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Abstract

Alzheimer’s disease (AD) is a neurodegenerative disease affecting r oughly 4 0 m illion p eople. 7 0% o f the 
heritability of AD is expected to be explained by Structural Variants (SVs), however these have been scarcely 
studied in the context of AD. This study aims to find S Vs a ssociated w ith A D a nd t o i nvestigate the 
properties of these correlated SVs. To this end, a dataset created using Third Generation Sequencing of 
Single Nucleotide Polymorphisms (SNPs) and their correlation with SVs was utilised and combined with 
the full summary statistics and fine-mapped r esults o f a  l arge AD G enome W ide A ssociation S tudy. This 
resulted in 85 unique SVs with significant c orrelations t o k nown A D a ssociated S NPs, o f w hich 5  were 
also discovered in previous research, and 80 were novel. SVs were then associated with their nearest genes, 
however this resulted in a relatively low overlap with known AD genes and few to no results when applied to 
Gene Set Enrichment Analysis. Additionally, the data was tested for enrichment of Tandem Repeats (TRs), 
Transposable Elements, regulatory elements and mechanisms of gene expression, which found enrichment of 
TRs and heterochromatin areas and a depletion of deletions, weak enhancers, and transcription elongation 
areas.

Key words: Alzheimer’s disease (AD), structural variant (SV), single nucleotide polymorphism (SNP), third 
generation sequencing (TGS)

Introduction

Alzheimer’s Disease (AD) is a neurodegenerative disease which

affects about 40 million people, most of whom are over 65 years

old [1]. People with AD exhibit symptoms such as disorientation,

cognitive impairment and memory loss. More than 20 factors

involved in the progression of AD have already been identified.

These include the formation of Amyloid Beta (Aβ) plaques, which

are deposits of the Aβ protein — a fragment of the Amyloid-

beta Precursor Protein (APP) — primarily in the brain, and the

formation of neurofibrillary tangles, which are an aggregate of tau

proteins that deteriorate the structural support of neurons [2].

Studying the genetic factors influencing a disease, may provide

better insight into the workings of a disease and its possible

treatments. Genome Wide Association Studies (GWAS) aim to

identify associations between the genotype and the expression

of traits by testing for differences in the frequency of genetic

components between individuals exhibiting a trait and a control

group [3].

As of writing, the NHGRI-EBI GWAS Catalog reports over 150

different GWAS done into AD, some of which include more than a

million individuals [4]. However, all of these studies consider only

one particular type of genetic component called a Single Nucleotide

Polymorphism (SNP). SNPs are a single base pair change and

are therefore the simplest form of variance in the DNA [5]. SNPs

occur all throughout the genome and most of them are expected to

have no functional consequences [6]. Depending on their location

however, SNPs may influence gene expression, although their

functional consequences may be non-obvious [7].

Another form of genetic variance are Structural Variants (SVs).

These are variants of more than fifty base pairs in size, including

Transposable Elements (TEs), which come in the form of insertions

and deletions of sequences of base pairs; Tandem Repeats (TRs),

which are sequences of base pairs that are repeated multiple times

in a row; and more [8]. Due to their size, SVs result in larger

changes to the genome than SNPs and can therefore have a greater

functional impact [6]. Moreover, the functional impact of SVs

usually increases with their size [9]. SVs are also able to affect

genes up to hundreds of kilobases away [9] and they often affect

multiple genes at once [10].

Variants can influence gene expression in many different ways.

Variants which appear in the parts of genes from which proteins

are transcribed, alter the proteins themselves and may thereby

influence their functionality [11]. Intergenic variants can also
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affect gene expression through mechanisms such as regulatory

elements [10, 11], which are regions outside of genes which regulate

the expression of nearby genes [12].

The gene or genes affected by a genomic variant are usually

the genes closest in the genome to the variants themselves [3]. The

location of genes and variants within the genome are specified in

relation to a reference genome, which is a digital and representative

version of the entire genome of a species assembled from a large

number of donors [13]. A different method of identifying the genes

affected by SNPs is to make use of Quantitative Trait Loci (QTL).

QTLs are positions in the genome, called loci, that are associated

with the variation of a cell- or tissue-specific quantitative trait [14].

Many large-scale QTL studies have publicly available results using

which, the genes influenced by a SNP can be determined.

Given a set of affected genes, it is possible to determine

the affected biological functions through Gene Set Enrichment

Analysis (GSEA). GSEA determines which functions associated

with a gene set used as input are statistically over represented.

To this end, GSEA makes use of databases such as gene ontology

databases, which maintain the biological functions of genes and

their products [15]. The statistically over represented genes are

then returned as output.

One factor complicating the interpretation of the functional

implications of genetic variants is the concept of Linkage

Disequilibrium (LD). LD refers to the non-random association of

genetic variants at different positions in the genome. This implies

that certain genetic variants, also those of different types such

as SNPs and SVs, tend to appear together in the genome [16]. To

account for LD in GWAS, fine-mapping is employed. Fine-mapping

aims to cluster all SNPs found, around the few most statistically

significant SNPs, which can then be used as a representative set

of the results for reporting [3].

All AD-related SNPs found thus far, have been unable to

explain the estimated heritability of AD of 70% [8]. Given that

many GWAS with large sample sizes have already been performed,

it seems likely that other genetic components besides SNPs are

influencing AD. SVs are a likely candidate and are expected to

account for most of the missing heritability of AD [8].

SVs have been studied scarcely in the past, due to the difficulty

in detecting them accurately [10]. In spite of this, some studies

have made use of such technologies to find SVs associated with

AD.

Wang et al. [8] summarises the landscape of SV analysis in

AD and the AD associated SVs that have been found. The

publication outlines the SVs found in more than 10 papers. These

10 papers were studied, however they all rely on older sequencing

technologies that are unable to accurately capture SVs. Moreover

some of the studies make use of relatively small sample sizes as

low 60 individuals.

In a subsequent work, Wang et al. [17] found a significant

burden of deletions and duplications in AD cases with a sample size

of 16,905 subjects collected by the Alzheimer’s Disease Sequencing

Project (ADSP). Moreover, the study reports 21 SVs in LD with

AD associated SNPs and 45 ultra-rare SVs on AD genes. However,

this work also relies on sequencing technologies that are unable to

capture SVs accurately.

