

Optimising a Recommendation Model for Career Discovery

FINAL REPORT

by

B. Beker
R. Brugsma
J.F. Offerijns

in partial fulfillment of the requirements for the degree of

Bachelor of Science
in Computer Science

at Delft University of Technology.

Supervisors: Dr. T. Abeel
A. Nederlof MSc

Project committee: Dr. T. Abeel,
Dr. H. Wang,
O.W. Visser MSc,
A. Nederlof MSc,

TU Delft
TU Delft
TU Delft
Magnet.me

An electronic version of this report is available at http://repository.tudelft.nl.

http://repository.tudelft.nl/

Optimising a Recommendation Model for Career Discovery.

Optimising a Recommendation Model for Career Discovery

B. Beker
Project Member

BSc student, TU Delft

R. Brugsma
Project Member

BSc student, TU Delft

J.F. Offerijns
Project Member

BSc student, TU Delft

Dr T. Abeel
Academic Adviser

Assistant Professor, TU Delft

A. Nederlof MSc
Client Adviser

CTO, Magnet.me

ABSTRACT

Recommendation systems are algorithms that aim to
predict what items are preferred by a user, based on a
recorded history of user activity. Magnet.me is a
company which recommends companies and
opportunities to students. Potential algorithms for
recommendation systems are memory-based and
model-based collaborative filtering , graph-based
approaches , support vector machines , random forest
classifiers and wide & deep learning . Based on a
qualitative comparison of the algorithms, model-based
collaborative filtering , which is what Magnet.me
currently uses as well, was chosen to be the best fit. This
is because it scored highly on the three most important
factors for Magnet.me: potential performance,
compatibility with the dataset and scalability. When
comparing several well-known benchmarking metrics,
the most suitable metric for testing the performance of
the recommender was the F1 measure . To benchmark the
model, the connection status of user-company relations
should be used as the label, but must be excluded in the
calculation of the implicit ratings. Logarithmically
scaling the view counts before used as a factor in the
implicit ratings has proven to be of negligible effect. Five
other signals are found that could be used to improve the
recommendations. Hyperparameter optimization with
cross-validation is implemented to constantly improve
the recommender. The recommender has also been
succesfully been deployed into the Magnet.me
technology stack. The possibilities for a clustering
algorithm are considered in order to solve the cold start
problem, but we could not determine the numeric
distances between features, which is required for training
a clustering algorithm.

1 INTRODUCTION 1

A recommender algorithm uses explicit user ratings or
user activity to recommend items to users. Magnet.me is
a company with web and mobile applications, which
students and recent graduates can use to discover jobs

1 Based on our research report, located in Appendix F.

and career opportunities. They are using a
recommendation engine to provide personal
content—consisting of companies and opportunities—to
students. Magnet.me has implemented a basic
recommender that is able to provide this. The main goal
of this project is to benchmark the recommender and 2

automatically optimise the hyperparameters which are
used by the recommender algorithm.

1.1 State of the Art in Recommendation
Systems

Recommendation systems can be implemented using a
variety of techniques. Traditionally, the techniques that
these systems use are separated into collaborative
filtering and content-based filtering . In practice,
companies often have developed custom algorithms that
work best for their context. This can be done by
combining or extending traditional recommendation
techniques. For example, Google is applying deep neural
networks in YouTube with Tensorflow (Covington,
Adams, & Sargin, 2016). Furthermore, Facebook uses
the proximity of two nodes in the social network graph in
order to make recommendations for users.

Collaborative filtering is a recommendation algorithm
that predicts ratings or preferences between a user and an
item (Ekstrand, Riedl, & Konstan, 2011). It can predict
explicit ratings, which are ratings that a user actively
gives to an item (a five star rating for a movie for
example), or implicit ratings, which are values that
represent the preference of a user. The algorithm
calculates these preferences or ratings for a user by
finding users that are similar. It assumes that if a user is
similar to other users, this user will be interested in
content that these other users prefer.

In contrast with collaborative filtering algorithms,
content-based algorithms make use of the attributes
(features) of users or items. In most approaches, users are
represented by a certain taste profile. This profile is

2 More information can be found in the project plan of
Appendix D.

2

Optimising a Recommendation Model for Career Discovery.

a vector of features representing different properties of a
user (e.g. study background and interests). A company
could be placed at a certain location, focuses on a certain
industry or has a specific amount of employees working
there. If the user profile is similar to the attributes of the
company, the company might be of interest to the user.

Alternating Least Squares

The collaborative filtering feature inside Spark , which is 3

used by Magnet.me, relies on matrix factorization to find
the best recommendations, as visualised in Figure 1.
Alternating Least Squares (ALS) is an implementation of
a collaborative filtering algorithm (Takács, Tikk, 2012).

This matrix can be factorized in and , of which the P Q
values are initialised to either 1 or to random values.
ALS has to learn these matrices, which consist of a latent
vector per user/item, by alternatingly updating the values
of and . In multiple iterations, it changes values in P Q
one of the two matrices and calculates the other matrix.
After enough iterations, the values will converge, and the
entries in the multiplication matrix should be P × Q
predictions of how much a user matches with a specific
company/opportunity.

Figure 1: Example of matrix factorization calculation

(source: Databricks)

In regards to ALS in Apache Spark , four
hyperparameters (three if only using explicit data) can be
configured to improve the resulting predictions.
Additionally, one parameter can be passed to specify the
number of blocks used for parallelization. Typical for the
ALS algorithm is that it alternatingly changes one of the
two factorized matrices. The optimization of the latent
vectors could also be done using other algorithms like
Bayesian networks or probabilistic latent semantic
analysis (Su, Khoshgoftaar, 2009), but these algorithms
are not included in Spark ’s machine learning library.

Strengths and Weaknesses of Collaborative Filtering for
Magnet.me

The user collaborative filtering algorithm has several
benefits for Magnet.me. With collaborative filtering ,
companies and opportunities are recommended by
analyzing the behaviour of users. Because of this, items

3 Website of Apache Spark

that are not similar to each other can be recommended to
a user because a similar user have viewed these items.

In a way, Magnet.me also makes use of content-based
filtering , because it shows the most popular companies
within the industry of the student. However, it is
important that not only the popular companies are
recommended, because letting the users explore
companies that they are not familiar with is one of the
goals of Magnet.me.

Another benefit of using collaborative filtering is that a
Spark implementation exists. Not only does this save us
considerable time to implement the actual algorithm
ourselves, it also means that the collaborative filtering
algorithm can be distributed. Because of this, the
algorithm’s performance remains manageable if the
amount of data increases drastically.

A disadvantage of the current system is that no personal
recommendations can be given in the first hour, which is
known as the cold start problem. Because of this the
model has to be re-trained each hour to provide
recommendations for new users.

Alternative Techniques

Below we have included a list of alternative techniques
that can be used for recommending companies and
opportunities to students. Note that this list is not
exhaustive, but includes a subset of all machine learning
algorithms that we found to be the most likely candidates
for this particular project.

Memory-based Collaborative Filtering

Besides the model-based collaborative filtering approach
that is described above, a memory-based approach can be
used where the similarity between users is calculated by
similarity functions like cosine similarity or the Pearson
correlation coefficient. A weighted average of events of
the most similar users is determined to provide a
recommendation. Until recently, memory-based
approaches did not scale well with larger datasets, but
this has also been fixed in Spark by the implementation
of Dimension Independent Matrix Square using
MapReduce (DIMSUM) (Zadeh, Carlsson, 2014).

Graph Analysis

Graphs can be used in certain different ways to improve
recommendation accuracy. One example of graph-based
filtering is GraphRec , a system which converts the
user-item matrix to a weighted adjacency matrix, which
is used to create a graph from which the entropy of all
items can be calculated (Lee, Lee, 2015).

3

https://spark.apache.org/

Optimising a Recommendation Model for Career Discovery.

For example, GraphRec has been used to recommend
music artists using explicit user data. This algorithm
tends more towards a content-based approach, because
the items are centralized and relations are being made
between items, based on their attributes. Another
graph-based algorithm is found where users are nodes
and users are connected to item-attributes via the items.

Support Vector Machines

Support Vector Machines (SVM) is a model that
classifies its input into a binary output. It does so by
defining an hyperplane between vectors (which are
vectors with features of a user or company/opportunity).
Vectors on one side of the hyperplane are items or users
that are similar to the input vector of the SVM. In the
Magnet.me case, input could be a vector with features of
a user. The SVM will determine what class (a collection
of opportunities and organizations) the user belongs,
which is basically equivalent of determining what
opportunities or organizations could be recommended to
that user. This way, SVM can be used as a
recommendation system (Gershman et al., 2011).

Unfortunately, research has shown that SVMs perform
poorly on recommendation problems. This is because
there is only a small percentage of users interested in a
particular item/company, leading to extremely
unbalanced class distributions (Zhang, Iyengar, 2002).

Random Forests

A random forest classifier is a model that uses several
decision trees to classify its input (Ajesh, Nair, & Ps,
2016). These decision trees base their decision on
training data that has been served. In the Magnet.me
case, input of the random forest model could be a vector
representing the user profile (in a model based
implementation) (Zhang, Min, & He, 2014). Every
decision tree determines what recommendation
(company or opportunity) comes out of their tree. An
average of all output of decision trees will be calculated
to determine what recommendation suits that user best.

A disadvantage of random forest classifiers is that
streaming data input is a problem for its model. When
new training data is available, a random forest needs to
be recreated and trained (Saffari et al., 2008). In
Magnet.me data, new example data arrives all the time
(new companies and new opportunities), which means
that without recreating the forest constantly (which takes
a lot of computation time), the system would give
questionable recommendations.

Wide and Deep Learning

Neural networks are fairly new in the context of
recommendation systems. Deep neural networks have
more hidden layers in the network (mostly more than ten)
in comparison with “normal” neural networks. In a
recommendation case, input for the neural network
would be several features of a user profile and the output
would be a classification of for example companies.

Recently, wide and deep neural network learning has
been introduced in the Google Play Store (Cheng et al.,
2016). Wide and deep learning means that a network has
two components, one wide (which is in this paper is a
generalized linear model) and one deep (a deep neural
networ k) component. It is stated that the
recommendations of the Play Store improved
significantly.

1.2 State of the Art in Benchmarking
Metrics for Recommendation Models

There are a variety of metrics which are used in
benchmarking recommendation systems. Choosing what
metric should be used to benchmark a recommender,
depends on the context in which the recommender
operates.

For recommenders that base their recommendations on
explicit data, the root mean squared error (RMSE) is
often used (Cremonesi et al., 2015). This metric
calculates how much the explicit ratings that are
predicted differ from the actual ratings. When a
recommender uses implicit data however, the RMSE
might not be the proper metric. Precision and recall are 4

metrics that also give insight in the performance of the
recommender. These values, together with the F1 score
(Lipton, Zachary C Elkan, Naryanaswamy, 2014), can be
used on implicit data. These metrics use true positives ,
false positives and false negatives to determine the
performance.

The normalised discounted cumulative gain (NDCG) is a
metric that evaluates the ranking of the predicted items
(Wang, He, Chen, 2013). While this metric is not often
used in recommender problems, it is used in
benchmarking web search engines to determine whether
the most important search results are ranked on top.

