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ABSTRACT 
 

This study investigates the application of machine learning (ML) for predicting building energy 
performance at city scale, with a focus on reducing heating and cooling demands under current 
and future climate scenarios. A two-part methodology was adopted, involving: (i) large-scale 
building energy simulation and (ii) ML model development. Using Rotterdam, Netherlands as a 
case study, a computational workflow was created to automate data collection, processing, and 
energy simulation for 20,000 residential buildings under both the present and two projected 
climate conditions. Results highlight the influence of building layout, envelope thermal 
properties, and air tightness on reducing energy demand across a diverse range of building 
archetypes. An artificial neural network (ANN) was subsequently developed to enable rapid 
prediction of energy demands for both existing building conditions and retrofit scenarios. The 
analysis demonstrates that a shallow ANN is an effective ML model in terms of time efficiency, 
usability, and accuracy, particularly for predicting heating demands. The study highlights both 
the strengths and limitations of ML-based approaches relative to traditional energy modelling, 
offering valuable insights for energy planning and targeted retrofit decision-making at city-scale. 

 

Keywords: Building energy modelling, Machine learning, Energy demand, Building retrofits, City-
scale 
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1. RESEARCH FRAMEWORK 
CONTEXT 
The built environment accounts for a significant share of the global energy consumption and 
greenhouse gas emissions, contributing to issues such as the depletion of non-renewable 
resources, global warming, and release of environmental air pollutants such as smog (Van 
Bueren et al., n.d.).  

Urban areas play a significant role in addressing these climate challenges, with cities 
contributing between 70-76% of global CO2 emissions and between 60-80% of global energy 
consumption (Aruta et al., 2024). The increasing size of the global urban area increases per 
capita energy use and places a further strain on energy resources (González et al.).  

Within urban areas, energy use is divided between the residential, commercial and public service 
sectors. Energy use in buildings is the largest share of energy consumed within these sectors, 
with residential buildings accounting for the largest share of usage at 72%, compared to 28% 
for non-residential buildings (González et al.). Global energy trends show that since 2000, energy 
consumption within buildings has been increasing at an average rate of 1.2% per year, attributed 
in part to increased urbanization and the transition to electricity as the primary energy source 
(González et al.). 

In the Netherlands, climate targets include a 49% reduction in greenhouse gas emissions by 
2030 compared to the 1990 levels (European Commission, 2021). A key focus of achieving this 
goal is to transition the existing housing stock away from fossil fuels and reduce energy 
consumption by systematically retrofitting existing houses at neighbourhood, district, and 
eventually city scales.   

To understand strategies for reducing building energy consumption it is necessary to analyze 
the current building energy demand. However, predicting building energy demand is complex as 
it depends on multiple factors, including environmental data, building characteristics, and 
occupant behaviour (Olu-Ajayi et al., 2021). Traditional modelling approaches, using energy 
simulation tools require an extensive amount of detailed input data, often unavailable or time-
intensive to collect (Olu-Ajayi et al., 2021). And simulation processing times can be excessively 
long, making such tools impractical for large, city-scale applications.   

Machine learning (ML) has emerged as an effective alternative to traditional building energy 
simulation tools. Such data-driven models can generate accurate energy demand predictions, 
often with fewer input requirements (Fathi et al., 2020a). However, the use of ML models, and 
specifically deep learning (DL) approaches for city-scale energy predictions remains an 
underexplored area (Li et al., 2023). Particularly in addressing retrofit interventions for diverse 
building typologies and considering future weather scenarios predicted by climate change (Li et 
al., 2023).  
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PROBLEM STATEMENT 

MAIN PROBLEM 

Predicting building energy demand at city-scale is a significant challenge due to the distinct 
environmental, building, and occupant characteristics, across thousands of diverse buildings, as 
well as the computational limitations of traditional energy simulation tools in handling such 
large-scale data complexity.  

 

SUB-PROBLEMS 

 Accurately predicting the impact of energy-saving retrofit interventions across a 
wide variety of building typologies, accounting for the diversity in building geometry 
and construction. 

 Overcoming the lack of readily available, building-specific energy demand data for 
thousands of buildings that is necessary for city-scale modelling.  

 Applying machine learning, particularly deep learning approaches for large-scale 
building energy demand prediction, considering diverse building characteristics and 
future climate scenarios. 

 

OBJECTIVE 

This research project aims to develop a scalable computational workflow, leveraging machine 
learning, to accurately predict the energy demand for residential buildings at city-scale and 
investigate the energy demand across diverse building typologies. As well, this research aims to 
assess the impact of energy-saving retrofit interventions, considering both current and future 
climate conditions. By combining computational and machine learning methods, this project 
aims to overcome data availability challenges and speed up the energy modelling process, 
ultimately enabling targeted building retrofit interventions across the Dutch housing stock to 
maximize energy savings.   
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RESEARCH QUESTIONS 

MAIN QUESTION 

The main question this research project intends to answer is: 

How can machine learning be used to predict energy performance for residential 
buildings at city-scale to reduce heating and cooling demands, considering future 
weather scenarios from climate change? 

 

SUB-QUESTIONS 

The main research question is divided into a series of sub-questions, that investigate energy-
saving retrofit interventions, at city-scale, using machine learning methods.  

 

RETROFIT INTERVENTIONS 

 How can ML be used to assess the impact of retrofit interventions across different 
building typologies? 

 

CITY-SCALE 

 How can computational methods be leveraged for energy modelling at city-scale?  
 

MACHINE LEARNING  

 How can ML models improve the efficiency of building energy modelling?  
 What is an effective ML model, in terms of time efficiency and useability, for 

predicting building energy performance?  
 What are the limitations of ML models compared to traditional energy modelling? 
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RESEARCH METHODOLOGY 

The research started with a literature study to define the research framework and identify 
scientific gaps, such as the limited exploration of ML models for energy prediction at urban scale, 
or the lack of studies accounting for future climate scenarios.  

The study, described in chapter 2. LITERATURE STUDY identifies relevant case studies and 
existing research related to building energy demand and retrofit interventions – particularly in 
the context of the Netherlands, as well as building energy modelling, and ML prediction models.  

Findings from the literature study helped to inform the next stages of the research methodology, 
that is further described in chapter 3. METHODOLOGY.   
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2. LITERATURE STUDY 
BUILDING ENERGY DEMAND 

Building energy use accounts for a significant 
share of global energy consumption and CO₂ 
emissions. González et al. reports that building 
operations are responsible for approximately 
30% of global energy use and 28% of global 
energy-related CO₂ emissions, shown in Figure 
1. The residential building sector consumes 
22% of total energy, and contributes to almost 
15% of CO2 emissions, highlighting a target 
area with significant potential for lowering 
energy consumption and CO2 emissions.   
 
The Buildings Climate Tracker (BCT) index is a 
measure of the global progress towards 
decarbonizing the building sector, tracking 
indicators such as energy efficiency 
investments, renewable energy use, and CO₂ 
emissions, shown in Figure 2.  
 
The BCT index highlights a widening gap 
between current efforts and the trajectory 
needed to achieve a zero-carbon building stock 
by 2050, underlining the urgent need for 
coordinated action across the building sector to 
reduce energy use and CO2 emissions.  
 

Figure 1: Contribution of building operational energy use 
to global energy consumption and share of CO2 emissions 

(Global Alliance for Buildings and Construction et al., 
2020). 

Figure 2: Buildings Climate Tracker (BCT) index, measuring global progress towards decarbonizing the building sector 
(Global Alliance for Buildings and Construction et al., 2020). 
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The building energy demand refers to the amount of energy required for heating, cooling, 
electricity, and other functions. The building energy demand is governed by the outdoor climate 
conditions, building design characteristics – such as the surface area of the building envelope, 
amount of insulation, and size of windows – the building occupancy and desired thermal comfort 
of occupants, and the use of electrical appliances (Van Bueren et al., n.d.). The factors related to 
the building energy demand are shown within the building energy chain in Figure 3.  

 
Figure 3: Energy chain within buildings (Adapted from Van Bueren et al., n.d.). 

 
For countries, including the Netherlands, within the 
Organized Economic Cooperation and Development 
(OECD) region, a significant share of the building energy 
demand is attributed to space heating demands, as 
shown in Figure 4. 

Considering the energy chain for buildings, Van Bueren 
et al. (n.d.) proposes a three-step strategy for reducing 
energy consumption, starting with reducing the energy 
demand, prioritizing renewables for primary energy use, 
and implementing efficient energy conversion measures 
when non-renewable resources are used, shown in Figure 
5.  

 

ENERGY FLOWS 

Summing the energy flows within a building, also known 
as a thermal energy balance, is necessary to determine 
the heating and cooling demands. When the summation 
of energy flows into and out of the building is negative, 
the building does not receive enough heat, thus there is 
a heating demand. Conversely, when the flows are 
positive, the building receives excess heat and there is a 
cooling demand.  

Figure 5: Strategies for reducing energy 
consumption (Konstantinou, 2014). 

Figure 4: Share of residential final energy 
consumption within 19 OECD countries 

(Adapted from Van Bueren et al., n.d.). 
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Equation 1: Thermal energy balance. 

�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 

�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

 
The thermal energy balance is comprised of energy gains and losses determined by transmission, 
infiltration, ventilation, solar, and internal heat flows.  Analyzing the thermal energy balance is 
a critical step to determine the building’s potential energy savings (Van Bueren et al., n.d.). 

 

 

Figure 6: Building energy flows (Wittchen & Aggerholm, 2000). 

 

TRANSMISSION 

Transmission losses represent losses via the building envelope surfaces, including the roof, walls, 
windows, and ground floor.  

 
 

 

 

 

 

 

 

Figure 7: Transmission losses via the building envelope, when temperature indoor (Ti) is less than temperature outdoor 
(To) (Adapted from Konstantinou, 2014). 
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Heat losses via transmission occur through a surface area, 𝐴𝐴, as a function of the difference 
between indoor temperature (𝑇𝑇𝑖𝑖) and outdoor temperature (𝑇𝑇𝑜𝑜), and overall heat transfer 
coefficient, 𝑈𝑈. The heat transfer coefficient is related to the combined heat transfer coefficient 
for convection and radiation at the indoor side, 𝛼𝛼𝑖𝑖, and outdoor side, 𝛼𝛼𝑜𝑜, and the thermal 
resistance, of the surface, 𝑅𝑅𝑐𝑐. 

Equation 2: Transmission losses. 

𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑈𝑈𝑈𝑈(𝑇𝑇𝑜𝑜 − 𝑇𝑇𝑖𝑖) 

 

𝑈𝑈 =
1

1
𝛼𝛼𝑖𝑖

+ 𝑅𝑅𝑐𝑐 + 1
𝛼𝛼𝑜𝑜

 

 
In older buildings, the heating demand is largely governed by transmission losses. Transmission 
losses can be significantly reduced by improved insulation, as shown in Figure 8. Improved 
insulation increases the thermal resistance of the building elements (Rc-value), thus lowering 
the thermal transmittance (U-value), effectively reducing heat loss.  

 

Figure 8: Average energy demands for typical Dutch pre-war, poorly insulated (Dwelling A) and modern, well-insulated 
(Dwelling B) buildings (Adapted from Van Bueren et al., n.d.). 

 
INFILTRATION 

Infiltration describes the uncontrolled air leakage into a building via cracks in the construction, 
especially at junctions like the wall and window frame, or between the roof and walls. Infiltration 
is driven by the difference between indoor and outdoor temperatures and the outdoor air flow 
though the envelope.  

Equation 3: Infiltration losses. 

𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖 = (1 − 𝜂𝜂)𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖 𝐶𝐶𝑝𝑝(𝑇𝑇𝑜𝑜 − 𝑇𝑇𝑖𝑖) 

 
Infiltration, 𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖 is typically measured in m³/second/m² of envelope area and is calculated from 
the mass flow rate of air, 𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖, heating capacity of air, 𝐶𝐶𝑝𝑝, the differential between outdoor and 
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indoor temperatures, and ventilation system efficiency, 𝜂𝜂.  Where lower values of 𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖 result in 
lower infiltration losses. Areas prone to air infiltration are shown in Figure 9.  
 

 
Figure 9: Typical building locations prone to infiltration (Canada, 2025).  

 
VENTILATION 

Outdoor air also enters and exits the building via window openings, grilles, and/or mechanical 
ventilation systems. Ventilation losses have a similar expression to that described by infiltration, 
but where the mass flow rate of air is for ventilation, 𝑚𝑚𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣.  

Equation 4: Ventilation losses. 

𝑄𝑄𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = (1 − 𝜂𝜂)𝑚𝑚𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝐶𝐶𝑝𝑝(𝑇𝑇𝑜𝑜 − 𝑇𝑇𝑖𝑖) 

 
Building ventilation can be described by four main systems:  

1. Natural ventilation via window openings and grilles, where no mechanical ventilator 
is used.  

2. Mechanical exhaust ventilation.  
3. Mechanical supply ventilation. 
4. Balanced ventilation, with mechanical supply and exhaust ventilation, and with heat 

recovery.  
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Figure 10: Main types of building ventilation systems (Adapted from Van Bueren et al., n.d.). 

 
The type of ventilation system impacts how much heat is lost as air flows into and out of the 
building. Natural ventilation and basic mechanical systems (with exhaust or supply only) lead to 
higher, uncontrolled ventilation losses since they do not recover heat from the outgoing air. In 
contrast, balanced systems, reduce heat losses by using a heat exchanger to transfer heat from 
warm exhaust air to cool the incoming supply air, thus significantly reducing heat losses (Van 
Bueren et al., n.d.). 

 
SOLAR GAINS 

Solar gains occur via solar radiation entering the building through windows, and the outer 
surface of walls and the roof. The heat is stored by the building construction and later released 
to the indoor environment. Solar heat gains depend on the thermal mass of the building, 
building orientation, shading measures, and the orientation, type, and size of the building’s 
windows (Richards Partington Architects, 2012).   

Thermal mass is related to a material’s ability to absorb, store, and release heat. During the day, 
incident solar radiation is absorbed by the building construction, shown in Figure 11 (left). At 
night, as the indoor temperature drops, the construction gradually releases the stored heat back 
into the space, shown in Figure 11 (right). Materials with high thermal mass, such as concrete, 
brick, or masonry can absorb more heat than lightweight materials such as timber due to their 
high specific heat capacity and density (Zero Carbon Hub, 2015). 

 

Figure 11: Solar radiation absorption in the building construction during the day (left) and heat 
release during the night (right) (Richards Partington Architects, 2012). 
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External solar gains are strongly 
influenced by the building’s 
orientation. Thus, identical building 
designs can have very different 
energy demands if oriented 
differently. West and southwest-
facing elevations receive strong 
afternoon sun, which can help to 
reduce heating demands in winter 
but may significantly increase 
cooling demands in summer 
months.  

 

Solar gains can be effectively reduced via external shading devices, that reduce incident solar 
radiation. Again, as shown in Figure 13, the reduction in solar radiation is strongly influenced by 
the building orientation.  

 

Figure 13: External shading devices and corresponding reductions in solar gains (Alabdullatief et al., 2016).  

Static solar gains can be approximated by the solar heat gain coefficient for windows and shades, 
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 and 𝑔𝑔𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎, the window area, 𝐴𝐴𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤, and the total incident solar radiation, 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠.  

Equation 5: Solar gains. 

�𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝐴𝐴𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤   𝑔𝑔𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠 

 
Note, this expression does not take into account the dynamic effects related to the building’s 
thermal mass and heat release over time.  

 

 

 

 

Figure 12: Solar exposure for different building orientations (Richards 
Partington Architects, 2012). 
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INTERNAL GAINS 

Internal heat gains occur from lighting, electrical appliances such as fridges, laptops, TVs, and 
the building occupants, shown in Figure 14.  

 

Figure 14: Sources of internal heat gains (Richards Partington Architects, 2012). 

Approximations can be made for each of the internal heat gains. For lighting, 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖,𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑡𝑡 is 
calculated from the fraction of heat released to the room, ζlight, percentage of building floor area 
where the light is on, 𝛽𝛽𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, total building floor area, 𝐴𝐴𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, and the lighting’s electrical power, 
𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑡𝑡.  

Equation 6: Internal gains due to lighting. 

𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖,𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑡𝑡 = ζlight ∗  𝛽𝛽𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∗  𝐴𝐴𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∗ 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑡𝑡 

 
For appliances, internal gains are estimated from the total power of all appliances (excluding 
lighting), 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎, per building floor area, 𝐴𝐴𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 . 

 
Equation 7: Internal gains due to appliances. 

𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖,𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐴𝐴𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∗ 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 

 
For building occupants, 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖, is calculated using the number of people in the building, 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 
and the metabolic heat generation, 𝑃𝑃𝑀𝑀.  

 
Equation 8: Internal gains due to occupants. 

𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∗ 𝑃𝑃𝑀𝑀 
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BUILDING RETROFITS 
The building envelope is the physical boundary that separates the conditioned indoor space from 
the unconditioned outdoor environment (SIGA, n.d.). The main building envelope layers, shown 
in Figure 15, function to:   

1. Protect the indoor space from environmental effects including wind, rain, snow, and 
solar radiation.  

2. Provide thermal insulation to minimize heat transfer across the envelope.  
3. Provide an airtight seal to reduce the heat and moisture transfer through the 

structure.    

 

Figure 15: Key functions of the building envelope (Adapted from SIGA, n.d.)  
 
The building envelope is the most critical component of the building’s energy performance and 
thus, represents the primary target for building retrofits aimed at reducing energy demand.  Key 
parameters influencing envelope performance include the thermal transmittance of exterior 
walls, roofs, ground floors, windows, and the size and orientation of openings, shown in Figure 
16. 

 

Figure 16: Building envelope components (Adapted from Wahi, 2020). 
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Older buildings often exhibit poor building envelope performance due to physical degradation of 
the structure (for example, cracks in the façade), high air infiltration, and insufficient thermal 
insulation, which significantly increases energy demand (Konstantinou, 2014).  

Specifically, houses constructed between the 1920s and 1970s are typically constructed with 
uninsulated cavity walls, where the air gap provides limited resistance to heat transfer. Adding 
insulation to the cavity is an effective retrofit strategy to significantly improve the thermal 
transmittance of the facade and thus lower the heating demand without major renovation (Koh 
et al., 2022). 

 
Figure 17: Before (left) and after (right) installation of cavity wall insulation (Adapted from Everything You Should Know 

About Cavity Wall Insulation, 2022).   

In addition to cavity wall insulation, improving airtightness and upgrading other envelope 
components such as windows are critical measures to reduce energy demand.  Building 
airtightness refers to how well the building envelope resists the uncontrolled air leakage into or 
out of the building. While no building is completely airtight, minimizing uncontrolled airflow, 
through sealing gaps, at keys areas, such as behind window or door trim, as shown in Figure 18, 
is essential for reducing heat losses and lowering energy demand (Canada, 2025). 

 

Figure 19: Sealing (caulking) behind window or door 
trim (Canada, 2025). 

Figure 19: Retrofitting window from single to 
double pane (Adapted from ecoGlaze® Retrofit 

Double Glazing | Green Magazine, 2015). 
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Windows typically exhibit the poorest thermal performance of all components and thus can 
contribute significantly to heat loss and solar gains (Konstantinou, 2014). Upgrading single-
glazed windows to double or triple-glazed units with low-E coatings and insulated frames 
significantly improves the thermal resistance (lower U-value), minimizing heat losses. As well, 
retrofitting strategies that optimize the ratio of window openings to solid building surface, 
otherwise known as the window-to-wall ratio (WWR) are an effective way to reduce energy 
demands (Konstantinou, 2014). 

 

Figure 20: Reductions in U-value for different glazing units (Adapted from Types and Parts: Glazing, 2024).  
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DUTCH CONTEXT  
 The RVO (Rijksdienst voor Ondernemend) assessed the distribution of houses in the 
Netherlands to characterize the energy performance of different housing types in the 
“Voorbeeldwoningen Bestaande Bouw” (Example Homes Existing Construction) guide.  

From approximately 8 million existing houses, terraced or row houses represent the largest share 
of the housing stock, at 41% considering both intermediate and corner houses, as shown in 
Figure 21.  

 

 

 

 

 

 

 

 

 

 

 
The guide uses data from the WoON2018 survey (Woon Onderzoek Nederland 2018) – a housing 
survey in the Netherlands that provides insights on Dutch housing characteristics and energy 
performance. The energy module of the survey assessed approximately 4,500 existing houses 
throughout the Netherlands, collecting data on:  

 Housing characteristics: building geometries and insulation levels.  
 Energy systems: HVAC system types, efficiencies, and the presence of renewable 

energy installations.   
 Occupants: energy use patterns, and preferences.   

Figure 21: Distribution of housing types in the Netherlands, considering all construction periods (Adapted 
from Ministry of the Interior and Kingdom Relations, 2022). 
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maisonette gallery 

porch apartment 

detached semi-detached 

terraced intermediate terraced corner 

Figure 22: Housing types in the Netherlands (Ministry of the Interior and Kingdom Relations, 2022). 
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For each house type, the heating demand and energy performance are calculated at five different 
energy consumption levels: 
 
Current:  current energy consumption based on the characteristics from the Woon2018 

residential survey (median values).  

Original:  energy consumption in accordance with the building construction and 
installations of the building’s original construction year (without any insulation 
improvements or energy-related retrofits).   

Retrofit 1:   after retrofit with mechanical air exhaust ventilation and gas heating.  

Retrofit 2:  after retrofit with mechanical air exhaust ventilation and installation of an 
electric heat pump (ground water source). 

Retrofit 3:   after retrofit with balanced ventilation and installation of an electric heat pump 
(ground water source).  

 
For example, for the archetype “Terraced house built between 1946 – 1964”, the thermal 
characteristics and installations, shown in Table 1, are used to calculate the heating demand.  

  

 

Figure 23: Terraced house built between 1946 – 1964 (Ministry of the Interior and Kingdom Relations, 2022). 

 
At each energy level, the demand is compared to the “Standard for Home Insulation”.  The 
standard ensures houses are sufficiently insulated to enable the transition from natural gas to 
low-temperature heating systems (such as an electric heat pump).  
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Insulations, Rc are in units m2 K/W, thermal transmittance U in units W/m2K, and infiltration qv 
in units dm3s/m2. 
 

Table 1: Characteristics used to calculate the heat demand and energy performance (Adapted from Ministry of the 
Interior and Kingdom Relations, 2022). 

Terraced house between 1946 – 1964  
Architectural  
 Surface 

Area [m2] 
Current Retrofit 1 Retrofit 2 Retrofit 3 

Ground floor 44.21 Rc = 0.15 Rc = 3.50 Rc = 3.50  Rc = 3.50  
Façade 39.78 Rc = 0.35 Rc = 1.70 Rc = 1.70 Rc = 1.70 
Sloped roof 48.00 Rc = 0.72 Rc = 3.50 Rc = 3.50 Rc = 3.50 
Flat roof 0.00 Rc = 0.72 Rc = 3.50 Rc = 3.50  Rc = 3.50  
Window 19.86 U = 2.90 U = 1.40 U = 1.40 U = 1.40 
Door 4.82 U = 3.40 U = 1.40 U = 1.40 U = 1.40 
Infiltration  Standard rate qv = 0.7 qv = 0.7 qv = 0.4 
Installations 
Ventilation  Natural Natural supply, 

mechanical 
exhaust 

Natural supply, 
mechanical 
exhaust 

Balanced  

Heat recovery  No No No Yes 
Space heating   Gas boiler Gas boiler Electric heat 

pump 
Electric heat 
pump 

Hot tap water  Gas boiler Gas boiler Hybrid heat 
pump 

Hybrid heat 
pump 

PV panels (m2)  0.00 0.00 0.00 0.00 
Energy performance 
Standard for Home 
Insulation (kWh/m2) 

 61.6 61.6 61.6 61.6 

Heating demand (kWh/m2)  162.5 53.6 53.6 37.2 

 

The brochure provides a structured approach for calculating the heating demand across the 
Dutch housing stock, using the NTA8800 standard for calculations, and highlighting the 
influence of different retrofit measures. However, the use of the NTA8800 calculation standard 
introduces uncertainty about the energy consumption results.  NTA8800 calculations are based 
on standardized assumptions for weather, occupant behaviour, and do not depict actual use 
cases or climate variations (Van Den Brom et al., 2022). Also, the calculation provides an 
overestimation of the energy consumption for older houses (especially pre-1946), where the 
archetype tends to use overly conservative values for insulation levels that are not representative 
of the actual (Van Den Brom et al., 2022).  
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(Nieman et al., 2021) broadly categorized the Dutch housing characteristics based on four 
construction periods, summarized in Table 2.  