Recent advances in sequencing technologies, referred to as

Third Generation Sequencing (TGS), have improved the detection

of SVs significantly compared to previous methods [18]. TGS

technologies provide new opportunities for more comprehensive

studies of SVs than ever. Using these new technologies, a dataset

was created from 214 individuals of which 93 are patients with

AD and the rest are cognitively healthy centenarians. The dataset

details the correlation between the length of two types of SVs

— TEs and TRs — and SNPs within 500 kilobases up- and

downstream of the SV. The correlation is given as a two-sided

p-value calculated using a linear regression model and adjusted

for population stratification. As of this writing, the dataset has

not been made publicly available, and only one study has utilized

the data. However, this study focuses on a single SV, thereby using

only a portion of the full dataset.

This study aims to employ the SNP-SV dataset to identify new

correlations between SVs and AD, and to investigate the properties

of these correlated SVs, the associated genes, and their functions.

To the best of our knowledge, this is the first paper to make full

use of such a dataset, detailing the correlations between SNPs and

the length of SVs, with the aim of finding SVs correlated with AD.

Methodology

SNP-SV Dataset Description

A total of 214 individuals, of which 93 are patients diagnosed

with Alzheimer’s disease from Amsterdam University Medical

Center were included [21]. The remaining 121 individuals are

Dutch or Dutch-speaking, cognitively healthy centenarians from

the 100-plus Study cohort [22]. All participants included in

these cohorts consented to the studies performed and provided

written informed consent for participation in the genetic studies.

Additional information regarding the study cohort is available

elsewhere [23].

Only the SVs observed in at least eleven genomes (2.5%) were

included in the dataset. Every SV was aligned to the reference

genome GRCh38 patch 14 and was classified as being either

a TR or TE. For the association between SVs and SNPs, a

QTL approach was taken, where the size of the SV was used

as a quantitative trait. This approach was chosen in favour

of an LD approach due to the high variability of SVs. For

each SV the association between SV size and SNPs within 500

kilobases up/downstream of the SV location was determined using

a linear regression model adjusted for population stratification.

It is important to note, that the AD status of the individuals

was not used during the analysis and that the data represents

SNP-SV correlations without any relation made to AD. To ensure

privacy and confidentiality, the obtained results were processed

into summary statistics which cannot be traced back to any specific

person. This dataset will henceforth be referred to as the SNP-SV

dataset.

SNP-AD Dataset Description

To link the SNP-SV correlation data to AD, a dataset containing

SNP-AD associations was needed. To this end, results from

the study titled “New insights into the genetic etiology of

Alzheimer’s disease and related dementias” were used [20]. From

this study, a dataset containing all collected SNP-AD correlation

values, henceforth referred to as the full summary statistics;

and the reported results after fine-mapping and gene annotation,

henceforth referred to as the fine-mapped results, were used. The

study was selected due to its high citation count, large sample

size of more than 780,000 participants of which over 111,000 are

AD cases, and the availability of the full summary statistics. The

full summary statistics were used in conjunction with the SNP-SV
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dataset to find SVs associated with AD through SNPs associated

with both. Both the full summary statistics and fine-mapped

results were obtained from GWAS catalog [4].

Fig. 1: Flowchart of the performed analysis. Rounded boxes

are used to represent the different datasets used. The diamonds

represent different actions or analyses performed on the datasets.

An arrow that points towards a box indicates that all the actions

in the box are performed for the originating dataset.

Data Analysis

Figure 1 shows an outline of the analytical steps taken and may

be used as a visual aid for understanding the ensuing process

description. The full summary statistics, SNP-SV dataset and fine-

mapped results reference the datasets described in the preceding

sections.

First, all associations with a p-value greater than the suggestive

significance level of 1 · 10−5 in the full summary statistics were

filtered out, because higher p-values were deemed insignificant, as

per the study from which the data originated [20]. All SNP-SV

associations in the SNP-SV dataset with a p-value greater than

1 · 10−5 were also filtered out.

Next, the full summary statistics and the fine-mapped results

were merged with the SNP-SV dataset. The datasets were merged

on the location, chromosome, locus, and the allele of the SNP

to study the effect of SVs on AD-risk SNPs. When combining

the datasets, the alleles corresponding to a positive association

(β-value > 0) with AD were used. This required matching on the

effect allele when the β-value was greater than 0, and flipping the

sign of the β-value as well as matching on the alternative allele

otherwise.

Add (SNP &) SV gene annotation. For both the SNPs

and SVs, the closest upstream (U/S) and downstream (D/S)

genes were calculated based on the positions of genes in reference

genome GRCh38 patch 14. Gene symbols with the ”LOC” prefix

were removed, because many are largely uncharacterised. When

a variant was located entirely within a gene, the encompassing

gene was used as both the nearest upstream and downstream gene.

From the nearest upstream and downstream gene, the one closest

to the variant was chosen as the final nearest gene. This approach

is subsequently referred to as the nearest-gene approach. This

approach was chosen in favour of other QTL-based approaches due

to a lack of available QTL data for SVs. The nearest-gene approach

was not used for the SNPs in the dataset derived from the fine-

mapped results, because all SNPs had already been mapped to

genes using more rigorous analysis [20]. The nearest-gene approach

applied to the SNPs in the fine-mapped results showed a 91%

overlap between the genes, demonstrating the efficacy of the

nearest-gene approach.

The gene-annotated dataset derived by combining the full

summary statistics with the SNP-SV dataset will be referred to

as the full AD-SNP-SV dataset. Similarly, the gene-annotated

dataset obtained by merging the fine-mapped results with the

SNP-SV dataset will be referred to as the fine-mapped AD-

SNP-SV dataset. The gene and function overlap analysis as well

as the SV type enrichment analysis were performed for both

the aforementioned datasets, whereas the the regulatory element

enrichment analysis and SV verification steps were only conducted

for the fine-mapped AD-SNP-SV dataset.

Gene overlap analysis. To gain better insight into the

identified genes, the overlap between the genes found and known

AD associated genes was calculated. The known genes were

extracted by collecting the gene annotations of the SNPs in the

fine-mapped results. For the SNPs mapped to multiple genes,

all the genes were included. The genes from the full and fine-

mapped AD-SNP-SV datasets were extracted using three different

methods. Method 1. Select all unique genes closest to the SVs.

