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a b s t r a c t 

Unique experiments were performed in a homogeneously sparged rectangular 400 × 200 × 2630 mm 

( W × D × H) bubble column with and without liquid co-flow. Bubbles in the range 4–7 mm were pro- 

duced by needle spargers, which resulted in a very uniform bubble size. Dual-tip optical fibre probes 

were used to measure horizontal profiles of gas fractions, bubble velocities and bubble chord lengths for 

superficial gas velocities U sg in the range 0.63–6.25 cm/s and superficial liquid velocities U sl up to 20 cm/s. 

Images of the bubble column were captured and a Bubble Image Velocimetry technique was adopted to 

calculate bubble (parcel) velocities. For low gas fractions, when a homogeneous flow regime occurred, 

both methods agreed very well and the optical fibre probes were found to be rather accurate for our 

bubbles. A liquid co-flow was found to have a calming effect and to stabilize a homogeneous bubbly 

flow regime, with less spatial variation in gas fractions and bubble velocities. Bubble chord lengths were 

almost normally distributed and do not exhibit the theoretical triangular probability density functions. 

The mean cord lengths were in the range 1.9–3.5 mm and found to increase with U sg and to decrease 

slightly with increasing U sl , while a liquid co-flow significantly reduced the standard deviation of the 

chord length distribution. 

© 2020 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Due to the continuous increase in computational power and de- 

and for more accurate multiphase CFD simulations, there is an 

bvious need for more precise and detailed experimental data on 

ubbly flows for development and validation purposes. Euler-Euler 

FD simulations, where both liquid and gas phases are modeled as 

nterpenetrating fluids, require proper modeling of two-phase tur- 

ulence and of the interfacial forces such as drag, virtual mass, lift, 

all lubrication and turbulent dispersion ( Van den Akker, 1998; 

an den Akker, 1998; Dhotre et al., 2013; Liao et al., 2015; Van 

en Akker, 2015 ). These sub-models dealing with interfacial mo- 

entum transfer rates and bubble induced turbulence, are a strong 

unction of (local) bubble size, slip velocity and void fraction. Many 

FD models (see e.g. Dhotre et al., 2013 ) assume a constant, single 

ubble size to keep the computational burden of the simulation 
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E-mail addresses: corne_muilwijk@live.nl , Corne.Muilwijk@ul.ie (C. Muilwijk), 

arry.VanDenAkker@ul.ie (H.E.A. Van den Akker). 

c

l

B

C

ttps://doi.org/10.1016/j.ijmultiphaseflow.2020.103498 

301-9322/© 2020 The Authors. Published by Elsevier Ltd. This is an open access article u
imited, while in experiments (mean) bubble size is usually badly 

ontrolled, reported or even known. Due to the many uncertain- 

ies in all these sub-models, this single bubble size then is often 

sed (tacitly assumed or explicitly mentioned) as a tuning param- 

ter (often in the range 4–6 mm) to construct a better agreement 

etween simulations and experimental data, such as by Deen et al. 

2001) ; Masood and Delgado (2014) ; Khan et al. (2017) , and Rzehak

t al. (2017) . 

However, in most bubble columns (industrial or for research 

urposes), bubbles are formed chaotically with a non-uniform dis- 

ribution of poly-disperse bubbles; hence assuming a single bub- 

le size to model interaction forces, dispersion and bubble induced 

urbulence is a bold oversimplification. A disparity of the (initial) 

ubble size (at gas sparger level) causes non-uniform bubble slip 

elocities, which leads to additional lateral dispersion (due to bub- 

les overtaking) generating additional turbulence, and strongly in- 

reased bubble collision rates, potentially leading to bubble coa- 

escence and breakup (depending on the presence of surfactants). 

ubble size distributions therefore play a vital role in setting up 

FD simulations and in their validation ( Besagni and Inzoli, 2016 ). 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Most recent developments of multi-phase CFD codes deal with 

reakup and coalescence kernels to more precisely model inter- 

acial momentum transfer rates and bubble induced turbulence 

ased on a local bubble size distribution (modeled by a popula- 

ion balance and a limited amount of bubble size classes), at the 

ost of increased complexity, longer simulation times and conver- 

ence issues. Huang et al. (2018) studied the impact of bubble size 

odeling in CFD simulations of bubble columns and found that: 

1) the single bubble size models gave surprisingly good agree- 

ent with experimental data for symmetrical bubble columns, but 

ess accurate agreement for a-symmetrically sparged configurations 

which will be dealt with in Part II); and (2) there is no agreement

n accurate models describing bubble coalescence and breakup 

ates (such as h- and i-MUSIG models). According to McClure et al. 

2017) average bubble size and bubble size distribution have an ef- 

ect on the swarm drag correction factor. Besagni et al. (2017) ex- 

lored various approaches to represent the bubble size distribution 

nd also concluded that the correct simulation of the fluid dynam- 

cs in the bubble column requires (more) accurate coalescence and 

reak-up closures. 

The rationale behind the research reported both in this Part 

 and in Part II is to acquire experimental data with bubble 

ize as uniform as possible. Eventually, such data may be instru- 

ental for distinguishing between effects caused by a swarm of 

niform bubbles and the more complicated interactions between 

on-uniformly sized bubbles. In the latter case, more sophisti- 

ated models for coalescence and break-up are needed, see e.g. 

ukherjee et al. (2019) . In the ideal case of a single unique and

onstant bubble size, accounting for effects of a bubble size dis- 

ribution and for breakup/coalescence is no longer necessary, such 

hat a model for bubble induced turbulence may be validated in- 

ependently of the enactment of models for interfacial momentum 

ransfer. 

It is then obvious that there is a coexisting requirement for 

ubble size measurements along with local bubble velocities and 

as fractions. In this paper, we report new experimental data, in 

erms of local void fractions, bubble velocities and bubble chord 

engths, on bubbly flows in a homogeneously sparged bubble col- 

mn with a very uniform bubble size. For diluted bubbly flows 

 Besagni et al., 2016 ), or in shallow (pseudo 2D) bubble columns 

uch as in Lau et al. (2013) , an image analysis approach can be

erformed to obtain gas fractions and bubble size and shape mea- 

urements. For denser bubbly flows and/or larger bubble columns, 

mage analysis becomes increasingly difficult due to overlapping 

ubbles. Measurement methods are then limited to X-ray densiom- 

try ( Hernandez-Alvarado et al., 2018; Mandalahalli et al., 2020 ), 

lectrical resistance tomography ( Singh et al., 2017 ) or intrusive 

easurement methods such as a borescope ( Hernandez-Alvarado 

t al., 2018 ), wire-mesh sensors ( Prasser et al., 1998; Hampel 

t al., 2009; Hernandez-Alvarado et al., 2018 ), shadowgraphic opti- 

al probes ( Lichti and Bart, 2018 ), or (multi-point) electrical resis- 

ance ( Buwa and Ranade, 2005; Singh et al., 2017 ) or optical fibre

robes ( Frijlink, 1987; Bakker, 1992; Harteveld, 2005 ). 

Optical fibre or electrical resistance probes are regularly used 

n single tip, dual tip, or four-tip configurations.Probe signals are 

ypically sampled at a rate in the order of O (10 4 ) Hz ( Chaumat

t al., 2005; Le Corre et al., 2003; Shen and Nakamura, 2014 ), 

r sometimes even lower as long as the phase indicator function 

PIF) can be registered with sufficient temporal resolution ( Kiambi 

t al., 2003 ). Fibre probes in a single tip configuration are used 

o obtain the local phase indicator function (PIF) for determining 

he local gas fraction ( Enrique Juliá et al., 2005 ) and the power 

pectral density of the PIF ( Singh et al., 2017; Tyagi and Buwa, 

017 ). Dual-tip probes (with a vertical spacing �y ), can measure, 

n addition to the local PIF, bubble velocities (in the y -direction) 

ased on the flying time and bubble diameters and chord lengths 
2 
y assuming aligned uni-directional flow ( Besagni et al., 2016; Fri- 

link, 1987; Bakker, 1992; Harteveld, 2005; Tyagi and Buwa, 2017; 

roen, 2004; Simonnet et al., 2007; Dias et al., 20 0 0; Barrau et al.,

999; Chaumat et al., 2005; Kiambi et al., 2003; Murzyn et al., 

005 ). Four-point probes (in a triangular pyramid ( Guet et al., 

0 03; 20 05; Ojha and Dahhan, 2018; Bai et al., 2008; Lucas and 

ishra, 2005; Xue et al., 2003; Shen and Nakamura, 2014 )) are 

dopted to also determine bubble velocity directions and shapes 

t the cost of a more complex algorithm for the probe signal 

nalysis. 

