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A B S T R A C T

Unexpected disruptions occur frequently in the railways, during which many train services
cannot run as scheduled. This paper deals with timetable rescheduling during such disruptions,
particularly in the case where all tracks between two stations are blocked for hours. In
practice, a disruption may become shorter or longer than predicted. To take the uncertainty
of the disruption duration into account, this paper formulates the timetable rescheduling as a
rolling horizon two-stage stochastic programming problem in deterministic equivalent form. The
random disruption duration is assumed to have a finite number of possible realizations, called
scenarios, with given probabilities. Every time a prediction about the range of the disruption
end time is updated, new scenarios are defined, and a two-stage stochastic model computes
the optimal rescheduling solution to all these scenarios. The stochastic method was tested on
a part of the Dutch railways, and compared to a deterministic rolling-horizon method. The
results showed that compared to the deterministic method, the stochastic method is more likely
to generate better rescheduling solutions for uncertain disruptions by less train cancellations
and/or delays, while the solution robustness can be affected by the predicted range regarding
the disruption end time.

1. Introduction

Railway systems are vulnerable to unexpected disruptions caused by for instance incidents, infrastructure failures, and extreme
weather. A typical consequence of a disruption is that the tracks between two stations are completely blocked for a few hours. Under
this circumstance, trains are forbidden to enter the blocked tracks, and therefore the planned timetable is no longer feasible. Thus,
traffic controllers have to reschedule the timetable for which they usually apply a pre-designed contingency plan specific to the
disruption. Since the contingency plan is manually designed, its optimality cannot be guaranteed, and sometimes cannot even meet
all operational constraints (Ghaemi et al., 2017b). For this reason, increasing attention is being paid to developing optimization
models for computing rescheduling solutions. A detailed review can be found in Cacchiani et al. (2014).

Until now, many timetable rescheduling models have been proposed to deal with disruptions, which differ in e.g. the complexity
of the network, the infrastructure modelling, the used dispatching measures, the objective, and the number of disruptions considered.
For instance, Zhan et al. (2015) propose a Mixed Integer Linear Programming (MILP) model to reschedule the timetable in case of a
complete track blockage by delaying, reordering and cancelling trains. They focus on a Chinese high-speed railway corridor where
seat reservations are necessary for passengers, and therefore the measure of short-turning trains is not applicable. Veelenturf et al.
(2015) propose an ILP model to handle partial or complete track blockages focusing on a part of the Dutch railway network where
short-turning trains is commonly used during disruptions. They assign each train with the last scheduled stop before the blocked
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track as the only short-turn station. If the short-turn station lacks capacity to short-turn a train then it has to be cancelled completely.
To reduce complete train cancellations, Ghaemi et al. (2018a) propose an MILP model to decide the optimal time and station of
short-turning a train by assigning two short-turn station candidates. This has also been implemented in Ghaemi et al. (2017a) where
the infrastructure is modelled at a microscopic level to improve solution feasibility in practice. The aforementioned papers aim to
minimize train cancellations and delays. To reduce passenger inconveniences during disruptions, Zhu and Goverde (2019b) propose
an MILP model where more short-turn station candidates are given for each train and also the stopping patterns of trains can be
changed flexibly (i.e. skipping stops and adding stops). Binder et al. (2017) integrate passenger rerouting and timetable rescheduling
into one ILP model where limited vehicle capacity is taken into account. While most literature focus on a single disruption, Zhu and
Goverde (2019a) propose an MILP model to deal with multiple disruptions that have overlapping periods and are pairwise connected
by at least one train line. Most literature share the assumption that the disruption duration is known and will not change over time.
However in practice, a disruption may become shorter or longer than predicted (Zilko et al., 2016), thus dynamic adjustments are
required.

To deal with the uncertainty of the disruption duration, Zhan et al. (2016) embed their rescheduling model into a rolling horizon
framework where the timetable is adjusted gradually with renewed disruption durations taken into account. Ghaemi et al. (2018b)
develop an iterative approach to reschedule the timetable in each iteration when a new disruption duration is updated. In both cases,
deterministic models are used for the rescheduling. Meng and Zhou (2011) propose a stochastic programming model that takes the
uncertainty of the disruption duration into account. The model reschedules the timetable dynamically by a rolling horizon approach
for single-track railway lines using two dispatching measures: delaying and reordering. Quaglietta et al. (2013) also propose a
rolling horizon approach to manage stochastic disturbances (small train delays) using retiming and reordering, where at regular
rescheduling intervals the current delays are measured and the associated conflicts are predicted over a prediction horizon of fixed
length. Then rescheduling solutions are generated for the entire prediction horizon but only the first part is implemented in the next
rescheduling interval.

This paper deals with uncertain disruptions using two methods. We implemented a deterministic rolling-horizon approach
based on the deterministic timetable rescheduling model of Zhu and Goverde (2019b). Also, we propose a stochastic rolling-
horizon approach based on a two-stage stochastic timetable rescheduling model. Different from the existing literature, both methods
are devoted to more complicated conditions, where (1) single-track and double-tack railway lines both exist; (2) a wide range
of dispatching measures is allowed: delaying, reordering, cancelling, adding stops and flexible short-turning; (3) rolling stock
circulations at terminal stations are considered, and (4) station capacity is taken into account. The rescheduling solution is computed
until the normal schedule has been recovered.

The main contributions of this paper are summarized as follows:

• A rolling horizon two-stage stochastic timetable rescheduling model is proposed to handle uncertain disruptions.
• The proposed model allows delaying, reordering, cancelling, adding stops and flexible short-turning, and considers station

capacity and rolling stock circulations at terminal stations.
• We test the stochastic method on a part of the Dutch railways, and compare it to a deterministic rolling-horizon method.

The remainder of the paper is organized as follows. Section 2 introduces the deterministic and stochastic methods. Both methods
are tested with real-life instances in Section 3. Finally, Section 4 concludes the paper.

2. Methodology

A brief introduction is given to the basics considered in the deterministic and stochastic methods. After that, both methods are
explained.

2.1. Basics

2.1.1. Event-activity network
The rescheduling model is based on an event-activity network. An event 𝑒 is either a train departure or arrival that is associated

with the original scheduled time 𝑜𝑒, station 𝑠𝑡𝑒, train line 𝑡𝑙𝑒, train number 𝑡𝑟𝑒, and operation direction 𝑑𝑟𝑒. All departure (arrival)
events constitute the set 𝐸de (𝐸ar). An activity is a directed arc from an event to another. Multiple kinds of activities are established,
including running activities 𝐴run, dwell activities 𝐴dwell, pass-through activities 𝐴pass, headway activities 𝐴head, short-turn activities
𝐴turn, and OD turn activities 𝐴odturn. We refer to Zhu and Goverde (2019b) for the details.

2.1.2. Decision variables
Any event 𝑒 ∈ 𝐸de ∪ 𝐸ar corresponds to the following decision variables: (1) the rescheduled time 𝑥𝑒, (2) the delay 𝑑𝑒, (3) and

the binary decision 𝑐𝑒 with value 1 indicating that 𝑒 is cancelled. Particularly for an event 𝑒 ∈ 𝐸turn
de ∪ 𝐸turn

ar , a binary decision 𝑦𝑒
is needed, of which value 1 indicates that train 𝑡𝑟𝑒 is short-turned at station 𝑠𝑡𝑒. Here, 𝐸turn

de (𝐸turn
ar ) is the set of departure (arrival)

events that have short-turning possibilities. To deal with station capacity, for any arrival event 𝑒 ∈ 𝐸ar , two binary decision variables
are needed: (1) 𝑢𝑒,𝑖 with value 1 indicating that train 𝑡𝑟𝑒 occupies the 𝑖th platform of station 𝑠𝑡𝑒, (2) and 𝑣𝑒,𝑗 with value 1 indicating
that train 𝑡𝑟𝑒 occupies the 𝑗th pass-through track of station 𝑠𝑡𝑒.

A short-turn (OD-turn) activity 𝑎 ∈ 𝐴turn (𝑎 ∈ 𝐴odturn) corresponds to a binary decision variable 𝑚𝑎 with value 1 indicating that
𝑎 is selected. A pass-through activity 𝑎 ∈ 𝐴pass corresponds to a binary decision variable 𝑠𝑎 with value 1 indicating that 𝑎 is added
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Table 1
Sets and parameters.