Method 2. Select all unique nearest upstream and downstream

genes to the SVs. Method 3. Select the unique nearest upstream

and downstream genes to the SVs, which are also the nearest

gene to the corresponding SNP. For the fine-mapped AD-SNP-

SV dataset, the mapped gene of the corresponding SNP is used

instead of the nearest gene. The second and third methods were

added as two alternative methods with the aim of achieving a

more significant overlap with the known AD genes. The second

method was chosen, because SVs on average affect 1.82 nearby

genes [10], thus the nearest upstream and downstream genes are

most likely to be affected by a SV. The third method was chosen

such that only those genes which are close to both the SV and the

corresponding SNP are selected. A gene with two nearby variants

has a higher chance of being influenced. A Venn diagram of the

overlap between the gene sets retrieved using the three methods

and the set of known genes was calculated after stripping all genes

of any additional gene suffixes such as “-AS1” or “-DT”. The gene

suffixes were removed to focus solely on the genes, excluding any

specific transcripts.

Function overlap analysis. All sets of genes obtained using

the three methods previously described were further studied using

GSEA with the online g:Profiler functional profiling tool [24]. The

databases used were, Gene Ontology biological processes, KEGG,

Reactome and HP. When prompted, the ensemble ID with the

most Gene Ontology annotations was chosen. Lastly, the overlap

between the outputted functional implications of the gene sets with

the GSEA results of the fine-mapped result genes was calculated

and studied to understand whether the biological pathways match

up with the known pathways.

SV type enrichment analysis. To attain greater insight

into the SVs found, calculations were done to determine whether

TRs, insertions or deletions were enriched or depleted relative to

the SNP-SV dataset. These calculations were done using a Fisher

exact test to obtain an OR-value and p-value, which were then

adjusted for multiple testing using Bonferroni correction.
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Regulatory element enrichment analysis. To better

understand the mechanisms by which the identified SVs generally

influence gene expression, the SVs were mapped to a regulatory

element or other mechanism of gene expression. This mapping

utilised a dataset that partitions the genome into regions and

their corresponding regulatory element or other mechanism of gene

expression, as described in the study titled “Mapping and analysis

of chromatin state dynamics in nine human cell types” [25]. This

dataset will henceforth be referred to as the regulatory element

dataset. This dataset was selected due to its high citation count

and its partitioning of the entire genome. This full partitioning is

important given the limited number of SVs, as a sparse dataset

would lead to few results.

The regulatory element dataset is based on the NCBI36

reference genome, which is an older version than the GRCh38

reference genome used in the fine-mapped AD-SNP-SV dataset.

Therefore, this dataset had to be realigned to reference genome

GRCh38. The realignment was performed using the pyliftover

python package [26] in conjunction with the UCSC Chain file for

converting from NCBI36 to GRCh38 [27]. Once realigned, every

SV was assigned the regulatory elements or other mechanisms of

gene expression of the region or regions the SV overlaps. The

mapped element of all SVs were then tested for enrichment and

depletion relative to the original dataset, using another Fischer

exact test with Bonferroni correction for multiple testing.

SV verification. To verify the correctness of the SVs found

using the methods described, the 21 SVs presented in the study

titled “Structural Variation Detection and Association Analysis of

Whole-Genome-Sequence Data from 16,905 Alzheimer’s Diseases

Sequencing Project Subjects” were used [8]. This study was

chosen, because it presented the largest number of AD associated

SVs and provides these SVs with their exact location based on

reference genome GRCh38. All SVs in the fine-mapped AD-SNP-

SV dataset were compared with the 21 SVs in LD with AD from

the study. SVs were said to match if they are of the same SV

type and are on the same chromosome. Furthermore the SVs must

have start loci within 100 base pairs of one another and in the

case of TRs, they must also have end loci within 100 base pairs of

one another to account for small differences in length, measuring

errors and differences in the reference genomes used.

Results

Detailed overview of the datasets

Table 1 shows statistics regarding the size and the number of

elements in the SNP-SV dataset, the full summary statistics,

the full AD-SNP-SV dataset, the fine-mapped results, and the

fine-mapped AD-SNP-SV dataset. Table 1 shows that 5,248 of

the 12,634 SNPs (41.54%) present in the full summary statistics

appear in the SNP-SV dataset. A similar percentage appears for

the fine-mapped results, where 39 SNPs out of the 89 (43.82%) in

the fine-mapped results are included in the fine-mapped AD-SNP-

SV dataset.

Figures 2 to 4 provide a detailed overview of the full AD-SNP-

SV dataset in detail. Figure 2 displays the association p-values

between AD, SNPs, and SVs using a Miami plot and highlights

some of the genes that appear in both the results as well as the fine-

mapped AD-SNP-SV dataset. The SNP-SV pairs exhibit much

stronger correlations on average than the SNP-AD pairs. This can

be attributed to the larger variance of SVs, given the wide range

of their sizes compared to SNPs.

Figure 3 presents a volcano plot of the β-values against

the corresponding p-values for the SNP-AD correlations, while

Figure 4 shows a similar plot, depicting the SNP-SV correlations

instead. Figure 3 shows relatively small β-values compared to

Figure 4, which can be explained by the small size of SNPs relative

to SVs. Additionally, the larger sample size used to collect the full

summary statistics, compared to the SNP-SV dataset, allows for

the detection of SNPs with very small effect sizes, further lowering

the observed effect sizes [28]. The marks in Figure 4 are placed

more sparsely than those in Figure 3. This observation may also

be explained by the larger variance of SVs compared to SNPs.

Lastly, the 85 AD-SNP-SV associations in the fine-mapped AD-

SNP-SV dataset are displayed in Table 2. The 25 associations

which are highlighted in Table 2, share the property that either

the upstream or the downstream gene is also the gene mapped to

the corresponding SNP. Or in other terms: the rows from which

the genes selected by method 3 when applied to the fine-mapped

AD-SNP-SV dataset originate are highlighted. The common gene

between the SNP and SV of these associations are expected to be

affected by both the SNP and the SV, therefore the expression of

this gene may be more strongly impacted.