4 These metrics usually are presented together with the threshold
they operate, for example precision @4 or recall @4, meaning
precision for the first four recommendations.

4

Optimising a Recommendation Model for Career Discovery.

1.3 Magnet.me Implementation

Magnet.me currently uses the collaborative filtering (CF)
feature in the Machine Learning library of the Apache
Spark framework to provide personal recommendations,
because this system was thought to be the best for the
Magnet.me context. One of the characteristics of
Magnet.me is that lots of opportunities are added to the
database constantly (about --- opportunities on average 5

per day over the last year). At moment of writing, they 6

have --- users, --- companies and --- opportunities (of
which --- are active) in their database . 7

Typical for their users is the short time they are browsing
through content. On average, as shown in Figure 2, only
a small percentage will return after a few months,
because he or she usually stops searching after finding a
suitable job.

Figure 2: Retention rate of users of Magnet.me on a monthly

basis on the web application (source: Google Analytics)

Apart from using collaborative filtering for giving
personal recommendations, similar and popular
recommendations are given. Each hour, the user-based
collaborative filtering algorithm is re-trained, which
takes 16 minutes on average , and personal 8

recommendations will be given. To make the best use of
the product, users need to receive recommendations as
soon as possible, while the system has little time to learn
user preferences.

5 --- confidential
6 We calculated this by counting the number of opportunities
added daily to the Magnet.me database and then taking the
average.

7 We have determined these numbers by querying the current
Magnet.me database.

8 We determined this by running a database query to determine
the average time of each Spark job over the last year, after
which we summed the averages of each of the 4 types of jobs.

The idea of user-based collaborative filtering algorithm
is that the behaviour of past users is used to make
recommendations for new users (Ekstrand, Riedl, &
Konstan, 2011). In the context of Magnet.me, this is done
by collecting events that users produce. Currently, the
recommender gives recommendations based on data
consisting of three different types of user actions:

● User views a company recommendation (positive);
● User views an opportunity recommendation

(positive);
● User is connected with a company (strong

positive).

To obtain data about the relation between user and
content, explicit or implicit data can be gathered. Explicit
data are ratings that a user actively gives to a specific
item, for example giving a five star rating to a movie.
Implicit data are ratings that are inferred based on user
actions, for example views or clicks. The
recommendations of the current algorithm are based
solely on implicit user data.

It is important to note that this means an extra step in the
computation of the predictions is required. The implicit
data of a user has to be converted to a confidence matrix
where all entries contain confidence values. (Hu, Koren,
& Volinsky, 2008) The value 1 is assigned to the two
click actions. A value of 10 is assigned to the connect
action, because this is considered a more significant
relation between a user and a company than a click
action. Several million events have been collected in the
past. When a user produces several events, the
collaborative filtering compares him or her to users that
are similar and gives recommendations accordingly.

1.4 Research Questions

The goal of this project is to improve and tweak the
recommender that is currently in use by benchmarking
the recommender and automatically optimise the
hyperparameters of the recommender. In order to achieve
an optimal solution for Magnet.me, we will answer the
following questions:

(1) Which algorithm can be implemented, in order to
provide the best recommendations of companies
and opportunities to students?

(2) How can we improve the recommendations that are
given?

(3) How can we set up a system that automatically
optimizes the model hyperparameters at a regular

5

Optimising a Recommendation Model for Career Discovery.

basis that can be integrated into the Magnet.me
technology stack?

(4) Can we tackle the cold start problem using
clustering, in order to give recommendations to
new users?

Answers to these research questions are given in several
sections and are summarized in the conclusion.

2 MATERIALS & METHODS 9

2.1 Personal Recommendations

Scoring Function

In order to train a recommendation model, a function is
needed to calculate the implicit scores for each
user-company relation. These scores need to represent
the relations between users and companies. In the
current implementation, the score for a user-company
relation is equal to the amount of clicks of the user on the
page of that company, plus ten points if the user is
connected to that company. The weight of ten that is
assigned to a user-company connection is chosen, has not
proven to be the optimal value.

We have started with the same scoring function, but with
a variable connection-status weight. Later on, when the
evaluation metrics are fully implemented, the
connection-status weight is adjusted to a value that gives
better recommender performance.

Instead of simply taking the view count as part of the
scoring function, the log of the view count can be used.
Using the log of the view count is expected to give a
more realistic score, because this has the effect that the
difference between one or two views will give a bigger
change in the score than the difference between 30 and
31 views.

Using the scoring function as mentioned, the values for
each user-company relation can vary from zero to very
high. Due to the lack of an upper limit, it is hard to
compare the recommender performance with other
models and with the same model with different settings.
The scores will be scaled, so that all values lay between 0
and 1. This way, modifications to the model can easily be
compared and evaluated. Also, some metrics expect
scaled values in order to evaluate the performance.

9 An evaluation of our software development practices can be
found in Appendix B.

Model settings

The model performance will be evaluated with different
values for the connection-status weight and using the log
of the view count turned on and off. These model settings
will be referred to as model parameters in the rest of the
report.

2.2 Benchmarking

To eventually decide what the best configuration is for
the recommender, specifically choosing what model
parameters and hyperparameters are ideal, various
benchmarks have been implemented.

Implicit Ratings

Before getting into the actual benchmarking of the
recommender, it should be emphasised that the
Magnet.me recommender makes use of implicit data over
explicit. The ALS implementation of Spark has an option
in which you can train implicit data. What this means is
that the predictions that are provided by the trained ALS
model are not explicit ratings given to items, but is a
confidence (preference) value given to a user and an
item. This value is a value between -1 and 1, with a value
near larger than zero meaning a preference towards that
item, and less than zero not a preference towards that
item. Due to this, benchmarking and comparing the
recommender models has been a lot more cumbersome
than benchmarking explicit ratings, because a preference
is not easy to compare with implicit ratings calculated by
the scoring function.

The solution to this problem was not to compare the
ratings that are predicted to the implicit ratings that are
calculated by the scoring functions, but to compare the
ratings with labels that items have. The correctness of a
recommendation means that if the model predicts that a
user has a preference towards a item (confidence value
larger than 0) and it appears that the user has a positive
label, the prediction is true positive.

To determine a label for a company recommendation, the
connection status is used. When a user is connected to a
company, the label is positive. For an opportunity
recommendation the label is used whether a user has
saved the opportunity or has applied to that opportunity.

Metrics

Some ranking metrics that are commonly used in
recommender systems are precision , recall , F1, RMSE
and NDCG. An implementation of these metrics is

6

Optimising a Recommendation Model for Career Discovery.

available in Spark and in an external library . To get a 10

better understanding of the metric functions, we decided
to implement the ranking metrics ourselves.

When implementing the RMSE, it was noticed that this
metric might not be applicable to our situation because of
the use of implicit data and our binary labels. Moreover,
RMSE is calculated to every rating, while these ratings
might not be that important because only a specific
amount of recommendations are shown to the user.

What we actually want to benchmark is that the first top
K recommendations ordered by highest rating are
correct. This means that a certain threshold must be
provided on how many recommendations we want to
test. In the applications of Magnet.me, at most six
recommendations are shown initially, which is why we
chose to use this as a threshold.

Monitoring

Magnet.me is already tracking clicks on
recommendations and are currently implementing a
system which can track the click-through rate (CTR) of
recommendations. In the future, we can use this to see
what the improvement of our model is in terms of the
live CTR in the Magnet.me apps.

2.3 Hyperparameter Optimisation

At the moment, the parameters that are used with the
collaborative filtering implementation have been
predefined and have not been updated in the last year.
However, the optimal parameters to achieve the best
results can very well change over time, due to new
incoming data that changes the underlying structure of
the dataset.

Methods exist that can automatically determine the
optimal set of parameters to use when training the model.
The main approach is to run a parameter sweep. Quite
simply, you define minimum and maximum values for
each parameter and it will train the model with all
possible combinations of parameters. To determine the
best set of parameters, a loss function is defined which
calculates the error rate of the model. A basic
implementation works like this:

(1) Create separate sets of training and test datasets,
which is often a 70-30 or 80-20 split;

(2) For each set of parameters:

10 Github page of spark-ranking-metrics

a. Train the recommendation model using the
training data;

b. Evaluate the performance using the test data;
(3) Choose the best set of parameters with the lowest

error rate.

Cross Validation
Running hyperparameter optimization on the same
training and test dataset can be prone to overfitting, as
the lowest error rate can easily be a model that is very
specific to this training dataset. Therefore,
cross-validation is often introduced in order to avoid
overfitting the training data. For example, in k-fold cross
validation , the entire dataset is split into k subsets, an
example of which is shown in Figure 3. One subset is
then used as the test dataset, while the other k-1 datasets
are used as training data. The process then becomes:

1. Create k subsets of the entire dataset;
2. For each set of parameters:

a. Repeat k times:
i. Define one of the subsets as the test data;

ii. Define the other k-1 subsets as the
training data;

iii. Train the recommendation model using
the training data;

iv. Evaluate the performance using the test
data;

b. Take the average of the error rates of each
subset;

3. Choose the best set of parameters with the lowest
average error rate.

Figure 3: Example of a k-fold cross validation with k=10

ALS Parameter Description

Spark ’s ALS train implementation has four parameters:
lambda , iterations , rank and alpha .

● Iterations specific the maximum number of times

that ALS calculates the error rates of the latent
matrices and updates them accordingly. If this
parameter is set too small, a chance exist that the

7

https://github.com/jongwook/spark-ranking-metrics

Optimising a Recommendation Model for Career Discovery.

ALS-algorithm is not yet done converging the
values in the factor matrices. If it is set too big, the
values will coverge in the first iterations. A too big
value will never make the performance worse, but
the last iterations are unnecessary because the
predictions will not be improved substantially.

● The rank parameter specifies the number of latent

factors of the ALS matrix factorization.

● Lambda is a factor used in the regularization

formula of ALS.

● Alpha is a hyperparameter that is only used when

the recommender uses implicit data. If the value is
higher than it will give higher value to observed
events in comparison with unobserved events.

Determining Hyperparameter Ranges

Now that a metric function is chosen in order to evaluate
the recommender performance, we need to determine the
range of hyperparameters for which we test the model
performance. The range of values for which the
hyperparameter optimisation job must be performed
could be different for companies and opportunities,
because the optimal hyperparameters are probably not
the same for recommending companies than for
recommending opportunities.

The optimal hyperparameters can vary widely for
different recommenders, due to differences in amount of
data, data sparsity, and the distribution of the implicit
scores. No default starting values are available, except
Spark mentioning that a value of 20 or less for the
iterations parameter should be high enough in most
cases.

We started with running the hyperparameter optimization
with a very big range of values for each hyperparameters,
and looking at which values have almost no impact on
the metric score. The ranges can be narrowed by
eliminating the values that result in a low NDCG score.
The remaining ranges can now be tested in more detail.

2.4 Infrastructure & Deployment

Training a recommendation model with ALS is a task
that requires significant resources. To accomplish this,
you need to think where to store the data where Spark
can read quickly. Also because of the fact that Spark
will run faster if it has access to more memory,
processing power and so on, finding an appropriate
amount of server capacity is mandatory. First a
description is giving how we have set up our

development environment and after that a description is
giving how we deploy our recommender implementation
in the Magnet.me environment.

