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Abstract

When writing functional code that composes multiple recursive functions that
operate on a datastrcuture, we often incur a lot of computational overhead
allocating memory, only to later read, use, and discard this information. This
can be alleviated using fusion, a technique that combines these multiple re-
cursive datastructure traversals into one. This thesis explores shortcut fusion
using (Co)Church encodings based on the work of Harper (2011), focusing on
two questions: What is needed to reliably achieve fusion in Haskell, and the
correctness of these transformations through a formalization in Agda.

The first contribution replicates and extends Harper’s (Co)Church encod-
ings in Haskell, uncovering optimizer weaknesses and providing practical in-
sights for achieving fusion within Haskell. The second contribution formalizes
these encodings in Agda, leveraging parametricity and the category theory de-
scribed by Harper. The formalization proves the equivalence of these encoded
functions to the unencoded ones, showing that the encodings are in fact iso-
morphisms, as long as parametricity (Wadler, 1989) is assumed.

These findings highlight the effectiveness and correctness of shortcut fusion
techniques and show the promise of shortcut fusion: Reduce the computational
overhead associated with functional programming while retaining its nice, com-
positional properties.
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1 Introduction
When writing code there are two main paradigms: Imperative and Functional. Imperative programming
has the benefit of being performant at the cost of weaker type systems, lack of compositionality, and
memory consistency issues. Functional programming, in contrast, offers a stronger type system with
more guarantees and more compositionality, but at the cost of computational overhead. I briefly describe
one of the sources of computational overhead, followed by my work on automating the alleviation of this
overhead, also known as fusion:

When writing functional code, we often use lists (or other data structures) to ‘glue’ multiple pieces of
data together. For example, the following function in the programming language Haskell, as introduced
by Gill et al. (1993):

all :: (a → Bool) → [a ] → Bool
all p xs = and (map p xs)

The function map p traverses across the input list, applying the predicate p to each element, resulting in
a new boolean list. Then, the function and takes this resulting, intermediate, boolean list and consumes
it by ‘and-ing’ together all the boolean values.

Being able to compose functions in this fashion is part of what makes functional programming so
attractive, but it comes at the cost of computational overhead: Each time a list cell is allocated, only
for the following function to subsequently deallocate it once the value has been read. We could instead
rewrite all in the following fashion:

all :: (a → Bool) → [a ] → Bool
all p xs = h xs
where h [ ] = True

h (x : xs) = p x ∧ h xs

This function, instead of traversing the input list, producing a new list, and then subsequently traversing
that intermediate list; traverses the input list only once, immediately producing a new answer. Writing
code in this fashion is far more performant, at the cost of readability, writability, and composability. Can
you write a high-performance, single-traversal, version of the following function (Harper, 2011)1?

f :: (Int , Int) → Int
f = sum . map (+1) . filter odd . between

With some (more) effort and optimization, one could arrive at the following solution:

f :: (Int , Int) → Int
f (x , y) = loop x
where loop x = if x > y

then 0
else if odd x

then (x + 1) + loop (x + 1)
else loop (x + 1)

Doing this by hand every time, to get from the nice, elegant, compositional style of programming to the
higher-performance, single-traversal style, is repetitive and error-prone. Especially if this needs to be
done, by hand, every single time any two functions are composed. Is there some way to automate this
process?

The answer is yes*, but it comes with an asterisk attached, namely: *The functions that are being
fused need to be folds or unfolds. The form of optimization that we are looking for is called fusion: The
process of taking multiple list producing/consuming functions and turning (or fusing) them into one that
traverses the datastructure just once.

Question Related work is discussed in detail in Section 5. My thesis focuses on a specific form of fusion
called shortcut fusion through the use of (Co)Church encodings as described by Harper (2011) and asks
the following two questions:

1. To implement (Co)Church encodings, what is necessary to make the code reliably fuse? This leads
to the following sub-questions:

1The between is usually called enumFromTo, we keep it as between to remain consistent with Harper’s naming scheme.
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• What optimizations are present in Haskell that enable fusion to work?

• What tools and techniques are available to get Haskell’s compiler to cooperate and trigger
fusion?

2. Are the transformations used to enable fusion safe? Meaning:

• Do the transformations in Haskell preserve the semantics of the language?

• If the mathematics and the encodings are implemented in a dependently typed language, is it
possible to prove them to be correct?

Contributions My thesis centers on formalizing, replicating, and expanding upon Harper (2011)’s
work and makes two crucial contributions, answering the two questions above:

1. I replicate the Church and Cochurch encodings’ implementation in Haskell, as described by Harper
and investigate further as to their performance characteristics. In this process, I find a weakness
in Haskell’s optimizer, glean further practical insights as to how to get these encodings to properly
fuse, especially for Cochurch encodings, and what optimizations enable shortcut fusion to do its
work.

This is important as Harper gave a good pragmatic explanation of how to implement the (Co)Church
encodings in Haskell, gave an example implementation, and benchmarked that implementation. He
did not, however, provide much detail as to why they work stating: “Interestingly, however, we note
that Cochurch encodings consistently outperform Church encodings, sometimes by a significant
margin. While we do consider these results conclusive, we think that these results merit further
investigation.” (Harper, 2011). This is what my research has set out to look into. This is discussed
in detail in Section 3.

2. (Co)Church encodings are formalized and implemented, including the relevant category theory, in
Agda, in as a general fashion as possible, leveraging containers (Abbott et al., 2005) to represent
strictly positive functors. Furthermore, the functions that are described (producing, transforming,
and consuming) are also implemented in a general fashion and shown to be equal to regular folds
(i.e., catamorphisms and anamorphisms). Furthermore, I apply the general proofs to an example
List instance.

This is important because there currently does not seem to exist a formalization of the work. For-
mally verifying the mathematics will strengthen the work done by Harper, aiding in understanding
in how the different pieces of mathematics relate. This is discussed in detail in Section 4.

There are multiple future avenues that could be worked on to build on my work: The discussion and
implementation of the Haskell code could help future readers understand how (Co)Church encodings
work, hopefully aiding in the wider adoption and implementation of fusible functions at the library level.

From the current Agda implementation, it should be relatively simple to merge the Church and
Cochurch encodings into Agda’s stdlib. This would also make easier future work building on (Co)Church
encodings. The work could be extended further to propertly implement a bisumulation or to leverage
Agda –bridges’s internalized parametricity to be able to prove the free theorems currently postulated.

2 Background
Before discussing my work, it is important to describe the necessary background. For the reader I
assume familiarity with Agda and Haskell. I also assume familiarity with the work of Harper (2011), it
is recommended to have his work close at hand when reading mine; I do summarize parts of it, but I will
not embed his work in mine.

My work builds on a body of existing work, namely foldr/build fusion and variants (Gill et al., 1993;
Svenningsson, 2002; Coutts et al., 2007), some category theory (Ahrens & Wullaert, 2022), (Co)Church
encodings (Harper, 2011), Containers (Abbott et al., 2005), parametricity (free theorems) (Wadler, 1989),
and optimizations in Haskell’s optimization pipeline that are relevant for fusion (Jones, 1996). We will
be describing some of these works briefly, others will be described when needed.
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2.1 Foldr/build fusion (on lists)
Starting with the basics of fusion. Gill et al. (1993) describes the original ‘shortcut fusion’ technique.
The core idea is as follows:

In functional programming, lists are (often) used to store the output of one function such that it can
then be consumed by another function. To co-opt Gill’s example (and repeat a part of my introduction):

all :: (a → Bool) → [a ] → Bool
all p xs = and (map p xs)

map p xs applies p to all the elements, producing a boolean list, and and takes that new list and ‘ands’ all
of them together to produce a resulting boolean value. “The intermediate list is discarded, and eventually
recovered by the garbage collector” (Gill et al., 1993).

This generation and immediate consumption of an intermediate datastructure introduces a lot of
computational overhead. Allocating memory for each cons cell, storing the data inside that instance,
and then reading back that data, all take time. One could instead write the above function like this:

all :: (a → Bool) → [a ] → Bool
all p xs = h xs
where h [ ] = True

h (x : xs) = p x ∧ h xs

In this case no intermediate datastructure is generated at the cost of more programmer involvement.
We’ve made a custom, specialized version of and . map p. The compositional style of programming that
functional programming languages enable (such as Haskell) would be made a lot more difficult if, for
every composition, the programmer had to write a specialized function. Can this be automated?

Gill’s key insight was to note that when using a foldr k z xs across a list, the effect of its application:

“is to replace each cons in the list xs with k and replace the nil in xs with z. By
abstracting list-producing functions with respect to their connective datatype (cons and nil),
we can define a function build:

build :: (∀ b . (a → b → b) → b → b) → [a ]
build g = g (:) [ ]

Such that:

foldr k z (build g) = g k z

Gill et al. (1993).

Gill dubbed this the foldr/build rule. For its validity g needs to be of type:

g : ∀ β : (A → β → β) → β → β

Which is true by g’s free theorem à la Wadler (1989). For more information on free theorems see
Section 2.2.

2.1.1 An example

Take as an example the function from, that takes two numbers and produces a list of all integers between
the:

from :: Int → Int → [Int ]
from a b = if a > b

then [ ]
else a : from (a + 1) b

To arrive at a suitable g we must abstract over the connective datatypes:

from ′ :: Int → Int → (∀ b . (Int → b → b) → b → b) → [Int ]
from ′ a b = λc n → if a > b

then n
else c a (from (a + 1) b c n)
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This is obviously a different function, we now redefine from in terms of build (Gill et al., 1993):

from :: Int → Int → [Int ]
from a b = build (from ′ a b)

With some inlining and β reduction, one can see that this definition is identical to the original from
definition. Now for the actual fusion (Gill et al., 1993):

sum (from a b)
= foldr (+) 0 (build (from ′ a b))
= from ′ a b (+) 0

Notice how we can apply the foldr/build from step two to three to prevent the generation of an
intermediate list. Any adjacent foldr/build pair ‘cancels away’. This is an example of shortcut fusion.

One can rewrite many functions in terms of foldr and build such that this fusion can be applied.
This can be seen in Figure 1. See Gill et al. (1993)’s work, specifically the end of section 3.3 (unlines)
for a more expansive example of how fusion, β reduction, and inlining can combine to fuse a pipeline of
functions down to as an efficient minimum as can be expected.

map f xs = build (λc n → foldr (λa b → c (f a) b) n xs)
filter f xs = build (λc n → foldr (λa b → if f a then c a b else b) n xs)
xs ++ ys = build (λc n → foldr c (foldr c n ys) xs)
concat xs = build (λc n → foldr (λx Y → foldr c y x ) n xs)

repeat x = build (λc n → let r = c x r in r)
zip xs ys = build (λc n → let zip′ (x : xs) (y : ys) = c (x , y) (zip′ xs ys)

zip′ _ _ = n
in zip′ xs ys)

[ ] = build (λc n → n)
x : xs = build (λc n → c x (foldr c n xs))

Figure 1: Examples of functions rewritten in terms of foldr/build. (Gill et al., 1993)

2.1.2 Generalization to recursive datastructures

This foldr/build fusion works for lists, but it has several limitations. One is that it only works on
lists, which can be alleviated using Church encodings and is described by Harper (2011). Secondly, the
functions that we are writing need to be expressible in terms of compositions of foldr’s and builds. What
if we want to implement the converse approach using an unfoldr? This exists and is destroy/unfoldr
fusion and is described by Coutts et al. (2007). This work, generalized by Cochurch encodings, is also
described by Harper (2011).

The generalization by Harper leverages (Co)Church encodings, which uses definitions from category
theory such as F-algebras and initiality. Read on to Section 2.3, where we discuss these category theory
definitions, after first having discussed free theorems.

2.2 Theorems for Free
Wadler (1989) in his work ’Theorems for Free’, which builds on the abstraction theorem of Reynolds
(1983), describes a way of getting theorems from a polymorphic function only by looking at its type. In
his paper, he uses the trick of reading types as relations (instead of sets) in order to derive a lemma called
parametricity.

From this it is possible to derive a theorem that a type satisfies, without looking at its definition.
These free theorems can be used to state truths about polymorphic functions. This is also done in Harper
(2011)’s work; namely a theorem about the polymorphic induction principle and coinduction principle
function types.

For example the free theorem of the following polymorphic function (Harper, 2011):

g : ∀ A . (F A → A) → A

6



is the theorem stating that:

h . b = c . F h ⇒ h (g b) = g c

For functions b : F B -> B, c : F C -> C, h : B -> C.
Within Agda, proving that the free theorems of the polymorphic function types are correct is some-

thing that is currently not possible without internalized parametricity, as initially described by Bernardy
& Moulin (2012). Recent work by Van Muylder et al. (2024) does exist, that extends cubical Agda with
a –bridges extension that makes it possible to derive free theorems from within Agda. While it might
be possible to leverage this implementation, the work is very new, having come out after the start of this
thesis project. Instead, I have opted to postulate the free theorems on the two needed locations.

2.3 The category theory
In order to explain what an initial/terminal F-(co)algebra is, I’ll first need to explain what a functor is
and, more pressingly, what a category is. The concept of catamorphisms and anamorphisms (folds and
unfolds) will follow suit. The mathematics described here are based on the lecture notes by Ahrens &
Wullaert (2022).

2.3.1 A Category

A category C is a collection of four pieces of data satisfying three properties:

1. A collection of objects, denoted by C0

2. For any given objects X,Y ∈ C0, a collection of morphisms from X to Y , denoted by homC(X,Y ),
which is called a hom-set.

3. For each object X ∈ C0, a morphism IdX ∈ homC(X,X), called the identity morphism on X.

4. A binary operation: (◦)X,Y,Z : homC(Y, Z) → homC(X,Y ) → homC(X,Z), called the composition
operator, and written infix without the indices X,Y, Z as in g ◦ f .

These pieces of data should satisfy the following three properties:

1. (Left unit law) For any morphism f ∈ homC(X,Y ):

f ◦ IdX = f

2. (Right unit law) For any morphism f ∈ homC(X,Y ):

IdY ◦ f = f

3. (Associative law) For any morphisms f ∈ homC(X,Y ), g ∈ homC(Y, Z), and h ∈ homC(Z,W ):

h ◦ (g ◦ f) = (h ◦ g) ◦ f

2.3.2 Initial/Terminal Objects

Categories can contain objects that have certain (useful) properties. Two of these properties are as
follows:

initial Let C be a category. An object A ∈ C0 is initial if there is exactly one morphism from A to any
object B ∈ C0:

∀A ∈ C0 : (∀B ∈ C0 : ∃!homC(A,B)) =⇒ initial(A)

terminal Let C be a category. An object A ∈ C0 is terminal if there is exactly one morphism from
any object B ∈ C0 to A:

∀A ∈ C0 : (∀B ∈ C0 : ∃!homC(B,A)) =⇒ terminal(A)

The proofs of initality and terminality require a proof that is split into two steps: A proof of existence
(The ∃ part of ∃!) and a proof of uniqueness (The ! part of ∃!). The former is usually done by construction,
giving an example of a function that satisfies the property and the latter is usually done my assuming that
another homC(A,B) (for the initial case) exists and showing that it must be equal to the one constructed.
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2.3.3 Functors

For a given category C,D, a functor from C to D consists of two pieces of data satisfying two properties:

1. A function F mapping objects in C to D:

C0 → D0

2. For each X,Y ∈ C0, a function mapping morphisms in C to morphisms in D:

homC(X,Y ) → homD(F (X), F (Y ))

These pieces of data should satisfy these two properties:

1. (Composition law) for any two morphisms f ∈ homC(X,Y ), g ∈ homC(Y,Z):

F (g ◦ f) = Fg ◦ Ff

2. (Identity law) For any X ∈ C0, we have:

F (IdX) = IdF (X)

An endofunctor is a functor that maps objects back to the category itself i.e., F : C → C.

2.3.4 (Category of) F-(Co)Algebras

Given an endofunctor F : C → C, an F-Algebra consists of two pieces of data:

1. An object C ∈ C0

2. A morphism ϕ ∈ homC(F (C), C)

An F-Algebra Homomorphism is, given by two F-Algebras (C, ϕ), (D,ψ), and a morphism
f ∈ homC(C,D), such that the following diagram commutes (i.e., f ◦ ϕ = ψ ◦ Ff):

FC C

FD D

ϕ

Ff f

ψ

The category of F-Algebras denoted by Alg(F ) consists of (the needed) four pieces of data:

1. The objects are F-Algebras

2. The morphisms are F-Algebra homomorphisms

3. The identity on (C, ϕ) is given by the identity IdC in C

4. The composition is given by the composition of morphisms in C

These pieces of data should satisfy the usual category laws: left/right unit law and composition law.
Note how Alg(F ) makes use of the underlying category C of the functor to define its objects. An Alg(F )
implicitly contains an underlying category in which its objects are embedded.

An F-Coalgebra consists of two pieces of data:

1. An object C ∈ C0

2. A morphism ϕ ∈ homC(C,F (C))

F-Coalgebra homomorphisms and CoAlg(F ) can be defined conversely as done for F-Algebras.
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2.3.5 Catamorphisms and Anamorphisms

Given (if it exists) an initial F-Algebra (µF , in) in Alg(F ). We can know that (by definition), that for
any other F-Algebra (C, ϕ), there exists a unique morphism LϕM ∈ homC(µF , C) such that the following
diagram commutes i.e., LϕM ◦ in = ϕ ◦ F LϕM:

FµF µF

FC C

in

F LϕM LϕM

ϕ

A morphism of the form LϕM is called a catamorphism.
A converse definition of catamorphisms exists, for terminal objects in CoAlg(F ) exists, called anamor-

phisms, denoted by JϕK

2.3.6 Fusion property

Now for the definition we’ve been building to, fusion: Given an endofunctor F : C → C and an initial
algebra (µF , in) in Alg(F ). For any two F-Algebras (C, ϕ) and (D,ψ) and morphism f ∈ homC(C,D) we
have a fusion property:

f ◦ ϕ = ψ ◦ F (f) =⇒ f ◦ LϕM = LψM

In English, if f is an F-Algebra homomorphism, we know that the composition of f and the catamorphism
of ϕ equals the catamorphism of ψ (f ◦LϕM = LψM). We can fuse two functions into one! This is summarized
in the following diagram:

FµF µF

FC C

FD D

in

F LϕM

F LψM

LϕM

LψM
ϕ

Ff f

ψ

The top square commutes by initiality of (µF, in). The bottom one is the precondition, and the right
triangle is the fusion.

A converse definition of fusion can be made for terminal object in CoAlg(F ).
Having described all of this category theory, you might have a natural question: How does this relate

to foldr/build fusion? To tie all this together, we will describe Harper (2011)’s work in Section 2.4,
who discusses a more generalized form of foldr/build list fusion, allowing for a much broader class of
datastructures through Church encodings. As well as a generalized form of destroy/unfoldr fusion through
Cochurch encodings.