All these types of optical fibre probes are inherent to certain 

easurement inaccuracies and sampling bias caused by: (1) the 

linding effect due to improper (de-)wetting of the probe; (2) the 

rawling effect as a result of deformation and/or deceleration of 

 pierced bubble; and (3) the drifting effect as bubble trajecto- 

ies are altered due to the presence of an intrusive probe. The lat- 

er effect causes challenges for calculating correct flying times for 

ual-tip or four-point bubble probes as bubbles are deflected by 

he first (lower) probe tip and not measured by the upper probe 

ip(s). 

While Cartellier (1992) correlated the rise time (or signal 

erivative as in Mizushima et al. (2013) ) of a signal from a single

ptical fibre with interface velocity measurements from a digital 

amera, Cartellier and Barrau (1998a) used conical fiber tips and 

rijlink (1987) ; Groen (2004) ; Cartellier and Barrau (1998b) intro- 

uced improved fibre tip shapes (as adopted later by Pjontek et al. 

2014) ) to determine the interface velocity. However, these authors 

till recommend calibration of the velocity measurements (using 

iercing experiments) for each manufactured tip or fluid. 

More recent developments on velocity measurements using a 

ingle fibre are based on resolving the coherent beat frequency be- 

ween the Fresnel reflection (fibre-fluid interface) and the reflec- 

ions of an approaching interface by using a very high sampling 

ate (10 MHz) as in Chang et al. (2003) ; Lim et al. (2008) . As this

echnique resolves the velocity of an approaching interface before 

ubble piercing takes place (when the distance between the fibre 

ip and bubble surface is 10 0–30 0 μm), effects of blinding, crawl- 

ng and drifting are eliminated. However, as the intensity of the 

cattered light is limiting, velocity realizations are only found pos- 

ible if the angle of attack is almost normal. Consequently, only 

s little as 2% of the detected bubbles contain velocity informa- 

ion (when pierced in the center of a bubble). While the velocity 

easurements may be still very representative, chord length mea- 

urements are largely biased for both single tip and dual tip optical 

bres. 

We now report new bubbly flow data acquired in the “Lim- 

uRig” test facility, which is meticulously described in our previ- 

us paper ( Muilwijk and Van den Akker, 2019 ). This setup, with 

ts rectangular geometry for visualization purposes, has been de- 

eloped with the view of generating experimental data for CFD 

alidation and development. We opted for a rectangular configu- 

ation to facilitate visual observations and optical measurements 

ince anyhow the test facility is intended to provide data for CFD 

alidation rather than to mimic cases of direct industrial relevance. 

ith the two separate inlet compartments, configurations with (a- 

symmetric liquid and/or gas flow distributions can be studied and 

 wide range of operating conditions can be investigated; see also 

ur Part II paper. A needle sparger was carefully constructed, such 

hat a maximally uniform initial bubble size distribution of large 

ubbles in the range 4–7 mm (with an almost constant terminal 

ise velocity ( Clift et al., 1978 )) was achieved for U sg up to 3.1 cm/s

ithout liquid co-flow and beyond for higher co-flow velocities. In 

ur previous study ( Muilwijk and Van den Akker, 2019 ), a corre- 

ation was developed to describe the initial (volume equivalent) 

ubble size d b,eq (at gas sparger level) as a function of the super- 

cial gas and liquid velocities. This correlation is used to calcu- 
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Table 1 

Operating conditions. OFP: Optical Fibre Probe; BIV: Bubble Image Velocimetry. x : lateral position; y : vertical 

position (from trailing edge of the splitter plate). Note that the trailing edge of the splitter plate is located 

17 cm above the sparger. Photographs, see Fig. 5 , bubble velocity and chord length distributions (OPF mea- 

surements in the center of the column at x = 0 cm), see Figs. 9 , and 14 respectively, are shown for four cases 

near the limits of the operating conditions ( U sg = 1.25, 6.25 cm/s and U sl = 0, 20 cm/s). 

Method U sg cm/s U sl cm/s x cm y cm Fig. 

OFPs 0.63–6.25 0, 10, 20 −17 . 5 . . . 17 . 5 23, 63 Figs. 7, 8, 10 , 11,12 , 15 , 16 

( α, v b , c) (in steps of 2.5 cm) 

BIV ( v b ) 1.25 0, 10, 20 −20 . . . 20 −15 . . . 1250 Fig. 10 b 
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ate the bubble sizes in the present study. For bubbles in this size 

ange, the terminal rise velocity (in contaminated water) is esti- 

ated as ≈ 24 cm/s according to the parameterization developed 

y Park et al. (2017) . 

We developed our in-house dual-tip optical fibre probes which 

ere used to measure gas fractions, bubble velocities and bub- 

le chord lengths. Bubble velocities measured with dual-tip opti- 

al fibre probes were then compared with bubble velocities mea- 

ured using a Bubble Image Velocimetry ( Cheng et al., 2005 ) ap- 

roach at low gas fractions. Unlike other reported data on bub- 

ly flow in the “pseudo-homogeneous” (poly-dispersed homoge- 

eous) regime ( Besagni et al., 2018 ), we report chord length dis- 

ribution measurements for conditions with known ( Muilwijk and 

an den Akker, 2019 ) uniform single sized bubbles for various U sg 

nd U sl . 

The main objectives of this paper are to show how: (1) the (uni- 

ormity of) the gas fraction α is a function of the superficial liquid 

nd gas velocities and to validate the previously proposed correla- 

ion for the gas hold-up; (2) the bubble velocity v b is influenced 

y liquid co-flow, where the optical fibre probe (OFP) and Bubble 

mage Velocimetry (BIV) methods are compared; and (3) the distri- 

ution of the bubble chord length c is a function of the superficial 

as velocity and liquid co-flow velocity and how they relate to the 

ean bubble diameter. 

The structure of this paper is then as follows. Section 2 briefly 

escribes the setup and adopted measurement methods; 

ection 3 shows results on the measured void fractions, bub- 

le velocities and chord lengths respectively; and conclusions and 

ecommendations for future work are presented in Section 4 . 

. Experimental 

.1. Test facility 

Fig. 1 shows a schematic of the apparatus used for this study. 

wo parallel streams of bubbly flows, for this work with equal 

uperficial gas, U sg , and superficial liquid velocities, U sl , start in- 

eracting downstream of the trailing edge of a splitter plate. The 

epth of the channel D is 0.2 m and the width W of the channel

s 2 D = 0 . 4 m. The superficial velocities U sg and U sl are the inde-

endent variables, defined as volumetric flow rates (at P 0 = 1 . 013 

ar and T = 20 ◦C) divided by the cross-sectional area of the col-

mn. U sg was varied in the range 0.63–6.25 cm/s, and U sl in the 

ange 0–20 cm/s. Bubbles are formed by 2 × 14 2 = 392 ∅ 1 . 55 mm

.d. needles to establish formation of a uniform homogeneously 

istributed bubble size. More details on the design of the test fa- 

ility, overall gas fractions (using a bed expansion technique) and 

ubble formation rates/diameters can be found in our previous pa- 

er ( Muilwijk and Van den Akker, 2019 ). Optical Fibre Probes and 

 Bubble Image Velocimetry technique are used to study the flow. 

hese techniques are discussed below and the experimental set- 

ings are summarized in Table 1 . 
3 
.2. Bubble image velocimetry 

Images of the bubble column (of the area annotated with BIV in 

ig. 1 ) were captured at a rate of 100 and 120 Hz (Jai Go 2400 M

amera, Kowa LMVZ166HC 16–64 mm varifocal lens) and corrected 

or lens distortion, see Fig. 2 a. The camera was calibrated using 

oth the width and height of the column and resulted in a spatial 

esolution of 0.70 mm/pix. A contrast limited adaptive histogram 

qualization (CLAHE) algorithm ( Zuiderveld, 1994 ) was used to im- 

rove the contrast of the images as shown in Fig. 2 b. A direct

mage cross-correlation technique as in Cheng et al. (2005) was 

dopted to obtain the velocity of bubble parcels. 

