
Impacts of parameter drift and induced
decoherence in entangled quantum link

generation on RL-based policy performance

Radu Ionuţ Ciobanu1

Supervisor(s): Gayane Vardoyan1, Bethany Davies1
1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Radu Ionut Ciobanu
Final project course: CSE3000 Research Project
Thesis committee: Gayane Vardoyan, Bethany Davies, Rihan Hai

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract

A key function of a quantum internet is the generation of entangled links between
devices. The quality of these links decays over time due to interaction with the outside
world. Various protocols exist for generating these links. The main trade-off to be
considered when choosing a protocol is between the chance of producing the link and
the quality of the generated link. Selecting the optimal protocol is a complex and
computationally intensive task, especially as the scale of the problem increases. While
analytical solutions are feasible for small-scale systems, they become impractical for
larger networks due to their computational demands. In addition, the rate at which
the generated links decay is usually assumed to be static, when in reality it typically
fluctuates over time in a process called parameter drift. In this paper, we evaluate the
effectiveness of reinforcement learning approaches to optimizing protocol selection for
different models of this problem. Models are provided for a static rate of decay, for
a drifting rate of decay, and for the phenomenon of induced decoherence. Different
reinforcement learning agents are trained on all of these models, and the results are
compared. The criterion for effectiveness is the speed at which the requested number
of entangled links can be generated. A negligible effect on performance is detected,
showing that models are able to adapt to the different sources of instability studied.
We also provide methods to model this problem and identify promising directions for
future research.

1 Introduction
Quantum networks represent the next frontier in communication technologies, promising un-
paralleled capabilities in secure communication and distributed quantum computing. Cen-
tral to the functioning of these networks is the establishment of reliable quantum links be-
tween nodes, enabling the exchange of quantum information over long distances. However,
achieving reliable quantum communication poses significant challenges due to the inherently
fragile nature of quantum states and the influence of environmental noise.

A quantum network is a network of multiple quantum processors that are able to send
quantum information, in the form of qubits, to each other. The type of quantum information
that is of interest to this paper is that of the entangled pair. An entangled pair of qubits is
a quantum state in which the qubits are entangled with one another. Particularly, Einstein-
Padolsky-Rosen pairs [5] represent pairs of two maximally entangled qubits. This means
that once the state of one qubit is determined, the state of the other will be correlated
above what classical statistics would predict. Many quantum algorithms make use of this
kind of pair.

One critical aspect in the development of quantum networks is the selection of appro-
priate protocols for entangled link generation. A major trade-off that is considered in these
protocols is that between link fidelity and the chance that the protocol succeeds in generat-
ing the link. Link fidelity is a measure of how similar the actual quantum state of two qubits
is to the desired maximally entangled state [14]. This is particularly important because the
fidelity of the link decays over time while it’s stored in quantum memory. This imposes a
timing restraint on the problem: all links have to be generated before any of them decays
into an unusable state.

Previous research has been carried out on achieving sequences of entanglement generation
under the assumption that the entanglement generation parameters are identical (i.e., same
probability to successfully generate a link) [4]. This paper builds upon this research, seeking
to find the optimal policy for deciding between multiple protocols to generate the requested

1



links. An additional assumption is the constant link decay rate in the model. In reality link
decay is a probabilistic process, and the decay rate varies over time.

Two sources of decay rate inconsistency are modelled and investigated in this paper.
Parameter drift [3], [15] refers to the tendency of the decay rate to change from the ideal
modeled value over time. Induced decoherence [16] refers to the increased instability of
stored links caused by having links stored in quantum memory, increasing the decay rate
proportionally to the number of stored links.

Previous work in the field has achieved promising results by modeling a similar problem
as a Markov Decision Process [11]. This model is inherently well suited to the use of machine
learning methods, particularly reinforcement learning.

Two different machine learning approaches are investigated, namely deep Q-learning
[2], [9] and proximal policy optimisation [17]. Both of these approaches are reinforcement
learning based, and are chosen due to both of them being state of the art models that are
well suited to continuous value environments [10].

