Senchmarking and Al
gorthm Optimization for

SENeCA

A RISC-V-based Neuromorphic Processor

senchmarking and Algorthm
Optimization for SENeCA

A RISC-V-based Neuromorphic Processor

by

Kevin Shidqi
Embedded Systems: Embedded Computer Architecture
Student Number: 5234948
Email: KevinShidgi@student.tudelft.nl

Supervisor: Professor Said Hamdioui
Duration: December 2021 - November 2022

Committee Members:

Prof. dr. S. Hamdioui, TU Delft, supervisor
Dr. A. Gebregiorgis, TU Delft, supervisor
Dr. C. Frenkel, TU Delft

A. Yousefzadeh, Ph.D., IMEC The Netherlands
G. van Schaik, IMEC The Netherlands

This thesis is confidential and cannot be made public until November 30, 2023.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

%
TU Delft

http://repository.tudelft.nl/

Abstract

With recent breakthroughs in Al (Artificial Intelligence) technology, the impact of Al on society can be
felt in various fields. The market for Al software, for example, reached a valuation of $62 billion in
2022. A growing number of new computer architectures specialized in running these Al software were
also developed. At first they were run on conventional CPUs (Central Processing Unit) and GPUs
(Graphical Processing Units), but then more specialized hardware emerged, such as the TPU (Ten-
sor Processing Unit). However, since algorithms in these Al software are generally data-intensive, the
power consumption became a problem. Therefore, as many of these algorithms were based on biologi-
cal neural networks, there is a growing interest to develop hardware similarly based on principles found
these networks as well to replicate their efficiency. This new architecture is known as neuromorphic
architecture.

However, a new architecture does not come without challenges. As a nascent and fragmented field,
neuromorphic computing in general lacks a standardized benchmarking suite or methodology. In other,
more mature fields, benchmarks are a standard way of evaluating the performance of different designs
objectively and fairly. This thesis aims to propose and demonstrate a benchmarking methodology and
implementation flow for neuromorphic processors. This methodology aims to measure the important
performance metrics for a neuromorphic processor, both on the small scale of individual synaptic op-
erations, and the large scale of performing an actual workload. The chosen workload is a keyword
spotting program based on a simple DNN architecture, which detects a specific phrase in an audio
recording. This workload was chosen due to its potential application in an environment where energy
is limited, such as an embedded device.

The neuromorphic processor that is the target of this benchmarking is SENeCA (short for Scalable
Energy-efficient Neuromorphic Computer Architecture), a flexible and scalable design developed at
IMEC The Netherlands. To implement the keyword spotting program on SENeCA, the keyword spotting
program was rewritten and parsed. Since no physical chip implementation of SENeCA exists at the time
of writing, the program was run on SENeCA using a HDL simulator. The execution time of the program
is measured in detail, taking into account not only the total time, but also the time required to complete
the specific stages of program. Afterwards, the power consumption of SENeCA during the execution of
the program was measured using a power estimation software, both for the entire chip and its individual
components. This is done both in average mode, obtaining the average power consumption over the
total execution time, and in time-based mode, providing insight to the peak power and fluctuations over
time. Then, the energy to solution is calculated using the execution time and power consumption. This
process is done in multiple iterations, with a specific optimization done each iteration using SENeCA's
accelerators. This provides insight into the impact of each optimization to power consumption and
performance. Finally, a measurement of the energy consumption of SENeCA per individual synaptic
operations is also done, allowing estimates of the energy consumption of future implementations.

‘mec

The work in this thesis was supported by IMEC The Netherlands. Their cooperation is hereby gratefully
acknowledged.

Delft
I U Del t University of
Technology

Copyright ©2022 Kevin Shidqi

All rights reserved.

Contents

Abstract i
Abstract i
Preface iX
1 Introduction 1
1.1 Motivation e 1
1.2 Problem Statement 3
1.3 Stateofthe Art L 3
1.4 Contribution e 5
1.5 Thesis Organization e 5

2 Neuromorphic Architectures and Benchmarking 7
2.1 Artificial Neural Network 8
2.2 Limits of Traditional CPU 11
23 GPUand TPU 12
2.4 Principles of Neuromorphic Architectures 14
2.4.1 Usage of Non-von Neumann Architecture 14

2.4.2 Low Overhead of Information Transmission 14

243 Sparsityof DataStreams 15

2.5 Examples of Current Neuromorphic Architectures 15
251 TrueNorth 15

252 IntelLoihi e 16

253 SpiNNaker e 17

254 Tianjic e 18

2.6 Benchmarking of Neuromorphic Processors 18
2.6.1 Closed-loop Neuromorphic Benchmark 18

2.6.2 The Nengo Platform for Benchmarking 20

2.6.3 Benchmarking SpiNNaker With DNA Sequence Matching Algorithm 23

2.6.4 SNABSuite e 23

2.6.5 Hand Gesture Recognition Benchmark 25

2.6.6 Keyword SpottingBenchmark o o oL 27

3 Architecture of SENeCA 31
3.1 Introduction e e e 32
3.2 Detailed Architecture 33
3.21 RISC-VCore(lbex) e 34

3.2.2 Axon Messaging Interface (AMI) 35

3.2.3 Shared Memory Pre-fetch Unit 36

3.24 Neuron Co-Processor (NCP) 37

3.2.5 Networkon Chip (NoC) 40

3.2.6 SynthesisResults 40

3.3 Comparison of SENeCA with Other Architectures 40
3.3.1 With SpiNNaker e 41

3.3.2 WithIBM TrueNorth 41

3.3.3 WithintelLoihi e 41

4 Software Architecture and Implementation 42
41 Keyword Spotting 43
4.2 Reproduction and Simplification of DNNModel 44

Contents iv
4.3 Implementationon SENeCA L 47
4.3.1 RISC-V Only Implementation 47

4.3.2 Baseline NPE Implementation 50

5 Methodology and Preliminary Results 56
5.1 ExperimentSetupand Flow 57
5.2 Execution Time Measurements 60
5.3 PowerMeasurements e 61
5.3.1 Average Power Estimation L. 62

5.3.2 Time-based Power Estimation 62

5.4 Results for Version 1 : RISC-V Implementation 63
5.4.1 Execution Time Measurements 63

54.2 PowerMeasurements 65

5.5 Results for Version 2 : Baseline NPE Implementation 67
5.5.1 Execution Time Measurements, 67

5.5.2 PowerMeasurements 68

5.6 Power Estimation of Basic NPE Operations 70

6 Optimizations and Final Results 74
6.1 Results of Version 3 : Loop Unrolling With 2 Elements 75
6.1.1 Optimization method and Implementation 75

6.1.2 Execution Time Measurements 77

6.1.3 PowerMeasurements 78

6.2 Results of Version 4: Loop Unrolling With4 Elements 79
6.2.1 Optimization Method and Implementation 79

6.2.2 Execution Time Measurements, 81

6.2.3 PowerMeasurements 83

6.3 Results of Version 5: Utilization of the Event Capture Unit 84
6.3.1 Optimization Method and Implementation 84

6.3.2 Execution Time Measurements, 85

6.3.3 PowerMeasurements e 87

6.4 Results of Version 6: Utilization of the Loop Buffer 88
6.4.1 Optimization Method and Implementation 88

6.4.2 Execution Time Measurements, 90

6.4.3 PowerMeasurements 92

6.5 Results of Version 7: Final Version 93
6.5.1 Optimization Method and Implementation 93

6.5.2 Execution Time Measurements 97

6.5.3 PowerMeasurements e 99

6.6 Ideal Power Calculation 100
6.7 Accuracy Comparison L e e e 102
6.8 Summary of Results and Discussion 103

7 Conclusion 107
T4 OVerview e e 107
7.2 Discussion and Future Work 108
References 110
A Breakdown of Power Consumption by Component 116

List of Figures

1.1 Revenues from the artificial intelligence for enterprise applications market worldwide,
adapted from [31] e

2.1 Anillustration of a biological neuron [29]
2.2 Anillustration of an artificial neuron [106]
2.3 Anillustrationofasimple ANN[2]
2.4 Memory hierarchy of the von Neumann architecture [44]
25 TPUBIlock Diagram [55] o e
2.6 Roofline performance model of TPU (stars), GPU (triangles), and CPU (circles) [57]
2.7 TrueNorth Architecture (singlecore)[23]
2.8 Loihi Core Top-Level Microarchitecture [22]
2.9 Depiction of the adaptive motor control task [92]
2.10 Adaptive controlresults [92] e
2.11 Comparisons of the adaptive control algorithm run on a CPU, GPU and Neuromorphic
Processor, adjusting for power consumption[92]
2.12 Results of the basal ganglia sequence model benchmarking accuracy [10]
2.13 Run speed for each model on each backend [10]
2.14 Comparison of speed-up for MPI-FED on a general-purpose CPU and SpiNNaker [99] .
2.15 Flowchart of the SNABSuite framework [76]
2.16 System overview of the hand gesture recognition benchmark [17]
2.17 Architecture overview of the neural networks used in the hand gesture recognition bench-
mark [17] . . .
2.18 Architecture of the keyword spotting DNN [14].
2.19 Architecture of the expanded DNN used for scaling analyses. Note that the size of the
network is a function of a configurable parameter N[14]
2.20 Architecture of the keyword spotting DNN [14].

3.1 Anexample implementation of SENeCA, containing 64 Neuron Compute Clusters (cores)

[109] . . o
3.2 lllustration of a single SENeCA core (Neuron Computing Cluster)
3.3 Block diagram showing the small parametrization of the Ibex core with a 2-stage pipeline,

IFand ID/EX[5] o
3.4 lllustration of the Axon Messaging Interface.
3.5 lllustration of shared memory, with the Shared Memory Pre-fetch Unit in every core . . .
3.6 Block diagram of the NCP, with the blocks above the dual port memory containing an RF

block and an ALU being individual NPEs
3.7 Block diagram of the Event Capture Unit

4.1 Network topology for the keyword spotter DNN. All layers are fully connected (FC). Adapted
from[14] o e

4.2 TensorBoard visualization of the main network. The rounded rectangles represent the
layers, while the arrows represent the fowofdata.

4.3 TensorBoard visualization of the second layer. The two main operations taking place,
xw_plus_b and Relu, are shownhere.

5.1 SENeCA instantiation forthisstudy.
5.2 Experiment flow for performance measurements.

5.3 Experiment flow for power consumption measurements.
54 Breakdown of e

45

46

List of Figures Vi

5.5 Example of a simulation run. The timestamps are displayed on the left, while the text

messages indicate a specific task completed. oo oo 60
5.6 Example of a graph produced by time-based power estimation. 63
5.7 Output messages obtained from SENeCA while running the simulation with version 1. . 64
5.8 Waveforms of the signals produced by SENeCA when simulated using version 1 of the
benchmark. e 65
5.9 Time-based power graph of version 2 together with several signals. 65
5.10 Output messages obtained from SENeCA while running the simulation with version 2. . 67
5.11 Time-based power graph of version 2 together with several signals. 68
5.12 Time-based power graph of version 2, broken down into components. 69
5.13 Time based power consumption graph of individual NPE operations. 71
6.1 Output messages obtained from SENeCA while running the simulation with version 3. . 77
6.2 Time-based power graph of version 3 together with several signals. 78
6.3 Time-based power graph of version 3, broken down into components (core 1). 78
6.4 Output messages obtained from SENeCA while running the simulation with version 4. . 81
6.5 Waveforms of the signals produced by SENeCA when simulated using version 4 of the
benchmark. 82
6.6 Time-based power graph of version 4 together with several signals. 83
6.7 Output messages obtained from SENeCA while running the simulation with version 5. . 85
6.8 Waveforms of the signals produced by SENeCA when simulated using version 5 of the
benchmark. 86
6.9 The time period in which cores 2 and 3 are active is magnified here to provide a more
detailed IoOK. 87
6.10 Time-based power graph of version 5 together with several signals. 87
6.11 Output messages obtained from SENeCA while running the simulation with version 6. . 90
6.12 Waveforms of the signals produced by SENeCA when simulated using version 6 of the
benchmark. 91
6.13 A more detailed look of the MM loop pipeline inversion6. 91
6.14 Time-based power graph of version 6 together with several signals. 92
6.15 Output messages obtained from SENeCA while running the simulation with version 7. . 97
6.16 Waveforms of the signals produced by SENeCA when simulated using version 7 of the
benchmark.o 98
6.17 A more detailed look of the MM loop pipelineinversion7. 98
6.18 A more detailed look of the bias and activation function loop pipeline in version7.. . . . 99
6.19 Time-based power graph of version 7 together with several signals. 99
6.20 Simulation run of version 7, showing the number of events perlayer. 101
6.21 Multi-input run waveforms ofversion 7.. 102
6.22 Breakdown of power consumption by component for a single core (NCC). 105

6.23 Breakdown of power consumption by component forasingle NCP. 106

List of Tables

2.1 Results of benchmarking a network to measure maximum frequency of neurons in SNAB-
Suite [77] e

2.2 Results of benchmarking a network for solving Sudoku puzzles in SNABSuite [77]

2.3 Results of benchmarking the gesture recognition system using different architectures
and platforms [17]

2.4 Overall benchmarking results using the keyword spotting program [14]

3.1 Available instructions for the ALU of an NPE. Operations 2 to 6 are arithmetic, 7 to 12

are comparisons, 14 to 17 are bitwise, while 18 and 19 are memory operations.
3.2 Area consumption of the main components ofasingle NCC.
3.3 Area of SENeCA compared to other comparable neuromorphic chips.

4.1 Dimensions and sizes in memory of the weight matrices of the 3 layers. Sizes are de-
noted in KBytes.
4.2 Dimensions and sizes in memory of bias vectors of the 3 layers. Sizes are denoted in
KBytes. . . . e
4.3 Program to perform multiply and accumulate operations by the NPE. Five NPE registers
areused outofthe 16 available.
4.4 Program to perform bias addition and activation function by the NPE. Six NPE registers
of the 16 availableareused.

5.1 An overview of the software used inthisstudy.
5.2 Parameters of the SENeCA instanceused.
5.3 An example of an average power report generated by Cadence Joules®. All power val-
uesaredenotedinWatts. L
5.4 Execution time measurements for version 1. All times are in microseconds (us).
5.5 Average power consumption of version 1, during the active time of core 1 (Active 1). All
powervaluesareinWatts.
5.6 Average power consumption of version 1, during the active time of core 2 (Active 2). All
powervaluesareinWatts.
5.7 Average power consumption of version 1, during the active time of core 3 (Active 3). All
powervaluesareinWatts.
5.8 Execution time measurements for version 2. All times are in microseconds (us). .
5.9 Average power consumption of version 2, during the active time of core 1 (Active 1). All
powervaluesareinWatts.
5.10 Average power consumption of version 2, during the active time of core 2 (Active 2). All
powervaluesareinWatts.
5.11 Average power consumption of version 2, during the active time of core 3 (Active 3). All
powervaluesareinWatts.
5.12 List of NPE operations whose energy consumption is to be measured.
5.13 Energy consumption of NPE operations (calculated from the total power values). All
values are expressed in femtojoules (fJ).

6.1 Execution time measurements for version 3. All times are in microseconds (us). .

6.2 Average power consumption of version 3, during the active time of core 1 (Active 1). All
powervaluesareinWatts.

6.3 Average power consumption of version 3, during the active time of core 2 (Active 2). All
powervaluesareinWatts.

Vi

List of Tables viii

6.4 Average power consumption of version 3, during the active time of core 3 (Active 3). All
powervaluesareinWatts. 79
6.5 Execution time measurements for version 4. All times are in microseconds (us). .. 82

6.6 Average power consumption of version 4, during the active time of core 1 (Active 1). All
powervaluesareinWatts. 83

6.7 Average power consumption of version 4, during the active time of core 2 (Active 2). All
powervaluesareinWatts. 83

6.8 Average power consumption of version 4, during the active time of core 3 (Active 3). All
powervaluesareinWatts. 83
6.9 Execution time measurements for version 5. All times are in microseconds (us). .. 86

6.10 Average power consumption of version 5, during the active time of core 1 (Active 1). All
powervaluesareinWatts. 88

6.11 Average power consumption of version 5, during the active time of core 2 (Active 2). All
powervaluesareinWatts. 88

6.12 Average power consumption of version 5, during the active time of core 3 (Active 3). All
powervaluesareinWatts. 88
6.13 Execution time measurements for version 6. All times are in microseconds (us). .. 90

6.14 Average power consumption of version 6, during the active time of core 1 (Active 1). All
powervaluesareinWatts. 92

6.15 Average power consumption of version 6, during the active time of core 2 (Active 2). All
powervaluesareinWatts. 92

6.16 Average power consumption of version 6, during the active time of core 3 (Active 3). All
powervaluesareinWatts. L 93
6.17 Execution time measurements for version 7. All times are in microseconds (us). .. 97

6.18 Average power consumption of version 7, during the active time of core 1 (Active 1). All
powervaluesareinWatts. 100

6.19 Average power consumption of version 7, during the active time of core 2 (Active 2). All
powervaluesareinWatts. 100

6.20 Average power consumption of version 7, during the active time of core 3 (Active 3). All
powervaluesareinWatts. 100

6.21 Ideal energy consumption of the 3 types of loops found in the benchmarking program.
All values areinnanojoules. 101

6.22 Ideal number of operations and energy consumption (in nJ) of the benchmarking pro-
gram, shown perlayer. L 102

6.23 Accuracy comparisons of the baseline model implemented on a PC with with version 7
on SENeCA. e 103
6.24 Summary of the optimization implemented in each software version. 104
6.25 Summary of the power and energy of all versions and Loihifrom[14] 104

Preface

This M.Sc. thesis report concludes the amazing two years | spent in Delft as an Embedded Systems
student. The subject of neuromorphic engineering sparked my interest the first time it was mentioned
in a lecture, and during the work performed for this thesis, it has only grown. | hope that you, the reader,
can also learn about it and Al in general while reading this thesis. While this thesis is long, more than
100 pages, | have tried my best to keep it as engaging to the reader as possible.

There are multiple people | would like to thank since it was their support that made most of the work
for this thesis possible. First | would like to thank my supervisors, Prof. Said Hamdioui and Anteneh
Gebregiorgis, for their advice and feedback during the few progress meetings that we had, and also for
proofreading and giving suggestions to improve this thesis. | would also like to thank my supervisors
at IMEC The Netherlands, Amirreza Yousefzadeh and Gert-Jan van Schaik, for your enourmous help
during the implementation. | realize that this work is only a small part of the SENeCA project being
developed at IMEC, but | hope that my small contribution can be of use.

Furthermore, | would like to thank my friends at DHO6, especially Johanna, Bas, Boris, Niels, and
Maddy, and my fellow Indonesians at PPI Delft, you made an academic year during the pandemic
bearable. Also, | would like to thank my fellow thesis students at IMEC, Prithvish and Alexandra, for
making the long hours in the library and office enjoyable. | would also like to thank my family on the
other side of the world for their unconditional and unending love and support. Last but not least, | would
like to thank Aina, for always being by my side.

Kevin Shidqi
Delft, November 2022

Introduction

1.1. Motivation

The market of Atrtificial Intelligence (Al) software is growing rapidly, reaching a valuation of $62 billion
in 2022. That is an increase of around 21% compared to 2021 [38]. Meanwhile, the revenue from Al
for enterprise applications has increased more than tenfold between 2017 and 2022, and is expected
to continue to increase in 2022 and beyond [31], as shown in Figure 1.1.

35,000
31,237
30,000
(i |
£ 25 000 23,887
5
= 20,000 17,284
=
P 11,841
£ 10,000 7.714
= 4,806
5,000 2,868
1,622
358 841 &
: — [| -
2016 2017 2018 2018 2020 2021 2022 2023 2024 2025

Year

Figure 1.1: Revenues from the artificial intelligence for enterprise applications market worldwide, adapted from [31]

While the majority of the users are still the computer and software industries, the adoption of Al tools
and methods is also being carried out in various other fields, as mentioned in a report by O’Reilly [65].
Examples of the potential application of Al in various aspects of our daily lives are listed in the following.

1. Healthcare: Several Al applications can perform as good as, or in some cases better than, clini-

1.1. Motivation 2

cians in diagnostics [85]. In the future, Al applications may be used to improve the availability of
diagnostic services and reduce their cost.

2. Business: Enterprise Cognitive Computing (ECC) is the use of Al to enhance business operation.
This is achieved by using Al applications to perform repetitive tasks, improving efficiency [97].

3. Education: The usage of Al in education includes the automation of administrative tasks, the
condensing of textbooks to useful exam preparation tools, and the development of an Al-based
tutoring system [96].

4. Agriculture: The automatic detection of objects of interest, such as fruits, in orchards or farms
using unmanned vehicles [69] and the monitoring of soil parameters [37] are two possible cases
in which Al algorithms can be applied in agriculture, potentially helping farmers and agronomists
with automation of labor-intensive tasks.

5. Network Security: The use of Al algorithms to observe internet traffic and detect unusual traffic
to distinguish a security threat was demonstrated in [60].

The examples and numbers above show the growth and potential of Al applications. Many of algorithms
used in these applications are based on information processing systems found in biological, mainly
human, brains. These information systems are noted for their ability to perform tasks with remarkable
efficiency in terms of energy.

The implementations of these algorithms on digital computers, such as GPUs (Graphical Processing
Units), was proven to be possible [74]. The parallel structure of GPUs, originally developed to tackle
the parallel nature of graphical applications, allow them to handle the computationally intensive nature
of Al algorithms. However, these implementations still lack the energy efficiency of biological systems
[70] upon which these algorithms were developed. The main cause of the energy problem with the
implementation of Al algorithms on von Neumann computers (the most widely used architecture, in-
cluding GPUs) is the so-called memory wall [80]. In von Neumann computers, the processing unit and
the memory are separated, usually on different chips or different parts of a chip, and they are con-
nected by a data bus. This causes the energy consumption of a memory access operation to be as
much as 1,000 times higher than that of an arithmetic operation [48]. Since Al applications are also
data-intensive, requiring a large number of read/write operations to the memory, the distance between
the processor and the memory becomes a major bottleneck and cause of inefficiency in terms of energy
[49]. Some of the applications of Al sofware take place in environments where energy for performing
computations is limited (e.g. in embedded applications such as in [69]), worsening this problem.

To solve the problems above, in recent years, a new type of computer architecture has emerged that
departs from the conventional von Neumann architecture. It specializes in data-intensive Al algorithms
and aims to use the principles of biological neurons to replicate their energy efficiency. These new
architectures are termed "Neuromorphic processors”. Research on analog versions of neuromorphic
processors was done as early as 1995 [28]. Currently, several prototype chips have already been
published, such as Loihi[22], TrueNorth[71], and SpiNNaker[35]. Another chip, which is still in the
developmental stage, is SENeCA [109]. SENeCA, named after the Roman philosopher, stands for
Scalable Efficient Neuromorphic Computer Architecture. It is designed to be a flexible and scalable
architecture that can accommodate future neural network architectures.

However, to accelerate the development of these neuromorphic processors, there needs to be a stan-
dardized process or suite to perform benchmarking [20]. A similar concept already exists in conven-
tional CPU, such as Standard Performance Evaluation Corporation (SPEC), an American non-profit
organization that aims to produce a standardized set of performance benchmarks for computers [91].
It is argued that one of the factors that drove the rapid development of CPUs was this benchmarking
standard, and to truly unleash the potential of nheuromorphic chips, a similar benchmarking suite or
standard should be developed for neuromorphic architecture. Similarly, an effort to produce “fair and
useful benchmarks” for the field of machine learning is being made by MLPerf [67]. For neuromorphic
computing to reach maturity as a field, a similarly standardized and systematic methodology or suite
for benchmarking is surely needed.

1.2. Problem Statement 3

1.2. Problem Statement

The goal of Neuromorphic Computing as a field is quite ambitious, namely, to decipher the secrets of
the biological brain that allow the unparalleled efficiency and flexibility of brain-based computing. As
the challenge is quite daunting, there is a need to focus on measuring quantitative metrics to prove
real-world value by benchmarking, instead of open-ended exploration [20]. This might seem difficult,
since the designs that have been published vary widely in their features and purpose [86]. Furthermore,
there is no standardized language yet for neuromorphic processors at the time of writing, such as the
C language that was used in SPECint benchmarks in the case of conventional CPUs.

In many fields, however, benchmarking has provided great value by allowing for a fair and useful com-
parison between architectures or algorithms. For example, in conventional von Neumann architectures,
the SPECint [91] benchmarks were developed. For systems programming, Dhrystone was widely used
[102]. More recently, the MLPerf benchmark suite was developed for machine learning algorithms [67].
A good benchmark serves to motivate researchers to solve a particular problem that can represent a
wider class of useful problems, improving the real-world value of their field.

Benchmarks also allow designers to measure and make tradeoff decisions in their design. In particular,
for a nascent field like neuromorphic computing, the impact of specific design choices might not be
fully understood. Thus, it will be useful to perform a quantitative evaluation of the relative features,
flexibility, and performance of existing platforms to help future designers understand the advantages
and disadvantages of the design choices in those platforms and their impact on performance. This
will lead to better designs in the future, helping to unleash the potential of neuromorphic computing to
accelerate the applications of Al software to solve real-world problems.

As the goal of neuromorphic processors is to efficiently process neural networks, the focus of these
hypothetical benchmarks should be on measuring performance and energy efficiency. Furthermore, a
proper benchmarking suite would measure these metrics not only when running a full application but
also when executing simple neural operations. This study aims to perform a systematic benchmarking
process using one of the applications mentioned in [20] on SENeCA. The most important metrics to be
measured, since the goal of SENeCA and neuromorphic processors as a whole, is to execute neural
network operations in an energy-efficient manner, are energy-to solution and inference time. Other
than that, peak and average power consumption, as well as chip area will also be measured.

1.3. State of the Art

This section will explore the published research on the topic of neuromorphic benchmarking. Most of
the published architectures have some kind of demonstration section in which a certain algorithm is run
on the architecture. The publication of Loihi [22] has a section which evaluates Loihi running a locally
competitive spiking algorithm (LCA). Tianjic [26], meanwhile, was benchmarked with an unmanned
bicycle controller with multiple ANN / SNNs. TrueNorth [71], had a framework built specifically for it
to implement CNNs. Another design, MorphlIC [33], was tested with the MNIST image classification
database. The algorithms that were chosen to be tested on these architectures are mainly well suited
to the architecture. While this is necessary to highlight the performance of these chips, the lack of
a standard program or benchmarking methodology makes it difficult to perform a fair and objective
comparison.

Several studies have been published that focused on developing a benchmarking suite. Ostrau, et al.,
developed a framework to develop benchmarks for neuromorphic processors named SNABSuite [76],
based on the Cypress framework [93]. They used the framework to perform benchmarking with several
programs, including a Sudoku solver and a simple program to measure the frequency of neuron firing
on the four supported platforms [77]. The four supported platforms are BrainScaleS [82], Spikey [83],
NEST [39], and SpiNNaker [35].They measured important metrics such as energy, accuracy, and time
to solution.

1.3. State of the Art 4

Another framework for developing software for neuromorphic architectures, Nengo [11], was also used
for benchmarking [10]. Nengo has several backend platforms to generate SNN-based code to run of
various platform, and one backend, SpiNNaker, was run in this benchmarking study on the eponymous
hardware, while four other backend platforms were run on more conventional hardware. Five different
applications were used for benchmarking, all of them related to simulating large-scale brain models.
The speed and accuracy while running these five applications were measured.

Other published studies focused more on using a application specific to other fields to demonstrate the
capabilities of neuromorphic processors through benchmarking. A benchmark based on hand gesture
recognition, for example, was performed by Ceolini, et. al. [17]. This study uses event-based camera
input and signals from a sensor capable of measuring electrical signals from the forerarm muscle to
detect hand gestures performed by humans. The neuromorphic chips used were Loihi [22] and a
combination of ODIN [34] and MorphlC [33]. They were compared against a baseline implementation
of more traditional machine learning based algorithm running on an NVidia Jetson hardware.

A benchmarking of neuromorphic processors using closed-loop applications, where the output of the
processor is likely to affect its future input, was performed by Stewart, et. al., in 2015 [92]. The applica-
tion is a relatively simple adaptive control program of a motor, where a neural network based algorithm
is used by the program to improve its response in presence of disturbances that is randomized every
time the benchmark is run. Instead of using a physical robot, they used a method known as Minimal
Simulation [53] to introduce the variation in disturbances that is likely presentin a physical system. They
compared the performance of a neuromorphic processor (SpiNNaker) against a CPU and a GPU.

Instead of neural-network based applications, the capabilites of neuromorphic processors to perform
more conventional, Message Parsing Interface (MPI) based parallel processing programs were tested
in a benchmarking study by Urgese, et. al. [99], using a program for DNA sequence matching that is
based on a text searching algorithm [61]. SpiNNaker was also used in this study, and it was compared
against a server with two conventional CPUs.

Other than the publications mentioned above, there have also been several publications that aim to
perform comparative studies on different platforms, both on neuromorphic architectures or other accel-
erators. In 2019, a study was conducted to compare the performance of Loihi with other more traditional
architectures, on which this project is largely based [14]. The project used a keyword spotting algorithm
based on a DNN architecture to measure the performance of Loihi compared to a CPU, GPU, and other
accelerators such as NVidia Jetson and Movidius. Another similar study was conducted in 2020, pit-
ting Loihi against SpiNNaker to compare their performance [107]. A more comprehensive discussion
of these benchmarking studies is presented in Chapter 2.

Although evidently some progress has been made in the benchmarking of neuromorphic processors,
the publications mentioned above vary in terms of metrics that were measured and the methodology
used to measure them. Moreover, most of the comparative studies done focused more on comparing
a neuromorphic architecture against a more conventional one, such as [99], [92], and [14]. Others that
perform comparisons on two or more neuromorphic processors, such as [17] and [77] do not focus on
going into detail to reveal which aspect or design choice of the benchmarked neuromorphic architecture
gave the most impact in performance. As argued by Davies [20], one of the benefits of benchmarking
is obtaining knowledge on the effects of design choices on performance, which is especially relevant
in an emerging field such as neuromorphic computing. In general, we identified several areas in which
improvements could be made:

» Since SENeCA is a new neuromorphic architecture, no benchmarking or comparative studies
have been performed on it. Applying one of the benchmarks mentioned above on it will yield
more insight, providing value to both the developers of SENeCA and future researchers.

» Most benchmarking studies mentioned above only have one/two workloads that represent real-
world problems. While this is not an issue by itself, a real-world workload combined with a work-
load that benchmarks individual synaptic operations can provide an way of quantitatively compar-
ing the fine-grained performance of different designs. This is similar to micro-benchmarks, which
have been used to measure the fine-grained performance of GPUs [98] and network processors
[9].

1.4. Contribution 5

» No benchmarking publication thus far goes into the detail of measuring the power/energy con-
sumption of individual components of the neuromorphic processor, instead they only the overall
power/energy consumption. Knowing the power/energy consumption of individual components
can reveal rooms for improvement in the design.

This study aims to perform benchmarking on SENeCA using an already existing benchmarking program
that involves several iterations, with each iteration having a new optimization that involves a component
in the architecture, to give better insight into the effect of the design choices present in the architecture
on performance. Also, a secondary workload that benchmarks individual operations by SENeCA’s neu-
ral processors will also be included. To do this, we will build upon the existing research by adapting the
program used in [14] for SENeCA [109], instead of developing an entirely new benchmark. Regarding
the metrics to be measured, we will base these upon [77], [17], and [14], which measure power con-
sumption, time-to-solution, accuracy, and energy per inference, because they are more comprehensive
than the measured metrics in [11], [92], and [99].

1.4. Contribution

The main goal of this thesis is to further improve the knowledge about neuromorphic architecture and
neuromorphic benchmarking. The main contributions of this thesis are summarized in the following.

* A new benchmarking methodology for neuromorphic processors: As mentioned by Davies
[20], there is a strong need for standardized benchmarking suites for neuromorphic processors,
and that is where we hope this thesis can contribute. More specifically, the multiple iteration
approach, with each iteration having a specific optimization, in the methodology used here can
give insight into the design of individual components and the effect of these deisgn choices on the
performance. Furthermore, the inclusion of a micro-benchmark workload to benchmark individual
synaptic operations can give more insight into the fine-grained performance. Although we do not
claim to have a fully developed benchmarking suite, we hope that the methodology used here
can serve as a reference for future researchers.

» Application of the new methodology on SENeCA: SENeCA [109] is a neuromorphic architec-
ture that is designed to be flexible enough to accommodate future neural network designs. As it
will be made open source to researchers with an academic background, we hope that by perform-
ing benchmarking on it, the design choices of SENeCA and their impact on performance can be
better understood, such that other designs can build upon it.

* A new benchmarking implementation flow : As the aim of neuromorphic processors is to
run an application based on neural networks in an energy efficient manner, the power-aware
implementation flow can be of reference for future developers.

To summarize, this thesis proposes a new benchmarking and application development flow for neuro-
morphic processors, and implements this flow on one design, SENeCA.

1.5. Thesis Organization

This thesis is divided into 7 chapters and an appendix. The organization of this thesis is summarized
as follows:

» Chapter 1: this chapter will present the motivation, state-of-the-art analysis, problem statement,
as well as the contribution of this research.

» Chapter 2: this chapter describes the necessary background information, mainly related to the
field of neuromorphic processors. First, a brief history of artificial intelligence and computer archi-
tecture is presented, which leads to the motivation for neuromorphic computing. Then the basic

1.5.

Thesis Organization 6

principles of neuromorphic computing are described, as well as several existing prototypes. Fi-
nally, an exploration of the literature related to the benchmarking of nheuromorphic processors is
presented.

Chapter 3: this chapter describes in detail the architecture of the prototype neuromorphic pro-
cessor that is the target of this research, SENeCA. First, an introduction to SENeCA is presented,
along with its design principles and purpose. Then, a breakdown of SENeCA and its compo-
nents is described, with a detailed explanation for each component. This chapter also includes a
comparison of SENeCA with other existing prototype neuromorphic processors.

Chapter 4: this chapter explains the design and implementation of the benchmarking software.
It begins with a description of the neural network model and architecture upon which the software
is based. Then, two sections will detail how this model is implemented in a PC and SENeCA,
respectively. The section describing the implementation on SENeCA is divided into 2 versions of
the software.

Chapter 5: this chapter explains the experimental setup and methodology to measure the re-
quired performance metrics. Furthermore, this methodology will be implemented to the first 2 ver-
sions described in the previous chapter, and the results of those experiments will be presented.
Furthermore, a section detailing an experiment to measure individual operations performed in
SENeCA is also included.

Chapter 6: this chapter describes the optimization process to obtain a faster and more energy-
efficient software implementation. There are five versions in total, each obtained by analyzing
the previous version to find room for improvement. For every version, an explanation of the
optimization technique and implementation, performance measurement results, and power con-
sumption measurement results are described. This chapter also includes a section dedicated to
the measurement of accuracy of the SENeCA implementation.

Chapter 7: in the final chapter, a summary and ideas about future work are described.

Neuromorphic Architectures and
Benchmarking

This chapter introduces the necessary background information and dives more deeply into the literature
currently available on neuromorphic architectures and benchmarking. First, Section 2.1 introduces
Artificial Neural Networks (ANN). Section 2.2 will elaborate on why standard CPUs were limited for ANN
operations. Section 2.3 will explain other architectures used for ANN operations before neuromorphic
chips. Next, Section 2.4 will explain the design principles of neuromorphic architecture. Afterwards,
Section 2.5 will dive into the available literature on neuromorphic chips. Finally, Section 2.6 will dive
into the literature on bencmarking neuromorphic processors.

2.1. Artificial Neural Network 8

2.1. Artificial Neural Network

In the early days of artificial intelligence (Al), a field developed to realize man’s dream of a machine
that can think, problems that were difficult for humans but straightforward for computers were rapidly
tackled. These problems could be described formally by mathematical rules without much difficulty.
The real challenge came with problems that were difficult to describe but easy for humans to solve.
These are the problems that we solve intuitively that feel automatic to us. These problems include
recognizing faces from photographs and recognizing spoken words from an audio recording [40].

Dendrite

Axon terminal

Outputs

Myelin sheat Output points = synapses

‘ Myelinated axon trunk

Inputs

Input points = synapses
Figure 2.1: An illustration of a biological neuron [29]

The multilayer perceptron, another name for the Artificial Neural Network (ANN), is a solution for these
more intuitive problems, as conventional algorithms had little success. This solution is based on the
architecture of the human brain [40]. In general, ANNs consist of artificial neurons, which are based on
the biological neuron cell found in human brains. Figure 2.1 depicts a biological neuron, also known
as a nerve cell. Put simply, the neuron consists of the dendrites, the cell body (soma), the axon trunk,
and the axon’s terminals. The dendrites receive input signals from other neurons. The dendrites then
transmits these signals to the soma, with "adjustments”. These adjustments depend on the dendrite’s
"weight” values, and depending on these values, dendrites can either amplify or diminish the signals
sent to the soma. The soma then performs a summation of the signals from the dendrites. Every time
the summation value in the soma exceeds a certain value, it emits a pulse signal and then sends it
further to the axon. The axon’s synaptic terminals, which are connected to other neuron’s dendrites,
pass the signal on to other neurons, repeating the process [73].

2.1. Artificial Neural Network 9

X1 weights

X2

Summation function Activation function

Neuron output
X3

Xn
Figure 2.2: An illustration of an artificial neuron [106]

The artificial neuron is a mathematical model of the biological neuron [6]. Figure 2.2 depicts the model.
In this analogy, the dendrites can be seen as the input of the artificial neuron. Each dendrite has a
"weight” value, and the input of that dendrite is multiplied by its weight value. This models the amplifying
or diminishing action done by biological dendrites. The soma can be seen as the node, where the
summation of the weighted input values from the dendrites takes place. After that, a bias term is added
to the sum, and then it is passed through a non-linear activation function, producing an output. These
are analogous to the threshold value of the soma. The output of the neuron, analogous the axon, sends
the output value to other neurons [40].

Hidden

Layer 2
Hidden

Input Layer 1 / . '
/ Ouput
. “\:';'1','/{ . \\\' >
7 =X X 49/"\\\:\93
N) LKA & P

LX) . .
0%V VA X 7 X0
------ R X =
(R RO VA
P>

WOLRIC
\\“ﬁ§ /,’ Output
' \\w/ Wo e

(7,3]

Figure 2.3: An illustration of a simple ANN [2]

An ANN is a network consisting of artificial neurons described above. Since the artificial neurons have
a node and connections with other neurons, the network can be represented with a graph, with the
neurons being the nodes and the connections being the edges. Figure 2.3 illustrates an example
ANN. Each ball is a neuron, and each arrow represents a connection between the neurons. Here,
the neurons are divided into four layers. Here, a neuron in a hidden layer receives inputs from all

2.1. Artificial Neural Network 10

neurons in preceding layer, and sends its output to all neurons in the following layer. Since the data
flows in a single direction, these type of ANNs are called feedforward networks. This is known as a
Fully-connected, or dense, network [8]. The number of neurons and the layer configuration can vary
based on the application.

As explained above, each neuron in a layer has connections to all neurons in the preceding layer. Also,
each connection has a weight value assigned to it. In Figure 2.3, for example, each neuron in layer f1
(Hidden Layer 1) receives inputs from the four Input Layer neurons. Therefore, each neuron of layer
f1 has four weight values. Since there are five neurons in layer f1, we can represent the 20 (four times
five) weight values with a 4X5 matrix, named W1. Each layer has its own weight matrix, whose size
depends on the number of neurons in that layer and the preceding layer. The weight matrices for the
next layers are termed W2 and Wo. Also, each neuron has a bias term which is added to the sum of
the inputs. The bias terms of neurons of a layer can be represented by a vector b, whose number of
elements correspond to the number of neurons in the layer. Likewise, the inputs and outputs of a layer
can also be represented by vectors, here termed x and a.

The relationship of the input vector, weight matrix, bias vector, and output vector of a layer L is defined
by a function [40]. Typically, it takes the form of Equation 2.1.

Output;, = A; = F(>_ W;;.X; +b)) (2.1)
=0

F is the activation function, A; is the output vector, X; is the input vector, W;; is the weight matrix
and b; is the bias vector of that layer, with j = (0,..,m) and i = (0,..,n) where m and n are the
number of neurons of layer L and the preceding layer, respectively. In other words, to obtain the output,
a weighted sum of all inputs is calculated. Then, a bias term is added to the weighted sum and an
activation function is applied. Various activation functions are used, such as the Heaviside function
(Equation 2.2) and the Rectified Linear Unit (ReLU) (Equation 2.3) [42].

1 ifz>0
F(z)= {0 fr<0 (2.2)
F(x) = max(0,x) (2.3)

In essence, the objective of the neural network (NN) is to approximate a certain function. The multilayer
feedforward ANNSs are proven to be universal approximators [47]. An example of the application of ANN
is described in [13], where images of handwritten digits are classified according to the digit in the image.
In this case, the input is the pixel values of the images, while the output is a vector of probabilities for
each number (0-9). To do this, the parameters of the neural network (weight values, bias values) are
adjusted based on the learning process [40]. There are various forms of learning, generally divided into
supervised and unsupervised learning. Unsupervised learning attempts to cluster unlabeled datasets
by discovering hidden patterns in the data [45]. In supervised learning, the NN is presented with a
labeled dataset, also known as the training data. During the learning process, the dataset is fed as
input to the NN, and the output of the NN is compared against the correct output (the label), which
produces an error value. This value is used to adjust the weights in such a way as to minimize the error
value. A common method used the adjust the connection weights is backpropagation using stochastic
gradient descent [84]. When this process is run repeatedly, the error rate may decrease. After the
learning process in complete, the NN can be fed with actual data (also known as the test data) to
evaluate its performance. This is known as the inference process [40].

From Equation 2.1, we can see that the majority of the arithmetic operations are done in the Z Wi . X

=0
summation, which is basically a matrix multiplication. In ANNs that are designed to approximate com-
plex functions, the number of neurons may be very large. For example, AlexNet, a neural network used
to classify images of the ImageNet database, has over 650,000 neurons and 6 million parameters [63].

2.2. Limits of Traditional CPU 11

A subset of these parameters have to be accessed every time calculations take place, making it a very
data-intensive application.

2.2. Limits of Traditional CPU

In computers that are based on the von Neumann architecture, the memory and the computing ele-
ments are separated from each other [80]. The computing element is a processor that executes se-
quences of machine instructions, such as arithmetic and logic operations. The memory is an element
that can store the data. Typically, a Random Access Memory (RAM) is the type of memory used to
store working data and machine instruction.