The image cross-correlation coefficient between f (time t) and 

(time t + �t) was calculated according to 

 i, j = 

�m 

�n 

[
f (m + i, n + j) − f 

]
[ g(m, n ) − g ] √ 

�m 

�n 

[
f (m, n ) − f 

]
2 �m 

�n [ g(m, n ) − g ] 2 
(1) 

here n, m are sub-ranges (interrogation windows) of the full im- 

ge and i, j are the pixel shifts in vertical and horizontal direc- 

ion. Fig. 3 shows a surface plot of R i, j as function of i and j. A

indow size of 32 × 32 pixels (120 Hz image acquisition rate) or 

0 × 40 pixels (100 Hz) was found as an optimal compromise be- 

ween spatial resolution and correlation intensity. A window over- 

ap of 50% was used, which resulted in a spatial resolution (half 

indow size) of ≈ 1 . 25 –1.5 cm. Quadratic interpolation was used 

o obtain a sub-pixel displacement resolution and spurious veloci- 

ies were removed using a mean ±3 σ outlier detection algorithm. 

.3. Dual-tip optical fibre probes 

Horizontal profiles of gas fraction α, bubble velocity v b , and 

ubble chord length c were measured in the center of the col- 

mn (between front and rear wall, see Fig. 1 ) at 23 and 63 cm

ownstream of the trailing edge of the splitter plate (40 and 80 cm 

bove the sparger level) by using two in-house developed double- 

oint optical fiber probes. 

The probe response signals from each probe tip were sampled 

ith a NI USB-6001 I/O device at a rate of 5 kHz per channel, and

he signals were normalized using the span of a signal (see black 

nd grey curve in Fig. 4 ). It was found that the adopted acquisition

ate is sufficient to record the phase indicator functions, as mul- 

iple points were sampled on the steep parts of the signal (when 

ip (de-)wetting takes place). In order to determine the threshold 

ntersections with a higher temporal resolution, the signals were 

psampled at a rate of 20 kHz using quadratic interpolation and 

inarized to obtain the phase indicator functions, using a thresh- 

ld value of 3 × the standard deviation of the baseline noise (red 

ashed line). 

Void fractions were then calculated using the average value of 

he phase indicator functions for the lower probe tips, as those 

re less subjected to the drifting effect. A measurement duration 

f 100 s was found to be sufficient to obtain an accurate estimate 

f the local void fraction. 
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Fig. 1. Schematic drawing of the bubbly flow channel. Bubbles are formed on top 

of the needle spargers and air is separated from the water at the free surface. The 

Optical Fibre Probes (at a height of 40 and 80 cm above the needle spargers) are 

traversed in the x -direction along the center line of the column in steps of 2.5 cm, 

see red markers in (b). The needle sparger level, at y = 0 , is located 17 cm below 

the trailing edge of the splitter plate located. The experimental conditions are sum- 

marized in Table 1 . 

Fig. 2. Images of the bubble column. The field of view is 40 × 140 cm ( W × H), 

starting ≈ 2 cm above the needle sparger. (a) Raw image corrected for lens distor- 

tion. (b) Enhanced image using a contrast-limited adaptive histogram equalization 

(CLAHE) technique. U sg = 1 . 67 cm/s. U sl = 0 . 2 m/s. 
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e

4 
The direct cross correlation between the phase indicator func- 

ions from the upper and lower fibre tips was computed to ob- 

ain the time lag τmax between the signals. Then, for each bubble 

etected on the lower fibre tip at time t i ( � ), a matching crenel

s searched on the upper fibre tip signal within a time interval 

 t i + aτmax ; t i + bτmax ] as in Chaumat et al. (2005) . The value of a

as set as 0.5 and b was chosen in the range 2.5–6, dependent of 

he gas fraction. 

The velocity of a bubble i traveling through both lower and up- 

er tips, is then calculated according to 

 

i 
b = 

�y 

�t i 
f 

(2) 

here the flying time �t i 
f 
, is measured as the time the i th bubble

ront interface takes to rise from the lower to the upper fibre tip 

s indicated in Fig. 4 a. 

The vertical distance between the two tips of a probe, �y, was 

.75 mm for probe No. 1 and 2.45 mm for Probe No. 2. As we

xpect uniform large ( d eq > 4 mm) oblate/wobbling bubbles rising 
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Fig. 3. Top: Interrogation windows f (m, n ) (at time step t) and g(m, n ) (at time 

step t + �t), with m, n being 2 . 8 × 2 . 8 cm 

2 sub ranges ( 40 × 40 pix 2 ) of the full im- 

age shown by Fig. 2 b. Bottom: Image cross correlation coefficient R i, j between f

and g as a function of the pixel shifts i, j, see Eq. (1) . 
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Fig. 4. (a) Normalized dual-tip optical fibre probe signal. Black: lower tip; Grey: 

upper tip. �t f : Flying time; t d : Dwelling time; i : bubble count. The red horizontal 

dotted line shows the binarization threshold. (b) Histograms of the relative dwelling 

times for a bubble measured on the lower and upper fibre tips. The pairing cri- 

terium is set at ±1 . 2 , where a local minimum of the histogram is observed. The 

red bars show the measurements obtained by probe 1, whereas the blue bars de- 

note the measurements of probe 2 (color online). 

w

b

o

c

T

c

S

ostly vertically, the probe tip separations �y and sampling rate 

ere optimized to deliver accurate results and no significant differ- 

nce was found between the two dual-tip probes. For our applica- 

ion, bubble velocities > 1 . 0 m/s are highly unlikely and a sufficient 

esolution in the velocity domain is achieved with our optical fibre 

robes. 

The dwelling time t i 
d 

is the duration a probe tip spends in- 

ide a bubble (time between the piercing of the front and rear in- 

erface of a bubble, see Fig. 4 ). Fig. 4 b shows histograms of the

elative dwell time difference �t i 
d 
/ < t i 

d 
>, where �t i 

d 
= t i 

d,l 
− t i 

d,u 

nd < t i 
d 

> = (t i 
d,l 

+ t i 
d,u 

) / 2 , where the subscripts l, u refer to the

ower and upper fibre tip, respectively. Under ideal probe condi- 

ions (rigid ellipsoidal bubbles, no crawling, no drifting), it is as- 

umed that this parameter exhibits a uni-modal distribution for 

ubbles traveling with a lateral velocity component. 

Hence, a value of 1.2 was adopted for the pairing criterion (see 

ashed lines in Fig. 4 b as the probability density function estimate 

f the pairing parameter was found to have a minimum at approx- 

mately 1.2. Bubble pairs not passing the pairing criterion, with an 

bsolute relative dwell time difference exceeding the value of 1.2, 

ere ascribed to extreme drifting and crawling. 

Barrau et al. (1999) studied the effect of relaxing the pairing 

riterion on the resulting phase averaged gas velocity and found 

o significant difference when the pairing rate (percentage of bub- 

les detected on the lower tip matched to a crenel on the upper 

ip signal) exceeded 20%. Fig. B.19 shows the pairing rates for our 

xperiments for further reference. 

The phase weighed mean bubble velocity (phasic gas velocity) 

s then calculated as: 

 b = 

�N 
i =1 

t i 
d 
v i 

b 

�N t i 
(3) 
i =1 d 

5 
here N is the validated amount of bubbles measured on both fi- 

re tips passing the pairing criterion. 

For each valid bubble velocity measurement, the chord length 

f a bubble is then calculated according to: 

 

i = t i d v 
i 
b (4) 

he mean and standard deviation of the chord length was then cal- 

ulated from the chord length distribution and denoted as c and 

tdev (c) 
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Fig. 5. Close-up photographs of the left inlet compartment of the bubble column 

(full frame videos given in the Supplementary Material). The width of the photos 

are 20 cm. Top: U sl = 0 m/s; bottom: U sl = 0 . 2 m/s (flow direction up). Left: U sg = 

1 . 25 cm/s; right: U sg = 6 . 25 cm/s. (a): α ≈ 5 . 5 %, d b,eq = 5 . 1 mm; (b): α ≈ 24 %, d b,eq 

poly-disperse due to coalescence; (c): α ≈ 3 . 0 %, d b,eq = 4 . 4 mm; and (d): α ≈ 14 %, 

d b,eq = 7 . 1 mm. The bubble rise velocity for bubbles in this size range is approxi- 

mately constant at 24 cm/s ( Park et al., 2017 ). 

a

t

t

t

p

c

o

f

s

a

a

i

U  

s

The mean chord length can also be calculated according to 

haumat et al. (2005) ; Lim et al. (2008) 1 : 

 = 

αv mp 

f b 
(5) 

here v mp is the most probable velocity, calculated as �y/τmax 

nd f b is the bubble detection rate on the lower fiber tip, which 

an be determined with high accuracy. Both methods for determin- 

ng c will be compared in Section 3 . 