Before describing Harper’s work, it is prudent to clearly show the correspondence between category
theory terms and functional programming terms that we use interchangeably. This can be seen in Table 1

category theory functional programming
catamorphism fold
anamorphism unfold
F-algebra algebra
F-coalgebra coalgebra
F-algebra initiality universal property of folds
F-coalgebra terminality universal property of unfolds

Table 1: The above tables matches category theoretical terms to functional programming terms.

2.4 Library Writer’s Guide to Shortcut Fusion
Now that the sufficient category theory has been explained, it is possible to describe the work of Harper
(2011), which my thesis centers on, called “A Library Writer’s Guide to Shortcut Fusion”.
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In his work, Harper explains the concept of Church and Cochurch encodings in four steps: The
necessary underlying category theory, the concepts of encodings and the proof obligations necessary for
ensuring correctness of the encodings, the concepts of (Co)Church encodings with the proof of correctness,
and finally an example implementation for leaf trees. We will now go through each step briefly.

2.4.1 Category Theory

For the full overview of the category theory, see Section 2.3. The main concepts that Harper explains
are the universal property of (un)folds, the fusion law, and the reflection law ; all of which can be derived
from the category theory described earlier.

The universal property of folds is as follows:
h = LaM ⇐⇒ h ◦ in = a ◦ Fh

The fusion law as:
h ◦ LaM = LbM ⇐= h ◦ a = b ◦ Fh

And the reflection law as:
LinM = id

I formalized and proved all of these properties in my Agda formalization. It is also interesting to note that,
for the universal property of unfolds, the forward direction is the proof of existence and the backward
direction the proof of uniqueness, for the proof of initiality of an algebra. Converse definitions exist for
terminal coalgebras, and can be found in the formalization in Section 4.3.1.

2.4.2 Encodings

Harper, before describing Church and Cochurch encodings, first discusses what merits a correct encoding
of a datatype. His reason for creating an encoding is to encode recursive functions, which are not inlined
by Haskell’s optimizer, into nonrecursive ones that are capable of being inlined and therefore fused: “For
example, assume that we want to convert values of the recursive datatype µF to values of a type F.
The idea is that C can faithfully represent values of µF, but composed functions over C can be fused
automatically” (Harper, 2011).

Now, instead of writing functions over a normal datatype µF, we write functions over an encoded
datatype C, along with two conversion functions con: µF → C (concrete) and abs : C → µF (ab-
stract), which will enable us to convert from one datatype to another. In order for the datatype C to
faithfully represent µF, we need abs ◦ con = idµF i.e., that C can represent all values of µF uniquely.

This requirement above is a proof obligation, Harper states three additional ones which are summa-
rized in the following three commutative diagrams:

µF C

µF C

f

abs

fC

abs

f ◦ abs = abs ◦ fC

S

µF C

p
pC

abs

p = abs ◦ pC

µF C

T

c

con

cC

c = cC ◦ con

In the second diagram, p is a producer function, generating a recursive data structure from a seed of
type S. In the third diagram, c is a consumer function, consuming a recursive data structure to produce
a value of type T.

Harper also describes a fifth lemma: cons◦abs = idC , but he initially mentions that this is too strong
of a condition to require from an encoding, requiring it to be an isomorphism. However, he did end up
proving it later on in his proofs, once for Church encodings and once for Cochurch encodings. In fact, he
uses the fifth proof as the basis for the fusion pragma in Haskell. It is the basis for correctness for the
(Co)Church encodings he later ends up presenting in Haskell.

He did end up proving this fifth proof using the free theorems, pulled from the type of the polymorphic
functions that the (Co)Church encodings contain. That he first discourages this fifth proof, only to
subsequently prove it seems a bit inconsistent, but the fact that he did end up proving it and using it for
the basis of the fusion he implemented in Haskell indicates that proving this fifth proof is important.
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2.4.3 (Co)Church Encodings

Next, Harper (2011) proposes two encodings, Church and CoChurch.

Church Church is defined (abstractly) as the following datatype:

data Church F = Ch (∀ A . (F A → A) → A)

Church contains a recursion principle (often referred to as g throughout this thesis). With conversion
and abstraction functions toCh and fromCh:

toCh ::mu F → Church F
toCh x = Ch (λa → fold a x )
fromCh :: Church F → mu F
fromCh (Ch g) = g in

Where in is the initial algebra in : F (µF ) → µF . From these definitions, Harper proves the four proof
obligations, showing Church encodings to be a faithful encoding; along with a fifth proof, thereby showing
isomorphism. For the proof of transformers and con ◦ abs = id, Harper makes use of the free theorem
for the polymorphic recursion principle g. In all the five proofs for Church encodings, Harper does not
use the fusion property.

Cochurch CoChurch is defined (abstractly) as the following datatype:

data CoChurch ′ F = ∃ S . CoCh (S → F S ) S

An isomorphic definition which Harper later uses and is the one we end up using in my formalization:

data CoChurch F = ∀ S . CoCh (S → F S ) S

The Cochurch encoding encodes a coalgebra and a seed value together. The conversion and abstraction
functions, toCoCh and fromCoCh:

toCoCh :: nu F → CoChurch F
toCoCh x = CoCh out x
fromCoCh :: CoChurch F → nu F
fromCoCh (CoCh h x ) = unfold h x

Where out is the terminal coalgebra out : νF → F (νF ). Similarly to his description of Church encodings,
Harper proves the four proof obligations as well as the additional fifth one. The con ◦ abs = id proof,
leverages the free theorem for the corecursion principle of the type CoChurch. The proof for natural
transformations uses the free theorem and, in addition, the fusion property for unfolds.

2.4.4 Example implementation

After describing (Co)Church encodings, Harper goes on to demonstrate how they are used by implement-
ing an example (Co)Church encoding of Leaf Trees. He implements four functions, between, filter,
concat, and sum, as a normal, recursive function, in Church encoded form, and in Cochurch encoded
form.

In doing so, he shows exactly how one goes from using the normal, recursive datatypes and functions
that are typically used in Haskell, to Church and Cochurch encoded versions. To conclude he compares
the performance of different compositions of functions to show the performance benefits and differences
between the three different variants of functions.

We are omitting details for the description of Harper’s example implementation because my work
replicates this example implementation and is therefore described in detail in Section 3

3 Haskell Optimizations
In Harper (2011)’s work there were still multiple open questions left regarding the exact mechanics of what
Church and Cochurch encodings did while making their way through the compiler. Why are Cochurch
encodings faster in some pipelines, but slower in others?

So I pose the following research question(s): To implement (Co)Church encodings, what is necessary
to make the code reliably fuse? This leads to the following sub-questions:
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• What optimizations are present in Haskell that enable fusion to work?
• What tools and techniques are available to get Haskell’s compiler to cooperate and trigger fusion?

In this section we will discuss my work replicating the fused Haskell code of Harper’s work and further
optimization opportunities that were discovered along the way.

We will start off with the existing working code, followed by a discussion of the discoveries made
throughout the process of writing, replicating, and further optimization of Harper’s example code, starting
in Section 3.2.1. We then discuss the performance impact of implementing fusion on an example function
pipeline. The section is finished by a discussion of the results.

3.1 Leaf Trees
In this section, we discuss my replication of Harper (2011)’s code.

Datatypes In his paper Harper implemented his example functions using leaf trees, this is defined as
Tree below. Furthermore, the base functor of Tree was defined, as Tree_, with the recursive positions
of the functor turned into a parameter of the datatype:

data Tree a = Empty | Leaf a | Fork (Tree a) (Tree a)
data Tree_ a b = Empty_ | Leaf _ a | Fork_ b b

Church encoding We encode our function using Church encodings using non-recusive algebras com-
bined with induction principles rather than solely recursive functions. This way, the algebras can first be
composed by Haskell’s optimizer and then passed to the recursion principle. This ensures that the fused
result only traverses the datastructure once.

The algebra being encoded is in this case (Tree_ a b → b). The Church encoding of the Tree datatype
is defined using the base functor for Tree:

data TreeCh a = TreeCh (∀ b . (Tree_ a b → b) → b)

Next, the conversion functions toCh and fromCh are defined, using two auxiliary functions fold and in’:

toCh :: Tree a → TreeCh a
toCh t = TreeCh (λa → fold a t)
where fold :: (Tree_ a b → b) → Tree a → b

fold a Empty = a Empty_
fold a (Leaf x ) = a (Leaf _ x )
fold a (Fork l r) = a (Fork_ (fold a l)

(fold a r))
fromCh :: TreeCh a → Tree a
fromCh (TreeCh fold) = fold in ′

where in ′ :: Tree_ a (Tree a) → Tree a
in ′ Empty_ = Empty
in ′ (Leaf _ x ) = Leaf x
in ′ (Fork_ l r) = Fork l r

From here, the fusion rule is defined using a RULES pragma. Along with a couple of other rules, this core
construct is responsible for doing the actual ‘fusion’. The INLINE pragmas are also included, to delay
any inlining of the toCh/fromCh functions to the latest possible moment. This way the toCh/fromCh
functions exist for as long as possible, maximizing the opportunity for the RULES pragma to identify
adjacent toCh/fromCh pairs and fuse them away throughout the compilation process:

{-# RULES "toCh/fromCh fusion" forall x. toCh (fromCh x) = x #-}
{-# INLINE [0] toCh #-}
{-# INLINE [0] fromCh #-}

A generalized transformation function is defined to standardize and ease later implementations of trans-
formation functions:

natCh :: (∀ c . Tree_ a c → Tree_ b c) → TreeCh a → TreeCh b
natCh f (TreeCh g) = TreeCh (λa → g (a . f ))
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Cochurch encoding Conversely to Church encodings, for Cochurch encodings we encode our function
using non-recusive coalgebras combined with coinduction principles rather than solely recursive functions.
Similarly to Church encodings, the coalgebras can first be composed by Haskell’s optimizer after which
they are passed to the corecursion principle. This again ensures that the fused result only traverses the
datastructure once.

Conversely, the Cochurch encoding is defined, again using the base functor for Tree:

data TreeCoCh a = ∀ s . TreeCoCh (s → Tree_ a s) s

Next, the conversion functions toCoCh and fromCoCh are again defined, using two auxiliary functions out
and unfold:

toCoCh :: Tree a → TreeCoCh a
toCoCh = TreeCoCh out
where out Empty = Empty_

out (Leaf a) = Leaf _ a
out (Fork l r) = Fork_ l r

fromCoCh :: TreeCoCh a → Tree a
fromCoCh (TreeCoCh h s) = unfold h s
where unfold h s = case h s of

Empty_ → Empty
Leaf _ a → Leaf a
Fork_ sl sr → Fork (unfold h sl) (unfold h sr)

Similar to Church encodings, the proper pragmas are included to enable fusion. These work in the same
fashion within Haskell as they do for Church encodings:

{-# RULES "toCh/fromCh fusion" forall x. toCoCh (fromCoCh x) = x #-}
{-# INLINE [0] toCoCh #-}
{-# INLINE [0] fromCoCh #-}

A generalized transformation function is defined again to standardize and ease later implementations of
transformation functions:

natCoCh :: (∀ c . Tree_ a c → Tree_ b c) → TreeCoCh a → TreeCoCh b
natCoCh f (TreeCoCh h s) = TreeCoCh (f . h) s

Between Three between functions are implemented: One regular, one Church encoded, and one
Cochurch encoded. Note how all three final functions are accompanied by an INLINE pragma. This
inlining enables pairs of toCh ◦ fromCh to be revealed to the compiler for fusion. The non-encoded
function is implemented recursively in a fashion appropriate for leaf trees:

between1 :: (Int , Int) → Tree Int
between1 (x , y) = case compare x y of
GT → Empty
EQ → Leaf x
LT → Fork (between1 (x ,mid))

(between1 (mid + 1, y))
where mid = (x + y) ‘div ‘ 2

The Church encoded version leverages the implementation of a recursion principle b for the between
function of leaf trees:

between2 :: (Int , Int) → Tree Int
between2 = fromCh . betweenCh
where betweenCh :: (Int , Int) → TreeCh Int

betweenCh (x , y) = TreeCh (λa → b a (x , y))
b :: (Tree_ Int b → b) → (Int , Int) → b
b a (x , y) = case compare x y of
GT → a Empty_
EQ → a (Leaf _ x )
LT → a (Fork_ (b a (x ,mid))
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(b a (mid + 1, y)))
where mid = (x + y) ‘div ‘ 2

{-# INLINE between2 #-}

The Cochurch encoded version leverages the implementation of a coalgebra h for the between function of
leaf trees:

between3 :: (Int , Int) → Tree Int
between3 = fromCoCh . TreeCoCh h
where h :: (Int , Int) → Tree_ Int (Int , Int)

h (x , y) = case compare x y of
GT → Empty_
EQ → Leaf _ x
LT → Fork_ (x ,mid) (mid + 1, y)
where mid = (x + y) ‘div ‘ 2

{-# INLINE between3 #-}

Filter Again three versions, similar to between. The regular implementation is as to be expected,
leveraging an implementation of append:

filter1 :: (a → Bool) → Tree a → Tree a
filter1 p Empty = Empty
filter1 p (Leaf a) = if p a then Leaf a else Empty
filter1 p (Fork l r) = append1 (filter1 p l) (filter1 p r)

While for the (Co)Church encoded versions, a natural transformation filt is constructed. This is used
to both implement both the Church and Cochurch encoded function:

filt :: (a → Bool) → Tree_ a c → Tree_ a c
filt p Empty_ = Empty_
filt p (Leaf _ x ) = if p x then Leaf _ x else Empty_
filt p (Fork_ l r) = Fork_ l r

filter2 :: (a → Bool) → Tree a → Tree a
filter2 p = fromCh . natCh (filt p) . toCh
{-# INLINE filter2 #-}
filter3 :: (a → Bool) → Tree a → Tree a
filter3 p = fromCoCh . natCoCh (filt p) . toCoCh
{-# INLINE filter3 #-}

Map The map function is implemented similarly to filter: A simple implementation for the non-encoded
version and a single natural transformation that is leveraged in both the Church and Cochurch encoded
versions:

map1 :: (a → b) → Tree a → Tree b
map1 f Empty = Empty
map1 f (Leaf a) = Leaf (f a)
map1 f (Fork l r) = append1 (map1 f l) (map1 f r)

m :: (a → b) → Tree_ a c → Tree_ b c
m f Empty_ = Empty_
m f (Leaf _ a) = Leaf _ (f a)
m f (Fork_ l r) = Fork_ l r

map2 :: (a → b) → Tree a → Tree b
map2 f = fromCh . natCh (m f ) . toCh
{-# INLINE map2 #-}
map3 :: (a → b) → Tree a → Tree b
map3 f = fromCoCh . natCoCh (m f ) . toCoCh
{-# INLINE map3 #-}
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Sum The sum function is again more interesting, it is again implemented in three different ways: The
non-encoded version is again as would normally be expected for leaf trees:

sum1 :: Tree Int → Int
sum1 Empty = 0
sum1 (Leaf x ) = x
sum1 (Fork x y) = sum1 x + sum1 y

The Church encoded version leverages an algebra s:

sum2 :: Tree Int → Int
sum2 = sumCh . toCh
where sumCh :: TreeCh Int → Int

sumCh (TreeCh g) = g s
s :: Tree_ Int Int → Int
s Empty_ = 0
s (Leaf _ x ) = x
s (Fork_ x y) = x + y

{-# INLINE sum2 #-}

The Cochurch encoding is defined using a coinduction principle. Note that it is possible to implement
this function using an accumulator of a list datatype (used like a queue), but it currently does not seem to
provide a fused Core AST, for a more expansive discussion on tail-recursive Cochurch encoded pipelines,
see Section 3.3.4:

sum3 :: Tree Int → Int
sum3 = sumCoCh . toCoCh
where sumCoCh :: TreeCoCh Int → Int

sumCoCh (TreeCoCh h s ′) = loop s ′

where loop s = case h s of
Empty_ → 0
Leaf _ x → x
Fork_ l r → loop l + loop r

{-# INLINE sum3 #-}

Pipelines Finally, an example pipeline, whose performance can be measure or Core representation
inspected2, is defined:

pipeline1 :: (Int , Int) → Int
pipeline1 = sum1 . map1 (+2) . filter1 odd . between1

3.2 Lists
In this section we discuss my further replication of Harper (2011)’s work. We implement some of the
functions and pipelines that Harper described, such as between, filter, and sum, but using the List
datatype instead of Leaf Trees. This was done to see how the descriptions in Harper’s work generalize
and to have a simpler datastructure on which to perform analysis; seeing how and when the fusion works
and when it doesn’t.

We again start with the datatype descriptions. We use List’ instead of List as there is a namespace
collision with GHC’s List datatype:

import GHC .List
data List ′ a = Nil | Cons a (List ′ a)
data List_ a b = Nil_ | Cons_ a b

2For the documentation for which flags to use on GHC, see https://downloads.haskell.org/ghc/latest/docs/users
_guide/debugging.html#core-representation-and-simplification
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Church encodings We define the Church encoding and proper encoding and decoding functions:

data ListCh a = ListCh (∀ b . (List_ a b → b) → b)
toCh :: List ′ a → ListCh a
toCh t = ListCh (λa → fold a t)
where fold :: (List_ a b → b) → List ′ a → b

fold a Nil = a Nil_
fold a (Cons x xs) = a (Cons_ x (fold a xs))

fromCh :: ListCh a → List ′ a
fromCh (ListCh fold ′) = fold ′ in ′

where in ′ :: List_ a (List ′ a) → List ′ a
in ′ Nil_ = Nil
in ′ (Cons_ x xs) = Cons x xs

We omit the pragmas defined for toCh and fromCh as well as the natCh, as their definition is identical to
the ones defined for Leaf Trees.