As argued in [48], the amount of energy required to read or write data to the RAM can be 1,000 times
higher than the energy required to execute one computing operation. In addition, the maximum through-
put at which data from the RAM can be transferred to the processor is usually limited by the width of
the data bus (that connects the processor to the RAM), and much lower than the rate at which the
processor can process the data. This results in latency and processor downtime while it waits for the
data to arrive. This makes the bus that connects the processor and the RAM a significant bottleneck.
This phenomenon is known as the Memory Wall. Many innovations in computer architecture have been
developed to solve this bottleneck problem [80].

One solution to this problem is the introduction of a memory element closer to the processing unit.
Modern processors usually have several layers of memory accessible to it, ranging from registers (small
memory cells that are quickly accessible) to several layers of caches, to the RAM which is usually
located on a separate chip [44]. Memory that is located close to the processor can be accessed quickly
with little energy, but the size of the memory is limited. Accessing data located in the off-chip RAM, for
example, requires a relatively large amount of time and energy compared to accessing data in the L1
cache. Figure 2.4 illustrates this point.

I/O bus
PR Memory I/O devices

Disk

memory

Register Cache Memory reference

reference reference reference

Size: 500 bytes 64 KB 1GB 1TB
Speed: 250 ps 1ns 100 ns 10 ms

Figure 2.4: Memory hierarchy of the von Neumann architecture [44]

In architectures such as the one illustrated by 2.4, the weight matrix of ANNs described in Section 2.1
will most likely be stored in the RAM, since for most networks the weight matrix will be too large to store
in the memory closer to the processor. Thus, the processor will often need to perform a read operation
on the RAM to obtain the required weights or inputs (since the input vector is also likely to be stored
in the RAM). As mentioned above, the data bus will limit the speed at which the operations can be
executed. Furthermore, the number of weights increases exponentially depending on the number of
neurons, inputs, and layers. This means that for larger networks, the time required to transfer the data
will dominate the execution time [51].

2.3. GPUand TPU 12

Recent architectures, such as the AMD 3D V cache [104], attempt to solve this problem by introducing
a larger cache. These caches, which can comprise around 40% of the chip area, can provide tens of
megabytes of fast memory. Depending on the size of the network, this might allow the entire weight
matrix of an ANN to be stored in the cache, allowing faster execution. Strategies to decrease the
execution time for CPUs, such as speculative execution, branch prediction, and others mentioned in
[80], are not applicable for ANNSs, since the execution order is known beforehand. Other solutions
depart from the traditional CPU architecture, such as the Graphics Processing Unit (GPU) and Tensor
Processing Unit (TPU) architectures.

2.3. GPU and TPU

The GPU was initially developed to handle computer graphics [80]. It provides multiple streaming multi-
processors. These processors are smaller and slower than a typical CPU, but since there are several of
them, calculations of multiple neurons can be executed simultaneously. Also, these streaming multipro-
cessors have large register files that can be used to store data from various contexts. If a single context
currently has an operation that has a large latency, such as a memory read operation, the processor
can execute instructions from other contexts instead. Regarding memory throughput, manufacturers
such as NVIDIA began adding High Bandwidth Memory (HBM), bringing the memory throughput to 1.5
TB/s in the A100 architecture, released in 2020 [4].

A more recent architecture that is more specialized in neural network operations is the TPU, introduced
by Google in 2015 [55]. This architecture attempts to solve the memory bandwidth problem by using
systolic arrays in combination with software-controlled memory. At its heart lies a computational device
that consists of 256x256 8-bit multiply-and-accumulate computational units. This is shown in Figure
2.5 as the Matrix Multiply Unit. Each unit has a memory that can store a weight value and is connected
to four other units in a two-dimensional matrix. It performs two operations. First, it multiplies the input
received from the unit above by the weight and adds that result to the number received from the unit to
the left. Then it sends the input received from above to the unit below it without changing it and passes
the sum obtained previously to the right. Essentially, it performs matrix multiplication in a pipeline, which
is, as mentioned previously, the most time-consuming operation of an ANN. Also, this concept aims
to minimize the number of operations that involve the memory, especially the storage and retrieval of
intermediate results, since these are mostly stored in the memory of the MAC processors themselves.

) aens
14 GiB/s 5o 30 GiB/s Weight FIFO
S Intorfaces | T | (Weight Fetcher)

R 30 GiB/s
Control 4 Control

Matrix Multiply
Unit
(64K per cycle)

Unified
Buffer
(Local
Activation
Storage)

14 GiB/s

=)

14 GiB/s

=

PCle Gen3 x16
Interface

Host Interface
>
o]
-
»

167 GiB/s
Normalize / Pool

il

D Off-Chip I/0
[pata Buffer
[] computation

[control

Not to Scale

%
v J
e

Figure 2.5: TPU Block Diagram [55]

2.3. GPUand TPU 13

In 2017, a performance test was published that compared the TPU architecture with other architectures
mentioned above (CPU and GPU) [57]. The CPU and GPU were the Haswell (HSW) and K80 architec-
tures, respectively. The study used six DNN applications run on three architectures. The study findings
can be summarized in Figure 2.6. This uses the Roofline Performance model [103]. The performance
of a specific architecture (in TeraOps/sec) is plotted against the operational intensity (in Ops/weight
byte). Without enough operational intensity, the programs will be memory-bound, represented by the
slanted part of the roofline. The flat part of the roofline represents the computation-bound area, where
the processor speed becomes the bottleneck. As can be seen in the graph, the performance of the
applications is quite close to the roofline for the TPU and lower for the CPU and GPU.

Log-Log Scale

100 = TPU Roofline
= K80 Roofline
HSW Roofline
* LSTMO
* LSTM1
MLP1
MLPO

10

CNNO

CNN1
LSTMO
LSTM1

P X %

TeraOps/sec (log scale)

MLP1

CNNO

CNN1
® LSTMO

LSTM1

A
A MLPO
A
EN

1 10 100 1000

4
Operational Intensity: Ops/weight byte (log scale) e

Figure 2.6: Roofline performance model of TPU (stars), GPU (triangles), and CPU (circles) [57]

The architecture of the TPU was shown to be more efficient in running DNN programs than the GPU
and the CPU architectures [56]. Compared to the GPU, it was 15 times faster, while it was 29 times
faster when the power consumptions of both are taken into account. Against the CPU, the numbers
were 29 and 83, respectively. Several factors enable the TPU to have such a performance advantage:

1. The 2D Matrix Multiplication Unit of the TPU is more suited to matrix multiplication operations
compared to the 1D multiplication units of the CPU and GPU.

2. The applications run on the TPU use 8-bit integers instead of 32-bit floating points.

3. The 2D arrangement of the processing units of the MMU allows for systolic arrays, reducing
register access and energy consumption.

4. The TPU has only one thread, instead of the 13 threads of the GPU and 18 threads of the CPU,
enabling it to save energy.

The TPU and GPU architectures have shown that they can run neural network programs faster and
more energy-efficient compared to the traditional CPUs. However, these architectures are mainly de-
signed for large-scale computing. For example, the Thermal Design Power (TDP) of the TPU in [55] is
75 W, while that of the K80 GPU architecture is 150 W. While that may be acceptable for computers in
offices or datacenters, the power consumption may be too high for other situations, such as Edge Al or
embedded applications. Thus, another type of architecture, termed "Neuromorphic Architecture”, tries
to fill this gap by focusing more on energy efficiency [1].

2.4. Principles of Neuromorphic Architectures 14

2.4. Principles of Neuromorphic Architectures

Information processing systems found in animals are very different from von Neumann architectures
that are used in traditional computers [40]. Although these computers excel at performing operations
such as arithmetic calculations, they are much less efficient in tackling problems whose input data
are ill-conditioned and whose computation can be relatively specified. These problems include fields
such as voice recognition, image processing, and others that have been influential in recent years. For
tackling these kinds of problems, biological systems are orders of magnitude more efficient compared
to traditional digital computers in terms of energy [70].

Despite the advances in architecture mentioned above, there are still gaps between the efficiency of
animal brains and digital computers. Thus, the application of other design principles present in the
brain structure can also possibly lead to further improvements. In recent years, this has led to the birth
of neuromorphic computing.

The term neuromorphic engineering is a concept that was first developed by Carver Mead [70], and
it was used to describe the use of VLSI (Very Large Scale Integration) systems containing electronic
analog circuits to mimic neuro-biological architectures present in the nervous system [1]. More recently,
the term neuromorphic architectures is generally used to describe analog, digital, and software systems
that implement several models of neural systems [1]. It takes inspiration from the brain to develop
energy-efficient circuits and systems for information processing. Several properties of neuromorphic
architectures have been identified and explained by lvanov et al., which appear to be useful in creating
computer systems that can solve real-life problems [51]. Also, a taxonomy of neuromorphic architecture
was presented by Bose, et al., in [15]. These principles differentiate neuromorphic architectures from
the others.

1. Usage of non-von Neumann architecture, memory and computing are interspersed
2. Impulse nature of information transmission, low overhead for signal transmission
3. Sparsity of data streams, event-driven signal processing

An explanation of each principle is presented in the following.

2.4.1. Usage of Non-von Neumann Architecture

When performing neural network operations on a CPU, one core (or several cores, depending on the
exact processor used) models a large number of neurons, sequentially switching context between
them [51]. This creates a significant time and energy overhead to read/write the neuron state values
or weights back and forth to the memory. A biological neuron, on the other hand, is simultaneously
a device capable of storing its state and weights (by its membrane potential and strength of synaptic
connections), and a computing device. This approach is free from the traditional von Neumann memory
wall, rooted in physical separation of the memory and the processor. A possible implementation in
silicon computers is to have each core of a neuromorphic processor model a single neuron only [50].
In digital implementations, it is possible to have several neurons modeled by a single core with limited
context switching.

2.4.2. Low Overhead of Information Transmission

GPUs, while more efficient at performing neural network operations than a CPU, is still not optimally
suited when energy consumption is factored in [16]. One reason is that in GPUs, the shared memory,
which is a large (relative to the memory of the streaming multiprocessors) memory block able to be
accessed by all the multiprocessors, is usually used for data transmission between neurons [74]. In
biological systems, the information transmission occurs differently.

As explained in Section 2.1, a biological neuron generates electrical pulses that travel down its axon to
communicate with other neurons. Sensory neurons, for example, are spiking neurons, and they change
the temporal pattern of their electrical pulses depending on the external stimuli (light, sound, etc.) [1]. A
sequence of pulses is also known as a spike train, and these spikes convey information based on their
firing rate. Other neurons, such as specialized graded potential neurons, can communicate through

2.5. Examples of Current Neuromorphic Architectures 15

spikes containing graded potentials [87]. These neurons have the advantage of higher information
rates, because they are capable of encoding more states in a single spike than the spiking neurons.
Both of these communication schemes are used in neuromorphic processors. For example, Loihi uses
the rate coding approach [22], while SENeCA uses the graded potential spikes approach [109].

2.4.3. Sparsity of Data Streams

Studies of the brain show that only a small part of the brain, around 10%, is active at any time simul-
taneously [88]. This sparsity may be one of the reasons why the brain is much more energy efficient
compared to a digital computer that runs a neural network program. It is very different from the execu-
tion of the inference phase of a classical ANN program, where every neuron is involved in calculations.
Several factors explain this difference.

First, there are several cases in which subsequent inputs are quite similar to each other. An example
is a Dynamic Vision Sensor (DVS), containing a computer vision program designed to detect an object
that receives input from a stationary camera [90]. This allows traffic to be drastically decreased by
transmitting only the differences between frames, instead of information from every pixel all the time.
This is called temporal sparsity.

The second factor is the threshold value of the membrane potential. This threshold allows a neuron
not to output any signal even though it has received input. This leads to spatial sparsity. In an ANN,
this concept is implemented using biases that are added at the end of matrix multiplication operations
and subsequent application of the activation function [40]. A neuron that does not fire would be similar
to an artificial neuron that has an output of zero. In many CPU or GPU architectures, exploiting these
fine-grained sparsities will not result in any performance benefit.

The third and last factor is the sparseness of the neural connection graph. As noted in [18], synaptic
pruning occurs during the development of the human brain, resulting in the elimination of connections
between neurons that are not needed. This results in a network with relatively few connections com-
pared to the number of neurons, as opposed to a fully connected ANN. Each neuron has a rather limited
number of connections (around 5000). This is called structural sparsity.

2.5. Examples of Current Neuromorphic Architectures

As the development of Neuromorphic Computers is still in its early stages, no consensus has been
reached on the desired properties or universally agreed design principles [51]. Nevertheless, several
existing projects will be considered in this section and the special features of each architecture will also
be described. While there are other neuromorphic architectures not mentioned here, these architec-
tures were chosen because of their similarity to SENeCA, the main target of this design. SENeCA,
meanwhile, will be explained in Chapter 3.

2.5.1. TrueNorth

The TrueNorth project was created by IBM in 2014 and is the world’s first neuromorphic chip used
in industrial settings. It was developed under the auspices of the United States DARPA SyNAPSE
(Systems of Neuromorphic Adaptive Plastic Scalable Electronics) program [71]. Its objective was a
large reduction in synaptic neurons, around 10°, with equally ambitious goals for architecture, hardware,
and applications. These resulted in a multiprocessor system with up to 10® neurons.

TrueNorth has around 1 million neurons and 256 million synapses, distributed across 2,096 neurosy-
naptic cores. It was manufactured in Samsung’s 28-nm low-power process and occupies 430mm? of
space. During typical use, it consumes around 100 mW of power, or something of that magnitude.
Each neurosynaptic core includes its own local memory that stores all the necessary data, such as
the weights and biases of the neurons. It also stores synaptic connection information in the memory,
allowing it to break the von Neumann bottleneck by placing the memory close to the processing unit.
A single core receives at most 256 inputs (axons) and produces at most 256 outputs (neurons). The
architecture of a single core is shown in Figure 2.7.

2.5. Examples of Current Neuromorphic Architectures 16

Neurosynaptic Core Dendrites Synaptic
— p——————— Crossbar

=== == o r
PRNG |- ﬁﬁzxa . .'A }Neuruns

Figure 2.7: TrueNorth Architecture (single core) [23]

The axons are connected to any subset of neurons via the crossbar shown in Figure 2.7. The 256
x 256 programmable crossbar implements all-to-local connectivity within a single core. Each neuron
accumulates weighted synaptic input, stores it in a high-precision variable called a membrane potential,
and emits an output only if its potential crosses a certain threshold. The thresholds and weights are
configured separately for each neuron. Similarly to the crossbar in each core, the connections between
cores are also programmable, with each core having a spike router. This asynchronous router allows
the formation of a distributed network to communicate spikes between cores. A digital data bus is used
for communications between cores, and spikes are represented as Address Event Representation
(AER). Each AER package contains the identifier of the sending neuron and the generation time. [23].

Of the basic mathematical operations, addition and subtraction are supported by the digital circuit of
the cores, whereas multiplication and division are not. Furthermore, the weight of each synapse is
coded by two bits, allowing only four types of weights. If excitatory and inhibitory synapses (positive
and negative weights) are present, only two types are present. This means that learning algorithms
cannot be performed, only inferences. The learning algorithm would have to be performed by another
platform. In 2017, TrueNorth was shown to be capable of recognizing ten hand gestures with 96.5%
accuracy while consuming only 0.18W of power [7].

2.5.2. Intel Loihi

In 2018, Intel released the first neuromorphic chip with accelerated on-device learning, called Loihi [22].
A single Loihi chip includes 128 neural cores, as well as three Pentium (x86) processors. It also has off-
chip communication interfaces that allow expansion with another Loihi chip. An asynchronous network-
on-chip (NoC) transports all communication between cores in the form of AER packets. Each neural
core is capable of simulating up to 1,024 spiking neurons. It also has 128 KByte of Static RAM to store
the states of the neurons. In total, all of the cores combined would be able to simulate approximately
128 thousand neurons and up to 128 million synapses. Each core calculates independently of its set of
neurons, and any neuron that enters a firing state generates a spike message that the NoC distributes.
After finishing its calculations, the core exchanges barrier messages with neighboring cores, giving
notices to other cores that they are allowed to proceed with the calculation of the next timestep. This
eliminates the need for a universal time reference (clock). It has also been proven that the Loihi mesh
is deadlock-free.

On-chip learning is made possible by the fact that the synaptic weights are dynamically modifiable.
They can be between one and nine bits long, in contrast to the two-bit weight of TrueNorth. In addition
to weight, the state of each synapse is also described by a synaptic delay variable (up to six bits) and an
extra variable of up to eight bits. When the core is configured, a learning formula is also specified, which
determines how the weights are recalculated when the learning phase is done. This formula can only
include addition and multiplication operations. Several Loihi-based neurocomputers have been created
with various capacities. One of these is Pohoiki Springs, which includes 786 Loihi chips combined into
24 modules that are placed on a motherboard, simulating 100 million neurons [32].

2.5. Examples of Current Neuromorphic Architectures 17

DEMNDRITE AXON ouTt
1
A core_id
'F_: 5 amon_id
a0 i il
]
o=
Ner - Nodstay £ Ny e Ny Nex Nowow:
LEARMING ——— Input spike handling
Nex . - ——— Compartment update
ool bAP notification
Output spike generation

——— Synaptic update

Figure 2.8: Loihi Core Top-Level Microarchitecture [22]

Figure 2.8 shows the internal architecture of a Loihi core. The SYNAPSE unit processes spikes from
other cores. The DENDRITE unit updates the variables that represent the states of neurons. The
AXON unit generates output spikes for all connected cores. The LEARNING unit updates the weights
of the synapses using the aforementioned learning formula. The different colors represent the different
operating modes available: input spike handling (green), neuron compartment update (purple), output
spike generation (blue), and synaptic updates (red). Meanwhile, the blocks show the main memory
blocks that hold the configuration, connectivity, and state information of the neurons in the core. The
total memory capacity is 2 Mb. To deal with common bottlenecks, several degrees of parallelism and
serialization are applied to the core’s pipeline.

According to a study published in 2021 [21], more than 100 scientific groups from various countries are
using Loihi in their research, as well as several groups focusing on applied problems. Some examples
of programs that use Loihi include recognition of images and smells, data sequence processing, and
the realization of a Proportional Integral Differential (PID) controller using a spiking neural network.
Loihi’s local learning capabilities were also used to solve several problems, such as robotic arm control
[27].

2.5.3. SpiNNaker

The SpiNNaker (short for Spiking Neural Network Architecture) project [35] was started in 2011 at The
University of Manchester. It was the first large-scale digital hardware platform developed exclusively
for Spiking Neural Networks (SNN). The second generation of this project was undertaken with the
cooperation of Dresden University of Technology in 2018 and is currently being developed as part of
the European Human Brain Project [46].

Unlike the other architectures mentioned above, SpiNNaker is not a chip; instead, it is a massively
parallel computer. The main part of the first generation is a custom-designed microcircuit that has 144
ARM m4 microprocessors along with 18 MByte of SRAM. These custom microprocessors have limited
instruction sets compared to a typical x86 processor (for instance, not having a division instruction),
in exchange for high performance and low power consumption. The second generation supports rate-
based DNNs, plus several accelerators for numerical operations that were not supported before (such
as exponentiation, logarithms, and random number generation). It also has dynamic power manage-
ment that adjusts voltages and frequencies depending on the load of the task being performed.

The mainframe of SpiNNaker has several cabinets, each of which has 10 racks. Each rack contains 25
boards. Each board in turn has 56 chips. In total, the SpiNNaker neurocomputer has 106 processors,
plus that of the control PC [68]. Similarly to other architectures, each processor operates independently,
without a global synchronization mechanism. This leads to the need for AER packages for communi-
cation between processors, again similar to the aforementioned architectures. On the plus side, this
gives the entire system more flexibility and scalability. The connections between the processors and
the communication strategy (such as multicasting and nearest neighbor) can also be configured.

With the SpiNNaker neurocomputer, researchers can solve the problem of modeling the structure of
a biological brain. A 1mm?2 cortical column of a human brain was simulated in real time. This was

2.6. Benchmarking of Neuromorphic Processors 18

demonstrated in [100]. That area of the cortical column contains around 77 thousand neurons and 285
million synapses, and it was simulated with a 0.1 ms time step. The best result of this simulation on
a GPU was twice as slow as in real time, showing the power of this architecture to study the human
brain. To simulate larger areas, the neurocomputer simply needs to add more chips due to its inherent
scalability.

2.5.4. Tianjic

The Tianjic project was started in 2019 at Tsinghua University and developed the first chip that can
work with traditional ANN and SNN, making it very versatile [81]. Furthermore, this versatility comes at
the cost of only around 3% extra chip area. This is achieved due to the efficient reuse of components
and circuits to perform calculations for different types of neural networks. One possibility that this
architecture opens up is the combining of different types of neural network (ANN and SNN) into one
larger system. Similarly to Loihi and TrueNorth, Tianjic has neural cores, of which there are 156 in
one chip, plus 22 kilobytes of SRAM. Around 40 thousand neurons and 10 million synapses can be
simulated. AER packets are also used on the Tianjic to represent the signals, and communication
between the cores takes place on a digital bus. Tianjic is also easily scalable, as multiple chips can
be combined in a 2D mesh to execute a larger neural network. However, as on-chip learning is not
supported, the neural network must be pre-trained on another platform and then loaded to Tianjic,
similar to TrueNorth. The network can then be run in inference mode. The performance of Tianjic
compared to a GPU is described in [81], as follows:

1. SNNs run 22 times faster and 10,000 times more energy efficient.

2. LSTM runs 467 times more energy efficient.

3. MLPs run 35 times faster in terms of frame rate while consuming 723 times less energy.
4. CNNs run 101 times faster and consume 53 times less energy.

To demonstrate Tianjic’s potential, an example using a hybrid ANN/CNN architecture was provided in
[26]. One of the examples was a multi-modal unmanned bicycle that used an SNN for voice command
recognition, a CNN for object detection and an MLP for balance control, as well as other networks
performing other functions.

2.6. Benchmarking of Neuromorphic Processors

This section will explore the published research on the topic of neuromorphic benchmarking in more
detail, particulary where an actual workload was tested on a neuromorphic architecture. Note that the
labels here are not necessarily the titles of the publications by the authors, they are simply added to
facilitate the reader.

2.6.1. Closed-loop Neuromorphic Benchmark

One of the first publications of a benchmarking was made in 2015 [92]. This study focused on what is
called closed-loop benchmarks. These focus on environments where the output of the neuromorphic
processor will likely influence its future input, such as interactive control of physical systems. This is in
contrast to pattern identification tasks, in which the input is a fixed sequence and the hardware has to
produce the correct output. In these closed-loop domains, neuromorphic processors will likely be used
in the future, owing to its ability to run complex algorithms in low-power situations such as embedded
devices. However, benchmarking closed-loop systems is more complex than a pattern identification,
since the benchmark must specify a full system to be controlled or a software to simulate that system.
A difficulty that comes with a simulation is that in robotics, simulations are much better-behaved than
an actual physical system [54].

A methodology for creating closed-loop benchmark simulations was developed, based on a method
known as minimal simulation [53]. Minimal simulation was developed to address the problems with
developing algorithms for robotic control. Testing these algorithms with a physical robot is inefficient,

2.6. Benchmarking of Neuromorphic Processors 19

while simulations would often not represent the behaviour of the physical robot. The solution was
to introduce variability in the simulation itself, so the algorithm can be developed in such a way that
it works across the whole range of that introduced variability. This method, which was previously not
used outside of evolutionary robotics, was used here for neuromorphic benchmarks. The introduction of
minimal simulation for benchmarking introduces variability to the benchmark, making it a more general
benchmark which can by used by any researcher [92].

Figure 2.9: Depiction of the adaptive motor control task [92]

An example was demonstrated using an adaptive motor control task. Figure 2.9 shows a simplified
diagram of the control task. To hold the joint at the angle ¢, a force must be applied by a controlling
motor to counteract the effects of gravity (mg) and other disturbances. To determine the control signals
necessary, the standard way is to use a Proportional Integral Derivative (PID) controller, which can
counteract random disturbances. However, things become complicated if the desired angle is changed,
say to ¢4. The disturbance due to gravity depends on the desired angle g,. In ideal conditions, this
disturbance can be calculated, since the torque from gravity is 7 = %mg sin ¢, where | is the length of
the joint, m is its mass, and g is the gravitational acceleration. Then, by adding a compensating control
signal that makes the controlling motor apply the extra torque 7, the desired angle ¢, will be reached.
However, this assumes a perfect distribution of weight in the joint, and ignores momentum, friction, and
other forces. There is also no way to adjust this compensation.

without adaptation with adaptation
— T2} /2
wn
c
m
2
o
s 0 0
o
c
(1]
=
£
2 —/2 —7/2
4] 2 4 6 8 10 0 2 4 6 8 10
G T2 — q T/2F — q
=
2 — —
o
o 0 0
i)
| =
m
o
=
£ ’ ’
— —7/2F 4 —-m/2F
4] 2 4 6 8 10 0 2 4 6 8 10
time (s) time (s)

Figure 2.10: Adaptive control results [92]

Instead of a constant compensation, the minimal simulation used here introduces variations to the dis-
turbance torque 7. The disturbance torque will be a function of ¢4, but the function will change randomly

2.6. Benchmarking of Neuromorphic Processors 20

every time the benchmark is run, and it is meant to simulate real-world situations more accurately. To
compensate for this variation, the PID controller is replaced by a PD plus an adaptive controller based
on a three-layer neural network. For each run of the benchmark, the neurons are trained to compensate
for the disturbance generated during that run using a delta rule as the learning method. After a period
of time, the neurons should be able to compensate better. To test the effectiveness of the adaptive
control system, a test run was done, once without the adaptive system (only the PD) and once with the
adaptive system. The results can be seen in Figure 2.10. In the figure, g4 is the desired angle, while
q is the actual angle. ¢4 is constantly changed in the upper tests, and changed randomly in the lower
tests. By observing the circled parts, we can see that without adaptation, ¢ does not quite reach ¢4
when ¢ is large. With adaptation, however, the control system adapts so that ¢ becomes much closer
to g4 after around 5s. This happens for both sets of the tests.

Computational Efficiency Benchmark

0.040 —
0.035} ’ -

0.030

rmse (radians)
o o o
o o o
= (] [\]
[¥,] (=] (%]

0.010

0.005 ' : XS - A

0.000

Intel i5-337U CPU Nvidia Tesla C2075 GPU SpiNNaker core
(23 neurons) (38 neurons) (500 neurons)

Figure 2.11: Comparisons of the adaptive control algorithm run on a CPU, GPU and Neuromorphic Processor, adjusting for
power consumption [92]

The performance of a neuromorphic chip (SpiNNaker) was compared against that of a CPU (Intel i5-
337U) and a GPU (Nvidia Tesla C2075). Figure 2.11 shows the comparisons of the three platforms
running the adaptive control algorithm, with number of neurons adapted for each platform so that their
power consumption is limited to 0.1 W. Each run (denoted by an x) uses a randomized ¢ trajectory,
and lasts 20s. The Y-axis shows the Root Mean Squared Error (RMSE) in radians (the final difference
between ¢, and ¢) during the last 10s of a single run (so that the neurons have time to learn). Random
jitter is used on the x-axis to prevent overlap, and the shaded area is the mean RMSE of 400 runs (per
platform), plus/minus standard deviation. We can see that the neuromorphic core (SpiNNaker) is not
only able to have more neurons at the same power consumption level, but is also more accurate.

2.6.2. The Nengo Platform for Benchmarking

Nengo is a software package for designing and simulating large scale neural network models [11]. In
2015, it was demonstrated that Nengo can also be used to benchmark neuromorphic hardware to mea-
sure functional performance [10]. Nengo provides a high-level API that can express large-scale models
in a platform-independent manner. Several simulators (backends) for Nengo have been developed, in-
cluding some for neuromorphic hardware. In this study, five backends were used to run benchmarks.
The five backend platforms used are listed in the following.

1. Reference: The basic backend deisgned to run on any general-purpose computer using NumPy
[101], offering the most features.

2.6.

Benchmarking of Neuromorphic Processors 21

. Distilled: A backend designed as a learning/teaching tool, and as a template to build new backend.

Similarly to the Reference backend, it is designed to run on any computer using Numpy.

. OpenCL: A backend that uses the Open Computing Language (OpenCL) [94] to run Nengo mod-

els on more specialized hardware, such as GPUs and Field Programmable Gate Arrays (FPGASs).

. Brainstorm Software: This backend was designed to run on a neuromorphic chip based partly

on Neurogrid [12]. It aims to emulate the proposed hardware to test its applicability for neural
models.

. SpiNNaker Hardware: A backend designed to run on SpiNNaker [35]. This backend targets the

physical neuromorphic hardware, and therefore is concerned with both accuracy and speed.

On each of the five backend platforms described above, four benchmarks that represent functioning
aspects of large-scale brain models were performed. The four benchmarking programs are described
in the following.

1. Communication Channel Chain: In this model, five ensembles of 100 LIF neurons each are con-

nected in series. Each neuron computes the identity function, so the model as a whole attempts
to communicate an input signal to the last ensemble in the chain.

Two-dimensional Product: In this model, the scalar product is computed from a two-dimensional
ensemble of 100 LIF neurons. A space-filling curve (Hilbert curve) is used as the input signal.
This model tests each backend’s ability to compute non-linear functions.

Controlled Oscillator: This model uses a three-dimensional ensemble consisting of 600 LIF neu-
rons that is recurrently connected such that the first two dimensions implement a cyclic attractor.
The third dimension controls the direction and speed of the oscillation. An initial stimulus is pro-
vided as input. Each backend’s ability to stably implement a dynamical system is tested.

Basal Ganglia Sequence: This last model implements a structure known as the basal ganglia
using 4900 LIF neurons. They are organized in such that they iterate through a repeating set of
actions. Additionally, a separate basal ganglia model in which some connections are pruned from
the model is also tested.

For all models, the accuracy and speed of all five backend implementations were measured. Discussion
of the results will be limited for brevity’s sake here to the basal ganglia model, the largest model. Figure
2.12 depicts the accuracy results for the basal ganglia sequence model. Figure 2.12A depicts an
example instance of the model run on the reference backend. The model quickly progresses from one
action to the next, cycling back at the end of six items. The point at which the model switches from
selecting one action to another is indicated with the dashed gray lines. For the original model (without
pruned connections), depicted in Figure 2.12B, all backends perform similarly, except for the SpiNNaker
backend. The first four backends have a transition time around 43 ms, but the SpiNNaker backend has a
median transition time around 51 ms, while its interquartile range (denoted by the dark green rectangle)
is also significantly larger than other backends. For the model with the pruned neurons (Figure 2.12C),
however, the SpiNNaker backend has a similar level of performance to the other backends.

2.6. Benchmarking of Neuromorphic Processors 22

A

1200
2Hz
1Hz
OHz
=1Hz
-2Hz

1000 @

800 -}
w w

600

Power of decoded value

200

boad bl [

ﬁ“un :t: nu"m q

Frequency (Hz)

0,95 - |

0.20

0.85

0.80 -

FFT similarity

0.75 -

0.70

0.65

+
0.60 I I I I I

nengo nengo_brainstorm nengo_distilled nengo_ocl nengo_spinnaker

Figure 2.12: Results of the basal ganglia sequence model benchmarking accuracy [10]

Figure 2.13 depicts the run speed for each model on each backend. For the basal gangilia model, two
graphs are presented, one without pruned connections and one with pruned connections. Each bar
represents the mean run speed across 50 instances of each model. For the largest model, the basal
ganglia model, SpiNNaker delivered the best performance, operating at around 1.2 times slower than
real time.

g 12
£ 7

= Backend W
z 6191 nengo 8
:.é 5 | H nengo_brainstorm 6
o I nengo_distilled 4
§ 4 4 Bl nengo_ocl 9
o I nengo_spinnaker

+ 3 - 0
©

E,

&

E 1

=3

£

w

Chained channels Product Oscillator BG sequence BG sequence *

Figure 2.13: Run speed for each model on each backend [10]

2.6. Benchmarking of Neuromorphic Processors 23

2.6.3. Benchmarking SpiNNaker With DNA Sequence Matching Algorithm

A benchmarking study was published in 2019 by Urgese, et al., using an application for DNA sequence
matching [99]. The neuromorphic platform used is SpiNNaker [35], and its performance is tested
against that of a standard many-core CPU and GPU. Pattern matching, one of the most studied prob-
lem in computer science, has many real-world applications, one of them being DNA/RNA sequence
matching [59]. In this study, an algorithm for DNA sequence matching known as Fast String Matching
Method for Encoded DNA Sequences (FED), was used [61]. This algorithm assigns a unique 2-bit
code to each of the four symbols composing the DNA alphabet (G,T,C,A). Then, in the pre-processing
stage, all of the symbols in the search space is packed, with four elements packed into a single byte.
Then a shift table is computed for every pattern to be matched. After that, the matching stage begins,
where a byte-by-byte search is performed. The shift table is used to compute the number of positions
allowed to be skipped if no match is found in the current search space.

The SpiNNaker chip, having 768 nodes, is pitted against a server having two Intel Silver Xeon 4114
processors, each having 10 cores and 20 threads. The text used for the sake of testing is the Escherica
coli genome, which is about 4 million symbols long (around 1 MB of text), which is then split into a set of
4000 chunks, each 256 bytes long. In contrast to the other works on benchmarking presented here, this
work does not test a neural network architecture, it uses a parallel application based on the Message
Parsing Interface (MPI) framework, applied on the FED algorithm. The performance metric measured
was how well the performance improved when the number of MPI workers is increased. Here, weak-
scaling is used, so the ratio between the problem size and the number of MPI workers is kept constant
[41].

1 — ok spiNNaker
01 — 1kSpiNNaker

Vi
1 0.5k SpiNNaker /
! —2kPC /
w0l — 1kPC ;
1 0.5k PC /

Speed Up
T VA |

%

Y

10 +

T T T T T T T T | NN N S S S S S S S S S B e S AR RN RRRRLAERI LN

ety
5 10 15 20 25 30 35 40
MPI workers

Figure 2.14: Comparison of speed-up for MPI-FED on a general-purpose CPU and SpiNNaker [99]

Figure 2.14 shows the weak-scaling speed-up of SpiNNaker and the PC. Tests were done for genomes
of 500, 1000, and 2000 chunks. We can see how the massively parallel architecture of SpiNNaker
influences the speedup. The high number of physical cores allows the speed to increase linearly,
avoiding the discontinuities seen in the speed-up graph of the PC. The inflection point, 20 MPI workers,
is when hyper-threading is activated, i.e., when the maximum number of physical cores on the Xeon
processors is used.

2.6.4. SNABSuite

A more recent publication was from 2020, which used 4 neuromorphic simulators to run several bench-
marking programs [77]. The software framework SNABSuite, which was introduced in an earlier work
[76], was used. SNABSuite is a framework developed for "black-box” benchmarking of neuromorphic

2.6. Benchmarking of Neuromorphic Processors 24

processors, supporting benchmark networks are developed independently from the hardware on which
they will be executed. These networks are presented as an abstract description, and are automatically
configured to a platform specific implementation. It uses the Cypress framework, introduced in [93],
to convert these network descriptions to the implementation. It is a C++ wrapper for the PyNN spik-
ing neural network description language, supported by BrainScaleS [82], Spikey [83], NEST [39], and
SpiNNaker [35] platforms. Hence, SNABSuite also supports these four platforms.

Consistency Missing Parameters/

o Check L Marked as Invalid
Config File Initialization
Valid

List of s
Im Iesnr::n?ation i ol gzlt::i:ri ST
B Measures
Execution on Convert Results to
Backend JSON

Figure 2.15: Flowchart of the SNABSuite framework [76]

Figure 2.15 depicts the flow used by the SNABSuite framework to perform benchmarking. SNABSuite
only uses Spiking Neural Networks (SNNs) for performance estimation, and they are introduced to the
framework via the "Config File”. All benchmarks share a common interface, easing the introduction
of new benchmarks. SNABSuite also allows the list of parameters of the backend platform and the
measured indicators to be configured. This might be useful in several situations, for example for design
space exploration. After an initialization phase that checks the configuration files for consistency, the
Cypress framework begins the building of the network. The network is then executed on the backend
platform, and the specific indicators are then measured. The measurement results are then converted
to a JSON file.

Table 2.1: Results of benchmarking a network to measure maximum frequency of neurons in SNABSuite [77]

Platform Avg. freq. (KHz) | Std. Dev. (KHz) | Max (KHz) | Min (KHz)
BrainScaleS | 2.15 0.4 417 0.89
Spikey 2.8 0.13 2.86 2.5
NEST 5 0 5 5
SpiNNaker 1 0 1 1

Table 2.2: Results of benchmarking a network for solving Sudoku puzzles in SNABSuite [77]

Platform Solved | Bio-time (ms) | SD (ms) | Real-time (s) | Power (W) | Energy (J)
BrainScaleS | 86 3,241.90 4,573.10 | 0.000324 NA 0.0062
NEST 100 214.6 263.1 0.03 45 14
SpiNN-3 99 241.2 250 2.41 2.7 6.5
Spikey 75 3,745.80 6,041.10 | 0.000375 5.6 0.0021

In [77] the SNABSuite framework was used to execute several benchmarks on the four platforms sup-
ported. Among them was a low level test network to measure the output rates of a single neuron, and
high-level test network to solve Sudoku puzzles. The results of the benchmarking process using the
low-level network is presented in Table 2.1. The results of the benchmarking process for the high-level

2.6. Benchmarking of Neuromorphic Processors 25

network is presented in Table 2.2. The benchmark criterion is the fraction of solved Sudoku puzzles for
100 puzzles and the average solving time. The solving time is separated into two, the bio-time, which
is the neuron model internal time, and the elapsed wall-clock time to solution. The researchers also
measured other metrics such as power consumption, and energy consumption.

2.6.5. Hand Gesture Recognition Benchmark

A benchmark based on hand gesture recognition was also published in the 2020 [17]. The input of
this recognition system consists of two sensors, a Dynamic Vision Sensor (DVS) and an electromyog-
raphy (EMG) armband sensor. The DVS is a neuromorphic camera built using the principles of visual
processing in the biological retina, also known as an Active Pixel Sensor (APS) [64]. The DVS sends
information that corresponds to changes in the illumination of the pixels of the camera, leaving out infor-
mation from the static pixels. This information takes the form of a sparse and continuous train of events
(also called spikes), with each event encoded in the Address Event Representation (AER) format [24].
The EMG armband, Myo by Thalmic Labs Inc., is a wearable device that records electric signals from
the forearm muscles as they move and sends them. The data from these two sensors are then used
to detect hand gestures.

Figure 2.16 shows an overview of the system. Figure A shows the setup of the DVS and the Myo
armband. Figure B shows the data stream (spike train) from the DVS and the Myo armband. Figure C
shows the neuromorphic systems that are the targets of benchmarking, which will be explained in more
detail below. Finally, Figure D shows the five gestures to be recognized by the system in real time. In
total, the dataset used covers 21 subjects doing three trials, with each trial having the subject do five
repetitions of the five gestures. A recording of a gesture lasts 2s, which is then cut in chunks of 200ms
each. Therefore, in total there are 15,750 chunks used. Since SNNs required spike trains as inputs,
the outputs of the DVS can be used without modification, while the output of the EMG is converted
using the delta-modulator ADC algorithm, based on a sigma-delta modulator circuit [19].

A Data collection setup B Spike streams C Neuromorphic systems D Gestures

c1. Loihi

DVS Gesture Myo b1.DVS

CH1 _l.l_'.l.l.“.l_l.'Lr
CH2 JITI_‘_LI_Ll_I—r
S
CHa _I_I_'.I.LI_I_II_L

I
s syt
om it
b2. EMG

gt
CH2 I 1 111
e e e
i T A
el
CHs J'_I.I.I.“_I_L“.I.'_
e
CHs _I_'.I_'_L'_I.I_L“.I.I_

Figure 2.16: System overview of the hand gesture recognition benchmark [17]

This study used Loihi [22] and ODIN [34]+MorphIC [33] as the neuromorphic platforms to be bench-
marked. ODIN is a neuromorphic processor that consists of a single neurosynaptic core with 256 neu-
rons and 2562 synapses, while MorphlIC is a quad-core digital neuromorphic processor with 2k Leaky
Integrate and Fire (LIF) neurons and more than 2M synapses. The ODIN+MorphIC setup uses an
SNN architecture based on fully-connected Multilayer Perceptron (MLP) topologies. ODIN is used to
process the output from the EMG sensor, while MorphlIC is used to process data from the DVS. ODIN
is then further used to perform sensor fusion of these two inputs and output the final result.

2.6. Benchmarking of Neuromorphic Processors 26

For Loihi, three separate networks were trained and used for this study. The framework SLAYER [89],
which is a backpropagation framework used to evaluate the gradient of SNNs was used to train networks
that were compatible with Loihi. The networks were trained in an offline fashion using a GPU. Three
networks were used in total for Loihi, a spiking MLP for the EMG output, a spiking CNN for the DVS
data, and a third network which used the penultimate layer neurons of the DVS and EMG networks.
In addition, the MLP network used in MorphlC for processing the DVS data was also reused in Loihi.
The details of the architecture of these networks is shown in Figure 2.17. Architecture A is the CNN
architecture implemented on Loihi. Architecture B is the MLP architecture implemented on MorphlC to
process the DVS output. Architecture C, the MLP network used to process the EMG output, is deployed
on both Loihi (with configuration ¢1; the numbers indicate the number of neurons in a layer) and ODIN
(with configuration c2).

ADVSCNN 83 2p 16¢3 2p 32c3 flat 512 5
: / /])
/|£ v
& 2
(||| A o) %
=y 4
%
[/
4/ >
B DVS MLP 4x 400-210-5 ¢ EMG MLP
c1.16-128-128-5
o N c2.16-230-5
LI weal| [X P oo
Z ’ s
o L
- _/é E Ijz ,; ’/‘,:f“?xf]
7)} 7)} sl
“

Figure 2.17: Architecture overview of the neural networks used in the hand gesture recognition benchmark [17]

For comparison, a Machine Learning (ML) based algorithm that uses frame-based inputs, i.e., tradi-
tionally sampled EMG signals and video frames, is used as a baseline against which the two fully
neuromorphic architectures are compared. To have a fair comparison, the same neural network archi-
tectures were used. To extract the features in the sampled EMG signals, the Mean Absolute Value
(MAV) and the Root Mean Square (RMS) are calculated over a windows of 40 samples (200 ms), and
both are used as the input features of the ML-based neural network. For the video frame input, gray-
scale APS frames are used as input. Two baseline networks were used in total, with the description
as follows. Note that all of the baseline networks are run on the NVIDIA Jetson Nano, an embedded
system with a 128-core Maxwell GPU.