 
Table 2: Dutch housing characteristics from pre-1945 to 1995 and beyond (Nieman et al., 2021). 

 PRE-1945 1945-1975 1975-1995 POST-1995 

CAVITY 
WALLS 

Pre-1920 single 
brick wall 
construction.   
 
Post-1920 cavity 
walls constructed 
were narrow and 
uninsulated.   

Uninsulated cavity 
walls.  

Cavity walls with 
moderate 
insulation. 

Well insulated 
cavity walls.  

WALLS/ROOF Uninsulated. 
Uninsulated or 
minimal insulation 
used.  

Minimum 
thermal 
insulation Rc 
value of 1.3 
m²K/W. 

Minimum 
thermal 
insulation value 
of 2.50 m²K/W. 

FLOORS 
Wooden ground 
floors. 
 

Wooden floors 
gradually replaced 
by non-insulated 
concrete floors. 

Prefabricated 
concrete floors. 
Limited 
insulation.  

Prefabricated 
concrete floors. 
Minimum 
thermal 
insulation value 
of 2.50 m²K/W 

WINDOWS 
Single glazing in 
wooden or steel 
frames. 

Single glazing 
predominated, 
particularly on 
upper floors, 
double glazing 
emerged on 
ground floors. 

Double glazing 
became 
mandatory in 
living rooms 
(1979).  
 

Double glazing 
mandated for 
entire building.  

VENTILATION, 
INFILTRATION 

Uncontrolled 
infiltration due to 
minimal attention 
to airtightness.  
 
Natural ventilation 
through leaks, 
cracks, windows.  
 

Natural ventilation 
via windows, wall 
vents, and basic 
exhaust ducts.  

Reduced 
uncontrolled 
infiltration.  
 
Natural air supply 
via grilles or 
windows, 
combined with 
mechanical 
exhaust.  

Significant 
airtightness 
improvement.   
 
Balanced 
ventilation 
systems with 
heat recovery.  

HEATING 
Heating localized, 
using coal, gas, or 
oil stoves. 

Individual gas 
heaters or stoves.  

High temperature 
central heating 
standard. 

High 
temperature 
central heating 
with improved 
efficiency.  
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Based on the four building periods, (Nieman et al., 2021) considers a retrofit framework 
considering three different retrofit levels:  

 
Level 2:  insulation improvements of limited thickness and quality. 

Level 3:  high-quality insulation improvements.  

Level 4:  high-cost retrofit measures such as a new roof, adding exterior wall insulation, 
and/or implementing a balanced ventilation system with heat recovery.  

 
Nieman highlights that houses constructed before 1945 have significantly higher heat demands 
due to poor insulation and airtightness. After implementing Level 4 retrofits, houses are often 
compatible with medium-temperature and low temperature heating systems without major 
adjustment to the heat delivery system. Findings suggest that the heat demand is strongly 
influenced by compactness, and year of construction, which has an implication on the structure’s 
thermal quality, and airtightness (Nieman et al., 2021).  
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FUTURE CLIMATE  
Koninklijk Nederlands Meteorlogisch Instituut (KNMI) is the national advisory group on climate 
change in the Netherlands. In 2023, the KNMI published a report on climate change scenarios 
in the Netherlands, representing the most current findings on climate change from the 
Intergovernmental Panel on Climate Change (IPCC) and for the Netherlands (The Royal 
Netherlands Meteorological Institute, n.d.). 

Weather projections are provided for key climate variables – temperature, precipitation, 
radiation, relative humidity, and wind speed by comparing mean data from the reference period 
of 1991–2020 to future years 2033, 2050, 2100, and 2150.  

The KNMI scenarios are based on the IPCC’s global framework of Shared Socioeconomic 
Pathways, (SSPs), which result in different global greenhouse gas trajectories and temperature 
increases. The points represented in Figure 24 correspond to the temperature increase expected 
for each of the KNMI scenarios and the range of uncertainty based on both the emissions and 
the way in which the climate responds. 

 

 

Figure 24: Observed global temperature increase compared to the reference period of 1850-1900 (black line). Predicted 
temperature increase for each SSP (black points). Range in uncertainty for each SSP (coloured bars). (KNMI 

Klimaatscenario’s, n.d.). 

 

Projections are provided for two emissions scenarios, based on high (H) and low (L) CO2 
emissions. And two air moisture scenarios of dry (D) and wet (N) climates, producing the matrix 
of four climate scenarios for the Netherlands, shown in Figure 25.  
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In all scenarios, the following changes are expected when compared to the 1991-2020 
reference period: 

 Increase in average temperature  
 Increase in solar radiation 
 Increase in droughts 
 Wetter winters 
 Increase in extreme summer downpours 
 Little change in wind speed and direction 

 

EPWshiftr is an open-source software tool that enables users to generate future weather files –
used for energy modelling – for any location worldwide (Epwshiftr, 2021). The tool statistically 
shifts baseline weather data by using the projected differences for each key climate variable – 
such as mean temperature increases, shown in Figure 26.  

 

 

Figure 26: Future climate scenarios for De Bilt, NL (KNMI Klimaatscenario’s, n.d.) 

By inputting the future climate variables, EPWshiftr can be used to generate local, future weather 
files that reflect climate change in the Netherlands.   

HIGH EMISSIONS (H) emissions 
increase sharply until 2080. Global 
warming of 4.9°C around 2100. 

LOW EMISSIONS (L) emissions reduced 
to limit global warming below 2.0°C.  
Global warming of 1.7°C around 2100. 

WET SCENARIO (N) Winters become 
very wet. Summers become slightly dry.  

DRY SCENARIO (D) Winters become 
slightly wetter, summers become 
extremely dry. 

Figure 25: Matrix of climate scenarios in the Netherlands. Adapted from (KNMI Klimaatscenario’s, n.d.). 
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BUILDING ENERGY MODELLING 

BUILDING LEVEL  

To understand the thermal behaviour of a building, an accurate model is required, with a detailed 
description of the building geometry, construction, installations, and internal loads. Often this 
data is not readily available, resulting in assumptions being made or standard values being used 
for model inputs. Due to these limitations, energy models often vary from the building’s true 
energy use (Fathi et al., 2020a). Developing more representative building energy models is an 
important step to understand effective retrofit strategies to reduce energy use (Fathi et al., 
2020a).   

 
MODEL TYPES 

Building energy modelling (BEM) can be categorized as either physics-based or data-driven (Li 
et al., 2023).  

Physics-based  

Simulation-based model. The building energy use is predicted from heat and mass balance 
equations based on detailed physical building characteristics. Simulations using software such 
as DOE-2, EnergyPlus and TRNSYS, often require a large number of detailed inputs about the 
building and environment, including:  

 HVAC (Heating, Ventilation and Air Conditioning) system 
 Insulation thickness 
 Thermal properties 
 Internal occupancy loads 
 Solar radiation  

Simulation software such as EnergyPlus can model hourly variations in model inputs, providing 
a good representation of a building’s energy behaviour. However, using such granular input data 
results in time-intensive simulations that require significant computational resources, 
especially when modelling energy use at city-scale (Aruta et al., 2024), (Li et al., 2023). 

Data-driven  

Relies on historical building energy usage data and uses mathematical models to find underlying 
relationships between model input and output variables. These models require substantial 
historical data and often do not account for detailed building properties (Li et al., 2023). 

 

MODELLING APPROACHES 

Zhang et al. (2024) describes the typical steps for a data-driven BEM study:  

 Data collection: Obtaining historical data from a building management system, 
HVAC sensors, occupant sensors, and weather stations.  
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 Data preparation: Improving data quality by resolving missing values and eliminating 
outliers.  

 Feature selection: Identifying key variables that affect the building energy 
consumption, for example, occupancy, weather, and building system characteristics. 

 Algorithm selection and model training: Identify the most suitable algorithm based 
on the input dataset characteristics and study objective.  

Zhang et al. (2024) expands on the primary approaches used for feature selection, including:  

 Filter methods: identify optimal features by statistically evaluating the relationship 
between each feature in the dataset and the target variable, for example, the 
relationship between WWR and heating demand.   

 Wrapper methods: iteratively train and evaluate model performance with different 
feature combinations to identify the most effective subset. 

 Embedded methods: make use of algorithms that integrate feature selection within 
the learning process. 

 

MODEL INPUTS 

Building geometry 

The LoD is a representation of a 3D building model, categorized into five representation classes, 
shown in Figure 27, where:  

 LoD0: represents the building footprint.  
 LoD1: prismatic model of the building’s footprint extruded to the building height.  
 LoD2: model with differentiated surfaces, walls and simplified roof structure.   
 LoD3: includes detailed architectural features, windows and doors.  
 LoD4: includes indoor building features, internal walls, doors.  

 

 

Biljecki et al. (2016), notes that different LoDs can affect thermal performance calculations. Key 
building features, such as roof details, wall areas, window and door locations and sizing, 
significantly impact the building’s thermal gains, and losses, however, are not captured by lower 
LoDs, Lod0 and LoD1.  

 

Figure 27: LoDs for 3D building models (Adapted from Li et al., 2023). 



28 
 

Biljecki et al. (2016) provides a more refined classification of LoDs based on currently available 
3D building models, shown in Figure 28.  

 

Figure 28: Refined LoD classifications for 3D building models (Biljecki et al., 2016). 

Higher LoDs – such as LoD2 – can improve the reliability of energy simulations. As well in 
considering, the influence of different retrofit measures on energy performance, higher LoDs 
that provide more detailed feature representations may be required (Li et al., 2023). 

Aruta et al. (2024) provides a summary of the geometric properties for BEM, shown in Figure 29.  
Model inputs are defined first by the characteristic dimensions, construction period, and 
construction type, that is then used to define the percentage of transparent to opaque building 
surface area, ratio of conditioned (net) floor area to gross floor area, ratio of net to gross building 
volume, and floor heights.  
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Figure 29: Example input parameters pertaining to building construction and geometry, where farea is the ratio between 
net area and gross area, and fvol is the ratio of net and gross volume (Aruta et al., 2024). 

 

After defining the geometry, it is necessary to 
orient the building according to its geospatial 
properties, to determine the exposures of the 
building’s surfaces, and if there are building 
adjacencies. Where the building adjacencies 
determine the corrective coefficients to 
account for solar shading.  

In Aruta et al. (2024), the one side of the 
building is defined, and the remaining 
building exposures are automatically 
oriented, shown in Figure 30.   

 

Thermal characteristics 

The thermal characteristics of the building construction impact the solar heat gains and heat 
gains via transmission. Thermal characteristics used for BEM are shown in Table 3.  

Table 3: Example thermal characteristics for model simulation (Aruta et al., 2024). 

Thermal parameters   Unit 
External vertical opaque wall thermal transmittance Uwall W/m2K 
Roof thermal transmittance Uroof W/m2K 
Thermal transmittance of horizontal opaque structures Uground W/m2K 
Thermal transmittance of windows Uwindow W/m2K 
Thermal transmittance of vertical and horizontal opaque separation 
structures between adjacent building units 

Uv W/m2K 

Solar transmission factor for windows gtotal - 
Distribution efficiency Nd - 
Production yield  Np - 
Transmission coefficient  HT W/K 

Figure 30: Logic for defining building exposures (Aruta et 
al., 2024). 
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Where the transmittance coefficients, 𝑈𝑈𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 , 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  , 𝑈𝑈𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 , 𝑈𝑈𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  define how much heat is 
transferred through the building envelope under temperature differences, influencing both 
heating and cooling loads. The transmission coefficient, 𝐻𝐻𝑇𝑇 combines the thermal transmittance 
coefficients, into a single value for the overall thermal performance of the building envelope. The 
solar transmission factor, 𝑔𝑔𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 impacts the amount of solar radiation transmitted through 
windows, leading to solar heat gains. 

 

HVAC system 

The following HVAC system parameters can be represented in a BEM (Aruta et al., 2024): 

 Heating generator typology: type of heat source, for example, gas boiler, heat pump, 
electric heater. Impacting the efficiency of heat generation. 

 Heating terminal: type of terminal units, for example radiators, or in-floor heating. 
Influencing evenly heat is distributed within the building.  

 Regulation system: thermostats and sensors, improving the heat supply by adjusting 
based on internal temperatures.  

 Distribution system: how heat is distributed, for example, via ductwork or pipes. 
Where losses can occur in the distribution process, if the system is poorly insulated.    

 Space volume: how much heating or cooling energy is required to maintain the 
desired comfort, where larger volumes require more energy as they have greater 
exposure to heat transfer via walls, roofs, and windows.  

 Nominal power or average power: determines if the heating or cooling system is 
oversized or undersized and if it can meet the heating and cooling needs of the space 
system. Where oversized systems lead to an uneven heat transfer. Undersized 
systems struggle to meet heating or cooling demands.  

 Ventilation system and type: govern heat transfer through air exchange, either 
increasing heat losses (from uncontrolled infiltration) or reducing heat losses (via 
controlled ventilation with heat recovery).  

 Age of cooling system: impacts the cooling efficiency – the building's ability to 
maintain thermal comfort throughout heat gains. 

 

Meteorological data 

Typical meteorological data included in BEM studies, influencing heating and cooling demands 
include (Fathi et al., 2020a), (Olu-Ajayi et al., 2021), (Carpino et al., 2022):  

 Outdoor air temperatures 
 Solar radiation 
 Wind speed and direction 
 Humidity 
 Dew point temperatures  
 Atmospheric pressure  
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For modelling the heating demand, an example workflow of model inputs and calculated outputs 
is shown in Figure 31.  

 

Figure 31: Definition of model inputs and outputs for calculating the heating demand (Aruta et al., 2024). 

 

MODELLING CHALLENGES 

Zhang et al. (2024) identifies the key challenges involved in BEM:  

 Data quality and availability: historical energy consumption data may be incomplete 
or noisy, or unavailable for the study area of interest, increasing prediction errors and 
uncertainty, and making validation challenging.  

 Energy uses: lack of information on whether gas consumption is from heating or 
direct hot water, and whether electricity consumption is from cooling or lighting 
needs (Aruta et al., 2024). 

 Complexity of prediction scenarios: energy consumption is impacted by multiple 
factors, such as weather, building characteristics, and occupant behaviour. These 
interactions add complexity to the model. Advanced algorithms, such as deep 
learning, may be required to effectively capture non-linearity.  

 Model scalability: improving model generalization – the model’s ability to extract 
useful information from similar buildings and make suitable adjustments based on 
the target building’s characteristics. Especially challenging when data is limited or 
unavailable for the target area.  

 

URBAN SCALE  

In the presence of building energy performance certifications, such as LEED, there is a focus on 
developing accurate energy models for individual buildings. However, to achieve the desired 
carbon reductions and environmental targets there is a need to evaluate building energy 
performance at urban scale (Fathi et al., 2020a). 
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Urban building energy modelling (UBEM) identifies the seasonal or annual energy demand of 
buildings across a city, considering the interdependency of buildings and the influence of the 
urban environment on building energy performance. Physics-based UBEM models simulate 
energy use from the building characteristics, including building geometry, HVAC systems, and 
occupancy patterns (Li et al., 2023). 

Where BEM focusing solely on modelling the energy performance of individual buildings, UBEM 
considers surrounding effects, for example the radiation exchange between buildings and the 
environment, impacted by the height and density of the building network (Li et al., 2023). UBEM 
is considerably more challenging compared to BEM, due to data acquisition, data scale, and 
processing time. 

  
MODEL TYPES 

UBEM is categorized into two main types: top-down, and bottom-up models.  

Top-down 

 Relies on aggregate energy data, does not model individual buildings.  
 Simple modelling approach and greater availability of required data. 
 Not suitable for conducting detailed analysis and informing building-level energy 

conservation measures.  

Bottom-up 

 Calculates energy demand of each building then scales up to the entire city.  
 Requires substantial computational resources.  
 Incorporates detailed building characteristics and urban environmental features.  

Due to the detailed nature of bottom-up models, they can present a notable advantage over top-
down models, supporting decision-makers to understand building-level energy conservation 
strategies and identify retrofit opportunities. However, a challenge lies in scaling-up bottom-up 
models to a large city-level study, and balancing prediction accuracy with simulation time 
intensity (Li et al., 2023). 

 

CASE STUDIES 

ADDRESSING LIMITATIONS OF BUILDING ARCHETYPES 

Thrampoulidis et al. (2023) notes that bottom-up approaches often use building archetypes – 
building definitions that represent a group of buildings with similar properties – to perform 
large-scale analysis with reasonable computational time and cost. The disadvantage of using 
building archetypes in a bottom-up retrofit approach is that the unique properties of each 
building are not captured, and thus individual building results may deviate significantly from 
reality.   
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Wahi et al. (2024) aimed to address the limitations of archetype-based energy modelling 
approaches by employing a sampling-based methodology to capture housing variability across 
terraced and apartment buildings in the Netherlands. The study assessed the readiness of these 
housing types for low temperature heating (LTH) supplied by district heating (DH).  

 

Figure 32: Sampling based methodology (Wahi et al., 2024). 

The approach generated representative samples of housing types using Latin Hypercube 
Sampling (LHS) to reflect variations in geometry, insulation, heating systems, and occupant 
behaviour. For each housing type a sample size of 1,300 was determined to adequately represent 
the variability. 

 

Figure 33: Latin hypercube sampling methodology (Wahi et al., 2024). 

Simulations were conducted using dynamic energy modelling tools (Ladybug and Honeybee) to 
evaluate the annual heating demand and thermal comfort under high-, medium-, and low-
temperature heating conditions. Inputs included insulation levels, airtightness, heating 
setpoints, ventilation types, and radiator capacity. 

Machine learning approaches including Random Forest (RF) were used to predict LTH readiness 
and identify the key input variables. From the sensitivity analysis, the most influential 
parameters for predicting LTH readiness were:  

1. Heating setpoints (occupant behaviour). 
2. Ventilation-related parameters (system type and infiltration rates). 
3. Building envelope characteristics (roof, glazing, and wall insulation). 
4. Radiator sizing.  
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This approach provided an effective methodology for analyzing large building stocks and 
capturing housing variability. The approach could be expanded to consider other housing types, 
considering more than terraced (intermediate) and apartments, as well as other climatic 
conditions. 

 
REFINED BUILDING ARCHETYPE APPROACH  

Aruta et al. (2024) used a refined building archetype 
approach – by modelling buildings with the true 
geometric, orientation, location, and building adjacency 
properties, but with thermal parameters corresponding 
to an energy performance reference standard. This 
approach is more representative than the typical 
archetype-based approach – that generalizes building 
geometric data based on broad building periods and 
housing types.   

The study modelled the energy demands using building 
geometric data, thermal properties of the building 
constructions, and HVAC system data. The complete list 
of input parameters is shown in Table 3.  

For validation, Aruta et al. (2024), compared space 
heating and cooling demands to those derived from 
EnergyPlus. Through comparative analysis, the goal was 
to identify where the model required adjustment to 
better depict temporal variations or complex 
interactions.  

Comparison between the prediction tool and EnergyPlus 
simulations showed a deviation of +5% to -4% for 
heating and cooling seasons.  

Limitations include the reliance on high-quality input 
data that was unavailable at the time of study. As well as 
the potential inaccuracies resulting from applying an 
archetype-based approached at large scale (Aruta et al., 
2024). 

 

 

 

Model Inputs 
Geometry 
Construction technology  
Construction year 
Building intended use  
Building length L1 
Building width L2 
Number of floors 
L1 exposure (N, E, S, W) 
If isolated building (Y, N) 
If taller buildings nearby (Y, N) 
Shared building surfaces  
Roof solar exposure 
Walls solar exposure 
Thermal 
Vertical wall typology 
Vertical wall thickness 
First floor slab typology  
First floor slab thickness 
Roof typology  
Roof thickness 
Window glass type 
Window frame type 
Type of screening  
Systems 
Heating generator typology  
Heating terminal  
Regulation system  
Distribution system  
Volume  
Nominal power  
Ventilation system type 
Age of cooling system  

Table 4: Definition of model inputs and 
outputs for calculating the heating 

demand (Aruta et al., 2024). 
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MACHINE LEARNING  

APPROACHES 

ML describes techniques used to detect patterns in a dataset to predict future data or conduct 
other decision-making processes. The three main ML types are:   

1. Supervised learning (predictive): Produce mapping from inputs to outputs given a 
labelled dataset of inputs and corresponding outputs. 

2. Unsupervised learning (descriptive): Detect patterns in dataset from given inputs.  
3. Reinforcement learning: Learning performance from reward or penalty signals.  

 
Common ML methods used for building energy modelling include:   

 Classification: map inputs to output classes.  
 Regression: map inputs to continuous output variables.  
 Clustering: assign similar data points to distinct clusters.  
 Dimension reduction: reducing random variables via feature selection or extraction.  

 

 

Figure 34: Machine learning methods common for building energy modelling (Adapted from Fathi et al., 
2020a). 

Due to the complexity of factors involved in BEM, models often rely on data-driven approaches 
using historical energy consumption data, to predict future energy demands, otherwise known 
as building energy performance forecasting (BEPF). Implementing machine learning methods 
within BEPF can improve the efficiency of mapping and classifying building energy use, requiring 
less detailed thermal-physical characteristics compared to typical physics-based forward models 
(Fathi et al., 2020a).  
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The key steps for implementing machine learning within BEPF are shown in Figure 35.  

 

Figure 35: Data-driven framework for predicting building energy demands (Zhang et al., 2024). 

 
Typical machine learning methods within BEPF are shown in Figure 36.  

 

Figure 36: Overview of data-driven load prediction models (Zhang et al., 2024). 

 
Fathi et al. (2020a) reviewed existing BEPF studies at individual and urban scales (including 
neighbourhoods, districts and cities). The share of BEPF studies were 61% for individual building 
level and 39% for urban level. Where, a lack of data is the main reason for the lower number of 
urban scale studies.  
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Figure 37: Machine learning methods in BEPF at individual and urban levels (Fathi et al., 2020a). 

 

The following machine learning 
methods, shown in Table 5 were found 
throughout BEM and UBEM studies. 

Artificial neural network (ANN), support 
vector regression (SVR) and random forest 
(RF) are used more frequently than 
reinforcement learning (RL) or auto 
regressive integrated moving average 
(ARIMA), mainly, due to their ability to 
capture more useful information in time 
series data (Fathi et al., 2020a). 

From the studies reviewed, there was only 
one urban scale study that used RL, and 
no studies at the individual building level. 
This is likely due to the complexity of RL 
and the requirement of extensive building 
energy input data (Fathi et al., 2020a). 

