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Improving the accuracy of computing chemical potentials in CFCMC simulations
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ABSTRACT
The CFCMC simulation methodology considers an expanded ensemble to solve the problem of low
insertion/deletion acceptance probabilities in open ensembles. It allows for a direct calculation of
the chemical potential by binning of the coupling parameter λ and using the probabilities p(λ = 0)
and p(λ = 1), which require extrapolation. Here, we show that this extrapolation leads to system-
atic errors when the distribution p(λ) is steep. We propose an alternative binning scheme which
improves the accuracy of computed chemical potentials. We also investigate the use of multiple
fractional molecules needed in simulations of multiple components, and show that these fractional
molecules are very weakly correlated and that calculations of chemical potentials are not affected.
The statistics of Boltzmann averages in systems with multiple fractional molecules is shown to be
poor. Good agreement is found between CFCMC averages (uncorrected for the bias) and Boltz-
mann averages when the number of fractional molecules is less than 1% of the total number of all
molecules. We found that, in dense systems, biased averages have a smaller uncertainty compared
to Boltzmann averages.
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1. Introduction

Knowledge on Vapor–Liquid Equilibrium (VLE)/
reaction equilibria and chemical potentials is important
for process design andmodelling [1–3]. The past decades,
force field-based molecular simulation has been devel-
oped as an attractive alternative for experiments, to accu-
rately describe the behaviour of matter, and to obtain
reliable thermodynamic and transport properties [4–10].
Force field-basedmolecularmodelling is used extensively
for studying phase equilibria of pure and multicompo-
nent systems [11–15], describing the behaviour of guest
molecules inside porous media [16–19], and reaction
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Supporting Information available: Force field parameters, raw data for p(λ) at λ = 0 and λ = 1, and excess chemical potentials are listed in the Supporting
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equilibria [19–25] etc. In his pioneering work in 1987,
Panagiotopoulos introduced the Gibbs Ensemble (GE)
to directly determine the phase coexistence properties
usingMonte Carlo (MC) simulations [26–28]. In the GE,
sufficient molecular exchanges between the phases leads
to equal chemical potentials (which are directly related
to activity/fugacity coefficients). The chemical potentials
of components in each phase can be obtained from GE
simulations using a variation of Widom’s Test Particle
Insertion (WTPI) method [29], taking into account the
density fluctuations of each phase [2]. Computation of
the chemical potential in the GE is an independent and

© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/
4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in
any way.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/00268976.2019.1631497&domain=pdf&date_stamp=2019-12-02
http://orcid.org/0000-0002-6474-3028
http://orcid.org/0000-0002-6147-0749
http://orcid.org/0000-0002-4382-1509
http://orcid.org/0000-0003-3059-8712
mailto:t.j.h.vlugt@tudelft.nl
https://doi.org/10.1080/00268976.2019.1631497
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


3494 A. RAHBARI ET AL.

important check on chemical equilibrium [1], and it can
also be used to detect programming errors and errors in
the implementation of the simulation technique.

The GE is widely used for VLE calculations [1,28]. It
is a simple and fast method to obtain relatively accurate
critical properties formost systems, using relatively small
system sizes [15,30]. For accurate VLE calculations in the
GE, one relies on sufficient molecule exchanges between
the phases. A major drawback is that the acceptance
probabilities of molecule insertions/deletions are very
low in dense systems or systems with strong/directional
intermolecular interactions, e.g. for water at ambient
conditions [3,31]. Another drawback is that computing
the excess chemical potential in the GE using inser-
tion/deletion methods [29,32–35] suffers severely from
molecule overlaps or random cavity formation. Meth-
ods based on the WTPI method are known to perform
poorly for high density systems, even when combined
with CBMC or related methods [1,31,36,37]. Due to the
difficulties associated with free energy calculations and
molecule exchanges in systems with high densities, other
methods are required to facilitate phase equilibrium cal-
culations in MC simulations.

To solve the sampling problems of the WTPI method,
alternative methods are developed to obtain chem-
ical potentials by combining particle insertions and
removals [38,39], or by gradual insertions/deletions in
multiple MC steps such that the surrounding molecules
can adjust to the molecule that is inserted or deleted
[37,40,41]. In the past decades, the idea of grad-
ual insertion/deletion was used for different systems,
see the works of Mon et al. [40], Squire et al. [42],
Mruzik et al. [43] and de Pablo from the 90s [44].
A few years ago, the Continuous Fractional Com-
ponent Monte Carlo (CFCMC) technique was devel-
oped by Shi and Maginn [45,46], leading to efficient
molecule exchanges in open ensembles. The main dif-
ference with other methods is that the gradual inser-
tion of molecules is continuous, rather than in dis-
crete stages [47,48]. The CFCMC method has been
applied to theNPT/NVT ensemble [49], grand-canonical
(GC) [50], Gibbs Ensembe (GE) [45,46,49,51] and the
reaction ensemble (RxMC) [25,52]. In the CFCMC
method, a fractional molecule with scaled interactions
with the surroundings is added to the ensemble. A cou-
pling parameter λ is introduced as an extended variable
in an expanded ensemble, and trial moves are carried out
to change the value of λ. The fractional molecule is dis-
tinguishable from the other ‘whole’, or normalmolecules.
The value λ = 0 means that the fractional molecule does
not interact with other molecules in the simulation box
and acts as an ‘ideal gas’ molecule. The value λ = 1
means that the fractional molecule is fully interacting

with other molecules in the system, and thus acts as
a ‘whole’ molecule. To further increase the efficiency
of molecule exchanges, an additional biasing potential
W(λ) can be used to ensure that the sampled probability
distribution of λ is flat [45,46,53,54]. The Lennard-Jones
(LJ) interactions of the fractional molecule with the rest
of the molecules is often scaled as follows [49,51,52,55]:

uLJ
(
r, λLJ

) = λLJ4ε

⎛
⎜⎝ 1[

1
2
(
1 − λLJ

)2 + ( r
σ

)6]2

− 1[
1
2
(
1 − λLJ

)2 + ( r
σ

)6]
⎞
⎠ (1)

in which, σ and ε are the LJ parameters and r is the
intermolecular distance between two interaction sites.
In principle, other thermodynamic pathways are possi-
ble to scale the interactions of the LJ molecule between
λ = 0 and λ = 1 [56–58]. The scaling of the electro-
static interactions are explained in Refs. [11,52,55]. In
principle, the λ-space can be chosen discrete [47] or con-
tinuous [45,46,51]. If the λ-space is discrete, it is limited
to a certain number of states between (and including) 0
and 1. To avoid high energy barriers for gradual inser-
tions/removals, the number of these states has to be
carefully chosen for each system. The main new element
of the method by Shi and Maginn is that λ has been
changed from a discrete parameter into a continuous
parameter [45,46]. The advantages of having a contin-
uous λ-space is that changes in λ (denoted by �λ) can
be adjusted during the simulation to facilitate transfers
between intermediate λ states. Since in CFCMC sim-
ulations, insertions/deletions are performed with frac-
tionalmolecules, biasing ofλ is used to improvemolecule
transfer efficiency [45,46,51,52]. Adaptive computation
of the weight function W(λ) is performed iteratively to
obtain a flat distribution of λ [53,54]. This significantly
improves the efficiency of CFCMC simulations. Using
an optimum weight function in the simulations ensures
smooth transitions betweenλ = 0 andλ = 1. InCFCMC
simulations, ensemble averages of thermodynamic prop-
erties can be computed, either Boltzmann averages or
biased averages (uncorrected for the bias introduced by
the biasing potential W(λ)). The Boltzmann average of
any observable X is obtained from [51,52]:

〈X〉Boltzmann =
〈
X exp [−W (λ)]

〉
CFCNPT〈

exp [−W (λ)]
〉
CFCNPT

. (2)

Equation (2) is used to transform the averages back to the
CFCNPT ensemble [51,52]. Biased averages are obtained
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by taking the normal averages without correcting for the
bias:

