
Deep Reinforcement
Learning
Pretraining actor-critic
networks using state
representation learning

J. Munk
Master Thesis
Delft Center for System and Control
April 7, 2016

;

Deep
Reinforcement

Learning
Pretraining actor-critic networks using state

representation learning
by

J. Munk
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Thursday April 21, 2016 at 10:00 AM.

Student number: 1318578
Project duration: Februari 1, 2015 – April 7, 2016
Thesis committee: Prof. Dr. R. Babuška, 3mE-DCSC-IC&R, supervisor

Dr. Ing. J. Kober, 3mE-DCSC-IC&R, supervisor
Dr. Ing. S. Wahls, 3mE-DCSC-IC&R
Dr. Ir. J. van Gemert, EWI-Pattern Recognition & Bioinformatics Group

This thesis is confidential and cannot be made public until December 31, 2016.

Summary

In control, the objective is to find a mapping from states to actions that steer a system to a desired reference.
A controller can be designed by an engineer, typically using some model of the system or it can be learned
by an algorithm. Reinforcement Learning (RL) is one such algorithm. In RL, the controller is an agent that
interacts with the system, with the aim of maximizing the rewards received over time.

In recent years, Deep Neural Networks (DNNs) have been successfully used as function approximators in
RL algorithms. One particular algorithm, that is used to learn various continuous control tasks, is the Deep
Deterministic Policy Gradient (DDPG). The DDPG learns two DNNs, an actor network that maps states to
actions and a critic network that is used to find the policy gradient. The policy gradient is subsequently used
to update the actor, in the direction that maximizes the rewards over time.

A disadvantage of using a DNN as function approximator is the amount of data that is necessary to train
such a network. Data, which is not always available or can be expensive to obtain. An advantage of DNNs is
that they can cope with high-dimensional state and actions spaces, something other (local) function approx-
imators are less suitable for.

State Representation Learning (SRL) is a technique that is typically used to lower the dimensionality of
the state space. Instead of learning from the raw observations of the system, SRL is used to map a high-
dimensional observation to a low-dimensional state, before learning the RL task. The main idea is that the
learning algorithm first learns how to extract the relevant information from the system, before it learns to
control it.

In this thesis two algorithms are designed, the Robotic Prior Deep Deterministic Policy Gradient (RP-
DDPG) and the Model Learning Deep Deterministic Policy Gradient (ML-DDPG) that both combine SRL with
the DDPG algorithm, with the aim of improving the data-efficiency and/or performance of the original algo-
rithm. The two algorithms differ in the type of SRL method that is used. The RP-DDPG uses a concept known
as the Robotic Priors, which describes a desirable structure of the state such that it is consistent with physics.
The ML-DDPG learns a model of the system.

The algorithms are compared on three different benchmark problems. For each benchmark, various ob-
servation vectors are “designed”, to simulate different ways of how the information about the state of the
system is communicated to the agent. In our experiments, the RP-DDPG is unable to learn two out of three
benchmarks problems and requires 4 times more data on the third problem. The ML-DDPG is more success-
ful, it outperforms the original DDPG on one benchmark and performs similarly on the other two.

In general, the DDPG and the ML-DDPG do not learn state-of-the-art policies. When the task is to track a
certain reference signal, the controlled system has a steady-state error and/or significant overshoot for some
of the reference positions. It does, however, learn reasonable policies under very difficult circumstances. It
can learn (to some degree) to ignore irrelevant inputs, deal with a reference position that is given in a dif-
ferent coordinate system than the configuration of its body and learn from high-dimensional observations.
Most importantly, it does so, without the need to specifically design or alter the algorithm to deal with these
challenges.

In a final experiment, the ability of a DNN to generalize what it has learned to examples that differ sub-
stantially from examples that it has seen during training is investigated. This ability is what sets a DNN
apart from other function approximators and is believed to be the reason why DNN can cope with high-
dimensional observations. In the experiment, it is shown that the actor can generalize its policy, i.e., it can
produce a control action for observations that differ substantially from observations it has seen during train-
ing. Furthermore, the experiment support the claim that a DNN is able to generalize, by learning individual
factors that each contribute to the control action independently.

iii

In Darwin’s time all of biology was a black box:
not only the cell, or the eye, or digestion, or immunity,
but every biological structure and function because, ultimately,
no one could explain how biological processes occurred.

MICHAEL BEHE

Contents

Acknowledgements vii
1 Introduction 1

1.1 Research Goals and Objectives . 2
1.2 Outline . 2

2 Background 3
2.1 Deep Learning (DL) . 3

2.1.1 Feed-Forward ReLU networks . 3
2.1.2 Optimization algorithms . 5
2.1.3 Visualization using t-SNE . 5

2.2 Reinforcement Learning (RL) . 6
2.2.1 Actor-Critic . 6
2.2.2 Deep Deterministic Policy Gradient (DDPG) . 7

2.3 State Representation Learning (SRL) . 8
2.3.1 Unsupervised methods . 8
2.3.2 (Semi)-supervised methods . 9

2.4 Conclusion . 9

3 Combining State Representation Learningwith the DDPG 11
3.1 State Representation Learning (SRL) using DNN . 11

3.1.1 Robotic Prior method . 11
3.1.2 Model Learning method . 13

3.2 Saturation penalty . 14
3.3 Integration with the DDPG algorithm . 14

3.3.1 RP-DDPG . 15
3.3.2 ML-DDPG . 15

3.4 Conclusion . 15

4 Experiment design 17
4.1 General setup . 17

4.1.1 Data collection. 18
4.1.2 Data preprocessing . 18
4.1.3 Evaluation . 18

4.2 Benchmark 1: Inverted pendulum . 19
4.2.1 Setup. 19
4.2.2 Reward function . 19
4.2.3 Input design . 20

4.3 Benchmark 2: 2-link Arm . 20
4.3.1 Setup. 20
4.3.2 Reward function . 21
4.3.3 Input design . 21

4.4 Benchmark 3: Octopus . 22
4.4.1 Setup. 22
4.4.2 Reward function . 22
4.4.3 Input design . 22

4.5 Conclusion . 23

5 State Representation Learning - Experiments 25
5.1 Learning the state representation . 25

5.1.1 Robotic Prior method . 25
5.1.2 Model Learning method . 26

v

vi Contents

5.2 Visualising the learned representations . 27
5.3 Conclusion . 28

6 Policy learning - Experiments 29
6.1 The Robotic Prior Deep Deterministic Policy Gradient (RP-DDPG) 29
6.2 The Model Learning Deep Deterministic Policy Gradient (ML-DDPG) 29

6.2.1 Benchmark 1: Inverted Pendulum . 30
6.2.2 Benchmark 2: 2-link arm. 31
6.2.3 Benchmark 3: Octopus. 33

6.3 Conclusion . 33

7 Generalization 37
7.1 The curse of dimensionality. 37
7.2 Experiment: Symmetry versus Independent factors. 38
7.3 Result . 38
7.4 Conclusion . 41

8 Conclusion and Recommendations 43
8.1 Summary and Conclusions . 43
8.2 Recommendations for future research . 44
8.3 Final words . 45

A Paper 47
Bibliography 55
Acronyms 59

Acknowledgements

I would like to thank my supervisors Robert and Jens for their assistance during my research and writing of
this thesis. I have really enjoyed the many discussion we had, the enthusiasm they showed and the guidance
they have provided along the way.
I would also like to thank Tim, for the many conversations we had about my thesis, Torch and using the
Amazon cloud. And for the free coffee during those conversations. It was a tremendous help to have a partner
in crime that had to deal with the same practical problems as I did.
Of course, I do not want to forget my friends, who had to listen to all my frustrations and reassure me, without
them having the slightest idea what I was talking about. And my parents for believing in me and supporting
me financially. Finally, I would also like to thank my girlfriend.
Thank you all!

J. Munk
Delft, April 2016

vii

1
Introduction

Even before the invention of the computer, self-learning algorithms have fascinated the great minds of the
world. Although progress in this field have been slow and general Artificial Intelligence (AI) is still more sci-
ence fiction than reality, learning algorithms have become more popular. In the field of control, where the
objective is to find a mapping from states to actions that steer a system to a desired reference, AI algorithms
are also becoming more popular.

The focus of this thesis is on AI algorithms that combine Reinforcement Learning (RL) with Deep Neural
Networks (DNNs). In RL, an agent interacts with an environment, with the aim of maximizing the rewards
received by the environment over time. A DNN is a machine learning technique, where a network is trained
to approximate a certain function. DNNs can be used to solve a variety of problems like object and speech
recognition and have been applied with great success [31]. DNN have learned to describe images [9], created
new works of art in the style of famous painters [25] and won many Machine Learning (ML) competitions like
Imagenet and TIMIT [7].

Many researchers still consider a DNN to be a black box, for which it is impossible to reason about how
or what a network is actually learning. Although it is still hard to interpret how a DNN approximates a certain
function, there certainly are more and more theories [2, 15] and theoretical results [28] that help explain
why DNNs are so effective. One important difference between DNNs and local function approximators is
how they generalize their knowledge to examples not seen during training. A DNN is claimed to generalize
globally, where the example can differ substantially from the examples seen during training whereas local
approximators can only generalize locally [2].

Recently DNNs have been combined with RL to solve various control problems [22], including the cart-
pole benchmark [1] and the cheetah locomotion task introduced in [39]. For example, the Deep Deterministic
Policy Gradient (DDPG) algorithm presented in [22] learns to map a high-dimensional visual input vector, raw
pixel values from a digital camera, to a continuous control action. On many benchmarks, it reached a per-
formance that was similar and sometimes even better than a state of the art planning controller, introduced
in [36], with full access to the dynamics of the system. The DDPG trains two DNNs, an actor and a critic net-
work, where the actor learns the control action and the critic is used to obtain the policy gradient from which
the actor learns.

A very important component of learning to control is to learn how to efficiently gather the task-relevant
sensory information necessary to make informed decisions [41]. Traditionally, one has to tell the learning
controller what the relevant information is, which is not always trivial to do. Specifically in the case of a robot
equipped to do a wide variety of tasks, the amount of sensory information necessary to do one such particu-
lar task is often far less than the total amount of information that is received by the robot [17]. Furthermore,
this input may require preprocessing before it can be used effectively. Some sensory inputs may need to be
combined (e.g. multiple joint angles that determine the position of an end effector), other inputs may need
to be transformed into a common coordinate system and others may be ignored, because they are irrelevant
to the task at hand. Selecting the right information and preprocessing it, to a suitable input for the learning
controller, therefore, requires a fair amount of prior knowledge about the system. It would be much more

1

2 1. Introduction

appealing if the learning controller could learn this by itself.

In the RL community, this is generally referred to as the State Representation Learning (SRL) problem
[17]. In SRL, one tries to learn a mapping, between raw sensory inputs or observations to a state, before
learning the control action [17] [33]. The challenge of SRL is that the optimal state, from which to solve
the problem, is generally unknown. Learning the observation-to-state mapping, therefore, involves either
making assumptions about the structure of the state representation (unsupervised learning) or learning the
mapping as part of learning some other function (semi-supervised learning).

In the DDPG, a DNN learns to control end-to-end, i.e., the network learns to map the raw observations
directly to a control signal, without the need for feature engineering. Although this is believed to reach a
performance superior to a more indirect approach, it does require a lot of data [5]. Data which is not always
available or can be very expensive to obtain. In order to learn more efficiently, some have tried to combine
RL with SRL [5, 16, 17, 29], such that a mapping from observations-to-states is learned explicitly, prior to
solving the RL task. In some cases, this has significantly improved both the speed of convergence and the
final performance. These examples have, however, all focused on learning from visual observations and none
of them integrates these methods with algorithms that combine RL with DNNs.

1.1. Research Goals and Objectives
The general goal of this thesis is to investigate how SRL can complement the DDPG algorithm and for which
type of observations, i.e, an observation that contains irrelevant input or one that requires extensive prepro-
cessing, this results in a better performance.

The following hypotheses are formulated about combining SRL with the DDPG algorithm:

• Learning a state representation prior to training an actor and critic network using the DDPG algorithm
leads to faster convergence and/or improved performance of the final policy.

• Learning a state representation prior to training an actor and critic network makes the DDPG algorithm
more data efficient.

• The benefit of using SRL increases when the observation vector requires more preprocessing or con-
tains more irrelevant input.

In order to verify these hypotheses three benchmark problems are studied, the single pendulum, a 2 link
robotic arm and an octopus arm. For each problem a set of observations are made available to simulate
various situations in which the sensory information that is available is imperfect, i.e., more sensory informa-
tion is available than necessary to solve the problem, the reference is given in a different coordinate system
than the other inputs or velocity measurements are omitted and replaced by a series of subsequent positional
measurements.

A second goal is to experimentally show how an actor network generalizes, the policy it has learned, to
areas it has not seen during training. The goal of the experiment is to show to what extent generalization
works and to provide some insight into why it works.

1.2. Outline
This thesis is organized as follows. Chapter 2 gives an overview of important prior work in the field of RL, Deep
Learning (DL) and SRL. Chapter 3 details the implementation of two SRL methods using a DNN, which are
subsequently combined with the DDPG to form two new algorithms the Model Learning Deep Deterministic
Policy Gradient (ML-DDPG) and the Robotic Prior Deep Deterministic Policy Gradient (RP-DDPG). In order
to test the performance of these algorithms, three benchmark problems are introduced in Chapter 4.

The comparison of the algorithms is discussed in two separate chapters. In Chapter 5, the high-dimensional
states, learned by the network, are visualized in order to compare the two SRL methods. In Chapter 6 an
overview is given of the performance of each algorithm on all the benchmarks, to validate the hypotheses
formulated in the previous section.

In Chapter 7 a practical experiment is performed to show how and to what extend a DNN can generalize
the policy it has learned, to situations it has never seen before. The ability to generalize is important when
the state and/or action dimensions are very high-dimensional. Finally, Chapter 8 concludes this thesis.

Appendix A contains a paper that is submitted to the Conference on Decision and Control and focuses
specifically on the ML-DDPG.

2
Background

This chapter introduces three important concepts Deep Learning (DL), Reinforcement Learning (RL) and
State Representation Learning (SRL) on which the work in the rest of this thesis is based. Behind each concept
lies an entire field of research, the individual sections are therefore by no means meant to give a complete
overview of the respective fields. The aim is to introduce the parts that are relevant for understanding the rest
of this thesis. Furthermore, it should provide the reader with some perspective of how this thesis relates to
previous work done within the respective fields of research.

2.1. Deep Learning (DL)
In the last decade, much progress has been claimed in the performance of Neural Networks (NNs). In both
image recognition and voice recognition, they now outperform any other algorithm [31]. In many cases Deep
Neural Networks (DNNs), where the network has multiple non-linear layers, are favored over shallower net-
works. These deeper architectures, and the ability to train such networks on large amounts of data, are be-
lieved to be the main reason that has led to the increased performance of NNs.
For an extensive introduction into how NNs work the reader is referred to [30]. In the following sections,
some aspects of DL are discussed, that are considered important for understanding the research presented
in this thesis. Section 2.1.1 introduces the equations that describe a feed-forward NN with Rectified Linear
Unit (ReLU) activation functions and discusses recent theoretical work of these types of networks. Section
2.1.2 discusses the optimization algorithms that are used to train NNs. And finally, Section 2.1.3 explains
t-Distributed Stochastic Neighbor Embedding (t-SNE), a method that can visualize the high-dimensional in-
ternal representations, learned by a network.

2.1.1. Feed-Forward ReLU networks
A NN consists of a collection of neurons, connected with each other according to some architecture. In this
thesis the NNs that has been studied are feed-forward networks with fully connected layers, where each neu-
ron belongs to a certain layer and is connected to all neurons in the next layer. Figure 2.1 shows a schematic
diagram of this type of architecture with 1 hidden layer.
The mapping between some input vector x ∈Rn and the output y ∈Rm can be described as a composition of

L layers that defines a function P :Rn →Rm as

P (x; w) = pL ◦qL−1 ◦pL−1..◦q1 ◦p1(x) (2.1)

where pl is an affine linear function and ql a non-linear activation function and w the aggregated parameters
of these functions. Calculating the output y from x, given some parameter w , can be seen as propagating the
input signal through the network layer by layer. This is also referred to as performing a forward pass through
the network. The output of the l-th layer is a vector x l ∈Rnl for l < L and is given by

x l = ql (pl (x l−1)) (2.2)

where x0 = x. The function pl :Rnl−1 →Rnl is an affine linear function

pl (x l−1) =Wl x l−1 +bl (2.3)

3

4 2. Background

x1

x2

x3

x4

x5

xn

y1

y2

ym

Figure 2.1: Schematic diagram of a feed-forward NN with fully connected layers.

where W ∈ Rnl+1×nl is a matrix of weights and b ∈ Rnl+1 a vector of biases. The function ql is the activation
function, which for a ReLU neuron is defined as

ql (z) = max(0, z). (2.4)

The advantage of the ReLU activation function is that gradients flow well on the active parts of neurons since
the activation function does not alter the gradients for neurons that are activated. DNNs with ReLU neurons,
therefore, do not suffer from the vanishing gradient problem [11]. The use of ReLU activation functions has
also simplified the theoretical analysis, with respect to other activation functions that were used in the past,
like the sigmoid or tanh functions [11]. This is because the non-linear activation function q does not alter the
value of the output, other than determining whether it should be activated or not.
Denote by β ∈ {0,1}k a binary activation vector where k are the number of ReLU neurons in the network and
βi = 1 if the i -th neuron is activated (non-zero) and βi = 0 if the i -th neuron is not activated. Then for each
value of β there exists a matrix W − ∈Rm×n and a vector of biases b− ∈Rm for which

y =W −x +b−. (2.5)

The matrix W − and bias vector b− can be obtained by removing all neurons and connections to the neurons
which are not activated and then traveling along each path from every input to every output and multiplying
the individual weights between every individual input-output pair.
The NN essentially divides the input x into regions, where each region is associated with a unique value of
β. Within each of these regions, the output y is an affine linear function of the input x. The NN learns to
approximate a function by learning a collection of linear models and when to activate which model, given
the input x. In [28] it is shown that, in the asymptotic limit of many hidden layers, a DNNs can separate the
input space in exponentially more regions than a shallow NN for the same number of neurons. Deeper NNs,
therefore, need less neurons and thus less weights to approximate a particular function than shallower ones.

A second important concept, that gives some insight in why DNN are such effective function approxi-
mators, is the concept of distributed feature representations [2]. In a distributed representation, given by a
vector upsi lon ∈Rm , each value in the vector upsi loni represents an independent factor that is activated to
some degree or is zero. If we were to classify animals, these factors could represent things like hairy, 4-legged,
striped, long neck etc. Different animals will then be represented by different activation patterns of these
factors, where individual factors will be reused across different animals. Furthermore, each of these factors
are assumed to contribute to the target function, independently of the activation of the other factors. At least
for a DNN with a linear output layer. A DNN is a global approximator, it learns to identify these factors across
the entire input space, whereas local approximation methods learn separate factors for each region of the

2.1. Deep Learning (DL) 5

input space [2]. Local approximators are therefore known to suffer from the curse of dimensionality, which
states that when the dimension of the input space grows, the number of parameters (and data to learn these
parameters) grows exponentially.

