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ABSTRACT: 
 
With the rapid improvement of LIDAR systems regarding point density and accuracy in relation to the (application dependent) 
requirements, robustness, efficiency and automation of the modeling process are becoming more important than achieving the 
highest possible accuracy and modeling detail from the available LIDAR data. Therefore we opt for development of a 2D grid based 
LIDAR data analysis approach. An important step is detection and parameterization of planar surfaces (roof elements). The paper 
reviews four methods, based on analysis of gradients, principal components, least squares and hough transforms, respectively. It 
introduces a series of improvements to the standard usage of each of those methods and shows results from synthetic and real data. 
 
 

1. INTRODUCTION 

In nowadays information society a growing need for 3D 
information of the urban landscape is observed. Producers as 
well as consumers of geoinformation recognize the 
attractiveness of representing the urban environment by 3-
dimensional models rather than 2D maps. Growing needs for 
efficient exploitation of the scarcely available urban space 
requires more careful and detailed spatial modeling than 2D 
information allows for. Examples can be found in urban 
planning and architecture, and in simulation and modeling of 
noise and pollution caused by traffic and industry. An 
interesting, new and fully 3-dimensional application is 
modeling the urban climate, with all its micro-climate 
phenomena. But also in consumer-oriented applications, such as 
real-estate advertising, portable and in-car navigation systems, 
and even Google Earth, 3D is becoming common practice. 
 
With the increasing availability of airborne LIDAR data, full 
automation of 3D city modeling from those data has become a 
challenging and relevant research topic. In the algorithms to be 
applied a choice has to be made whether to regard the data as a 
3D point cloud or as a 2D (often termed 2.5D) surface model, in 
which the elevation z is a function of the planimetric location 
(x,y). Furthermore, in both cases the data can be regarded as 
vector points with explicit coordinates, or be discretized in a 
regular grid with implicit raster coordinates. These choices lead 
to voxel representations in 3D or to pixel representations in 2D, 
where the elevations are stored in the pixel values. 
 
Traditionally the goal of 3D modeling has been to obtain the 
best possible detail given the available data. For this reason 
vector representations are often considered superior over 
gridded ones, despite the advantages of the latter concerning 
efficiency and convenience. With the rapid improvement of 
LIDAR systems regarding point density and accuracy, however, 
the data are no longer the limiting factor, but robustness, 
efficiency and automation of data analysis have become more 
important instead. Therefore we opted for development of a 2D 
grid based approach for 3D modeling. An important step in the 
approach is detection and parameterization of planar surfaces 
(roof elements).  
 

Irrespective of the chosen input data structure, the first phase of 
3D building reconstruction can be described as a segmentation 
problem. It is necessary to subdivide the input point set into 
subsets corresponding to objects of interest, where objects are 
for example (depending on the required amount of detail) entire 
buildings of elements of building roofs. Subsequently (or 
simultaneously) the geometric characteristics (the shapes) of the 
objects are reconstructed on the basis of the coordinates of the 
participating points. 
 
A choice to be made is whether the segmentation should be 
complete, meaning that every point is assigned to an object, or 
whether we are only looking for buildings, whereby points on 
vegetation and cars, or even on the ground, may be discarded as 
‘not of interest’. In the latter case the entire issue is largely 
covered by the capability to detect planar regions above a 
certain height in a normalized DSM (which is a DSM where the 
terrain has z=0). Points below that height as well as those not 
belonging to planes are discarded. There are issues remaining, 
for example caused by non-planar roof elements, tall trees over 
buildings, roof gardens and trucks. Moreover, vertical building 
elements (walls) are not present in LIDAR point sets, but they 
have to be inferred from the data by recognizing surface 
discontinuities.  
 
The remainder of the paper concerns detection, delineation and 
parameterization of planes. It reviews a number of methods in 
Section 2, with the purpose of combining these into a novel 
local Hough transform in section 3. Section 4 will show 
experimental results on synthetic and on real data, followed by 
conclusions and an outlook in Section 5. 
 
 

2. PLANE DETECTION  

Generally, plane detection can be performed using global or 
local methods. Global plane detection looks ‘at once’ at the 
entire data set or at a large subset, which is perhaps bounded by 
algorithm capacity or by prior knowledge concerning the 
maximum extends of a plane [Oude Elberink and Vosselman, 
2006]. As a result, planes are entirely detected ‘at once’ as well. 
A popular global plane detection method is the Hough 
transform described below (Section 2.1).  Local methods, at the 
other hand, attempt to decide for each point, or small group of 



 

nearby points, whether it might be part of a planar surface, and 
if so, what would be the surface parameters (Section 2.2). The 
decision is based on a neighborhood of the point or point group.  
 