Notation Description

𝐸ar Set of arrival events
𝐸de Set of departure events
𝐸 Set of events: 𝐸 = 𝐸ar ∪ 𝐸de
𝐸 turn

ar Set of arrival events that have short-turning possibilities
𝐸 turn

de Set of departure events that have short-turning possibilities
𝐸 turn Set of events that have short-turning possibilities: 𝐸 turn = 𝐸 turn

ar ∪ 𝐸 turn
de

𝑜𝑒 The original scheduled time of event 𝑒 ∈ 𝐸ar ∪ 𝐸de
𝑝𝑤 The occurrence probability of scenario 𝑤 ∈ {1,… ,𝑊 }
𝑝𝑤𝑘,𝑛

The occurrence probability of scenario 𝑤𝑘,𝑛 , 𝑛 ∈
{

1,… ,𝑊𝑘
}

𝑟𝑘−1𝑒 The rescheduled time of event 𝑒 determined at stage 𝑘 − 1, which is a known value at stage 𝑘
𝑅𝑘 The recovery time length at stage 𝑘 ∈ {1,… , 𝐾}
𝑅𝑤𝑘,𝑛

𝑘 The recovery time length of scenario 𝑤𝑘,𝑛 , 𝑛 ∈
{

1,… ,𝑊𝑘
}

at stage 𝑘 ∈ {1,… , 𝐾}
𝑠𝑡𝑒 The station corresponding to event 𝑒 ∈ 𝐸ar ∪ 𝐸de
𝑡𝑟𝑒 The train corresponding to event 𝑒 ∈ 𝐸ar ∪ 𝐸de
𝑡start The actual disruption starting time
𝑡end The actual disruption ending time
𝑡min
end The predicted minimal disruption ending time
𝑡max
end The predicted maximal disruption ending time
𝑡𝑤end The predicted disruption ending time of scenario 𝑤 ∈ {1,… ,𝑊 }: 𝑡min

end ≤ 𝑡𝑤end ≤ 𝑡max
end

𝑡𝑘,min
end The predicted minimal disruption ending time at stage 𝑘 ∈ {1,… , 𝐾}
𝑡𝑘,max
end The predicted maximal disruption ending time at stage 𝑘 ∈ {1,… , 𝐾}
𝑡𝑤𝑘,𝑛

end The predicted disruption ending time of scenario 𝑤𝑘,𝑛 , 𝑛 ∈
{

1,… ,𝑊𝑘
}

: 𝑡𝑘,min
end ≤ 𝑡𝑤𝑘,𝑛

end ≤ 𝑡𝑘,max
end

𝑤𝑘,𝑛 The 𝑛th scenario defined at stage 𝑘, where 𝑛 ∈
{

1,… ,𝑊𝑘
}

, 𝑘 ∈ {1,… , 𝐾}
𝑊𝑘 The total number of scenarios defined at stage 𝑘
𝑋 Set of the 1st-stage decisions in the two-stage stochastic model
𝑋𝑘 Set of the 1st-stage decisions in the two-stage stochastic model formulated at update stage 𝑘 ∈ {1,… , 𝐾}
𝑌 (𝑤) Set of the 2nd-stage decisions of scenario 𝑤 ∈ {1,… ,𝑊 } in the two-stage stochastic model
𝑌𝑘(𝑤𝑘,𝑛) Set of the 2nd-stage decisions of scenario 𝑤𝑘,𝑛 , 𝑛 ∈

{

1,… ,𝑊𝑘
}

in the two-stage stochastic model formulated at
update stage 𝑘 ∈ {1,… , 𝐾}

𝑍I Set of constraints for the 1st-stage decisions 𝑋
𝑍II(𝑋,𝑤) Set of constraints for the 2nd-stage decisions given 𝑋 in scenario 𝑤 ∈ {1,… ,𝑊 }
𝓁 A given time period ensuring a timely implementation of a new rescheduling solution
𝛽𝑐 The penalty of cancelling a train run between two adjacent stations

with a stop. For any two different events 𝑒, 𝑒′ ∈ 𝐸de ∪ 𝐸ar , we have a binary decision variable 𝑞𝑒,𝑒′ with value 1 indicating that 𝑒
occurs before 𝑒′.

Note that due to our formulation, once the decisions regarding 𝑥𝑒, 𝑑𝑒, 𝑐𝑒 and 𝑦𝑒 are determined, the other decisions are also
determined.

2.1.3. Disruptions
This paper considers a disruption that occurs at 𝑡start and is predicted to end within the period

[

𝑡min
end , 𝑡

max
end

]

. The disruption duration
is a stochastic variable that is assumed to have a finite number of possible realizations, called scenarios, 1,… ,𝑊 , with corresponding
probabilities, 𝑝1,… , 𝑝𝑊 , satisfying ∑𝑊

𝑤=1 𝑝𝑤 = 1. Each scenario 𝑤 has a unique disruption duration
[

𝑡start , 𝑡𝑤end
]

where 𝑡min
end ≤ 𝑡𝑤end ≤ 𝑡max

end .
During a disruption, the range of the disruption end time may change when new information is received from the disruption

site. Therefore, we define the concept of stages at which the estimated range of the disruption end time is updated, which triggers a
rescheduling model to compute a new solution based on the updated range. The range of the disruption end time updated at stage
𝑘 is defined as

[

𝑡𝑘,min
end , 𝑡𝑘,max

end

]

, where 𝑡𝑘,min
end (𝑡𝑘,max

end ) refers to the minimal (maximal) disruption end time predicted at stage 𝑘 with
𝑡𝑘,max
end ≥ 𝑡𝑘,min

end . It is assumed that 𝑡𝑘,min
end ≥ 𝑡𝑘−1,min

end , while 𝑡𝑘,max
end is allowed to be equivalent to, smaller, or larger than 𝑡𝑘−1,max

end . This
paper is also based on the following assumptions:

• At stage 𝑘 = 1, the range of the disruption end time
[

𝑡𝑘,min
end , 𝑡𝑘,max

end

]

is obtained at the disruption start time 𝑡start
• At stage 𝑘 ∈ [2, 𝐾 − 1], the range of the disruption end time

[

𝑡𝑘,min
end , 𝑡𝑘,max

end

]

is updated before time 𝑡𝑘−1,min
end − 𝓁

• At final stage 𝐾, the exact disruption end time 𝑡end is received at time 𝑡𝐾−1,min
end − 𝓁, and 𝑡end ≥ 𝑡𝐾−1,min

end

Here, 𝓁 is a given parameter relevant to the update time, which must ensure a timely implementation of a new rescheduling solution
based on the updated information. The value of 𝓁 is relevant to the traffic density of the considered network and the extent of the
deviation from the planned timetable. A network that has a denser traffic and the corresponding rescheduled timetable has more
deviations than the planned one may need longer time for implementing the rescheduled timetable.

The notation of parameters and sets can be found in Table 1.



Journal of Rail Transport Planning & Management 15 (2020) 100196

4

Y. Zhu and R.M.P. Goverde

Fig. 1. The rolling horizon approach based on a deterministic rescheduling model using a pessimistic strategy.

2.2. Deterministic rolling-horizon method

A deterministic rescheduling model can only consider one possible disruption duration
[

𝑡start , 𝑡
𝑤𝑘,𝑛
end

]

at stage 𝑘, where 𝑡𝑘,min
end ≤

𝑡𝑤𝑘,𝑛
end ≤ 𝑡𝑘,max

end , 𝑤𝑘,𝑛 ∈
{

𝑤𝑘,1,… , 𝑤𝑘,𝑊𝑘

}

. Here, 𝑤𝑘,𝑛 refers to the 𝑛th scenario defined in stage 𝑘, and 1 ≤ 𝑛 ≤ 𝑊𝑘, where 𝑊𝑘 is the
total number of scenarios defined in stage 𝑘. The choice of 𝑡𝑤𝑘,𝑛

end depends on the adopted strategy. For example, the value of 𝑡𝑤𝑘,𝑛
end is

chosen as (1) 𝑡𝑘,min
end in an optimistic strategy, (2) 𝑡𝑘,max

end in a pessimistic strategy, (3) or ∑𝑊𝑘
𝑛=1 𝑝𝑤𝑘,𝑛

𝑡𝑤𝑘,𝑛
end in an expected-value strategy.

In the remainder of this section, we give an example of a rolling horizon approach for a deterministic rescheduling model with
a pessimistic strategy, see Fig. 1. Note that a new stage starts when a new prediction about the range of the disruption ending time
is updated.

