
Delft Center for Systems and Control

The generalization of feedforward
control for a periodic motion sys-
tem
A comparison of data-driven methods

Stijn Bosma

M
as
te
ro

fS
cie

nc
e
Th

es
is

The generalization of feedforward
control for a periodic motion system

A comparison of data-driven methods

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

Stijn Bosma

March 15, 2019

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

The work in this thesis was supported by ASML. Their cooperation is hereby gratefully ac-
knowledged.

Copyright c© Delft Center for Systems and Control (DCSC)
All rights reserved.

Delft University of Technology
Department of

Delft Center for Systems and Control (DCSC)

The undersigned hereby certify that they have read and recommend to the Faculty of
Mechanical, Maritime and Materials Engineering (3mE) for acceptance a thesis entitled

The generalization of feedforward control for a periodic motion
system

by
Stijn Bosma

in partial fulfillment of the requirements for the degree of
Master of Science Systems and Control

Dated: March 15, 2019

Supervisor(s):
Ir. C. Verdier

Dr. ir. M. Mazo Jr.

Reader(s):
Prof. dr. ir. M. Wisse

Dr. ir. M. Mazo Jr.

Ir. C. Verdier

Abstract

A repetitive motion system supporting nano meter precision is positioned at high ac-
celerations, which produces a force that disturbs the demanded accuracy requirements.
Iterative learning control is used to learn optimal feedforward control signals for the at-
tenuation this disturbance force. The iterative method comes with a limitation, as it has
to learn the compensation signals one by one. In this study, a data-driven approach is
taken to design a feedforward controller that generalizes the control action, by finding a
model that fits the learned optimal compensation signals. The multi-objective evolution-
ary algorithm genetic programming is used for its unique ability to search directly in the
program space, therefore returning compact analytic equations as feedforward controller.
Feedforward artificial neural networks with the ReLU and tanh activation function are
used, due to their excellent approximation qualities. sherlock is a tool that efficiently
computes the maximum and minimum output off a ReLU network for a compact input
set. The tool is used to find a guaranteed output range for the feedforward controller
constructed from ReLU networks, which is desirable from a safety perspective. Finally,
the designed controller are compared based on their attenuation of the disturbance force
and their model size. The designed feedforward controllers are capable of reducing the
disturbance force by at least 40.01%. The analytic controllers found with genetic pro-
gramming provide the user with insights in the control problem, cost less memory storage
and come with a faster computation time.

Master of Science Thesis Stijn Bosma

ii

Stijn Bosma Master of Science Thesis

Table of Contents

1 Introduction 1
1-1 Motivation . 1
1-2 Problem statement . 3

1-2-1 Approach . 4
1-2-2 State of the art . 6

1-3 Contribution of the thesis . 7
1-4 Thesis outline . 8

2 Preliminaries 11
2-1 The data sets available for the feedforward controller design 11
2-2 Measures used for the processing of te results 13
2-3 Genetic Programming . 15
2-4 Artificial Neural Networks . 17

2-4-1 Framework . 17
2-4-2 Training of a neural network . 20

2-5 SHERLOCK . 20

3 Feedforward controller design by means of genetic programming 23
3-1 Experimental Set-Up . 24

3-1-1 Research questions . 24
3-1-2 Varying parameters in the experimental set-up 24
3-1-3 Other parameters in the experimental set-up 26
3-1-4 Processing the results of the genetic programming experiment 28

3-2 Results . 29
3-2-1 The analysis of compact models found by genetic programming . . . 29
3-2-2 The influence of of the input variables on the feedforward controller

performance . 33
3-2-3 Feedforward controller performance 37
3-2-4 Concluding remarks . 38

3-3 Discussion . 39
3-4 Conclusion . 40

Master of Science Thesis Stijn Bosma

iv Table of Contents

4 Feedforward controller design by means of feedforward artificial neural net-
works 41
4-1 Experimental Set-Up . 42

4-1-1 Research questions . 42
4-1-2 Varying parameters in the experimental set-up 42
4-1-3 Other parameters in the experimental set-up 45
4-1-4 Processing the results of the neural networks experiment 46

4-2 Results . 47
4-2-1 Accuracy Analysis . 47
4-2-2 Feedforward controller performance 51
4-2-3 Concluding remarks . 53

4-3 Discussion . 54
4-4 Conclusion . 54

5 Feedforward controller comparison 57
5-1 Comparing the feedforward controllers from a performance perspective . . . 58
5-2 Comparing the feedforward controllers from a complexity perspective 61

5-2-1 Gaining insight in the behavior of the compensation signals in the
different planes . 61

5-2-2 The memory consumption of the feedforward controllers 63
5-2-3 The computation time of the feedforward controllers 63

5-3 Comparing the feedforward controllers controllers on other aspects 64
5-3-1 Output bound verification of the feedforward controllers 64
5-3-2 The influence of the number of training data points on the performance

of the feedforward controllers . 64
5-4 Concluding Remarks . 66

6 Discussion 69
6-1 On the performance of the feedforward controllers 69

6-1-1 The limitation in accuracy for the models found with genetic program-
ming . 69

6-1-2 The difference in accuracy of the neural network models 71
6-1-3 The extrapolating qualities of the network controllers 71

6-2 On the complexity of the feedforward controllers 72
6-3 On the output range analysis of the feedforward controllers 72
6-4 On the training data needed for the design methods 73
6-5 On another approach to design the feedforward controller 73

7 Conclusion 75

A Appendix Genetic Programming 77
Stijn Bosma Master of Science Thesis

Table of Contents v

B Neural Networks 87
B-1 The influence of the hidden layers on the accuracy of the tanh networks . . . 88
B-2 The influence of the training data set on the accuracy of the tanh networks . 92
B-3 The influence of the hidden layers on the accuracy of the ReLU networks . . 95
B-4 The influence of the training data set on the accuracy of the ReLU networks 99
B-5 The influence of the hidden layers on the performance of the tanh controllers

on the training set Q . 103
B-6 The influence of the training data sets on the performance of the tanh controllers104
B-7 The influence of the hidden layers on the performance of the ReLU controllers 106
B-8 The influence of the training data sets on the performance of the ReLU controllers107

Master of Science Thesis Stijn Bosma

vi Table of Contents

Stijn Bosma Master of Science Thesis

List of Figures

1-1 The control loop of the system and an example of a reduced compensation
signal . 2

1-2 Control loop including the feedforward controller 2
1-3 Schematic overview of the outline of the thesis 9

2-1 An example of a setpoint signal and its velocity and acceleration 11
2-2 The parameterized setpoint signals in the space P 12
2-3 The repetitive nature of the setpoint signal and its corresponding compensation

signals . 13
2-4 An example of a syntax expression . 16
2-5 Schematic representation of a feedforward neural networks 18
2-6 An overview of all activation functions considered in this study 19

3-1 The signals used in QGP sampled in the parameterized training dataset Q . . 27
3-2 The normalized frequency envelope for all signals u∗1 in training data set Q . 27
3-3 The location of the setpoint signals in space P 30
3-4 The output of the trivial model and the optimal compensation signal for both

setpoint signals . 31
3-5 The mse for all signals in dataset Q for the trivial model U1,triv 31
3-6 mse for all signals in training set Q for the models U2,triv and U3,triv 32
3-7 The influence of the input variables on the accuracy of the models 33
3-8 An overview of models which can be chosen from to create the controller UIS1

dependent on Rr1 . 34
3-9 The accuracy of the models U1 chosen for the four feedforward controllers . 36
3-10 The output of U1,triv,U1,IS1 and signal u∗1 for setpoint signal 2 36
3-11 The accuracy of the models considered in the four feedforward controllers . . 37
3-12 The controller performance of the 4 feedforward controllers 38

4-1 The signals per training dataset sampled in the parameterized training set Q
in the neural networks experiment . 44

Master of Science Thesis Stijn Bosma

viii List of Figures

4-2 The influence of the hidden layers on the performance of the networks repre-
senting signal u2 . 48

4-3 Time domain plots of the output of a tanh and ReLU network with 3 hidden
layers. 49

4-4 The influence of the hidden layers in time domain for the tanh networks . . . 49
4-5 The influence of the hidden layers in time domain for the ReLU networks . . 50
4-6 An overview of the influence of the training data sets on the accuracy of the

neural networks . 51
4-7 All results summarized for the networks U2 51
4-8 The influence of the hidden layers on the controllers performing on all signals

in training set Q . 52
4-9 The influence of the hidden layers on the controllers performing on all signals

in set R3 . 52
4-10 The influence of the hidden layers on the controllers performing for all signals

in set R . 53

5-1 a Pareto front of the designed feedforward controllers 57
5-2 The set of performance measures for the controller on the setpoint signals in

the training set R . 58
5-3 The set of reduction measures for the feedforward controllers on all setpoint

signals in validation set R . 59
5-4 The performance of the tanh controller expressed in percentages of reduction

visualized throughout parameterized space P 60
5-5 The performance of the ReLU controller expressed in percentages of reduction

visualized throughout parameterized space P 60
5-6 The performance of the GP controller expressed in percentages of reduction

visualized throughout parameterized space P 61
5-7 The two setpoint signals used to gain insight in the behavior of the tanh

network output . 62
5-8 Analyzing the output of the tanh neural network U2 with 3 hidden layers for

signals outside the training set . 62
5-9 The caluclation time the three feedforward controllers 63
5-10 The sets ZR for the controllers trained on dataset QGP and Qq1 65
5-11 The influence of the number of training data points on the performance of the

controller . 66

6-1 Visualizing the component dependent on p2 and the way in which more complex
GP controllers approximate it . 70

