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ABSTRACT 

Recommendation systems are algorithms that aim to       
predict what items are preferred by a user, based on a           
recorded history of user activity. Magnet.me is a        
company which recommends companies and     
opportunities to students. Potential algorithms for      
recommendation systems are memory-based and     
model-based collaborative filtering , graph-based    
approaches , support vector machines , random forest      
classifiers and wide & deep learning . Based on a         
qualitative comparison of the algorithms, model-based      
collaborative filtering , which is what Magnet.me      
currently uses as well, was chosen to be the best fit. This            
is because it scored highly on the three most important          
factors for Magnet.me: potential performance,     
compatibility with the dataset and scalability. When       
comparing several well-known benchmarking metrics,     
the most suitable metric for testing the performance of         
the recommender was the F1 measure . To benchmark the         
model, the connection status of user-company relations       
should be used as the label, but must be excluded in the            
calculation of the implicit ratings. Logarithmically      
scaling the view counts before used as a factor in the           
implicit ratings has proven to be of negligible effect. Five          
other signals are found that could be used to improve the           
recommendations. Hyperparameter optimization with    
cross-validation is implemented to constantly improve      
the recommender. The recommender has also been       
succesfully been deployed into the Magnet.me      
technology stack. The possibilities for a clustering       
algorithm are considered in order to solve the cold start          
problem, but we could not determine the numeric        
distances between features, which is required for training        
a clustering algorithm. 

1 INTRODUCTION  1

A recommender algorithm uses explicit user ratings or        
user activity to recommend items to users. Magnet.me is         
a company with web and mobile applications, which        
students and recent graduates can use to discover jobs         

1 Based on our research report, located in Appendix F. 

and career opportunities. They are using a       
recommendation engine to provide personal     
content—consisting of companies and opportunities—to     
students. Magnet.me has implemented a basic      
recommender that is able to provide this. The main goal          
of this project is to benchmark the recommender and         2

automatically optimise the hyperparameters which are      
used by the recommender algorithm.  

1.1 State of the Art in Recommendation      
Systems 

Recommendation systems can be implemented using a       
variety of techniques. Traditionally, the techniques that       
these systems use are separated into collaborative       
filtering and content-based filtering . In practice,      
companies often have developed custom algorithms that       
work best for their context. This can be done by          
combining or extending traditional recommendation     
techniques. For example, Google is applying deep neural        
networks in YouTube with Tensorflow (Covington,      
Adams, & Sargin, 2016). Furthermore, Facebook uses       
the proximity of two nodes in the social network graph in           
order to make recommendations for users. 
 
Collaborative filtering is a recommendation algorithm      
that predicts ratings or preferences between a user and an          
item (Ekstrand, Riedl, & Konstan, 2011). It can predict         
explicit ratings, which are ratings that a user actively         
gives to an item (a five star rating for a movie for            
example), or implicit ratings, which are values that        
represent the preference of a user. The algorithm        
calculates these preferences or ratings for a user by         
finding users that are similar. It assumes that if a user is            
similar to other users, this user will be interested in          
content that these other users prefer. 
 
In contrast with collaborative filtering algorithms,      
content-based algorithms make use of the attributes       
(features) of users or items. In most approaches, users are          
represented by a certain taste profile. This profile is  

2 More information can be found in the project plan of           
Appendix D. 
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a vector of features representing different properties of a         
user (e.g. study background and interests). A company        
could be placed at a certain location, focuses on a certain           
industry or has a specific amount of employees working         
there. If the user profile is similar to the attributes of the            
company, the company might be of interest to the user. 

Alternating Least Squares 

The collaborative filtering feature inside Spark , which is        3

used by Magnet.me, relies on matrix factorization to find         
the best recommendations, as visualised in Figure 1.        
Alternating Least Squares (ALS) is an implementation of        
a collaborative filtering  algorithm (Takács, Tikk, 2012).  
 
This matrix can be factorized in and , of which the      P   Q     
values are initialised to either 1 or to random values.          
ALS has to learn these matrices, which consist of a latent           
vector per user/item, by alternatingly updating the values        
of and . In multiple iterations, it changes values in P   Q         
one of the two matrices and calculates the other matrix.          
After enough iterations, the values will converge, and the         
entries in the multiplication matrix should be     P × Q    
predictions of how much a user matches with a specific          
company/opportunity. 

 
Figure 1: Example of matrix factorization calculation 

(source: Databricks) 
 
In regards to ALS in Apache Spark , four        
hyperparameters (three if only using explicit data) can be         
configured to improve the resulting predictions.      
Additionally, one parameter can be passed to specify the         
number of blocks used for parallelization. Typical for the         
ALS algorithm is that it alternatingly changes one of the          
two factorized matrices. The optimization of the latent        
vectors could also be done using other algorithms like         
Bayesian networks or probabilistic latent semantic      
analysis (Su, Khoshgoftaar, 2009), but these algorithms       
are not included in Spark ’s machine learning library.  

Strengths and Weaknesses of Collaborative Filtering for 
Magnet.me 

The user collaborative filtering algorithm has several       
benefits for Magnet.me. With collaborative filtering ,      
companies and opportunities are recommended by      
analyzing the behaviour of users. Because of this, items         

3 Website of Apache Spark 
 

that are not similar to each other can be recommended to           
a user because a similar user have viewed these items. 
 
In a way, Magnet.me also makes use of content-based         
filtering , because it shows the most popular companies        
within the industry of the student. However, it is         
important that not only the popular companies are        
recommended, because letting the users explore      
companies that they are not familiar with is one of the           
goals of Magnet.me. 
 
Another benefit of using collaborative filtering is that a         
Spark implementation exists. Not only does this save us         
considerable time to implement the actual algorithm       
ourselves, it also means that the collaborative filtering        
algorithm can be distributed. Because of this, the        
algorithm’s performance remains manageable if the      
amount of data increases drastically.  
 
A disadvantage of the current system is that no personal          
recommendations can be given in the first hour, which is          
known as the cold start problem. Because of this the          
model has to be re-trained each hour to provide         
recommendations for new users. 

Alternative Techniques 

Below we have included a list of alternative techniques         
that can be used for recommending companies and        
opportunities to students. Note that this list is not         
exhaustive, but includes a subset of all machine learning         
algorithms that we found to be the most likely candidates          
for this particular project. 

Memory-based Collaborative Filtering 

Besides the model-based collaborative filtering approach      
that is described above, a memory-based approach can be         
used where the similarity between users is calculated by         
similarity functions like cosine similarity or the Pearson        
correlation coefficient. A weighted average of events of        
the most similar users is determined to provide a         
recommendation. Until recently, memory-based    
approaches did not scale well with larger datasets, but         
this has also been fixed in Spark by the implementation          
of Dimension Independent Matrix Square using      
MapReduce  (DIMSUM) (Zadeh, Carlsson, 2014).  

Graph Analysis 

Graphs can be used in certain different ways to improve          
recommendation accuracy. One example of graph-based      
filtering is GraphRec , a system which converts the        
user-item matrix to a weighted adjacency matrix, which        
is used to create a graph from which the entropy of all            
items can be calculated (Lee, Lee, 2015). 
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For example, GraphRec has been used to recommend        
music artists using explicit user data. This algorithm        
tends more towards a content-based approach, because       
the items are centralized and relations are being made         
between items, based on their attributes. Another       
graph-based algorithm is found where users are nodes        
and users are connected to item-attributes via the items.  

Support Vector Machines 

Support Vector Machines (SVM) is a model that        
classifies its input into a binary output. It does so by           
defining an hyperplane between vectors (which are       
vectors with features of a user or company/opportunity).        
Vectors on one side of the hyperplane are items or users           
that are similar to the input vector of the SVM. In the            
Magnet.me case, input could be a vector with features of          
a user. The SVM will determine what class (a collection          
of opportunities and organizations) the user belongs,       
which is basically equivalent of determining what       
opportunities or organizations could be recommended to       
that user. This way, SVM can be used as a          
recommendation system (Gershman et al., 2011). 
 
Unfortunately, research has shown that SVMs perform       
poorly on recommendation problems. This is because       
there is only a small percentage of users interested in a           
particular item/company, leading to extremely     
unbalanced class distributions (Zhang, Iyengar, 2002). 

Random Forests 

A random forest classifier is a model that uses several          
decision trees to classify its input (Ajesh, Nair, & Ps,          
2016). These decision trees base their decision on        
training data that has been served. In the Magnet.me         
case, input of the random forest model could be a vector           
representing the user profile (in a model based        
implementation) (Zhang, Min, & He, 2014). Every       
decision tree determines what recommendation     
(company or opportunity) comes out of their tree. An         
average of all output of decision trees will be calculated          
to determine what recommendation suits that user best. 
 
A disadvantage of random forest classifiers is that        
streaming data input is a problem for its model. When          
new training data is available, a random forest needs to          
be recreated and trained (Saffari et al., 2008). In         
Magnet.me data, new example data arrives all the time         
(new companies and new opportunities), which means       
that without recreating the forest constantly (which takes        
a lot of computation time), the system would give         
questionable recommendations. 

Wide and Deep Learning 

Neural networks are fairly new in the context of         
recommendation systems. Deep neural networks have      
more hidden layers in the network (mostly more than ten)          
in comparison with “normal” neural networks. In a        
recommendation case, input for the neural network       
would be several features of a user profile and the output           
would be a classification of for example companies. 
 
Recently, wide and deep neural network learning has        
been introduced in the Google Play Store (Cheng et al.,          
2016). Wide and deep learning means that a network has          
two components, one wide (which is in this paper is a           
generalized linear model ) and one deep (a deep neural         
networ k) component. It is stated that the       
recommendations of the Play Store improved      
significantly. 

1.2 State of the Art in Benchmarking      
Metrics for Recommendation Models 

There are a variety of metrics which are used in          
benchmarking recommendation systems. Choosing what     
metric should be used to benchmark a recommender,        
depends on the context in which the recommender        
operates. 
 
For recommenders that base their recommendations on       
explicit data, the root mean squared error (RMSE) is         
often used (Cremonesi et al., 2015). This metric        
calculates how much the explicit ratings that are        
predicted differ from the actual ratings. When a        
recommender uses implicit data however, the RMSE       
might not be the proper metric. Precision and recall are          4

metrics that also give insight in the performance of the          
recommender. These values, together with the F1 score        
(Lipton, Zachary C Elkan, Naryanaswamy, 2014), can be        
used on implicit data. These metrics use true positives ,         
false positives and false negatives to determine the        
performance. 
 