〈X〉Biased =
∑NS

i=1 X
NS

, (3)

where NS is the number of times X is sampled. The
averages of Equation (3) may be considered as approx-
imations for averages in the CFCNPT ensemble, which
in turn are approximations for averages in the conven-
tional NPT ensemble. As the CFCNPT and conventional
NPT ensemble have a different number of degrees of
freedom [1,49], ensemble averages in both ensembles
are in principle different, but in practice these differ-
ences are small [51,52]. Based on the earlier work of
Shi and Maginn [45,46], recent work of Vlugt and co-
workers, combines CFCMC in open ensembles (GC,
reaction ensemble, Gibbs ensemble) with free energy
calculations, in which molecule transfers are facilitated
by CFCMC [51,52]. In those CFCMC simulations, the
excess chemical potential can be computed by sampling
the Boltzmann probability distribution of the coupling
parameter, p(λ). The ratio between p(λ = 0) and p(λ =
1) is directly related to the free energy difference of insert-
ing a full additionalmolecule [51,52]. For a continuousλ-
space, in this method, it is not possible to directly sample
p(λ = 0) and p(λ = 1). One could only perform extrapo-
lation on the averages of the few first/last bins to estimate
p(λ = 0) and p(λ = 1). Therefore, it is necessary to use
a binning scheme to sample the distribution p(λ). The
excess chemical potential is related to the Boltzmann
probability distribution of λ [49,51,52]:

μex = − 1
β
ln

(
p(λ ↑ 1)
p(λ ↓ 0)

)
. (4)

Here p(λ ↑ 1) is the probability of λ ∈ 〈0, 1〉 approaching
1 and p(λ ↓ 0) is the probability of λ approaching zero.
Recently, free energy calculations using Equation (4)
were applied to phase equilibria and reaction equilib-
ria: computation of chemical potentials of coexisting
gas and liquid phases of water, methanol, hydrogen sul-
fide and carbon dioxide between T = 220K and T =
375K [3], and computing the reaction equilibrium of the
Haber-Bosch process for pressures between 100 bar to
1000 bar [52,59]. We also combined the recent CFCMC
method with the idea of Frenkel, Ciccotti, and co-
workers [60,61] to obtain partial derivatives of the chem-
ical potential with respect to pressure and temperature in
the expanded NPT ensemble. The method was also used
to calculate the enthalpy of reaction of the Haber–Bosch
process for pressures between 100 bar to 800 bar [49].

In our current version of the CFCMC method
[3,49,51,52,55], one relies on extrapolation to λ → 0
and λ → 1 to compute the excess chemical potential

(Equation (4)) which may affect the accuracy of the
method. In Ref. [51] it was proposed that in practice
linear extrapolation of p(λ) is sufficient to calculate the
excess chemical potential using Equation (4). A clear dis-
tinction needs to bemade between ‘precise’ and ‘accurate’
computation of the excess chemical potential. The val-
ues for the computed excess chemical potential may be
systematically wrong (inaccurate) with small error bars
(precise). This leads to a false impression of precision
while missing accuracy (large difference from the actual
value). This sampling issue appears especially for systems
in which the number of bins,Nb, is insufficient to capture
the steepness of distribution p(λ), leading to inaccurate
extrapolation results. One could increase Nb to improve
the accuracy of the extrapolation, however this leads to
poor sampling of p(λ) (less statistics per bin) and there-
fore loss of precision of the extrapolation. Therefore, it is
not a priori clear which value to select for Nb for differ-
ent systems. In this work, we investigate how the accu-
racy of the extrapolation scheme changes with Nb, and
we develop a much more accurate scheme that allows a
continuous coupling parameter λ ∈ [0, 1] without having
to use extrapolation for chemical potential calculations.
The new scheme allows sampling a continuous coupling
parameter including the states λ = 0 and λ = 1. This
means that the chemical potential is obtained indepen-
dent of any extrapolation scheme since the states λ = 0
and λ = 1 are directly sampled. We will show that this
significantly improves the accuracy of computed values
of μex for systems with strong intermolecular interac-
tions. In principle, the intermediate λ states can be either
continuous or discrete. Continuous and discrete interme-
diate stages for λ are both commonly used in expanded
ensembles [45–47]. The advantage of having a continu-
ous λ is that changes in λ can be adjusted to facilitate
transfers between intermediate λ states. This eliminates
the guesswork about how many intermediate stages are
needed. When the number of intermediate stages is close
to optimal, we do not expect much differences in the
accuracy of the computed chemical potentials between
continuous and discrete staging. The effect of Nb on the
accuracy and precision of our new binning scheme is also
investigated.

Simulations in the CFCMC ensemble with multi-
ple fractional molecules may be used to study complex
systems e.g. the multicomponent Gibbs ensemble [62],
the reaction ensemble [49,52] and the reaction ensem-
ble combined with phase equilibria [21,23,24]. It is not
recommended to include more fractional molecules in
the system than required. However, in many cases it
is necessary to use multiple fractional molecules [52].
Therefore, it is important to understand how multiple
fractional molecules influence computed properties. For
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dense systems or systems in which Nfrac fractional
molecules are present, themultidimensionalweight func-
tion W(λ1, λ2, . . . , λNfrac) becomes steeper with increas-
ing Nfrac. This results in difficulties when sampling
Boltzmann averages (Equation (9)). In principle, Nfrac
is the number of fractional molecule types in the sim-
ulation. This is important to consider when perform-
ing simulations in the reaction ensemble as fractional
molecule types of reactants and reaction products are
different [52]. For the rest of this work, all fractional
types are considered the same, however the conclusions
are transferable to the reaction ensemble [52]. Another
drawback is the difficulty of computing the multidimen-
sional weight function using an adaptive scheme such
as the Wang–Landau algorithm [53,54]. To calculate the
biasing function, a multidimensional histogram has to
be filled until some flatness criterion is met, which can
be difficult computationally. We find that splitting the
multidimensional weight function into a sum of one-
dimensional weight functions can improve the calcu-
lation of the biasing function W(λ) and sampling of
Boltzmann averages. To the best of our knowledge, the
effect of having multiple fractional molecules on the
statistics of Boltzmann averages and biasing in CFCMC
simulations are not systematically investigated/reported
in literature. In this work, three important points rele-
vant to systems with multiple fractional molecules are
investigated: (1) The correlation between λ’s of differ-
ent fractional molecules are investigated. (2) Sampling
of Boltzmann averages using Equation (2) is numerically
difficult if the weight function is large. Due to this, sam-
pling of the biased averages, Equation (3), is an attractive
alternative to Boltzmann averages in CFCMC simula-
tions. Therefore, it is of interest to study the difference
between the Boltzmann and biased averages for different
systems. (3)The excess chemical potential is a thermody-
namic property for any system state, independent of the
number of the fractional molecules,Nfrac. Therefore, it is
important to check whether the value of the computed
chemical potentials varies with Nfrac.

This paper is organised as follows. In Section 2, a bin-
ning scheme is introduced as to directly sample the chem-
ical potential of a component. For this scheme, a con-
tinuous coupling parameter λ∗(λ) ∈ [0, 1] is introduced
by a linear transformation of λ. The expression for com-
puting the excess chemical potential using this method
is described. The mathematical framework for calculat-
ing correlations between multiple fractional molecules
in a single CFCMC ensemble simulation is described.
The theory on using biased averages instead of Boltz-
mann averages is also discussed in this section. The direct
sampling of λ∗(λ) = 0 and λ∗(λ) = 1 is tested both for
a 2-atom model system consisting of two LJ molecules

and liquid water. Simulation details, force field param-
eters and the scaling of the intramolecular interactions
are described in Section 3. Our simulation results are
presented in Section 4. It is shown that the excess chem-
ical potential can be obtained accurately only by using
the values from the first and the last bins of the his-
togram of p(λ∗(λ)), independent of any extrapolation
scheme. Correlations between different λ’s in CFCMC
simulations with multiple fractional molecules are inves-
tigated in Section 4. The systems selected for this study
are LJ colour mixtures with different numbers of frac-
tional molecules, and equimolar mixtures of water and
methanol with a fractional molecule of each molecule
type. It is shown that fractionalmolecules are very weakly
correlated (essentially uncorrelated) independent of the
biasing. The differences associated with using Boltz-
mann averages and biased averages in CFCMC simula-
tions with multiple fractional molecules are compared
to Boltzmann averages obtained from the conventional
NPT ensemble. The ensemble averages obtained from
conventional NPT simulations are considered as a refer-
ence. The results show that in systems in which the ratio
between the fractional molecules and the total number of
molecules are below 1%, Boltzmann and biased averages
for density, volume and energy are very similar. However,
the error bars associated with Boltzmann averages can be
an order of magnitude larger compared to biased aver-
ages, especially for dense systems. Our conclusions are
summarised in Section 5.