6-2 Zoomed in plot of networks U∈ with 3 hidden layers 71

A-1 Normalized frequency domain envelope for the compensation signals U in
training set Q . 77

A-2 Normalized frequency domain envelope for the input signals in training set Q 78
A-3 Normalized frequency domain envelope for the input signals in validation set R 79
A-4 The influence of the input sets on the models U1 80
A-5 The influence of the input sets on the models U2 80
A-6 The influence of the input sets on the models U3 81

Stijn Bosma Master of Science Thesis

List of Figures ix

A-7 All models found with genetic programming dependent on Rr1 81
A-8 All models found with genetic programming dependent on Rr2 82
A-9 All models found with genetic programming dependent on Rr3 82
A-10 Comparing the output of the trivial model with the target data u∗2 83
A-11 Comparing the output of the trivial model with the target data u∗3 83
A-12 The output of the trivial models Ui,triv and Ui,IS3 84
A-13 Comparing the compensation signals for u2 for setpoint signal 1 & 2 86
A-14 Comparing the compensation signals for u2 for setpoint signal 1 & 2 86

B-1 The influence of the hidden layers on the accuracy of the tanh neural networks
trained on data set Q1 . 88

B-2 The influence of the hidden layers on the accuracy of the tanh neural networks
trained on data set Q2 . 89

B-3 The influence of the hidden layers on the accuracy of the tanh neural networks
trained on data set Q3 . 90

B-4 The influence of the hidden layers on the accuracy of the tanh neural networks
trained on data set Q4 . 91

B-5 The influence of the training data sets on the accuracy of the tanh networks U1 92
B-6 The influence of the training data sets on the accuracy of the tanh networks U2 93
B-7 The influence of the training data sets on the accuracy of the tanh networks U3 94
B-8 The influence of the hidden layers on the accuracy of the ReLU neural net-

works trained on data set Q1 . 95
B-9 The influence of the hidden layers on the accuracy of the ReLU neural net-

works trained on data set Q2 . 96
B-10 The influence of the hidden layers on the accuracy of the ReLU neural net-

works trained on data set Q3 . 97
B-11 The influence of the hidden layers on the accuracy of the ReLU neural net-

works trained on data set Q4 . 98
B-12 The influence of the training data sets on the accuracy of the ReLU networks U1 99
B-13 The influence of the training data sets on the accuracy of the ReLU networks U2100
B-14 The influence of the training data sets on the accuracy of the ReLU networks U3101
B-15 An overview of the influence of the training data on the performance of the

neural networks . 102
B-16 The influence of the hidden layers on the performance of tanh controllers for

signals in the training data set Q . 103
B-17 The influence of the hidden layers on the performance of tanh controllers for

signals in set R3 . 103
B-18 The influence of the hidden layers on the performance of tanh controllers for

signals in validation data set R . 104
B-19 The influence of the training data on the performance of the tanh controllers

on signals from the training data set Q . 104
B-20 The influence of the training data on the performance of the tanh controllers

on signals from set R3 . 105
B-21 The influence of the training data on the performance of the tanh controllers

on signals from validation set R . 105
Master of Science Thesis Stijn Bosma

x List of Figures

B-22 The influence of the hidden layers on the performance of the ReLU controllers
on signals from trainig set Q . 106

B-23 The influence of the hidden layers on the performance of the ReLU controllers
on signals from set R3 . 106

B-24 The influence of the hidden layers on the performance of the ReLU controllers
on signals from validation set R . 107

B-25 The influence of the training data on the performance of the ReLU controllers
on signals from training set Q . 107

B-26 The influence of the training data on the performance of the ReLU controllers
on signals from set R3 . 108

B-27 The influence of the training data on the performance of the ReLU controllers
on signals from validation set R . 108

B-28 Analyzing the output of the tanh neural network U1 with 3 hidden layers for
signals outside the training set . 109

B-29 Analyzing the output of the tanh neural network U2 with 3 hidden layers for
signals outside the training set . 109

B-30 Analyzing the output of the tanh neural network U3 with 3 hidden layers for
signals outside the training set . 110

Stijn Bosma Master of Science Thesis

List of Tables

3-1 An overview of the collection of input vectors used for the genetic programming
experiment . 25

3-2 An overview of the sets of mathematical operators used in the genetic pro-
gramming experiments . 26

3-3 An overview of the varying parameters in the genetic programming experiment 26
3-4 An overview of the training data provided to genetic programming 27
3-5 An overview of main settings in the DataModeler tool 28
3-6 An overview of all measures used to present the results of the genetic pro-

gramming experiments . 29
3-7 The set of trivial models dependent on Rr1 30
3-8 Similar expressions found for experiments with target data u∗2 32
3-9 The genetic programming controller UIS1 35
3-10 The genetic programming controller UIS2 35
3-11 The genetic programming controller UIS3 35
3-12 Information about the chosen models for the controllers UIS1,UIS2 and UIS3 35
3-13 The minimum and maximum reduction for the controllers found with genetic

programming . 38
3-14 An overview of the relevant input variables per target dataset 40

4-1 Overview of the used network sizes in the neural networks experiment 43
4-2 An overview of the amount of data per training dataset used in the neural

network experiment . 45
4-3 An overview of varying parameters in the neural networks experiment 45
4-4 An overview of input variables per target dataset used in the neural networks

experiment . 45
4-5 Parameters used for the training process in the neural networks experiment . 47
4-6 An overview of all measures used to present the results of the neural networks

experiments . 47

5-1 An overview of all measures used to present the comparison between the con-
trollers . 58

Master of Science Thesis Stijn Bosma

xii List of Tables

5-2 An overview of the maximum, mean and minimum percentage of reduction in
ZR for each controller . 59

5-3 The memory consumption of the three feedforward controllers 63
5-4 The guaranteed output bounds found with sherlock for the ReLU controller

with respect to its measured output bounds 64

7-1 An overview of the comparison for the three controller types on the four qualities 76

A-1 The Pareto front of the models U1 depending on Rr1 85

Stijn Bosma Master of Science Thesis

Preface and Acknowledgements

I never was the stereo-type mechanical engineering kid that knew all car brands and
diesel motor details. However, as a teenager I was good in maths and science, which lead
to the choice of mechanical engineering as bachelor. During my bachelor I did my minor
in biomedical engineering at the UPC in Barcelona, which led to the decision to do my
bachelor end project in biomedical engineering as well. Nevertheless, I never continued in
this field. I discovered that my drive for engineering comes from the tackling challenges.
It is not in what I build, but rather in what puzzles to solve to get there. This motivated
my choice for a master in Systems and Control, which is to me a more abstract field closer
to mathematics. Besides that, the challenge the master offers appealed to me. After a
quick introduction to control by my colleague Yvo I was convinced. DCSC was the place
I was going to learn the coming years!

For this final thesis I had the opportunity to help with the design process for the new
machine at ASML and to contribute to the CADUSY project, for which I am grateful.
Cees, thank you for your guidance during my thesis; your office door was always open for
me! Manual, thanks for the supervision and the help with the realization of this work.
Koos and Joost, thanks for your assistance from ASML.

I want to thank both mom and dad, for their never-ending support throughout my life
and especially during the final stages of my study. Thanks Tess and Femke for putting
me with both feet on the ground whenever I was talking about those weird algorithms at
the dinner table. Thank you Nynke, for your love and undeniable help throughout this
thesis and the most part of my study. Coen and Wiegert, thanks for the open discussions
and laughs during coffee breaks.

Master of Science Thesis Stijn Bosma

xiv List of Tables

Stijn Bosma Master of Science Thesis

Chapter 1

Introduction

1-1 Motivation

In 1965, a paper was published observing the rate of development for processors. Gordon
Moore observed that the number of components per integrated circuit has been doubling
every year and he predicted it will continue to do so for the next decade [1]. A decade
later he revised his statement and concluded that the numbers would double roughly
every two years [2]. Up onto today, this observation, often referred to as Moore’s law,
has been used as roadmap for progress in the chip-making industry [3]. In this day and
age minimal sized, powerful processors are critical in many of our day to day activities.
The interest in processor power and high-speed memory for an affordable price has not
been tempered and pushes the industry to develop more advanced computer chips [3].

In this thesis, a challenge is tackled that arises at the design of a new lithography ma-
chine which supports nano meter accuracy and reaches high productivity by handling fast
accelerations. Within the chip-making machine, a periodic motion system is designed to
position an essential component. The periodic motion system is actuated by an elec-
tronically commuted motor. The electromagnetism, commutation, the dynamics of the
amplifier and other parasitic effects are non linear of nature. Furthermore, the model
is higher dimensional resulting in a non-linear MIMO system. The system is controlled
by active servo control to obtain sufficient reference tracking performance. However, the
controller generates a force which excites system dynamics and disturbs the high pre-
cision. Therefore, there is need to attenuate this disturbance force, which is done by
feedforward control.