Cochurch encodings We defined the Cochurch encodings conversely:

data ListCoCh a = ∀ s . ListCoCh (s → List_ a s) s
toCoCh :: List ′ a → ListCoCh a
toCoCh = ListCoCh out
where out :: List ′ a → List_ a (List ′ a)

out Nil = Nil_
out (Cons x xs) = Cons_ x xs

fromCoCh :: ListCoCh a → List ′ a
fromCoCh (ListCoCh h s) = unfold h s
where unfold :: (b → List_ a b) → b → List ′ a

unfold h s = case h s of
Nil_ → Nil
Cons_ x xs → Cons x (unfold h xs)

Between The between function is defined in three different fashions: Normally, with the Church en-
coding, and with the Cochurch encoding. We leverage INLINE pragmas to make sure that the fusion
pragmas can effectively work. For the non-encoded implementation, we simply leverage recursion:

between1 :: (Int , Int) → List ′ Int
between1 (x , y) = case x > y of
True → Nil
False → Cons x (between1 (x + 1, y))

{-# INLINE between1 #-}

For the Church encoded version we define a recursion principle b and use that to define the encoded
Church function:

between2 :: (Int , Int) → List ′ Int
between2 = fromCh . betweenCh
where betweenCh :: (Int , Int) → ListCh Int

betweenCh (x , y) = ListCh (λa → b a (x , y))
b :: (List_ Int b → b) → (Int , Int) → b
b a (x , y) = loop x
where loop x = if x > y

then a Nil_
else a (Cons_ x (loop (x + 1)))

{-# INLINE betweenCh #-}
{-# INLINE between2 #-}

For the Cochurch encoded version we define a coalgebra:
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between3 :: (Int , Int) → List ′ Int
between3 = fromCoCh . ListCoCh betweenCoCh
where betweenCoCh :: (Int , Int) → List_ Int (Int , Int)

betweenCoCh (x , y) = if x > y
then Nil_
else Cons_ x (x + 1, y)

{-# INLINE betweenCoCh #-}
{-# INLINE between3 #-}

Map It is possible to implement the map function using a natural transformation. Again three imple-
mentations, the latter two of which leverage the defined natural transformation m:

map1 :: (a → b) → List ′ a → List ′ b
map1 _ Nil = Nil
map1 f (Cons x xs) = Cons (f x ) (map1 f xs)
{-# INLINE map1 #-}
m :: (a → b) → List_ a c → List_ b c
m f (Cons_ x xs) = Cons_ (f x ) xs
m _ Nil_ = Nil_

map2 :: (a → b) → List ′ a → List ′ b
map2 f = fromCh . natCh (m f ) . toCh
{-# INLINE map2 #-}
map3 :: (a → b) → List ′ a → List ′ b
map3 f = fromCoCh . natCoCh (m f ) . toCoCh
{-# INLINE map3 #-}

Sum We define our sum function in, again three different ways: unencoded, Church encoded, and
Cochurch encoded. The non-encoded leverages simple recursion:

sum1 :: List ′ Int → Int
sum1 Nil = 0
sum1 (Cons x xs) = x + sum1 xs
{-# INLINE sum1 #-}

The Church encoded function leverages an algebra and applies that to the existing recursion principle:

sum2 :: List ′ Int → Int
sum2 = sumCh . toCh
where sumCh :: ListCh Int → Int

sumCh (ListCh g) = g su
su :: List_ Int Int → Int
su Nil_ = 0
su (Cons_ x y) = x + y

{-# INLINE sum2 #-}

sum7 :: List ′ Int → Int
sum7 = flip sumCh 0 . toCh
where sumCh :: ListCh Int → (Int → Int)

sumCh (ListCh g) = g su
su :: List_ Int (Int → Int) → (Int → Int)
su Nil_ s = s
su (Cons_ x y) s = y (s + x )

{-# INLINE sum7 #-}

A second recursion principle is also implemented that modifies the type of the recursion element in the
base functor. Leveraging call arity techniques as described and made possible by Breitner (2018) to
obtain a tail recursive implementation of sum for Church encodings.

The Cochurch encoded function implements a corecursion principle and applies the existing coalgebra
(and input) to it:
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sum3 :: List ′ Int → Int
sum3 = sumCoCh . toCoCh
where sumCoCh :: ListCoCh Int → Int

sumCoCh (ListCoCh h s) = su h s
su :: (s → List_ Int s) → s → Int
su h s = loopt s 0
where loopt s ′ sum = case h s ′ of

Nil_ → sum
Cons_ x xs → loopt xs (x + sum)

{-# INLINE sum3 #-}

sum8 :: List ′ Int → Int
sum8 = sumCoCh . toCoCh
where sumCoCh :: ListCoCh Int → Int

sumCoCh (ListCoCh h s) = su h s
su :: (s → List_ Int s) → s → Int
su h s = loop s
where loop s ′ = case h s ′ of

Nil_ → 0
Cons_ x xs → x + loop xs

{-# INLINE sum8 #-}

Note that two subfunctions are provided to su’, the loop and the loopt function. The former function
is implemented using typical recursion. The latter, interestingly, is implemented using tail-recursion. Be-
cause this loopt function constitutes a corecursion principle, all the algebras (or natural transformations)
applied to it, will be inlined in such a way that the resultant function is also tail recursive, in some cases
providing a significant speedup! For more details, see the discussion in Section 3.3.4.

Pipelines and GHC list fusion Now we can make a pipeline in the following fashion:

pipeline1 :: (Int , Int) → Int
pipeline1 = sum1 . map1 (+2) . filter1 trodd . between1

You may notice I have not yet discussed the filter function, this is for a good reason, which I will discuss
now.

Filter The filter function is, again, implemented in three different ways: In a non-encoded fashion, using
a Church encoding, and using a Cochurch encoding. The non-encoded function simply uses recursion:

filter1 :: (a → Bool) → List ′ a → List ′ a
filter1 _ Nil = Nil
filter1 p (Cons x xs) = if p x then Cons x (filter1 p xs) else filter1 p xs
{-# INLINE filter1 #-}

However, the (Co)Church encoded version, contrary to map, can not be implemented using a natural
transformation.

The following section will start to answer the following research question: What tools and techniques
are available to get Haskell’s compiler to cooperate and trigger fusion?

3.2.1 The Filter Problem

There are multiple ways of implementing Church and Cochurch encoded filter functions, none of them
immediately obvious from Harper (2011)’s description of how it should be implemented as a natural
transformation.

When replicating Harper’s code for lists, there is one major limitation on natural transformation
functions: How to represent filter as a natural transformation for both Church and Cochurch encodings?
In his work he implemented, using Leaf trees, a natural transformation for the filter function in the
following manner:
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filt :: (a → Bool) → Tree_ a c → Tree_ a c
filt p Empty_ = Empty_
filt p (Leaf _ x ) = if p x then Leaf _ x else Empty_
filt p (Fork_ l r) = Fork_ l r
filter2 :: (a → Bool) → Tree a → Tree a
filter2 p = fromCh . natCh (filt p) . toCh
filter3 :: (a → Bool) → Tree a → Tree a
filter3 p = fromCoCh . natCoCh (filt p) . toCoCh

This filt function was then subsequently used in the Church and Cochurch encoded function. Let us
try this for the List datatype:

filt :: (a → Bool) → List_ a c → List_ a c
filt p Nil_ = Nil_
filt p (Cons_ x xs) = if p x then Cons_ x xs else?

The question is, what should be in the place of the ? above? Initially one might say xs, as the Cons_
x part should be filtered away, and this would be conceptually correct except for the fact that xs is of
type c, and not of type List_ a c. Filling in xs gives a type error. We could try to modify the type to
allow this change, but if we did that we wouldn’t have the type of a natural transformation anymore, so
we can’t do that either.

There are two solutions: One that modifies the definition of filter2 and filter3, such that the
definition is still possible, without leveraging natural transformations, instead creating a new algebra
from an existing one. The other modifies the definition of the underlying type such that the filter
function is still possible to express as a transformation.

Solution 1: Abandoning Natural Transformations

Church Before we wanted to implement our filter function in the following manner:

filterCh :: (∀ c . List_ a c → List_ b c) → ListCh a → ListCh b
filterCh p (ListCh g) = ListCh (λa → g (a . (filt p)))

filter2 :: (a → Bool) → List ′ a → List ′ a
filter2 p = fromCh . filterCh p . toCh
{-# INLINE filter2 #-}

We now need to modify the filterCh function such that we can still express a filter function without
using a natural transformation:

filterCh :: (∀ c . List_ a c → List_ b c) → ListCh a → ListCh b
filterCh p (ListCh g) = ListCh (λa → g (?))

Replacing the hole ? in the expression g (?) above such that we apply the a selectively we can yield:

filterCh :: (a → Bool) → ListCh a → ListCh a
filterCh p (ListCh g) = ListCh (λa → g (λcase

Nil_ → a Nil_
Cons_ x xs → if (p x ) then a (Cons_ x xs) else xs

))

We create a new algebra from an existing one, a, that selectively postcomposes a, this is not a natural
transformation anymore in the way that f below is.

natCh :: (∀ c . List_ a c → List_ b c) → ListCh a → ListCh b
natCh f (ListCh g) = ListCh (λa → g (a . f ))

In the new solution we do not apply a to xs, and, in doing so, can put xs in the place where we wanted
to earlier. Before we were limited because the natCh function forced a postcomposition of a in all cases,
which is now lifted by abandoning the natCh function.
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Cochurch Whereas before we wanted to implement our filter function in the following manner:

filter3 :: (a → Bool) → List a → List a
filter3 p = fromCoCh . natCoCh (filt p) . toCoCh

For the Cochurch encoding, a natural transformation can be defined, but it is not a simple coalgebra,
instead it is a recursive function.3 The core idea is: we combine the natural transformation and post-
composition again, but this time we make the function recursively grab elements from the seed until it
finds one that satisfies the predicate.

filt :: (a → Bool) → (s → List_ a s) → s → List_ a s
filt p h s = go s
where go s = case h s of

Nil_ → Nil_
Cons_ x xs → if p x then Cons_ x xs else go xs

filterCoCh :: (a → Bool) → ListCoCh a → ListCoCh a
filterCoCh p (ListCoCh h s) = ListCoCh (filt p h) s
filter3 :: (a → Bool) → List ′ a → List ′ a
filter3 p = fromCoCh . filterCoCh p . toCoCh
{-# INLINE filter3 #-}

The go subfunction is recursive, so it does not inline (fuse) neatly into the main function body in the
way that the rest of the pipeline does. There is existing work, called join-point optimization that should
enable this function to still fully fuse, but it does not at the moment. There are existing issues in GHC’s
issue tracker that describe this problem.4

Solution 2: go back and modify the underlying type It is possible to implement filter using a
natural transformation, but this requires us to modify the type of the base functor. We can add a new
constructor to the datatype that allows us to null out the value of our datatype: ConsN’_ xs. This way
we can write the filt function in the following fashion:

data List ′_ a b = Nil ′_ | Cons ′_ a b | ConsN ′_ b
filt ′ :: (a → Bool) → List ′_ a c → List ′_ a c
filt ′ p Nil ′_ = Nil ′_
filt ′ p (ConsN ′_ xs) = ConsN ′_ xs
filt ′ p (Cons ′_ x xs) = if p x then Cons ′_ x xs else ConsN ′_ xs

Now we do need to modify all of our already defined functions to take into account this modified datatype.
Readers familiar with the work might notice that this technique is in fact stream fusion as described by
Coutts et al. (2007). The ConsN_ constructor is analogous to the Skip constructor. Therefore, this is a
known and understood technique, motivated by the limitations of the techniques described by Harper.

So why was it possible to implement filt without modifying the datatype of leaf trees? Because leaf
trees already have this consideration of being able to null the datatype in-place by changing a Leaf_ x
into an Empty_. filt is able to remove a value from the datastructure without changing the structure of
the data i.e., it is still a natural transformation. By changing the list datatype such that this nullability
is also possible, we can now write filt as a natural transformation.

This technique could be broader than a modification to just lists. By modifying (making nullable)
any datatype, it might be possible to broaden the class of functions that can be represented as a natural
transformation. One other example of this is already the difference between a Binary Tree and a Leaf
Tree datatype:

data BinTree a = Leaf a | Fork (BinTree a) (BinTree a)
data LeafTree a = Empty | Leaf a | Fork (LeafTree a) (LeafTree a)

The Leaf constructor of BinTree is made nullable. We will leave the following question to future work:
Is this generalizable to any datastructure (perhaps containers)?

3And not necessarily guaranteed to terminate, the seed could generate an infinite structure.
4https://gitlab.haskell.org/ghc/ghc/-/issues/22227
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3.3 Haskell’s optimization pipeline
In order to understand how fusion works, it is important to understand a few other concepts with
which fusion works in tandem. Namely, beta reduction, inlining, case-of-case optimizations, and tail call
optimization. We will discuss a brief description of each.

Repeating my research question, the first sub-point should be answered here: What optimizations are
present in Haskell that enable fusion to work?

3.3.1 Beta reduction

Beta reduction is the rule where an expression of the form (λ x . a[x]) y can get transformed into
a[y]. For example (λ x . x + x) y would become y + y.

3.3.2 Inlining

Inlining is the process of taking a function expression and unfolding it into its definition. If we take the
function f = (+2) and an expression f 5, we could inline f such that we get (+2) 5; which we could
inline again to obtain 5 + 2.

3.3.3 Case of case, and known-case elimination

As discussed by Jones (1996), case of case optimization is the transformation of the following pattern:

case (
case C of
B1 → F1
B2 → F2

) of
A1 → E1
A2 → E2

To the following5:

case C of
B1 → case F1 of
A1 → E1
A2 → E2

B2 → case F2 of
A1 → E1
A2 → E2

Where the branches of the outer case can be pushed into the branches of the inner. Furthermore:

case V of
V → Expr
...

Can be simplified by case-of-known-constructor optimization to:

Expr

Together, these optimizations can often lead to the removal of unnecessary computations. Take as an
example (Jones, 1996):

if (¬ x ) then E1 else E2

“No decent compiler would actually negate the value of x at runtime! [. . . ] After desugaring the condi-
tional, and inlining the definition of not, we get” (Jones, 1996):

5This specific example was retrieved from: https://stackoverflow.com/questions/35815503/what-ghc-optimization
-is-responsible-for-duplicating-case-expressions
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case (case x of
True → False
False → True

) of
True → E1
False → E2

With case-of-case transformation this gets transformed to:

case x of
True → case False of
True → El
False → E2

False → case True of
True → El
False → E2

Then the case-of-known-constructor transformation gets us:

case x of
True → E2
False → E1

No more runtime evaluation of not!

3.3.4 Tail Recursion

Definition We call a recursive function tail-recursive, if all its recursive calls return immediately
upon completion i.e., they don’t do any additional calculations upon the result of the recursive call before
returning a result.

When a function is tail-recursive, it is possible to reuse the stack frame of the current function call,
reducing a lot of memory overhead, only needing to execute make a jump each time a recursive ‘call’ is
made. Haskell is able to identify tail-recursive functions and optimize the compiled byte code accordingly6.

Example The following code, when applying fusion, case-of-case, and case-of-known-case optimization:

sumCoCh . mapCoCh (+2) . filterCoCh odd . ListCoCh betweenCoCh

Reduces to (See Section C.2 for derivation):

loop (x , y) = if (x > y)
then 0
else if (odd x )

then (x + 2) + loop (x + 1, y)
else loop (x + 1, y)

loop (x , y)

This definition is not tail recursive as the then (x + 2) + loop (x+1, y) line includes some calculations
that still need to made upon completion of the recursive loop call; i.e., the loop function is not in tail
position.

If we tweak the definition of sum, such that it is tail recursive we get a different derivation (See
Section C.3 for derivation):

sumCoCh . mapCoCh (+2) . filterCoCh odd . ListCoCh betweenCoCh

Reduces to:

loop (x , y) acc = if (x > y)
then acc
else if (odd x )

then loop (x + 1, y) ((x + 2) + acc)
else loop (x + 1, y)

loop (x , y) 0

6See Simon Peyton Jones’ excellent talk on tail recursion and join points here: https://www.youtube.com/watch?v=
LMTr8yw0Gk4

22

https://www.youtube.com/watch?v=LMTr8yw0Gk4
https://www.youtube.com/watch?v=LMTr8yw0Gk4


Which is identical except for the fact that loop is tail-recursive. All that has been changed is the recursion
principle su’.

Cochurch encodings better lend themselves to having fully tail-recursive fused pipelines, as writing
a coinduction principle that is tail-recursive is easier than writing a recursion principle that is. For a
further discussion on this, see Breitner (2018)’s work and Section 3.4.

3.3.5 Performance Considerations

We discuss many different considerations and details when optimizing the fusible code. This discussion is
summarized here. In order to make sure a pipeline of functions fuses in Haskell, there are several things
that need to be taken into consideration:

• Make sure you only pass through parameters that change between recursive calls. Instead of writing:

b a (x , y) = loop x y
where loop x y = if x > y

then a Nil_
else a (Cons_ x (loop (x + 1) y))

Where the y doesn’t change between calls of loop, modify loop such that it doesn’t pass through
the y:

b a (x , y) = loop x
where loop x = if x > y

then a Nil_
else a (Cons_ x (loop (x + 1)))

This way, data needs to be pushed around in memory for each (recursive) function call.
• Ensure that functions are inlined properly. So for the second example above add a pragma that

inlines the function. This ensures that other pragmas, that do the actual fusion, can fire during the
compilation process:

{-# INLINE betweenCh #-}

• Ensure that the fused result is tail recursive. For consumer functions, it is often possible to make
the function tail recursive. For the corecursion principle of sum su:

su :: (s → List_ Int s) → s → Int
su h s = loop s
where loop s ′ = case h s ′ of

Nil_ → 0
Cons_ x xs → x + loop xs

It is possible to modify the definition of the corecursion loop such that it is tail-recursive:

su :: (s → List_ Int s) → s → Int
su h s = loopt s 0
where loopt s ′ sum = case h s ′ of

Nil_ → sum
Cons_ x xs → loopt xs (x + sum)

For Church encodings, it is a little more tricky to get the resultant function to be tail-recursive, it
is possible, however. Taking the algebra for sum again:

sum2 :: List ′ Int → Int
sum2 = sumCh . toCh
where sumCh :: ListCh Int → Int

sumCh (ListCh g) = g su
su :: List_ Int Int → Int
su Nil_ = 0
su (Cons_ x y) = x + y

We can modify the type of the recursive part of list and the return type to be a function instead of
just a simple datatype (Int -> Int instead of Int):
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sum7 :: List ′ Int → Int
sum7 = flip sumCh 0 . toCh
where sumCh :: ListCh Int → (Int → Int)

sumCh (ListCh g) = g su
su :: List_ Int (Int → Int) → (Int → Int)
su Nil_ s = s
su (Cons_ x y) s = y (s + x )

Breitner (2018) introduced and subsequently make possible this optimization in Haskell, called call
arity.

• Ensure that the fused result is a single recursive function (so no helper functions such as go). This
was a problem when writing the filter function in Cochurch encoded fashion. This is only possible
if a recursive natural transformation function is used, but it unfortunately does not fuse. This is
due to go being a recursive function, which Haskell does not inline on its own.
The current workaround for this is Stream fusion as described by Coutts et al. (2007). Adding
a Skip constructor makes a big difference to enabling the avoidance of recursive functions. This
workaround is part of my performance analysis.