2. Theory and computational methods

In our previous work, a continuous coupling parame-
ter λ ∈ 〈0, 1〉, corresponding to each fractional molecule
typewas used in the partition function [3,11,49,51,52,63],
and atomistic/molecular interactions were scaled with
λ (e.g. according to Equation (1)). Therefore, it was
not possible to directly sample the system states in
which exactly λ = 0 or λ = 1. Here, we introduce
a coupling parameter λ∗(λ) ∈ [0, 1] to calculate the
atomistic/molecular interactions, including system states
when the interactions of the fractionalmolecule are com-
pletely switched on or off. e.g. for LJ interactions, this
means that λ in Equation (1) is replaced by λ∗, which is a
function of λ. λ∗(λ) is obtained from linear transforma-
tion of λ:

λ∗(λ) ≡

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0, λ < 1

Nb

Nbλ−1
Nb−2 ,

1
Nb

≤ λ ≤ Nb−1
Nb

1, λ >
Nb−1
Nb

(5)
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in which Nb is the number of the bins. It is impor-
tant to note that the extended parameter in the parti-
tion function is still λ ∈ 〈0, 1〉. Using the transformation
of Equation (5), only the interactions of the fractional
molecule are scaled with λ∗(λ) ∈ [0, 1] in an extra step.
Note that the electrostatic interactions of the fractional
molecule can also be scaled in a similar manner using
the transformation of Equation (5). It follows directly
from Equation (5) that λ∗(λ) is a continuous function
at λ = 1

Nb
and λ = Nb−1

Nb
. Scaling the interactions of the

fractionalmolecule using λ∗(λ)means that there are now
two bins in λ space where interactions are completely
switched on or off. Therefore, one can directly sample the
probability of λ∗(λ) = 0 in the first bin, and the probabil-
ity of λ∗(λ) = 1 in the last bin. The linear transformation
of Equation (5) is illustrated in Figure 1 for p(λ) and
p(λ∗(λ)). The inset of this figure shows the function
λ∗(λ). As shown in Figure 1(a), p(λ) is constructed by
sampling the probability of λwhere the λ space is binned
at equal distances; [ 12 ,

3
2 ,

5
2 , . . . ,Nb − 5

2 ,Nb − 3
2 ,Nb − 1

2 ]
in units of 1

Nb
. The width of each bin, �λ, equals 1

Nb
and

value of λ assigned to each bin equals the middle of the
bin, i.e. i−1/2

Nb
. Therefore, the value of λ in the first and

last bins correspond to λ = 1
2Nb

and λ = Nb−1/2
Nb

, respec-
tively, and not to 0 or 1. To calculate μex (Equation (4))
from p(λ) instead of p(λ∗(λ)), one needs to performa lin-
ear extrapolation on the first/last few points of p(λ) [51].
The distribution p(λ∗(λ)) can be directly reconstructed
from p(λ) in a single step using Equation (5). As shown
in Figure 1(b), p(λ∗) is constructed using bins with
the values of [0, 12 ,

3
2 , . . . ,Nb − 7

2 ,Nb − 5
2 , 1] in units of

1
Nb−2 . This grid is continuous but non-equidistant. Using
the new binning scheme, μex can be obtained directly
using the probabilities of the first and the last bin, as
shown in Figure 1(b):

μex = − 1
β
ln

(
p(λ∗(λ) = 1)
p(λ∗(λ) = 0)

)
. (6)

In principle one could directly sample p(λ = 0) and
p(λ = 1) without any biasing (and hence no binning is
required). However, it is well-known that not applying a
biasing functionW(λ) significantly reduces the efficiency
of the simulation [51,52]. In this work, we compare the
differences between extrapolation, and direct sampling
for calculating the chemical potential for different sys-
tems.

The linear transformation of λ (Equation (5)) can be
easily implemented in the original CFCMC algorithm.
For instance, the partition function of a mixture of S dif-
ferent monoatomic components in the NPT ensemble

Figure 1. Linear transformation of the scaling parameter from
λ (subfigure a) to λ∗ (subfigure b). Based on the transformation
of Equation (5), the value λ∗(λ) is set to zero for the first bin
of p(λ), and the value λ∗(λ) equals one for the last bin. When
the interaction parameter λ∗(λ) = 0, the fractional molecule
behaves as an ideal gas, and when λ∗(λ) = 1, the fractional
molecule behaves exactly as a whole molecule. The inset shows
how λ∗ depends on λ (Equation (5)).

expanded with a fractional molecule equals [49]

QCFCNPT = βP

[ S∏
i=1

1
�

3Ni
i Ni!

]

× 1
�3

∫ 1

0
dλ

∫
dVVN+1 exp [−βPV]

×
∫

dsN exp[−βU(sN ,V)]

×
∫

dsAfrac exp[−βUA
frac(s

A
frac, s

N , λ∗(λ),V)]

(7)

in whichN is the total number of whole molecules which
are distinguishable from the fractional molecule, S is the
number of components, �i is the thermal wavelength of
component i, � is the thermal wavelength of the frac-
tional molecule, U is the total potential energy of the
whole molecules and UA

frac is the interaction potential of
the fractional molecule with the surrounding molecules
scaled with λ∗(λ). No further changes are required for
calculating the weight function W(λ) and p(λ) during
the simulation [3,49,52]. Only at the end of the simula-
tion, p(λ) is transformed into p(λ∗(λ)) in a single step
using Equation (5). Note that the CFCNPT ensemble is
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used here as an example to explain the method. The lin-
ear transformation of the λ can be implemented in open
ensembles in a similar manner. The linear transforma-
tion of λ∗(λ) has several advantages: (1) The first bin
of p(λ) corresponds to system states where the interac-
tion potential is completely switched off (λ∗(λ) = 0). At
λ∗(λ) = 0, reinsertions of the fractional molecule at a
randomly selected position [49] are always accepted since
the energy difference between the old and new configu-
rations is zero. It is important to note that the fractional
molecule is part of the ensemble partition function and
is never deleted from the system even when λ∗(λ) = 0.
(2) The last bin of p(λ), (λ∗(λ) = 1), corresponds to
system states where the fractional molecule is interact-
ing as a whole molecule. For λ∗ = 1, identity changes
of the fractional molecule [49] with a whole molecule
are always accepted as the energy difference between
the old and new configurations is zero. In the identity
change trial moves, the fractional molecule is changed
into a whole molecule of the same type, and a randomly
selected whole molecule of the same molecule type is
changed into a fractional molecule, while keeping the
value of λ, positions and orientations of the molecules
unchanged [49,51,52]. The identity change trialmove can
also serve as an independent check of the correctness
of the simulation code and the bookkeeping. Essentially,
the transformation of Equation (5) allows rigorous sam-
pling of the states p(λ∗(λ) = 0) and p(λ∗(λ) = 1) during
the simulation without performing extrapolation. This
method combines the benefits of free energy calculations
in the CFCMC simulations with rigorous sampling of
states in which λ∗ = 0 and λ∗ = 1 [47,49,51].

