
Optimal Temporal Decoupling in Task
Scheduling with Preferences

Leon Endhoven Tomas Klos Cees Witteveen

Department of Software Technology1

Delft University of Technology, Delft, The Netherlands

Abstract

Multi-agent planning and scheduling concerns finding a joint plan to achieve some set of common goals
with several independent agents each aiming to find a plan or schedule for their part of the goals. To avoid
conflicts in these individual plans or schedules decoupling is used. Such a decoupling entails adding local
constraints for the agents such that they can schedule autonomously within those constraints, while they
guarantee that a conflict-free global solution can be constructed from the individual agents’ schedules. In
this paper we investigate finding an ‘optimal’ decoupling, that maximizes the sum of the agents’ prefer-
ences about their scheduling of tasks. We show using a Linear Programming (LP) approach that optimal
decouplings can be found efficiently by exploiting the properties of a task scheduling instance.

1 Introduction
Planning and scheduling are very important but difficult-to-solve problems occurring in many domains.
Intuitively, a planning problem consists of a current and a goal state, and a set of activities which are able
to transform states into other states (see, e.g., [8]). A solution is a selection and ordering of activities,
that transform the current state into the goal state, possibly via intermediate states. Here, we assume that
the ordering of activities is already given, along with some quantitative temporal information about this
ordering. The task that remains is that of scheduling the activities at time-points such that the temporal
constraints are satisfied [3]. We focus on the very common situation of planning tasks that need multiple
agents to be executed [7].

We will illustrate the issues at hand using the following running example.

Running Example. Imagine that Alice, Bob and Chloe participate in a 3-hour science project which has to
take place some day between 12.00h and 18.00h. Suppose they can divide the workload evenly between the
three of them, resulting in 3 lab experiments of one hour each, to be done by Alice, Bob and Chloe, in that
order, because Bob and Chloe each use the results of the previous experiment.

Before she does the experiment, Alice wants to have lunch, which takes half an hour. After the experiment
she wants to spend 2 hours on her homework. Bob wants to spend 2 hours on his homework before he does
his part of the experiment. Once he has finished his experiment, he wants to prepare dinner, which takes 1
hour. Chloe aims to spend half an hour on her lunch, after which she wants to go cycling for 2 hours, but
she needs at least half an hour time between lunch and cycling. Once she has returned from cycling, she
wants to do her part of the experiment.

We would like Alice, Bob and Chloe to independently find a schedule for their activities such that when
merged, these schedules constitute a global schedule satisfying all constraints.

The framework of the temporal constraint satisfaction problem (TCSP) can be used to model these
situations [3]. In a TCSP, time variables represent events like the start or end of an activity, and sets of
temporal intervals specify the allowed values for these variables as well as for differences between certain
pairs of variables. Various questions may be asked of a given TCSP instance, such as whether it is consistent,

1The first author is a master student in Applied Mathematics at Delft University of Technology.

i.e., whether there exists an assignment of time values to the variables such that no constraint is violated, or
whether a feasible schedule exists that satisfies some additional constraints. If for each variable and pair of
variables there exists at most one interval constraining it, we speak of the Simple Temporal Problem (STP)
[3], an instance of which is called a Simple Temporal Network (STN). Every vertex in an STN represents
a time variable, for example the end of Bob’s homework, while directed arcs represent the (precedence)
relations between the tasks, and are labeled with the interval in which the difference between the two tasks
has to lay.

When the time variables are distributed among a set of agents, such as in the example, we cannot in
general let the agents schedule these time variables independently of one another, because there may be
dependencies between the different agents’ time variables. For example, if Alice wants to start her part of
the experiment as late as possible, at 15h, followed by 2 hours of homework between 16h and 18h, while
Bob wants to start his part of the experiment as early as possible, at 14h, after 2 hours of homework, then
these schedules are consistent with the agents’ preferences. However, the combination of these local agent-
schedules violates the ordering constraint on the three parts of the experiment: Bob does his part of the
experiment before Alice.