Development Infrastructure

Google Cloud & Kubernetes

It will be a very difficult task to handle large amounts of
data locally during development. Magnet.me uses the
cloud servers on the TransIP network to handle their 11

recommender jobs. Although this is a reliable service, we
have used the Google Cloud Platform to handle the jobs.
The reason for this is that Google provided a trial period
in which using the platform is free of charge for the first
two months. Moreover, we have more experience with
this cloud platform.

This project relies heavily on Spark and Elasticsearch
(ES) . To manage these applications thoroughly and to 12

distribute resources accordingly between these
applications, an open-source system called Kubernetes 13

is used. The purpose of this system is to easily manage
Docker containers. Kubernetes requires YAML files 14 15

consisting of references to Docker images in repositories
and container configuration. Also within these files
references to persistent volumes need to be provided.
Persistent volumes are basically containers that are
linked to Google Persistent Disks . This way, data can be
persisted on these disks.

Spark master and workers

Because of the fact that Spark makes a significant use of
resources and because a single Spark job (a
hyperparameter sweep for example) can last a long time
when having relatively few resources, it would be wise to
run Spark on a resourceful server. We have set up one
Spark-master controller and several workers to make the
tasks as efficient as possible. While setting up these
controllers is easy to do using Kubernetes , sending a
Spark job to the cluster seemed to be quite cumbersome.
The lack of documentation and the instability of Spark
2.0 (relatively new version) was the cause of this.

11 TransIP

12 Elasticsearch

13 Kubernetes

14 Docker

15 YAML

8

https://www.transip.nl/
https://www.elastic.co/products/elasticsearch
https://kubernetes.io/
https://www.docker.com/
http://yaml.org/

Optimising a Recommendation Model for Career Discovery.

Sending jobs to the Spark cluster

To send a job to a Spark cluster, one must assemble a jar
file that will be sent to the cluster. Spark-submit is an 16

application provided with the Spark framework that has
the purpose to send tasks to a cluster. Provided with an
IP-address, a reference to a jar file and some
configuration options, it will initiate a job on the Spark
master controller that is running on the provided
IP-address. The master controller will then again allocate
resources to its workers with which the job will be done.
The main problem is that the Spark-submit application
will not handle the transfer of the jar file to the servers.
What this practically means is that the jar file needs to be
available on every worker. To accompany this, we have
written a shell script that assembles the jar and deploys
this jar on every worker.

Elasticsearch

Magnet.me uses Elasticsearch to persist their data. To
deploy our recommender implementation in the
Magnet.me stack, we had to set up and integrate with
Elasticsearch. Again, setting up an Elasticsearch cluster
is easily done using Kubernetes . This cluster is only
accessible through an internal IP-address given by
Kubernetes . Spark provides a library which handles
reading and writing to Elasticsearch .

Production Infrastructure

To use the recommender in production, the recommender
needs to be integrated within the Magnet.me build
process. Magnet.me uses Maven to build their Java 17

application. Fortunately, there is a Maven plugin which
also builds application that are written in Scala.
Magnet.me uses Jenkins as their build management 18

tool. By setting up a hook on our repository to Jenkins , it
will automatically picks up changes and build the
application. It will also produce a .jar file which then can
be sent to the Magnet.me Spark cluster where a specific
Spark job can be run.

2.5 Data Analysis

The relevant data of Magnet.me that we stored on our
Elasticsearch cluster, is divided in multiple indices . 19

One index with crucial data for the recommender is the

16 Explanation of JAR files

17 Apache Maven

18 Jenkins

19 An overview of the exact indices and their sizes can be found
in Appendix C.

index of all click events of the users. A selection of the
information stored in a click event is:

1. User information;
2. Time of event;
3. Information about the visited

company/opportunity.

Another index that contains essential data is the
student-organization index, with all information about
the companies and opportunities. From this index
information about the connection status between a user
and a company can be derived.

The indices also contain data which is not needed for the
recommender but is needed for other goals of
Magnet.me, e.g. contact-info or employees. The full
schemas of the user event data can be found in the
appendix.

Comparing models

We would like to get more insight in how changes to the
model parameters affect the recommender performance.
The scoring of implicit data for example can change the
outcomes of the recommender. Three jobs are
implemented for model comparison.

Compare recommender models job trains and evaluates
the recommender on multiple thresholds for precision,
recall and F1. This is done for the parameters of the
Magnet.me implementation of the recommender and
other parameters to compare results. Compare model
parameters jobs can be used to train and evaluate
recommender for a given set of model parameters. The
results than can be visualized in graphs, that can be
created using the Data analysis job .

3 RESULTS

3.1 Alternating Least Squares is the best
recommendation algorithm for this project.

To decide what algorithm is used for implementing the
recommendation system, certain factors are described.
Using these factors, we have determined a rating for the
recommendation system approaches and with that the
best option for Magnet.me was chosen.

● Potential Performance: Clearly, the most important
factor in deciding the best algorithm is its accuracy
at providing recommendations of companies and
opportunities to users. It should also aim to not just

9

https://docs.oracle.com/javase/tutorial/deployment/jar/
https://maven.apache.org/
https://jenkins.io/

Optimising a Recommendation Model for Career Discovery.

provide the most popular companies as
recommendations each time, but diversify its
recommendations.

● Compatibility with Dataset: This factor determines
if the algorithm is applicable on the Magnet.me
dataset. Some algorithms work better with different
types of data, so to determine how compatible a
technique is with the data is important.

● Scalability: As Magnet.me is a growing company
with new users and items each day, the algorithm
needs to scale well. A very important factor
deciding if an algorithm is scalable is if it can be
used on a distributed system. Spark is a system
which is mostly used to handle algorithms this way.

● Prediction Time: This factor decides how fast the
calculation speed is in recommending an item to a
user.

● Model Training Time: This factor decides what the
speed is in training the model, if applicable.

● Ease of Use: This factor determines how easy it
would be to implement and deploy the algorithm.

Algorithm Comparison
We have used the decision factors to evaluate the various
algorithms that were listed in the previous section. By
rating each algorithm on a scale of
negative-neutral-positive, we have created a simple
overview of the advantages and disadvantages of each
algorithm, as can be seen in Figure 4 below.
Furthermore, we have added a percentage denoting the
importance of each factor for this project. Obviously,
both the importance percentages and the algorithm
ratings are guesses and not exact numbers. The main goal
is to provide some insight into our reasoning and enable
a relative ranking of the algorithms.

Figure 4: Algorithm comparison using weighted importance

factors (determined by us)

REFLECTION

These results are somewhat subjective. To give an
objective evaluation of these recommenders, the
factors should ideally be quantified and thoroughly
tested with suitable metrics.

Comparison Results
When we take the importance of the decision factors in
consideration, we can conclude that the current
implementation, model-based collaborative filtering
(CF), scores best overall. This algorithm scores well for
scalability because Spark makes use of Alternating Least
Squares (ALS) for the model training, which can be run
distributed. Model-based collaborative filtering is
well-known for its diverse recommendations, which is
not true for random forest classifiers and support vector
machines . As for the graph-based approaches, no
accurate guessing could be made regarding to the
performance.

The disadvantage of the cold start problem does still exist
with the collaborative filtering algorithm. In order to
tackle this, we tried a clustering algorithm to give
predictions for the first hour, when little information of a
new user is available. The results of this clustering
algorithm are discussed in section 3.5.

The other approach that seems promising is wide and
deep learning . The main disadvantage for wide and deep
learning is that it is a relatively new and complex
method. However, it has proven to be accurate at
providing recommendations in the Google Play Store.

3.2 F1@6 is the optimal metric for this use
case.

When benchmarking our recommender with the RMSE,
inconsistent values appeared. In Figure 5, the RMSE is
shown comparing four recommender models based on
how much training data they have received.

Figure 5: RMSE scores of recommender models per % of

trainings data

10

Optimising a Recommendation Model for Career Discovery.

The results imply that training the model with a higher
amount of training data, would result in worse
recommendations. The reason for this inconsistent
behaviour is that when benchmarking the recommender,
the benchmarking compares the labels of companies or
opportunities with the preference of a user. Because of
this, the error (which is the difference of the preference
and the label in this case) would be an incorrect
representation of performance of the recommender.

Normalised Discounted Cumulative Gain (NDCG) is
another metric that we have implemented. This takes into
account the order in which the recommendations appear.
Based on discussions with the client, it appeared that the
first six recommendations should only be used to test the
performance of the recommender, as these are the ones
that are shown prominently in the application, and the
first of these six is just as important as the last of these
six.

After having decided that the first six recommendations
are the most important recommendations, precision ,
recall and the F1 score have been implemented. At first,
to determine the precision and recall , an external library

has been used. In Figure 6, the precision , recall and F1 20

scores are given with their given threshold. While the
precision curve is behaving as expected, the recall curve
is not behaving properly. To get better insight in these
metrics, a custom implementation has been made.

Figure 6: Faulty benchmark scores over certain thresholds

While implementing these metrics, we noticed that
determining true positives, false positives, false negatives
(which are parameters for these metrics) was hard to do.
The reason is that there is no real rule that decides
whether a company or opportunity is a recommendation
(true positive) or not a recommendation (false positive).
In the standard Spark functions the rule is arbitrary. In
these functions it is checked if the rating, which can be
any value and is not within a certain range, is higher than

20 Github page of spark-ranking-metrics

0.5 to determine if an item is a recommendation . Why 21

this value makes the cut-off, is not documented.

To check whether the first six recommendations are
correct, it is tested whether the user is connected to the
company (connection status is used as a label). This
way, true positives, false positives and true negatives are
easily defined. And using these values as parameters for
recall @6 and precision @6, a metric for benchmarking
the recommender has been found. The F1@6 score has
the recall @6 and precision @6 as parameters, which
makes it a single representing value for measuring the
performance of the recommender.

Figure 7: F1-measure per threshold

In Figure 7, the values of precision , recall and F1 at
various threshold are given. Note that because of the
relatively small dataset, the precision curve converges at
~0.575. More specifically, the amount of test data per
user is low so the amount of predictions that the model
can give based on the test data is low. When there is
more data, the precision should converge at a lower
value.

3.3 Connection status should not be used as
a feature, but as the label of the recommender
during benchmarking.

In the current implementation of the Magnet.me
recommender, the connection status of a user and a
company is taken into account when calculating the
implicit score (an extra value of 10 is added to the score
if a user is connected to a company). During
benchmarking of the recommender, it uses the
connection status to test if a recommendation is correct
or not. Because of this, incorporating the connection
status in the scoring function will mean that the
recommender needs to know the connection status in
order to predict the connection status (a self-fulfilling
prophecy).

21 Code reference in Spark

11

https://github.com/jongwook/spark-ranking-metrics
https://github.com/apache/spark/blob/f830bb9170f6b853565d9dd30ca7418b93a54fe3/mllib/src/main/scala/org/apache/spark/mllib/evaluation/binary/BinaryLabelCounter.scala#L34

Optimising a Recommendation Model for Career Discovery.

When benchmarking a recommender, labels are needed
to test the correctness of recommendations. In the current
Magnet.me implementation there was no benchmarking
implemented and because of that no clear labels were
defined for good recommendations. In this project we
have thought of the connection status as a label, but other
signals as labels can also be considered. In the
opportunity recommender case, other labels need to be
thought of. Whether a user has applied to an opportunity
or a user has saved an opportunity can be used as a label.