The normalised discounted cumulative gain (NDCG) is a        
metric that evaluates the ranking of the predicted items         
(Wang, He, Chen, 2013). While this metric is not often          
used in recommender problems, it is used in        
benchmarking web search engines to determine whether       
the most important search results are ranked on top. 

4 These metrics usually are presented together with the threshold          
they operate, for example precision @4 or recall @4, meaning        
precision  for the first four recommendations. 
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1.3 Magnet.me Implementation 

Magnet.me currently uses the collaborative filtering (CF)       
feature in the Machine Learning library of the Apache         
Spark  framework to provide personal recommendations,  
because this system was thought to be the best for the           
Magnet.me context. One of the characteristics of       
Magnet.me is that lots of opportunities are added to the          
database constantly (about --- opportunities on average       5

per day over the last year ). At moment of writing, they           6

have --- users, --- companies and --- opportunities (of         
which --- are active) in their database . 7

 
Typical for their users is the short time they are browsing           
through content. On average, as shown in Figure 2, only          
a small percentage will return after a few months,         
because he or she usually stops searching after finding a          
suitable job. 
 

 
Figure 2: Retention rate of users of Magnet.me on a monthly 

basis on the web application (source: Google Analytics) 
 
Apart from using collaborative filtering for giving       
personal recommendations, similar and popular     
recommendations are given. Each hour, the user-based       
collaborative filtering algorithm is re-trained, which      
takes 16 minutes on average , and personal       8

recommendations will be given. To make the best use of          
the product, users need to receive recommendations as        
soon as possible, while the system has little time to learn           
user preferences.  
 

5 --- confidential 
6 We calculated this by counting the number of opportunities          
added daily to the Magnet.me database and then taking the          
average. 
 
7 We have determined these numbers by querying the current          
Magnet.me database. 
 
8 We determined this by running a database query to determine           
the average time of each Spark job over the last year, after            
which we summed the averages of each of the 4 types of jobs. 

The idea of user-based collaborative filtering algorithm       
is that the behaviour of past users is used to make           
recommendations for new users (Ekstrand, Riedl, &       
Konstan, 2011). In the context of Magnet.me, this is done          
by collecting events that users produce. Currently, the        
recommender gives recommendations based on data      
consisting of three different types of user actions: 

 
● User views a company recommendation (positive); 
● User views an opportunity recommendation     

(positive); 
● User is connected with a company (strong       

positive). 
 
To obtain data about the relation between user and         
content, explicit or implicit data can be gathered. Explicit         
data are ratings that a user actively gives to a specific           
item, for example giving a five star rating to a movie.           
Implicit data are ratings that are inferred based on user          
actions, for example views or clicks. The       
recommendations of the current algorithm are based       
solely on implicit user data. 
 
It is important to note that this means an extra step in the             
computation of the predictions is required. The implicit        
data of a user has to be converted to a confidence matrix            
where all entries contain confidence values. (Hu, Koren,        
& Volinsky, 2008) The value 1 is assigned to the two           
click actions. A value of 10 is assigned to the connect           
action, because this is considered a more significant        
relation between a user and a company than a click          
action. Several million events have been collected in the         
past. When a user produces several events, the        
collaborative filtering compares him or her to users that         
are similar and gives recommendations accordingly. 

1.4 Research Questions 

The goal of this project is to improve and tweak the           
recommender that is currently in use by benchmarking        
the recommender and automatically optimise the      
hyperparameters of the recommender. In order to achieve        
an optimal solution for Magnet.me, we will answer the         
following questions: 
 

(1) Which algorithm can be implemented, in order to        
provide the best recommendations of companies      
and opportunities to students? 
 

(2) How can we improve the recommendations that are        
given? 
 

(3) How can we set up a system that automatically         
optimizes the model hyperparameters at a regular       
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basis that can be integrated into the Magnet.me        
technology stack? 
 

(4) Can we tackle the cold start problem using        
clustering, in order to give recommendations to       
new users? 

 
Answers to these research questions are given in several         
sections and are summarized in the conclusion.  

2 MATERIALS & METHODS  9

2.1 Personal Recommendations 

Scoring Function 

In order to train a recommendation model, a function is          
needed to calculate the implicit scores for each        
user-company relation. These scores need to represent       
the relations between users and companies. In the        
current implementation, the score for a user-company       
relation is equal to the amount of clicks of the user on the             
page of that company, plus ten points if the user is           
connected to that company. The weight of ten that is          
assigned to a user-company connection is chosen, has not         
proven to be the optimal value. 
 
We have started with the same scoring function, but with          
a variable connection-status weight. Later on, when the        
evaluation metrics are fully implemented, the      
connection-status weight is adjusted to a value that gives         
better recommender performance.  
 
Instead of simply taking the view count as part of the           
scoring function, the log of the view count can be used.           
Using the log of the view count is expected to give a            
more realistic score, because this has the effect that the          
difference between one or two views will give a bigger          
change in the score than the difference between 30 and          
31 views.  
 
Using the scoring function as mentioned, the values for         
each user-company relation can vary from zero to very         
high. Due to the lack of an upper limit, it is hard to             
compare the recommender performance with other      
models and with the same model with different settings.  
The scores will be scaled, so that all values lay between 0            
and 1. This way, modifications to the model can easily be           
compared and evaluated. Also, some metrics expect       
scaled values in order to evaluate the performance. 

9 An evaluation of our software development practices can be          
found in Appendix B. 

Model settings 

The model performance will be evaluated with different        
values for the connection-status weight and using the log         
of the view count turned on and off. These model settings           
will be referred to as model parameters in the rest of the            
report.  

2.2 Benchmarking 

To eventually decide what the best configuration is for         
the recommender, specifically choosing what model      
parameters and hyperparameters are ideal, various      
benchmarks have been implemented. 

Implicit Ratings 

Before getting into the actual benchmarking of the        
recommender, it should be emphasised that the       
Magnet.me recommender makes use of implicit data over        
explicit. The ALS implementation of Spark has an option         
in which you can train implicit data. What this means is           
that the predictions that are provided by the trained ALS          
model are not explicit ratings given to items, but is a           
confidence (preference) value given to a user and an         
item. This value is a value between -1 and 1, with a value             
near larger than zero meaning a preference towards that         
item, and less than zero not a preference towards that          
item. Due to this, benchmarking and comparing the        
recommender models has been a lot more cumbersome        
than benchmarking explicit ratings, because a preference       
is not easy to compare with implicit ratings calculated by          
the scoring function. 
 
The solution to this problem was not to compare the          
ratings that are predicted to the implicit ratings that are          
calculated by the scoring functions, but to compare the         
ratings with labels that items have. The correctness of a          
recommendation means that if the model predicts that a         
user has a preference towards a item (confidence value         
larger than 0) and it appears that the user has a positive            
label, the prediction is  true positive. 
 
To determine a label for a company recommendation, the         
connection status is used. When a user is connected to a           
company, the label is positive. For an opportunity        
recommendation the label is used whether a user has         
saved the opportunity or has applied to that opportunity.  

Metrics 

Some ranking metrics that are commonly used in        
recommender systems are precision , recall , F1, RMSE       
and NDCG. An implementation of these metrics is        
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available in Spark and in an external library . To get a           10

better understanding of the metric functions, we decided        
to implement the ranking metrics ourselves.  
 
When implementing the RMSE, it was noticed that this         
metric might not be applicable to our situation because of          
the use of implicit data and our binary labels. Moreover,          
RMSE is calculated to every rating, while these ratings         
might not be that important because only a specific         
amount of recommendations are shown to the user. 
 
What we actually want to benchmark is that the first top           
K recommendations ordered by highest rating are       
correct. This means that a certain threshold must be         
provided on how many recommendations we want to        
test. In the applications of Magnet.me, at most six         
recommendations are shown initially, which is why we        
chose to use this as a threshold. 

Monitoring 

Magnet.me is already tracking clicks on      
recommendations and are currently implementing a      
system which can track the click-through rate (CTR) of         
recommendations. In the future, we can use this to see          
what the improvement of our model is in terms of the           
live CTR in the Magnet.me apps. 

2.3 Hyperparameter Optimisation 

At the moment, the parameters that are used with the          
collaborative filtering implementation have been     
predefined and have not been updated in the last year.          
However, the optimal parameters to achieve the best        
results can very well change over time, due to new          
incoming data that changes the underlying structure of        
the dataset. 
 
Methods exist that can automatically determine the       
optimal set of parameters to use when training the model.          
The main approach is to run a parameter sweep. Quite          
simply, you define minimum and maximum values for        
each parameter and it will train the model with all          
possible combinations of parameters. To determine the       
best set of parameters, a loss function is defined which          
calculates the error rate of the model. A basic         
implementation works like this: 
 

(1) Create separate sets of training and test datasets,        
which is often a 70-30 or 80-20 split; 

(2) For each set of parameters: 

10 Github page of spark-ranking-metrics 
 

a. Train the recommendation model using the      
training data; 

b. Evaluate the performance using the test data; 
(3) Choose the best set of parameters with the lowest         

error rate. 
 
Cross Validation 
Running hyperparameter optimization on the same      
training and test dataset can be prone to overfitting, as          
the lowest error rate can easily be a model that is very            
specific to this training dataset. Therefore,      
cross-validation is often introduced in order to avoid        
overfitting the training data. For example, in k-fold cross         
validation , the entire dataset is split into k subsets, an          
example of which is shown in Figure 3. One subset is           
then used as the test dataset, while the other k-1 datasets           
are used as training data. The process then becomes: 
 
1. Create k subsets of the entire dataset; 
2. For each set of parameters: 

a. Repeat k times: 
i. Define one of the subsets as the test data; 

ii. Define the other k-1 subsets as the       
training data; 

iii. Train the recommendation model using     
the training data; 

iv. Evaluate the performance using the test      
data; 

b. Take the average of the error rates of each         
subset; 

3. Choose the best set of parameters with the lowest         
average error rate. 

 

 
Figure 3: Example of a k-fold cross validation with k=10 

ALS Parameter Description 

Spark ’s ALS train implementation has four parameters:       
lambda , iterations , rank  and alpha .  
 
● Iterations specific the maximum number of times       

that ALS calculates the error rates of the latent         
matrices and updates them accordingly. If this       
parameter is set too small, a chance exist that the          
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ALS-algorithm is not yet done converging the       
values in the factor matrices. If it is set too big, the            
values will coverge in the first iterations. A too big          
value will never make the performance worse, but        
the last iterations are unnecessary because the       
predictions will not be improved substantially.  