To prevent such problems, we need to coordinate the agents’ plans and schedules [5]. Various approaches
have been proposed for this in the literature. In plan merging [11], coordination is applied after plans have
been constructed by the agents. Alternatively, coordination during planning [4] views planning and coor-
dination as intertwined processes. Here we focus on the solution approach of coordination by design [7],
inter-agent dependencies are removed before planning, by giving the agents extra local constraints, such
that with the set of those constraints, they are free to plan autonomously, while conflicts are guaranteed not
to occur upon merging the plans. Examples of this approach are temporal decoupling in Simple Temporal
Networks [6] and plan decoupling in general task-based networks [1, 10]. The idea is that all inter-agent
constraints are replaced by local constraints for the agents involved, where the interval specifying the differ-
ence between the different agents’ variables is ‘split up’ between the two agents. In our example, we could
say that Alice has to start her part of the experiment at 13.30h at the latest and Bob can start his part of the
experiment not earlier than 14.30h. This way, no matter how the agents solve their local STN regarding these
tasks, we are guaranteed that their local solutions, when combined, do not violate the inter-agent constraint.

Of course, there are (infinitely) many ways in which we can replace even a single inter-agent constraint
with multiple local agent-constraints, so there are many alternative decouplings. The agents involved in
the problem most likely have varying preferences for different decouplings, and would like to receive a
decoupled STN in which their preferences have been taken into account. Finding such a decoupling that
maximizes the sum of the agents’ preferences is called the Optimal Decoupling Problem (ODP) [9]. While
in STNs an arbitrary decoupling can be found efficiently [6], the ODP is NP-hard [9], though it is efficiently
solvable if all agents have linear preference functions [9].

In this paper, we study this optimal decoupling problem in a subclass of STNs, of which our running
example is an instance. In this subclass, unlike general STNs, preceding tasks have to be completely finished
before a task can commence. After presenting preliminaries in section 2, we discuss our results for the
temporal decoupling problem in this class of networks in section 3 and for the optimal decoupling problem
in section 3. Section 4 concludes our paper.

2 Preliminaries

2.1 Task Scheduling
The example given in the introduction is an example of a multi-agent task scheduling problem, where each
task τj of an agent Ai has to be scheduled at a specific time or time-interval. In general, a task scheduling
problem consists of a set A = {A1, A2, . . . Am} of m agents and a set of n tasks T = {τ1, τ2, . . . , τn}.
Each agent Ai is assumed to perform a disjoint set Ti ⊆ T of tasks to perform. The sets Ti constitute a
partitioning {Ti}mi=1 of T .

There exists a transitive precedence relation ≺ inducing a partial order on T signifying that τi ≺ τj ,
whenever τi has to be completed before τj can start. We say that τi immediately precedes τj , denoted by
τi � τj , if τi ≺ τj and there exists no τk such that τi ≺ τk and τk ≺ τj . Furthermore, each task τi ∈ T has
a processing time pi, a release date ri (earliest allowed scheduling time), and a possibly strict due date di
(latest allowed completion time).

A solution to this task scheduling problem is an assignment σ : T → N assigning to each task τi its

starting time such that all constraints with respect to precedence relations, release dates ri and, if they are
strict, also the due dates di of every task are satisfied: i.e., for all τi, τj ∈ T , we should have σ(τi) + pi ≤
σ(τj) if τi ≺ τj , and σ(τi) ≥ ri and σ(τi) + pi ≤ di.

Sometimes we might not be satisfied with just an arbitrary assignment, but we would like to find an
assignment σ minimizing the makespan, i.e., a σ such that max{σ(τi) + pi | τi ∈ T } is minimized.