2.1 Hough Transforms 

'Hough transform' is the collective name of a class of algorithms 
for detecting parameterized shapes in 2D or 3D data sets. The 
most popular example is detection of thin lines in two-
dimensional binary images. The object pixels are supposed to 
belong to those lines, but there are also 'noise' object pixels, 
whereas the lines have gaps. The problem is to find the 
parameters of the lines, and the solution starts by 
parameterizing the set of image lines passing through an object 
pixel with coordinates (x, y) as (for example): 
 

y = ax + b    (1) 
 
In a parameter space with axes a and b this collection 
corresponds to a line  
 

b=–xa + y      (2) 
 
Therefore, a point in image space corresponds to a line in the 
parameter space.  For a set of collinear image points the 
corresponding lines in parameter space intersect at a single 
point (a, b) representing the image line y=ax + b that passes 
though all image points. Thus the problem of finding collinear 
points in image space is reduced to finding intersections of lines 
in parameter space (Figure 1). These intersections are easily 
found by discretizing the parameter space into a 2D 
accumulator array: an image where lines are constructed one by 
one, by adding the value 1 to all cells of the line. When all lines 
are done, each cell value represents the number of lines passing 
through this cell, and the location (a, b) of the cell denotes an 
image line passing through that many image points. 
 
This principle is easily extended to finding planes  
 

z = ax + by + c    (3) 
 
in a set of 3D points (x,y,z), such as a LIDAR point cloud. Each 
'image' point now corresponds to a plane  
 

c = -xa - yb + z     (4) 
 
in a (a,b,c) parameter space, and a point (a,b,c) where N planes 
intersect corresponds to a plane in image space containing N 
image points. 
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Figure 1.  Hough transform for lines in 2D 
 

Note: The above parameter spaces become unbounded when 
having vertical lines, resp. planes in the data. This is not a 
major problem in case of airborne LIDAR. 
 
2.2 Local Plane Detection 

Local planed detection methods analyze a small neighborhood 
of points at a time to decide about co-planarity of those points. 
Neighborhoods can be defined in two or in three dimensions. In 
2D, a point near the edge on the roof of a high building and a 
point near to the wall on the ground may be in the same 
neighborhood, whereas in the 3D case they would not be. 
 
It can be based, for example, on analysis of gradients (Section 
2.2.1), least squares adjustment (2.2.2) or principal component 
analysis (2.2.3). At a later stage adjacent candidate points with 
similar surface parameter values are combined into larger 
planes, for example by region growing [Rottensteiner and 
Briese, 2001] (see Section 2.2.4), The performance of 
segmentation largely depends on the results of plane parameter 
estimation, which is the motivation of studying these closely.  
 
The methods considered below can be described in terms of 
estimating parameters a, b and c of equation (3). 
 
2.2.1 Gradient analysis 
In a vector approach, plane parameters can be derived for each 
triangle after a Delaunay triangulation by using a voting 
mechanism similar to the one in Hough transforms, in order to 
construct larger segments from adjacent triangles with similar 
parameter estimates [Lohani and Singh, 2007]. [Gorte, 2002] 
presented a TIN-based region merging algorithm. 
 
In a grid based approach, plane parameters a and b are derived 
straightforwardly as the image gradients in column and row 
direction, respectively, while taking the spatial resolution of the 
dataset into account. The value of the Laplacian, as estimated 
by a 3x3 filter in the same window, provides a measure for the 
planarity of the 3x3 neighborhood. 
 

 
 

Figure 3. 3x3 subwindows in a 5x5 window 
 
The main disadvantage of using gradients is that they are 
computed by subtracting neighboring z-values. Especially when 
point spacing (or grid spacing) is small compared to the 
measurement noise, gradients are getting quite noisy. In a grid-
approach, the use of larger kernels reduces noise, but creates a 
wider zone near to the edges of planes where the results are 
unreliable.  
 
Adaptive Gradient Filtering 
An interesting way to reduce this edge effect is to consider 
different subwindows within the window around a pixel under 
consideration, as in Figure 2. This will be called adaptive 
gradient filtering. It is inspired by the Nagao type of edge-
preserving smoothing [Nagao an Matsuyama, 1979], where the 
central pixel is assigned the average value of the subwindow 
with the smallest variance. Now, we assign the gradient from 
the subwindow with the smallest value for the laplacian. The 
same idea can be applied in a 9 x 9 window, using 5x5 
subwindows. Figure 4 shows two of five cases. 



 

 
 

 
 

Figure 4.Two 5x5 subwindows in a 9x9 window 
 
 
2.2.2 Least squares adjustment 
 
A straightforward way of obtaining a plane through a number of 
non-collinear points is to perform a least squares estimation of 
the plane parameters. The RMS error provides a measure of the 
quality of the estimates, which is favorable since the estimates 
are severely contaminated if the plane does not fit well, as it 
happens near the edges of a plane, or in case of outliers in the 
points.  
 