The model of the system is a blackbox closed-loop model including the active servo
feedback control. Figure 1-1a visualizes the model considered in this thesis, where the
input U represents the feedforward control signal and input r the setpoint signal, which
is tracked by the active servo control. Diverging from traditional control problems is the
output of the model, which is the resulting disturbance force acting on the system, which
will be referred to as Fd.
Master of Science Thesis Stijn Bosma

2 Introduction

Disturbance Force FdPlant
 g(r,U)

Compensation Signal U

Setpoint Signal r

(a) Schematic overview of the system

(b) The reduction of the disturbance force

Figure 1-1: The control loop of the system and an example of a reduced compensation signal

Iterative Learning Control (ILC) [4] is a method that learns control signals from previous
executions and obtains optimal performance for systems that are of repetitive nature.
Feedback control in combination with ILC based feedforward control has shown to ob-
tain excellent tracking performances [5–8]. By combining feedback servo control and
feedforward signals learned with ILC, the disturbance is reduced and the performance re-
quirements are met. Figure 1-1b illustrates the reduction of the disturbance force, where
the signal with and without ILC is given.

For each setpoint signal a compensation feedforward signal has to be learned on forehand
via ILC. Computing the ILC signals for all setpoint signals executable by the machine is
not viable. The signals have to be learned on the machine, resulting in downtime, which
makes learning an expensive process. However, if a mapping υ(·) is known that describes
the relation between the compensation signal U and the setpoint signal r, there is no
need to learn the compensation signals a priori. In other words, the compensation signal
is now given by the output of the feedforward controller, U = υ(r). The control scheme
is given in Figure 1-2.

Plant
 g(r,U)

 U

r

 Fd

U = υ(r)

Figure 1-2: Control loop including the feedforward controller

The goal of this study is to design a feedforward controller υ(·) that reduces the dis-
turbance for all relevant and executable setpoint signals, therefore generalizing the feed-
forward compensation signals. For the design, a data set of setpoint signals with their
corresponding optimal compensation signals is provided. A larger set consisting of rel-
evant setpoint signals is also given, which is used to validate the feedforward controller
performance. Furthermore, a nonlinear MIMO closed loop model of the system that takes
as input a compensation signal and a setpoint signal and returns as output the resulting
disturbance force is provided. The problem statement and the approach of the problem
are formally defined in the following section.

Stijn Bosma Master of Science Thesis

1-2 Problem statement 3

1-2 Problem statement

Let the machine be represented by the nonlinear function g(r,U) with g : RN ×RN×3 →
RN . Here, r represents a setpoint signal r ∈ RN and U represents a compensation signal,

U ∈ RN×3. Each signal has N samples, i.e. r =


r1
...
rN

 and U =


u1,1 u2,1 u3,1
...

u2,N u2,N u3,N

.
Let P be the set of all relevant executable setpoint signals by the machine, which is
defined in more detail in section 2-1. Furthermore, let us denote the function space as
S, the set existing of of all possible functions created from all binary operations (e.g.
+,−,×) and mathematical functions (e.g. sin, cos, e(·)).
From the physical insights of the machine, we can expect that the compensation signals
are dependent not only on the current sample but also previous samples in the setpoint
signal. Therefore, the matrix Rr ∈ RN×n with n ∈ N is introduced, containing all input
variables available to the feedforward controller directly computed from information in
r. These input variables are calculated as Rr = ω(r) with ω : RN → RN×n. Examples
of signals in Rr are numerical approximations ṙ, r̈ or shifted input vectors rk−1, rk+3.
Furthermore, letRrj ∈ Rn be a row vector representing the jth sample of all input signals
in Rr for any j ∈ [1, N], given as:

Rr =


Rr1
...

RrN

 (1-1)

Now let υ : Rn → R3 be the feedforward controller taking one sample of each input signal
in Rr. We define function U : RN×n → RN×3 as a function taking all N samples of each
input signal in Rr, returning a full signal, as:

U = U(Rr) =


υ(Rr1)

...
υ(RrN)

 (1-2)

The compensation signal consist of three separate signals, i.e. U =
[
u1 u2 u3

]
. There-

fore, the design of the feedforward controller is divided into finding three seperate map-
pings, mapping a combination of input signals fromRr to a signal in U . The feedforward
controller is than given by υ =

[
υ1 υ2 υ3

]
with υi : Rmi → R for i = 1, 2, 3. Now let

ρri ∈ RN×mi be the input signals for the function υi. Furthermore, let prij ∈ Rmi with
j ∈ [1, N] be a row vector containing the jth sample of each input signal in ρri given as:

ρri =


pri1
...

priN

 (1-3)

Analogous to Equation 1-2, we can define three functions Ui : RN×mi → RN that take
each sample from the input signals ρri and return a vector ui using υi as:
Master of Science Thesis Stijn Bosma

4 Introduction

ui = Ui(ρri) =


υi(pri1)

...
υi(priN)

 for i = 1, 2, 3 (1-4)

The feedforward controller is given by:

υ(prij) =
[
υ1(pr1j) υ2(pr2j) υ3(pr3j)

]
(1-5)

for any j ∈ [1, N]. This function can be used to create a signal with N samples, referred
to as:

U(Rr) =
[
U1(ρr1) U2(ρr2) U3(ρr3)

]
(1-6)

We want the output of the feedforward controller to reduce the disturbance force, which
is given by function g. We are looking for a mapping U which output minimizes the
2-norm of the output of function g for all relevant and executable setpoint signals r in
P . The problem statement is given in Problem 1-2.1.

Problem 1-2.1. Design feedforward controller U∗ : RN×n → RN×3 such that:

∀r ∈ P,U∗ = arg min
U∈S

||g(r,U(Rr))||2. (1-7)

As it is unlikely that the global optimum in the program space is found [9], the problem
statement is relaxed and provided in Problem 1-2.2.

Problem 1-2.2. Design feedforward controller U : RN×n → RN×3 by satisfying the
following equation:

∀r ∈ P, ||g(r,U(Rr))||2 ≤ εP (1-8)

1-2-1 Approach

Problem 1-2.1 is a nonlinear optimization problem where we search directly in the pro-
gram space. As long as we do not have any knowledge on which signals will reduce the
disturbance force, it is devious to find any set of functions U that will reduce the 2-norm
of output g.
As was mentioned earlier, ILC is a method that given any r ∈ P is capable of finding an
optimal compensation signal U∗ ∈ RN×3, hence solving the minimization problem:

U ∗ = arg min
U

||g(r,U)||2 (1-9)

We assume that the function g is continuous as it represents continuous processes in the
physical domain. Therefore, we assume that U∗ is also a set of continuous functions and

Stijn Bosma Master of Science Thesis

1-2 Problem statement 5

that it can be used to return the optimal compensation signal U∗ for any setpoint signal
r ∈ P :

∀r ∈ P,U ∗ = U∗(Rr) (1-10)

Based on these observations a data-driven approach is chosen, where the optimal com-
pensation signals is found with ILC and these signals are used to find U∗ by fitting the
output to the optimal compensation signals. By finding mapping U∗ we generalize the
feedforward signal for any setpoint singal in P .
Given is a dataset consisting of 2-tuples, Q = {(ri,U ∗i)}i=1...M1 with M1 ∈ N and where
∀i ∈ {1 . . .M1}, ri ∈ P . Hence, the problem is approached by finding a mapping υ∗ that
represents the data in Q as accurate as possible. Problem 1-2.3 provides the new problem
statement.

Problem 1-2.3. Design feedforward controller U∗ : RN×n → RN×3 such that:

∀(r,U ∗) ∈ Q,U∗ = arg min
U∈S

1
N
||U ∗ − U(Rr)||22 (1-11)

Furthermore, as the feedforward controller is given by three seperate functions as U =[
U1 U2 U3

]
where Ui : Rni → R for i = 1, 2, 3 with ni ≤ n ∈ N, the complete problem

statement is given by 3 optimization problems givne in Problem 1-2.4.

Problem 1-2.4. Design a feedforward controller U : RN×n → RN×3 defined as:

U∗(Rr) =
[
U∗1 (ρr1) U∗2 (ρr2) U∗3 (ρr3)

]
(1-12)

by solving the following three optimization problems:

∀(r,u∗i) ∈ Q,U∗i = arg min
Ui∈S

1
N
||u∗i − Ui(ρri)||22 for i = 1, 2, 3 (1-13)

Furthermore, validation set R = {ri}i=1...M2 with R ⊆ P , M2 ∈ N and M2 �M1 is used
to validate the performance of the feedforward controller. If the controller works for the
setpoint signals in validation set R, it is assumed to perform for the set of all relevant
executable setpoint signals P . Therefore, we can rewrite the earlier presented Problem
1-2.2 as:

Problem 1-2.5. The controller performs sufficiently if the following equation holds:

∀r ∈ R, ||g(r,U(Rr))||2 ≤ εP (1-14)

From a design perspective, there is no value known for εP after which the force is attenu-
ated sufficiently. Setting an upper bound on the 2-norm of the disturbance is conservative
as the reduction of the force is dependent on its initial proportion. Therefore, a less con-
servative bound is introduced, where we demand that the 2-norm of the force after control
to be lower than before control. This provides a hard constraint on the design of the feed-
foward controller, meaning that the feedforward controller performs sufficient if Condition
1-2.1 is satisfied.
Master of Science Thesis Stijn Bosma

6 Introduction

Condition 1-2.1. A feedforward controller U performs sufficiently if for all signals
in validation set R if the following equation holds:

∀r ∈ R, ||g(r,U(Rr))||2 < ||g(r,0)||2 (1-15)

Here, 0 ∈ 0N is a vector of N samples with only zeros, representing the situation in which
no control is applied.