The aim of this paper is to study how effective a reinforcement learning approach is
at solving this problem, and how changing decay rate impacts it. The following research
sub-questions can be formulated:

1. How to model entangled link generation as a reinforcement learning prob-
lem?

2. How to model decay rate drift as a reinforcement learning environment?
3. How to model induced decoherence as a reinforcement learning environ-

ment?
4. How do the agents trained on the models constructed in questions 1-3

compare to one another in performance and training time?
In this regard two models are presented for the constant decay rate case at different

levels of abstraction and two different models are presented for the variable decay rate: one
varies over time, modelling parameter drift, while another varies with the number of links
in memory, modelling induced decoherence. The performances of reinforcement learning
models trained on these environments are compared with one another.

2 Methodology and System Model
The objective of this study is to develop and evaluate optimal policies for choosing entangled
link generation protocols in quantum networks, focusing on the impact of variable link
decay rates. To achieve this, four distinct environments are created, and two reinforcement
learning agents are trained to navigate and solve the problem. All of the work is done with
the Tensorflow library [1] and its interfaces, the agents’ implementations are taken from the
TF agents library.

2.1 Link Decay
The main difficulty to be overcome when creating an optimal policy for entangled link
generation is the unreliable nature of entangled links. The fidelity of the entangled links is
assumed to decay over a time step according to the following formula:

Fn+1 =

(
Fn − 1

4

)
e−Γ +

1

4
(1)

where Γ is the decay rate of the links’ fidelity and Fi is the fidelity at time step i
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This decay is according to a commonly used noise model (called depolarising noise). One
can check that after n time steps, the fidelity then decays to:

Fn =

(
F1 −

1

4

)
e−nΓ +

1

4
(2)

In order for the requesting algorithms to make use of the links their fidelity needs to be
greater than some threshold FThresh. In order to generate these links one must choose from
k protocols (pi, Fi) i ∈ 1, ..., k where pi is the probability for protocol i to succeed and Fi

is the fidelity of the link generated when it succeeds. The episode ends when there exist at
least nlinks links in memory with fidelity greater than FThresh.

2.2 Environments
Three environments are implemented in increasing order of complexity. This was done
to ensure correctness as the model became more refined. All environments share the Γ,
FThresh, nlinks, and action space parameters, and the third and fourth environments also
have a parameterized Gamma evolution function parameter. FThresh and nlinks are constant
numbers, the policies available for link generation are modelled as the action space, which
is a list of k (pi, Fi) pairs and Γ is a constant number in the first two environments and a
function in the last two environments. Because the objective is to minimise the amount of
time it takes to generate the required links, the reward is a constant −1 per action.

2.2.1 Discrete Static Decay Environment

The first environment we implement models the problem according to so-called "Fidelity
Bins". A link is placed in fidelity bin i when it has i time steps left until it decays below
FThresh. A formula for the fidelity bin in which a link with fidelity F is placed can be found
starting with the fact that a fidelity of at least FThresh is desired:

FN ≥ FThresh. (3)

Expanding FN using (2) results in:(
F1 −

1

4

)
e−NΓ +

1

4
≥ FThresh. (4)

Rearranging the terms and taking the logarithms yields:

N ≤ − 1

Γ
ln

(
FThresh − 1

4

F1 − 1
4

)
. (5)

and since N must be an integer, and is by definition the largest integer allowed, taking
the floor gives the following expression for N:

N =

⌊
− 1

Γ
ln

(
FThresh − 1

4

F − 1
4

)⌋
(6)

At the end of every time step the environment decays all existing links, moving them one bin
down. This discretization makes the state space smaller and allows for faster training due to
lower calculation overhead. In order to further decrease the state space, these links are then
sorted according to their fidelity bins. In addition, the number of links stored in memory
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is also returned to the agent as an additional feature of the observation. This environment
is used for the grid search performed and for initial testing. Due to its discretization it is
faster to calculate actions performed on it, speeding up training.

2.2.2 Continuous Static Decay Environment

This environment is mostly the same as the discrete environment, except it does away with
the fidelity bins. Instead, the state is a list of real numbers between 0 and 1 and the transition
is modelled using (2). This environment serves as a control environment for the experiments
that followed, however it was also useful as a benchmark to ensure the performance hit
was not too strong and that the resulting policies were mostly unchanged in the transition
between the discrete environment and this one.