Example 1. Consider the running example (see Example 1).
Here T = {τexA

, τexB
, τexC

, τlunA
, τlunC

, τhomA
, τhomB

, τhomC
, τdinB

, τcycC , τidlC}, where τexA
is

the first (Alice’s), τexB
the second (Bob’s) and τexC

the third (Chloe’s) part of the experiment, τlunA
, and

τlunC
denote the lunch of Alice and Chloe, respectively, τhomA

, τhomB
, τhomC

denote the homework of
Alice, Bob and Chloe, respectively, τdinB

is Bob’s diner, τcycC Chloe’s cycling and τidlC denotes Chloe’s
forced idle time (after lunch). From the example specifications it follows that τexA

≺ τexB
≺ τexC

, τlunA
≺

τexA
≺ τhomA

, τhomB
≺ τexB

≺ τdinB
and τlunC

≺ τidlC ≺ τcycC ≺ τexC
. Furthermore, we have

pexA
= pexB

= pexC
= 60 (minutes). Moreover, plunA

= plunC
= 30, while phomA

= phomB
= 120,

pdinB
= 60, pcycC = 120 and pidlC = 30. We also have three release dates rlunA

= rhomB
= rlunC

= 0
and three due dates dhomA

= ddinB
= dexC

= 360.
Combining all the specifications results in the following conditions on a solution σ: σ(τexA

) + 60 ≤
σ(τexB

), σ(τexB
) + 60 ≤ σ(τexC

), σ(τlunA
) + 30 ≤ σ(τexA

), σ(τexA
) + 60 ≤ σ(τhomA

), σ(τhomB
) +

120 ≤ σ(τexB
), σ(τexB

)) + 60 ≤ σ(τdinB
), σ(τlunC

) + 30 ≤ σ(τidlC), σ(τidlC) + 30 ≤ σ(τcycC),
σ(τcycC) + 120 ≤ σ(τexC

), σ(τlunA
) ≥ 0, σ(τhomB

) ≥ 0, σ(τlunC
) ≥ 0, σ(τhomA

) + 120 ≤ 360,
σ(τdinB

) + 60 ≤ 360 and σ(τexC
) + 60 ≤ 360.

2.2 Simple Temporal Networks
To deal with task scheduling problems like the one we have presented before, Simple Temporal Networks
(STNs) might be a convenient tool to use: they provide a formalism to deal with temporal variables (time-
point variables) and simple constraints between them:

Definition 1. A Simple Temporal Network S is a pair (T,C), where T is a set {t0, t1, ..., tn} of time-point
variables and C is a finite set of binary constraints on those variables, each constraint having the form
tj − ti ≤ δ, for some real number δ. The time-point t0 represents an arbitrary, fixed, reference point on the
timeline. A solution σ to an STN S is an assignment of values (time-points) to time-point variables, such
that all constraints are satisfied.

As usual, we will replace the time-point t0 by the time-point z, the zero time-point ‘variable’ always taking
the value 0. We know that STNs can be solved efficiently: an arbitrary solution to an STN S can be found
in O(n3) time [2].

Encoding a task scheduling problem as an STN is rather straightforward: Every task τi is represented by
its starting time point ti, whenever τi � τj , we have an STN constraint pi ≤ tj − ti ≤ ∞ in C2. To encode
constraints imposed by release dates, for every τi with release date ri and due date di, we add constraints
z − ti ≤ −ri and ti − z ≤ di.

Often we represent an STN S = (T,C) as a directed labeled graph GS = (T,E, l) where a directed
edge (ti, tj) is labeled by the interval [a, b] if there are constraints a ≤ tj − ti ≤ b in C. If we encode the
running example as an STN, we get the STN shown in Figure 1. From this point on, we will denote a task
by τi and its associated time point variable in an STN encoding by ti.

2.3 Task scheduling problems as a special subclass of STNs
Although we can use the STN-machinery to solve task scheduling problems, we can solve an STN-encoding
of a task scheduling problem in a much more efficient way. Let us denote the subclass of STNs encoding
task scheduling instances by ST N≺. This subclass ST N≺ contains STNs S = (T,C) characterized by
the following properties:

1. for all ti, tj ∈ T − {z}, where ti 6= tj , if a ≤ tj − ti ≤ b ∈ C then either 0 ≤ a < b or a < b ≤ 0;
if 0 ≤ a < b we say that ti precedes tj , denoted by ti ≺ tj , and, analogously, if a < b ≤ 0, we say
that tj ≺ ti;

2Sometimes, there is an additional restriction that a certain task τj has to be processed within bij time units once task τi ≺ τj is
finished. In that case the upperbound∞ in pi ≤ tj − ti ≤ ∞ can be replaced by bij + pi.