It is straightforward to extend the partition func-
tion of Equation (7) to systems with multiple fractional
molecules [49]. In CFCMC simulations with multiple
fractional molecules, the biasing function W is a mul-
tidimensional weight function [52] used to improve the
efficiency of molecule insertions/removals and smooth
transitions between λ = 0 and λ = 1 for every frac-
tional molecule. However, calculating a multidimen-
sional adaptive biasing function requires filling and flat-
tening a multidimensional histogram during a random
walk in (λ1, λ2, . . .) space, using a certain flatness crite-
rion. Fillingmultidimensional histograms can be difficult
with many fractional molecules in the system, e.g. using
theWang–Landau algorithm [53,54]. One could split the
multidimensional biasing function into a series of one-
dimensional biasing functions. For a system in which
Nfrac fractional molecules are present, this leads to

W
(
λ1, λ2, . . . λNfrac

) ≈
Nfrac∑
i=1

Wi (λi). (8)

Fillingmultiple independent one-dimensional histograms
is computationally more straightforward than filling a
single multidimensional histogram. The biasing is then
calculated for each λi independently. In Equation (8), it
is assumed that the λi’s are independent coupling param-
eters. If there would be a strong correlation between
λ’s, the computed Boltzmann averages are still correct.
However, the sampling of the distributions p(λi) may be
very inefficient due to neglected correlations between λ’s
(Equation (8)). By combining Equations (8) and (2), the
Boltzmann average of any observable X is obtained as
follows

〈X〉Boltzmann =

〈
X exp

[
−∑Nfrac

i=1 Wi (λi)
]〉

CFCNPT〈
exp

[
−∑Nfrac

i=1 Wi (λi)
]〉

CFCNPT

. (9)

In many systems with strong intermolecular interactions
or with multiple fractional molecules, the weight func-
tion

∑Nfrac
i=1 Wi(λi) is a large number, typically between

101 and 102 [49,55]. This means that the exponents
in Equation (9) are very small for such systems. This
results in averaging over very small numbers, numeri-
cally close to zero, when sampling Boltzmann averages
of Equation (9). Therefore, taking Boltzmann averages
for these systems may mostly lead to a 0

0 numerical
problem for ensemble averages like volume and energy.
Except for excess chemical potentials, most ensemble
averages hardly depend on the instantaneous values of
λ’s. In Refs. [51,63], it was shown that the presence of
multiple fractional molecules hardly influences the ther-
modynamic properties of the system however, the statis-
tics of the Boltzmann averages are affected. To avoid
the 0

0 sampling problem of the Boltzmann averages, a
possible solution is to sample biased averages as shown
in Equation (3). Here, we investigate how computed aver-
ages change with the number of fractional molecules.
Preferably, one should use as few fractional molecules as
possible in production runs. If no fractional molecules
are required, it is recommended to use conventional
ensembles instead of expanded ensembles.

It is not a priori clear whether fractional molecules
are weakly or strongly correlated. The requirement for
efficient splitting of the biasing, Equation (8), is that λi’s
are independent. To validate this, we compute the pair-
wise correlation between different λi’s as a function of
the number of fractional molecules in the system, while
keeping the number of whole molecules constant. The
pairwise correlation between two (randomly) selected
λi’s in a simulation can be calculated by computing the
correlation:

Corr (λ1, λ2) = 〈λ1λ2〉 − 〈λ1〉〈λ2〉√[〈λ21〉 − 〈λ1〉2
] [〈λ22〉 − 〈λ2〉2

] , (10)
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where λ1 and λ2 are the instantaneous values of two
randomly selected coupling parameters during the sin-
gle simulation. Equation (10) can be applied to systems
with and without biasing. In addition, we investigate how
the presence of multiple fractional components influ-
ences the computed values of μex and other thermody-
namic properties such as the average volume, density and
energy.

3. Simulation details

As a proof of principle, the performance of the original
binning scheme and the binning scheme of Equation (5)
are compared for a 2-atom model system consisting of
two LJ molecules in one-dimensional phase space. Here,
reduced units are used, so ε = 1 and σ = 1. The 2-atom
model system has two degrees of freedom, namely the
interatomic distance r and λ. The partition function for
this ensemble equals:

Q = 1
L

∫ L

0
dr

∫ 1

0
dλ exp[−βU(r, λ)], (11)

where we selected L=3, in units of σ , β = 1/T∗ in
reduced units, and T∗ is the reduced temperature. The
interaction potential U(r, λ) is a function of the distance
r ∈ [0, 3] and λ ∈ 〈0, 1〉, obtained from Equation (1).
By performing long simulations, we can compute p(λ)

with brute-force sampling of λ and r. From the original
binning scheme it follows that:

p(λ) =
1
L

∫ L
0 dr

∫ 1
0 dλ′ exp[−βU(r, λ′)]δ(λ − λ′)

1
L

∫ L
0 dr

∫ 1
0 dλ′ exp[−βU(r, λ′)]

.

(12)
In the new binning scheme of Equation (5), the term
−βU(r, λ) is replaced by −βU(r, λ∗(λ)) and after the
simulation the distribution p(λ) is converted to p(λ∗(λ)).
Simulations are carried out at different temperatures
between T∗ = 0.005 and T∗ = 2 in reduced units. For
both binning schemes, the simulations at every tempera-
ture are repeated with different values ofNb ranging from
10 to 500. In each cycle, r and λ are randomly selected
from uniform distributions, and the probability of λ is
sampled using Equation (12). To compare the simula-
tion results, a reference value of p(λ∗ = 1) is obtained
from direct sampling of the last bin from simulations car-
ried out 10 times longer. Since the value of the last bin is
directly sampled, no systematic errors are present in this
reference value. To obtain p(λ ↑ 1) in the original bin-
ning scheme, linear extrapolation is carried out using the
last three points of the λ grid. p(λ∗(λ) = 1) is obtained by
directly sampling the last bin in the new binning scheme.
For all the simulations, 108 random states of (r, λ) were

generated to sample the probability of λ. To obtain the
reference values for p(λ) = 1, 109 random states of (r, λ)

were generated.
Simulations of SPC/E [64]water andTraPPEmethanol

[65] are performed in the CFCNPT ensemble [49] at
T=323.15K and p=1 bar. Both the original and the
newbinning scheme are used to compute excess chemical
potentials. To investigate the effect of binning on chemi-
cal potential calculations, simulations are performedwith
different values of the number of bins, Nb, ranging from
5 to 100, for both binning schemes. All molecules are
modelled as rigid objects, and the intermolecular poten-
tial consists only of LJ and Coulombic interactions. A
cut off radius of 14 Å is used for LJ interactions, and the
DSF version of theWolf method [66–70] is used for han-
dling electrostatic interactions. Rc and α were set to 14 Å
and 0.12 Å−1. For details on selecting Rc and α for water
and methanol, the reader is referred to Refs. [11,55].
The LJ interactions of the fractional molecules are scaled
using Equation (1). The scaling of the Coulombic inter-
actions of fractional molecules is described in Ref. [55].
To protect the charges from overlapping, the LJ interac-
tions of the fractional molecules are switched on before
the electrostatics [55–58,71–73]. Analytic tail corrections
and periodic boundary conditions are applied [74]. The
Lorentz–Berthelot mixing rule [1,74] is used to calcu-
late cross interactions. Force field parameters for SPC/E
water and TraPPE methanol are provided in Table S1 of
the Supporting Information. Simulations in the CFCNPT
ensemble of the SPC/E water [64] are started with with
105 equilibration cycles, followed by 4 × 106 production
cycles. In each MC cycle, the number of trial moves
equals the total number of molecules, with a minimum
of 20. The trial moves are selected with the following
probabilities: 1% volume changes, 35% translations, 30%
rotations, 17% λ changes, 8.5% reinsertions of fractional
molecules at randomly selected positions, and 8.5% iden-
tity changes of fractional molecules.

Simulations of LJ colour mixtures (σ = 1 and ε = 1)
are carried out in the CFCNPT and NPT ensembles, at
T∗ = 2 and pressures between P∗ = 0.5 and P∗ = 0.6.
For these systems, the LJ interactions were truncated and
shifted at 2.5σ . In the CFCNPT simulations, 800 whole
molecules are present. For every temperature and pres-
sure, the simulations are repeated with different number
of fractional molecules, 3 < Nfrac < 50 while keeping
the number of whole molecules constant. In practice,
when studying complexmolecular systems,Nfrac is nearly
always below 5 [3,6,11,25,49,51,52,55,75]. Larger values
of Nfrac can be considered as an extreme situation to
test the limits of the CFCMCmethod. The percentage of
the fractional molecules in the CFCNPT simulations prf ,
changes between 0.125% and 6.25%. At each temperature
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and pressure, simulations are carried out with 105 equili-
bration cycles to equilibrate the system. From the equili-
brated configurations, 106 productions runs are carried
out to sample both Boltzmann averages, Equation (9),
and biased averages, Equation (3). For the CFCNPT sim-
ulations, the trial moves in every MC step are selected
with the following probabilities: 1% volume changes, 49%
translations, 20% λ changes, 15% reinsertions of frac-
tional molecules at a randomly selected position and 15%
identity changes of fractional molecules. The trial moves
in simulations in the conventional NPT ensemble (i.e.
without fractional molecules) are selected with probabil-
ities: 1% volume changes and 99% translations. All trial
moves are accepted or rejected based on the Metropolis
acceptance rules [1].