At stage 𝑘 ∈ [1, 𝐾 − 1], the prediction
[

𝑡𝑘,min
end , 𝑡𝑘,max

end

]

is updated. Using a pessimistic strategy, a control horizon is then defined

as
[

𝑡start + 𝓁, 𝑡𝑘,max
end

]

if 𝑘 = 1, where 𝓁 is a time period ensuring the decisions determined for the control horizon at stage 1 to be
successfully implemented. It is assumed that the planned timetable is applied for the period

[

𝑡start , 𝑡start + 𝓁
)

during which some
trains may have to wait at the last stations before the blocked tracks. A recovery horizon is defined as

(

𝑡𝑘,max
end , 𝑡𝑘,max

end + 𝑅𝑘

]

if 𝑘 = 1.
Here, 𝑅𝑘 represents the recovery time length after 𝑡𝑘,max

end , which is not a given input to the rescheduling model but an output
that can only be known after the rescheduling solution has been computed. The deterministic rescheduling model computes a
rescheduling solution over the combined control and recovery horizons. When 𝑘 ≥ 2, the rescheduling solution respects the previous
disruption management decisions up to (1) 𝑡𝑘−1,max

end if 𝑡𝑘,max
end ≥ 𝑡𝑘−1,max

end or (2) 𝑡𝑘,max
end if 𝑡𝑘,max

end < 𝑡𝑘−1,max
end , and thus

[

𝑡start + 𝓁, 𝑡𝑘−1,max
end

]

or
[

𝑡start + 𝓁, 𝑡𝑘,max
end

]

is regarded as the rescheduled timetable horizon. Fig. 1 is an example of case (1). The proposed rolling-horizon
approach also applies to case (2) in which the current time point (the update time) is ensured to be before 𝑡𝑘,max

end because it is
assumed that the update at stage 𝑘 occurs before 𝑡𝑘−1,min

end − 𝓁 that holds for 𝑡𝑘−1,min
end − 𝓁 ≤ 𝑡𝑘,min

end ≤ 𝑡𝑘,max
end . A rescheduling solution is

constituted by a set of disruption management decisions (e.g. cancelling trains and short-turning trains) that were introduced in
Section 2.1.

At the final stage 𝐾, an exact disruption end time 𝑡end is assumed to be known. If 𝑡end = 𝑡𝐾−1,max
end , the rescheduling solution obtained

at stage 𝐾 − 1 is used without any further adjustments. If 𝑡end ≠ 𝑡𝐾−1,max
end , the rescheduling model is solved again by respecting the

previous disruption management decisions up to (1) 𝑡𝐾−1,max
end if 𝑡end ≥ 𝑡𝐾−1,max

end , or (2) 𝑡end if 𝑡end < 𝑡𝐾−1,max
end . In case (1) the control

horizon is
[

𝑡𝐾−1,max
end , 𝑡end

]

, while in case (2) the control horizon is zero. In both cases, the recovery horizons are
(

𝑡end, 𝑡end + 𝑅𝐾
]

.
This paper uses the rescheduling model of Zhu and Goverde (2019b) for the deterministic rolling-horizon method, where the

dispatching measure of skipping stops is removed due to the new objective of minimizing train cancellation and delay, and the
station capacity part is reformulated as in Zhu and Goverde (2019a) for faster computation.
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Fig. 2. Illustration of the two stages in the stochastic timetable rescheduling model.

2.3. Stochastic rolling-horizon method

The timetable rescheduling problem taking into account the uncertainty of the disruption duration is formulated as a rolling
horizon two-stage stochastic program in deterministic equivalent form (Birge and Louveaux, 2011). For clarity, the stochastic
timetable rescheduling model is introduced first without considering different update stages of the disruption durations, which
are explicitly included later when describing the corresponding rolling horizon approach.

2.3.1. Stochastic timetable rescheduling model
The stochastic rescheduling model considers multiple possible disruption durations at each computation as follows. The set of

disruption management decisions are divided into two groups: (1) the 1st-stage decisions that have to be taken before the exact
scenario with a given disruption duration is known are called control decisions and the horizon when these decisions are applied is
called control horizon, and (2) the 2nd-stage decisions that could be taken after the exact scenario with a given disruption duration
is known are called look-ahead decisions with corresponding look-ahead horizon. Recall that we have an estimated range of disruption
end time

[

𝑡min
end , 𝑡

max
end

]

to represent the stochastic part of disruption duration, and each scenario 𝑤 ∈ {1,… ,𝑊 } is defined with a unique
disruption duration

[

𝑡start , 𝑡𝑤end
]

where 𝑡min
end ≤ 𝑡𝑤end ≤ 𝑡max

end .
In each scenario 𝑤,

[

𝑡start + 𝓁, 𝑡min
end

]

is defined as the control horizon, while
(

𝑡min
end , 𝑡

𝑤
end + 𝑅𝑤] is defined as the look-ahead horizon,

where 𝓁 refers to a time period ensuring the control decisions to be timely implemented, and 𝑅𝑤 represents the recovery time to the
planned timetable. The planned timetable is applied for the period

[

𝑡start , 𝑡start + 𝓁
)

where some trains might be forced to wait at the
last stations before the blocked tracks. Recall that 𝑅𝑤 can only be known after the disruption management decisions for scenario 𝑤
are determined, and so the value may vary across scenarios. A look-ahead horizon consists of a disruption horizon

(

𝑡min
end , 𝑡

𝑤
end

]

in which
the disruption is ongoing, and a recovery horizon

(

𝑡𝑤end, 𝑡
𝑤
end + 𝑅𝑤] that goes from the end of the disruption until completely resuming

to the planned timetable. The 1st-stage control decisions are scenario independent and are thus the same over all scenarios. The
2nd-stage look-ahead decisions are scenario dependent, which can be different among scenarios. As shown in Fig. 2, determining
the control decisions up to 𝑡min

end is the first stage of the stochastic timetable rescheduling model, and determining the look-ahead
decisions within the period

(

𝑡min
end , 𝑡

𝑤
end + 𝑅𝑤] for any scenario 𝑤 is the second stage. The control decisions determined at the first

stage affect the look-ahead decisions determined at the second stage.
The two-stage stochastic timetable rescheduling model can be formulated in a more compact form as

min 𝑄I(𝑋) + 𝐸𝑤
[

min 𝑄II (𝑌 (𝑤))
]

, (1)

s.t. 𝑋 ∈ 𝑍I, (2)

𝑌 (𝑤) ∈ 𝑍II (𝑋,𝑤) , 𝑤 ∈ {1,… ,𝑊 } (3)

where 𝑋 are the 1st-stage decisions defined as the scenario-independent disruption management decisions associated with the
train arrival and departure events 𝑒 of which the original scheduled times 𝑜𝑒 are in the control horizon

[

𝑡start + 𝓁, 𝑡min
end

]

,

𝑋 =
{

{𝑐𝑒, 𝑑𝑒, 𝑥𝑒} ∶ 𝑜𝑒 ∈ [𝑡start + 𝓁, 𝑡min
end ], 𝑒 ∈ 𝐸

}

∪
{

𝑦𝑒 ∶ 𝑜𝑒 ∈ [𝑡start + 𝓁, 𝑡min
end ], 𝑒 ∈ 𝐸turn} ,

and 𝑌 (𝑤) are the 2nd-stage decisions of scenario 𝑤, which are defined as the disruption management decisions associated with
the train arrival and departure events 𝑒 of which the original scheduled times 𝑜𝑒 are in the look-ahead horizon

(

𝑡min
end , 𝑡

𝑤
end + 𝑅𝑤] of

scenario 𝑤,

𝑌 (𝑤) =
{

{𝑐𝑤𝑒 , 𝑑
𝑤
𝑒 , 𝑥

𝑤
𝑒 } ∶ 𝑜𝑒 ∈ (𝑡min

end , 𝑡
𝑤
end + 𝑅𝑤], 𝑒 ∈ 𝐸

}

∪
{

𝑦𝑤𝑒 ∶ 𝑜𝑒 ∈ (𝑡min
end , 𝑡

𝑤
end + 𝑅𝑤], 𝑒 ∈ 𝐸turn} , 𝑤 ∈ {1,… ,𝑊 }.
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Fig. 3. Illustration of scenarios.