3.4 Performance Comparison
We tested the performance of the following pipeline:

f = sum . map (+2) . filter odd . between

We define 11 different variants of the above functions which can be categorized into the following five
groups:

• Unfused
• Hand fused
• GHC List fused
• Church fused (normally, with tail recursion7, with skip constructor, and both)
• Cochurch fused (normally, with tail recursion, with skip constructor, and both)

For the implementation of all the functions, see the source code in the artifacts.
For the testing I ensured that the first two of the points in 3.3.5 were satisfied, partially through

analysis of the GHC8 generated Core representation. The latter two points became part of the testing
setup. I measured the performance using tasty-bench9. I tested all of the piplines with an input going
from (1, 100) to (1, 10000000), running tastybench five times for each input, setting a maximum
standard deviation of 2% of the mean result. For the presentation of the data I took the mean of these
five runs. Tastybench keeps running tests until the standard deviation becomes small enough; each time
running doubling the amount of runs before checking the new standard deviation. Tastybench measured
time using CPU time.

3.4.1 Performance differences

There are two main results figures, which can be seen at Figure 4 and Figure 5. However, their y axes
are logarithmic, due to the nature of the input sizes provided from (1,100) to (1,10000000) in powers
of 10. It is more illustrative to look at a linear scale, and that is easiest when zooming in on one specific
input. For the illustration, I will choose (1,10000) as input, as it is relatively representative. There are
specific variations when changing scale, but those will be discussed in Section 3.4.2.

In Figure 3 you can see how implementing fusion can bring quite a large speedup to a function pipeline.
With the following things of note:

• Tail recursive Church, stream Church, and stream Cochurch implementations were the fastest, and
as fast as each other. A speedup of 25x over the unfused pipeline for this input.

• Stream fusion does not offer a speedup for Church encodings.
• Adding tail recursion speeds up the encoding in all cases, except:
• Church-encoded non-stream pipelines are not faster, this is due to a recursive natural transformation

for filter (the function go).

7oneShot needed to be used in order to get this to work.
8https://downloads.haskell.org/ghc/latest/docs/users_guide/debugging.html#core-representation-and

-simplification
9https://hackage.haskell.org/package/tasty-bench
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Figure 3: Comparison of execution times between the different pipelines.

3.4.2 Scale Variations

In general, as the scale increases (see Figure 12 and Figure 13 for all graphs):

• The factor speedup between the unfused and three fully fused pipelines increases, most notably
between (1, 10000) and (1,100000), going from 25.4x to 31.5x. This likely has to do with the
increased volume of data that needs to be stored in random access memory.

• All the non tail-recursive encoding implementations get slower relative to the tail-recursive imple-
mentations. This is likely due to extra time spent allocating to and retrieving from memory.

• Most importantly for all fully fused pipelines: The speedup that fusion offers only seems to increase
as the order of magnitude of the calculation grows.

These findings highlight how the fusion can provide a significant speedup to compiled Haskell code.
The replication of Harper’s code show that achieving fused, tail-recursive compiled code requires tak-
ing into consideration many parts of Haskell’s optimizer. I believe that there exists big potential for
Haskell’s library writers to implement many datastructures using in a (Co)Church encodings; especially
the foldr/build and destroy/unfoldr functions, from which many standard library functions and other
functionalities can be derived.
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Figure 4: Comparison of executions times between the different pipelines and input sizes, bar chart

Figure 5: Comparison of executions times between the different pipelines and input sizes, line chart. This
view makes it slightly easier to compare the differences between pipelines across different inputs.
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4 Agda Formalization of the Optimization
In Harper (2011)’s work “A Library Writer’s Guide to Shortcut Fusion”, he describes the practice of
implementing Church and Cochurch encodings, as well as a paper proof necessary to show that the
encodings employed are correct. I pose and answer the following question in this section: Are the
transformations used to enable fusion safe? Meaning:

• Do the transformations in Haskell preserve the semantics of the language?
• If the mathematics and the encodings are implemented in a dependently typed language, is it

possible to prove them to be correct?

In this section we discuss the work that was done to formalize Harper’s proofs in the programming
language Agda, as well as additional proofs to support the claims made in the paper. My code is
represented in roughly 3 parts, once for Church and once for Cochurch encodings, each part builds on
the previous one:

• The proofs of the category theory properties, such as initiality/terminality of datatypes and the
reflection property.

• The definition and proofs about the (Co)Church encodings, again as described by Harper.
• An example implementation of the list datatype, using containers.

The Agda code makes use of two libraries: agda-stdlib10 v2.0 and agda-categories11 v0.2.0.
The discussion of my implementation can be found in Section 4.4

4.1 Common definitions
Both the Church (initial) and Cochurch (terminal) halves of the formalization use these definitions.

Functional Extensionality I postulate functional extensionality. This is done through Agda’s builtin
Extensionality module:

postulate funext : ∀{a b} → Extensionality a b
funexti : ∀{a b} → ExtensionalityImplicit a b
funexti = implicit-extensionality funext

Containers In the Agda formalization we need to represent functors. While a RawFunctor datatype
does exist in Agda’s stdlib, it does not provide the necessary data such that proofs can easily be done
over it, such as the functor laws.

Instead, we opt to use Containers to represent strictly positive functors as described by Abbott et al.
(2005). The definition of a container is as follows:

record Container (s p : Level) : Set (suc (s ⊔ p)) where
constructor _▷_; field

Shape : Set s
Position : Shape → Set p

A container contains an index set, called Shape and also a Position, which represent the recursive
elements of the container.

Containers can be given a semantics (or extension) in the following manner:

J_K : ∀ {s p ℓ} → Container s p → Set ℓ → Set (s ⊔ p ⊔ ℓ)
J S ▷ P K X = Σ[ s ∈ S ] (P s → X )

The X represents the type of the recursive elements of the container.
The main benefit of leveraging containers to represent functions is that it maintains positivity as well

as that the functor laws are true by definition. We will discuss the process for deriving a container from
a given (polynomial) later on when we need to derive it for lists, in Section 4.2.4.

10https://github.com/agda/agda-stdlib
11https://github.com/agda/agda-categories
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4.2 Church Encodings
4.2.1 Category Theory: Initiality

This section is about my formalization of Harper (2011)’s work that proves the needed category theory
that is to be used later on in the (Co)Church part of the formalization. This section specifically defines
the category of F-Algebras and proves initiality of (µF, in’) (the universal properties of folds) and the
fusion property.

Universal properties of catamorphisms and initiality This section proves the universal property
of folds. It takes the definition of W types and shows that the L_M function defined for it is a catamorphism.
This is done by proving that the fold is a unique F-algebra homomorphism to any datatype through a
proof of existence and uniqueness:

∀(C, ϕ) ∈ Alg(F )0 : ∃!LϕM ∈ homAlg(F)(µF,C), s.t.LϕM ◦ in = ϕ ◦ F LϕM

module agda.church.initial where
open import Data.W using () renaming (sup to in’) public

I define a function below which turns out to be a catamorphism. This fact is proved in this section through
a proof of existence univ-to and a proof of uniqueness univ-from. The fold function for containers in
Agda’s stdlib is defined identically and could be imported, omitting this definition. However, for clarity
I’m including the definition here instead of importing it:

L_M : {F : Container 0ℓ 0ℓ}{X : Set} → (J F K X → X ) → µ F → X
L a M (in’ (op , ar)) = a (op , L a M ◦ ar)

We show that any L_M is a valid F-Algebra homomorphism from in’ to any other object a i.e., the
forward direction of the universal property of folds (Harper, 2011):

h = LaM =⇒ h ◦ in = a ◦ Fh

This constitutes a proof of existence; there exists a function (in this case called L_M), that is a valid
F-Algebra homomorphism:

univ-to : {F : Container 0ℓ 0ℓ}{X : Set}{a : J F K X → X }{h : µ F → X } →
({x : µ F} → h x ≡ L a M x ) → {x : J F K (µ F )} → (h ◦ in’) x ≡ (a ◦ map h) x

univ-to {_}{_}{a}{h} eq {x@(op , ar)} = begin
h (in’ (op , ar))

≡〈 eq 〉
L a M (in’ (op , ar))

≡〈〉
a (op , L a M ◦ ar)

≡〈 cong (λ f → a (op , f )) (funext λ _ → sym eq) 〉
a (op , h ◦ ar)

≡〈〉
a (map h x )

■

We show that any other valid F-Algebra homomorphism from in’ to a is equal to the L_M function
defined; i.e. the backwards direction of the universal property of folds (Harper, 2011).

h = LaM ⇐= h ◦ in = a ◦ Fh

This constitutes a proof of uniqueness; for any function that is a valid F-Algebra homomorphism (in this
case called h), it is equal to L_M:

univ-from : {F : Container 0ℓ 0ℓ}{X : Set}{a : J F K X → X }(h : µ F → X ) →
({x : J F K (µ F )} → (h ◦ in’) x ≡ (a ◦ map h) x ) → {x : µ F} → h x ≡ L a M x

univ-from {_}{_}{a} h eq {in’ x@(op , ar)} = begin
(h ◦ in’) x
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≡〈 eq 〉
a (op , h ◦ ar)

≡〈 cong (λ f → a (op , f )) (funext λ _ → univ-from h eq) 〉
a (op , L a M ◦ ar)

≡〈〉
(L a M ◦ in’) x

■

The two previous proofs, constituting a proof of existence and uniqueness, together prove initiality of (µ
F, in’). The reflection law (Harper, 2011):

reflection : {F : Container 0ℓ 0ℓ}{y : µ F} →
L in’ M y ≡ y

reflection {_}{y@(in’ (op , ar))} = begin
L in’ M y

≡〈〉 – Dfn of L_M
in’ (op , L in’ M ◦ ar)

≡〈 cong (λ f → in’ (op , f )) (funext λ _ → reflection) 〉
in’ (op , ar)

≡〈〉 – Dfn of y
y

■

The fusion property, which follows from the backwards direction of the universal property of folds:

fusion : {F : Container 0ℓ 0ℓ}{A B : Set}{a : J F K A → A}{b : J F K B → B}{h : A → B} →
({x : J F K A} → (h ◦ a) x ≡ (b ◦ map h) x ) → (x : µ F ) → (h ◦ L a M) x ≡ L b M x

fusion {_}{_}{_}{a}{b}{h} eq x = univ-from (h ◦ L a M) eq {x}

4.2.2 Fusion: Church encodings

This section focuses on the fusion of Church encodings, leveraging parametricity (free theorems) (Wadler,
1989).

Definition of Church encodings This section defines Church encodings and the two conversions
con and abs, called toCh and fromCh here, respectively. It also defines the generalized producing,
transformation, and consuming functions, as described by Harper (2011). The church encoding, leveraging
containers:

data Church (F : Container 0ℓ 0ℓ) : Set1 where
Ch : ({X : Set} → (J F K X → X ) → X ) → Church F

The conversion functions:

toCh : {F : Container _ _} → µ F → Church F
toCh {F} x = Ch (λ {X : Set} → λ (a : J F K X → X ) → L a M x )

fromCh : {F : Container _ _} → Church F → µ F
fromCh (Ch g) = g in’

The generalized and encoded producing, transformation, and consuming functions, alongside proofs that
they are equal to the functions they are encoding. First the producing function, this is a generalized
version of Gill et al. (1993)’s build function:

prodCh : {ℓ : Level}{F : Container _ _}{Y : Set ℓ}
(g : {X : Set} → (J F K X → X ) → Y → X )(y : Y ) → Church F

prodCh g x = Ch (λ a → g a x )

build : {ℓ : Level}{F : Container _ _}{Y : Set ℓ}
(g : {X : Set} → (J F K X → X ) → Y → X )(y : Y ) → µ F
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build g = fromCh ◦ prodCh g

eqProd : {F : Container _ _}{Y : Set}{g : {X : Set} → (J F K X → X ) → Y → X } →
build g ≡ g in’

eqProd = refl

Second, the natural transformation function:

natTransCh : {F G : Container _ _}
(nat : {X : Set} → J F K X → J G K X ) → Church F → Church G

natTransCh nat (Ch g) = Ch (λ a → g (a ◦ nat))

natTrans : {F G : Container _ _}
(nat : {X : Set} → J F K X → J G K X ) → µ F → µ G

natTrans nat = fromCh ◦ natTransCh nat ◦ toCh

eqNatTrans : {F G : Container _ _}
{nat : {X : Set} → J F K X → J G K X } →
natTrans nat ≡ L in’ ◦ nat M

eqNatTrans = refl

Third, the consuming function, note that this is a generalized version of Gill et al. (1993)’s foldr function.

consCh : {F : Container _ _}{X : Set}
(c : J F K X → X ) → Church F → X

consCh c (Ch g) = g c

foldr : {F : Container _ _}{X : Set}
(c : J F K X → X ) → µ F → X

foldr c = consCh c ◦ toCh

eqCons : {F : Container _ _}{X : Set}{c : J F K X → X } →
foldr c ≡ L c M

eqCons = refl

4.2.3 Proof obligations

In Harper (2011)’s work, five proofs are given for Church encodings. These are formalized here. The
first proof shows that fromCh ◦ toCh = id, using the reflection law. This corresponds to the first proof
obligation mentioned in Section 2.4.2:

from-to-id : {F : Container 0ℓ 0ℓ}(x : µ F ) →
(fromCh ◦ toCh) x ≡ id x

from-to-id x = begin
fromCh (toCh x )

≡〈〉 – Definition of toCh
fromCh (Ch (λ {X }a → L a M x ))

≡〈〉 – Definition of fromCh
(λ a → L a M x ) in’

≡〈〉 – function application
L in’ M x

≡〈 reflection 〉
x

■

The second proof is similar to the first, but it proves the composition in the other direction toCh ◦
fromCh = id. This proof leverages parametricity as described by Wadler (1989). It postulates the free
theorem of the function g :∀ A . (F A -> A) -> A, to prove that “applying g to b and then passing
the result to h, is the same as just folding c over the datatype” (Harper, 2011). This together with the
first proof shows that Church encodings are isomorphic to the datatypes they are encoding:
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postulate free : {F : Container 0ℓ 0ℓ}{B C : Set}{b : J F K B → B} {c : J F K C → C}
(h : B → C )(g : {X : Set} → (J F K X → X ) → X ) →
h ◦ b ≡ c ◦ map h → h (g b) ≡ g c

fold-invariance : {F : Container 0ℓ 0ℓ}{Y : Set}
(g : {X : Set} → (J F K X → X ) → X )(a : J F K Y → Y ) →
L a M (g in’) ≡ g a

fold-invariance g a = free L a M g refl

to-from-id : {F : Container 0ℓ 0ℓ}(x : Church F ) →
(toCh ◦ fromCh) x ≡ id x

to-from-id (Ch g) = begin
toCh (fromCh (Ch g))

≡〈〉 – definition of fromCh
toCh (g in’)

≡〈〉 – definition of toCh
Ch (λ{X }a → L a M (g in’))

≡〈 cong Ch (funexti λ{Y } → funext (fold-invariance g)) 〉
Ch g

■

The third proof shows Church encoded functions constitute an implementation for the consumer functions
being replaced. The proof is proved via reflexivity, but Harper (2011)’s original proof steps are included
here for completeness. This corresponds to the third proof obligation (second diagram) mentioned in
Section 2.4.2:

cons-pres : {F : Container 0ℓ 0ℓ}{X : Set}(b : J F K X → X ) →
(x : µ F ) → (consCh b ◦ toCh) x ≡ L b M x

cons-pres b x = begin
consCh b (toCh x )

≡〈〉 – definition of toCh
consCh b (Ch (λ a → L a M x ))

≡〈〉 – function application
(λ a → L a M x ) b

≡〈〉 – function application
L b M x

■

S

µF C

LbM consChb

toCh

LbM = toCh ◦ consChb

The fourth proof shows that Church encoded functions constitute an implementation for the producing
functions being replaced. The proof is proved via reflexivity, but Harper (2011)’s original proof steps
are included here for completeness. This corresponds to the fourth proof obligation (third diagram)
mentioned in Section 2.4.2:

prod-pres : {F : Container 0ℓ 0ℓ}{X : Set}(f : {Y : Set} → (J F K Y → Y ) → X → Y ) →
(s : X ) → (fromCh ◦ prodCh f ) s ≡ f in’ s

prod-pres {F}{X } f s = begin
fromCh ((λ (x : X ) → Ch (λ a → f a x )) s)

≡〈〉 – function application
fromCh (Ch (λ a → f a s))

≡〈〉 – definition of fromCh
(λ {Y : Set} (a : J F K Y → Y ) → f a s) in’

≡〈〉 – function application
f in’ s

■

µF C

T

f in

fromCh

prodCh f

f in = prodCh f ◦ fromCh

The fifth, and final proof shows that Church encoded functions constitute an implementation for the
conversion functions being replaced. The proof again leverages the free theorem defined earlier. This
corresponds to the second proof obligation (first diagram) mentioned in Section 2.4.2:
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trans-pres : {F G : Container 0ℓ 0ℓ}(f : {X : Set} → J F K X → J G K X ) →
(x : Church F ) → (fromCh ◦ natTransCh f ) x ≡ (L in’ ◦ f M ◦ fromCh) x

trans-pres f (Ch g) = begin
fromCh (natTransCh f (Ch g))

≡〈〉 – Function application
fromCh (Ch (λ a → g (a ◦ f )))

≡〈〉 – Definition of fromCh
(λ a → g (a ◦ f )) in’

≡〈〉 – Function application
g (in’ ◦ f )

≡〈 sym (fold-invariance g (in’ ◦ f )) 〉
L in’ ◦ f M (g in’)

≡〈〉 – Definition of fromCh
L in’ ◦ f M (fromCh (Ch g))

■

µF C

µF C

Lin◦fM

fromCh

natTransCh f

fromCh

Lin ◦ fM ◦ fromCh = fromCh ◦ natTransCh f

Finally, two additional proofs were made to clearly show that any pipeline made using church encodings
will fuse down to a simple function application. The first of these two proofs shows that any two composed
natural transformation fuse down to one single natural transformation:

natfuse : {F G H : Container 0ℓ 0ℓ}
(nat1 : {X : Set} → J F K X → J G K X ) →
(nat2 : {X : Set} → J G K X → J H K X ) → (x : Church F ) →
(natTransCh nat2 ◦ toCh ◦ fromCh ◦ natTransCh nat1 ) x ≡ natTransCh (nat2 ◦ nat1 ) x

natfuse {F}{G}{H } nat1 nat2 x@(Ch g) = begin
(natTransCh nat2 ◦ toCh ◦ fromCh ◦ natTransCh nat1 ) x

≡〈 cong (natTransCh nat2 ) (to-from-id (natTransCh nat1 x )) 〉
(natTransCh nat2 ◦ natTransCh nat1 ) x

≡〈 refl 〉
natTransCh (nat2 ◦ nat1 ) x

■

The second of these two proofs shows that any pipeline, consisting of a producer, transformer, and
consumer function, fuse down to a single function application. This also shows the foldr/build fusion if
the nat given is id:

pipefuse : {F G : Container 0ℓ 0ℓ}{X : Set}(g : {Y : Set} → (J F K Y → Y ) → X → Y )
(nat : {Y : Set} → J F K Y → J G K Y ){Y : Set}(c : J G K Y → Y ) →
(x : X ) → (foldr c ◦ natTrans nat ◦ build g) x ≡ g (c ◦ nat) x

pipefuse {F}{G} g nat c x = begin
(consCh c ◦ toCh ◦ fromCh ◦ natTransCh nat ◦ toCh ◦ fromCh ◦ prodCh g) x

≡〈 cong (consCh c ◦ toCh ◦ fromCh ◦ natTransCh nat) (to-from-id (prodCh g x )) 〉
(consCh c ◦ toCh ◦ fromCh ◦ natTransCh nat ◦ prodCh g) x

≡〈 cong (consCh c) (to-from-id (natTransCh nat (prodCh g x ))) 〉
(consCh c ◦ natTransCh nat ◦ prodCh g) x

≡〈〉
g (c ◦ nat) x

■

4.2.4 Example: Church Encoded List fusion

Deriving a container from a functor Deriving the container from a given (polynomial) functor can
be done in a few steps:

1. Analyze how many constructors your functor has, take as an example 2.
2. For the left side of the container take the coproduct of types that store the non-recursive sub-

elements (such as const).
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3. Count the amount of recursive elements in the constructor, the return type should include that
many elements.