 
● The rank parameter specifies the number of latent        

factors of the ALS matrix factorization.  
 
● Lambda is a factor used in the regularization        

formula of ALS.  
 
● Alpha is a hyperparameter that is only used when         

the recommender uses implicit data. If the value is         
higher than it will give higher value to observed         
events in comparison with unobserved events.  

Determining Hyperparameter Ranges 

Now that a metric function is chosen in order to evaluate           
the recommender performance, we need to determine the        
range of hyperparameters for which we test the model         
performance. The range of values for which the        
hyperparameter optimisation job must be performed      
could be different for companies and opportunities,       
because the optimal hyperparameters are probably not       
the same for recommending companies than for       
recommending opportunities.  
 
The optimal hyperparameters can vary widely for       
different recommenders, due to differences in amount of        
data, data sparsity, and the distribution of the implicit         
scores. No default starting values are available, except        
Spark mentioning that a value of 20 or less for the           
iterations parameter should be high enough in most        
cases.  
 
We started with running the hyperparameter optimization       
with a very big range of values for each hyperparameters,          
and looking at which values have almost no impact on          
the metric score. The ranges can be narrowed by         
eliminating the values that result in a low NDCG score.          
The remaining ranges can now be tested in more detail.  

2.4 Infrastructure & Deployment 

Training a recommendation model with ALS is a task         
that requires significant resources. To accomplish this,       
you need to think where to store the data where Spark           
can read quickly. Also because of the fact that Spark          
will run faster if it has access to more memory,          
processing power and so on, finding an appropriate        
amount of server capacity is mandatory. First a        
description is giving how we have set up our         

development environment and after that a description is        
giving how we deploy our recommender implementation       
in the Magnet.me environment. 

Development Infrastructure 

Google Cloud & Kubernetes 

It will be a very difficult task to handle large amounts of            
data locally during development. Magnet.me uses the       
cloud servers on the TransIP network to handle their         11

recommender jobs. Although this is a reliable service, we         
have used the Google Cloud Platform to handle the jobs.          
The reason for this is that Google provided a trial period           
in which using the platform is free of charge for the first            
two months. Moreover, we have more experience with        
this cloud platform. 
  
This project relies heavily on Spark and Elasticsearch        
(ES) . To manage these applications thoroughly and to        12

distribute resources accordingly between these     
applications, an open-source system called Kubernetes      13

is used. The purpose of this system is to easily manage           
Docker containers. Kubernetes requires YAML files      14 15

consisting of references to Docker images in repositories        
and container configuration. Also within these files       
references to persistent volumes need to be provided.        
Persistent volumes are basically containers that are       
linked to Google Persistent Disks . This way, data can be          
persisted on these disks. 

Spark master and workers 

Because of the fact that Spark makes a significant use of           
resources and because a single Spark job (a        
hyperparameter sweep for example) can last a long time         
when having relatively few resources, it would be wise to          
run Spark on a resourceful server. We have set up one           
Spark-master controller and several workers to make the        
tasks as efficient as possible. While setting up these         
controllers is easy to do using Kubernetes , sending a         
Spark job to the cluster seemed to be quite cumbersome.          
The lack of documentation and the instability of Spark         
2.0  (relatively new version) was the cause of this. 

11 TransIP 
 
12 Elasticsearch 
 
13 Kubernetes 
 
14 Docker 
 
15 YAML 
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Sending jobs to the Spark cluster 

To send a job to a Spark cluster, one must assemble a jar            
file that will be sent to the cluster. Spark-submit is an            16

application provided with the Spark framework that has        
the purpose to send tasks to a cluster. Provided with an           
IP-address, a reference to a jar file and some         
configuration options, it will initiate a job on the Spark          
master controller that is running on the provided        
IP-address. The master controller will then again allocate        
resources to its workers with which the job will be done.           
The main problem is that the Spark-submit application        
will not handle the transfer of the jar file to the servers.            
What this practically means is that the jar file needs to be            
available on every worker. To accompany this, we have         
written a shell script that assembles the jar and deploys          
this jar  on every worker.  

Elasticsearch 

Magnet.me uses Elasticsearch to persist their data. To        
deploy our recommender implementation in the      
Magnet.me stack, we had to set up and integrate with          
Elasticsearch. Again, setting up an Elasticsearch cluster       
is easily done using Kubernetes . This cluster is only         
accessible through an internal IP-address given by       
Kubernetes . Spark provides a library which handles       
reading and writing to Elasticsearch . 

Production Infrastructure 

To use the recommender in production, the recommender        
needs to be integrated within the Magnet.me build        
process. Magnet.me uses Maven to build their Java        17

application. Fortunately, there is a Maven plugin which        
also builds application that are written in Scala.        
Magnet.me uses Jenkins as their build management       18

tool. By setting up a hook on our repository to Jenkins , it            
will automatically picks up changes and build the        
application. It will also produce a .jar file which then can           
be sent to the Magnet.me Spark cluster where a specific          
Spark  job can be run. 

2.5 Data Analysis 

The relevant data of Magnet.me that we stored on our          
Elasticsearch cluster, is divided in multiple indices .       19

One index with crucial data for the recommender is the          

16 Explanation of JAR files 
 
17 Apache Maven 
 
18 Jenkins 
 
19 An overview of the exact indices and their sizes can be found             
in Appendix C. 

index of all click events of the users. A selection of the            
information stored in a click event is:  
 

1. User information; 
2. Time of event; 
3. Information about the visited    

company/opportunity. 
 
Another index that contains essential data is the        
student-organization index, with all information about      
the companies and opportunities. From this index       
information about the connection status between a user        
and a company can be derived. 
 
The indices also contain data which is not needed for the           
recommender but is needed for other goals of        
Magnet.me, e.g. contact-info or employees. The full       
schemas of the user event data can be found in the           
appendix.  

Comparing models 

We would like to get more insight in how changes to the            
model parameters affect the recommender performance.      
The scoring of implicit data for example can change the          
outcomes of the recommender. Three jobs are       
implemented for model comparison. 
 
Compare recommender models job trains and evaluates       
the recommender on multiple thresholds for precision,       
recall and F1. This is done for the parameters of the           
Magnet.me implementation of the recommender and      
other parameters to compare results. Compare model       
parameters jobs can be used to train and evaluate         
recommender for a given set of model parameters. The         
results than can be visualized in graphs, that can be          
created using the Data analysis  job .  

3 RESULTS 

3.1 Alternating Least Squares is the best      
recommendation algorithm for this project. 

To decide what algorithm is used for implementing the         
recommendation system, certain factors are described.      
Using these factors, we have determined a rating for the          
recommendation system approaches and with that the       
best option for Magnet.me was chosen. 
 

● Potential Performance: Clearly, the most important      
factor in deciding the best algorithm is its accuracy         
at providing recommendations of companies and      
opportunities to users. It should also aim to not just          
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provide the most popular companies as      
recommendations each time, but diversify its      
recommendations. 
 

● Compatibility with Dataset: This factor determines      
if the algorithm is applicable on the Magnet.me        
dataset. Some algorithms work better with different       
types of data, so to determine how compatible a         
technique is with the data is important. 
 

● Scalability: As Magnet.me is a growing company       
with new users and items each day, the algorithm         
needs to scale well. A very important factor        
deciding if an algorithm is scalable is if it can be           
used on a distributed system. Spark is a system         
which is mostly used to handle algorithms this way. 
 

● Prediction Time: This factor decides how fast the        
calculation speed is in recommending an item to a         
user. 
 

● Model Training Time: This factor decides what the        
speed is in training the model, if applicable. 
 

● Ease of Use: This factor determines how easy it         
would be to implement and deploy the algorithm. 

Algorithm Comparison 
We have used the decision factors to evaluate the various          
algorithms that were listed in the previous section. By         
rating each algorithm on a scale of       
negative-neutral-positive, we have created a simple      
overview of the advantages and disadvantages of each        
algorithm, as can be seen in Figure 4 below.         
Furthermore, we have added a percentage denoting the        
importance of each factor for this project. Obviously,        
both the importance percentages and the algorithm       
ratings are guesses and not exact numbers. The main goal          
is to provide some insight into our reasoning and enable          
a relative ranking of the algorithms. 
 

 
Figure 4: Algorithm comparison using weighted importance 

factors (determined by us) 
 

REFLECTION 

These results are somewhat subjective. To give an        
objective evaluation of these recommenders, the      
factors should ideally be quantified and thoroughly       
tested with suitable metrics. 

Comparison Results 
When we take the importance of the decision factors in          
consideration, we can conclude that the current       
implementation, model-based collaborative filtering    
(CF), scores best overall. This algorithm scores well for         
scalability because Spark makes use of Alternating Least        
Squares (ALS) for the model training, which can be run          
distributed. Model-based collaborative filtering is     
well-known for its diverse recommendations, which is       
not true for random forest classifiers and support vector         
machines . As for the graph-based approaches, no       
accurate guessing could be made regarding to the        
performance.  
 
The disadvantage of the cold start problem does still exist          
with the collaborative filtering algorithm. In order to        
tackle this, we tried a clustering algorithm to give         
predictions for the first hour, when little information of a          
new user is available. The results of this clustering         
algorithm are discussed in section 3.5. 
 
The other approach that seems promising is wide and         
deep learning . The main disadvantage for wide and deep         
learning is that it is a relatively new and complex          
method. However, it has proven to be accurate at         
providing recommendations in the Google Play Store.  

3.2 F1@6 is the optimal metric for this use        
case. 

When benchmarking our recommender with the RMSE,       
inconsistent values appeared. In Figure 5, the RMSE is         
shown comparing four recommender models based on       
how much training data they have received. 

 
Figure 5: RMSE scores of recommender models per % of 

trainings data  
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The results imply that training the model with a higher          
amount of training data, would result in worse        
recommendations. The reason for this inconsistent      
behaviour is that when benchmarking the recommender,       
the benchmarking compares the labels of companies or        
opportunities with the preference of a user. Because of         
this, the error (which is the difference of the preference          
and the label in this case) would be an incorrect          
representation of performance of the recommender. 
 
Normalised Discounted Cumulative Gain (NDCG) is      
another metric that we have implemented. This takes into         
account the order in which the recommendations appear.        
Based on discussions with the client, it appeared that the          
first six recommendations should only be used to test the          
performance of the recommender, as these are the ones         
that are shown prominently in the application, and the         
first of these six is just as important as the last of these             
six. 
 