4. Results

MC simulations are performed for the 2-atommodel sys-
tem in the ensemble of Equation (11), between T∗ =
0.005 and T∗ = 2. The distributions p(λ) and p(λ∗) are
sampled using Equation (12). Linear extrapolation is per-
formed on the last three bins of p(λ) to calculate p(λ ↑
1). The value of p(λ∗(λ) = 1) is obtained by the direct
sampling scheme. The results obtained for temperatures
between T∗ = 0.005 and T∗ = 0.05 are shown in Table 1,
and the raw data for temperatures between T∗ = 0.1 and
T∗ = 2 are provided in Tables S2 and S3 of the Support-
ing Information. In Table 1, it is shown that the reference
values obtained from the direct sampling of the last bin
are very similar, independent of the number of bins Nb.
The results from the extrapolation scheme systematically
deviate from the reference values for small Nb, while the
uncertainties (standard deviation of the mean) are very
small. This leads to a false impression of accuracy. Good
agreement between the results based on the extrapolation
scheme and the reference values is found with increasing
Nb. However, a larger value of Nb leads to a significant
increase of the uncertainty of the results (between 1 and
4 orders of magnitude) for the extrapolation scheme.
Therefore, it is difficult to a priori know what a sufficient
Nb is for the extrapolation scheme. In sharp contrast to
the extrapolation scheme, the magnitude of uncertainty
does not change significantly with Nb for the direct sam-
pling scheme. Excellent agreement is found between the
results obtained from the direct sampling scheme and
the reference values, independent of Nb. The simulation
results clearly show that the direct sampling scheme is
far less affected by the sampling issues pronounced in
the extrapolation scheme. Therefore, the direct sampling
scheme is recommended as the best method.

To map all results in a single plot, the corresponding
bin size �λ = 1/Nb is used as a scaling factor to scale

Table 1. Comparison of p(λ = 1) for the 2-atommodel system in
the temperature rangebetween T∗ = 0.005 and T∗ = 0.05, using
different number of bins ranging from 10 to 500.

Nb pext(λ ↑ 1) pdir(λ = 1) pref(λ = 1)

T∗ = 0.005
5 5.4167(0) 199(3) 199.41
10 10.8333(0) 199(2) 199.50
20 21.6660(0) 200(2) 199.38
40 43.127(3) 199(2) 199.60
80 81.32(6) 199(3) 199.47
100 96.8(1) 200(3) 199.46
200 145.0(7) 199(3) 199.45
500 184(3) 200(4) 199.49

T∗ = 0.01
5 5.41670(0) 99.4(8) 99.46
10 10.83300(0) 99.3(7) 99.50
20 21.5620(8) 99.4(8) 99.50
40 40.64(2) 99.4(8) 99.43
80 65.2(1) 99.6(1) 99.55
100 72.4(2) 99(1) 99.41
200 88.9(6) 100(1) 99.51
500 97(2) 100(2) 99.54

T∗ = 0.05
5 5.3357(2) 19.41(5) 19.41
10 9.605(3) 19.41(5) 19.41
20 14.27(1) 19.40(5) 19.41
40 17.38(4) 19.41(6) 19.41
80 18.75(8) 19.41(1) 19.41
100 18.95(9) 19.4(1) 19.41
200 19.3(2) 19.4(1) 19.41
500 19.4(2) 19.4(2) 19.41

Notes: Nb is the number of bins, pext(λ ↑ 1) is obtained using the extrapola-
tion scheme, and pdir(λ = 1) is obtained using direct sampling. The refer-
ence values (i.e. from very long simulations) are denoted with pref(λ = 1).
numbers in brackets are uncertainties in the last digit, i.e. 88.9(6)means 88.9
± 0.6.

p(λ) at every temperature. The scaled probabilities are
shown in Figure 2. The advantage of this representation is
that the results obtained at multiple temperatures can be
shown in a single plot. As an alternative, a plot of p(λ =
1)/pref (λ = 1) versus Nb for different temperatures is
provided in Figure S1 of the Supporting Information.
From Figure 2, it is clear that the extrapolation scheme
reaches its limitation for �λ · p(λ = 1) ≤ 1. In Figure 2
it is observed clearly that the performance of the extrap-
olation scheme depends both on �λ = 1/Nb and the
steepness of the distribution p(λ). This means that in
sharp contrast to the direct sampling, the accuracy of the
extrapolation scheme strongly relies on �λ · p(λ), espe-
cially when p(λ) is steep. As shown in Figure 2, the values
for�λ · p(λ = 1) obtained from direct sampling scheme
are in excellent agreement with the reference values.

The relative uncertainties of p(λ = 1) obtained from
the simulations of the 2-atom model system are shown
in Figure 3, as a function of number of the bins. σ is the
uncertainty of p(λ = 1). It is clear that for small Nb, the
relative uncertainties obtained using the extrapolation
scheme are smaller compared to those obtained from the
direct sampling. This indicates that the results obtained
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Figure 2. Comparison of scaled p(λ = 1) for the 2-atom model
system in the temperature range between T∗ = 0.005 and T∗ =
2, using different number of bins ranging from 10 to 500. To map
all results for all temperatures in a single plot, for each system, the
corresponding bin size�λ is used as a scaling factor for p(λ = 1).
Alternatively, a plot of p(λ = 1)/pref(λ = 1) versus Nb for dif-
ferent temperatures is provided in Figure S1 of the Supporting
Information. The vertical axis is used for the scaled probabili-
ties obtained based on the extrapolation scheme (squares) and
direct sampling (circles). The horizontal axis is used for the refer-
ence scaled probabilities�λpref(λ = 1) obtained from very long
MC simulations, using direct sampling (thereby eliminating sys-
tematic errors). Raw data are listed in Tables S2 and S3 in the
Supporting Information.

from the extrapolation scheme may be more precise but
less accurate. For large Nb the relative uncertainties for
both methods are very similar. Very similar results for
p(λ) = 1 are obtained for bothmethods whenNb is large.
Based on the results obtained from the 2-atommodel sys-
tem, it is obvious that the direct sampling scheme is the
best method with the least dependence on Nb. This is an
important advantage as itmay be difficult to a priori know
the best value for Nb for the other schemes.

As an example of a system with strong LJ and electro-
static interactions, the excess chemical potential of SPC/E
water is computed at T=323.15K and P=1 bar, in the
CFCNPT ensemble. The probabilities p(λ ↓ 0) and p(λ ↑
1) are computed using extrapolation scheme, and p(λ∗ =
0) and p(λ∗ = 1) are obtained from the direct sam-
pling. The excess chemical potential of water is computed
using Equation (4) for extrapolation, and Equation (6)
for the direct sampling. The simulations in the CFCNPT
ensemble are repeated for different Nb ranging from 5 to
100. The distributions p(λ) are scaled with �λ = 1/Nb
and the results are shown in Figure 4. Alternatively, plots

Figure 3. Relative uncertainty computed for the sampled p(λ =
1) for the 2-atom model system, σp(λ=1)/〈p(λ = 1)〉, using (a)
linear extrapolation, Equation (4), and (b) the direct sampling
scheme, Equation (5) as a function of number of the bins. The
simulations are performed at reduced temperatures: T∗ = 0.05
(filled triangles), T∗ = 0.5 (upward-pointing triangles), T∗ = 1.0
(squares) and T∗ = 1.5 (down-ward pointing triangles).