As an example, the SNP rs6733839 located on chromosome 2

at locus 127135234, was found to be significantly associated with

AD (P = 6.48 · 10−90). A T nucleotide at the location of the SNP

is positively associated with AD (β = 0.17), meaning that a T

nucleotide increases the likelihood of developing AD. This SNP

was mapped to the genes NIFKP9 and BIN1 in the fine-mapped

results using a more rigorous method than the nearest-gene

approach [20]. These mapped genes are the genes which the SNP

is expected to affect. The SNP was found to be significantly

associated (P = 2.67 · 10−7) with the SV chr2:127119795:INS

which is an insertion on chromosome 2 at locus 127119795. The

SNP is positive associated with the length of this SV (β = 35.87),

indicating that the presence of the T nucleotide at the location of

the SNP is linked to a longer insertion. The nearest upstream and

downstream gene of the SV are CYP27C1 and BIN1 respectively,

with BIN1 being the closest. The SNP and the SV are thus both

expected to affect the BIN1 gene, suggesting that the expression

of this gene is strongly influenced in individuals with AD.

Table 1. Summary statistics of the datasets. For each dataset, the total size is given as the number of rows. The number of unique SNPs and SVs are

also indicated. Additionally, the counts of TRs, insertions, and deletions are provided, regardless of uniqueness.

Dataset Total Size #Unique SNPs #Unique SVs #TRs #Insertions #Deletions

SNP-SV dataset 7,209,765 3,535,362 22,590 3,323,889 1,993,380 1,892,496

Full summary statistics 12,634 12,634 N/A N/A N/A N/A

Full AD-SNP-SV dataset 11,841 5,248 307 6,329 3,379 2,133

Fine-mapped results 89 89 N/A N/A N/A N/A

Fine-mapped AD-SNP-SV dataset 85 39 85 52 21 12
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Table 2. Fine-mapped AD-SNP-SV dataset summary. For every SNP the corresponding rsID, location in the form of chromosome and position, correlation

with AD in the form of a p-value and β-value, and the gene(s) it was mapped to in the fine-mapped results are presented. The nucleotide the SNP and

SV were matched on is given in the Allele column. For every SV the corresponding identifier indicating its location and type, correlation with the SNP in

the form of a p-value and β-value, and the nearest up- and downstream genes are presented. The actual nearest gene to the SV is indicated by a dagger†.

Rows where either the nearest upstream gene or downstream gene of the SV is included in the SNP gene(s) are highlighted.

SNP ID Chrom Position SNP-AD P SNP β SNP Gene(s) Allele SV ID SNP-SV P SV β SV U/S Gene SV D/S Gene

rs679515 1 207577223 5.15e-33 0.12 CR1 T chr1:207213754-207214039:TR 1.93e-07 130.58 CD55 C4BPA†

rs17020490 2 37304796 3.29e-06 0.05 PRKD3 C chr2:37249519-37249678:TR 3.23e-24 29.69 NDUFAF7† NDUFAF7†

rs17020490 2 37304796 3.29e-06 0.05 PRKD3 C chr2:37166424-37166601:TR 7.71e-17 905.1 SULT6B1† EIF2AK2

rs6733839 2 127135234 6.48e-90 0.17 NIFKP9,BIN1 T chr2:127119795:INS 2.67e-07 35.87 CYP27C1 BIN1†

rs139643391 2 202878716 2.56e-07 0.06 WDR12 TC chr2:203251778-203251817:TR 5.13e-09 162.91 CYP20A1† CYP20A1†

rs139643391 2 202878716 2.56e-07 0.06 WDR12 TC chr2:202986867-202986908:TR 1.89e-11 36.86 CARF† CARF†

rs139643391 2 202878716 2.56e-07 0.06 WDR12 TC chr2:203034349:DEL 1.08e-75 -5438.84 NBEAL1† NBEAL1†

rs139643391 2 202878716 2.56e-07 0.06 WDR12 TC chr2:203257940:INS 8.02e-09 55.5 CYP20A1† CYP20A1†

rs10933431 2 233117202 1.04e-17 0.09 INPP5D C chr2:233143712-233144825:TR 7.00e-07 66.52 INPP5D† INPP5D†

rs61762319 3 155084189 2.14e-08 0.14 MME G chr3:155307274-155307534:TR 2.36e-07 40.45 PLCH1 STRIT1†

rs3822030 4 993555 5.04e-10 0.05 IDUA T chr4:1397436-1398660:TR 1.83e-07 -901.13 NKX1-1† UVSSA

rs3822030 4 993555 5.04e-10 0.05 IDUA T chr4:1391665-1391893:TR 5.36e-10 33.45 NKX1-1 UVSSA†

rs3822030 4 993555 5.04e-10 0.05 IDUA T chr4:1372668-1372904:TR 3.95e-08 131.82 UVSSA† UVSSA†

rs3822030 4 993555 5.04e-10 0.05 IDUA T chr4:1356977-1357314:TR 1.74e-09 -159.8 UVSSA† UVSSA†

rs3822030 4 993555 5.04e-10 0.05 IDUA T chr4:1282657-1283811:TR 7.18e-07 -99.52 MAEA† CTBP1-DT

rs3822030 4 993555 5.04e-10 0.05 IDUA T chr4:1278815-1279291:TR 2.62e-07 74.32 MAEA† CTBP1-DT

rs3822030 4 993555 5.04e-10 0.05 IDUA T chr4:1025958-1026310:TR 1.12e-06 -54.15 FGFRL1† FGFRL1†

rs3822030 4 993555 5.04e-10 0.05 IDUA T chr4:926812-928005:TR 1.64e-06 170.86 GAK† GAK†

rs3822030 4 993555 5.04e-10 0.05 IDUA T chr4:872915-873059:TR 3.74e-06 17.02 GAK† GAK†

rs3822030 4 993555 5.04e-10 0.05 IDUA T chr4:867472-867675:TR 1.87e-07 -23.42 GAK† GAK†

rs3822030 4 993555 5.04e-10 0.05 IDUA T chr4:1308029:INS 3.13e-09 -139.95 MAEA† MAEA†

rs3822030 4 993555 5.04e-10 0.05 IDUA T chr4:1391670:DEL 9.81e-10 -33.9 NKX1-1 UVSSA†

rs6846529 4 11023507 1.25e-13 0.07 LINC02498,MIR572 C chr4:10963590-10964348:TR 1.07e-16 16.12 HS3ST1 CLNK†