After having decided that the first six recommendations        
are the most important recommendations, precision ,      
recall and the F1 score have been implemented. At first,          
to determine the precision and recall , an external library        

has been used. In Figure 6, the precision , recall and F1            20

scores are given with their given threshold. While the         
precision curve is behaving as expected, the recall curve         
is not behaving properly. To get better insight in these          
metrics, a custom implementation has been made. 

 
Figure 6: Faulty benchmark scores over certain thresholds 

 
While implementing these metrics, we noticed that       
determining true positives, false positives, false negatives       
(which are parameters for these metrics) was hard to do.          
The reason is that there is no real rule that decides           
whether a company or opportunity is a recommendation        
(true positive) or not a recommendation (false positive).        
In the standard Spark functions the rule is arbitrary. In          
these functions it is checked if the rating, which can be           
any value and is not within a certain range, is higher than            

20 Github page of spark-ranking-metrics 
 

0.5 to determine if an item is a recommendation . Why          21

this value makes the cut-off, is not documented. 
 
To check whether the first six recommendations are        
correct, it is tested whether the user is connected to the           
company (connection status is used as a label). This         
way, true positives, false positives and true negatives are         
easily defined. And using these values as parameters for         
recall @6 and precision @6, a metric for benchmarking       
the recommender has been found. The F1@6 score has         
the recall @6 and precision @6 as parameters, which       
makes it a single representing value for measuring the         
performance of the recommender. 
 

 
Figure 7: F1-measure per threshold 

 
In Figure 7, the values of precision , recall  and F1 at 
various threshold are given. Note that because of the 
relatively small dataset, the precision  curve converges at 
~0.575. More specifically, the amount of test data per 
user is low so the amount of predictions that the model 
can give based on the test data is low. When there is 
more data, the precision  should converge at a lower 
value. 

3.3 Connection status should not be used as       
a feature, but as the label of the recommender         
during benchmarking. 

In the current implementation of the Magnet.me       
recommender, the connection status of a user and a         
company is taken into account when calculating the        
implicit score (an extra value of 10 is added to the score            
if a user is connected to a company). During         
benchmarking of the recommender, it uses the       
connection status to test if a recommendation is correct         
or not. Because of this, incorporating the connection        
status in the scoring function will mean that the         
recommender needs to know the connection status in        
order to predict the connection status (a self-fulfilling        
prophecy). 

21 Code reference in Spark 
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When benchmarking a recommender, labels are needed       
to test the correctness of recommendations. In the current         
Magnet.me implementation there was no benchmarking      
implemented and because of that no clear labels were         
defined for good recommendations. In this project we        
have thought of the connection status as a label, but other           
signals as labels can also be considered. In the         
opportunity recommender case, other labels need to be        
thought of. Whether a user has applied to an opportunity          
or a user has saved an opportunity can be used as a label. 

3.4 View counts should not be scaled      
logarithmically to discount large values and      
other signals should be considered. 

In some cases, user-company relations have very high        
view counts, numbering in the hundreds. Our hypothesis        
was that this could skew the results, as a single view will            
be discounted in comparison to the large view counts.         
Therefore, we implemented a scaling function to take the         
logarithm (with base 10) of the view count as the score. 
 
However, when comparing the recommender model with       
this scaling function enabled and without, we can see that          
it makes almost no difference in Figure 8. While the          
training dataset grows, the F1 measure grows nearly at         
the same rate in both models. 
 

 
 

Figure 8: F1-measure at a growing % of training data 
 

REFLECTION 

In hindsight, we should have run this analysis with         
cross-validation and showed in Figure 8 not only the         
mean value, but also the standard deviation. 

 
Furthermore, the current model is based only on this         
view count as a feature. Seeing as a high view count is            
not a good predictor of connection status, more signals         
should be taken into account. Several signals that could         
be implemented in the future: 
 

(1) When a student connects with a company, but later         
decides to disconnect, this is interpreted to be the         
same as never connecting in the first place.        
However, we would argue that this is a fairly         
strong signal that the user is not interested anymore         
in this particular company. 
 

(2) Recruiters can visit the profile of a user, which can          
be a strong indication that the company of the         
recruiter could be a good fit for this user. 
 

(3) Recruiters can invite a user to apply for a         
opportunity as part of a recruitment campaign. This        
is a strong signal that the company has deemed this          
user to be a good fit. How a user responds (dismiss           
invitation; apply for the opportunity etc.) to this        
invitation can be a good signal as well. 
 

(4) Users can send and receive messages to and from         
recruiters, which is a strong signal that the user is          
interested in the company of the recruiter. 
 

(5) Lastly, the applications currently only track click       
(or tap, on mobile) events. Another type of data         
that could be tracked is user focus: how long and          
how actively are users looking at a particular        
company profile or card in a list? Another event         
that could be checked if a certain recommendations        
enters the viewport of a certain user. 

 
It could also be worth exploring whether a time bias          
should be included in the recommendation system. If        
user A applied for a company three years ago, while user           
B applied for a company last month, are these signals of           
the same strength? Interests of students can change over         
time, which makes older recommendations irrelevant.      
Most likely, there should be some level of regularization         
to account for the time that has passed since the signal           
occurred.  

3.5 Clustering cannot be used in this      
context for solving the cold start problem. 

Our initial idea for solving the cold start problem was to           
cluster new users with similar users. By recommending        
to the new user items that are recommend to similar          
users, it could be away to solve the cold start problem.  
 
First, we have implemented a k-means clustering       
algorithm. However, we quickly replaced this algorithm       
with an approximate nearest neighbours approach ,      
because the main disadvantage of k-means clustering is        
that there is no well-founded way of determining the         
proper k  (Hamerly, Elkan, 2004). 
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By inspecting the results, the algorithm appeared not to         
work properly, as users were not being clustered with         
similar users. The reason for this is that the features that           
users have need to be of numeric. The standard way by           
converting string value to numeric values is that the most          
common string value will get a value of 1 and so on.  
 
For example, when using the study background as a         
feature, the most common study backgrounds will be        
clustered together, while this is most definitely not a         
good indicator of discipline similarity. Because of this        
undesired behaviour, another way had to be found. This         
resulted in another problem as it is not clear how to give            
numeric values to certain features. It is hard to give a           
value to the difference between two study disciplines, for         
example the difference between law and medicine.  

4 CONCLUSION 

4.1 Recommender algorithm 

↳ RESEARCH QUESTION 1 

 
To determine the best recommendation system, we have        
analysed and compared the most commonly used       
algorithms and we can conclude that the current        
approach, model-based collaborative filtering , is the best       
recommender for the Magnet.me context. This has been        
decided by evaluating each approach and comparing       
them using qualitative metrics. Model-based     
collaborative filtering scored well for the three most        
important factors for Magnet.me: potential performance,      
compatibility with dataset and scalability. 

4.2 Model improvements 

↳ RESEARCH QUESTION 2 

 
To decide how we can improve the recommendations        
given by the recommender, we have implemented a way         
to benchmark the implemented recommenders. To do       
this, we have decided that the F1 score is a metric that            
represents the performance of a recommender in the        
Magnet.me case. The configuration (model parameters      
and hyperparameters) that scores the highest F1 score,        
should be used to give the optimal recommendations. 
 
The F1 score varies dependent on the threshold for which          
is evaluated. This means that if the presentation of the          
recommendations on the Magnet.me application changes,      

the threshold must be changed as well when        
benchmarking the recommender. This should be taken       
into account when Magnet.me decides to show a        
different amount of recommendations. 

4.3 Automatic Hyperparameter  
Optimisation 

↳ RESEARCH QUESTION 3 

 
To figure out how to set up an automatic process of           
hyperparameter optimisation, we first determined the      
correct parameter ranges for which the model       
performance must be evaluated and then set up a         
combination of k-fold cross validation and benchmarking       
to fully automate the steps. 
 
We applied cross-validation in order to prevent the        
model being overfit to the training data. When this is          
omitted, benchmarking could give a good evaluation       
result while in reality the model could give suboptimal         
recommendations when new data comes available. 
 
The parameter tuning job, has succesfully been deployed        
into the Magnet.me technology stack. This job will be         
automated by Magnet.me using Jenkins , so that the        
parameters stay optimized every month.  

4.4 Student Clustering 

↳ RESEARCH QUESTION 4 

 
To attempt to solve the cold start problem, we         
implemented both k-means clustering and nearest      
neighbour clustering . However, in both cases we came        
across the same problem: in order to create a set of           
numeric features from the user profiles, we need to         
convert study backgrounds into numbers. The algorithms       
assume that similar numbers imply similar study       
backgrounds, thus we needed to determine how similar        
study backgrounds are to each other, which was not         
possible. 

4.5 Future Improvements 

Wide and deep learning seemed promising, but it has the          
disadvantage that it is a relatively new and complex         
method. However, our hypothesis is that it could work         
quite well. When the amount of users has grown         
substantially in the next few years, we suggest        
Magnet.me to consider a deep and wide learning        
approach.  
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For graph-based recommendations, it was hard to give a         
prediction of the performance as this is a relatively new          
approach. However, this approach scored well for most        
other factors. When more research is done for this         
approach, and an effective distributed implementation      
comes available, it could also be a good solution for          
Magnet.me. 
 
To improve the recommender even further, time should        
be spent on how the implicit ratings are calculated. While          
our implementation only handles view events to calculate        
the score, more signals could be used to improve the          
recommendations. Moreover, decisions on how to label       
items (companies and opportunities) need to be made to         
make a properly functioning benchmark. What good       
recommendations actually are is hard to determine in the         
current system. Without that information it will be hard         
to evaluate the recommender. 

5 REFLECTION  22

We encountered several problems during the process.       
This started when linking Elasticsearch to our Spark        
cluster. We had to set up our development infrastructure         
ourselves, which we decided to do using the Google         
Cloud services. While it was relatively easy to setup         
Spark and Elasticsearch , a considerable amount of time        
was spent trying to let them interact with each other.          
Also actually sending and running Spark jobs required a         
lot of tweaking of server configurations. While we had         
hoped to have finished this in week two, we actually          
completed it in week six. 
 
Because of the fact that Google Cloud services is not a           
free service, we have made use of a trial account. The           
problem with this account became apparent when we        
were blocked from the services because we have reached         
the limit in the use of resources. Because of this we had            
to create a new trial account and we had to set up            
everything again. 
 
We also spent more time than we planned to implement          
the benchmarking metric. We planned to spend about a         
week to set this up, but it ended up taking us about three             
weeks. At first we thought that making use of         
implementations of Spark and an open-source alternative       
would be sufficient. But because of faulty behaviour of         
these methods, we ended up implementing these metrics        
ourselves. 
 