 
 

 

 

 

ML methods  
Artificial Neural Networks (ANN) * 
Support Vector Regression (SVR) * 
Multiple Linear Regression (MLR) 
Genetic Algorithms (GA)  
Random Forests (RF) 
Cluster Analysis (CA) ** 
Bayesian Networks (BN) ** 
Gaussian Processes (GP)  
Gradient Boosting (GB)  
Principal Component Analysis (PCA)  
Deep Learning (DL)  
Reinforcement Learning (RL)  
Auto-Regressive Integrated Moving Average (ARIMA) 
Ensemble Prediction (ENS) 

* ML methods used more frequently at individual building level.  
** ML methods used more frequently at urban level. 

Table 5: Machine learning methods common in BEM and 
UBEM studies (Fathi et al., 2020a).  
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Fathi et al. (2020a), explored the building types, energy types, input data, and time scales studied 
at urban and individual building levels.  

Table 6: Number of studies using the various energy types (Fathi et al., 2020a). 

 

 
Majority of studies focus on 
predicting electricity (44%), next to 
heating and cooling demands (39%).  

There is not a universally optimal 
combination of criteria for achieving 
the most accurate ML-based BEPF 
model. The accuracy of the ML model 
is highly dependent on the data 
characteristics and study objective 
(Fathi et al., 2020a). 

Time scales studied are shown in 
Figure 40. Notably urban scale studies 
are typically performed at annual time 
scales, likely due to the challenges 
involved in simulating hourly data at 
urban scale.  

There were no studies in the review 
that used future weather scenarios to 
investigate the effects of climate 
change. Also, none of the studies 
explored the impact of retrofit 
strategies on future building energy 
performance (Fathi et al., 2020a). 

 

 

 

Figure 38: Building types studied at urban and individual levels 
(Fathi et al., 2020a). 

Figure 39: Input data used in building energy performance studies 
(Fathi et al., 2020a). 

Figure 40: Time scales used in building energy performance studies 
(Fathi et al., 2020a). 
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DEEP LEARNING (DL) 

Several limitations are present when developing a physics-based UBEM, mainly the time-
consuming nature and inability to handle a massive, heterogeneous dataset representing the 
building and surrounding environment at urban scale. To address these limitations DL 
techniques have recently been employed (Li et al., 2023).  

DL is a ML method based on artificial neural networks that simulate the connections and 
information processing used by neurons in the human brain to automatically learn, identify 
complex patterns, and detect features from large datasets. DL offers the ability to process 
unstructured heterogeneous data, for example extracting relevant urban features from satellite 
imagery (Li et al., 2023). 

Li et al. (2023), provides a comprehensive review of bottom-up physics-based UBEM studies 
published between 2017-2022 and existing DL techniques used in UBEM workflows. From the 
reviewed literature the following DL approaches were most frequently used: 

1. Autoencoder: extracts essential features from the input data and then reconstructs these 
features back into the input data.  

2. Artificial neural network (ANN): multiple inter-connected basic units (neurons), that 
simulate interactions between neurons in human brain, creating information 
transmission.  

3. Convolutional neural network (CNN): extracts distinctive features from input data and 
performs classification or regression, often used for processing image data.  

4. Recurrent neural network (RNN): introduces a recurrent structure to the network, often 
used to process sequential data, such as time-series data. Ability to capture temporal 
dependencies in the input sequence and use previous data to predict the next outputs.  

5. Graph neural network (GNN): most often used for processing graph structured data, 
ability to identify the relationships between nodes in a graph to complete classification 
and regressions tasks.  

From the review, CNN was the 
most used algorithm. Almost all 
studies that used CNN were 
processing images, which is 
logical based on CNN’s strong 
ability to extract important 
features from image data (Li et 
al., 2023). 

A comparison between physical 
simulations and deep learning 
approaches is shown in Table 7.  Figure 41: Deep learning algorithms used in the reviewed literature (Li et al., 

2023). 
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Table 7: Comparison of physical simulations and deep learning approaches (Li et al., 2023). 

 

 

CASE STUDIES 

COMPARATIVE ANALYSIS OF ML MODELS   

Olu-Ajayi et al. (2021) explored building energy prediction using ML as well as DL approaches, 
with the aim of developing a model to enable designers to input key building features to predict 
the annual average energy consumption using a large residential building dataset. The study 
evaluates the performance of nine ML models to compare the computational efficiency in terms 
of training times as well as the algorithm’s predictive accuracy, using: 

1. Artificial Neural Network (ANN) 
2. Gradient Boosting (GB) 
3. Deep Neural Network (DNN) 
4. Random Forest (RF) 
5. Stacking, K Nearest Neighbour (KNN) 
6. Support Vector Machine (SVM) 
7. Decision tree (DT)  
8. Linear Regression (LR) 

The study explores the impact of building archetypes (including detached houses and 
apartments) on feature selection and model performance. And the impact of dataset size on the 
model’s accuracy, across all nine models.  

RF was used to rank the input features by importance. The most impactful variables included 
total floor area, roof characteristics, number of heated rooms, and weather conditions, shown in 
Figure 42.  
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The study found that the building 
archetype did not significantly affect 
feature selection or model 
performance. Algorithms were 
evaluated using coefficient of 
determination, R², mean absolute 
error (MAE), mean squared error 
(MSE), and root mean squared error 
(RMSE) performance metrics. DNN 
achieved the highest accuracy, 
outperforming all other models. 
ANN and GB followed with slight 
reductions in accuracy compared to 
DNN. Notably, DT had the shortest 
training time but showed lower 
accuracy. Larger datasets significantly improved model accuracy for all algorithms, highlighting 
the importance of the dataset size in model predictions (Olu-Ajayi et al., 2021). 

The study highlights the potential of machine learning, particularly deep learning, in energy 
prediction tasks, and the importance of algorithm selection, data quantity, and data quality.  

 

EVALUATING PERFORMANCE  

Geysen et al. (2017) explored the prediction of thermal load in district heating by combining 
multiple ML approaches into an expert advice system that identifies the best performing model. 
The model was trained with 20 months of hourly thermal load data, outdoor temperatures, and 
control signals from a district heating system in Sweeden. The following models were used:  

 Linear regression  
 Artificial neural network  
 Support vector machine 
 Extremely randomized (extra) tree regressors 

The methodology works with a predictor, and forecaster. The predictor refers to the individual 
models and the forecaster aggregates the predictions by adjusting the weights to determine the 
most accurate predictor at each stage.  

Predictions from the individual models are combined by dynamically assigning weights to the 
best-performing models based on past performance. Methods used fixed share and polynomials 
weighted average in order to optimize the model weights. Model performance was evaluated 
using MAPE, showing that the ANN was the best-performing model, with the extremely 
randomized tree regressor and SVM next. The linear regression model performed the worst based 
on its limited ability to predict non-linear relationships (Geysen et al., 2017). 

 

Figure 42: Feature selection using RF (Olu-Ajayi et al., 2021). 
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HYBRID STATISTICAL + ML APPROACH 

Fathi et al. (2020b) explored the use of statistical and machine learning approaches to predict 
campus energy use, considering effects of climate change. Historical data was collected from 12 
university buildings in Florida, including the following inputs:  

 Electricity and natural gas use over a three-year period. 
 Outdoor temperature, relative humidity, and solar radiation for both historical and 

future climate scenarios (2041, 2057, 2063) using North American Regional Climate 
Change Assessment Program (NARCCAP) weather files. 

 Wall and window thermal transmittance (U-values), solar heat gain coefficient, and 
lighting and equipment loads. 

 Building space functionalities, grouped by gross square footage percentages. 

The study utilized the following models:  

 Clustering: K-means was used to create building archetypes based on thermophysical 
and space functionality characteristics, reducing model complexity. 

 Feature Selection: Principal component analysis (PCA) was used to identify the most 
influential variables for prediction. 

 Prediction: ARIMA and long short-term memory models (LSTM) were used to predict 
monthly and hourly energy use. 

The model results were compared to the building’s actual energy use and RMSE was used to 
evaluate the performance. The model showed +/- 15% error, considered acceptable within the 
ASHRAE-14 guidelines (Fathi et al., 2020b).   

LSTM used the average outdoor temperature, relative humidity, solar radiation, and the hour of 
the day as the predictor variables to forecast the energy use for three future climate scenarios 
in years 2041, 2057, and 2063, where energy was projected to be up to 20% higher (Fathi et al., 
2020b).  

The model then forecasted the energy use for these future climate scenarios, considering the 
implementation of different building envelope variations, as shown in Table 8.  

Table 8: Envelope properties for different retrofit interventions (Fathi et al., 2020b).    

 

The model showed that Envelope Scenario 5, considering implementing all retrofit 
interventions, had the greatest impact on reducing energy consumption under the future 
weather scenarios, shown in Table 9. It would be valuable to understand the cost implications of 
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implementing scenarios 1 versus 5, considering the scale of intervention and minimal difference 
in energy savings from the baseline.  

Table 9: Energy use forecasted with different retrofit interventions for future weather scenarios (Fathi et al., 2020b). 

 

This study shows the importance of considering future climate scenarios for energy prediction. 
However, is limited by the number of buildings considered in the study, and the limited number 
of retrofit interventions applied.  

 

AUTOMATING ENERGYPLUS INPUT DATA 

Zhang et al. (2024) aimed to overcome challenges of data scarcity, feature extraction, and poor 
model generalization often faced in data-driven building energy prediction models. And 
suggested a novel framework for generating the input data files (IDF) needed for EnergyPlus 
models using retrieval augmented generation (RAG) and spatiotemporal graph neural networks 
(STGNN) to increase the correlation between the generated EnergyPlus model and real model.  

The IDF files were generated based on HVAC design standards and the EnergyPlus model library. 
The process includes:  

 Input building design specifications including energy efficiency standards, building type 
and location, and features such as WWR.   

 Use natural language processing (NLP) methods to analyze the language input and 
extract key parameters. 

 Implement text mining methods to extract HVAC parameters from design standards, 
such as minimum energy efficiency standards and maximum allowable WWRs. 

 Search the existing EnergyPlus model library for IDF files that are similar to the target 
building, such as buildings with the same location or similar use patterns and extract 
relevant parameters.  

 Generate the IDF file, designing a template for a LLM prompt that combines the 
parameters obtained from the design standards and EnergyPlus model library. 

The model’s accuracy, in terms of predicting annual heating, cooling and total energy 
consumption was validated with reference EnergyPlus files generated from the same building 
specifications or with actual measured data, depending on the building case. Validation used 
RMSE and MAPE. The model showed alignment to the reference EnergyPlus model with a <5% 
MAPE (Zhang et al., 2024). 
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BUILDING RETROFIT DECISION MAKING 

Carpino et al. (2022) introduces a methodology to reduce possible risks and improve the 
decision-making process associated with implementing energy-saving retrofits. The study uses 
Uncertainty Analysis and Sensitivity Analysis (UA/SA) to verify the probability of meeting the 
performance target after implementing some retrofit strategy. 

 Uncertainty analysis: determines the range of variability in model outputs due to 
the range of uncertainty in input variables. 

 Sensitivity analysis: identifies significant parameters that affect the output variable.  

Retrofitting measures include improving thermal insulation, replacing windows, improving 
HVAC systems, and installing renewable energy systems. Input data for key variables identified 
from the SA were then refined to increase the chance of meeting the performance target.  

The following uncertain 
parameters, particularly 
impacted the output 
energy performance:  

1. Efficiency of cooling 
system  

2. Cooling set-point 
temperature  

3. Heating set-point 
temperature  

 

Through applying UA/SA methods, the probability of meeting the energy performance target 
after retrofit was increased to 82%, as well as achieving a significant reduction in the primary 
energy demand (Carpino et al., 2022).  

Thrampoulidis et al. (2023) developed a building-level surrogate model using artificial neural 
networks (ANNs) to approximate optimal retrofit solutions. The model was applied to a 
municipality in Geneva with approximately 36,000 residential buildings and trained using 
building archetypes, representative of 92-99% of the residential building stock. Optimization 
models were used to find retrofit packages that minimized total cost and CO2 emissions. The 
building level retrofit strategies include:  

1. Adding insulation to the roof, façade or ground floor 
2. Replacing windows with those of higher U-values 
3. Energy system replacements including heating and cooling systems, and installing 

renewable technologies 

Figure 43: UA/SA workflow Carpino et al. (2022). 
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Figure 44: Methodology for training, testing and validating the surrogate retrofit model (Thrampoulidis et al., 2023). 

For each building, a set of ten optimal building retrofit solutions were generated based on nine 
retrofit dimensions:  

A. Cost of retrofit intervention (regression)  
B. CO2 emissions (regression) 
C. Selection of energy system (classification) 
D. Sizing / capacity of energy system (regression) 
E. Selection of renewables (classification) 
F. Sizing of renewables (regression) 
G. Selection of storage system (classification) 
H. Sizing of storage system (regression) 
I. Selection of building envelope intervention (classification) 

The surrogate model performed well for predicting the cost and emissions but poorly for 
predicting the size of renewables (PV capacity). The model showed significant advantages to 
traditional energy optimization models, generating predictions for over 36,000 buildings within 
9 minutes compared to what would be 90 days for traditional models (Thrampoulidis et al., 
2023).  

The study highlights that building retrofits, especially large-scale retrofits, are considered of 
highest importance to reduce the overall share of energy consumption and GHG emissions of 
the building sector. And that surrogate models are an effective method for reducing the time 
intensity of energy modelling at large-scale.  
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PERFORMANCE METRICS 

Several performance metrics can be used to assess the prediction ability of an ML model. BEM 
studies typically include:  

 
MEAN SQUARED ERROR (MSE) 

The MSE measures the squared difference between the predicted values and the true values. An 
error value closer to zero is an indication of a good prediction model. The MSE is shown in 
Equation 9.  

Equation 9: MSE 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛
�(ŷ𝑖𝑖 − 𝑦𝑦𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

 

 

ROOT MEAN SQUARED ERROR (RMSE) 

The RMSE also measures the difference between the predicted values and the true values and is 
calculated from the square root of the MSE, shown in Equation 10. 

Equation 10: RMSE 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = ��
  (ŷ𝑖𝑖 − 𝑦𝑦𝑖𝑖)2
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𝑛𝑛

𝑖𝑖=1

 

 
For reporting test set performance, RMSE can be applied because it penalizes larger errors more 
significantly, offering an interpretable metric in the original units of heating and cooling 
demand. However, RMSE is sensitive to outliers, and a poor prediction can disproportionately 
influence the result (Olu-Ajayi et al., 2021).  

 
MEAN ABSOLUTE ERROR (MAE) / MEAN ABSOLUTE PERCENTAGE ERROR (MAPE) 

The MAE measures the average absolute difference between the predicted values and the true 
values, shown in Equation 11. Unlike with the MSE and RMSE metrics, the errors are not squared 
when using MAE, so an equal weighting is given to all errors. Meaning also that it is less sensitive 
to extreme values in the dataset (Olu-Ajayi et al., 2021). 

Equation 11: MAE 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛
� |(ŷ𝑖𝑖 − 𝑦𝑦𝑖𝑖)|
𝑛𝑛

𝑖𝑖=1
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The MAE provides an interpretable indication of errors, since the units of the error are the same 
as for the prediction values. MAE is also typically used to calculate the mean absolute percentage 
error (MAPE), from Equation 12. 

Equation 12: MAPE. 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑀𝑀𝑀𝑀𝑀𝑀 ∗ 100% 
 
The MAPE provides a clear indication of the magnitude of error between the predicted and true 
values. 

 
R-SQUARED / COEFFICIENT OF DETERMINATION (R2) 

The R2 is a measure of how well the prediction model fits the data, assessing the proportion of 
variance in the dependent variable that can be explained by the independent variable, or how 
predictable the dependent variable is from the set of independent variables (Olu-Ajayi et al., 
2021).  An R2 closer to one means the model better fits the dataset, with a value of one indicating 
a perfect fit. The R2 is calculated from Equation 13.  

Equation 13: R2 

𝑅𝑅2 = 1 −
∑   (ŷ𝑖𝑖 −  𝑦𝑦𝑦)2𝑛𝑛
𝑖𝑖=1
∑   (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑦)2𝑛𝑛
𝑖𝑖=1

 

 
Although a high R2 indicates a strong model fit to the dataset, it is not necessarily an indication 
of the model’s ability to accurately predict new, unseen targets. Thus, the R2 is typically used in 
combination with the other performance metrics to assess both prediction ability and model fit 
(Olu-Ajayi et al., 2021).   
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3. METHODOLOGY 
DESIGN ASSIGNMENT  
Through large-scale energy simulations and machine learning techniques, this study 
investigates the influence of climate and building characteristics on heating and cooling 
demands across multiple building typologies. The areas of focus within the building energy chain 
are highlighted in Figure 45.  

 
And line with the hierarchy of strategies for reducing energy consumption, this study explores 
retrofit strategies that reduce energy demand, via improved building envelope performance, 
highlighted in Figure 46.    

 

Figure 46: Focus area within the hierarchy of strategies for reducing energy consumption (Konstantinou, 2014).  

 
The key project deliverables are shown in Table 10.  

Table 10: Design assignment, deliverables, and tools. 

Deliverables Tools 

COMPUTATIONAL WORKFLOW 

Automated workflow for data collection, 
processing, simulation, and ML training and 
evaluation, adaptable to various datasets.  

 Scripting using Visual Studio, Python  

 Data handling using Excel, JSON 

Figure 45: Focus areas within the building energy chain (Adapted from Van Bueren et al., n.d.). 
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ENERGY DEMAND DATASET 

Dataset of simulated heating and cooling 
demands for thousands of residential 
buildings in Rotterdam, reflecting a range of 
typologies, geometries, and retrofit 
interventions. 

 Energy simulation using EnergyPlus  

 Automated data generation using Python 

ENERGY ANALYSIS 

Analysis of building energy demands under 
current and future climate conditions and 
assessment of retrofit impacts across 
different building typologies.  

 Analysis and data visualization using 
Excel, Python, Matplotlib 

MACHINE LEARNING MODEL 

ML predictive model for building energy 
demand and evaluation of prediction accuracy 
from the generated dataset.  

 Model development and evaluation 
within Visual Studio, using Python, 
PyTorch, Scikit-learn 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



51 
 

METHODS 
A two-part methodology was adopted, focused on modelling the heating and cooling demands 
for residential buildings in the Netherlands, involving: (i) large-scale building energy simulations 
and (ii) ML development. The methodology is structured in the following stages: 
 

 
 

 

Figure 47: Project methodology. 
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Each stage of the methodology is summarized below. For further detail, see the corresponding 
chapters.  

 
 LITERATURE STUDY   [chapter 2] 
 DATA COLLECTION    [chapter 4]  
 DATA GENERATION    [chapter 5] 
 DEMAND ANALYSIS    [chapter 6] 
 DATA STRUCTURE   [chapter 7] 
 ML DEVELOPMENT    [chapter 8] 
 PERFORMANCE    [chapter 9] 

 
 

DATA COLLECTION 

The data collection phase involves collection of geometric, weather, and thermal parameters 
pertaining to the building construction. The objective was to connect the building geometries 
to their respective archetypes and associated thermal properties. These parameters were used 
to run energy simulations for the current, and future weather conditions in 2050 and 2080. The 
data collections are shown in Figure 48.  

 

Figure 48: Data collection steps. 
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DATA GENERATION 

Data generation involved producing the dataset of 3DBAG building data, as well as the 
EnergyPlus simulations for each building. The methodology for generating building data and 
EnergyPlus simulations are shown in Figure 49.  

 
EnergyPlus simulations (one of the most 
prominent energy simulation tools) were 
generated to understand the heating and 
cooling demand for each individual 
building within the study.  

The thermal properties of the construction 
elements, including floors, windows, walls, 
and roofs were derived from the 
archetypes. The two simulation scenarios 
are:  

• Current archetype (A): with 
thermal parameters in accordance 
with the building construction and 
installations of its current 
construction year.  

• Retrofit archetype (B): with 
thermal parameters corresponding 
to a retrofit intervention package, 
i.e. improved insulation, and 
reduced infiltration.  

In both scenarios, the heating and cooling 
demands are evaluated  
at the current weather state, 2020, and 
with projections for future weather 
scenarios, 2050, and 2080, producing the 
simulation matrix in Figure 50.  

Figure 49: Data generation workflow for building geometry.  
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Figure 50: Matrix of EnergyPlus simulations for the study.  

 
Considering the matrix of simulation options, and working with a large-scale database, it was 
necessary to automate the EnergyPlus simulation process. Using a Python script to: 

 Format data: for each individual building, format building geometry for simulation.  
 Map inputs: map inputs to each archetype in a structured format.   
 Create IDF: generate the input data file per building for EnergyPlus simulations.  
 Run: execute simulations.  
 Collect data: collect simulation results for heating and cooling demands for later 

processing.  

The data generation workflow is shown below in Figure 51.  
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Figure 51: Data generation workflow for producing EnergyPlus simulations. 

 

DEMAND ANALYSIS 

After collecting the simulation results from EnergyPlus, the demand analysis involves analyzing 
the heating and cooling energy demands per archetype, assessing the differences between 
housing type, and construction period. As well as investigating how the demands change across 
archetypes under future weather scenarios.  
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Figure 52: Demand analysis workflow. 

To achieve this, the EnergyPlus simulation files are merged with the building features to 
determine the energy demands per floor area, that could be used for further analysis. Demands 
are analyzed for the full simulation matrix, considering current and retrofit demands for current 
and future weather scenarios. 

 

DATA STRUCTURE  

Data structuring is required to prepare the input features and energy simulation results for ML. 
This involves flattening the inputs and outputs to a tabular format and merging geometric, 
weather, and thermal construction features to a single dataset. This stage also involves 
addressing missing values, checking for outliers, and eliminating extremes where required. The 
structured feature set can then be implemented to the ML model. The methodology was 
conducted using energy simulations for the current weather, A1, and B1, shown below in Figure 
53.  
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Figure 53: Data structuring workflow.  

The same data structuring would be required for energy simulations for using future weather, 
at years 2050, (simulations A2, B2) and 2080 (simulations A3, B3) although this stage was not 
integrated within the study.   

 

ML DEVELOPMENT  

Model development involves creating a ML model to predict the energy demands for current and 
retrofit building constructions. The objective was for the ML model to serve as an efficient 
alternative to EnergyPlus, enabling rapid and accurate prediction of heating and cooling 
demands across large building inventories. The development stage involves several iterations of 
training and testing to understand the model’s prediction abilities when using different feature 
sets, and hyper-parameters.  

The model was developed using the energy simulations at the current weather state. Future 
weather files were used for the demand analysis but were not integrated within the ML stage of 
the project. 
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PERFORMANCE EVALUATION   

Performance evaluation involves a comparative analysis between the predicted heating and 
cooling demands, and the simulated energy demands from EnergyPlus.  

The standard performance metrics found from the literature were used to assess the prediction 
ability of the ML model; MSE, RMSE, MAE, MAPE and the R2.  
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4. DATA COLLECTION 
Data was collected within the context of Rotterdam, Netherlands. The datasets used throughout 
the project are summarized in Table 11.  

Table 11: Datasets used throughout the project. 

DATASETS 

NIEMAN BUILDING 
TYPOLOGIES 

Dataset of approximately 405,000 buildings in the Netherlands with 
location IDs that can be used to download the corresponding building 
geometry from 3DBAG.   

BUILDING GEOMETRIES 
3DBAG open data set of current 3D building models in the 
Netherlands, at multiple levels of architectural detail.  