» Baseline ODIN + MorphIC : To process the APS frames, the 2-layer MLP architecture depicted
in Figure 2.17B is used, while the 2-layer MLP architecture depicted in Figure 2.17C2 is used to
process the EMG features. The fusion network is obtained as described previously.

» Baseline Loihi : To process the input from the APS, the same architecture depicted in Figure

2.6. Benchmarking of Neuromorphic Processors 27

2.17A is used for the APS baseline, receiving input from the APS instead of the DVS. For the
EMG baseline, the same architecture depicted in Figure 2.17C1 is used, receiving MAV and
RMS features instead. The fusion network is obtained by eliminating the classification (last) layer
from the two networks, concatenating the two penultimate layers of the APS and EMG networks,
and adding a common classification layer with five units.

The accuracy, energy consumption, and inference time were measured for each of the platforms. Fur-
thermore, the Energy Delay Product (EDP) was also calculated. The overall results of the study in
tabulated in Table 2.3. The spiking MLP architecture was also implemented on Loihi, but since the
obtained accuracy is worse than the CNN architecture, the results for that implementation is left out
of the table. By observing the values in the table, a few things can be inferred. First, the accuracy of
the baseline models (marked (GPU)) is actually higher for the EMG-only setup. This is due to the fact
that the baseline model uses the raw signal values from the EMG armband, while the neuromorphic
implementations use an encoded input, losing some of the information. However, the final fused im-
plementations (EMG+DVS) on the neuromorphic chips, outperform the GPU implementation, both for
the CNN and the MLP architectures. Also, with regards to the inference time, the baseline GPU imple-
mentations outperform the neuromorphic chips in all (equivalent) situations. The EDP values, however,
which are calculated by multiplying the energy cost with the inference time, are significantly better for
the neuromorphic chips (between 30x and 600x more efficient).

Table 2.3: Results of benchmarking the gesture recognition system using different architectures and platforms [17]

System Modality Accuracy(%) | Energy(ud) Inf. time(ms) | EDP(ud*s)
EMG 55.7+2.7 173.2+21.2 5.89+0.18 1£0.1
Spiking CNN (Loihi) | DVS 92.1+1.2 815.3£115.9 6.64+0.14 5.4+0.8
EMG+DVS | 96+0.4 1104.5+58.8 7.75+0.07 8.6+0.5
EMG 68.1£2.8 (25.5£8.4)-10"3 | 3.8+0.1 97.3t4.4
CNN DVS 92.4+1.6 (31.7£7.4)-10"3 | 5.9+0.1 186.9+3.9
EMG+DVS | 95.41+1.7 (32.11£7.9)-10"3 | 6.9+0.05 221.1+4 .1
EMG 53.6t1.4 7.42+0.11 23.5+0.35 0.17+0.01
Spiking MLP (O+M) | DVS 85.1+4.1 57.2+6.8 17.31+2 110.24
EMG+DVS | 89.413 37.414.2 19.5+0.3 0.42+0.08
EMG 67.2+3.6 (23.91£5.6)-1073 | 2.8+0.08 67.2+2.9
MLP (GPU) DVS 84.2+4.3 (30.2£7.5)-10"3 | 6.9+0.1 211.316.1
EMG+DVS | 88.11+4.1 (32.0£8.9)-10"3 | 7.940.05 253+3.9

2.6.6. Keyword Spotting Benchmark

In 2019, another more comprehensive study on benchmarking was published, which used a keyword
spotting program to benchmark Loihi [22] against other, more traditional platforms [14]. Keyword spot-
ting involves monitoring a real-time audio stream to detect some keyword of interest. As mentioned
in [20], this particular problem may benefit from energy efficient implementations due to its potential
deployment in embedded devices. Therefore, the performance, power consumption, and energy con-
sumption of a neuromorphic processor (Loihi) was compared with other platforms for this program.

2.6. Benchmarking of Neuromorphic Processors 28

390D 256 D 256 D 29D
Inputs Outputs

Figure 2.18: Architecture of the keyword spotting DNN [14]

In the study, a DNN architecture with three dense layers (and one input layer) is used to perform the
classification task (depicted in Figure 2.18). The audio recordings are preprocessed by performing
Fourier transforms on overlapping frames of the recording (each having a length of 10ms) to obtain
the Mel-frequency Cepstral Coefficient (MFCC) features of that frame. These features, in the form of
a 390-element vector will be fed to the DNN as input. The output of the network, a 29-element vector,
represents the probabilities of sounds being included in the recording. By performing inference for mul-
tiple parts, a phrase can be obtained from the sequence of characters. The network was pre-trained,
and the benchmarking only involved the inference process. On the baseline TensorFlow implementa-
tion, the network had an accuracy of around 92.7%. Also, since each input vector represents an audio
frame of 10 ms, the processing rate must exceed 100 inferences per second to process data in real
time.

Table 2.4: Overall benchmarking results using the keyword spotting program [14]

Hardware Idle Running | Dynamic | Inf/s Energy/inf
GPU 14.97 | 37.83 22.86 770.39 | 0.0298
CPU 17.01 | 28.48 11.47 1813.63 | 0.0063
JETSON 264 | 498 2.34 419 0.0056
MOVIDIUS | 0.21 0.647 0.437 300 0.0015
LOIHI 0.029 | 0.11 0.081 296 0.00027

The other platforms tested include a CPU and a GPU, as well as other neural network accelerators such
as Movidius and NVidia Jetson. To obtain a more accurate measurement of the energy consumption,
the idle power was measured for all of the platforms before running the program, and then the running
power was measured. By taking the difference between the two power consumption values, the dy-
namic power can be calculated. The energy required per inference was calculated by multiplying the
dynamic power by the time it took each platform to complete one inference. The results are presented
in Table 2.4. By observing the "Energy/inf’ column, we can see that Loihi is indeed much more energy
efficient compared to the other platforms. It outperforms its closest competitor, Movidius, by more than
5 times, while maintaining an inference speed that would allow it to process audio data in real time
(more than 100 inferences per second).

To observe how the performance and the energy costs of Loihi and its closest competitor, Movidius,
change with repsect to the workload, an additional set of experiments were performed. Instead of using
the architecture depicted in Figure 2.18, the network was expanded with branches as depicted in Figure
2.19. Note that only the inference speed and energy cost are measured, since this expanded network
cannot actually output meaningful results with respect to the classification task without retraining the
parameters. The number of hidden layers is increased by 10, and the width of the network is also
expanded. The parameter N is used in the experiments to set the network width and is varied from 0

2.6. Benchmarking of Neuromorphic Processors 29

to 10 with an interval of 2. As before, the dynamic power and inference speed of the two platforms are
measured, and the energy cost per inference is calculated.

256 D 256D

(10 Layers)

390D 256D 256 D 29D

(N Branches)

Inputs Outputs

Figure 2.19: Architecture of the expanded DNN used for scaling analyses. Note that the size of the network is a function of a
configurable parameter N [14]

The results of these additional experiments are shown in Figure 2.20. From the left, the three graphs
show the average dynamic power, inference speed, and energy cost per inference of Movidius and
Loihi as a function of the network size, here denoted by N. The dynamic power consumption of both
devices, as expected, increases with the network size, but it rises much faster for Movidius than Loihi.
Regarding the inference speed, it decreases for both as a function of network size, although, as is
the case with the dynamic power, it decreases at a faster rate for Movidius. Furthermore, the dotted
line indicates 100 inferences per second, the rate required to process audio data in real time. We can
see that Loihi is able to process data in real-time for all values of N, while Movidiues fails for networks
with an N value larger than 6. Finally, in the graph showing the inference cost, we can see that Loihi
outperforms Movidius for every value of N, with the difference in performance being more pronounced
as N increases.

Average Dynamic Power Average Inference Speed Average Cost Per Inference
06 =mm MOVIDIUS === MOVIDIUS == MOVIDIUS
m= LOH 250 m== LOHI 00ps | ™=m LOMI
05 0.007
200
o 0.006
04 Q
Q
] 0.005
@ i 160 -
S o3 % 7
- 7] =}
= @ = 0,004
(¢}
=4
5 100
5 i Il .
&7 € 0.003
0.002
01
l I | l l I 0001 2.6x Ma0x Bl sax 7.2x
00 0 0.000 . I I I l .
00 20 40 60 80 100 00 20 40 60 80 100 00 20 40 60 80 100
N (# neurons = N*10%256 + 512) N (# neurons = N*10*256 + 512) N (# neurons = N*10*256 + 512)

Figure 2.20: Architecture of the keyword spotting DNN [14]

While evidently some progress has been made in the benchmarking of neuromorphic processor, the

2.6. Benchmarking of Neuromorphic Processors 30

publications mentioned above vary in terms of metrics that were measured and the methodology used
to measure them. This study aims build upon the existing research by proposing a flow to perform
benchmarking as well as software development that might provide deeper insight into how the design
choices in SENeCA affect the performance on neuromorphic processors, specifically SENeCA [109]. To
do this, instead of developing an entirely new benchmark, the keyword spotting benchmark described
above will be used as baseline. This will be further explained in Chapter 4.

Architecture of SENeCA

As mentioned briefly in the previous chapter, SENeCA (Scalable Energy-efficient Neuromorphic Com-
puter Architecture) is a RISC-V-based digital neuromorphic processor that was designed to accelerate
Spiking Neural Networks (SNNs) [109]. Its main targets are extreme edge Al applications near or even
inside sensors, where ultra-low power consumption and adaptivity features are a must. It is optimized
to exploit both temporal and spatial sparsity in the computations and transfer of data occurring in neural
network systems. It is digital IP that consists mainly of an interconnected Neuron Cluster Core network,
with a RISC-V-based instruction set. Each core has processing elements called Neural Processing
Elements and uses an event-based communication infrastructure. This chapter will go into more depth
about the architecture of SENeCA, the platform for which this benchmark was designed. Section 3.1
gives a brief introduction to the architecture. Section 3.2 will dive into the detail of the design of SENeCA,
including its components. Section 3.3 will give a brief comparison of SENeCA with other existing chips.

31

3.1. Introduction 32

3.1. Introduction

State-of-the-art Deep Neural Network programs and similar architectures have exceeded the ability of
the biological nervous system to complete tasks that were previously thought to be difficult for digital
computers, such as image recognition. For example, on the ImageNet dataset, a very low error rate of
about 3 % was achieved in 2016 [43]. However, most of the networks are designed without considering
one of the main factors in biological evolution that led to biological brains, energy consumption. Natural
selection pushed evolution toward energy-efficient structures and algorithms. The human brain is an
excellent example of this phenomenon, even if it is still an energy-hungry organ in the human body
(consuming around 20% of the total energy needs of humans).

At low levels, the elements of the biological fabric in human brains are not as fast and power-efficient as
modern silicon technologies. If the operations per unit of energy are compared, for example, one joule
of energy can power 10T synaptic operations in the brain [25], while it can also power 195T operations
in modern ReRAM technology[105]. However, it is the combination of both hardware and algorithms
that makes the brain so power efficient, as no current computing platform can come close to it. Itis a
perfect example of a hardware design that is optimized for the specific algorithm that it is running. The
goal of neuromorphic processors is, as mentioned previously, to utilize the principles found in biological
neural networks to process raw sensory data with the minimum amount of energy.

While research of the human brain is an active field of research, and many secrets of the computation
that takes place are yet to be revealed, some principles have been identified. These principles of the
co-design of algorithms and hardware can be used to design efficient platforms. Some of them are
listed as follows [109]:

1. Spatiotemporal sparsity
Parallel processing
Infinite scalability
Low-precision parameters

AR S

Asynchronous - Non-deterministic execution
6. Adaptivity and fault tolerance

The various designs of neuromorphic platforms that are being developed right now, including the ones
described in Chapter 1, are designed with these principles in mind to answer today’s computing chal-
lenges. However, since the number of neurons and their connectivity in the brain is huge, it is not
feasible or efficient to copy the architecture of the brain piece by piece. Furthermore, data can travel
or be processed much faster in silicon than in biological fabric, as mentioned previously. Therefore,
it makes sense to time-multiplex a single silicon neuron to emulate the actions of multiple biological
neurons. Essentially, this means using one neuron to perform the actions of approximately one million
neurons, since the silicon neuron can operate a million times faster. Additionally, the time-multiplexing
of one neuron allows more efficient use of the chip area, leaving other resources free to perform other
functions. Indeed, this is the approach used by many architectures.

However, significant overhead is required for efficient time-multiplexing. Namely, a complex controller
to handle the time-multiplexed silicon neuron. Indeed, it might be said that the challenge of designing
the controller might be more complex and difficult than designing the neuron itself, especially in a 2D
silicon technology. This is because each neuron could be connected to thousands of other neurons.
Improvements in manufacturing technology or silicon design, such as smaller technology nodes, novel
materials, and 3D fabrications, can help overcome this difficulty. As for the circuit design, using a
packet-switched Network-on-Chip (NoC) to do time-multiplexing of the synaptic connections can also
be a helpful solution. In this concept, instead of implementing the connections between the neurons
directly on silicon and having the spikes be single pulses, the spikes are encoded in a packet of data
that contains other information, such as the destination of the spike, which the NoC then manages.

In SENeCA, a flexible and scalable neuromorphic architecture of IMEC, this problem is partially handled
by sharing the complex controller between several of the silicon neurons. Also, the NoC concept is

3.2. Detailed Architecture 33

used, and the encoded packet of data also contains multiple spikes to reduce the overhead of sending
a spike. The mentioned neuromorphic fundamental principles are taken into account, while flexibility
over many applications and algorithms is maintained. The architecture is also compatible with event-
based sensors and modern cameras. It also supports many models of neural networks and synaptic
connectivities, while at the same time enabling several optimizations of the algorithm. In Figure 3.1,
one instance of SENeCA is shown, which contains 64 cores. To give a more concrete understanding
of SENeCA, in the next section, a comparison with other architectures mentioned in Section 1 will be

given.

Ibex Core

uonINISY|

Data Memory .
NPE
NPE

Figure 3.1: An example implementation of SENeCA, containing 64 Neuron Compute Clusters (cores) [109]

aundeny-jusAg

3.2. Detailed Architecture

In this section, the architecture of SENeCA will be explained in more detail, including its components.
A core is called a Neuron Computing Cluster (NCC). Each core, in turn, contains a RISC-V core (Ibex),
instruction memory, Axon Messaging Interface (AMI), Shared Memory Prefetch Unit (SMPU), and the
main processing unit, called the Neuron Co-Processor (NCP). Each NCP, in turn, contains neural Pro-
cessing Elements (NPE), the tightly coupled data memory, a loop buffer, and an Event Capture Unit
(EVC)). Other than that, the cores also include a instruction MUX/arbiter that acts as the data bus. Both
of the memory blocks (instruction and data) are based on conventional Static Random Access Memory
(SRAM) blocks, with multi-port SRAM blocks for the data memory. The number of SENeCA cores is
configurable to facilitate upscaling, so this instance is only an illustration. Configurable parameters will
be set to specific values for this benchmark, and the values will be mentioned in Chapter 5.

3.2. Detailed Architecture 34

Memory Bus Instr. Instruction Memory

RISC-V Ibex Core }Mem"wB“S'”St“ <

Memory Bus Data

Memory Bus Data Neuron Co-processor
System Bus Access
Host to TLuL Arbiter Memory

Register Bus

Memory Bus Data Axon Messaging _
External Memory Memory Bus Data Interface
DMA

Register Bus

Neuron Computing Cluster

Figure 3.2: lllustration of a single SENeCA core (Neuron Computing Cluster)

3.2.1. RISC-V Core (Ibex)

Ibex is an open-source RISC-V CPU core originally developed by the PULP team and has since been
contributed to lowRISC [5]. This small 32-bit processor with a 2-stage pipeline is used as a controller
for each NCC. It uses the RV32IMC instruction set. IMC denotes the extensions added to the basic
RISC-V core, which includes Integer (), Multiplication and Division (M), and Compressed (C). The core
is highly parameterizable and is well suited for embedded applications, including edge Al applications.
The 2 pipeline stages are:

1. Instruction Fetch (IF): Fetches instructions from memory via a prefetch buffer, capable of fetching
a maximum of 1 instruction per cycle

2. Instruction Decode and Execute (ID/EX): Decodes fetched instruction and immediately executes
it, with reads/writes to the register all occurring in this stage.

Figure 3.3 shows this pipeline in more detail.

Ibex Core

I Prefetch I
Buffer
A

debug_req_i

1D Stage EX Block

.
A

L Controller
A

<]
[
rdata_i

Instruction Mem

Comp
Decoder >

Data Mem

[

@lowrisc B

Figure 3.3: Block diagram showing the small parametrization of the Ibex core with a 2-stage pipeline, IF and ID/EX [5]

The IF stage of the pipeline can supply at most 1 instruction to the ID stage if the instruction memory
can perform at the same rate. The fetched instructions are stored in a prefetch buffer for performance

3.2. Detailed Architecture 35

reasons, with the buffer filling linearly until it is full. The instructions are stored along with the program
counter (PC) from which they came from.

The ID stage, on the other hand, controls the overall decode/execution process. This section contains
the decoder to issue control signals based on decoded instructions, a controller that controls the overall
execution of the processor, and the multiplexers required to choose the data being sent to the Arithmetic
Logic Unit (ALU), and the data which will be written into the register at the end. A small state machine
is used for multi-cycle instructions. If an instruction happens to be a multi-cycle instruction, the pipeline
will stall until it has completed execution. This means that the maximum Instructions per Cycle (IPC)
of Ibex is 1 if no multi-cycle instructions are used.

The ALU of Ibex is a purely combinational block that implements operations required in the RISC-V
specification. These operations include the Integer Computational Instructions and Control Transfer
Instructions, which cover arithmetic and comparison operations. Apart from that, the ALU is also used
by other blocks, such as the Mult/Div block and Load/Store Unit (LSU) for address calculations and
branch targets. Multiplication and division operations are handled by the MULT/DIV block. This is a
state machine-driven block that may use the ALU in multiple cycles to execute multiplication/division
algorithms. There are multiple algorithms possible for multiplication, while only 1 is available for division.
In this instance, the Fast Multi-cycle Multiplier version is implemented, which is a reasonable trade-off
between area and performance. It can complete multiplications in 3-4 cycles by having its own multiply-
accumulate unit. Division, on the other hand, uses the long division algorithm, which takes 37 cycles
to complete.

Other blocks included in Ibex are the Control and Status Register Block (CSR) and the Load-Store Unit
(LSU). The CSR contains all of the control and status registers, such as the machine status registers,
the interrupt enable register, etc. On the other hand, the LSU takes care of accessing the data memory.
The load and store operations of 32-bit words, 16-bit half-words, and individual bytes are supported.

The Ibex core was chosen as the controller for SENeCA’s cores, as it allows the optimization of ener-
gy/area by :

» Event-Compression
* Flexible memory allocation for the most optimal use of the limited on-chip memory
« Efficient use of the memory hierarchy

« Efficient reuse of parameters to reduce memory access in certain neural network architectures
(CNN, for example)

» Deployment of online learning algorithms to improve accuracy and power efficiency

3.2.2. Axon Messaging Interface (AMI)

Since SENeCA lacks a central controller that oversees all cores, communication is done via a hand-
shaking mechanism handled by the Axon Messaging Interface. Figure 3.4 depicts the AMI component.
The AMI manages the incoming/outgoing events and messages to/from each core. Each core has 2
interfaces (with 2 FIFO buffers), one for sending and one for receiving. In this study, since a DNN is
implemented, it is used to transmit neuron outputs from one layer to another. Two signals are used
for this mechanism, the Data Valid (DV) and Ready signals. The DV signal is controlled by the send-
ing core, while the Ready signal is controlled by the receiving core. When a core wants to send, the
RISC-V controller puts data in the send FIFO buffer, and the AMI then sets the DV signal to 1. If the
receiving buffer in the AMI of the receiving core is not full, then the AMI sets the Ready signal to 1, and
data transfer occurs. The AMI of the receiving core then triggers an interrupt to the RISC-V processor.
Although the length of the messages is configurable, this instance can send 32-bit flits.

3.2. Detailed Architecture 36

To the Rest of
the NCP

./‘

TLuL FiFos and registers (Data Bus)

L

sng eleq

Data Bus

Data Valid
Ready
Data Valid
Ready

Axon
. Messaging Interface

<

Figure 3.4: lllustration of the Axon Messaging Interface.

3.2.3. Shared Memory Pre-fetch Unit

To allow for the possibility of memory-intensive applications, shared memory is available as an optional
feature of SENeCA. This shared memory can be used if the on-chip SRAM on the NCCs is not enough
to store the data. This is a separate level of memory hierarchy shared between NCCs that allows
the use of a different memory technology that can remove the limitations of SRAM technology. It can
be added to the chip instead of more NCCs, for example, when cost or space limitations prevent the
addition of more cores. The shared memory architecture is shown in Figure 3.5. However, it should
be noted that, unlike GPU architectures, shared memory is not used to communicate between different
cores.

To efficiently implement shared memory, the SMPU block was added. This is an optimized Direct
Memory Access (DMA) that accelerates access to the shared memory by having a direct link to the
arbiter of the memory. To reduce latency overhead, the SMPU fetches the required parameters to
process a specific event from shared memory, while the event itself is still waiting in the AMI input
event queue. With prefetching, the increase in the processing time of a single inference is only around
20% when the data (neuron states and weights) are stored in the shared memory as opposed to the
local NCC SRAM, assuming enough memory is available.

3.2. Detailed Architecture 37

NCC1
RISC-V Ibex
Core

Data bus (32-bit)

MUX/
Instruction Arbiter
Memory

NCP with SMPU
Data

Memory Shared

Memory
Lane

Arbiter

Shared Data Memory

RISC-V Ibex
Core

MUX/

Data bus (32-bit)

Instruction Arbiter
Memory

NCP with
Data
Memory

Figure 3.5: lllustration of shared memory, with the Shared Memory Pre-fetch Unit in every core

It should also be noted that the read/write command issued by the Ibex core of each NCC can only make
the SMPU move data from the shared memory to its own SRAM or vice versa. A separate read/write
command needs to be issued to read/write to the SRAM itself. In addition, the shared memory arbitrator
uses a round-robin scheduling scheme, which allocates time slots to all NCCs of equal length.

3.2.4. Neuron Co-Processor (NCP)

The Neural Co-Processor (NCP) is the main element of SENeCA’s core and performs the actual neural
computations. The initial vision for the NCP is a programmable and flexible event-based accelerator.
This is achieved by accelerating the most common neuromorphic operations to emulate silicon neurons
instead of physically implementing different models. This approach allows the implementation of an
evolutionary set of instructions that are accelerated by hardware as building blocks, which can then be
used to make various neuron models. This approach was taken on the basis of the fact that the field
of neuromorphic computing is continuously evolving. As a result, new neuron and synapse models are
emerging rapidly, one after another. Having the building blocks of the most common operations in the
NCP, SENeCA is well equipped to implement these new models. It is designed to be modular, scalable,
and flexible.

The elements of the NCP are described below.

Neuron Processing Element (NPE)

The NCP includes an array of Neuron Processing Elements (NPEs), which are the silicon neurons of
SENeCA. Essentially, an NPE is made of two parts: a small memory made of registers and a process-
ing unit that can execute the most common neuromorphic instructions. Each NPE can execute one
operation per cycle on average in a pipelined fashion. An array of NPEs constitutes what is commonly
known as a single input multiple data (SIMD) architecture, since all of the NPEs in one array execute
the same set of instructions. Figure 3.6 shows the block diagram of a single NCP. The NPEs are the
2 small blue rectangles containing the RF and ALU components on the top right. In the instance used
for this benchmark, there are 8 NPEs in this array. On a side note, all individual NPEs can be turned
off during idle times.

The instructions, as well as the addresses in memory of the data on which the instructions are to be
performed, are stored in the micro-kernel, also shown in 3.6. The micro-kernel is part of the loop buffer.
The instructions are written here by the Ibex core, which will also give a command to the NPEs to
start executing instructions in the micro-kernel. The instructions are read/write memory operations or
ALU operations. The Ibex core can also give commands to write data directly to the NPE registry files

3.2. Detailed Architecture 38

(marked RF in Figure 3.6), allowing data reuse in a cache-like fashion. The addresses of the data are
also stored in the micro-kernel as pointers to an address in the data memory. The first NPE in the
array will then use that pointer to perform a read/write operation, with the next NPE executing the same
instruction on the next word. These read/write operations are essentially moving data from the register
files to the data memory, and vice versa. The array of NPEs is connected through a wide port to the
data memory, thus allowing each NPE to access the memory at the same time. This avoids bottlenecks
due to data access.

FIFS) gocupent
- Exit vl g rge 1
Exert sclicl

Event-Capture
[walucy &b}, mpidk), Fnpe}

Bl read
3 em
WL e
REG
ADAPTER = g:
HE_uarazen %_
K _ebirea
L o
” a
]
[NT—
= Dirmem[31:16]
i I d
Interrupts o
Evant vabd
—
enzale
wr_en
TLLL
SRAM tyte anjdhs)
- address
D {32k

Figure 3.6: Block diagram of the NCP, with the blocks above the dual port memory containing an RF block and an ALU being
individual NPEs

Regarding the format to be used for processing in the NPEs, BrainFloat16 (or BF16) was chosen. This
format was originally proposed by Google for its TensorFlow platform to address the narrow dynamic
range of the IEEE FP16[58]. Put simply, it is the first 16 truncated bits of a float32 number. This format
has several advantages for custom hardware designs, listed below.

» Has the same range as IEEE 754 FP32 format, allowing fast conversion to and from FP32 (by
truncating the last 16 mantissa bits)

» Has 8 bits of Sign+Mantissa, which allows for fast conversion to and from fixed-point 8-bit signed
integers.

As an additional feature of SENeCA, a technique called Flexpoint [62] is also available to allow the
sharing of a single exponent by several parameters. In this method, only the Mantissas of a group of
parameters are stored in memory, in signed 8-bit, signed 4-bit, or unsigned 4-bit integer format. These
parameters can, for example, be the weights of a layer of a neural network. Meanwhile, the exponent
is shared, so only one instance is stored. A similar technique is used in TensorFlow, where the integer
parameters are stored separately, with the scale factor shared[52].

All possible operations of the NPE ALU are shown in Table 3.1. All of the instructions are implemented
with zero detection, allowing the instruction to be terminated early in the pipeline if an input is zero, there-
fore saving energy. These operations have operands 1,2,3 (op1, op2, op3) written in their comments,
which indicates the registers that contain the desired operands if an R is denoted. Most operations
are quite straightforward; for example, the addition operation performs an addition of the numbers con-
tained in registers op1 and op2 and stores it in register op3. Logical operations (operations 7,8,9)
produce a 0 if false, and a 1 if true. Furthermore, the ALU of the NPE is designed to complete all
instructions in 4 pipelined stages. If there are no pipeline hazards between the instructions, then all of
the instructions can be done subsequently (starting one instruction every clock cycle), and the results
of one instruction can be accessed 4 clock cycles later.

3.2. Detailed Architecture

39

Table 3.1: Available instructions for the ALU of an NPE. Operations 2 to 6 are arithmetic, 7 to 12 are comparisons, 14 to 17 are
bitwise, while 18 and 19 are memory operations.

No | Operation OpCode | Comment

1 No Operation NOP no operation

2 Addition ADD R[op3] = R[op1] + R[op2]

3 Subtraction SUB R[op3] = Rlop1] - R[op2]

4 Multiplication MUL R[op3] = R[op1] * R[op2]

5 Division DIV R[op3] = R[op1] / R[op2]

6 Rounding RND R[op3] = Round(R[op1])

7 Greater than GTH R[op3] = (R[op1]>R[op2])

8 Greater than or equal | GEQ R[op3] = (R[op1]>=R[op2])
9 Equal EQL R[op3] = (R[op1]==R[op2])
10 | Maximum MAX R[op3] = max(R[op1],R[op2])
11 | Minimum MIN R[op3] = min(R[op1],R[op2])
12 | Absolute value ABS R[op3] = absolute(R[op1])

13 | Integer conversion 12F

Rlop3] = FP(R[op1])

14 | Bitwise AND AND R[op3] = R[op1] & R[op2]

15 | Bitwise OR ORR R[op3] = R[op1] | R[op2]

16 | Logical shift left SHL R[op3] = R[op1]<<R[op2]

17 | Logical shift right SHR R[op3] = R[op1]>>R[op2]

18 | Memory load MLD R[op3] = Dmem[address]

19 | Memory store MST Dmem[address] = R[op1]

20 | Event generation EVC Event generated when R[op1]!=0

Event-Capture Unit (EVC)

Since the NPEs are the representation of silicon neurons in SENeCA, they will produce spikes as output.
These spikes are represented as events that are captured by the Event Capture Unit (EVC), which is
present in every NCC and is connected to all neurons in it. This unit then converts these spikes to the

form of Address Event Representation [108], which can carry an optional value field.

tag

value

L A A

address

valid <

enable

Value

address

Address

4

(epl)

RF

Figure 3.7: Block diagram of the Event Capture Unit

The EVC is illustrated in Figure 3.7. Each NPE can receive an instruction to emit an event (instruction
number 20 in Table 3.1). If, at the time of execution of this instruction, the content of register op1 is not
zero, then the EVC captures the value. That value and the ID of the source NPE (a simple unsigned
integer) are sent to the ECU in the form of a message. In addition, a tag can also be included in the
message. A starting value for this tag and an incremental value (to be added every time this instruction
is executed) can be set by the user, allowing the actual neuron firing the event to be identified, since
the NPE ID alone is not enough if time-multiplexing is used. This message then enters the FIFO buffer
of the EVC. If this FIFO buffer is not empty, an interrupt is then issued to the controlling Ibex core,
allowing it to respond to the neuron firing event. If multiple NPEs are activated in a single cycle, only

3.3. Comparison of SENeCA with Other Architectures 40

one interrupt is issued, and the Ibex core can respond to the entire queue.

Loop Buffer

Anytime an event enters the Axon Messaging Interface, multiple neurons may need to be updated.
The number of neurons can easily reach several hundred, and due to time multiplexing, each physical
neuron must perform the same set of instructions repetitively in a loop. Involving the Ibex core to contin-
uously run the NPE loops is very inefficient, as it needs to fetch the new instruction from the instruction
memory every time. Furthermore, since the NPEs notify when they have finished an instruction set by
way of interrupts, a lot of context switching will be needed, further decreasing efficiency. This problem
is addressed by the mechanism called the Loop Buffer. SENeCA’s loop buffer is a small memory made
with registers (to save energy), and it is directly connected to the NPEs. These registers are used to
store a local copy of the NPE instructions to be processed for a specific number of loops. This loop
buffer is controlled by the Ibex core and triggers it for input events.

3.2.5. Network on Chip (NoC)

To connect the NCCs in a multicore version of SENeCA and deliver the spike events, a minimalistic
mesh Network on Chip (NoC) is being developed at the time of writing with several important features.
Among the most important are: 1) support of multicasting, and 2) support of variable-length packets.

Multicasting support is implemented by the use of source-based addressing. Compared to the destination-
based addressing system used in many other neuromorphic architectures, the source neuron is spec-
ified in the packet containing the spike. The NoC router then redirects this message to its destination,
based on a routing table stored in the router. This routing table specifies the connectivity of the neu-
rons. Studies conducted by IMEC show that the network can be mapped with a relatively small routing
table for small neurons. While this approach might not be sufficient for some applications (especially
those requiring a large network), as some of the NCCs might receive an unwanted package, a filtering
mechanism is implemented in the AMI. This filter will remove unwanted packages.

3.2.6. Synthesis Results

In this section, the area measurements are provided for a single-core (NCC). This information can be
used to predict the area of an instance of SENeCA with multiple cores. Since static (leakage) power
tends to be significant for neuromorphic architectures, a low-leakage FDX-22nm technology provided
by GlobalFoundries was used to synthesize. Table 3.2 shows the resulting area of components of an
NCC when synthesized using Cadence Genus. This instance has 8 NPEs, 2MB of data memory, and
128KB of instruction memory while using a target clock frequency of 500MHz.

Table 3.2: Area consumption of the main components of a single NCC.

Module Area(kpm2) | Area (%)
AMI 12 22

Ibex core 23 4.2

Inst memory | 28 5.1

NCP 38 6.9

Data memory | 443 80.4
Total 551 100

3.3. Comparison of SENeCA with Other Architectures

Table 3.3 compares SENeCA with other neuromorphic processors.

3.3. Comparison of SENeCA with Other Architectures

41

Table 3.3: Area of SENeCA compared to other comparable neuromorphic chips.

Architecture Area(mm2)/Core | Memory(Mb)/Core | Technology
Loihi [22] 0.41 2 Intel 14nm
Loihi2 [75] 0.21 1.5 Intel 4nm
TrueNorth [3] 0.1 0.1 Samsung 28nm
MBrain [95] 1.42 0.15 TSMC 40nm
SENeCA [109] | 0.55 2.1 GF 22nm
SpiNNaker [78] | 101.64 0.032 UMC 130nm

3.3.1. With SpiNNaker

SpiNNaker is perhaps the architecture that has the highest level of similarity to SENeCA [79]. SpiN-
Naker contains several ARM cores as processing units which are connected through an advanced
star-type multicasting network. The network is packet-switched, asynchronous, and contains only one
router. The second version of SpiNNaker added several arithmetic processing units for acceleration, as
well as a new power management system in the GF22nm technology node of Global Foundries [68]. On
the other hand, SENeCA has simpler processing units, which are smaller (based on the open-source
RISC-V processor) and are not used for event processing. Also, in contrast to the multicasting network
of SpiNNaker, SENeCA has a low-overhead mesh-type multicasting Network on Chip (NoC) for sparse
event-based computation, which has reduced functionality compared to SpiNNaker’s network, along
with optimized accelerators. Also, the purpose of both architectures is different, with SpiNNaker being
geared more for brain research, as opposed to SENeCA’s focus on having both hardware and software
for innovations in EdgeAl applications.

3.3.2. With IBM TrueNorth

Compared to the first commercial neuromorphic chip, IBM TrueNorth [3], it can be said that the TrueNorth
neuron update is more energy efficient. This is because TrueNorth’s core emulates exactly 256 neu-
rons. Each neuron has 256 input synapses, organized in a crossbar architecture to determine connec-
tivity. A single output axon is also connected to 256 other neurons in another core. Also, TrueNorth
uses a plain mesh packet-switched network, which is unicast, as opposed to SENeCA's NoC. Another
similar architecture, pbrain [95] goes further in the optimization of the processing core, and allows for
application-specific IP with ultra-low power consumption.

3.3.3. With Intel Loihi

Compared to TrueNorth, Intel Loihi’s cores are less flexible [22]. The interconnect, meanwhile, is a
simple uni-cast packet-switched mesh. Also, one defining feature of Loihi is its ability to do on-chip
learning with a bio-inspired learning algorithm, as opposed to other architectures, including SENeCA.
The cost of this flexibility and added learning feature is the higher energy of a single neuron update
(around 80 pJ). Loihi 2 [75] takes this a step further and packs more neurons and synapses in a die,
using a better technology node (Intel4). Additionally, it features programmable neurons with micro-
code, a feature also available in SENeCA. Loihi 2 also supports a specific kind of bio-inspired learning
algorithm, similar to its predecessor.

Software Architecture and
Implementation

To measure the capabilities of SENeCA and perform a meaningful and fair comparison with other similar
neuromorphic architectures, a test program must run on the different architectures and measurements
must be made on the metrics of interest. This is known in the field of computer architecture as bench-
marking. However, as Davies pointed out [20], a widely adopted standard benchmarking suite for
neuromorphic processors is yet to be developed. As such, it is considered of interest to the SENeCA
developers to perform benchmarking with an application that will typically be deployed on it in the future.
As SENeCA is still in the development phase at the time of writing, the only possible way to perform
benchmarking is through simulation. In this section, the application that is used to benchmark SENeCA
is described, as well as the details of the implementation of that application on SENeCA. In particular,

we explain how the unique components of SENeCA are leveraged to have an implementation that is
as efficient as possible.

42

4.1. Keyword Spotting 43

4.1. Keyword Spotting

In his article on benchmarks for neuromorphic processors, Davies [20] mentions several programs
that could be included in a future benchmark. The programs mentioned include programs that are
similar to real-world applications and programs that can represent algorithmic primitives that have little
standalone value. The metrics that would be of interest include time-to-solution (latency), energy-to-
solution, throughput, and accuracy. The first application mentioned in the hypothetical "SpikeMark”
suite is a program to classify spoken keywords, by using a specified pre-trained deep neural network.
This application will be used as the main program for this study. The application in question is based
on the study by Blouw et al. in [14].

There are a few reasons why this application in particular was chosen, listed below.

» A spoken keyword classification program can benefit greatly from reduced power consumption
since it will likely be implemented on handheld and/or embedded devices. As such, it would be a
typical application for SENeCA.

» The network used for classification is relatively simple, greatly reducing implementation time since
SENeCA, especially its Software Development Kit (SDK), is still in development. Furthermore,
the implementation of the NoCs (mentioned in Chapter 3) that allow the multicasting of data is still
ongoing at the time of writing. This makes the cores only able to send a single designated core,
precluding the use of more complicated networks such as the one used in [17]. Furthermore, the
lack of a physical chip prevents the implementation of a system such as the one described in [92].

» As mentioned in Chapter 3, the SDK of SENeCA is not yet finished, preventing the integration into
benchmarking suites such as SNABSuite [77] and Nengo [11] presented in Chapter 2. Therefore,
only a single workload was used in this study, while benchmarking with other workloads is planned
at the time of writing.

» As access to other neuromorphic hardware was not available at the time of writing, actual bench-
marking was not possible with several platforms. However, since the program has already been
run on several platforms, including Intel Loihi [14], the data provided in the study will be used
instead as comparisons for SENeCA instead.

» The source code to implement the program on the platforms mentioned in the study is publicly
available, allowing easy replication on SENeCA.

Keyword spotting revolves around monitoring an audio stream to detect a keyword of interest, such
as the popular "Hey Siri”, or "Ok Google”. This particular task is useful for neuromorphic processors
because of its low latency requirements to process audio in real time, its potential benefit from improve-
ments in energy efficiency, and its numerous applications. In [14], the program was run on several
different platforms as follows:

1. CPU : Intel Xeon E5-2630.

2. GPU : Nvidia Quadro K4000.

3. Jetson TX1: Supercomputer on a module, built around the Nvidia Maxwell™ architecture, has
256 CUDA cores.

4. Movidius NCS (Neural Compute Stick): is powered by the Intel® Movidius™ Myriad™ 2 vision
processing unit (VPU).

5. Intel Loihi (Wolf Mountain Board) : explained in Chapter 1.

In this study, SENeCA will be added to the list.

The application takes in an audio waveform corresponding to an utterance and then predicts a se-
quence of characters that is in the waveform. Then it is determined whether the utterance contains the
keyword of interest. To find the features in the waveform, it is necessary to pre-process the data. This
preprocessing involves a Fourier transformation and a discrete cosine transformation on an overlapping
series of windows to compute the Mel-frequency clepstral coefficients (MFCC). MFCCs are coefficients
that collectively make up the Mel-frequency cepstrum (MFC), a representation of the short-term power

4.2. Reproduction and Simplification of DNN Model 44

spectrum of a sound. MFCCs are commonly used as features in speech recognition systems [36]. The
windows of adjacent MFCC features are then combined into frames of 390 dimensions each, and each
frame is fed into the network. Each frame corresponds to a stride of 10 ms, which means that, for
real-time processing, at least 10 frames need to be processed per second.

390D 256D 256D 29D
Inputs Outputs

Figure 4.1: Network topology for the keyword spotter DNN. All layers are fully connected (FC). Adapted from [14]

The DNN for the keyword spotter has 3 layers, all of which are fully connected. The input is the frame of
390 dimensions, while the first two layers are 256-dimensional hidden layers. The third and final layer
is used to predict a 29-dimensional output vector, which corresponds to a probability distribution over
alphabetical characters. Each layer has its own pre-trained set of weights and biases. Furthermore,
every layer performs the ReLU activation function for its output. Figure 4.1 illustrates this network. After
processing one frame, the next one is fed into the input, and the prediction vectors are collapsed by
merging repeated characters and stripping out special characters and spaces.

4.2. Reproduction and Simplification of DNN Model

To implement the neural network described above, all of the operations involved in the process have
to be broken down into simple arithmetic calculations, since SENeCA does not have dedicated APIs to
simplify the implementation of layers on it at the time of writing. To have a closer look at the operations
that occur in the layers, visualization was done using TensorBoard [66]. This tool allows for a deeper
look inside the structures that TensorFlow provides.

4.2. Reproduction and Simplification of DNN Model 45

char_output

char_layer_1

char_layer_0

Figure 4.2: TensorBoard visualization of the main network. The rounded rectangles represent the layers, while the arrows
represent the flow of data.

Figure 4.2 shows the visualization of the network. The rounded rectangles represent the layers, the gray
arrows represent the flow of data between the layers, and the blue arrows represent the initializations
of the layer parameters. As mentioned before, layer 1 receives a vector of 390 data points, while
layers 2 and output receive a vector of 256 data points from the previous layers, shown in the figure as
the gray arrows. Since the network is pre-trained, the weights and biases of each layer are initialized
by TensorFlow without training, which simply means that they are loaded from memory. The sizes of
these matrices to be stored in memory are shown in Tables 4.1 and 4.2, for the weights and biases,
respectively. As the original implementation has the data stored in IEEE 754 floating point format, while
the implementation in SENeCA is in the BrainFloat16 format, both sizes are shown.

Table 4.1: Dimensions and sizes in memory of the weight matrices of the 3 layers. Sizes are denoted in KBytes.

Layer Weight matrix dimension | Datapoints | Size (float32) | Size (bfloat16)
Layer 1 | 390 x 256 99840 399.36 199.68

Layer 2 | 256 x 256 65536 262.144 131.072
Output | 256 x 29 7424 29.696 14.848

Table 4.2: Dimensions and sizes in memory of bias vectors of the 3 layers. Sizes are denoted in KBytes.

Layer Bias matrix dimensions | Datapoints | Size (float32) | Size (bffloat16)
Layer 1 | 256 x 1 256 1.024 0.512
Layer2 | 256 x 1 256 1.024 0.512
Output | 29 x 1 29 0.116 0.058

4.2. Reproduction and Simplification of DNN Model 46

char_layer_1

xw_plus_b

MatMul

weights

Figure 4.3: TensorBoard visualization of the second layer. The two main operations taking place, xw_plus_b and Relu, are
shown here.