22 A detailed timeline of our work can be found in Appendix A. 

Debugging the metrics was very time consuming, mainly        
because of the fact that it was very hard to determine           
what values were expected. Deciding whether the faulty        
behaviour arises from a faulty implementation, faulty       
structured data, or Spark bugs was hard to determine.         
Moreover, benchmarking the recommender takes a long       
time, so analysing improved implementations took a long        
time. 

6 ETHICAL ANALYSIS 

To make a recommendation system work, sufficient data        
is needed for training the system. Moreover, this project         
makes an extensive use of implicit data, which tracks         
user behaviour in the form of clicks and views. Based on           
this behaviour, recommendations are given. This data       
should be handled carefully as a user profile can be made           
from this data. This potential sensitive data can be leaked          
or misused, meaning that it could be sold to companies.          
Magnet.me has strict security requirements to tackle this        
problem.  
 
Recommendations are based on how much certain items        
are “consumed”. This means that companies in the        
Magnet.me case that are not consumed much, like new         
companies, will not be recommended to users.       
Magnet.me solves this problem by showing new       
companies to users as well. Because of this, new         
companies will be consume as well, even though they         
might not be recommended at first. 
 
When implementing a clustering algorithm for clustering       
users, it needs to be noted that specific demographics can          
be formed. It might be possible that male users will be           
clustered together, or female users. Some opportunities       
that are recommended to users in these clusters might be          
discriminating in nature.  
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APPENDIX A: TIMELINE 

 

Week Description % of time spent 

Week 1 

Write project plan 25% 

Draft research report 25% 

Complete Coursera course: Introduction to Recommender Systems (University of Minnesota) 50% 

Week 2 
Finish research report 75% 

Set up development infrastructure 25% 

Week 3 
Start to implement collaborative filtering algorithm 50% 

Set up Spark in development infrastructure 50% 

Week 4 

Mirror Elasticsearch data in development infrastructure 25% 

Implement popular organizations job 25% 

Fix collaborative filtering implementation 50% 

Week 5 

Implement analyses of data 25% 

Add hyperparameter optimization and cross validation 25% 

Integrate Elasticsearch with Spark jobs 50% 

Week 6 

Fix running Spark job on development infrastructure 25% 

Start to implement k-means clustering 25% 

Develop custom ranking metrics calculation 50% 

Week 7 

Set up deployment to production infrastructure 25% 

Draft final report 25% 

Implement k-means streaming and approximate nearest neighbours 25% 

Set up opportunity recommendations 25% 

Week 8 

Continue to write final report 25% 

Improve ranking metrics calculation 25% 

Implement various other Spark jobs 25% 

Refactor codebase according to SIG feedback 25% 

Week 9 

Finish final report 50% 

Improve ranking metrics calculation 25% 

Draft presentation 25% 

Week 10 
Finish presentation 75% 

Deliver code to Magnet.me 25% 
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APPENDIX B: SOFTWARE EVALUATION 

The Scala source code of our project was sent to the Software Improvement Group (SIG) on December 22th and reviewed by                     
them soon after. They assigned a score of 4.0 out of 5.5 to the code. A summary of the feedback they gave us: 
 

1. Components : a clear component structure in the file system is missing; 
2. Component independence : too large top-level components; 
3. Unit interfacing : above-average number of parameters for some units; 
4. Testing : lack of unit tests. 

 
We have processed the feedback by adding unit tests for the ranking metric functions. We also refactored most data access                    
object (DAO) components, because that was the most unorganized part of the file system. Job components regarding data                  
analysis and model comparison were moved to a folder called analysis .  
 
The original Magnet.me recommender jobs were written in Java and Magnet.me has not used the Scala language in any part                    
of the company. This is why our Scala code must be well documented, so that even developers that have no experience with                      
Scala understand the workings. We tried to accomplish this by making the names of components and parameters as obvious                   
as possible, and using the same naming conventions as Magnet.me does. Also, additional comments are added at places                  
where Scala  specific patterns are used, in order to clarify the functioning.  
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APPENDIX C: LIST OF EVENTS 

By running aggregation functions on the Elasticsearch database, we managed to retrieve all possible event types and list the                   
total counts of each event type. 
 
--- For confidentiality reasons, the table has been removed from this public document --- 
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APPENDIX D: PROJECT PLAN 

Magnet.me is a young company that lets students and graduates discover all their             
relevant career opportunities. To accomplish this, a recommendation engine is used           
to discover and provide these opportunities. By analyzing the behaviour of           
Magnet.me users, the engine recommends companies or opportunities to the users.  
 
A user creates an account with some information about his education and his             
interests. After that the user can browse through Magnet.me (web and mobile application) to find               
companies or opportunities that he or she might be interested in. A user can connect with companies,                 
that way these users will be added to the network of a company. Recruiters from companies know what                  
users are in their network. That way, recruiters know what students/graduates are interested in their               
company and contact them if needed. Users can also apply for opportunities through Magnet.me (events,               
jobs, internships etc.). 
 

Problem description 
Magnet.me currently uses the user collaborative filtering feature of the Apache Spark framework to              
provide recommendations for its users. Using this feature, similar, popular and personal recommendations             
are provided. The parameters in the current system were determined years ago when magnet.me had               
less users and companies attached to it. The system needs to be optimized by tweaking its parameters.                 
Currently, it is not known or possible to read the performance of the recommendation engine. A program                 
needs to be written that automatically reads and tries to improve the performance of the recommendation                
system to accomplish this. 
 

Research questions  
In order to meet the academic requirements and achieve an optimal solution for Magnet.me, we will                
answer the following question and corresponding sub questions during the project:  
 
In what way can the Magnet.me recommendation system be improved? 
 

(1) Which recommender systems can be applied to the user data of Magnet.me, in order to realise                
the best matches between people and companies/opportunities? 

(2) How can we set up a system that automatically trains a new model, based on the entire dataset                  
available at that time, at a regular basis (monthly), integrated into the Magnet.me technology              
stack? 

(3) How can we deploy our model, in such a way that the Magnet.me API can easily retrieve                 
recommendations for specific users, as determined by the recommendation model that we train             
monthly and run in Spark? 

(4) Optional: can we use other machine learning techniques, such as supervised machine learning or              
deep neural networks, to generate recommendations based on not only user actions, but also the               
contents of a user profile? 

 
To get more insight in recommendation systems, we will also participate into a Coursera course               
“Introduction to Recommender Systems: Non-Personalized and Content-Based”. This course was advised           
by the client. This course provides a basic theoretical understanding of how certain recommendation              
systems work. 
 
Data & algorithms 
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Currently Magnet.me makes recommendations based on data of three different types of user-actions: 
 
● User clicks on a company recommendation (positive data) 
● User clicks on a opportunity recommendation (vacancy) (positive data) 
● User ignores a recommendation (company/opportunity) (negative data) 

  
Several million user actions have been collected in the past few years. Several times per day, the Spark                  
server runs the algorithm to update the recommendations for each user, using Spark’s collaborative              
filtering feature. We will need this data in order to make a program that evaluates the performance of the                   
Magnet.me recommender. Our final software product has the task to repeatedly tweak the parameters of               
the recommender model run in Spark, with the goal to get the best performance out of the recommender                  
by keeping the parameter settings up-to-date.  
 

Evaluation and benchmark testing 
The metric for evaluation of the model is accuracy. We will measure what the recommender predicted                
versus what actually got clicked. This test can easily be run offline, so an improvement can be measured                  
and verified. A side product of this research can be to figure out weaknesses in the way Magnet.me                  
currently logs signals. Are they missing any signals or are they using the wrong signals? 
 

Deliverables 
First a program that reads the performance of the current configuration of the recommender needs to be                 
written. Second, a way to improve the recommender needs to be found. Lastly, suggestions for improving                
the recommendations even further by using other techniques, signals or configurations need to be given               
or implemented. 
 

Deployment 
To train and run the recommendation models, we will set up an Apache Spark cluster on Google                 
Container Engine. This can also be used for setting up a mirror database of ElasticSearch, so we can train                   
our model on the entire dataset without impacting the production environment of Magnet.me. SSH keys               
are used to gain access and run commands on these Docker instances and all recommended security                
settings are being used. 
 
We are using the $300,- initial credit that is provided by Google Cloud to all new customers in order to run                     
these cloud instances. 
 

Constraints 
1. We need to take security measures to protect the data, this includes setting up hard drive                

encryption on our computers and  enabling two-factor authentication on Github; 
2. The solution has to be integrated into the current Magnet.me toolchain (consisting of Maven,              

Jenkins and ElasticSearch). 
 
Timeline 
Below is an initial outline of our plans for this project. Note that this is preliminary and will most likely                    
change dependent upon our progress and further research in the first few weeks. 
 
Nov 14 - Nov 20 Finish project plan, draft research report, coursera course 
Nov 21 - Nov 27Finish research report, setup technology infrastructure 
Nov 28 - Dec 4 Work on sub question (2) 
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Dec 5 - Dec 11 Work on sub questions (2) and (3) 
Dec 12 - Dec 18 Work on sub question (3) 
Dec 19 - Dec 25 Work on sub question (4), start working on final report, First SIG submission 
Dec 26 - Jan 1 Christmas 
Jan 2 - Jan 8 Christmas 
Jan 9 - Jan 15 Work on subquestion (4), draft final report, implement SIG feedback 
Jan 16 - Jan 22 Work on subquestion (4) and remaining, Finish final report 
Jan 23 - Jan 29 Deadline final report (24 January), prepare final presentation, Final SIG          
submission 
Jan 30 - Jan 31  Final presentation (31 January) 
 

Group members 
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the calculation of the implicit ratings. 
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Five other signals are found that could be used to improve the recommendations. Hyperparameter optimization with cross                 

validation is implemented and has succesfully been deployed into the Magnet.me technology stack. The possibilities for a                 

clustering algorithm are considered in order to solve the cold start problem, but we could not determine the numeric                   
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1 INTRODUCTION 
Recommendation systems are algorithms that aim to predict        
the rating a user would give to an item, which can be used to              
provide recommended content to users. Magnet.me is a        
company with a website and mobile apps, which students and          
recent graduates can use to discover jobs and career         
opportunities. They are using a recommendation engine to        
provide personal recommendations of companies and      
opportunities to students. A basic recommendation system has        
already been implemented, but there is definitely room for         
improvement. 
 