For spherical and (oblate) ellipsoidal bubbles, the mean ver- 

ical diameter of the bubbles d ‖ can be calculated according to 

imonnet et al. (2007) ; Colombet et al. (2015) : 

 ‖ = 

3 

2 

c (6) 

Assuming uniformly sized bubbles, the volume equivalent bub- 

le diameter then relates to the aspect ratio and vertical diameter 

f the bubbles according to Besagni et al. (2016) ; Simonnet et al. 

2007) ; Colombet et al. (2015) : 

 b,eq = d ‖ ϕ 

−2 / 3 = d ⊥ ϕ 

1 / 3 (7) 

here the aspect ratio of the bubble ϕ = d ‖ /d ⊥ , with d ⊥ and d ‖ 
eing the major and minor axes of an oblate ellipsoidal bubble. 

. Results & discussion 

.1. Visual observations 

Fig. 5 shows photographs of the bubble column for four op- 

rating conditions in the studied range, e.g. U sg = 1 . 25 (left) and

.25 cm/s (right) and co-flow velocities U sl = 0 (top) and 0.2 m/s 

bottom). Videos of the bubble column under these conditions are 

iven in the Supplementary Material. 

At low aeration rates (left), the gas fraction is low (5.5% (a) 

nd 3% (c)) and the column is sufficiently optically accessible to 

btain a good contrast for image analysis. Individual bubbles can 

e distinguished and a very uniform bubble size distribution is 

bserved. A BIV technique may be used in this regime due to 

he justified assumption of uniformity of the flow (the absence of 

all/center peaking in velocity and/or void fraction), while the ef- 

ects of front and rear wall on the measured velocity profiles are 

gnored. 

At intermediate to high gas fractions, a boundary layer develops 

t both sides of the splitter plate, thereby creating a wake region 

n the center of the bubble column, leading to horizontal gradi- 

nts of the void fraction and bubble velocities in the center of the 

olumn. 

At high aeration rates (right) the fluid is opaque, α = 24% (b) 

nd 14% (d), and only bubbles in the front wall region can be 

ecorded on a camera. Bubbles do not follow organized rectilin- 

ar bubble paths (see also Fig. 6 ), and a three dimensional tur- 

oil develops as clearly visible in the videos in the Supplemen- 

ary Material. Back-mixing occurs, while a center peaking void 

raction/bubble velocity and flow reversal at the column walls is 

merging. Under these conditions, a BIV technique cannot be used 

nymore as the assumption of quasi-2D flow (no gradient in the 

ollinear direction) no longer holds. 

Without liquid co-flow and high aeration rates ( Fig. 5 b), the 

niformity of the bubble size distribution suffers due to coa- 

escence occurring during bubble formation at the needles (see 

parger region). With increasing liquid co-flow ( Fig. 5 d), coales- 

ence (e.g. at the needle) was prevented (liquid co-flow reduces 

ubble-bubble interactions ( Muilwijk and Van den Akker, 2019a )) 
1 Note that the factor 3 
2 

in Eq. (6) in Simonnet et al. (2007) for the calculation of 

 ‖ out of v b , α and f b is erroneous. 

a  

d

s

a

6 
nd a uniform bubble size distribution was reestablished. Parallel 

rains of bubbles were formed in the sparger region, which started 

o interact some 5–10 cm above the needle outlets, also leading to 

he development turbulent structures and backmixing. 

Fig. 6 shows simulated bubble streaks by averaging the 500 

hotographs of a 5 s image series. Under typical conditions our 

olumn is free from lateral dispersion, at least in the lower part 

f the column as the rise velocities of our bubbles are very uni- 

orm thanks to the already limited variation in bubble size. At low 

uperficial gas velocities ( Fig. 6 a), bubble streaks originating from 

 single needle can be distinguished up to a height of ≈ 20 cm 

bove the needle outlets, while a wake effect of the splitter plate 

s clearly visible in the center of the column. For somewhat higher 

 sg ( Fig. 6 b, see also Fig. 5 a), lateral dispersion is emerging and

eparate bubble streaks cannot be observed beyond ≈ 5 –10 cm 

bove the needle outlets. A coflow ( Fig. 6 c) was then found to re-

uce lateral dispersion due to a strong advection as straight bubble 

treaks can be detected up to ≈ 40 above the needle outlets, see 

lso Fig. 5 c. 
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Fig. 6. Bubble streaks obtained by a 5s simulated long exposure (image averaging 

technique). Corrected for lens distortion and contrast enhanced using a CLAHE tech- 

nique. See Supplementary Material for the videos. The width of the images is 40 cm. 

Each inlet has an array of 14 × 14 needles. 

Fig. 7. Gas fraction α as a function of horizontal position x for (a) various super- 

ficial gas velocities U sg without liquid co-flow and (b) for various superficial liquid 

velocities U sl for U sg = 1 . 25 cm/s. y = 80 cm. 
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Fig. 8. Void fraction 〈 α〉 as a function of superficial gas velocity setting U sg . The 

error bars denote the spreading of α in horizontal direction. The dotted line shows 

the predicted overall gas hold-up as calculated using our previously developed cor- 

relation ( Muilwijk and Van den Akker, 2019 ). The open markers show the results at 

y = 40 cm; the solid black markers show the data of y = 80 cm. 
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.2. Gas fraction 

.2.1. Horizontal gas fraction profiles 

Fig. 7 a shows lateral profiles of the void fraction for U sg in the

ange 0.63–6.25 cm/s without co-flow at a height of 80 cm above 

he sparger level. For low gas flow rates, the gas fraction profile 

as very uniform, whereas for increasing gas flow rates, steep gra- 

ients of α were found in the close vicinity of the column wall. 

ue to wall effects (including splitter plate), bubbles migrated to 

he center of the bubble column, thereby creating local maxima in 

he void fraction profile and liquid downflow in the direct vicinity 

f the column walls. 

Fig. 7 b shows lateral profiles of the void fraction for U sl in the

ange 0–0.2 m/s for U sg = 1 . 25 cm/s (note the difference in scale be-

ween (a) and (b)). While a slightly uneven void fraction profile 

as observed for U sl = 0 m/s (grey ), a liquid co-flow flattens the

oid fraction profile and the effect of the splitter plate and wall 

ffects on the lateral bubble migration were reduced. 
7 
.2.2. Gas hold-up curves 

Fig. 8 shows the development of the horizontally averaged void 

raction profiles 〈 α〉 W 

as a function of the superficial gas velocity 

or U sl = 0 ( •, ◦), 0.1 ( �), and 0.2 m/s ( �), where the subscript W 

efers to the averaging over the width of the column, e.g. the 15 

easurements locations as shown in Fig. 1 b. The error bars denote 

he span wise variation of α in the void fraction profiles as shown 

n Fig. 7 . The filled markers denote measurements at a height of 

0 cm above the sparger level, while the open markers show mea- 

urements at a height of 40 cm. Measurements at U sg = 1.25, 3.13 

nd 6.25 were repeated thrice and were found be reproducible. 

For higher U sg and for U sl = 0 m/s, lower void fractions were 

easured at y = 40 cm compared to the measurements at y = 

0 cm. This can be explained by a more homogeneous flow pat- 

ern closer to the sparger, in the developing region of the bubble 

olumn, as a center-peaking void fraction profile with liquid down- 

ow at the walls is emerging. 

It should be noted that U sg on the x -axis is given as the setting

t standard conditions while the actual superficial gas velocity is 

 function of the height in the column. More data is required in 

erms of local pressure measurements to derive the local gas flux 

s a function of the height in the column. 