rs62374257 5 86927378 1.41e-13 0.07 LINC02059,MIR4280HG C chr5:87076866:INS 1.24e-07 124.3 LINC01949† LINC02059

rs113706587 5 180201150 3.38e-12 0.09 RASGEF1C A chr5:180296732-180296983:TR 1.73e-06 48.09 GFPT2† MAPK9

rs10947943 6 41036354 6.21e-06 0.05 OARD1,UNC5CL G chr6:40959080:INS 5.16e-15 -176.4 UNC5CL† LRFN2

rs7767350 6 47517390 5.05e-12 0.06 CD2AP T chr6:47345040:INS 7.29e-10 140.27 CD2AP TNFRSF21†

rs7767350 6 47517390 5.05e-12 0.06 CD2AP T chr6:47505628:INS 1.73e-10 360.46 CD2AP† CD2AP†

rs7767350 6 47517390 5.05e-12 0.06 CD2AP T chr6:47596994:DEL 1.02e-16 767.72 CD2AP† CD2AP†

rs13237518 7 12229967 5.12e-07 0.04 TMEM106B C chr7:12242078:DEL 6.30e-134 -323.98 TMEM106B† TMEM106B†

rs1160871 7 28129126 1.12e-07 0.05 JAZF1 GTCTT chr7:28174682-28175046:TR 3.62e-15 -215.76 JAZF1† JAZF1†

rs1160871 7 28129126 1.12e-07 0.05 JAZF1 GTCTT chr7:28110447-28110666:TR 3.06e-24 -100.08 JAZF1† JAZF1†

rs6966331 7 37844191 4.81e-06 0.04 NME8,GPR141 C chr7:37847104-37848371:TR 1.63e-45 -205.38 NME8† GPR141

rs6966331 7 37844191 4.81e-06 0.04 NME8,GPR141 C chr7:37646264-37646416:TR 1.38e-06 18.36 GPR141† ELMO1-AS1

rs6966331 7 37844191 4.81e-06 0.04 NME8,GPR141 C chr7:37797035:INS 3.41e-11 -140.75 NME8† GPR141

rs7384878 7 100334426 2.13e-18 0.08 PMS2P1 T chr7:100172634-100172834:TR 1.02e-22 -32.96 GPC2† GPC2†

rs13276936 8 94983473 2.83e-09 0.05 NDUFAF6 T chr8:95060003:INS 1.06e-13 -121.05 NDUFAF6† NDUFAF6†

rs34173062 8 144103704 2.93e-12 0.11 SHARPIN A chr8:144347174:INS 6.76e-06 161.01 TMEM249† SCRT1

rs7912495 10 11676714 2.87e-12 0.06 ECHDC3,USP6NL-AS1 G chr10:11514162-11514319:TR 6.01e-16 -45.06 USP6NL† USP6NL†

rs7068231 10 60025170 6.79e-09 0.05 ANK3,LINC01553 G chr10:59882002-59882627:TR 2.50e-08 779.91 CCDC6† CCDC6†

rs7908662 10 122413396 3.30e-06 0.04 PLEKHA1 A chr10:122457364:DEL 2.90e-06 -89.53 HTRA1 ARMS2†

rs10437655 11 47370397 8.21e-12 0.06 SPI1 A chr11:47865987-47866642:TR 3.11e-15 -270.25 PTPRJ NUP160†

rs10437655 11 47370397 8.21e-12 0.06 SPI1 A chr11:47785089:INS 1.32e-15 153.82 NUP160† NUP160†

rs10437655 11 47370397 8.21e-12 0.06 SPI1 A chr11:47866116:DEL 6.98e-15 273.65 PTPRJ NUP160†

rs1582763 11 60254475 1.65e-24 0.09 MS4A4A G chr11:60206462-60206529:TR 1.03e-06 64.14 MS4A4E† MS4A4E†

rs3851179 11 86157598 6.50e-36 0.11 LINC02695,RNU6-560P C chr11:86130846-86130897:TR 3.48e-08 30.98 EED PICALM†

rs6489896 12 113281983 2.54e-06 0.07 TPCN1 C chr12:113300042-113300190:TR 3.52e-149 -67.23 SLC8B1† SLC8B1†

rs6489896 12 113281983 2.54e-06 0.07 TPCN1 C chr12:113245307:DEL 6.25e-267 326.59 TPCN1† TPCN1†

rs17125924 14 52924962 5.82e-10 0.09 FERMT2 G chr14:52807759-52807996:TR 3.38e-28 145.58 FERMT2 GNPNAT1†

rs7157106 14 105761758 1.46e-07 0.06 IGHG3,IGHG1 A chr14:105520681-105521705:TR 3.85e-10 -1037.73 TMEM121† TEDC1

rs7157106 14 105761758 1.46e-07 0.06 IGHG3,IGHG1 A chr14:105502093-105502283:TR 2.90e-11 -149.24 TMEM121 TEDC1†

rs7157106 14 105761758 1.46e-07 0.06 IGHG3,IGHG1 A chr14:105502115:INS 2.72e-11 -155.87 TMEM121 TEDC1†

rs8025980 15 50701814 6.09e-06 0.04 RN7SL354P,SPPL2A A chr15:50564247-50564314:TR 4.25e-07 -72.74 TRPM7† TRPM7†

rs8025980 15 50701814 6.09e-06 0.04 RN7SL354P,SPPL2A A chr15:50897104:INS 1.39e-09 -362.59 AP4E1† SPPL2A

rs602602 15 58764824 9.65e-12 0.06 MINDY2-DT,SNORD3P1 T chr15:58982256-58982361:TR 1.05e-13 20.18 RNF111† SLTM

rs602602 15 58764824 9.65e-12 0.06 MINDY2-DT,SNORD3P1 T chr15:58620650:DEL 1.93e-29 -233.85 ADAM10† ADAM10†

rs602602 15 58764824 9.65e-12 0.06 MINDY2-DT,SNORD3P1 T chr15:58877172:INS 1.50e-20 -176.76 SLTM† MINDY2

rs12592898 15 78936857 1.28e-06 0.06 CTSH G chr15:78945368-78946282:TR 4.28e-19 53.76 RASGRF1 CTSH†

rs12592898 15 78936857 1.28e-06 0.06 CTSH G chr15:78768022-78768123:TR 5.11e-09 -72.26 ADAMTS7† ADAMTS7†