Figure 1: Alice’s, Bob’s and Chloe’s tasks represented as an STN

2. The set ≺ of all such precedence constraints constitutes a partial order on T , i.e., there are no cycles
in (T ,≺).

Let us define for every ti ∈ T the sets pre(ti) = {tj ∈ T | tj � ti} and suc(ti) = {tj ∈ T | ti � tj}.
Then, by the second property of ST N≺, every timepoint ti ∈ T has a disjoint set of predecessors and
successors resulting in the following observation:

Observation 1. Given an S = (T,C) ∈ ST N≺, a time-point ti ∈ T and a solution σ for S. If σ(ti) = s
then the following inequalities hold:

1. for all tj ∈ suc(ti), σ(tj) ≥ s+ pi;

2. for all tj ∈ pre(ti), σ(tj) ≤ s− pj .

Given this observation and taking into account that σ(ti) ≥ ri, we see that for every ti ∈ T the earliest
starting time est(ti) of ti, can be computed as follows:

est(ti) = max({est(tj) + pj | tj ∈ pre(ti)} ∪ {ri}) (1)

In order to compute est(ti), we only need information about the�-predecessors3 of ti. Hence, for every ti
we can compute est(ti) in a time that is dependent upon the size of the set pre(ti). Therefore, computing
the earliest starting times est(ti) according to a ≺-topological ordering of T will require O(k) time in total,
if k is the number of edges present in the STN.

Given the deadlines di we can also define the latest starting time (lst(ti)) of every task ti occurring in
some S = (T,C) ∈ ST N≺ :

lst(ti) = min({lst(tj)− pi | tj ∈ suc(ti)} ∪ {di − pi}) (2)

Like the est() computations, we see that the lst() computations can also be done in O(k) time.
Hence, we have the following result:

Proposition 1. Let S = (T,C) ∈ ST N≺. Then the following holds:

1. for every solution σ of S and for every ti ∈ T , est(ti) ≤ σ(ti) ≤ lst(ti);

2. an arbitrary solution σ of S can be computed incrementally in O(k)-time.

This means a significant improvement above general STNs where these computations take O(n3) time.
3these are the immediate predecessors of ti w.r.t. the precedence relation ≺.

3 Temporal Decoupling and Optimal Temporal Decoupling
The task scheduling problem we have discussed before consists of a set of agents Ai each having a set of
tasks Ti to perform. We assume that these tasks are encoded as time-point variables in an STN S = (T,C).
From this point on, we will assume that each individual agent Ai has to find a solution σi : Ti → N for
the STN Si = (Ti ∪ {z}, C ′i), where Ti is the subset of tasks (time-points) assigned to Ai and C ′i is a set of
constraints relevant for Ti. In doing so we have to ensure that these individual solutions σi together should
not violate any constraint in C, that is, the merge σ =

⋃m
i=1 σi of all individual solutions should constitute

a solution to the total problem. This problem is known as the so-called Temporal Decoupling Problem:

Definition 2. Let S = (T,C) be a consistent4 STN where T is a set {t0, t1, ..., tn} of time-point variables
and C is a finite set of binary constraints on those variables. Suppose that T = {Ti}mi=1 is partitioned
in m subsets Ti. Then the temporal decoupling problem is to find m subnetworks Si = (Ti ∪ {z}, C ′i)
such that, whenever σ1, . . . , σm are solutions of the individual STNs S1, . . . , Sm, respectively, their merge
σ =

⋃m
i=1 σi is also a solution of the original STN S.

Example 2. In the running example, the only tasks connecting Alice and Bob are τexA
and τexB

. To create
a subnetwork SA = (TA ∪ {z}, C ′A) for Alice, we take the set CA of all constraints for the tasks of Alice
and add a constraint to the latest starting time of texA

to CA, for example: texA
− z ≤ 90. To make sure

that the merge of Alice’s and Bob’s solutions σA and σB also represents a solution σ of the original STN,
we add the constraint texB

− z ≥ 150 to CB . Decoupling Bob and Chloe can be done in a similar way.

