MSc Thesis in Geomatics

Inferring the number of floors of building footprints in the Netherlands

Ellie Roy 13th January 2022

Building population estimation

Topic relevance

Energy demand estimation

Image: https://nos.nl/artikel/2352272-europese-commissie-komt-met-renovatiegolf-voor-huizen-vanwege-klimaat.html

Image: https://densityarchitecture.wordpress.com/2013/01/18/understanding-density/

Flood response plans

Image: https://www.eoi.es/blogs/imsd/let-the-flood-come-dutch-urban-planning/

Current approach

Height-based 9m 6m Height: 9m Storey height: 3m No. floors = 9m/3m = 3, 3 m

Area-based

Internal area: 30m² Footprint area: 10m² No. floors = 30m²/10m² = 3

Limitations of current approach

Height-based

Actual: 1 floor Calculated: 2 floors

Actual: 8 floors Calculated: 9 floors

Area-based

Research objectives

• Research objectives

- o Background
- o Methodology
- o Implementatior
- o Results
- o Conclusions

b)

Research questions

To what extent can **machine learning** provide a **better estimate** of the number of floors than a **purely geometric** approach?

- a) Which **features** are related to the number of floors? Is there any **overlap** between these features and which subset yields the **best** results?
 - Which machine learning algorithm provides the best results? How are the results affected by feature subsets that reflect different levels of data availability?
- c) What level of performance can be achieved compared to a purely geometric approach?What types of gross errors are present?
- d) Since floor count is generally an integer value, is this a regression or classification problem?
 If considered regression, how does rounding the predictions affect the results?

Scope

- Research objectives
- o Background
- o Methodology
- Implementation
- o Results
- o Conclusions

(3) Algorithm ≠ black-box

(2) (Mixed-)residential buildings

(4) No geometric modelling

- Background
- o Methodology
- o Implementation
- o Results
- o Conclusions

Machine learning

Supervised learning

Overview methodology

- o Research objectives
- o Background
- Methodology
- b Implementation
- > Results
- o Conclusions

_

No. adjacent buildings

Extracted features

- Methodology

	Cadastral		Census
-	Construction year	-	Population density
-	Building function	-	% multi-household buildings
-	Net internal area	-	Average no. cafes in 1km
_	No. units		
	2D geometric		3D geometric
-	Area	-	Volume
_	Perimeter	-	Roof surface area
-	No. vertices	-	Wall surface area
_	No. neighbours in 100m	-	Building height

-

_

Ridge – eave height

Roof shape

Image: Biljecki et al. (2016)

- o Research objectives
- o Background
- Methodology
- b Implementation
- o Results
- o Conclusions

Machine learning algorithms

- 1. Random Forest (RF)
- 2. Gradient Boosting (GB)
- 3. Suppor Vector Regression (SVR)

Implementation details

Software & tools

1. Database

2. Processing

e python™

learn

pandas

3. Visualisation

• Implementation

• Implementation

Datasets

Data on number of floors

buildings
14,341
116,638
53,559
11,516
196,054

Т

• Research objectives

- o Background
- o Methodology
- Implementation
- o Results
- o Conclusions

3D BAG

3D building models in LOD1.2, 1.3, 2.2

CBS wijken en buurten

• Implementation

Data cleaning

Approximately 11% of mixed-residential buildings removed

Cleaning step	# buildings removed
Automatic	11,383
Semi-automatic	11,394
Manual	27
Total	22,804

• Implementation

Data cleaning

Actual: 4 floors Training data: 2 floors

Actual: 5 floors Training data: 2 floors

*f***U**Delft

• Implementation

Feature selection

Method 1: Filter-based

Feature subset

- 1 Height (70th)
- 2 Height (max)
- 3 Height (50th)
- 4 Roof area (LOD1.2)
- 5 Roof area (LOD2.2)
- 6 Net internal area
- 7 Volume (LOD1.2)
- 8 Volume (LOD2.2)
- 9 Population density
- 10 % multihousehold

Method 2: Embedded

Feature importance GBR

building height (70p) building height (max) net internal area no. units building height (50p) construction year roof surface area (lod2.2) avg. no. cafes in 1km percent multihousehold ridge - eave height						
population density footprint area volume (lod2.2) volume (lod1.2) footprint perimeter apartment building height (min) wall surface area (lod1.2) no. adjacent buildings no. neighbours 100m roof surface area (lod1.2) building function footprint no. vertices single horizontal roof wall surface area (lod2.2) detached semi-detached terraced multiple horizontal roof slanted roof						
(0	0.2	0.4	0.0	0.0	10

0.0 0.2 0.4 0.6 0.8 1.0 Mean decrease in impurity

TUDelft

Feature selection

- Method 3: Multicollinearity reduction

1.0

- 0,8

- 0.6

0.4

- 0.2

building height (50p) building height (70p) building height (max) percent multihousehold avg. no. cafes in 1km no. adjacent buildings no. neighbours 100m wall surface area (lod2.2) building height (min) -

Pearson's correlation coefficient

Hierarchical clustering

- o Research objectives
- o Background
- o Methodology
- o Implementation
- Results
- o Conclusions

Model performance

Gradient Boosting Regression (GBR)

	MAE > 5 ≤ 5		RMSE		Max. error		Accura	acy (%)	Training	
			> 5	≤ 5		> 5 ≤ 5		> 5	≤ 5	time (s)
All	0.98	0.11	1.29	0.33		4	2	25.6	89.6	71.15
Subset 1	1.04	0.11	1.36	0.33		5	2	24.1	89.4	40.71
Subset 2	0.98	0.11	1.31	0.33		5	2	27.0	89.6	31.99
Subset 3	1.02	0.12	1.33	0.35		4	2	23.7	88.4	35.08

