour is at most 2Tαh−1 + 2Tαh ≤ 6Tαh−1 ≤

9T ∗
αh−1

≤ 9T ∗

j . □

Finding a constant-factor approximation is still open for laminar scenarios, i.e., when for each i, j, either Si ∩ Sj = ∅ or
Si ⊆ Sj or Sj ⊆ Si. It is even open in the case when the scenarios have the following star-like structure (illustrated in Fig. 4).

Si ∩ Sj = ∅ for i ̸= j, i, j = 1, . . . ,m − 1, and Sm =

m−1⋃
j=1

Sj. (3)
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Fig. 4. Star-like instance with 6 scenarios.

Itwould be interesting if one could get a constant-factor approximation for these instances. Finally, observe that theMin-Max
TSP for laminar scenarios reduces to standard TSP since the largest scenario determines the value of the solutions.

6. Relation with minimum spanning tree problems

Itwould be nice to have a similar relation between a priori TSP and a prioriMST as in the deterministic setting.We consider
two versions of a priori MST. The first one is defined by Bertsimas [4], who called it a priori MST, although it seems more
natural to call it a priori Steiner Tree. The second problem is defined by Boria et al. [5], who called it Probabilistic MST under
Closest Ancestor (PMST-CA). In both problems, we have a graph G = (V , E) and a probability distribution over subsets of
vertices. The second problem is only defined on complete graphs and has a root r that is always active. The root is optional
in the first problem. The goal is to construct a tree on the entire vertex set in the first stage. A subset S of the vertices, drawn
according to the probability distribution, is revealed in the second stage. In the a priori MST, the second-stage tree will be
obtained by deleting inactive vertices, provided that the remaining tree stays connected. In the PMST-CA, the second-stage
tree only contains active vertices. This is done by taking an edge between an active vertex and its closest active ancestor in
the rooted first-stage tree. In both problems, the goal is to construct a first-stage tour that minimizes the expected length of
the second-stage tree.

Unfortunately, it turns out that the expected length of the optimal a priori MST defined by Bertsimas is not smaller than
the optimal a priori TSP in general. The gap between the optimal values of a priori MST and a priori TSP can be arbitrarily
large.

Theorem 10. There are instances such that the optimal value of the a priori MST-solution is arbitrarily larger than the optimal
value of the a priori TSP-solution.

Proof. Take a 3-regular graph with girth g . Sachs [27] showed that these graphs exist. Define a scenario for each edge by the
endpoints of the edge. All scenarios have the same probability. Any tour on this graph will be shortcutted to a tour of length
2 for each scenario, so the objective value of a priori TSP is 2. Consider the optimal a priori MST. Since this is a tree, it uses
n − 1 edges. If an edge is in the tree, the corresponding scenario gets value 1. If an edge is not in the tree, the corresponding
scenario gets value at least g − 1. Since there are 3n/2 edges (and scenarios), we get at least the following objective value.(

3n/2 − (n − 1)
3n/2

)
(g − 1) +

n − 1
3n/2

=
g + 1
3

+
2g − 4
3n

≥
g + 1
3

.

Now, we can take g arbitrarily large, which makes the objective value arbitrarily large and hence the gap with the objective
value of a priori TSP. □

Unlike the a priori MST, the PMST-CA can be used as a lower bound for a priori TSP. In fact, we only lose a factor 2. Note
that this only works for the rooted case, since PMST-CA is defined with a root vertex.

Theorem 11. If there is an α-approximation for the PMST-CA, then there is a 2α-approximation for the rooted a priori TSP, and
vice versa.

Proof. First, we show that the following inequalities are valid, where OptMST and OptTSP denote the optimal values of PMST-
CA and a priori TSP respectively.

OptMST ≤ OptTSP ≤ 2OptMST.

The first inequality can be proven by taking the optimal a priori TSP-tour and deleting one edge. This gives a spanning tree
on V , called T . If we look at a specific active set S, then the optimal a priori TSP-tour restricted to S will have exactly one edge
less than before. Namely, if we delete edge (a, b) from tour (1, . . . , a, b, . . . , n), only edge (max{k ∈ S : k ≤ a},min{k ∈ S :

k ≥ b}) will disappear from the restricted tour on S. Note that for active set S, the tour without this edge is the same as T
shortcutted to S. Hence, this is a feasible solution for PMST-CA with cost no larger than the optimal value of a priori TSP, and
the first inequality has been proven.
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Fig. 5. Graph used in proof of Theorem 12. Edges (r, s) and (r, yi) have length 0. Edges (s, yi) and (yi, xj) have length 1. Edges (s, xj) have length 2. All other
edges have lengthM , whereM is a large number.

The second inequality is proven by doubling the optimal tree and shortcutting the obtained Eulerian tour. In each scenario,
the cost of the edges is at most twice the cost of the edges in the tree restricted to the scenario.