To achieve an arbitrary decoupling of an STN S = (T,C) in ST N≺ where T is partitioned into blocks
Ti, we have to pay attention to those tasks ti and tj such that ti � tj and both belong to different agents Ak

and Al, respectively. Here, the problem is that agent Ak might choose a solution σk and Al a solution σl for
their own set of tasks, but thereby violate the precedence constraint ti ≺ tj , i.e., it might easily occur that
σk(ti) + pi > σl(tj).

Example 3. Note that in our example, τexA
≺ τexB

. For a schedule σA chosen by Alice, every solution σA
has to satisfy σ(texA

) ∈ [est(texA
), lst(texA

)] = [90, 240] and, analogously, for Bob we have σB(texB
) ∈

[est(texB
), lst(texB

)] = [120, 240]. Now Alice might choose to schedule her experiment at texA
= 180,

while Bob independently might choose to schedule his experiment at texB
= 120, which obviously conflicts

with the constraint texA
+ 60 ≤ texB

.

The solution ensuring that both agents can independently choose a value without violating any (inter-
agent) constraint is rather simple:

1. for every such a pair of tasks ti, tj belonging to different agents, such that ti � tj , and lst(ti) + pi >
est(tj), choose a value δij such that est(ti) +pi ≤ δij ≤ lst(ti) + pi and est(tj) ≤ δij ≤ lst(tj).

2. we add a constraint ti − z ≤ δij − pi to the set of constraints in the STN Si = (Ti, Ci) of agent Ai

and we add the constraint z − tj ≤ −δij to the set of constraints of the STN Sj = (Tj , Cj) of agent
Aj . Here, Ci and Cj denote the restriction of the total set of constraints C to the set of constraints
over Ti ∪ {z} and Tj ∪ {z}, respectively.

As can be seen, this restriction will enforce any assignment σi chosen by Ai and σj chosen by Aj to
satisfy σ(ti) ≤ δij−pi ≤ σ(tj)−pi, hence the constraint ti+pi ≤ tj is satisfied. Note that both constraints
that are added are intra-agent constraints that together imply the inter-agent constraints.

Example 4. For a schedule σA chosen by Alice, for σA(texA
) we have [est(texA

), lst(exA)] = [90, 240]
and, analogously, for Bob we have σB(texB

) which is restricted to [est(texB
), lst(texB

)] = [120, 240]. Now
Alice might choose to schedule her experiment at texA

= 180, while Bob chooses to schedule his experiment
at texB

= 120, which conflicts with the constraint texA
+60 ≤ texB

. Decoupling would imply that we choose
a value δ, for example δ = 200, and we add the constraint texA

− z ≤ 140 to CA and z − texB
≤ −200 to

CB .

The following observation is almost immediate

Observation 2. An arbitrary decoupling of an STN S = (T,C) in ST N≺ can be achieved in O(k) time, if
there are k edges present.

4An STN S is called consistent if S has at least one solution.

Notice however, that the values δij determining the decoupling are chosen arbitrarily. This is not always
what we want, since agents might have task preferences that easily could be in conflict with the chosen
decoupling values.

3.1 Preferences and weights for preferences
The values δij that are chosen in decomposing an STN as discussed before are chosen arbitrarily. Some
agents Ai however, might prefer some of their tasks ti to be scheduled as early or as late as possible, while
other agents might prefer to be as flexible as possible with respect to the starting time of their tasks and
therefore would prefer to have available a maximal time-interval to schedule each task. In general, we
assume that if agent Ai has to choose, as the result of the decoupling process, its starting time σi(ti) in an
interval [ti,1, ti,2], then the following should hold: if the agent has

1. an early preference, (s)he wants to have ti,1 as small as possible, that is as close to est(ti) as possible;

2. a late preference, (s)he wants to have ti,2 as large as possible, that is as close to lst(ti) as possible;

3. a flexibility preference, (s)he wants the difference ti,2 − ti,1 to be as large as possible.

Example 5. Chloe might prefer to have some time to clean and check her bike before she starts cycling,
although this is not absolutely necessary for her. To get this freedom to do this, she can give a ‘flexibility’
preference to her cycling task. In that case, if flexibility is given (for example a time-interval of half an hour)
to her in the decoupling, she can use this half hour to clean and check her bike and afterwards begin with
her two hours of cycling.