2.1.2. Optimization algorithms
Optimization algorithms are used to find the parameters w of a DNN P , such that it minimizes some objective
function E . In supervised learning, the objective function E is typically a minimization of the Mean Squared
Error (MSE) of a set of N training examples D = {x, y} given by

E(D, w) = 1

N

∑
x,y∈D

1

2
(P (x; w)− y)2 (2.6)

where w are the parameters of the network defined by P . Since the objective function is based on a set of sam-
ples, which are drawn from some unknown distribution, the problem is considered a stochastic optimization
function.
One of the advantages of NNs is that obtaining the partial derivative of the gradient with respect to each
parameter is computationally just as expensive as evaluating the function itself. Because of this, most opti-
mization methods used to train NN are first-order gradient methods.
In the most basic form, this algorithm is known as gradient descent in which the parameters are updated at
every iteration, in the direction that minimizes the error. The update rule is simple

wk+1 = wk −α
∂E

∂w
(2.7)

with α> 0 the learning rate and k the iteration index.
Although obtaining the gradient for a single training example may be computationally inexpensive, training
a DNN with gradient descent on a big dataset, can still be very slow. This is because the objective function
is a summation of subfunctions, where each subfunction is evaluated by a different sample. Thus, in order
to obtain the gradient ∂E

∂w , one needs to make a forward and backward pass through the NN for each training
example in the dataset.
Stochastic Gradient Descend (SGD) circumvents this problem by looping through each of the training exam-
ples, calculating the gradient for a single example and updating the weights accordingly. An implementa-
tion of SGD that is computationally more efficient randomly divides the dataset into a set of so-called mini-
batches. During the optimization, the algorithm loops through the mini-batches and updates the weights w
for each mini-batch. This makes training a DNN on a large dataset much more efficient [3].
An important parameter of any gradient descent algorithm is the learning rate α. A learning rate that is too
low results in slow learning while a learning rate that is too large leads to oscillations during learning [30].
Finding the right learning rate, for a given problem, is usually done by manually tuning this parameter.
Adam, introduced in [18], is a stochastic optimization method which adjusts the learning rate for each of
the individual parameters automatically, using statistics of the gradient collected during the optimization. It
determines the learning rate based on the first order moment, the mean m, and the second order moment,
the uncentered variance v . It uses these parameters to calculate a signal-to-noise ratio m/

p
v , where a high

signal-to-noise ratio represents a low uncertainty about the gradient and a low signal-to-noise ratio a high
uncertainty. The individual learning rate for each parameter is calculated by multiplying the signal-to-noise
ratio with a base learning rate, resulting in the following update rule

wk+1 = wk −α
mp

v
· ∂g

∂w
(2.8)

where · represents the inner product.
The main advantage of using Adam is that it automatically finds the right learning rate for many different
problems, without the need to change any of the hyper-parameters [18]. Another advantage of Adam is that
it scales down the learning rate during learning since the signal-to-noise ratio tends to become closer to zero
near the optimum, which improves the overall convergence. In all algorithms, described in Chapter 3, Adam
was used as the optimization method to update both the actor and critic networks.

2.1.3. Visualization using t-SNE
One of the drawbacks of using DNNs is that it is difficult to interpret the output of the hidden layers within
the network, due to the dimensionality of these outputs. Even for a simple benchmark problem, like the pen-
dulum introduced in Chapter 4, the outputs of the hidden layers are 100-dimensional. For people, that live in

6 2. Background

a 3-dimensional world, points in a 100-dimensional space are hard to visualize let alone interpreted.
One approach, that is commonly used to circumvent this problem, is dimensionality reduction, in which a
set of high dimensional datapoints is converted to a set of 2-dimensional datapoints that can subsequently
be shown in a scatterplot. The challenge, when performing dimensionality reduction, is to preserve as much
of the relevant structure as possible, i.e., datapoints that were similar should appear close together and data-
points that were dissimilar should appear far from each other, on the 2-dimensional map.
One method that is often used within the DL community is t-SNE, which claims to be capable of captur-
ing much of the local structure of the original dataset while also revealing the presence of clusters at several
scales [23]. The method converts the Euclidian distance between two high-dimensional vectors xi and x j , to
probabilities that xi would choose x j as its neighbor, given that neighbors are picked in proportion to their
probability density under a Gaussian centered at xi [23]. It calculates the same probabilities for the points on
the 2-dimensional map and then optimizes the transformation such that the difference between those two
probabilities is minimized.
t-SNE can be used to visualize the output of the hidden layers of a NN, to see if the representation that the
network has learned, reveals certain clusters. By labeling each datapoint, one can investigate if these clus-
ters represent something meaningful. For instance, observations of a pendulum (presented as a benchmark
in Section 4.2) could be labeled according to the current angle of the pendulum and its angular velocity, to
visualize the relation between these characteristics and the high-dimensional data vector the network has
learned. One would expect to see observations that were taken at similar angles and angular velocities, to
appear close together on the 2-dimensional map. This experiment is carried out and included in Chapter 5.

2.2. Reinforcement Learning (RL)
In RL, a learning agent interacts with an environment with the aim of maximizing the rewards received from
the environment over time [35]. RL is applicable in a wide variety of learning problems and is therefore
considered by many as the Artificial Intelligence (AI) algorithm. It is an algorithm that allows agents to learn
autonomously by means of trial and error.

More formally, an RL problem is modeled as an Markov Decision Process (MDP) described by the tuple
M = (S, A, f ,r), where the state space S is a set of states s ∈ Rm , the action space A is a set of actions a ∈ Rp ,
f : S × A → S is the state transition function, and r : S × A → R is the reward function. At each timestep t , the
agent receives an observation ot ∈ Rn that determines its current state st , it chooses an action at , receives a
scalar reward rt+1 ∈R according to the reward function r and transits to state st+1 according to the transition
function f .

The goal in RL is to learn a control policy π : S → A that maximizes the discounted sum of future rewards
Rt = ∑T

t=i γ
i−t r (st , at) where γ ∈ [0,1] is the discount factor and T the number of time steps per learning

episode.
The action-value function Q is often used in RL algorithms to denote the expected future reward given an

action at taken in state st and thereafter following the policyπ by taking the action aπ =π(s). The Q-function,
in the form of a difference equation, is given by

Qπ(st , at) = rt+1 +γQπ(st+1,π(st+1)). (2.9)

The optimal action-value function Q∗, that maximizes the discounted sum of rewards, is defined as

Q∗(st , at) = max
π

(
rt+1 +γQπ(st+1,π(st+1))

)
. (2.10)

Given that an agent has learned the optimal action-value function Q∗ it can optimize its behavior by choosing
the optimal action at at every time instance. The optimal policy π∗ is therefore defined as

π∗(st) = argmax
a

(
Q∗(st , at)

)
.

This method is known as a critic-only method. The downside of this method is that for continuous action
spaces, determining the policy requires a complicated optimization at every time step. To circumvent this
optimization actor-critic methods can be used which are explained in the next section.

2.2.1. Actor-Critic
In applications like robotics, where the state and action spaces are continuous, function approximators have
to be used to approximate both the action-value function Q and the policy π [4]. Actor-critic algorithms are
suitable in these situations since they allow both of these functions to be learned separately.

2.2. Reinforcement Learning (RL) 7

In actor-critic methods, the critic learns the action-value function Q while the actor learns the policy π. In
order to ensure that updates of the actor improve the expected discounted return, the update should follow
the policy gradient [34]. The main idea behind actor-critic algorithms is that the critic provides the actor
with the policy gradient. In theory, the critic should have converged before it can provide the actor with an
unbiased estimate of the policy gradient, in practice, however, this requirement can be relaxed as long as the
actor learns slower than the critic [34].

2.2.2. Deep Deterministic Policy Gradient (DDPG)
The Deep Deterministic Policy Gradient (DDPG) algorithm is an off-policy actor-critic algorithm, first intro-
duced in [22]. In this algorithm, both the actor and the critic are approximated by a DNN with parameter
vectors ζ and ξ, respectively. The critic is trained by minimizing the squared Temporal Difference (TD) error
given by

L (ξ) =
(
rt+1 +γQ(st+1,π(st+1|ζ)|ξ)−Q(st , at |ξ)

)2
. (2.11)

The actor is updated in the direction of the policy gradient 5ζQ using the current approximation of the critic.
The update of ζ with 4ζ is given by

4ζ=5aQ(st ,π(st |ζ)|ξ)5ζπ(st |ζ).

According to [32] the Q-function should be in the compatible form in order for the policy gradient to be
unbiased. Although this is violated in the DDPG algorithm, with the addition of a few extra stability measures,
the algorithm has been shown to work well in practice. See Algorithm 1 for an overview of DDPG.

Algorithm 1 Deep Deterministic Policy Gradient (DDPG)

{Actor-Critic Learning}
Randomly initialize network weights ζ and ξ
ζ− ← ζ and ξ− ← ξ {set weights of target network}
for learning step = 1 to N do

Sample random mini-batch from Experience Replay Database
Calculate 4ζ and Lc over mini-batch
ζ← ζ−α4ζ and ξ← ξ−α ∂Lc

∂ξ
ζ− ← τζ+ (1−τ)ζ− and ξ− ← τξ+ (1−τ)ξ− {update target network}

end for

Earlier work, that had tried to use DNNs in RL often suffered from the fact that the Q-function is not
guaranteed to converge when using a global approximator like a NN. In the past years, many papers [22, 24,
29] have focused on solving this problem, motivated by the performance of DNNs in other fields. This has led
to a set of “tricks” that are considered necessary to achieve practical results, although they have not yet led to
any theoretical proof of convergence.

Experience Replay Database
One problem of using a global approximator is that changes to the parameters of the function approximator
have global consequences. If one updates these parameters based on a local error, i.e., an error that occurs in
a certain state, the approximator can suffer from what is known as catastrophic forgetting where the network
forgets what it has learned in some part when updating some other part.
One solution to prevent catastrophic forgetting was proposed in [29] and involves the so-called experience
replay database. In an experience replay database samples from interacting with the system are stored, such
that they can be reused at a later stage. Instead of learning from a single experience, the experiences stored
in the database are used to create mini-batches, the errors (e.g., TD-error for the critic and policy gradient for
the actor) are then calculated for the entire mini-batch. Since the mini-batches are assembled randomly, the
combined error gives a good approximation of the global error, instead of a local error.
Using an experience replay database solves the issue of catastrophic forgetting although care should be taken
to keep the data within the database varied enough to prevent the network from over-fitting to certain areas
of the state space [6].

8 2. Background

Using separate target networks
Another significant problem occurs when minimizing (2.11) [24]. The updates of the parameter ξ not only
change the output of the critic network Q(st , at |ξ), but they also change the target function rt+1+γQ(st+1,π(st+1|ζ)|ξ)
that the network is learning. This is due to the recursive nature of the action-value function. Similarly, up-
dates to the actor parameter ζ also change the target function. This coupling can lead to unstable behavior
and can cause the learning of the action-value function to diverge.

A solution, proposed in [22], that reduces the coupling between the target function and the actor and
critic networks, is to update the parameters of the target function using “soft” updates. Instead of using ζ and
ξ directly, a separate set of weights ζ− and ξ− are used, which slowly track the parameters ζ and ξ of the actor
and critic networks.

The “soft” updates are performed after each learning step, using the following update rule

ζ− ← τζ+ (1−τ)ζ−, ξ− ← τξ+ (1−τ)ξ−

where τ ∈ (0,1] represents the trade-off between the learning speed and stability. Using these new parameters,
the squared TD error becomes

L (ξ) =
(
rt+1 +γQ(st+1,π(st+1|ξ−)|ζ−)−Q(st , at |ξ)

)2
.

L2-penalty on critic weights
A final problem that can hamper the convergence of the action-value function is the fact that the Q-values, the
critic is learning, are not within a predefined range. This is caused by the recurrent nature of the action-value
function. In supervised learning, the target values are usually normalized to be within a certain range, before
the network is trained to learn these values. The Q-values that the critic is learning are, however, unknown
before the learning starts. As the learning progresses these Q-values tend to increase, which is undesirable.
In order to keep the Q-values within a certain range, an L2-penalty on the weights can be added to the cost
function. An L2-penalty adds the minimization of the 2-norm of all weights as an extra optimization objective.
The reasoning behind this is that in order for the network to output large values, the weights need to be large
since the input will always stay within a certain range. By preventing the weights from growing unrestrictively,
the Q-values are ensured to be bounded. Including the L2 penalty, the loss function of the critic becomes

Lc (ξ) =
(
rt+1 +γQ(st+1,π(st+1|ξ−)|ζ−)−Q(st , at |ξ)

)2 +‖ζ‖ .

2.3. State Representation Learning (SRL)
In RL, the state s is not always directly accessible but needs to be constructed from a set of observations o.
Such an observation-to-state map Σ : O → S can be the result of feature engineering, in which an engineer
selects the observations and design the mapping, but this can also be learned from data. The process of
learning the observation-to-state mapping is called State Representation Learning (SRL) [17].

State representation learning is a form of unsupervised learning, i.e., there are no training examples avail-
able since it is not known a priori what the most suitable state representation is to solve the problem. Learning
an observation-to-state mapping, therefore, involves either making assumptions about the structure of the
state representation (unsupervised method) or learning the mapping as part of learning some other function
(semi-supervised method). For both approaches, a few examples are given in the following sections.

2.3.1. Unsupervised methods
In [10, 19, 37], an auto-encoder is used to find an observation-to-state mapping in which the observations are
compressed into a low-dimensional state vector. The objective, during training, is to find states from which
the original observations can be reconstructed. It subsequently learns a state representation that captures
only the unique features of the observation, i.e., how they differ from other observations.

Another unsupervised method is Slow Feature Analysis (SFA) [40], which is based on the idea that most
phenomena in the world change slowly over time. In [10, 20] this assumption is used to learn a mapping
between visual observations and a state representation that gradually changes over time.

In [17], these and several other assumptions about the structure of a good state representation are com-
bined into the so-called Robotic Priors. They are divided into

• The simplicity prior states that only a small amount of world properties are relevant to solve a partic-
ular task and is usually implemented by forcing the state to be low-dimensional.

2.4. Conclusion 9

• The temporal coherence prior is also known as Slow Feature Analysis (SFA) [40] and is based on the
idea that most properties in the world change slowly over time.

• The proportionality prior states that the amount of change in the state representation, as a result of
the action taken in that state, should be proportional to the action that was taken in that state. This is
based on Newton’s second law of motion F = m×a which governs how forces transform into motion in
physical systems.

• The causality prior states that the reward is a direct result of taking an action in a particular state.
Similar state action tuples should, therefore, lead to similar rewards.

• The repeatability prior states that the whenever an action is taken twice, given the same or similar
states, the resulting change in the state should be similar. This prior is also based on Newton’s second
law of physics, but also follows from the Markov property which assumes that future states only depend
on the current state and the action taken in that state.

For each of these priors, a loss function is defined. An observation-to-state mapping is subsequently
trained to minimize the combined loss functions of the individual priors. The paper then shows a perfor-
mance increase when using the learned state representation instead of the raw observations as input to the
Neural Fitted Q-iteration algorithm [29].

2.3.2. (Semi)-supervised methods
In [16, 37, 38] an observation-to-state mapping is learned using a semi-supervised approach. Instead of re-
lying on priors that describe the structure of a state, the mapping is learned as part of learning a function for
which there are training samples available. There are two candidate functions, for which these training sam-
ples are generally available in an RL setting, that is, the reward function r and the state transition function
f .

In [16] Radial Basis Functions (RBFs) are used to learn an observation-to-state mapping Σ that maps a
vector of continuous observations o ∈ Rn to a binary state vector s ∈ {0,1}m . The parameters of the RBF
functions are updated in a way that minimizes a loss function defined as

L (Σ) =Ltransition(Σ)+Lreward(Σ)+‖Σ‖

where ‖Σ‖ is included for regularization, e.g., to keep the number of activations in s small. The Ltransition(Σ)
and Lreward(Σ) are determined at every iteration by using a Nearest Neighbour predictor to learn the tran-
sition and reward function, given the current observation-to-state mapping. One motivation for using both
functions is an analysis done in [27] that shows that a linear value function approximation of the Bellman
equation (2.9) can also be decomposed in an approximation of the reward and transition function.

A problem for the method described in [16] is the lack of computational efficiency. Since the errors re-
sulting from the loss function do not provide a gradient, a stochastic search algorithm is used which requires
105 evaluations of the loss function to converge. For each of those evaluations, it needs to retrain the Nearest
Neighbour predictor to predict both the reward and transition functions given the current observation-to-
state mapping, which makes this approach very computationally expensive.

2.4. Conclusion
In this chapter, the DDPG algorithm is introduced, which is an off-policy actor-critic algorithm that uses
DNNs as function approximator. Various important elements of the algorithm are explained, the ReLU neu-
rons, the Adam optimization algorithm and the loss functions of the actor and critic networks. Furthermore,
multiple SRL methods are explained, which are categorized as either an unsupervised method or a semi-
supervised method. In the following chapters, new algorithms are created that combine the DDPG with SRL.

3
Combining State Representation Learning

with the DDPG

In this chapter, two new algorithms are introduced the Model Learning Deep Deterministic Policy Gradient
(ML-DDPG) and the Robotic Prior Deep Deterministic Policy Gradient (RP-DDPG) both of which combine a
different State Representation Learning (SRL) method with the original Deep Deterministic Policy Gradient
(DDPG). Both algorithms aim to improve the DDPG, specifically in settings where the amount of data is lim-
ited and the observations the agent receives from the system are not very suitable to learn from. Instead of
learning the actor and critic networks end-to-end, using the raw observations as input to the network, both
use SRL to first learn an observation-to-state map such that both the actor and critic network can learn from
a shared state representation.
In Section 3.1, the two SRL methods described in Chapter 2.3 are formulated as a Deep Learning (DL) prob-
lem. By creating a Deep Neural Network (DNN) that learns to map observation to states, SRL can be easily
combined with the DNNs from the DDPG algorithm. In Section 3.2, a specific problem is addressed that
concerns the way all three algorithms deal with input saturation. The fact that this problem occurred in our
setup and was not mentioned in [22], is probably caused by the fact that in our experiments the algorithms
learned off-policy using a dataset that was created before the start of the experiment. This setup was chosen
to be able to compare the different algorithms on exactly the same dataset. Finally, in Section 3.3 the full
algorithms are both introduced.

3.1. State Representation Learning (SRL) using DNN
This section describes the implementation of two different approaches to SRL. First, the implementation of
an unsupervised approach is described, in which a Neural Network (NN) tries to learn a state representation
that is consistent with physics. This method is referred to as the Robotic Prior method. Second a semi-
supervised SRL method is explained. This method is also referred to as a Model Learning method since it
essentially learns a prediction model of the system while learning the observation-to-state mapping. For
each of these methods the architecture of the NN is discussed and the loss function on which the network is
trained is specified.

3.1.1. Robotic Prior method
The robotic prior method, introduced in [17], is an unsupervised learning technique. In the original paper,
it is used to map a high-dimensional visual input (e.g. all pixels of a screen) to a state representation, using
a linear mapping function. In this thesis, the implementation of the method is slightly altered, because our
agent does not learn from visual inputs and our objective is to integrate the method with the DNNs from the
DDPG. The following sections will specify our implementation of the Robotic Priors.