3.4 View counts should not be scaled
logarithmically to discount large values and
other signals should be considered.

In some cases, user-company relations have very high
view counts, numbering in the hundreds. Our hypothesis
was that this could skew the results, as a single view will
be discounted in comparison to the large view counts.
Therefore, we implemented a scaling function to take the
logarithm (with base 10) of the view count as the score.

However, when comparing the recommender model with
this scaling function enabled and without, we can see that
it makes almost no difference in Figure 8. While the
training dataset grows, the F1 measure grows nearly at
the same rate in both models.

Figure 8: F1-measure at a growing % of training data

REFLECTION

In hindsight, we should have run this analysis with
cross-validation and showed in Figure 8 not only the
mean value, but also the standard deviation.

Furthermore, the current model is based only on this
view count as a feature. Seeing as a high view count is
not a good predictor of connection status, more signals
should be taken into account. Several signals that could
be implemented in the future:

(1) When a student connects with a company, but later
decides to disconnect, this is interpreted to be the
same as never connecting in the first place.
However, we would argue that this is a fairly
strong signal that the user is not interested anymore
in this particular company.

(2) Recruiters can visit the profile of a user, which can
be a strong indication that the company of the
recruiter could be a good fit for this user.

(3) Recruiters can invite a user to apply for a
opportunity as part of a recruitment campaign. This
is a strong signal that the company has deemed this
user to be a good fit. How a user responds (dismiss
invitation; apply for the opportunity etc.) to this
invitation can be a good signal as well.

(4) Users can send and receive messages to and from
recruiters, which is a strong signal that the user is
interested in the company of the recruiter.

(5) Lastly, the applications currently only track click
(or tap, on mobile) events. Another type of data
that could be tracked is user focus: how long and
how actively are users looking at a particular
company profile or card in a list? Another event
that could be checked if a certain recommendations
enters the viewport of a certain user.

It could also be worth exploring whether a time bias
should be included in the recommendation system. If
user A applied for a company three years ago, while user
B applied for a company last month, are these signals of
the same strength? Interests of students can change over
time, which makes older recommendations irrelevant.
Most likely, there should be some level of regularization
to account for the time that has passed since the signal
occurred.

3.5 Clustering cannot be used in this
context for solving the cold start problem.

Our initial idea for solving the cold start problem was to
cluster new users with similar users. By recommending
to the new user items that are recommend to similar
users, it could be away to solve the cold start problem.

First, we have implemented a k-means clustering
algorithm. However, we quickly replaced this algorithm
with an approximate nearest neighbours approach ,
because the main disadvantage of k-means clustering is
that there is no well-founded way of determining the
proper k (Hamerly, Elkan, 2004).

12

Optimising a Recommendation Model for Career Discovery.

By inspecting the results, the algorithm appeared not to
work properly, as users were not being clustered with
similar users. The reason for this is that the features that
users have need to be of numeric. The standard way by
converting string value to numeric values is that the most
common string value will get a value of 1 and so on.

For example, when using the study background as a
feature, the most common study backgrounds will be
clustered together, while this is most definitely not a
good indicator of discipline similarity. Because of this
undesired behaviour, another way had to be found. This
resulted in another problem as it is not clear how to give
numeric values to certain features. It is hard to give a
value to the difference between two study disciplines, for
example the difference between law and medicine.

4 CONCLUSION

4.1 Recommender algorithm

↳ RESEARCH QUESTION 1

To determine the best recommendation system, we have
analysed and compared the most commonly used
algorithms and we can conclude that the current
approach, model-based collaborative filtering , is the best
recommender for the Magnet.me context. This has been
decided by evaluating each approach and comparing
them using qualitative metrics. Model-based
collaborative filtering scored well for the three most
important factors for Magnet.me: potential performance,
compatibility with dataset and scalability.

4.2 Model improvements

↳ RESEARCH QUESTION 2

To decide how we can improve the recommendations
given by the recommender, we have implemented a way
to benchmark the implemented recommenders. To do
this, we have decided that the F1 score is a metric that
represents the performance of a recommender in the
Magnet.me case. The configuration (model parameters
and hyperparameters) that scores the highest F1 score,
should be used to give the optimal recommendations.

The F1 score varies dependent on the threshold for which
is evaluated. This means that if the presentation of the
recommendations on the Magnet.me application changes,

the threshold must be changed as well when
benchmarking the recommender. This should be taken
into account when Magnet.me decides to show a
different amount of recommendations.

4.3 Automatic Hyperparameter
Optimisation

↳ RESEARCH QUESTION 3

To figure out how to set up an automatic process of
hyperparameter optimisation, we first determined the
correct parameter ranges for which the model
performance must be evaluated and then set up a
combination of k-fold cross validation and benchmarking
to fully automate the steps.

We applied cross-validation in order to prevent the
model being overfit to the training data. When this is
omitted, benchmarking could give a good evaluation
result while in reality the model could give suboptimal
recommendations when new data comes available.

The parameter tuning job, has succesfully been deployed
into the Magnet.me technology stack. This job will be
automated by Magnet.me using Jenkins , so that the
parameters stay optimized every month.

4.4 Student Clustering

↳ RESEARCH QUESTION 4

To attempt to solve the cold start problem, we
implemented both k-means clustering and nearest
neighbour clustering . However, in both cases we came
across the same problem: in order to create a set of
numeric features from the user profiles, we need to
convert study backgrounds into numbers. The algorithms
assume that similar numbers imply similar study
backgrounds, thus we needed to determine how similar
study backgrounds are to each other, which was not
possible.

4.5 Future Improvements

Wide and deep learning seemed promising, but it has the
disadvantage that it is a relatively new and complex
method. However, our hypothesis is that it could work
quite well. When the amount of users has grown
substantially in the next few years, we suggest
Magnet.me to consider a deep and wide learning
approach.

13

Optimising a Recommendation Model for Career Discovery.

For graph-based recommendations, it was hard to give a
prediction of the performance as this is a relatively new
approach. However, this approach scored well for most
other factors. When more research is done for this
approach, and an effective distributed implementation
comes available, it could also be a good solution for
Magnet.me.

To improve the recommender even further, time should
be spent on how the implicit ratings are calculated. While
our implementation only handles view events to calculate
the score, more signals could be used to improve the
recommendations. Moreover, decisions on how to label
items (companies and opportunities) need to be made to
make a properly functioning benchmark. What good
recommendations actually are is hard to determine in the
current system. Without that information it will be hard
to evaluate the recommender.

5 REFLECTION 22

We encountered several problems during the process.
This started when linking Elasticsearch to our Spark
cluster. We had to set up our development infrastructure
ourselves, which we decided to do using the Google
Cloud services. While it was relatively easy to setup
Spark and Elasticsearch , a considerable amount of time
was spent trying to let them interact with each other.
Also actually sending and running Spark jobs required a
lot of tweaking of server configurations. While we had
hoped to have finished this in week two, we actually
completed it in week six.

Because of the fact that Google Cloud services is not a
free service, we have made use of a trial account. The
problem with this account became apparent when we
were blocked from the services because we have reached
the limit in the use of resources. Because of this we had
to create a new trial account and we had to set up
everything again.

We also spent more time than we planned to implement
the benchmarking metric. We planned to spend about a
week to set this up, but it ended up taking us about three
weeks. At first we thought that making use of
implementations of Spark and an open-source alternative
would be sufficient. But because of faulty behaviour of
these methods, we ended up implementing these metrics
ourselves.

22 A detailed timeline of our work can be found in Appendix A.

Debugging the metrics was very time consuming, mainly
because of the fact that it was very hard to determine
what values were expected. Deciding whether the faulty
behaviour arises from a faulty implementation, faulty
structured data, or Spark bugs was hard to determine.
Moreover, benchmarking the recommender takes a long
time, so analysing improved implementations took a long
time.

6 ETHICAL ANALYSIS

To make a recommendation system work, sufficient data
is needed for training the system. Moreover, this project
makes an extensive use of implicit data, which tracks
user behaviour in the form of clicks and views. Based on
this behaviour, recommendations are given. This data
should be handled carefully as a user profile can be made
from this data. This potential sensitive data can be leaked
or misused, meaning that it could be sold to companies.
Magnet.me has strict security requirements to tackle this
problem.

Recommendations are based on how much certain items
are “consumed”. This means that companies in the
Magnet.me case that are not consumed much, like new
companies, will not be recommended to users.
Magnet.me solves this problem by showing new
companies to users as well. Because of this, new
companies will be consume as well, even though they
might not be recommended at first.

When implementing a clustering algorithm for clustering
users, it needs to be noted that specific demographics can
be formed. It might be possible that male users will be
clustered together, or female users. Some opportunities
that are recommended to users in these clusters might be
discriminating in nature.

REFERENCES

Ajesh, A., Nair, J., & Ps, J. (2016). A Random Forest Approach for
Rating–based Recommender System. Intl. Conference on
Advances in Computing, Communications and Informatics
(ICACCI) , 1293–1297.

Cheng, H.-T., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye,
H., … Inc, G. (n.d.). Wide & Deep Learning for Recommender
Systems.

Covington, P., Adams, J., & Sargin, E. (n.d.). Deep Neural Networks for
YouTube Recommendations.
http://doi.org/10.1145/2959100.2959190

Cremonesi, P., Milano, P., Cremonesi, P., Milano, P., Koren, Y., &
Turrin, R. (2015). Performance of recommender algorithms on
top-N recommendation tasks Performance of Recommender
Algorithms on Top-N Recommendation Tasks, (September).
http://doi.org/10.1145/1864708.1864721

14

Optimising a Recommendation Model for Career Discovery.

Ekstrand, M. D., Riedl, J. T., & Konstan, J. A. (2011). Collaborative
Filtering Recommender Systems. Human–Computer Interaction ,
4 (2), 81–173. http://doi.org/10.1561/1100000009

Gershman, A., Wolfe, T., Fink, E., & Carbonell, J. (2011). News
Personalization using Support Vector Machines, 28–31.
Retrieved from
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1051&cont
ext=lti

Hamerly, G., & Elkan, C. (2004). Learning the k in kmeans. Advances in
Neural Information Processing … , 17 , 1–8.
http://doi.org/10.1.1.9.3574

Hu, Y., Volinsky, C., & Koren, Y. (2008). Collaborative filtering for
implicit feedback datasets. Proceedings - IEEE International
Conference on Data Mining, ICDM , 263–272.
http://doi.org/10.1109/ICDM.2008.22

Lee, K., & Lee, K. (2015). Escaping your comfort zone: A graph-based
recommender system for finding novel recommendations among
relevant items. Expert Systems with Applications .
http://doi.org/10.1016/j.eswa.2014.07.024

Lipton, Z. C., Elkan, C., & Naryanaswamy, B. (n.d.). Thresholding
Classifiers to Maximize F1 Score. Retrieved from
https://arxiv.org/pdf/1402.1892.pdf

Saffari, A., Leistner, C., Santner, J., Godec, M., & Bischof, H. (n.d.).
On-line Random Forests.

Steck, H. (n.d.). Evaluation of Recommendations: Rating-Prediction and
Ranking. http://doi.org/10.1145/2507157.2507160

Su, X., & Taghi M.Khoshgoftaar. (2009). A survey of collaborative
filtering techniques. Advances in Artificial Intelligence ,
2009 (Section 3), 1–19. http://doi.org/10.1561/1100000009

Takács, G., & Tikk, D. (n.d.). Alternating Least Squares for Personalized
Ranking.