It is not difficult to see that such preferences of agents might easily conflict: Suppose we have two tasks
τi and τj , with τi � τj . If Ai wants τi to be scheduled as late as possible and Aj wants τj to be scheduled
as early as possible, we have two conflicting preferences. We could grant agentAi his preference and ignore
agent Aj or vice versa, or we could grant them each half of their preference, by choosing ti,2 and tj,1 such
that the interval [est(ti), lst(ti)] and the interval [est(tj), lst(tj)] are reduced by the same amount. But what
if the preference of agent Ai of task τi is vital to him and this is not the case for agent Aj of task τj? This
issue can be resolved by forcing the agents to give a certain weight for their specific preference w.r.t. task τi
indicating the importance of their preference w.r.t. τi. If, for example, Alice wants her experiment texA

to
start as late as possible, she can for example give a weight of 8 to her preference, while Bob might give a
weight of 2 for his early preference of his experiment texB

.
Using these weights, we can determine a utility for the resulting combination of a preference and it

weight:

1. A task τi with preference ‘later’ and weight li ≥ 0 has a utility li × (ti,2 − lst(ti)).

2. A task τi with preference ‘early’ and weight ei ≥ 0 contributes ei × (est(ti)− ti,1).

3. A task τi with preference ‘flexibility’ and unit value fi ≥ 0 contributes fi × (ti,2 − ti,1).

Note that these utility values are dependent upon the values of the variables ti,1 and ti,2. Instead of con-
structing an arbitrary decoupling by choosing the values δij arbitrarily, we would now like to achieve an
optimal decoupling, that is, a decoupling where the sum of all the utilities of the agents is maximized5.

Therefore we start with specifying the following linear program (LP) whose solution enables us to find
the values ti,1 and ti,2 such that the sum of the utilities is maximized:

max
∑

i∈early

ei × (est(ti)− ti,1) +
∑

i∈flex

fi × (ti,2 − ti,1) +
∑

i∈later

li × (ti,2 − lst(ti))

s.t. ∀i : ti,1 ≤ ti,2
ti,2 ≤ lst(ti)

ti,1 ≥ est(ti)

s.t. ∀τi � τj ,

tj − ti ∈ [aij , bij] : tj,2 − ti,1 ≤ bij
tj,1 − ti,2 ≥ aij

5This optimization criterion is denoted as maximizing the utilitarian social welfare.

Here the objective is to maximize the utilities and the inequalities guarantee that the obvious bounds
for ti,1, ti,2 are respected using the lst and est values, while the last inequalities ensure that the precedence
constraints are respected. The following result is easy to verify:

Proposition 2. Let Sol = {ti,1, ti,2 | ti ∈ T} be a solution of the LP stated above. Then,

1. if for every ti � tj such that ti belongs to Ai and tj belongs to Aj , the intra-agent constraints
ti ≤ ti,2 and tj ≥ tj,1 are added to the constraint sets Ci of Si and Cj of Sj , then the STNs
S1, S2, . . . , Sm are decoupled.

2. any solution σ obtained as the merge of the individual solutions σi optimizing the utilities of the tasks
belonging to Ti is an optimal solution.

Because we can calculate the est(ti) of all the tasks τi in polynomial time, and it is possible to describe
the general problem with an LP formulation, we have shown that this problem is solvable in polynomial
time.

Remark 1. As has been shown in [9], optimal decoupling in STNs can be achieved in polynomial time if
the objective is linear. The general construction in STNs however, requires more than |T |3 + |T | + |C|
constraints and |T |2 variables in the underlying LP. Using STNs in S≺, we are able to reduce the number of
constraints in the LP to 3|T |+ |C| and the number of variables to 2|T |.

We remark that if all the tasks have been given an ‘early’ preference, we can also calculate est(ti) for
every task τi, which gives us a decoupling in O(k) time. The same holds if all the tasks have a ‘later’
preference, in which case we calculate lst(ti) for every task τi.