1-2-2 State of the art

Given the complexity of the system g(·) it is assumed hat the mapping υ(·) is nonlinear
and the problem is classified as nonlinear data-driven modeling.
Traditionally, methods in nonlinear blackbox modeling fix a structure for the model and
optimize the parameters within using information available in the data [10] [11]. A general
framework for the structure of the function, which summarizes several methods used for
discrete blackbox nonlinear modeling is presented by Sjoberg et al. [11]. The structure
of most nonlinear blackbox models can be fixed in a general form as:

f(φk,θ) =
m∑
i=1

θigi(φk) (1-16)

Where θ refers to all the parameters in the model, φk refers to the regressor; the vector
containing all variables of the model, gi(·) a basis function and m the amount of basis
functions. The basis function generally can be expressed as:

gi(φk) = κi(φk, βi, γi) (1-17)

In this expression, βi and γi are parameters related to different aspects of the basis func-
tion. Now how these parameters are related depends on which nonlinear blackbox mod-
elling method is preferred. For feedforward artificial neural networks, these parameters
are constructed in a ridge fashion:

gi(φk) = κi(βiTφk + γi) (1-18)

Clearly, there are design choices to make. The user has to decide on the choice of regres-
sor and the type of basis function to choose and in what way the parameter βi and γi
are related. Also, the number of basis functions has to be determined. Once the model
structure is fixed, the parameters θ in Equation 1-16 can be optimized. However, there
are no strict guidelines for these design choices. The size and type of function structure
to use are generally chosen based on the experience of the user or in empirical fashion.

Combining Equation 1-16 Equation 1-18 results in a feedforward network with one hidden
layer. Picking a sigmoid function for κ results in sigmoid neural networks. These are
known to be universal function approximators [12] with many successive examples in
nonlinear modeling and control [13]. The downside of the sigmoid feedforward artificial

Stijn Bosma Master of Science Thesis

1-3 Contribution of the thesis 7

neural networks is their blackbox character, resulting in a model that works arbitrarily
well, but is not interpretive to the user.
Recently, the Linear Rectifier Unit as activation function is growing in popularity due
to their advantages in deep neural networks [14]. ReLU networks can easily become
sparse, are cheaper in computation and they do not encounter the vanishing gradient
problem [15]. Using ReLU networks as controller comes with the perk of the use of
sherlock [16]. This tool allows for a guaranteed range on the output for the network
given a set of inputs represented as convex polyhedron by casting the ReLU network as a
MILP feasibility problem. Output bounds assure that the controller will never generate a
control input that is undesirable. ReLU networks result in a model that is still blackbox
of nature, but sherlock provides a bound on the output.
Contradictory, symbolic regression is the type of regression where both model structure
and parameters are optimized and the algorithms strive to explain the data with compact,
interpretive equations often referred to as a whitebox modeling [17] . It searches in the
function space, which is constructed from operations, mathematical functions and param-
eters. Usually, the user defines from which operations and mathematical functions the
space is constructed. Also, the user lays limitations on the parameters, most commonly
demanding them to be real valued and within a specific range. The algorithms that can
perform symbolic regression are limited. Genetic Programming [18] is an evolutionary
inspired non deterministic algorithm, which is capable of searching the function space for
functions that explain the in and output data. Generally, a multi-objective variant of
the algorithm is used, where the functions are optimized for both fitness and complexity.
There are multiple works where Genetic Programming is used to successfully identify
nonlinear models that are fitting their target data accurately [19] [20].

1-3 Contribution of the thesis

In this thesis a feedforward controller is designed using a data-driven approach, where
we explore two options. The first option is the multi-objective evolutionary algorithm
genetic programming, which endeavors to return compact equations that approximate the
target data by searching directly in the program space. Analytic models are interpretive
to the user and allow for traditional verification methods to ensure their correctness
[21]. Furthermore, genetic programming will automatically favor input variables from
Rr and reveals which of these are useful to describe the data. Neural networks are
blackbox models that are known to be excellent for data fitting and extrapolate meticulous
if sufficient training data is available. The main drawback of a neural network is its
blackbox character, which cannot be obviated. The complex nature of neural network
models withholds the user to fully understand its behavior, which precludes their general
acceptance in the industry [22]. However, it is possible to compute a guaranteed output
bound for neural networks with the ReLU activation function by using the sherlock
tool. Therefore, two types of neural networks are considered in this thesis.
Three types of feedforward controllers are designed by solving Problem 1-2.4 using two
data-driven methods, where the controller performs sufficiently if Condition 1-2.1 holds.
These types of models are found with genetic programming, neural networks with the
tanh activation function and neural networks with the ReLU activation function.
We will explore the advantages and disadvantages of both methods, which differ in the
model they use to fit the data. Genetic programming will return compact and transparent
Master of Science Thesis Stijn Bosma

8 Introduction

models whereas the neural network models are complex of nature. Therefore, comparing
the methods will present a trade-off between the complexity of a model and its accuracy.
In the context of disturbance force reduction, a model with a higher accuracy comes with
the advantage of a better controller performance. A lower complexity model comes with
numerous advantages, such as transparency, the use of traditional verification methods,
their memory storage and computation time. The controller found by the three methods
will be compared on four aspects presented below:

• Disturbance reduction
The controllers are compared base on their reduction of the disturbance force. The
controller design succeeds if Condition Equation 1-14 holds. We compare the con-
trollers on how much they attenuate the force, which gives an indication on which
controller performs the best.

• Model complexity
A model given by a compact analytic equation gives the user a feel for how the vari-
ables influence its output. Using such model as control law is therefore transparent
and understandable. We will exploit the advantages of the controller designed with
genetic programming, which is given as a whitebox model. In this thesis we can
use the whitebox models to acquire an intuition on how the compensation signals
behave. This perk is not available for the network controllers, which are given as a
complex function. Furthermore, we will compare the memory consumption and the
computation time of the controller, which are implementation matters influences by
the complexity of a model.

• Output bound verification
From a safety perspective, it is favorable to have a controller for which we can
guarantee the control output bound for a given compact set of bounded inputs. We
will compare the output bounds provided by sherlock with the measured output
bounds and discuss the possibilities for output bound verification for the other types
of controllers.

• Training data set
Gathering training data with ILC is a time-consuming process. Since the signals
have to be learned on the machine, the process results in a lot of downtime, which
makes the learning expensive. Therefore, a method that uses less data is preferable.
We will compare the methods based on the number of data points they demand to
find a controller.

1-4 Thesis outline

Chapter 2 will present the preliminaries, which is split up in three parts. The first part
focuses on the data sets that are used in this work. We will introduce a parameterization
of the setpoint signals, which is used throughout the thesis. Furthermore, we will discuss
the periodic character of the signals. The second part will introduce the measure that
used in this thesis to describe the performance of the cotntrollers. The final part briefly
presents the main methods used.
In this work two main experiments are presented from which the results are used to
facilitate the comparison between methods. The first experiment focuses on the use of

Stijn Bosma Master of Science Thesis

1-4 Thesis outline 9

genetic programming for the design of the feedforward controller, where we investigate
the input sets that return accurate models. Furthermore, we are looking for a set of input
variables that can be used as input for the neural networks. The genetic programming
experiment is presented in Chapter 3.
In Chapter 4 we focus on the design of the feedforward controller by means of neural
networks, where an experiment is performed to find a sufficient network size and looks
at how the training data influences the network performance.
In Chapter 6 the comparison between the genetic programming controller and the network
controllers is made, where the controllers follow from the results of the experiments
presented in Chapter 3 and 4.
Chapter 6 presents the discussion of the results and the thesis is finalized by the conclusion
in Chapter 7.
Figure 1-3 presents a schematic overview of the chapters, where the red arrows present
the order of the chapters and the dotted black arrows present the interconnection between
the experiments and the comparison.

Chapter 3 Feedforward controller design by means of genetic programming

3.1 Methodology

3.2 Results

4.1 Methodology

4.2 Results

Chapter 5 Feedforward controller comparison

Chapter 2 Preliminaries Methodology

Results

Chapter 1 Introduction

Chapter 6 DiscussionDiscussion

Chapter 7 Conclusion Conclusion

3.3 Discussion

3.4 Conclusion

4.3 Discussion

4.4 Conclusion

Introduction

Chapter 4 Feedforward controller design by means of feedforward artificial neural networks

Figure 1-3: Schematic overview of the outline of the thesis

Master of Science Thesis Stijn Bosma

10 Introduction

Stijn Bosma Master of Science Thesis

Chapter 2

Preliminaries

In this chapter we will present the background information which is used within the work.
We will start by elaborating on the used data sets and introduce a parameterization of the
setpoint signals which we can use to formally define the set of all relevant and executable
setpoint signals by the machine P . Moreover, their repetitive character is shown. After
that, we formally introduce the set of measures used for the design of the feedforward
controller. Finally, we will briefly discuss the algorithms used in this work.