The dotted lines in Fig. 8 show the overall gas hold-up as 

redicted by the correlation developed in our previous study 

 Muilwijk and Van den Akker, 2019 ), which was obtained through 

ed expansion experiments. Good agreement was achieved with 

oid fraction measurements using optical fibre probes (markers) at 

 height of 80 cm above the sparger. A comprehensive compari- 

on of our gas hold-up curves with data found in the literature is 

iven in our previous paper ( Muilwijk and Van den Akker, 2019 ). It

as found that gas hold-up curves are highly case-specific, which 

s also clearly illustrated by a thorough overview of gas hold-up 
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Fig. 9. Velocity histograms measured by the optical fibre probes in the centre of 

the column ( x = 0) at y = 80 cm. Top: U sl = 0 m/s; Bottom: U sl = 0 . 2 m/s. Left: U sg = 

1 . 25 cm/s; Right: U sg = 6 . 25 cm/s. 
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Fig. 10. (a,b) Mean bubble velocities v b and (c,d) standard deviations of the bubble 

velocities Stdev (v b ) as a function of horizontal position x at y = 80 cm. Left (a,c): 

no co-flow ( U sl = 0 m/s) and various U sg (OFP measurements only); Right (b,d): with 

co-flow ( U sl = 0 , 0 . 1 , 0 . 2 m/s) for U sg = 1 . 25 cm/s. The larger markers denote the OFP 

data, whereas the smaller markers show the BIV results (the series with a higher 

x -resolution show data obtained with and image acquisition rate of 120 Hz, and the 

series with a lower x -resolution represent BIV results based on images captured at 

a rate of 100 Hz). Videos of the column for the conditions in (b,d) are given in the 

Supplementary Material. 
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urves given in Gandhi and Joshi (2010) . As such, it can be con-

luded that gas hold-up curves are a strong function of the bubble 

ize and sparging method (initial bubble size distribution). Many 

rift-flux correlations, for estimating the gas hold-up, ignore the 

ffect of the bubble size distribution and may thus give inaccurate 

redictions. 

.3. Bubble velocities 

.3.1. Bubble velocity histograms 

Fig. 9 shows velocity histograms for four operating conditions 

n the range studied, e.g. U sg = 1 . 25 (left) and 6.25 cm/s (right) and

o-flow velocities U sl = 0 (top) and 0.2 m/s (bottom). For all cases, 

he velocity histograms exhibited an almost Gaussian distribution. 

s bubbles were almost uniform in size and had an almost equal 

ise velocity in this size range ( Clift et al., 1978 ), the spreading of

he measured velocities can be explained by: (1) swarm effects, 

s bubbles may be hindered or accelerated due to the presence 

f other bubbles, thereby developing large circulation patterns; (2) 

nterface oscillations, as bubbles of this size behave as wobbling 

ubbles (instead of rigid ellipsoids); (3) crawling, as the velocity 

f an interface may be influenced by the presence of the probe 

nd may also depend on the bubble velocity itself, interface curva- 

ure (phase of oscillation) and piercing position; (4) coalescence at 

as sparger level, when the uniformity of the initial bubble size is 

ompromised (only for high U sg and no liquid co-flow, see Fig. 9 b). 

or increasing liquid co-flow the spread in bubble velocities nar- 
8 
ows as bubbles carry more momentum (in their added mass) and 

re less likely to suffer from crawling and swarming. 

.3.2. Horizontal profiles of the bubble velocity 

Fig. 10 a shows lateral profiles of the mean bubble velocity v b 
or U sg in the range 0.63–6.25 cm/s without co-flow at a height 

f 80 cm above the sparger level. Low gas flow rates resulted in 

lightly wavy bubble velocity profiles with bubble velocities in the 

ange 19–24 cm/s. For increasing gas flow rates, bubbles traversed 

way from the column side walls (and splitter plate), thereby cre- 

ting two maxima in the bubble velocity profiles. Steep gradients 

f v b show up in the vicinity of the column wall with bubbles even 

oving downward close to the column side walls, which cannot be 

roperly detected using optical fibre probes in the current config- 

ration. 

Standard deviations of the bubble velocity (see Fig. 10 c) are al- 

ost constant across the lateral direction and increase with in- 

reasing U sg . Slight increases of Stdev (v b ) are noticed close to the 
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Fig. 11. (a) Time and horizontally averaged bubble velocities 〈 v b 〉 and (b) standard 

deviations of v b as a function of the superficial gas velocity setting. The error bars 

denote the spread in (a) v b and (b) Stdev (v b ) with respect to the horizontal direc- 

tion. The open markers show the results at y = 40 cm; the solid black markers show 

the data for y = 80 cm. 

f
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l
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A

olumn wall for high U sg due to the emerging, unsteady, down flux 

t the column walls. 

Fig. 10 b shows lateral profiles of v b obtained using OFPs (large 

arkers + dotted line) and our BIV technique (small markers + 

olid line) for U sl in the range 0 − 0 . 2 m/s and U sg = 1 . 25 cm/s. The

hape of the velocity profiles, obtained by using the two methods, 

s comparable for all cases, while for U sl = 0 . 1 m/s the agreement

s almost perfect. 

Due to wake effects of the splitter plate, a double peaking bub- 

le velocity profile develops for U sl = 0 m/s (grey ). A liquid co-

ow then has a uniforming effect on the bubble velocity profile 

s (1) the effect of the splitter plate and wall effects on the lat- 

ral bubble migration is reduced as bubbles are entrained by a 

uniform) liquid flow and (2) rather lower standard deviations (see 

ig. 10 d) of the bubble velocity are measured with increasing U sl . 

For U sl = 0 m/s (higher α), BIV showed lower bubble velocities 

han the OFPs, which may be due to a gentle down flux reduc- 

ng the bubble velocities in the vicinity of the column walls. For 

 sl = 0 . 2 m/s, velocities from BIV were ≈9% higher than mean ve-

ocities obtained by using the dual-tip optical fibre probes. BIV 

xperiments at U sg = 1 . 25 cm/s were repeated twice. Whereas im- 

ges were initially acquired at a frame rate of 100 Hz, a different 

et of experiments was carried out with a framerate of 120 Hz. 

o significant differences were found between the experiments for 

 sl > 0 m/s, as the flow patterns without co-flow were found to be

ery sensitive to small inaccuracies of the gas flow rates in the 

eft and right inlet, which is further studied in our Part II paper. 

he discrepancies between OFP and BIV may be due to 3-D effects 

wall peaking of the gas fraction and bubble velocity profiles). 

Shen et al. (2016, 2017) ; Sun et al. (2014) observed wall peaking 

f the void fraction in the near vicinity ( < 10 − 20 mm distance)

f the column walls as a function of the gas flux. This near-wall 

egions are outside the reach of the bubble probes. A future in- 

estigation, with a different probe design, should be dedicated to 

oom-in on the phenomena happening in the near vicinity of the 

ide or front walls. A wall peaking void fraction may explain the 

igher bubble velocities from the BIV captured in the near-wall re- 

ion. Experiments with a smaller depth of view, higher frame rate 

nd improved homogeneous illumination are recommended to op- 

imize the BIV technique. 

.3.3. Bubble velocities as a function of U sg 

We now average the mean bubble velocities and standard de- 

iations measured on the 15 lateral positions as shown in Fig. 1 b. 

ig. 11 a shows plots of this center-line averaged mean bubble ve- 

ocity 〈 v b 〉 W 

as a function of superficial gas velocity. The error bars 

n Fig. 11 a are a measure of the uniformity of the profiles of v b (in
ig. 10 a,b) as a result of center peaking velocity profiles. Fig. 11 b

hows the related (also center-line averaged) standard deviation 

f the bubble velocities 〈 Stdev (v b ) 〉 W 

, which are a measure of the

emporal fluctuations of v b . 
Without liquid co-flow ( •, ◦), average mean bubble velocities in- 

rease with increasing superficial gas velocity up to U sg ≈ 3 . 0 cm/s. 

n almost constant average mean bubble velocity was measured 

n the range U sg = 3 . 0 − 4 . 5 cm/s, whereafter the bubble velocities

apidly increase with increasing U sg . 

The standard deviation of the bubble velocities continuously in- 

reases with increasing superficial gas velocity for the whole range 

f U sg . Higher bubble velocities and standard deviations were mea- 

ured at a height of y = 80 cm ( •), compared to y = 40 cm ( ◦), as

he flow regime gradually departed from a homogeneous bubbly 

ow and center peaking void fraction and bubble velocity pro- 

les started to develop. While at the lowest aeration rates, bubbles 

n the range 4 − 8 mm essentially have a constant rise velocity of 

24 cm/s ( Clift et al., 1978 ), a standard deviation of ≈ 5 cm/s was
9 
ound in our study and ascribed to interface oscillations and crawl- 

ng. At higher aeration rates, swarm effects and coalescence effects 

ive rise to the increase in Stdev( v b ) 
For cases with liquid co-flow, higher bubble velocities (at 

ow/intermediate U sg ) were observed which increased almost lin- 

arly with increasing superficial gas velocities. No shoulder fol- 

owed by a steep increase was detected at intermediate/high U sg . 

lso, co-flow leads to lower standard deviations of v (see Fig. 11 b) 
b 
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Fig. 12. Measured gas flux 〈 J g 〉 , see Eq. (8) , as a function of applied superficial gas 

velocity setting. The dashed line shows the parity line. The solid markers show data 

taken at y = 80 cm; the open markers show data for y = 40 cm. 
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nd the lateral spreading thereof, indicating that there is no (grad- 

al) regime transition, as the homogeneous bubbly flow regime is 

tabilized by the liquid co-flow. 