The method is easily implemented in a grid and extended in the 
same Nagao fashion as in the gradient method above, which we 
will call adaptive least squares filtering. window sizes are 
possible, for example using 7x7 subwindows in a 13x13 
window, or 9x9 in 17x17. In each case the parameter estimates 
are obtained from the subwindow with the smallest RMS error. 
 
 
2.2.3 Principal component analysis 
 
When regarding a number (N≥3) of (x,y,z) points as a collection 
of simultaneous observations of variables x, y and z it is allowed 
to compute the 3x3 variance-covariance matrix C of these 
observations. Co-planarity of the points is signaled by the 
smallest eigenvalue of this matrix being (close to) zero, whereas 
the other two eigenvalues are significantly different from zero 
[Guru et al 2004]. The smallest eigenvalue can be used as a 
measure of co-planarity of the points. The eigenvectors 
belonging to the other two eigenvalues are orthogonal to each 
other and to the normal vector of the plane, and provide the 
plane parameter estimates. 
 
Also now the extension to the distinction between different 
subwindows within a window under consideration is easily 
made. This can be called adaptive principal component 
filtering. Plane parameters are taken from the subwindow where 
the smallest eigenvalues is smallest (!).  
 
It should be noted that the principal component method is 
equivalent to the least squares method of Section 2.2.2. Also 
computationally there is no clear advantage for either method. 
 
2.2.4 Image segmentation 
After plane parameters and co-planarity measures have been 
obtained by one of the local methods of Sections 2.2.1 tot 2.2.3, 
groups of adjacent points with similar parameters should be 
grouped in segments, corresponding to planar objects. It should 
be noted that all three plane parameters should be considered; 
using only the gradients a and b is not sufficient, for example, 
when two flat roofs with different heights (and different c 
values) are adjacent. 
 

Popular image segmentation methods such as region growing 
and region merging rely on thresholds to determine whether 
adjacent pixels or regions are similar enough to be combined 
into a single segment. The performance of segmentation largely 
depends on the input, i.e. on the results of plane parameter 
estimation. 
 
 

3. LOCAL HOUGH TRANSFORM 

Hough transform, being a global method, is particularly suitable 
for detecting (and estimating parameters of) large structures, 
such as long lines in 2d or 3d, or big planes in 3d, that are 
sparsely represented by points in noisy images and point clouds. 
Its parameter estimation is quite insensitive to outliers. At the 
downside there is an element of chance in the detection because 
a parameter space resolution has to be chosen. 
 
Moreover, the method does not consider adjacency of points 
being assigned to a plane (in the 3d case), Therefore a rather 
large threshold has to be set for the minimum plane size (i.e. the 
value in the accumulator array), or otherwise many arbitrary 
planes are generated from points that happen to be coplanar, but 
are spread all over the scene. Consequently, planes that are 
smaller than this threshold will not be detected. Sometimes this 
is solved by using prior knowledge, for example from 2D map 
data, to constrain the process to the interior of a single building 
ground plan, or even to a rectangle that is obtained by further 
subdividing a ground plan [Vosselman and Dijkman, 2001]. 
 
Another problem of Hough transforms in 3D is the 
computational cost. Having millions of points, belonging to 
hundreds of planes in a LIDAR data set, millions of planes need 
to be constructed in the parameter space. This space needs to 
have a resolution that allows hundreds of local maxima at the 
plane intersections to be represented and detected accurately.  
 
Also here it helps to use prior knowledge to pre-segment the 
data, but a more general way out is to reduce the dimensionality 
of the problem. [Rabbani and van den Heuvel] for example 
managed to bring down the dimensionality of 5D cylinder 
parameter estimation by splitting the process into a 2D, 
followed by a 3D stage.  
 
Combining these observations with the results of Section 2 
inspired development of a local grid based Hough transform. Its 
purpose is to find the plane that passes through as many points 
as possible in a k x k window, including the point represented 
by the central pixel. The points are expressed in a local (x,y,z) 
coordinate system having the origin at the central pixel. The x 
and y coordinates of the other points are given by the row and 
column positions within the window, taking the spatial 
resolution into account, and the z value of each pixel is obtained 
by subtracting the central value from the pixel value. 
 