Network architecture
The network architecture, shown in Figure 3.1, consist of a single layer that maps an observation ot to a state
st . In contrast to the network presented in the next section, the learned representation is judged on its con-
sistency with physics [17], therefore, no other outputs then the state st are needed.

11

12 3. Combining State Representation Learning with the DDPG

In the loss function, presented in the next section, up to four different observations need to be mapped to a
state. The network is therefore cloned four times and assembled in parallel, where each network shares the
weights with the other networks. The advantage of this implementation is that the error and partial deriva-
tives with respect to the weights can be done in a single forward and backward pass, instead of four individual
passes.

ot st

ψl1

Figure 3.1: Network architecture of a DNN used to map observations to states. The network takes an observation ot as input and pro-
duces a state st .

Loss function
The Robotic Priors, as defined in [17], are the simplicity prior, the temporal coherence prior, the proportion-
ality prior, the causality prior and the repeatability prior. For each of the different priors, an individual loss
function is defined. The final loss function Lrp is a summation of the individual loss functions given by

LRP(Σ) =Lsimplicity(Σ)+Ltemporal coherence(Σ)+Lproportionelity(Σ)+Lcausality(Σ)+Lrepeatability(Σ)

where Σ is the current observation-to-state mapping. There are three important differences between the im-
plementation described in [17] and this implementation. The first is the simplicity loss, which is implemented
by a sparsity penalty on the state representation (3.1). In [17] it is enforced by a state representation of a fixed,
low dimensionality. For a network with a single layer, the number of weights depends only on the number of
inputs and outputs. Since the dimension of the input, for the benchmark problems defined in Chapter 4, is
already relatively low, enforcing a low dimensional output would severely limit the amount of parameters of
the network.
The second difference is that the Robotic Priors defined in [17] assumes a discreet action and reward space,
since this assumption does not hold in our setup, the loss function of some of the priors needs to be altered.
The problem arises from the fact that some of the priors (i.e. the proportionality prior, the causality prior
and the repeatability prior) are conditioned on the fact that the same action is taken at two different time
instances at1 = at2 . Since, in our setup, an action is assumed to be a continuous value (see Section 2.2), the
chances of applying exactly the same action twice are rather slim. Therefore, the requirement of the exact

same action is replaced by a similarity term e−
∥∥at2−at1

∥∥
2 . This similarity term is 1 if the actions taken at time

instance t1 and t2 are equal and approaches 0 with increasing distance between the actions. A similar term
is already used in the loss function of the causality prior, to measure the similarity between two continuous
states [17]. Similarly, the causality prior is also conditioned on a different reward rt1 6= rt2 received at two

different time instances. This condition is replaced by adding a dissimilarity term 1− e−
∥∥rt2−rt1

∥∥
2 to the loss

function.

Many of the Robotic Priors depend on a comparison between two samples. For instance, the proportion-
ality prior states that, if the robot has performed the same action at times t1 and t2, the change of the state
4st = st+1 − st must change by the same magnitude. A benefit of replacing the conditions with the similar-
ity (or dissimilarity) terms is that now these two samples can be any two samples. The third difference is
therefore that instead of finding a second sample using some search method, a second sample is just chosen
randomly.
Given the current observation-state-mapping st = Σ(ot) learned by the NN and two randomly selected sam-
ples {ot1 , at1 ,rt1 ,ot1+1} and {ot2 , at2 ,rt2 ,ot2+1} the individual loss functions of the different Robotic Priors are

3.1. State Representation Learning (SRL) using DNN 13

given by

Lsimplicity(w f1) = ∥∥st1

∥∥
1 (3.1)

Ltemporal coherence(w f1) = ∥∥4st1

∥∥2
2

Lproportionelity(w f1) = (
∥∥4st2

∥∥
2 −

∥∥4st1

∥∥
2)2e−

∥∥at2−at1

∥∥
2

Lcausality(w f1) = e−
∥∥st2−st1

∥∥
2 e−

∥∥at2−at1

∥∥
2 (1−e−

∥∥rt2−rt1

∥∥
2)

Lrepeatability(w f1) = e−
∥∥st2−st1

∥∥
2
∥∥4st2 −4st1

∥∥2
2 e−

∥∥at2−at1

∥∥
2

where st is used instead of Σ(ot) and 4st instead of st+1 − st for better readability.

3.1.2. Model Learning method
The Model Learning method learns a prediction model of the system by training a model network. The model
network learns a mapping from the observation-action tuple {ot , at } to the next state and reward {st+1,rt+1}.
In contrast to other Model Learning algorithms [12, 16, 27], the model is designed to predict the next state st+1

instead of the next observation ot+1. This becomes important if the observation ot contains task-irrelevant
information. A state that needs to be able to predict the next observation still has to contain this task-
irrelevant information to make the prediction, whereas in the proposed case this information can be ignored
altogether.

Network architecture
The network architecture, shown in Figure 3.2, consists of two Rectified Linear Unit (ReLU) layers followed
by two linear output layers in parallel. The circles in the image represent a single layer containing multiple
neurons, the lines are n-dimensional signals. The observations o are the input to the first layer, which outputs
the state s. This state s, together with the action a form the input to the second layer. The output from the
second layer is then used in both linear output layers to produce a prediction of the next state ŝt+1 and the
reward r̂t+1 respectively.
The network architecture mimics the architecture of the critic network from the DDPG where the action also
enters the network in the second layer. This allows for an easier integration of the two networks later on but
there is also a more fundamental reason behind it. That is, in order to make a prediction of the next state
st+1 irrespective of the action taken in that state, the mapping from observations to states cannot contain an
action as input. Furthermore, since there is no apriori reason to assume that the underlying system is input
affine, a nonlinear layer is necessary after the action enters the network and before the linear output layers.

at

ot

ŝt+1

st

r̂t+1ψl1

ψlr

Figure 3.2: Network architecture of the DNN during training. The first layer takes an observation ot as input and produces a state st
which together with the actions at form the inputs to the second layer. The output of the network is a prediction of the next state ŝt+1

and the reward r̂t+1. The parameters of the network are ψl1 and ψl r
which represent the parameters in the first layer and the rest of the

layers respectively.

Loss function
The DNN is trained to minimize the loss of the objective function given by

LML = ‖ŝt+1 − st+1‖2
2 +λml ‖r̂t+1 − rt+1‖2

2

14 3. Combining State Representation Learning with the DDPG

atot

Q(ot , at)

st

π(ot)ψl1 = ζl1 = ξl1

ζlr

ξlr

Figure 3.3: Integration of the model, actor and critic network.

where λml is a scaling parameter which controls the relative weighting of the two objectives. Note that, to ob-
tain st+1, the current approximation of the observation-to-state mapping is used, to map the next observation
ot+1 to the next state st+1. This could potentially lead to convergence problems since the target depends on
the current approximation. In practice, however, these problems did not occur. In all experiments, which all
started from different random initial conditions, the learning converged to similar local optima.

3.2. Saturation penalty
One specific problem we encountered, with both the DDPG, the ML-DDPG and the RP-DDPG was the fact
that the actor sometimes learned actions that lay outside the saturation limits of the actuator. This is caused
in part because all the samples from which the agent learns are collected prior to the experiment. If an agent
learns actions outside the range, in which data was originally collected. The policy gradient, evaluated at
these actions, is based on extrapolating the critic network, which for large deviations is very unreliable. This
creates instability issues in both networks which hamper the convergence of the algorithm.

In order to restrict the action space, a saturation penalty is added to the loss function of the actor. The
loss function becomes

La(ζ) =−Q(s,π(s|ζ))+λsat

(
max(π(s|ζ)−5,0)+max(−π(s|ζ)−5,0)

)2

where λsat represents the trade-off between maximizing the reward and minimizing the saturation penalty.
The actions are scaled such that they have zero mean and a standard deviation of 1, which puts the saturation
limit at 5 times the standard deviation of the original exploration policy.

3.3. Integration with the DDPG algorithm
In the DDPG algorithm [22], the actor and critic network each consists of three layers. The main idea behind
the two new algorithms presented in this section is that that up to a certain point, an actor and critic network,
can benefit from sharing their intermediate representation. Furthermore, we argue that this intermediate
representation can be learned more effectively, either by using the Robotic Prior method or by using Model
Learning. We will refer to this intermediate representation as the state and the transformation of the input to
this state, as an observation-to-state mapping.
The first layer of both networks is considered to represent the observation-to-state mapping. The parameter
vectors ζ and ξ of the actor and critic respectively are therefore split into two parts where, ζl1 and ξl1 represent
the weights of the first layer and ζlr and ξlr the weights of the remaining layers.
The following sections specify the two algorithms RP-DDPG and ML-DDPG that respectively use Robotic
Priors and Model Learning to learn the observation-to-state mapping to determine ζl1 and ξl1 . Figure 3.3
shows how the observation-to-state mapping is integrated with both the actor and critic network in both
algorithms. Table 3.1 shows the values of all the different parameters that were used, the parameters were
kept the same across the different benchmarks.

3.4. Conclusion 15

3.3.1. RP-DDPG
As in the previous algorithm, the RP-DDPG learns the observation-to-state mapping before training the actor
and critic network. The parameters of the observation-to-state mapping can be combined in the parameter
vector ψl1 . In contrast to the ML-DDPG, there is no need to split the parameter vector since the network in
the robotic prior method only consists of a single layer. After learning the observation-to-state mapping Σ
the weights are integrated into the actor and critic network by setting

ζl1 =ψl1 ,ξl1 =ψl1 (3.2)

and freezing these weights afterward. The full algorithm is given in Algorithm 2.

Algorithm 2 Robotic Prior Deep Deterministic Policy Gradient (RP-DDPG)

{Robotic Prior Learning learning}
Randomly initialize network weights ψl1 , ζ and ξ
for pre-training step = 1 to M do

Sample random mini-batch from DB
Calculate LRP over mini-batch
ψl1 ←ψl1 −α ∂LRP

∂ψl1

end for
{Actor-Critic Learning}
ζl1 ←ψl1 and ξl1 ←ψl1 {copy weights to actor and critic}
ζ− ← ζ and ξ− ← ξ {set weights of target network}
for learning step = 1 to N do

Sample random mini-batch from DB
Calculate La and Lc over mini-batch
ζlr ← ζlr −α ∂La

∂ζlr
and ξlr ← ξlr −α ∂Lc

∂ξlr

ζ− ← τζ+ (1−τ)ζ− and ξ− ← τξ+ (1−τ)ξ− {update target network}
end for

3.3.2. ML-DDPG
In the ML-DDPG the model is trained before the actor and critic networks, using data collected from the
system. The parameters of the model network can be combined in a parameter vector ψ. The vector ψ can
subsequently be split into two parts where ψl1 represent the weights of the first layer and ψlr the weights of
the remaining layers. The observation-to-state mapping learned by the model network can then be integrated
into the actor and critic network by setting

ζl1 =ψl1 ,ξl1 =ψl1 (3.3)

and freezing these weights afterward. The full algorithm is given in Algorithm 3.

3.4. Conclusion
In this chapter two new algorithms are presented, the RP-DDPG and the ML-DDPG. In both algorithms, SRL
is used to pretrain the first layer of the actor and critic networks of the DDPG. The algorithms differ in the
specific SRL method that is used during this pretraining. The algorithms allow us to test the hypotheses
that the DDPG can benefit from learning a shared observation-to-state mapping explicetly as opposed to
learning this implicetly in both the actor and critic networks. Since normally it would learn such a mapping
in both networks separatly, while training the rest of the network. It also allows us to see which of the two SRL
methods is a more suitable method in this situation.

In addition, a saturation penalty is introduced that is added to the objective function of the agent in all
algorithms. The saturation penalty prevents the agent from learning actions that are outside the range for
which data was originally collected. In many cases, such large actions, lay outside the saturation limits of the
actuator and would therefore be undesirable anyway.

16 3. Combining State Representation Learning with the DDPG

Algorithm 3 Model Learning Deep Deterministic Policy Gradient (ML-DDPG)

{Model learning}
Randomly initialize network weights ψ, ζ and ξ
for pre-training step = 1 to M do

Sample random mini-batch from DB
Calculate LML over mini-batch
ψ←ψ−α ∂LML

∂ψ

end for
{Actor-Critic Learning}
ζl1 ←ψl1 and ξl1 ←ψl1 {copy weights to actor and critic}
ζ− ← ζ and ξ− ← ξ {set weights of target network}
for learning step = 1 to N do

Sample random mini-batch from DB
Calculate La and Lc over mini-batch
ζlr ← ζlr −α ∂La

∂ζlr
and ξlr ← ξlr −α ∂Lc

∂ξlr

ζ− ← τζ+ (1−τ)ζ− and ξ− ← τξ+ (1−τ)ξ− {update target network}
end for

Table 3.1: List of parameters for each algorithm

DDPG ML-DDPG RP-DDPG

Actor Network

Neurons in hidden layer 1 100 100 100

Neurons in hidden layer 2 100 100 100

Base learning rate 10−4 10−4 10−4

λsat 50 50 50

Critic Network

Neurons in hidden layer 1 100 100 100

Neurons in hidden layer 2 100 100 100

Base learning rate 10−3 10−3 10−3

λL2 0.002 0.002 0.002

τ 10−3 10−3 10−3

Other parameters

γ 0.99 0.99 0.99

Batch size 200 200 200

λML - 10 -

4
Experiment design

In order to compare the ML-DDPG and the RP-DDPG with the original DDPG, each algorithm is applied to
various benchmark problems. In each case, the task of the algorithm is to find a continuous control policy
that maximizes the reward over time. The reward function is specified uniquely for each benchmark, but is
always based on some distance measure between the current state of the system and some desired state.
Part of this thesis is to investigate how well DL methods deal with inputs that contain either task-irrelevant
information or inputs that are constructed by extending a partially observable state with measurements taken
at previous time instances. Both scenarios are often encountered in practical applications. A robot designed
to do a wide variety of tasks, often receives far more information than necessary to do one particular task, i.e.,
in order to grab an object with one of its arms it can generally ignore the sensor measurements of its other
arm. On the other hand, it is hard to directly measure the velocity of an object, therefore, either an observer
needs to be used or the agent needs to learn based on a series of positional measurements. In these situations
feature engineering is normally used, to extract from the inputs only those features pertinent to solving the
task at hand [33], before using the inputs in the Machine Learning (ML) algorithm. In DL, however, this is
claimed to be unneccessary [15]. In order to investigate this claim, for each benchmark, the input data is
transformed into three different observation vectors known as:

• Classical observation oclassical : The classical observation oclassical is equal to the internal state of the
system, i.e., the state that is also used to simulate the dynamics.

• Unrelated observation ounrelated : The unrelated observation ounrelated contains the internal state, ex-
tended with a vector of white noise inputs.

• Redundant observation oredundant : The redundant observation oredundant contains a measurement of
part of the internal state (without velocity information), extended with measurements at n previous
timesteps and the actions taken at these timesteps. The observation is considered redundant since n is
taken larger then necessary to give the observation vector the Markov property.

Each benchmark that is included, is chosen because of a particular reason. The pendulum is included be-
cause of it’s simplicity and was used primarly to tune the algorithm. The 2-DOF arm is a more difficult exten-
sion of the pendulum. The octopus problem is chosen because of the high dimensionality of the state and
action spaces.
Section 4.1 explains the general setup of an experiment. The other sections explain each of the benchmarks
in more detail.

4.1. General setup
The experiments on the various benchmarks are all done in a similar fashion. The first step is to collect data
(Section 4.1.1), by following some random exploration policy. The data is then preprocessed (Section 4.1.2)
before it is made available to the different algorithms. Each algorithm then learns off-policy, from exactly
the same data points as the other algorithms. Each algorithm runs for the same amount of iterations, where
each iteration represents a single update of the actor and critic network (one learning step). During learning,
the policy is evaluated every n learning steps (Section 4.1.3). In the following sections, each of these steps is
explained in more detail.

17

18 4. Experiment design

Table 4.1: List of parameters that determine how data is collected, for each benchmark.

Inverted Pendulum 2-link arm Octopus

Sample time 2 2 1

β 0.4 0.4 0.01

σ 2 0.5 0.1

4.1.1. Data collection
Each experiment starts with the creation of an experience replay database. An experience replay database is
a collection of n-samples, where each sample is created from a single interaction with the system. A sample
consist of an observation ot , an action at that is applied to the system and the next observation ot+1 and
reward rt+1 that are received by the agent after the interaction. Together these form a tuple {ot , at ,rt+1,ot+1}
which we refer to as a sample. The action at is the result of a random Ohrnstein-Uhlenbeck process, which is
given by

at =βat−1 +N (0,σ)

where β and σ are the parameters that determine the temporal correlation and magnitude of the actuation
signal. The reason for using the Ohrnstein-Uhlenbeck process instead of random exploration is twofold. First,
pure random exploration can cause problems in real actuators due to the high frequency content in the ac-
tuation signal. Second, an exploration signal that is temporally correlated explores a bigger part of the state
space, since some parts of the state space can only be reached after a sustained temporal bias in the actuation
signal, which would be highly unlikely in pure random exploration.
The experienced replay database is created by explororing for several episodes of 1500 time steps each, start-
ing from some initial state with a0 = 0. Each benchmark requires tuning of the parameters β and σ to ensure
that the system is actuated in a way that is within the saturation limits of the actuator and results in the ex-
ploration of the entire state space. Table 4.1 shows the values of β, σ and the sampling time that was used in
each benchmark.

4.1.2. Data preprocessing
The samples collected from the system are preprocessed to create an experience replay database. The obser-
vation and action vectors are normalized to have a mean of zero and a standard deviation of 1. The mean and
standard deviation are saved together with the data, such that actions from the policy network can be denor-
malized before applying them to the real system and observations from the system can be normalized before
feeding them to the DNNs. The reward is normalised such that the average reward is −1 and the rewards are
always negative. This is done to ensure that the Q-value, that is learned by the critic network, has an output
in the same range across the different benchmarks.
After normalization, the samples are randomly assigned to a train, validation or test set with a probability of
0.8, 0.1 and 0.1 respectively. Within these sets the samples are randomly assigned to form mini-batches of
200 samples each.

4.1.3. Evaluation
In order to evaluate the learning during an experiment, the intermediate policyπ is evaluated every 100 learn-
ing steps, using a pre-defined reference signal and initial state. The performance of the policy is defined as
the undiscounted cumulative reward collected during the evaluation given by

R j =
T∑

t=0
r (st , at) (4.1)

where j is the number of learning steps and T the duration of the evaluation. Note that the state st , is the
internal state of the system, which is not always available to the agent directly.
For every experiment the learning trials are repeated l times, to ensure that the results are statistically signif-
icant. In order to make a quantitative comparison between the learning curves, the settling time τs , rise time
τrise and the average performance R̄ is also calculated. To define the settling time and the rise time of the
learning curve, first introduce the undiscounted return after j learning steps averaged over the number Ne of

4.2. Benchmark 1: Inverted pendulum 19

learning experiments:

R̄ j = 1

Ne

Ne∑
l=1

T∑
t=0

r (st , at)

where T is the duration of the evaluation, referring to the j th learning step within the l th learning experiment.
For each reward, the sequence R̄1, R̄2, . . . , R̄Nt is normalized so that the minimum value of this sequence is -1.