𝑌 (𝑤) is dependent on 𝑋 since 𝑋 and the 𝑌 (𝑤) are jointly optimized in (1)–(3). Here, 𝑐𝑒 represents the decision to cancel event
𝑒 ∈ 𝐸, 𝑑𝑒 represents the delay of event 𝑒 ∈ 𝐸, 𝑥𝑒 represents the rescheduled time of event 𝑒 ∈ 𝐸, and 𝑦𝑒 represents the decision to
short-turn train 𝑡𝑟𝑒 at station 𝑠𝑡𝑒 considering event 𝑒 ∈ 𝐸turn. Recall that 𝐸 is the set of arrival and departure events, and 𝐸turn is the
set of arrival and departure events that have short-turning possibilities. In the 2nd stage the same notation is used with a superscript
𝑤 to indicate the scenario. The developed two-stage stochastic timetable rescheduling model includes more decision variables (see
Section 2.1.2) than those shown in the formulation of (1)–(3). We only show the event-related decision variables with respect to
cancelling, delaying, re-timing, and short-turning in the compact formulation because once these decisions are determined the other
decisions will be determined implicitly as well. 𝑄I(⋅) is the cost function for 𝑋, and 𝑄II(⋅) is the cost function for 𝑌 (𝑤), which are
formulated respectively as follows:

𝑄I(𝑋) = 𝛽𝑐
∑

𝑒∈𝐸ar∶ 𝑐𝑒∈𝑋
𝑐𝑒 +

∑

𝑒∈𝐸ar∶ 𝑑𝑒∈𝑋
𝑑𝑒,

𝑄II(𝑌 (𝑤)) = 𝛽𝑐
∑

𝑒∈𝐸ar∶ 𝑐𝑤𝑒 ∈𝑌 (𝑤)
𝑐𝑤𝑒 +

∑

𝑒∈𝐸ar∶ 𝑑𝑤𝑒 ∈𝑌 (𝑤)
𝑑𝑤𝑒 , 𝑤 ∈ {1,… ,𝑊 } ,

where parameter 𝛽𝑐 refers to the cost of cancelling a train run between two adjacent stations. The cost function 𝑄I(⋅) (𝑄II(⋅)) measures
the train cancellations and arrival delays within the control horizon (look-ahead horizon) relevant to the first stage (the second stage)
of the stochastic timetable rescheduling model. The objective (1) is to minimize the train cancellations and arrival delays within the
control horizon plus the expectation of the train cancellations and arrival delays within the look-ahead horizons of all scenarios. The
expectation 𝐸𝑤[⋅] is defined as ∑𝑊

𝑤=1 𝑝𝑤 ⋅𝑄II(𝑌 (𝑤)), where 𝑝𝑤 represents the occurrence probability of scenario 𝑤. In (2), 𝑍I refers
to the constraint set for 𝑋. In (3), 𝑍II (𝑋,𝑤) refers to the constraint set for 𝑌 (𝑤) given 𝑋 under scenario 𝑤. 𝑌 (𝑤) is required to be
consistent with 𝑋. For any scenario 𝑤 ∈ {1,… ,𝑊 }, the decisions 𝑋 and 𝑌 (𝑤) together constitute a feasible rescheduling solution
satisfying the constraints in 𝑍I ∪𝑍II (𝑋,𝑤) for the time horizon

[

𝑡start + 𝓁, 𝑡𝑤end + 𝑅𝑤].
The two-stage stochastic timetable rescheduling model of (1)–(3) is based on a compact representation of scenarios as shown

in the left part of Fig. 3, where each root-to-leaf path refers to a specific scenario 𝑤. For simplicity, we used a splitting variable
representation (Escudero et al., 2013) as shown in the right part of Fig. 3. In this way, the first-stage decisions 𝑋 is duplicated
for each scenario 𝑤 ∈ {1,… ,𝑊 } as 𝑋(𝑤). Based on the splitting variable representation, we reformulated the two-stage stochastic
timetable rescheduling model of (1)–(3) with explicit nonanticipativity constraints considering stage 𝑘 = 1 (the range of the disruption
end time is updated for the first time),

min
𝑊1
∑

𝑛=1
𝑝𝑤1,𝑛

⋅

⎛

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎝

𝛽𝑐
∑

𝑒∈𝐸ar∶ 𝑐
𝑤1,𝑛
𝑒 ∈𝑋1(𝑤1,𝑛)

𝑐𝑤1,𝑛
𝑒 +

∑

𝑒∈𝐸ar∶ 𝑑
𝑤1,𝑛
𝑒 ∈𝑋1(𝑤1,𝑛)

𝑑𝑤1,𝑛
𝑒

⎞

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎝

𝛽𝑐
∑

𝑒∈𝐸ar∶ 𝑐
𝑤1,𝑛
𝑒 ∈𝑌1(𝑤1,𝑛)

𝑐𝑤1,𝑛
𝑒 +

∑

𝑒∈𝐸ar∶ 𝑑
𝑤1,𝑛
𝑒 ∈𝑌1(𝑤1,𝑛)

𝑑𝑤1,𝑛
𝑒

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

,

(4)

s.t. 𝑋1(𝑤1,𝑛) ∈ 𝑍I
1(𝑤1,𝑛), 𝑛 ∈

{

1,… ,𝑊1
}

, (5)

𝑌1(𝑤1,𝑛) ∈ 𝑍II
1
(

𝑋1(𝑤1,𝑛), 𝑤1,𝑛
)

, 𝑛 ∈
{

1,… ,𝑊1
}

, (6)

𝑋1(𝑤1,𝑛) = 𝑋1(𝑤1,𝑚), 𝑛, 𝑚 ∈
{

1,… ,𝑊1
}

∶ 𝑛 ≠ 𝑚, (7)

where the first-stage decisions 𝑋1(𝑤1,𝑛) of scenario 𝑤1,𝑛 is

𝑋1(𝑤1,𝑛) =
{

{𝑐𝑤1,𝑛
𝑒 , 𝑑𝑤1,𝑛

𝑒 , 𝑥𝑤1,𝑛
𝑒 } ∶ 𝑜𝑒 ∈ [𝑡start + 𝓁, 𝑡1,min

end ], 𝑒 ∈ 𝐸
}

∪
{

𝑦𝑤1,𝑛
𝑒 ∶ 𝑜𝑒 ∈ [𝑡start + 𝓁, 𝑡1,min

end ], 𝑒 ∈ 𝐸turn
}

,

𝑛 ∈ {1,… ,𝑊1},
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Table 2
Part of decision variables.

Notation Description

𝑐𝑤𝑒 Binary variable with value 1 indicating that event 𝑒 is cancelled in scenario 𝑤, and 0 otherwise
𝑑𝑤
𝑒 Delay of event 𝑒 in scenario 𝑤

𝑥𝑤𝑒 Rescheduled time of event 𝑒 in scenario 𝑤
𝑦𝑤𝑒 Binary variable with value 1 indicating that train 𝑡𝑟𝑒 is short-turned at station 𝑠𝑡𝑒 in scenario 𝑤,

and 0 otherwise

and the second-stage decisions 𝑌1(𝑤1,𝑛) of scenario 𝑤1,𝑛 is

𝑌1(𝑤1,𝑛) =
{

{𝑐𝑤1,𝑛
𝑒 , 𝑑𝑤1,𝑛

𝑒 , 𝑥𝑤1,𝑛
𝑒 } ∶ 𝑜𝑒 ∈ (𝑡1,min

end , 𝑡𝑤1,𝑛
end + 𝑅𝑤1,𝑛

1 ], 𝑒 ∈ 𝐸
}

∪
{

𝑦𝑤1,𝑛
𝑒 ∶ 𝑜𝑒 ∈ (𝑡1,min

end , 𝑡𝑤1,𝑛
end + 𝑅𝑤1,𝑛

1 ], 𝑒 ∈ 𝐸turn
}

,

𝑛 ∈ {1,… ,𝑊1}.

Here, 𝑤1,𝑛 represents the 𝑛th scenario defined at stage 1, 𝑊1 refers to the number of scenarios defined at stage 1, and 𝑡1,min
end is

the minimal disruption end time update at stage 1. Note that 𝑋1(𝑤1,𝑛) = 𝑋1 for some optimally determined 𝑋1 for all 𝑤1,𝑛, 𝑛 ∈
{1,… ,𝑊1}. The formulation of (4)–(7) can be seen as 𝑊1 separate deterministic Mixed-Integer Linear Programming (MILP) timetable
rescheduling models linked together by the so-called nonanticipativity constraints (7) (Escudero et al., 2010), which force the 1st-
stage decisions 𝑋1(𝑤1,𝑛) to be the same in any scenario 𝑤1,𝑛, 𝑛 ∈

{

1,… 𝑊1
}

. To be more specific, (7) requires each decision of 𝑋1(𝑤1,𝑛)
to be equivalent to the same type of decision corresponding to the same event in 𝑋1(𝑤1,𝑚) considering two different scenarios 𝑤1,𝑛
and 𝑤1,𝑚. For example, 𝑐𝑤1,𝑛

𝑒 = 𝑐𝑤1,𝑚
𝑒 , where 𝑐𝑤1,𝑛

𝑒 ∈ 𝑋(𝑤1,𝑛), 𝑐
𝑤1,𝑚
𝑒 ∈ 𝑋(𝑤1,𝑚), 𝑛 ≠ 𝑚. In (5), 𝑍I

1(𝑤1,𝑛) refers to the constraint set for
𝑋1(𝑤1,𝑛). In (6), 𝑍II

1
(

𝑋1(𝑤1,𝑛), 𝑤1,𝑛
)

refers to the constraint set for 𝑌1(𝑤1,𝑛) given 𝑋1(𝑤1,𝑛) under scenario 𝑤1,𝑛. The objective (4) is
to minimize the expected consequences measured in train cancellations and arrival delays both in the 1st stages and 2nd stages of
all scenarios.