The fact that (0,0,0) has to be part of the plane reduces the 
number of parameters from 3 to 2, since only planes  
 

z = ax + by      (5) 
 
need to be considered. For each of the k x k - 1 remaining points 
a line is constructed in an (a,b)-accumulator by: 
 

b = z/y – ax/y     (6) 
 



 

The maximum value in the accumulator determines the number 
of points, beside the central point, belonging to a single plane, 
whereas the position of this maximum in the accumulator gives 
an estimate for the corresponding plane parameters a and b. 
These are valid in the original coordinate system as well. Again, 
the remaining parameter c can be computed using equation (3). 
However, provided that sufficiently many points participate, a 
better estimate of all three parameters is obtained by a least 
squares fit of a plane through these points. Here, the absence of 
outliers in the set of participating points is of great benefit – the 
resulting RMS errors are expected to be much smaller than 
those obtained in Section 2.2.3. 
 

4. EXPERIMENTS 

The methods to estimate plane parameters from gridded DSMs 
described in section 3 are applied to three data sets: 

1. a synthetic DSM of a simple house 
2. a synthetic DSM of the same house with added noise 
3. a FLI-MAP 400 dataset of an urban scene  

 
The synthetic house was generated by sampling a point cloud 
from an “ideal” grid model with 10 cm resolution. The point 
cloud was then rotated over an angle of 28 degrees, and 
converted back to a 10 cm grid. Values of grid cells without 
points were interpolated form their neighbors by using a local 
average filter. The resulting DSM is shown in Figure 5. 
 

    
Figure 5.Synthetic DSM of a house with and without noise 

 
Figures 6 and 7 illustrate the gradient methods described in 
Section 2.2.1. Standard 3x3 image gradients in x and y 
direction, corresponding to estimates of the a and b plane 
parameters are shown (Figure 6), as well as adaptive gradient 
filters (only for the parameter a, Figure 7). It is clearly visible 
that the effect at the edges is drastically reduced in the latter 
case, and also noise is reduced significantly. 
 

a.    

b.    

Figure 6. Gradient filtering. 
a: image gradient in x direction without and with noise,  

b: image gradient in y direction 
 

The results of least squares methods is shown in figures 8 and 9. 
Figure 8 shows the estimates of the plane parameter a obtained 
by least squares filtering in a fixed 5x5 window and in an 
adaptive filtering in a 9x9 window with 5x5 subwindows, both 
for ideal and noisy images. Also the RMS errors of both 
situations are shown (Figure 9). 
 

a.    

b.    
Figure 7. Adaptive gradient filtering. 

 a:  5x5 with 3x3 subwindows, without and with noise 
b: 9x9 with 5x5 subwindows 

 
 

a.    

b.    
Figure 8.. Least squares filtering in ideal and noisy data  

a: in 5x5 window, b: adaptive 5x5 in 9x9 window 
 
The next experiment concerns local Hough transforms where 
the a and b plane parameters are estimated directly from the 
positions of the maxima in the accumulator (only parameter a is 
shown). We show the results of different window sizes, again 
for ideal and noisy input data (Figure 10). It appears possible to 
apply large window sizes, resulting in effective noise reduction 
(outlier removal) without loosing spatial detail. 
 
The final experiment on synthetic data concerns local Hough 
transform with simultaneous least squares plane parameter 
estimation. See Figure 11, where all parameter estimates are 



 

illustrated, as well as the RMS of least squares estimation. A 
21x21 window size was used. It appears that the parameter 
estimates do not differ much from those directly obtained from 
local Hough transform with the same size and without least 
squares estimation (Figure 10d.). It should be noted that the 
RMS of the least squares estimates is very small compared to 
those in Figure 9, where the same mapping from RMS values to 
gray levels has been used. 
 
Last but not least, a result from real data is shown in Figures 13. 
 

c.      

d.    
Figure 9.. Least squares filtering. 

c: RMS of image 8a, d: RMS of image 8b. 
 

a.    

b.    

c.    

d.    
Figure 10. Local Hough transform in ideal and noisy data 

a: in 3 x 3 window, b:  7 x 7   c: 13 x 13, d: 21 x 21 

a.       

b.    

c.    

d.    
Figure 11. Local Hough transform with least squares plane 

parameter estimation of a, b and c in 21 x 21 windows. 
d. shows the RMS of the least squares fit. 

 



 

 
 
Figure 12: Plane parameter a estimated from FLI-MAP 400 
data in Rotterdam (NL) using a 21x21 local Hough transform. 
 

5. CONCLUSIONS AND OUTLOOK 

The paper describes theoretical considerations leading to the 
development of a local Hough transform method for detecting 
planes in a gridded surface DSM, while estimating the plane 
parameters. The method was expected to deal effectively with 
noise and to behave well near the edges of plane, which is 
confirmed by experiments on synthetic data with and without 
noise, and appears to apply to real high-density LIDAR data in 
a complex urban scene as well. 
 
The next step in the development of robust, fully automatic 3d 
city model generation will be the delineation of roof planes, 
both at the intersections of neighboring planes as well as at 
surface discontinuities where walls have to be reconstructed. 
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