In Figure 4.3, the internal structure of Layer 2 is shown. As the other 2 layers are more or less similar
because they only differ in the sizes of the matrices, this layer will be used to explain the operations
for all of the layers. The highlighted rounded rectangle, labeled xw_plus_b, is the main multiply and
accumulate operation and also includes the bias addition at the end. The MatMul operation, the lower
left ellipse, is the matrix multiplication operation that multiplies the input vector with the weight matrix.
As can be seen in the figure, the ellipse receives an input of 256x1, which is the input vector received
from layer 1, and a 256x256 matrix, which is the weight matrix. The output of this operation then goes to
the next ellipse, labeled xw_plus_b as well. This operation adds the bias vector, here of size 256x1, to
the resulting vector of the MatMul operation. The result of this bias operation goes out of the highlighted
rounded rectangle and goes into the ellipse labeled Relu. This applies the activation function known
as Rectified Linear Unit (ReLU) to the results, essentially converting all negative values to zeros while
keeping the positive ones. The resulting 256-element vector is the final output of layer 2, which goes
to the output layer (not seen in the figure).

This program developed in Python will be used as a baseline to compare the accuracy of the SENeCA
implementation developed in the next section, as we unfortunately do not have access to other plat-
forms, including Loihi, at the time of writing. The test data provided with the source code of [14] in-
cludes 192 matrices, each representing an audio recording of different lengths. The implementations
on SENeCA will be mostly run with one input vector, namely the first frame of the first audio recording.

4.3. Implementation on SENeCA 47

4.3. Implementation on SENeCA

The implementation of the keyword spotting neural network on SENeCA will be explained in this sec-
tion. As this application is one of the first applications of an end-to-end program on this platform, the
implementation was done in several iterations. Each iteration will utilize a different optimization tech-
nique, utilizing the components in SENeCA's NCC to accelerate the neural network operations. The
performance of each iteration will also be individually analyzed. Therefore, the impact of each opti-
mization on performance can be discerned, both in terms of execution time and power consumption.
In this chapter, the discussion will be limited to the first two iterations. These will serve as the baseline
program for further optimizations.

4.3.1. RISC-V Only Implementation

This implementation is the most basic, as it only uses the RISC-V Ibex core to perform all of the opera-
tions required, without any help from the accelerators. As the RISC-V processor only has a single core,
all operations are done sequentially. Also, since the core is configured for 32-bit words, the operations
will mainly involve floating point formats for the weights, biases, and input data. This version was also
used to understand how to program SENeCA.

Initialization and Main Function

The source code for the main loop of the program is shown in Listing 4.1. The operations involved in
the neural network calculations do not take place in the main function; instead, they are implemented
in the interrupt handler. Therefore, the main loop consists mainly of initializations and the main infinite
loop. Initializations include the reset of neurons (line 7) and the enabling of interrupts (lines 5 and 13).
Other than that, a timer function prints out statements every 5ms to indicate the passage of time.

The variables and constants used for the calculations are also declared here. This source code is for
the first layer, hence the dimensions of 390 x 256. The variable named neuron_states is used to store
the temporary values of the neurons as their values are updated. The counter variable is there to keep
track of which input is being processed at the moment. The weights and biases variables, on the other
hand, are initialized in a different file and are omitted due to their size; here they are declared with the
"extern” keyword. The union is used to process the conversion between 32-bit data (used by the AMI)
and float32.

Listing 4.1: Source code for the main loop and initializations

#define NUM_ROWS 256
#define NUM_COLS 390

typedef union {
uint32_t i;
float f;

} ou;

static float neuron_states [NUM_ROWS];
static intl16_t counter = 0;

extern float weights[NUM_COLS][NUM_ROWS];
extern float biases [NUM_ROWS];

int main(int argc, char **xargv) {

// enable global interrupt
csr_write_mstatus (0x8);

//Reset output neurons
reset_neurons () ;

// Enable periodic timer interrupt
timer_enable (0x5000, f);

// Enable AMI Interrupt

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

4.3. Implementation on SENeCA 48

ami_enable();
uint64_t last_elapsed_time = get_elapsed_time();

while (1) {
uint64_t cur_time = get_elapsed_time();
if (cur_time != last_elapsed_time) {
last_elapsed_time = cur_time;
if (last_elapsed_time & 1) {
puts("Tick!");
} else {
puts("Tock!");

}
}
WFIQ);
¥
WFIQ);

return 0; /* Return from main will throw exception! */

}

Axon Messaging Interface (AMI) Interrupt Handler

As mentioned in Chapter 3, the Axon Messaging Interface (AMI) handles communication between the
NCCs (cores) of SENeCA, as well as with the outside world. In this benchmark, since it is run on a
simulation, the input data is fed via the AMI to the first layer which runs on core 1. This is done by the
testbench software, which reads the input data from a file and sends the input through the AMI. In this
implementation, the input data are stored in fp32 format, and the width of the AMI bus is 32 bits, so
only one datapoint can be sent at a time. Each time a data point is sent to a specific core, an interrupt
is triggered in that core’s Ibex processor.

Listing 4.2 shows the source code for the AMI interrupt handler that is called if a datapoint is received.
The ami_msg_recv() function reads the register that contains the datapoint received through the AMI
and returns it as a 32-bit variable. The union u is used to convert the 32-bit variable to float32, and
depending on the value of the datapoint, the program proceeds to update the neuron states with bench-
mark_update, or execute the final operations with benchmark_post(). The input denotes an end-of-
stream event if it is all ones (OxFFFFFFFF) or if its float value is more than 60000.

Listing 4.2: Source code for the AMI interrupt handler
ATTR_INTR void ami_handler(void) {

u union_float;
uint32_t event = ami_msg_recv();
union_float.i =event;

//Respond to interrupt depending on the value of an event
if ((event == EVENT_EO0S) || (union_float.f > 60000.0)) {
//Execute final calculations
benchmark_post () ;

} else {

//Multiply the event with the weight vector and update the neuron values
benchmark_update (event) ;

Matrix Multiplication

Implementing matrix multiplication is quite straightforward since it is done sequentially. Every time
there is an interrupt from the AMI that is not an EOS event, this function is called. The 32-bit event is
converted to fp32 format, which is then used to update the neuron values. This is done by multiplying
the incoming event with the corresponding row in the weight matrix and adding the resulting vector to
the vector that holds the current neuron values. Since only one core is used, a for loop is used to iterate
through the neurons, updating all of them sequentially. The source code is shown in Listing 4.3.

Listing 4.3: Source code for matrix multiplication

4.3. Implementation on SENeCA 49

1
2 void benchmark_update(uint32_t ev) {

3 //Union to convert a 32-bit variable to floating point

4 u union_float;

5 union_float.i = ev;

6

7 //Iterate over all neurons and update them

8 for (int i = 0; i < NUM_ROWS; i++){

9 //Multiply and accumulate (MAC) operation

10 neuron_states[i] += weights[counter][i] * union_float.f;
1 }

12 counter++;

S

Bias Addition, Activation Function, and Transmission
Listing 4.4 shows the source code for the final phase of the calculations (bias addition and activation
function), and the process of sending the neuron states to the next layer via the AMI.

Listing 4.4: Source code for final part of the calculations

void benchmark_post(void) {

"
2

3

4 //Variables to send the values and store the FIFO occupancy
5 uintl6_t low_var;

6 uint16_t high_var;

7 uint32_t ami_irgq;

8
9

// Add biases to the neuron states
10 for (int i = 0; i < NUM_ROWS; i++) {
1 neuron_states[i] += biases[il;

12 }

13

14 //Implementation of rectified linear unit function
15 for (int i = 0; i < NUM_ROWS; i++) {

16 if (neuron_states[i] < 0.0){

17 neuron_states[i] = 0.0;

18 ¥

19 }

20

21 //Iterate through all the neurons and send their values
22 for (int i = 0; i < NUM_ROWS; i++){

23 //Use a union to convert float to 32-bit data
24 u union_float;

25 union_float.f = neuron_states[il];

26

27 //Split the data into two parts to send

28 low_var = (uint16_t)union_float.i;

29 high_var = (uint16_t) (union_float.i >> 16);

30

31 //Send the lower 16-bit data

32 event_t ev = create_event(0, low_var);

33 ami_msg_send(ev.r);

34

35 //Send the upper 16-bit data

36 event_t ev2 = create_event(0, high_var);

37 ami_msg_send(ev2.r);

38

39 //Read the FIFO buffer occupancy to make sure it does not overflow
40 ami_irq = ami_buffer_read();

41 }

42

43 //Send the End of Stream (EO0S) event

44 event_t ev = create_event (0, EVENT_EO0S);

45 ami_msg_send(ev.r);

46

a7 }

This process is divided into 3 main loops, each iterating over the neurons. As this code is for the
second layer, there are 256 iterations for each loop. The first loop adds the bias values to the neuron

4.3. Implementation on SENeCA 50

values which are obtained using the MAC operations. The second loop implements the Rectified Linear
Function (ReLU) function, converting all negative values to 0 while keeping all positive values. The final
loop sends the neuron values to the next layer through the AMI. While the AMI is configured to send at
most 32-bit data, at the time of development of this baseline software, sending was configured to 16-bit
address and 16-bit data, so each value has to be divided into two. These two parts are the 16-bit upper
and lower bits, which are sent separately. After sending two halves, the FIFO occupancy rate is read
to ensure that the buffer does not overflow due to the difference in processing time between sending
and receiving. At the end of the loop, an End of Stream (EOS) event is sent, signaling the end of the
data stream and letting the next layer know that it can start processing the data.

4.3.2. Baseline NPE Implementation

The second version of this benchmark utilizes the SENeCA NPEs to accelerate neural network oper-
ations. As the RISC-V-only implementation does not involve any component of SENeCA that makes
it a neuromorphic processor, this version is the true baseline to be used for the optimizations that will
be explored in later chapters. As explained in Chapter 3, the SENeCA NPEs have a common kernel
that functions as an instruction memory for them. The RISC-V core can write instructions to this kernel,
making the NPEs all perform this same set of instructions in a Single Instruction Multiple Data (SIMD)
fashion. There are two sets of instructions used mainly in this implementation to execute the neural
network calculations, the MAC and Bias sets. From the available instructions listed in Table 3.1, a
Multiply and Accumulate program was written, and the instructions are listed in Table 4.3. While in-
struction No. 1 is not technically an instruction done by the NPE, as it is the RISC-V core that writes the
input data to the register file directly, it is included for completion’s sake. The operations involved are
quite straightforward, with the required operands being loaded first, multiplication and addition being
performed, and finally the result is written back into the memory.

Table 4.3: Program to perform multiply and accumulate operations by the NPE. Five NPE registers are used out of the 16

available.
No | Instruction Operand 1 Operand 2 | Target
1 Write to REG | input N/A eval_reg
2 MLD ptr to weight N/A weight_reg
3 MLD ptr to state N/A state_reg
4 MUL eval_reg weight_reg | mul_res_reg
5 ADD mul_res_reg state_reg new_state reg
6 MST new_state reg | N/A ptr to state

Table 4.4, meanwhile, lists the operations required to perform the bias addition, as well as the applica-
tion of the ReLU function. Similarly to Table 4.3, instruction 1 is included even though it is not executed
by the NPE. Operations 2 and 3 load the required variables into the NPE registers. The bias addition
is performed by Instruction 4. The RelLU function is implemented by Instructions 5 and 6. Since con-
ditionals are not supported by the NPEs instruction set, a comparison is performed to find out if the
neuron state is greater than zero, which results in a 1 if true and 0 otherwise. The neuron state is then
multiplied by the result, resulting in the same result as the application of ReLU with a conditional.

Table 4.4: Program to perform bias addition and activation function by the NPE. Six NPE registers of the 16 available are used.

No | Instruction Operand 1 Operand 2 Target

1 Write to REG | 0 N/A zero_reg

2 MLD ptr to bias N/A bias_reg

3 MLD ptr to state N/A state_reg

4 ADD bias_reg state_reg add_res_reg
5 GTH add_res_reg zero_reg comp_res_reg
6 MUL new_state reg | comp_res_reg | mul_res_reg
7 MST mul_res_reg N/A ptr to state

4.3. Implementation on SENeCA 51

Initialization and Main Function

Similarly to the previous version, the main loop shown in Listing 4.5 consists only of a timer function that
prints statements to indicate the passage of time and that the simulation has not stopped. However,
since this version uses NPEs, several commands are added to activate the components related to the
NPE. Lines 14 and 15 enable the interrupt from the NPEs, although they are not used in this version.
Lines 18 and 19 are reset and enable all available NCPs (including the NPEs).

Listing 4.5: Source code of main function and variable initializations

4
2

3 #define DRAM_START 0x10000

4 #define NUM_ROWS 256

5 #define NUM_COLS 390

6

7

8 int main(int argc, char *xargv) {

10 puts ("Neuron CoPro test, layer 1");

1

12 // enable general interrupt

13 csr_write_mstatus (0x8);

14

15 // enable interrupts of neurons

16 csr_set_bits_mie(BIT(18)); // spikes_handler: read_msg();
17 csr_set_bits_mie(BIT(19)); // neuron_proc_done_handler;
18

19 init_hw();

20 reset_all_ncp();

21 enable_all_ncp();

22

23 ami_enable () ;

2 INIT_REG_FILE();

25

26 uint64_t last_elapsed_time = get_elapsed_time();
27

28 while (1) {

29 uint64_t cur_time = get_elapsed_time();
30

31 if (cur_time != last_elapsed_time) {

32 last_elapsed_time = cur_time;

33

34 if (last_elapsed_time & 1) {

35 puts ("Tick!");

36 } else {

37 puts("Tock!");

38 }

39 ¥

40 WFIQ);

1 }

42 return O;

43 }

AMI Interrupt Handler
This version’s handler of the AMI interrupt is identical to Listing 4.2, hence here it is omitted for brevity’s
sake.

NPE Loop

Listing 4.6 is the main loop that performs the neural network operations; therefore, all statements that
involve NPEs are included here. For clarity, biasesV_g, weightV_g, and stateV_g are the arrays that
contain the biases, weights, and neuron states, respectively. Meanwhile, beginning_of weightsV and
beginning_of statesV are pointers that point to the beginning of the array to be processed in that spe-
cific loop.

The first loop (lines 10 to 13) converts the biases that are initialized as floating-point numbers to the
bfloat16 format. This inefficiency will be optimized in later versions, since the biases can simply be

4.3. Implementation on SENeCA 52

declared and initialized as bfloat16 instead of float32. This eliminates the need for conversion. The
main loop for matrix multiplication starts at line 10. It iterates through every input, of which there are
390, since this example is from the first layer. If the input value is zero, it is skipped to decrease
execution time. The function KERNEL_SENECA writes the input to the NPE register and writes the
required commands. This function will be explained more thoroughly in the next subsection. The inner
loop iterates through neurons as every neuron needs to be updated for each input, but because there
are 8 NPEs, the number of iterations is divided by 8. For each iteration, the pointer to the beginning
of the states and weights to be processed is adjusted. The function DO_LOOP then commands the
NPEs to execute the instructions that have been written by KERNEL_SENECA.

The second loop (starting at line 20) takes care of the bias addition and activation function. This loop
iterates through all neurons, which takes fewer iterations than the previous version due to the NPEs.
Again, the number of iterations is the number of neurons divided by 8. The KERNEL_SENECA_B
function writes the required instructions to the kernel, while DO_LOOP_B executes them.

Listing 4.6: Source code of NPE Loop of Version 2

void run_kernel_seneca()

{
uint32_t last_miram_1stHalf_addr_used = 0x00;
uint32_t last_miram_2ndHalf_addr_used = 0x07;
for (uint32_t k = 0; k < NUM_ROWS; k++){
//Convert biases to bfloatl6
FLOAT2BF (&biases [k], &biasesV_gl[k]);
8
for (uint32_t i = 0; i < NUM_COLS; i++)
{
if (input [i] =! 0){
KERNEL_SENECA (input [i]) ;
for(uint32_t k = 0; k < (NUM_ROWS/8); k++){
beginning_of_weightsV = (voidx*)&weightV_g[(i*256)+(k*8)];
beginning_of_statesV = (voidx*)&stateV_g[kx8];
DO_LOOP(beginning_of_weightsV, beginning_of_statesV);
};
}
}
for (uint32_t i = 0; i < (NUM_ROWS/8); i++)
{
beginning_of_statesV = (voidx*)&stateV_gl[i*8];
KERNEL_SENECA_B() ;
beginning_of_biasesV = (voidx)&biasesV_gl[i*8];
DO_LOOP_B(beginning_of_biasesV, beginning_ of_statesV);
}
}

Matrix Multiplication Instruction Set

Listing 4.7 shows the source code for the loop that executes the matrix multiplications. As the operations
are done by the NPEs, the code shown here contains commands to the RISC-V core to write instructions
to the kernel. The whole process is divided into two functions since there are commands that change
only every time a process starts for a new input (every iteration of the loop starting at line 10 of Listing
4.6), and there are commands that change for every iteration of the loop starting at line 20 of Listing
4.6. This division prevents commands from being overwritten unnecessarily.

Before going into the explanation of the commands to write to the kernel, an explanation about the vari-
ables last_miram_1stHalf _addr_used and last_miram_2ndHalf_addr_used needs to be made. These
two variables will be referred to as the miram_address variables. As explained in Chapter 3, the com-
mands to store and load from memory need two registers, one to store the address and one to store
the command itself. To organize the commands and addresses, the kernel is divided into two sections,

4.3. Implementation on SENeCA 53

one for the addresses (1st section) and one section (2nd section) for the commands. The variables
above allow the user to write a command (and an address, if necessary) to empty registers, with the
variable last_miram_1stHalf_addr_used for addresses, and last_miram_2ndHalf _addr_used for com-
mands. The corresponding variable is then incremented, allowing the next command to be written in
the next empty register. In Listing 4.6, last_miram_1stHalf _addr_used was initialized as 0x00, while
last_miram_2ndHalf_addr_used was initialized as 0x07. This means that the range for addresses starts
at 0x00 and ends at 0x06, while commands can be written from 0x07 onward.

The function KERNEL_SENECA writes all of the commands listed in Table 4.3, except the ones related
to memory. The first step taken is to declare a register for the input to be processed, eval_reg. Then
the input is converted to bfloat16 and loaded into the register. The next step is to load the weight into
the memory register (line 10). However, since the weight value is specific to each neuron, it is not
written here. Instead, space is made for the MLD command, both for the address and the instruction,
by incrementing the two miram_address variables. A weight register is also declared. The same pro-
cess is done for the neuron state (line 14). The rest of the function writes the commands that are the
same for all neurons within one input iteration. First, the register that holds the multiplication result
(mul_res_reg) is declared. Then, the command to multiply the input with the weight and store the result
to the mul_res_reg is written. Second, the register that holds the new neuron value new_state _reg is
declared, and the addition command is written that adds the multiplication result to the old neuron state.
Finally, the command is written to write the new neuron state back to the memory.

The DO_LOORP function, meanwhile, adds the commands to read the weight and neuron state values.
It does that in the following way. First, the last_miram variables are reset. Then, the registers to store
the data to be read and the space to store the address from which the data are to be read are declared.
Then the commands to read the data are written (34 and 37). After this step, all necessary commands
and addresses should be written in the instruction memory. To tell the NPEs which instructions they
have to execute, the required parameters are written in a specific way, done by the statement on line
39. This includes the start, end, and number of repetitions. The first instruction is the first space
in the section designated for instructions. The last instruction of this loop is stored in the variable
last_miram_2ndHalf_addr_used. Before writing the loop configuration, this variable is incremented by
3, the number of instructions written in KERNEL_SENECA. As the loop buffer (explained in Chapter 3)
is not used, the number of repetitions is set to 1.

Listing 4.7: Source code of matrix multiplication instruction set

4
2 void KERNEL_SENECA(float datapoint)

4 {

5

6 uint32_t eval_reg = Ou;

7 float ev_val_F = datapoint;

8 uintl6_t ev_val_BF = 0;

9 FLOAT2BF (&ev_val_F, &ev_val_BF);

10 write_to_regfile(eval_reg, ev_val_BF);

1

12 uint32_t weight_reg = eval_reg + 1;

13 uint32_t weight_adr_addr_ptr = ++last_miram_1stHalf_addr_used;
14 ++last_miram_2ndHalf_addr_used;

15

16 uint32_t state_reg = weight_reg + 1;

17 uint32_t state_adr_addr_ptr = ++last_miram_1stHalf_addr_used;

18 ++last_miram_2ndHalf_addr_used;

19

20 uint32_t mul_res_reg = state_reg + 1;

21 append_to_miram_command (MUL, eval_reg, weight_reg, mul_res_reg);
22 uint32_t new_state_reg = mul_res_reg + 1;

23 append_to_miram_command (ADD, mul_res_reg, state_reg, new_state_reg);
24 append_to_miram_write_reg_to_mem(state_adr_addr_ptr, new_state_reg, 0xOlu);
25 }

27 void DO_LOOP(void * beginning_of_weightsV, void* beginning_of_statesV)
28 {

30
31
32
33
34
35
36

37
38
39
40

41
42
43

44
45
46
47

1
2
3
4
5
6
7
8
9

4.3. Implementation on SENeCA 54

last_miram_1stHalf_addr_used
last_miram_2ndHalf_addr_used
uint32_t eval_reg = Ou;

0x0;
(MIRAM_1ST_HALF_LAST_INDEX) ;

uint32_t weight_reg = eval_reg + 1;

uint32_t weight_adr_addr_ptr = ++last_miram_1lstHalf_addr_used;

append_to_miram_read_from_mem_to_reg(weight_adr_addr_ptr, beginning_of_weightsV,
weight_reg, 0x01u);

uint32_t state_reg = weight_reg + 1;

uint32_t state_adr_addr_ptr = ++last_miram_1stHalf_addr_used;

append_to_miram_read_from_mem_to_reg(state_adr_addr_ptr, beginning_of_statesV, state_reg,
0x00u) ;

last_miram_2ndHalf_addr_used += 3u;

uint32_t loopcfg = LOOP_CONFIG_INST(lu, last_miram_2ndHalf_addr_used,
MIRAM_1ST_HALF_LAST_INDEX+0xO1u);
WriteLoopConfig(loopcfg);

WFIQ);
}

Bias and Activation Function Instruction Set

The bias and activation function loop is implemented by the source code shown in Listing 4.8. Similarly
to the loop for matrix multiplication, the statements listed are mainly to write the correct commands
to the NPE’s instruction memory to allow the NPEs to perform bias addition and activation function
application properly. To avoid overwriting the instructions already written for the matrix multiplication
loop, the last_miram variables are not initially set to 0x00. Instead, they are initialized to the next empty
spot after the last instruction of the MM loop (0x04 and 0x13, respectively). Similarly to the MM loop,
the statements are divided into two loops, which will be explained in the following.

The KERNEL_SENECA_B function writes the instructions that do the calculations (as opposed to mem-
ory access). At the beginning, the last_miram variables are initialized as mentioned above. After that,
the value of 0 is written to the specific register, to be used in a subsequent operation. Then, to make
space for the instruction to read the neuron state and the bias value from the memory, both last_miram
variables are incremented twice. The registers to store the data are also declared. Subsequently, the
commands to execute the calculations are written to the instruction memory. First, the ADD operation
to add the bias to the neuron state, as well as the register to store the result. Then, to implement
the ReLU function without a conditional statement, a GTH (greater than) operation and a MUL oper-
ation are carried out, as explained in Table 4.4. The registers to store the comparison result and the
multiplication are also declared. Finally, the command to write the result back to the memory is added.

The DO_LOOP_B function meanwhile, writes the read commands to load the bias and neuron state
from the memory. The structure is very similar to Listing 4.7’s DO_LOOP. The register to store the vari-
ables to be read and the space to store the addresses are declared. Subsequently, the commands to
read are written into the space reserved by KERNEL_SENECA_B. last_miram_2ndHalf_addr_used is
updated to take into account the instructions written by KERNEL_SENECA_B. Finally, the loop config-
uration is written, with the first instruction being 0x14 (start of the instructions of the bias and activation
set), the last instruction being stored by last_miram_2ndHalf_addr_used, and the repetition number
being 1.

Listing 4.8: Source code of bias and activation instruction set

void KERNEL_SENECA_B()

{
last_miram_1stHalf_addr_used = 0x4;
last_miram_2ndHalf_addr_used = 0x13;
uint32_t zero_reg = Ou;
uintl6_t ev_val_BF = 0;
write_to_regfile(zero_reg, ev_val_BF);

uint32_t temp_reg = zero_reg + 1;
uint32_t temp_adr_addr_ptr = ++last_miram_1stHalf_addr_used;

4.3. Implementation on SENeCA 55

13 ++last_miram_2ndHalf_addr_used;

14

15 uint32_t bias_reg = temp_reg + 1;

16 uint32_t bias_adr_addr_ptr = ++last_miram_1stHalf_addr_used;

17 ++last_miram_2ndHalf_addr_used;

18

19 uint32_t add_res_reg = bias_reg + 1;

20 append_to_miram_command (ADD, bias_reg, temp_reg, add_res_reg);

21 uint32_t comp_res_reg = add_res_reg + 1;

22 append_to_miram_command (GTH, add_res_reg, zero_reg, comp_res_reg);

23 uint32_t mul_res_reg = comp_res_reg + 1;

24 append_to_miram_command (MUL, add_res_reg, comp_res_reg, mul_res_reg);
25 append_to_miram_write_reg_to_mem(bias_adr_addr_ptr, mul_res_reg, 0xOlu);
26 }

28 void DO_LOOP_B(void * beginning_of_biasesV, void* beginning_of_statesV)

29 {

30 last_miram_1stHalf_addr_used = 0x4;

31 last_miram_2ndHalf_addr_used = 0x13;

32

33 uint32_t zero_reg = Ou;

34 uint32_t temp_reg = zero_reg + 1;

35 uint32_t temp_adr_addr_ptr = ++last_miram_1stHalf_addr_used;

36 append_to_miram_read_from_mem_to_reg(temp_adr_addr_ptr, beginning_ of_biasesV, temp_reg, O
x01u) ;

37

38 uint32_t bias_reg = temp_reg + 1;

39 uint32_t bias_adr_addr_ptr = ++last_miram_1stHalf_addr_used;

40 append_to_miram_read_from_mem_to_reg(bias_adr_addr_ptr, beginning_of_statesV, bias_reg, O
x00u) ;

41

42 last_miram_2ndHalf_addr_used += 4u;

43 uint32_t loopcfg = LOOP_CONFIG_INST(lu, last_miram_2ndHalf_addr_used, 0x13+0x01u);

44 WriteLoopConfig(loopcfg);

45

46 WFIQ);

47

48 }

Transmission Loop
This version’s handler of the transmission loop is identical to Listing 4.4, hence here it is omitted for
brevity’s sake.

Methodology and Preliminary Results

After the architecture and implementation of the benchmarking software have been explained in Chap-
ter 4, in this chapter the methodology to obtain the performance indicators of SENeCA will be dis-
cussed. Furthermore, the first two versions of the benchmarking software were also described. The
results obtained by applying the methodology with the aforementioned versions of the software will also
be presented. As these results do not properly show the capabilities of SENeCA, since most of the
accelerators were not used, they are not meant to be taken as final, definitive results. Instead, they
should be taken as baseline results and as a way of understanding the methodology more clearly. Fur-
thermore, a section will explain a test to estimate the power consumption of individual NPE operations
listed in Chapter 3, providing a basis for the estimation of the power consumption of programs prior to
implementation.

56

5.1. Experiment Setup and Flow 57

5.1. Experiment Setup and Flow

This section will explain the setup used for this experiment. Unless otherwise stated, this setup will
be used throughout all of the experiments run here. As mentioned previously, SENeCA does not yet
exist as a physical chip, so all of the experiments were performed on simulators. The simulation runs
on the Cadence® Xcelium Logic Simulator, a high-performance simulation platform for HDL-based IP
and SoC verification. The power consumption analysis is performed by Cadence® Joules. This fast
power estimation software delivers time-based RTL power analysis along with system-level runtimes
and capacity, while still providing accurate estimations of wires and gates. The accuracy level is within
15% of signoff power. The synthesis of the SENeCA RTL is performed using the Cadence® Genus
software. Meanwhile, the compilation of the C source file of the benchmarking program is done by
GCC, with RISC-V configured as its target. An overview of the main software used in this research is
listed in Table 5.1.

Table 5.1: An overview of the software used in this study.

Sofware | Version | Function

Joules 20.11 Performs power consumption analysis
Xcelium | 18.03 Simulates RTL and C program

Genus 19.11 Synthesizes RTL design

GCC 4.8.5 Compiles C code

Figure 5.1: SENeCA instantiation for this study.

Meanwhile, the hardware configuration is depicted in Figure 5.1. The testbench sends the initial input
values to NCC 1, which is handling layer 1. It performs the calculations, then sends the results via its
AMI to NCC 2, etc. As mentioned, each core handles the data and calculations of 1 layer, but since
there are 4 cores, the final core is not used and merely relays the outputs of core 3 to the testbench
(bypass mode). The testbench then prints the values on the computer screen, and the results can be

5.1. Experiment Setup and Flow 58

verified. Each core is configured to be able to send only directly to the next core and receive only from
the previous core.

With the above software, experiments are done with the flow shown in the figures below.

Benchmarking
source sode

(€)

SENeCA
APIs (C)

RISC-V (RV32 IMC)
compiler (GCC)

Neural
network
input data
(txt)

Memory
Initialization
File (Hex)

SENeCA
HDL (HDL)

SENeCA
testbench
(HDL)

Switching
Cadence Xcelium activity file
(SHM)

Figure 5.2: Experiment flow for performance measurements.

Figure 5.2 shows the flow used to perform the simulation and the performance measurements. First,
the source code for the benchmarking program is written in C, with the help of existing SENeCA APlIs.
They are then compiled using a GCC-based compiler for RISC-V processors, producing the memory
initialization files. A testbench file is used to instantiate the SENeCA chip as the DUT, and it will also
load the memory initialization files afterwards to SENeCA’'s RAM. After loading them, the testbench will
also take in a file that contains the input values of the neural network and send them to SENeCA as
input. Then, the simulator, Xcelium, takes in all the required files and runs the simulation. As it runs,
it outputs a switching activity file in SHM format. SHM is a proprietary format of Cadence®, used to
store simulation waveforms. To be clear, the contribution of this thesis is limited to the source code for
benchmarking (in C) and the testbench, while the other software and source files were made available
by IMEC.

The flow of the experiment to perform the analysis of power consumption and obtain the estimates is
depicted in Figure 5.3. As this flow uses the results of the flow depicted in Figure 5.2, this flow is always
carried out after the simulation is completed. The main software used in this flow is Joules, the power
estimation software. It reads the switching activity file obtained earlier, as well as the SENeCA HDL. To
obtain the power measurement numbers, synthesis of the SENeCA HDL needs to be performed. This
is done by Genus, which is called automatically from within the Joules software. However, to do this,
it needs the technology library. The technology node used here is the GF22-FDX of Global Foundries.
After obtaining the netlist, Joules will perform the power estimation, whose results are average power
estimations in the form of text reports and a graph showing the power consumption over time. This
graph is in the SHM format, similar to the output of the previous flow.

5.1. Experiment Setup and Flow

59

Technology Switching
library activity
(GF22-FDX) file (shm)

SENeCA
HDL
(HDL)

Temporal
power
consumption
graph (SHM)

Average
power
report (rpt)

Netlist,
including
area and

leakage info

Figure 5.3: Experiment flow for power consumption measurements.

As mentioned above, SENeCA is meant to be a configurable and scalable design. The configurations
of the SENeCA instance used as a target in this benchmarking process are summarized in Table 5.2.

Table 5.2: Parameters of the SENeCA instance used.

Parameter Value
Number of NPEs per NCP 8
Number of NCCs (cores) 4 (1 in bypass mode)
Clock 100 MHz
RAM size 256 x 32 Kbit blocks
Opcode width 5
Number of registers in NPE 16
Number of registers in Loop buffer 32
EVC buffer size 128

Figure 5.4 shows the distribution of the chip area for a single NCC core using the parameters above.

Area Distribution (NCC)

Figure 5.4: Breakdown of .

m Neuron Co-processor

m lbex Core + Peripherals

m Others

Axon Mesagng Interface +
Peripherak

5.2. Execution Time Measurements 60

5.2. Execution Time Measurements

To measure the time it takes for SENeCA to execute the neural network described in Chapter 4, a sim-
ulation is run using the SENeCA RTL together with the compiled benchmarking program. A testbench
file written in SystemVerilog is used, which configures the SENeCA chip to run the neural network
by uploading the compiled binary files of the benchmarking program to each of the core’s RAM. The
simulation is then run. In the study on which this benchmark is based, the audio files span several sec-
onds[14]. Initially, the simulations will be run with only one frame as input (corresponding to 10ms of
audio). Communication with the user is allowed by configuring SENeCA to print text messages on the
screen. Xcelium also shows a timestamp (in simulation time) of the print statements, allowing the user
to know with reasonable accuracy when a specific part of the computation has been done by placing
the print statements after the said part has been completed in the code.

shidqi9 & @uxapplOnl/imec/other/lenavl/shidqi9&/lenavl/cfg/data/software/riscv_mpl/pro... - o x

File Edit View 5Search Terminal Help

Loaded file "/imec/other/lenavl/shidgiS8/lenavl/cfg/data/software/riscv_mpl/project
s/power_benchmarkOutput/riscv3Z-unknown-elf-bin/power _benchmarkOutput.sram" into me
mory (Q00600000)

Loaded file "/imec/other/lenavl/shidgiS8/lenavl/cfg/data/software/riscv_mpl/project
s/axon_test/riscv3Z-unknown-elf-bin/axon_test.sram" into memcry (0080Q000)

660.09 us th_log NCC_3 : AXON test

663.12 us th_log NCC_2 : MNeuron CoPro test, layer 3
664.77 us th lTog NCC_©® : MNeuron CoPro test, layer 1
665.35 us th lTog NCC_ 1 : MNeurcn CoPro test, layer 2
829.31 us th log NCC_© : Input Stream Finished
832.14 us th log NCC @ : Running the loop!

3022.42 us th_log NCC_@ : Loop done, begin sending!
3025.60 us th_log NCC_1 : Skipping 24

3047.17 us th Tog NCC 1 : Input Stream Finished
3047.75 us th lTog NCC_ 1 : Running the loop!

3599.98 us th log NCC_1 : Loop done, begin sending!
3604.47 us th_log NCC_2 : Input Stream Finished
3605.07 us th_log NCC_Z : Running the loop!

3623.50 us th_log NCC_Z : Done!

3624.08 us th_log NCC_2 : states bf: 0: =+7.39063
3627 .53 us th_ log NCC_2 : states bf: 1: =+0.1075
3630.94 us th_ log NCC_2 : states bf: 2: =+0.0058
3633.90 us th_log NCC_2 : states bf: 3: =+0.0
3635.68 us th_log NCC_2 : states bf: 4: =+0.0
3637.46 us th_log NCC_2 : states bf: 5: =+0.0
3639.24 us th log NCC 2 : states bf: 6: =+0.0
3641.02 us th log NCC_2 : states bf: 7: =+0.0
3642.80 us th log NCC_2 : states bf: 8: =+0.0

3644 .58 us th_log NCC_2 : states bf: 9: =+0.0
3646.36 us th_log NCC_2 : states bf: 10: =+0.0
3648.41 us th_log NCC_2Z : states bf: 11: =+0.0
3650.46 us th lTog NCC 2 : states bf: 12: =+0.0
3652.51 us th log NCC 2 : states bf: 13: =+0.0
3654.56 us th log NCC 2 : states bf: 14: =+0.0
3656.61 us th_log NCC_2Z : states bf: 15: =+0.0
3658.66 us th_log NCC_2 : states bf: 16: =+0.0
3660.71 us th log NCC 2 : states bf: 17: =+0.0
3662.76 us th lTog NCC 2 : states bf: 18: =+0.0
3664 .81 us th log NCC_2 : states bf: 19: =+0.0

Figure 5.5: Example of a simulation run. The timestamps are displayed on the left, while the text messages indicate a specific
task completed.

5.3. Power Measurements 61

An example run is shown in Figure 5.5. These are basically messages printed by the SENeCA while
it is running the neural network program. At the top, it can be seen that the first message, which is
printed out at the start of the main function, is printed at around 660 us. This is because the simulation
time takes into account the time it takes for the testbench program to load the compiled binary files into
the RAM of the SENeCA cores. This time is quite long because of the size of the weights and biases,
and the fact that the uploading to the memory cannot occur in parallel. However, since this time is
not part of the actual computation time, it will be omitted and will not count towards the execution time.
Therefore, the computation is considered to begin with the first message from one of the cores, since
the print statement is put first before any other commands.

As explained in Chapter 4, there are 3 layers of neurons and the computations of each layer are ex-
ecuted by a separate core. The testbench software is written so that when a message is printed, the
source core of that message can be identified. In Figure 5.5, the sender can be identified by the name
NCC_X, where X is a number from 0 to 3. In this implementation, NCC 0 executes layer 1, NCC 1
executes layer 2, while NCC 2 executes the output layer. NCC 3 is not involved in the calculations.
Also explained in Chapter 4 is that neural network operations can be divided into two major parts, the
sending of the data between cores and the calculations taking place in the cores themselves. Using
the timestamps of the printed statements, such as those in Figure 5.5, the transmission time and the
execution time for each core can be determined. For example, it can be seen that at the 832.14 us
timestamp, NCC 0 starts to execute the calculations of layer 1, and at 3022.42 us, it can be seen that
NCC 0 has finished the calculations. By subtracting these times, the processing time of the calculations
of layer 1 can be determined.

Since there are 3 layers involved in the benchmarking program, the total execution time will be divided
into 3 parts, one for each layer. Furthermore, to know in more detail how SENeCA spends the execution
time, each layer will also be divided into two: the time it takes to receive the input values from the
previous layer and the time it takes to actually process the data. In this way, bottlenecks that slow the
process can be identified and optimized. In summary, there will be 3 timespans measured for the neural
network operations (henceforth known as Loop 1, Loop 2, and Loop 3) and 3 timespans measured for
the sending/receiving between cores (henceforth known as Sending 1, Sending 2, and Sending 3).
Therefore, the milestones at which the printed statements would be placed are the starts and ends of
the six parts. Since the end of one part happens at the same time as the start of the next, in total there
would be 7 points to be measured.

5.3. Power Measurements

As SENeCA is still in the development stage without any finished physical chips, power measurements
are also made in the simulation. Joules allows power estimations to be done in 2 modes, average and
time-based.

5.3. Power Measurements 62

5.3.1. Average Power Estimation

Table 5.3: An example of an average power report generated by Cadence Joules®. All power values are denoted in Watts.

Instance Cells Pct cells | Leakage | Internal Switching | Total Lvl
SENeCA Top Level | 483404 | 100.00% | 1.12E-02 | 3.78E-02 | 1.03E-03 | 5.00E-02 | O
Core 1 120920 | 25.01% | 2.80E-03 | 9.79E-03 | 3.70E-04 | 1.30E-02 | 1
NCP core 1 70219 | 14.53% | 2.78E-03 | 8.86E-03 | 1.85E-04 | 1.18E-02 | 2
Instruction RAM 6 0.00% 3.61E-06 | 5.62E-04 | 4.15E-07 | 5.66E-04 | 2
Ibex Core 33199 | 6.87% 5.37E-06 | 2.66E-04 | 1.65E-04 | 4.37E-04 | 2
AMInterface 9750 2.02% 2.26E-06 | 4.89E-05 | 4.83E-08 | 5.12E-05 | 2
Mux/Arbiter 4413 0.91% 6.39E-07 | 1.70E-05 | 1.20E-05 | 2.96E-05 | 2
IRAM Adapter 448 0.09% 1.00E-07 | 1.21E-05 | 6.94E-06 | 1.92E-05 | 2
SMPU 1619 0.33% 3.40E-07 | 1.41E-05 | 7.42E-07 | 1.52E-05 | 2
RV Timer 1240 0.26% 1.82E-07 | 6.22E-06 | 0.00E+00 | 6.40E-06 | 2
NCC Configuration | 18 0.00% 3.88E-09 | 7.46E-07 | 0.00E+00 | 7.50E-07 | 2
Debugger 7 0.00% 6.50E-10 | 1.13E-09 | 6.99E-09 | 8.77E-09 | 2

Average power estimation, as its name suggests, calculates the average power for a specific timeframe.
It needs a stimulus file to know what happens in a specific part of the circuit at what time, which is
obtained from the simulation done in the execution time measurement process. By adjusting which
parts of the stimulus file are read by Joules, the timeframe that will be analyzed can be adjusted so that
it covers only the relevant parts of the simulation, i.e. the sending/receiving of data between the cores
and the execution of the neural network operations. In other words, unnecessary parts, such as the
initial loading of data into the memory, are omitted. An example of a report produced by the average
power estimation can be seen in Table 5.3. This specific report covers four cores, with one core being
expanded to include its parts (NCC 0). The cells and pct_cells columns show the size of a specific part.
The leakage, internal, switching columns indicate the power consumption of that part. Leakage power,
also known as static power, is the power loss due to leakage currents. The internal power is the power
consumed by the charging and discharging of the internal and gate capacitances. Switching power,
meanwhile, is the power lost due to the instantaneous short-circuit connection during the switching of
transistors. The combined internal power and switching power make up what is known as dynamic
power.

5.3.2. Time-based Power Estimation

Time-based power estimation produces a power versus time graph to allow a more detailed analysis of
power consumption. It can be particularly useful if peak power consumption or how power consumption
varies over time is important. An example graph is shown in Figure 5.6. Each graph in that figure
represents the power consumption of a specific NCP core, and the names of the cores are indicated on
the left-hand side. The actual execution of the program starts at around the 2400 us mark, with the time
before that being the initialization and loading of data to the memory. The power consumption patterns
of the three cores show the three cores working one after the other in a sequential fashion. This allows
the peak power consumption during execution to be determined. Furthermore, it also allows one to
calculate the difference in power consumption between the execution time and the idle time. Similarly
to the report produced by the average power estimation, graphs representing the leakage, internal, and
switching power can also be shown.

5.4. Results for Version 1 : RISC-V Implementation 63

= ami_rcv_msg_i[31:0]
8 npe_busy
& instr_req

-8 total_power

-8 total_power

Figure 5.6: Example of a graph produced by time-based power estimation.

To obtain a deeper and more thorough analysis, both methods are used. The average mode allows us
to obtain precise values, which are used in the end to compare SENeCA with other platforms discussed
in [14]. The numbers can also be used to calculate how much power is consumed by a specific part
as a percentage of the total power. However, the time-based mode is useful for obtaining peak power
data and for determining how power is consumed over time. This method is also useful to determine
the power consumption in the idle state. One might think that the power consumed in the idle state is
simply the leakage power, but since switching activities still occur even in the idle state, this is most
likely not the case.