Wang, Y., He, D., & Chen, W. (2013). A Theoretical Analysis of NDCG
Ranking Measures, 1–30. Retrieved from
http://www.jmlr.org/proceedings/papers/v30/Wang13.pdf

Zadeh, R. B., & Carlsson, G. (2014). Dimension Independent Matrix
Square using MapReduce (DIMSUM).

Zhang, H. R., Min, F., & He, X. (2014). Aggregated recommendation
through random forests. Scientific World Journal , 2014 .
http://doi.org/10.1155/2014/649596

Zhang, T., & Iyengar, V. S. (2002). Recommender Systems Using Linear
Classifiers. Journal of Machine Learning Research , 2 , 313–334.
http://doi.org/10.1162/153244302760200641

15

Optimising a Recommendation Model for Career Discovery.

APPENDIX A: TIMELINE

Week Description % of time spent

Week 1

Write project plan 25%

Draft research report 25%

Complete Coursera course: Introduction to Recommender Systems (University of Minnesota) 50%

Week 2
Finish research report 75%

Set up development infrastructure 25%

Week 3
Start to implement collaborative filtering algorithm 50%

Set up Spark in development infrastructure 50%

Week 4

Mirror Elasticsearch data in development infrastructure 25%

Implement popular organizations job 25%

Fix collaborative filtering implementation 50%

Week 5

Implement analyses of data 25%

Add hyperparameter optimization and cross validation 25%

Integrate Elasticsearch with Spark jobs 50%

Week 6

Fix running Spark job on development infrastructure 25%

Start to implement k-means clustering 25%

Develop custom ranking metrics calculation 50%

Week 7

Set up deployment to production infrastructure 25%

Draft final report 25%

Implement k-means streaming and approximate nearest neighbours 25%

Set up opportunity recommendations 25%

Week 8

Continue to write final report 25%

Improve ranking metrics calculation 25%

Implement various other Spark jobs 25%

Refactor codebase according to SIG feedback 25%

Week 9

Finish final report 50%

Improve ranking metrics calculation 25%

Draft presentation 25%

Week 10
Finish presentation 75%

Deliver code to Magnet.me 25%

16

Optimising a Recommendation Model for Career Discovery.

APPENDIX B: SOFTWARE EVALUATION

The Scala source code of our project was sent to the Software Improvement Group (SIG) on December 22th and reviewed by
them soon after. They assigned a score of 4.0 out of 5.5 to the code. A summary of the feedback they gave us:

1. Components : a clear component structure in the file system is missing;
2. Component independence : too large top-level components;
3. Unit interfacing : above-average number of parameters for some units;
4. Testing : lack of unit tests.

We have processed the feedback by adding unit tests for the ranking metric functions. We also refactored most data access
object (DAO) components, because that was the most unorganized part of the file system. Job components regarding data
analysis and model comparison were moved to a folder called analysis .

The original Magnet.me recommender jobs were written in Java and Magnet.me has not used the Scala language in any part
of the company. This is why our Scala code must be well documented, so that even developers that have no experience with
Scala understand the workings. We tried to accomplish this by making the names of components and parameters as obvious
as possible, and using the same naming conventions as Magnet.me does. Also, additional comments are added at places
where Scala specific patterns are used, in order to clarify the functioning.

17

Optimising a Recommendation Model for Career Discovery.

APPENDIX C: LIST OF EVENTS

By running aggregation functions on the Elasticsearch database, we managed to retrieve all possible event types and list the
total counts of each event type.

--- For confidentiality reasons, the table has been removed from this public document ---

18

Optimising a Recommendation Model for Career Discovery.

APPENDIX D: PROJECT PLAN

Magnet.me is a young company that lets students and graduates discover all their
relevant career opportunities. To accomplish this, a recommendation engine is used
to discover and provide these opportunities. By analyzing the behaviour of
Magnet.me users, the engine recommends companies or opportunities to the users.

A user creates an account with some information about his education and his
interests. After that the user can browse through Magnet.me (web and mobile application) to find
companies or opportunities that he or she might be interested in. A user can connect with companies,
that way these users will be added to the network of a company. Recruiters from companies know what
users are in their network. That way, recruiters know what students/graduates are interested in their
company and contact them if needed. Users can also apply for opportunities through Magnet.me (events,
jobs, internships etc.).

Problem description
Magnet.me currently uses the user collaborative filtering feature of the Apache Spark framework to
provide recommendations for its users. Using this feature, similar, popular and personal recommendations
are provided. The parameters in the current system were determined years ago when magnet.me had
less users and companies attached to it. The system needs to be optimized by tweaking its parameters.
Currently, it is not known or possible to read the performance of the recommendation engine. A program
needs to be written that automatically reads and tries to improve the performance of the recommendation
system to accomplish this.

Research questions
In order to meet the academic requirements and achieve an optimal solution for Magnet.me, we will
answer the following question and corresponding sub questions during the project:

In what way can the Magnet.me recommendation system be improved?

(1) Which recommender systems can be applied to the user data of Magnet.me, in order to realise
the best matches between people and companies/opportunities?

(2) How can we set up a system that automatically trains a new model, based on the entire dataset
available at that time, at a regular basis (monthly), integrated into the Magnet.me technology
stack?

(3) How can we deploy our model, in such a way that the Magnet.me API can easily retrieve
recommendations for specific users, as determined by the recommendation model that we train
monthly and run in Spark?

(4) Optional: can we use other machine learning techniques, such as supervised machine learning or
deep neural networks, to generate recommendations based on not only user actions, but also the
contents of a user profile?

To get more insight in recommendation systems, we will also participate into a Coursera course
“Introduction to Recommender Systems: Non-Personalized and Content-Based”. This course was advised
by the client. This course provides a basic theoretical understanding of how certain recommendation
systems work.

Data & algorithms

19

https://magnet.me/
http://spark.apache.org/
https://www.coursera.org/learn/recommender-systems-introduction

Optimising a Recommendation Model for Career Discovery.

Currently Magnet.me makes recommendations based on data of three different types of user-actions:

● User clicks on a company recommendation (positive data)
● User clicks on a opportunity recommendation (vacancy) (positive data)
● User ignores a recommendation (company/opportunity) (negative data)

Several million user actions have been collected in the past few years. Several times per day, the Spark
server runs the algorithm to update the recommendations for each user, using Spark’s collaborative
filtering feature. We will need this data in order to make a program that evaluates the performance of the
Magnet.me recommender. Our final software product has the task to repeatedly tweak the parameters of
the recommender model run in Spark, with the goal to get the best performance out of the recommender
by keeping the parameter settings up-to-date.

Evaluation and benchmark testing
The metric for evaluation of the model is accuracy. We will measure what the recommender predicted
versus what actually got clicked. This test can easily be run offline, so an improvement can be measured
and verified. A side product of this research can be to figure out weaknesses in the way Magnet.me
currently logs signals. Are they missing any signals or are they using the wrong signals?

Deliverables
First a program that reads the performance of the current configuration of the recommender needs to be
written. Second, a way to improve the recommender needs to be found. Lastly, suggestions for improving
the recommendations even further by using other techniques, signals or configurations need to be given
or implemented.

Deployment
To train and run the recommendation models, we will set up an Apache Spark cluster on Google
Container Engine. This can also be used for setting up a mirror database of ElasticSearch, so we can train
our model on the entire dataset without impacting the production environment of Magnet.me. SSH keys
are used to gain access and run commands on these Docker instances and all recommended security
settings are being used.

We are using the $300,- initial credit that is provided by Google Cloud to all new customers in order to run
these cloud instances.

Constraints
1. We need to take security measures to protect the data, this includes setting up hard drive

encryption on our computers and enabling two-factor authentication on Github;
2. The solution has to be integrated into the current Magnet.me toolchain (consisting of Maven,

Jenkins and ElasticSearch).

Timeline
Below is an initial outline of our plans for this project. Note that this is preliminary and will most likely
change dependent upon our progress and further research in the first few weeks.

Nov 14 - Nov 20 Finish project plan, draft research report, coursera course
Nov 21 - Nov 27Finish research report, setup technology infrastructure
Nov 28 - Dec 4 Work on sub question (2)

20

Optimising a Recommendation Model for Career Discovery.

Dec 5 - Dec 11 Work on sub questions (2) and (3)
Dec 12 - Dec 18 Work on sub question (3)
Dec 19 - Dec 25 Work on sub question (4), start working on final report, First SIG submission
Dec 26 - Jan 1 Christmas
Jan 2 - Jan 8 Christmas
Jan 9 - Jan 15 Work on subquestion (4), draft final report, implement SIG feedback
Jan 16 - Jan 22 Work on subquestion (4) and remaining, Finish final report
Jan 23 - Jan 29 Deadline final report (24 January), prepare final presentation, Final SIG
submission
Jan 30 - Jan 31 Final presentation (31 January)

Group members

Borek Beker
bekerborek@gmail.com

+316 832 171 44
#4118650

Rick Brugsma
rbrugsma@gmail.com

+316 203 925 73
#4163788

Jeroen Offerijns
jeroen@offerijns.nl

+316 814 875 87
#4221524

Client advisor and TU coach

Thomas Abeel
Assistant Professor, TU Delft

T.Abeel@tudelft.nl
+31 15 27 85114

Alex Nederlof
CTO, Magnet.me

alex.nederlof@magnet.me
+316 246 931 80

21

Optimising a Recommendation Model for Career Discovery.

APPENDIX E: INFO SHEET

Optimising a Recommendation Model for Career Discovery

Client
Magnet.me
Goudsesingel 200
3011 KD Rotterdam

Final presentation
31 January, 2017 at 9.00
EEMCS faculty
TU Delft

Description

Recommendation systems are algorithms that aim to predict what items are preferred by a user, based on a recorded history

of user activity. Magnet.me is a company which recommends companies and opportunities to students. Potential algorithms

for recommendation systems are memory-based and model-based collaborative filtering , graph-based approaches , support

vector machines , random forest classifiers and wide & deep learning .

Based on a qualitative comparison of the algorithms, model-based collaborative filtering , which is what Magnet.me

currently uses as well, was chosen to be the best fit. This is because it scored highly on the three most important factors for

Magnet.me: potential performance, compatibility with the dataset and scalability. When comparing several well-known

benchmarking metrics, the most suitable metric for testing the performance of the recommender was the F1 measure . To

benchmark the model, the connection status of user-company relations should be used as the label, but must be excluded in

the calculation of the implicit ratings.

Logarithmically scaling the view counts before used as a factor in the implicit ratings has proven to be of negligible effect.

Five other signals are found that could be used to improve the recommendations. Hyperparameter optimization with cross

validation is implemented and has succesfully been deployed into the Magnet.me technology stack. The possibilities for a

clustering algorithm are considered in order to solve the cold start problem, but we could not determine the numeric

distances between features, which is required for training an accurate clustering algorithm.

An unexpected challenge of this project was setting up the development infrastructure. It consisted on setting up an

Elasticsearch cluster and a Spark cluster that can interact with each other on Google Cloud services. Another challenge was

in benchmarking the recommender with proper metrics.