2-1 The data sets available for the feedforward controller design

A setpoint signal r depends on three core properties, which are given by p1, p2 and p3.
Here, p1 refers to the length in a period of r where the gradient is constant i.e. ṙ = c ∈ R
, p2 refers to the maximum velocity of the setpoint signal p2 = max(ṙ) and p3 refers
to the maximum acceleration of the setpoint signal p3 = max(r̈). The parameters are
illustrated by Figure 2-1, where p1 is defined in the upper plot as the distance between
the two point.

Figure 2-1: An example of a setpoint signal and its velocity and acceleration

Hence, all relevant setpoint signals in this study are defined as a function of these three
parameters, r := π(p1, p2, p3) with π : R3 → RN and p1, p2, p3 ∈ R. The number of
Master of Science Thesis Stijn Bosma

12 Preliminaries

samples in the setpoint signal is dependent on the parameters p1, p2, p3 and given as
N = N (p1, p2, p3) where N : R3 → N.
The parameterized space P ⊆ R3 is defined as:

P :=
3∏
i

[Li,Ui] (2-1)

Here, Li,Ui ∈ R with i = 1, 2, 3 are bounds on the parameterized setpoint signals pro-
vided by the limitation of the machine. Now we can define the set of relevant setpoint
signals executable by the system P in more detail as:

P := {π(p1, p2, p3)|(p1, p2, p3) ∈ P} (2-2)

Furthermore, let R be the set of all parameters needed to describe the setpoint signals
in validation set R. Similarly, let Q be the set of all parameters needed to describe the
setpoint signals in training set Q.

R := {(p1, p2, p3)|π(p1, p2, p3) ∈ R} (2-3)
Q := {(p1, p2, p3)|π(p1, p2, p3) ∈ Q} (2-4)

(2-5)

Figure 2-2a visualized set Q ⊆ P , the parameterized setpoint signals in the training set
Q. Figure 2-2b visualizes set R ⊆ P , the parameterized setpoint signals in validation set
R.

(a) Set Q visualized in parameterized space P (b) Set R visualized in parameterized space P

Figure 2-2: The parameterized setpoint signals in the space P

The 4 planes visible in the set R are defined as separate sets of setpoint signals as:

R1 := {π(p1, p2, 280)|(p1, p2, 280) ∈ R} (2-6)
R2 := {π(p1, p2, 300)|(p1, p2, 300) ∈ R} (2-7)
R3 := {π(p1, p2, 320)|(p1, p2, 320) ∈ R} (2-8)
R4 := {π(p1, p2, 340)|(p1, p2, 340) ∈ R} (2-9)

Stijn Bosma Master of Science Thesis

2-2 Measures used for the processing of te results 13

Similarly, let us define the sets of parameters corresponding with these planes as:

R1 := {(p1, p2, p3)|π(p1, p2, p3) ∈ R1} (2-10)
R2 := {(p1, p2, p3)|π(p1, p2, p3) ∈ R2} (2-11)
R3 := {(p1, p2, p3)|π(p1, p2, p3) ∈ R3} (2-12)
R4 := {(p1, p2, p3)|π(p1, p2, p3) ∈ R4} (2-13)

Notice that set Q lays in plane R3 as ∀(p1, p2, p3) ∈ Q, (p1, p2, 320).
Furthermore, the setpoint signals and their corresponding compensation signal are repet-
itive of nature. To limit the presence of repeated information in the training data, periods
of the signals are discarded. Figure 2-3 shows a setpoint signal and its corresponding nor-
malized compensation signal. The signals behave aberrant for the first and last period,
visualized with a black horizontal line. Therefore, these periods are never discarded, to
capture the complete nature of the signals.

Figure 2-3: The repetitive nature of the setpoint signal and its corresponding compensation signals

2-2 Measures used for the processing of te results

Several measures are used to get an indication on the performance of the feedforward
controller. The investigation of the performance of the feedforward controller is a two-
step procedure. First, we analyze how well a mapping fits its target data, which we refer
to as the accuracy analysis. Secondly, we combine a set of models to create a feedforward
controller and investigate how well it attenuates the force, which is referred to as the
feedforward controller analysis. In this section we will first introduce the measures used
for the accuracy analysis and after that we will introduce the measures used for the
performance analysis of the controller. Finally, we will explain in detail how the quantities
of the boxplots used in this work are defined.
Master of Science Thesis Stijn Bosma

14 Preliminaries

Accuracy analysis

For the analysis of the accuracy of a model, vaf, is used [23, p. 383, eq. 10.22]. This
error function is defined as:

vaf(u∗i ,ui) = max
(

0,
(

1− ||u
∗
i − ui||22
||u∗i ||22

)
· 100

)
(2-14)

where vaf : RN × RN → [0, 100]. ui ∈ RN is the output of the designed model Ui and
u∗i ∈ RN is the optimal compensation signal found with ILC. A higher vaf corresponds
with a better fit. The vaf is a scaled error measure, which facilitates a direct comparison
between models representing different target signals.
To analyze the accuracy of a model, the set of vaf values for all signals in the training
set Q is considered, formally defined as:

VQ,i :=
{
vaf

(
u∗i ,Ui(ρri)

)
|∀(r,u∗i) ∈ Q

}
for i = 1, 2, 3 (2-15)

Here, VQ,i is the set of vaf values for any model Ui with its set of input variables ρri
which is explicitly dependent on r and u∗i the target data of model Ui.

Feedforward controller analysis

A feedforward controller U is build by combining three models U1,U2 and U3. Running
both signals r ∈ RN and U ∈ RN through the simulation results in the disturbance force
Fd ∈ RN . The beginning of the disturbance force signal exhibits stabilization behavior.
To compare the attenuating, the stabilization behavior is left out of consideration. There-
fore, the performance measure is defined as the 2-norm of the disturbance force from the
400th sample. Another disturbance measure is introduced which refers to the the ampli-
tude of the disturbance force if no control is applied, defined by running a compensation
signal 0 ∈ RN through the simulation and taking the 2-norm of the disturbance force
from the 400th sample. The performance measures ε, ε0 and εILC are formally defined as:

ε(r) = ||g (r,U(ω(r))) ||2 (2-16)
ε0(r) = ||g (r,0) ||2 (2-17)

εILC(r,U∗) = ||g (r,U∗) ||2 (2-18)
(2-19)

As we will test the feedforward controller for all setpoint signals in the training set, the
sets of all performance measures for all these signals if control,no control or optimal
control is applied are formally defined as:

EQ = {ε(r)|∀r ∈ Q} (2-20)
E0 = {ε0(r)|∀r ∈ Q} (2-21)

EILC = {εILC(r,U∗)|∀(r,U ∗) ∈ Q} (2-22)

Stijn Bosma Master of Science Thesis

2-3 Genetic Programming 15

For the performance on the training set, an optimal reduction can be computed with the
iterative learning control compensation signals. This is not possible for setpoint signals
in the validation set. To give more context to the performance measures found for signals
in the validation set, their reduction is expressed in percentages. The new reduction
measure ζ is defined in Equation 2-23.

ζ(r) =
(

1− ε(r)
ε0(r)

)
100 (2-23)

ζILC(r,U) =
(

1− εILC(r,U)
ε0(r)

)
100 (2-24)

Please notice that a negative ζ corresponds with a control action that is not capable of
reduction the performance measure. If this happens for any setpoint signal in R, the
controller does not satisfy Condition 1-2.1
Finally, analogous to the sets of performance measures, we can introduce the sets of
reduction measures ζ as:

ZILC = {ζ(r,U)|∀(r,U) ∈ Q} (2-25)
ZQ = {ζ(r)|∀r ∈ Q} (2-26)
ZR = {ζ(r)|∀r ∈ R} (2-27)
ZR3 = {ζ(r)|∀r ∈ R3} (2-28)

Boxplots

Furthermore, the results are presented in a boxplot. Here, the median of the data set is
presented as vertical red line. The bottom and top edges of the box indicate the 25th
and 75th percentiles referred to as q1 and q3, respectively. The whiskers extend to the
extreme datapoints that are not considered as outliers. An outlier is plotted as a red
plus. A datapoint is considered an outlier if it is greater than q3 + w(q3 − q1) or lower
than q1 −w(q3 − q1). w is the maximum whisker length set at approximately ±2.7σ and
99.3 % coverage for a normally distributed dataset.
For the 3D boxplot, the median is plotted in black. The upper part of the body of the
boxplot refers to 25% data position, whereas the lower part of the body is selected at 75
% of the data. The tails are referring to the extreme of the datasets. Data point are not
marked as outliers in this boxplot.

2-3 Genetic Programming

Genetic Programming, firstly introduced by Koza [18] is an evolutionary inspired algo-
rithm that is capable of automatically generating computer programs. Given any user-
specified building blocks, the algorithm is capable of searching the space of programs
composed of these building blocks. It is inspired by Darwin’s theory of survival of the
fittest. First a generation of solutions is created, the solutions breed and create a new
generation, such that it is more likely that more fit solutions will survive in the next
Master of Science Thesis Stijn Bosma

16 Preliminaries

generation and the process is repeated. The algorithm is briefly discussed below. Later
on in this section, multiple extensions and different approaches are presented.