CONSTRUCTION 
CHARACTERISTICS 

Example Homes Guide 2022 of building archetypes, (based on 
construction year and building type) with associated thermal 
transmittance values for construction (floors, walls, windows, roof ). 

CURRENT WEATHER FILES 
EnergyPlus weather files for Rotterdam, based on current standard 
meteorological years.  

FUTURE WEATHER FILES 
EnergyPlus weather files for De Bilt, Netherlands, based on morphed 
meteorological data for 2050, 2080. 

 

GEOMETRIC 

BUILDING DATASET (Pand IDs) 

The original Nieman Building 
Typologies database contained 
approximately 405,000 buildings, each 
associated to a Pand ID – a geometric 
identifier, for the geometry and 
attribute data of the building object, 
and Nieman Typology – the 
classification of a building based on the 
building type, and construction period. 
Based on Nieman’s classification there 
are 21 residential building typologies.  

The “Example Homes Guide 2022”, of 
housing types representing the 
current housing stock in the 
Netherlands, was used in part to 
identify the typologies of interest for this study. From approximately 8 million existing houses, 
the distribution of each house type is shown in Figure 54 (Ministry of the Interior and Kingdom 
Relations, 2022).  

Figure 54: Distribution of housing types in Netherlands, over all 
construction periods. 
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Since dwellings constructed before 1975, 
prior to the adoption of the Bouwbesluit 
(Building Decree) thermal regulations, 
typically demonstrate poor energy 
performance (Wahi et al., 2024), the 
distribution of houses constructed before 
1975 was also investigated, shown in 
Figure 55.  
 
 
 
 
 
 
 
The most prominent housing types from each distribution are shown in Table 12. 
 

Table 12: Most common housing types in the Netherlands overall and constructed pre-1975. 

 Overall distribution Distribution pre-1975 
1 Terraced Intermediate (27%) Terraced Intermediate (13%) 
2 Terraced Corner (14%) Porch (9%) 
3 Detached (14%) Detached (7%) 
4 Porch (13%) Terraced Corner (7%) 

 
 
Based on the distributions, the terraced intermediate, terraced corner, and detached housing 
types were selected for the study. And the corresponding Nieman typologies are shown in Table 
13. 
 
 

 

 

 

 

 
 
 
 
 

Figure 56: Typologies for study, Terraced Intermediate (Hulsman, 2024), Terraced Corner (Ministry of the Interior and 
Kingdom Relations, 2022) Detached (Street View of Ring 613 · Google Maps, n.d.).  

TERRACED INTERMEDIATE TERRACED CORNER DETACHED 

Figure 55: Distribution of housing types in Netherlands constructed 
prior to 1975. 
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Table 13: Selected Nieman typologies for study. 

Nieman Typology Housing type Building period 
6 Terraced Intermediate pre-1946 
7 Terraced Intermediate 1946 – 2018 
8 Terraced Corner 1946 – 2018 
21 Detached 1965 – 2018 

 

PRE-PROCESS SELECT BUILDINGS  

The Nieman Building Typologies database, shown in Figure 57 includes the following features:  

 Building use (Gebruiksdoel): intended building function, i.e. residential or 
commercial.  

 Surface area (Oppervlakte) 
 Number of floors (Aantal Bouwlagen) 
 Construction period (Bouwperiode) 
 Original year of construction (Oorspronkelijk Bouwjaar) 
 Type of object (Soort Object) 

 

 

Figure 57: Nieman building dataset for processing. 

 
The database was processed to select the typologies of interest and handle missing values. From 
the dataset, the steps include: 

1. Filter for Nieman typology of interest (Nieman typologie) 
2. Filter for residential building function (Woonfuntie).  
3. Remove entries with multiple Pand IDs.  
4. Remove buildings with blank entries for building period (Bouwperiod).   
5. Filter for terraced and detached housing type (Soort Object, Tussenwoning, 

Vrijstaand). 
6. Filter for intermediate and corner housing sub types (Voorbeeldwoning, 

Tussenwoning, Hoekwoning). 
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After filtering the dataset, the selected 
typologies represent approximately 75,000 
houses. The ratio of each typology within the 
filtered dataset is shown in Figure 58.  
 
The Nieman typologies provide a high-level 
grouping of building data, where a single 
typology combines multiple building periods. For 
example, looking at Table 13, Typology 7 includes 
all intermediate terraced houses from 1946-
2018. To better represent the construction 
features associated with each building period, 
each Nieman typology was then categorized as a 
specific Archetype, based on the housing type 
and a more granular building period. The 
complete list of archetypes used for the study is 
shown in Table 14.  

Table 14: Building archetypes used for study. 

Nieman Typology Archetype Housing type Building period 
6 TI.1946 

Terraced Intermediate 

pre-1946 

7 

TI.1946-1964 1946 – 1964 
TI.1965-1974 1965 – 1974 
TI.1975-1991 1975 – 1991 
TI.1992-2005 1992 – 2005 
TI.2006-2014 2006 – 2014 
TI.2015-2018 2015 – 2018 

8 

TC.1946 

Terraced Corner 

pre-1946 
TC.1946-1964 1946 – 1964 
TC.1965-1974 1965 – 1974 
TC.1975-1991 1975 – 1991 
TC.1992-2005 1992 – 2005 
TC.2006-2014 2006 – 2014 
TC.2015-2018 2015 – 2018 

21 

D.1965 

Detached 

pre-1965 
D.1965-1974 1965 – 1974 
D.1975-1991 1975 – 1991 
D.1992-2005 1992 – 2005 
D.2006-2014 2006 – 2014 
D.2015-2018 2015 – 2018 

 

Figure 58: Distribution of selected Nieman typologies 
within the filtered dataset.  
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WEATHER 

CURRENT 

Weather data used the EnergyPlus weather (EPW) file for Rotterdam/the Hague. The EPW file 
includes hourly measurements of parameters such as air temperature, relative humidity, wind 
speed and direction, solar radiation, atmospheric pressure, and precipitation. The EPW file used 
is made up of historical weather data from 2009 to 2023, based on the Typical Meteorological 
Year (TMYx) method, which uses representative months to create a statistically representative 
annual dataset (Climate.onebuilding.org, n.d.). The selected EPW file is thus representative of the 
most current climate conditions for Rotterdam and was used for the energy simulations at the 
current weather state. 

FUTURE 

Future weather scenarios for the years 2050 and 2080 were based on pre-generated EPW files 
for De Bilt, Netherlands. These files are part of a dataset developed by modifying observed 
historical weather data to represent expected climate conditions in 2050 and 2080 (Heiranipour 

et al., 2024). 

The EPW files are developed by:  

 Morphing  
This method uses historical weather 
data and then morphs or shifts the 
temperature, humidity, and other 
variables according to projected 
changes from global climate models 
(GCMs).  

 Dynamical Downscaling: 

Uses regional climate models (RCMs) 
to simulate future weather, at the 
Representative Concentration Pathway 
(RCP) 8.5 greenhouse gas emissions 
scenario, which is the highest-warming 
pathway from the IPCC. 

Despite the current weather file being 
for Rotterdam, De Bilt was used for 
future weather energy simulations 
since De Bilt represents the nearest 
station with readily available, future 
weather data. Using the pre-generated 

EPW files eliminated the need to produce a future weather file using computational tools such 

Figure 59: KNMI climate projections in the NL are based on 5 climate 
reference stations – De Bilt, Den Helder (De Kooy), Groningen (Elde), 
Maastricht, Vlissingen, capturing distinct regional climate differences 
across NL. Adapted from (De Vos, 2024).  
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as EPWshiftr (that apply the same morphing methodology but for any location), which under the 
time constraints of the project was advantageous.  

 

CONSTRUCTION 
Thermal parameters for building envelope components were obtained from the “Example Homes 
Guide 2022”, which provides construction parameters for each archetype within the Dutch 
residential building stock. The guide gives standardized thermal characteristics, including 
insulation values (Rc) for walls, roofs, and floors, and U-values for windows for both the current 
building state and a retrofit scenario. The Rc and U-values from the guide were obtained for each 
of the selected archetypes for both the current and retrofit building states. For example, for the 
Detached house constructed prior to 1965, the data obtained is shown in Figure 60.  
 

Detached house pre-1965 
Architectural   
 Current Retrofit 1 
Ground floor Rc = 0.15 Rc = 3.50 
Façade Rc = 0.35 Rc = 1.70 
Sloped roof Rc = 2.50 Rc = 3.50 
Flat roof Rc = 0.85 Rc = 3.50 
Window U = 1.80 U = 1.40 
Door U = 3.40 U = 1.40 
Infiltration Standard rate qv = 0.7 

 
The guide does not provide 
explicit infiltration rates, 
which are a critical feature 
to estimating thermal 
performance. From Figure 
60, for the current 
conditions, the guide 
suggests a standard rate but 
does not provide what rate 
is used. Thus, infiltration 
parameters were taken from 
the Nieman report 
"Standard and Target Values 
for Existing Housing" 

(2021), which defines 
standard energy demands for the Dutch housing stock for several retrofit scenarios. The Nieman 
report classifies houses according to broader typologies than used in this study, based on the 
construction period and housing type, shown in Figure 61.  

Figure 61: Nieman broad archetype classification (Nieman et al., 2021).  

Figure 60: Example homes guide detached house < 1965 thermal properties (Ministry of the Interior and Kingdom 
Relations, 2022) 



66 
 

Despite the broader typology classification, the reported infiltrations were mapped to the 
archetypes for this study and used for simulating current and retrofit states. The mapping of 
thermal parameters to each archetype for this study is further discussed in Chapter 5.  

Each archetype was assigned a simplified definition 
of envelope layers, using the overall assembly 
thickness, Dt, and overall insulation Rc, used to 
calculate the conductivity, shown in Equation 14.  

Equation 14: Conductivity. 

𝜆𝜆𝑇𝑇 =
𝐷𝐷𝐷𝐷
𝑅𝑅𝑅𝑅

 

 

This simplification was used to address the lack of 
detailed layer-by-layer assembly data for floors, 
walls and roofs. The “Example Homes Guide 2022” 
provides only aggregate Rc values for each building 
element and archetype, rather than specifying Rc or 
conductivity for individual materials within the 
assembly. As a result, it was not feasible to define 
each construction in terms of its true material 
build-up. Also, specifying detailed assemblies for 
every archetype would add significant simulation 

time without improving the reliability of the model 
inputs, given the lack of available data.  

Thus, for the main thermal envelope elements, 
assumptions had to be made for the thickness of the 

element, density, and specific heat capacity (based on the requirements of the EnergyPlus 
simulation).  Assumptions for main envelope elements were informed by the Nieman report, 
"Standard and Target Values for Existing Housing" based on the following materials: 

 Roof: Lightweight concrete, roof screed 
 Façade: Solid clay-brick masonry 
 Window: Single or double-glazed unit 
 Floor: Softwood/timber floor 

For each archetype, two discrete material scenarios were defined per element: 

 CURRENT CONDITION: Reflects the existing envelope build-up, using lower insulation 
values and higher conductivities. 

 RETROFIT CONDITION: Applies a single retrofit upgrade per archetype, reducing 
conductivity for all main elements, and improving window U-values. 

DT 

RT 

Figure 62: Simplified building envelope section, 
showing assembly thickness (Dt) overall insulation 
(Rc), indoor temperature (Ti), outdoor temperature 

(To). Adapted from (Franco, 2023).  
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This resulted in a material ID table that describes the parameters of the main thermal elements 
for each archetype, that are used to run the EnergyPlus simulations. The material ID table is 
attached in APPENDIX B.  

Note, only one retrofit scenario per archetype was studied, yielding two discrete Rc values per 
element. In future work, a continuous range of Rc values should be generated to simulate a wider 
spectrum of retrofit possibilities. 
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5. DATA GENERATION 
BUILDING DATA 

COLLECT 3DBAG GEOMETRY 

 

Figure 63: Rotterdam perspective, visualized in 3DBAG (3DBAG Viewer, 2024). 

The 3DBAG, is an open-access platform that provides detailed 3D data of buildings in the 
Netherlands (3D geoinformation research group, 2023). The 3DBAG reconstructs building 
geometry using:  

 The Basic Registration of Addresses and Buildings (BAG) – an openly available data set, 
containing building data for all addresses in the Netherlands, including location, building 
function, year of construction, and geometric properties (3D geoinformation research 
group, 2023). 

 BAG geometries are obtained from aerial photos and terrestrial measurements and are 
represented as 2D polygons, showing the outline of the building as projected from above.  

 Actueel Hoogtebestand Nederland (AHN) – provides detailed elevation data from LiDAR 
measurements – represented as point clouds – for all buildings and topography across 
the Netherlands.  

 

Figure 64: 3DBAG building geometries (adapted from 3D geoinformation research group, 2023). 
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For each BAG polygon, the 3DBAG extracts corresponding AHN point clouds to determine the 
roof shape, height and overall 3D building structure, resulting in 3D building geometry at three 
different levels of detail, LoD1.2, LoD1.3, and LoD2.2. 

 

 

 

 

Figure 65: LoDs available from the 3DBAG. Adapted from (Biljecki et al., 2016). 

In LoD1.2 the buildings are represented as blocks extruded from the 2D polygon. Smaller building 
parts or alcoves are represented but all walls are extruded to a single building height. LoD1.3 
improves the roof structure, by representing differentiated wall heights, although still extrudes 
the individual roof surfaces to a single uniform level.  

LoD2.2 offers the most detailed building geometry amongst the three available LoDs from 
3DBAG, providing a defined roof structure, capturing sloped features as well as dormers.  

Each building in the 3DBAG is identified by a Pand ID – the geo-identifier that links the geometry 
to the BAG registry.  

 

Figure 66: Identifying buildings in the 3DBAG viewer. Adapted from (3DBAG Viewer, 2024). 

The 3D geometry can be accessed by downloading the corresponding tile – a smaller grid square 
of the 3DBAG dataset. The tiles can be accessed in three formats: 
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1. CityJSON: 
Compact JSON-based format 
designed specifically for 
storing large 3D city models, 
including object semantics 
such as buildings, and roads.  

2.  OBJ  
Contains only 3D geometry of 
building models without 
attributes / semantic data.  

3.  GeoPackage: 
An SQLite (C-language library) 
format for storing geospatial 
data, suitable for direct use in 
GIS software.  

Both CityJSON and OBJ methods of 
geometry collection were explored 
in the study.  

 

Geometry from CityJSON 

The CityJSON tile can be viewed in 
ninja – a web interface for visualizing 
CityJSON data. Using Ninja, users can 
easily search for individual Pand IDs 
and extract the corresponding 
attribute data.  The data includes 
geometry for all LoDs and building 
attributes such as the number of 
floors (bouwlagen), roof type 
(dak_type), building heights 
(h_dak_50p, h_dak_70p, h_dak_max, 
h_dak_min), and ground elevation 
(maaiveld).  

 

 

 

 

Figure 67: Geometry tile from 3DBAG (3DBAG Viewer, 2024) and 
tile visualized in Ninja viewer. Adapted from (CityJSON Ninja, 

n.d.).  
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Figure 68:Viewing Pand ID attribute data in 3DBAG. Adapted from (3DBAG Viewer, 2024). 

 

Geometry from OBJ 

 

Figure 69: 3DBAG tile visualized in Rhino3D. Adapted from (3DBAG Viewer, 2024). 

Viewing the OBJ format in Rhino3D provides a clear visual of the buildings. However, the OBJ 
files only provide geometric data and lacks the semantic detail necessary for extracting building 
properties at scale. As well since there are no building identifiers (Pand IDs) attached to the OBJ 
file it is impossible to locate individual buildings from the tile.  

Thus, CityJSON was chosen as the primary data format because it offers a representation of both 
geometry and semantic information for each building. And CityJSON's structured format was 
suitable for the next stages of data handling to build IDF files for energy simulations and extract 
features for ML.  
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Scaling the collection 

For an individual building study or a study with few buildings the following process for obtaining 
the building geometric and attribute data is effective:   

 
1. Identify building address / Pand ID (Kadastar) 

 

2. Find building (3DBAG) 

 

3. Extract Tile (CityJSON) 

 

 
4. Extract JSON attributes (Ninja) 

 

Figure 70: Collecting building data. Adapted from (BAG Viewer, n.d.), (3DBAG Viewer, 2024), (CityJSON Ninja, n.d.) 
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However, when scaling this process to city-level, several challenges occur. Large study areas 
often span numerous geographic tiles, meaning there is a need to manually identify, download, 
and manage tens (or possibly hundreds) of separate tiles, making the initial data acquisition 
difficult. Once the tile is downloaded, extracting specific building attributes is also a challenge, 
since the CityJSON files store attributes for all buildings within the tile in a dense, nested, 
structure. As well, not all buildings within the downloaded tile are needed, thus, extensive 
parsing and filtering is required to extract the attributes of interest for the select buildings 
within the study.  

To overcome these challenges, a computational workflow was developed to automate the 
extraction of select buildings and corresponding building attributes. The workflow leverages the 
3DBAG API – a web service to retrieve 3D building data from 3DBAG.  

The API supports spatial queries, such as searching for all buildings within a certain bounding 
box – as well as Pand ID-based queries, allowing the retrieval of thousands of buildings and 
corresponding attribute data without downloading entire tiles, which was critical for this study.  

From the defined list of buildings, each Pand ID was individually queried using a Python script. 
The script requests the necessary building features from the API, retrieves the data, and formats 
the retrieved data into a JSON file.  

The filtered dataset contained 
approximately 75,000 Pand IDs, which 
were sampled to 20,000 for collection 
(maintaining the original distribution 
of archetypes). Using the API allowed 
for the simultaneous request of 
thousands of Pand IDs at once. The 
multi-processing aspect of this script – 
that enables the collection of multiple 
API requests at once, was critical to 
collect the building geometries in a 
timely manner.  

Part of the geometry data collection 
process involved refining the request to 
target only the specific LoDs relevant to 
the study. Initially, the API returned all 
features across all LoDs. This resulted in 
unformatted JSON files with 

unnecessary data, shown in Figure 71. The data request was then adjusted to collect only LoD 
1.2 geometry.  

 

  

Figure 71: Retrieved data from 3DBAG API (prior to formatting). 
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Compared to higher LoDs, LoD 1.2 includes fewer 
vertices and surface indices which simplifies data 
structuring, as well as the dataset size to process. 
The workflow was designed to theoretically be 
compatible with all LoD levels, but working with 
LoD 1.2 provided a starting point to balance 
geometric accuracy and computational efficiency.   

The request was adjusted to return a structured 
JSON file, where the meta data, features, and 
surface data can be easily identified, shown in 
Figure 72. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

  

Figure 72: Formatted JSON file after collection of 
building metadata, building features, and building 

surface data. 

  "metadata": { 
    "CityObjects": {}, 
    "metadata": { 
      "referenceSystem": 
"opengis.net/def/crs/EPSG/0/7415" 
    }, 
    "transform": { 
      "scale": [ 
        0.001, 
        0.001, 
        0.001 
      ], 
      "translate": [ 
        91984.942125, 
        438058.53075, 
        -2.124498779296875 
      ] 
    }, 
    "type": "CityJSON", 
    "version": "2.0", 
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  "buildings": [ 
    { 
      "Pand ID": "0599100000012801", 
      "Archetype ID": "TI.1946", 
      "Status": "Pand in gebruik", 
      "Construction Year": 1896, 
      "Number of Floors": 3, 
      "Roof Type": "slanted", 
      "Wall Area": 139.48, 
      "Roof Area (Flat)": 0.0, 
      "Roof Area (Sloped)": 93.82, 
      "Floor Area": 74.76, 
      "Shared Wall Area": 238.03, 
      "Ground Elevation (NAP)": -2.125, 
      "LoD 1.2 Data": { 
        "Building Height (Mean)": 8.95, 
        "Building Height (70%)": 9.31, 
        "Building Height (Max)": 10.15, 
        "Building Height (Min)": 6.36 
      }, 
  

FE
A

TU
R
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"vertices": [ 
      [ 
        4745, 
        14003, 
        2125 
      ], 
      [ 
        0, 
        10729, 
        2125 
      ], 
  
"Boundaries (LoD 1.2)": [ 
              [ 
                4, 
                5, 
                6, 
                7, 
              ] 
            ], 
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PROCESSING FOR IDF 

The data collection phases produced a JSON file containing 
building features and surface geometry, including all 
vertices. It was essential to verify the ordering of vertices 
for each surface, since EnergyPlus needs surfaces to be 
defined in a counterclockwise order with the surface 
normal pointing towards the thermal zone (inside the 
building).  

This is especially important for horizontal surfaces, where 
an incorrect orientation can cause flipped boundaries 
leading to simulation errors – which was encountered 
when running the initial simulations.  

To check and visualize the orientation of all surfaces, a 
Grasshopper script was developed, shown in Figure 74. 
Handling this step in Grasshopper (rather than Python) 
allowed to quickly inspect the vertex order and normal 

direction, where it was found that all vertices from the original JSON were ordered clockwise, 
thus all surface normals pointed away from the thermal zone. Part of the data processing 
workflow thus involved flipping the order of the vertex data for input to EnergyPlus.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 73: Surface normal for building 
geometry before flipping direction. 
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From the building JSON files, for each building, the boundary surfaces were defined as lists of 
vertex indices, but without explicit surface type (ground, façade, roof ). A script was developed 
to iterate through each surface, extract the z-coordinates of its vertices, and assign as surface 
type based on the z-position. When all z-coordinates are minimum, the surface is classified as 
ground floor (G), when maximum, the surface is classified as roof (R) and all other surfaces are 
classified as façade (F). The resulting structured JSON included these new surface type labels for 
each surface, shown in Figure 75.  

Figure 74: Grasshopper script to check vertex order and surface directions. 



78 
 

 

 

 

 

 

 
 

To verify the correct mapping, the labelled surfaces were visualized using matplotlib, which 
plotted each building, and the surface labels, confirming the labelling corresponded to the 
expected surfaces for ground, façade, and roof. Example plots are shown below in Figure 76.  

 

   

   

    "0599100000012801": { 
        "Archetype ID": "TI.1946", 
        "Construction Year": 1896, 
        "Number of Floors": 3, 
        "Wall Area": 139.48, 
        "Roof Area (Flat)": 0.0, 
        "Roof Area (Sloped)": 93.82, 
        "Floor Area": 74.76, 
        "Shared Wall Area": 238.03, 
        "Absolute Height (70%)": 11.44, 
        "Surfaces": [ 
                "Coordinates": [ 
                            0, 
                            10729, 
                            0 
                        ], 

                "Type": "G" 

SURFACE JSON 

Figure 75: Surface type JSON. 
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Figure 76: Building plots to verify surface labelling. 

 
Finding building adjacencies.  

To differentiate between the building types, Terraced Intermediate, Terraced Corner, and 
Detached it was necessary to define building adjacencies (shared walls) for the appropriate 
building surfaces. The Terraced Intermediate has a minimum of two shared walls, Terraced 
Corner with one, and Detached with zero. Defining building adjacencies allowed to classify the 
surfaces as adiabatic – boundaries that do not allow heat transfer with the external environment. 
This is a critical step to correctly represent the thermal energy demands for the different building 
types within the study.  

To find building adjacencies for the dataset at scale (20,000 buildings), a computational workflow 
was developed using the following steps:  

1. Extract the ground footprint: 
Get the ground surface of each building from 
its JSON file by looking for the “G” surface type 
and converting its outline into a 2D polygon. 