Now, if there is an α-approximation for PMST-CA, we double the tree and shortcut the Eulerian tour to obtain a tour on
V . This tour has a value of at most

2αOptMST ≤ 2αOptTSP.

Given an α-approximation for a priori TSP, we take the tour and delete one edge. The resulting tree has a value of at most

αOptTSP ≤ 2αOptMST. □

Recall that there is a randomized 4-approximation for a priori TSP in the independent decision model [29]. There is also
a deterministic 6.5-approximation [30] for this problem. Using Theorem 11, we obtain the following corollary.

Corollary 2. There is a randomized 8-approximation and a deterministic 13-approximation for PMST-CA in the independent
decision model. There is also a O(log n)-approximation in the black-box model.

Unfortunately, Theorem11does not imply a 2-approximation for a priori TSP, sincewe can prove that PMST-CA is NP-hard
in the scenario model. For this, we need the following lemma. This lemma holds for both the scenario and the independent
decision model.

Lemma 2. If PMST-CA is NP-hard in the non-metric case, then it is NP-hard in the metric case.

Proof. One can turn a graph into a graph satisfying the triangle inequality by adding a sufficiently large number M to all
distances. In the PMST-CA, this affects every solution by an additive constant equal to

∑
Sp(S)(|S| − 1)M , where p(S) is the

probability that set S is the active set. Hence, the complexity of the problem is preserved in the metric case. □

Boria et al. [5] showed that PMST-CA is NP-hard in the independent decision model, but only for the non-metric case.
Using Lemma 2, we obtain the following corollary.

Corollary 3. PMST-CA is NP-hard in the independent decision model, even if the triangle inequality is satisfied.

Theorem 12. PMST-CA in the scenario model is NP-hard.

Proof. We reduce from the NP-complete problem Exact Cover by 3-Sets [22]. In this problem, we are given 3q elements,
X = {x1, . . . , x3q}, and m subsets, Y = {y1, . . . , ym}, with yi ⊆ X and |yi| = 3 for all i. The problem asks whether there
are q sets that together cover all elements. Create the graph as in Fig. 5. There are m scenarios with probability 1/m. Define
Si = X ∪ {r, s, yi}.

If there is an exact cover, then construct the following solution. If set yi is chosen in the cover, then use edge (s, yi)
and the edges from vertex yi to the corresponding elements of yi. If set yi is not in the cover, then use edge (r, yi). Finally,
use edge (r, s). For any yi in the cover, consider the subtree containing s, yi and the xj’s corresponding to elements from
subset yi. In scenario Si, the resulting subtree has value 4. In all other scenarios, vertex yi will not be present and this
subtree will contain three edges from s to the vertices of the elements. Hence, this solution has expected value equal to
q(1/m · 4 + (m − 1)/m · 6) = q(6 − 2/m).

Note that an optimal tree will never use edges with weight M or a combination of edges that enforce using an edge of
weightM in the shortcut solution. This leaves five ways of connecting a specific set vertex yi and element vertex xj, where j
is in set i, to r and s. The five subtrees are depicted in Fig. 6.

Tree T3 is dominated by T1, since T1 only has cost 2 for connecting xj when yi is inactive while T3 always has cost 2.
Similarly, T4 is dominated by T2 and T5 is dominated by T1. So, an optimal tree is a combination of T1 and T2. Suppose that
the tree connects k set vertices to s which connect ℓ elements vertices. The other set vertices are connected to r whereas
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Fig. 6. Subtrees T1 up to T5 .

the other element vertices are connected to s. Number the k set vertices connected to s as 1, . . . , k and say that set vertex i
connects ℓi element vertices. This tree has an expected value of

1
m

k∑
i=1

((ℓi + 1) + 2(3q − ℓi)) +
m − k
m

6q = 6q +
1
m

(k − ℓ),

which is equal to q(6 − 2/m) if and only if k = q and ℓ = 3q. Hence, there is a tree with expected value at most q(6 − 2/m)
if and only if there is an exact cover. Using Lemma 2 completes the proof. □

7. Conclusion

In this paper, we showed how to get constant-factor approximation algorithms for some well-structured instances of
the a priori TSP. An interesting question that remains unanswered is whether there exists a constant-factor approximation
for a priori TSP with laminar scenarios. More specifically, it is still open whether we can do this on star-like scenarios as
defined in Eq. (3). Next to restricted scenarios we also considered restricted metrics. In Section 3 we showed that there is
no PTAS for planar bipartite graphs. We do not have such results in the Euclidean plane. It would be interesting to settle
the approximability of the problem in this metric. It is easy to construct examples where the optimal solution crosses itself
and hence the non-crossing property does not hold. This property was a crucial ingredient of the PTAS by Arora [1] for the
deterministic problem. So far, we have not been able to show any lower bound or improve the upper bound for this special
case.

We did not succeed in improving the O(log n)-approximation for the general problem. In fact, we conjecture that there is
no o(log n)-approximation algorithm for a priori TSP in the scenario model in the general case.
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