The goal of this project is to improve and tweak the           
recommender that is currently in use. In order to achieve an           
optimal solution for Magnet.me, we will answer the following         
question: how can the recommendation system of Magnet.me        
be improved? We will do so by working on the following           
sub-questions:  
 

(1) Which recommender systems can be applied to the user         
data of Magnet.me, in order to realise the best matches          
between people and companies/opportunities? 
 

(2) How can we set up a system that automatically         
optimizes the model training parameters, based on the        
entire dataset available at that time, at a regular basis,          
integrated into the Magnet.me technology stack? 
 

(3) How can we deploy our model, in such a way that the            
Magnet.me API can easily retrieve recommendations for       
specific users? 
 

(4) Optional: can we use other machine learning techniques,        
such as deep neural networks, to generate better        
recommendations based on not only user actions, but        
also the contents of a user profile? 

 
To answer these questions, the following sections are        
presented in this research report: in section 2, jobs-to-be-done,         
user stages and signals will be discussed to give insight in how            
the product is used. In section 3, a selection of applicable           

recommendation algorithms are described. Section 4 gives a        
comparison of the selected algorithms and what algorithms        
will be implemented. In section 5, hyperparameter tuning will         
be discussed; and in section 6, a description will be given of            
how we will benchmark the implemented recommender       
system. Finally, we will discuss our conclusions.  
 
2 CONTEXT 
To decide what technique will be used to provide         
recommendations for the users of Magnet.me, a description        23

of the context where it operates needs to be provided. 

2.1 Jobs-to-be-Done Analysis 
In this section, the jobs-to-be-done framework is applied to         24

give insight into the needs of the users of Magnet.me. Another           
way to do this is by defining personas and user stories. But we             
found out when describing these, that they tend to give          
questionable insights, because they do not acknowledge       
causality. The jobs-to-be-done framework describes causality      
and motivation in a way that would be more suitable for this            
case. 
 
The main job for Magnet.me is to provide opportunities and          
companies to its users that they are interested in. Job stories           
are defined to describe what the goals and jobs are of typical            
users: 
 

I. When users browse the application anonymously and       25

get directed to an opportunity or company they are         
interested in, they want to know what similar companies         
or opportunities there are, so they are aware of what          
opportunities or companies they like. 

 

23 Users are in this case students or graduates. Users can also be             
recruiters or employees of Magnet.me, but when referring to users in           
this report, specifically students or graduates are meant. 
 
24 Jobs to Be Done (Harvard Business Review, 2016) 
 
25 Anonymous use of the application is only applicable on web, not on             
mobile. 
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II. When anonymous users browse opportunities, they want       
to see opportunities or companies that are interesting to         
them, so they can find more relevant opportunities. 

 
III. When users have just signed up and are looking for a           

job, they want to see opportunities or companies that are          
interesting to them, so they can apply for relevant         
opportunities and connect to interesting companies. 

 
IV. When users that already have an account are looking for          

a job, they want to see relevant opportunities and         
companies they might be interested in and they want to          
see what is going on with companies that they are          
connected to, so they can apply for relevant        
opportunities. 

 
V. When users make an account on Magnet.me, they want         

to see more relevant opportunities and companies they        
might be interested in, so they can find relevant jobs          
faster.  

 
VI. When users are watching multiple opportunities in a        

short time, they want to see relevant opportunities and         
companies they might be interested in, so they have a          
better understanding of the diversity of jobs available. 

 
Within the job stories, four types of users are defined. The           
following table summarises the properties of these users. 
 

 User A User B User C User D 

Account age 0 days 1 hour 0 days 2 weeks 

Signed up no no yes yes 

Status Recently 
graduated 

Recently 
graduated 

Bachelor 
student 

Master 
student  

Matching 
job-to-be-done 

I II III IV 

 

2.2 User Stages 
Users go through several stages. In every stage,        
recommendations could potentially be given or signals can be         
derived for the recommender. Below, a description will be         
given of the most important stages the customer goes through.          
In appendix B, you can find a list of screenshots to accompany            
these stages. 
 

 
 

Figure 1: Common user flow 
 
a) Visited homepage without account  
To make the best use of Magnet.me, a user needs to create an             
account with details about his or her study background.         
Currently, no recommendations can be given on the homepage         
to new users because not much is known about the user.  
 
b) Visited Explore page 
When a user has created an account, he or she will be            
redirected to the Explore page . On web, this page consists of           
several lists of recommended opportunities and organizations.       
On mobile, the equivalent view would be several company         
recommendations through which the user can swipe. The user         
can connect to these companies or ignore them. 
 
c) Visit company 
Every company has their own page. On this page, a          
description is given along with some meta information. A user          
can connect with this company through a connect button to          
join the company’s network if they have an account. Also,          
recommendations are given for companies that are either        
similar to the currently shown company, popular in general or          
just interesting for the current user. This is called the browse           
next experience  (BNE). 
 
d) Visit opportunity 
Every opportunity—which can be a job, internship or an         
event—has a specific page with details about this opportunity.         
A user can save or apply for an opportunity if he or she finds it               
interesting and if the user has an account. Just like the           
company page, the opportunity page also has a BNE in which           
opportunities are recommended.  
 
e) Visit news feed 
When a user is connected to several companies, it is possible           
for them to stay up-to-date with these companies. The news          
feed shows recent updates posted by companies (text, photos         
or posted opportunities). A user can like these news posts as           
well. 
 
f) Company actions 
On several stages, it is possible for the user to connect to a             
company. By connecting, the user will enter the network of          
that company to receive updates and letting that company         
know that the user is interested in their company. This can           
lead to direct messages from recruiters to the user. 
 
For a user, it is also possible to actively ignore a company            
recommendation. On the web application, a user can decide it          
is not interested in a company recommendation. On mobile,         
this works different than on web. A user needs to decide if he             
or she wants to connect to a company before seeing new           
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recommendations. This means that on mobile replying to a         
company’s recommendation happens more often than on web. 
 
g) Opportunity actions 
On the opportunity page it is possible for users to save an            
opportunity. By saving, they can easily retrieve the        
opportunities that they are interested in. Users can also apply          
for opportunities by sending a message to a specific recruiter          
of a company.  
 
h) Invited to apply actions 
Companies are able to send out invites for opportunities to          
users that are within their network. A user receives an          
invitation via email and they can accept it by applying for an            
opportunity. A user can also decide that he or she is not            
interested in the opportunity. Lastly, the user can be reminded          
of their invitation or they can ask a question about the           
opportunity. 
 
i) Clicked opportunity link in email  
Occasionally an email is sent to users with personal         
recommendations. The user will be redirected to a company or          
opportunity page if he/she clicks a link in the email.  
 
Recommendations can be given within three different media:        
in the web-application, in the mobile app and via email. The           
web medium includes both the full-blown web application and         
the responsive mobile version of this application. The mobile         
medium includes the native iOS and Android apps. All         
mentioned stages can occur both in the web application and          
the mobile app, except visiting the homepage (this can only          
occur in the web application).  

2.3 Signal and Event Tracking 
In Appendix B, we have listed the events that are currently           
being tracked by Magnet.me. This includes viewing       
companies and opportunities, viewing news posts and other        
general user actions such as logging in and out. It also records            
clicks on recommended companies or opportunities, which we        
can use to benchmark our recommendation model. 

2.4 Recommendation Types 
At the moment, recommendations are given in three different         
locations: on the Explore page; in the Browse Next Experience          
(BNE), which is a list of similar companies or opportunities          
on their profiles; and in emails that are sent to users. 
 
We can define six different types of recommendations that are          
currently provided: 
 

(1) Personal company recommendations; 
(2) Personal opportunity recommendations; 
(3) Popular companies within the interests of a user; 
(4) Popular opportunities within the interests of a user; 

(5) Most similar companies; 
(6) Most similar opportunities. 

2.5 Signal Suggestions 
Several signals are currently missing that might help in         
improving the recommendation engine: 
 

(1) Ignoring a company on web and ignoring a company on          
mobile is seen as the same signal for the recommender.          
Seeing as the equivalent method of ignoring a company         
on the web is to click a small X icon in the top right of a                
company, whereas the reject action on mobile is a         
necessary step for proceeding to the next company, there         
is definitely a significant difference in the weight of         
these signals. 
 

(2) When a student connects with a company, but later         
decides to disconnect, this is interpreted to be the same          
as never connecting in the first place. However, we         
would argue that this is a fairly strong signal that the           
user is not interested anymore in this particular        
company. 
 

(3) Recruiters can visit the profile of a user, which can be a            
strong indication that the company of the recruiter could         
be a good fit for this user. 
 

(4) Recruiters can invite a user to apply for a opportunity as           
part of a recruitment campaign. This is a strong signal          
that the company has deemed this user to be a good fit.            
How a user responds (dismiss invitation; apply for the         
opportunity etc.) to this invitation can be a good signal          
as well. 
 

(5) Users can send and receive messages to and from         
recruiters, which is a strong signal that the user is          
interested in the company of the recruiter. 
 

(6) Lastly, the apps currently only track click (or tap, on          
mobile) events and other actions. Another type of data         
that could be tracked is user focus: how long and how           
actively are users looking at a particular company profile         
or card in a list? Another event that could be checked if            
a certain recommendations enters the viewport of a        
certain user. 

 
We also plan to explore whether a time bias should be           
included in the recommendation system. If user A applied for          
a company three years ago, while user B applied for a           
company last month, are these signals of the same strength?          
As shown in the customer journeys (section 2.2), interests of          
students can change over time, which makes older        
recommendations irrelevant. Most likely, there should be       
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some level of regularization to account for the time that has           
passed since the signal occurred.  

3 LIST OF ALGORITHMS 
Recommendation systems can be implemented using a variety 
of techniques. Traditionally, the techniques that these systems 
use are separated into collaborative filtering and content-based 
filtering. In practice, companies often have developed custom 
algorithms that work best for their context. This can be done 
by combining or extending traditional recommendation 
techniques. For example, Google is applying deep neural 
network algorithms in YouTube with Tensorflow  (Covington, 
Adams, & Sargin, 2016). Furthermore, Facebook uses the 
proximity of two nodes in the social network graph in order to 
make recommendations for users. 
 
Content-based algorithms make use of the attributes (features) 
of users or items. In most approaches users are represented by 
a certain taste profile. A user builds up a profile with features 
based, in the case of Magnet.me, on connections with 
companies. A company could be placed at a certain location, 
focuses on a certain industry or has a specific amount of 
employees working there. If the user profile is similar to the 
attributes of the company, the company might be of interest to 
the user. 
 