Taking an example:

List Taking the base functor for List: FA X := 1 + A × X.

For the Shape we take the coproduct of Fin 1 and const A, corresponding to the ‘nil’ and ‘cons
a _’ part, respectively.

For the Position, we have one constructor that is non-recursive and one that contains one recursive
element, so we have: 0 → Fin 0 and const n → Fin 1. The Fin 1 refers to the recursive X that
is present in the base functor (or the ‘cons _ as’ part of cons).

Binary tree Taking the base functor for Tree: FA X := 1 + X × A × X.

For the Shape we take the coproduct of Fin 1 and const A.

For the Position, we have one constructor that is non-recursive and one that contains two recursive
elements, so we have: 0 → Fin 0 and const n → Fin 2.

We summarize the above Table 2. For a concrete example of how a datatype is implemented, see Sec-
tion 4.2.4. An example of the implementation for Lists is discussed in Section 4.2.4

List Binary Tree
Base functor FA X := 1 + (A × X) FA X := 1 + (X × A × X)

Shape Fin 1 + const A Fin 1 + const A
Position nil → Fin 0 and const n → Fin 1 nil → Fin 0 and const n → Fin 2

Table 2: This table shows two examples of deriving the implementation of a container from a base functor.

Example: List Fusion In order to clearly see how the Church encodings allows functions to fuse,
a datatype was selected such that the abstracted function, which have so far been used to prove the
needed properties, can be instantiated to demonstrate how the fusion works for functions across a cocrete
datatype. This section defines: The container whose interpretation represents the base functor for lists,
some convenience functions to make type annotations more readable, a producer function between, a
transformation function map, a consumer function sum, and a proof that non-church and Church encoded
implementations are equal.

Datatypes The index set for the container, as well as the container whose interpretation represents
the base funtor for list. Note how ListOp is isomorphic to the datatype ⊤ + const A, I use ListOp
instead to make the code more readable:

data ListOp (A : Set) : Set where
nil : ListOp A
cons : A → ListOp A

F : (A : Set) → Container _ _
F A = ListOp A ▷ λ { nil → Fin 0 ; (cons n) → Fin 1 }

Functions representing the run-of-the-mill list datatype and the base functor for list:

List : (A : Set) → Set
List A = µ (F A)
List’ : (A B : Set) → Set
List’ A B = J F A K B

Helper functions to assist in cleanly writing out instances of lists:

[] : {A : Set} → µ (F A)
[] = in’ (nil , λ())
_::_ : {A : Set} → A → List A → List A
_::_ x xs = in’ (cons x , const xs)
infixr 20 _::_
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The fold funtion as it would normally be encountered for lists, defined in terms of L_M:

fold’ : {A X : Set}(n : X )(c : A → X → X ) → List A → X
fold’ {A}{X } n c = L (λ{(nil , _) → n; (cons n , g) → c n (g zero)}) M

Between The recursion principle b, which when used, represents the between function. It uses b’
to assist in termination checking:

b’ : {B : Set} → (a : List’ N B → B) → N → N → B
b’ a x zero = a (nil , λ())
b’ a x (suc n) = a (cons x , const (b’ a (suc x ) n))
b : {B : Set} → (a : List’ N B → B) → N × N → B
b a (x , y) = b’ a x (suc (y - x ))

The functions between1 and between2. The former is defined without a Church encoding, the latter
with. A reflexive proof of equality and sanity check is included to show equality:

between1 : N × N → List N
between1 xy = b in’ xy
between2 : N × N → List N
between2 = build b
eqbetween : between1 ≡ between2
eqbetween = refl
checkbetween : 2 :: 3 :: 4 :: 5 :: 6 :: [] ≡ between2 (2 , 6)
checkbetween = refl

Map The natural transformation m, which when used in a transformation function, represents the
map function:

m : {A B C : Set}(f : A → B) → List’ A C → List’ B C
m f (nil , _) = (nil , λ())
m f (cons n , l) = (cons (f n) , l)

The functions map1 and map2. The former is defined without a Church encoding, the latter with. A
reflexive proof of equality and sanity check is included to show equality:

map1 : {A B : Set}(f : A → B) → List A → List B
map1 f = L in’ ◦ m f M
map2 : {A B : Set}(f : A → B) → List A → List B
map2 f = natTrans (m f )
eqmap : {f : N → N} → map1 f ≡ map2 f
eqmap = refl
checkmap : (map1 (_+_ 2) (3 :: 6 :: [])) ≡ 5 :: 8 :: []
checkmap = refl

Sum The algebra s, which when used in a consumer function, represents the sum function:

s’ : List’ N (N → N) → (N → N)
s’ (nil , fn) s = s
s’ (cons n , fn) s = fn zero (n + s)
s : List’ N N → N
s (nil , _) = 0
s (cons n , f ) = n + f zero

The functions sum1 and sum2. The former is defined without a Church encoding, the latter with. A
reflexive proof of equality and sanity check is included to show equality:

sum1 : List N → N
sum1 = L s M
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sum2 : List N → N
sum2 = foldr s
sum2’ : List N → N
sum2’ l = foldr s’ l 0
checksum : sum2 (5 :: 6 :: 7 :: []) ≡ 18
checksum = refl

Equality The below proof shows the equality between the non-Church endcoded pipeline and the
Church encoded pipeline:

eq : {f : N → N}{x : N × N} → (sum1 ◦ map1 f ◦ between1) x ≡ (sum2 ◦ map2 f ◦ between2) x
eq {f }{x} = begin

(L s M ◦ L in’ ◦ m f M ◦ b in’) x
≡〈 cong (L s M ◦ L in’ ◦ m f M) (prod-pres b x ) 〉 – refl

(L s M ◦ L in’ ◦ m f M ◦ fromCh ◦ prodCh b) x
≡〈 cong L s M (sym $ trans-pres (m f ) (prodCh b x )) 〉

(L s M ◦ fromCh ◦ natTransCh (m f ) ◦ prodCh b) x
≡〈 cons-pres s ((fromCh ◦ natTransCh (m f ) ◦ prodCh b) x ) 〉 – refl

(consCh s ◦ toCh ◦ fromCh ◦ natTransCh (m f ) ◦ prodCh b) x
≡〈 cong (consCh s ◦ toCh ◦ fromCh ◦ natTransCh (m f ))

(sym $ to-from-id (prodCh b x )) 〉
(consCh s ◦ toCh ◦ fromCh ◦ natTransCh (m f ) ◦ toCh ◦ fromCh ◦ prodCh b) x

≡〈〉
(foldr s ◦ natTrans (m f ) ◦ build b) x

■

Fusing the functions down to a pipeline I present the equality between two functions: One is the
pipeline function and the other is the composition of the three functions presented so far, along with
the filter2 function.

The pipeline function has been implemented with the aid of a pipeline’ function. This is to aid
in termination checking and the same technique used for b and b’ above.

The filt’ function is a function that creates a new algebra from an existing one. The filter2
function takes this partial algebra composition and encodes it using a build/foldr pair.

filt’ : {A X : Set} → (A → Bool) → (List’ A X → X ) → (List’ A X → X )
filt’ {A}{X } p f (nil , l) = f (nil , l)
filt’ {A}{X } p f (cons a , l) = if (p a) then f (cons a , l) else l zero
filter2 : {A : Set} → (A → Bool) → List A → List A
filter2 {A} p = build (foldr ◦ filt’ p)

pipeline’ : (N → Bool) → N → N → N
pipeline’ p x zero = zero
pipeline’ p x (suc n) = if p x

then (1 + x ) + pipeline’ p (1 + x ) n
else pipeline’ p (1 + x ) n

pipeline : (N → Bool) → (N × N) → N
pipeline p (x , y) = pipeline’ p x (suc (y - x ))

The eqPips lemma proves that the fused pipelines are the same for all inputs using induction and pattern
matching, while the eqPipelines lemma proves that the fusion is possible, even with this build/foldr
pair. One crucial insight for this latter proof is that prodCh is associative for functions postcomposed to
it. This is stated formally in lemma prodAssoc and proved via reflexivity.

These lemmas show, in as clear as a fashion as possible, that the composition of the Church encoded
functions are equal to the hand-fused pipeline written above.

eqPips : (p : N → Bool)(x y : N) → b’ (filt’ p (s ◦ m (_+_ 1))) x y ≡ pipeline’ p x y
eqPips p _ zero = refl
eqPips p zero (suc y) with p 0
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... | true = cong suc (eqPips p 1 y)

... | false = eqPips p 1 y
eqPips p (suc x ) (suc y) with p (suc x )
... | true = cong 2+ (cong (_+_ x ) (eqPips p (2+ x ) y))
... | false = eqPips p (2+ x ) y

prodAssoc : {F : Container _ _}{Y : Set1}{Z : Set}(f : Z → Y )
(g : {X : Set} → (J F K X → X ) → Y → X )(z : Z ) →
(prodCh g ◦ f ) z ≡ prodCh (λ a → g a ◦ f ) z

prodAssoc _ _ _ = refl

eqPipelines : {p : N → Bool}{xy : N × N} →
(sum2 ◦ map2 (_+_ 1) ◦ filter2 p ◦ between2) xy ≡ pipeline p xy

eqPipelines {p}{xy@(x , y)} = begin
(foldr s ◦ natTrans (m (_+_ 1)) ◦

(fromCh ◦ prodCh (consCh ◦ filt’ p) ◦ toCh) ◦ build b) xy
≡〈 cong (foldr s ◦ natTrans (m (_+_ 1)) ◦ fromCh)

(prodAssoc (toCh ◦ build b) (consCh ◦ filt’ p) xy) 〉
(foldr s ◦ natTrans (m (_+_ 1)) ◦ fromCh ◦

prodCh (λ a → consCh (filt’ p a) ◦ toCh ◦ build b)) xy
≡〈 pipefuse (λ a → consCh (filt’ p a) ◦ toCh ◦ build b) (m (_+_ 1)) s xy 〉

(λ a → consCh (filt’ p a) ◦ toCh ◦ build b) (s ◦ m (_+_ 1)) xy
≡〈〉 – beta reduction

(consCh (filt’ p (s ◦ m (_+_ 1))) ◦ toCh ◦ build b) xy
≡〈〉 – inlining of build

(consCh (filt’ p (s ◦ m (_+_ 1))) ◦ toCh ◦ fromCh ◦ prodCh b) xy
≡〈 cong (consCh (filt’ p (s ◦ m (_+_ 1)))) (to-from-id (prodCh b xy)) 〉

(consCh (filt’ p (s ◦ m (_+_ 1))) ◦ prodCh b) xy
≡〈〉 – inlining of consCh and prodCh

b (filt’ p (s ◦ m (_+_ 1))) xy
≡〈〉 – inlining of b

b’ (filt’ p (s ◦ m (_+_ 1))) x (suc (y - x ))
≡〈 eqPips p x (suc (y - x )) 〉

pipeline’ p x (suc (y - x ))
≡〈〉 – inlining of pipeline

pipeline p xy
■

4.3 Cochurch Encodings
4.3.1 Category Theory: Terminality

This section specifically defines the category of F-Coalgebras and proves terminality of νF, out (the
universal properties of unfolds) and the fusion property. This section is the complement of Section 4.2.1.

Terminal coalgebras and anamorphisms This section defines a datatype and shows it to be ter-
minal; and a function and shows it to be an anamorphism in the category of F-Coalgebras. It takes the
definition of M types and shows that the AJ_K function defined for it is an anamorphism. This is done
by proving that the AJ_K is a unique F-coalgebra homomorphism from any datatype through a proof of
existence and uniqueness:

∀(C, ϕ) ∈ CoAlg(F )0 : ∃!LϕM ∈ homCoAlg(F)(C, νF ), s.t.out ◦AJϕK = FAJϕK ◦ ϕ

Specifically, it is shown that (νF, out) is terminal.

{-# OPTIONS –guardedness #-}
module agda.cochurch.terminal where
open import Codata.Guarded.M public using (head; tail) renaming (M to ν)
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I define a function below which turns out to be a catamorphism. This fact is proved in this section through
a proof of existence univ-to and a proof of uniqueness univ-from. The unfold function for containers in
Agda’s stdlib is defined identically and could be imported, omitting this definition. However, for clarity
I’m including the definition here instead of importing it:

AJ_K : {F : Container 0ℓ 0ℓ}{X : Set} → (X → J F K X ) → X → ν F
head (AJ c K x ) = fst (c x )
tail (AJ c K x ) = AJ c K ◦ (snd (c x ))
out : {F : Container 0ℓ 0ℓ} → ν F → J F K (ν F )
out nu = head nu , tail nu

We show that any AJ_K is a valid F-CoAlgebra homomorphism from any other object to out; i.e. the
forward direction of the universal property of unfolds (Harper, 2011):

h = AJaK =⇒ out ◦ h = Fh ◦ c

This constitutes a proof of existence; there exists a function (in this case called AJ_K), that is a valid
F-Algebra homomorphism:

univ-to : {F : Container 0ℓ 0ℓ}{C : Set}{h : C → ν F}{c : C → J F K C} →
({x : C} → h x ≡ AJ c K x ) → {x : C} → (out ◦ h) x ≡ (map h ◦ c) x

univ-to {_}{_}{h}{c} eq {x} = let (op , ar) = c x in begin
out (h x )

≡〈 cong out eq 〉
out (AJ c K x )

≡〈〉
(op , AJ c K ◦ ar)

≡〈 cong (λ f → op , f ) (funext (λ x → sym eq)) 〉
(op , h ◦ ar)

≡〈〉
map h (c x )

■

Injectivity of the out constructor is postulated. To prove equality between two terminal datatypes a
bisimulation relation is needed. I made an attempt to prove the univ-from, univ-to, and reflection
lemmas through the use of a bisimilation relation, but due to time constraings there was too much work
remaining to warrant continuing it. The final state of this code can be found in Appendix B and is
summarized as follows:

• The reflection law was proven (as a bisimilarity)
• The termination of the ‘proof of uniqueness’ part of the proof of terminality (also as a bisimilarity)
• The plan and execution of restructuring the further code that rests on the above proofs. Most likely

the use of propositional equalities throughout the following proofs need to be modified to instead
use some combination of the bisimilarity and propositional equality in Agda.

Instead, we postulate injectivity of the out constructor and use propositional equality.

postulate out-injective : {F : Container 0ℓ 0ℓ}{x y : ν F} →
out x ≡ out y → x ≡ y

It is shown that any other valid F-Coalgebra homomorphism from out to a is equal to the AJ_K defined;
i.e. the backward direction of the universal property of unfolds Harper (2011).

h = AJaK ⇐= out ◦ h = Fh ◦ c

This constitutes a proof of uniqueness; for any function that is a valid F-Algebra homomorphism (in this
case called h), it is equal to AJ_K. This uses out injectivity. Currently, Agda’s termination checker does
notice that the proof in question terminates. The proof needs to be rewritten to properly use guardedness
through the use of a bisimilarity:

{-# NON_TERMINATING #-}
univ-from : {F : Container _ _}{C : Set}(h : C → ν F ){c : C → J F K C} →
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({x : C} → (out ◦ h) x ≡ (map h ◦ c) x ) → {x : C} → h x ≡ AJ c K x
univ-from h {c} eq {x} = let (op , ar) = c x in

out-injective (begin
(out ◦ h) x

≡〈 eq 〉
(op , h ◦ ar)

≡〈 cong (λ f → op , f ) (funext $ λ x → univ-from h eq {ar x}) 〉 – induction
(op , AJ c K ◦ ar)

≡〈〉 – Definition of J_K
(out ◦ AJ c K) x

■)

The two previous proofs, constituting a proof of existence and uniqueness, together prove terminailty of
(ν F, out). The reflection law Harper (2011):

{-# NON_TERMINATING #-}
reflection : {F : Container 0ℓ 0ℓ}{x : ν F} →

AJ out K x ≡ x
reflection {_}{x} = let (op , ar) = out x in

out-injective (begin
out (AJ out K x )

≡〈〉
op , AJ out K ◦ ar

≡〈 cong (λ f → op , f ) (funext λ x → reflection {_}{ar x}) 〉
out x

■)

The fusion property, which follows from the backwards direction of the universal property of unfolds:

fusion : {F : Container 0ℓ 0ℓ}{C D : Set}{c : C → J F K C}{d : D → J F K D}(h : C → D) →
({x : C} → (d ◦ h) x ≡ (map h ◦ c) x ) → (x : C ) → (AJ d K ◦ h) x ≡ AJ c K x

fusion {_}{C}{_}{c}{d} h eq x = univ-from (AJ d K ◦ h) (cong (map AJ d K) eq) {x}

4.3.2 Fusion: Cochurch encodings

This section focuses on the fusion of Cochurch encodings, leveraging parametricity (free theorems) and
the fusion property.