2.2.3 Continuous Time-dependant Decay Environment (Parameter Drift)

This environment models the decay rate Γ(t) as an arbitrary function of time, which is
received as a parameter to the environment. This is used to test out the change in behaviour
for various functions. It is otherwise unchanged from the static continuous environment.

2.2.4 Continuous Memory-dependant Decay Environment (Induced Decoher-
ence)

Instead of modeling Γ(m) as a function of time, this environment models it as an arbi-
trary function of the number of links stored in memory, received as a parameter to the
environment. It is otherwise the same as the previous two environments.

2.3 Agents
Two models are trained on the described environments, namely Categorical Deep Q Learning
(DQN) and Proximal Policy Optimization (PPO). These are chosen due to their general
success in the field of reinforcement learning, especially in cases where the environment is
continuous [6], [7], [12], [13], [18], [19].

Deep Q Learning seeks to approximate the Q function in any given state using a deep
neural network. The Q function is defined as the expected reward if a given action is
taken, and then the optimal policy is followed. Categorical Deep Q Learning estimates a
distribution of Q function values for a given action instead of one value.

Proximal Policy Optimization improves policies in reinforcement learning through a sta-
ble and efficient iterative process. It starts by collecting data from interactions with the
environment using the current policy, then calculates the advantage function to estimate
action benefits. PPO uses a surrogate objective function that includes a clipped probability
ratio to limit the extent of policy updates, balancing progress and stability. Policy param-
eters are updated by maximizing this clipped objective, ensuring significant yet controlled
improvements. This iterative process continues until the policy converges or a stopping
criterion is met.

3 Experimental Setup and Results
The agents used are taken from tensorflow’s [1] TFAgents [8] library, namely "Categori-
calDQNAgent" and "ppo_clip_agent". Hyperparameter tuning is done using a grid search
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Figure 1: Average episode length of evaluations performed during model training for DQN
and PPO. The PPO model was trained for four times longer than the DQN model and still
failed to converge, while the DQN model rapidly converged in about 1000 steps.

over the search space in Appendix A.

3.1 Proximal Policy Optimisation
Preliminary results on the discrete environment are not promising for PPO (see Fig. 1).
The training takes longer than DQN and is less stable. Besides this, the model also has
a larger amount of hyperparameters, meaning that tuning would take longer. For these
reasons, and due to limited computing resources and time constraints, PPO is considered a
negative result, and further experimenting with it is not pursued.

3.2 Categorical Deep Q Network
In order to tune hyperparameters a grid search was done with the discrete environment
configured as described in Table 1. The seven best performing configurations of the grid
search were then chosen for further experimentation. A configuration refers to a permutation
of the hyperparameters searched over. The performance metric used was the best time
evaluated at any time during training. These seven configurations were trained for a longer
period on both the continuous and the dynamic environments, with the same parameters as
the grid search (see Appendix A for the set of parameters searched over and the sets chosen
for the experiment).
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Table 1: Parameters for the environment used during hyperparameter tuning

Number of links required Threshold Γ
Protocol 1 Protocol 2

Fidelity Success Probability Fidelity Success Probability
4 0.5 0.2 1 0.2 0.6 0.4

Table 2: Environments used during the experiment and their respective Γ parameters. All
other parameters used are the same as in Table 1. The function used for Γ evolution is a
linear interpolation from 0.1 to 0.25. In the case of the time dependant environment this is
done over 125 time steps. In the case of the memory dependant environment this is done
over 4 links in memory (the required number of links).

Environment Name Γ

Continuous (low constant Γ) 0.1

Continuous (high constant Γ) 0.25

Parameter Drift (time dependant Γ) Γ(t) = min
(
0.25, 0.1 + 0.15

125 t
)

Induced Decoherence (memory dependant Γ) Γ(m) = 0.1 + 0.15
4 n

3.2.1 Environment Parameters

Four different environments are used during the experiment. Two environments with a
constant Γ value serve as a baseline for comparison. The Γ values used for these two envi-
ronments also serve as endpoints for the linear interpolation functions used for the other two
environments. The third environment models parameter drift, using a time dependant Γ(t)
function that interpolates the two endpoints over 125 time steps. The fourth environment
models induced decoherence, using a memory dependant Γ(m) function interpolating the
two endpoints over the four memory slots required.