To establish (4)–(7), we construct, for each scenario 𝑤1,𝑛, 𝑛 ∈
{

1,… ,𝑊1
}

, an independent deterministic MILP timetable
rescheduling model by the method of Zhu and Goverde (2019b), of which the variables are

{

𝑋1(𝑤1,𝑛), 𝑌1(𝑤1,𝑛)
}

, and the constraints
are

{

𝑍I
1(𝑤1,𝑛), 𝑍II

1 (𝑋1(𝑤1,𝑛), 𝑤1,𝑛)
}

that ensure feasible rescheduling solutions adjusted by delaying, reordering, cancelling, adding
stops and flexible short-turning trains. For a detailed MILP constraint formulation we refer to Zhu and Goverde (2019b). For all
scenarios the variables ⋃𝑛∈{1,…,𝑊1}

{

𝑋1(𝑤1,𝑛), 𝑌1(𝑤1,𝑛)
}

and constraints ⋃𝑛∈{1,…,𝑊1}
{

𝑍I
1(𝑤1,𝑛), 𝑍II

1 (𝑋1(𝑤1,𝑛), 𝑤1,𝑛)
}

are established in
the stochastic timetable rescheduling model with also nonanticipativity constraints (7).

The notation of the decision variables are described in Table 2.
The rescheduling solution formed by 𝑋1 will be delivered to the traffic controllers directly. As for the scenario-dependent 2nd-

stage decisions 𝑌1(𝑤1,𝑛), 𝑛 ∈
{

1,… ,𝑊1
}

, only one of them will be delivered at time 𝑡1,min
end −𝓁 when the exact scenario is foreseen to be

a specific scenario 𝑤1,𝑛. 𝓁 is set to an appropriate value (e.g. 10 min) to ensure that the 2nd-stage decisions can be implemented in
time. If none of the defined scenarios correspond to the exact scenario, the rescheduling model computes a new solution considering
one single scenario with disruption duration

[

𝑡1,min
end , 𝑡end

]

, which should be consistent with the 1st-stage decisions up to 𝑡1,min
end . Here,

𝑡end represents the exact disruption end time. Note that in this case, nonanticipativity constraints are not needed.

2.3.2. Rolling horizon approach based on a two-stage stochastic model
During the disruption, the range of the disruption end time

[

𝑡min
end , 𝑡

max
end

]

may change several times. Under this circumstance, we have
a multiple-stage stochastic timetable rescheduling problem. We solve this problem by a rolling horizon approach with successive
application of the two-stage stochastic timetable rescheduling model every time an estimated range of the disruption end time
is updated in a new stage. The rolling horizon approach is based on the assumptions given in Section 2.1.3. An example of the
rolling-horizon stochastic method is shown in Fig. 4.

At stage 𝑘 ∈ [1, 𝐾−1], the prediction
[

𝑡𝑘,min
end , 𝑡𝑘,max

end

]

is updated. Thus, 𝑊𝑘 scenarios are defined where each has a unique disruption

duration
[

𝑡start + 𝓁, 𝑡𝑤𝑘,𝑛
end

]

, and 𝑡𝑘,min
end ≤ 𝑡𝑤𝑘,𝑛

end ≤ 𝑡𝑘,max
end , 𝑤𝑘,𝑛 ∈

{

𝑤𝑘,1,… , 𝑤𝑘,𝑊𝑘

}

. Recall that 𝑤𝑘,𝑛 refers to the 𝑛th scenario defined at
stage 𝑘, and the planned timetable is applied for the period

[

𝑡start , 𝑡start + 𝓁
)

. Based on the new scenarios defined at stage 𝑘, the
two-stage stochastic optimization is performed, and the 1st-stage decisions 𝑋𝑘 from the optimization are delivered to the traffic
controllers directly. The 1st-stage decisions 𝑋𝑘 are for the period

[

𝑡start + 𝓁, 𝑡𝑘,min
end

]

if 𝑘 = 1 or the period
[

𝑡𝑘−1,min
end , 𝑡𝑘,min

end

]

if 𝑘 ≥ 2,

which will no longer change at later stages. This is why the period
[

𝑡start + 𝓁, 𝑡𝑘−1,min
end

]

is regarded as the rescheduled timetable horizon

when 𝑘 ≥ 2. The 2nd-stage decisions 𝑌𝑘(𝑤𝑘,𝑛) of scenario 𝑤𝑘,𝑛 is for the period
(

𝑡𝑘,min
end , 𝑡𝑤𝑘,𝑛

end + 𝑅𝑤𝑘,𝑛
𝑘

]

that consists of the disruption

horizon
(

𝑡𝑘,min
end , 𝑡𝑤𝑘,𝑛

end

]

and the recovery horizon
(

𝑡𝑤𝑘,𝑛
end , 𝑡𝑤𝑘,𝑛

end + 𝑅𝑤𝑘,𝑛
𝑘

]

.
The two-stage stochastic timetable rescheduling model is then used for each following stage where new scenarios are defined

according to the updated range of disruption end time. The two-stage stochastic timetable rescheduling model with nonanticipativity
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Fig. 4. The rolling-horizon two-stage stochastic timetable rescheduling model to solve the multiple-stage stochastic timetable rescheduling problem.

constraints for stage 1 ≤ 𝑘 ≤ 𝐾 − 1 then is

min
𝑊𝑘
∑

𝑛=1
𝑝𝑤𝑘,𝑛

⋅

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎜

⎝

𝛽𝑐
∑

𝑒∈𝐸ar∶ 𝑐
𝑤𝑘,𝑛
𝑒 ∈𝑋𝑘(𝑤𝑘,𝑛)

𝑐𝑤𝑘,𝑛
𝑒 +

∑

𝑒∈𝐸ar∶𝑑
𝑤𝑘,𝑛
𝑒 ∈𝑋𝑘(𝑤𝑘,𝑛)

𝑑𝑤𝑘,𝑛
𝑒

⎞

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎝

𝛽𝑐
∑

𝑒∈𝐸ar∶ 𝑐
𝑤𝑘,𝑛
𝑒 ∈𝑌𝑘(𝑤𝑘,𝑛)

𝑐𝑤𝑘,𝑛
𝑒 +

∑

𝑒∈𝐸ar∶ 𝑑
𝑤𝑘,𝑛
𝑒 ∈𝑌𝑘(𝑤𝑘,𝑛)

𝑑𝑤𝑘,𝑛
𝑒

⎞

⎟

⎟

⎟

⎠

⎫

⎪

⎬

⎪

⎭

,

(8)

s.t. 𝑋𝑘(𝑤𝑘,𝑛) ∈ 𝑍I
𝑘(𝑤𝑘,𝑛), 𝑛 ∈

{

1,… ,𝑊𝑘
}

, (9)

𝑌𝑘(𝑤𝑘,𝑛) ∈ 𝑍II
𝑘 (𝑋𝑘(𝑤𝑘,𝑛), 𝑤𝑘,𝑛), 𝑛 ∈

{

1,… ,𝑊𝑘
}

, (10)

𝑋𝑘(𝑤𝑘,𝑛) = 𝑋𝑘(𝑤𝑘,𝑚), 𝑛, 𝑚 ∈
{

1,… ,𝑊𝑘
}

∶ 𝑛 ≠ 𝑚, (11)