Definition of Cochurch encodings This section defines Cochurch encodings and the two conversion
functions con and abs, called toCoCh and fromCoCh here, respectively. It also defines the generalized
producing, transformation, and consuming functions, as described by Harper (2011). The definition of
the CoChurch datatypes is defined differently to how it is initially defined by Harper (2011). Instead
an Isomorphic definition is used, whose type is described later on on the same page. This was done by
Harper such that the free theorem about the datatype being encoded, is easier to work with. It is also
a datatype that lends itself to better to theorem proving, as otherwise a coproduct datatype would need
to be involved. See the bottom of page 52 of Harper’s work for his discussion on the isomorphism. The
original definition is included as CoChurch’. The Cochurch encoding, agian leveraging containers:

data CoChurch (F : Container 0ℓ 0ℓ) : Set1 where
CoCh : {X : Set} → (X → J F K X ) → X → CoChurch F

The conversion functions:

toCoCh : {F : Container 0ℓ 0ℓ} → ν F → CoChurch F
toCoCh x = CoCh out x

fromCoCh : {F : Container 0ℓ 0ℓ} → CoChurch F → ν F
fromCoCh (CoCh h x ) = AJ h K x
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The generalized encoded producing, transformation, and consuming functions, alongside the proof that
they are equal to the functions they are encoding. First, the producing function, note that this is a
generalized version of Svenningsson (2002)’s unfoldr function:

prodCoCh : {F : Container 0ℓ 0ℓ}{Y : Set} → (g : Y → J F K Y ) →
Y → CoChurch F

prodCoCh g x = CoCh g x

unfoldr : {F : Container 0ℓ 0ℓ}{Y : Set} → (g : Y → J F K Y ) →
Y → ν F

unfoldr g = fromCoCh ◦ prodCoCh g

eqprod : {F : Container 0ℓ 0ℓ}{Y : Set}{g : (Y → J F K Y )} →
unfoldr g ≡ AJ g K

eqprod = refl

Second the transformation function:

natTransCoCh : {F G : Container 0ℓ 0ℓ}(nat : {X : Set} → J F K X → J G K X ) →
CoChurch F → CoChurch G

natTransCoCh n (CoCh h s) = CoCh (n ◦ h) s

natTrans : {F G : Container 0ℓ 0ℓ}(nat : {X : Set} → J F K X → J G K X ) →
ν F → ν G

natTrans nat = fromCoCh ◦ natTransCoCh nat ◦ toCoCh

eqNatTrans : {F G : Container 0ℓ 0ℓ}{nat : {X : Set} → J F K X → J G K X } →
natTrans nat ≡ AJ nat ◦ out K

eqNatTrans = refl

Third the consuming function, note that this a is a generalized version of Svenningsson (2002)’s destroy
function:

consCoCh : {F : Container 0ℓ 0ℓ}{Y : Set} → (c : {S : Set} → (S → J F K S ) → S → Y ) →
CoChurch F → Y

consCoCh c (CoCh h s) = c h s

destroy : {F : Container 0ℓ 0ℓ}{Y : Set} → (c : {S : Set} → (S → J F K S ) → S → Y ) →
ν F → Y

destroy c = consCoCh c ◦ toCoCh

eqcons : {F : Container 0ℓ 0ℓ}{X : Set}{c : {S : Set} → (S → J F K S ) → S → X } →
destroy c ≡ c out

eqcons = refl

The original CoChurch definition is included here for completeness’ sake, but it is not used elsewhere in
the code.

data CoChurch’ (F : Container 0ℓ 0ℓ) : Set1 where
cochurch : (∃ λ S → (S → J F K S ) × S ) → CoChurch’ F

A mapping from CoChurch’ to CoChurch and back is provided as well as a proof that their compositions
are equal to the identity function, thereby constructing an isomorphism:

toConv : {F : Container _ _} → CoChurch’ F → CoChurch F
toConv (cochurch (S , (h , x ))) = CoCh {_}{S} h x

fromConv : {F : Container _ _} → CoChurch F → CoChurch’ F
fromConv (CoCh {X } h x ) = cochurch ((X , h , x ))

to-from-conv-id : {F : Container 0ℓ 0ℓ}(x : CoChurch F ) → (toConv ◦ fromConv) x ≡ x
to-from-conv-id (CoCh h x ) = refl

from-to-conv-id : {F : Container 0ℓ 0ℓ}(x : CoChurch’ F ) → (fromConv ◦ toConv) x ≡ x
from-to-conv-id (cochurch (S , (h , x ))) = refl

39



4.3.3 Proof obligations

As with Church encodings, in Harper (2011)’s work, five proof obligations needed to be satisfied. These
are formalized here. The first proof proves that fromCoCh ◦ toCh = id, using the reflection law. This
corresponds to the first proof obligation mentioned in Section 2.4.2:

from-to-id : {F : Container 0ℓ 0ℓ}(x : ν F ) → (fromCoCh ◦ toCoCh) x ≡ id x
from-to-id {F} x = begin

fromCoCh (toCoCh x )
≡〈〉 – Definition of toCh

fromCoCh (CoCh out x )
≡〈〉 – Definition of fromCh

AJ out K x
≡〈 reflection 〉

x
≡〈〉 – Definition of identity

id x
■

The second proof proof is similar to the first, but it proves the composition in the other direction toCoCh
◦ fromCoCh = id. This proof leverages parametricity as described by Wadler (1989). It postulates the
free theorem of the function g for a fixed Y: f :∀ X → (X → F X) → X → Y, to prove that “unfolding a
Cochurch encoded structure and then re-encoding it yields an equivalent structure” (Harper, 2011). This
together with the first proof shows that Cochurch encodings are isomorphic to the datatypes they are
encoding:

postulate free : {F : Container 0ℓ 0ℓ}
{C D : Set}{Y : Set1}{c : C → J F K C}{d : D → J F K D}
(h : C → D)(f : {X : Set} → (X → J F K X ) → X → Y ) →
map h ◦ c ≡ d ◦ h → f c ≡ f d ◦ h

unfold-invariance : {F : Container 0ℓ 0ℓ}{Y : Set}
(c : Y → J F K Y ) →
CoCh c ≡ CoCh out ◦ AJ c K

unfold-invariance c = free AJ c K CoCh refl

to-from-id : {F : Container 0ℓ 0ℓ}(x : CoChurch F ) → (toCoCh ◦ fromCoCh) x ≡ id x
to-from-id (CoCh c x ) = begin

toCoCh (fromCoCh (CoCh c x ))
≡〈〉 – definition of fromCh

toCoCh (AJ c K x )
≡〈〉 – definition of toCh

CoCh out (AJ c K x )
≡〈〉 – composition

(CoCh out ◦ AJ c K) x
≡〈 cong (λ f → f x ) (sym $ unfold-invariance c) 〉

CoCh c x
■

The third proof shows that Cochurch encoded functions constitute an implementation for the producing
functions being replaced. The proof is proved via reflexivity, but Harper (2011)’s original proof steps
are included here for completeness. This corresponds to the third proof obligation (second diagram)
mentioned in Section 2.4.2:
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prod-pres : {F : Container 0ℓ 0ℓ}{X : Set}(c : X → J F K X ) →
(x : X ) → (fromCoCh ◦ prodCoCh c) x ≡ AJ c K x

prod-pres c x = begin
fromCoCh ((λ s → CoCh c s) x )

≡〈〉 – function application
fromCoCh (CoCh c x )

≡〈〉 – definition of toCh
AJ c K x

■

S

µF C

AJcK
prodCoCh c

fromCoCh

AJcK = fromCoCh ◦ prodCoCh c

The fourth proof shows that cochurch encoded functions constitute an implementation for the con-
suming functions being replaced. The proof is proved via reflexivity, but Harper (2011)’s original proof
steps are included here for completeness. This corresponds to the fourth proof obligation (third diagram)
mentioned in Section 2.4.2:

cons-pres : {F : Container 0ℓ 0ℓ}{X : Set} → (f : {Y : Set} → (Y → J F K Y ) → Y → X ) →
(x : ν F ) → (consCoCh f ◦ toCoCh) x ≡ f out x

cons-pres f x = begin
consCoCh f (toCoCh x )

≡〈〉 – definition of toCoCh
consCoCh f (CoCh out x )

≡〈〉 – function application
f out x

■

µF C

T

fout

toCoCh

consCoCh f

fout = consCoCh f ◦ toCoCh

The fifth, and final proof shOws that cochurch encoded functions constitute an implementation for
the consuming functions being replaced. The proof leverages the categorical fusion property and the
naturality of f. This corresponds to the second proof obligation (first diagram) mentioned in Section 2.4.2:

valid-hom : {F G : Container 0ℓ 0ℓ}{X : Set}(h : X → J F K X )
(f : {X : Set} → J F K X → J G K X )
(nat : ∀ {X : Set}(g : X → ν F )(x : J F K X ) → (map g ◦ f ) x ≡ (f ◦ map g) x ) →
{x : X } → (map AJ h K ◦ f ◦ h) x ≡ (f ◦ out ◦ AJ h K) x

valid-hom h f nat {x} = begin
(map AJ h K ◦ f ◦ h) x

≡〈 nat AJ h K (h x ) 〉
(f ◦ map AJ h K ◦ h) x

≡〈〉 – dfn of AJ_K
(f ◦ out ◦ AJ h K) x

■

µF C

µF C

AJf◦outK
fromCoCh

natTransCoCh f

fromCoCh

AJf ◦ outK ◦ fromCoCh = fromCoCh ◦ natTransCoCh f

trans-pres : {F G : Container 0ℓ 0ℓ}(f : {X : Set} → J F K X → J G K X )
(nat : {X : Set}(g : X → ν F )(x : J F K X ) → (map g ◦ f ) x ≡ (f ◦ map g) x )
(x : CoChurch F ) → (fromCoCh ◦ natTransCoCh f ) x ≡ (AJ f ◦ out K ◦ fromCoCh) x

trans-pres f nat (CoCh h x ) = begin
fromCoCh (natTransCoCh f (CoCh h x ))

≡〈〉 – Function application
fromCoCh (CoCh (f ◦ h) x )

≡〈〉 – Definition of fromCh
AJ f ◦ h K x

≡〈 sym $ fusion AJ h K (sym $ valid-hom h f nat) x 〉
AJ f ◦ out K (AJ h K x )
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≡〈〉 – This step is not in the paper, but mirrors the one on the Church-side.
AJ f ◦ out K (fromCoCh (CoCh h x ))

■

Two additional proofs, natfuse and pipefuse, were made in a similary fashion to how they were
done for Church encodings they are omitted here for brevity and can be found in the artifacts.

4.3.4 Example: Cochurch Encoded List fusion

In order to clearly see how the Cochurch encodings allows functions to fuse, a datatype was selected such
the abstracted function, which have so far been used to prove the needed properties, can be instantiated
to demonstrate how the fusion works for functions across a concrete datatype. In this section is defined:
the container, whose interpretation represents the base functor for lists, some convenience functions to
make type annotations more readable, a producer function between, a transformation function map, a
consumer function sum, and a proof that non-Cochurch encoded and Cochurch encoded implementations
are equal.

Datatypes The index set for the container, as well as the container whose interpretation represents
the base funtor for list. Note how ListOp is isomorphic to the datatype ⊤ + const A, I use ListOp
instead to make the code more readable:

data ListOp (A : Set) : Set where
nil : ListOp A
cons : A → ListOp A

F : (A : Set) → Container 0ℓ 0ℓ
F A = ListOp A ▷ λ { nil → Fin 0 ; (cons n) → Fin 1 }

Functions representing the run-of-the-mill (potentially infinite) list datatype and the base functor for list:

List : (A : Set) → Set
List A = ν (F A)
List’ : (A B : Set) → Set
List’ A B = J F A K B

Helper functions to assist in cleanly writing out instances of lists:

[] : {A : Set} → List A
head [] = nil
tail [] = λ()
_::_ : {A : Set} → A → List A → List A
head (x :: xs) = cons x
tail (x :: xs) = const xs
infixr 20 _::_

The unfold funtion as it would normally be encountered for lists, defined in terms of J_K:

mapping : {A X : Set} → (f : X → ⊤ ⊎ (A × X )) → (X → List’ A X )
mapping f x with f x
mapping f x | (inj1 tt) = (nil , λ())
mapping f x | (inj2 (a , x’ )) = (cons a , const x’ )
unfold’ : {F : Container 0ℓ 0ℓ}{A X : Set}(f : X → ⊤ ⊎ (A × X )) → X → List A
unfold’ {A}{X } f = AJ mapping f K

Between The corecursion principle b, which when used, represents the between function. It uses
b’ to assist in termination checking:

b’ : N × N → List’ N (N × N)
b’ (x , zero) = (nil , λ())
b’ (x , suc n) = (cons x , const (suc x , n))
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b : N × N → List’ N (N × N)
b (x , y) = b’ (x , (suc (y - x )))

The functions between1 and between2. The former is defined without a Cochurch encoding, the latter
with. A reflexive proof is included to show equality:

between1 : N × N → List N
between1 = AJ b K
between2 : N × N → List N
between2 = unfoldr b
eqbetween : between1 ≡ between2
eqbetween = refl

Map The natural transformation m, which when used in a natrual transformation function, repre-
sents the map function:

m : {A B C : Set}(f : A → B) → List’ A C → List’ B C
m f (nil , l) = (nil , l)
m f (cons n , l) = (cons (f n) , l)

The functions map1 and map2. The former is defined without a Cochurch encoding, the latter with. A
reflexive proof is included to show equality:

map1 : {A B : Set}(f : A → B) → List A → List B
map1 f = AJ m f ◦ out K
map2 : {A B : Set}(f : A → B) → List A → List B
map2 f = natTrans (m f )
eqmap : {f : N → N} → map1 f ≡ map2 f
eqmap = refl

Sum The coalgebra s, which when used in a consumer function, represents the sum function. Note
that it is currently set to be non-terminating.

{-# NON_TERMINATING #-}
s : {S : Set} → (S → List’ N S ) → S → N
s h s’ with h s’
s h s’ | (nil , f ) = 0
s h s’ | (cons x , f ) = x + s h (f zero)

The functions sum1 and sum2. The former is defined without a Cochurch encoding, the latter with. A
reflexive proof is included to show equality:

sum1 : List N → N
sum1 = s out
sum2 : List N → N
sum2 = destroy s
eqsum : sum1 ≡ sum2
eqsum = refl

Equality The below proof shows the equality between the non-Cochurch endcoded pipeline and the
Cochurch encoded pipeline:

eq : {f : N → N}(x : N × N) → (sum1 ◦ map1 f ◦ between1) x ≡ (sum2 ◦ map2 f ◦ between2) x
eq {f } x = begin

(s out ◦ AJ m f ◦ out K ◦ AJ b K) x
≡〈 cong (s out ◦ AJ m f ◦ out K) (prod-pres b x ) 〉 – refl

(s out ◦ AJ m f ◦ out K ◦ fromCoCh ◦ prodCoCh b) x
≡〈 cong (s out) (sym $ trans-pres (m f )
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(λ _ → (λ { (nil , l) → refl ; (cons n , l) → refl })) (prodCoCh b x )) 〉
(s out ◦ fromCoCh ◦ natTransCoCh (m f ) ◦ prodCoCh b) x

≡〈 (cons-pres s ((fromCoCh ◦ natTransCoCh (m f ) ◦ prodCoCh b) x )) 〉 – refl
(consCoCh s ◦ toCoCh ◦ fromCoCh ◦ natTransCoCh (m f ) ◦ prodCoCh b) x

≡〈 cong (consCoCh s ◦ toCoCh ◦ fromCoCh ◦ natTransCoCh (m f ))
(sym $ to-from-id (prodCoCh b x )) 〉

(consCoCh s ◦ toCoCh ◦ fromCoCh ◦ natTransCoCh (m f ) ◦ toCoCh ◦ fromCoCh ◦ prodCoCh b) x
≡〈〉

(destroy s ◦ natTrans (m f ) ◦ unfoldr b) x
■

4.4 Discussion of Agda Formalization
I formalized that, given parametricity, the fusion of (Co)Church encodings are the same as their non-
encoded counterpart as proved by Harper (2011).

This was done through multiple steps that build on each other, each step leaning on proofs and
definitions from the previos one: I did this by first proving initality of W (µ) types and terminality of
M (ν) types. Then I formalized the categorical fusion property, which only ended up being used in the
proofs for fusion of Cochurch encodings. Then I defined the Church and Cochurch encodings, along with
their associated conversion functions. After defining all of this, I formalized Harper’s proof that shortcut
fusion is possible for both Church and Cochurch encodings.

Building on this, I implemented the List datastructure using containers. Across this datastructure
I implemented normal and (Co)Church encoded functions across these lists: between, map, filter, and
sum.

Repeating my qustion: Are the transformations used to enable fusion safe? Meaning:

• Do the transformations in Haskell preserve the semantics of the language?
• If the mathematics and the encodings are implemented in a dependently typed language, is it

possible to prove them to be correct?

The first question can be answered as a conditional: Yes, as long as Haskell’s type system contains
parametricity. The second question can be answered as: Yes it is possible, with some limitations, which
are discussed below. The question as a whole can be answered as a tentative ‘yes’, keeping in mind the
weaknesses discussed below.

Remaining Weaknesses There are two main remaining weaknesses in my current work: First, the
proof of terminality of terminal coalgebras is currently not terminating. Second, the free theorems are
currently postulated to be true instead of being proven to be true.

Termination Checking I made an attempt to construct a terminating proof of terminality of M
types in agda through the use of a bisimulation, but due to time constraints I reverted to a version of the
code that type checked, but did not terminate for a few proofs. The functions are currently proved using
a postulate called out-injective that postulates that the constructor of the coinductive datatype is
injective. The above three functions are now non-terminating in the final state of the code. Furthermore,
the implementation of the Cochurch encoded list sum function also was set to be non-terminating. The
state of the code before reverting can be seen in Appendix B.

Postulates There are currently four postulates in the codebase. I’ll go through them in increasing
order of noteworthiness:

• Functional extensionality. I used functional extensionality extensively throughout the repository.
Its use is well-understood to be consistent and is provable from within cubical Agda.

• out-injectivity. Injectivity of coinductive datatypes is not supported out-of-the-box in Agda for
good reason. However, it is needed for my type checking of the proofs of terminality, without the
use of a bisimilarity. It exists to patch over the larger problem of termination checking above. If a
bisimilarity relation were to be introduced, it can be removed.

• Two free theorems. The postulating of the free theorems was needed as it is currently not possible to
prove the correctness of free theorems from within Agda. New research does exist by Van Muylder et
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al. (2024) that would enable the proving of the two free theorems, using internalized parametricity
as originally described by Bernardy & Moulin (2012). Doing so falls outside the scope of this
research and is left to future work.

My Agda formalization has shown that Harper’s work is correct, with some limitation, namely with
respect to the proof of terminality of M . It can be clearly seen, through the proof of some of the lemmas,
that the fusion does not destroy the semantics of the functions being fused; that the fusion is correct.
There are multiple of future avenues that this research can take, this is discussed more extensively in
Section 6.

5 Related Works
Initial work, done by Wadler (1984, 1986, 1990) was dubbed ‘deforestation’, referring to the removal
of intermediate trees (or lists). The details of the original deforestation work are not relevant to this
thesis, but Gill et al. (1993) described the weaknesses of the work and proposed an alternative technique.
This so-called foldr/build fusion technique can, when employed, eliminate the runtime generation of
intermediate lists. I describe this technique further in Section 2.1.