5.4. Results for Version 1 : RISC-V Implementation

The methodology explained above will be applied to version 1 of the benchmarking program, which
is the version in which the RISC-V core executes all neural network operations without the help of
the NPEs or other components (as explained in Chapter 4). First, we will explore the execution time
measurements, then we will explore the power measurement results.

5.4.1. Execution Time Measurements

As mentioned previously in this chapter, a simulation by Xcelium® is used to simulate SENeCA running
the benchmark software. The print statements in the code would cause the text to be printed on the
terminal used to run the simulation. At specific points in the program, the print statements are placed to
mark a certain milestone being reached. The timestamps at which these print statements are executed
will be used to calculate the execution time.

5.4. Results for Version 1 : RISC-V Implementation 64

shidqi9 8 @uxapplOnl:/imec/other/lenavl/shidqi®&/lenavl/cfg/data/software/riscv_mpl/p... - a x

File Edit View Search Terminal Help

]

404106.75 us tbh log NCC 2 : Processing data number 00GGG0Td, which is : +0.
]

404163.40 us th log NCC_ 2 : Processing data number 08@G00Te, which is : +0.
C

404220.10 us th_log NCC_2 : Processing data number 0BEEEOTT, which is : +0.
a

404313.50 us th lTog NCC_ 2 : Posting Results!Result 00GGG000 is: +7.3559
404327 .40 us th_log NCC_2Z : Result Q00000CL1 is: +0.0

404333.47 us th log NCC 2 : Result Q0000002 is: +0.0

404339.54 us th_log NCC_2Z : Result Q0000003 is: +0.0

404345.61 us th_log NCC_2Z : Result Q00G00E4 is: +0.0

404351 .68 us th log NCC 2 : Result Q0000005 is: +0.0

404357.75 us th_log NCC_2Z : Result Q0000006 is: +0.0

404363.82 us th_log NCC_2Z : Result Q00GEGE7 is: +0.0

404369.89 us th log NCC 2 : Result QO0G00E8 is: +0.0

404375.96 us th_log NCC_2Z : Result Q0000009 is: +0.0

404382.03 us th_log NCC_2Z : Result Q000000a is: +0.0

404388.09 us th log NCC 2 : Result G000000b is: +0.0

404394.15 us th_log NCC_2 : Result 0000000c is: +0.0

404400.21 us th log NCC 2 : Result Q000000 is: +0.0

404406.27 us th log NCC 2 : Result 0000000e is: +0.0

404412.33 us th_log NCC_2Z : Result Q0000GGT is: +0.0

404418.39 us th log NCC 2 : Result Q00GE0LE is: +0.0

404424 .46 us th_log NCC_2 : Result Q0GG0GL1 is: +0.0

404430.53 us th_log NCC_2Z : Result Q0000012 is: +0.0

404436.60 us th log NCC 2 : Result Q0000013 is: +0.0

404442 .67 us th_Tlog NCC_2Z : Result Q0000014 is: +0.0

404448.74 us th_log NCC_2Z : Result 00000015 is: +0.0

Figure 5.7: Output messages obtained from SENeCA while running the simulation with version 1.

Figure 5.7 shows the last part of the terminal that runs the simulation. Since the simulation takes a
very long time for version 1, not all parts of the simulation can be shown here. However, by taking the
timestamps from the terminal and subtracting the timestamps of adjacent milestones from each other,
the execution times for the six parts of the benchmarking program mentioned in the methodology section
above can be calculated. The results are shown in Table 5.4. The Timestamps column shows the seven
milestones that are measured and their respective timestamps. The Execution Time column shows the
execution times of the 6 parts mentioned previously, calculated from the timestamps measured. The
total execution time for the Loop (neural network operations) and Sending parts are also calculated,
placed under each respective column. Finally, the grand total is calculated, which represents the total
time of inference for one frame.

Table 5.4: Execution time measurements for version 1. All times are in microseconds (us).

Sequential

Timestamps Execution Time
1467 | Start Loop 1 | 18620 | Sending 1 | 38524
39991 | Input stream 1 finished | Loop 2 | 28557 | Sending 2 | 1621
58611 | Loop 1 finished Loop 3 | 2617 | Sending 3 | 1419
60232 | Input stream 2 finished | Total 49794 | Total 41564
88789 | Loop 2 finished Grand total 91358
90208 | Input stream 3 finished
92825 | Loop 3 finished

5.4. Results for Version 1 : RISC-V Implementation 65

From the table, some things are clear. First, the grand total, which represents the time it takes for one
inference, is around 0.37s, which is far too great to process the frames in real time (which requires at
least one inference per 10ms). Furthermore, since layer 1 receives the input vector with no zero values,
it takes the majority of the execution time, around 66%. However, keep in mind that this version uses
floating point (fp32) variables, while the next versions all use brainfloat (bf16).

=] Baselinev=0
PF| Cursor-Baseline » = 92,825us

Mame
e ami_rcv_msg_i[31:0]
npe_busy
- instr_req

il

-
i ami_rcv_msg_i[31:0]
npe_busy
instr_req

Figure 5.8: Waveforms of the signals produced by SENeCA when simulated using version 1 of the benchmark.

Figure 5.8 shows the simulated waveforms of SENeCA while running version 1 of the benchmark. The
column on the left shows the signal names, divided into 3 colors. These colors represent the cores to
which the signals belong (orange for core 1, turquoise for core 2, and purple for core 3). The signals
here are chosen to represent a specific part of SENeCA that is active. The signal instr_req comes from
the RISC-V core and is switching if it requests instructions, signalling that it is active. Ami_rcv_msg
signals that the axon messaging interface is active, showing that the core is receiving messages from
the previous core. Npe_busy signals that the NPEs are being utilized. Note that all of the npe_busy
signals stay 0, since none of the NPEs are used.

5.4.2. Power Measurements

= Baselnew =0
| Cursor-Baseline ~ - 9282505

Name &~ [Cursor [10,000us s 300,000us

=-9d ami_rcv_msg_i[31:0] RO el 2 LN 10110000 A G g g g
& npe_busy
& instr_req
-
-

a4 ami_rcv_msg_i[31:0]
& npe_busy
& instr_req

& total_power

-+ total_power

Figure 5.9: Time-based power graph of version 2 together with several signals.

5.4. Results for Version 1 : RISC-V Implementation 66

After performing the time-based power estimation, the graph showing the power consumption of the
cores (the three lowest signals) was added to the previous simulation waveform, forming the graph
shown in Figure 5.9. The green graph shows the power consumption of core 1, the turquoise graph
shows that of core 2, and the dark blue graph shows the power consumption of core 3. Also, this
graph has several cursors, placed at the moments when one core starts/stops and the next one takes
over. The cursor labeled TimeA, for example, is placed at the time when core 1 stops execution after
calculating the last neuron value, and core 2 begins to receive the datastream. While the power graphs
provide some insight into how the power consumption of the cores reflect their activity, such as the
power graph of core 1 peaking when it is active and drops around the time core 2 begins execution
(marked by the cursor labeled TimeA), it is difficult to obtain precise numbers to calculate the total
energy. As previously explained, this is where the average power estimation comes into play.

The average power estimation can be done over the entire time period that SENeCA is active. However,
to obtain a more detailed picture of the power consumption of the cores, we decided to divide the period
into three parts, each corresponding to a core. The time between cursors "Baseline” and "TimeA”, is
the time during which core 1 is active, henceforth referred to as Active 1. Between cursors "TimeA”
and "TimeB”, core 2 is active, and that time will be referred to as Active 2. The active time of core 3,
meanwhile, is the time between cursors "TimeB” and "TimeC”. It will be referred to as Active 3. Average
mode power analysis will be done on these separate parts.

Table 5.5: Average power consumption of version 1, during the active time of core 1 (Active 1). All power values are in Watts.

Instance Pct_cells | Leakage | Internal Switching | Total

u_seneca_ncc_0 | 25.00% | 2.80E-03 | 3.74E-02 | 3.44E-03 | 4.37E-02
u_seneca_ncc_2 | 25.00% 2.80E-03 | 5.11E-03 | 1.22E-04 | 8.03E-03
u_seneca_ncc_1 | 25.00% | 2.80E-03 | 5.11E-03 | 1.22E-04 | 8.03E-03

Table 5.6: Average power consumption of version 1, during the active time of core 2 (Active 2). All power values are in Watts.

Instance Pct_cells | Leakage | Internal Switching | Total

u_seneca_ncc_1 | 25.00% | 2.80E-03 | 3.72E-02 | 3.23E-03 | 4.33E-02
u_seneca_ncc_0 | 25.00% 2.80E-03 | 5.11E-03 | 1.22E-04 | 8.03E-03
u_seneca_ncc_2 | 25.00% | 2.80E-03 | 5.11E-03 | 1.22E-04 | 8.03E-03

Table 5.7: Average power consumption of version 1, during the active time of core 3 (Active 3). All power values are in Watts.

Instance Pct_cells | Leakage | Internal Switching | Total

u_seneca _ncc 2 | 25.00% 2.80E-03 | 3.73E-02 | 3.23E-03 | 4.33E-02
u_seneca_ncc_1 | 25.00% | 2.80E-03 | 5.11E-03 | 1.22E-04 | 8.03E-03
u_seneca _ncc 0 | 25.00% 2.80E-03 | 5.11E-03 | 1.22E-04 | 8.03E-03

Tables 5.5, 5.6, 5.7 show the results of the average power estimation. Estimating the average power
allows us to predict the power consumption of all components of SENeCA during a specific timeframe
of the simulation. To know the power consumption values for each core when they are active and idle,
the simulation is divided into 3 timeframes. One timeframe represents the time at which one specific
core is active.

To obtain a more definitive number that represents the performance of SENeCA, the power consumption
values and execution times will be used to calculate the energy consumed per inference. The total
energy is obtained by the following equation:

Wiotat = Wit + Wia + Wiz = Py + PioTio + PpoTyo (5.1)

P, x refers to the average power consumption during the time period of Active X, where X is 1, 2, or
3. These numbers are obtained by summing up the "Total” column in Tables 5.9, 5.10, and 5.11. The

5.5. Results for Version 2 : Baseline NPE Implementation 67

same applies to T} x, except that it refers to the duration of that period of time. The duration is obtained
by adding the times shown in Table 5.8, for example, the total time of Active 1 is Loop 1 plus Sending
1. By using these numbers to calculate the total energy, we get the number of 22.11 mJ.

5.5. Results for Version 2 : Baseline NPE Implementation

Version 2, as mentioned previously, is the version that uses the NPEs in the most basic way. This will
be used as a baseline and the results obtained from running this version will be analyzed to determine
the methods in which optimization is possible, with regard to both timing and power.

5.5.1. Execution Time Measurements

As mentioned above, print statements placed in the source code allow us to observe when a certain part
of the program has been completed. In this version, since the simulation takes less time compared to
version1, all the printed statements of the simulation can be shown. Figure 5.10 shows the screenshot
of the simulation.

shidqi9® 8 @uxapplOnlfimec/other/lenav1/shidqi®8/lenavl/cfg/data/software/riscv_mpl/projects/axon-test (on uxappl... - o x

File Edit View Search Terminal Help

Open failed on file "tb_log.ini". No such file or directory

Loaded file "/imec/other/lenavl/shidqi98/lenavl/cfg/data/software/riscv_mpl/projects/power _benchmark/ri
scv3Z-unknown-elf-bin/power_benchmark.sram" into memory (G0Z200000)

Loaded file "/imec/other/lenavl/shidqi98/lenavl/cfg/data/software/riscv_mpl/projects/power _benchmarklL2/
riscv3Z-unknown-elf-bin/power_benchmarkLZ.sram" into memory (00400000)

Loaded file "/imec/other/lenavl/shidqi98/lenavl/cfg/data/software/riscv_mpl/projects/power benchmarkOut
put/riscw3Z-unknown-elf-bin/power_benchmarkOutput.sram" into memory (BOEGGOEG)

Loaded file "app.sram" into memory (Q0BO0EE0)

2345.23 us th_log NCC_3 : AXON test

2346.06 us th_log NCC_2 : Neuron CoPro test, Output layer
2350.55 us tbh_log NCC_1 : MNeuron CoPro test, layer 2

2355.67 us th_log NCC_@ : Neuron CoPro test, layer 1

2896.48 us th_log NCC_@ : Input stream finished, running loop!

19577.99 us L <L o 0

et g e a g e ag ey T T T T

P
|
e [eTal=Y

19742 .44 us tb_log NCC_G : Done!
19871.17 us th_Tlog NCC_1 : Input stream finished, running loop!
24108.87 us tbh_log NCC_1 : Done!

24109.77 us th Tog NCC_1 @ L, ., i, i, i, i i, i, i, i, i, e, t, i, b, e, bttt e,

et e r e e h ety T T

e T T T N R N T T T T Y

P
. - . - .o . s iesiesie,iey ., :Done!Done!

24402 .68 us th_log NCC_2 : Input finished, starting loop
24608.01 us th_log NCC_2 : states bf: 0: =+5.1563
24621.44 us th_log NCC_2 : states bf: 1: =+0.0

Figure 5.10: Output messages obtained from SENeCA while running the simulation with version 2.

By extracting the timestamps that correspond to a certain milestone being reached, the execution time
of each of the parts, as well as the total execution time, can be calculated, similar to what we did for
version 1. Table 5.8 shows the result of these calculations.

5.5. Results for Version 2 : Baseline NPE Implementation 68

Table 5.8: Execution time measurements for version 2. All times are in microseconds (us).

Version 2

Timestamps Execution Time
2355 | Start Loop 1 | 16681 | Sending 1 | 541
2896 Input stream 1 finished | Loop 2 | 4238 | Sending 2 | 294
19577 | Loop 1 finished Loop 3 | 206 Sending 3 | 293
19871 | Input stream 2 finished | Total 21125 | Total 1128
24109 | Loop 2 finished Grand total 22253
24402 | Input stream 3 finished
24608 | Loop 3 finished

Observing Table 5.8, a few things are clear. First, since the total time required to process one is 22253
us, oraround 22 ms, this version is still not fast enough to process frames in real time. Since the frames
represent 10 ms of audio, the processing time must also be less than 10 ms. Furthermore, by looking
at the execution times of the individual parts, it is also clear that the time required to perform the neural
network calculations is much larger than the sending time. Finally, Loop 1, the execution time of neural
network operations that take place in layer 1, takes up the vast majority of the total time. Therefore, it
is quite clear that optimizations are required, and a prime target is the source code that executes the
neural network operations, with the most significant improvement expected in Loop 1.

However, this version is still a significant improvement from version 1 that did not use the NPEs at all.
To be precise, the speedup is around 16 times. Theoretically, since the NPEs process 8 data values
at once, the speedup should be limited to 8 times, but since version 1 uses the fp32 number format
while version 2 uses bf16 numbers to comply with the NPE requirements, further speedup was made
possible at the cost of precision. Other factors that could explain this extra speedup is that the RISC-V
processor does not natively support the fp32 number format, so an external library had to be used.

5.5.2. Power Measurements

To measure the power consumption of Version 2, a time-based power analysis was performed. The
resulting graph is shown in Figure 5.11. On the left-hand side are the names of the signals, color-
coded by their cores. Orange stands for core 0, purple for core 1, and turquoise for core 2. These color
codes will be used throughout this document. The three signals are active during a specific part of the
program. The signal named ami_rcv_msg_i is active during the receiving period by the corresponding
core, npe_busy is active during the neural network operations, while instr_req is the signal emitted
by the RISC-V processor of that core, indicating that it is active when the signal fluctuates. The four
cursors are placed at the starts and ends of each core’s active time.

@ Easelnew-0
EF|Cursor-Baselinew=24,94505

Nar

4 ami_rcv_msg_i[31:0]
& npe_busy
8 instr_req

-l
-
£

2 ami_rcv_msg_i[31:0] Joocd

& npe_busy
& instr_req

-8 total_power

+& total_power

Figure 5.11: Time-based power graph of version 2 together with several signals.

5.5. Results for Version 2 : Baseline NPE Implementation 69

Meanwhile, the three bottom graphs are the power estimation generated by Joules®. The labels on
the left-hand side are color-coded to indicate the core. These power consumption graphs indicate the
total power consumed by the three cores that are being used. As expected, the cores consume the
most power during the times they are active, which corresponds to the sections marked by the cursors
in Figure 5.11.

The three measured cores are identical, and they also run similar programs, differing only in the size of
the neural network layer. This also makes the power consumption more or less identical. During active
time, the power consumption is about 4.8 mW, while during idle time it decreases to around 4 mW. To
determine which components of SENeCA are the most power hungry, a more detailed observation can
be made by looking at Figure 5.12.

@ +_0.u_axon_msg_ifc.total_power
& ¢_0.u_neuron_copro.total_power
& +_0.u_seneca_core_sp2.total_power J0.
& smemory_ins. DMEM_inst total_powerj0 .

= «NPE_accelerators_inst.total_power [0.

@ «am.u_inst_ram_FDX22 .tetal_power 0.

Figure 5.12: Time-based power graph of version 2, broken down into components.

Figure 5.12 shows a more detailed version of the time-based power graph of core 0, with the different
parts also being shown. Some parts are omitted, and the ones shown here are the ones that consume
the most power. The cursor labeled "TimeB” is placed in the middle of the execution time of Layer
1. On the left-hand side, the column labeled "Cursor”’ shows the instantaneous power consumed at
the time of TimeB. Although power consumption varies slightly over time, the numbers here serve
as a useful rough estimate. The uppermost graph is the total power consumed by core 0, the two
bottommost graphs are components of u_neuron_copro (the graph right above them), while the others
are components of core 0. From this graph we can infer that the most power-hungry components are
the instruction memory (2nd from the top) and u_neuron_copro. The latter component is then divided,
since it contains both the NPE and the data memory. By breaking down u_neuron_copro, we can see
that the NPEs do not consume much power, and the lion’s share of the power is consumed by the
data memory. These results are in line with the explanation in Chapter 1, that the memory is the most
power-hungry component in computers in general. Therefore, to optimize the software with regard to
power consumption, the number of commands that access the memory must be minimized.

In order to obtain more precise numbers, the average mode power estimation of Joules® was performed
on the three time periods, Active 1, Active 2, and Active 3. In this way, we will obtain more detailed
power consumption data, including dynamic and static power. Also, by performing it on the 3 time
periods, the average power consumed by a core when it is active and idle can be known. The results
of this estimation are presented in Tables 5.9, 5.10, and 5.11. From the tables it can be inferred that
the average power during active time is 4.5 to 4.8 mW, while during idle time it decreases to around
4.0 mW, similar to our conclusions of the time-based power estimation.

5.6. Power Estimation of Basic NPE Operations

Table 5.9: Average power consumption of version 2, during the active time of core 1 (Active 1). All power values are in Watts.

Instance Pct_cells | Leakage | Internal Switching | Total

u_seneca_ncc_0 | 25.00% | 2.80E-03 | 5.30E-03 | 4.86E-04 | 8.59E-03
u_seneca _ncc_1 | 25.00% 2.80E-03 | 5.11E-03 | 1.22E-04 | 8.03E-03
u_seneca_ncc_2 | 25.00% | 2.80E-03 | 5.11E-03 | 1.22E-04 | 8.03E-03

Table 5.10: Average power consumption of version 2, during the active time of core 2 (Active 2). All power values are in Watts.

Instance Pct_cells | Leakage | Internal Switching | Total

u_seneca_ncc_1 | 25.00% | 2.80E-03 | 5.30E-03 | 4.86E-04 | 8.59E-03
u_seneca_ncc_0 | 25.00% 2.80E-03 | 5.11E-03 | 1.22E-04 | 8.03E-03
u_seneca_ncc_2 | 25.00% | 2.80E-03 | 5.11E-03 | 1.22E-04 | 8.03E-03

Table 5.11: Average power consumption of version 2, during the active time of core 3 (Active 3). All power values are in Watts.

Instance Pct_cells | Leakage | Internal Switching | Total

u_seneca_ncc_2 | 25.00% | 2.80E-03 | 5.30E-03 | 4.86E-04 | 8.59E-03
u_seneca_ncc_1 | 25.00% | 2.80E-03 | 5.11E-03 | 1.22E-04 | 8.03E-03
u_seneca _ncc 0 | 25.00% 2.80E-03 | 5.11E-03 | 1.22E-04 | 8.03E-03

Similarly to what we did in the previous section, we would like to know the energy consumption of
SENeCA running version 2 of the benchmark. By replacing all the variables in Equation 5.1 with the
numbers obtained from the tables, we get the total energy consumption of 0.548 mJ per inference.

5.6. Power Estimation of Basic NPE Operations

In this section, a different type of test will be performed. Instead of running a full application and mea-
suring the performance for the entire program, this test will have the NPEs perform basic operations
such as arithmetic operations, bitwise operations, and memory operations, and measure the energy
consumption of each operation. The data obtained from this experiment can then be used to estimate
the energy consumption of applications that will be run on SENeCA in the future even before imple-
mentation. Furthermore, future researchers can compare the performance and energy consumption of
their design with those of SENeCA using the data obtained from this experiment.

This experiment is performed on the same setup as explained above, but with the clock speed of
SENeCA set to 500 MHz. The NPEs are made to perform loops of different instructions one after the
other with slight delays between them to allow us to discern the change in power consumption when
executing an operation. Possible operations for NPEs are listed in Table 3.1. However, the power
consumption of a specific instruction can vary depending on the operands. For example, multiplying
a number by zero and a non-zero value can lead to differences in power consumption. Therefore, for
this experiment, a different list of operations will be used. They are listed in Table 5.12.

5.6. Power Estimation of Basic NPE Operations 71

Table 5.12: List of NPE operations whose energy consumption is to be measured.

No | Operation OpCode | Explanation

0 Baseline - Baseline power consumption (static power)

1 AMI Event AMI Interrupt indicating a message received by the AMI
2 Multiplication MUL Multiplication with changing operands

3 Multiplication (A*0) MUL Multiplication with one operand being zero

4 Addition ADD Addition with changing operands

5 Division DIV Division with changing operands

6 No Operation NOP No operation (Pipeline stall)

7 Greater than GTH Greater than operation with changing operands

8 Equal EQL Equal operation with changing operands

9 Maximum MAX Maximum operation with changing operands

10 | Absolute value ABS Absolute value operation with changing operands
11 | Bitwise AND AND Bitwise AND operation with changing operands

12 | Bitwise OR ORR Bitwise OR operation with changing operands

13 | Logical shift left SHL Left shift operation with changing operands

14 | Memory store MST Memory store operation with changing operands
15 | Memory load MLD Memory load operation with changing operands

16 | Event generation (NT) | EVC Event generation operation with the EVC not triggered
17 | Event generation EVC Event generation operation with the EVC triggered

As mentioned previously, all of the operations in the NPE require one clock cycle to be performed. With
the clock speed being set to 500 MHz, one instruction takes 2 ns to complete. For each instruction loop,
the instruction is repeated 64 times, meaning that each loop takes about 128 ns. Between these in-
struction loops, the RISC-V core takes over and spends some time to configure the instruction kernel
of the NPEs, during which the components other than the RISC-V become idle. This idle-active-idle
cycle gives us a good opportunity to estimate the energy consumption. Furthermore, in contrast to
the results presented for versions 1 and 2 above, in this experiment the power consumption of individ-
ual components of SENeCA will be analyzed, instead of individual cores (since this experiment only
uses one core). A screenshot of the power consumption of different SENeCA components running the
instructions listed in Table 5.12 is shown in Figure 5.13.

@ Baseinew=0
£ Cursor-Baselinev=29,589,413ps

Figure 5.13: Time based power consumption graph of individual NPE operations.

5.6. Power Estimation of Basic NPE Operations 72

In Figure 5.13 above, the screen is divided vertically into 2 parts. The upper part contains the power
consumption graphs for SENeCA’'s components, which can be identified by the labels on the leftmost
column. The lower part contains the signals that SENeCA produces during the simulation, which are
used to identify which instruction is being performed at a specific time. In the upper part, each vertical
blue line indicates one instruction loop performed by the NPEs (except the leftmost one, which is one
interrupt triggered by the AMI). There are 20 blue lines, each corresponding to an instruction listed in
Table 5.12. The order of the instruction loops performed is the same as that of the instructions listed in
the table.

To calculate the energy consumption of an NPE instruction, the power consumption must be multiplied
by the time it takes to execute the instruction. The waveforms shown in Figure 5.13 allow us to know
the instantaneous power consumption of a single component by simply placing the cursor on the time
at which the instruction is being performed. Ideally, integration can be done over the time of 2 ns (the
time it takes to complete one instruction), but since that is difficult to do manually, and approximation
is done instead. This approximation simply calculates the maximum power consumption in 1 loop by
2 ns, obtaining the energy. By doing this for all loops and some of the components shown in Figure
5.13, we obtain the energy values. These are presented in Table 5.13. Regarding the abbreviations
for the component names, PC stands for pipeline controller, EVC stands for event capture unit, DMEM
stands for data memory, and AMI stands for the Axon Messaging Interface. The table covers most of
the operations listed in Table 5.12. A dash (-) indicates that the energy consumption of the component
is the same as that of the baseline, that is, the component is switched off. For comparison, the energy
required for Loihi to perform one synaptic operation is 80 pJ [72].

Table 5.13: Energy consumption of NPE operations (calculated from the total power values). All values are expressed in
femtojoules (fJ).

No | Operation Code | NPE | LB | PC | EVC | DMEM | AMI RISC | Total

0 Baseline N/A 1.2 0.8 | 0.04 | 2.6 16444 | 18.48 | 194 16661
1 AMI Event AMI - - - - - 1114 | - 17757
2 Multiplication MUL | 1158 | 554 | 120 | - - - - 18491
3 Multiplication (A*0) MUL | 474 | 486 | 82 - - - - 17701
4 Addition ADD | 1252 | 550 | 120 | - - - - 18581
5 Division DIV 1304 | 548 | 122 | - - - - 18633
6 No Operation NOP | 60 366 | 70 - - - - 17155
7 Greater than GTH | 784 | 548 | 122 | - - - - 18113
8 Equal EQL | 684 | 538 | 120 | - - - - 18001
9 Maximum MAX | 958 | 546 | 120 | - - - - 18283
10 | Bitwise AND AND | 802 | 552 | 120 | - - - - 18133
11 | Bitwise OR ORR | 884 | 560 | 120 | - - - - 18223
12 | Logical shift left SHL | 772 | 540 | 120 | - - - - 18091
13 | Memory store MST | 336 | 612 | 98 - 41504 | - - 42765
14 | Memory load MLD | 346 | 638 | 116 | - 35744 | - - 37059
15 | Event generation (NT) | EVC | 76 306 | 92 916 | - - - 18046
16 | Event generation EVC | 144 | 350 | 76 1200 | - - - 18426
17 | RISC-V core process | N/A - - - - - - 7020 | 23487

The baseline (No. 0) is the energy consumed by the components every clock cycle when they are
not operating. Therefore, the numbers represent the static power consumption of the components.
Regarding the NPE, LB, PC, and EVC, since they do not store any data, turning them off when not
used saves a significant amount of energy. The data memory, meanwhile, cannot be turned off, since
the data stored will be lost. The data memory is by far the largest consumer of energy.

The arithmetic operations (operations 2 to 5) are implemented with zero skipping, so multiplications with
zero (No. 3), for example, consume less energy than normal multiplications (No. 2). Since the number
format used is BF16, addition consumes more energy than multiplications, since additions require
the mantissas (7 bits) of the numbers to be aligned using their exponents before they can be added.

5.6. Power Estimation of Basic NPE Operations 73

Afterwards, normalization of the addition result must also be done. Alignment and normalization require
multiple conditional checks to occur in one clock cycle. Multiplications, on the other hand, only require
multiplications of the mantissas, whereas the exponents can simply be added. Division is implemented
by taking an inverse of the second operand and then multiplying it by the first operand. Therefore, the
extra energy for the divisions comes from the inverse operations, with the rest of the process being
identical. A NOP operation (No. 6), where nothing is produced, is different from the baseline, since
the NPEs still need to store the data in the registers and the LB and PC still need to control the NPE
process. Therefore, it still consumes energy.

Operations 7,8,9 all involve comparisons of the two operands. The first operation performed is to check
whether the two operands are equal. In the case of operation 8, the result of that check is simply set as
the final result. For the other 2 operations, further checks to determine which of the operands is greater
are done. This extra check explains why the energy consumption values of operations 7 and 9 are
greater than those of operation 8 for the NPE. The bitwise operations (11, 12, and 13) all involve basic
logic gates, and their energy consumption values are quite similar. The memory operations (14 and 15)
see a spike in the energy consumption of the memory, as expected. Note that the energy consumption
of the memory depends on the number and size of the memory blocks. Here, 256 blocks of 32 KBit
each are used.

Finally, the event generation operations (16 and 17) involve the EVC and NPE, so their energy con-
sumption values increase. The NPE only has to check the value in one of its registers, so the increase
is not significant. However, the EVC does most of the work, so its power consumption spikes. Finally,
operation No. 17 shows the energy consumed per clock cycle when the RISC-V core is processing
while the other parts (the NCP) are idle.

Optimizations and Final Results

As explained in Chapter 5, the baseline version is not fast enough to process the data in real-time. The
energy consumption could also be reduced. Therefore, optimizations with respect to both execution
time and power consumption are necessary. First, analysis done on the bottlenecks and power-hungry
components of one version will be done, allowing the the identification of a potential target to be im-
proved. Then, the optimization method is considered, using principles of both neuromorphic computing
and computer architecture in general, discussed in Chapter 1. The method is then implemented, creat-
ing a new version that would ideally be more efficient than the previous version. This new version will

then again be analyzed, creating a loop that aims to produce the most power-efficient version at the
end.

74

6.1. Results of Version 3 : Loop Unrolling With 2 Elements 75

6.1. Results of Version 3 : Loop Unrolling With 2 Elements

As mentioned in the discussion about results of version 2 presented in Chapter 5, the neural network
operations of layer 1 are the most time-consuming, while the data memory is the most power-hungry.
In this version, we will attempt to improve upon that version by using the principle known as memory
locality.

6.1.1. Optimization method and Implementation

In conventional CPUs, cache memory is used as a way to reduce energy consumption and processing
time by using it to save data that will be reused, minimizing the number of accesses to the main mem-
ory[80]. This spatial locality principle is widely used in various architectures, and it can also be used
in this case. In Chapter 3, we mentioned that the NPEs have a number of registers to store variables.
In version 2, these registers were used to store 1 input value, 1 weight value, and 1 neuron value per
iteration, to be used as operands in the MAC operation. Since there are 16 available registers in total,
one possible method of improvement is to use these registers as a cache, since access to the registers
does not consume as much energy and time as access to the memory. The registers can store addi-
tional values, for instance 1 extra input value and 1 extra weight value, allowing 2 MAC operations in a
single iteration. While this does increase the execution time of each iteration, it decreases the number
of iterations and reduces the number of read/write commands to the memory. Listing 6.1 shows the
implementation of this improvement in the source code.

Listing 6.1: Source code of NPE Loop of Version 3

void KERNEL_SENECA(float datapoint, float datapoint2)

{
last_miram_1stHalf_addr_used = 0x0;
last_miram_2ndHalf_addr_used = (MIRAM_1ST_HALF_LAST_INDEX);
uint32_t eval_reg = Ou;
uint32_t eval_reg2 = eval_reg + 1;

//Convert first datapoint

float ev_val_F = datapoint;
uintl6_t ev_val_BF = 0;

FLOAT2BF (&ev_val_F, &ev_val_BF);

//Convert second datapoint

float ev_val_F2 = datapoint2;
uintl6_t ev_val_BF2 = 0;

FLOAT2BF (&ev_val_F2, &ev_val_BF2);

//VWrite datapoints to registers
write_to_regfile(eval_reg, ev_val_BF);
write_to_regfile(eval_reg2, ev_val_BF2);

//Setup of weight register 1

uint32_t weight_reg = eval_reg2 + 1;

uint32_t weight_adr_addr_ptr = ++last_miram_1stHalf_addr_used;
++last_miram_2ndHalf_addr_used;

//Setup of weight register 2

uint32_t weight_reg2 = weight_reg + 1;

uint32_t weight2_adr_addr_ptr = ++last_miram_1stHalf_addr_used;
++last_miram_2ndHalf_addr_used;

//Setup of state register

uint32_t state_reg = weight_reg2 + 1;

uint32_t state_adr_addr_ptr = ++last_miram_1stHalf_addr_used;
++last_miram_2ndHalf_addr_used;

//1st MAC operation

uint32_t mul_res_reg = state_reg + 1;
append_to_miram_command (MUL, eval_reg, weight_reg, mul_res_reg);
uint32_t new_state_reg = mul_res_reg + 1;

append_to_miram_command (ADD, mul_res_reg, state_reg, new_state_reg);

43
44
45
46
47

48
49
50

51
52
53
54
55
56
57
58
59

60
61
62
63

64
65
66
67

68
69
70

7
72
73
74

6.1. Results of Version 3 : Loop Unrolling With 2 Elements 76

//2nd MAC operation
append_to_miram_command (MUL, eval_reg2, weight_reg2, mul_res_reg);
append_to_miram_command (ADD, mul_res_reg, new_state_reg, state_reg);
append_to_miram_write_reg_to_mem(state_adr_addr_ptr, state_reg, 0xOlu); // DO_INCREAMENT
by 0xO1lu
}

void DO_LOOP(void * beginning_of_weightsV, void* beginning_of_statesV, void *
beginning_of_weightsV2)

{

last_miram_1stHalf_addr_used = 0x0;

last_miram_2ndHalf_addr_used = (MIRAM_1ST_HALF_LAST_INDEX);

uint32_t eval_reg = Ou;

uint32_t eval_reg_2 = eval_reg + 1;

uint32_t weight_reg = eval_reg_ 2 + 1;

uint32_t weight_adr_addr_ptr = ++last_miram_1stHalf_addr_used;

append_to_miram_read_from_mem_to_reg(weight_adr_addr_ptr, beginning_of_weightsV,
weight_reg, 0x01lu);

uint32_t weight_reg2 = weight_reg + 1;

uint32_t weight_adr_addr_ptr2 = ++last_miram_1stHalf_addr_used;

append_to_miram_read_from_mem_to_reg(weight_adr_addr_ptr2, beginning of_weightsV2,
weight_reg2, 0x01lu);

uint32_t state_reg = weight_reg2 + 1;

uint32_t state_adr_addr_ptr = ++last_miram_1stHalf_addr_used;

append_to_miram_read_from_mem_to_reg(state_adr_addr_ptr, beginning_of_statesV, state_reg,

0x00u) ;

last_miram_2ndHalf_addr_used += 5u;

uint32_t loopcfg = LOOP_CONFIG_INST(lu, last_miram_2ndHalf_addr_used,
MIRAM_1ST_HALF_LAST_INDEX+0xO1lu) ;

WriteLoopConfig(loopcfg);

WFIQ);

}

Compared to version 2, each iteration of version 3 is longer, but because each iteration performs twice
the number of operations, only a half the number of iterations are required. Furthermore, 2 iterations of
version 2 have in total 2 read operations and 2 write operations for the neuron state, while this version’s
iteration requires only 1 read operation and 1 write operations. Essentially, this technique is similar to
the optimization method known as loop unrolling[44]. However, one downside of this method is that
zero-skipping can only happen if both input values to be processed in the same iteration are zero. This
reduces the likelihood of zero-skipping, since a zero input value adjacent to a nonzero input value
cannot be skipped.

6.1. Results of Version 3 : Loop Unrolling With 2 Elements 77

6.1.2. Execution Time Measurements

shidqi9 8 @uxapplOnl:/imec/other/lenavl/shidqi9 8/lenavl/cfg/data/software/riscv-mpl/projectsfaxon_test (on uxappl... - o x

File Edit View 5Search Terminal Help

Loaded file "/imec/other/lenavl/shidqi98/lenavl/cfg/data/software/riscv_mpl/projects/power benchmarkOut
put/riscv3Z-unknown-elf-bin/power_benchmarkOutput.sram" into memory (QO60000Q)
Loaded file "app.sram" into memory (Q0BO0EE0)

2345.23 us th_log NCC_3 : AXON test

2346.14 us th_log NCC_2 : Neuron CoPro test, layer 2
2350.62 us tb_Tlog NCC_1 : MNeuron CoPro test, layer 2
2355.75 us th_log NCC_@ : Neuron CoPro test, layer 1
2756.50 us tbh_log NCC_G : Input Stream Finished

2758.33 us th_log

f ey e g ey . . R R N T N T Y R N N T e

NCC_@ : Input stream finished, running Toop., .., .., s s s isesn,

e ens..,.Done!
14174.96 us th_Tlog NCC_@ : Done!
14303 .68 us th_Tlog NCC_1 : Input stream finished, running Loop., .., .., isis s rnsan,nn

T R T Y N . R R R N T N T O T e,

Prer e ey

P
.y .., .0one!Done!

e

19009.50 us th_log NCC_2 : Input stream finished, running loopstates bf: 0: =+5.1563
20133.97 us tbh_log NCC_2 : states_bf: 1: =+0.0
20140.85 us th_log NCC_2 : states bf: 2: =+0.0
20147 .73 us th_log NCC_2 : states_bf: 3: =+0.0
20154.61 us th_log NCC_2 : states bf: 4: =+0.0
20161.49 us th_log NCC_2 : states_bf: 5: =+0.0
20168.37 us th_log NCC_2 : states bf: 6: =+0.0
20175.25 us th_log NCC_2 : states bf: 7: =+0.0

Figure 6.1: Output messages obtained from SENeCA while running the simulation with version 3.

Figure 6.1 shows the simulation of version 3 after a successful run. The execution times extracted from
the simulation is shown in Table 6.1. The grand total is 17.7 ms, still too slow for real-time processing.
Compared to the results of version 2 shown in Table 5.8, however, the total runtime of the program
decreased by around 5000 ps, a major improvement. As expected, The majority of the improvement
comes from the reduction of the execution time of layer 1, accounting for more than 100% of the
improvement. This is offset, however, by the other layers. The execution time of layers 2 and 3 actually
increased. This due to the zero-skipping being performed less frequently in version 3, as explained
above. Layer 1 is not affected by it, since none of the elements of the input vector is zero. Layer 3,
meanwhile, receives many zero inputs, some that cannot be skipped. This inefficiency will be fixed in
version 5.

Table 6.1: Execution time measurements for version 3. All times are in microseconds (us).

Version 3

Timestamps Execution Time
2355 | Start Loop 1 | 11318 | Sending 1 | 401
2756 Input stream 1 finished | Loop 2 | 4411 Sending 2 | 229
14074 | Loop 1 finished Loop 3 | 1230 | Sending 3 | 189
14303 | Input stream 2 finished | Total 16959 | Total 819
18714 | Loop 2 finished Grand total 17778
18903 | Input stream 3 finished
20133 | Loop 3 finished

6.1. Results of Version 3 : Loop Unrolling With 2 Elements 78

6.1.3. Power Measurements

la Baselinev= T4us
| Cursor- Baseline = 13,71 Tus

Narie o [Cursor
w-al ami_rcy_msg_i[31:0]
- npe_busy

& instr_req
e

i ami_rcv_msg_i[31:0]
pe_busy
& instr_req

;- total_power

i@ total_power

Figure 6.2: Time-based power graph of version 3 together with several signals.

The power consumption of the cores running version 3 of the program was estimated in the time-
based mode, and Figure 6.2 shows the resulting graph. As before, the cores consume most power
when they are actively executing the neural network operations. A bit less power is consumed when
the cores when the cores are communicating with each other. For example, at the time indicated by
cursor "TimeA”, the instantaneous power consumption of core 0 is 4.73 mW, while that of core 1 is
4.58 mW (not shown in the figure). The peak, meanwhile, is around 5.15 mW for all cores. This is an
increase from the previous version, although not by a significant amount. To find out where the extra
power consumption is coming from, a breakdown of power consumption values per component was
performed.

| & Baselinev= 14us
£F| Cursor-Baseline v = 6353us

Path.Name Cursor

@ p1.u_seneca_ncc_0.total_power
-k 1p7.U_seneca_ncc_0.u_neuron_copro.total_power 0.

+_memory_ins.DMEM_inst total_power 0. = oz

OfRT

-4 _memory_ins.NPE_accelerators_inst.total_power0. 00

Figure 6.3: Time-based power graph of version 3, broken down into components (core 1).

Figure 6.3 shows the power consumption graphs of several components. After inspection, we found out
that most of the fluctuations and the rise in peak power consumption can be attributed to the data mem-
ory. The green graph indicates the total power, while the purple graph shows the power consumption
of the data memory alone. The pink graph shows the power consumption of the NPEs, while the blue
graph is the sum of the DRAM and NPE power consumption values. Similar to the previous version,
average power will also be estimated to obtain more precise numbers.

6.2. Results of Version 4: Loop Unrolling With 4 Elements

Table 6.2: Average power consumption of version 3, during the active time of core 1 (Active 1). All power values are in Watts.

Instance Pct_cells | Leakage | Internal Switching | Total

u_seneca_ncc_0 | 25.00% | 2.80E-03 | 5.35E-03 | 4.86E-04 | 8.64E-03
u_seneca _ncc 2 | 25.00% 2.80E-03 | 5.11E-03 | 1.22E-04 | 8.03E-03
u_seneca_ncc_1 | 25.00% | 2.80E-03 | 5.11E-03 | 1.22E-04 | 8.03E-03

Table 6.3: Average power consumption of version 3, during the active time of core 2 (Active 2). All power values are in Watts.

Instance Pct_cells | Leakage | Internal Switching | Total

u_seneca_ncc_1 | 25.00% | 2.80E-03 | 5.35E-03 | 4.86E-04 | 8.64E-03
u_seneca _ncc 0 | 25.00% 2.80E-03 | 5.11E-03 | 1.22E-04 | 8.03E-03
u_seneca_ncc_2 | 25.00% | 2.80E-03 | 5.11E-03 | 1.22E-04 | 8.03E-03

Table 6.4: Average power consumption of version 3, during the active time of core 3 (Active 3). All power values are in Watts.