2. Apply a proximity buffer: 
Expand this footprint by 20 cm in all directions 
to create a zone that where neighbours could 
be found. 

3. Query API for bounding box 
Find the smallest rectangle that fully contains 
the buffer footprint and query the 3DBAG API 
for all buildings inside the bounding box. 

5. Retrieve candidate neighbours: 
Get the list of buildings whose footprints fall 
within the bounding box. Any building found at 
this stage is considered a neighbour. 

 
Figure 77: Methodology for finding building adjacencies. 
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Because the rectangular bounding box is a large area around the true base polygon, this method 
introduced “false-positive” neighbours just outside the 20 cm buffer. There were also cases of 
“false-negative”, where the bounding box did not capture all expected neighbours, for example in 
the case of Terraced Intermediate houses where only one adjacency was detected however, at 
least two adjacencies would be expected. Due to time constraints these false-positives and 
negative were not isolated from the dataset. Thus, some buildings were modelled with either 
more or less adjacencies than true for the geometry.  

The surface labelling is shown in Figure 78 for Terraced Intermediate, where a minimum of two 
adiabatic surfaced are expected. Buildings with correctly identified adjacencies are shown in 
the top row and buildings with missing adjacencies are shown in the bottom row.  

    

The surface labels Façade Exposed (F.E) and Façade Adiabatic (F.A) were then added into the 
building features JSON file for further processing.  

 

 
  

Figure 78: Building models with successful adjacency findings (top row) and buildings with false-negative adjacency 
findings or less adjacencies than expected (bottom row). 
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ENERGY SIMULATIONS 

GENERATING THE IDF FILE 

In energy simulation studies a large backlog can 
be the manual generation of the EnergyPlus input 
data files (IDFs) since it requires defining all 
building parameters, such as geometry, materials, 
schedules, internal gains, and the HVAC system 
(Zhang et al., 2024). When working with the 
dataset size required for this study, manually 
generating the IDF file for each of the 20,000 
buildings would be impossible. 

Different workflows for generating the IDF file 
were explored prior to the implementation of a 
Python workflow, as discussed below. 

RHINO/ GRASSHOPPER/ HONEYBEE 

Within Grasshopper, Honeybee was initially 
explored as a tool for generating IDF files based on 
its relatively simple visual programming 
environment. The Rhino interface makes it easier 
to check if geometry is accurately represented, 
and to visually confirm how input parameters – 
such as constructions and boundary conditions – 
are assigned to different building surfaces. This 
approach also supports some level of automation 
for generating batch IDF and EnergyPlus 
simulation files. A preliminary model output is 
shown in Figure 80, and the script to generate a 
basic IDF is shown in Figure 81.  

 

 

 

Figure 79: Input data file (IDF) interface in the IDF 
editor. 

Figure 80: Output from exploration with Grasshopper and 
Honeybee to generate IDF and run EnergyPlus simulation. 
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Figure 81: Preliminary Grasshopper script with simple inputs to generate 
an IDF file and run an EnergyPlus simulation. 
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Honeybee was ultimately not chosen as the primary workflow for this study because it proved 
challenging to set up efficient batch simulations for multiple archetypes and to set archetype-
specific features (such as constructions) to the correct Grasshopper objects at scale.  

PYTHON / EPPY 

To overcome IDF generation at scale, a Python workflow was developed to automate the process. 
And generate IDF files for each building by parsing the JSON files containing the geometric and 
construction features for each building.  

The input variables were defined with the Eppy Python library. Eppy is specifically designed for 
the creation, editing, and analysis of IDF files (Eppy, 2020), allowing to add building objects and 
parameters directly in Python, without manual editing in the IDFs editor. Key object definitions 
are shown below:  

IDF.newIDFobject("BUILDING", Name=building_name, North_Axis=0.0, Terrain="City"), 
                 Loads_Convergence_Tolerance_Value=0.04, 
                 Temperature_Convergence_Tolerance_Value=0.4, 
                 Solar_Distribution="FullExterior", 
                 Maximum_Number_of_Warmup_Days=25) 
                                                                                      
IDF.newIDFobject("HVACTEMPLATE:ZONE:IDEALLOADSAIRSYSTEM", Zone_Name=zone_name) 
 
IDF.newIDFobject("SCHEDULE:COMPACT", Name=f"HeatingSetpoint_{zone_name}", 
                  Schedule_Type_Limits_Name="Temperature", Field_1="Through: 12/31", 
                 Field_2="For: AllDays", Field_3="Until: 24:00", Field_4="21.0") 
             
IDF.newIDFobject("MATERIAL", Name=mat_id, Roughness=mat["Roughness"], 

    Thickness=mat["Thickness"], Conductivity=mat["Conductivity"], 
    Density=mat["Density"], Specific_Heat=mat["Specific Heat 
    Capacity"], Thermal_Absorptance=0.9, Solar_Absorptance=0.7)                                                     

 
IDF.nect("OUTPUT:VARIABLE", Key_Value="*", 

    Variable_Name="Zone Ideal Loads Supply Air Total Heating Energy", 
    Reporting_Frequency="Hourly") 

Figure 82: Key object definitions for running an EnergyPlus simulation using Eppy Python library. 
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The main steps for generating the IDF include defining the following objects, showing in Table 
17.  

Table 15: IDF objects for EnergyPlus simulations. 

IDF DEFINITIONS 
GEOMETRY 

BUILDING 
Defines the overall building object that contains all 
zones and systems. 

ZONE 
Defines one thermal zone for each building to simulate 
the energy behaviour. 

BUILDING SURFACE: DETAILED 
Defines geometry and properties of each surface 
(floors. walls, roofs), including coordinates and 
constructions. 

SITE 

SITE: GROUND TEMPERATURE 
 

Sets monthly ground temperatures required for ground 
heat transfer calculations. Set to 18°C to avoid 
warnings in the simulation. 

SYSTEMS 

HVAC: IDEAL LOADS AIR SYSTEM 
Defines a basic HVAC system for the zone, using ideal 
air loads to simplify the heating/cooling definition and 
avoid inputting detailed HVAC inputs. 

SCHEDULES 

SCHEDULE: COMPACT 
Sets the schedule to ‘always-on’ to maintain 
infiltrations throughout the entire simulation. 

THERMOSTATSETPOINT: 
DUALSETPOINT 

Sets schedule type to ‘dual setpoint’ to define setpoints 
for both heating and cooling. 

ZONE CONTROL: THERMOSTAT Implements the setpoint schedules for the zone.  
CONSTRUCTION 

MATERIAL 
Defines the thermal properties (thickness, 
conductivity, density, etc.) for envelope components. 

CONSTRUCTION 
Assigns material layers to each envelope type to define 
an assembly. 

WINDOW MATERIAL: SIMPLE 
GLAZING SYSTEM 

Specifies window properties for U-factor, SHGC.  

ZONE INFILTRATION: DESIGN 
FLOWRATE 

Models air infiltration for each zone to simulate air 
leakage.  

OUTPUT 

OUTPUT VARIABLE 
Requests specific simulation outputs, in this case the 
heating and cooling demands. 
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The site, systems, and schedule inputs were held constant for each building, across all 
archetypes. Every building was modelled with a single-zone definition, ideal air loads, and the 
same thermostat set points and operation schedules, regardless of archetype or geometry. 

Using Python, the material ID table was first converted to a 
structured dictionary JSON file. Where each archetype 
represents an object and the ‘Materials’ dictionary defines the 
thermal parameters for each floor, wall, window, and roof 
element.  

For each building, the code parsed the archetype ID from the 
Features JSON. The corresponding material properties for that 
archetype ID were then retrieved from the Constructions JSON. 

Using Eppy, each building 
surface (ground, façade, 
window, and roof ) was 
assigned its corresponding 
materials and thermal 
properties according to the 
surface type and building 
archetype.  

Similarly, window objects 
were automatically 
generated in the IDF for all 
surfaces labeled as 
“exposed”, shown in Figure 
84. The total window area 
was determined by the 
predefined WWR for the 
archetype.  

By using Eppy, it was 
possible to automate the 
generation of all required 
IDF objects and reproduce 
the input parameters for 
each archetype.  

 

 

   "TI.1946": { 
    "Infiltration": 0.003, 
    "Materials": [ 
      { 
        "Material ID": "G.TI.1946", 
        "Roughness": 
"MediumSmooth", 
        "Insulation": 0.15, 
        "Thickness": 0.15, 
        "Conductivity": 1.0, 
        "Density": 540.0, 
        "Specific Heat Capacity": 1210 
      }, 
      { 
        "Material ID": "F.TI.1946", 
        "Roughness": "Rough", 
        "Insulation": 0.35, 
        "Thickness": 0.3, 
        "Conductivity": 0.85, 
        "Density": 1920.0, 
        "Specific Heat Capacity": 840 
      }, 
      { 
        "Material ID": "R.TI.1946", 
        "Roughness": "MediumRough", 
        "Insulation": 2.0, 
        "Thickness": 0.2, 
        "Conductivity": 0.1, 
        "Density": 1500.0, 
        "Specific Heat Capacity": 1000 
      }, 
      { 
        "Window ID": "W.TI.1946", 
        "U_Factor": 2.9, 

        "SHGC": 0.6 

CONSTRUCTIONS JSON 

    "0599100000012801": { 
        "Archetype ID": "TI.1946", 
        "Construction Year": 1896, 
        "Number of Floors": 3, 
        "Wall Area": 139.48, 
        "Roof Area (Flat)": 0.0, 
        "Roof Area (Sloped)": 93.82, 
        "Floor Area": 74.76, 
        "Shared Wall Area": 238.03, 
        "Absolute Height (70%)": 11.44, 
        "Surfaces": [ 
                "Coordinates": [ 
                            0, 
                            10729, 
                            0 
                        ], 

                "Type": "G" 

 

FEATURES JSON 

Figure 83: Example excerpts from the Constructions JSON file (left) and Features JSON 
(right). 

Figure 84: Window surfaces assigned to 
building models based on archetype 

WWR. 
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This workflow allowed for the creation of 20,000 IDF files (per scenario) for simulation – where 
one IDF file represents one building or Pand ID. An excerpt from an IDF file is shown in Figure 
85.  

 

 

 

 

 

 

 

 

 

 

 

 

BATCH RUN SIMULATIONS 

For each generated IDF file, the EnergyPlus simulations were run using a multi-processing script 
to process multiple buildings in parallel. Again, when working at such scale, the multi-processing 
functionality of the script was instrumental to complete the simulations in a time-efficient way. 

The IDF is configured for a continuous, annual simulation (January – December) using 
Rotterdam climate data. Or De Bilt climate data for the future weather simulations. Outputs are 
generated at 10-minute intervals for the entire year. The output variables set in the IDF record:  

 Zone Ideal Loads Supply Air Total Heating Energy [J] (hourly) 
 Zone Ideal Loads Supply Air Total Cooling Energy [J] (hourly) 

For every simulation, two files are collected:  

1. eplusout.err – logs all warnings, and errors during the simulation.  
2. eplusout.eso – records all simulation outputs defined in the IDF file (i.e., zone 

heating/cooling loads). 

 

 

 

Figure 85: Example section of IDF for EnergyPlus simulation. 
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The eso file contains outputs at each time step, 
recording the:  

 Run period location: latitude and 
longitude.  

 Time step: marks each reporting time 
step (day of simulation, month, hour, 
start minute, end minute, day of 
week) 

 Output: Outputs for heating and 
cooling energy at each timestep 
(measured in joules).   

The eso file format is shown in Figure 86, where for each simulation there are thousands of 
incremental outputs (capturing each time step throughout the full run period). Thus, requiring 
post-processing to understand the total annual energy demands for each building.  
 

PROCESS DEMANDS 

A Python script was used to parse each EnergyPlus eso file for all 20,000 buildings within the 
dataset. For each building the incremental heating and cooling demands at each time step are 
summed over the complete simulation run period. The total demand is then converted from 
Joules to kilowatt-hours (kWh).  

The script retrieves each building’s geometric data and uses it to normalize the annual heating 
and cooling demands by the total floor area to produce results in kWh/m²/year. The final output 
is a single structured JSON file containing annual heating and cooling demands for each building.  

 

 

  

RUN PERIOD: 
1, 51.96,   4.45,   1.00, -4.50 
 
TIME STEP: 
2,1, 1, 1, 0, 1, 0.00,60.00, Sunday 
 
 
HEATING: 141,1.0 
 
COOLING: 190,0.0 
 

Figure 86: EnergyPlus eso file output, showing incremental 
heating and cooling demand at a single time step. 
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6. DEMAND ANALYSIS 
The building energy demand of all buildings simulated with EnergyPlus was analyzed to 
understand:  

 Energy demand differences per archetype. 

 Impact of building envelope improvements (increased insulation, reduced infiltration) 
on heating and cooling demands.  

 Impact of future weather conditions (increased temperatures) on heating and cooling 
demands. 
 

Note, a preliminary demand analysis of the EnergyPlus simulations was completed prior to the 
creation of the computational workflow for defining adiabatic surfaces and window objects and 
is referenced in APPENDIX C.  

 

CURRENT CLIMATE  
Analysis of total energy demand shows a clear trend where Detached (D) houses exhibit the 
highest energy consumption, followed by Terraced Corner (TC) houses, and Terraced 
Intermediate (TI).  

 

 

Figure 87: Total energy demand per archetype for simulation A1 (current constructions and current weather).  

This trend can be explained by the proportion of exposed surfaces and WWR characteristics of 
each typology. Detached houses are fully exposed on all facades, resulting in the greatest 
external surface area. Thus, Detached houses experience more heat transfer with the external 
environment, which can increase both heating and cooling loads. Terraced Corner houses share 
at least one wall with a neighboring building, reducing heat losses or gains through that surface, 
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while Terraced Intermediate houses typically share two sides with neighbouring buildings, thus 
minimizing the exposed envelope area.  
 

DETACHED HOUSE / VRIJSTAANDE WONING 

For Detached houses, the average heating demand for archetypes pre-1965 and 1965-1974 is 
approximately 340–360 kWh/m² yr. The high heating demand can be attributed to archetype 
features including low insulation values, and a high infiltration of 0.004 m³/ sm².  

 

 
A large reduction in heating demand occurs for the 
1992-2005 archetype, aligned with the 
implementation of airtightness standards, cavity wall 
insulation, and roof insulation in the Dutch building 
codes. During this period, heating demand drops 
sharply to approximately 130 kWh/m², even as the 
WWR ratio increases. Subsequent archetypes (2006-
2014 and 2015-2018) show modest further 
reductions, reaching around 115 kWh/m². These 
incremental improvements can be primarily 
attributed to improvements in window performance 
(U = 1.8 W/m²K).  

The retrofit heating demand remains consistently low 
across all archetypes, showing significantly reduced 
demands compared to the current scenario.  

 

 

Figure 89: Detached average heating demand for simulations 
A1, B1. 

Figure 88: Detached infiltration rate [m3/m2s].  

Figure 91: Detached total envelope insulation 
[m2K/W]. 

Figure 90: Detached window U-factor [W/m2K]. 
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The cooling demand for Detached houses shows 
that retrofit measures – such as improved 
infiltration, increased envelope insulation, and 
reduced window U-factor – can result in higher 
cooling demands compared to the current state. 
The SHGC and WWR values remain unchanged 
between scenarios, indicating that the increase in 
cooling demand is not due to changes in window 
solar gains but the combined effects of reduced 
infiltrations and reduced thermal transmittance. 
Specifically in the 1992-2005 archetype where 
there is a large spike in cooling demands, 
attributed to the steep decline in infiltration for 
that period.  

 

TERRACED CORNER / HOEKWONING 

The heating demand for the Terraced Corner archetypes generally decreases over time, reflecting 
improvements in envelope insulation and reduced infiltration rates that significantly limit heat 
losses in winter. For the 1992-2005 archetype, the heating demands start to converge as the 
current construction parameters approach the same values as the retrofits.  

Figure 94: Detached WWR. 

Figure 92: Detached SHGC. Figure 93: Detached average cooling demand A1, B1. 
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The cooling demand displays a more complex 
pattern, with a sharp increase for the 1965-1974 
archetype. This spike can be attributed to the 
simultaneous spike in WWR and SHGC, which 
increase solar heat gains.  

 

 

 

As was observed for the Detached archetypes, the improved airtightness and highly insulated 
envelopes effectively trap heat in summer, increasing cooling loads. In the most recent 
archetypes, reductions in SHGC and window U-factor help reverse this trend, leading to lower 
cooling demands despite continued high levels of insulation and airtightness. This demonstrates 
the critical balance between envelope characteristics in achieving improved energy performance 
for both heating and cooling requirements. 

 

Figure 95: Terraced Corner average heating demand for 
simulations A1, B1. 

Figure 96: Terraced Corner infiltration rate 
[m3/m2s]. 

Figure 97: Terraced Corner total envelope 
insulation [m2K/W]. 

Figure 99: Terraced Corner window U-factor 
[W/m2K]. 

Figure 98: Terraced Corner average cooling demands (A1, B1). 
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TERRACED INTERMEDIATE / TUSSENWONING 

Similar to the Terraced Corner archetype, the heating demand for Terraced Intermediate 
archetypes shows a consistent decline, primarily driven by improvements in envelope insulation 
and airtightness.  

 

 

 

The WWR fluctuates, while the window performance 
(U-factor and SHGC) only improves in more recent 
archetypes, 1992-2005 and beyond.  

  

 

 

 

 

 

Figure 101: Terraced Corner SHGC. Figure 100: Terraced Corner WWR. 

Figure 102: Terraced Intermediate average heating demand for 
simulations A1, B1. 

Figure 103: Terraced Intermediate 
infiltration rate [m3/m2s]. 

Figure 104: Terraced Intermediate 
window U-factor [W/m2K]. 
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Again, the cooling demand rises from earlier to more 
recent archetypes, reflecting the combined impact of 
better insulation, reduced infiltration, and initially 
constant window properties until after 1992.  

 

 

 

 

 

 

When both SHGC and U-factor are reduced in 
1992-2005, the increase in cooling demand is 
moderate. 

 

 

 

 

 

 

 

 

 

 

Figure 105: Terraced Intermediate total 
envelope insulation [m2K/W]. 

Figure 106: Terraced Intermediate average cooling demand for 
simulations A1, B1. 

Figure 107: Terraced Intermediate SHGC. 

Figure 108: Terraced Intermediate WWR. 
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FUTURE CLIMATE 
The results across Detached, Terraced Corner, and Terraced Intermediate houses show a 
consistent reduction in average heating demand when projecting to the 2050 and 2080 weather 
scenarios.  

 

 

 

 

 

 

 

 

 

 
This downward trend can be attributed largely to the anticipated milder winters under future 
climate conditions, which reduce the temperature difference between indoor and outdoor 
environments and therefore the need for space heating. 

 

 

 

 

 

 

 

 

 

 

 
The retrofit scenarios introduce further reductions in heating demand for each archetype and 
future weather scenario. The retrofits considered including improved airtightness (lower 
infiltration rates), increased envelope insulation and windows with reduced U-values, act to 
lower transmission heat losses. 

Figure 109: Detached average heating demand for all simulation scenarios. 

Figure 110: Terraced Corner average heating demand for all simulation scenarios. 
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Retrofit values for infiltration, insulation, and window U-values remain constant across future 
scenarios, isolating the effect of the future weather on heating demand. Notably, the heating 
demand is always lowest for simulation B3, considering a retrofit at the future climate 2080.   

 

 

 

 

 

 

 

 

 

 

Across all building typologies, the analysis shows an increase in average cooling demand under 
projected 2050 and 2080 weather scenarios. Unlike heating demand, where retrofits 
consistently reduce the demand, for cooling, the application of retrofit strategies results in an 
increased cooling demand.  

 

 

 

 

 

 

 

 

 

 

This trend again demonstrates that retrofits targeting the building envelope that are effective in 
reducing heat loss (and thus heating demand), may not adequately address solar gains that 
dominate summer cooling loads. Excessive airtightness and high insulation without adequate 
shading or ventilation measures, can increase overheating risk and significantly increase cooling 
demands.  

Figure 111: Terraced Intermediate average heating demand for all simulation 
scenarios. 

Figure 112: Detached average cooling demand for all simulation scenarios. 
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The observed results thus highlight a fundamental challenge for future retrofit strategies: the 
need to balance reductions in heating demand with effective mitigation of cooling loads.  

 

 

 

 

 

 

 

 

 

 

The analysis is based on a fixed retrofit scenario and does not account for parameters such as 
external shading, heat recovery ventilation, or internal loads and occupant behaviours. Future 
work should expand retrofit measures beyond envelope improvements, including external 
shading devices and improved glazing technologies (such as low SHGC coatings) to develop 
retrofit solutions that are resilient to both current and projected future climates.  

 

 

 

 

 

 

 

 

 

 

Figure 113: Terraced Corner average cooling demand for all simulation scenarios. 

Figure 114: Terraced Intermediate average cooling demand for all simulation 
scenarios. 
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VALIDATION  
Validating the EnergyPlus simulations was a 
challenge in this project. The NTA 8800 energy 
labels for primary energy consumption was 
used as a reference to interpret the simulated 
total energy demands (comprised of space 
heating and cooling). Following the NTA 8800 
standard, which defines energy performance as 
the “measured or calculated energy required by 
building installations”, the total energy demands 
were mapped to the corresponding energy labels, 
to see how the archetypes translate to 
recognized performance classes (NTA 8800:2022 
Nl, 2022). As well, this mapping was used check 
that the simulated demands were within the 
recognized energy label classes. Demands 
outside of these label classes, for example 
extreme outliers above 1000 kWh/m², were 
excluded from the dataset (in this case three 
Pand IDs were excluded).  

The distribution of energy labels for the simulated dataset are shown in Figure 115, for 
simulations A1 and B1 (current and retrofit constructions at the current weather state).  

 

 

 

 

ENERGY LABEL 
(NTA 8800) 

PRIMARY FOSSIL ENERGY 
CONSUMPTION [kWh/m2] 

A++++ <= 0 

A+++ <= 50 

A++ > 50 <= 80 

A+ > 80 <=110 

A > 110 <= 165 

B > 165 <= 195 

C > 195 <= 255 

D > 255 <= 300 

E > 300 <= 345 

F > 345 <= 390 

G >390 

Figure 115: Distribution of simulated total energy demands within each energy label class for scenarios A1 
and B1. 

Table 16: NTA 8800 energy labels. 
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However, this method provides only a general indication if simulation results are reasonable, 
rather than building-specific validation. 

A better strategy would involve direct comparison with measured values from EP-Online, the NL 
national database of building energy performance and energy performance indicators (EP-Online, 
n.d.). Using the EP-Online tool, users can search for individual Pand IDs and retrieve the 
corresponding heating demands. Note EP-Online does not provide cooling demands. This 
method is useful for spot-checking results; however, it is impractical to manually validate tens 
of thousands of buildings. As well differences in modelling assumptions present further 
limitations.  

It is technically feasible to request large batches of energy label data via the EP-Online API, which 
would theoretically enable large-scale validation and comparison. However, this approach was 
not implemented within the scope of the study. Future work should prioritize the development 
of a scalable validation methodology to enhance the confidence in simulation outputs.  
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7. DATA STRUCTURE  
The data structuring phase involved preparing the input datasets for ML. This process was highly 
iterative, involving understanding an appropriate way to handle the dataset size, complexity, 
scaling, and merging.  

 

WORFKLOW 
The input datasets were flattened from the JSONs to CSVs to create tabular structures that could 
be easily read to check for issues such as missing values. This involved structuring building 
features (geometric properties), constructions (envelope and window properties), weather data 
(average monthly temperatures), and vertex data (surface vertices).  