.3.4. Gas flux measurements 

The local gas flux, as measured by the optical fibre probes, can 

e calculated as αv b , where the phasic quantity v b is the phase 

veraged bubble velocity as per Eq. (3) . The centerline averaged gas 

ux 〈 J g 〉 W 

, along the accessible positions along the column center 

ine, is then given by: 

 J g 〉 W 

= 

1 

x R − x L 

∫ x R 

x L 

αv b dx (8) 

nd shown in Fig. 12 . The 〈〉 brackets denote spatial averaging of 

he locations shown in Fig. 1 b. The closest position the probes can 

ravel to the wall is 2.5 cm, hence, x L = −17 . 5 and x R = 17 . 5 cm. Un-

er ideal circumstances, in a uniform homogeneous bubbly flow, 

he measured 〈 J g 〉 W 

equals the U sg as calculated from the gas flow

ate settings. 

Bai et al. (2010) ; Shen et al. (2016) used 〈 J g 〉 to assess the accu-

acy of the bubble probes, whereas ( Colombet et al., 2015 ) adopted 

 J g 〉 to show the degree of homogeneity of the bubbly flow. While

ai et al. (2010) found their 〈 J g 〉 being some 30% smaller than the

pplied gas flow rate (for 2 < U sg < 10 cm/s), we found quite good

greement between both values for U sg up to about 2 cm/s with- 

ut co-flow. At higher U sg , the measured gas flux departs from the 

pplied U sg which can be explained by the center peaking void 

raction and bubble velocity profiles (with down flow emerging at 

he column walls). This divergence starts at U sg = 2 . 0 cm/s and be-

omes increasingly distinct for U sg > 4 . 5 cm/s, while this effect is

ess prominent for the region closer to the sparger where the flow 

attern is still developing (open ◦). 

The change in hydrostatic pressure between the two measure- 

ent planes, at y = 40 and y = 80 cm ( �H = 0 . 4 m), can be ap-

roximated by ρw 

g�H(1 − α) . This was found to be less than 
10 
% of the atmospheric pressure, hence the difference in local su- 

erficial gas velocity between y = 40 and y = 80 cm does not ex-

lain the difference in 〈 j g 〉 W 

we measure between y = 40 and

 = 80 cm for U sg > 3 cm/s. No significant difference of the pair-

ng rate was found between the measurements taken at y = 40 cm 

nd y = 80 cm, see also Fig. B.19 , hence the bubble probes at both

eights work equally well. 

Our measured gas fluxes 〈 J g 〉 W 

, for U sl = 0 m/s at y = 80 cm, are

igher as (1) more measurements were performed in the bulk of 

he column (the plateau in the void fraction and velocity profiles, 

ee Figs. 7 a and 10 a respectively); and (2) very low/negative bub- 

le velocities in the vicinity of the column wall cannot be mea- 

ured due to the limitations of the probe. 

The measurements at y = 40 cm were taken closer to the 

parger, still in the developing region of the bubble column, and 

ollow the parity line due to a still rather uniform bubbly flow. In 

he developed region of the bubble column, liquid downflow at the 

ide walls emerged, leading to a center-peaking gas fraction/bubble 

elocity profile, hence, 〈 J g 〉 W 

departs from this parity line. Consid- 

ring data valuable for CFD validation, centreline profiles would 

ive systematic and valuable information on the bubble flow be- 

avior. 

It should be noted that U sg on the x −axis is at standard condi- 

ions, while the measured 〈 J g 〉 is at a higher pressure. Therefore, a 

omewhat lower measured gas flux 〈 J g 〉 W 

can be expected due to 

he higher gas density. Measurements of the local pressure or gas 

raction distribution along the height of the column are required to 

roperly account for the change in gas fraction difference. In case 

 liquid co-flow is applied, the gas flux is almost equal to the ap- 

lied U sg for all cases considered. It may then be concluded that (1) 

he dual-tip bubble probes work very well for determining α and 

 b ; (2) the flow regime gradually departs from homogeneous bub- 

ly flow at U sg > 2 . 0 cm/s and U sl = 0 m/s; and (3) a liquid co-flow

tabilizes the homogeneous bubbly flow regime. 

.3.5. Literature comparison 

Fig. 13 shows the relative bubble (slip) velocity as a function of 

he gas fraction, where U s is calculated assuming uniform (co-)flow 

y using a drift-flux model according to Muilwijk and Van den 

kker (2019) : 

 s = 〈 v b 〉 W 

− U sl 

1 − 〈 α〉 W 

(9) 

he black markers represent the data as shown in Figs. 8 and 11 a,

hereas the colored markers and dashed line show relative gas ve- 

ocities as a function of α as reported in a selection of relevant 

iterature. 

While the relative gas velocities reported by Colombet et al. 

2015) ; Alméras et al. (2018) ; Besagni et al. (2016) (no co-flow) and

arnier et al. (2002) ; Simonnet et al. (2007) (with co-flow) show 

ecreasing gas velocities with increasing gas fraction at low gas 

ractions, we found U s to increase with increasing α for all condi- 

ions ( α > 3%) investigated. As the estimated terminal rise velocity 

 t for isolated bubbles in the range 4–8 mm is ≈ 24 cm/s, U s at low

was slightly smaller than U t . Hindered rise (as in Besagni et al., 

016 up to α ≈5% and Simonnet et al. (2007) up to α ≈ 15%) may 

ccur to a some extent for lower gas fractions, but no data could 

e obtained in that regime due to the risk of weeping. The early 

nset of swarming (increasing U s with increasing α) can thus be 

xplained by the large bubble size in agreement with Simonnet 

t al. (2007) , as small (uniform) bubbles, which stabilize homo- 

eneous bubbly flow, show hindered bubble rise behavior as in 

arnier et al. (2002) ; Alméras et al. (2018) ; Colombet et al. (2015) .

Relative velocities measured with the optical probes are higher 

han derived from global gas hold-up measurements by using a 

rift-flux model as in Muilwijk and Van den Akker (2019) (see 
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Fig. 13. Relative gas (slip) velocity U s as a function of gas fraction. A comparison with relevant reported data. The present data follows from Eq. (9) , with 〈 α〉 and 〈 v b 〉 from 

Figs. 8 and 11 (a) respectively. 
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Fig. 14. Chord length distributions measured by the optical fibre probes in the cen- 

tre of the column ( x = 0 ) at y = 80 cm. Top: U sl = 0 m/s; Bottom: U sl = 0 . 2 m/s. Left: 

U sg = 1 . 25 cm/s; Right: U sg = 6 . 25 cm/s. 
ases B1, C2 in Fig. 13 ). At low α (uniform bubbly flow), good 

greement was found, but, due to a center peaking gas frac- 

ion/bubble velocity profile at higher void fractions, the measured 

as flux is overestimated (see Fig. 12 ). U s is then also overesti- 

ated as the probes are biased to high (upward) velocities and low 

downward) velocities in the vicinity of the column wall cannot be 

easured by the current probe configuration. 

It was observed that when a liquid co-flow was applied, it re- 

uces the emerging down-flow at the wall as the liquid entrained 

y the bubble wakes can overflow from the top of the column, 

hereby resulting in a more homogeneous flow. A critical value of 

 sl may exist when the liquid flow rate ( U sl ) equals the liquid en-

rainment rate in the bubble wakes, which is roughly estimated at 

 AM 

U sg , with C AM 

being the added mass coefficient. More experi- 

ents, at lower co-flow rates will be required to investigate this 

ypothesis. 

.4. Bubble chord lengths 

.4.1. Histograms of bubble chord length distributions 

Fig. 14 shows chord length distributions for four operating con- 

itions in the studied range, e.g. U sg = 1 . 25 (left) and 6.25 cm/s

right) and co-flow velocities U sl = 0 (top) and 0.2 m/s (bottom). 

ubble chord lengths clearly increase with increasing gas flow 

ates (left to right), while mean chord lengths become slightly 

maller and distributions more narrow with increasing co-flow ve- 

ocity (top to bottom). A small shoulder shows up at the left tail 

or U sl = 0 m/s, which is not present for chord length distributions 

btained for (higher) co-flow velocities, which agrees well with 

he bubble contours presented in Muilwijk and Van den Akker 

2019a) , indicating that liquid co-flow tends to make the bubble 

ore spherical. 