Classical GP was originally written in LIPS, one of the oldest high-level programming
languages. LIPS works with syntax expressions, which can be visualized as a tree struc-
ture. An example of such S expression would be (−(A ∗ B)C), which is visualized in
Figure 2-4 and represents the executable A ∗ B − C. A candidate as tree expression
is referred to as the genotype or genome. A tree exists of function block and terminal
blocks. As the name suggest, the terminal block, terminates the tree and can only exist
at the end of the final node. A function block has either one or two connection nodes
and connects with either another function or a terminal. Within the presented example
the terminal set is given by T = {A,B,C} and the function set by F = {−, ∗}. The user
has to specify the function set and terminal set and GP can create any combination from
the sets. Please note that the terminal set may contain constants and variables, whereas
the function set only contains functions.

Figure 2-4: An example of a syntax expression

Furthermore, breeding a new generation of candidates is based on three operators which
are shortly discussed. The cross-over operator selects two candidates in current genera-
tion Gi, randomly selects a subtree from each and swaps them, placing two new offspring
into Gi+1.
The Mutation operator selects one candidate and randomly mutates a node. If the node
is a function, the function is replaced by another randomly chosen function. If the node
is a terminal, it is replaced by another random terminal. Constants are also exposed to
mutation, which randomly mutates them by selecting a new constant from a predefined
constant range.
The cloning operation selects one candidate in Gi and places it into Gi+1.
Each operator has a chance to be picked. These chances are algorithm parameters and
are chosen such that they add up to one and only one operator is chosen at a time.
The chance for a candidate to be selected by an operator is based on its fitness, a higher
fitness values means a higher chance to be picked.

The algorithm works by initializing G0 with population size M candidate trees with Tree
DepthNt. All candidates are executed and their fitness value is calculated. The candidate
with the best fitness is copied to G1. Next, the offspring is calculated using the three
genetic operators until size G1 has M candidates. The candidate trees are executed and
their fitness is calculated and the process repeats. The user has to specify a termination
criteria; either after an amount of generations that is evolved or a fitness criteria is met.

As candidates with a higher fitness are more likely to survive to the next generation, the
average fitness of a generation is more likely to increase. Genetic Programming needs
to balance its search between exploitation vs exploration. By implementing random
nodes by the mutation operator, the algorithm explores other unseen parts of the search
space, which can help to escape local optima. Since the algorithm was created, many

Stijn Bosma Master of Science Thesis

2-4 Artificial Neural Networks 17

improvements are made, for an extensive overview of the algorithm, the reader is referred
to [17]
In this thesis we use the tool DataModeler from Evolved Analytics, which is a state-of-the-
art genetic programming tool implemented in Mathematica. We use the ClassicGP and
leave most settings at its default value. This implements a multi-objective optimization
algorithm, which returns a subset of models that are rated both on their modeling objec-
tives; complexity and fitness. Throughout the experiments, two extra secondary modeling
objectives are considered in the multi-objective optimization, which are used within the
run, but are not provided in the final results. Model age is a quantity of the model that
keeps track on how long the model has been in the selection [24] . By including Mod-
elAge as secondary objective, we deviate the balance between exploitation-exploration
more towards exploration, which is favorable for long runs to promote continuing new
innovations. New models will have their model age set to zero. Mutating a model or
creating a new model with crossover will increase its ModelAge. The second secondary
modeling objective is the dimensionality of the model, which gives the number of unique
variables in the model. This promotes models that have minimal number of different
variables.
Furthermore, the implementation of genetic programming in the DataModeler automat-
ically takes the H best functions closest to the four-dimensional Pareto front and copy
these to the next generation. This ensures the persistence of fit models across multiple
generations. The other M − H models in the generation are created with three evolu-
tionary operators, which operates on models that are selected with tournament selection.
G models are randomally sampled from the generation, from which the Pareto-optimal
model is used to create the new generation. The algorithm uses cross-over and imple-
ments two types of subtree mutation operators. MutateSubtreeOperator tends to increase
the complexity of the model after mutation, while the DepthPreservingSubtreeMutation
strives to produce a less complex genome.

2-4 Artificial Neural Networks

To applications of artificial neural networks are classification or nonlinear regression [25].
Classification is the problem of assigning a new observation in the category of others.
An example of this application is image recognition. Nonlinear regression is the problem
type where a model tries to fit its observational data as accurate as possible, where the
output is a nonlinear combinations of its input variables.
Over the years several types of neural networks have arose. Feedforward artificial neural
networks is the most basic neural network type, where the output of the model is directly
given by a nonlinear transformation of its inputs. Another example of a neural network
type is recurrent artificial neural networks, which take their previous output as their
input, therefore modeling dynamics [25].
In this thesis we will focus on multi-layered feedforward artificial neural networks for
nonlinear regression. We will briefly highlight the structure of a neural networks, after
which we will explain the training algorithm used to optimize the model.

2-4-1 Framework

The framework of an feedforward artificial neural network is well known [16] [25] and
is presented by considering the first function υ1(pr1) in the feedforward controller. Let
Master of Science Thesis Stijn Bosma

18 Preliminaries

υ1 be a neural network with n inputs pr1 ∈ Rn and one output u1 ∈ R. The networks
considered are build from k hidden layers and m neurons per layer. A schematic overview
of a feedforward artificial neural network is given in Figure 2-5.

()Lk zk()Lk−1 zk−1

N1,1

N1,2

N2,1

N2,2

N2,m

Nk−1,1

Nk−1,2

Nk−1,2

Nk

x1

xn

x2

y

N1,m

()L0 z0 ()L1 z1

zi+1,j

∑

wi,1

wi,m

⋮

zi,1

zi,m

bi,j

σ(+)WT
i,j
zi bi,jwi,2

zi,2

Figure 2-5: Schematic representation of a feedforward neural networks

Each neuron Ni,j represents a function which output is a scaled summation of its inputs
shifted by a bias passed through a nonlinear activation function σ(·). Now let us the
following vectors, which represent the input signals for the ith layer in the network, where
i ∈ [1, k].

z0 =


pr1,1
...

pr1,n

 , zi =


zi,1
...

zi,m

 (2-29)

Now we can formally define the neurons. The output of neuron that is connected by is
given by Equation 2-30 and the output by the final neuron Nk is given as Equation 2-31.

zi+1,j = σ(Wi,j
Tzi + b) (2-30)

zk+1 = y = σ(Wk
Tzk + bk) (2-31)

The weight matrices for neurons in the first, last or any layer in between are given by:

W0 =


w0,1
...

w0,n

 ,Wi,j =


wi,1
...

wi,m

 ,Wk =


wk,1
...

wk,m

 (2-32)

With i ∈ [1, k − 1] and j ∈ [1,m]. A neuron from any layer L1, . . . , Lk is visualized in
Figure 2-5. Visualizing a neuron for the first layer L0 differs only in the number of inputs
and corresponding inputs, which changes to n instead of m.
We can now define the output of a layer by combing Equation 2-30 and Equation 2-29
as:

L0(z0) =


σ(W0,1

Tz0 + b0,1)
...

σ(W0,n
Tz0 + b0,m)

 , Li(zi) =


σ(Wi,1

Tzi + bi,1)
...

σ(Wi,m
Tzi + bi,m)

 , Lk(zk) = σ(Wk
Tzk + bk)

(2-33)
Stijn Bosma Master of Science Thesis

2-4 Artificial Neural Networks 19

With again i ∈ [1, k− 1]. Here, L0 refers to the first layer, Li to any layer in between the
first and last layer and Lk refers to the last layer. Now a neural network can be written
as a nested functions of layers as:

υ1(z0) = L0(z0) ◦ . . . ◦ Lk(zk) (2-34)

Furthermore, we introduce the following notation for the weights and biases of the neural
network as:

W i =


Wi,1

T

...
Wi,m

T

 ,Bi =


bi,1
...
bi,m

 (2-35)

With i ∈ [0, k − 1]
Hence, a neural network can be described by a set of weight matrices and biases:

(W0,B0), . . . , (Wk−1,Bk−1), (Wk, bk) (2-36)

here, (W0,B0) are matrices N × n and N × 1 connecting the input with the first layer,
(Wi,Bi) with i ∈ [1, k− 1] connecting layer Li with Li+1 are matrices N ×N and N × 1.
Finally, (W k, bk) connects the last layer with the final output with size N ×1 and bk = R

Activation function

In this thesis, three types of acitvation functions are used. We will use the hyperbolic
tangent-sigmoid or tanh activation function given by Equation 2-38 and visualized in
Figure 2-6b. The network build form tanh activation functions takes a linear activation
function as final activation function given in Equation 2-39 and visualized in Figure 2-6c.
The second feedforward artificial neural network uses the rectifier linear unit (ReLU)
activation function given in Equation 2-37 and visualized in Figure 2-6a. The network
uses a ReLU activation function as final activation function.