 

Figure 116: Data structuring workflow. 

Merging steps combined the geometric, constructions, weather, and vertex datasets into a single 
dataset with all relevant input variables. Additional merging was required to combine the current 
A1 feature set with the B1 feature set to capture both current and retrofit construction features.  

Once merged, the data was split into training, validation, and test sets using a 70/20/10 split. 
The input features were scaled using both standard scaling and min-max scaling to normalize 
the feature ranges. The data structure methodology is presented in Figure 116.  
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VERTEX DATA 
The building surface data, represented by vertices, provides additional spatial information that 
can enhance the heating and cooling demand predictions. The vertices were structured as model 
inputs using the distances from each vertex to surface centroid, and corresponding orientation, 
as a unit vector.  

The vertex angles (θ) were transformed into unit pairs (ux, uy) to avoid discontinuity at 0°/360°, 
where 0° and 360° represent the same direction, but numerically they are at opposite ends of 
the scale. 

 

 

 

 

 

 

 

An example of the data structure for a single building or Pand ID is shown in Table 17. Note, to 
represent the surface data, there are multiple rows of data for each Pand ID. The impact of this 
data structure on model predictions is discussed in section, FEATURE SET B.  

Table 17: Structure of building surface data. 

Pand ID Surface Index Surface Type d1 ux1 uy1 

0599100000013430 0 G dG1 uxG1 uyG1 

0599100000013430 1 F dF1 uxF1 uy F1 

0599100000013430 2 F dF1 uxF1 uy F1 

0599100000013430 3 F dF1 uxF1 uy F1 

0599100000013430 4 F dF1 uxF1 uy F1 

0599100000013430 5 R dR1 uxR1 uy R1 
 

 

 

 

 

 

Figure 117: Structuring vertex data to polar coordinates. 
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FEATURE SET 
Feature engineering was conducted to introduce key features to the dataset, which capture 
important aspects of the building form and relate to energy performance: 

Equation 15: Total floor area, expressed in m2. 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =  𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

 
Equation 16: Building volume, expressed in m3 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 =  𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡  

 
Equation 17: Compactness ratio, expressed in m-1. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  / 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣  

 
The complete feature set used for the ML development stage is shown in Table 18.  

Table 18: Complete feature set for ML development. 

Feature Units Variable Type Normalization 
IDENTIFIERS 

Pand ID - Categorical - 
Archetype - Categorical - 
Construction Year - Discrete - 

GEOMETRIC 
Number of Floors - Discrete Standard-Scale 
Wall Area m2 Continuous Standard-Scale 
Roof Area (Flat) m2 Continuous Standard-Scale 
Roof Area (Sloped) m2 Continuous Standard-Scale 
Floor Area m2 Continuous Standard-Scale 
Shared Wall Area m2 Continuous Standard-Scale 
Building Height (70%) m Continuous Standard-Scale 
Building Volume m3 Continuous Standard-Scale 
Total Floor Area m2 Continuous Standard-Scale 
Compactness Ratio m-1 Continuous Standard-Scale 

CONSTRUCTION 
Ground Floor Insulation m2K/W Continuous Standard-Scale 
Facade Insulation m2K/W Continuous Standard-Scale 
Roof Insulation m2K/W Continuous Standard-Scale 
Infiltration m3/sm2 Continuous Standard-Scale 
Window to Wall Ratio (WWR) m2/m2 Continuous Standard-Scale 
U Factor W/m2K Continuous Standard-Scale 
SHGC - Continuous Standard-Scale 
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WEATHER 
Monthly average temperature  °C Continuous - 
Monthly average solar radiation  kWh/m2/day Continuous - 

VERTICES 
Distance (d) from centroid  - Continuous Standard Scale 

Angle (ux) - Continuous Polar Angle 

Angle (uy) - Continuous Polar Angle 

TARGETS 
Annual heating demand kWh/m2 Continuous Min-Max Scale 
Annual cooling demand kWh/m2 Continuous Min-Max Scale 
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8. ML DEVELOPMENT 
A regression based artificial neural network (ANN) was developed to predict the energy demands, 
from the input building and climatic data. The objectives were to: 

1. Understand the impact of retrofit strategies across different building archetypes as 
well as relationships between construction inputs and energy performance.  

2. Test the model’s prediction ability for future climate scenarios.  

Training used the sampled dataset of 20,000 Pand IDs, using proportional sampling of the 
building archetypes from the full dataset of approximately 75,000 Pand IDs. This approach was 
chosen instead of an equal sampling of archetypes to avoid inflating the importance of less 
represented archetypes. For example, based on the significantly smaller distribution of Detached 
house types compared to Terraced Intermediate houses. 

The development was a highly iterative process; several training iterations are referenced below 
as well as in APPENDIX C.  

 

ARCHITECTURE 
The ANN was initialized with an input layer, a single hidden layer, and an output layer, shown in 
Figure 118.   
 

 

Figure 118: ANN model schematic. 
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A feed-forward architecture was used, 
meaning that the data moves forward 
from the input layer, through the 
hidden layer, and finally to the output 
layer, without looping back. The code 
excerpt to initialize the model is 
shown in Figure 119.  
 

 

INPUT LAYER 

The input layer describes the features that the model uses to train from and make predictions. 
The number of features were varied between iterations to understand the model’s prediction 
capabilities with different input sets, but in general were made up of geometric, weather, 
construction, and vertex features, as shown in Figure 118.  
 

HIDDEN LAYER 

The hidden layer is as an intermediate step in the ANN that transforms the inputs to predicted 
outputs through weighted connections to capture complex non-linear relationships that are not 
clearly defined from the input data. The model was initially defined using a single hidden layer 
with 32 neurons, meaning there are 32 independent computational units, enabling the model 
to learn complex patterns between building input features and corresponding energy outputs.  

  
OUTPUT LAYER 

The output layer was also varied throughout the model development phases. But in general, is 
comprised of the two prediction outputs:  

 Annual Heating Demand [kwh/m2] 
 Annual Cooling Demand [kwh/m2] 

 

PHASE 1   
The Phase 1 modelling approach involved explicitly training the ANN to predict four distinct 
outputs:  

 Current Annual Heating Demand  
 Current Annual Cooling Demand  
 Retrofit Annual Heating Demand  
 Retrofit Annual Cooling Demand  

class ANN(nn.Module): 
    def __init__(self, in_dim, hidden, out_dim=2): 
        super().__init__() 
        self.net = nn.Sequential( 
            nn.Linear(in_dim, hidden), nn.ReLU(), 
            nn.Linear(hidden, out_dim) 
        ) 
    def forward(self, x): 
        return self.net(x) 
model     = ANN(len(X_COLS), HIDDEN) 
criterion = nn.MSELoss() 
optimizer = optim.Adam(model.parameters(), lr=LR) 

Figure 119: Code to initialize preliminary ANN. 
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This preliminary setup was used to verify the ANN's capability to capture the differential impact 
of retrofit strategies on energy performance, using clearly labeled baseline and retrofit scenarios. 
The model architecture is shown in Figure 120.  

 

Figure 120: Phase 1 ANN model architecture. 

The preliminary model uses a minimum number of features from the geometric feature set and 
was used to develop a stable and interpretable prediction model before increasing the 
complexity with added features.  Note, Phase 1 training was conducted prior to the addition of 
adiabatic surface labels and the addition of windows. The Phase 1 training inputs are shown in 
Table 19. 

Table 19: Phase 1 training features. 

Feature Units Variable Type Normalization 
GEOMETRIC 

Number of Floors - Discrete Standard-Scale 
Wall Area m2 Continuous Standard-Scale 
Floor Area m2 Continuous Standard-Scale 
Building Height (70%) m Continuous Standard-Scale 

CURRENT CONSTRUCTION 
Ground Floor Insulation m2K/W Continuous Standard-Scale 
Facade Insulation m2K/W Continuous Standard-Scale 
Roof Insulation m2K/W Continuous Standard-Scale 
Infiltration m3/sm2 Continuous Standard-Scale 

RETROFIT CONSTRUCTION 
Ground Floor Insulation m2K/W Continuous Standard-Scale 
Facade Insulation m2K/W Continuous Standard-Scale 
Roof Insulation m2K/W Continuous Standard-Scale 
Infiltration m3/sm2 Continuous Standard-Scale 

WEATHER 
Annual average temperature  °C Continuous - 
Annual average solar radiation  kWh/m2/day Continuous - 
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During the training, the MSE was used to check for issues such as overfitting or underfitting. 
The model should depict a steady decrease in training loss, eventually stabilizing at a minimum 
value without excessive fluctuations between decreasing and increasing loss.  

Multiple training iterations were conducted, each producing distinct training loss curves, shown 
in Figure 121, where the variations in model convergence between multiple runs can be 
observed. For each iteration, the MSE curves were analyzed to identify the model iteration with 
the lowest and most stable training loss.  

 

 

Figure 121: Phase 1 MSE loss curve, showing several iterations of training runs. 

After selecting the best-performing iteration, the test-set predictions were used to assess the 
model’s prediction ability. For heating, the model predictions at the current or baseline 
construction state (left) and retrofit construction state (right) are shown in Figure 122.  

 

 

 

Figure 122: Annual heating demand predictions in [kwh/m2] at the current or baseline state (left) and retrofit 
construction state (right). 
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For cooling, the predictions for baseline and retrofit conditions are shown in Figure 123.  

 
Although valuable as an initial model development stage and validation of prediction ability with 
the input features, this approach has limited capacity for generalization. Since the construction 
inputs are explicitly labelled for current versus retrofit scenarios. Similarly, the heating and 
cooling demand outputs are explicitly labelled for current versus retrofit. This feature setup 
restricts the model's ability to generalize beyond these trained conditions.  

 

PHASE 2 
In Phase 2 the construction inputs were fed to the model without explicitly labelling as baseline 
or retrofit. Thus, the ANN is simplified by predicting only two outputs for   

 Annual Heating Demand 
 Annual Cooling Demand 

With this structure, the objective was to improve the ANN’s generalization to construction 
inputs, allowing flexibility to incorporate and evaluate a range of retrofit scenarios.   

To understand the contribution of specific input features to the overall model performance, an 
ablation study was conducted. An ablation study involves training a model with all features then 
iteratively removing one feature or a group of features and observing the corresponding change 
in performance in terms of prediction accuracy and training loss (Ablation Studies, 2024). 

This staged reduction approach was used to identify the minimum geometric data required for 
ANN predictions to simplify the input space and potentially improve model generalization. The 
study started with four datasets: geometric, construction, weather, and vertices. At each stage 
the weather and construction features were kept the same, and the number of geometric 
features used for training were reduced. As well later stages removed the vertex dataset from 
the training.  

Figure 123: Annual cooling demand predictions in [kwh/m2] at the current or baseline state (left) and retrofit 
construction state (right). 



111 
 

At Phase 2 model features still did not incorporate adiabatic surfaces or windows, however this 
phase provided a training framework to use at the next phase, once these input features were 
defined.  The results are shown in APPENDIX C, PHASE 2.  

 

PHASE 3 
At Phase 3 the model features now included adiabatic surfaces labels and windows. The same 
staged reduction (ablation) approach was applied as in Phase 2, focusing on reducing geometric 
input features and assessing ANN predictions. However, in this phase, weather data was 
excluded from training. This decision was made since the weather variables were constant across 
the training dataset (i.e the monthly average temperatures and solar radiations were constant 
for all building archetypes). And therefore, did not provide additional information to the model. 
Although weather features were initially included to enable training with future weather 
scenarios, this was not implemented in Phase 3 due to time constraints. The primary goal of 
Phase 3 thus remained to simplify the input feature set while maintaining model performance.  

FEATURE SET A 

The initial model used all available geometric input features for heating and cooling predictions. 
The training feature set for stage A is shown below in Table 20.  

Table 20: Feature Set A. 

Feature Units Variable Type Normalization 
GEOMETRIC 

Number of Floors - Discrete Standard-Scale 
Wall Area m2 Continuous Standard-Scale 
Roof Area (Flat) m2 Continuous Standard-Scale 
Roof Area (Sloped) m2 Continuous Standard-Scale 
Floor Area m2 Continuous Standard-Scale 
Shared Wall Area m2 Continuous Standard-Scale 
Building Height (70%) m Continuous Standard-Scale 
Total Floor Area m2 Continuous Standard-Scale 
Building Volume m3 Continuous Standard-Scale 
Compactness Ratio m-1 Continuous Standard-Scale 

CONSTRUCTION 
Ground Floor Insulation m2K/W Continuous Standard-Scale 
Facade Insulation m2K/W Continuous Standard-Scale 
Roof Insulation m2K/W Continuous Standard-Scale 
Infiltration m3/sm2 Continuous Standard-Scale 
Window to Wall Ratio (WWR) m2/m2 Continuous Standard-Scale 
U Factor W/m2K Continuous Standard-Scale 
SHGC - Continuous Standard-Scale 
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VERTICES 
Distance (d) from centroid  - Continuous Standard-Scale 

Angle (ux) - Continuous Polar Angle 

Angle (uy) - Continuous Polar Angle 

 

FEATURE SET B 

Next, the feature set removed specific area and height measurements and focused on using 
aggregated geometric descriptors: total floor area, building volume, compactness ratio, as well 
as surface vertices. The compactness ratio was used because it efficiently summarizes the 
relationship between a building's surface area and volume and is cited in several papers for its 
strong impact on thermal energy losses and gains, as well as influence as a feature for ML 
prediction (Wahi et al., 2024). This stage tested if the model could predict while relying on more 
generalized geometric features.   

Table 21: Feature Set B. 

Feature Units Variable Type Normalization 
GEOMETRIC 

Shared Wall Area m2 Continuous Standard-Scale 
Total Floor Area m2 Continuous Standard-Scale 
Building Volume m3 Continuous Standard-Scale 
Compactness Ratio m-1 Continuous Standard-Scale 

CONSTRUCTION 
Ground Floor Insulation m2K/W Continuous Standard-Scale 
Facade Insulation m2K/W Continuous Standard-Scale 
Roof Insulation m2K/W Continuous Standard-Scale 
Infiltration m3/sm2 Continuous Standard-Scale 
Window to Wall Ratio (WWR) m2/m2 Continuous Standard-Scale 
U Factor W/m2K Continuous Standard-Scale 
SHGC - Continuous Standard-Scale 

VERTICES 
Distance (d) from centroid  - Continuous Standard-Scale 

Angle (ux) - Continuous Polar Angle 

Angle (uy) - Continuous Polar Angle 

 

It was found after training that the structure of the vertex data (shown in Table 17) created bias 
within the model. After merging the building features with the vertex data, the heating and 
cooling targets are copied once per surface, so for a building with 6 surfaces, the targets are 
represented 6 times.  
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The number of surfaces for a single building range from 6 to 38. Thus, the model is biased 
towards predictions for buildings with more complex geometries, with more surface data. The 
model’s gradient is skewed to minimize the error for buildings with more surfaces, which may 
result in simpler building geometries being not being well predicted. 

At the same time, since each surface of the building is mapped to the same heating and cooling 
targets, the surface features lose importance. The model is forced to output identical values for 
different surface vectors, which shrinks the weights to zero. Resolving this data structuring issue 
should be explored in future work.  
 

FEATURE SET C 

The reduction from feature set B to C involved removing the vertex data, and training with only 
the shared wall area, building volume, total floor area, and compactness ratio for geometric 
features. This stage helped to inform whether explicit geometry captured by vertex data was 
necessary for accurate model predictions, or if general geometric features were sufficient.  

Table 22: Feature Set C. 

Feature Units Variable Type Normalization 
GEOMETRIC 

Shared Wall Area m2 Continuous Standard-Scale 
Total Floor Area m2 Continuous Standard-Scale 
Building Volume m3 Continuous Standard-Scale 
Compactness Ratio m-1 Continuous Standard-Scale 

CONSTRUCTION 
Ground Floor Insulation m2K/W Continuous Standard-Scale 
Facade Insulation m2K/W Continuous Standard-Scale 
Roof Insulation m2K/W Continuous Standard-Scale 
Infiltration m3/sm2 Continuous Standard-Scale 
Window to Wall Ratio (WWR) m2/m2 Continuous Standard-Scale 
U Factor W/m2K Continuous Standard-Scale 
SHGC - Continuous Standard-Scale 

 
By eliminating vertices, and solely using aggregated geometric characteristics, the input data 
was largely simplified. This streamlined the data structuring process as well since there was no 
longer a need to merge the feature set with the surface vertex data. The simplified data 
structuring workflow is shown in Figure 124.  
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Figure 124: Data structuring workflow, without vertex data. 

 

FEATURE SET D 

The last stage of training used the number of floors, wall area, floor area, shared wall area and 
building height, as geometric features. These features were selected to capture the most 
essential geometric properties to minimize redundancy and input complexity.  

Number of floors and building height together provide an indication of compactness, which 
impacts the internal volume and heat transfer surfaces. The wall area is critical for modelling 
heat loss and gain, since it represents the primary envelope through which energy is exchanged. 
As well the shared wall area captures important boundary conditions (adiabatic surfaces). Floor 
area provides a measure of building size and conditioned space. The roof area was excluded to 
avoid redundancy in the input data since for LoD 1.2 geometry, the roof area can be directly 
inferred from the floor area. The final feature set is shown in Table 23.  
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Table 23: Feature Set D. 

Feature Units Variable Type Normalization 
GEOMETRIC 

Number of Floors - Discrete Standard-Scale 
Wall Area m2 Continuous Standard-Scale 
Floor Area m2 Continuous Standard-Scale 
Shared Wall Area m2 Continuous Standard-Scale 
Building Height (70%) m Continuous Standard-Scale 

CONSTRUCTION 
Ground Floor Insulation m2K/W Continuous Standard-Scale 
Facade Insulation m2K/W Continuous Standard-Scale 
Roof Insulation m2K/W Continuous Standard-Scale 
Infiltration m3/sm2 Continuous Standard-Scale 
Window to Wall Ratio (WWR) m2/m2 Continuous Standard-Scale 
U Factor W/m2K Continuous Standard-Scale 
SHGC - Continuous Standard-Scale 

 

The prediction results using Feature Set D are discussed in section 9. PERFORMANCE.  
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9. PERFORMANCE 
ARCHITECTURE 
The final ANN developed for the study is comprised of a fully connected feed-forward 
architecture with two hidden layers, each containing 32 neurons. The architecture is shown in 
Figure 125.  

 

Based on the ablation study results from the model development phase, Feature set D was used, 
consisting of 12 input features, normalized prior to training.  All hidden layers utilize the rectified 
linear unit (ReLU) activation function to effectively handle non-linearity.  

 
The model is trained using the Adam optimizer with a 
learning rate of 1e-4. The network is trained for up to 
20,000 epochs, with early stopping based on validation 
loss improvement, using MSE for the loss function. 
Having the epochs set to 20,000 was found to be a safe 
metric to ensure training was not stopped too early 
(before reaching the lowest validation loss).  The model 
incorporates an early stopping feature, by setting 
patience to 400, meaning the training stops if validation 
loss does not decrease for 400 consecutive epochs.  

 

 
Model performance and loss curves are logged throughout training at regular intervals (every 10 
epochs), enabling monitoring of convergence and overfitting. 

Performance is evaluated on a test set using standard regression metrics, including MAE, RMSE, 
R², and MAPE. Metrics are computed on the original (unscaled) values to provide interpretable, 
error results.  

 Input layer: 12 features 

 First hidden layer: 32 
neurons, ReLU activation 

 Second hidden layer: 32 
neurons, ReLU activation 

 Output layer: 2 targets for 
heating and cooling 
demands 

KEY HYPERPARAMETERS: 

 Learning rate: 1e-4 
 Hidden neurons per layer: 

32 
 Epochs (max): 20,000 
 Early stopping patience: 

400 epochs 
 Early stopping delta: 0.0 

(strict improvement) 
 Training set size: 14,000 

buildings  

Figure 125: Final ANN architecture using Feature set D. 
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PREDICTION RESULTS 
The MSE curve from the training set is shown in Figure 126  for several model runs, to observe 
the model weights that contribute to the lowest validation loss.  

 

Figure 126: Phase 3 MSE loss curve, showing several iterations of training runs. 

The MSE loss curves show a steep initial drop in loss, highlighting that the model quickly learns 
the relationships between input features and outputs. The loss curves show a smooth decay, 
decreasing gradually and flattening to a minimum loss between 9000 to 13,000 iterations 
(extending past the bounds shown in Figure 126). All runs show a similar loss curve, showing 
the stability of the training set.  

HEATING PREDICTIONS 

Tracking the error metrics for the test set for heating predictions, it was observed that run V4 
produced the lowest MAPE at approximately 7% for heating, as well a strong R2 of 0.98, indicating 
a good model fit. A summary of the error metrics is shown in Table 24.  

Table 24: Heating prediction errors. 

HEATING PREDICTION ERRORS 
RUN EPOCH RMSE MAE R2 MAPE 
V4 9033 12.926 7.719 0.975 6.86% 

 

Based on the low error metrics, the ANN predicts heating with high accuracy. The model 
predictions for heating are shown in Figure 127 where the predictions are closely aligned with 
the true values.  
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Figure 127: Annual heating predictions with feature set D. 

The average heating MAPE is used to evaluate the model’s predictive accuracy across all 
archetypes, shown in Figure 128.  

 
Figure 128: Average heating MAPE (%) per archetype. 

The model’s prediction accuracy is highest for the Detached home type, where the average MAPE 
is around 5.1%, compared to 6.9% and 7.1% for Terraced Corner and Terraced Intermediate, 
respectively.  

The heating MAPE box plots for each archetype show notable differences in model performance. 
Note that extremes were removed from the box plots for better interpretability but are discussed 
later in the section. 
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For the Detached home type, the 
median MAPE lies between 2-4% 
for all archetypes, reflecting strong 
predictive accuracy. The spread or 
interquartile range is moderate, 
with most archetype predictions 
falling below 10% MAPE. Higher 
MAPEs are observed, particularly 
for D.1975-1991 and D.2006-
2014, but still below the 15% 
threshold considered reasonable.  

Terraced Corner and Terraced 
Intermediate archetypes show 
higher medians compared to the 
Detached houses, across all 
archetypes. The increased spread 
and higher MAPE values suggest 
greater difficulty in capturing the 
heating dynamics of these 
typologies. The variability is 
particularly large for archetypes 
TC.1975-1991, TI.1975-1991.  

It may seem counterintuitive that 
the model predicts Detached 
houses more accurately than 
terraced houses, since Detached 
houses typically have greater 
geometric complexity. However, 
without explicit vertex data, the 
model only sees high-level features 
like floor area and wall area and 
does not know the specific 
configuration or surface 
adjacencies. As well, for Detached 
houses, the lack of adiabatic 

surfaces means heat loss is directly related to the wall area, making the thermal performance 
more straightforward to predict.  

The model’s higher prediction errors for terraced houses likely results from the lack of an explicit 
input for the number or size of adiabatic surfaces. While Detached houses are fully exposed, the 
adiabatic boundaries in terraced houses are only indirectly represented through the shared wall 

Figure 129: Heating MAPE (%) by archetype: Detached (outliers 
removed). 

Figure 130: Heating MAPE (%) by archetype: Terraced Corner 
(outliers removed). 

Figure 131: Heating MAPE (%) by archetype: Terraced Intermediate 
(outliers removed). 
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area. This indirect encoding makes it more challenging for the model to learn the distinct 
thermal behaviour of terraced archetypes, and is likely a factor for the lower prediction accuracy. 