A converse approach, aptly named the destroy/unfoldr rule, is described by Svenningsson (2002),
which describes the converse technique to Gill et al. (1993)’s. A further generalization of this technique,
dubbed stream fusion by Coutts et al. (2007), further strengthened the work by Svenningsson (2002).

(Co)Church encodings Finally, Harper (2011) combined all of these concepts into one paper, called
“The Library Writer’s Guide to Shortcut Fusion”. In it the concept he describes (Co)Church encodings
and, pragmatically, how to implement them in Haskell.

Other approaches Other approaches exist such as ‘Warm fusion’ by Launchbury & Sheard (1995),
who attempt to derive fold and build combinators for a data type and automatically rewrite explicitly
recursive functions. A calculational appcoach to fusion, as opposed to a search-based one, is discussed
by Onoue et al. (1997) in their system HYLO.

Before Gill et al. (1993) published his work on shortcut fusion, there was existing work by Meijer
et al. (1991), describing the fusion properties of catamorphisms and anamorphisms, called “Functional
programming with bananas, lenses, envelopes and barbed wire”.

6 Conclusion and Future Work
I have presented my work on implementing and formalizing shortcut fusion of (Co)Church encodings as
described by Harper (2011). I have replicated Harper’s work of Church and Cochurch encoded functions
operating on leaf trees: between, map, filter, and sum; and shown the generalizability of his example
by also implementing the functions on lists. In doing so I discovered that in Haskell full fusion is not
currently possible for the Cochurch encoded filter function. GHC needs either proper loopification using
join points12, or additional encoding techniques such as those described by Coutts et al. (2007).

I benchmarked the performance of multiple different variants of the same pipeline: unencoded, hand-
fused, Church fused, Cochurch fused, and GHC.List fused; where the (Co)Church fused pipelines had
four variants: tail recursive, stream fused, neither, and both. I discovered that changing the underlying
datatype for Church encodings from List to Stream datatypes gave no performance improvement, for both
tail and non-tail recursive implementations. Implementing tail recursion however did offer a speedup,
for Cochurch encodings. It was also faster to implement tail recrusion in addition to modifying the
underlying type from List to Stream. This was likely due to the improper loopification of the recursive
coalgebra go. The fully fused (fastest) pipelines of both Church and Cochurch encodings were about as
fast as the hand-fused and GHC.List fused pipelines; for some inputs the (Co)Church fusion was faster,
for others the hand-fused/GHC.List fused.

I implemented Harper’s description of Church and Cochurch encodings using Agda’s dependent type
system, using containers to represent strictly positive functors. Before formalizing the proof of the
shortcut fusion property, I first formalized all of the needed underlying category theory: the universal
property of folds (i.e., initiality of initial algebras), the computation law, the reflection law, and the fusion
property. Using these, I formalized Harper’s proofs of the Church and Cochurch encodings being faithful,

12See https://gitlab.haskell.org/ghc/ghc/-/issues/22227#note_551000
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showing that they are isomorphic to the datatype that they are encoding. This came with one major
caveat: The reliance on the free theorems of parametric functions, which was not provable in Agda. There
is recent work on this internalized parametricity by Van Muylder et al. (2024), which would make the
free theorems provable from within Agda, dubbed Agda –bridges. Finally, I implemented (Co)Church
encoded versions of the following four functions between, map, filter, and sum and showed that their
composition as (Co)Church encodings was equal to the hand fused function also presented.

These findings highlight the effectiveness and correctness of shortcut fusion techniques and show the
promise of shortcut fusion: Reduce the computational overhead associated with functional programming
while retaining its nice, compositional properties.

Future Work
There are many future avenues that could be taken to continue my research:

• Tool (Language) improvements:
– See if it is possible to implement warm fusion in Haskell or some other language as described

by Launchbury & Sheard (1995).
– Strengthen Agda’s typechecker with respect to implicit parameters. Currently two variants of

functional extensionality had to be defined to work around this.
– Investigate if creating a new programming language that has this fusion as a first-class feature

can enable fusion to be compiled more efficiently and consistently.
• Extensions of my work

– Implement a bisimilarity relation for the coinductive M/ν type in Agda to prove its terminality.
After which modifying all the code resting on top of this proof to properly use this new relation.

– Investige whether it is to generalize the work of Coutts et al. (2007) to more datastrcutures,
with a motivating example being Leaf Trees.

– Use Agda –bridges to see if it is possible to prove the free theorems currently postulated in
my work.

• Applications of my work:
– Implement (Co)Church fused versions of Haskell’s library functions.
– Merge into Agda the Church and Cochurch encodings, as well as the bisimilarity across the

guarged M type.
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A Figures

Figure 12: All execution times
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Figure 13: All execution times — log scale.
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B Terminal Bismulation Code
The state of the code at the cutoff moment for proving terminality of ν can be seen here:

Terminal coalgebras and anamorphisms: bisimulation This module defines a datatype and shows
it to be initial; and a function and shows it to be an anamorphism in the category of F-Coalgebras.
Specifically, it is shown that (ν, out) is terminal.

{-# OPTIONS –guardedness –with-K –allow-unsolved-metas #-}
module agda.cochurch.terminalbisim where
open import Codata.Guarded.M using (head; tail) renaming (M to ν) public

A candidate terminal datatype and anamorphism function are defined, they will be proved to be so later
on this module:

AJ_K : {F : Container 0ℓ 0ℓ}{X : Set} → (X → J F K X ) → X → ν F
head (AJ c K x ) = proj1 (c x )
tail (AJ c K x ) = AJ c K ◦ snd (c x )

It is shown that any AJ_K is a valid F-Coalgebra homomorphism from out to any other object a; i.e.
the forward direction of the universal property of unfolds Harper (2011). This constitutes a proof of
existence:

univ-to : {F : Container 0ℓ 0ℓ}{C : Set}(h : C → ν F )
{c : C → J F K C}(eq : ∀ {x} → h x ≈≈ AJ c K x )(x : C ) →
out (h x ) ≡ map h (c x )

univ-to {F}{C} h {c} eq x = {!!}

It is shown that any other valid F-Coalgebra homomorphism from out to a is equal to the AJ_K defined;
i.e. the backward direction of the universal property of unfolds Harper (2011). This constitutes a proof
of uniqueness. This uses out injectivity. Currently, Agda’s termination checker does not seem to notice
that the proof in question terminates:

univ-from : {F : Container _ _}{C : Set}(h : C → ν F )(c : C → J F K C ) →
(eq : ∀{x} → out (h x ) ≡ map h (c x )) →
{x : C} → h x ≈≈ AJ c K x

outfst (univ-from h c eq) = ,-injectivel eq
outsnd (univ-from {F} h c eq1 {x}) {y} = {!!}

where open ≡-Reasoning

The two previous proofs, constituting a proof of existence and uniqueness, together show terminality of
(ν F, out). The computation law Harper (2011):

computation-law : {F : Container 0ℓ 0ℓ}{C : Set}{c : C → J F K C} →
out ◦ AJ c K ≡ map AJ c K ◦ c

computation-law = Eq.refl

The reflection law Harper (2011):

reflection’ : {F : Container 0ℓ 0ℓ}{x : ν F} → AJ out K x ≈≈ x
outfst (reflection’) = Eq.refl
outsnd (reflection’) {y} = reflection’
reflection : {F : Container 0ℓ 0ℓ}{x : ν F} → AJ out K x ≡ x
reflection = nueq reflection’
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C Derivations

C.1 Cochurch Stream-fused encoding derivation
Here I will provide an example derivation of a Church encoded function pipeline. We start with the
definitions:

data List_ a b = Nil_ | Cons_ a b deriving Functor
data List a = Nil | Cons a (List a) deriving (Functor ,Show)
data ListCh a = ListCh (∀ b . (List_ a b → b) → b)

toCh :: List a → ListCh a
toCh t = ListCh (λa → fold a t)
fold :: (List_ a b → b) → List a → b
fold a Nil = a Nil_
fold a (Cons x xs) = a (Cons_ x (fold a xs))

fromCh :: ListCh a → List a
fromCh (ListCh fold) = fold in ′

in ′ :: List_ a (List a) → List a
in ′ Nil_ = Nil
in ′ (Cons_ x xs) = Cons x xs

toCh takes an input datastructure and puts it into a thunked fold that is still waiting for an input function.
fromCh takes the fold, and executes it, replacing our Tree_ datastructure with the normal Tree. Church
encoded versions of sum, map (+1), filter odd, and between look like the following:

b :: (List_ Int b → b) → (Int , Int) → b
b a (x , y) = loop (x , y)
where loop (x , y) = case x > y of
True → a Nil_
False → a (Cons_ x (loop (x + 1, y)))

betweenCh :: (Int , Int) → ListCh Int
betweenCh (x , y) = ListCh (λa → b a (x , y))

m :: (a → b) → List_ a c → List_ b c
m f Nil_ = Nil_
m f (Cons_ x xs) = Cons_ (f x ) xs
mapCh :: (a → b) → ListCh a → ListCh b
mapCh f (ListCh g) = ListCh (λa → g (a . m f ))

filterCh :: (a → Bool) → ListCh a → ListCh a
filterCh p (ListCh g) = ListCh (λa → g (λcase

Nil_ → a Nil_
Cons_ x xs → if (p x ) then a (Cons_ x xs) else xs

))

s :: List_ Int Int → Int
s Nil_ = 0
s (Cons_ x y) = x + y
sumCh :: ListCh Int → Int
sumCh (ListCh g) = g s

Next, the actual functions:

sum :: List Int → Int
sum = sumCh . toCh

map :: (a → b) → List a → List b
map f = fromCh . mapCh f . toCh
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filter :: (a → Bool) → List a → List a
filter p = fromCh . filterCh p . toCh

between :: (Int , Int) → List Int
between = fromCh . betweenCh

I will be providing an example fusion of this pipeline:

f = sum . map (+1) . filter odd . between

f = sumCh . toCh .
fromCh . mapCh (+1) . toCh .
fromCh . filterCh odd . toCh .
fromCh . betweenCh

When ’fused’ (toCh . fromCh removed) it looks like this:

sumCh . mapCh (+1) . filterCh odd . betweenCh

For some input (x, y), we derive:

sumCh . mapCh (+1) . filterCh odd . betweenCh (x , y)
-- Inlining of betweenCh

sumCh . mapCh (+1) . filterCh odd . ListCh (λa → b a (x , y))
-- Dfn of filterCh + beta reduction

sumCh . mapCh (+1) .
ListCh (λa ′ →
(λa → b a (x , y))

(λx → case x of
Nil_ → a ′ Nil_
Cons_ x xs → if (p x ) then a ′ (Cons_ x xs) else xs

)
)

-- Beta reduction
sumCh . mapCh (+1) .
ListCh (λa ′ →
b (λx → case x of
Nil_ → a ′ Nil_
Cons_ x xs → if (p x ) then a ′ (Cons_ x xs) else xs

)
(x , y))

-- Dfn of mapCh + beta reduction
sumCh . ListCh (λa →
(λa ′ →
b (λx → case x of
Nil_ → a ′ Nil_
Cons_ x xs → if (p x ) then a ′ (Cons_ x xs) else xs

)
(x , y)

)
(a . m (+1)))

-- Substitution
sumCh . ListCh (λa →
b (λx → case x of
Nil_ → (a . m (+1)) Nil_
Cons_ x xs → if (p x ) then (a . m (+1)) (Cons_ x xs) else xs

)
(x , y))

-- Dfn of sumCh
(λa →
b (λx → case x of
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Nil_ → (a . m (+1)) Nil_
Cons_ x xs → if (p x ) then (a . m (+1)) (Cons_ x xs) else xs

)
(x , y)

) s
-- Beta reduction

b (λx → case x of
Nil_ → s (m (+1) Nil_)
Cons_ x xs → if (p x ) then s (m (+1) (Cons_ x xs)) else xs

) (x , y)
-- Inlining m + beta reduction

b (λx → case x of
Nil_ → s Nil_
Cons_ x xs → if (p x ) then s (Cons_ ((+1) x ) xs) else xs

) (x , y)
-- Inlining s + beta reduction

b (λx → case x of
Nil_ → 0
Cons_ x xs → if (p x ) then (((+1) x ) + xs) else xs

) (x , y)
-- Inlining of b + beta reduction

loop (x , y) = case x > y of
True → case Nil_ of
Nil_ → 0
Cons_ x xs → if (p x ) then (((+1) x ) + xs) else xs

False → case (Cons_ x (loop (x + 1, y))) of
Nil_ → 0
Cons_ x xs → if (p x ) then (((+1) x ) + xs) else xs

loop (x , y)
-- case-of-known-case optimization

loop (x , y) = case x > y of
True → 0
False → if (p x ) then ((+1) x + loop (x + 1, y)) else loop (x + 1, y)

loop (x , y)
-- Cleaning it up:

loop (x , y) = if x > y
then 0
else if (p x )

then x + 1 + loop (x + 1, y)
else loop (x + 1, y)

loop (x , y)

This concludes the example derivation for Church fusion.

C.2 Cochurch Stream-fused encoding derivation
Here I will provide an example derivation of a Cochurch encoded function pipeline, using stream fusion
techniques. We start with the definitions:

data List ′_ a b = Nil ′_ | NilT ′_ b | Cons ′_ a b deriving Functor
data List a = Nil | Cons a (List a) deriving (Functor ,Show)
data ListCoCh a = ∀ s . ListCoCh (s → List ′_ a s) s

toCoCh :: List a → ListCoCh a
toCoCh = ListCoCh out
out :: List a → List ′_ a (List a)
out Nil = Nil ′_
out (Cons x xs) = Cons ′_ x xs
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fromCoCh :: ListCoCh a → List a
fromCoCh (ListCoCh h s) = unfold h s
unfold :: (b → List ′_ a b) → b → List a
unfold h s = case h s of
Nil ′_ → Nil
NilT ′_ xs → unfold h xs
Cons ′_ x xs → Cons x (unfold h xs)

CoChurch encoded versions of sum, map (+2), filter odd, and between look like the following:

su ′ :: (s → List ′_ Int s) → s → Int
su ′ h s = loop s
where loop s ′ = case h s ′ of
Nil ′_ → 0
NilT ′_ xs → loop xs
Cons ′_ x xs → x + loop xs

sumCoCh :: ListCoCh Int → Int
sumCoCh (ListCoCh h s) = su ′ h s

m ′ :: (a → b) → List ′_ a c → List ′_ b c
m ′ f (Cons ′_ x xs) = Cons ′_ (f x ) xs
m ′ _ (NilT ′_ xs) = NilT ′_ xs
m ′ _ (Nil ′_) = Nil ′_
mapCoCh :: (a → b) → ListCoCh a → ListCoCh b
mapCoCh f (ListCoCh h s) = ListCoCh (m ′ f . h) s

filt p h s = case h s of
Nil ′_ → Nil ′_
NilT ′_ xs → NilT ′_ xs
Cons ′_ x xs → if p x then Cons ′_ x xs else NilT ′_ xs

filterCoCh :: (a → Bool) → ListCoCh a → ListCoCh a
filterCoCh p (ListCoCh h s) = ListCoCh (filt p h) s

betweenCoCh :: (Int , Int) → List ′_ Int (Int , Int)
betweenCoCh (x , y) = case x > y of
case True → Nil ′_
case False → Cons ′_ x (x + 1, y)

Next, the actual functions:

sum :: List Int → Int
sum = sumCoCh . toCoCh

map :: (a → b) → List a → List b
map f = fromCoCh . mapCoCh f . toCoCh

filter :: (a → Bool) → List a → List a
filter p = fromCoCh . filterCoCh p . toCoCh

between :: (Int , Int) → List Int
between = fromCoCh . ListCoCh betweenCoCh

We again will fuse the following pipeline:

f = sum . map (+2) . filter odd . between

f = sumCoCh . toCoCh .
fromCoCh . mapCoCh (+2) . toCoCh .
fromCoCh . filterCoCh odd . toCoCh .
fromCoCh . ListCoCh betweenCoCh

When ’fused’ it looks like this:
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sumCoCh . mapCoCh (+2) . filterCoCh odd . ListCoCh betweenCoCh

For some input (x, y), we derive:

sumCoCh . mapCoCh (+2) . filterCoCh odd . ListCoCh betweenCoCh (x , y)
-- Inlining of filterCoCh + beta reduction

sumCoCh . mapCoCh (+2) . ListCoCh (filt odd betweenCoCh) (x , y)
-- Inlining of mapCoCh + beta reduction

sumCoCh . ListCoCh (m ′ (+2) . filt odd betweenCoCh) (x , y)
-- Inlining of sumCoCh + beta reduction

su ′ (m ′ (+2) . filt odd betweenCoCh) (x , y)
-- Inlining of su’ + beta reduction

loop (x , y) = case ((m ′ (+2) . filt odd betweenCoCh) (x , y)) of
Nil ′_ → 0
NilT ′_ s → loop s
Cons ′_ x s → x + loop s

loop (x , y)
-- Inlining of filt + beta reduction

loop (x , y) = case (m ′ (+2) . (
case betweenCoCh (x , y) of

Nil ′_ → Nil ′_
NilT ′_ xs → NilT ′_ xs
Cons ′_ x xs → if odd x then Cons ′_ x xs else NilT ′_ xs

)) of
Nil ′_ → 0
NilT ′_ s → loop s
Cons ′_ x s → x + loop s

loop (x , y)
-- Inlining of betweenCoCh + beta reduction

loop (x , y) = case (m ′ (+2) . (
case (
case (x > y) of
True → Nil ′_
False → Cons ′_ x (x + 1, y)

) of
Nil ′_ → Nil ′_
NilT ′_ xs → NilT ′_ xs
Cons ′_ x xs → if odd x then Cons ′_ x xs else NilT ′_ xs

)) of
Nil ′_ → 0
NilT ′_ s → loop s
Cons ′_ x s → x + loop s

loop (x , y)
-- Case-of-case optimization

loop (x , y) = case (m ′ (+2) . (
case (x > y) of
True → case (Nil ′_) of
Nil ′_ → Nil ′_
NilT ′_ xs → NilT ′_ xs
Cons ′_ x xs → if odd x then Cons ′_ x xs else NilT ′_ xs

False → case (Cons ′_ x (x + 1, y)) of
Nil ′_ → Nil ′_
NilT ′_ xs → NilT ′_ xs
Cons ′_ x xs → if odd x then Cons ′_ x xs else NilT ′_ xs

)) of
Nil ′_ → 0
NilT ′_ s → loop s
Cons ′_ x s → x + loop s

loop (x , y)
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-- Case-of-known-case optimization
loop (x , y) = case (m ′ (+2) (case (x > y) of