Team

B. Beker

Project Member

bekerborek@gmail.com

R. Brugsma

Project Member

rbrugsma@gmail.com

J.F. Offerijns

Project Member

jeroen@offerijns.nl

Dr T. Abeel

Academic Adviser

Assistant Professor, TU Delft

A. Nederlof MSc

Client Adviser

CTO, Magnet.me

The final report for this project can be found at: http://repository.tudelft.nl .

22

http://repository.tudelft.nl/

Optimising a Recommendation Model for Career Discovery.

APPENDIX F: RESEARCH REPORT

Optimizing a Recommendation Model for Career Discovery

B. Beker
Project Member

#4118650

R. Brugsma
Project Member

#4163788

J.F. Offerijns
Project Member

#4221524

Dr T. Abeel
Academic Adviser

Assistant Professor, TU
Delft

A. Nederlof MSc
Client Adviser

CTO, Magnet.me

1 INTRODUCTION
Recommendation systems are algorithms that aim to predict
the rating a user would give to an item, which can be used to
provide recommended content to users. Magnet.me is a
company with a website and mobile apps, which students and
recent graduates can use to discover jobs and career
opportunities. They are using a recommendation engine to
provide personal recommendations of companies and
opportunities to students. A basic recommendation system has
already been implemented, but there is definitely room for
improvement.

The goal of this project is to improve and tweak the
recommender that is currently in use. In order to achieve an
optimal solution for Magnet.me, we will answer the following
question: how can the recommendation system of Magnet.me
be improved? We will do so by working on the following
sub-questions:

(1) Which recommender systems can be applied to the user
data of Magnet.me, in order to realise the best matches
between people and companies/opportunities?

(2) How can we set up a system that automatically
optimizes the model training parameters, based on the
entire dataset available at that time, at a regular basis,
integrated into the Magnet.me technology stack?

(3) How can we deploy our model, in such a way that the
Magnet.me API can easily retrieve recommendations for
specific users?

(4) Optional: can we use other machine learning techniques,
such as deep neural networks, to generate better
recommendations based on not only user actions, but
also the contents of a user profile?

To answer these questions, the following sections are
presented in this research report: in section 2, jobs-to-be-done,
user stages and signals will be discussed to give insight in how
the product is used. In section 3, a selection of applicable

recommendation algorithms are described. Section 4 gives a
comparison of the selected algorithms and what algorithms
will be implemented. In section 5, hyperparameter tuning will
be discussed; and in section 6, a description will be given of
how we will benchmark the implemented recommender
system. Finally, we will discuss our conclusions.

2 CONTEXT
To decide what technique will be used to provide
recommendations for the users of Magnet.me, a description 23

of the context where it operates needs to be provided.

2.1 Jobs-to-be-Done Analysis
In this section, the jobs-to-be-done framework is applied to 24

give insight into the needs of the users of Magnet.me. Another
way to do this is by defining personas and user stories. But we
found out when describing these, that they tend to give
questionable insights, because they do not acknowledge
causality. The jobs-to-be-done framework describes causality
and motivation in a way that would be more suitable for this
case.

The main job for Magnet.me is to provide opportunities and
companies to its users that they are interested in. Job stories
are defined to describe what the goals and jobs are of typical
users:

I. When users browse the application anonymously and 25

get directed to an opportunity or company they are
interested in, they want to know what similar companies
or opportunities there are, so they are aware of what
opportunities or companies they like.

23 Users are in this case students or graduates. Users can also be
recruiters or employees of Magnet.me, but when referring to users in
this report, specifically students or graduates are meant.

24 Jobs to Be Done (Harvard Business Review, 2016)

25 Anonymous use of the application is only applicable on web, not on
mobile.

23

https://hbr.org/2016/09/know-your-customers-jobs-to-be-done

Optimising a Recommendation Model for Career Discovery.

II. When anonymous users browse opportunities, they want
to see opportunities or companies that are interesting to
them, so they can find more relevant opportunities.

III. When users have just signed up and are looking for a

job, they want to see opportunities or companies that are
interesting to them, so they can apply for relevant
opportunities and connect to interesting companies.

IV. When users that already have an account are looking for

a job, they want to see relevant opportunities and
companies they might be interested in and they want to
see what is going on with companies that they are
connected to, so they can apply for relevant
opportunities.

V. When users make an account on Magnet.me, they want

to see more relevant opportunities and companies they
might be interested in, so they can find relevant jobs
faster.

VI. When users are watching multiple opportunities in a

short time, they want to see relevant opportunities and
companies they might be interested in, so they have a
better understanding of the diversity of jobs available.

Within the job stories, four types of users are defined. The
following table summarises the properties of these users.

 User A User B User C User D

Account age 0 days 1 hour 0 days 2 weeks

Signed up no no yes yes

Status Recently
graduated

Recently
graduated

Bachelor
student

Master
student

Matching
job-to-be-done

I II III IV

2.2 User Stages
Users go through several stages. In every stage,
recommendations could potentially be given or signals can be
derived for the recommender. Below, a description will be
given of the most important stages the customer goes through.
In appendix B, you can find a list of screenshots to accompany
these stages.

Figure 1: Common user flow

a) Visited homepage without account
To make the best use of Magnet.me, a user needs to create an
account with details about his or her study background.
Currently, no recommendations can be given on the homepage
to new users because not much is known about the user.

b) Visited Explore page
When a user has created an account, he or she will be
redirected to the Explore page . On web, this page consists of
several lists of recommended opportunities and organizations.
On mobile, the equivalent view would be several company
recommendations through which the user can swipe. The user
can connect to these companies or ignore them.

c) Visit company
Every company has their own page. On this page, a
description is given along with some meta information. A user
can connect with this company through a connect button to
join the company’s network if they have an account. Also,
recommendations are given for companies that are either
similar to the currently shown company, popular in general or
just interesting for the current user. This is called the browse
next experience (BNE).

d) Visit opportunity
Every opportunity—which can be a job, internship or an
event—has a specific page with details about this opportunity.
A user can save or apply for an opportunity if he or she finds it
interesting and if the user has an account. Just like the
company page, the opportunity page also has a BNE in which
opportunities are recommended.

e) Visit news feed
When a user is connected to several companies, it is possible
for them to stay up-to-date with these companies. The news
feed shows recent updates posted by companies (text, photos
or posted opportunities). A user can like these news posts as
well.

f) Company actions
On several stages, it is possible for the user to connect to a
company. By connecting, the user will enter the network of
that company to receive updates and letting that company
know that the user is interested in their company. This can
lead to direct messages from recruiters to the user.

For a user, it is also possible to actively ignore a company
recommendation. On the web application, a user can decide it
is not interested in a company recommendation. On mobile,
this works different than on web. A user needs to decide if he
or she wants to connect to a company before seeing new

24

Optimising a Recommendation Model for Career Discovery.

recommendations. This means that on mobile replying to a
company’s recommendation happens more often than on web.

g) Opportunity actions
On the opportunity page it is possible for users to save an
opportunity. By saving, they can easily retrieve the
opportunities that they are interested in. Users can also apply
for opportunities by sending a message to a specific recruiter
of a company.

h) Invited to apply actions
Companies are able to send out invites for opportunities to
users that are within their network. A user receives an
invitation via email and they can accept it by applying for an
opportunity. A user can also decide that he or she is not
interested in the opportunity. Lastly, the user can be reminded
of their invitation or they can ask a question about the
opportunity.

i) Clicked opportunity link in email
Occasionally an email is sent to users with personal
recommendations. The user will be redirected to a company or
opportunity page if he/she clicks a link in the email.

Recommendations can be given within three different media:
in the web-application, in the mobile app and via email. The
web medium includes both the full-blown web application and
the responsive mobile version of this application. The mobile
medium includes the native iOS and Android apps. All
mentioned stages can occur both in the web application and
the mobile app, except visiting the homepage (this can only
occur in the web application).

2.3 Signal and Event Tracking
In Appendix B, we have listed the events that are currently
being tracked by Magnet.me. This includes viewing
companies and opportunities, viewing news posts and other
general user actions such as logging in and out. It also records
clicks on recommended companies or opportunities, which we
can use to benchmark our recommendation model.

2.4 Recommendation Types
At the moment, recommendations are given in three different
locations: on the Explore page; in the Browse Next Experience
(BNE), which is a list of similar companies or opportunities
on their profiles; and in emails that are sent to users.

We can define six different types of recommendations that are
currently provided:

(1) Personal company recommendations;
(2) Personal opportunity recommendations;
(3) Popular companies within the interests of a user;
(4) Popular opportunities within the interests of a user;

(5) Most similar companies;
(6) Most similar opportunities.

2.5 Signal Suggestions
Several signals are currently missing that might help in
improving the recommendation engine:

(1) Ignoring a company on web and ignoring a company on
mobile is seen as the same signal for the recommender.
Seeing as the equivalent method of ignoring a company
on the web is to click a small X icon in the top right of a
company, whereas the reject action on mobile is a
necessary step for proceeding to the next company, there
is definitely a significant difference in the weight of
these signals.

(2) When a student connects with a company, but later
decides to disconnect, this is interpreted to be the same
as never connecting in the first place. However, we
would argue that this is a fairly strong signal that the
user is not interested anymore in this particular
company.

(3) Recruiters can visit the profile of a user, which can be a
strong indication that the company of the recruiter could
be a good fit for this user.

(4) Recruiters can invite a user to apply for a opportunity as
part of a recruitment campaign. This is a strong signal
that the company has deemed this user to be a good fit.
How a user responds (dismiss invitation; apply for the
opportunity etc.) to this invitation can be a good signal
as well.

(5) Users can send and receive messages to and from
recruiters, which is a strong signal that the user is
interested in the company of the recruiter.

(6) Lastly, the apps currently only track click (or tap, on
mobile) events and other actions. Another type of data
that could be tracked is user focus: how long and how
actively are users looking at a particular company profile
or card in a list? Another event that could be checked if
a certain recommendations enters the viewport of a
certain user.

We also plan to explore whether a time bias should be
included in the recommendation system. If user A applied for
a company three years ago, while user B applied for a
company last month, are these signals of the same strength?
As shown in the customer journeys (section 2.2), interests of
students can change over time, which makes older
recommendations irrelevant. Most likely, there should be

25

Optimising a Recommendation Model for Career Discovery.

some level of regularization to account for the time that has
passed since the signal occurred.

3 LIST OF ALGORITHMS
Recommendation systems can be implemented using a variety
of techniques. Traditionally, the techniques that these systems
use are separated into collaborative filtering and content-based
filtering. In practice, companies often have developed custom
algorithms that work best for their context. This can be done
by combining or extending traditional recommendation
techniques. For example, Google is applying deep neural
network algorithms in YouTube with Tensorflow (Covington,
Adams, & Sargin, 2016). Furthermore, Facebook uses the
proximity of two nodes in the social network graph in order to
make recommendations for users.

Content-based algorithms make use of the attributes (features)
of users or items. In most approaches users are represented by
a certain taste profile. A user builds up a profile with features
based, in the case of Magnet.me, on connections with
companies. A company could be placed at a certain location,
focuses on a certain industry or has a specific amount of
employees working there. If the user profile is similar to the
attributes of the company, the company might be of interest to
the user.