where the first-stage decisions

𝑋𝑘(𝑤𝑘,𝑛) =
{

{𝑐𝑤𝑘,𝑛
𝑒 , 𝑑𝑤𝑘,𝑛

𝑒 , 𝑥𝑤𝑘,𝑛
𝑒 } ∶ 𝑜𝑒 ∈ [𝑡start + 𝓁, 𝑡𝑘,min

end ], 𝑒 ∈ 𝐸
}

∪
{

𝑦𝑤𝑘,𝑛
𝑒 ∶ 𝑜𝑒 ∈ [𝑡start + 𝓁, 𝑡𝑘,min

end ], 𝑒 ∈ 𝐸turn
}

,

𝑛 ∈ {1,… ,𝑊𝑘}, if 𝑘 = 1,

𝑋𝑘(𝑤𝑘,𝑛) =
{

{𝑐𝑤𝑘,𝑛
𝑒 , 𝑑𝑤𝑘,𝑛

𝑒 , 𝑥𝑤𝑘,𝑛
𝑒 } ∶ 𝑟𝑘−1𝑒 ∈ [𝑡𝑘−1,min

end , 𝑡𝑘,min
end ], 𝑒 ∈ 𝐸

}

∪
{

𝑦𝑤𝑘,𝑛
𝑒 ∶ 𝑟𝑘−1𝑒 ∈ [𝑡𝑘−1,min

end , 𝑡𝑘,min
end ], 𝑒 ∈ 𝐸turn

}

,

𝑛 ∈
{

1,… ,𝑊𝑘
}

, if 2 ≤ 𝑘 ≤ 𝐾 − 1,

and the second-stage decisions

𝑌𝑘(𝑤𝑘,𝑛) =
{

{𝑐𝑤𝑘,𝑛
𝑒 , 𝑑𝑤𝑘,𝑛

𝑒 , 𝑥𝑤𝑘,𝑛
𝑒 } ∶ 𝑜𝑒 ∈ (𝑡𝑘,min

end , 𝑡𝑤𝑘,𝑛
end + 𝑅𝑤𝑘,𝑛

𝑘 ], 𝑒 ∈ 𝐸
}

∪
{

𝑦𝑤𝑘,𝑛
𝑒 ∶ 𝑜𝑒 ∈ (𝑡𝑘,min

end , 𝑡𝑤𝑘,𝑛
end + 𝑅𝑤𝑘,𝑛

𝑘 ], 𝑒 ∈ 𝐸turn
}

,

𝑛 ∈ {1,… ,𝑊𝑘}, if 𝑘 = 1,

𝑌𝑘(𝑤𝑘,𝑛) =
{

{𝑐𝑤𝑘,𝑛
𝑒 , 𝑑𝑤𝑘,𝑛

𝑒 , 𝑥𝑤𝑘,𝑛
𝑒 } ∶ 𝑟𝑘−1𝑒 ∈

(

𝑡𝑘,min
end , 𝑡𝑤𝑘,𝑛

end + 𝑅𝑤𝑘,𝑛
𝑘

]

, 𝑒 ∈ 𝐸
}

∪
{

𝑦𝑤𝑘,𝑛
𝑒 ∶ 𝑟𝑘−1𝑒 ∈

(

𝑡𝑘,min
end , 𝑡𝑤𝑘,𝑛

end + 𝑅𝑤𝑘,𝑛
𝑘

]

, 𝑒 ∈ 𝐸turn
}

,

𝑛 ∈
{

1,… ,𝑊𝑘
}

, if 2 ≤ 𝑘 ≤ 𝐾 − 1,

in which 𝑜𝑒 is the original scheduled time, 𝑟𝑘−1𝑒 is a known value representing the rescheduled time of event 𝑒 determined at the
previous stage 𝑘 − 1, and 𝑤𝑘,𝑛 refers to the 𝑛th scenario defined at stage 𝑘. Note that 𝑋𝑘(𝑤𝑘,𝑛) = 𝑋𝑘, 𝑛 ∈

{

1,… ,𝑊𝑘
}

, 1 ≤ 𝑘 ≤ 𝐾 − 1.
In (9), 𝑍I

𝑘(𝑤𝑘,𝑛) refers to the constraint set for 𝑋𝑘(𝑤𝑘,𝑛). In (10), 𝑍II
𝑘
(

𝑋𝑘(𝑤𝑘,𝑛), 𝑤𝑘,𝑛
)

refers to the constraint set for 𝑌𝑘(𝑤𝑘,𝑛) given
𝑋𝑘(𝑤𝑘,𝑛) under scenario 𝑤𝑘,𝑛.

For the final stage 𝐾, the exact disruption end time 𝑡end is received. If a disruption end time of a scenario 𝑤𝐾−1,𝑛 defined at the
previous stage is equal to 𝑡end (i.e. 𝑡𝑤𝐾−1,𝑛

end = 𝑡end), then the corresponding 2nd-stage decisions 𝑌𝐾−1(𝑤𝐾−1,𝑛) will be delivered to the
traffic controllers directly. If none of the previous scenarios corresponds to the exact scenario, the rescheduling model can simply
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Fig. 5. The schematic track layout of the considered network.

Table 3
Train lines in the considered network.

Train line Terminals in the considered network

IC800 Maastricht (Mt)
IC1900 Venlo (Vl)
IC3500 Heerlen (Hrl)
SPR6400 Eindhoven (Ehv) and Wt
SPR6800 Roermond (Rm)
SPR6900 Sittard (Std) and Hrl
SPR9600 Ehv and Dn
SPR32000 –
IC32100 Mt and Hrl
SPR32200 Rm

compute a new solution considering the single scenario with the disruption duration
[

𝑡𝐾−1,min
end , 𝑡end

]

, which should be consistent with
the previous control decisions up to 𝑡𝐾−1,min

end . In this case, nonanticipativity constraints are not needed in the rescheduling model.

3. Case study

The deterministic and stochastic methods are tested on a part of the Dutch railway network. Section 3.1 investigates the impact
of the range of the disruption end time, and Section 3.2 analyses the computation performances of both methods.

Fig. 5 shows the schematic track layout of the considered network with 38 stations and both single-track and double-track railway
lines.

In the considered network, 10 train lines operate half-hourly in each direction. Fig. 6 shows the scheduled stopping pattern of
each train line. Table 3 lists the terminals of the train lines that are located in the considered network, while the terminals outside
the considered network are neglected. The deterministic and stochastic rescheduling models both consider trains turning at the
terminals to operate the return direction (i.e. OD turnings). We distinguish between intercity (IC) and local (called sprinter (SPR)
in Dutch) train lines. Both rescheduling models were developed in MATLAB and solved using GUROBI release 7.0.1 on a desktop
with Intel Xeon CPU E5-1620 v3 at 3.50 GHz and 16 GB RAM.

The penalty 𝛽𝑐 of cancelling a train run between two neighbouring stations is set to 100 min, and the time period 𝓁 that ensures a
new rescheduling solution to be implemented is set to 10 min. Besides, we set the minimum duration required for short-turning or OD
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Fig. 6. The train lines operating in the considered network.

Table 4
The predicted disruption end times at each stage of three cases.

turning to 300 s, the minimum duration required for each headway to 180 s, the maximum delay allowed for a train departure/arrival

to 15 min, and the minimum dwell time of an extra stop to 30 s.

We consider a complete track blockage between station Bk and station Lut starting at 7:56 (see Fig. 6). The range of the disruption

end time update at each stage is indicated by Table 4, which is uniformly distributed to 7 scenarios with the same probabilities:

1∕7. Three cases are considered: cases I and II differ in the range of the disruption end time update at stage 1, and cases II and III

differ in the range of the disruption end time update at stage 2. At stages 1 and 2, the stochastic method considers 7 disruption

scenarios simultaneously, whereas the deterministic method considers one single disruption scenario of which the corresponding

end time using optimistic, expected-value, and pessimistic strategies are coloured in green, blue and red, respectively. Recall that

the optimistic strategy considers the minimum disruption end time 𝑡𝑘,min
end , the pessimistic strategy considers the maximum disruption

end time 𝑡𝑘,max
end , and the expected-value strategy considers the expected disruption end time ∑𝑊𝑘

𝑛=1 𝑝𝑤𝑘,𝑛
𝑡𝑤𝑘,𝑛
end at stage 𝑘.
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Table 5
Results of the rescheduled timetables by the deterministic method at stage 1.

Approach Case I Case II or III

Predicted
end time

Obj
[min]

# cancelled
services

Total train
delay [min]

Predicted
end time

Obj
[min]

# cancelled
services

Total train
delay [min]

Optimistic 9:51 2,967 26 367 10:06 3,078 28 278
Expected-value 10:06 3,078 28 278 10:21 3,641 32 351
Pessimistic 10:21 3,641 32 441 10:36 3,751 34 351

Table 6
Results of the rescheduled timetables by the stochastic method at stage 1.

Approach Case I Case II or III

Predicted
end time

Obj
[min]

# cancelled
services

Total train
delay [min]

Predicted
end time

Obj
[min]

# cancelled
services

Total train
delay [min]

Stochastic

9:51 3,078 28 278 10:06 3,394 30 394
9:56 3,078 28 278 10:11 3,394 30 394

10:01 3,078 28 278 10:16 3,399 30 399
10:06 3,078 28 278 10:21 3,751 34 351
10:11 3,122 28 322 10:26 3,751 34 351
10:16 3,192 28 392 10:31 3,751 34 351
10:21 3,641 32 441 10:36 3,751 34 351

3.1. The influence of the range of the disruption end time

Table 5 shows the results of the deterministic method at stage 1, including the objective values, the numbers of cancelled services,
and the total train delays. Cases II and III have the same result since the range of the disruption times are the same to both cases at
stage 1. No matter which case, at stage 1 the optimistic strategy generated the best solution, the pessimistic strategy generated the
worst solution, and the expected-value strategy was in between. It is obvious that for the deterministic method the optimal solution
considering one disruption duration satisfies the shorter the better.