The performance R̄ f at the end of learning is defined as the average normalized undiscounted return in
the last c learning steps:

R̄ f =
1

c

Nt∑
j=Nt−c+1

R̄ j

The settling time τs of the learning curve is then defined as the number of learning steps after which the
learning curve enters and remains within a band ε of the final value R̄ f :

τs = Tt ·argmax
j

(|R̄ f − R̄ j | ≥ εR̄ f)

In this thesis c and ε are set to 1000 and 0.05 respectively. The rise time is defined as the number of learning
steps required to climb from the 10% performance level to the 90% performance level:

τrise = τ90 −τ10

with τp defined as:

τp = Tt ·argmax
j

(
R̄ j − R̄1

R̄ f − R̄1
≥ p

100

)
for p = 10% and 90%.

4.2. Benchmark 1: Inverted pendulum
The inverted pendulum is often used as a benchmark problem to test and demonstrate new control algo-
rithms on [12]. The task, in this case, is to track a certain reference angle θr . The main reason for including a
relatively simple control problem is because of its simplicity. Its state and action spaces are low-dimensional,
which makes it easy to visualise what is learned. Its primary use is, therefore, to get valuable insights while
developing the various algorithms and observation-to-state mappings. Only once the algorithms are able to
successfully solve this problem are they tested on more difficult benchmarks.
The following sections will give a detailed description of the setup, the reward function and the different
observations that are made available to the learning agent.

4.2.1. Setup
A schematic diagram of the inverted pendulum is shown in Figure 4.1. The pendulum has a certain angle θ
measured from the downward position and exists within the domain [−π,π]. The reference angle θr can vary
within this same domain and is changed every n time steps. The pendulum is actuated by an electro-motor
which can receive an input signal u ∈ [−10,10]V . The equation of motion is given by

J θ̈ = M g l sin(θ−π)− (b + K 2

R
)θ̇+ K

R
u (4.2)

where the model parameters can be found in Table 4.2. Figure 4.1 also shows the x, y coordinates of the tip of
the pendulum, measured relative to the suspension point. These coordinates are included because some of
the learning agents will only have access to position and velocity measurements in the Cartesian coordinate
system.

4.2.2. Reward function
The reward function that is used consists of three elements, the distance between the current angle θ and
the reference angle θr , the angular velocity θ̇ and a third term that is −1 far from the reference and goes
exponentially to zero closer to it. The latter was used to create an extra steep increase in the reward close to
the reference. The function is given by

R(θ, θ̇,θr) =−(θ−θr)2 −w1(1−eb(θ−θr)2
)−w2θ̇

2

where w1 = 8, b = 10 and w2 = 0.02.

20 4. Experiment design

θ

a

G

θr

x

y

Figure 4.1: A schematic diagram of the inverted pendulum

Table 4.2: Model parameters of the inverted pendulum.

Name Value

J 1.91e −4

M 5.5e −2

g 9.81

l 4.2e −2

b 3e −6

K 5.36e −2

R 9.5

4.2.3. Input design
The classical observation oclassical consist of the internal state of the system extended with the reference po-
sition and is defined as

oclassical(t) = [
θt θ̇t θr

t

]
where t is the timestep.
The second observation ounrelated uses the Cartesian coordinate system to denote the the position and veloc-
ity of the pendulum in, where as the reference position is given in angular coordinates. The DNN therefore
needs to learn which coordinates correspond to which angles, while learning the task. Furthermore a vector
of random white noise signals e with E [e] = 0 is included in the observation, to mimic inputs that are uncor-
related with the task at hand. The size of the vector is equal to the size of the other inputs combined, such
that half of the inputs are unrelated to the task. The full observation vector ounrelated is defined as

ounrelated(t) = [
xt yt ẋt ẏt et θr

t

]
where x and y are the coordinates of the tip of the pendulum as shown in Figure 4.1.
The third observation oredundant contains the reference angle θr , the current angle θ and the angle and action
from the previous 5 timesteps and is given by

oredundant(t) = [
θt .. θt−5 at−1 .. at−5 θr

t

]
.

4.3. Benchmark 2: 2-link Arm
The 2-link arm benchmark [6] is a simple robotic arm with 2 Degrees of Freedom (DOF). The task is to reach,
with the tip of the second link to a certain reference position. Since there are multiple configurations that
position the tip of the second link at the reference position, part of the task is to find the fastest path towards
the reference position.
The following sections will give a detailed description of the setup, the reward function and the different
observations that are made available to the learning agent.

4.3.1. Setup
A schematic diagram of the 2-link arm is shown in Figure 4.2. The 2-link arm consists of two links, both of
which can be controlled by a motorized joint. The angle of the first link θ1 ∈ [−π

2 , π2] is measured with respect

4.3. Benchmark 2: 2-link Arm 21

to the downward position and the angle of the second link θ2 ∈ [−π
2 , π2] with respect to the first link. The two

motorized joints can be controlled by setting a1 and a2, which are (a scaled version of) the motor voltages.
Finally the Cartesian reference position pref = [

xref y ref
]

determines the desired position of the tip of the
second link.
Instead of using the equations of motion, a 3D-model of the system is created and simulated using the Gazebo
simulator.

θ2

θ1a2

a1

G

Rx

Ry

D

Figure 4.2: A schematic diagram of the 2-link arm

4.3.2. Reward function
The reward function penalizes the distance D , between the current position of the tip of the second link and
the reference position, and the angular velocity θ̇ of both links. The reward function is given by

r (D, θ̇) =−(
D +w |θ̇|2

)
where w = 0.1 is the parameter that weight the different terms.

4.3.3. Input design
The classical observation oclassical consist of the angles θ = [θ1,θ2], the angular velocity θ̇ = [θ̇1, θ̇2] and the
reference position pref of the tip of the second link as shown in Figure 4.2 and is defined as

ocl assi cal (t) = [
θt θ̇t pref

t

]
where t is the time step.
The second observation ounrelated uses the Cartesian coordinate system to denote the position and the veloc-
ity of the 2 links. These variables are given by

x = [sin(θ1),sin(θ1)+ sin(θ1 +θ2)]

y = [cos(θ1),cos(θ1)+cos(θ1 +θ2)]

ẋ = [sin(θ1)θ̇1, sin(θ1 +θ2)θ̇2]

ẏ = [cos(θ1)θ̇1,cos(θ1 +θ2)θ̇2]

(4.3)

As in the previous benchmark a vector of random white noise signals e with E [e] = 0 is also included in the
observation. The full observation vector ounrelated is defined as

ounrelated(t) = [
xt yt ẋt ẏt et pref

t

]
.

The third observation oredundant contains the reference position r , the current angles θ and the angles and
actions from the previous 5 time steps and is given by

oredundant(t) = [
θ(t) .. θ(t −5) at−1 .. at−5 pref(t)

]
where a = [a1, a2].

22 4. Experiment design

4.4. Benchmark 3: Octopus
The octopus benchmark is based on a simulation of an octopus arm, where the aim is to hit a food target with
any part of the body. A screen shot of the simulator is shown in Figure 4.3 where the red dot represents the
food target. The octopus arm is considered to be a very challenging task for a Reinforcement Learning (RL)
algorithm, because of the high dimensionality of the state and action spaces.
In order to reduce the complexity of the task, some have used a few simplifications. In [8] the high-dimensional
action space was simplified by defining 6 macro-actions that correspond to particular patterns of muscle ac-
tivation. The task of the agent was then reduced to choosing when to use which macro-action. A less drastic
simplification was used in [13] where the muscle activations were restricted to be of a boolean value, which is
a way of discretizing the action space. Others [13, 32] have reduced the dimensionality of both the state and
action space by limiting the number of segments to 6.
In this thesis none of these simplification are used, the only thing that was added to the original environment
was to add a distance measure to the reward function, which was also done in [13, 32]. The following sections
will give a detailed description of the setup, the reward function and the different observations that are made
available to the learning agent.

Figure 4.3: A screenshot of the octopus simulator

4.4.1. Setup
The octopus arm consists of 13 segments, attached to a base at one side and moves in a 2-dimensional plane.
The state of each segment is defined by the position and velocity of the top and bottom in the x,y coordinate
system and the angle and angular velocity with respect to the base. Since the segments are attached to each
other the total state vector consists of 8(C −1)+2 values, where C are the number of segments.
Each segment has 3 muscles (dorsal, transversal, central). The muscles are controlled by specifying its stiff-
ness a ∈ [0,1]. The food target is placed somewhere in the environment, each episode the arm starts with the
same initial conditions.

4.4.2. Reward function
The reward from the environment is based on the distance D between the food and the segment that is closest
to the food. Whenever the goal is reached an extra bonus B is given. The reward function is given by

r (D,B) = (B −2)−D (4.4)

where B = 2 whenever the goal is reached and B = 0 otherwise.

4.4.3. Input design
The classical observation oclassical consist of the full state sfull as specified by the simulator and explained in
Section 4.4.1 and is defined as

oclassical(t) = sfull
t

The observation vector ounrelated contains the full state sfull as specified by the simulator and a vector of un-
related white noise inputs et with the same size as the state vector

ounrelated(t) = [
sfull

t et
]

.

4.5. Conclusion 23

Table 4.3: Dimension table for the three benchmarks

Action oclassical ounrelated oredundant

Inverted Pendulum 2 3 10 12

2-link arm 2 6 18 24

Octopus 36 96 192 308

The observation vector oredundant contains the positional state information sposition from the state as specified
by the simulator and this state sposition and the action a at the three previous time instances and is given by

oredundant(t) =
[

sposition
t .. sposition

t−3 at−1 .. at−3

]
.

4.5. Conclusion
In this chapter, the experimental setup is explained and three different benchmark problems are defined.
For each of the benchmarks three observation vectors are defined, which simulate different conditions under
which the learning algorithm should still function. This allows us to compare the sensitiveness of the algo-
rithms to the way the agent can observe the system. Table 4.3 shows the dimensions of the state and action
spaces for each of the benchmarks. It ranges from low, a 2 dimensional action space and 3 dimensional state
space for the Inverted pendulum, to very high, a 36 dimensional action space and a 308 dimensional state
space for the Octopus.

5
State Representation Learning -

Experiments

In this chapter the two different State Representation Learning (SRL) methods that were introduced in Chap-
ter 3 are compared on the pendulum benchmark problem from Chapter 4.2. First in Section 5.1 the training
curves of both the Robotic Prior method and the Model Learning method are shown. Subsequently in Section
5.2 the state representations that are learned are visualised using t-Distributed Stochastic Neighbor Embed-
ding (t-SNE) and compared to an untrained observation-to-state mapping and the state representations that
is learned in the actor network that does not explicitly use SRL.

5.1. Learning the state representation

In Chapter 3 two methods were introduced that learn an observation-to-state mapping by training a Deep
Neural Network (DNN), the the Robotic Prior method and the Model Learning method. Both learn from
samples collected from the system, where a sample consists of {ot , at ,rt+1,ot+1} where o ∈ Rn is a vector of
observations, a ∈ Rm a vector of control actions and r ∈ R is a scalar reward. A collection of samples is used
for training the DNN, a different set of samples is used for validating the results as explained in Section 4.1.
The following sections present the results for each of the two methods.

5.1.1. Robotic Prior method

In Chapter 4 three different types of observation vectors are defined, that differ in the way information about
the state of the system is provided to the DNN. Figure 5.1 shows the mean squared error on the validation set
during training for each of these observation vectors. The experiment is repeated 5 times where each time,
the weights of the DNN are randomly initialized. The plot shows the mean (thick line) and the 95% confi-
dence region (shaded area) for each type of observation. The confidence region is quite small, indicating the
network converges to similar local minima, each time the algorithm is run.
In general, the Robotic Prior method converges much faster (within 10 iterations), than the Model Learn-
ing method (Figure 5.2). One reason that could explain the faster convergence is the fact that the Robotic
Prior network contains far less parameters, since it does not contain a second and third layer, like the Model
Learning network. Another reason could be that the objectives formulated by the Robotic Prior method are
just easier to satisfy.

25

26 5. State Representation Learning - Experiments

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

Iterations

V
al

id
at

io
n

E
rr

o
r

Classical Observations
Unrelated Observations
Redundant Observations

Figure 5.1: Plot of the mean squared error on the validation set during training when learning the mapping from observations to states
for the inverted pendulum problem using the Robotic Prior method from Section 3.1.2. The thick line is the mean over 5 experiments,
the shaded area shows the 95% confidence region. Each observation set originates from the same dataset.

5.1.2. Model Learning method

The experiment is repeated for the Model Learning method. Figure 5.2 shows the mean squared error on
the validation set during training for each of the observation vectors. Again the algorithm has the worst per-
formance on the oredundant observation type. The algorithm reaches the lowest error for the oclassical and
ounrelated observation types. It is interesting to see that the algorithm converges faster in case of the ounrelated

observation type since in that case it has to learn to ignore the unrelated white noise signals. The algorithm
has the largest error on the oredundant observation type. This is also arguably the most difficult observation
type since the network has to learn how to extract velocity information from a sequence of positions. A di-
rect comparison, between the performance reached by the Robotic Prior method and the Model Learning
method, is impossible. Both mappings are optimized using very different objective functions and, as stated
before, the “optimal” state representation to solve the reinforcement task is unknown.

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Iterations

V
al

id
at

io
n

E
rr

o
r

Classical Observations
Unrelated Observations
Redundant Observations

Figure 5.2: Plot of the mean squared error on the validation set during training when learning the mapping from observations to states
for the inverted pendulum problem using the model learning method from Section 3.1.2. The thick line is the mean over 5 experiments,
the shaded area shows the 95% confidence region. Each observation set originates from the same dataset.

5.2. Visualising the learned representations 27

(a) Untrained (b) Robotic Priors method (c) Model Learning method

Figure 5.3: Each figure is a t-SNE plot that displays a 100-dimensional state representations as points on a 2D-map. The distance between
two points represents a difference in representation. Each observation (ounrelated) is labelled such that similar symbols correspond to
similar angles θ and similar colours correspond to a similar angular velocity θ̇, the reference angle θr is kept constant for all observations.

5.2. Visualising the learned representations
It is in principal hard to measure the usefulness of the observation-to-state mapping Σ that is learned by
either two methods, let alone compare the two. In this section t-SNE, as explained in Chapter 2.1.3, is used
as a visualisation method, that allows us to plot the 100-dimensional state representation that is learned, on
a 2-dimensional map. The assumption behind the approach is that a good state representation (from the
perspective of a controller), is a representation in which it is easy to discriminate between states, that differ
from a physical perspective. For an inverted pendulum, for which the equations of motion are known, the
physical state can be described by the angle and the angular velocity. A set of 90 observations is therefore
labelled based on there physical state, where each observation has two labels, one for the angle and one for
the angular velocity. The observations are subsequently mapped to states, using the observation-to-state
map learned by the Model Learning method and the Robotic Prior method. The idea is that in a good state
representation clusters should be visible which would allow easy discrimination between different angles
and/or angular velocities.

Figure 5.3 shows the visualisation of 90 state representations for three different observation-to-state map-
pings Σ, each maps ounrelated observations to their respective state representation. In the figure, similar sym-
bols correspond to similar angles θ and similar colours correspond to a similar angular velocity θ̇. In Figure
5.3a, an untrained network is used in which the weights were randomly initialized. This is included as a ref-
erence, to see how the state representation would look on an untrained network. It is clear that no clusters
are visible. In Figure 5.3b, the Robotic Prior method was used to learn Σ. The data points are segregated in
three distinct clusters that share a similar symbol. The Robotic Prior method allows us to easily discriminate
between state representations that belong to different angles. Within each cluster, however, there is no struc-
ture. It is, therefore, impossible to discriminate, for each angle, between state representations that belong
to different angular velocities. In Figure 5.3c, the Model Learning method was used to learn Σ. As in the
second image, three clusters appear that discriminate between different angles. In addition within each clus-
ter, the representations are grouped together according to the angular velocity. Based on this visualisation
it looks like the Model Learning method learns a state representation where a different state representation
corresponds to a different physical state and a similar state representation corresponds to a similar physical
state.

In Figure 5.4 the same approach is taken for the oredundant observation vector. In this case, the state rep-
resentations from the untrained network (5.4a) already show three clusters (one for each angle). This is be-
cause the observation vector does not contain white noise inputs, like in the ounrelated observation vector,
which causes the observation vector to have a much stronger correlation with the label. It is now easier to
discriminate between different angles and angular velocities for the state representations of the Robotic Prior
method. The distance between representations of different angles is, however, smaller then in the case of the
Model Learning method.

In order to see how the state representation learned by the Model Learning method compares to the
observation-to-state map that is implicitly learned in the actor network of the Deep Deterministic Policy
Gradient (DDPG), another t-SNE plot is created. For the DDPG the first layer of the actor is taken as the

28 5. State Representation Learning - Experiments

(a) Untrained (b) Robotic Priors method (c) Model Learning method

Figure 5.4: Each figure is a t-SNE plot that displays a 100-dimensional state representations as points on a 2D-map. The distance between
two points represents a difference in representation. Each observation (oredundant) is labeled such that similar symbols correspond to
similar angles θ and similar colours correspond to a similar angular velocity θ̇, the reference angle θr is kept constant for all observations.

(a) DDPG (b) Model Learning method

Figure 5.5: Comparison of a t-SNE plot of the state representation learned implicitly by the the DDPG and explicetly using the Model
Learning method. In each case the ounrelated observation vector is used.

observation-to-state mapping Σ. The results for the ounrelated observation vector are shown in Figure 5.5. The
two representations are quite similar, suggesting the DDPG implicitly learns a state representation that allows
it to discriminate between different angles and angular velocities, in the first layer of the network.

5.3. Conclusion
In this chapter t-SNE is used to visualise the high dimensional state representations learned by different net-
works. t-SNE allows us to visualize and compare different SRL methods. If the results are compared to an
untrained method, that was initialized randomly, it becomes clear that each method is able to improve, i.e.,
it learns a representation for which it is easier to discriminate between states that differ from a physical per-
spective. For both the ounrelated and oredundant observation vectors, the Model Learning method does a better
job then the Robotic Prior method. If the Model Learning method is compared to the observation-to-state
mapping Σ, learned implicitly in the first layer of the DDPG, the results are quite similar. The different vi-
sualisations of the state representation that are learned do, however, not directly prove the usefulness of the
observation-to-state mapping. In the following chapters the different algorithms, that differ in the way the
observation-to-state mapping is learned, will be compared. Only then can we see of these results correlate
with the visualisation made here.

6
Policy learning - Experiments

In this chapter, the two algorithms introduced in Chapter 3 are compared to each other and the original Deep
Deterministic Policy Gradient (DDPG). Section 6.1 presents the results of the Robotic Prior Deep Determin-
istic Policy Gradient (RP-DDPG), this algorithm is discussed separately because initial results showed a very
poor performance. The results of the Model Learning Deep Deterministic Policy Gradient (ML-DDPG) and
the DDPG are compared in Section 6.2. Each of the two algorithms is run on each of the three benchmarks
presented in Chapter 4 for different sizes of the experience replay database. Section 6.3 concludes this chap-
ter by evaluating the hypothesis stated in the introduction chapter.

6.1. The Robotic Prior Deep Deterministic Policy Gradient (RP-DDPG)
In Chapter 5.2 visualizations of the state representation, learned using the Robotic Priors method, were worse
than the Model Learning method. The real test, however, is to see if the actor and critic networks are able to
learn, using the observation-to-state mapping Σ learned using the Robotic Priors.