In order to research the various recommender systems that
currently exist, we completed the online course Introduction
to Recommender Systems: Non-Personalized and
Content-Based , which is provided by the University of 26

Minnesota. It gave us a good overview of the existing
collaborative filtering and content-based filtering methods and
the way these models can work.

3.1 Current Implementation
Magnet.me currently uses the collaborative filtering feature in
the Machine Learning library of the Apache Spark 27

framework to provide personal recommendations, because this
system was thought to be the best for the Magnet.me context.
One of the characteristics of Magnet.me is that lots of
opportunities are added to the database constantly (about ---
opportunities on average per day over the last year). At 28

moment of writing, they have --- users, --- companies and ---
opportunities in their database . 29

26 Introduction to Recommender Systems on Coursera

27 Website of Apache Spark

28 We calculated this by counting the number of opportunities added
daily to the ElasticSearch database and then taking the average.

29 We have determined these numbers by querying the current
Magnet.me database.

Typical for their users is the short time they are browsing
through content. On average, as shown in figure 3, only a
small percentage will return after a few months, because he or
she usually stops searching after finding a suitable job.

Figure 2: Retention rate of users of Magnet.me on a monthly
basis on the web application (source: Google Analytics)

Apart from using collaborative filtering for giving personal
recommendations, similar and popular recommendations are
given. The CF model is trained once an hour, which means
that until this moment, no personal recommendations can be
given. This is why only popular and similar recommendations
are given in this time. After an hour, the user-based
collaborative filtering algorithm is re-trained, which takes 16
minutes on average , and personal recommendations will be 30

given. To make the best use of the product, users need to
receive recommendations as soon as possible, while the
system has little time to learn user preferences.

The idea of user based collaborative filtering algorithm is that
the behaviour of past users is used to make recommendations
for new users (Ekstrand, Riedl, & Konstan, 2011). In the
context of Magnet.me, this is done by collecting events that
users produce. Currently, the recommender gives
recommendations based on data consisting of three different
types of user actions:

● User views a company recommendation (positive);
● User views an opportunity recommendation (positive);
● User connects with a company (strong positive).

To obtain data about the relation between user and content,
explicit or implicit data can be gathered. The difference is that
with explicit data, the user is asked to give a score for specific
content. With implicit data, no score is explicitly asked and
this must be inferred from user actions like clicks. The
recommendations of the current algorithm are based solely on
implicit user data. It is important to note that this means an
extra step in the computation of the predictions is required.
The implicit data of a user has to be converted to a confidence

30 We determined this by running a database query in ElasticSearch to
determine the average time of each Spark job over the last year, after
which we summed the averages of each of the 4 types of jobs.

26

https://www.coursera.org/learn/recommender-systems-introduction
https://spark.apache.org/

Optimising a Recommendation Model for Career Discovery.

matrix where all entries contain confidence values. (Hu,
Koren, & Volinsky, 2008) The value 1 is assigned to the two
click actions. A value of 10 is assigned to the connect action,
because this is considered a more significant relation between
a user and a company than a click action. Several million
events have been collected in the past. When a user produces
several events, the collaborative filtering compares him or her
to users that are similar and gives recommendations
accordingly.

Alternating Least Squares
The collaborative filtering feature inside Spark, which is used
by Magnet.me, relies on matrix factorization to find the best
recommendations. Alternating Least Squares (ALS) is an
optimization algorithm that is used by Spark to solve this
matrix factorization (Takács, Tikk, 2012). Before the
algorithm starts, the data in the user-content matrix is sparse.
After running the algorithm, this matrix contains all
predictions for how much a user matches with a specific
company.

This matrix can be factorized in and , of which theP Q
values are unknown in the beginning, and can be initially set
to 1 or small random values. ALS has to learn these latent
vectors by alternatingly updating the values of and . InP Q
multiple iterations, it changes values in one of the two
matrices and calculates the other matrix. After enough
iterations, the values will converge, and the entries in the
multiplication matrix should be good predictions ofP × Q
how much a user matches with a specific
company/opportunity.

Figure 3: Example of matrix factorization calculation (source:
Databricks)

In regards to ALS in Spark, five parameters can be configured
to improve the resulting predictions. Additionally, one
parameter can be passed to specify the number of blocks used
for parallelization. Typical for the ALS algorithm is that it
alternatingly changes one of the two factorized matrices. The
optimization of the latent vectors could also be done using
other algorithms like Bayesian networks or probabilistic latent
semantic analysis (Su, Khoshgoftaar, 2009), but these
algorithms are not included in Spark’s machine learning
library.

Strengths and Weaknesses

The user collaborative filtering (CF) algorithm has a number
of benefits for Magnet.me. First, the content that is
recommended does not have to be similar to what the user
searched for in the past. If other users, that are similar to a
user, first searched for company X and later searched for
another unrelated company, the significantly different
company can be recommended to a new user that searched for
company X, This advantage applies to memory-based
CF-algorithms as well.

Another benefit is that the recommended content actually has
matched with previous users. This can also be a problem
because no events exist for recently added companies or
opportunities, which could result in new items not being
recommended at all. This problem is partly solved by also
presenting content that is new to users.

Previously no distributed user-CF algorithm existed, but Spark
makes the algorithm distributed and thus more scalable. A
disadvantage of the current system is that no personal
recommendations can be given in the first hour, because the
CF-algorithm only updates all predictions once an hour in the
current implementation at Magnet.me.

3.2 Alternative Techniques
Below we have included a list of potential alternative
techniques that can be used for recommending companies and
opportunities to students. Note that this list is not exhaustive,
but includes a subset of all machine learning algorithms that
we found to be the most likely candidates for this particular
project.

Memory-based Collaborative Filtering
Besides the model-based collaborative-filtering approach that
is described above, a memory-based approach can be used
where the similarity between users is calculated by similarity
functions like cosine similarity or the Pearson correlation
coefficient. A weighted average of events of the most similar
users is determined to provide a recommendation. Until
recently, memory-based approaches did not scale well with
larger datasets, but this has also been fixed in Spark by the
implementation of Dimension Independent Matrix Square
using MapReduce (DIMSUM) (Zadeh, Carlsson, 2014).

Graph Analysis
Graphs can be used in certain different ways to improve
recommendation accuracy. One example of graph-based
filtering is GraphRec , a system which converts the user-item
matrix to a weighted adjacency matrix, which is used to create
a graph from which the entropy of all items can be calculated
(Lee, Lee, 2015).

For example, GraphRec has been used to recommend music
artists using explicit user data. This algorithm tends more

27

Optimising a Recommendation Model for Career Discovery.

towards a content-based approach, because the items are
centralized and relations are being made between items, based
on their attributes. Another graph-based algorithm is found
where users are nodes and users are connected to
item-attributes via the items, as shown in Figure 4 (Yu et al.,
2014).

Figure 4: Knowledge Graph used for movie recommendation
(source: Yu et al., 2014)

Support Vector Machines
SVM is a model that classifies its input into a binary output. It
does so by defining an hyperplane between vectors (which are
vectors with features of a user or organization/opportunity).
Vectors on one side of the hyperplane are items or users that
are similar to the input vector of the SVM. In the Magnet.me
case, input could be a vector with features of a user. The SVM
will determine what class (a collection of opportunities and
organizations) the user belongs, which is basically equivalent
of determining what opportunities or organizations could be
recommended to that user. This way, SVM can be used as a
recommendation system (Gershman et al., 2011).

Unfortunately, research has shown that SVMs perform poorly
on recommendation problems. This is because there is only a
small percentage of users interested in a particular
item/company, leading to extremely unbalanced class
distributions (Zhang, Iyengar, 2002).

Random Forests
A random forest classifier is a model that uses several
decision trees to classify its input (Ajesh, Nair, & Ps, 2016).
These decision trees base their decision on training data that
has been served. In the Magnet.me case, input of the random
forest model could be a vector representing the user profile (in
a model based implementation) (Zhang, Min, & He, 2014).
Every decision tree determines what recommendation
(company or opportunity) comes out of their tree. An average
of all output of decision trees will be calculated to determine
what recommendation suits that user best.

A disadvantage of random forests is that streaming data input
is a problem for its model. When new training data is
available, a random forest needs to be recreated and trained
(Saffari et al., 2008). In Magnet.me data, new example data
arrives all the time (new companies and new opportunities),
which means that without recreating the forest constantly
(which takes a lot of computation time), the system would
give questionable recommendations.

Wide and Deep Learning
Neural networks are fairly new in the context of
recommendation systems. Deep neural networks have more
hidden layers in the network (mostly more than ten) in
comparison with “normal” neural networks. In a
recommendation case, input for the neural network would be
several features of a user profile and the output would be a
classification of for example companies.

Recently, wide and deep neural network learning has been
introduced in the Google Play Store (Cheng et al., 2016).
Wide and deep learning means that a network has two
components, one wide (which is in this paper is a generalized
linear model) and one deep (a deep neural network)
component. It is stated that the recommendations of the Play
Store improved significantly.

3.3 Addressing the Cold-Start Problem
One of the main problems of recommenders is that little
information of new users is available. This problem is called
the cold start problem. This is especially a problem when
recommendations are mainly based on previous user
behaviour. As the first recommendations are currently only
based on what companies are popular for the study
background of the student, it is preferable to use all available
user data, like interests, age and educational level. This is
currently not possible.

To tackle this problem, we would be able to create an online
algorithm of the model-based collaborative filtering algorithm.
Unfortunately, there are no production-ready implementations
available. However, the machine learning library in Apache
Spark does contain a streaming implementation of the
k-means clustering algorithm. While this cannot be used
directly for providing recommendations, we can apply it
indirectly. If we can cluster users together based on their
profile content, we can provide recommendations to new users
immediately after completing their profile, by looking at the
recommendations that were provided to existing users that are
also in their cluster.

4 CHOOSING AN ALGORITHM

4.1 Decision Factors

28

Optimising a Recommendation Model for Career Discovery.

To decide what algorithm will be used for implementing the
recommendation system, certain factors are described. These
factors will determine a rating for the recommendation system
and with that the best option for Magnet.me will be presented.

● Potential Performance: Clearly, the most important
factor in deciding the best algorithm is its accuracy at
providing recommendations of companies and
opportunities to users. It should also aim to not just
provide the most popular companies as
recommendations each time, but diversify its
recommendations.

● Compatibility with Dataset: This factor determines if the
algorithm is applicable on the Magnet.me dataset. Some
algorithms work better with different types of data, so to
determine how compatible a technique is with the data is
important.

● Scalability: As Magnet.me is a growing company with
new users and items each day, the algorithm needs to
scale well. A very important factor deciding if an
algorithm is scalable is if it can be used on a distributed
system. Spark is a system which is mostly used to
handle algorithms this way. An algorithm that is scalable
is in this case the same as saying an algorithm has a
Spark implementation.

● Prediction Time: This factor decides how fast the
calculation speed is in recommending an item to a user.

● Model Training Time: This factor decides what the
speed is in training the model, if applicable.

● Ease of Use: This factor determines how easy it would
be to implement and deploy the algorithm.

4.2 Algorithm Comparison
We have used the decision factors to evaluate the various
algorithms that were listed in the previous section. By rating
each algorithm on a scale of negative-neutral-positive, we can
create a simple overview of the advantages and disadvantages
of each algorithm, as can be seen in the figure below.
Furthermore, we have added a percentage denoting the

importance of each factor for this project. Obviously, both the
importance percentages and the algorithm ratings are guesses
and not exact numbers. The main goal is to provide some
insight into our reasoning and enable a relative ranking of the
algorithms.