rs12592898 15 78936857 1.28e-06 0.06 CTSH G chr15:78644314:INS 6.58e-06 -170.22 ADAMTS7 CHRNB4†

rs12592898 15 78936857 1.28e-06 0.06 CTSH G chr15:78785999:INS 9.61e-06 178.7 ADAMTS7† ADAMTS7†

rs1140239 16 30010081 4.61e-12 0.06 DOC2A C chr16:30153076-30153473:TR 2.90e-16 -66.91 CORO1A MAPK3†

rs1140239 16 30010081 4.61e-12 0.06 DOC2A C chr16:29843499-29843605:TR 1.47e-06 -107.33 MVP† MVP†

rs1140239 16 30010081 4.61e-12 0.06 DOC2A C chr16:30124001:INS 2.96e-06 -458.39 CORO1A MAPK3†

rs1140239 16 30010081 4.61e-12 0.06 DOC2A C chr16:30153303:DEL 6.37e-16 66.48 CORO1A MAPK3†

rs889555 16 31111250 1.03e-09 0.06 BCKDK C chr16:31104046-31105481:TR 1.37e-40 -433.62 BCKDK† VKORC1

rs889555 16 31111250 1.03e-09 0.06 BCKDK C chr16:31104491:DEL 3.34e-11 64.02 BCKDK† VKORC1

rs7225151 17 5233752 2.60e-12 0.09 ZNF594-DT,SCIMP A chr17:5240001-5241339:TR 3.71e-18 452.03 RABEP1 SCIMP†

rs7225151 17 5233752 2.60e-12 0.09 ZNF594-DT,SCIMP A chr17:4878941-4879282:TR 2.50e-11 22.85 MINK1† MINK1†

rs7225151 17 5233752 2.60e-12 0.09 ZNF594-DT,SCIMP A chr17:4910154:INS 2.07e-11 59.87 GP1BA CHRNE†

rs58840546 17 7560327 2.12e-07 0.09 TNFSF12-TNFSF13,TNFSF13 TCAA chr17:7609863-7610066:TR 1.84e-28 -99.02 FXR2† FXR2†

rs58840546 17 7560327 2.12e-07 0.09 TNFSF12-TNFSF13,TNFSF13 TCAA chr17:7621096:DEL 4.20e-14 -439.94 SAT2† FXR2

rs2242595 17 18156140 4.55e-06 0.06 MYO15A G chr17:18388026-18388064:TR 2.36e-11 -21.14 EVPLL† EVPLL†

rs2242595 17 18156140 4.55e-06 0.06 MYO15A G chr17:17619233-17619302:TR 3.79e-11 -769.97 SMCR2 PEMT†

rs2242595 17 18156140 4.55e-06 0.06 MYO15A G chr17:17619244:INS 1.01e-09 -1220.55 SMCR2 PEMT†

rs4277405 17 63471557 7.24e-16 0.07 PPIAP55,CYB561 T chr17:63500872-63501666:TR 1.22e-24 -121.64 KCNH6 ACE†

rs4277405 17 63471557 7.24e-16 0.07 PPIAP55,CYB561 T chr17:63488530:INS 3.65e-29 211.95 ACE† ACE†

rs1358782 20 413334 1.86e-06 0.05 RBCK1 G chr20:407888-408064:TR 3.12e-28 54.12 RBCK1† TRIB3

rs6742 20 63743088 2.49e-06 0.05 SLC2A4RG C chr20:63941895-63942378:TR 6.16e-06 -74.7 UCKL1† UCKL1†

rs6742 20 63743088 2.49e-06 0.05 SLC2A4RG C chr20:63849687-63849979:TR 7.04e-06 -26.83 ABHD16B† ZBTB46-AS1

rs6742 20 63743088 2.49e-06 0.05 SLC2A4RG C chr20:63846949-63847337:TR 6.94e-06 38.69 ABHD16B† ZBTB46-AS1

rs6742 20 63743088 2.49e-06 0.05 SLC2A4RG C chr20:63731268-63731761:TR 3.40e-07 -37.8 ZGPAT† ZGPAT†

rs6742 20 63743088 2.49e-06 0.05 SLC2A4RG C chr20:63682195-63682514:TR 1.46e-07 -15.61 RTEL1-TNFRSF6B† RTEL1-TNFRSF6B†

rs6742 20 63743088 2.49e-06 0.05 SLC2A4RG C chr20:63760716:DEL 3.74e-11 -144.37 ZBTB46† ZBTB46†

rs2154481 21 26101558 1.02e-09 0.05 APP T chr21:26338643:INS 1.89e-07 -16.63 CYYR1-AS1† APP
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Fig. 5: Venn diagram of gene sets from the full AD-SNP-

SV dataset overlapping with known AD genes. The known

genes were obtained by extracting all unique genes from the fine-

mapped results. The other gene sets were derived by applying the

three methods to the full AD-SNP-SV dataset.
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Fig. 6: Venn diagram of gene sets from the fine-mapped

AD-SNP-SV dataset overlapping with known AD genes.

The known genes were obtained by extracting all unique genes

from the fine-mapped results. The other gene sets were derived

by applying the three methods to the fine-mapped AD-SNP-SV

dataset.

Fig. 7: Scatter plot of g:Profiler GSEA tool applied to known genes. The known genes were extracted from the fine-mapped

results. The scatter plot, created by the g:Profiler functional profiling tool, displays Gene Ontology biological processes, KEGG, Reactome

and HP database functions as marks, with the corresponding enrichment p-values on the y-axis [24]. Function names containing the

terms “amyloid-beta”, “amyloid precursor”, “neurofbrillary tangle” and “dementia” have their marks highlighted. Additionally, some

marks corresponding to functions mentioned in the text have been annotated with the function’s name.

Gene overlap analysis

Figure 5 shows the overlap between known AD genes obtained

from the fine-mapped results and the genes extracted from the

full AD-SNP-SV dataset using three different methods: Method

1. Select all unique genes closest to the SVs. Method 2.

Select all unique nearest upstream and downstream genes to

the SVs. Method 3. Select the unique nearest upstream and

downstream genes to the SVs, which are also the nearest gene

to the corresponding SNP. Figure 6 shows a similar figure, but

instead the genes are extracted from the fine-mapped AD-SNP-SV

dataset and in method 3, the mapped gene from the fine-mapped

results is used instead of nearest SNP gene.