In order to research the various recommender systems that 
currently exist, we completed the online course Introduction 
to Recommender Systems: Non-Personalized and 
Content-Based , which is provided by the University of 26

Minnesota. It gave us a good overview of the existing 
collaborative filtering and content-based filtering methods and 
the way these models can work. 

3.1 Current Implementation 
Magnet.me currently uses the collaborative filtering feature in 
the Machine Learning library of the Apache Spark  27

framework to provide personal recommendations, because this 
system was thought to be the best for the Magnet.me context. 
One of the characteristics of Magnet.me is that lots of 
opportunities are added to the database constantly (about --- 
opportunities on average per day over the last year ). At 28

moment of writing, they have --- users, --- companies and --- 
opportunities in their database . 29

 

26 Introduction to Recommender Systems on Coursera 
 
27 Website of Apache Spark 
 
28 We calculated this by counting the number of opportunities added           
daily to the ElasticSearch database and then taking the average. 
 
29 We have determined these numbers by querying the current          
Magnet.me database. 

Typical for their users is the short time they are browsing 
through content. On average, as shown in figure 3, only a 
small percentage will return after a few months, because he or 
she usually stops searching after finding a suitable job. 
 

 
 

Figure 2: Retention rate of users of Magnet.me on a monthly 
basis on the web application (source: Google Analytics) 

 
Apart from using collaborative filtering for giving personal 
recommendations, similar and popular recommendations are 
given. The CF model is trained once an hour, which means 
that until this moment, no personal recommendations can be 
given. This is why only popular and similar recommendations 
are given in this time. After an hour, the user-based 
collaborative filtering algorithm is re-trained, which takes 16 
minutes on average , and personal recommendations will be 30

given. To make the best use of the product, users need to 
receive recommendations as soon as possible, while the 
system has little time to learn user preferences.  
 
The idea of user based collaborative filtering algorithm is that 
the behaviour of past users is used to make recommendations 
for new users (Ekstrand, Riedl, & Konstan, 2011). In the 
context of Magnet.me, this is done by collecting events that 
users produce. Currently, the recommender gives 
recommendations based on data consisting of three different 
types of user actions: 

 
● User views a company recommendation (positive); 
● User views an opportunity recommendation (positive); 
● User connects with a company (strong positive). 

  
To obtain data about the relation between user and content, 
explicit or implicit data can be gathered. The difference is that 
with explicit data, the user is asked to give a score for specific 
content. With implicit data, no score is explicitly asked and 
this must be inferred from user actions like clicks. The 
recommendations of the current algorithm are based solely on 
implicit user data. It is important to note that this means an 
extra step in the computation of the predictions is required. 
The implicit data of a user has to be converted to a confidence 

30 We determined this by running a database query in ElasticSearch to            
determine the average time of each Spark job over the last year, after             
which we summed the averages of each of the 4 types of jobs. 
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matrix where all entries contain confidence values. (Hu, 
Koren, & Volinsky, 2008) The value 1 is assigned to the two 
click actions. A value of 10 is assigned to the connect action, 
because this is considered a more significant relation between 
a user and a company than a click action. Several million 
events have been collected in the past. When a user produces 
several events, the collaborative filtering compares him or her 
to users that are similar and gives recommendations 
accordingly. 
 
Alternating Least Squares 
The collaborative filtering feature inside Spark, which is used 
by Magnet.me, relies on matrix factorization to find the best 
recommendations. Alternating Least Squares  (ALS) is an 
optimization algorithm that is used by Spark to solve this 
matrix factorization (Takács, Tikk, 2012). Before the 
algorithm starts, the data in the user-content matrix is sparse. 
After running the algorithm, this matrix contains all 
predictions for how much a user matches with a specific 
company. 
 
This matrix can be factorized in  and , of which theP Q  
values are unknown in the beginning, and can be initially set 
to 1 or small random values. ALS has to learn these latent 
vectors by alternatingly updating the values of  and . InP Q  
multiple iterations, it changes values in one of the two 
matrices and calculates the other matrix. After enough 
iterations, the values will converge, and the entries in the 
multiplication matrix  should be good predictions ofP × Q  
how much a user matches with a specific 
company/opportunity. 

 
 

Figure 3: Example of matrix factorization calculation (source: 
Databricks) 

 
In regards to ALS in Spark, five parameters can be configured           
to improve the resulting predictions. Additionally, one       
parameter can be passed to specify the number of blocks used           
for parallelization. Typical for the ALS algorithm is that it          
alternatingly changes one of the two factorized matrices. The         
optimization of the latent vectors could also be done using          
other algorithms like Bayesian networks or probabilistic latent        
semantic analysis (Su, Khoshgoftaar, 2009), but these       
algorithms are not included in Spark’s machine learning        
library.  
 
Strengths and Weaknesses 

The user collaborative filtering (CF) algorithm has a number 
of benefits for Magnet.me. First, the content that is 
recommended does not have to be similar to what the user 
searched for in the past. If other users, that are similar to a 
user, first searched for company X and later searched for 
another unrelated company, the significantly different 
company can be recommended to a new user that searched for 
company X, This advantage applies to memory-based 
CF-algorithms as well.  
 
Another benefit is that the recommended content actually has 
matched with previous users. This can also be a problem 
because no events exist for recently added companies or 
opportunities, which could result in new items not being 
recommended at all. This problem is partly solved by also 
presenting content that is new to users. 
 
Previously no distributed user-CF algorithm existed, but Spark 
makes the algorithm distributed and thus more scalable. A 
disadvantage of the current system is that no personal 
recommendations can be given in the first hour, because the 
CF-algorithm only updates all predictions once an hour in the 
current implementation at Magnet.me. 

3.2 Alternative Techniques 
Below we have included a list of potential alternative         
techniques that can be used for recommending companies and         
opportunities to students. Note that this list is not exhaustive,          
but includes a subset of all machine learning algorithms that          
we found to be the most likely candidates for this particular           
project. 
 
Memory-based Collaborative Filtering 
Besides the model-based collaborative-filtering approach that      
is described above, a memory-based approach can be used         
where the similarity between users is calculated by similarity         
functions like cosine similarity or the Pearson correlation        
coefficient. A weighted average of events of the most similar          
users is determined to provide a recommendation. Until        
recently, memory-based approaches did not scale well with        
larger datasets, but this has also been fixed in Spark by the            
implementation of Dimension Independent Matrix Square      
using MapReduce (DIMSUM) (Zadeh, Carlsson, 2014).  
 
Graph Analysis 
Graphs can be used in certain different ways to improve 
recommendation accuracy. One example of graph-based 
filtering is GraphRec , a system which converts the user-item 
matrix to a weighted adjacency matrix, which is used to create 
a graph from which the entropy of all items can be calculated 
(Lee, Lee, 2015). 
 
For example, GraphRec has been used to recommend music 
artists using explicit user data. This algorithm tends more 
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towards a content-based approach, because the items are 
centralized and relations are being made between items, based 
on their attributes. Another graph-based algorithm is found 
where users are nodes and users are connected to 
item-attributes via the items, as shown in Figure 4 (Yu et al., 
2014).  
 

 
 

Figure 4: Knowledge Graph used for movie recommendation 
(source: Yu et al., 2014) 

 
Support Vector Machines 
SVM  is a model that classifies its input into a binary output. It 
does so by defining an hyperplane between vectors (which are 
vectors with features of a user or organization/opportunity). 
Vectors on one side of the hyperplane are items or users that 
are similar to the input vector of the SVM. In the Magnet.me 
case, input could be a vector with features of a user. The SVM 
will determine what class (a collection of opportunities and 
organizations) the user belongs, which is basically equivalent 
of determining what opportunities or organizations could be 
recommended to that user. This way, SVM can be used as a 
recommendation system (Gershman et al., 2011). 
 
Unfortunately, research has shown that SVMs perform poorly 
on recommendation problems. This is because there is only a 
small percentage of users interested in a particular 
item/company, leading to extremely unbalanced class 
distributions (Zhang, Iyengar, 2002). 
 
Random Forests 
A random forest classifier  is a model that uses several 
decision trees to classify its input (Ajesh, Nair, & Ps, 2016). 
These decision trees base their decision on training data that 
has been served. In the Magnet.me case, input of the random 
forest model could be a vector representing the user profile (in 
a model based implementation) (Zhang, Min, & He, 2014). 
Every decision tree determines what recommendation 
(company or opportunity) comes out of their tree. An average 
of all output of decision trees will be calculated to determine 
what recommendation suits that user best. 
 

A disadvantage of random forests is that streaming data input 
is a problem for its model. When new training data is 
available, a random forest needs to be recreated and trained 
(Saffari et al., 2008). In Magnet.me data, new example data 
arrives all the time (new companies and new opportunities), 
which means that without recreating the forest constantly 
(which takes a lot of computation time), the system would 
give questionable recommendations. 
 
Wide and Deep Learning 
Neural networks  are fairly new in the context of 
recommendation systems. Deep neural networks  have more 
hidden layers in the network (mostly more than ten) in 
comparison with “normal” neural networks. In a 
recommendation case, input for the neural network would be 
several features of a user profile and the output would be a 
classification of for example companies. 
 
Recently, wide and deep neural network learning  has been 
introduced in the Google Play Store (Cheng et al., 2016). 
Wide and deep learning means that a network has two 
components, one wide (which is in this paper is a generalized 
linear model) and one deep (a deep neural network) 
component. It is stated that the recommendations of the Play 
Store improved significantly. 

3.3 Addressing the Cold-Start Problem 
One of the main problems of recommenders is that little          
information of new users is available. This problem is called          
the cold start problem. This is especially a problem when          
recommendations are mainly based on previous user       
behaviour. As the first recommendations are currently only        
based on what companies are popular for the study         
background of the student, it is preferable to use all available           
user data, like interests, age and educational level. This is          
currently not possible. 
 
To tackle this problem, we would be able to create an online            
algorithm of the model-based collaborative filtering algorithm.       
Unfortunately, there are no production-ready implementations      
available. However, the machine learning library in Apache        
Spark does contain a streaming implementation of the        
k-means clustering algorithm. While this cannot be used        
directly for providing recommendations, we can apply it        
indirectly. If we can cluster users together based on their          
profile content, we can provide recommendations to new users         
immediately after completing their profile, by looking at the         
recommendations that were provided to existing users that are         
also in their cluster. 

4 CHOOSING AN ALGORITHM 

4.1 Decision Factors 
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To decide what algorithm will be used for implementing the          
recommendation system, certain factors are described. These       
factors will determine a rating for the recommendation system         
and with that the best option for Magnet.me will be presented. 
 