Instance Pct_cells | Leakage | Internal Switching | Total

u_seneca_ncc_2 | 25.00% | 2.80E-03 | 5.35E-03 | 4.86E-04 | 8.64E-03
u_seneca_ncc_1 | 25.00% 2.80E-03 | 5.11E-03 | 1.22E-04 | 8.03E-03
u_seneca_ncc_0 | 25.00% | 2.80E-03 | 5.11E-03 | 1.22E-04 | 8.03E-03

The results of the average power analysis is shown in Tables 6.2, 6.3, 6.4. The values in the tables
correspond to the time periods Active 1, Active 2, and Active 3, respectively. Compared to version 2,
the average power consumed by the active core increased slightly, while those of the idle cores do
not show any noticeable change. The percentages of the leakage, internal, and switching powers also
did not change significantly. The increase in power consumption of the active core is attributed to the
fact that instructions are executed more frequently by the NPEs. The number of iterations required
to complete the matrix multiplication operations decreased by half, as previously mentioned. Between
each loop, time is required by the RISC-V processor to execute the branch and jump operations required
to realize for loops in C. Reducing the number of these operations decrease the execution time, but
that also means that memory access operations by the NPEs become more frequent. Therefore, the
power consumption increases.

By plugging in the numbers of Tables 6.2, 6.3, 6.4 to Equation 5.1, we obtain the total energy spent for
one inference for version 3. The total energy is 0.000439 Joules, or 0.439 mJ.

6.2. Results of Version 4: Loop Unrolling With 4 Elements

6.2.1. Optimization Method and Implementation

In this version, we seek to utilize the registers in the NPEs even more compared to the previous version,
using them to store 4 input values instead of 2. This way we can implement the principle of memory
locality to a higher degree, which will hopefully result in a more efficient implementation. Even though
the improvement in performance may be offset by the lower number of possible zero-skippings, as
explained in the execution time measurement results of the previous version, it would be interesting
to find out which one will have the larger effect. As the principle itself was already discussed in the
explanation of version 3, it will not be repeated here. The source code to implement the 4-input value
loop unrolling algorithm is shown in Listing 6.2. For the sake of brevity, the DO_LOOP function here
is omitted, since the change in version 4 is simply adapting to the function KERNEL_SENECA shown
here.

Listing 6.2: Source code of NPE Loop of Version 4

6.2. Results of Version 4: Loop Unrolling With 4 Elements

80

2 void KERNEL_SENECA(float datapoint, float datapoint2, float datapoint3, float datapointé4)
3 {

4 uint32_t eval_reg = Ou;

5 uint32_t eval_reg2 = eval_reg + 1;
6

7

8

9

uint32_t eval_reg3 eval_reg2 + 1;
uint32_t eval_reg4 = eval_reg3 + 1;

//Convert first datapoint

10 float ev_val_F = datapoint;

1 uintl6_t ev_val_BF = 0;

12 FLOAT2BF (&ev_val_F, &ev_val_BF);

13

14 //Convert second datapoint

15 float ev_val_F2 = datapoint2;

16 uintl6_t ev_val_BF2 = 0;

17 FLOAT2BF (&ev_val_F2, &ev_val_BF2);

18

19 //Convert third datapoint

20 float ev_val_F3 = datapoint3;

21 uintl6_t ev_val_BF3 = 0;

22 FLOAT2BF (&ev_val_F3, &ev_val_BF3);

23

24 //Convert fourth datapoint

25 float ev_val_F4 = datapointé;

26 uintl6_t ev_val_BF4 = 0;

27 FLOAT2BF (&ev_val_F4, &ev_val_BF4);

28

29 //VWrite datapoints to registers

30 write_to_regfile(eval_reg, ev_val_BF);

31 write_to_regfile(eval_reg2, ev_val_BF2);

32 write_to_regfile(eval_reg3, ev_val_BF3);

33 write_to_regfile(eval_regd4, ev_val_BF4);

34

35 //Setup of weight register 1

36 uint32_t weight_reg = eval_reg4 + 1;

37 uint32_t weight_adr_addr_ptr = ++last_miram_1lstHalf_addr_used;
38 ++last_miram_2ndHalf_addr_used;

39

40 //Setup of weight register 2

41 uint32_t weight_reg2 = weight_reg + 1;

42 uint32_t weight2_adr_addr_ptr = ++last_miram_1stHalf_addr_used;
43 ++last_miram_2ndHalf_addr_used;

44

45 //Setup of weight register 3

46 uint32_t weight_reg3 = weight_reg2 + 1;

47 uint32_t weight3_adr_addr_ptr = ++last_miram_1stHalf_addr_used;
48 ++last_miram_2ndHalf_addr_used;

49

50 //Setup of weight register 4

51 uint32_t weight_regd4 = weight_reg3 + 1;

52 uint32_t weight4_adr_addr_ptr = ++last_miram_1stHalf_addr_used;
53 ++last_miram_2ndHalf_addr_used;

54

55 //Setup of state register

56 uint32_t state_reg = weight_reg4 + 1;

57 uint32_t state_adr_addr_ptr = ++last_miram_1stHalf_addr_used;
58 ++last_miram_2ndHalf_addr_used;

59

60 //1st MAC operation

61 uint32_t mul_res_reg = state_reg + 1;

62 append_to_miram_command (MUL, eval_reg, weight_reg, mul_res_reg);
63 uint32_t new_state_reg = mul_res_reg + 1;

64 append_to_miram_command (ADD, mul_res_reg, state_reg, new_state_reg);
65

66 //2nd MAC operation

67 append_to_miram_command (MUL, eval_reg2, weight_reg2, mul_res_reg);
68 append_to_miram_command (ADD, mul_res_reg, new_state_reg, state_reg);
69

70 //3rd MAC operation

71 append_to_miram_command (MUL, eval_reg3, weight_reg3, mul_res_reg);

72 append_to_miram_command (ADD, mul_res_reg, state_reg, new_state_reg);

73
74
75
76
7
78
79
80

6.2. Results of Version 4: Loop Unrolling With 4 Elements 81

//4th MAC operation
append_to_miram_command (MUL, eval_reg4, weight_reg4, mul_res_reg);
append_to_miram_command (ADD, mul_res_reg, new_state_reg, state_reg);

//Final write back to memory

append_to_miram_write_reg_to_mem(state_adr_addr_ptr, state_reg, 0xOlu);

}

6.2.2. Execution Time Measurements

\!| shidgi98@uxappl0nl:fimec/other/lenavi/shidqi98/lenavi/cfg/data/software/riscv_mpl/projects/axon_test A - OX
File Edit View Search Terminal Help
Loaded file “app.sram" into memory (00800000)
2345.23 us tb log NCC 3 : AXON test
2350.70 us tb log NCC 2 : Neuron CoPro test, layer 2
2350.70 us tb log NCC 1 : Neuron CoPro test, layer 2
2355.83 us tb log NCC © : Neuron CoPro test, layer 1
2896.66 us tb log NCC © : Input stream done, running loop
11379.03 us LT T T
P 1 [o 1 T
11548.59 us tb log NCC ©® : Done!
11672.19 us tb log NCC 1 : Input stream finished, running loop
16868.19 us L+ T 0 o T o
e o [« 1 B 1o [T
17161.17 us tb log NCC 2 : Input stream finished, running loop
17454.84 us tb log NCC 3 : 00000002Axon Message received:
17457.59 us th log NCC 3 : 40a9%0000
17458.56 us TB received Axom message >>> 40390000
17453.71 us tb log NCC 2 : Done!Done!Done!
17459.51 us tb log NCC 3 : 00000020Axon Message received:
17462.26 us tbh log NCC 3 : 00000000
17463.22 us TB received Axom message >>> 00000000

Figure 6.4: Output messages obtained from SENeCA while running the simulation with version 4.

By executing the SENeCA simulation with version 4 of the program, the screen depicted in Figure 6.4
was obtained. At first glance, it can be seen that there was indeed a reduction in the execution time
of the program. In order to obtain more accurate measurements of the execution times, the simulation
dump file was opened with a waveform viewer program. This allows us to know precisely when a certain
component (for example the AMI receiver) stops receiving messages, indicating that the receiving of
input values was complete. This was done in this version since some parts take only a short time,
potentially causing measurements by print statements to be inaccurate. The waveforms, along with
the cursors placed in specific milestones, is shown in Figure 6.5.

6.2. Results of Version 4: Loop Unrolling With 4 Elements 82

| & Bassling=14us
EF| Cursor-Bassline v = 17,396us

v Cursor

a ami_rcv_msg_i[31:0] [|'h 477FFFO0 [| CYREE

Figure 6.5: Waveforms of the signals produced by SENeCA when simulated using version 4 of the benchmark.

Since not all of the time values indicated by the cursors are visible, the times are presented in Table 6.5,
similar to the previous versions. Similar to the change between versions 2 and 3, in this version the
main improvement again comes from the execution time of neural network operations of layer 1. Also,
the execution time of neural network operations in layer 2 increased, similar to version 3. From this
result, we can infer that the execution time of layers 2 and 3 depend highly on the data being used as
input. To mitigate this, in the next version of the benchmarking program, the event capture unit (EVC)
of SENeCA (refer to Chapter 3) will be used. This component will allow us to leverage the abundant
zero outputs of layers 1 and 2 to decrease the execution time. In other words, utilize the sparsity of
neural networks.

Table 6.5: Execution time measurements for version 4. All times are in microseconds (us).

Version 4

Timestamps Execution Time
2349 Start Loop 1 | 8648 Sending 1 | 399
2748 Input stream 1 finished | Loop 2 | 5340 | Sending 2 | 150
11396 | Loop 1 finished Loop 3 | 399 Sending 3 | 177
11546 | Input stream 2 finished | Total 14387 | Total 726
16886 | Loop 2 finished Grand total 15113
17063 | Input stream 3 finished
17462 | Loop 3 finished

6.2. Results of Version 4: Loop Unrolling With 4 Elements 83

6.2.3. Power Measurements

| @ Baselne= - 14us
EF|Cursr-Baseline = - 17,454us

N
= ami_rcv_msg_i[31:0]

'h 477FFFO0
& npe_busy

& instr_req

= ami_rcv_msg_i[31:0] J'h 00000000

& ami_rcv_msg_i[31:0] J'h 00000000 00000000

& npe_busy
& instr_req

- total_power

& total_power

Figure 6.6: Time-based power graph of version 4 together with several signals.

With regards to power consumption, the change from version 2 to version 3 is more pronounced in
this version, since the number of instructions accessing the data memory per iteration was doubled
by performing 4 MAC operations. The graphs depicting the power consumption with regards to time
produced by the time-based power estimation is shown in Figure 6.6. What is also noticeable here,
is the fact that the difference between the power consumed by the cores when they are active is not
so different than the power consumed when they are idle. To obtain more precise power consumption
measurements, average-mode power estimation was run. The results are listed in Tables 6.6, 6.7, 6.8.

Table 6.6: Average power consumption of version 4, during the active time of core 1 (Active 1). All power values are in Watts.

Instance Pct_cells | Leakage | Internal Switching | Total

u_seneca_ncc_0 | 25.00% 2.80E-03 | 5.50E-03 | 4.86E-04 | 8.78E-03
u_seneca_ncc_1 | 25.00% 2.80E-03 | 5.1ME-03 | 1.22E-04 | 8.03E-03
u_seneca_ncc_2 | 25.00% 2.80E-03 | 5.11E-03 | 1.22E-04 | 8.03E-03

Table 6.7: Average power consumption of version 4, during the active time of core 2 (Active 2). All power values are in Watts.

Instance Pct_cells | Leakage | Internal Switching | Total

u_seneca_ncc_1 | 25.00% | 2.80E-03 | 5.50E-03 | 4.86E-04 | 8.78E-03
u_seneca _ncc 0 | 25.00% 2.80E-03 | 5.11E-03 | 1.22E-04 | 8.03E-03
u_seneca_ncc_2 | 25.00% | 2.80E-03 | 5.11E-03 | 1.22E-04 | 8.03E-03

Table 6.8: Average power consumption of version 4, during the active time of core 3 (Active 3). All power values are in Watts.

Instance Pct_cells | Leakage | Internal Switching | Total

u_seneca_ncc_2 | 25.00% 2.80E-03 | 5.50E-03 | 4.86E-04 | 8.78E-03
u_seneca_ncc_1 | 25.00% 2.80E-03 | 5.11E-03 | 1.22E-04 | 8.03E-03
u_seneca_ncc_0 | 25.00% 2.80E-03 | 5.11E-03 | 1.22E-04 | 8.03E-03

To obtain the energy consumed for one iteration, Equation 5.1 will again be used. Plugging in the
numbers of the execution time and power consumption tables above, we obtain the value of 0.000375
J, or 0.375 mJ. This is less than the energy consumed by the previous version.

6.3. Results of Version 5: Utilization of the Event Capture Unit 84

6.3. Results of Version 5: Utilization of the Event Capture Unit

In version 5, we will attempt to make use of the sparse nature of neural networks to minimize the
execution time and energy consumption, by using SENeCA’'s Event Capture (EVC) unit, explained
in more detail in Chapter 3. The optimization method of version 4, the 4-datapoint loop unrolling, is
implemented in an identical fashion.

6.3.1. Optimization Method and Implementation

The idea behind the EVC unit is that not all neurons produce a nonzero output after the application
of the activation function to their values after bias addition. Therefore, not all of the neuron values
have to be recorded and transmitted to the next layer, as the zero values will not have an effect on the
calculations of the next layer. This conserves both memory and time, especially with regards to the
sending times between cores. To trigger the EVC unit, a specific command has to be executed by the
NPE, called EVC. ltis listed in Table 3.1. When the EVC command is executed, the register that is
passed as the operand will be checked if it contains a nonzero value. If it contains a nonzero value,
the EVC unit will copy the neuron value and write three values into a register that is readable by the
RISC-V core. The three values are the neuron value itself, the ID number of the source NPE, as well
as a configurable tag number. The combination of the NPE ID number and the tag number allows the
RISC-V core to determine which neuron the output value came from. Afterwards, the EVC unit will
trigger an interrupt to the RISC-V core, allowing it to read the three values written by the EVC unit.

Listing 6.3 shows the source code to implement the concept explained above. The fucntion that is
changed is KERNEL_SENECA_B, the function containing the commands to execute the bias addi-
tion and activation function application. Line 24 shows the addition of the EVC command. The first
operand, the mul_res_reg, is holds the neuron value at the end of the process and thus will be checked
by the EVC unit. The second and third operands determine the tag value. The second function, neu-
ron_spikes_handler is the interrupt handler function called when the EVC unit triggers an interrupt to
the RISC-V core. In the handler, the neuron value, tag value, and NPE ID number are read from the
designated register. Then the neuron number is identified. However, since the neurons with zero out-
put values are skipped, we cannot store the neuron values in a simple array like we did in the previous
versions. A new data structure to hold both the neuron numbers and their values was created, named
result_list (line 1). This structure is used at the end of the handler function to store the neuron numbers
and values.

Listing 6.3: Modified source code part of the NPE Loop of Version 5

1 struct result_list {
2 uintl6_t neuron_no; /* Addr OxFFFF = End Of Stream */
intl16_t value;

3
4}

5

6 void KERNEL_SENECA_B()

7 {

8 last_miram_1stHalf_addr_used = 0x7;

9 last_miram_2ndHalf_addr_used = 0x17;

10 uint32_t zero_reg = Ou;

1 float ev_val_F = 0.0;

12 uintl6_t ev_val_BF = 0;

13 FLOAT2BF (&ev_val_F, &ev_val_BF);

15 write_to_regfile(zero_reg, ev_val_BF);

17 uint32_t temp_reg = zero_reg + 1;

18 uint32_t temp_adr_addr_ptr = ++last_miram_1stHalf_addr_used;
19 ++last_miram_2ndHalf_addr_used;

20 uint32_t bias_reg = temp_reg + 1;

21 uint32_t bias_adr_addr_ptr = ++last_miram_1stHalf_addr_used;
22 ++last_miram_2ndHalf_addr_used;

23 uint32_t add_res_reg = bias_reg + 1;

24 append_to_miram_command (ADD, bias_reg, temp_reg, add_res_reg);
25 uint32_t comp_res_reg = add_res_reg + 1;

26 append_to_miram_command (GTH, add_res_reg, zero_reg, comp_res_reg);

27
28
29
30
31
32
33
34
35
36
37
38
39

40
41

42
43
44
45
46
47
48
49

6.3. Results of Version 5: Utilization of the Event Capture Unit 85

uint32_t mul_res_reg = comp_res_reg + 1;
append_to_miram_command (MUL, add_res_reg, comp_res_reg, mul_res_reg);
append_to_miram_command (EVC, mul_res_reg, Ou, 8u);

}
ATTR_INTR void neuron_spikes_handler ()
{
DEV_WRITE (NEURO_COPRO_BASE+136%*4, Ou); //clear the intrrupt
uint32_t events_val = Ou;
uint32_t npe_id = Ou;
uint32_t neuron_number = Ou;
while (DEV_READ (NEURO_COPRO_BASE+133*4) != 0x0)
{
events_val = DEV_READ(NEURO_COPRO_BASE+130%4) ;
npe_id = DEV_READ (NEURO_COPRO_BASE+131%4) ;
tag = DEV_READ (NEURO_COPRO_BASE+132%4) ;
neuron_number = tag + npe_id;
neuron_list[neuron_counter].neuron_no = neuron_number;
neuron_list[neuron_counter].value = events_val;
neuron_counter++;
}
}

6.3.2. Execution Time Measurements

l!l shidgi98@uxapp10nl:/imec/other/lenavl/shidgi98/lenavl/cfg/data/software/riscv_mpl/projects/axon_test A - O X
File Edit View Search Terminal Help

f-bin/power benchmark.sram” into memory (00200000)

Loaded file "/imec/other/lenavl/shidqi98/lenavl/cfg/data/software/riscv _mpl/projects/power benchmarkL2/riscv32-unknown-
elf-bin/power _benchmarkL2.sram" into memory (00400000)

Loaded file "/imec/other/lenavl/shidqi98/lenavl/cfg/data/software/riscv_mpl/projects/power benchmarkOutput/riscv32-unkn
own-elf-bin/power benchmarkOutput.sram" into memory (00600000)

Loaded file */imec/other/lenavl/shidqi98/lenavl/cfg/data/software/riscv _mpl/projects/axon_test/riscv32-unknown-elf-bin/
axon test.sram" into memory (00800000)

2339.47 us tb log NCC 3 : AXON test

2351.59 us tb log NCC 2 : Neuron CoPro test, layer 3

2358.10 us tb log NCC © : Neuron CoPro test, layer 1

2360.52 us tb log NCC 1 : Neuron CoPro test, layer 2

3016.26 us tb log NCC © : Input Stream Finished

3027.59 us tb log NCC © : Running the loop!

12925.86 us tb log NCC © : Loop done, begin sending!

12938.59 us tbh log NCC 1 : Skipping 24

13024.87 us tb log NCC 1 : Input Stream Finished

13027.19 us tb log NCC 1 : Running the loop!

15236.08 us tb log NCC 1 : Loop done, begin sending!

15254.07 us tb log NCC 2 : Input Stream Finished

15256.44 us tb log NCC 2 : Running the loop!

15331.76 us tb log NCC 2 : Done!

15332.51 us tb log NCC 2 : states bf: 8: =+7.8438

15346.29 us tb_log NCC 2 : states bf: 1: =+0.1075

15359.94 us th log NCC 2 : states bf: 2: =+0.0058

15371.77 us th log NCC 2 : states bf: 3: =+0.0

15378.89 us th log NCC 2 : states bf: 4: =+0.0

15386.01 us th log NCC 2 : states bf: 5: =+0.0

15393.13 us th log NCC 2 : states bf: 6: =+0.0 I
15400.25 us tb log NCC 2 : states bf: 7: =408.0

Figure 6.7: Output messages obtained from SENeCA while running the simulation with version 5.

Figure 6.7 shows the simulation screen when running version 5 of the benchmark. Again, by observing
the timestamps on the screen, we can infer the timing at which the parts of the program were completed.
Table 6.9 shows these numbers, as well as the execution time obtained by subtracting appropriate
timestamps. Looking at the overall execution time, we can see that there is a reduction by around
3000 ps, around 20% of the total execution time of version 4. This can mainly be attributed to the
decreased execution times of layers 2 and 3. While zero-skipping was implemented in all previous
versions, they were flawed since the fact that multiple input values are being processed in a single
iteration (loop unrolling) prevented all zeros from being skipped. This version, however, implements it
in a way that allows all zeros to be skipped while still allowing the speedup from loop unrolling. The
sending time also decreased, since there are simply fewer values to send.

6.3. Results of Version 5: Utilization of the Event Capture Unit 86

Table 6.9: Execution time measurements for version 5. All times are in microseconds (us).

Version 5

Timestamps Execution Time
2358 | Start Loop1 | 9909 | Sending 1 | 658
3016 Input stream 1 finished | Loop 2 | 2212 Sending 2 | 99
12925 | Loop 1 finished Loop 3 | 77 Sending 3 | 18
13024 | Input stream 2 finished | Total 12198 | Total 775
15236 | Loop 2 finished Grand total 12973
15254 | Input stream 3 finished
15331 | Loop 3 finished

Figure 6.8 shows the waveforms of the signals produced by SENeCA during simulation. Similar to the
previous versions, there are three signals picked from each core, showing when the AMIs, NPEs, and
RISC-V processors of each core are active. The cursors correspond roughly to times when one core
stops processing and the next one starts. From this image we can clearly see that the execution time
of layer 1, indicated by the signal NPE_busy that is colored orange, is the one that dominates the total
execution time. Therefore, for the next iteration, tackling the execution time of layer 1 by analyzing if
there are any inefficiencies might be worthwhile.

[Baselne =10
FF| Cursor-Baseline v = 15,733us

Mame

& npe_busy
- instr_req

Figure 6.8: Waveforms of the signals produced by SENeCA when simulated using version 5 of the benchmark.

By observing more closely Table 6.9, we can see that the execution time of layer 1 actually increased
by around 1300 ps. While this increase is not fatal as the total execution time is still lower than version
4, the cause for this increase could be investigated to determine the next possible optimization. By
zooming in on the part where core 1 finishes its process and starts sending data to core 2, we can
observe how the usage of the EVC unit can cause the execution time to decrease. Figure 6.9 shows
the result of magnification. By observing the orange-colored npe_busy and instr_req signals, we can
see that the NPEs are busy and idle in an interleaved fashion. Since context switching happens every
time the NPEs starts or stops execution (by triggering an interrupt), time is spent. The addition of the
EVC adds the required number of context switching needed, since the EVC also triggers interrupt. A
way to reduce the the number of context switching can significantly reduce the execution time of the
neural network operations.

6.3. Results of Version 5: Utilization of the Event Capture Unit 87

(L Baselinev=0
FF| Cursaor-Baseline v = 24,207us

i ami_rcv_msg_i[31:0]
npe_busy
instr_req

Figure 6.9: The time period in which cores 2 and 3 are active is magnified here to provide a more detailed look.

6.3.3. Power Measurements

Similar to previous versions, time-based power estimation was performed for version 5. The resulting
graph can be observed in Figure 6.10. The power graphs were added to the waveforms presented
in Figure 6.8, to better display the relation between the activities of the core and its respective power
consumption.

Baseline™=0
FF| Cursor-Baseline - 1553805

Nartne L-0d H
= ami_rcv_msg_i[31:0] | JOO0FFFF
B npe_busy 0
- instr_req
-
=
r

= ami_rcv_msg_i{31:0]
pe_busy
- instr_req

& total_power

- total_power

Figure 6.10: Time-based power graph of version 5 together with several signals.

By looking at the power graphs, we can observe that the power consumption fluctuates between 0.012
W and 0.013 W per core, similar to version 4. To obtain more accurate numbers, average mode power
estimation was again done on the time periods of Active 1, Active 2, and Active 3 of version 5. The
results can be observed in Tables 6.10, 6.11, 6.12. The difference in power consumption between the
active and idle cores are similar to what we found in version 4, around 0.1 W. This indicates that the
use of the EVC does not affect the power consumption of SENeCA by a significant amound.

6.4. Results of Version 6: Utilization of the Loop Buffer

Table 6.10: Average power consumption of version 5, during the active time of core 1 (Active 1). All power values are in Watts.

Table 6.11: Average power consumption of version 5, during the active time of core 2 (Active 2). All power values are in Watts.

Table 6.12: Average power consumption of version 5, during the active time of core 3 (Active 3). All power values are in Watts.

Instance Pct_cells | Leakage | Internal Switching | Total

u_seneca_ncc_0 | 25.00% | 2.80E-03 | 5.60E-03 | 4.86E-04 | 8.89E-03
u_seneca _ncc_1 | 25.00% 2.80E-03 | 5.11E-03 | 1.22E-04 | 8.03E-03
u_seneca_ncc_2 | 25.00% | 2.80E-03 | 5.11E-03 | 1.22E-04 | 8.03E-03

Instance Pct_cells | Leakage | Internal Switching | Total

u_seneca_ncc_1 | 25.00% | 2.80E-03 | 5.60E-03 | 4.86E-04 | 8.89E-03
u_seneca_ncc_0 | 25.00% 2.80E-03 | 5.11E-03 | 1.22E-04 | 8.03E-03
u_seneca_ncc_2 | 25.00% | 2.80E-03 | 5.11E-03 | 1.22E-04 | 8.03E-03

Instance Pct_cells | Leakage | Internal Switching | Total

u_seneca_ncc_2 | 25.00% 2.80E-03 | 5.60E-03 | 4.86E-04 | 8.89E-03
u_seneca_ncc_1 | 25.00% 2.80E-03 | 5.11E-03 | 1.22E-04 | 8.03E-03
u_seneca_ncc_0 | 25.00% 2.80E-03 | 5.11E-03 | 1.22E-04 | 8.03E-03

By plugging in the total power consumption values found in the tables above in equation 5.1, we can
calculate the total energy of one inference using version 5 with SENeCA. That number turns out to be
0.000323 J, or 0.323 mdJ. This less than version 4, indicating that the extra energy required by the use
of the EVC unit is more than compensated by the reduction in the execution time.

6.4. Results of Version 6: Utilization of the Loop Buffer

Analysis of the previous version showed that the time for context switching between the NPE process
and the RISC-V process can be a significant bottleneck. In this version, we will attempt to minimize the
spent time by deploying another component of SENeCA described in Chapter 3, the loop buffer.

6.4.1. Optimization Method and Implementation

The software implementation of the program that uses the loop buffer does not differ much from the
previous version. The only function changed is DO_LOOP, the function that actually configures the data
that will be written to the instruction kernel. The modified part is shown in Listing 6.4. Specifically, line
31 shows the macro that combines all of the instructions written previously and adds other parameters
such as the starting instruction, final instruction, and number of repetitions. To make use of the loop
buffer, we only need to change the number of repetitions to suit the number of inputs. For example,
this function is taken from layer 2, where the number of inputs is 256, and since there are 8 NPEs, 32
repetitions are done by each NPE to process all of the incoming data. Hence, we put 32u as the first
parameter of LOOP_CONFIG_INST. While the change to the software might be simple, the reduction
of the number of context switches that can be achieved with this method will help to reduce the total
execution time by a significant amount.

Listing 6.4: Modified source code part of the NPE Loop of Version 6

1 void DO_LOOP(void * beginning_of_weightsV, void* beginning_of_statesV, void *
beginning_of_weightsV2, void * beginning_of_weightsV3, void * beginning_of_weightsV4)
{
last_miram_1stHalf_addr_used
last_miram_2ndHalf_addr_used
uint32_t eval_reg = Ou;
uint32_t eval_reg_2 = eval_reg + 1;

0x0;
(MIRAM_1ST_HALF_LAST_INDEX);

o o A w N

21
22
23
24

25
26
27
28

29
30
31

32
33
34

6.4. Results of Version 6: Utilization of the Loop Buffer

uint32_t eval_reg_3 = eval_reg_ 2 + 1;
uint32_t eval_reg_4 = eval_reg_3 + 1;

uint32_t weight_
uint32_t weight_
append_to_miram_

weight_reg,

uint32_t weight_
uint32_t weight_
append_to_miram_

weight_reg2

uint32_t weight_
uint32_t weight_
append_to_miram_

weight_reg3

uint32_t weight_
uint32_t weight_
append_to_miram_

weight_regé

uint32_t state_reg = weight_regé4 + 1;
++last_miram_1stHalf_addr_used;

reg = eval_reg_4 + 1;
++last_miram_1stHalf_addr_used;
read_from_mem_to_reg(weight_adr_addr_ptr, beginning_of_weightsV,

adr_addr_ptr

0x01u);

reg2 = weight_reg + 1;

++last_miram_1stHalf_addr_used;
read_from_mem_to_reg(weight_adr_addr_ptr2, beginning_of_weightsV2,
, 0x01u);

adr_addr_ptr2

reg3 = weight_reg2 + 1;

++last_miram_1stHalf_addr_used;
read_from_mem_to_reg(weight_adr_addr_ptr3, beginning of_weightsV3,
, 0x01u);

adr_addr_ptr3

reg4 = weight_reg3 + 1;

++last_miram_1stHalf_addr_used;
read_from_mem_to_reg(weight_adr_addr_ptr4, beginning of_weightsV4,
, 0x01u);

adr_addr_ptr4

uint32_t state_adr_addr_ptr =

append_to_miram_

0x00u) ;

last_miram_2ndHalf_addr_used += 9u;
uint32_t loopcfg = LOOP_CONFIG_INST (32u,
MIRAM_1ST_HALF_LAST_INDEX+0x01u);

read_from_mem_to_reg(state_adr_addr_ptr, beginning_of_statesV, state_reg,

WriteLoopConfig(loopcfg);

WFIQO;

last_miram_2ndHalf_addr_used,

6.4. Results of Version 6: Utilization of the Loop Buffer 90

6.4.2. Execution Time Measurements

shidqi® 8 @uxapplOnlfimec/otherflenavl/shidqi®8/lenavl/cfg/data/software/riscv_mpl... - o x

File Edit View Search Terminal Help

nto memory (QEBEGEAE0)
Loaded file "/imec/other/lenavl/shidgi98/1lenavl/cfg/data/software/riscv_mpl/proj
ects/axon_test/riscv3Z-unknown-elf-bin/axon_test.sram" into memory (GO8000C0)

2339.47 us th log NCC_3 : AXON test

2351.58 us th Tog NCC_Z : Neuron CoPro test, layer 3
2358.18 us th log NCC @ : MNeuron CoPro test, layer 1
2360.53 us th Tog NCC_1 : Neuron CoPro test, layer 2
3016.34 us th Tog NCC 8 : Input Stream Finished

3027 .67 us th_Tlog NCC_B : Running the loop!

4465 .21 us th Tog NCC @ : Loop done, begin sending!
4477 .95 us th_log NCC_1 : Skipping 24

4564.22 us th Tog NCC_1 : Input Stream Finished
4566.54 us tbh log NCC_ 1 : Running the loop!

4988.38 us th Tog NCC_1 : Loop done, begin sending!
5006.37 us tbh Tog NCC 2 @ Input Stream Finished
5008.72 us th_log NCC_Z : Running the loop!

5050.50 us th Teg NCC 2 : Done!

5051.24 us th_log NCC_2 : states bf: 0: =+7.9063
5065.05 us th_log NCC_2 : states bf: 1: =+0.1075
5078.73 us th log NCC 2 : states bf: Z: =+0.0058
5090.57 us th Tog NCC_Z : states bf: 3: =+0.0

5097 .67 us tbh Tog NCC 2 : states bf: 4: =+0.0
5104.77 us th Tog NCC_Z : states bf: 5: =+0.0
5111.87 us th Tog NCC 2 : states bf: 6: =+0.0

Figure 6.11: Output messages obtained from SENeCA while running the simulation with version 6.

The simulation screen of version 6 is depicted by Figure 6.11. Similar to previous versions, we can infer
the timestamps of completions of parts of the benchmark, and by finding the time difference between
these timestamps we can infer the execution time. The results of these calculations are shown in Ta-
ble 6.13. By simply observing the total execution time for this version and comparing it to the previous
version (version 5) we can see that there is a massive improvement in the execution time. This improve-
ment is the most significant when compared to the improvements achieved by the previous methods,
as the resulting execution time is less than four times that of its predecessor. Layers 1 and 2 both re-
ceive a sizable reduction in their execution times, with the execution time of layer 1 being around 15%
of its previous iteration, while the execution time of layer 2 is a more modest 20% of its predecessor.
Layer 3, meanwhile, sees its execution time actually increase, but since it was insignificant compared
to the total execution time to begin with, the increase does not significantly affect the outcome.

Table 6.13: Execution time measurements for version 6. All times are in microseconds (us).

Version 6

Timestamps Execution Time
2358 | Start Loop 1 | 1449 | Sending 1 | 658
3016 | Input stream 1 finished | Loop 2 | 424 Sending 2 | 99
4465 | Loop 1 finished Loop 3 | 44 Sending 3 | 18
4564 | Input stream 2 finished | Total 1917 | Total 775
4988 | Loop 2 finished Grand total 2692
5006 | Input stream 3 finished
5050 | Loop 3 finished

6.4. Results of Version 6: Utilization of the Loop Buffer 91

= Mmi_rcy_msg_i[31:0
[-® npe_busy
& instr_req

Figure 6.12: Waveforms of the signals produced by SENeCA when simulated using version 6 of the benchmark.

To look into how further optimizations might be possible, once again we will have a look at the waveforms
produced by SENeCA when running the benchmarking program. Figure 6.12 shows the waveforms of
the three cores. Again, the waveforms are color-coded by the names (shown on the far left column),
where orange denotes core 1, purple denotes core 2, and turquoise denotes core 3. The cursors are
placed at the approximate timestamps when one core stops the execution and another core takes over.
Cursor TimeC meanwhile, is placed at the time when core 3 is finished with the execution and starts
writing the results. We can see that after cursor TimeC the signal named npe_busy turns off (because
it is done processing the data), while instr_req (which denotes the signal produced by the RISC-V core
when it is requesting an instruction) is still active. This is due to the fact that after TimeC, the core still
writes the results to the screen, but since this is not part of the execution, it is omitted in the calculations
for the execution time. Similar to previous versions, we see that the longest execution time is again the
NPE loops of layer 1, so a deeper look into what is happening there might yield more insight.

ami_rcv_msg_i[31:0]
npe_busy

instr_req
opcode[4:0]

=% ami_rcv_msg_i[31:0]
@ npe_busy
& instr_req

Figure 6.13: A more detailed look of the MM loop pipeline in version 6.

Figure 6.13, meanwhile, shows the resulting waveforms if we zoom in and focus onto a single loop
iteration of layer 1. To know what operation is being executed at any given time, the signal opcode[4:0]
is added. These codes represent the operation that is executed by the NPEs. To know which operation
each hex number represents, refer to Table 3.1. The cursor labeled Baseline is placed on the start
of an NPE loop. The instruction that happens directly after has a code 0x12, which denotes loading
from memory. Since we are loading 4 data values from memory (4 weight values and 1 neuron state
value) without any data dependencies, the load commands is expected to run without any pipeline
stalls between each other. However, we observe that there is one clock cycle in which the instruction
with the code of 0x00 is executed. This indicates a pipeline stall, and is caused by a minor bug in the
hardware. This will be fixed in the following version.

After five cycles of loading data memory, the next set of instructions, MAC, can be executed. Indeed,

6.4. Results of Version 6: Utilization of the Loop Buffer 92

we find that instruction 0x03 (multiplication) is executed after 0x12. As explained in Chapter 3 however,
each instruction produces its result only after 4 clock cycles, so another instruction trying to access a
register that will contain the result of a previous incomplete operation will be stalled until that result is
available. Therefore, the next operation, which is the addition operation to accumulate the multiplication
result with the current neuron value, is stalled by 3 cycles. Indeed, after 3 cycles of 0x00, we can find
the instruction coded 0x01 being executed. Due to these stalls, the execution time can be longer
that it needs to be, providing us with a window of optimization.In total, this entire loop for the matrix
multiplication operations takes 42 clock cycles. Indeed, for the next version, pipeline optimization will
be one of the methods implemented.

6.4.3. Power Measurements

i_rcv_msg_i[31:0]
& npe_busy
& instr_req
41BD0O098

i ,,‘W'.HIUW '\‘L

i v.,J'V'!'\"\'l'"'i‘i"'l"MIWF'L,.,.,,.

& total_power 0.01»:: b b & |

& total_power

Figure 6.14: Time-based power graph of version 6 together with several signals.

To know the power consumption of SENeCA while executing version 6, we do a time-based power
analysis once again. The results can be seen in Figure 6.14. Looking at the approximate level of
power consumption that the cores consume when active (around 0.012 to 0.013 W), we can see that
the power consumption has increased compared to the previous version. This is to be expected, since
with the decrease of time that is spent in context switching, more power is spent doing the actual
calculations. These operations consume more power since they involve more components, such as
the NPEs, loop buffers, and memory, compared to the context switches that only involve the RISC-V
core. To get a better understanding of the power consumption, we once again run average power
analysis over the three timespans, active 1, active 2, and active 3.

Table 6.14: Average power consumption of version 6, during the active time of core 1 (Active 1). All power values are in Watts.

Instance Pct_cells | Leakage | Internal Switching | Total

u_seneca_ncc_0 | 25.00% 2.80E-03 | 5.51E-03 | 4.86E-04 | 8.80E-03
u_seneca_ncc_1 | 25.00% 2.80E-03 | 5.11E-03 | 1.22E-04 | 8.03E-03
u_seneca_ncc_2 | 25.00% 2.80E-03 | 5.11E-03 | 1.22E-04 | 8.03E-03

Table 6.15: Average power consumption of version 6, during the active time of core 2 (Active 2). All power values are in Watts.

Instance Pct_cells | Leakage | Internal Switching | Total

u_seneca_ncc_1 | 25.00% | 2.80E-03 | 5.51E-03 | 4.86E-04 | 8.80E-03
u_seneca _ncc 0 | 25.00% 2.80E-03 | 5.11E-03 | 1.22E-04 | 8.03E-03
u_seneca_ncc_2 | 25.00% | 2.80E-03 | 5.11E-03 | 1.22E-04 | 8.03E-03

6.5. Results of Version 7: Final Version 93

Table 6.16: Average power consumption of version 6, during the active time of core 3 (Active 3). All power values are in Watts.

Instance Pct_cells | Leakage | Internal Switching | Total

u_seneca_ncc_2 | 25.00% | 2.80E-03 | 5.51E-03 | 4.86E-04 | 8.80E-03
u_seneca_ncc 0 | 25.00% 2.80E-03 | 5.11E-03 | 1.22E-04 | 8.03E-03
u_seneca_ncc_1 | 25.00% | 2.80E-03 | 5.11E-03 | 1.22E-04 | 8.03E-03

The results of the average power analysis are shown in Tables 6.14, 6.15, 6.16. As noted before,
the power consumption did increase slightly. However, since the execution time is much shorter, the
expected energy consumption is also expected to drop. By inserting the numbers in the tables above
to Equations 5.1, we obtain the total energy consumed for one inference to be 0.000066 J, or 0.066
mJ.

6.5. Results of Version 7: Final Version

In this section, Version 7, the final version in this study, will be presented. Similar to the other versions,
the execution time, power consumption, and energy consumption will be measured. Additionally, the
ideal energy consumption will be calculated, and an accuracy measurement will be performed to as-
certain that the achieved decrease in energy consumption does not come at the cost of accuracy.

6.5.1. Optimization Method and Implementation

As mentioned previously, in this version the main optimization will target the pipeline, namely by elimi-
nating pipeline stalls. Most of the stalls happening in version 6 involve read-before-write hazards [80].
These occur when an instruction wants to read a register before a previous instruction has written into
it (since each instruction requires 4 cycles to complete). To avoid this, we must arrange the instructions
in such a way as to minimize the data dependencies. Listing 6.5 shows the modified part of the source
code that implements this change.

Since the most time-consuming part of the program is the matrix multiplication loop, we will focus on
eliminating the pipeline stalls in that loop. Version 6 uses the same loop explained in version 4 (Listing
6.2). Since each loop iteration deals with 4 input values, there are 4 MUL operations and 4 ADD
operations. In version 4, the ADD operation for one data value takes place after the MUL operation
for the same data value. Since the ADD operation depends on the results of the MUL operation, this
will generate a pipeline stall (visible in Figure 6.13). To remedy this, the loop in this version rearranges
the MUL and ADD operations. To avoid data dependency, all 4 of the MUL operations can be placed
in succession (since none of them involve the same operand), followed by the 4 ADD operations. To
accommodate this, extra registers are needed, but since there are unused registers in the NPEs anyway,
this comes at no extra cost. Also, since the ADD operations depend on each other, some pipeline stalls
are inevitable.

This concept is implemented in the source code shown in Listing 6.5 as follows. Lines 4 to 34 remain
unchanged from version 4. The extra registers required to store the multiplication results are declared
in lines 37 to 40. Since there are 4 multiplications, a register is declared for each of them to ensure
that none of them are dependent upon one another. The multiplication operations are written to the
instruction kernel in lines 43 to 46. Note that all operands show up exactly once. At lines 49 and 50,
two new registers are declared to store the addition results, reducing the number of stalls between the
addition operations. The first addition is scheduled to begin execution three cycles after the second
multiplication, upon whose data it depends (mul_res_reg2). Therefore, the addition stalls for 1 cycle
to wait for the result. The second addition, meanwhile, needs the result of the fourth multiplication
(mul_res_reg4), scheduled 2 cycles before it. Therefore, it stalls for 2 cycles before beginning execution.
Similar to the second addition, the third addition also needs the result of an instruction two cycles before
it (new_state_reg, result of addition 1), so it will stall for 2 cycles as well. The final addition, meanwhile,
is dependent on the addition directly preceding it (mul_res_reg), so it will stall for 3 cycles. The final

1
2
3

6.5. Results of Version 7: Final Version 94

writeback to memory is in a similar situation, stalling for 3 cycles. In total, the entire MM loop should
take 23 clock cycles to complete.

One other change in the implementation is the main function run_kernel_seneca() is structured. In this
version, the function KERNEL_SENECA() contains all of the commands that remain constant between
iterations of the loop that iterates through the input values. For example, the MUL instructions always
use the same operands, so they do not have to be rewritten every loop iteration. Line 113 of Listing
6.5 shows the placement of the KERNEL_SENECA function, outside of the for loops. The function
DO_LOOP, meanwhile, contains the commands which need to be executed every loop iteration. For
example, the input values need to be written to the NPE registers every iteration (lines 67 to 70), as
well as the commands to read/write, since the addresses change (lines 77 to 95). This function is
placed inside the for loop (line 128). This avoids unnecessary repetition of instructions that occurred
in the source code of version 4. One final minor modification is to the interrupt handler of the Axon
Messaging Interface (function ami_handler). The added line (line 129 of Listing 6.5) changes the way
the core receives the data from the AMI. Previously, the interrupt is triggered every time a new message
arrives, with the handler only receiving one input value every time it is executed. In this version, the
interrupt handler consumes all of the contents of the FIFO buffer of the AMI, receiving all messages in
one interrupt. This reduces the number of context switches.