Figure 6.1 shows the result on each of the benchmarks, for the different observation vectors defined in
Chapter 4. For the Inverted Pendulum benchmark and the 2-link arm, the results are very poor. In both
cases, the algorithm never reached a performance that is significantly better than the performance at the
start of the learning trial, when both the actor and critic networks are initialized randomly. The results on the
octopus, however, are quite good. It learns to hit the target in less than 1000 learning steps. This performance,
however, required a fairly large experiment replay database that contained 60K samples. When the number
of samples was decreased, the performance also degraded significantly. In order to see why the Robotic Prior
method fails on the Inverted Pendulum and the 2-link arm benchmark, we compare our setup to the setup
used in [17]. First of all, in [17] the observations consisted of a vector of pixel values instead of positional
and velocity measurements and the action space is discretized as opposed to our setup in which the action
space is continuous. The most important difference, however, are the benchmark problems on which the
algorithm is tested. In [17] the algorithm is tested on a navigation task and a slot-car racetrack, in both cases,
the physical state of the system that needs to be extracted to control the system consists only of positional
information, e.g., the position in the room and the position of the car on the track. This is confirmed in [17],
where it is shown that in both cases the dimension of the state is 2, representing the x and y coordinates.

The benchmark problems used in this thesis, particularly the Inverted Pendulum and the 2-link arm, also
requires velocity information to be extracted from the observation. One specific Robotic Priors does not seem
particularly suitable to extract both positional and velocity information. For instance, the proportionality
prior states that the amount of change in the state representation, as a result of the action taken in that state,
should be proportional to the action that was taken in that state. In a control setup, that is sampled with a
high frequency, the change in position is more related to the current velocity then the control action. This
prior would therefore not hold. It seems probable that this explains the poor performance on the Inverted
Pendulum and the 2-link arm for the RP-DDPG.

6.2. The Model Learning Deep Deterministic Policy Gradient (ML-DDPG)
The performance of the ML-DDPG is compared to the DDPG on three benchmark problems and for each
of the three observations vectors from Chapter 4. In each of these settings, the experiments are repeated

29

30 6. Policy learning - Experiments

0 0.5 1 1.5 2

·104

−2

−1.5

−1

−0.5

0

Iterations

R
ew

ar
d

Classical
Unrelated
Redundant

(a) Inverted Pendulum

0 1 2 3

·104

−2

−1.5

−1

−0.5

0

Iterations

Classical
Unrelated
Redundant

(b) 2-link arm

0 1 2 3

·104

−1

−0.8

−0.6

−0.4

−0.2

0

Iterations

Classical
Unrelated
Redundant

(c) Octopus

Figure 6.1: Learning curve of the RP-DDPG on the three different benchmarks. Each plot shows the average cumulative reward over 5
learning trials (thick line) and the 95% uncertainty region (shaded area) for each of the different observation vectors.

Table 6.1: Learning curve characteristics on the Inverted Pendulum for different sizes of the experience replay database. The rise time
τrise and settling time τs are denoted in ×1000 learning steps.

Input DB DDPG ML-DDPG

type size τrise τs R̄ τrise τs R̄

oclassical

7.5K 3.9 11.7 −0.371 3.3 5.5 −0.253

30K 11.2 13.7 −0.233 5.2 7.8 −0.262

120K 9.2 11.1 −0.231 10.5 12.1 −0.293

ounrelated

7.5K 6.7 7 −0.429 6.8 16.5 −0.445

30K 10.7 13.5 −0.246 8.5 9.4 −0.297

120K 12.3 16.2 −0.285 9.7 11.4 −0.235

oredundant

7.5K 0 16.8 −0.985 17.9 15.5 −0.928

30K 14.8 15.4 −0.500 13.2 16.8 −0.412

120K 14.5 16.2 −0.344 15.3 16.1 −0.394

for different sizes of the experience replay database, to investigate how the algorithm performs when data
is either scarce or abundant. In order to make a quantitative comparison between the learning curves, the
settling time τs , rise time τrise and the average performance R̄ are calculated, see Section 4.1.3.

6.2.1. Benchmark 1: Inverted Pendulum
Table 6.1 shows the results for the different observation vectors on the Inverted Pendulum problem. There is
no clear overall winner. The ML-DDPG outperforms the DDPG on the classical and redundant observation
set when the size of the experience is small while the DDPG performs better on these observation sets for
larger sizes of the experience database. For the unrelated dataset, the result is the reverse. In general, the
performance becomes better if the size of the database grows, although even here one can find exceptions.

In order to take a closer look at the final control policy that is learned by the actor, a time-domain plot
of the angle and control action can be made. The reference signal is the same as the one that is used when
testing the performance of the algorithm. From the 5 trials that are available, the actor with the median
performance is selected.

Figure 6.2 shows the time-domain plot for the ounrelated observation vector. Two things stand out. First,
for three out of five reference positions, the noise on the control action (probably caused by the white noise
inputs) is significantly lower with the ML-DDPG then for the DDPG. It seems, at least in certain areas, that
learning a model helped the network to ignore these unrelated inputs. It is not clear why it failed to learn
this specifically for the fourth and fifth reference position. When looking at a time-domain plot of the control
action for one of the other trials, this did not happen. The second thing that stands out is the relatively large

6.2. The Model Learning Deep Deterministic Policy Gradient (ML-DDPG) 31

0 2 4 6 8 10
−3

−2

−1

0

1

2

3

Time (s)

A
n

gl
e

(r
ad

)

DDPG
ML-DDPG
Reference

0 2 4 6 8 10
−15

−10

−5

0

5

10

15

Time (s)
C

o
n

tr
o

la
ct

io
n

(V
)

DDPG
ML-DDPG

Figure 6.2: Time domain plot, showing the state and control action, of the final policy learned by the ML-DDPG and DDPG on the
Inverted Pendulum problem using the ounrelated observation vector. Both algorithms are trained using 120K samples.

steady state error on the last reference position. This is caused by the fact that the position of the pendulum
in the observation vector is given in the x and y coordinates, whereas the reference is given in angles. The
pendulum goes to the right x-position but not the right y-position.

Figure 6.3 shows time-domain plot for the oredundant observation vector. The plot shows that the DDPG is
able to learn a more stable response then the ML-DDPG. It seems the DDPG is better in extracting the velocity
information from the observation vector, which is necessary to prevent the type of oscillations the ML-DDPG
is suffering from.

6.2.2. Benchmark 2: 2-link arm
Figure 6.4 shows the mean (thick line) and standard deviation (shaded area) of the learning curve for the
ounrelated and oredundant observation vectors using an experience replay database of 30K samples. The results
from the other experiments are presented in Table 6.2. For the 2-link arm benchmark, the ML-DDPG outper-
forms the DDPG algorithm in final performance R̄ (+38.0% on the oclassical +37.8% on ounrelated and +8.1%
on oredundant) and in rise time τrise −29% and settling time τs −36.2% on the ounrelated observation type. It
does have slower convergence on the oredundant type (rise time τrise +28.7% and settling time τs +39%). Both
algorithms perform better, in terms of final performance, if more data is available. The advantage of the
ML-DDPG over the DDPG seems relatively constant and not, as was expected, degrade when data becomes
abundant.

Figure 6.5 shows a time-domain plot of the x-coordinate of the tip of the second link and (one of the)
accompanying control actions when learning from the oredundant observation vector. It is clear that the per-
formance is incomparable to other optimal control methods, the controlled system has a steady-state error
and a significant overshoot. It is important to note, however, that the controller does not use a separate ob-
server, although the system is partially observable and the reference is given in Cartesian coordinates whereas
the position of the 2 links is given in joint angles. The controller, therefore, needs to learn the non-linear map-
ping between the two, while also learning the unobservable states from a sequence of measurements. Seen
in this light, we think the performance is actually quite good. We also believe the performance can be further
increased by tuning the reward function and/or architecture of the Deep Neural Networks (DNNs) which has
not been done extensively to get these results.

Figure 6.6 shows a time-domain plot of the state and control action, of the final policy learned by the
ML-DDPG and DDPG on the 2-link arm problem using the oclassical observation vector. Figure 6.6 shows the
x-coordinate of the tip of the second link. For the first two reference positions, the steady state error of the

32 6. Policy learning - Experiments

0 2 4 6 8 10
−3

−2

−1

0

1

2

3

Time (s)

A
n

gl
e

(r
ad

)
DDPG
ML-DDPG
Reference

0 2 4 6 8 10
−15

−10

−5

0

5

10

15

Time (s)

C
o

n
tr

o
la

ct
io

n
(V

)

DDPG
ML-DDPG

Figure 6.3: Time domain plot, showing the state and control action, of the final policy learned by the ML-DDPG and DDPG on the
Inverted Pendulum problem using the oredundant observation vector. Both algorithms are trained using 120K samples.

Table 6.2: Learning curve characteristics on the 2-link arm for different sizes of the experience replay database. The rise time τrise and
settling time τs are denoted in ×1000 learning steps.

Input DB DDPG ML-DDPG

type size τrise τs R̄ τrise τs R̄

oclassical

15K 2.4 11.9 −0.251 0.9 2.1 −0.167

30K 2 6 −0.190 2.1 2.3 −0.116

90K 13.5 2.9 −0.139 2.5 3.4 −0.127

ounrelated

15K 3 3.2 −0.222 2 3.5 −0.180

30K 3 8.6 −0.235 2.8 3.8 −0.164

90K 3.4 3.7 −0.191 1.9 2.6 −0.126

oredundant

15K 2.5 11.6 −0.256 3.7 17.2 −0.276

30K 4.8 5.1 −0.205 1.9 2.5 −0.175

90K 5.9 6.2 −0.187 11.3 12.2 −0.148

0 1 2 3 4

·104

−1

−0.8

−0.6

−0.4

−0.2

0

Iterations

R
ew

ar
d

DDPG

ML-DDPG

(a) ounrelated

0 1 2 3 4

·104

−1

−0.8

−0.6

−0.4

−0.2

0

Iterations

DDPG

ML-DDPG

(b) oredundant

Figure 6.4: Learning curve 2-link arm using 60K samples

6.3. Conclusion 33

0 2 4 6 8 10
−1

−0.5

0

0.5

1

1.5

Time (s)

x-
co

o
rd

in
at

e

DDPG

ML-DDPG

Reference

0 2 4 6 8 10
−1

−0.5

0

0.5

1

1.5

Time (s)
C

o
n

tr
o

lo
u

tp
u

t
a

1

DDPG

ML-DDPG

Figure 6.5: Time domain plot of the final policy on the 2-link arm benchmark, showing one of the states (left) and control actions (right).
The ounrelated observation type is used and both algorithms are trained using 90K samples.

ML-DDPG is much smaller than for the DDPG.

6.2.3. Benchmark 3: Octopus
The results on the octopus benchmark are quite surprising. The benchmark is considered very difficult, be-
cause of the high dimensionality of the state and action spaces. In our experiments, however, each algorithm
was able to learn the task relatively fast on a relatively small dataset (see Table 6.3). In the 7.5K dataset,
the samples on which the algorithms are trained contains only one example in which the target was hit.
Since it is hard to visualize the learned policy for a benchmark with these dimensions, videos of the octopus
are made available that shows the final policy for the DDPG (https://youtu.be/-G9HV-baMC8), ML-DDPG
(https://youtu.be/FctMsWc6RM0) and RP-DDPG (https://youtu.be/IYk-6ORiSkQ) algorithms.
The octopus has 36 individual muscles which can all be controlled individually by specifying its stiffness over
time. When looking at the final control policy, 26 of these muscles have a stiffness that is either 1 or 0 during
the entire episode and a further 7 are almost always 1 or 0. Only for 3 muscles, it learns a policy that really de-
pends on the current state. This is also visible when looking at the video. From the start, the octopus quickly
flexes its muscles to create a particular shape, from which it is able, using only a few of its muscles, to slowly
move towards the target. Although this is certainly a novel way to complete the task, it is very different from
the delicate control action that is necessary to bring the Inverted Pendulum or the 2-link arm to a certain
reference position.

In order to see if the learned policy also generalized to other initial positions, the octopus arm was ran-
domly excited for 2s before testing the learned policy again. Also, in these cases, the octopus was successful
in reaching the food.

6.3. Conclusion
In this chapter, the RP-DDPG, ML-DDPG and the DDPG are compared on three different benchmark prob-
lems. From the initial results, it quickly became clear that the RP-DDPG was unable to learn anything on
the Inverted Pendulum and 2-link arm benchmark. Further analysis led us to believe, that the reason be-
hind the poor performance is the inability of the Robotic Prior method to extract both positional and velocity
information from the observation vector.

The ML-DDPG outperforms the DDPG consistently on the 2-link arm benchmark. It is interesting to see
that this is true even for large datasets. Since earlier research [21] suggested end-to-end training of a DNNs
is always preferable to dividing up the problem and learning it in phases (like the Model Learning method

https://youtu.be/-G9HV-baMC8
https://youtu.be/FctMsWc6RM0
https://youtu.be/IYk-6ORiSkQ

34 6. Policy learning - Experiments

0 2 4 6 8 10
−1

−0.5

0

0.5

1

Time (s)

x-
co

o
rd

in
at

e

DDPG
ML-DDPG
Reference

0 2 4 6 8 10
−1

−0.5

0

0.5

1

Time (s)

C
o

n
tr

o
la

ct
io

n
a

1
(V

)

DDPG
ML-DDPG

Figure 6.6: Time domain plot, showing the state and control action, of the final policy learned by the ML-DDPG and DDPG on the 2-link
arm problem using the oclassical observation vector. Both algorithms are trained using 90K samples.

Table 6.3: Learning curve characteristics on the octopus for different sizes of the experience replay database. The rise time τrise and
settling time τs are denoted in ×1000 learning steps.

Input DB DDPG ML-DDPG

type size τrise τs R̄ τrise τs R̄

oclassical

7.5K 26.1 28.8 −0.235 2.3 3.5 −0.111

15K 1 2 −0.058 1.9 2.3 −0.069

30K 1.2 1.9 −0.036 9.2 12.4 −0.040

ounrelated

7.5K 0.5 23.5 −0.140 0.4 1 −0.086

15K 0.8 22.1 −0.061 0.7 1.3 −0.068

30K 1.9 3.5 −0.024 11.2 15 −0.057

oredundant

7.5K 0.8 2.2 −0.036 0.6 6.9 −0.064

15K 1.1 6.7 −0.049 2.8 18.1 −0.146

30K 0.6 13.5 −0.057 20 21 −0.053

6.3. Conclusion 35

does), whenever the dataset is large enough. For the other two benchmarks, the results are not as conclusive.
In general, the overall performance of either the DDPG or the ML-DDPG on the Inverted Pendulum and

the 2-link arm benchmark is not as good as you would normally expect from an optimal control method.
As is visible in Figure 6.6, for some reference positions the response is quite optimal, but for other reference
positions, the policy results in a large overshoot or steady-state error. Furthermore, if we were to create a
time-domain response of the policy learned in one of the other trials, we find these problems happening for
different reference positions. The main problem is therefore that the performance of the policies learned by
the algorithms are not very reliable. This also makes it hard to tune these algorithms to lower, for instance,
the steady-state error at certain reference positions.

From another perspective, the results are quite impressive. For instance, the oredundant observation vec-
tor of the 2-link arm benchmark has 24 dimensions, does not contain velocities and contains the reference
angle in a different coordinate system than the configuration of the arm. Both the DDPG and the ML-DDPG
can handle, the combination of these challenges, without making any specific change to the algorithm (to
specifically deal with these type of challenges) and reach a performance, close to the performance it reaches
using the oclassical observation vector. Furthermore, the same algorithm can deal with a case in which half of
the inputs are white noise or a benchmark problem like the Octopus in which the state space has up to 308
dimensions. It is therefore the ability to learn, in a wide variety of settings and in relatively difficult circum-
stances that make the performance of these algorithms very impressive.

7
Generalization

In this chapter, the ability of a DNN to generalize, within the context of Reinforcement Learning (RL), is in-
vestigated. Generalization is taking one or a few facts and making a broader, more universal statement. In
the context of function approximators, generalization is the ability to make good approximations of inputs
that differ from the ones seen during training.
The claimed advantage of DNNs over local approximation methods is that they can generalize globally, i.e.,
they can generalize to examples that differ substantially from the examples seen during training. This ability
of a DNN to generalize globally is said to help tackle the curse of dimensionality [2]. Section 7.1 will discuss
the curse of dimensionality in more detail. In Section 7.2 an experiment is designed that tests to what extent
an actor network can generalize the policy it has learned, by excluding certain parts of the observation space
from the training set. The results of these experiments are presented in Section 7.3. Section 7.4 concludes
this chapter.

7.1. The curse of dimensionality
In most local approximation methods the observation space O ⊂Rn is divided into local regions. The simplest
approach is to create an n-dimensional grid where each dimension is divided into p regions. This results in
pn regions, which grows exponentially with the number of dimensions. This exponential growth is gener-
ally referred to as the curse of dimensionality [4]. More complicated methods try to focus the resolution on
certain parts of the observation-space, by making the regions smaller in places where the function that is
approximated is more complex and making the regions bigger in places where the function is simpler or the
approximation is less relevant [4]. This, however, does not solve the problem entirely, it just makes it more
manageable for slightly larger values of n.
The core of the problem is that these local methods only exploit the principle of local generalization based on
the smoothness assumption, which assumes that similar inputs have similar outputs. In local generalization,
an approximation of an unseen example is done by interpolating between neighboring training examples [2].
This, however, always requires that there are data points in the training set for each region.
As was already explained in Section 2.1.1 a DNN takes a different approach. A DNN tries to find a set of in-
dependent factors υ ∈Rm , that can be linearly combined into the target function. The number of factors, the
network is learning, is independent of the dimensionality of the input n. Instead, it is related to the funda-
mental complexity of the function it is trying to approximate. These factors are independent in the sense that
their contribution to (the value of) the target function, is independent of the activation of other factors. In
order to learn how each factor contributes to the target function, the network does not need to see all possible
combinations of factors (which would grow exponentially in m), it only needs to see an example in which the
factor is activated and one for which the factor is deactivated (which grows linearly 2m).
Figure 7.1 illustrates the two different approaches for a 2 dimensional observation space. In Figure 7.1a, the
observation space is divided into local regions which requires data points in each individual region. In Figure
7.1b the observation space is partitioned based on factors that each divide the observation space in two, a
region where the factor is present and one in which it is not. Multiple factors combined create an exponential
number of regions. In the figure, each region contains a vector w ∈ 0,1m that denotes which of the factors
is activated in the respective region. Since the factors are assumed to be independent, with respect to the

37

38 7. Generalization

activation of other factors, the number of data points necessary to learn about these individual factors scales
linearly with the number of factors.

1 2 3

654

7 8 9

(a) Local regions

υ1 υ2

υ3

{0,1,1}
{1,0,1}

{1,1,1}

{0,0,1}

{0,0,0}

{1,0,0}

{0,1,0}

(b) Factor based

Figure 7.1: Two different approaches to partitioning a 2-dimensional observation space.