Table 6 shows the results of the stochastic method at stage 1. In each case, 7 rescheduled timetables are obtained, where the
services rescheduled up to 9:51 are forced to be the same in case I, and the services rescheduled up to 10:06 are forced to be the
same in case II and III. In case I, the first 4 scenarios have the same result, although the corresponding disruption end times are
different. The reason is that no further train services were affected when the disruption end time was extended from 9:51 up to
10:06, due to the service pattern of the planned timetable. In this paper, we use a cyclic planned timetable that has a cycle time
of 30 min, which is why we observed a similar phenomenon in case II and III that no changes happened to the results when the
disruption end time was extended from 10:21 up to 10:36.

At stage 1, the stochastic method generated solutions that were no better than the deterministic method, due to the anticipation
towards longer disruptions considered. Just because of the anticipation, at later stages when the ranges of the disruption end times
are updated, better solutions can be obtained by the stochastic method compared to the deterministic method. The results of both
methods at the final stage are shown in Tables 7–9 for cases I, II, and III, respectively, including the average performances.

We consider 7 different actual disruption end times, 10:36, 10:41, 10:46, 10:51, 10:56, 11:01, 11:06, in cases I and II that have
the same range of the disruption end time at stage 2. As for case III which has a different range of the disruption end time at stage
2, the considered actual disruption end times are: 10:51, 10:56, 11:01, 11:06, 11:11, 11:16, 11:21. Recall that the actual end time
𝑡end updated at the final stage 𝐾 is not smaller than the minimum end time 𝑡𝐾−1,min

end updated at the previous stage. Under such
settings of actual end times, the stochastic method obtained the final rescheduled timetables at stage 2, while in most situations the
deterministic method needed to recompute new solutions based on the solutions from stage 2 and thus the final stages were stage
3 (see Tables 7–9). In Tables 7–9, also the value of the stochastic solution (VSS) is shown, which quantifies the cost of ignoring
uncertainty in decision making. It is calculated as VSS=EEV -RP, where EEV is the expected result of using the expected-value
solution and 𝑅𝑃 is the optimal solution of the two-stage stochastic model (Birge and Louveaux, 2011). In our case (a minimization
problem), the higher the VSS is, the better the stochastic solution will be. The improvement percentages with respect to VSS were
also calculated, which were between 6.1% and 10.2% in our cases, demonstrating the benefit of the stochastic formulation. The
relevant results can be found in Tables 7–9.

In case I (Table 7), the optimistic strategy performed better than the stochastic method when the actual disruption end time
was from 10:36 up to 10:51, whereas the stochastic method performed no worse than any deterministic strategy when the actual
disruption end time was from 10:56 up to 11:06. On average, the stochastic method is the best, which is slightly better than the
optimistic strategy which is the best among all deterministic strategies.

Compared to case I (Table 7), in case II (Table 8) the stochastic method performed much better than the deterministic method:
for each considered actual disruption end time (except 10:36), the stochastic method was better than any deterministic strategy.
This is because the ranges of the disruption end times update at stage 1 are different in cases I and II, and thus result in different
solutions by the stochastic method at stage 1, which further affect the solutions at stage 2. The pessimistic strategy resulted in
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Table 7
Results of the final rescheduled timetables in Case I.

Actual
end time

Approach Obj
[min]

# cancelled
services

Total train
delay [min]

Final
stage

10:36

Stochastic 4,452 40 451 2
Optimistic 4,135 38 335 2
Expected-value 4,135 38 335 3
Pessimistic 4,452 40 451 3

10:41

Stochastic 4,452 40 451 2
Optimistic 4,180 38 380 3
Expected-value 4,667 42 467 3
Pessimistic 4,808 44 408 3

10:46

Stochastic 4,457 40 457 2
Optimistic 4,250 38 450 3
Expected-value 4,685 42 485 3
Pessimistic 4,808 44 408 3

10:51

Stochastic 4,808 44 408 2
Optimistic 4,698 42 498 3
Expected-value 4,698 42 498 2
Pessimistic 4,808 44 408 3

10:56

Stochastic 4,808 44 408 2
Optimistic 5,193 48 393 3
Expected-value 5,509 50 509 3
Pessimistic 4,808 44 408 3

11:01

Stochastic 4,808 44 408 2
Optimistic 5,193 48 393 3
Expected-value 5,509 50 509 3
Pessimistic 4,808 44 408 3

11:06

Stochastic 4,808 44 408 2
Optimistic 5,193 48 393 3
Expected-value 5,509 50 509 3
Pessimistic 4,808 44 408 2

Average

Stochastic 4,656 42 428 –
Optimistic 4,691 43 406 –
Expected-value 4,959 45 473 –
Pessimistic 4,757 43 414 –

VSS 4,959 − 4,656 = 303
Improvement 303∕4,959 = 6.1%

the best solution when the actual end time was 10:36, because it was the optimal solution obtained at stage 1 where 10:36 is the
considered disruption end time for the pessimistic strategy (see Table 4).

The stochastic method also performed much better than any deterministic strategy for each considered actual disruption end
time in case III (Table 9), which has the same range of the disruption end time at stage 1 as in case II. The average performance of
the stochastic method in case III (Table 9) is even better than the one in case I (Table 7), although case III considers longer actual
disruption end times. The reason is related to the solution obtained at stage 1, which is affected by the corresponding range of the
disruption end time. In case III (Table 9) the result of the stochastic method is all the same when the actual end time is 10:51 up to
11:06, and the result of any deterministic strategy is all the same when the actual end time is 10:56 up to 11:06. These also happen
in case I (Table 7) or case II (Table 8). The reason is that no further train services were affected when the disruption end time was
extended from 10:51 up to 11:06 for the stochastic method, or from 10:56 up to 11:06 for the deterministic method. Recall that
this is due to the service pattern of the timetable.

Tables 7–9 indicate that compared to the deterministic method, the stochastic method is more likely to generate better
rescheduling solutions for uncertain disruptions by less cancelled train services and/or train delays. This is mainly because the
stochastic method generates solutions that are flexible to the short-turning patterns under different disruption durations. We explain
this by the example of the actual disruption end time of 10:36 in case II as follows.

Figs. 7 and 8 show the time-distance diagrams of the rescheduled timetables obtained by the deterministic method using the
optimistic strategy at stages 1 and 2 in case II, respectively. The dashed (dotted) lines represent the original scheduled services
that are cancelled (delayed) in the rescheduled timetables, while the solid lines represent the services scheduled in the rescheduled
timetables. The red triangles indicate extra stops. Compared to stage 1 (Fig. 7), more services were cancelled at stage 2 (Fig. 8) due
to the extended disruption. At stage 1, the operation of a dark blue train from stations Mt to Bk is cancelled (Fig. 7), which is why
the operation of another dark blue train from stations Bk to Mt has to be cancelled at stage 2 (Fig. 8) to keep consistent control
decisions.

Figs. 9 and 10 show the time-distance diagrams of the rescheduled timetables obtained by the stochastic method at stages 1 and 2
in case II, respectively. Compared to the solution of the optimistic strategy at stage 1 (Fig. 7), more services were cancelled/delayed in
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Table 8
Results of the final rescheduled timetables in Case II.

Actual
end time

Approach Obj
[min]

# cancelled
services

Total train
delay [min]

Final
stage

10:36

Stochastic 4,067 36 467 2
Optimistic 4,135 38 335 2
Expected-value 4,452 40 452 3
Pessimistic 3,751 34 351 3

10:41

Stochastic 4,067 36 467 2
Optimistic 4,180 38 380 3
Expected-value 4,808 44 408 3
Pessimistic 4,808 44 408 3

10:46

Stochastic 4,073 36 473 2
Optimistic 4,250 38 450 3
Expected-value 4,808 44 408 3
Pessimistic 4,808 44 408 3

10:51

Stochastic 4,424 40 424 2
Optimistic 4,698 42 498 3
Expected-value 4,808 44 408 2
Pessimistic 4,808 44 408 3

10:56

Stochastic 4,424 40 424 2
Optimistic 5,193 48 393 3
Expected-value 4,808 44 408 3
Pessimistic 4,808 44 408 3

11:01

Stochastic 4,424 40 424 2
Optimistic 5,193 48 393 3
Expected-value 4,808 44 408 3
Pessimistic 4,808 44 408 3

11:06

Stochastic 4,424 40 424 2
Optimistic 5,193 48 393 3
Expected-value 4,808 44 408 3
Pessimistic 4,808 44 408 2

Average

Stochastic 4,272 38 443 –
Optimistic 4,691 43 406 –
Expected-value 4,757 43 415 –
Pessimistic 4,657 43 400 –

VSS 4,757 − 4,272 = 485
Improvement 485∕4,757 = 10.2%

the solution of the stochastic method at stage 1 (Fig. 9) due to the anticipation towards longer disruption durations in consideration.
Just because of the anticipation, at stage 2, the solution of the stochastic approach resulted in less cancelled services and train delays,
compared to the solution of the optimistic strategy (Fig. 10).