of p(λ)/pref (λ) versus Nb for p(λ = 0) and p(λ = 1) are
provided in Figure S2 of the Supporting Information.
Raw data for Figure 4 are provided in Tables S4 to S7
of the Supporting Information. In Figure 4(a), overall
good agreement between all methods is observed except
for one outlier for the extrapolation scheme for very
few bins (Nb = 5). This means selecting five bins for
the entire λ space is not sufficient even for extrapola-
tion to λ → 0 where p(λ) is relatively flat. The distribu-
tions p(λ) and p(λ∗) for water are shown in Figures S3
and S4 of the Supporting Information. The choice of
five bins may not be practical for CFCMC simulation,
but it is considered here only to investigate the limita-
tions of Equations (6) and (4). The scaled probabilities
of λ = 1 are shown in Figure 4(b). The performances of
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Figure 4. Comparison of the scaled probability distributions (a):
p(λ) = 0 and (b): p(λ = 1) for the SPC/E water at T = 323 K and
P= 1 bar, using different number of bins ranging from5 to 100. To
map all results in a single plot, for each system, the corresponding
bin size�λ is used as a scaling factor for p(λ = 0) and p(λ = 1).
Alternatively, plots of p(λ)/pref(λ) versus Nb for p(λ = 0) and
p(λ = 1) are provided in Figure S2 of the Supporting Informa-
tion. The vertical axis is used for the scaled probabilities obtained
based on the extrapolation scheme (squares) and direct sam-
pling (circles). The horizontal axis is used for the reference scaled
probabilities pref(λ = 0) and�λpref(λ = 1) obtained longer MC
simulations, using direct sampling. Rawdata are listed in Tables S4
to S6 in the Supporting Information.

both methods to obtain p(λ = 1) for water are very sim-
ilar to what is observed for the 2-atom model system, as
shown Figures 2 and 4. The results of the extrapolation
scheme deviate significantly from the reference values
when �λ · p(λ = 1) > 1. The direct sampling scheme is
clearly the best method to calculate p(λ = 0) and p(λ =

Figure 5. Relative difference (in percent) in the computed excess
chemical potential of SPC/Ewater at T = 323 KandP= 1bar using
the extrapolation scheme Equation (4) (squares), and the direct
sampling Equation (6) (circles). The chemical potential obtained
using direct sampling from longer MC simulations is considered
as the reference value for the chemical potential. The raw data are
provided in Table S7 of the Supporting Information.

1). The excess chemical potential of water is calculated
based on the extrapolation scheme using Equation (4),
and the direct sampling using Equation (6). The results
are compared to a reference simulations that are 10 times
longer, where the excess chemical potential is obtained
based on the direct sampling scheme. The relative differ-
ence between both methods and the reference are shown
in Figure 5. It can be seen in Figure 5 that the accu-
racy of the extrapolation scheme improves with increas-
ing Nb, while the accuracy of direct sampling scheme
is hardly influenced by a change in Nb. However, very
large values of Nb makes computing μex more difficult
as the statistics of the computed occupancy of the bins
of p(λ) are reduced. As shown in Figure S5 of the Sup-
porting Information, the free energy barrier as a function
of λ that the system needs to overcome is about 12kBT
at T=323K. Using fewer bins for the weight function
increases the free energy barrier between adjacent λ bins,
which affects the statistics. Increasing the number of bins
results in decreasing the free energy barrier between adja-
cent bins. However, increasing the number of bins also
decreases the statistics of the computed occupancy of
bins. The relative difference with respect to the refer-
ence values observed for the direct sampling scheme is
about one to two orders of magnitude smaller compared
to those for the extrapolation scheme. The results clearly
show that the direct sampling scheme outperforms the
extrapolation scheme. The Boltzmann probability dis-
tribution of p(λ) for water and methanol in equimolar
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water–methanol mixture at T=323.15K and P=1 bar
are also shown in Figure S6 of the Supporting Informa-
tion.

To investigate the correlation between the fractional
molecules, simulations in the CFCNPT ensemble of LJ
colour mixtures with multiple fractional molecules are
carried out at a reduced temperature of T∗ = 2 and a
reduced pressure of P∗ = 6. The simulations are repeated
by keeping the number ofwholemolecules constant (800)
while changing Nfrac between 3 and 50. The instanta-
neous λ’s for two randomly selected fractional molecules
are recorded every 100 MC cycles. Simulations are per-
formed both with and without biasing. Calculation of the
optimal biasing leads to a flat distribution in λ space dur-
ing the simulation, the so-called observed p(λi), denoted
by pobs(λi). It is expected that the average 〈λi〉 is close
to 0.5 when an optimum biasing is used. Equation (10)
is used to calculate the covariance between the two ran-
domly selected coupling parameters and the results are
shown in Table 2. The correlation between λ1 and λ2
is very weak independent of the biasing. The averages
〈λ1〉 and 〈λ2〉 are around 0.5 for the simulations when
biasing is used. The correlation between for λ1 and λ2
is very weak for all the systems studied, independent of
the number of the fractional molecules present in the
system. The changes in the correlation between λ1 and
λ2 appear to be very small and random with respect to
changes in Nfrac. λ1 and λ2 are also weakly correlated
when no biasing is used (W(λ) = 0), as shown in Table 2.
Obviously, the average 〈λi〉 = 0.5 when no biasing is used
(except for ideal gas). It is clear that the coupling param-
eters are not correlated in simulations in the CFCNPT
ensemble, independent of the weight functionW(λ). No
significant change in the correlation between λ1 and λ2 is
observed when varying Nfrac.

As an example of a atomistic system with electrostatic
interactions, in an equimolar water–methanol mixture of
water–methanol the correlation between the fractional
molecules of water and methanol is studied. The results
are obtained by performing simulations in the CFCNPT
ensemble. Coupling parameters λ1 and λ2 are assigned to
the fractional molecules of water and methanol, respec-
tively. It is clear from Table 3 that λ1 and λ2 are very
weakly correlated or essentially uncorrelated. In the sim-
ulation of water–methanol with non-zero biasing, the
averages 〈λ1〉 and 〈λ2〉 are close to 0.5. This is due to the
fact that the observed p(λ) for water andmethanol is flat.
The values for 〈λ1〉 and 〈λ2〉 are very close to 1 when the
weight functionW(λ) is zero. This is due to the fact that
the interactions between the fractional molecules and the
whole molecules are most favourable when the value of
the coupling parameters are close to 1. Figures for p(λ)

and W(λ) for water–methanol simulations are provided

Table 2. Correlations between two randomly selected fractional
molecules in a LJ colour mixture at T∗ = 2 and P∗ = 6.

Nfrac 〈λ1〉 〈λ2〉 〈λ21〉 〈λ22〉 〈λ1λ2〉 |Corr(λ1, λ2)|
when pobs(λ) is flat
3 0.520 0.496 0.355 0.329 0.254 0.046
5 0.512 0.499 0.341 0.331 0.254 0.010
8 0.522 0.500 0.353 0.333 0.257 0.048
10 0.495 0.502 0.327 0.338 0.253 0.061
20 0.518 0.488 0.353 0.323 0.252 0.014
50 0.514 0.528 0.347 0.359 0.273 0.019

W(λ) = 0
3 0.160 0.157 0.073 0.069 0.026 0.010
5 0.138 0.145 0.057 0.062 0.020 0.010
8 0.144 0.152 0.057 0.063 0.023 0.042
10 0.159 0.145 0.072 0.061 0.022 0.027
20 0.154 0.144 0.065 0.060 0.021 0.019
50 0.151 0.153 0.067 0.065 0.023 0.007

Notes: The system has a constant number of 800 whole LJ molecules, and
Nfrac is the number of the fractional molecules in each simulation. In simula-
tions with non-zero biasing, an independent biasing is calculated for each
fractional molecule. The biasing is set such that the observed probability
distribution of every fractional molecule, pobs(λ), is flat.

Table 3. Correlations between the fractional molecules of SPC/E
water and traPPE methanol at T = 323.15 k and P= 1 bar.

Nfrac 〈λ1〉 〈λ2〉 〈λ21〉 〈λ22〉 〈λ1λ2〉 |Corr(λ1, λ2)|
when pobs(λ) is flat
2 0.514 0.458 0.350 0.295 0.237 0.020

W(λ) = 0
2 0.989 0.980 0.978 0.961 0.969 0.039

Notes: λ1 is the fractional molecule of SPC/E water, and λ2 is the fractional
molecule of traPPE rigid methanol. In simulations with non-zero biasing,
an independent biasing is calculated for each fractional molecule. The bias-
ing is set such that the observed probability distribution of every fractional
molecule, pobs(λ), is flat.

in Figs. S3 and S4 of the Supporting Information. Since
the fractional molecules are not correlated, we can verify
that the approximation of Equation (8) is valid.