Listing 6.5: Modified source code part of the NPE Loop of Version 7

void KERNEL_SENECA ()
{
last_miram_1stHalf_addr_used = 0x0; // IT CAN NOT BE LARGER THAN
MIRAM_1ST_HALF_LAST_INDEX
last_miram_2ndHalf_addr_used = (MIRAM_1ST_HALF_LAST_INDEX);
uint32_t eval_reg = Ou;
uint32_t eval_reg2 = eval_reg + 1;
uint32_t eval_reg3 eval_reg2 + 1;
uint32_t eval_reg4 = eval_reg3 + 1;

//Setup of weight register 1

uint32_t weight_reg = eval_reg4 + 1;

uint32_t weight_adr_addr_ptr = ++last_miram_1stHalf_addr_used;
++last_miram_2ndHalf_addr_used;

//Setup of weight register 2

uint32_t weight_reg2 = weight_reg + 1;

uint32_t weight2_adr_addr_ptr = ++last_miram_1stHalf_addr_used;
++last_miram_2ndHalf_addr_used;

//Setup of weight register 3

uint32_t weight_reg3 = weight_reg2 + 1;

uint32_t weight3_adr_addr_ptr = ++last_miram_1stHalf_addr_used;
++last_miram_2ndHalf_addr_used;

//Setup of weight register 4

uint32_t weight_regd4 = weight_reg3 + 1;

uint32_t weight4_adr_addr_ptr = ++last_miram_1stHalf_addr_used;
++last_miram_2ndHalf_addr_used;

//Setup of state register

uint32_t state_reg = weight_reg4 + 1;

uint32_t state_adr_addr_ptr = ++last_miram_1stHalf_addr_used;
++last_miram_2ndHalf_addr_used;

//Multiply result registers

uint32_t mul_res_reg = state_reg + 1;

uint32_t mul_res_reg2 = mul_res_reg + 1;
uint32_t mul_res_reg3 = mul_res_reg2 + 1;
uint32_t mul_res_reg4 = mul_res_reg3 + 1;

//Multiplication operations

append_to_miram_command (MUL, eval_reg, weight_reg, mul_res_reg);
append_to_miram_command (MUL, eval_reg2, weight_reg2, mul_res_reg2);
append_to_miram_command (MUL, eval_reg3, weight_reg3, mul_res_reg3);
append_to_miram_command (MUL, eval_regd4, weight_reg4, mul_res_reg4d);

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

63
64
65
66
67
68
69
70
7
72
73
74
75
76
7
78
79

80
81
82
83

84
85
86
87

88
89
90
91

92
93
94
95

96
97
98

99
100
101
102
103
104
105
106
107
108
109

6.5. Results of Version 7: Final Version 95

}

//New state register

uint32_t new_state_reg = mul_res_reg + 1;
uint32_t new_state_reg2 = new_state_reg + 1;
//Additions

append_to_miram_command (ADD, mul_res_reg, mul_res_reg2, new_state_reg);
append_to_miram_command (ADD, mul_res_reg3, mul_res_regd4, new_state_reg2);
append_to_miram_command (ADD, new_state_reg, state_reg, mul_res_reg);
append_to_miram_command (ADD, mul_res_reg, new_state_reg2, state_reg);

//Final write back to memory
append_to_miram_write_reg_to_mem(state_adr_addr_ptr, state_reg, 0x0Olu);

void DO_LOOP(uint16_t datapoint, uintl16_t datapoint2, uint16_t datapoint3, uintil6_t

}

datapoint4, void * beginning_ of_weightsV, void* beginning_of_statesV, void =*
beginning_of_weightsV2, void * beginning_of_weightsV3, void * beginning_of_weightsV4)

last_miram_1stHalf_addr_used = 0x0;
last_miram_2ndHalf_addr_used = (MIRAM_1ST_HALF_LAST_INDEX);

write_to_regfile(0, datapoint);
write_to_regfile(1l, datapoint2);
write_to_regfile(2, datapoint3);
write_to_regfile(3, datapoint4);

uint32_t eval_reg = Ou;

uint32_t eval_reg_2 = eval_reg + 1;
uint32_t eval_reg_3 = eval_reg_ 2 + 1;
uint32_t eval_reg_4 = eval_reg_ 3 + 1;

uint32_t weight_reg = eval_reg_ 4 + 1;

uint32_t weight_adr_addr_ptr = ++last_miram_1stHalf_addr_used;

append_to_miram_read_from_mem_to_reg(weight_adr_addr_ptr, beginning_of_weightsV,
weight_reg, 0x01lu);

uint32_t weight_reg2 = weight_reg + 1;

uint32_t weight_adr_addr_ptr2 = ++last_miram_1stHalf_addr_used;

append_to_miram_read_from_mem_to_reg(weight_adr_addr_ptr2, beginning of_weightsV2,
weight_reg2, 0x01u);

uint32_t weight_reg3 = weight_reg2 + 1;

uint32_t weight_adr_addr_ptr3 = ++last_miram_1stHalf_addr_used;

append_to_miram_read_from_mem_to_reg(weight_adr_addr_ptr3, beginning_of_weightsV3,
weight_reg3, 0x01lu);

uint32_t weight_regd4 = weight_reg3 + 1;

uint32_t weight_adr_addr_ptr4 = ++last_miram_1stHalf_addr_used;

append_to_miram_read_from_mem_to_reg(weight_adr_addr_ptr4, beginning_of_weightsV4,
weight_regd4, 0x01lu);

uint32_t state_reg = weight_reg4 + 1;

uint32_t state_adr_addr_ptr = ++last_miram_1stHalf_addr_used;

append_to_miram_read_from_mem_to_reg(state_adr_addr_ptr, beginning_of_statesV, state_reg,
0x00u) ;

last_miram_2ndHalf_addr_used += 9u;

uint32_t loopcfg = LOOP_CONFIG_INST(32u, last_miram_2ndHalf_addr_used,
MIRAM_1ST_HALF_LAST_INDEX+0xO1lu);

WriteLoopConfig(loopcfg);

WFIQ);

void run_kernel_seneca()

{

uintl16_t datapoint;
uintl16_t datapoint2;

6.5. Results of Version 7: Final Version 96

110 uint16_t datapoint3;

11 uint16_t datapoint4;

12

113 KERNEL_SENECA () ;

114 for (uint32_t i = 0; i < NUM_COLS/4; i++)

15 {

16

17 datapoint = input [4*i];

18 datapoint2 = input [(4*i)+1];

19 datapoint3 = input[(4*i)+2];

120 datapoint4 = input [(4%1i)+3];

121

122 beginning_of_weightsV = (void*)&weightV_g[((4*i)*NUM_ROWS)];

123 beginning_of_weightsV2 = (void#)&weightV_g[(((4*1i)+1)*NUM_ROWS)];
124 beginning_of _weightsV3 = (void*)&weightV_g[(((4*i)+2)*NUM_ROWS)];
125 beginning_of _weightsV4 = (void*)&weightV_g[(((4*i)+3)*NUM_ROWS)];
126 beginning_of_statesV = (voidx)&stateV_gl[0];

127

128 DO_LOOP (datapoint, datapoint2, datapoint3, datapoint4, beginning of_weightsV,

beginning_of_statesV, beginning_of_weightsV2, beginning_of_weightsV3,
beginning_of_weightsV4);

129 }

130 for (bias_loop_counter = 0; bias_loop_counter < (NUM_ROWS/8); bias_loop_counter++)
131 {

132 beginning_of_statesV = (void*)&stateV_gl[bias_loop_counter*8];
133 KERNEL_SENECA_B();

134 beginning_of_biasesV = (void*)&biasesV_gl[bias_loop_counter*8];
135 DO_LOOP_B(beginning_of_biasesV, beginning of_statesV);

136 }

137

138 ATTR_INTR void ami_handler(void) {

139 while(ami_irq_stat () != 0x00)

140 {

141 int i = 0;

142 u union_float;

143 uint32_t event = ami_msg_recv();

144 union_float.i =event;

145

146 if ((event == EVENT_EOS) || ((event >> 16) == 0xff)) {
147 puts ("Input Stream Finished");

148 } else {

149 benchmark_update (event) ;

150 counter_input++;

151 }

152 }

153 }

154

155 }

6.5. Results of Version 7: Final Version 97

6.5.2. Execution Time Measurements

shidqi9® 8 @uxapplOnl:/imec/other/lenavl/shidqi9 8/lenavl/cfg/data/software/riscv_mpl/projects/axon_test o o x

File Edit

Ready for RTL simulation
xcelium=
xcelium= run

View Search Terminal Help

Open failed on file "tb_log.ini". No such file or directory
Open failed on file "tb_log.ini". No such file or directory
Open failed on file "tb_log.ini". No such file or directory
Open failed on file "tb log.ini". No such file or directory

Loaded file "/imec/other/lenavl/shidqiS8/lenavl/cfg/data/software/riscv_mpl/projects/power_bench
mark/riscv32-unknown-elf-bin/power benchmark.sram" into memory (G0200000)

Loaded file "/imec/other/lenavl/shidqiS8/lenavl/cfg/data/software/riscv_mpl/projects/power_bench
markL2/riscv3Z-unknown-elf-bin/power_benchmarklLZ.sram" into memory (00400000)

Loaded file "/imec/other/lenavl/shidqi98/lenavl/cfg/data/software/riscv_mpl/projects/power_bench
markOutput/riscv3Z-unknown-elf-bin/power benchmarkOutput.sram" into memory (GG6G0000)

Loaded file "/imec/other/lenavl/shidqi98/lenavl/cfg/data/software/riscv_mpl/projects/axon_test/r
iscv32-unknown-elf-bin/axon_test.sram" into memory (QG800000)

2339.47 us th_Tlog NCC_3 : AXON test

2351.59 us tbh_log NCC_2 : Neuron CoFro test, layer 3
2358.11 us th_log NCC_0O Meuron CoPro test, layer 1
2360.52 us th_Tlog NCC_1 Meuron CoPro test, layer 2
2630.42 us th_log NCC_0O Input Stream Finished
2641.99 us th_log NCC_0O Running the loop!

3822.40 us th_log NCC_0O Loop done, begin sending!
3845.12 us th_Tlog NCC_1 Input Stream Finished

3847 .67 us th_Tlog NCC_1 Running the loop!

4187 .30 us th_Tlog NCC_1 Loop done, begin sending!
4193.33 us th_log NCC_2 Input Stream Finished

4195 .89 us th_log NCC_2 Running the loop!

4257.12 us th_log NCC_2 Done!

Figure 6.15: Output messages obtained from SENeCA while running the simulation with version 7.

By simulating the software of version 7 on SENeCA, we obtain the simulation screen displayed in
Figure 6.15. We will also use the numbers on the simulation screen to calculate the execution times
of parts of the program, as well as the total execution time. Similar to previous versions, we will find
the time difference between the timestamps in Figure 6.15 to calculate the results. The results of the
calculations are presented in Table 6.17. If we observe the grand total and compare it to the previous
version, we can see that the optimization of the pipeline improved the performance by a significant
amount, the difference being 793 us. Compared to the execution time of version 6, that number is
around 30%. The main two contributors are Loop 1, which benefits from the reduction in pipeline stalls,
and Sending 1, which benefits greatly from the new way the AMI handler works.

Table 6.17: Execution time measurements for version 7. All times are in microseconds (us).

Version 7

Timestamps Execution Time
2358 | Start Loop 1 | 1192 | Sending 1 | 272
2630 | Input stream 1 finished | Loop 2 | 342 | Sending 2 | 23
3822 | Loop 1 finished Loop 3 | 64 Sending3 | 6
3845 | Input stream 2 finished | Total 1598 | Total 301
4187 | Loop 2 finished Grand total 1899
4193 | Input stream 3 finished
4257 | Loop 3 finished

6.5. Results of Version 7: Final Version 98

[Bagelinew=0
PF| Cursor-Baseline w=2342u3

Mame v Cursor
= ami_rcv_msg_i[31:0]
= npe_busy
- instr_req

=

.
.
= ami_rcv_msg_i[31:0]
= npe_busy
--@ instr_req

Figure 6.16: Waveforms of the signals produced by SENeCA when simulated using version 7 of the benchmark.

To verify the results obtained in Table 6.17, we will observe the waveforms of SENeCA running version
7 of the benchmark. A screenshot of the simulated waveforms is displayed in Figure 6.16. The cursors
are placed approximately at the moments when one core finishes processing and the next core starts.
The final cursor, TimeC, is placed approximately at the moment when core 3’s NPEs finish processing,
indicating the end of the program. Afterwards the RISC-V core of core 3 continues to run, but this is
only to print out the results and is not considered part of the execution time. TimeC’s timestamp is
approximately similar to the final timestamp in Table 6.17 ("Loop 3 finished”). To obtain better insight
into the optimizations of the pipeline, we will zoom in to have a closer look at the pipeline.

Baseinew=0
ursar-Baseline v = 2763,005u5

@ Cursor @
mi_rcy_msg_i[31:0])
Fnpe_busy
Hinstr_req

Figure 6.17: A more detailed look of the MM loop pipeline in version 7.

Figure 6.17 shows the MM loop in detail, including the instructions performed by the NPEs. The instruc-
tions performed by the NPEs are labeled "opcode”, and the waveform is colored turquoise for clarity.
The clock, meanwhile, is colored orange, located directly below the opcode waveform. The "Baseline”
cursor is placed at the start of the MM loop. Directly after the cursor, the opcode being executed is
coded "0x12”, standing for an MLD operation. In this version, the MLD commands occur directly one
after another without any stalls, owing to a fix in the SENeCA RTL. After 5 MLD operations, the 4 MUL
operations (code 0x03) are performed. As expected, since they do not have any dependencies, they
are executed without pipeline stalls between them. The next set of instructions, 4 ADD instructions
(code 0x01), are executed with the expected number of pipeline stalls. Finally, a single MST (code
0x13) instruction is performed to store the result back to the memory. In total, the entire MM loop takes
23 clock cycles to complete. Compared to 42 clock cycles of the MM loop of version 6, this is a massive
improvement.

6.5. Results of Version 7: Final Version 99

Cursor
= ami_rcv_msg_i[31.0]
& npe_busy
& instr_req
= Opcode[4:0]
-+ clk

+F ami_rcvy_msg_i[31:0]
= npe_busy
= instr_req

Figure 6.18: A more detailed look of the bias and activation function loop pipeline in version 7.

For comparison, we will also look at the bias and activation loop, displayed in Figure 6.18. In total this
entire loop takes 18 clock cyles to run. Table 4.4 shows the instructions involved in this loop, as this
part remains relatively unchanged from version 2. Since one loop only processes one neuron, there
are no instructions parallelisms available to exploit. Therefore, we can observe in Figure 6.18 that
the only instructions that can be run back-to-back are the first 2 MLD operations (code 0x12). The
subsequent instructions (ADD (0x01), GTH (0x06), MUL (0x03), and EVC (0x14)) all depend on the
instruction directly preceding them, thus all of them stall for 3 clock cycles.

6.5.3. Power Measurements
In this section, the power measurements of SENeCA running version 7 of the program will be performed.

[6 cmomerso

Er|Cursor-Baseine v = 23428

Name v Cursor v
»# ami_rcv_msg_i[31:0]
& npe_busy
= instr_req
=+
-
=
»F ami_rcv_msg_i[31:0]
= npe_busy
& instr_req

& total_power

= fotal_power

Figure 6.19: Time-based power graph of version 7 together with several signals.

Figure 6.19 shows the results of the time-based power analysis performed on version 7. All of the
graphs (signal waveforms and power graphs) are color-coded to the core they belong to. Orange stands
for core 1, turquoise stands for core 2, while purple stands for core 3. Similar to previous versions, all
of the cores exhibit similar behavior in their consumption of power. This version’s power consumption
is similar to version 6, with the cores consuming around 0.012 W when idle, and a maximum of 0.0135
when active. To obtain more precise numbers that represent the power consumption, average mode
power analysis will be performed on the three active time periods of each core.

Ideal Power Calculation

Table 6.18: Average power consumption of version 7, during the active time of core 1 (Active 1). All power values are in Watts.

Instance Pct_cells | Leakage | Internal Switching | Total

u_seneca_ncc_0 | 25.00% | 2.80E-03 | 5.71E-03 | 4.86E-04 | 9.00E-03
u_seneca _ncc_1 | 25.00% 2.80E-03 | 5.11E-03 | 1.22E-04 | 8.03E-03
u_seneca_ncc_2 | 25.00% | 2.80E-03 | 5.11E-03 | 1.22E-04 | 8.03E-03

Table 6.19: Average power consumption of version 7, during the active time of core 2 (Active 2). All power values are in Watts.

Instance Pct_cells | Leakage | Internal Switching | Total

u_seneca_ncc_1 | 25.00% | 2.80E-03 | 5.71E-03 | 4.86E-04 | 9.00E-03
u_seneca_ncc_0 | 25.00% 2.80E-03 | 5.11E-03 | 1.22E-04 | 8.03E-03
u_seneca_ncc_2 | 25.00% | 2.80E-03 | 5.11E-03 | 1.22E-04 | 8.03E-03

Table 6.20: Average power consumption of version 7, during the active time of core 3 (Active 3). All power values are in Watts.

Instance Pct_cells | Leakage | Internal Switching | Total

u_seneca_ncc_2 | 25.00% | 2.80E-03 | 5.71E-03 | 4.86E-04 | 9.00E-03
u_seneca_ncc_0 | 25.00% | 2.80E-03 | 5.11E-03 | 1.22E-04 | 8.03E-03
u_seneca _ncc_1 | 25.00% 2.80E-03 | 5.11E-03 | 1.22E-04 | 8.03E-03

The results of the average power analysis are shown in Tables 6.18, 6.19, and 6.20. The results here
are not vastly different from version 6, although the Table 6.18 does show a slight increase in the power
consumption of core 1, the active core. This is presumably due to the reduction in the pipeline stalls.
While pipeline stalls still consume power, they do so at a lower rate than other operations, and other
operations being packed together more densely will cause an increase in power consumption. By using
the numbers in the tables above to calculate the total energy consumed with Equation 5.1, we obtain
the number of 0.000047 J, or 0.047 mJ.

6.6. Ideal Power Calculation

In this section, we will calculate the ideal energy consumption for a single inference using SENeCA.
Earlier, in Chapter 5, we have calculated the energy consumptions of basic NPE operations executed
individually. Since the benchmarking program can be broken down to basic NPE operations, it is pos-
sible to calculate the theoretical minimum energy required to do one inference, by calculating the types
and number of operations required, and multiplying that by the energy consumptions of each operation.
Then, we will compare the results from the actual run of the benchmarking program to the theoretical
minimum.

Since version 7 is the most energy efficient and the one that has the shortest execution time, we will
calculate the number of required operations by referring to the algorithm of version 7. However, it
should be noted that the energy consumption of an iteration depends slightly on the input data, since
the input data determines the number of events that the EVC captures, for example. Therefore, we will
use the first frame of the first audio recording as the input vector, since all of the tests run thus far have
used that input vector. To know the number of events that are triggered when processing the input
vector, we run version 7 again, and we print the number of events per layer. The simulation screen
can be seen in Figure 6.20. This run is done with a 500MHz clock to save time, hence the different
timestamps at which the program terminates. We know from this figure that the number of events for
each layer are 83, 15, and 3, respectively.

6.6. Ideal Power Calculation 101

shidqi® 8 @uxapplOnlfimec/otherflenavl/shidqi®8/lenavl/cfg/data/software/riscv_mpl... - o x

File Edit View Search Terminal Help

ects/power benchmarkOutput/riscv3Z-unknown-elf-bin/power benchmarkOutput.sram" 1
nto memory (GEEEEOG0)

Loaded file "/imec/other/lenavl/shidgi98/lenavl/cfg/data/software/riscv_mpl/proj
ects/axon_test/riscv3Z-unknown-elf-bin/axon_test.sram" into memory (G080000C)

719.57 us th Tog NCC_3 : AXON test

722.29 us th log NCC @ : MNeuron CoPro test, layer 1
722.59 us th Tog NCC_Z : Neuron CoPro test, layer 3
724 .84 us tbh Teg NCC 1 : Neuron CoPro test, layer 2
725.23 us th_Tlog NCC_8 : Running loop :0@

1032.30 us th Tog NCC @ : Loop done, begin sending!
1632.76 us th_log NCC_8 Mumber of events :83
1639.00 us th Tog NCC_1 Input Stream Finished
1639.64 us th log NCC_ 1 Running the loop!

1131.58 us th Tog NCC_1 : Loop done, begin sending!
1132.085 us tbh Tog NCC 1 : MNumber of events :1&
1134.11 us th_log NCC_Z : Input Stream Finished
1134.73 us th Teog NCC 2 Funning the loop!

1158.083 us th_log NCC_Z Done!

1151.168 us th Tog NCC_Z Mumber of events :3

Figure 6.20: Simulation run of version 7, showing the number of events per layer.

To calculate the ideal energy, first we must break down the benchmarking program to its most basic
operations. The main components are the NPE loops, of which there are 3 types: the matrix multiplica-
tion loop, bias and activation loop with event triggering (denoted T in the table) and bias and activation
loop with the event not triggering (denoted NT in the table). The energy consumed to execute one of
these loops is calculated by adding invididual operations that make up the loop. The calculation results
for the 3 loop types are shown in Table 6.21. The energy values are in nanojoules (nJ). As a side note,
the energy consumption for individual NPE operations are taken from Table 5.13.

Table 6.21: Ideal energy consumption of the 3 types of loops found in the benchmarking program. All values are in nanojoules.

MM Loop Bias and Activation Loop (NT) | Bias and Activation Loop (T)
OpCode | Number | Energy | OpCode | Number | Energy | OpCode | Number | Energy
MLD 5 0.187 MLD 2 0.075 MLD 2 0.075
MUL 4 0.074 ADD 1 0.019 ADD 1 0.019
ADD 4 0.075 GEQ 1 0.018 GEQ 1 0.018
NOP 9 0.157 MUL 1 0.019 MUL 1 0.019
MST 1 0.043 EVC 1 0.018 EVC 1 0.019
Total 0.536 Total 0.148 Total 0.149

After obtaining the energy consumption values for the 3 types of loops available, we need to calculate
how many of these loops are executed in a single inference. Also, we need to consider the other
operations required to run the program, namely the communcations between the cores. To make this
easier, we will consider the number of operations per layer. Table 6.22 shows the number of loops
per layer of each type, and the number of events sent and received by each layer. The number of
operations are then accumulated based on the type, and the results are shown under the "Total” column.
The numbers in this column are then multiplied by the energy consumption values of the loops (from
Table 6.21) and events (from Table 5.13). All of the energy values shown in this table are in nanojoules
(nJd).

6.7. Accuracy Comparison 102

Table 6.22: Ideal number of operations and energy consumption (in nJ) of the benchmarking program, shown per layer.

Type Layer 1 | Layer 2 | Layer 3 | Total | Energy
MM loop 3104 672 32 3808 | 2.0409
BA loop (T) 11 2 1 14 0.0021
BA loop (NT) 21 30 1 52 0.0077
Event received | 390 83 15 488 | 0.0086
Event sent 83 15 0 98 0.0017
Total 2.06

The final value of 2060 nJ, or 2.06 nJ, is the ideal energy consumption of SENeCA running version 7
of the benchmarking program.

6.7. Accuracy Comparison

In this section we will analyze the accuracy of the SENeCA implementation of the benchmarking pro-
gram compared to the baseline described in Chapter 4. As noted before, the implementations on
SENeCA (from version 2 onwards) all use the bf16 number format. Therefore, we will measure the
impact of the precision loss of this decision on accuracy. As mentioned, there are 192 matrices that
represent the transformed audio recordings. These audio recordings are of varying lengths. To mea-
sure the accuracy, we decided to pick 10 of these recordings as samples, and feed them as input to
version 7 of the benchmarking program run on SENeCA. This was done due to time limitations, as
SENeCA did not exist yet as a physical chip during the time of writing, and simulations generally run
much slower than a physical chip. Since the experiments until now had all been with a single frame as
input, we need to modify the source code to allow multi-input processing. This was done by altering
the testbench source file so that the testbench feeds multiple vectors in succession as input.

Bastline=720.532u5
-Baselinev=810.468us

Figure 6.21: Multi-input run waveforms of version 7.

Figure 6.23 shows the waveforms of the simulation running version 7 of the benchmarking program
with multiple inputs. As before, the names and traces are color-coded to their source cores, purple
for core 1, turquoise for core 2, and orange for core 3. The cursors marks when the program starts
(Baseline), when input 1 is finished (TimeA), and when input 2 is finished (TimeB). The process then
continues (not shown in the figure).

As mentioned previously in Chapter 4, the output of the neural network (a 29-element vector) repre-
sents the possibility of a sound/letter being uttered during the 10ms of recording that the input vector
represents. Each element of the output vector represents the probability of one sound being uttered,
and the element with the highest probability is chosen for every frame. This results in a sequence of
sounds/letters, and from this sequence it is determined if the target phrase (in this dataset, "Aloha”)
is in the character sequence. The conversion of output vectors to character sequences is done by an
external program run on a PC. Therefore, to check the accuracy, we can check the output character
sequences of version 7 run on SENeCA and compare them to the outputs of the baseline PC version
developed in Python. Alternatively, to get a more accurate picture of the accuracy loss, we can also
compare the output vectors of the PC version and SENeCA and see the differences.

6.8. Summary of Results and Discussion 103

While the study on which this thesis is based on proved that Loihi can be more accurate than the PC
version [14], we did not have access to it during the time of writing and therefore only had the PC
version as comparison.

Table 6.23: Accuracy comparisons of the baseline model implemented on a PC with with version 7 on SENeCA.

No | Phrase Predicted (PC) | Predicted (SENeCA) | Accuracy loss | Error rate
1 "Aloha” Aloha Aloha 0% 3.71%
2 "All the while” aohaf aohaf 0% 5.20%
3 ”"Aloha” Aloha Aloha 0% 1.20%
4 "Take a load off” | tae lohad f tae lohad 9% 8.35%
5 ”Aloha” Aloha Aloha 0% 1.61%
6 "Hello” lo lo 0% 9.13%
7 ”Aloha” Aloha Aloha 0% 2.98%
8 "Metal alloy” taohaloy taohaloy 0% 1.52%
9 ”Aloha” Aloha Aloha 0% 4.93%
10 | "How are you” h oare e e uyu | h oare e e uyu 0% 7.13%
Average 0.90% 4.58%

Table 6.23 summarizes the comparisons performed on the outputs from the PC and from SENeCA.
10 audio recordings were used in total, with varying lengths. The phrases that are uttered in these
recordings are listed in the "Phrase” column. To the right of that column, the predictions of the PC
version and SENeCA are listed. As stated before, the main function of the program is to determine
whether or not "Aloha” is uttered in the recording. In this context, both versions produce the exact
same results, with no loss in accuracy by the SENeCA version (phrases 1,3,5,7,9 are predicted as
including "Aloha”, while the others are predicted to not include it). However, they do exhibit differences
when the predicted phrases themselves are compared. More specifically, phrase No. 4 ("Take a load
off”) is predicted differently by the two versions, with the SENeCA version lacking a final ’f". The other
phrases are predicted identically by both versions.

Finally, we also compared the output vectors of the two versions. Since they use different number
formats, we wanted to see how much this affects the results, and we do this by the following method.
Taking the first frame from the first recording as an example, this frame is fed into the two programs,
generating two output vectors. The greatest element of each output vector is chosen, and the difference
between the two numbers is calculated. That difference is then divided by the greatest element of the
output vector from the PC version. We take this as the error rate. By doing this for all of the frames in
phrase 1, and taking the average of all error rates, we obtain the number 3.71 %. We then repeat this
for all of the phrases, and the results are listed in the "Error rate” column in Table 6.23.

6.8. Summary of Results and Discussion

Table 6.24 gives the summary of the optimizations implemented in the different software versions used
in the experiments in this chapter, and 6.25 gives the summary of the results, including the results of the
same benchmark performed on Loihi from [14]. The third and fourth columns show the total average
power and the corresponding energy-to-solution values calculated from the total average power values.
The fifth and sixth columns show the average dynamic power and the corresponding energy-to-solution
values. The average dynamic power is calculated by adding the internal and switching power values
shown in the average power tables in this chapter.

For versions 2 to 7, a few trends can be observed. First, the power consumption of one version is
generally slightly higher than the previous version. That is to be expected, since each version intro-
duces an optimization that either uses a new component or tries to compress the operations time-wise.
This naturally results in a higer power consumption. Howeve, the execution time decreases for every
version, showing that the optimizations introduced are effective. Compared to the implementation on

6.8. Summary of Results and Discussion 104

Loihi obtained from [14], we can see that the implementation on SENeCA is faster and more energy
efficient, with comparable accuracy. One thing that should be noted is that the technology nodes used
by SENeCA and Loihi are different (GF 22 nm vs Intel 14 nm), so the comparisons below might be
different if the same technology node is used.

Table 6.24: Summary of the optimization implemented in each software version.

Software | Optimization

Version 2 | Basic usage of the NPE (neural processors)
Version 3 | Loop unrolling using 2 elements

Version 4 | Loop unrolling using 4 elements

Version 5 | Ultilization of the Event Capture Unit
Version 6 | Utilization of the Loop Buffer

Version 7 | Pipeline optimization of the MM loop

Table 6.25: Summary of the power and energy of all versions and Loihi from [14]

Software | Time (us) | Power (T) (mW) | Energy (T) (mJ) | Power (D) (mW) | Energy (D) (mJ)
Version 2 | 22253 24.6414 0.548 17.3703 0.387

Version 3 | 17778 24.6458 0.438 17.5203 0.311

Version 4 | 15113 24.8418 0.375 17.9583 0.271

Version 5 | 12973 24.9458 0.324 18.2703 0.237

Version 6 | 2692 24,9558 0.067 18.0003 0.048

Version 7 | 1899 25.0558 0.048 18.6003 0.035

Loihi 3378 110.00 0.37 81.00 0.27

One reason why SENeCA performs better than Loihi for this specific DNN application is because Loihi
implements rate coding to send events between neurons. In a dense layer of a DNN, if a neuron fires,
it sends a numerical value to neurons of the next layer. With rate coding, a neuron sends multiple
signals to the destination neuron instead. These signals do not have values, since it is their timing
of the transmission that will be interpreted by the destination neuron as the value. Therefore, multiple
signals have to be sent every time a neuron is fired. on the other hand, SENeCA uses data packets that
is sent by a neuron when it fires. These data packets contain values, so one transmission is enough.
This is more efficient with regards to energy. Other than that, the use of an x86 processor [22] in the
Loihi chip might also cause it to consume more power than needed, while SENeCA uses a RISC-V
Ibex core [5] that is more suited for low power or embedded applications.

As mentioned in Chapter 3, the main design principle of SENeCA is flexibility and efficiency so that
it can adapt to multiple types of neural network architectures [109]. Loihi, on the other hand, seems
to be more suited to Spiking Neural Network architectures due to its built-in communication protocols
between cores using rate coding, while in this study, the use of the DNN forces it to send events
using multiple spikes. Therefore, the results might be different if an SNN-based application is used
as the benchmark. Furthermore, since Loihi includes an on-chip learning accelerator, a benchmark
that includes the learning process (as opposed to this inference-only application) may also highlight its
strength more.

To gain a better insight into the power consumption of the individual components that make up a
SENeCA NCC core, a table detailing the power consumption of the components running version 7
of the benchmarking software is presented in Appendix A, since the table is quite large. Nevertheless,
here we shall describe the main points of interest that can be inferred from that table.

Figure 6.22 shows a graph of the power consumption of a single SENeCA core (NCC) during its active
time when running version 7 of the benchmarking software. Since the power consumption of the NCP
(containing the NPEs and data memory) greatly exceeds that of the other components, a logarithmic
scale is used. From the graph, we can see that the NCP, containing the majority of the memory cells
dominate the power consumption. The power consumption of the AMI and the Ibex core was reduced

6.8. Summary of Results and Discussion 105

with the use of power gating, which is also applied to several components of the NCP (with the exception
of the data memory). For components that cannot be power-gated, such as the SRAM blocks of both
the instruction memory and the data memory, clock gating was used. "Others” here refers to the power
consumption the mux/arbiter of the NCC, as well as other components that were not relevant such as
the SMPU, RV timer, etc.

Power Distribution by Component (NCC)

AXON MESSAGING INTERFACE + PERIPHERALS 5.16E+01

OTHERS

Com pone nit

IBEX CORE + PERIPHERALS 4.72E+02

MEUROM CO-PROCESSOR

[| [
1.00E+00 1.00E+01 1.00E+02 1.00E+03 1.00E+04
Power consumption (uWW)

Figure 6.22: Breakdown of power consumption by component for a single core (NCC).

Figure 6.23 shows a logarithmic graph of the power consumption of a the NCP component depicted in
the bottom bar in Figure 6.22, broken down further to show the the NCP’s components. Again, as the
power consumption of the individual components vary significantly, we use a logarithmic scale in this
graph as well. As noted previously, the data memory is by far the most power-hungry component. Note,
however, that since the components of SENeCA are largely parametrizable, the power consumption of
different instances of SENeCA may vary. Here, 8 NPEs and 64 memory cells are used, as previously
stated in Chapter 5. For reference, the power consumption of a single memory cell is 62.1 W, while the
power consumption of a single NPE is 80.3 W, obtained by dividing their power consumption depicted
in Figure 6.23 by 64 and 8, respectively. The "others” bar refers to the minor components whose power
consumption is negligible to the other components.

Observing both Figure 6.23 and Table 6.25, we can see that the accelerators incorporated in SENeCA
such as the loop buffer (included in the pipeline controller) and the EVC have significant impact on
performance while consuming little power. For example, the use of the EVC to take advantage of the
sparsity of the events costs only around 60 W of extra power per core, but the execution time dropped
by around 20% (the change of the execution time from version 4 to version 5). Likewise, the use of
the loop buffer to reduce context switches between the NPEs and the Ibex core also yielded significant
results, around 80% (the change of the execution time from version 5 to version 6) while consuming
only around 10 uW.

6.8. Summary of Results and Discussion 106

Power Distribution by Component (NCP)

OTHERS
DATAMEMORY (&4 CELLS)
FIFELINE CONTROLLER 1.01E+01

INSTRUCTIONCACHE 3.82E+01

Com pone nt

EVEMT CAFTURE UMIT

MNPES (8 UNITS) 7.82E+02
| I

1.00E+00 1.00E+01 1.00E+02 1.00E+03 1.00E+04
Power consumption (uW)

Figure 6.23: Breakdown of power consumption by component for a single NCP.

On the other hand, the power consumption of the memory block is still very high. Observing the table
in Appendix A, the percentage of the power consumption wasted as leakage power is quite high, at
around 30%. While these numbers are still within the order of magnitude of the leakage power stated by
the datasheet of the memory blocks provided by Global Foundries (not disclosed here for confidentiality
reasons), optimizations with regard to the power consumption of the memory is desirable. One possible
thing is to implement clock gating to individual memory cells instead of the entire block. Also, since the
sizes of layers in the neural network used here vary (also applies to the neural networks used in other
benchmarking studies, such as [17] and [92]), a core responsible for running a smaller layer does not
need as many memory cells active as other cores. Therefore,implementing power gating to unused
memory blocks to reduce power consumption might be possible, while still having identical physical
memory blocks for each core to maintain flexibility.

Conclusion

7.1. Overview

In this thesis, our main goal is to perform benchmarking on SENeCA [109], a new neuromorphic pro-
cessor design by IMEC The Netherlands. By conducting a literature study of the published research
regarding both neuromorphic processor designs and the benchmarking of these designs presented in
Chapter 2, we have identified several avenues in which improvement could be made, as follows:

» Since SENeCA is a new design, there are no benchmarking studies performed on it yet.

* Most benchmarks only have workloads running neural network architectures based on actual
real-world problems. While this is not an issue by itself, a workload to measure the individual
synaptic operations in conjunction with another real-world workload could provide more insight to
the performance.

» No benchmarking study thus far reports the power/energy consumption of individual components
or parts of a neuromorphic processor, only the power consumption of the entire chip.

To build upon the existing research, we adapted the keyword spotting program used previously as a
benchmark in [14] for use on SENeCA instead of developing one from scratch. The program takes
in a transformed audio recording as a vector, and infers if a certain keyword phrase is spoken in the
original audio recording. It uses a DNN architecture with three layers with two hidden layers. The
reasons why this program in particular was chosen, as explained in more detail in Chapter 4, include the
potential use of the application in situations that might benefit from lower power consumption provided
by neuromorphic architectures. Also, the fact that SENeCA is still in development at the time of writing
precluded the use of more complex network architectures such as those used in [17], or integration in
frameworks such as SNABSuite [76] and Nengo [11].

The Python source code for the benchmarking program was converted to C and adapted for use in
SENeCA, while preserving the architecture. The numbers used were also converted to the BF16 format
to conform to SENeCA's requirements. As explained in Chapter 5, two initial versions were developed,
one using only the conventional processor contained in SENeCA’s cores, and another using the neural
processors in an unoptimized fashion. A simple testbench that instantiates a 4-core SENeCA processor
was also developed. Using Cadence® XCelium as the simulation program, the two initial versions of
the benchmarking program were run on SENeCA, using an instance of SENeCA described in Chapter
5. After obtaining the simulation waveforms, the performance of these two versions were measured.
Finally, using Cadence® Joules, the simulation waveforms of both versions were analyzed to obtain
an estimation of the power consumption during the run. The power estimations include graphs that
show the power consumption of SENeCA's components over time, as well as their average power
consumption over the entire run. The power consumption numbers include the leakage, dynamic, as
well as the total power. Using these results the energy-to-solution numbers were calculated for both of

107

7.2. Discussion and Future Work 108

the initial versions. The results for the two initial versions are shown in Chapter 5.

Apart from the main workload described above, a secondary workload to test the power and energy
consumption of individual synaptic operations is also used for benchmarking. This workload has the
NPE processors execute a single instruction repeatedly for a time, followed by a loop of another instruc-
tion, until all of the possible instructions, listed in Chapter 3 are included. The same analysis as the one
done for the two initial versions of the main workload as described above is performed, obtaining the
power and energy consumption of each possible instruction. The results are broken down to show the
power/energy consumption of individual components making up the SENeCA core, and is presented
in Section 5.6.

The results mentioned above indicate that SENeCA's performance was not enough to process the
workload in real-time (by having a processing time of less than 10 ms), and the energy-to-solution was
significantly higher than Loihi [22], the neuromorphic processor that is used as comparison. To fully
realize SENeCA’s potential, optimizations were made on the software that uses the components and
accelerators present in SENeCA to improve the performance and energy efficiency. Among these are
the Event Capture Unit, Loop Buffer, as well as the register blocks present in the neural processors as
described in Chapter 3. The optimizations were done in five iterations to show the impact of the use of
these components individually. Together with the first two initial versions described above, in total there
are seven versions presented. Chapter 6 describes the optimization method and the C implementation
in detail, as well as the performance measurements and power consumption analysis for each iteration,
similar to what we did for the first two iterations.

The results of all iterations are presented in Section 6.8, including the results of the benchmarking
results of Loihi published in [14]. While the numbers for both the energy-to-solution as well as the time-
to-solution metrics are worse than Loihi for the earlier versions, the later versions perform comparably
to Loihi. Starting from version 5, the energy-to-solution numbers become lower than Loihi, while from
version 6, SENeCA outperforms Loihi in terms of both performance and energy consumption. By com-
paring the performance of SENeCA running the final optimized version of the benchmarking software,
we can see that the time-to-solution is 56% that of Loihi, while using only 12% of the energy required
by Loihi. Finally, an accuracy test was performed where the outputs of SENeCA are compared to the
outputs of the baseline PC implementation. We found that the accuracy loss is around 0.9%. Overall,
we can argue that the benchmarking software achieves its objectives; to measure the performance of
SENeCA while running a neural network workload that provides insight into its capabilities and limita-
tions for both its developers and future researchers.

7.2. Discussion and Future Work

This section describes topics or ideas that can be further investigated. During the process of writing
the thesis, we had some interesting ideas that we were unfortunately not yet able to realize. As such,
they may be a useful topic for research in the future.

» Try more extensive applications as a benchmark. In [20], Davies presented a list of suitable can-
didate applications for a neuromorphic benchmarking suite. Furthermore, in established bench-
marks for other fields such as SPEC [91], a suite consists of multiple benchmarks representing
different problems. While the neural network implemented in this thesis is one of possible use
case of a neuromorphic processor, more extensive and complicated applications using different
architectures (such as a CNN as done by Ceolini, et al. [17]) is needed to allow us to draw a better
conclusion. Since one of the goals of SENeCA is to be a flexible architecture that is capable of
running different architectures efficiently, performing benchmarking with only a single program is
not enough.

» Perform benchmarking for the training process as well. Here, the program used as a baseline for
the benchmarking software came with pre-trained weights, so we could only perform benchmark-
ing on the inference process. Performing it on the learning process would certainly be useful,
as the comparisons between neuromorphic chips can be more extensive. For example, Loihi is

7.2. Discussion and Future Work 109

equipped with an on-chip learning accelerator[22], so a benchmarking program that consists only
of inference cannot fully show Loihi’s strength.

Implement this methodology on other platforms. As mentioned previously, we did not have access
to other platforms than SENeCA, so we had to use data obtained from another study to perform
the comparison. Performing this benchmark on other platforms will make it more general, and
thus potentially usable.

Define a more general tool for benchmarking, or integrate SENeCA to other existing frameworks
such as SNABSuite [76] or Nengo [11]. While the benchmarking process here did provide in-
sight into the performance of SENeCA, a more general benchmarking suite that employs this
methodology would make it more efficient to benchmark multiple platforms.

For SENeCA, since the component that consumed the most energy was shown to be the data
memory, this could be a good target for optimizations. For example, the use of magnetoresistive
random access memory (MRAM) [30] could be an option. Alternatively, using clock gating per
memory cell instead of for the entire block, or using power gating to turn off the unused memory
cells in cores running smaller layers is also a possibility.

(1]
(2]

(3]

(4]

[5]

(6]

[7]

(8]

(9]
[10]

(1]
[12]

[13]

[14]

[15]

[16]

[17]

(18]

References

Abderazek Ben Abdallah and Khanh N Dang. Neuromorphic computing principles and organi-
zation. Springer Nature, 2022.

Jayesh Bapu Ahire. The Artificial Neural Networks Handbook: Part 1. Aug. 2018. URL: https:
//www.datasciencecentral.com/the-artificial-neural-networks-handbook-part-1/.

Filipp Akopyan et al. “Truenorth: Design and tool flow of a 65 mw 1 million neuron programmable
neurosynaptic chip”. In: IEEE transactions on computer-aided design of integrated circuits and
systems 34.10 (2015), pp. 1537—-1557.