 

Extreme values  

The box plots with outliers included 
highlight the presence of prediction 
extremes for each archetype. Both 
Detached and Terraced Corner 
typologies contain extreme outliers that 
exceed 80% and 40% MAPE respectively. 
And the Terraced Intermediate plot is 
largely skewed by an extreme outlier 
exceeding 400% MAPE.  

These prediction extremes are caused by 
cases where the model either 
dramatically underestimates or 
overestimates the true heating demand, 
as shown in Table 25. Such errors may 
result from the unique geometric 
features not well represented in the 
training data, or limitations in the 
feature set. For instance, a lack of 
explicit adjacency inputs (such as the 
number of adiabatic surfaces).  

 

 

 

 

 

 

 

 

 

 

Figure 132: Heating MAPE (%) by archetype: Detached. 

Figure 133: Heating MAPE (%) by archetype: Terraced Corner. 

Figure 134: Heating MAPE (%) by archetype: Terraced Intermediate. 
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Table 25: Heating prediction extremes. 

 

COOLING PREDICTIONS 

Error metrics for cooling predictions on the test set also show that run V4 produces the lowest 
MAPE at approximately 51%, and R2 of 0.58, indicating a moderate model fit. A summary of the 
error metrics is shown below:  

Table 26: Cooling prediction errors. 

COOLING PREDICTION ERRORS 
RUN EPOCH RMSE MAE R2 MAPE 
V4 9033 6.785 4.007 0.579 51.09% 

 

The model predictions for cooling are shown in Figure 135. While the model captures general 
trends there is significant dispersion, especially at higher true cooling values where predictions 
tend to underestimate the cooling demand. The relatively low R² (0.57) and high MAPE (51%) 
confirm moderate predictive accuracy with frequent large errors, particularly for cases with 
higher cooling loads. This highlights the model’s limited reliability for accurately predicting 
cooling demands. 

 

Figure 135: Annual cooling predictions with feature set D. 

 

HEATING PREDICTION EXTREMES 
PAND ID ARCHETYPE TRUE PREDICTED MAE MAPE 

0599100000114990 D.1965 637.79 83.52 554.26 86 % 

0599100000385588 TI.1992-2005 48.47 256.70 208.23 429 % 

0599100000157120 D.1965 458.71 309.02 149.68 32 % 
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The bar chart shows that Terraced Intermediate houses consistently have the highest average 
MAPE for cooling demand predictions across all archetypes, reaching close to 80%.  

 

Figure 136: Average cooling MAPE per archetype. 

 

The box plots of cooling MAPE (%) by 
archetype show that Detached 
archetypes generally show the lowest 
median and spread in cooling MAPE, 
indicating better model prediction for 
the Detached typology. In contrast, 
the Terraced Corner and especially 
the Terraced Intermediate archetypes 
display higher median MAPE and a 
wider spread, with the Terraced 
Intermediate showing some 
extremely high outliers. This pattern 
persists across all construction 
periods. 

These results suggest the model 
struggles with cooling demand 
prediction for terraced buildings, 
particularly for the Terraced 
Intermediate.  
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Figure 138: Cooling MAPE (%) by archetype: Detached (outliers 
removed).  

Figure 137: Cooling MAPE (%) by archetype: Terraced Corner (outliers 
removed). 
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The performance results can be 
attributed to two main factors: 

 
1. The number and configuration 
of adiabatic surfaces are not 
directly included as an ML model 
input. Instead, the adiabatic 
surfaces are inferred through the 
shared wall area, potentially 
limiting the model’s ability to 
capture the thermal interactions 
for terraced layouts.   

2. From the model inputs, the Terraced Intermediate houses have a higher WWR, introducing 
greater variability and complexity in cooling performance, which may not be fully represented 
by the current input features. This limitation likely contributes to the higher and more variable 
MAPE values when compared to Detached houses. 

 

Extreme values  

The box plots showing the extremes highlight that Detached houses show fewer and less severe 
outliers, resulting in lower MAPE distributions.  

Terraced Intermediate and Terraced Corner archetypes show higher extreme MAPE values, with 
numerous outliers exceeding several hundred percent. This outcome is largely due to the low 
true cooling demand in many terraced houses, which causes the MAPE to inflate rapidly even 
when absolute errors are moderate – a limitation of the MAPE metric.   

This pattern suggests the model 
struggles most to accurately capture 
cooling performance in archetypes 
where adiabatic surfaces play a 
dominant role, and where the model 
input features may be insufficiently 
describing these parameters.  

 

Figure 139: Cooling MAPE (%) by archetype: Terraced Intermediate (outliers 
removed). 

Figure 140: Cooling MAPE (%) by archetype: Detached. 
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Note for cooling, MAPE is not the most 
indicative metric for the model’s 
performance. As a result of many of the 
true cooling demands being quite low 
absolute values, the resulting MAPE can 
reach extremes for a small or moderate 
difference in absolute value of 
predictions. The extreme cooling values 
are shown in Table 25, sorted based on 
the highest MAPE.  

 

 

 

 

 

 

 

 

 

 

 

 

The most extreme cooling predictions according to MAPE, are shown in Table 27, and 
comparatively, the most extreme cooling predictions according to MAE are shown in Table 28.  

Table 27: Cooling prediction extremes ranked by MAPE. 

 

 

COOLING PREDICTION EXTREMES 
PAND ID ARCHETYPE TRUE PREDICTED MAE MAPE 

0599100015004160 TI.1965-1974 1.3362 30.9458 29.61 2215.9 % 

0599100000128483 TI.1975-1991 1.5254 21.8342 20.31 1331.3 % 

0599100000335134 TI.1975-1991 1.3696 19.5267 18.15 1325.7 % 

Figure 141: Cooling MAPE (%) by archetype: Terraced Corner. 

Figure 142: Cooling MAPE (%) by archetype: Terraced 
Intermediate. 
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Table 28: Cooling prediction extremes ranked by MAE. 

 

Methods to improve the cooling predictions should be explored further, including log-
transforming the cooling values before training. This process can be applied to compress the 
range of cooling values and dominance of large cooling values. The reduced skew ideally allows 
the model to better predict both high and low true values.  

Currently the model is predicting two largely different outputs – heating and cooling – for the 
same input features, which can make learning patterns more difficult. It may be advantageous 
to explore training a model specifically for cooling prediction to simplify the learning task and 
allow the model to focus only on the features and relationships most relevant to cooling.  

COOLING PREDICTION EXTREMES  
PAND ID ARCHETYPE TRUE PREDICTED MAE MAPE 

0599100000101293 TI.1946-1964 108.55 45.44 63.10 58.1 % 

0599100015004542 TI.1992-2005 103.85 42.17 61.67 59.3 % 

0599100015005154 TI.1965-1974 98.97 41.86 57.11 57.7 % 
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10. CONCLUSIONS 
RESEARCH QUESTIONS 

MAIN QUESTION 

 How can machine learning be used to predict energy performance for 
residential buildings at city-scale to reduce heating and cooling demands, 
considering future weather scenarios from climate change? 

Machine learning (ML) can be used to predict energy performance for residential buildings at 
city-scale by automating the collection of building geometry, generation of EnergyPlus input 
data files, and training an artificial neural network with minimal layers. This approach reduces 
the time and computational resources needed to run traditional EnergyPlus simulations from 
hours or days to minutes when calling predictions from the surrogate model. Using ML, heating 
predictions can achieve a minimal loss in accuracy, with an MAPE of 7%. For cooling the MAPE 
of 51% is largely dominated by low true cooling values. Additional work needs to be conducted 
to improve cooling predictions, such as adding input features to better represent building 
complexity, or applying data transformations such as log-transforming the cooling values before 
training. 

Although the model is designed to incorporate future weather scenarios to allow for forecasting 
under climate change, this step was not implemented in the ML aspect of this project due to 
time constraints. To fully capture the impacts of climate change, the weather input features 
need to be handled thoughtfully. Originally, the logic involved using average monthly 
temperatures and solar radiations, but these values could likely be collapsed to the number of 
cooling degree days, heating degree days, and seasonal global horizontal irradiance. This reduces 
the dimensionality of the weather inputs and provides the model with metrics directly related 
to building energy demand.   

SUB-QUESTIONS 

RETROFIT INTERVENTIONS 

 How can ML be used to assess the impact of retrofit interventions across different 
building typologies? 

ML enables rapid assessment of retrofit strategies by learning the relationship between building 
properties, retrofit inputs, and resulting energy demands. The automated workflow, using 
simplified inputs allows for energy simulation across different archetypes, capturing how 
measures like improved insulation and reduced infiltration can reduce heating demands by over 
50% especially for older, inefficient buildings. This workflow highlights the importance of 
targeted retrofits for specific archetypes – for example prior to 1992, where insulation 
improvements can move the energy label from F to A.  
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CITY-SCALE 

 How can computational methods be leveraged for energy modelling at city-scale?  

By developing a Python workflow for the entire process, involving API-based data collection, 
geometry processing, automated IDF generation, batch EnergyPlus simulation, feature 
structuring, and ML training, this study demonstrates that ML dramatically increases scalability, 
reproducibility, and time efficiency for large-scale energy modelling, compared to traditional 
approaches. 

 

MACHINE LEARNING  

 How can ML models improve the efficiency of building energy modelling?  

The ML model improves the efficiency of building energy modelling by reducing both the number 
of required inputs and the time intensity of large-scale simulations. Through the staged model 
development and training process, the model showed strong predictive performance (specifically 
for heating) with using a small set of geometric and thermal envelope features.  

For traditional energy modelling, generating an EnergyPlus IDF requires specifying many input 
parameters per building, including geometry, constructions layers, thermal properties, schedule 
data, internal loads, and system details.  Even with a simplified and automated workflow, the IDF 
setup involves detailed inputs for each building surface. The ML model in this study simplified 
the feature set to 12 key features for training:  

 floor area,  
 number of floors,  
 wall area,  
 shared wall area,  
 building height,  
 ground floor insulation, façade insulation,  
 roof insulation,  
 infiltration rate,  
 WWR,  
 U Factor,  
 SHGC.  

And using this feature set, the ML model demonstrated strong prediction performance for 
heating demands. 
 

 What is an effective ML model, in terms of time efficiency and useability, for 
predicting building energy performance?  

The shallow ANN was an effective ML model based on the time efficiency, usability, and accuracy. 
Although, the ANN’s architecture needs to be further developed for cooling predictions, the 
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model’s structure can predict heating demands across a range of different archetypes, making it 
a practical tool for rapid energy assessment at scale.  

 
 What are the limitations of ML models compared to traditional energy modelling? 

One limitation is the need for extensive data structuring and pre-processing before ML training.  
All input features must be thoughtfully structured – flattened, merged, and standardized into a 
consistent tabular format. This process can be complex, time-consuming, and highly dependent 
on the chosen features. 

In this project, a major portion of the workflow involved finding methods to flatten building data 
and merge various input sources into a clean dataset suitable for ML. EnergyPlus simulations 
are more straightforward in this respect: the defined inputs can be directly read by the 
simulation engine, with no need for data restructuring.  

Although the ML predictions are rapid, the preparatory work to get the data ready for ML can be 
a significant and time-consuming part of the workflow.  

 

NEXT STEPS 
1. The current ML model is limited by using only two discrete values for Rc and 

infiltration per archetype – one for the baseline construction and one for the retrofit 
scenario. This restricts the model’s flexibility to predict for a broader range of retrofit 
strategies. Future work should address this by incorporating a broader range of Rc 
and infiltration values, enabling the ANN to generalize better for different retrofit 
scenarios.  

2. The impact of future weather scenarios on building energy demand was explored via 
EnergyPlus simulation, but results were not incorporated within the prediction 
model. The next objective would be to include the weather data representing the 
future climate scenarios within the feature set for training. In doing so it would be 
beneficial to consider more meaningful weather inputs such as the number of 
cooling degree days, heating degree days, and seasonal global horizontal irradiance. 

3. Lastly, model improvements for cooling predictions should be explored to improve 
cooling prediction accuracy, including explicitly defining adiabatic surfaces, and 
vertex data – as well as structuring the vertex data to avoid prediction bias – and/or 
developing a separate ANN for cooling predictions.  
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11. REFLECTION 
GRADUATION PROCESS  

 HOW IS YOUR GRADUATION TOPIC POSITIONED IN THE STUDIO? 

The sustainable design graduation studio investigates the design of sustainable structures, 
exploring topics such as innovation in structural materials, application of AI approaches, 
machine learning, and tools for structural optimization. The studio aims to design resource-
efficient and resilient structures with reductions in non-renewable resources used throughout 
the building’s life cycle. Looking at my graduation project, the goal was to simulate building 
energy use and model interventions that reduce a building’s operational energy use. In making 
significant reductions in heating energy for example, this may allow for a transition to low-
temperature heating systems like a heat pump, moving away from natural gas, and the 
dependence on non-renewable resources.  

As well, my project investigates machine learning approaches to develop building energy models 
at scale, with the goal of achieving large-scale reductions in CO2 emissions. This focus is in 
alignment with the studio’s research interests in applying artificial intelligence methods to 
advance sustainability research and design.  

 HOW DID THE RESEARCH APPROACH WORK OUT (AND WHY OR WHY NOT)? AND DID IT LEAD 
TO THE RESULTS YOU AIMED FOR? (SWOT OF THE METHOD).  

Reflecting on my research, the approach was ultimately successful in meeting the core 
objectives of modelling residential heating and cooling demands at urban scale using 
computational workflows and machine learning. However, the process was not without 
challenges.  

A major lesson was realizing the importance of aligning detailed data preparation with a clear 
machine learning strategy from the project start. I spent a lot of time at the early stages working 
with handling geometric surface data, and vertices, which slowed down research into enhancing 
the input representation of the EnergyPlus simulations and exploring different machine learning 
approaches. A more incremental approach, first identifying key predictive features, then 
increasing complexity could have been more efficient.  

Similarly, at the start I was working with the full dataset (of over 74,000 buildings) in an effort 
to develop a method for modelling energy use at urban scale – inherent to my research question. 
However, this involved creating multiprocessing scripts and large file handling methods from 
the start. It could have been more effective to scale up my process after handling a smaller data 
set,  to allow more time in earlier research stages for exploring a broader set of machine learning 
approaches. Although the focus on automation and computational efficiency resulted in a 
valuable workflow for handling energy modelling at large scale, stepping back periodically to 
reassess alignment with the overall research goals could have improved the process.  
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Finally, generating a synthetic dataset through repeated EnergyPlus simulations (for original 
building state, retrofit, current weather, and future weather) added substantial computational 
effort. While developing a purely Python-based workflow for the EnergyPlus simulation was an 
achievement that streamlined model input generation, relying on existing datasets could have 
freed time to focus more deeply on machine learning approaches. 

Summarizing my research approach using the SWOT framework:  

STRENGTHS WEAKNESSES 
 Developed a scalable, automated 

workflow for 3D building model data at 
scale. 

 Successfully implemented a pipeline for 
EnergyPlus simulations solely using 
Python.  

 Developed a ML model that predicts 
building energy demand with reasonable 
accuracy for a wide range of building 
archetypes.   

 Over-invested in data structuring before 
defining a clear ML approach. 

 Shortened exploration of different ML 
models due to time spent on workflow 
development. 

 

OPPORTUNITIES THREATS 
 Enhance ML generalization ability using 

a range of input features to model more 
retrofit scenarios.  

 Add more detail to the EnergyPlus 
simulations, to better represent the 
building archetypes.  

 Some scripts of the computational 
workflow may be too tailored to this 
specific dataset. 

 

 

 IF APPLICABLE: WHAT IS THE RELATIONSHIP BETWEEN THE METHODICAL LINE OF APPROACH 
OF THE GRADUATION STUDIO (RELATED RESEARCH PROGRAM OF THE DEPARTMENT) AND 
YOUR CHOSEN METHOD? 

My research method is closely aligned with the approach of the sustainable design graduation 
studio and AiDAPT research group of using AI and data-driven methods to advance sustainability 
in the built environment. My research applied machine learning approaches to predict heating 
and cooling demands, directly contributing to an informed relationship of how insulation 
improvements impact building energy demand for a broad range of building archetypes. In 
developing a computational workflow and using AI methods for predictive modelling and large-
scale data analysis, my approach is aligned with the studio’s broader objectives of creating 
sustainable design interventions in the built environment.  
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 HOW ARE RESEARCH AND DESIGN RELATED? 

Research involved understanding which building features and retrofit measures significantly 
affect energy performance and figuring out how to best represent these at a larger urban scale. 
The design involved making decisions on how to structure data, select machine learning 
methods, and develop a computational workflow. Insights from the research directly influenced 
my design decisions, such as selecting a level of detail for the building geometry, choosing the 
thermal properties for inputs, and investigating specific building archetypes. As well, the 
computational workflow itself informed my research by providing insights into retrofit 
effectiveness and building energy behaviour per archetype. Thus, there was a continuous 
interaction between research and design throughout my project that strengthened my approach 
to urban scale building energy modelling and prediction.  

 DID YOU ENCOUNTER MORAL/ETHICAL ISSUES OR DILEMMAS DURING THE PROCESS? HOW 
DID YOU DEAL WITH THESE?  

My research was driven from a technological viewpoint, leaving out essential social dimensions 
that were unfortunately beyond the scope of research. Retrofit strategies inherently involve the 
preferences, behaviours, and acceptance of building users, yet these critical factors were not 
integrated into my approach. Incorporating user perspectives to ensure interventions are both 
effective and representative of user behaviour would significantly strengthen the research.  

 

SOCIETAL IMPACT 

 TO WHAT EXTENT ARE THE RESULTS APPLICABLE IN PRACTICE? 

The results from this research have substantial practical applicability, especially within the 
context of large-scale urban energy modelling and retrofit planning. The developed 
computational workflow – covering automated geometry collection, IDF file generation, and 
EnergyPlus simulations – provides a scalable solution for quickly analyzing heating and cooling 
demands for large-scale building datasets. The insights into energy demand differences between 
current and retrofit construction states for prevalent Dutch residential archetypes, especially 
those built before thermal performance regulations, directly support retrofit decision-making. 
Furthermore, the explored machine learning model demonstrates strong predictive performance 
for heating demands, indicating practical usability in scenarios where rapid demand estimation 
is needed. There remain opportunities to enhance the practical applicability of the prediction 
model by including additional inputs, particularly detailed retrofit parameters and improved 
weather data, and by extending the workflow to accommodate simulations for future climate 
scenarios. 
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 TO WHAT EXTENT HAS THE PROJECTED INNOVATION BEEN ACHIEVED? 

The project explores the application of machine learning for energy performance at urban scale, 
addressing current gaps in the research domain in terms of scalability, and efficiency compared 
to traditional modelling approaches. Considering the expanding field of machine learning, this 
project offers insights into the applicability of machine learning approaches and computational 
methods to overcome data collection and availability challenges.  

Key contributions to innovation include:  

 Automated data collection pipeline and a fully automated EnergyPlus simulation 
workflow, enabling scalable energy modelling across a large-scale building dataset.  

 Refined the archetype-based modelling approach by incorporating a broader range of 
construction periods.  

 Application of machine learning to urban-scale energy prediction, addressing limitations 
of traditional modelling in terms of scalability and data availability.  

 DOES THE PROJECT CONTRIBUTE TO SUSTAINABLE DEVELOPMENT? 

Yes, this project contributes to sustainable development by exploring interventions for reducing 
energy consumption within the built environment. Rising global temperatures due to climate 
change can lead to higher cooling demands, exacerbating building energy consumption. Without 
intervention, this could lead to a greater reliance on non-renewable energy sources, contributing 
to increased air pollution and CO2 emissions. Predicting building energy performance at scale 
allows us to identify key retrofits to reduce energy consumption and dependence on non-
renewable energy sources for current and future weather scenarios.  

Additionally, my project focus is on improving the energy performance of existing residential 
buildings. This focus is aligned with the sustainable development goal of preserving the existing 
building stock and reducing the environmental impact of new construction. 

 WHAT IS THE IMPACT OF YOUR PROJECT ON SUSTAINABILITY (PEOPLE, PLANET, 
PROFIT/PROSPERITY)? 

For people, this project focuses on retrofitting the existing Dutch housing stock and avoiding 
major demolitions, thus lends to preserving historical Dutch architecture. As well this project 
contributes to the long-term goals of creating more comfortable, affordable, and climate-
resilient houses, particularly in older neighbourhoods. 

For the planet, this project promotes reducing heating and cooling demands, thus lowering 
greenhouse gas emissions in the residential sector. By focusing on the existing Dutch housing 
stock, the intention is to avoid the environmental costs of demolition and new construction, 
aligning with circularity principles.  
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For prosperity, this project offers scalable methods for identifying energy-saving interventions, 
which can enable cost-savings and better allocation of resources when considering large-scale 
urban planning and retrofit investments.  

 WHAT IS THE SOCIO-CULTURAL AND ETHICAL IMPACT? 

From a positive perspective, my research work contributes to the objective of maintaining the 
character and identity of historic Dutch neighbourhoods by promoting retrofit of existing 
buildings over demolition.  

From a critical lens, although my model offers data-driven insights for planning, it currently 
excludes the human dimension – such as occupant behaviour and user preferences – which are 
vital for socially acceptable retrofit interventions. Future development should integrate these 
factors to ensure interventions are aligned with societal needs.  

Ethical considerations relate to the environmental impacts of using AI and machine learning for 
building energy modelling.  The environmental impact of data-driven approaches, such as the 
significant energy and water demand to power large data centers, raises ethical questions about 
the use of AI and resource consumption.  Using AI to address energy efficiency underscores the 
importance of reflecting on and balancing technological approaches with sustainability goals. 

 WHAT IS THE RELATION BETWEEN THE PROJECT AND THE WIDER SOCIAL CONTEXT? 

This project aims to better understand available retrofit interventions and enable stakeholders 
to prioritize interventions that offer maximum energy savings.  

This project responds to broader societal challenges related to climate change, the energy 
transition, and housing quality. By developing a workflow that can enable large-scale retrofit 
planning, this project works to address the need for climate adaptation in the built environment. 
It also aligns with national and European level sustainability goals aimed at reducing energy 
consumption in existing buildings and reducing energy emissions. In doing so, it contributes to 
the wider social discourse on sustainable urban development, offering designers and planners 
data-driven tools for decision making.   

 HOW DOES THE PROJECT AFFECTS ARCHITECTURE / THE BUILT ENVIRONMENT? 

My project combines computational, architectural and climate design principals to understand 
retrofit interventions and the complexities of energy modelling at urban scale. This work 
provides a framework for data-driven decision making in architectural and urban planning 
processes.  

There is a need in architecture, urban planning, and engineering professions for tools that 
integrate energy performance insights with building retrofit strategies.  My project 
demonstrates how integrating simulation tools and machine learning can enhance our 
understanding of energy performance, particularly for the existing residential building stock – 
which is a critical area to achieve energy savings.   
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APPENDIX A 
GITHUB 
The scripts created for the main computational workflow of this project are shared to the github 
repository, accessed at: 

https://github.com/elenarduzzi/buildingenergymetamodels 

  

https://github.com/elenarduzzi/buildingenergymetamodels
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APPENDIX B 
MATERIAL ID TABLE 
The material inputs used to define the constructions for the EnegyPlus simulations are provided 
in the subsequent tables. Note the units for each parameter:  

• Infiltration: m3/sm2 
• Insulation (Rc): m2K/W 
• Thickness: m  
• Thermal Conductivity: W/mK 
• Density: kg/m3 
• Specific Heat Capacity: J/kgK 
• Thermal Transmittance (U): W/m2K 
• SHGC: Unitless 
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Table 29: Material ID table for Terraced Intermediate (TI) archetypes. 