Example 6. Assume that Alice wants to have lunch as early as possible (weight 3) and wants to do her
experiment and homework as late as possible (weights respectively 4 and 5). Bob prefers to do his homework
and experiment as early as possible (weights respectively 2 and 5), but is not certain about his plans for the
evening, so he wants as much flexibility in his dinner preparation planning as possible (weight 6). Chloe
wants to have lunch as early as possible (weight 2), but prefers some flexibility in her cycling schedule
(weight 5) and she prefers her experiment to be as late as possible (weight 3).
An optimal decoupling results in the subnetworks given in Figure 2(a), with total social welfare 2280.

(a) Ex.6 - Dotted lines are new constraints (b) Ex.7 - Dotted lines are new constraints

Figure 2: Example 6 and 7 decoupled

Example 7. Suppose every person prefers to have maximum flexibility for each task and everyone has the
same weight 1. There are several optimal decouplings possible; one is given in Figure 2(b), with total social
welfare equal to 390.

Note that it is also possible to apply the LP formulation to a problem with an added optimization crite-
rion, for example minimum makespan. In that case the task(s) τi with max{est(ti)+pi | ti ∈ T}will get an
extra constraint ti,2 ≤ est(ti) and every task τj 6= τi with suc(tj) = ∅ will also get tj,2 + pj ≤ est(ti) + pi
as an extra constraint. The result is a decoupling where preferences are granted but a minimum makespan is
also guaranteed.

4 Conclusion and discussion
We have shown that for task based scheduling there is a rather simple method to obtain an optimal temporal
decoupling where scheduling preferences of agents have been taken into account. While in general, decou-
pling will take at least O(n3) time as was shown by Hunsberger, we could achieve an arbitrary decoupling
in O(k) time. Following a general method to obtain an optimal decoupling as has been suggested in [9],
we have shown how preferences of agents can be taken into account to achieve an optimal decoupling. Al-
though we used an LP specification of the decoupling to make the ideas underlying the decoupling clear, an
algorithm has been developed based on these ideas that is able to achieve an optimal decoupling but requires
less computational efforts when compared to a general LP solver if applied to this type of problem.

References
[1] Pieter Buzing, Adriaan ter Mors, Jeroen Valk, and Cees Witteveen. Coordinating self-interested plan-

ning agents. J. of Autonomous Agents and Multi-Agent Systems, 12:199–218, 2006.

[2] R. Dechter. Constraint processing. The Morgan Kaufmann Series in Artificial Intelligence. Morgan
Kaufmann Publishers, 2003.

[3] Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraint networks. Artificial Intelligence,
49:61–95, 1991.

[4] Marie E. desJardins, Edmund H. Durfee, Charles L. Ortiz, Jr., and Michael J. Wolverton. A survey of
research in distributed, continual planning. AI Magazine, 20:13–22, 2000.

[5] Edmund H. Durfee. Distributed problem solving and planning. In Gerhard Weiss, editor, Multiagent
systems: A modern approach to distributed artificial intelligence, pages 121–164. MIT Press, 1999.

[6] Luke Hunsberger. Algorithms for a temporal decoupling problem in multi-agent planning. In Proceed-
ings AAAI, 2002.

[7] Adriaan ter Mors, Chetan Yadati, Cees Witteveen, and Yingqian Zhang. Coordination by design and
the price of autonomy. J. of Autonomous Agents and Multi-Agent Systems, 20, 2010.

[8] Dana S. Nau. Current trends in automated planning. AI Magazine, 28:43–58, 2007.

[9] Léon R. Planken, Mathijs de Weerdt, and Cees Witteveen. Optimal temporal decoupling in multiagent
systems. In Proceedings AAMAS, pages 789–796, 2010.

[10] J. Renze Steenhuisen and Cees Witteveen. Plan decoupling of agents with qualitatively constrained
tasks. Multiagent and Grid Systems, 5:357–371, 2009.

[11] Hans Tonino, André Bos, Mathijs de Weerdt, and Cees Witteveen. Plan coordination by revision in
collective agent based systems. Artificial Intelligence, 142:121–145, 2002.