σ(z) = max(0, z) (2-37)

σ(z) = 2
1 + e−2z − 1 = tanh(z) (2-38)

σ(z) = z (2-39)

(a) The ReLU activation func-
tion

(b) The tanh activation function (c) The linear activation func-
tion

Figure 2-6: An overview of all activation functions considered in this study

Master of Science Thesis Stijn Bosma

20 Preliminaries

2-4-2 Training of a neural network

Now that we have discussed the framework, we will continue by how the training of a
neural network works. The weights and biases given in Equation 2-36 are adjusted such
that the error between the target data and the output is minimized.

θ∗ = arg min
θ∈Rp

||u∗1 − U1(ρr1, θ)||22 (2-40)

Equation 2-40 is the non-linear optimization problem we solve when training the neural
network. In this thesis, we train the neural networks using the Levenberg-Marquardt [26]
training algorithm, where we back propagate the error through the network by adapting
the errors.

2-5 SHERLOCK

sherlock [16] is a tool that will provide output bounds of a feedforward artificial neural
network with ReLU activation functions for a given polyhedron set of input values. Given
a bounded set of input constrains P : Aρr1 ≤ b, Sherlock will provide the following
guarantee:
an output [l, u] such that ∀ρr1 ∈ P : U1(ρr1) ∈ [l, u].

(max
ρr1∈P

U1(ρr1) ≥ u− δ), (min
ρr1∈P

U1(ρr1) ≤ l + δ) (2-41)

This bound is provided by solving the optimization problem with a combination of local
search and a global seach, by solving a MILP feasibility problem. The way in which a
ReLU network is cast as a MILP feasibilty is roughly presented below. For an extended
presentation of the tool, the reader is referred to the paper [16]. The MILP feasibility
problem is given as:

min
x

0
s.t. Ax+Bw ≤ c

x ∈ Rn,w ∈ Zm

The piecewise character of the ReLU network is encoded as a set of constraints containing
binary variables with i ∈ [0, k − 1] as:

C0 : Aρr ≤ b (2-42)

Ci+1 :


zi+1 ≥ Wizi +Bi
zi+1 ≤ Wizi +Bi +Mti+1
zi+1 ≥ 0
zi+1 ≤ M(1− ti+1)

(2-43)

Ck+1 : y = Wkzk + bk (2-44)

The problem is now cast as a MILP feasibility problem as:
Stijn Bosma Master of Science Thesis

2-5 SHERLOCK 21

min
x

0
s.t. C0, . . . , Ck+1

x, z1, . . . ,zk, y ∈ RkN+n+1

t1, . . . , tk−1 ∈ Z(k−1)N

(2-45)

Define 2 norm

Master of Science Thesis Stijn Bosma

22 Preliminaries

Stijn Bosma Master of Science Thesis

Chapter 3

Feedforward controller design by means
of genetic programming

In this chapter we will elaborate on the design of the feedforward control using genetic
programming. We approach the design by finding three models representing all three
signals in the optimal compensation signal learned with ILC. In this chapter we will
construct the feedforward controller by solving the following three minimization problems:

Problem 3-0.1. Design a feedforward controller U : RN×n → RN×3 defined as:

U∗(Rrp) =
[
U∗1 (ρr1p) U∗2 (ρr2p) U∗3 (ρr3p)

]
(3-1)

by solving the following three optimization problems:

∀(r,u∗i) ∈ QGP : U∗i = arg min
Ui∈Sp

1
N
||u∗i − Ui(ρrip)||22 for i = 1, 2, 3 (3-2)

Here, N is the number of samples in a signal, u∗1,u∗2 and u∗3 represent the optimal compen-
sation signals, U∗1 ,U∗2 and U∗3 the models we are searching for with genetic programming,
ρr1p,ρr2p and ρr3p the input variables per model for which we know ρrip ∈ Rrp, QGP

the training set we use for genetic programming, which is a subset of all training data,
QGP ⊆ Q and Sq ⊆ S, the programming space we let genetic programming search in,
which is always a subset of the program space as defined in the introduction. This search
space is constructed from the input variables Rrp and the set of mathematical operators
Mp provided to the algorithm. Furthermore, q and p are used to indicate the varying
parameters provided to the algorithm.
This chapter will explain in detail how the feedforward controller is designed. The first
section will focus on the construction and motivation of a set of experiments, where all
options and varying parameters are provided. Furthermore, the results of the experi-
ments will be presented, after which a subset of found models is combined as feedforward
controllers to see how they perform on both the data in the training set and the data in
the validation set. After that, a discussion of the results is presented and the chapter is
finalized by concluding on the found observations.
Master of Science Thesis Stijn Bosma

24 Feedforward controller design by means of genetic programming

3-1 Experimental Set-Up

In this section, we will present the experimental methodology. First, the research ques-
tions are motivated and presented. After that, the varying parameters and their moti-
vation are presented in detail followed by the options and algorithm parameters which
are kept constant throughout the experiments are provided. Lastly, we will present the
framework which we use to examine the results.

3-1-1 Research questions

The feedforward controller is designed by searching for a mapping between the setpoint
signal r and the compensation signal U∗. Since r is a signal with multiple samples fully
known a priori, any information that is available in the setpoint signal can be used for
the mapping, that is U = U(Rr). One of the main advantages of genetic programming is
its ability to directly search in the program space. The algorithm returns equations that
explain the target data using inputs from the set of input variables provided by the user.
This means that genetic programming searches in Rrp ∈ Rr with Rrp ∈ RN×np , Rr ∈
RN×n and np ≤ n. Therefore, genetic programming can be used as tool to provide an
indication for which input variables are useful in a set of input variables. In other words,
genetic programming can be used to find a combination of interesting input variables,
ρrip ∈Rrp ∈Rr. The design of the feedforward controller by means of neural networks
demands us to fix the structure of the network a priori. Therefore, we have to provide
the networks with a set of input variables. The genetic programming experiments give
an indication which combination of input variables ρrip is favorable.
Genetic programming searches in a space which is constrained by the mathematical op-
erators specified by the user. Accordingly, if the algorithm searches for a model build
from mathematical operators that are not available in the search space, it will not suc-
ceed. However, providing all mathematical operators comes with two downsides. First of
all, it enlarges the search space enormously, which results in a lower possibility that an
accurate model is found. Secondly, it comes with the possibility that the algorithm finds
a model with a high fit, but is mostly constructed of nonlinear mathematical operators.
The user might favor controllers that link better to the understanding of the underlying
physical system over controllers with higher fit. In this experiment, we are not directly
interested in a best performing set of mathematical operators, but we want to use genetic
programming to find a set of models that provides the user with the possibility of picking
a result that is understandable and performs sufficiently.
Therefore, a set of experiments is done to answer the following two questions:

1. Which combination of variables ρr1,ρr2 and ρr3 are beneficial for the performance
of the feedforward controller?

2. Can we use genetic programming to find a set of models from which the user can
select a model that is interpretive and has a high fit?

3-1-2 Varying parameters in the experimental set-up

In this subsection, we will present all parameters we vary throughout the experiment.
We will let genetic programming search in a set of program spaces by varying both the
input variables Rrp and the sets of mathematical operatorsMp for p = 1, 2, 3.

Stijn Bosma Master of Science Thesis

3-1 Experimental Set-Up 25

Combinations of input variables

The setpoint signal specifies the path, which the periodic motion system will follow. It
is therefore known a priori and we are not limited to causal mappings. Three different
combinations of input variables are created, referred to as Rr1,Rr2 and Rr3. From the
physical meaning of components in the system, we expect that the compensation signals
are dependent on derivatives of the setpoint signals. The mass, damping and amplifier
dynamics in the system motivates the construction of Rr1, which consist of the setpoint
signal and its derivatives up to the third order. Here, the derivatives are numerical
approximations using a central order difference scheme. Rr2 focuses on discrete time,
where the setpoint signals are shifted forward and backwards a priori. As the setpoint
signal starts and ends at 0 and has no direct physical meaning, the initial conditions
which are needed to shift the signals are defined as 0. Rr3 combines set 1 and 2, by
computing the numerical approximation of the derivatives and shift these vectors for-
and backwards by three steps. An overview for the used combinations of input variables
are provided in Table 3-1.

Input combinations Input variables
Rr1 [r, ṙ, r̈, ...r]
Rr2 [rk−3, rk−2, rk−1, rk, rk+1, rk+2, rk+3]
Rr3 [rk−3, rk−2, rk−1, rk, rk+1, rk+2, rk+3, ṙk−3, ṙk−2, ṙk−1, ṙk, ṙk+1,

ṙk+2, ṙk+3, r̈k−3, r̈k−2, r̈k−1, r̈k, r̈k+1, r̈k+2, r̈k+3,
...
r k−3,

...
r k−2,...

r k−1,
...
r k,

...
r k+1,

...
r k+2,

...
r k+3]

Table 3-1: An overview of the collection of input vectors used for the genetic programming exper-
iment

Mathematical operators

Three different sets of mathematical operators are used in the experiments, denoted with
M1,M2 andM3 .The first setM1 limits the algorithm to build polynomial functions.
The Stone-Weierstrass approximation theorem [27] states that all continuous functions
defined on a closed interval can be approximated by a polynomial function, which moti-
vates the use ofM1. The compensation signals are coming from processes in the physical
setup. Therefore, setM2 consists of mathematical operators commonly used to describe
classical mechanical systems. Set M2 consists of sinusoidal functions, the squared and
cube operator, addition, subtraction, division and multiplication. The motivation behind
setM3 is to extend the search space of the algorithm to see if the target data is explained
by complex nonlinear functions. Math setM3 extends setM2 with 3 nonlinear functions.
Also, the squared and cube operator is replaced with the to power operator, (·)N , where
N can either be a real valued number or any other function created from mathematical
operator in the set. The sigmoid function used is defined as σ(x) = x

1 + |x| . An overview
of the sets of mathematical operators used is presented in Table 3-2.