Archetype 
ID Infiltration Material ID Rc Thickness Conductivity Density Heat 

Capacity U SHGC 

TI.1946 0.0030 

G.TI.1946 3.5 0.15 0.04 540 1210   

F.TI.1946 1.7 0.3 0.18 1920 840   

R.TI.1946 3.5 0.2 0.06 1500 1000   

W.TI.1946      1.4 0.6 

TI.1946-
1964 0.0010 

G.TI.1946-
1964 3.5 0.15 0.04 540 1210   

F.TI.1946-
1964 1.7 0.3 0.18 1920 840   

R.TI.1946-
1964 3.5 0.2 0.06 1500 1000   

W.TI.1946-
1964 

     1.4 0.6 

TI.1965-
1974 0.0010 

G.TI.1965-
1974 3.5 0.15 0.04 540 1210   

F.TI.1965-
1974 1.7 0.3 0.18 1920 840   

R.TI.1965-
1974 3.5 0.2 0.06 1500 1000   

W.TI.1965-
1974 

     1.4 0.6 

TI.1975-
1991 0.0010 

G.TI.1975-
1991 3.5 0.15 0.04 540 1210   

F.TI.1975-
1991 1.7 0.3 0.18 1920 840   

R.TI.1975-
1991 3.5 0.2 0.06 1500 1000   

W.TI.1975-
1991 

     1.4 0.6 

TI.1992-
2005 0.0015 

G.TI.1992-
2005 3.5 0.15 0.04 540 1210   

F.TI.1992-
2005 2.5 0.3 0.12 1920 840   

R.TI.1992-
2005 3.5 0.2 0.06 1500 1000   

W.TI.1992-
2005 

     1.4 0.4 

TI.2006-
2014 0.0015 

G.TI.2006-
2014 3.5 0.15 0.04 540 1210   

F.TI.2006-
2014 2.5 0.3 0.12 1920 840   

R.TI.2006-
2014 3.5 0.2 0.06 1500 1000   

W.TI.2006-
2014 

     1.4 0.4 

TI.2015-
2018 0.0015 

G.TI.2015-
2018 3.5 0.15 0.04 540 1210   

F.TI.2015-
2018 4.5 0.3 0.07 1920 840   

R.TI.2015-
2018 6 0.2 0.03 1500 1000   

W.TI.2015-
2018 

     1.4 0.4 
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Table 30: Material ID table for Terraced Corner (TC) archetypes. 

Archetype 
ID Infiltration Material ID Rc Thickness Conductivity Density Heat 

Capacity U SHGC 

TC.1946 0.0030 

G.TC.1946 3.5 0.15 0.04 540 1210   

F.TC.1946 1.7 0.3 0.18 1920 840   

R.TC.1946 3.5 0.2 0.06 1500 1000   

W.TC.1946      1.4 0.6 

TC.1946-
1964 0.0010 

G.TC.1946-
1964 3.5 0.15 0.04 540 1210   

F.TC.1946-
1964 1.7 0.3 0.18 1920 840   

R.TC.1946-
1964 3.5 0.2 0.06 1500 1000   

W.TC.1946-
1964 

     1.4 0.4 

TC.1965-
1974 0.0010 

G.TC.1965-
1974 3.5 0.15 0.04 540 1210   

F.TC.1965-
1974 1.7 0.3 0.18 1920 840   

R.TC.1965-
1974 3.5 0.2 0.06 1500 1000   

W.TC.1965-
1974 

     1.4 0.6 

TC.1975-
1991 0.0010 

G.TC.1975-
1991 3.5 0.15 0.04 540 1210   

F.TC.1975-
1991 1.7 0.3 0.18 1920 840   

R.TC.1975-
1991 3.5 0.2 0.06 1500 1000   

W.TC.1975-
1991 

     1.4 0.6 

TC.1992-
2005 0.0015 

G.TC.1992-
2005 3.5 0.15 0.04 540 1210   

F.TC.1992-
2005 2.5 0.3 0.12 1920 840   

R.TC.1992-
2005 3.5 0.2 0.06 1500 1000   

W.TC.1992-
2005 

     1.4 0.6 

TC.2006-
2014 0.0015 

G.TC.2006-
2014 3.5 0.15 0.04 540 1210   

F.TC.2006-
2014 2.5 0.3 0.12 1920 840   

R.TC.2006-
2014 3.5 0.2 0.06 1500 1000   

W.TC.2006-
2014 

     1.4 0.4 

TC.2015-
2018 0.0015 

G.TC.2015-
2018 3.5 0.15 0.04 540 1210   

F.TC.2015-
2018 4.5 0.3 0.07 1920 840   

R.TC.2015-
2018 6 0.2 0.03 1500 1000   

W.TC.2015-
2018 

     1.4 0.4 
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Table 31: Material ID table for Detached (D) archetypes. 

Archetype 
ID Infiltration Material ID Rc Thickness Conductivity Density Heat 

Capacity U SHGC 

D.1965 0.0014 

G.D.1965 3.5 0.15 0.04 540 1210   

F.D.1965 1.7 0.3 0.18 1920 840   

R.D.1965 3.5 0.2 0.06 1500 1000   

W.D.1965      1.4 0.4 

D.1965-
1974 0.0014 

G.D.1965-
1974 3.5 0.15 0.04 540 1210   

F.D.1965-1974 1.7 0.3 0.18 1920 840   

R.D.1965-1974 3.5 0.2 0.06 1500 1000   

W.D.1965-
1974 

     1.4 0.6 

D.1975-
1991 0.0014 

G.D.1975-
1991 3.5 0.15 0.04 540 1210   

F.D.1975-1991 1.7 0.3 0.18 1920 840   

R.D.1975-1991 3.5 0.2 0.06 1500 1000   

W.D.1975-
1991 

     1.4 0.6 

D.1992-
2005 0.0021 

G.D.1992-
2005 3.5 0.15 0.04 540 1210   

F.D.1992-2005 2.5 0.3 0.12 1920 840   

R.D.1992-2005 3.5 0.2 0.06 1500 1000   

W.D.1992-
2005 

     1.4 0.6 

D.2006-
2014 0.0021 

G.D.2006-
2014 3.5 0.15 0.04 540 1210   

F.D.2006-2014 2.5 0.3 0.12 1920 840   

R.D.2006-2014 3.5 0.2 0.06 1500 1000   

W.D.2006-
2014 

     1.4 0.4 

D.2015-
2018 0.0021 

G.D.2015-
2018 3.5 0.15 0.04 540 1210   

F.D.2015-2018 4.5 0.3 0.07 1920 840   

R.D.2015-2018 6 0.2 0.03 1500 1000   

W.D.2015-
2018 

     1.4 0.4 

D.1965 0.0014 

G.D.1965 3.5 0.15 0.04 540 1210   

F.D.1965 1.7 0.3 0.18 1920 840   

R.D.1965 3.5 0.2 0.06 1500 1000   

W.D.1965      1.4 0.4 
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APPENDIX C 
At the P4 project stage, the main workflow from data collection through model development 
and performance evaluation stages was complete. However, at this time there was not yet a 
solution for defining the shared wall surfaces or adiabatic surfaces of each building – a task that 
required additional computational effort. Without this information, it was also not possible to 
define window objects on the correct surfaces (i.e defining a window on surfaces that are not 
shared with neighbouring buildings).  

Thus, the demand analysis, model development, and performance evaluation that follows was 
completed to satisfy the project requirements at the time, before the EnergyPlus simulations 
included windows and adiabatic surface definitions. It should be noted that the results deviate 
from the main demand analysis within the body of the report, for example as shown below the 
cooling loads decrease despite retrofit measures of improved insulation and infiltration. This 
response can be mainly attributed to the lack of windows within the simulation, which eliminate 
solar gains from driving cooling demands.  

 

DEMAND ANALYSIS 
The distribution of energy labels within the simulated dataset (including both current and 
retrofit construction states) at the current weather condition is shown in Figure 143.  

 

 

Figure 143: Number of Pand IDs per energy label, including both current and retrofit construction states.  

 

DETACHED HOUSE / Vrijstaande woning 

For Detached houses, the retrofit benefits are most noticeable in houses built before 1992. For 
houses built from 1992 onwards, the current envelopes perform very similar to the retrofit 
condition.  



151 
 

Detached houses show the highest heating demand compared to terraced houses due to the full 
exposure on all four façades, with the maximum current demand at 380 kWh/m² for houses built 
between 1965–1974.  

Retrofit measures reduce pre-1992 heating demand by 60–70%, bringing it down to about 120 
kWh/m². After 1992, the current demand drops to 130 kWh/m², reaching close to the retrofit 
scenario.  

 

Figure 144: Detached house total energy demand for current condition and retrofit condition. 

 

Figure 145: Current and retrofit heating and cooling demand for Detached archetypes. 

 

For cooling, the demand stays very low at less than 1.7 kWh/m², with only minor improvements 
from retrofits in the older building periods. And no noticeable change after 1992. Compared to 
terraced houses, the pattern for Detached houses shows higher baseline demands and greater 
absolute retrofit potential for older archetypes.  
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Table 32: Detached total annual energy demand and energy label per archetype at current construction and retrofit 
construction states. 

ARCHETYPE 
CURRENT 

DEMAND [kwh/m2] 
CURRENT 

ENERGY LABEL 
RETROFIT  

DEMAND [kwh/m2] 
RETROFIT 

ENERGY LABEL 

D.1965 357.2 F 123.3 A 

D.1965-1974 383.9 F 132.2 A 

D.1975-1991 285.9 D 118.8 A 

D.1992-2005 133.8 A 130.9 A 

D.2006-2014 131.7 A 128.8 A 

D.2015-2018 120.7 A 120.7 A 

 

TERRACED CORNER / Hoekwoning 

Similar findings for the Terraced Corner house show that the retrofit interventions have the 
greatest impact on buildings constructed before 1992, where poor insulation and high air 
leakage originally led to high energy demands and poor energy labels. For these older archetypes 
upgrading the roof, floor, and wall insulation, and reducing infiltration leads to significant 
reductions – up to 65% for heating and 70% for cooling demand.  

 

 

For the most recent buildings (2015-2018), which already feature high-performance envelopes, 
the retrofits show virtually no effect. This pattern is visible from the Terraced Corner housing 
energy labels, shown in Table 33.  
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Figure 146: Terraced Corner total energy demand for current condition and retrofit condition. 
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Figure 147: Current and retrofit heating and cooling demand for Terraced Corner archetypes. 

 

Table 33: Terraced Corner total annual energy demand and energy label per archetype at current construction and 
retrofit construction states. 

ARCHETYPE 
CURRENT 

DEMAND [kwh/m2] 
CURRENT 

ENERGY LABEL 
RETROFIT  

DEMAND [kwh/m2] 
RETROFIT 

ENERGY LABEL 

TC.1946 351.6 F 195.5 C 

TC.1946-1964 343.6 E 115.7 A 

TC.1965-1974 275.2 D 98.1 A+ 

TC.1975-1991 201.7 C 99.1 A+ 

TC.1992-2005 108.0 A+ 105.4 A+ 

TC.2006-2014 105.7 A+ 103.2 A+ 

TC.2015-2018 81.9 A+ 81.9 A+ 

 

 

TERRACED INTERMEDIATE / Tussenwoning 

From the plot of total energy demand for Terraced Intermediate, Figure 148, shows that from 
1946 to 1991, buildings had minimal insulation, and high air leakage, resulting in high average 
energy demands. When retrofits are applied that significantly improve insulation and reduce 
infiltration, the average energy demand drops quickly, as seen by the large gap between the red 
(current) and black (retrofit) lines at this period.  
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However, from 1992 onward, the building envelopes is constructed to a higher standard 
(improved insulations and reduced infiltrations), so the retrofit upgrades show little additional 
improvement. As a result, the current and retrofit energy demand lines converge, highlighting 
that retrofit measures have the greatest impact on older, less efficient buildings. 

Table 34: Terraced Intermediate total annual energy demand and energy label per archetype at current construction and 
retrofit construction states. 

ARCHETYPE 
CURRENT 

DEMAND [kwh/m2] 
CURRENT 

ENERGY LABEL 
RETROFIT  

DEMAND [kwh/m2] 
RETROFIT 

ENERGY LABEL 
TI.1946 326.1 E 196.6 C 

TI.1946-1964 348.9 F 116.6 A 

TI.1965-1974 282.2 D 100.7 A+ 

TI.1975-1991 202.1 C 100.3 A+ 

TI.1992-2005 111.2 A 108.5 A+ 

TI.2006-2014 107.1 A+ 104.6 A+ 

TI.2015-2018 83.5 A+ 83.5 A+ 
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Figure 149: Current and retrofit heating and cooling demand for Terraced Intermediate archetypes. 

Figure 148: Terraced Intermediate total energy demand for current condition and retrofit condition. 
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ML DEVELOPMENT 
Note again that the model training described in this section was completed before the addition 
of windows and adiabatic surfaces for the EnergyPlus simulations. The model shows strong 
prediction performance based on the simplified input feature set, discussed below.  

PHASE 2  

The Phase 2 ANN predicts annual heating and cooling demands using a 20,000-building data 
set, with a train, test, validation split of 70%, 20%, 10%.  

 

Figure 150: ANN architecture used for Phase 2 training (Feature Set D).  

 

FEATURE SET A 

The initial model aimed to leverage all available geometric features collected from the 3DBAG 
for heating and cooling demand predictions, shown in Table 35.  

Table 35: Phase 2 Feature Set A. 

Feature Units Variable Type Normalization 
GEOMETRIC 

Number of Floors - Discrete Standard-Scale 
Wall Area m2 Continuous Standard-Scale 
Roof Area (Flat) m2 Continuous Standard-Scale 
Roof Area (Sloped) m2 Continuous Standard-Scale 
Floor Area m2 Continuous Standard-Scale 
Shared Wall Area m2 Continuous Standard-Scale 
Building Height (70%) m Continuous Standard-Scale 
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GEOMETRIC 
Total Floor Area m2 Continuous Standard-Scale 
Building Volume m3 Continuous Standard-Scale 
Compactness Ratio m-1 Continuous Standard-Scale 

CONSTRUCTION 
Ground Floor Insulation m2K/W Continuous Standard-Scale 
Facade Insulation m2K/W Continuous Standard-Scale 
Roof Insulation m2K/W Continuous Standard-Scale 
Infiltration m3/sm2 Continuous Standard-Scale 

WEATHER 
Annual average temperature  °C Continuous - 
Annual average solar radiation  kWh/m2/day Continuous - 

VERTICES 
Distance (d) from centroid  - Continuous Standard-Scale 

Angle (ux) - Continuous Polar Angle 

Angle (uy) - Continuous Polar Angle 

 

FEATURE SET B 

Feature set B simplified the geometric inputs to the total floor area, building volume, and 
compactness ratio.  

Table 36: Phase 2 Feature Set B. 

Feature Units Variable Type Normalization 
GEOMETRIC 

Total Floor Area m2 Continuous Standard-Scale 
Building Volume m3 Continuous Standard-Scale 
Compactness Ratio m-1 Continuous Standard-Scale 

CONSTRUCTION 
Ground Floor Insulation m2K/W Continuous Standard-Scale 
Facade Insulation m2K/W Continuous Standard-Scale 
Roof Insulation m2K/W Continuous Standard-Scale 
Infiltration m3/sm2 Continuous Standard-Scale 

WEATHER 
Annual average temperature  °C Continuous - 
Annual average solar radiation  kWh/m2/day Continuous - 

VERTICES 
Distance (d) from centroid  - Continuous Standard-Scale 

Angle (ux) - Continuous Polar Angle 

Angle (uy) - Continuous Polar Angle 
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FEATURE SET C 

The reduction from Feature set B to C involved removing the vertex data. All other features 
remained the same.  

Table 37: Phase 2 Feature Set C. 

Feature Units Variable Type Normalization 
GEOMETRIC 

Total Floor Area m2 Continuous Standard-Scale 
Building Volume m3 Continuous Standard-Scale 
Compactness Ratio m-1 Continuous Standard-Scale 

CONSTRUCTION 
Ground Floor Insulation m2K/W Continuous Standard-Scale 
Facade Insulation m2K/W Continuous Standard-Scale 
Roof Insulation m2K/W Continuous Standard-Scale 
Infiltration m3/sm2 Continuous Standard-Scale 

WEATHER 
Annual average temperature  °C Continuous - 
Annual average solar radiation  kWh/m2/day Continuous - 

 

FEATURE SET D 

The last stage of training used the number of floors, wall area, floor area, and building height as 
geometric features. These features were selected to capture the most essential geometric 
properties to minimize redundancy and input complexity.  

The number of floors and building height together provide an indication of compactness, which 
impacts the internal volume and heat transfer surfaces. Wall area is critical for modelling heat 
loss and gain, since it represents the primary envelope through which energy is exchanged. And 
the floor area provides a measure of building size and conditioned space.  

Table 38: Phase 2 Feature Set D.   

Feature Units Variable Type Normalization 
GEOMETRIC 

Number of Floors - Discrete Standard-Scale 
Wall Area m2 Continuous Standard-Scale 
Floor Area m2 Continuous Standard-Scale 
Building Height (70%) m Continuous Standard-Scale 

CONSTRUCTION 
Ground Floor Insulation m2K/W Continuous Standard-Scale 
Facade Insulation m2K/W Continuous Standard-Scale 
Roof Insulation m2K/W Continuous Standard-Scale 
Infiltration m3/sm2 Continuous Standard-Scale 
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WEATHER 
Annual average temperature  °C Continuous - 
Annual average solar radiation  kWh/m2/day Continuous - 

 
The roof area was excluded as a feature to avoid redundancy in the input data since for LoD 1.2 
geometry, the roof area can be directly inferred from the floor area.  

The MSE loss curves across the Feature D training set show a steep initial drop in loss, 
highlighting that the model quickly learns the relationships between input features and outputs. 
The loss curves shown a smooth decay, decreasing gradually and flattening to a minimum loss 
between 10,000 to 15,000 iterations. All runs show a similar loss curve, showing the stability of 
the training set.  

 

 

Figure 151: Phase 2 MSE loss curve, showing several iterations of training runs. 
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PERFORMANCE 
Tracking the error metrics for the test set for heating and cooling demand predictions, it was 
observed that run V0 produced the lowest MAPE at approximately 3% for heating and 10% for 
cooling. As well as strong R2 values of 0.98 and 0.97, indicating a good model fit for both heating 
and cooling models. A summary of the error metrics is shown in Table 39.  

Table 39: Phase 2 heating and cooling demand prediction errors. 

HEATING PREDICTION ERRORS 
RUN EPOCH RMSE MAE R2 MAPE 
V0 13,319 0.01513 0.00709 0.98 2.9% 

COOLING PREDICTION ERRORS 
RUN EPOCH RMSE MAE R2 MAPE 
V0 13,319 0.02673 0.01727 0.97 10.2% 

 

HEATING PREDICTIONS 

Based on the low error metrics, the ANN predicts heating with high accuracy. The heating 
predictions are shown in Figure 152, where the predictions are closely aligned with the true 
values. At higher true heating values, there is slightly more spread in the predictions, with few 
outliers.  

 

 

Figure 152: Phase 2 annual heating predictions with feature set D. 
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Table 40: Phase 2 heating prediction extremes. 

  

Looking at a few of the prediction outliers 
in Figure 153, Extreme [A] represents a 
Terraced Intermediate house from the 
period 2006-2014. Extreme [B] is a Terraced 
Intermediate house from the pre-1946 
construction period, notably with the 
highest true heating value from the test set.  

 

 

The average MAPE across all archetypes is shown in Figure 154.   

 

Figure 154: Phase 2 average heating MAPE per archetype. 

For the Detached house type, the predictions show good accuracy. The median MAPE lies 
between 1-3%, for all building periods and from the box plots in Figure 155 there are few outliers 
overall, with the most extremes in the 1992-2005 building period. The maximum extreme MAPE 
is 26% for the 2006-2014 building period.  
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HEATING PREDICTION EXTREMES 

 TRUE PREDICTED MAPE 

A 405.4 828.6 104 % 

B 957.9 717.2 25 % 

A 

B 

Figure 153: Phase 2 heating prediction extremes. 
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Figure 155: Phase 2 heating MAPE (%) by archetype: Detached. 

For the Terraced Corner house, the median MAPE is consistent across all archetypes, below 2.5%. 
There is consistently less spread amongst the MAPE for each archetype. One extreme outlier is 
shown for the 2015-2016 period at 64%, with the predicted heating almost double that of the 
true heating value.  

 

Figure 156: Phase 2 heating MAPE (%) by archetype: Terraced Corner. 

Similar results are shown for the Terraced Intermediate house, with a median MAPE between 1-
3% across all archetypes. One extreme outlier is shown for the 2006-2014 period at 104%, with 
the prediction over double that of the true value.  
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Figure 157: Phase 2 heating MAPE (%) by archetype: Terraced Intermediate. 

 

COOLING PREDICTIONS 

Cooling predictions are shown in Figure 158.  

 

Figure 158: Phase 2 annual cooling predictions with feature set D. 

Cooling predictions show a significantly higher MAPE compared to the heating predictions, with 
all archetypes above a 5% MAPE.  

Because many of the true cooling demand values are very small, the resulting MAPE can reach 
extremes for a small difference in absolute prediction value – a limitation of the MAPE metric. 
For example, in Figure 159, Extreme A shows a MAE of 0.03 kWh/m2, which translates to an 
MAPE of 243%.  
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Figure 159: Phase 2 cooling prediction extremes for low true values (left) and high true cooling values (right).. 

 

Examples of some of the prediction extremes are shown in Table 41.  

Table 41: Cooling prediction extremes.  

COOLING PREDICTION EXTREMES 

 TRUE PREDICTED MAPE ARCHETYPE 

A 0.012 0.044 243 % Terraced Intermediate 2015-2018 

B 0.026 0.065 143 % Terraced Intermediate 2015-2018 

C 5.11 4.25 16.7 % Terraced Corner < 1946 

D 5.09 3.92 23.0 % Terraced Corner < 1946 

E 4.92 3.65 25.8 % Terraced Intermediate < 1946 

 

Looking at the average MAPE per archetype, in Figure 160, the predictions are particularly poor 
for terraced houses in the 2015-2018 building period, with a MAPE of 18% and 22% for the 
intermediate and corner houses respectively.  

C 

D 

E 
A 

B 
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Figure 160: Phase 2 average cooling MAPE per archetype. 

For the Detached house, the median error rises in newer construction periods and is highest for 
the 2015-2018 period at approximately 7%. Older building periods show a narrower distribution, 
with fewer extreme outliers.  

 

Figure 161: Phase 2 cooling MAPE (%) by archetype: Detached. 

Similarly for the Terraced Corner, the MAPE is consistent across most archetypes, increasing in 
the most recent construction period, 2015-2018, to approximately 7.5%. Extreme outliers are 
also in the more recent construction periods: 2006-2014 and 2015-2018.  
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Figure 162: Phase 2 cooling MAPE (%) by archetype: Terraced Corner. 

For the Terraced Intermediate housing type, the median MAPE is quite low across all building 
periods, also reaching 7.5% in the 2015-2018 period. Many outliers are found in the more recent 
periods, with extreme outliers shown from 1992-2018.  

 

 

Figure 163: Phase 2 cooling MAPE (%) by archetype: Terraced Intermediate. 
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