MAE = Mean Absolute Error RMSE = Root Mean Square Error

- o Research objectives
- o Background
- o Methodology
- o Implementation
- Results
- o Conclusions

Model performance

Before and after hyperparameter tuning

GBR	MAE		RMSE		Max. error		Accuracy					
subset 2	> 5	≤ 5		> 5	≤ 5		> 5	≤ 5		> 5	≤ 5	
Untuned	0.98	0.11		1.31	0.33		5	2		27.0	89.6	
Tuned	0.62	0.06		1.00	0.24		4	3		52.3	94.5	

- Results

Cumulative error analysis

> 5 floors

• Results

Gross errors

Incorrectly labelled

Actual: 5 floors Label: 9 floors ML: 5 floors

Exceptionally tall storeys

Actual: 4 floors Label: 4 floors ML: 7 floors

High storey apartments

Actual: 14 floors Label: 15 floors ML: 17 floors

- o Research objectives
- o Background
- o Methodology
- o Implementation
- Results
- o Conclusions

Comparison to geometric approach

- Buildings with 5 floors or less

	MAE	RMSE	Max. error	Accuracy (%)
GBR	0.06	0.24	3	94.5
Geometric	0.31	0.31	2	69.9

- Buildings above 5 floors

	MAE	RMSE	Max. error	Accuracy (%)
GBR	0.62	1.00	4	52.3
Geometric	0.70	1.09	5	47.5

Comparison to geometric approach

1.0 1.0 0.8 0.8 Cumulative frequency 60 90 90 Cumulative frequency 6.0 9.0 0.2 0.2 GBR GBR Geometric Geometric 0.0 0.0 0 1 3 5 2 3 5 2 0 1 Λ Absolute error (no. floors) Absolute error (no. floors)

All buildings

> 5 floors

• Results

TUDelft

• Results

Feature contributions

Impurity importance

Permutation importance

1.0

0.8

Impact of data availability

- Research objectives
- o Background
- o Methodology
- o Implementation
- Results
- o Conclusions

	-	M	4E	Accu	ıracy (%)	
		> 5	≤ 5	> 5	≤ 5	
All features		0.64	0.05	51.7	94.8	
Cadastral		1.35	0.19	25.3	82.5	
	2D	2.23	0.39	5.8	65.2	
Geometric	LOD1.2	0.89	0.10	32.5	90.1	
	LOD2.2	0.87	0.10	34.8	90.5	
Census		2.55	0.41	3.6	61.7	
Subset 2		0.62	0.06	52.3	94.5	

Conclusions

- o Research objectives
- o Background
- o Methodology
- o Implementation
- o Results
- Conclusions

Main research question

To what extent can **machine learning** provide a **better estimate** of the number of floors than a **purely geometric** approach?

Partially

Low storey

High storey

Substantially better Little improvement

Sub-question (a) – features

- Most relevant feature: building height
 - Other relevant features: volume, roof area, net internal area
 - Overlaps: height references and 3D geometric features
 - Best subset: unclear

• Conclusions

Sub-question (b) - model results

- Best algorithm: Gradient Boosting
- Effect of data availability:
 - Best performance: 3D geometric features (LOD1.2 or LOD2.2)
 - Worst performance: 2D geometric and census features

• Conclusions

Sub-question (c) – comparison to geometric approach

- Research objectives
- o Background
- o Methodology
- b Implementation
- o Results
- Conclusions

- Buildings > 5 floors: 5% higher accuracy
- Cumulative error distributions: comparable for errors ≥ 1 floor
- Gross errors: mainly incorrectly labelled buildings

Sub-question (d) – regression vs. classification

- Regression or classification? Regression
- Impact of rounding? Little impact on results

o Research objectives

- o Background
- o Methodology
- o Implementation
- o Results
- Conclusions

- o Research objectives
- o Background
- o Methodology
- b Implementation
- o Results
- Conclusions

Contributions

- Reliability of geometric approach
- Analysis of contributing factors
- Regression vs. classification

- o Research objectives
- o Background
- o Methodology
- b Implementation
- > Results
- Conclusions

Limitations

- Training data
- Data cleaning
- Feature selection
- Model performance and results

- o Research objectives
- o Backgrounc
- o Methodology
- o Implementation
- o Results
- Conclusions

TUDelft

Future work

- Wider model applicability
- Automatic data correction
- Analysis of input features
- Improved geometric approach

Thank you for your attention!

References

Biljecki, F., Ledoux, H., and Stoter, J. (2014). Height references of CityGML LOD1 buildings and their influence on applications.

Biljecki, F., Ledoux, H., and Stoter, J. (2016). An improved LOD specification for 3D building models. Computers, Environment and Urban Systems, 59:25 – 37.

Biljecki, F., Ledoux, H., and Stoter, J. (2017). Generating 3D city models without elevation data. Computers, Environment and Urban Systems, 64:1–18.

Biljecki, F. and Dehbi, Y. (2019). RAISE THE ROOF: TOWARDS GENERATING LOD2 MODELS WITHOUT AERIAL SURVEYS USING MACHINE LEARNING. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-4/W8:27–34.

Géron, A. (2019). Hands-on machine learning with Scikit-learn, Keras, and Tensorflow. O'Reilly Media, Inc.

Ellenkamp, Y. and Rietdijk, M. (2010). Kwaliteit van de basisregistraties adressenen gebouwen. Technical report, Ministerie van Volkshuisvesting, Ruimtelijke Ordening en Milieubeheer.