Ronny Krashinsky et al. “NVIDIA Ampere Architecture In-Depth”. In: (2020). URL: https://
developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/.

PULP Team et al. lowRISC Ibex. https://github.com/lowRISC/ibex. 2022.

Rami A Alzahrani and Alice C Parker. “Neuromorphic circuits with neural modulation enhanc-
ing the information content of neural signaling”. In: International Conference on Neuromorphic
Systems 2020. 2020, pp. 1-8.

Arnon Amir et al. “A Low Power, Fully Event-Based Gesture Recognition System”. In: 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2017, pp. 7388-7397. DOI:
10.1109/CVPR.2017.781.

Albert-Laszlé Barabasi. “Network science”. In: Philosophical Transactions of the Royal Society
A: Mathematical, Physical and Engineering Sciences 371.1987 (2013), p. 20120375.

Denilson Barbosa, loana Manolescu, and Jeffrey yu Xu. Microbenchmark. 2009.

Trevor Bekolay, Terrence C Stewart, and Chris Eliasmith. “Benchmarking neuromorphic sys-
tems with Nengo”. In: Frontiers in Neuroscience (2015), p. 380.

Trevor Bekolay et al. “Nengo: a Python tool for building large-scale functional brain models”. In:
Frontiers in neuroinformatics 7 (2014), p. 48.

Ben Varkey Benjamin et al. “Neurogrid: A mixed-analog-digital multichip system for large-scale
neural simulations”. In: Proceedings of the IEEE 102.5 (2014), pp. 699-716.

Drishti Beohar and Akhtar Rasool. “Handwritten digit recognition of MNIST dataset using deep
learning state-of-the-art artificial neural network (ANN) and Convolutional Neural Network (CNN)”.
In: 2021 International Conference on Emerging Smart Computing and Informatics (ESCI). IEEE.

2021, pp. 542-548.

Peter Blouw et al. “Benchmarking keyword spotting efficiency on neuromorphic hardware”. In:
Proceedings of the 7th annual neuro-inspired computational elements workshop. 2019, pp. 1-8.

Sumon Kumar Bose, Jyotibdha Acharya, and Arindam Basu. “Is my Neural Network Neuromor-
phic? Taxonomy, Recent Trends and Future Directions in Neuromorphic Engineering”. In: 2019
53rd Asilomar Conference on Signals, Systems, and Computers. 2019, pp. 1522-1527. DOI:
10.1109/IEEECONF44664.2019.9048891.

Andrew S Cassidy and Andreas G Andreou. “Beyond Amdahl’s law: An objective function that
links multiprocessor performance gains to delay and energy”. In: IEEE Transactions on Com-
puters 61.8 (2011), pp. 1110-1126.

Enea Ceolini et al. “Hand-gesture recognition based on EMG and event-based camera sen-
sor fusion: A benchmark in neuromorphic computing”. In: Frontiers in Neuroscience 14 (2020),
p. 637.

Gal Chechik, Isaac Meilijson, and Eytan Ruppin. “Synaptic pruning in development: a computa-
tional account”. In: Neural computation 10.7 (1998), pp. 1759-1777.

110

https://www.datasciencecentral.com/the-artificial-neural-networks-handbook-part-1/
https://www.datasciencecentral.com/the-artificial-neural-networks-handbook-part-1/
https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
https://github.com/lowRISC/ibex
https://doi.org/10.1109/CVPR.2017.781
https://doi.org/10.1109/IEEECONF44664.2019.9048891

References 111

[19]

[20]

[21]

[22]
[23]
[24]

[25]

[26]

[27]
(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Federico Corradi and Giacomo Indiveri. “A neuromorphic event-based neural recording system
for smart brain-machine-interfaces”. In: IEEE transactions on biomedical circuits and systems
9.5 (2015), pp. 699-709.

Mike Davies. “Benchmarks for progress in neuromorphic computing”. In: Nature Machine Intel-
ligence 1.9 (2019), pp. 386—-388.

Mike Davies et al. “Advancing Neuromorphic Computing With Loihi: A Survey of Results and
Outlook”. In: Proceedings of the IEEE 109.5 (2021), pp. 911-934. DOI: 10.1109/JPROC. 2021 .
3067593.

Mike Davies et al. “Loihi: A Neuromorphic Manycore Processor with On-Chip Learning”. In: IEEE
Micro 38.1 (2018), pp. 82—99. DOI: 10.1109/MM.2018.112130359.

Michael V. DeBole et al. “TrueNorth: Accelerating From Zero to 64 Million Neurons in 10 Years”.
In: Computer 52.5 (2019), pp. 20-29. DOI: 10.1109/MC.2019.2903009.

Stephen R Deiss et al. “A pulse-coded communications infrastructure for neuromorphic sys-
tems”. In: Pulsed neural networks (1999), pp. 157-178.

Tobi Delbruck and Shih-Chii Liu. “Data-driven neuromorphic DRAM-based CNN and RNN accel-
erators”. In: 2019 53rd Asilomar Conference on Signals, Systems, and Computers. IEEE. 2019,
pp. 500-506.

Lei Deng et al. “Tianjic: A Unified and Scalable Chip Bridging Spike-Based and Continuous
Neural Computation”. In: IEEE Journal of Solid-State Circuits 55.8 (2020), pp. 2228-2246. DOI:
10.1109/JSSC.2020.2970709.

Travis DeWolf, Pawel Jaworski, and Chris Eliasmith. “Nengo and low-power Al hardware for
robust, embedded neurorobotics”. In: Frontiers in Neurorobotics 14 (2020), p. 568359.

Rodney Douglas, Misha Mahowald, and Carver Mead. “Neuromorphic analogue VLSI”. In: An-
nual review of neuroscience 18 (1995), pp. 255-281.

Egm4313.s12. Neuron and myelinated axon, with signal flow from inputs at dendrites to outputs
at axon terminals. File: Neuron3.png. 2018. URL: https://commons . wikimedia . org/wiki/
File:Neuron3.png.

B.N. Engel et al. “A 4-Mb toggle MRAM based on a novel bit and switching method”. In: IEEE
Transactions on Magnetics 41.1 (2005), pp. 132—136. DOI: 10.1109/TMAG. 2004 .840847.

Enterprise artificial intelligence market revenue worldwide 2016-2025. en. https://wuw.sta
tista.com/statistics/607612/worldwide-artificial-intelligence-for-enterprise-
applications/. Accessed: 2022-9-3.

E. Paxon Frady et al. Neuromorphic Nearest-Neighbor Search Using Intel’s Pohoiki Springs.
2020. DOI: 10.48550/ARXIV.2004.12691. URL: https://arxiv.org/abs/2004.12691.

Charlotte Frenkel, Jean-Didier Legat, and David Bol. “MorphlIC: A 65-nm 738k-Synapse/mm?
Quad-Core Binary-Weight Digital Neuromorphic Processor With Stochastic Spike-Driven Online
Learning”. In: IEEE Transactions on Biomedical Circuits and Systems 13.5 (2019), pp. 999—-
1010. DOI: 10.1109/TBCAS.2019.2928793

Charlotte Frenkel et al. “A 0.086-mm #212.7-pJ/SOP 64k-synapse 256-neuron online-learning
digital spiking neuromorphic processor in 28-nm CMOS”. In: IEEE transactions on biomedical
circuits and systems 13.1 (2018), pp. 145-158.

Steve B. Furber et al. “The SpiNNaker Project”. In: Proceedings of the IEEE 102.5 (2014),
pp. 652—665. DOI: 10.1109/JPROC.2014.2304638

Todor Ganchev, Nikos Fakotakis, and George Kokkinakis. “Comparative evaluation of various
MFCC implementations on the speaker verification task”. In: Proceedings of the SPECOM.
Vol. 1. 2005. 2005, pp. 191-194.

Ankit Garg et al. “Dynamics of soil water content using field monitoring and Al: A case study
of a vegetated soil in an urban environment in China”. In: Sustainable Computing: Informatics
and Systems 28 (2020), p. 100301. ISSN: 2210-5379. DOI: https://doi.org/10.1016/j.
suscom . 2019 .01 .003. URL: https://www.sciencedirect . com/science/article/pii/
S5221053791830235X.

https://doi.org/10.1109/JPROC.2021.3067593
https://doi.org/10.1109/JPROC.2021.3067593
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/MC.2019.2903009
https://doi.org/10.1109/JSSC.2020.2970709
https://commons.wikimedia.org/wiki/File:Neuron3.png
https://commons.wikimedia.org/wiki/File:Neuron3.png
https://doi.org/10.1109/TMAG.2004.840847
https://www.statista.com/statistics/607612/worldwide-artificial-intelligence-for-enterprise-applications/
https://www.statista.com/statistics/607612/worldwide-artificial-intelligence-for-enterprise-applications/
https://www.statista.com/statistics/607612/worldwide-artificial-intelligence-for-enterprise-applications/
https://doi.org/10.48550/ARXIV.2004.12691
https://arxiv.org/abs/2004.12691
https://doi.org/10.1109/TBCAS.2019.2928793
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/https://doi.org/10.1016/j.suscom.2019.01.003
https://doi.org/https://doi.org/10.1016/j.suscom.2019.01.003
https://www.sciencedirect.com/science/article/pii/S221053791830235X
https://www.sciencedirect.com/science/article/pii/S221053791830235X

References 112

[38] Gartner forecasts worldwide Attificial Intelligence Software Market to reach $62 billion in 2022.
URL: https://www.gartner.com/en/newsroom/press-releases/2021-11-22-gartner-fo
recasts-worldwide-artificial-intelligence-software-market-to-reach-62-billion-
in-2022.

[39] Marc-Oliver Gewaltig and Markus Diesmann. “Nest (neural simulation tool)”. In: Scholarpedia
2.4 (2007), p. 1430.

[40] lan Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://www.deeplearn
ingbook.org. MIT Press, 2016.

[41] John L Gustafson. “Reevaluating Amdahl’'s law”. In: Communications of the ACM 31.5 (1988),
pp. 532-533.

[42] K. Hara and K. Nakayamma. “Comparison of activation functions in multilayer neural network
for pattern classification”. In: Proceedings of 1994 IEEE International Conference on Neural
Networks (ICNN’94). Vol. 5. 1994, 2997-3002 vol.5. DOI: 10.1109/ICNN.1994.374710.

[43] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). June 2016.

[44] John L Hennessy and David A Patterson. Computer architecture: a quantitative approach. El-
sevier, 2011.

[45] Geoffrey Hinton and Terrence J Sejnowski. Unsupervised learning: foundations of neural com-
putation. MIT press, 1999.

[46] Sebastian Hoppner et al. “The SpiNNaker 2 processing element architecture for hybrid digital
neuromorphic computing”. In: arXiv preprint arXiv:2103.08392 (2021).

[47] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedforward networks are
universal approximators”. In: Neural networks 2.5 (1989), pp. 359-366.

[48] Mark Horowitz. “1.1 Computing’s energy problem (and what we can do about it)”. In: IEEE, Feb.
2014, pp. 10-14. ISBN: 978-1-4799-0920-9. DOI: 10.1109/ISSCC.2014.6757323.

[49] Xiaohe Huang et al. “In-memory computing to break the memory wall”. In: Chinese Physics B
29.7 (2020), p. 078504.

[50] Giacomo Indiveri and Shih-Chii Liu. “Memory and information processing in neuromorphic sys-
tems”. In: Proceedings of the IEEE 103.8 (2015), pp. 1379-1397.

[51] Dmitry Ivanov et al. “Neuromorphic Artificial Intelligence Systems”. In: arXiv preprint arXiv:2205.13037
(2022).

[52] Benoit Jacob et al. “Quantization and training of neural networks for efficient integer-arithmetic-
only inference”. In: Proceedings of the IEEE conference on computer vision and pattern recog-
nition. 2018, pp. 2704—-2713.

[53] Nick Jakobi. “Minimal simulations for evolutionary robotics”. PhD thesis. University of Sussex,
1998.

[54] Nick Jakobi, Phil Husbands, and Inman Harvey. “Noise and the reality gap: The use of simulation
in evolutionary robotics”. In: European Conference on Attificial Life. Springer. 1995, pp. 704—
720.

[55] Norman Jouppi et al. “A domain-specific architecture for deep neural networks”. In. Communi-
cations of the ACM 61 (Aug. 2018), pp. 50-59. DOI: 10.1145/3154484.

[56] Norman Jouppi et al. “Motivation for and Evaluation of the First Tensor Processing Unit”. In:
IEEE Micro 38.3 (2018), pp. 10-19. DOI: 10.1109/MM.2018.032271057.

[57] Norman P. Jouppi et al. “In-datacenter performance analysis of a tensor processing unit”. In:
2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA). 2017,
pp. 1-12. DOI: 10.1145/3079856.3080246.

[58] Dhiraj Kalamkar et al. “A study of BFLOAT16 for deep learning training”. In: arXiv preprint
arXiv:1905.12322 (2019).

[59] Kumar Kapil et al. “Importance of String Matching in Real World Problems”. In: 3 (July 2014),
pp. 2319-7242.

https://www.gartner.com/en/newsroom/press-releases/2021-11-22-gartner-forecasts-worldwide-artificial-intelligence-software-market-to-reach-62-billion-in-2022
https://www.gartner.com/en/newsroom/press-releases/2021-11-22-gartner-forecasts-worldwide-artificial-intelligence-software-market-to-reach-62-billion-in-2022
https://www.gartner.com/en/newsroom/press-releases/2021-11-22-gartner-forecasts-worldwide-artificial-intelligence-software-market-to-reach-62-billion-in-2022
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1109/ICNN.1994.374710
https://doi.org/10.1109/ISSCC.2014.6757323
https://doi.org/10.1145/3154484
https://doi.org/10.1109/MM.2018.032271057
https://doi.org/10.1145/3079856.3080246

References 113

[60]

[61]

[62]
[63]

[64]

[65]
[66]
[67]

[68]

[69]

[70]

[71]

[72]

[73]
[74]
[75]
[76]
[77]

[78]

[79]

Aechan Kim, Mohyun Park, and Dong Hoon Lee. “Al-IDS: Application of Deep Learning to Real-
Time Web Intrusion Detection”. In: IEEE Access 8 (2020), pp. 70245-70261. DOI: 10.1109/
ACCESS.2020.2986882.

Jin Wook Kim, Eunsang Kim, and Kunsoo Park. “Fast Matching Method for DNA Sequences”.
In: Combinatorics, Algorithms, Probabilistic and Experimental Methodologies. Ed. by Bo Chen,
Mike Paterson, and Guochuan Zhang. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007,
pp. 271-281. ISBN: 978-3-540-74450-4.

Urs Kdster et al. “Flexpoint: An adaptive numerical format for efficient training of deep neural
networks”. In: Advances in neural information processing systems 30 (2017).

Alex Krizhevsky, llya Sutskever, and Geoffrey E Hinton. “Imagenet classification with deep con-
volutional neural networks”. In: Communications of the ACM 60.6 (2017), pp. 84—90.

Patrick Lichtsteiner, Christoph Posch, and Tobi Delbruck. “A 128 x 128 120db 30mw asyn-
chronous vision sensor that responds to relative intensity change”. In: 2006 IEEE International
Solid State Circuits Conference-Digest of Technical Papers. IEEE. 2006, pp. 2060—2069.

Mike Loukides. Al adoption in the enterprise 2021. Apr. 2021. URL: https://www.oreilly.
com/radar/ai-adoption-in-the-enterprise-2021/.

Matthew Thomas Martinez. “An Overview of Google’s Machine Intelligence Software Tensor-
Flow.” In: (2016).

Peter Mattson et al. “Mlperf training benchmark”. In: Proceedings of Machine Learning and
Systems 2 (2020), pp. 336—-349.

Christian Mayr, Sebastian Hoeppner, and Steve Furber. “Spinnaker 2: A 10 million core pro-
cessor system for brain simulation and machine learning”. In: arXiv preprint arXiv:1911.02385
(2019).

Vittorio Mazzia et al. “Real-Time Apple Detection System Using Embedded Systems With Hard-
ware Accelerators: An Edge Al Application”. In: IEEE Access 8 (2020), pp. 9102-9114. DOI:
10.1109/ACCESS.2020.2964608.

Carver Mead. “Neuromorphic Electronic Systems”. In: Proceedings of the IEEE 78 (10 1990),
pp. 1629-1636. ISSN: 15582256. DOI: 10.1109/5.58356.

Paul A. Merolla et al. “A million spiking-neuron integrated circuit with a scalable communication
network and interface”. In: Science 345.6197 (Aug. 2014), pp. 668-673. DOI: 10.1126/science.
1254642.

Orlando Moreira et al. “NeuronFlow: a neuromorphic processor architecture for live Al applica-
tions”. In: 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE.
2020, pp. 840-845.

John Nolte. “The human brain”. In: An Introduction to Its Functional Anatomy. (2002).

Kyoung Su Oh and Keechul Jung. “GPU implementation of neural networks”. In: Pattern Recog-
nition 37 (6 June 2004), pp. 1311-1314. ISSN: 0031-3203. DOI: 10.1016/J.PATC0OG.2004.01.
013.

Garrick Orchard et al. “Efficient neuromorphic signal processing with loihi 2”. In: 2021 IEEE
Workshop on Signal Processing Systems (SiPS). IEEE. 2021, pp. 254-2509.

Christoph Ostrau et al. “Benchmarking and Characterization of event-based Neuromorphic Hard-
ware”. In: 2019.

Christoph Ostrau et al. “Benchmarking of neuromorphic hardware systems”. In: Proceedings of
the Neuro-inspired Computational Elements Workshop. 2020, pp. 1-4.

Eustace Painkras et al. “SpiNNaker: A 1-W 18-Core System-on-Chip for Massively-Parallel Neu-
ral Network Simulation”. In: IEEE Journal of Solid-State Circuits 48.8 (2013), pp. 1943—1953.
DOI: 10.1109/JS8C.2013.2259038.

Eustace Painkras et al. “SpiNNaker: A 1-W 18-core system-on-chip for massively-parallel neural
network simulation”. In: IEEE Journal of Solid-State Circuits 48.8 (2013), pp. 1943-1953.

https://doi.org/10.1109/ACCESS.2020.2986882
https://doi.org/10.1109/ACCESS.2020.2986882
https://www.oreilly.com/radar/ai-adoption-in-the-enterprise-2021/
https://www.oreilly.com/radar/ai-adoption-in-the-enterprise-2021/
https://doi.org/10.1109/ACCESS.2020.2964608
https://doi.org/10.1109/5.58356
https://doi.org/10.1126/science.1254642
https://doi.org/10.1126/science.1254642
https://doi.org/10.1016/J.PATCOG.2004.01.013
https://doi.org/10.1016/J.PATCOG.2004.01.013
https://doi.org/10.1109/JSSC.2013.2259038

References 114

(80]

[81]
[82]
[83]
[84]
[85]
[86]

[87]

[88]

[89]

[90]

[91]
[92]
[93]

[94]

[99]
[96]
[97]
(98]
[99]

[100]

D.A. Patterson and J.L. Hennessy. Computer Organization and Design: The Hardware/Software
Interface. ISSN. Elsevier Science, 2008. ISBN: 9780080922812. URL: https://books.google.
de/books?id=3b63x-0P3%5C_UC.

Jing Pei et al. “Towards artificial general intelligence with hybrid Tianjic chip architecture”. In:
Nature 572.7767 (2019), pp. 106-111.

Mihai A Petrovici et al. “Characterization and compensation of network-level anomalies in mixed-
signal neuromorphic modeling platforms”. In: PloS one 9.10 (2014), e108590.

Thomas Pfeil et al. “Six networks on a universal neuromorphic computing substrate”. In: Fron-
tiers in neuroscience 7 (2013), p. 11.

Sebastian Ruder. “An overview of gradient descent optimization algorithms”. In: arXiv preprint
arXiv:1609.04747 (2016).

Marcel Salathé, Thomas Wiegand, and Markus Wenzel. “Focus group on artificial intelligence
for health”. In: arXiv preprint arXiv:1809.04797 (2018).

Catherine D Schuman et al. “A survey of neuromorphic computing and neural networks in hard-
ware”. In: arXiv preprint arXiv:1705.06963 (2017).

Biswa Sengupta, Simon Barry Laughlin, and Jeremy Edward Niven. “Consequences of convert-
ing graded to action potentials upon neural information coding and energy efficiency”. In: PLoS
computational biology 10.1 (2014), e1003439.

Shy Shoham, Daniel H O’Connor, and Ronen Segev. “How silent is the brain: is there a “dark
matter” problem in neuroscience?” In: Journal of Comparative Physiology A 192.8 (2006), pp. 777—
784.

Sumit B Shrestha and Garrick Orchard. “Slayer: Spike layer error reassignment in time”. In:
Advances in neural information processing systems 31 (2018).

Fedor Shvetsov, Anton Konushin, and Anna Sokolova. “Neural Network Model for Face Recog-
nition from Dynamic Vision Sensor”. In: Proceedings of the 30th International Conference on
Computer Graphics and Machine Vision (GraphiCon 2020). Part 2 (Dec. 2020), short17-1. DOI:
10.51130/graphicon-2020-2-4-17.

Standard Performance Evaluation Corporation. URL: https: //www . spec . org/benchmarks .
html.

Terrence C Stewart et al. “Closed-loop neuromorphic benchmarks”. In: Frontiers in neuroscience
9 (2015), p. 464.

Andreas Stdckel et al. “Binary associative memories as a benchmark for spiking neuromorphic
hardware”. In: Frontiers in computational neuroscience 11 (2017), p. 71.

John E Stone, David Gohara, and Guochun Shi. “OpenCL: A parallel programming standard
for heterogeneous computing systems”. In: Computing in science & engineering 12.3 (2010),
p. 66.

Jan Stuijt et al. “uBrain: An event-driven and fully synthesizable architecture for spiking neural
networks”. In: Frontiers in neuroscience 15 (2021), p. 538.

Fati Tahiru. “Al in education: A systematic literature review”. In: Journal of Cases on Information
Technology (JCIT) 23.1 (2021), pp. 1-20.

Monideepa Tarafdar, Cynthia M Beath, and Jeanne W Ross. “Using Al to enhance business
operations”. In: MIT Sloan Management Review 60.4 (2019), pp. 37—44.

Ryan Taylor and Xiaoming Li. “A micro-benchmark suite for AMD GPUSs”. In: 2010 39th Interna-
tional Conference on Parallel Processing Workshops. IEEE. 2010, pp. 387-396.

Gianvito Urgese et al. “Benchmarking a many-core neuromorphic platform with an MPI-based
dna sequence matching algorithm”. In: Electronics 8.11 (2019), p. 1342.

Sacha J Van Albada et al. “Performance comparison of the digital neuromorphic hardware SpiN-
Naker and the neural network simulation software NEST for a full-scale cortical microcircuit
model”. In: Frontiers in neuroscience 12 (2018), p. 291.

https://books.google.de/books?id=3b63x-0P3%5C_UC
https://books.google.de/books?id=3b63x-0P3%5C_UC
https://doi.org/10.51130/graphicon-2020-2-4-17
https://www.spec.org/benchmarks.html
https://www.spec.org/benchmarks.html

References 115

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

Stefan Van Der Walt, S Chris Colbert, and Gael Varoquaux. “The NumPy array: a structure for
efficient numerical computation”. In: Computing in science & engineering 13.2 (2011), pp. 22—
30.

Reinhold P Weicker. “Dhrystone: a synthetic systems programming benchmark”. In: Communi-
cations of the ACM 27.10 (1984), pp. 1013-1030.

Samuel Williams, Andrew Waterman, and David Patterson. “Roofline: An Insightful Visual Per-
formance Model for Multicore Architectures”. In: Commun. ACM 52.4 (Apr. 2009), pp. 65-76.
ISSN: 0001-0782. DOI: 10.1145/1498765.1498785. URL: https://doi-org. tudelft.idm.
oclc.org/10.1145/1498765.1498785.

John Wuu et al. “3D V-Cache: the Implementation of a Hybrid-Bonded 64MB Stacked Cache
for a 7nm x86-64 CPU”. In: 2022 IEEE International Solid- State Circuits Conference (ISSCC).
Vol. 65. 2022, pp. 428—-429. DOI: 10.1109/ISSCC42614.2022.9731565.

Cheng-Xin Xue et al. “16.1 a 22nm 4mb 8b-precision reram computing-in-memory macro with
11.91 to 195.7 tops/w for tiny ai edge devices”. In: 2021 IEEE International Solid-State Circuits
Conference (ISSCC). Vol. 64. |IEEE. 2021, pp. 245-247.

Joseph Yacim and Douw Boshoff. “Impact of Artificial Neural Networks Training Algorithms on
Accurate Prediction of Property Values”. In: Journal of Real Estate Research 40 (Nov. 2018),
pp. 375-418. DOI: 10.1080/10835547.2018.12091505.

Yexin Yan et al. “Low-Power Low-Latency Keyword Spotting and Adaptive Control with a SpiN-
Naker 2 Prototype and Comparison with Loihi”. In: arXiv preprint arXiv:2009.08921 (2020).

Amirreza Yousefzadeh et al. “Multiplexing AER asynchronous channels over LVDS links with
flow-control and clock-correction for scalable neuromorphic systems”. In: 2017 IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS). IEEE. 2017, pp. 1-4.

Amirreza Yousefzadeh et al. “SENeCA: Scalable Energy-efficient Neuromorphic Computer Ar-
chitecture”. In: ().

https://doi.org/10.1145/1498765.1498785
https://doi-org.tudelft.idm.oclc.org/10.1145/1498765.1498785
https://doi-org.tudelft.idm.oclc.org/10.1145/1498765.1498785
https://doi.org/10.1109/ISSCC42614.2022.9731565
https://doi.org/10.1080/10835547.2018.12091505

Breakdown of Power Consumption by
Component

This appendix contains the table of the average power consumption of Core 1 during its active time
running version 7 of the benchmarking software. Components that are high in the hierarchy are color
coded, with red for the NCC (Core), yellow for the components that are directly below that, and beige
for the components directly below the yellow ones. All power consumption values are shown in Watts
(W).

116

117

Instance Cells Pct_cells | Leakage | Internal Switching | Total Lvl
NCC 121083 | 25.00% | 2.80E-03 | 5.72E-03 | 4.86E-04 | 9.00E-03 | 1
NCP 70966 | 14.66% | 2.78E-03 | 4.95E-03 | 2.76E-04 | 8.01E-03 | 2
NPEs + DMEM | 70442 | 14.55% | 2.78E-03 | 4.94E-03 | 2.74E-04 | 8.00E-03 | 3
Data Memory 27548 | 5.69% 2.78E-03 | 4.32E-03 | 1.25E-04 | 7.22E-03 | 4
DMEM1 185 0.04% 4.33E-05 | 2.10E-03 | 3.57E-06 | 2.15E-03 | 5
DMEM2 180 0.04% 4.33E-05 | 2.36E-05 | 1.43E-06 | 6.84E-05 | 5
DMEM3 180 0.04% 4.33E-05 | 2.36E-05 | 1.42E-06 | 6.84E-05 | 5
DMEM4 188 0.04% 4.33E-05 | 2.26E-05 | 1.59E-06 | 6.75E-05 | 5
DMEMS5 180 0.04% 4.33E-05 | 2.26E-05 | 1.58E-06 | 6.75E-05 | 5
DMEM6 180 0.04% 4.33E-05 | 1.77E-05 | 1.35E-06 | 6.24E-05 | 5
DMEM7 180 0.04% 4.33E-05 | 1.76E-05 | 1.32E-06 | 6.22E-05 | 5
DMEMS8 188 0.04% 4.33E-05 | 1.75E-05 | 1.30E-06 | 6.22E-05 | 5
DMEM9 180 0.04% 4.33E-05 | 1.75E-05 | 1.28E-06 | 6.22E-05 | 5
DMEM10 188 0.04% 4.33E-05 | 1.75E-05 | 1.26E-06 | 6.21E-05 | 5
DMEM11 180 0.04% 4.33E-05 | 1.75E-05 | 1.26E-06 | 6.21E-05 | 5
DMEM12 180 0.04% 4.33E-05 | 1.75E-05 | 1.26E-06 | 6.21E-05 | 5
DMEM13 180 0.04% 4.33E-05 | 1.75E-05 | 1.27E-06 | 6.21E-05 | 5
DMEM14 180 0.04% 4.33E-05 | 1.75E-05 | 1.27E-06 | 6.21E-05 | 5
DMEM15 180 0.04% 4.33E-05 | 1.75E-05 | 1.27E-06 | 6.21E-05 | 5
DMEM16 180 0.04% 4.33E-05 | 1.75E-05 | 1.27E-06 | 6.21E-05 | 5
DMEM17 180 0.04% 4.33E-05 | 1.75E-05 | 1.27E-06 | 6.21E-05 | 5
DMEM18 180 0.04% 4.33E-05 | 1.75E-05 | 1.27E-06 | 6.21E-05 | 5
DMEM19 180 0.04% 4.33E-05 | 1.75E-05 | 1.27E-06 | 6.21E-05 | 5
DMEM20 180 0.04% 4.33E-05 | 1.75E-05 | 1.27E-06 | 6.21E-05 | 5
DMEM21 180 0.04% 4.33E-05 | 1.75E-05 | 1.27E-06 | 6.21E-05 | 5
DMEM22 180 0.04% 4.33E-05 | 1.75E-05 | 1.27E-06 | 6.21E-05 | 5
DMEM23 180 0.04% 4.33E-05 | 1.75E-05 | 1.27E-06 | 6.21E-05 | 5
DMEM24 180 0.04% 4.33E-05 | 1.75E-05 | 1.27E-06 | 6.21E-05 | 5
DMEM25 180 0.04% 4.33E-05 | 1.75E-05 | 1.27E-06 | 6.21E-05 | 5

118

Instance Cells | Pct_cells | Leakage | Internal Switching | Total Lvl
DMEM26 180 0.04% 4.33E-05 | 1.75E-05 | 1.27E-06 | 6.21E-05 | 5
DMEM27 180 0.04% 4.33E-05 | 1.75E-05 | 1.27E-06 | 6.21E-05 | 5
DMEM28 180 0.04% 4.33E-05 | 1.75E-05 | 1.27E-06 | 6.21E-05 | 5
DMEM29 180 0.04% 4.33E-05 | 1.75E-05 | 1.27E-06 | 6.21E-05 | 5
DMEM30 180 0.04% 4.33E-05 | 1.75E-05 | 1.27E-06 | 6.21E-05 | 5
DMEM31 180 0.04% 4.33E-05 | 1.75E-05 | 1.27E-06 | 6.21E-05 | 5
DMEM32 180 0.04% 4.33E-05 | 1.75E-05 | 1.27E-06 | 6.21E-05 | 5
DMEM33 188 0.04% 4.33E-05 | 1.75E-05 | 1.26E-06 | 6.21E-05 | 5
DMEM34 180 0.04% 4.33E-05 | 1.75E-05 | 1.26E-06 | 6.21E-05 | 5
DMEM35 180 0.04% 4.33E-05 | 1.75E-05 | 1.27E-06 | 6.21E-05 | 5
DMEM36 180 0.04% 4.33E-05 | 1.75E-05 | 1.26E-06 | 6.21E-05 | 5
DMEM37 180 0.04% 4.33E-05 | 1.75E-05 | 1.25E-06 | 6.21E-05 | 5
DMEM38 180 0.04% 4.33E-05 | 1.75E-05 | 1.26E-06 | 6.21E-05 | 5
DMEM39 180 0.04% 4.33E-05 | 1.75E-05 | 1.26E-06 | 6.21E-05 | 5
DMEM40 180 0.04% 4.33E-05 | 1.75E-05 | 1.26E-06 | 6.21E-05 | 5
DMEM41 180 0.04% 4.33E-05 | 1.75E-05 | 1.26E-06 | 6.21E-05 | 5
DMEM42 180 0.04% 4.33E-05 | 1.75E-05 | 1.25E-06 | 6.21E-05 | 5
DMEM43 180 0.04% 4.33E-05 | 1.75E-05 | 1.25E-06 | 6.21E-05 | 5
DMEM44 180 0.04% 4.33E-05 | 1.75E-05 | 1.25E-06 | 6.21E-05 | 5
DMEM45 180 0.04% 4.33E-05 | 1.75E-05 | 1.25E-06 | 6.21E-05 | 5
DMEM46 180 0.04% 4.33E-05 | 1.75E-05 | 1.25E-06 | 6.21E-05 | 5
DMEM47 180 0.04% 4.33E-05 | 1.75E-05 | 1.25E-06 | 6.21E-05 | 5
DMEM48 180 0.04% 4.33E-05 | 1.75E-05 | 1.25E-06 | 6.21E-05 | 5
DMEM49 180 0.04% 4.33E-05 | 1.75E-05 | 1.25E-06 | 6.21E-05 | 5
DMEM50 180 0.04% 4.33E-05 | 1.75E-05 | 1.25E-06 | 6.21E-05 | 5
DMEMS51 180 0.04% 4.33E-05 | 1.75E-05 | 1.25E-06 | 6.21E-05 | 5
DMEM52 180 0.04% 4.33E-05 | 1.75E-05 | 1.25E-06 | 6.21E-05 | 5
DMEM53 180 0.04% 4.33E-05 | 1.75E-05 | 1.25E-06 | 6.21E-05 | 5
DMEM54 180 0.04% 4.33E-05 | 1.75E-05 | 1.25E-06 | 6.21E-05 | 5
DMEM55 180 0.04% 4.33E-05 | 1.75E-05 | 1.25E-06 | 6.21E-05 | 5
DMEM56 180 0.04% 4.33E-05 | 1.75E-05 | 1.25E-06 | 6.21E-05 | 5
DMEM57 180 0.04% 4.33E-05 | 1.75E-05 | 1.25E-06 | 6.21E-05 | 5
DMEM58 180 0.04% 4.33E-05 | 1.75E-05 | 1.25E-06 | 6.21E-05 | 5
DMEM59 180 0.04% 4.33E-05 | 1.75E-05 | 1.24E-06 | 6.21E-05 | 5
DMEMG60 180 0.04% 4.33E-05 | 1.75E-05 | 1.24E-06 | 6.21E-05 | 5
DMEM®61 180 0.04% 4.33E-05 | 1.75E-05 | 1.24E-06 | 6.21E-05 | 5
DMEM®62 180 0.04% 4.33E-05 | 1.75E-05 | 1.24E-06 | 6.21E-05 | 5
DMEM®63 180 0.04% 4.33E-05 | 1.75E-05 | 1.23E-06 | 6.21E-05 | 5
DMEMG64 180 0.04% 4.33E-05 | 1.75E-05 | 1.23E-06 | 6.21E-05 | 5
NPEs 42880 | 8.86% 7.13E-06 | 6.26E-04 | 1.49E-04 | 7.82E-04 | 4
NPE1 4285 | 0.88% 6.61E-07 | 6.53E-05 | 1.46E-05 | 8.05E-05 | 5
NPE2 4285 | 0.88% 6.61E-07 | 6.52E-05 | 1.46E-05 | 8.05E-05 | 5
NPE3 4285 | 0.88% 6.61E-07 | 6.53E-05 | 1.45E-05 | 8.05E-05 | 5
NPE4 4285 | 0.88% 6.61E-07 | 6.52E-05 | 1.46E-05 | 8.04E-05 | 5
NPES 4285 | 0.88% 6.60E-07 | 6.52E-05 | 1.45E-05 | 8.04E-05 | 5
NPEG6 4285 | 0.88% 6.60E-07 | 6.52E-05 | 1.45E-05 | 8.04E-05 | 5
NPE7 4285 | 0.88% 6.61E-07 | 6.52E-05 | 1.45E-05 | 8.03E-05 | 5
NPE8 4285 | 0.88% 6.61E-07 | 6.52E-05 | 1.45E-05 | 8.03E-05 | 5
Event Capture Unit | 6172 | 1.27% 1.38E-06 | 6.48E-05 | 1.44E-07 | 6.64E-05 | 5
Instruction Cache | 2198 | 0.45% 4.15E-07 | 3.05E-05 | 7.28E-06 | 3.82E-05 | 5

119

Instance Cells | Pct_cells | Leakage | Internal Switching | Total Lvl
Pipeline Controller 142 0.03% 2.35E-08 | 8.10E-06 | 1.98E-06 | 1.01E-05 | 5
DMEM TLuL Adapter 290 0.06% 7.42E-08 | 3.00E-06 | 1.59E-06 | 4.67E-06 | 3
TLuL Adapter Registers | 66 0.01% 1.48E-08 | 8.32E-07 | 8.80E-08 | 9.35E-07 | 3
Ibex Core + Peripherals | 32601 | 6.73% 5.21E-06 | 2.78E-04 | 1.89E-04 | 4.72E-04 | 2
Ibex Core 32521 | 6.72% 5.19E-06 | 2.77E-04 | 1.87E-04 | 4.70E-04 | 3
Ibex: Registers 4740 | 0.98% 9.63E-07 | 1.25E-04 | 2.22E-05 | 1.48E-04 | 4
Ibex: EX Block 5729 | 1.18% 9.16E-07 | 4.36E-05 | 7.23E-05 | 1.17E-04 | 4
Ibex: PMP 14230 | 2.94% 1.61E-06 | 2.14E-05 | 3.35E-05 | 5.65E-05 | 4
Ibex: IF Block 1399 | 0.29% 2.85E-07 | 3.56E-05 | 1.67E-05 | 5.26E-05 | 4
Ibex: CSR Registers 4082 | 0.84% 9.08E-07 | 2.35E-05 | 1.73E-05 | 4.18E-05 | 4
Ibex: ID Block 1620 | 0.33% 3.49E-07 | 1.26E-05 | 1.64E-05 | 2.93E-05 | 4
Ibex: WB Block 123 0.03% 443E-08 | 9.76E-06 | 4.61E-06 | 1.44E-05 | 4
Ibex: LS Block 525 0.11% 8.61E-08 | 4.61E-06 | 2.44E-06 | 7.14E-06 | 4
Ibex: Instruction FIFO 39 0.01% 1.37E-08 | 9.69E-07 | 9.66E-07 | 1.95E-06 | 3
Ibex: Data FIFO 33 0.01% 4.22E-09 | 3.38E-08 | 1.07E-07 | 1.45E-07 | 3
Ibex: TLuL Adapter 7 0.00% 6.30E-10 | 5.91E-09 | 2.64E-08 | 3.29E-08 | 3
Instruction Memory 6 0.00% 3.61E-06 | 3.81E-04 | 5.14E-07 | 3.85E-04 | 2
AMI + Peripherals 9750 | 2.01% 2.27E-06 | 4.92E-05 | 1.63E-07 | 5.16E-05 | 2
AMI 9659 | 1.99% 2.25E-06 | 4.84E-05 | 1.16E-07 | 5.08E-05 | 3
AMI Receive Buffer 7524 | 1.55% 1.74E-06 | 3.43E-05 | 6.81E-08 | 3.62E-05 | 4
AMI Send Buffer 2019 | 0.42% 4.79E-07 | 1.38E-05 | 5.54E-09 | 1.43E-05 | 4
AMI TLuL Adapter 88 0.02% 2.17E-08 | 7.59E-07 | 4.56E-08 | 8.26E-07 | 3
Multiplexer/Arbiter 4414 | 0.91% 6.36E-07 | 1.69E-05 | 1.13E-05 | 2.89E-05 | 2
IMEM TLuL Adapter 454 0.09% 1.04E-07 | 1.58E-05 | 9.13E-06 | 2.51E-05 | 2
External Memory DMA | 1623 | 0.34% 3.46E-07 | 1.42E-05 | 7.42E-07 | 1.53E-05 | 2
RV Timer 1240 | 0.26% 1.83E-07 | 6.22E-06 | 0.00E+00 | 6.40E-06 | 2
Debugger 7 0.00% 6.47E-10 | 0.00E+00 | 0.00E+00 | 6.47E-10 | 2

	Abstract
	Abstract
	Preface
	Introduction
	Motivation
	Problem Statement
	State of the Art
	Contribution
	Thesis Organization

	Neuromorphic Architectures and Benchmarking
	Artificial Neural Network
	Limits of Traditional CPU
	GPU and TPU
	Principles of Neuromorphic Architectures
	Usage of Non-von Neumann Architecture
	Low Overhead of Information Transmission
	Sparsity of Data Streams

	Examples of Current Neuromorphic Architectures
	TrueNorth
	Intel Loihi
	SpiNNaker
	Tianjic

	Benchmarking of Neuromorphic Processors
	Closed-loop Neuromorphic Benchmark
	The Nengo Platform for Benchmarking
	Benchmarking SpiNNaker With DNA Sequence Matching Algorithm
	SNABSuite
	Hand Gesture Recognition Benchmark
	Keyword Spotting Benchmark

	Architecture of SENeCA
	Introduction
	Detailed Architecture
	RISC-V Core (Ibex)
	Axon Messaging Interface (AMI)
	Shared Memory Pre-fetch Unit
	Neuron Co-Processor (NCP)
	Network on Chip (NoC)
	Synthesis Results

	Comparison of SENeCA with Other Architectures
	With SpiNNaker
	With IBM TrueNorth
	With Intel Loihi

	Software Architecture and Implementation
	Keyword Spotting
	Reproduction and Simplification of DNN Model
	Implementation on SENeCA
	RISC-V Only Implementation
	Baseline NPE Implementation

	Methodology and Preliminary Results
	Experiment Setup and Flow
	Execution Time Measurements
	Power Measurements
	Average Power Estimation
	Time-based Power Estimation

	Results for Version 1 : RISC-V Implementation
	Execution Time Measurements
	Power Measurements

	Results for Version 2 : Baseline NPE Implementation
	Execution Time Measurements
	Power Measurements

	Power Estimation of Basic NPE Operations

	Optimizations and Final Results
	Results of Version 3 : Loop Unrolling With 2 Elements
	Optimization method and Implementation
	Execution Time Measurements
	Power Measurements

	Results of Version 4: Loop Unrolling With 4 Elements
	Optimization Method and Implementation
	Execution Time Measurements
	Power Measurements

	Results of Version 5: Utilization of the Event Capture Unit
	Optimization Method and Implementation
	Execution Time Measurements
	Power Measurements

	Results of Version 6: Utilization of the Loop Buffer
	Optimization Method and Implementation
	Execution Time Measurements
	Power Measurements

	Results of Version 7: Final Version
	Optimization Method and Implementation
	Execution Time Measurements
	Power Measurements

	Ideal Power Calculation
	Accuracy Comparison
	Summary of Results and Discussion

	Conclusion
	Overview
	Discussion and Future Work

	References
	Breakdown of Power Consumption by Component