All environments share the same action space, threshold and required number of links.
These are the same as in Table 1. The Γ parameters used can be found in Table 2. The
values chosen for Γ to vary over were picked because they best reflect the dynamics of the
system. see Fig. 2 for a plot of expected link lifetime as a function of Γ.

3.2.2 Training histories

During training every model is evaluated every 500 training steps for 100 episodes. This
allows us to reconstruct the training history of every model and analyse them.

It can be observed (see Fig. 3a) that the model regularly fails to learn the high constant
Γ case. We believe that this is due to the fact that this particular case has stricter timing
constraints: The first three links have to be generated with protocol 1 in order to last until
the end of the episode.

Another interesting result observed is the effect of timeout on training time. During
initial training of the variable Γ environments a timeout of 1200 steps was imposed, meaning
that after 1200 steps passed without finishing the episode it would end and the environment
would reset. With the large timeout the model converged slowly and the results were noisy.
After decreasing the timeout to 200 steps the model converged faster and the variance of
its output decreased. This might be caused by the fact that with a shorter timeout the
environment is able to learn more episodes, increasing the speed at which it learns the time
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Figure 2: Dependence of the time to live of the links generated by the two actions the model
had access to as a function of the decay rate Γ. Note that after about 0.27 it becomes
impossible to generate 4 links, since links generated by protocol 1 would decay in 3 time
steps.

evolution function.
Another observation is that the low constant Γ model does not always converge faster

than the dynamic environments, nor does it always finish episodes faster, despite it being a
less complex environment. This might simply be caused by variance in the exploration of the
models, or in the evaluation itself. It could also point to a limitation in the reinforcement
learning approach: the constant reward function might not be optimal for training this
particular case, since it doesn’t immediately award the correct action choice.

3.2.3 Performance comparison

In order to compare the performance of models trained on each environment every model’s
policy is evaluated on every environment for 250 episodes. This cross evaluation is performed
on every trained agent and the episode length is collected for every episode. Two such trials
are of interest: those in Fig. 4 and in Fig. 5.

The case presented in Fig. 4 shows little difference in performance between the four mod-
els in all four environments. This could be caused by the small problem size, perhaps there
does exist a difference but it is drowned out by the intrinsic noise of the system. In addition
the models used for parameter drift and for induced decoherence assume linear evolution of
Γ, and a noticeable performence difference might be observed in a more sophisticated model.
Another possible explanation for this is the relatively low γ hyperparameter of the agent.
This would cause it to choose its actions greedily, prioritising immediate reward.

On the other hand, Fig. 5 shows a case where the agents trained on dynamic environ-
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(a) Training history of hyperparameter set 2 (b) Training history of hyperparameter set 4

Figure 3: Training histories of two different hyperparameter sets. There is some slight
volatility in the models trained on the low constant Γ, parameter drift and induced deco-
herence environments. The model trained on the high constant Γ environment is very noisy.
We believe this is caused by the tight timing constraint in the high Γ case.

ments greatly outperform those trained on a static Γ; the low Γ agent even times out for
half of the trial environments. Another interesting observation in this case is that in the
other two trial environments the low Γ agent seems to outperform the high Γ agent. This
might be due to the low Γ agent having learned a policy that picks the high probability
action more often than it should, thus being not viable in the cases where it times out, but
faster in the other two cases.

Another result of interest is the absolute difference between the evaluation environments
which can be seen in Fig. 6. The low constant Γ environment takes noticeably less than the
other three. Of note is also that the lengths of the high Γ environment and the parameter
drift environment are approximately the same, even for the parameter drift trained agent.
This could be caused by the parameter drift agent being undertrained, or it being stuck in
a local minimum of "waiting out" the drift before generating the required links. It could
also be caused by the Γ(t) function used interpolating too quickly between the two values,
effectively reducing the environment to the high constant Γ environment.

4 Responsible Research
The research presented has no human-facing elements or personal data collection, as such
there are no ethical risks involved with the research conducted. Taking reproducibility in
consideration, the hyperparameters found using the grid search, and the search space over
which it was performed, can be found in Appendix A. In addition, taking transparency
into account, we acknowledge the negative result presented in section 3.1. All the code used
during development can be found on github1.