Figure 5 shows a relatively low overlap for each method

compared to the number of genes in each method’s set. This

suggests that the genes extracted using the three different methods

are either previously unknown or that the methods do not

accurately capture the genes affected by the SVs. Figure 6shows

a relatively high overlap when compared to the number of genes

obtained using the three methods. However, the overlap compared

to the number of known genes remains low, which is partly due

to the number of unique genes in the fine-mapped AD-SNP-SV

dataset being lower than the number of known genes. Figures 5

and 6 both show a similar overlap for each method indicating that

the methods perform equally. The small differences in the overlap

of the methods can be attributed to the variations in the number

of genes extracted by each method.

Function overlap analysis

Figure 7 shows the 149 functions significantly enriched by

the known AD genes, obtained by performing GSEA using

g:Profiler [24] on the known AD genes. Many of the resulting

functions relate to processes known to be associated with AD,

including “Amyloid precursor protein catabolic process” (related

to APP), “Amyloid-beta matabolic process” (related to Aβ),

“Neurofibrillary tangles”; “Semantic dementia”; and more.

Figure 8 depicts the overlap between the functions significantly

enriched by the known AD genes and the functions derived by

performing GSEA on the method’s gene sets. Fewer significant

functions were found when using the gene sets extracted by the

three different methods compared to the known functions. This
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Table 3. Regulatory element counts in the fine-mapped AD-SNP-SV dataset compared to the genome. This table shows the number of each regulatory

element in the genome compared to the count of each regulatory element mapped to all SVs in the fine-mapped AD-SNP-SV dataset using the regulatory

element dataset. The table has been split into two major rows for visibility purposes.

Regulatory element Weak Enhancer Weak Txn1 Heterochromatin Strong Enhancer Weak Promoter Insulator

Genome 178,463 82,187 74,863 64,078 35,021 33,214

Dataset 2 16 54 2 4 1

Regulatory element Txn1 Elongation Polycomb-repressed Txn1 Transition Active Promoter Repetitive/CNV2 Poised Promoter

Genome 26,479 2,435 16,215 15,256 14,087 5,253

Dataset 9 5 4 0 0 1
1Txn = Transcription, 2CNV = Copy Number Variation

154 100

Known functions Method 1 functions

139 1715

Known functions Method 2 functions

151 83

Known functions Method 3 functions

Fig. 8: Venn diagram of function sets from the full AD-

SNP-SV dataset overlapping with known AD functions.

The known function set and the method’s sets were created by

performing GSEA on the known AD genes and the gene sets

obtained through the three methods applied to the fine-mapped

AD-SNP-SV dataset respectively.

indicates that the functions of the genes in the method-derived

gene sets are not as strongly correlated as those of the known genes.

Additionally, the functions obtained from the method-derived gene

sets did not include any AD-related terms such as “amyloid-beta”,

“amyloid precursor”, “neurofibrillary tangle”, and “dementia”.

GSEA was also performed on the gene sets obtained from the

three methods applied to the fine-mapped AD-SNP-SV dataset.

This resulted in no functions being significantly enriched, likely

due to the small size of the gene sets and the lack of significant

correlation in the functions of the genes.

SV type enrichment analysis

The full and fine-mapped AD-SNP-SV datasets were tested for

enrichment of TRs, deletions and insertions compared to the SNP-

SV dataset. The number of SVs of each SV type can be viewed in

Table 1. For the full AD-SNP-SV dataset, a significant enrichment

was found in the number of TRs (OR = 1.34, P = 4.6 ·10−57) and

a significant depletion in the number of deletions (OR = 0.62, P =

6.0 · 10−99). For the fine-mapped AD-SNP-SV dataset, the TRs

were also significantly enriched (OR = 1.84, P = 0.02) and the

deletions significantly depleted (OR = 0.46, P = 0.03). These

results contrasts previous findings where a burden of both TRs

and deletions was found in AD cases [17].

Regulatory element enrichment analysis

The regulatory element dataset was incorporated into the fine-

mapped AD-SNP-SV dataset. Table 3 shows the number of each

regulatory element mapped to a SV in the fine-mapped AD-SNP-

SV dataset compared to the count of each regulatory element in the

genome. The regulatory elements mapped to the SVs were tested

for enrichment relative to all regulatory elements in the genome.

This test found a significant enrichment of heterochromatin areas

(OR = 8.13, P = 1.0 · 10−21) and a significant depletion of both

weak enhancers (OR = 0.05, P = 2.0 · 10−12) and transcription

elongation areas (OR = 0.16, P = 0.01). These results indicate

that heterochromatin areas are more frequently the regulatory

elements affecting gene expression for the SVs found, while weak

enhancers are less frequently involved.

SV verification

All SVs from the fine-mapped AD-SNP-SV dataset, as shown in

Table 2, were compared with 21 AD-associated SVs identified

in a previous study [8]. This procedure found that 5 out of the

85 unique SVs from the fine-mapped AD-SNP-SV dataset were

also present in the previous study. These 5 SVs, along with their

corresponding known SVs, are listed in Table 4.

Table 4. Verified SVs. The verified SVs shown together with the SVs they

were mapped to from a previous study [8].

Verified SV Known SV

chr2:203034349:DEL chr2:203034369-203039560:DEL

chr6:40959080:INS chr6:40959079-40959079:INS

chr7:12242078:DEL chr7:12242077-12242399:DEL

chr10:122457364:DEL chr10:122457302-122457747:DEL

chr12:113245307:DEL chr12:113245316-113245625:DEL

Discussion

Summary and conclusion

This study aimed to employ the SNP-SV dataset to identify new

correlations between SVs and AD and to investigate the properties

of these correlated SVs, the associated genes, and their functions.

To this end, the SNP-SV dataset was used in combination

with the full summary statistics of a large GWAS, to find 307

unique SVs correlated with AD through their corresponding SNPs.