7.2. Experiment: Symmetry versus Independent factors
An experiment is designed to experimentally determine to what extent the actor can generalize its policy to
parts of the observation space it has not seen during training. The basic idea is to train the DDPG on a dataset
in which certain parts of the observation space are excluded. The learned policy of the actor is subsequently
tested using a reference signal that forces the system to visit parts of the observation space that were not part
of the training set. The performance of the algorithm is then compared to the performance of the algorithm
when trained on a “normal” dataset, which was sampled uniformly from the observation-space.
The 2-link arm presented in Section 4.3 is used as a benchmark for this experiment. As input to the algorithm,
the oclassical observation vector is used. The observation space of the 2-link arm is divided into 24 regions, by
discriminating between positive and negative values of the angle and angular velocity of each link. We denote
each region as a string of four symbols ++−−, representation either positive or negative values for θ1, θ2, θ̇1

and θ̇2 respectively. Three datasets are then created

• Uniform - The uniform datasets contain samples belonging to each of the individual regions, the dataset
is created by following a random exploration strategy based on the Ohrnstein-Uhlenbeck process.

• Symmetry - The symmetry dataset contain only data points in which both angles are positive. No
criteria are used on the angular velocities.

• Independent factors The independent factor dataset contain all combinations in which 3 out of 4 sym-
bols are positive.

The symmetry and independent factor datasets each cover 4 out of the 16 different regions. They are created
by filtering a uniform dataset that is 4 times the size of the uniform dataset that is used in the experiment.
This way each dataset contains roughly the same (30K) number of samples.
In the symmetry dataset, as the name implies, the actor network is assumed to generalize by exploiting the
symmetry of the system. In the independent factors dataset, each symbol is assumed to represent an inde-
pendent factor, the dataset contains both positive and negative values for each symbol. The negative values
are, however, only present in the context of all other symbols being positive. Table 7.1 shows a list of all regions
and lists, which regions are covered in each of the datasets.

7.3. Result
Figure 7.2 shows a plot of 5 training sequences of the DDPG for each of the datasets. Surprisingly the in-
dependent dataset and the uniform dataset reach the same performance. The symmetry dataset performs

7.3. Result 39

Table 7.1: List of datasets and the regions covered by the dataset. A string of four symbols ++−−, representation either positive or
negative values for θ1, θ2, θ̇1 and θ̇2 respectively.

Uniform Symmetry Independent factors

++++ x x -

+++− x x x

++−+ x x x

+−++ x - x

−+++ x - x

++−− x x -

−−++ x - -

+−−+ x - -

−++− x - -

+−+− x - -

−+−+ x - -

−−−+ x - -

−−+− x - -

−+−− x - -

+−−− x - -

−−−− x - -

significantly worse. The latter is not very surprising, giving the way a DNN with Rectified Linear Unit (ReLU)
activation neurons computes its output. Due to the max(0, z) operator, neurons that are activated given a cer-
tain input z will not be activated whenever the input changes sign. This essentially makes it impossible for
a DNN ReLU activation neurons to generalize based on symmetry, which requires an input-output mapping
where a change in sign on the inputs results in a change in sign on the outputs.

0 0.5 1 1.5 2 2.5 3 3.5 4

·104

−1

−0.8

−0.6

−0.4

−0.2

0

Iterations

R
ew

ar
d

Uniformly
Factors
Symmetry

Figure 7.2: Plot of 5 training sequences of the DDPG for three different datasets on the 2-link arm benchmark problem. The oclassical

observation vector is used as input. The bold line is the mean score and the area shows the 95% uncertainty region. The reward is
determined every 100 iterations by testing the intermediate policy, learned by the actor, on a predetermined reference signal for the
duration of 1000 time steps.

Figure 7.3 shows the time-domain response of the final policy. Only the x-position of the tip of the sec-
ond link is shown. It clearly shows a better performance (a lower steady state error) for the independent
dataset whenever the angles are positive, which correspond to positive values of the x-coordinate. While the
performance of the uniform dataset is better for negative angles. This can be attributed to the fact that the

40 7. Generalization

independent dataset has significant more samples in regions of the observation space where the angles are
positive, due to the way the dataset is constructed. This allows the algorithm to learn to track the reference
more precisely in these regions. In regions where the angles are negative, it does learn a policy that stabi-
lizes the system within 0.5s, although during training it has never been in a situation where both angles were
negative.

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

Time (s)

X
-p

o
si

ti
o

n

Uniformly
Factors
Symmetry
Reference

Figure 7.3: Time domain plot of the final policy learned by the DDPG for three different datasets on the 2-link arm benchmark problem.
On the y-axis the x-coordinate of the tip of the second link is shown as well as the reference position.

In the experiment, the independent factors are assumed to be based on the angles and angular velocities
of the 2-link arm, where each factor is based on one of these properties independently. The oclassical obser-
vation vector also contains each of these properties independently, which could be argued, is the reason the
DNN learns to identify these as the independent factors. The experiment is therefore repeated, but this time,
the oredundant observation vector is used, which does not include the angular velocities directly. The results
shown in Figure 7.4 shows that even in this scenario, the independent dataset and the uniform dataset reach
the same performance.

0 0.5 1 1.5 2 2.5 3 3.5 4

·104

−1

−0.8

−0.6

−0.4

−0.2

0

Iterations

R
ew

ar
d

Uniformly
Factors
Symmetry

Figure 7.4: Plot of 5 training sequences of the DDPG for three different datasets on the 2-link arm benchmark problem. The oredundant

observation vector is used as input.

7.4. Conclusion 41

7.4. Conclusion
The experiments show, that for this benchmark, a DNN is able to generalize globally. An actor network, that
is trained on a subset of the observation space, outputs a very reasonable control action in regions of the
observation space it has never seen before. It can perform this generalization, however, only when it is able
to learn all the different factors that explains the input-output relation of the underlying system. If the subset
of the observation space it sees during training, does not include all the different factors, generalization will
fail, as was the case with the symmetry dataset.
The experiments suggest a DNN generalizes very differently then local function approximators. Instead of
interpolating between examples that are close, based on the similarity of the input, a DNN interpolates be-
tween examples that share similar factors. It learns to extract these factors, which share the fact that they
contribute to the target value independent of each other. In case of the actor network, this target value is
the control action. In contrast to local approximators the amount of data that is necessary to make a good
approximation scales based on the intrinsic dimension of the system, given by the number of factors, instead
of the input dimension. This makes sense since multiple input vectors of different dimension can be used to
describe the same system, as shown in Chapter 4.
Besides the fact that the intrinsic dimension of the problem is sometimes smaller than the input dimension,
the reason DNN will ultimately require much fewer data then local approximators, is the way the data require-
ments scale when either dimension increases. In case of a DNN, the assumption that the different factors are
independent of each other means that the amount of data scales linearly with the number of factors. The dif-
ferent input values, in case of a local approximator, are obviously not independent of each other. This means
local approximators need to see all combinations which scales exponentially in the number of dimensions.
Before the DNN has the advantage over a local approximator, however, it should have learned to extract these
individual factors, which carries its own data requirements. This is why problems, for which a low dimen-
sional observation vector can be found, are often solved more efficiently using a local approximator.

8
Conclusion and Recommendations

In this thesis, two new algorithms were designed, the Model Learning Deep Deterministic Policy Gradient
(ML-DDPG) and the Robotic Prior Deep Deterministic Policy Gradient (RP-DDPG) that both combine State
Representation Learning (SRL) with an actor-critic Reinforcement Learning (RL) algorithm. The performance
of these algorithms is compared to the performance of Deep Deterministic Policy Gradient (DDPG), on three
different benchmark problems. Furthermore, an experiment was carried out to investigate how a Deep Neu-
ral Network (DNN) can generalize the policy it has learned to parts of the state space it has not seen during
training. This chapter summarizes the most important findings and proposes a few recommendations about
interesting future research topics.

8.1. Summary and Conclusions
In this thesis, DNNs are used as function approximator of an actor-critic RL algorithms. The main advantage
of using DNNs is that they can cope with high dimensional state and action spaces. Another approach, that
is used to deal with a high dimensional state space, is to use SRL to learn a mapping from a high dimensional
observation to a low dimensional state vector, prior to solving the RL task. This is based on the assump-
tion that a RL algorithm can learn more efficiently from the learned state representation, then from the raw
observation directly.

In the DDPG, both the actor and critic network learn end-to-end, i.e., they learn to map raw observations
directly to actions and Q-values. In both DNNs, the first layer maps the observation to some internal state,
which could be seen as an (implicitly learned) observation-to-state mapping. A disadvantage of learning
end-to-end is that it requires lots of data, which is not always available. This thesis set out to investigate if the
DDPG could benefit from learning a shared observation-to-state mapping explicitly, using a SRL method. In
the two proposed algorithms, the actor and critic networks share an observation-to-state mapping by sharing
the weights of their first layer. Furthermore, it uses SRL to learn these shared weights, before training the
weights of the other layers.

Two SRL methods were implemented in Chapter 3, a Model Learning method and the Robotic Prior
method, which led to two new algorithms, the ML-DDPG and the RP-DDPG. Each of these algorithms was
tested extensively on three different benchmarks, introduced in Chapter 4. For each benchmark, three differ-
ent types of observation vectors were defined, to simulate imperfect learning conditions.

• The classical observation vector, containing the physical state of the system, in the most suitable form.

• The unrelated observation vector, containing several white noise signals, which are added to simulate
situations in which some of the inputs are irrelevant for the task at hand.

• The redundant observation vector, containing a series of positional measurements and previous ac-
tions. Velocity information is omitted, since this is often not available (or requires the engineer to de-
sign a separate observer).

The most important results were as follows.

43

44 8. Conclusion and Recommendations

• The RP-DDPG method never reached a performance that was significantly better than the performance
at the start of learning, on two of the three benchmarks (2-link arm and the Inverted Pendulum). An
early sign of its weak performance was the fact that for the state representation it learned, it was hard
to categorize representations based on the velocity component of the physical state of the system. In
order to reach a reasonable performance on the third benchmark (the Octopus), the RP-DDPG required
four times more data than the other two algorithms.

• The ML-DDPG outperformed the DDPG method on one of the benchmarks (2-link arm), for each of
the observation vectors and for different sizes of the dataset. It converged faster and reached a sig-
nificantly better final performance. On the other two benchmarks, the results were not as conclusive.
For some observation vectors and sizes of the dataset the ML-DDPG reached a better performance, for
other combinations the DDPG reached a better performance. There was no clear underlying link that
explained these different outcomes.

• In general, the control policies learned by both the DDPG and the ML-DDPG are not very optimal,
compared to other optimal control methods. The controlled system has a significant steady state error
and overshoot for some of the reference positions. Furthermore in each learning trial, these errors
appear at different reference positions, which makes it hard to optimize these algorithms, for specific
reference positions.

• Both the DDPG and the ML-DDPG can learn reasonable policies, under very difficult circumstances,
for a wide variety of problems. They can deal with unrelated inputs, measurement and reference signals
that are given in different coordinate systems and the absence of velocity information, without the need
to specifically tune the algorithm to deal with these challenges.

• The actor network is able to generalize the policy it has learned, to states that substantially differ from
the states it has seen during training. In the experiment, the network could generalize, from a situation
in which the angles are positive and the angular velocities were not (and vice versa), to situations in
which both the angles and angular velocities are either positive or negative.

8.2. Recommendations for future research
The research in this thesis has shown some of the strengths and weaknesses of combining Deep Learning
(DL) and RL. The following areas are interesting topics for future research.

• One topic for which the ML-DDPG is well suited is multi-modal learning. In multi-modal learning the
agent needs to combine information from different sources (e.g. visual, position and depth sensors) to
learn a particular task [26]. The ML-DDPG could be used to learn a shared state representation from all
these different observations. One advantage of this approach is that it would be fairly straightforward to
see if and how, adding an extra source, lowers the prediction error of the model. Furthermore, it is much
easier to test the performance of different network architectures, that each combine these sources in a
different way in the semi-supervised Model Learning method then directly in the DDPG.

• Many systems are only partially observable, which means a single observation contains insufficient
information to determine a Markov state of a system. In this thesis, that situation was simulated in the
redundant observation type and solved by taking a series of observations to guarantee that a Markov
state of the system could be determined. Another approach is to use a Recurrent Neural Network (RNN)
that has its own internal state. This approach is used in [14] which created a variant of the DDPG
with Long Short-Term Memory (LSTM) networks. For this algorithm, analogous to the ML-DDPG, the
question is if it would not be better to train the recurrent part of the network by means of SRL and
reusing this in both the actor and critic, instead of training two individual LSTM networks.

• One aspect that was very critical, when tuning the algorithms, was the weighting of the different com-
ponents in the reward function. The trade-off between penalizing the distance D and the velocity
component was an important parameter that, if set incorrectly, resulted in a very poor performance.
Inspired by the results of Chapter 7, it should be possible to split the reward into a vector of separate
rewards and train an actor-critic algorithm on each of the rewards independently. This produces multi-
ple control policies, each one optimized to maximize a different reward over time. Once these networks
are trained a final control policy can then be created by mixing the individual policies. The advantage

8.3. Final words 45

of this approach would be that you can weight the different components of the reward function after
training and directly observe how this affects the final policy.

8.3. Final words
DNNs have become more popular as function approximator in RL algorithms. This has allowed RL algorithms
to be used even in situations where the state and action dimensions are very high. This means that, although
special tricks are necessary to make a DNN converge in a RL setting, in many cases they are now the preferred
option. Many researchers still consider DNN to be a black box, which is hard to interpret and reason about.
I believe this view to be outdated and counterproductive. Yes, a DNN has many parameters and can learn a
complicated input-output mapping, but in many cases, this is justified since many systems in the real world
are complicated. Especially if the data is not preprocessed by an engineer to simplify the input-output data
of the system. A feed-forward Neural Network (NN) with Rectified Linear Unit (ReLU), however, is just a
collection of linear models, like many other function approximators. In that sense, the technique is by no
means more of a black box than other methods.

The ML-DDPG has shown that it can be beneficial to learn a model of the system prior to training the
DDPG algorithm. This is not always the case, but it shows that good alternatives to end-to-end learning exist.
I believe we have only seen a glimpse of the potential of DNNs as function approximator in RL algorithms.
And there is much potential for methods that train DNNs in more complicated ways. Whether that is by
training and sharing individual layers, using alternative objective functions or use entirely new ideas remains
to be seen. In any case, I strongly advise others to be creative in the way they construct and train these NNs if
only to get a better insight of what these networks are capable of.

A
Paper

47

Learning State Representation for Deep Actor-Critic Control

Jelle Munk, Jens Kober and Robert Babuška

Abstract— Deep Neural Networks (DNNs) can be used as
function approximators in Reinforcement Learning (RL). One
advantage of DNNs is that they can cope with large input
dimensions. Instead of relying on feature engineering to lower
the input dimension, DNNs can extract the features from raw
observations. The drawback of this end-to-end learning is that
it usually requires a large amount of data, which for real-
world control applications is not always available. In this paper,
a new algorithm, Model Learning Deep Deterministic Policy
Gradient (ML-DDPG), is proposed that combines RL with state
representation learning, i.e., learning a mapping from an input
vector to a state before solving the RL task. The ML-DDPG
algorithm uses a concept we call predictive priors to learn a
model network which is subsequently used to pre-train the
first layer of the actor and critic networks. Simulation results
show that the ML-DDPG can learn reasonable continuous
control policies from high-dimensional observations that con-
tain task-irrelevant information. Furthermore, in some cases,
this approach significantly improves the final performance in
comparison to end-to-end learning.

I. INTRODUCTION

During recent years, there has been a growing interest in
the use of Deep Neural Network (DNN) as function approxi-
mators in Reinforcement Learning (RL). DNNs were used in
[1] and [2] to approximate the Q-function when Q-learning
was used to learn a task from raw visual observations. In [3]
this technique was combined with the actor-critic approach
to form the Deep Deterministic Policy Gradient (DDPG)
algorithm, which was able to solve several continuous control
tasks, including the cart-pole benchmark [4] and the cheetah
locomotion task introduced in [5].

One important aspect of learning to control is to learn how
to efficiently gather the task-relevant sensory information
necessary to make informed decisions [6]. Specifically in
the case of a robot designed for a wide variety of tasks,
the amount of sensory information needed for one particular
task, is often far less than the total amount of information that
the robot gathers through its sensors [7]. Furthermore, the
sensory information (observations) typically requires prepro-
cessing before it can be used in control as state information.

Instead of relying on an engineer to design a state estima-
tor to reconstruct the state vector from a set of observations,
it is preferable if this too can be learned by the machine.
Learning such an observation-to-state mapping, prior to
solving the RL problem, is known in the literature as state
representation learning [7]. Several examples exist in which
this approach has been successfully applied, for instance: by

J. Munk, J. Kober and R. Babuška are with the Delft Center
for Systems and Control of Delft University of Technology, The
Netherlands j.munk@student.tudelft.nl, {j.kober,
r.babuska}@tudelft.nl.

using an auto-encoder network [8], Slow Feature Analysis
(SFA) [9], robotic priors [7] or by simultaneously learning
the reward and transition function [10]. These examples have,
however, all focused on learning from visual observations
and none of them integrates these methods with algorithms
that combine RL with DNNs.

This paper introduces a new algorithm called Model
Learning Deep Deterministic Policy Gradient (ML-DDPG),
in which state representation learning is combined with a RL
algorithm that uses DNNs as a function approximator. The
algorithm is designed to learn a wide range of continuous
control policies on a varied range of challenging sets of
observations, that are typically unsuitable for other control
algorithms. It learns from a high-dimensional stream of
data that can include information that is both relevant and
irrelevant to the task at hand, and can include a Markov state
directly or indirectly, by including sequences of actions and
observations.

The ML-DDPG algorithm learns a model network based
on the predictive priors, which assumes that the next state
representation and the reward should both be predictable,
given the current state and the action taken in that state.
The model network is constructed in such a way that it
learns the observation-to-state mapping by back-propagating
the prediction errors, which results in a state representation
that is inherently predictable. Both the actor and the critic
then learn from the state representation instead of the raw
observations.

The motivation behind the algorithm is to compare an
approach based on end-to-end learning [11] with an approach
in which learning a state representation from a set of ob-
servations precedes the learning of a good control policy
for a given task, based on the learned state representation.
Given enough data and learning time, end-to-end learning
is believed to reach a performance that is superior to other
approaches, since there are no constraints imposed on the
network that restrict it in any way [12]. However, end-to-
end learning requires a large amount of data [13], which is
not always available. The aim of the ML-DDPG is, therefore,
to outperform the DDPG when data is scarce without putting
a constraint on the performance when data is abundant.

The algorithm is tested on several continuous control tasks,
where for each task two challenging observation sets are
defined. In one observation set, half of the inputs are “noise-
states”, which represent sensor measurements that have no
relation to the task for which the agent receives rewards.
For the second observation set, the system is assumed to be
partially observable; the data set is therefore made up of a
sequence of actions and measurements, where the sequence

is intentionally chosen to be larger than necessary to guar-
antee the Markov property. We show that our algorithm is
able to extract from the observations the information that is
relevant for the task at hand, and so improve the final policy
learned by the agent.

The paper is organized as follows. Section II introduces
RL, the DDPG and state representation learning. Section III
details the new algorithm, the ML-DDPG. Simulation results
are presented in Section IV and Section V concludes the
paper.

II. PRELIMINARIES

This work builds on earlier work that has been done within
the RL community, specifically on the DDPG actor-critic
algorithm introduced in [3], and on the concept known as
state representation learning. The rest of this section explains
this prior work in more detail.