1https://github.com/ciobanuradu/research-project
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5 Discussion
The results of the experiment are inconclusive, thus two hypotheses can be formed. The
first hypothesis is that the models trained on the environment with a stable Γ are capable
of adapting to the dynamic Γ cases, allowing future work to discard this aspect of modelling
and simplifying future models. This would also mean that the models trained this way are
robust, meaning that a model trained on one environment would be capable of handling
many different environments.

The second option is that the environments used to train the agents are too simple. This
could either be caused by the small scale of the environments utilized or by the simple model
for Γ evolution. Limited resources and time constraints made investigating the first option
not possible, and the second option falls out of the scope of this paper, requiring further
theoretical development.

In spite of this, we feel that the reinforcement learning approach to the protocol selection
problem presented is promising, however this paper only serves as a proof of concept. A
larger scale case needs to be studied in order to fully demonstrate the power of our approach
and to discover the limits of its robustness.

6 Conclusions and Future Work
In this paper we study the effectiveness of reinforcement learning in choosing an entangled
link generation protocol. We also study the effects of parameter drift and induced deco-
herence on the robustness of this approach. In this regard we introduce multiple models
for reinforcement learning environments, one of which serves as a control and the other two
modelling the studied phenomena. Agents are trained on these environments using Deep
Q-Learning. Results indicate that the effects of parameter drift and induced decoherence are
negligible on policy optimality, however they are not conclusive. We recommend studying a
larger scale implementation (higher generated link requirement) to confirm this result. Fur-
ther theoretical development in modelling the evolution of the decay rate parameter would
also help improve the certainty of our results.
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Figure 4: Normalized returns of hyperparameter set 3. Of interest is the relatively equivalent
relative performance of every model. This implies that it is sufficient to train a model on an
ideal environment and it would be capable of also handling the variable Γ cases. Of note is
that this case has a lower γ hyperparameter than set 5 (see Fig 5) meaning that it prioritises
future rewards less than that one.
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Figure 5: Normalized returns of hyperparameter set 5. This set shows a case where the
agents trained on the static Γ cases are incapable of handling the parameter drift environ-
ment. Of note is that this case has a lower γ hyperparameter than set 3 (see Fig 4) meaning
that it prioritises future rewards less than that one.
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Figure 6: A non-normalized version of Fig. 4, showing the absolute difference between
the different evaluation environments. This shows that there is a difference between the
environments on which every model was trained and that the phenomena modelled do affect
the speed of entangled link generation.
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A Grid Search Parameters
All permutations of the following values for their respective parameters are searched over:

Hyperparameter Values
Number of atoms 51
Minimum Q value -1200
Maximum Q value 0

ϵmax 1.0, 0.8, 0.5
ϵmin 0.01, 0.05, 0.1
ϵsteps 500, 1000, 2500, 5000
γ 1.035, 0.99, 0.9, 0.8

Learning rate 10−4, 10−5

Table 3: Parameter space searched during DQN hyperparameter training.

ϵ decreases linearly from ϵmax to ϵmin over ϵsteps time steps. Training lasts for 5 · ϵsteps,
stopping early if there is no improvement in loss over the last 1000 steps.

The neural network utilised is a "categorical_q_network" from the TF agents library
[8] with three layers as follows: (128, 16, 16).

Out of the permutations searched the following seven were selected to be trained on
all the environment models (values that don’t change across different permutations are left
out):

Index ϵmax ϵmin ϵsteps γ Learning rate
0 1.0 0.1 1000 0.99 10−4

1 1.0 0.05 1000 0.99 10−4

2 0.5 0.05 1000 0.9 10−4

3 0.5 0.1 1000 0.8 10−4

4 0.5 0.1 1000 0.99 10−4

5 0.5 0.1 1000 0.99 10−4

6 0.8 0.1 1000 1.035 10−4

Table 4: Hyperparameters of the DQN models used during the experiment

Due to there being little empirical benefit in the slower learning rate models, and due
to time constraints on the project, they are manually removed from the set of models used
during the experiment.
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