Additionally, a significant enrichment was found in the number

of TRs and a significant depletion in the number of deletions

for both the full AD-SNP-SV dataset and the fine-mapped AD-

SNP-SV dataset. This suggests that TRs more often affect AD

associated genes and deletions less. All methods used for extracting

genes from the full AD-SNP-SV dataset produced relatively low

overlap with known AD genes compared to the number of genes

extracted. These results were corroborated by the GSEA done

using the different genes sets, which also resulted in low overlap

with the known AD functions and the results having no obvious

relation to AD. The fine-mapped results combined with the SNP-

SV dataset produced 85 AD-SNP-SV associations. The SNP



Finding SVs associated with Alzheimer’s disease 9

gene from the fine-mapped results and either the upstream or

downstream gene of the SV are the same in 25 of these associations.

Incorporating the regulatory elements and mechanisms of gene

expression into the fine-mapped AD-SNP-SV dataset revealed a

significant enrichment of heterochromatin areas and a significant

depletion of both weak enhancers and transcription elongation

areas. Calculating the overlap between the known AD genes and

the genes extracted from the fine-mapped AD-SNP-SV dataset

using three different methods, revealed a higher overlap relative

to number of genes extracted compared to the results obtained

from the full AD-SNP-SV dataset. Applying the genes in GSEA

however, resulted in no significant functions for all methods. 5 out

of the 85 SVs in the fine-mapped AD-SNP-SV dataset were also

present in a set of 21 SVs obtained from previous work [8].

307 unique SVs were found in the full AD-SNP-SV dataset.

However many of these SVs relate to SNPs which are in LD with

the SNPs actually responsible for AD, adding another level of

indirection, making it hard to study whether these SVs actually

influence AD. 85 out of the 307 unique SVs were also present in the

fine-mapped AD-SNP-SV dataset. These SVs directly associate

with the SNPs in the fine-mapped results and thus relate to AD

with only one level of indirection. Nevertheless, for many of these

SVs it is still unclear and hard to study, through which mechanics

they affect the genes associated with AD, due to, for example, the

large distances between the SVs and the genes. The significant

enrichment of heterochromatin areas points to these areas having

a large impact on AD gene expression. Nevertheless, how AD gene

expression is affected is more obvious for the 25 associations for

which the SNP and SV have a gene in common, as presented in

the highlighted rows of Table 2. The effects that variants have on

nearby genes are more obvious as variants more commonly affect

their closest genes than genes at large distances. Thus when the

closest gene to a SV is a gene associated with AD, the SV is more

likely to affect the gene than genes at a distance. Additionally,

the gene is expected to be affected by both the SNP as well

as the SV, increasing the likelihood that the expression of the

gene is indeed influenced. Lastly, 5 SVs have also been observed

in a previous study [8] and have therefore been found by two

independent studies, thereby strengthening the proof that these

SVs are related to AD.

Limitations and future work

SNP-SV dataset. This study extensively utilises the SNP-SV

dataset, which, to the best of our knowledge, is the first dataset

to detail the correlation between SNPs and the lengths of SVs.

The dataset was generated from a relatively small sample size of

214 individuals, all of whom are Dutch, were treated in a Dutch

hospital, and/or are Dutch-speaking. Extending the dataset by

incorporating additional sequencing data from a more ethnically

diverse population, generated through TGS, is recommended.

Including more sequencing data is likely to reveal additional

SNP-SV associations and enhance the reliability of the SVs and

findings.

SNP-AD dataset. The SNP-SV dataset used in the analysis

was selected due to the high citation count of the corresponding

study and the extensive sample size of over 780,000 participants.

However, there are many more AD GWAS, which could provide

additional insights when combined with the SNP-SV dataset in

the manner described. Additionally, the SNP-SV dataset may be

combined with GWAS of traits besides AD. Such studies would

likely uncover many previously unknown SVs associated with

many various traits.

SV gene annotation. SVs were gene annotated using the

simple nearest-gene approach. It is unclear whether this method

resulted in the selection of appropriate genes, as knowledge

regarding which genes are affected by which SVs and the manner in

which the SVs affect genes is still limited. QTL studies mapping

SVs to quantitative traits, or GWAS with large cohorts which

study the association between SVs and a trait, would significantly

improve our understanding of the effects of SVs. This knowledge

would, in turn, improve the process of identifying the genes

associated with specific SVs. Additionally, GWAS would provide

more options for verifying the SVs identified. Both the QTL

studies and GWAS, would require more SVs sequencing results

obtained through TGS to become available.

Gene and function overlap analysis. The gene and

function overlap analyses show a relatively low overlap between the

known AD genes and functions, and those obtained using the three

methods applied to the full and fine-mapped AD-SNP-SV datasets.

This poor overlap is likely due to the nearest-gene approach used

for gene annotation of the SVs, which may have led to inadequate

gene selection and, in turn, poor overlap between the functions.

As mentioned, SVs commonly affect multiple genes and they are

able to affect genes over long distances [10]. Therefore, the nearest-

gene approach is likely too simplistic, and the low overlap is not

necessarily a result of a poor selection of SVs. Utilising alternative

methods for selecting the genes than the ones presented may also

help improve the overlap.

SV enrichment analysis. In this study, only the types of

SVs were tested for enrichment. Future research could explore

other properties of SVs for enrichment, such as their length and

the distance between SVs and their corresponding SNPs. The

SV type enrichment analysis was not performed for the full AD-

SNP-SV dataset because the SVs in this dataset are less likely

to be associated with AD compared to those in the fine-mapped

AD-SNP-SV dataset. Nevertheless, future studies may consider

performing these enrichment tests to uncover further insights.

Regulatory element enrichment analysis. The regulatory

element dataset was selected due to the high citation count of the

corresponding study and because it partitions the entire genome.

The dataset is however based on the outdated reference genome

NCBI36, released in 2006. No newer version of the dataset based

on reference genome GRCh38 was available, thus the dataset had

to be realigned. Some regions could not be realigned, however

this did not affect the results as no SVs overlapped with these

regions. Future studies using this same method for different SVs

may encounter issues however. To resolve these problems, a new

regulatory elements dataset based on GRCh38 should be created,

or a more robust realignment procedure capable of mapping all

regions to GRCh38 should be developed.

SV verification. The verification procedure utilised a

dataset containing only 21 SVs. The studies reviewed in a

publication byWang et al. [8] also present SVs associated with AD.

However, most describe only one SV, are based on older reference

genomes, and do not provide precise genomic locations. Future

work should expand the verification set as more SVs associated

with AD are identified.
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