True → Nil ′_
False → if odd x then Cons ′_ x (x + 1, y) else NilT ′_ (x + 1, y)

)) of
Nil ′_ → 0
NilT ′_ s → loop s
Cons ′_ x s → x + loop s

loop (x , y)
-- Inlining of m’ + beta reduction

loop (x , y) = case (
case (
case (x > y) of
True → Nil ′_
False → if odd x then Cons ′_ x (x + 1, y) else NilT ′_ (x + 1, y)

) of
Cons ′_ x xs → Cons ′_ ((+2) x ) xs
NilT ′_ xs → NilT ′_ xs
Nil ′_ ⇒ Nil ′_

) of
Nil ′_ → 0
NilT ′_ s → loop s
Cons ′_ x s → x + loop s

loop (x , y)
-- Case-of-case optimization

loop (x , y) = case (
case (x > y) of
True → case (Nil ′_) of
Cons ′_ x xs → Cons ′_ ((+2) x ) xs
NilT ′_ xs → NilT ′_ xs
Nil ′_ ⇒ Nil ′_

False → case (if odd x then Cons ′_ x (x + 1, y) else NilT ′_ (x + 1, y)) of
Cons ′_ x xs → Cons ′_ ((+2) x ) xs
NilT ′_ xs → NilT ′_ xs
Nil ′_ ⇒ Nil ′_

) of
Nil ′_ → 0
NilT ′_ s → loop s
Cons ′_ x s → x + loop s

loop (x , y)
-- Case-of-known-case optimization

loop (x , y) = case (
case (x > y) of
True → Nil ′_
False → case (if odd x then Cons ′_ x (x + 1, y) else NilT ′_ (x + 1, y)) of
Cons ′_ x xs → Cons ′_ ((+2) x ) xs
NilT ′_ xs → NilT ′_ xs
Nil ′_ ⇒ Nil ′_

) of
Nil ′_ → 0
NilT ′_ s → loop s
Cons ′_ x s → x + loop s

loop (x , y)
-- Inlining of if + beta reduction

loop (x , y) = case (
case (x > y) of
True → Nil ′_
False → case (
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case (odd x ) of
True → Cons ′_ x (x + 1, y)
False → NilT ′_ (x + 1, y)

) of
Cons ′_ x xs → Cons ′_ ((+2) x ) xs
NilT ′_ xs → NilT ′_ xs
Nil ′_ ⇒ Nil ′_

) of
Nil ′_ → 0
NilT ′_ s → loop s
Cons ′_ x s → x + loop s

loop (x , y)
-- case-of-case optimization

loop (x , y) = case (
case (x > y) of
True → Nil ′_
False → case (odd x ) of
True → case (Cons ′_ x (x + 1, y)) of
Cons ′_ x xs → Cons ′_ ((+2) x ) xs
NilT ′_ xs → NilT ′_ xs
Nil ′_ ⇒ Nil ′_

False → case (NilT ′_ (x + 1, y)) of
Cons ′_ x xs → Cons ′_ ((+2) x ) xs
NilT ′_ xs → NilT ′_ xs
Nil ′_ ⇒ Nil ′_

) of
Nil ′_ → 0
NilT ′_ s → loop s
Cons ′_ x s → x + loop s

loop (x , y)
-- Case-of-known-case optimization

loop (x , y) = case (
case (x > y) of
True → Nil ′_
False → case (odd x ) of
True → Cons ′_ ((+2) x ) (x + 1, y)
False → NilT ′_ (x + 1, y)

) of
Nil ′_ → 0
NilT ′_ s → loop s
Cons ′_ x s → x + loop s

loop (x , y)
-- case-of-case optimization

loop (x , y) = case (x > y) of
True → case (Nil ′_) of
Nil ′_ → 0
NilT ′_ s → loop s
Cons ′_ x s → x + loop s

False → case (
case (odd x ) of
True → Cons ′_ ((+2) x ) (x + 1, y)
False → NilT ′_ (x + 1, y)

) of
Nil ′_ → 0
NilT ′_ s → loop s
Cons ′_ x s → x + loop s

loop (x , y)
-- Case-of-known-case optimization
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loop (x , y) = case (x > y) of
True → 0
False → case (
case (odd x ) of
True → Cons ′_ ((+2) x ) (x + 1, y)
False → NilT ′_ (x + 1, y)

) of
Nil ′_ → 0
NilT ′_ s → loop s
Cons ′_ x s → x + loop s

loop (x , y)
-- case-of-case optimization

loop (x , y) = case (x > y) of
True → 0
False → case (odd x ) of
True → case (Cons ′_ ((+2) x ) (x + 1, y)) of
Nil ′_ → 0
NilT ′_ s → loop s
Cons ′_ x s → x + loop s

False → case (NilT ′_ (x + 1, y)) of
Nil ′_ → 0
NilT ′_ s → loop s
Cons ′_ x s → x + loop s

loop (x , y)
-- Case-of-known-case optimization

loop (x , y) = case (x > y) of
True → 0
False → case (odd x ) of
True → ((+2) x ) + loop (x + 1, y)
False → loop (x + 1, y)

loop (x , y)
-- Boom! Finally a sane path to solution

loop (x , y) = case (x > y) of
True → 0
False → case (odd x ) of
True → (x + 2) + loop (x + 1, y)
False → loop (x + 1, y)

loop (x , y)
-- With some nicer syntax, compiles to same case of case tree:

loop (x , y) = if (x > y)
then 0
else if (odd x )

then (x + 2) + loop (x + 1, y)
else → loop (x + 1, y)

loop (x , y)

This concludes the derivation for Cochurch stream fusion. For completeness, however, here is the de-
mostration that toCoCh and fromCoCh are mutually inverse:

fromCoCh . toCoCh l
-- Inlining of toCoCh + beta reduction

fromCoCh . ListCoCh out l
-- Inlining of fromCoCh + beta reduction

unfold out l
-- Inlining of unfold + beta reduction

case out l of
Nil ′_ → Nil
NilT ′_ xs → unfold out xs
Cons ′_ x xs → Cons x (unfold out xs)
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-- Inlining of out + beta reduction
case (
case l of
Nil → Nil ′_
Cons x xs → Cons ′_ x xs

) of
Nil ′_ → Nil
NilT ′_ xs → unfold out xs
Cons ′_ x xs → Cons x (unfold out xs)

-- case-of-case
case l of
Nil → case Nil ′_ of
Nil ′_ → Nil
NilT ′_ xs → unfold out xs
Cons ′_ x xs → Cons x (unfold out xs)

Cons x xs → case Cons ′_ x xs
Nil ′_ → Nil
NilT ′_ xs → unfold out xs
Cons ′_ x xs → Cons x (unfold out xs)
-- case-of-known-case

case l of
Nil → Nil
Cons x xs → Cons x (unfold out xs)

-- Function is same as id through induction.

toCoCh . fromCoCh (ListCoCh h s)
-- Unfold fromCoCh

toCoCh . unfold h s
-- Inlining of toCoCh

ListCoCh out (unfold h s)
-- This is true, so long as parametricity holds, see second proof of page 51 of Harper

C.3 Cochurch Stream-fused tail-recursive encoding derivation
Here I will provide an example derivation of a Cochurch encoded function pipeline, using stream fusion
techniques, making sure that the coinduction principle is tail-recursive. We start with the definitions:

data List ′_ a b = Nil ′_ | NilT ′_ b | Cons ′_ a b deriving Functor
data List a = Nil | Cons a (List a) deriving (Functor ,Show)
data ListCoCh a = ∀ s . ListCoCh (s → List ′_ a s) s

toCoCh :: List a → ListCoCh a
toCoCh = ListCoCh out
out :: List a → List ′_ a (List a)
out Nil = Nil ′_
out (Cons x xs) = Cons ′_ x xs

fromCoCh :: ListCoCh a → List a
fromCoCh (ListCoCh h s) = unfold h s
unfold :: (b → List ′_ a b) → b → List a
unfold h s = case h s of
Nil ′_ → Nil
NilT ′_ xs → unfold h xs
Cons ′_ x xs → Cons x (unfold h xs)

CoChurch encoded versions of sum, map (+2), filter odd, and between look like the following:

su ′ :: (s → List ′_ Int s) → s → Int
su ′ h s = loop s 0
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where loop s ′ acc = case h s ′ of
Nil ′_ → acc
NilT ′_ xs → loop xs acc
Cons ′_ x xs → loop xs (x + acc)

sumCoCh :: ListCoCh Int → Int
sumCoCh (ListCoCh h s) = su ′ h s

m ′ :: (a → b) → List ′_ a c → List ′_ b c
m ′ f (Cons ′_ x xs) = Cons ′_ (f x ) xs
m ′ _ (NilT ′_ xs) = NilT ′_ xs
m ′ _ (Nil ′_) = Nil ′_
mapCoCh :: (a → b) → ListCoCh a → ListCoCh b
mapCoCh f (ListCoCh h s) = ListCoCh (m ′ f . h) s

filt p h s = case h s of
Nil ′_ → Nil ′_
NilT ′_ xs → NilT ′_ xs
Cons ′_ x xs → if p x then Cons ′_ x xs else NilT ′_ xs

filterCoCh :: (a → Bool) → ListCoCh a → ListCoCh a
filterCoCh p (ListCoCh h s) = ListCoCh (filt p h) s

betweenCoCh :: (Int , Int) → List ′_ Int (Int , Int)
betweenCoCh (x , y) = case x > y of
True → Nil ′_
False → Cons ′_ x (x + 1, y)

Next, the actual functions:

sum :: List Int → Int
sum = sumCoCh . toCoCh

map :: (a → b) → List a → List b
map f = fromCoCh . mapCoCh f . toCoCh

filter :: (a → Bool) → List a → List a
filter p = fromCoCh . filterCoCh p . toCoCh

between :: (Int , Int) → List Int
between = fromCoCh . ListCoCh betweenCoCh

Here is the example piepline:

f = sum . map (+2) . filter odd . between

f = sumCoCh . toCoCh .
fromCoCh . mapCoCh (+2) . toCoCh .
fromCoCh . filterCoCh odd . toCoCh .
fromCoCh . ListCoCh betweenCoCh

When ’fused’ it looks like this:

sumCoCh . mapCoCh (+2) . filterCoCh odd . ListCoCh betweenCoCh

For some input (x, y), we derive:

sumCoCh . mapCoCh (+2) . filterCoCh odd . ListCoCh betweenCoCh (x , y)
-- Inlining of filterCoCh + beta reduction

sumCoCh . mapCoCh (+2) . ListCoCh (filt odd betweenCoCh) (x , y)
-- Inlining of mapCoCh + beta reduction

sumCoCh . ListCoCh (m ′ (+2) . filt odd betweenCoCh) (x , y)
-- Inlining of sumCoCh + beta reduction
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su ′ (m ′ (+2) . filt odd betweenCoCh) (x , y)
-- Inlining of su’ + beta reduction

loop (x , y) acc = case ((m ′ (+2) . filt odd betweenCoCh) (x , y)) of
Nil ′_ → acc
NilT ′_ s → loop s acc
Cons ′_ x s → loop s (x + acc)

loop (x , y) 0
-- Inlining of filt + beta reduction + beta reduction

loop (x , y) acc = case (m ′ (+2) . (
case betweenCoCh (x , y) of

Nil ′_ → Nil ′_
NilT ′_ xs → NilT ′_ xs
Cons ′_ x xs → if odd x then Cons ′_ x xs else NilT ′_ xs

)) of
Nil ′_ → acc
NilT ′_ s → loop s acc
Cons ′_ x s → loop s (x + acc)

loop (x , y) 0
-- Inlining of betweenCoCh + beta reduction

loop (x , y) acc = case (m ′ (+2) . (
case (
case (x > y) of
True → Nil ′_
False → Cons ′_ x (x + 1, y)

) of
Nil ′_ → Nil ′_
NilT ′_ xs → NilT ′_ xs
Cons ′_ x xs → if odd x then Cons ′_ x xs else NilT ′_ xs

)) of
Nil ′_ → acc
NilT ′_ s → loop s acc
Cons ′_ x s → loop s (x + acc)

loop (x , y) 0
-- Case-of-case optimization

loop (x , y) acc = case (m ′ (+2) . (
case (x > y) of
True → case (Nil ′_) of
Nil ′_ → Nil ′_
NilT ′_ xs → NilT ′_ xs
Cons ′_ x xs → if odd x then Cons ′_ x xs else NilT ′_ xs

False → case (Cons ′_ x (x + 1, y)) of
Nil ′_ → Nil ′_
NilT ′_ xs → NilT ′_ xs
Cons ′_ x xs → if odd x then Cons ′_ x xs else NilT ′_ xs

)) of
Nil ′_ → acc
NilT ′_ s → loop s acc
Cons ′_ x s → loop s (x + acc)

loop (x , y) 0
-- Case-of-known-case optimization

loop (x , y) acc = case (m ′ (+2) (
case (x > y) of
True → Nil ′_
False → if odd x then Cons ′_ x (x + 1, y) else NilT ′_ (x + 1, y)

)) of
Nil ′_ → 0
NilT ′_ s → loop s
Cons ′_ x s → x + loop s
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loop (x , y)
-- Inlining of m’

loop (x , y) = case (
case (
case (x > y) of
True → Nil ′_
False → if odd x then Cons ′_ x (x + 1, y) else NilT ′_ (x + 1, y)

) of
Cons ′_ x xs → Cons ′_ ((+2) x ) xs
NilT ′_ xs → NilT ′_ xs
Nil ′_ ⇒ Nil ′_

) of
Nil ′_ → acc
NilT ′_ s → loop s acc
Cons ′_ x s → loop s (x + acc)

loop (x , y) 0
-- Case-of-case optimization

loop (x , y) acc = case (
case (x > y) of
True → case (Nil ′_) of
Cons ′_ x xs → Cons ′_ ((+2) x ) xs
NilT ′_ xs → NilT ′_ xs
Nil ′_ ⇒ Nil ′_

False → case (if odd x then Cons ′_ x (x + 1, y) else NilT ′_ (x + 1, y)) of
Cons ′_ x xs → Cons ′_ ((+2) x ) xs
NilT ′_ xs → NilT ′_ xs
Nil ′_ ⇒ Nil ′_

) of
Nil ′_ → acc
NilT ′_ s → loop s acc
Cons ′_ x s → loop s (x + acc)

loop (x , y) 0
-- Case-of-known-case optimization

loop (x , y) acc = case (
case (x > y) of
True → Nil ′_
False → case (if odd x then Cons ′_ x (x + 1, y) else NilT ′_ (x + 1, y)) of
Cons ′_ x xs → Cons ′_ ((+2) x ) xs
NilT ′_ xs → NilT ′_ xs
Nil ′_ ⇒ Nil ′_

) of
Nil ′_ → 0
NilT ′_ s → loop s
Cons ′_ x s → x + loop s

loop (x , y) 0
-- Inlining of if + beta reduction

loop (x , y) acc = case (
case (x > y) of
True → Nil ′_
False → case (
case (odd x ) of
True → Cons ′_ x (x + 1, y)
False → NilT ′_ (x + 1, y)

) of
Cons ′_ x xs → Cons ′_ ((+2) x ) xs
NilT ′_ xs → NilT ′_ xs
Nil ′_ ⇒ Nil ′_

) of
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Nil ′_ → acc
NilT ′_ s → loop s acc
Cons ′_ x s → loop s (x + acc)

loop (x , y) 0
-- Case-of-case optimization

loop (x , y) acc = case (
case (x > y) of
True → Nil ′_
False → case (odd x ) of
True → case (Cons ′_ x (x + 1, y)) of

Cons ′_ x xs → Cons ′_ ((+2) x ) xs
NilT ′_ xs → NilT ′_ xs
Nil ′_ ⇒ Nil ′_
False → case (NilT ′_ (x + 1, y)) of
Cons ′_ x xs → Cons ′_ ((+2) x ) xs
NilT ′_ xs → NilT ′_ xs
Nil ′_ ⇒ Nil ′_

) of
Nil ′_ → acc
NilT ′_ s → loop s acc
Cons ′_ x s → loop s (x + acc)

loop (x , y) 0
-- Case-of-known-case optimization

loop (x , y) acc = case (
case (x > y) of
True → Nil ′_
False → case (odd x ) of
True → Cons ′_ ((+2) x ) (x + 1, y)
False → NilT ′_ (x + 1, y)

) of
Nil ′_ → acc
NilT ′_ s → loop s acc
Cons ′_ x s → loop s (x + acc)

loop (x , y) 0
-- Case-of-case optimization

loop (x , y) acc = case (x > y) of
True → case (Nil ′_) of
Nil ′_ → acc
NilT ′_ s → loop s acc
Cons ′_ x s → loop s (x + acc)

False → case (
case (odd x ) of
True → Cons ′_ ((+2) x ) (x + 1, y)
False → NilT ′_ (x + 1, y)

) of
Nil ′_ → acc
NilT ′_ s → loop s acc
Cons ′_ x s → loop s (x + acc)

loop (x , y) 0
-- Case-of-known-case optimization

loop (x , y) acc = case (x > y) of
True → acc
False → case (
case (odd x ) of
True → Cons ′_ ((+2) x ) (x + 1, y)
False → NilT ′_ (x + 1, y)

) of
Nil ′_ → acc
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NilT ′_ s → loop s acc
Cons ′_ x s → loop s (x + acc)

loop (x , y) 0
-- Case-of-case optimization

loop (x , y) acc = case (x > y) of
True → acc
False → case (odd x ) of
True → case (Cons ′_ ((+2) x ) (x + 1, y)) of
Nil ′_ → acc
NilT ′_ s → loop s acc
Cons ′_ x s → loop s (x + acc)

False → case (NilT ′_ (x + 1, y)) of
Nil ′_ → acc
NilT ′_ s → loop s acc
Cons ′_ x s → loop s (x + acc)

loop (x , y) 0
-- Case-of-known-case optimization

loop (x , y) acc = case (x > y) of
True → acc
False → case (odd x ) of
True → loop (x + 1, y) (((+2) x ) + acc)
False → loop (x + 1, y) acc

loop (x , y) 0
-- Boom! Finally a sane path to solution

loop (x , y) acc = case (x > y) of
True → acc
False → case (odd x ) of
True → loop (x + 1, y) ((x + 2) + acc)
False → loop (x + 1, y) acc

loop (x , y) 0
-- With some nicer syntax, compiles to same case tree

loop (x , y) acc = if (x > y)
then acc
else if (odd x )

then loop (x + 1, y) ((x + 2) + acc)
else loop (x + 1, y)

loop (x , y) 0
-- Notice how the final result, like the original su’, is tail-recursive

■ This concludes the example derivation for tail-recursive Cochurch stream fusion.
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