A. Reinforcement Learning (RL)

In RL a learning agent interacts with an environment
with the aim of maximizing the rewards received from the
environment over time. A RL problem is modelled as a
Markov Decision Process (MDP) described by the tuple
M = (S,A, f, r), where the state space S is a set of
states s ∈ Rm, the action space A is a set of actions
a ∈ Rp, f : S × A→ S is the state transition function, and
r : S × A → R is the reward function. At each timestep t,
the agent receives an observation ot ∈ Rn that determines
its current state st, it chooses an action at, receives a scalar
reward rt+1 ∈ R according to the reward function r and
transits to state st+1 according to the transition function f .

The goal in RL is to learn a control policy π : S → A
that maximizes the discounted sum of future rewards Rt =∑T
t=i γ

i−tr(st, at) where γ ∈ [0, 1] is the discount factor
and T the number of time steps per learning episode.

The action-value function Q is often used in RL algorithms
to denote the expected future reward given an action at taken
in state st and thereafter following the policy π by taking
the action aπ = π(s). The Q function, in the form of a
difference equation is given by

Qπ(st, at) = rt+1 + γQπ(st+1, π(st+1)).

B. Actor-Critic

In applications like robotics, where the state and action
spaces are continuous, function approximators have to be
used to approximate both the action-value function Q and
the policy π [14]. Actor-critic algorithms are suitable in
these situations since they allow both of these functions to
be learned separately. This is in contrast with critic-only
methods, which require a complicated optimization at every
time step to find the policy.

In actor-critic methods, the critic learns the action-value
function Q while the actor learns the policy π. In order to
ensure that updates of the actor improve the expected dis-
counted return, the update should follow the policy gradient
[15]. The main idea behind actor-critic algorithms is that the
critic provides the actor with the policy gradient. In theory,

the critic should have converged before it can provide the
actor with an unbiased estimate of the policy gradient, in
practice however this requirement can be relaxed as long as
the actor learns slower than the critic [15].

C. Deep Deterministic Policy Gradient (DDPG)

The DDPG algorithm is an off-policy actor-critic algo-
rithm, first introduced in [3]. In this algorithm, both the
actor and the critic are approximated by a DNN with
parameter vectors ζ and ξ, respectively. The critic is trained
by minimizing the squared Temporal Difference (TD) error
given by

L(ξ) =
(
rt+1+γQ(st+1, π(st+1|ζ)|ξ)−Q(st, at|ξ)

)2
. (1)

The actor is updated in the direction of the policy gradient
5Qζ using the current approximation of the critic. The
update of ζ with 4ζ is given by

4ζ = 5aQ(st, π(st|ζ)|ξ)5ζ π(st|ζ).

According to [16] the Q-function should be in the compatible
form in order for the policy gradient to be unbiased. Al-
though this is generally violated in the DDPG algorithm, with
the addition of a few extra stability measures the algorithm
has been shown to work well in practice.

A significant problem occurs when minimizing (1) [2].
The updates of the parameter ξ not only change the output
of the critic network Q(st, at|ξ), but they also change the
target function rt+1+γQ(st+1, π(st+1|ζ)|ξ) that the network
is learning. This is due to the recursive nature of the action-
value function. Similarly, updates to theactor parameter ζ
also change the target function. This coupling can lead to
unstable behaviour and can cause the learning process of the
action-value function approximation to diverge.

A solution, proposed in [3], that reduces the coupling
between the target function and the actor and critic networks,
is to update the parameters of the target function using “soft”
updates. Instead of using ζ and ξ directly, a separate set
of weights ζ− and ξ− are used, which slowly track the
parameters ζ and ξ of the actor and critic networks.

The “soft” updates are performed after each learning step,
using the following update rule

ζ− ← τζ + (1− τ)ζ−, ξ− ← τξ + (1− τ)ξ−

where τ ∈ (0, 1] represents the trade-off between the learning
speed and stability. Using these new parameters, the squared
TD error becomes

Lc(ξ) =
(
rt+1 +γQ(st+1, π(st+1|ξ−)|ζ−)−Q(st, at|ξ)

)2
.

A second measure to ensure stable learning is to use an
experience replay database [1]. Samples collected from the
system are stored in this database such that they can be
reused at a later stage. This is necessary because DNN are
global approximators and are prone to catastrophic forget-
ting, i.e., the network forgets what it has learned in some
part when updating some other part. In order to prevent

Algorithm 1 DDPG

{Actor-Critic Learning}
Randomly initialize network weights ζ and ξ
ζ− ← ζ and ξ− ← ξ {set weights of target network}
for learning step = 1 to N do

Sample random mini-batch from DB
Calculate 4ζ and Lc over mini-batch
ζ ← ζ − α4 ζ and ξ ← ξ − α∂Lc

∂ξ

ζ− ← τζ+(1−τ)ζ− and ξ− ← τξ+(1−τ)ξ− {update
target network}

end for

catastrophic forgetting, a DNN should be trained with mini-
batches, where the samples in a mini-batch are independently
and identically distributed. The experience replay database is
necessary to create such mini-batches, although care should
be taken to keep the data within the database varied enough
to prevent it from over-fitting [17]. See Algorithm 1 for an
overview of DDPG.

D. State Representation Learning

In RL, the state s is not always directly accessible, but
needs to be constructed from a set of observations o. Such
an observation-to-state map f : O → S can be the result
of feature engineering, in which an engineer selects the
observations and design the mapping, but this can also be
learned from data. The process of learning the observation-
to-state mapping is called state representation learning [7].

State representation learning is a form of unsupervised
learning, i.e., there are no training examples available since
it is not known apriori what the most suitable state represen-
tation is to solve the problem. Learning an observation-to-
state mapping therefore involves either making assumptions
about the structure of the state representation or learning the
mapping as part of learning some other function.

In [8], [18], [19], an auto-encoder is used to find an
observation-to-state mapping in which the observations are
compressed into a low-dimensional state vector. The objec-
tive, during training, is to find states from which the original
observations can be reconstructed. It subsequently learns a
state representation that captures only the unique features of
the observation, i.e., how they differ from other observations.

Another unsupervised method is Slow Feature Analysis
(SFA) [9], which is based on the idea that most phenomena
in the world change slowly over time. In [20], [18] this
assumption is used to learn a mapping between visual
observations and a state representation that gradually changes
over time.

In [7], these and several other assumptions about the
structure of a good state representation are combined into the
so-called Robotic Priors. They are divided into the simplicity
prior, the temporal coherence prior, the proportionality prior,
the causality prior and the repeatability prior. For each of
these priors, a loss function is defined. An observation-
to-state mapping is subsequently trained to minimize the
combined loss functions of the individual priors. The paper

then shows a performance increase when using the learned
state representation instead of the raw observations as input
to the Neural Fitted Q-iteration algorithm [1].

III. MODEL LEARNING DEEP DETERMINISTIC POLICY
GRADIENT (ML-DDPG)

A DNN approximates a function by learning a transforma-
tion from an input vector to a feature representation, that can
be linearly combined in the output layer, to a target function
[21]. Viewed in this way, an internal signal, between two
layers of a DNN represents some intermediate representation
that is somewhere between the original input and the final
feature representation. The main idea behind the ML-DDPG
is that that up to a certain point, an actor and critic network,
can benefit from sharing their intermediate representation.
Furthermore, we argue that this intermediate representation
can be learned more effectively by a third (model learning)
network. In the rest of this paper, we refer to this intermediate
representation as the state and the transformation of the input
to this state, as an observation-to-state mapping.

The ML-DDPG consist of three DNNs, a model network,
a critic network and an actor network. The model network
is trained by using a concept we call predictive priors and
is integrated with the actor and critic networks by copying
some of its weights. In the experiments, the creation of the
experience replay database, learning the model network and
training the actor and critic is done as separate steps. This
allowed us to train both the DDPG and the ML-DDPG on
exactly the same dataset and it simplified the training of
individual layers of a DNN. Ultimately, however, the goal
is to train the model network simultaneously with the actor
and critic networks and create the experience replay database
while learning, as in the original DDPG.

A. Predictive priors

The predictive priors consist of two separate priors. The
first prior is the predictable transition prior which states
that, given a certain state st and an action at taken in that
state, one can predict the next state st+1. An important
difference with other methods like [22], [10], is that we do
not predict the next observation ot+1 but the next state st+1.
This becomes important if the observation ot contains task-
irrelevant information. A state that needs to be able to predict
the next observation still has to contain this task-irrelevant
information to make the prediction, whereas in the proposed
case this information can be ignored altogether. The second
prior is the predictable reward prior which states that, given
a certain state st and an action at taken in that state, one
can predict the next reward rt+1. This prior enforces that
all information relevant to the task is available in the state,
which helps the predictable transition prior to converge to
something meaningful.

The predictive priors essentially enforces the two ele-
mentary properties of a MDP. The relevant information is,
however, already present in the original observation. The
point of using the predictive priors is to find a state repre-
sentation from which it is easier, i.e., fewer transformations

at

ot

ŝt+1

st

r̂t+1ψl1

ψlr

Fig. 1: Network architecture of the model network learning
an observation-to-state mapping using predictive priors.

are necessary, to actually learn the transition and reward
function.

The advantage of using the predictive priors is that
state representation learning is transformed from an un-
supervised learning problem to a supervised learning
problem. A single interaction with the system produces
a sample {ot, at, rt+1, ot+1}, which can be mapped to
{st, at, rt+1, st+1} using the current approximation of the
observation-to-state mapping. This gives us both the inputs ot
and at as well as the target values rt+1 and st+1. Given a set
of such samples and some function approximator, supervised
learning can be used to find these mappings.

Another advantage of this approach is that the state repre-
sentation that is learned is goal directed. Observations that do
not correlate with the reward or are inherently unpredictable
will not be encoded in the state representation. This is in
contrast to methods like an auto-encoder or SFA since these
methods do not differentiate between observations that are
useful and observations that are not, to solve a particular
task.

B. Model network

The predictive priors are implemented by a model network
that learns a mapping from the observation-action tuple
{ot, at} to the next state and reward {st+1, rt+1}. The
architecture is shown in Figure 1. The circles in the image
represent a single layer containing multiple neurons, the lines
are n-dimensional signals. The observations are the input to
the first layer, which outputs the state. This state, together
with the actions form the input to the second layer. Finally,
two parallel linear output layers produce a prediction of
the next state ŝt+1 and the reward r̂t+1 respectively. The
observation-to-state mapping is encoded in the first layer of
the network.

The network is trained by minimizing the following ob-
jective function

Lm = ‖ŝt+1 − st+1‖22 + λ ‖r̂t+1 − rt+1‖22
where λ represents the trade-off between predicting the
reward and the next state. Note that, to obtain st+1, the
current approximation of the observation-to-state mapping is
used, to map the next observation ot+1 to the next state st+1.
This could potentially lead to convergence problems, since
the target depends on the current approximation. In practice
however these problems did not occur. In all experiments,

atot

Q(ot, at)

st

π(ot)ψl1 = ζ l1 = ξl1

ζ lr

ξlr

Fig. 2: Integration of the model, actor and critic network.

Algorithm 2 ML-DDPG

{Model learning}
Randomly initialize network weights ψ, ζ and ξ
for pre-training step = 1 to M do

Sample random mini-batch from DB
Calculate Lm over mini-batch
ψ ← ψ − α∂Lm

∂ψ
end for
{Actor-Critic Learning}
ζl1 ← ψl1 and ξl1 ← ψl1 {copy weights to actor and
critic}
ζ− ← ζ and ξ− ← ξ {set weights of target network}
for learning step = 1 to N do

Sample random mini-batch from DB
Calculate La and Lc over mini-batch
ζlr ← ζlr − α ∂La

∂ζlr
and ξlr ← ξlr − α ∂Lc

∂ξlr

ζ− ← τζ+(1−τ)ζ− and ξ− ← τξ+(1−τ)ξ− {update
target network}

end for

which all started from different random initial conditions,
the learning converged to similar local optima.

C. Integrating the model network

The model network is trained first, before the other two
networks. Afterwards the observation-to-state mapping, that
is encoded in the first layer of the model network, is copied
to the first layer of, both the actor and the critic network. The
parameter vectors ψ, ζ and ξ of the model, actor and critic
respectively are therefore split in two parts where, ψl1 , ζl1
and ξl1 represent the weights of the first layer and ψlr , ζlr
and ξlr the weights of the remaining layers. Figure ?? shows
how the actor and critic networks use the same observation-
to-state mapping that is learned by the model network.

After pre-training, i.e., the model learning, the weights of
the first layers ζl1 and ξl1 are fixed. Subsequently, standard
actor-critic is used to learn the weights in the remaining
layers of the actor ζlr and critic ξlr , see Algorithm 2. As
in the DDPG (Algorithm 1) an experience replay database,
batch-normalization, an L2 penalty on the critic weights and
“soft” updates of the target networks are used to stabilize
the learning. Adam [23] is used for learning the weights of
all three DNNs with a base learning rate of 10−3, 10−4 and
10−3 for the model, actor and critic respectively. The hidden
layers of all three networks contain 100 neurons each.

TABLE I: Dimension table for the two benchmarks

Action Internal state ounrelated oredundant

2-link arm 2 6 18 24

Octopus 36 96 192 308

D. Saturation penalty

One specific problem we encountered, with both the
DDPG and the ML-DDPG, was the fact that the actor
sometimes learned actions that lay outside the saturation
limits of the actuator. This is caused in part because all the
samples from which the agents learn are collected prior to
the experiment. If an agent learns actions outside the range,
in which data was originally collected. The policy gradient,
evaluated at these actions, is based on extrapolating the critic
network, which for large deviations is very unreliable. This
creates instability issues in both networks which hamper the
convergence of the algorithm.

In order to restrict the action space a saturation penalty
is added to the loss function of the actor. The loss function
becomes

La(ζ) =−Q(s, π(s|ζ)) + λ
(

max(π(s|ζ)− 5, 0)

+ max(−π(s|ζ)− 5, 0)
)2

where λ represents the trade-off between maximizing the
reward and minimizing the saturation penalty. The actions
are scaled such that they have zero mean and a standard
deviation of 1, which puts the saturation limit at 5 times the
standard deviation of the original exploration policy.

IV. SIMULATION RESULTS

In order to compare the performance of the ML-DDPG
algorithm with the DDPG algorithm, they are both applied
to the 2-link arm problem from [17] and the octopus problem
from [24]. In both benchmarks the state is not directly
available, instead there are two types of observations:

1) oredundant - Includes a sequence of actions and mea-
surements of a partially observable system. It is called
redundant since the length of the sequence is chosen
larger than necessary to give the observation vector the
Markov property.

2) ounrelated - Includes the full state extended by a vector
of white noise inputs.

Table I shows the dimensions of the action space, the internal
state and the two observation types for both benchmarks.

Before the algorithms are run, data is collected by fol-
lowing a random policy based on the Ohrnstein-Uhlenbeck
process [25]. The algorithms are then trained off-policy,
on the same database. A single learning step consists of
a single update of the weights of the actor and the critic,
each experiment consists of 40000 learning steps for the 2-
link arm problem and 30000 learning steps for the octopus.
Every 100 learning steps the policy π is evaluated using
a pre-defined reference signal. The performance of each of

the two algorithms is compared on both of the observation
types. Furthermore, the experiments are repeated for different
sizes of the experience replay database, to compare how the
algorithms perform when data is either scarce or abundant.

In order to make a quantitative comparison between the
learning curves, the settling time τs, rise time τrise and the
average performance R̄ are calculated, see Appendix. In all
experiments, the saturation penalty described in Section III-
D, was a necessary condition for the algorithms to converge.

A. 2-link arm

The 2-link arm consists of two links, both of which can
be controlled by a motorized joint. The angle of the first
link θ1 ∈ [−π2 , π2] is measured with respect to the downward
position and the angle of the second link θ2 ∈ [−π2 , π2] with
respect to the first link. The two motorized joints can be
controlled by setting a1 and a2, which are (a scaled version
of) the motor voltages. Finally the reference position pref =[
xref yref

]
determines the desired position of the tip of the

second link.
The reward from the environment is based on the Euclidian

distance D between the reference position and the current
position of the tip of the second link and on the angular
velocities θ̇ of the two links. The reward function is given
by

r(D, θ̇) = −
(
D + w|θ̇|2

)

where w represent the trade-off between the two terms.
The observation vector oredundant contains the current angles

θ and the angles and actions from the previous 5 timesteps
and is given by

oredundant
t =

[
θt .. θt−5 at−1 .. at−5 pref

t

]

where θt is a vector of angles at time instance t, at a
vector of the two control actions and pref

t the Cartesian
reference position at timestep t. The observation vector
ounrelated contains the current angles θ, the angular velocity θ̇,
a vector of unrelated white noise inputs et and the reference
position pref

t and is given by

ounrelated
t =

[
θt θ̇t et pref

t

]
.

Figure 3 shows the mean (thick line) and standard devia-
tion (shaded area) of the learning curve for both observation
vectors using an experience replay database of 30K samples.
The results from the other experiments are presented in
Table II. For the 2-link arm benchmark, the ML-DDPG
outperforms the DDPG algorithm in final performance R̄
(+37.8% on ounrelated and +8.1% on oredundant) and in rise
time τrise −29% and settling time τs −36.2% on the ounrelated

observation type. It does have slower convergence on the
oredundant type (rise time τrise +28.7% and settling time τs
+39%). Both algorithms perform better, in terms of final
performance, if more data is available. The advantage of the
ML-DDPG over the DDPG seems relatively constant and
not, as was expected, degrade when data becomes abundant.

0 1 2 3 4

·104

−1

−0.8

−0.6

−0.4

−0.2

0

Iterations

R
ew

ar
d

DDPG
ML-DDPG

(a) ounrelated

0 1 2 3 4

·104

−1

−0.8

−0.6

−0.4

−0.2

0

Iterations

DDPG
ML-DDPG

(b) oredundant

Fig. 3: Learning curve 2-link arm using 60K samples

0 2 4 6 8 10
−1

0

1

Time (s)

x-
co

or
di

na
te

DDPG
ML-DDPG
Reference

0 2 4 6 8 10
−1

0

1

Time (s)

C
on

tr
ol

ou
tp

ut
a
1

DDPG
ML-DDPG

Fig. 4: Time domain plot of the final policy on the 2-link
arm benchmark, showing one of the states (top) and control
actions (bottom).

Figure 4 shows a time-domain plot of the x-coordinate of
the tip of the second link and (one of the) accompanying con-
trol actions. It is clear that the performance is incomparable
to other optimal control methods, the controlled system has a
steady-state error and a significant overshoot. It is important
to note, however, that the controller does not use a separate
observer, although the system is partially observable and
that the reference is given in Cartesian coordinates whereas
the position of the 2 links are given in joint angles. The
controller, therefore, needs to learn the non-linear mapping
between the two, while also learning the unobservable states
from a sequence of measurements. Seen in this light, we
think the performance is actually quite good. We also believe
the performance can be further increased by tuning the
reward function and/or architecture of the DNNs which has
not been done extensively to get these results.

B. Octopus

The octopus arm [24] consists of 13 segments, each
of which contains multiple muscles. The muscles can be
controlled by specifying its stiffness a ∈ [0, 1]. The arm is
attached to a base at one side and moves in a 2-dimensional
plane. The task is to reach to a randomly placed food target.

TABLE II: Learning curve characteristics on the 2-link arm
for different sizes of the experience replay database. The rise
time τrise and settling time τs are denoted in ×1000 learning
steps.