4.3 Proposed Implementation
When we take the importance of the decision factors in
consideration, it can be concluded that the current
implementation, model-based CF, scores best overall. This
algorithm scores well for scalability because Spark makes use
of ALS for the model training, which can be run distributed.
Model-based CF is well-known for its diverse
recommendations, which is not true for algorithms like RFC
and SVM. As for the graph-based approaches, no accurate
guessing could be made regarding to the performance.

In order to tackle the cold-start problem, another algorithm
can be used to give predictions for the first hour, when little
information of a new user is available. We propose to
integrate a streaming k-means algorithm for providing
recommendations to new users. By clustering new users
together with existing similar users, we can take the
recommendations for existing, more established users with
more data and provide these recommendations to the new
users as well.

The other approach that scored well is wide and deep learning.
The main disadvantage for wide and deep learning is that it is
a relatively new and complex method. However, it has proven
to be accurate at providing recommendations in the Google
Play Store. Therefore, our thesis is that it could work quite
well in this context, but we plan to explore it as an optional
next step after fully implementing the model-based CF and
testing the k-means clustering algorithm.

5 MODEL SELECTION

5.1 Hyperparameter Optimization
At the moment, the parameters that are used with the
collaborative filtering implementation have been predefined
and have not been updated in the last year. However, the
optimal parameters to achieve the best results can very well

29

Optimising a Recommendation Model for Career Discovery.

change over time, due to new incoming data that changes the
underlying structure of the dataset.

Methods exist that can automatically determine the optimal set
of parameters to use when training the model. The main
approach is to run a parameter sweep. Quite simply, you
define minimum and maximum values for each parameter and
it will train the model with all possible combinations of
parameters. To determine the best set of parameters, a loss
function is defined which calculates the error rate of the
model. A basic implementation works like this:

(1) Create separate sets of training and test datasets, which
is often a 70-30 or 80-20 split;

(2) For each set of parameters:
a. Train the recommendation model using the

training data;
b. Evaluate the performance using the test data;

(3) Choose the best set of parameters with the lowest error
rate.

In the Spark implementation of collaborative filtering, we can
run a parameter sweep on the following parameters:

● rank: the number of latent factors in the model;
● iterations: the number of iterations of ALS to run;
● lambda: the regularization parameter in ALS;
● alpha: governs the baseline confidence in preference

observations.

Furthermore, we can explore whether it would be worthwhile
to tune the weights of the various signals. At the moment,
each company profile view weighs as 1 point while being
connected to a company weighs as 10 points. We can attempt
to include these in the parameter sweep as well and see if this
leads to better results.

5.2 Cross Validation
However, this approach can be prone to overfitting, as the
lowest error rate can easily be a model that is very specific to
this training dataset. Therefore, cross-validation is often
introduced in order to avoid overfitting the training data. For
example, in k-fold cross validation, the entire dataset is split
into k subsets. One subset is then used as the test dataset,
while the other k-1 datasets are used as training data. The
process then becomes:

(1) Create k subsets of the entire dataset;
(2) For each set of parameters:

a. Repeat k times:
i. Define one of the subsets as the test data;
ii. Define the other k-1 subsets as the training

data;

iii. Train the recommendation model using the
training data;

iv. Evaluate the performance using the test data;
b. Take the average of the error rates of each subset;

(3) Choose the best set of parameters with the lowest
average error rate.

Figure 5: Example of a k-fold cross validation with k=5
(source: Graz University of Technology)

6 BENCHMARKING & MONITORING
Initially, we will develop a recommendation system that looks
only at the various user actions and events that occur. These
include viewing a company page, viewing an opportunity and
more. We can then determine which companies or
opportunities are the best matches for a particular user, based
on these signals. These will be the recommendations.

6.1 Collaborative Filtering Model
Magnet.me has provided us with a dataset of company-user
relations, which includes whether or not a user is connected to
a company. We can use this to verify the accuracy of our
recommendation system. Our plan is to filter the data on all
user-company relations of which the status is CONNECTED .
We will then use k-fold cross validation (as explained in
section 5.2), of which we will use training data for creating
our model to predict the best companies for a user. Then we
can calculate the root mean squared error (RMSE) for the test
data between the predicted best companies of a user and the
companies to which the user is actually connected to.

By applying the same technique, we can benchmark the
opportunity recommendations. We will filter the data on what
opportunities have been applied to and which opportunities 31

have been saved. By calculating the RMSE between the
predictions and actual applications or saves, we can
benchmark the opportunity recommendations.

31 In this case, applying means just clicking on the button to apply, as
whether the user has fully completed the application form is not being
tracked.

30

Optimising a Recommendation Model for Career Discovery.

We will then run the same benchmarking model on the
existing recommender system, that was implemented a year
ago by Magnet.me. Since that model was trained using
parameters chosen specifically for the data from more than a
year ago (which was a significantly smaller dataset), we can
most likely improve the model by choosing parameters that fit
better with the current dataset.

Furthermore, we can start to set up other variations of our
collaborative filtering model and benchmark this against both
the existing model and our basic model. This can include a
model with regularization for older events, a model which
uses hyperparameter tuning to optimize the signal weights, or
a model which looks at other signals which have so far been
ignored.

6.2 Clustering Model
Using an online implementation of k-means, we plan to cluster
users with similar users and then provide recommendations to
a new user based on the recommendations of the existing,
similar users. Our collaborative filtering model creates a
user-feature matrix that we can use to find the most similar
users. We can use this matrix as a benchmark for the k-means
clustering model.

By looking at the X most similar users of each user in the
k-means model, comparing this with the X most similar users
of each user in the user-feature matrix of the collaborative
filtering model and then calculating the RMSE, we can
determine the accuracy of our clustering model.

6.3 Monitoring
When we can show that our model is an improvement over the
existing model using sufficient benchmarking data,
Magnet.me will deploy our new model to their production
servers. They are already tracking clicks on recommendations
and are currently implementing a system which can track the
click-through rate (CTR) of recommendations. We can then
see what the improvement of our model will be in terms of
the live CTR in the Magnet.me apps.

7 CONCLUSION
In this research report, we have analyzed how
recommendations are used at Magnet.me. We determined
what the jobs-to-be-done are and how recommendations could
help to do those jobs. Also, exploratory research has been
done which recommendation systems exists and what the
advantages and disadvantages are of these systems. We have
managed to choose what algorithms could best be
implemented to improve the recommendations. By doing so,
discovery of career opportunities for Magnet.me users will be
improved.

First, the model-based collaborative filtering with ALS
algorithm will be implemented using Spark. The algorithm
seemed to be the best solution for the Magnet.me case.
Moreover, by implementing this using Spark, it will be
scalable. We will attempt to implement streaming k-means
after that. This could be a good solution for the cold-start
problem. When this has been implemented, we will try to
improve the recommendations by integrating deep and wide
learning using Tensorflow.

Apart from implementing the aforementioned
recommendation algorithms, automatic hyperparameter
optimization will be implemented to constantly improve the
recommender. To determine if the proposed system will be an
improvement over the old system, measureable benchmarks
will be determined. When an improvement by our system has
been shown, Magnet.me will deploy our system on
production. In appendix A, a project timeline is listed, giving
an overview of our plans.

REFERENCES
Ajesh, A., Nair, J., & Ps, J. (2016). A Random Forest Approach for

Rating–based Recommender System. Intl. Conference on Advances in
Computing, Communications and Informatics (ICACCI) , 1293–1297.

Cheng, H.-T., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H., …
Shah, H. (2016). Wide & Deep Learning for Recommender Systems.
arXiv Preprint , 1–4. https://doi.org/10.1145/2988450.2988454

Covington, P., Adams, J., & Sargin, E. (n.d.). Deep Neural Networks for
YouTube Recommendations. https://doi.org/10.1145/2959100.2959190

Ekstrand, M. D., Riedl, J. T., & Konstan, J. A. (2011). Collaborative Filtering
Recommender Systems. Human–Computer Interaction , 4 (2), 81–173.
https://doi.org/10.1561/1100000009

Gershman, A., Wolfe, T., Fink, E., & Carbonell, J. (2011). News Personalization
using Support Vector Machines, 28–31. Retrieved from
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1051&context=lti

Hu, Y., Volinsky, C., & Koren, Y. (2008). Collaborative filtering for implicit
feedback datasets. Proceedings - IEEE International Conference on
Data Mining, ICDM , 263–272. https://doi.org/10.1109/ICDM.2008.22

Lee, K., & Lee, K. (2015). Escaping your comfort zone: A graph-based
recommender system for finding novel recommendations among
relevant items. Expert Systems with Applications .
https://doi.org/10.1016/j.eswa.2014.07.024

Saffari, A., Leistner, C., Santner, J., Godec, M., & Bischof, H. (n.d.). On-line
Random Forests.

Su, X., & Taghi M.Khoshgoftaar. (2009). A survey of collaborative filtering
techniques. Advances in Artificial Intelligence , 2009 (Section 3), 1–19.
https://doi.org/10.1561/1100000009

Takács, G., & Tikk, D. (n.d.). Alternating Least Squares for Personalized
Ranking.

Yu, X., Ren, X., Sun, Y., Gu, Q., Sturt, B., Khandelwal, U., … Han, J. (n.d.).
Personalized Entity Recommendation: A Heterogeneous Information
Network Approach. https://doi.org/10.1145/2556195.2556259

Zadeh, R. B., & Carlsson, G. (2014). Dimension Independent Matrix Square
using MapReduce (DIMSUM).

Zhang, H. R., Min, F., & He, X. (2014). Aggregated recommendation through
random forests. Scientific World Journal , 2014 .
https://doi.org/10.1155/2014/649596

Zhang, T., & Iyengar, V. S. (2002). Recommender Systems Using Linear
Classifiers. Journal of Machine Learning Research , 2 , 313–334.
https://doi.org/10.1162/153244302760200641

31

Optimising a Recommendation Model for Career Discovery.

APPENDIX E.A: PROJECT TIMELINE

Nov 14 - Nov 20 Finish project plan; Draft research report; Finish Coursera course.

Nov 21- Nov 27 Finish research report; Set up technology infrastructure.

Nov 28 - Dec 4 Implement the model-based collaborative filtering system in Spark.

Dec 5 - Dec 11 Improve CF system; Implement hyperparameter tuning.

Dec 12 - Dec 18 Deploy CF system with hyperparameter tuning; Implement k-means streaming.

Dec 19 - Dec 25 Improve k-means streaming; Start working on final report; Submit code to SIG.

Dec 26 - Jan 1 Break.

Jan 2 - Jan 8 Break.

Jan 9 - Jan 15 Deploy k-means streaming; Implement SIG feedback; Work on final report.

Jan 16 - Jan 22 Test wide and deep learning network; Finish draft of final report.

Jan 23 - Jan 29 Submit code to SIG; Finish final report.

Jan 30 - Jan 31 Final presentation.

APPENDIX E.C: PRODUCT SCREENSHOTS

Homepage

Explore page

Company profile

Opportunity

News feed

Mobile card-swiping interface (iOS)

32

Optimising a Recommendation Model for Career Discovery.

33