Roig et al. (1998) found a similar chord length distribution as 

hown in Fig. 14 a, while bubbles were produced by porous tube 

pargers, which typically results in a polydisperse bubble size dis- 

ribution. Constant bubble chord length distributions were found 
11 
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Fig. 15. Top: Mean chord lengths as a function of horizontal position x at y = 80 cm. 

Bottom: Standard deviations of the chord length distributions as a function of x . 

(a,c): Various gas flow rates without liquid co-flow; (b,d): Various superficial liquid 

velocities at U sg = 1 . 25 cm/s. 
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cross the lateral and streamwise position and they concluded that 

either break-up and coalescence did not occur in the flows, or 

hey were in mutual equilibrium.” While their chord length dis- 

ribution was found to be independent of the superficial liquid ve- 

ocity, where c = 2 . 1 ± 0 . 6 mm for α = 1.9% and U sl = 0 . 2 –0.5 m/s,

ur results presented in Fig. 14 show a clear dependence of c on 

 sl and U sg as per the design of the needle sparger ( Muilwijk and

an den Akker, 2019 ). 

A theoretically derived triangular left skewed chord length dis- 

ribution for rigid ellipsoidal (uniform) bubbles ( Liu and Clark, 

995; Clark and Turton, 1988 ), with the largest measured chord 

ength being the maximum (vertical) diameter d ‖ , was not ob- 

erved in our cases. Also Chaumat et al. (2005) reported that 15% 

f the measured chord length values were larger than the max- 

mum diameter obtained from image analysis. Although our pre- 

ious paper ( Muilwijk and Van den Akker, 2019 ) shows that very 

niform bubbles are formed at gas sparger level for U sg up to 

 cm/s (and beyond when a liquid co-flow is applied), theoretically 

redicted triangular chord length histograms were not recovered. 

his discrepancy is explained by: (1) probe biases with respect to 

iercing position; and (2) the wobbling behavior (as clearly visual- 

zed in the Supplementary material of Ref. Muilwijk and Van den 

kker (2019) ) of non-rigid bubbles, which also explains the longer 

ight tail for larger bubbles (see Fig. 14 c). 

Theoretical chord length distributions were simulated (see A.1 ) 

or mono-disperse rigid and wobbling bubbles, as well as for a 

oly-disperse bubble mixture and we found very similar chord 

ength distributions for mono-disperse wobbling bubbles and poly- 

isperse rigid (oblate) bubbles. Therefore, we refrain from per- 

orming a transformation from a chord length distribution to a 

ubble size distribution as in Besagni et al. (2016) ; Hoang et al. 

2015) as assuming a constant ellipsoidal shape renders such a 

ransformation invalid. A more complex method should be de- 

eloped to account for a variable bubble shape when transform- 

ng chord length distributions into a bubble size distributions 

s a constant oblate ellipsoidal shape is proven invalid for large 

ubbles. 

.4.2. Lateral profiles of the mean bubble chord lengths 

Fig. 15 shows lateral profiles of the mean chord lengths c 

top) and standard deviations Stdev( c) of the chord length dis- 

ribution at a height of 80 cm above the sparger level for (a,c) 

 sg in the range 0.63–6.25 cm/s without co-flow; and (b,d) U sl 

n the range 0–0.2 m/s for U sg = 1 . 25 cm/s (note the difference in

cale between the left and right column). While the void frac- 

ion and bubble velocity profiles are clearly non-uniform for some 

f these cases (see Figs. 7 and 10 ), a very constant mean chord

ength c was observed for almost all U sg and U sl , which indi- 

ates that the bubble size (distribution) is very constant over the 

ross section of the column. A slight spanwise spreading was 

ound for lower gas fractions, as smaller bubbles are more sub- 

ective to drifting and the number of valid bubble measurements 

ecreased. 

.4.3. Bubble chord lengths as a function of U sg 

Fig. 16 a plots the centerline averaged mean bubble chord length 

 c 〉 W 

as a function of the applied superficial gas velocity and 

ig. 16 b shows the related (spatially averaged) standard deviation 

 Stdev (c) 〉 W 

of the bubble chord lengths. The error bars indicate 

he lateral spreading of c and Stdev (c) respectively. 

No significant difference was found between chord lengths 

easured at y = 80 cm and y = 40 cm (latter not shown), which

ndicates that the bubble size (distribution) is independent of the 

ertical position. The averaged mean chord lengths 〈 c 〉 (a) and 

he standard deviation thereof (b) increase with increasing U sg for 

ases with and without liquid co-flow. Whereas the lateral spread 
12 
error bars) of both 〈 c 〉 W 

and 〈 Stdev (c) 〉 W 

is almost independent of 

 sg , these distributions become narrower with increasing co-flow 

elocity, which confirms that liquid co-flow has an organizing ef- 

ect on the (homogeneous) bubbly flow and the bubble formation 

rocess. 

The open markers ( Fig. 16 a) show the average chord length c as 

alculated by Eq. (5) . Compared to the mean of the chord length 

istributions (solid markers, Eq. (4) ), these chord lengths are some- 

hat overestimated as they depend on the direct cross correlation 

etween the lower and upper fibre tip signal, which are biased 

o the larger (vertical) velocities. While α and f b can be obtained 

ith a high degree of accuracy ( Chaumat et al., 2005 ), it should

e noted that (mean) chord length measurements are subject to 

 similar relative error as bubble velocity measurements, see Eqs. 

4) and (5) . 

A clear bend in the slope of 〈 c 〉 W 

is observed at U sg ≈ 2 . 5 –

 cm/s (without liquid co-flow), which coincides with the apparent 

ransition from single separate bubble formation to bubble forma- 

ion with coalescence at the needle. As smaller satellite bubbles 

ay split off from bubbles formed at the needle sparger and a uni- 

orm single bubble size cannot be assumed beyond U sg ≈ 3 . 1 cm/s 

 Muilwijk and Van den Akker, 2019 ), a smaller chord length is ex- 

ected, which agrees well with the trend in Fig. 16 a and the chord 

ength histogram in Fig. 14 b. 
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Fig. 16. (a) Mean bubble chord lengths 〈 c 〉 and (b) standard deviations of c as a 

function of superficial gas velocity setting for y = 80 cm. The error bars denote the 

spread of c and Stdev (c) in horizontal direction. The solid markers (a) show the 

mean of the chord length distributions ( Eq. (4) ), whereas the open markers show 

the average chord length as calculated from the local gas flux and the bubble de- 

tection rate ( Eq. (5) ). 
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While still assuming a uniform volume equivalent bubble size 

nd an average oblate ellipsoidal shape, the mean aspect ratio of a 

ubble may be calculated using Eqs. (6) and (7) . d b,eq was then cal-

ulated as a function of U sg and U sl using a correlation developed 

n our previous study ( Muilwijk and Van den Akker, 2019 ) and the

olume equivalent bubble diameter was found to be in the range 

f 4–8 mm ( 2 . 2 < Eo < 8 . 7 ). 

The calculated bubble aspect ratios ϕ were in the range 0.4–

.55 (see A.2 ). This agrees quite well with the values ( ≈ 0 . 5 ) re-
13 
orted in Garnier et al. (2002) ; Riboux et al. (2010) for the smaller

ubble size. The aspect ratios for the larger bubbles obtained in the 

resent study are slightly lower than reported in Colombet et al. 

2015) (smaller bubbles) and Ziegenhein and Lucas (2017) ( 0 . 5 < 

 < 0 . 6 for Eo > 2 ), while ϕ was found to decrease slightly with

ncreasing bubble diameter for Eo > 2 . More experiments using 

lose-up photographs of the bubble column are needed to further 

tudy bubble sizes and shapes, which also requires a very complex 

mage analysis algorithm due to the high density of bubbles in the 

olumn. 

. Conclusions 

New experiments were performed in a homogeneously sparged 

ectangular bubble column with large, almost uniformly sized bub- 

les operated with and without liquid co-flow. 

Very uniform void fraction profiles were obtained for U sg up 

o 3.0 cm/s at void fractions up to ≈14%. A gradual transition to 

nhomogeneous bubbly flow was observed for larger U sg . Average 

as fraction measurements, with and without liquid co-flow, agree 

ery well with the correlation for the overall gas hold-up devel- 

ped in our previous paper ( Muilwijk and Van den Akker, 2019 ). 