It is found that the flexibility of the solution by the stochastic method can be affected by the range of the disruption end time
update. An example is given as follows. Figs. 11 and 12 show the time-distance diagrams of the rescheduled timetables obtained by
the stochastic method at stage 1 and 2 in case I, respectively. Recall that cases I and II have different ranges of the disruption end
times at stage 1, but the same range of the disruption end times at stage 2 (see Table 4).

At stage 1, compared to the solution of case II (Fig. 9) that considered the end time range of [10:06,10:36], the solution of case
I (Fig. 11) resulted in less cancelled services and train delays due to an earlier end time range of [9:51,10:21] considered. In case II
(Fig. 9) the cancelled operation of a dark blue train from stations Mt to Bk was after the minimum end time of stage 1, 10:01, and
thus this cancellation decision was a look-ahead decision at phase 1, which did not need to be respected at stage 2 (see Fig. 10);
while in case I (Fig. 11) the cancelled operation of a dark blue train from stations Mt to Bk was before the minimum end time of
stage 1, 9:51, and thus this cancellation decision was a control decision at stage 1, which had to be respected at stage 2 (see Fig. 12)
causing the operation of another dark blue train from stations Bk to Mt cancelled at stage 2.

This shows that the range of the disruption end time affects the flexibility of a solution, which is relevant to short-turning
patterns. Smooth short-turning patterns for possible longer disruptions like in case II (Figs. 9 and 10) help to reduce cancelled train
services. Case II has an later range of the disruption end time at stage 1 than case I, while both cases have the same range of the
disruption end time at stage 2. In that sense, compared to case I, case II considers that longer disruption durations are more likely
to happen at stage 1, which turns to be true due to another range update at stage 2. From the results of both cases, we infer that in
the situations where longer disruption durations are more likely to happen, short-turning the last train services approaching to the
predicted minimum disruption end time (e.g. Fig. 9 corresponding to case II) rather than cancelling them (e.g. Fig. 11 corresponding
to case I) might be helpful to improve solution flexibility.
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Table 9
Results of the final rescheduled timetables in Case III.

Actual
end time

Approach Obj
[min]

# cancelled
services

Total train
delay [min]

Final
stage

10:51

Stochastic 4,424 40 424 2
Optimistic 4,698 42 498 2
Expected-value 4,808 44 408 3
Pessimistic 4,808 44 408 3

10:56

Stochastic 4,424 40 424 2
Optimistic 5,509 50 509 3
Expected-value 4,808 44 408 3
Pessimistic 4,808 44 408 3

11:01

Stochastic 4,424 40 424 2
Optimistic 5,509 50 509 3
Expected-value 4,808 44 408 3
Pessimistic 4,808 44 408 3

11:06

Stochastic 4,424 40 424 2
Optimistic 5,509 50 509 3
Expected-value 4,808 44 408 2
Pessimistic 4,808 44 408 3

11:11

Stochastic 4,469 40 469 2
Optimistic 5,509 50 509 3
Expected-value 4,853 44 453 3
Pessimistic 5,340 48 540 3

11:16

Stochastic 4,539 40 539 2
Optimistic 5,514 50 514 3
Expected-value 4,923 44 523 3
Pessimistic 5,358 48 558 3

11:21

Stochastic 4,987 44 587 2
Optimistic 5,866 54 466 3
Expected-value 5,371 48 571 3
Pessimistic 5,371 48 571 2

Average

Stochastic 4,527 41 470 –
Optimistic 5,445 49 502 –
Expected-value 4,912 45 454 –
Pessimistic 5,043 46 472 –

VSS 4,912 − 4,527 = 385
Improvement 385∕4,912 = 7.8%

Table 10
Computation times [s] at each update stage.

Approach Case I Case II Case III

Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2

Stochastic 234 66 244 51 244 51
Optimistic 10 3 9 3 9 3
Expected-value 10 3 11 3 11 3
Pessimistic 11 3 10 2 11 3

3.2. Computation analysis

Table 10 shows the computation times for the stochastic method and the deterministic method using different strategies at
stages 1 and 2 for all cases. In each case, the computation time of each approach to stage 1 is longer than the one to stage 2. This
is because at a later stage only the dispatching decisions for the new control and look-ahead horizons (for the extended duration)
need to be made. The deterministic method for each strategy take much shorter computation time than the stochastic method,
as it considers a single disruption scenario at each computation. Although the stochastic method is relatively time-consuming, the
rescheduling solutions are better. Table 11 shows the numbers of variables, binary variables and constraints required respectively by
the stochastic method and the deterministic method using a pessimistic strategy. We only show the pessimistic strategy in Table 11,
because it needs more variables and constraints compared to the optimistic or expected-value strategy due to longer disruption
duration considered. Because the stochastic method handled 7 scenarios at a stage, the required variables and constraints (see
Table 11) were longer than the ones of the deterministic method using a pessimistic strategy, which handled only 1 scenario at a
stage.

Among all cases, the longest computation time of a stochastic solution was around 4 min. This shows the applicability of applying
the proposed stochastic approach assuming that the range of the disruption end time prediction update is provided at least 10 min
before the current minimal end time prediction (𝓁 = 10 min).
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Fig. 7. The rescheduled timetable by the optimistic strategy at stage 1 in case II (disruption end time: 10:06).

Fig. 8. The rescheduled timetable by the optimistic strategy at stage 2 in case II (disruption end time: 10:36).

4. Conclusions

This paper proposed a rolling horizon two-stage stochastic timetable rescheduling model to manage uncertain disruptions with
better solutions. It was tested on a part of the Dutch railways and compared to a deterministic rolling horizon timetable rescheduling
model. The results showed that compared to the deterministic method, the stochastic method is more likely to generate better
rescheduling solutions for uncertain disruptions by less train cancellations and/or delays, due to the flexibility towards the short-
turning patterns under different disruption durations. The flexibility of a solution by the stochastic method can be impacted by the
range of the disruption end time. From the results we infer that in the situations where longer disruption durations are more likely
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Fig. 9. The rescheduled timetable by the stochastic approach at stage 1 in case II (disruption end time: 10:06).

Fig. 10. The rescheduled timetable by the stochastic approach at stage 2 in case II (disruption end time: 10:36).

to happen, short-turning the last train services approaching to the predicted minimum disruption end time rather than cancelling
them might be helpful to improve solution flexibility. This will be examined in near future. The stochastic programming model
considers several scenarios simultaneously, is therefore larger and thus takes longer computation time. The computation time might
be reduced without affecting the solution quality by optimizing the number of scenarios, the size of the network, the length of the
look-ahead horizon, or exploiting the periodic structure of the (rescheduled) timetable.

This paper used a discrete uniform distribution over the range of the estimated disruption end to define scenarios with the same
occurrence probabilities. From the case study results we found that although some scenarios had different disruption durations the
rescheduling solutions to these scenarios were the same. The scenario estimation method can be improved by identifying various
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Fig. 11. The rescheduled timetable by the stochastic approach at stage 1 in case I (disruption end time: 9:51).

Fig. 12. The rescheduled timetable by the stochastic approach at stage 2 in case I (disruption end time: 10:36).

different scenarios with essentially different outcomes to find a rescheduling solution. As we rely on a periodic planned timetable

there should be a finite number of discrete scenarios that lead to essentially different outcomes. It is beneficial to identify these

representative scenarios, of which the probabilities can be assigned based on the relative sub-range that they would occur. This will

be part of future work.
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Table 11
The problem sizes of the stochastic and deterministic models.

Approach Indicators Case I Case II Case III

Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2

Stochastic
# variables 476,105 476,994 476,378 476,994 476,378 477,337
# binary variables 423,017 423,906 423,290 423,906 423,290 424,249
# constraints 2,200,666 2,323,312 2,229,771 2,325,510 2,229,771 2,361,890

Pessimistic
# variables 68,015 68,142 68,054 68,142 68,054 68,191
# binary variables 60,431 60,558 60,470 60,558 60,470 60,607
# constraints 293,467 306,538 296,046 306,853 296,046 310,299
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