Input DB DDPG ML-DDPG
type size τrise τs R̄ τrise τs R̄

ounrelated

15K 3 3.2 −0.22 2 3.5 −0.18
30K 3 8.6 −0.24 2.8 3.8 −0.16
90K 3.4 3.7 −0.19 1.9 2.6 −0.13

oredundant

15K 2.5 11.6 −0.26 3.7 17.2 −0.28

30K 4.8 5.1 −0.21 1.9 2.5 −0.18
90K 5.9 6.2 −0.19 11.3 12.2 −0.15

The task is completed if it touches the food target with any
part of the arm.

The reward from the environment is based on the Eu-
clidean distance D between the food and the segment that
is closest to the food. Whenever the goal is reached an extra
bonus B is given. The reward function is given by

r(D,B) = (B − 2)−D

where B = 2 whenever the goal is reached and B = 0
otherwise.

As in the 2-link arm benchmark two observation vectors
are defined oredundant, in which the velocity information is
replaced by positions and actions at previous time instances,
and ounrelated, in which the state is extended with a vector of
white noise inputs.

The results on the Octopus benchmark are not as conclu-
sive as with the 2-link arm. Both algorithms have a similar
rise and settling time and are able to learn the task in about
2000 learning steps. Both successfully learn to reach for
the food, which takes them around 1.5s from their starting
position. In order to see if the learned policy also generalized
to other initial positions, the octopus arm was randomly
excited for 2s before testing the learned policy again. Also,
in these cases, the octopus was successful in reaching the
food. Perhaps in spite of the high dimensionality of the
problem, the Octopus problem is relatively easy since it does
not require a very precise control action, like in the case of
the 2-link arm.

V. CONCLUSION

This paper introduces a new algorithm, the ML-DDPG,
that trains a model network using the predictive priors
before learning the RL task. The main benefits of using the
predictive priors, is that it can be formulated as a supervised
learning problem using data from an experience replay
database and can deal with task-irrelevant information in
the observations. Learning an observation-to-state mapping,
before training the actor and critic networks, has been shown
to increase the final performance on a 2-link arm benchmark,
even on a relatively large dataset.

Results in this paper confirm that using DNNs in actor-
critic algorithms, is a very promising field of research,
especially for cases in which the state and action dimensions

of the problem are very high. More work is necessary to
visualise what kind of state representation the ML-DDPG is
actually learning and how it performs on other benchmarks.
Other future work will try to answer the more general
question of how DNN seems to escape the curse of dimen-
sionality.

APPENDIX

To define the settling time and the rise time of the learning
curve, first introduce the undiscounted return after j learning
steps averaged over the number Ne of learning experiments:

R̄j =
1

Ne

Ne∑

l=1

T∑

t=0

r(st, at)

where T is the duration of the evaluation, referring to the jth
learning step within the lth learning experiment. For each
reward, the sequence R̄1, R̄2, . . . , R̄Nt

is normalized so that
the minimum value of this sequence is -1.

The performance R̄f at the end of learning is defined
as the average normalized undiscounted return in the last
c learning steps:

R̄f =
1

c

Nt∑

j=Nt−c+1

R̄j

The settling time τs of the learning curve is then defined as
the number of learning steps after which the learning curve
enters and remains within a band ε of the final value R̄f :

τs = Tt · arg max
j

(|R̄f − R̄j | ≥ εR̄f)

In this paper c and ε are set to 1000 and 0.05 respectively.
The rise time is defined as the number of learning steps
required to climb from the 10% performance level to the
90% performance level:

τrise = τ90 − τ10
with τp defined as:

τp = Tt · arg max
j

(
R̄j − R̄1

R̄f − R̄1
≥ p

100

)

for p = 10% and 90%.

REFERENCES

[1] M. Riedmiller, “Neural fitted Q iteration - First experiences with a
data efficient neural Reinforcement Learning method,” Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 3720 LNAI,
pp. 317–328, 2005.

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533,
2015.

[3] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” arXiv preprint arXiv:1509.02971, 2015.

[4] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike adaptive
elements that can solve difficult learning control problems,” Systems,
Man and Cybernetics, IEEE Transactions on, no. 5, pp. 834–846,
1983.

[5] P. Wawrzyński, “Real-time reinforcement learning by sequential actor–
critics and experience replay,” Neural Networks, vol. 22, no. 10,
pp. 1484–1497, 2009.

[6] D. M. Wolpert, J. Diedrichsen, and J. R. Flanagan, “Principles of sen-
sorimotor learning.,” Nature reviews. Neuroscience, vol. 12, pp. 739–
51, Dec. 2011.

[7] R. Jonschkowski and O. Brock, “State Representation Learning
in Robotics: Using Prior Knowledge about Physical Interaction,”
Robotics: Science and Systems, 2014.

[8] S. Lange, M. Riedmiller, and A. Voigtlander, “Autonomous reinforce-
ment learning on raw visual input data in a real world application,” in
Neural Networks (IJCNN), The 2012 International Joint Conference
on, pp. 1–8, IEEE, 2012.

[9] L. Wiskott and T. J. Sejnowski, “Slow feature analysis: Unsupervised
learning of invariances,” Neural computation, vol. 14, no. 4, pp. 715–
770, 2002.

[10] N. Jetchev, T. Lang, and M. Toussaint, “Learning grounded relational
symbols from continuous data for abstract reasoning,” 2013.

[11] U. Muller, J. Ben, E. Cosatto, B. Flepp, and Y. L. Cun, “Off-
road obstacle avoidance through end-to-end learning,” in Advances
in neural information processing systems, pp. 739–746, 2005.

[12] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of
deep visuomotor policies,” arXiv preprint arXiv:1504.00702, 2015.

[13] W. Böhmer, J. T. Springenberg, J. Boedecker, M. Riedmiller, and
K. Obermayer, “Autonomous learning of state representations for
control: An emerging field aims to autonomously learn state represen-
tations for reinforcement learning agents from their real-world sensor
observations,” KI - Künstliche Intelligenz, pp. 1–10, 2015.

[14] L. Bus, B. D. Schutter, and D. Ernst, Reinforcement learning and
dynamic programming using function approximators.

[15] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy
gradient methods for reinforcement learning with function approxi-
mation,” in Advances in Neural Information Processing Systems 12
(S. Solla, T. Leen, and K. Müller, eds.), pp. 1057–1063, MIT Press,
2000.

[16] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Ried-
miller, “Deterministic policy gradient algorithms,” in ICML, 2014.

[17] T. de Bruin, J. Kober, K. Tuyls, and R. Babuška, “The importance
of experience replay database composition in deep reinforcement
learning,”

[18] C. Finn, X. Y. Tan, Y. Duan, T. Darrell, S. Levine, and P. Abbeel,
“Learning visual feature spaces for robotic manipulation with deep
spatial autoencoders,” arXiv preprint arXiv:1509.06113, 2015.

[19] N. Wahlström, T. B. Schön, and M. P. Deisenroth, “Learning deep
dynamical models from image pixels,” IFAC-PapersOnLine, vol. 48,
no. 28, pp. 1059–1064, 2015.

[20] R. Legenstein, N. Wilbert, and L. Wiskott, “Reinforcement learning
on slow features of high-dimensional input streams,” PLoS Comput
Biol, vol. 6, no. 8, p. e1000894, 2010.

[21] Y. Bengio, A. Courville, and P. Vincent, “Representation learning:
A review and new perspectives,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, no. 1993, pp. 1–30, 2013.

[22] I. Grondman, M. Vaandrager, L. Buşoniu, R. Babuška, and
E. Schuitema, “Efficient model learning methods for actor–critic
control,” IEEE Transactions on Systems, Man, and Cybernetics, Part
B: Cybernetics, vol. 42, no. 3, pp. 591–602, 2012.

[23] D. P. Kingma and J. L. Ba, “Adam: a Method for Stochastic Optimiza-
tion,” International Conference on Learning Representations, pp. 1–
13, 2015.

[24] Y. Engel, P. Szabo, and D. Volkinshtein, “Learning to control an
octopus arm with gaussian process temporal difference methods,”
in Advances in neural information processing systems, pp. 347–354,
2005.

[25] G. E. Uhlenbeck and L. S. Ornstein, “On the theory of the brownian
motion,” Physical review, vol. 36, no. 5, p. 823, 1930.

Bibliography

[1] Andrew G Barto, Richard S Sutton, and Charles W Anderson. Neuronlike adaptive elements that can
solve difficult learning control problems. Systems, Man and Cybernetics, IEEE Transactions on, (5):834–
846, 1983.

[2] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and
new perspectives. Pattern Analysis and Machine Intelligence, IEEE Transactions on, (1993):1–30,
2013. ISSN 01628828. doi: 10.1109/TPAMI.2013.50. URL http://arxiv.org/abs/1206.5538$\
delimiter"026E3B2$nhttp://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6472238.

[3] Léon Bottou. Online algorithms and stochastic approximations. In David Saad, editor, Online Learning
and Neural Networks. Cambridge University Press, Cambridge, UK, 1998. URL http://leon.bottou.
org/papers/bottou-98x. revised, oct 2012.

[4] Lucian Bus, Bart De Schutter, and Damien Ernst. Reinforcement learning and dynamic programming
using function approximators.

[5] Wendelin Böhmer, Jost Tobias Springenberg, Joschka Boedecker, Martin Riedmiller, and Klaus Ober-
mayer. Autonomous learning of state representations for control: An emerging field aims to au-
tonomously learn state representations for reinforcement learning agents from their real-world sen-
sor observations. KI - Künstliche Intelligenz, pages 1–10, 2015. ISSN 0933-1875. doi: 10.1007/
s13218-015-0356-1. URL http://dx.doi.org/10.1007/s13218-015-0356-1.

[6] Tim de Bruin, Jens Kober, Karl Tuyls, and Robert Babuška. The importance of experience replay database
composition in deep reinforcement learning.

[7] Li Deng and Xiao Li. Machine learning paradigms for speech recognition: An overview. Audio, Speech,
and Language Processing, IEEE Transactions on, 21(5):1060–1089, 2013.

[8] Yaakov Engel, Peter Szabo, and Dmitry Volkinshtein. Learning to control an octopus arm with gaussian
process temporal difference methods. In Advances in neural information processing systems, pages 347–
354, 2005.

[9] Dumitru Erhan, Christian Szegedy, Alexander Toshev, and Dragomir Anguelov. Scalable object detection
using deep neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2147–2154, 2014.

[10] Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey Levine, and Pieter Abbeel. Learn-
ing visual feature spaces for robotic manipulation with deep spatial autoencoders. arXiv preprint
arXiv:1509.06113, 2015.

[11] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In Interna-
tional Conference on Artificial Intelligence and Statistics, pages 315–323, 2011.

[12] I. Grondman, M. Vaandrager, L. Buşoniu, R. Babuška, and E. Schuitema. Efficient model learning meth-
ods for actor–critic control. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 42
(3):591–602, 2012.

[13] Nicolas Heess, David Silver, and Yee Whye Teh. Actor-critic reinforcement learning with energy-based
policies. In EWRL, pages 43–58. Citeseer, 2012.

[14] Nicolas Heess, Jonathan J Hunt, Timothy P Lillicrap, and David Silver. Memory-based control with re-
current neural networks. arXiv preprint arXiv:1512.04455, 2015.

[15] G. E. Hinton and R.R Salakhutdinov. Reducing the Dimensionality of Data with Neural Networks. Science
(New York, N.Y.), 313(July):504–507, 2006. ISSN 0036-8075.

55

http://arxiv.org/abs/1206.5538$\delimiter "026E3B2 $nhttp://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6472238
http://arxiv.org/abs/1206.5538$\delimiter "026E3B2 $nhttp://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6472238
http://leon.bottou.org/papers/bottou-98x
http://leon.bottou.org/papers/bottou-98x
http://dx.doi.org/10.1007/s13218-015-0356-1

56 Bibliography

[16] Nikolay Jetchev, Tobias Lang, and Marc Toussaint. Learning grounded relational symbols from continu-
ous data for abstract reasoning. 2013.

[17] Rico Jonschkowski and Oliver Brock. State Representation Learning in Robotics: Using Prior Knowledge
about Physical Interaction. Robotics: Science and Systems, 2014.

[18] Diederik P. Kingma and Jimmy Lei Ba. Adam: a Method for Stochastic Optimization. International
Conference on Learning Representations, pages 1–13, 2015.

[19] Stanislav Lange, Martin Riedmiller, and Arne Voigtlander. Autonomous reinforcement learning on raw
visual input data in a real world application. In Neural Networks (IJCNN), The 2012 International Joint
Conference on, pages 1–8. IEEE, 2012.

[20] Robert Legenstein, Niko Wilbert, and Laurenz Wiskott. Reinforcement learning on slow features of high-
dimensional input streams. PLoS Comput Biol, 6(8):e1000894, 2010.

[21] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep visuomotor
policies. arXiv preprint arXiv:1504.00702, 2015.

[22] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David
Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

[23] Laurens Van Der Maaten and Geoffrey Hinton. Visualizing Data using t-SNE. Journal of Machine Learn-
ing Research, 9:2579–2605, 2008. ISSN 02545330. doi: 10.1007/s10479-011-0841-3.

[24] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei a Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir
Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis
Hassabis. Human-level control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.
ISSN 0028-0836. doi: 10.1038/nature14236. URL http://dx.doi.org/10.1038/nature14236.

[25] Alexander Mordvintsev, Christopher Olah, and Mike Tyka. Inceptionism: Going deeper into neural net-
works. Google Research Blog. Retrieved June, 20, 2015.

[26] Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee, and Andrew Y Ng. Multimodal
deep learning. In Proceedings of the 28th international conference on machine learning (ICML-11), pages
689–696, 2011.

[27] Ronald Parr, Lihong Li, Gavin Taylor, Christopher Painter-Wakefield, and Michael L. Littman. An analy-
sis of linear models, linear value-function approximation, and feature selection for reinforcement learn-
ing. Proceedings of the 25th international conference on Machine learning - ICML ’08, pages 752–759,
2008. doi: 10.1145/1390156.1390251. URL http://portal.acm.org/citation.cfm?doid=1390156.
1390251.

[28] Razvan Pascanu, Guido Montufar, and Yoshua Bengio. On the number of response regions of deep feed
forward networks with piece-wise linear activations. arXiv preprint arXiv:1312.6098, 2013.

[29] Martin Riedmiller. Neural fitted Q iteration - First experiences with a data efficient neural Reinforce-
ment Learning method. Lecture Notes in Computer Science (including subseries Lecture Notes in Arti-
ficial Intelligence and Lecture Notes in Bioinformatics), 3720 LNAI:317–328, 2005. ISSN 03029743. doi:
10.1007/11564096_32.

[30] Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach (International Edition).
{Pearson US Imports & PHIPEs}, 2002.

[31] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural Networks, 61:85–117, 2015.

[32] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller. Deter-
ministic policy gradient algorithms. In ICML, 2014.

[33] Tobias Springenberg, Joschka Boedecker, Martin Riedmiller, and Klaus Obermayer. Autonomous Learn-
ing of State Representations for Control. 29(4):1–10, 2015.

http://dx.doi.org/10.1038/nature14236
http://portal.acm.org/citation.cfm?doid=1390156.1390251
http://portal.acm.org/citation.cfm?doid=1390156.1390251

Bibliography 57

[34] Richard S Sutton, David A McAllester, Satinder P Singh, Yishay Mansour, et al. Policy gradient methods
for reinforcement learning with function approximation. In NIPS, volume 99, pages 1057–1063. Citeseer,
1999.

[35] R.S. Sutton and A.G. Barto. Reinforcement learning: An introduction, volume 1. Cambridge Univ Press,
1998.

[36] Emanuel Todorov and Weiwei Li. A generalized iterative lqg method for locally-optimal feedback control
of constrained nonlinear stochastic systems. In American Control Conference, 2005. Proceedings of the
2005, pages 300–306. IEEE, 2005.

[37] Niklas Wahlström, Thomas B Schön, and Marc Peter Deisenroth. Learning deep dynamical models from
image pixels. IFAC-PapersOnLine, 48(28):1059–1064, 2015.

[38] Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed to control: A lo-
cally linear latent dynamics model for control from raw images. In Advances in Neural Information
Processing Systems, pages 2728–2736, 2015.

[39] Paweł Wawrzyński. Real-time reinforcement learning by sequential actor–critics and experience replay.
Neural Networks, 22(10):1484–1497, 2009.

[40] Laurenz Wiskott and Terrence J Sejnowski. Slow feature analysis: Unsupervised learning of invariances.
Neural computation, 14(4):715–770, 2002.

[41] Daniel M Wolpert, Jörn Diedrichsen, and J Randall Flanagan. Principles of sensorimotor learning. Na-
ture reviews. Neuroscience, 12(12):739–51, December 2011. ISSN 1471-0048. doi: 10.1038/nrn3112. URL
http://www.ncbi.nlm.nih.gov/pubmed/22033537.

http://www.ncbi.nlm.nih.gov/pubmed/22033537

Acronyms

AI Artificial Intelligence.

DDPG Deep Deterministic Policy Gradient.
DL Deep Learning.
DNN Deep Neural Network.
DOF Degrees of Freedom.

LSTM Long Short-Term Memory.

MDP Markov Decision Process.
ML Machine Learning.
ML-DDPG Model Learning Deep Deterministic Policy Gradi-

ent.
MSE Mean Squared Error.

NN Neural Network.

RBF Radial Basis Function.
ReLU Rectified Linear Unit.
RL Reinforcement Learning.
RNN Recurrent Neural Network.
RP-DDPG Robotic Prior Deep Deterministic Policy Gradient.

SFA Slow Feature Analysis.
SGD Stochastic Gradient Descend.
SRL State Representation Learning.

t-SNE t-Distributed Stochastic Neighbor Embedding.
TD Temporal Difference.

59

	Acknowledgements
	Introduction
	Research Goals and Objectives
	Outline

	Background
	DL
	Feed-Forward ReLU networks
	Optimization algorithms
	Visualization using t-SNE

	RL
	Actor-Critic
	DDPG

	SRL
	Unsupervised methods
	(Semi)-supervised methods

	Conclusion

	Combining State Representation Learning with the DDPG
	SRL using DNN
	Robotic Prior method
	Model Learning method

	Saturation penalty
	Integration with the DDPG algorithm
	RP-DDPG
	ML-DDPG

	Conclusion

	Experiment design
	General setup
	Data collection
	Data preprocessing
	Evaluation

	Benchmark 1: Inverted pendulum
	Setup
	Reward function
	Input design

	Benchmark 2: 2-link Arm
	Setup
	Reward function
	Input design

	Benchmark 3: Octopus
	Setup
	Reward function
	Input design

	Conclusion

	State Representation Learning - Experiments
	Learning the state representation
	Robotic Prior method
	Model Learning method

	Visualising the learned representations
	Conclusion

	Policy learning - Experiments
	The RP-DDPG
	The ML-DDPG
	Benchmark 1: Inverted Pendulum
	Benchmark 2: 2-link arm
	Benchmark 3: Octopus

	Conclusion

	Generalization
	The curse of dimensionality
	Experiment: Symmetry versus Independent factors
	Result
	Conclusion

	Conclusion and Recommendations
	Summary and Conclusions
	Recommendations for future research
	Final words

	Paper
	Bibliography
	Acronyms