Bubble velocities were measured using dual-tip optical fibre 

robes and compared with parcel velocities obtained using a Bub- 

le Image Velocimetry approach. Very good agreement between 

oth methods was found for gas fractions < 5% and U sl up to 

.1 m/s, whereas a < 10% higher velocity was found from BIV mea- 

urements compared to OFP measurements for higher U sl . While 

he biases of (dual-tip) optical fibres are well-known, further re- 

earch is required to calibrate the BIV method. As the optical fi- 

res are centered in the column between the front and rear wall, 

hile the images for the BIV method are captured of the front col- 

mn wall, gradients of v b in co-linear direction may impede a fair 

omparison of the two methods and further study is required to 

nvestigate the possibility of wall peaking gas fractions and bubble 

elocities. 

A liquid co-flow was found to reduce spatial variations of v b 
nd mitigate the wake effect of the splitter plate, therefore stabi- 

izing a homogeneous bubbly flow. Bubble rise velocities as a func- 

ion of gas fraction were compared to similar studies and hindered 

ubble rise was not observed in any case due to the large(r) size 

f the bubbles. 

Very similar bubble chord length distributions were measured 

long the horizontal position in the column which confirms the 

niformity of the bubble size and homogeneous sparging. Mean 

ubble chord lengths were found to increase with increasing U sg 

nd to decrease with increasing U sl in a similar way as d eq depends 

n U sg and U sl . 

As bubbles do not behave as rigid ellipsoids and intrusive 

easurements are subjected to measurement biases, an improved 

ethod should be developed to distinguish between bubble size 

chord) and shape more accurately. 

For this Part I paper, we reported accurate data for the effect of 

iquid co-flow on gas hold-up, bubble velocities and chord lengths, 

or bubbly flows characterized by large, uniformly sized, bubbles 

n the range 4–7 mm. Such data may be useful for validating CFD 

imulations, specifically the Euler-Euler (two-fluid) type, as mod- 

ls for bubble coalescence/breakup and segregated size classes are 

o longer required. Hence, models for interfacial momentum trans- 

er mechanisms can be validated for a truly uniform bubble size. 

uture work then may include to study the effect of a bi-modal 

ubble size distribution, such that terminal rise velocities are no 

onger similar. Models for lateral dispersion can be properly vali- 

ated based on empirical knowledge of the bubble size distribu- 

ion, and depending on the interfacial tension (water type), coales- 

ence could start to play a role. 
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Fig. A.17. Modeled chord length distribution for oblate bubbles of various size and 

aspect ratio distributions. 

Fig. A.18. Bubble aspect ration ϕ as a function of Eo. 
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Our Part II paper will deal with flow patterns in an asymmet- 

ically sparged bubble column with an uneven co-flow by a para- 

etric study using the same dual-tip optical fibre probes and Bub- 

le Image Velocimetry. 
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ppendix A. Details about chord length distributions 

1. Simulated chord length distributions 

Our results (with a uniform, single bubble size) suggest that 

ssuming a constant shape factor when transforming a CLD to a 

SD is insufficiently accurate for large bubbles as they behave as 

on-rigid oblate ellipsoids. To further investigate this, we simu- 

ated chord length distributions for uniformly sized bubbles ( d eq = 

 mm) for non-constant bubble shapes as well as for rigid bubbles 

f a dispersed size. 

n = 10 3 random numbers were drawn to represent different as- 

ect ratios or bubble sizes as outlined below: 

1. Rigid oblate bubbles of uniform d b,eq with ϕ = 0 . 5 (constant 

shape); 

2. Rigid oblate bubbles ( ϕ = 0 . 5 ) with Gaussian distributed bubble

equivalent diameters: D b,eq = Norm (5 , 0 . 5) , 

3. Uniform bubbles with a uniformly distributed aspect ratio: E = 

U (0 . 41 , 0 . 59) ; 

4. Uniform bubbles with an arcsinusoidal distributed aspect ratio 

( ϕ may exhibit an harmonic motion): E = Arcsine (0 . 43 , 0 . 57) ; 

5. Uniform bubbles with a Gaussian distributed aspect ratio: E = 

Norm (0 . 5 , 0 . 05) , and 

6. Both normally distributed aspect ratios and bubble equivalent 

diameters: D b,eq = Norm (5 , 0 . 5) and E = Norm (0 . 5 , 0 . 05) 

here E, D denote the distributions of aspect ratio ϕ and the bub- 

le equivalent diameter d b,eq respectively. The variance in E (No. 

-5) was kept constant. 

Then, for each bubble shape in E (No. 1,3-5) or size in D b,eq (No. 

), two large sets of random numbers (for the two horizontal di- 

ections R x , R y ) proportional to the horizontal diameter ( a 2 
i 
) were

rawn from a uniform distribution, U (−a i , a i ) . The chord length

istribution for each subset i was then calculated according to: 

 i = b i 

√ 

1 −
(

R 

a i 

)
2 for R < a i (A.1) 

here R = 

√ 

R 2 x + R 2 y . a i , b i are calculated using d b,eq and ϕ = b i /a i ,

ee Eq. (7) . 

Fig. A.17 shows the simulated probability density function esti- 

ates for the five cases. For uniformly sized rigid bubbles with an 
14 
spect ratio of ϕ = 0 . 5 , a triangular chord length distribution was

ecovered (black solid line) with a modal chord length (almost) 

qual to the maximum chord length ( Clark and Turton, 1988 ). The 

aximum chord length observed is 3.15 mm, which agrees with 

 b,eq = 5 mm and E = 0 . 5 , see Eq. (7) . 

The gray solid line shows the simulated chord length histogram 

or univariate rigid (geometrically similar, ϕ = 0 . 5 ) bubbles in D b,eq 

f an average diameter d b,eq = 5 mm and a Coefficient of Varia- 

ion of 5% (which is even larger than obtained experimentally in 

uilwijk and Van den Akker (2019) ). Due to the dispersity in the 

vertical) diameter, the right tail of the distribution is elongated, 

hile the sharp peak at the modal chord length flattened. 

For equally sized bubbles with a uniformly distributed aspect 

atio in E, a triangular chord length distribution was observed 
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Fig. B.19. (a,b): Pairing rates as a function of x for (a): no co-flow ( U sl = 0 m/s) and various U sg ; and (b): with co-flow ( U sl = 0 , 0 . 1 , 0 . 2 m/s) for U sg = 1 . 25 cm/s. y = 80 cm. (c): 

Average pairing rates as a function of U sg . The error bars indicate the horizontal spreading. The solid markers show data taken at y = 80 cm; the open markers show data for 

y = 40 cm. 
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dotted line) with a modal chord length at ≈ 0 . 8 × the maximum 

hord length. Almost no difference was found between a uniformly 

nd arcsinusoidal (dash-dotted line) distributed aspect ratio. 

For a normally distributed aspect ratio (dashed line), the bubble 

hord length histogram approaches a chord length distribution for 

 normally distributed bubble size distribution, while the bubbles 

re uniform in terms of volume equivalent diameter. 

The deviation from a triangular chord length distribution, as 

iven by the solid black line in Fig. A.17 , can be due to both (1) the

on-uniformity of the bubble size; and (2) the non-constant shape 

n the wobbling regime. We therefore conclude that a chord length 

istribution cannot be transformed into a bubble size distribution 

hen bubbles exhibit a non-constant shape. 

2. Aspect ratio as a function of the Eötvös number 

The bubble aspect ratios are calculated, using Eq. (7) , from the 

ean of the chord length distributions and the volume equiv- 

lent bubble diameter, which is given by the correlation devel- 

ped in our previous paper ( Muilwijk and Van den Akker, 2019 ). 

he bubble aspect ratio as a function of the Eötvös number ( Eo = 

w 

gd 2 
b,eq 

/σ ) is given in Fig. A.18 . It should be noted that, for U sl =
 m/s and U sg > 3 . 5 cm/s, the bubble size can no longer be assumed

s strictly uniform due to coalescence (and breakup) happening at 

he needle outlets. 

ppendix B. Pairing rates 

The pairing rates as a function of x, U sg and U sl are given in

ig. B.19 . The error bars (c) denote the spreading in lateral ( x ) di-

ection, the 15 measurement locations as shown in Fig. 1 . The pair- 

ng rate was almost independent of U sg , but increased from 50% to 

5% for U sl in the range 0–0.2 m/s due to (1) increased alignment 

f the bubble velocity direction and the probe; and (2) the higher 

nertia of the bubbles’ added mass reducing the effect of drifting. 
15 
upplementary material 

Supplementary material associated with this article can be 

ound, in the online version, at doi: 10.1016/j.ijmultiphaseflow.2020. 

03498 . 
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