To investigate the effect of biasing on sampling Boltz-
mann averages (Equation (9)) two LJ colour mixtures
are considered in which 1 and 5 fractional molecules are
present, respectively. The optimum biasing is calculated
using theWang-Landau algorithm at P∗ = 6 andT∗ = 2.
During the simulations, the instantaneous weight factor
exp[−∑Nfrac

i=1 Wi(λi)] for both systems is recorded every
100 cycles and the results are shown in Figure 6. The
instantaneous weight factor is the statistical weight of
a sample system state. It is shown in Figure 6 that the
statistical weight for the system including five fractional
molecules fluctuates mostly between 10−9 and 10−4, and
quite rarely, between 10−4 and 10−2. Multiplying any
observable X by such a small number (weight) results
in very small numbers, or practically ‘zero’, resulting in
poor statistics for 〈X〉Boltzmann. The sum of weights in
the denominator of Equation (9) is also a very small
number close to zero. This is the aforementioned numer-
ical problem of 0

0 when computing Boltzmann averages
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Figure 6. Instantaneousweight factor, exp[− ∑NF
i=1Wi(λi)], for a

LJ system with 1 fractional molecule (triangles) and 5 fractional
molecules (circles), at T∗ = 2 and P∗ = 6.Wi(λi) is set such that
pobs(λi) for every fractional molecule is flat.

using Equation (9). For the system including a single frac-
tional molecule, the weight fluctuates between 10−2 to
100 during the simulation. Based on Figure 6, it can be
concluded that the uncertainty in the Boltzmann aver-
age of any observable X increases with the increase in the
number of fractional molecules.

One possible solution to circumvent the sampling of
Boltzmann averages in simulations with multiple frac-
tional molecules, is to directly sample the averages with-
out removing the biasing (Equation (3)). 〈X〉biased is the
average of observable X in simulations in the CFCMC
ensemble. To compare the statistics of the Boltzmann
and biased averages, we have selected the average vol-
ume of the system in the CFCNPT simulations. The
Boltzmann and biased ensemble averages of volume
obtained from the CFCNPT ensemble simulations, with
prf between 0.125% and 6.25%, are calculated for P∗ =
1 and P∗ = 6. prf is the ratio between the number
of the fractional molecules with respect to the num-
ber of the whole molecules, expressed as a percentage.
The Boltzmann average of volume in the NPT is com-
puted for the same number of whole molecules at the
same temperature and pressure as a reference value.
The relative uncertainty of the volume of every sys-
tem is shown in Figure 7 as a function of prf . The
normalised uncertainty of the volume obtained from
the NPT ensemble simulations is shown on the vertical
axis. It is shown in Figure 7(a) that at a number den-
sity 〈ρ∗〉NPT = 0.43, the normalised uncertainties of the
Boltzmann and biased averages of the volume are very
similar for prf ≤ 1.25%. Good agreement is observed

Figure 7. Relative uncertainty of the Boltzmann averages of the
volume,σ/〈V〉 , (triangles) and thebiasedaveragesof volume (cir-
cles) in the CFCNPT ensemble, at (a) T∗ = 2, P∗ = 1 and (b) T∗ =
2, P∗ = 6. prf is the ratio between the number of the fractional
molecules with respect to the number of the whole molecules
(constant 800), expressed as a percentage. The relative uncer-
tainty of V is defined as the ratio of the uncertainty of the volume
σV to the mean volume 〈V〉. The arrows on the left indicate the
value of the relative uncertainty of volume obtained from the NPT
simulations, on the vertical axes. Rawdata are provided in Tables 5
and 4.

with the results from the NPT ensemble simulations.
However, poor statistics are observed for increasing prf .
As shown in Figure 7(b), the differences between the
averages obtained from Equations (9) and (3) are more
pronounced at higher densities (〈ρ∗〉NPT = 0.80). It is
observed in Figure 7(b) that the sampling of the Boltz-
mann average of the volume is significantly affected with
increasing prf , in sharp contrast to the biased averages.
The uncertainty of the biased average of volume does not
change significantly for increasing prf . This is due to the
aforementioned 0

0 sampling problem. Excellent agree-
ment is observed between the relative uncertainties of
biased averages of volume and the results obtained from
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Table 4. Relative differences between Boltzmann averages
obtained from CFCNPT simulations and Boltzmann averages
obtained from NPT simulations of different LJ colour mixtures, at
T∗ = 2 and reduced pressures between P∗ = 0.5 to P∗ = 6.

prf 〈E〉CFCNPT 〈V〉CFCNPT ηE ηρ ηV μex
1 〈μex

i 〉
P∗ = 0.5
0.125 −1130.2(9) 3042(2) 0.04 0.15 0.15 −0.37(3) −0.37(3)
0.375 −1129.4(6) 3051(2) 0.11 0.45 0.45 −0.40(2) −0.38(2)
1.00 −1127.1(6) 3074(2) 0.32 1.22 1.23 −0.37(5) −0.38(3)
1.25 −1125.5(5) 3085(2) 0.46 1.55 1.58 −0.37(5) −0.37(3)
6.25 −1109.1(9) 3272(2) 1.95 7.18 7.74 −0.4(2) −0.34(1)

P∗ = 1
0.125 −1820(2) 1852(1) 0.03 0.13 0.13 0.07(2) 0.07(2)
0.375 −1818(1) 1857(1) 0.09 0.40 0.40 0.08(2) 0.07(3)
1.00 −1816(1) 1869(1) 0.22 1.04 1.05 0.07(6) 0.07(2)
1.25 −1816(1) 1873(1) 0.23 1.25 1.26 0.0(1) 0.07(2)
6.25 −1800(2) 1970(1) 1.14 6.08 6.48 0.1(1) 0.08(2)

P∗ = 6
0.125 −3126.7(9) 998.9(2) 0.03 0.03 0.03 6.39(5) 6.39(5)
0.375 −3125(2) 999(1) 0.07 0.09 0.09 6.41(5) 6.43(3)
1.00 −3113(13) 1002(3) 0.47 0.30 0.30 6.32(6) 6.41(3)
1.25 −3126(13) 1001(3) 0.06 0.24 0.24 6.32(6) 6.38(3)
6.25 −3085(42) 1033(7) 1.38 3.30 3.42 6.4(2) 6.38(2)

Notes: prf is the ratio between the number of the fractional molecules with
respect to the number of the whole molecules (constant 800), expressed
as a percentage. The ensemble averages for energy and volume obtained
from theNPT ensemble simulations, in reduced units, equal−1130.7(8) and
3037(2) for P∗ = 0.5, −1820(1) and 1850(1), for P∗ = 1, −3127.7(8) and
998.6(8) for P∗ = 6, respectively. In the table below, ηX is the difference
of the boltzmann average 〈x〉CFCNPT with respect to 〈x〉NPT , expressed as a
percentage. for colour mixtures with multiple fractional molecules, μex

1 is
the excess chemical potential of a randomly selected fractional molecule, in
reduced units, and 〈μex

i 〉 is the excess chemical potential averaged over all
the fractional molecules. Numbers in brackets are uncertainties in the last
digit, i.e.−0.37(3) means−0.37± 0.03.

the NPT ensemble. Raw data for Figure 7 are provided
in Tables 5 and 4.