● Potential Performance: Clearly, the most important      
factor in deciding the best algorithm is its accuracy at          
providing recommendations of companies and     
opportunities to users. It should also aim to not just          
provide the most popular companies as      
recommendations each time, but diversify its      
recommendations. 
 

● Compatibility with Dataset: This factor determines if the        
algorithm is applicable on the Magnet.me dataset. Some        
algorithms work better with different types of data, so to          
determine how compatible a technique is with the data is          
important. 
 

● Scalability: As Magnet.me is a growing company with        
new users and items each day, the algorithm needs to          
scale well. A very important factor deciding if an         
algorithm is scalable is if it can be used on a distributed            
system. Spark is a system which is mostly used to          
handle algorithms this way. An algorithm that is scalable         
is in this case the same as saying an algorithm has a            
Spark implementation. 
 

● Prediction Time: This factor decides how fast the        
calculation speed is in recommending an item to a user. 
 

● Model Training Time: This factor decides what the        
speed is in training the model, if applicable. 
 

● Ease of Use: This factor determines how easy it would          
be to implement and deploy the algorithm. 

4.2 Algorithm Comparison 
We have used the decision factors to evaluate the various          
algorithms that were listed in the previous section. By rating          
each algorithm on a scale of negative-neutral-positive, we can         
create a simple overview of the advantages and disadvantages         
of each algorithm, as can be seen in the figure below.           
Furthermore, we have added a percentage denoting the        

importance of each factor for this project. Obviously, both the          
importance percentages and the algorithm ratings are guesses        
and not exact numbers. The main goal is to provide some           
insight into our reasoning and enable a relative ranking of the           
algorithms. 

4.3 Proposed Implementation 
When we take the importance of the decision factors in          
consideration, it can be concluded that the current        
implementation, model-based CF, scores best overall. This       
algorithm scores well for scalability because Spark makes use         
of ALS for the model training, which can be run distributed.           
Model-based CF is well-known for its diverse       
recommendations, which is not true for algorithms like RFC         
and SVM. As for the graph-based approaches, no accurate         
guessing could be made regarding to the performance.  
 
In order to tackle the cold-start problem, another algorithm         
can be used to give predictions for the first hour, when little            
information of a new user is available. We propose to          
integrate a streaming k-means algorithm for providing       
recommendations to new users. By clustering new users        
together with existing similar users, we can take the         
recommendations for existing, more established users with       
more data and provide these recommendations to the new         
users as well. 
 
The other approach that scored well is wide and deep learning.           
The main disadvantage for wide and deep learning is that it is            
a relatively new and complex method. However, it has proven          
to be accurate at providing recommendations in the Google         
Play Store. Therefore, our thesis is that it could work quite           
well in this context, but we plan to explore it as an optional             
next step after fully implementing the model-based CF and         
testing the k-means clustering algorithm. 

5 MODEL SELECTION 

5.1 Hyperparameter Optimization 
At the moment, the parameters that are used with the          
collaborative filtering implementation have been predefined      
and have not been updated in the last year. However, the           
optimal parameters to achieve the best results can very well          
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change over time, due to new incoming data that changes the           
underlying structure of the dataset. 
 
Methods exist that can automatically determine the optimal set         
of parameters to use when training the model. The main          
approach is to run a parameter sweep. Quite simply, you          
define minimum and maximum values for each parameter and         
it will train the model with all possible combinations of          
parameters. To determine the best set of parameters, a loss          
function is defined which calculates the error rate of the          
model. A basic implementation works like this: 
 

(1) Create separate sets of training and test datasets, which         
is often a 70-30 or 80-20 split; 

(2) For each set of parameters: 
a. Train the recommendation model using the      

training data; 
b. Evaluate the performance using the test data; 

(3) Choose the best set of parameters with the lowest error          
rate. 

 
In the Spark implementation of collaborative filtering, we can         
run a parameter sweep on the following parameters: 
 

● rank: the number of latent factors in the model; 
● iterations: the number of iterations of ALS to run; 
● lambda: the regularization parameter in ALS; 
● alpha: governs the baseline confidence in preference       

observations. 
 
Furthermore, we can explore whether it would be worthwhile         
to tune the weights of the various signals. At the moment,           
each company profile view weighs as 1 point while being          
connected to a company weighs as 10 points. We can attempt           
to include these in the parameter sweep as well and see if this             
leads to better results. 

5.2 Cross Validation 
However, this approach can be prone to overfitting, as the          
lowest error rate can easily be a model that is very specific to             
this training dataset. Therefore, cross-validation is often       
introduced in order to avoid overfitting the training data. For          
example, in k-fold cross validation, the entire dataset is split          
into k subsets. One subset is then used as the test dataset,            
while the other k-1 datasets are used as training data. The           
process then becomes: 
 
(1) Create k subsets of the entire dataset; 
(2) For each set of parameters: 

a. Repeat k times: 
i. Define one of the subsets as the test data; 
ii. Define the other k-1 subsets as the training        

data; 

iii. Train the recommendation model using the      
training data; 

iv. Evaluate the performance using the test data; 
b. Take the average of the error rates of each subset; 

(3) Choose the best set of parameters with the lowest         
average error rate. 

 

 
 

Figure 5: Example of a k-fold cross validation with k=5 
(source: Graz University of Technology) 

6 BENCHMARKING & MONITORING 
Initially, we will develop a recommendation system that looks         
only at the various user actions and events that occur. These           
include viewing a company page, viewing an opportunity and         
more. We can then determine which companies or        
opportunities are the best matches for a particular user, based          
on these signals. These will be the recommendations. 

6.1 Collaborative Filtering Model 
Magnet.me has provided us with a dataset of company-user         
relations, which includes whether or not a user is connected to           
a company. We can use this to verify the accuracy of our            
recommendation system. Our plan is to filter the data on all           
user-company relations of which the status is CONNECTED .        
We will then use k-fold cross validation (as explained in          
section 5.2), of which we will use training data for creating           
our model to predict the best companies for a user. Then we            
can calculate the root mean squared error (RMSE) for the test           
data between the predicted best companies of a user and the           
companies to which the user is actually connected to. 
 
By applying the same technique, we can benchmark the         
opportunity recommendations. We will filter the data on what  
opportunities have been applied to and which opportunities        31

have been saved. By calculating the RMSE between the         
predictions and actual applications or saves, we can        
benchmark the opportunity recommendations. 
 

31 In this case, applying means just clicking on the button to apply, as              
whether the user has fully completed the application form is not being            
tracked. 
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We will then run the same benchmarking model on the          
existing recommender system, that was implemented a year        
ago by Magnet.me. Since that model was trained using         
parameters chosen specifically for the data from more than a          
year ago (which was a significantly smaller dataset), we can          
most likely improve the model by choosing parameters that fit          
better with the current dataset. 
 
Furthermore, we can start to set up other variations of our           
collaborative filtering model and benchmark this against both        
the existing model and our basic model. This can include a           
model with regularization for older events, a model which         
uses hyperparameter tuning to optimize the signal weights, or         
a model which looks at other signals which have so far been            
ignored. 

6.2 Clustering Model 
Using an online implementation of k-means, we plan to cluster          
users with similar users and then provide recommendations to         
a new user based on the recommendations of the existing,          
similar users. Our collaborative filtering model creates a        
user-feature matrix that we can use to find the most similar           
users. We can use this matrix as a benchmark for the k-means            
clustering model. 
 
By looking at the X most similar users of each user in the             
k-means model, comparing this with the X most similar users          
of each user in the user-feature matrix of the collaborative          
filtering model and then calculating the RMSE, we can         
determine the accuracy of our clustering model. 

6.3 Monitoring 
When we can show that our model is an improvement over the            
existing model using sufficient benchmarking data,      
Magnet.me will deploy our new model to their production         
servers. They are already tracking clicks on recommendations        
and are currently implementing a system which can track the          
click-through rate (CTR) of recommendations. We can then        
see what the improvement of our model will be in terms of            
the live CTR in the Magnet.me apps. 

7 CONCLUSION 
In this research report, we have analyzed how        
recommendations are used at Magnet.me. We determined       
what the jobs-to-be-done are and how recommendations could        
help to do those jobs. Also, exploratory research has been          
done which recommendation systems exists and what the        
advantages and disadvantages are of these systems. We have         
managed to choose what algorithms could best be        
implemented to improve the recommendations. By doing so,        
discovery of career opportunities for Magnet.me users will be         
improved. 

 
First, the model-based collaborative filtering with ALS       
algorithm will be implemented using Spark. The algorithm        
seemed to be the best solution for the Magnet.me case.          
Moreover, by implementing this using Spark, it will be         
scalable. We will attempt to implement streaming k-means        
after that. This could be a good solution for the cold-start           
problem. When this has been implemented, we will try to          
improve the recommendations by integrating deep and wide        
learning using Tensorflow. 
 
Apart from implementing the aforementioned     
recommendation algorithms, automatic hyperparameter    
optimization will be implemented to constantly improve the        
recommender. To determine if the proposed system will be an          
improvement over the old system, measureable benchmarks       
will be determined. When an improvement by our system has          
been shown, Magnet.me will deploy our system on        
production. In appendix A, a project timeline is listed, giving          
an overview of our plans. 
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APPENDIX E.A: PROJECT TIMELINE 
 
Nov 14 - Nov 20  Finish project plan; Draft research report; Finish Coursera course. 

Nov 21- Nov 27  Finish research report; Set up technology infrastructure. 

Nov 28 - Dec 4  Implement the model-based collaborative filtering system in Spark. 

Dec 5 - Dec 11  Improve CF system; Implement hyperparameter tuning. 

Dec 12 - Dec 18  Deploy CF system with hyperparameter tuning; Implement k-means streaming. 

Dec 19 - Dec 25  Improve k-means streaming; Start working on final report; Submit code to SIG. 

Dec 26 - Jan 1  Break. 

Jan 2 - Jan 8  Break. 

Jan 9 - Jan 15  Deploy k-means streaming; Implement SIG feedback; Work on final report. 

Jan 16 - Jan 22  Test wide and deep learning network; Finish draft of final report. 

Jan 23 - Jan 29  Submit code to SIG; Finish final report. 

Jan 30 - Jan 31  Final presentation. 

APPENDIX E.C: PRODUCT SCREENSHOTS 
 

Homepage 
 

 

Explore page 
 

 

 
Company profile 

 

 
 

 
Opportunity 

 

 
 

 
News feed 

 

 
Mobile card-swiping interface (iOS) 
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