The results in Figure 7 show that the biased aver-
age of volume in the CFCNPT ensemble simulations
can be statistically more precise compared to the Boltz-
mann average of the volume. Therefore, it is instructive
to investigate the difference between the Boltzmann and
biased averages obtained from the CFCNPT simulations,
with multiple fractional molecules, and the Boltzmann
averages obtained from the conventional NPT ensem-
ble. This may provide guidelines for howmany fractional
molecules are allowed before the Boltzmann/biased aver-
ages significantly deviate from those obtained from the
conventional NPT ensemble simulations. Note that by
increasing the number of fractional molecules, we are
investigating the performance of the CFCMCmethod in
extreme cases. In most practical applicationsNfrac is usu-
ally smaller than five whichmeans that prf is significantly
smaller than 1% [3,6,11,25,31,49,51,52,55,75]. For this
percentage of fractionalmolecules, very good estimations
for conventional ensemble averages are obtained from
CFCMC simulations [3,49,51,52]. For instance, CFCGE
simulations of binary or ternarymixtures include at most
two or three fractionalmolecules. For a reactive system of

Table 5. Relative difference between the biased averages
obtained from the CFCNPT simulations and boltzmann averages
obtained from theNPT simulations of different LJ colourmixtures,
at T∗ = 2 and reduced pressures between P∗ = 0.5 to P∗ = 6.
prf is the ratio between the number of the fractional molecules
with respect to the number of the whole molecules (constant
800), expressed as a percentage.

prf 〈E〉CFCNPT 〈V〉CFCNPT ηE ηρ ηV

P∗ = 0.5
0.125 −1130(1) 3042(3) 0.07 0.15 0.15
0.375 −1128.9(8) 3051(2) 0.15 0.47 0.47
1 −1126(1) 3075(3) 0.41 1.23 1.25
1.25 −1124.3(8) 3086(2) 0.56 1.58 1.61
6.25 −1103.4(7) 3276(2) 2.41 7.31 7.88

P∗ = 1
0.125 −1819(1) 1853(1) 0.06 0.17 0.17
0.375 −1819(1) 1857.4(9) 0.10 0.40 0.40
1 −1816(1) 1869.4(9) 0.24 1.03 1.04
1.25 −1814.1(7) 1874.9(7) 0.35 1.33 1.34
6.25 −1791(1) 1975.5(9) 1.61 6.35 6.78

P∗ = 6
0.125 −3126(1) 998.9(2) 0.04 0.03 0.03
0.375 −3127(1) 1001.2(2) 0.02 0.26 0.26
1 −3126(1) 1005.7(2) 0.07 0.71 0.71
1.25 −3125(2) 1007.6(3) 0.10 0.89 0.90
6.25 −3117(1) 1043.4(2) 0.36 4.29 4.49

Notes: The ensemble averages for energy and volume obtained from the NPT
ensemble simulations, in reduced units, equal −1130.7(8) and 3037(2) for
P∗ = 0.5, −1820(1) and 1850(1), for P∗ = 1, −3127.7(8) and 998.6(8) for
P∗ = 6, respectively. In the table below, ηX is the difference of the biased
average 〈x〉CFCNPT with respect to 〈x〉NPT , expressed as a percentage. num-
bers in brackets are uncertainties in the last digit, i.e.−0.37(3) means−0.37
± 0.03.

A + B � C + D in the liquid phase where component A
is volatile, three fractional molecules are required i.e. two
fractional molecules of reactant molecules (A and B) or
reaction products (C and D) and a fractional molecule of
the type A in the gas phase. We also investigate how the
excess chemical potential calculations are affected when
prf increases. For these systems, the excess chemical
potential of a randomly selected fractional molecule, μex

1
and the average of all the chemical potentials of all frac-
tional molecules, 〈μex

i 〉 are shown in Table 4. As shown
in this table, the uncertainty ofμex

1 increases as the num-
ber of the fractional molecules in the system increases.
This is because the simulation time is divided to per-
form random walks multidimensional λ space. However,
the statistics of the chemical potential averaged over all
fractional molecules 〈μex

i 〉 does not depend strongly on
the number of fractional molecules in the colour mix-
ture. This is due to the fact that all the intermolecular
interactions in the colour mixture are similar. Therefore,
the chemical potentials of all the LJ molecules in this
simulation are equal.

The relative difference for ensemble averages of the
energy, density and the volume in the CFCNPT simula-
tions are compared to Boltzmann averages obtained from
theNPT simulations. The results are provided in Tables 4
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and 5. At p∗ = 6, the relative difference for the Boltz-
mann average of energy increases significantly with the
increase in prf , in sharp contrast to the error associ-
ated with the biased average of energy. This shows once
more that the sampling issue of Boltzmann averages in
dense systems with multiple fractional molecules is more
pronounced (because of larger biasing). It can be seen
in Table 4 that the Boltzmann averages obtained from
the CFCNPT ensemble where prf ≤ 1% are very simi-
lar to those obtained from the NPT ensemble. For prf =
1%, the relative difference for the Boltzmann averages
density and volume in the CFCNPT ensemble are about
1% or smaller. We consider 1% as a typical uncertainty
from simulations (also differences between experimen-
tal data and force field-based simulations are typically
also of that order). This applies to normal averages e.g.
density, volume etc, but not chemical potentials. The
chemical potentials computed by CFCMC and without
fractional molecule are usually identical [51]. The rela-
tive error for the Boltzmann averages density and volume
decreases to 0.3%by increasing the pressure toP∗ = 6.As
shown in Table 5, good agreement is observed between
the biased averages from the CFCNPT simulations and
the Boltzmann averages from the NPT simulations for
prf ≤ 1% (typical differences are around 1%). The rela-
tive difference between the biased averages density and
volume obtained from the simulations at P∗ = 1 and
P∗ = 6 are smaller than 1%. For P∗ = 0.5, relative dif-
ference smaller than 1% are obtained for prf ≤ 0.375%.
It can be seen from Tables 4 and 5 that the errors asso-
ciated with the biased averages are smaller compared
to the Boltzmann averages, especially at high densities.
Therefore, it is possible to use biased averages in systems
where prf ≤ 1%. The advantage is that the statistics of
biased averages may be better, depending on the system
density, compared to Boltzmann averages. In practice,
Nfrac is nearly always below 5 even for studying com-
plex molecular systems [3,6,11,25,49,51,52,55,75]. This
means that for a system of 500 molecules (a relatively
small system size), prf would nearly always be smaller
than 1%.

5. Conclusions

An alternative binning scheme is presented to compute
the excess chemical potential in CFCMC simulations.
This scheme is developed to overcome sampling issues
of the excess chemical potential associated with the lin-
ear extrapolation to λ → 0 and λ → 1 used in CFCMC
simulations in our earlier work. The drawback of lin-
ear extrapolation is that precise values obtained for the
excess chemical potential may provide a false impression
of accuracy. Increasing the number of bins may improve

the accuracy of the extrapolation scheme, however, this
leads to poor sampling (larger uncertainty) of p(λ) for
a fixed simulation time. It is a priori unclear what the
optimum number of bins should be for a certain sys-
tem. In the alternative binning scheme, the first and the
last bins are directly used to sample the probability of
the interaction parameters λ∗ = 0 (ideal gas behaviour)
and λ∗ = 1 (fully scaled interactions), respectively. The
excess chemical potential is computed by sampling the
beginning and end states of λ rigorously (the direct sam-
pling scheme). Thismethod can be implemented in a sin-
gle step in existing CFCMC codes by performing linear
transformation of λ (Equation (5)) when calculating the
interaction potential of the fractional molecule with the
surroundings. In sharp contrast to linear extrapolation,
the accuracy and precision of this alternative binning
scheme does not strongly depend on the number of the
bins. As an example of a system with strong intermolec-
ular interactions, we have computed the excess chem-
ical potential of SPC/E water using both methods. We
observed that the excess chemical potential is underesti-
mated for SPC/E water using linear extrapolation to λ →
0 and λ → 1, since p(λ) is steep close to λ = 1. Gener-
ally, this steepness is observed for dense systems or sys-
tems with large molecules or with strong intermolecular
interactions. We found that the direct sampling scheme
is the best method for chemical potential calculations.
Very weak or no correlation was found between the frac-
tionalmolecules inmulticomponent systems. This allows
one to effectively split a multidimensional weight func-
tion into a series of one-dimensional weight functions
for every fractional molecule. Using this approach, fill-
ing a multidimensional histogram of the weight function
is avoided, which is computationally not efficient, and a
flatness criterion can be applied to each histogram sep-
arately. In systems where multiple fractional molecules
are present, the weight function is typically large, which
leads to the aforementioned 0

0 numerical problem asso-
ciated with poor sampling of Boltzmann averages. Our
solution is to use biased averages instead of Boltzmann
averages. To have similar ensemble averages compared
to those obtained from the conventional ensembles,
it is recommended that the number of the fractional
molecules does not exceed 1% of the total number of
molecules. The threshold may be system dependent. In
may practical applications, the percentage of fractional
molecules is much lower than 1%. To investigate the
limits of the CFCMC method, systems with higher per-
centage of fractional molecules were considered in this
work. We have shown that increasing the number of the
fractional molecules does not affect the value/accuracy
of the excess chemical potential of each fractional
molecule.
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