Target Data

The compensation signal exist of three target data signals, U∗ =
[
u∗1 u∗2 u∗3

]
and

the feedforward controller is created from three independent models. Here, each signal
Master of Science Thesis Stijn Bosma

26 Feedforward controller design by means of genetic programming

Set of mathematical operators Elements
M1 {+,×}
M2 {+,−,×,÷, sin, cos, (·)2, (·)3}
M3 {+,−,×,÷, sin, cos, (·)N , σ(·), | · |, , tanh(·), e(·)}

Table 3-2: An overview of the sets of mathematical operators used in the genetic programming
experiments

represents a different compensation signal in U . Therefore, each experiments is repeated
for every signal in the compensation signal.

We perform an experiment in a search space constructed of each combination of input
variables and mathematical operators, yielding 9 program spaces Sq for q = 1, . . . 9. As
we are looking for models representing each compensation signal in U , a total of 27
experiments are considered. An overview of the varying parameters of the experiments
are provided in Table 3-3.

Sets of mathematical operators M1,M2,M3
Input variables Rr1,Rr2,Rr3
Target data u∗1,u

∗
2,u
∗
3

Table 3-3: An overview of the varying parameters in the genetic programming experiment

3-1-3 Other parameters in the experimental set-up

There are several options and algorithm parameters chosen to perform the experiments.
These will be presented in this subsection, where we first explain how we built the data
set QGP and after that the options used for the genetic programming runs are presented.

Training Data

DataModeler is a commercialized package focusing especially on the implementation of
genetic programming. The exact settings and the motivation for this implementation is
provided in Table 3-1-3. Unfortunately, DataModeler is only capable of handling limited
data within reasonable time. Therefore, QGP is designed with the purpose to have most
information of Q in the training data, while keeping the number of data points minimal.
The training set used for genetic programming, QGP consist of 6 signals from the training
data set Q. Signals on the vertices of the data set Q are left out of consideration as they
contain the most samples. Instead, the corner signals near the vertices are considered.
To get more information throughout the space, signals near the center of the set are also
added to training data set QGP . The position of these 6 signals in space P are given
in Figure 3-1. Furthermore, the setpoint signals and their corresponding compensation
signal are of repetitive nature, as was highlighted in section 2-1. To limit the presence of
repetitive information in the training data, only the first and the last period of a setpoint
signal and their corresponding compensation signal is used in training set QGP .

Stijn Bosma Master of Science Thesis

3-1 Experimental Set-Up 27

Figure 3-1: The signals used in QGP sampled in the parameterized training dataset Q

Furthermore, the training data can be decreased by down sampling the data. To get an
insight in the frequency content of the set of signals, the frequency domain envelope is
used. The measure can be interpreted as the maximum amplitude per frequency bin for a
set of signals and gives an indication on where the maximum frequency content for a set
of signals lays. It reveals nothing about how this frequency content is spread throughout
the set. The normalized frequency domain envelope of signal u∗1 is provided in Figure 3-
2. This figure illustrates that the current sampling rate of h = 1e−4 s is superfluous. A
slower sampling rate of 8e−4 s is chosen, which restricts the bandwidth at 625 Hz. The
new bandwidth is illustrated by a red horizontal line in Figure 3-2. The effect of the new
sampling rate on the bandwidth of the other sets of signals is presented in Figure A-1
A-2, A-3 in Appendix A .

Figure 3-2: The normalized frequency envelope for all signals u∗
1 in training data set Q

Finally, the dataset is even further reduced by taking 70% of the data by sampling
randomly throughout the training dataset QGP to facilitate a fair comparison between
genetic programming and neural networks, which is done later on in Chapter 5. An
overview on the training set is given in Table 3-4.

Data set Number of signals Total number of data points
QGP 6 1811

Table 3-4: An overview of the training data provided to genetic programming

Other parameters with genetic programming

In this thesis we use the tool DataModeler [28] from Evolved Analytics, which is a state-
of-the-art genetic programming tool implemented in Mathematica. The tool provides
the user not only with the use of the algorithm, but comes with a set of possibilities to
Master of Science Thesis Stijn Bosma

28 Feedforward controller design by means of genetic programming

guide the user in the data-driven modeling process, varying from data analysis and model
selection guidance to the analysis of sensitive variables. The tool comes with a range of
possibilities for the algorithm, varying from search strategies to advanced settings which
give the user many degrees of freedoms. In this thesis we use the ClassicGP search strategy
which implements a multi-objective optimization algorithm and leave most settings at its
default value. The main algorithm settings are discusses. The experiments are performed
with Mathematica version 11.2. The experiments are conducted on a Intel Xeon CPU
E5-1660 v3 3.00GHz using 8 CPU cores. An independent search was done in parallel on
each physical core, resulting in 8 parallel runs. The experiments are designed to cover
a large part of the search space. Therefore, each experiment uses a population size of
300 models, combined with a total of 1000 generations per evolutionary run. To guide
the evolution of the models, the parameters within the in-linear model are optimized
using Least Squares. Each model is rated on 4 objectives; Mean Squared Error, Model
Complexity , ModelAge, ModelDimensionality, which are explained in section 2-3. Here,
the ModelAge and ModelDimensionality are secondary modeling objectives only used in
the run and mse and model complexity the objectives for which the final models are
provided to the user. mse is defined as:

mse(u∗i ,ui) = ||u∗i − ui||
2
2 (3-3)

The parameter that expresses the model complexity is defined as the total sum of nodes in
all the sub-trees available in the genome of a model. A maximum complexity of the model
is set at 1000, which does not constrain the search to find large models. Furthermore,
the ratio crossover/mutation was set at 0.9/0.1. Least squares [23] is used as parameter
optimization.
An overview of the main choices used in DataModeler are presented in Table 3-5.

Settings Value
Parameter optimization Least Squares
Generations per run 1000
Independent evolutions 8
Modeling objectives mse, ModelComplexity
Secondary modeling objectives ModelAge, ModelDimensionality
Maximum allowable complexity 1000
Population size 300
Chance crossover 90 %
Chance mutation 5 %
Chance depth-preserving subtree mutation 5 %

Table 3-5: An overview of main settings in the DataModeler tool

3-1-4 Processing the results of the genetic programming experiment

DataModeler returns a set of models rated both on their complexity and fitness. From
this set of models, 5 % best performing models that are closest to the Pareto front are
used for further analysis. The fit of the model is acquired by calculating the mse between
the output of the model and the target data for QGP . However, we are interested in how
the models perform for all signals in training set Q and eventually for all the signals
in validation set R. For further analysis, a new fitness value is seized for the subset of

Stijn Bosma Master of Science Thesis

3-2 Results 29

models by computing the mse for all data in training set Q. Furthermore, models with
parameters lower than 1e−8 or higher than 1e8 are left out of consideration, as these are
sensitive for marginal changes in the input variables. These large parameters can also
lead to precision errors if they are not carefully implemented. A subset of models that
are not sensitive nor over-fit for data in data set Q are considered for further analysis.
Furthermore, different measures are used for the accuracy analysis of the models and
the controller performance. An overview of all used measures in section 3-2 are given in
Table 3-6 and are defined in section 2-2.

Measure Interpretation Formula
vaf The percentage of fit of a model with its target data Equation 2-14
VQ,i The vaf values for all signals in Q Equation 2-15
ε The performance measure given as the 2-norm of the disturbance force Equation 2-16
EQ The performance measures for all signals in Q Equation 2-20
E0 The performance measures for all signals in Q if no control is applied Equation 2-21
EILC The performance measures for all signals in Q if ILC is applied Equation 2-22
ζ The reduction of the performance measure in percentage Equation 2-23
ZR The reduction measures for all signals in R Equation 2-27

Table 3-6: An overview of all measures used to present the results of the genetic programming
experiments

3-2 Results

In this section, the results of the experiment are presented, where we begin by focusing on
the compact models found with genetic programming. Here, we analyze how the compact
models fit the target data. After that, we focus on the influence of the input variables on
the performance of the feedforward controller. Furhtermore, the results are presented as
a set of models which present the trade-off in transparency and accuracy. From this set
of models we select three feedforward controllers dependent onRr1,Rr2 and Rr3 which
are considered for further analysis, together with a controller build from a set of models
considered in the first section.

3-2-1 The analysis of compact models found by genetic programming

Two interesting results emerge by analyzing the more compact equations returned by
genetic programming. First of all, for each compensation signal, the algorithm found
expressions that have a low complexity and a reasonable fit, while searching in different
program spaces. Secondly, the algorithm emphasizes the importance of dependence on
the derivatives of the setpoint, as it was capable of finding numerical approximations of
the derivatives by searching in a search space constructed of only shifted values Rr2.

Insights in the behavior of the compensation signal by means of trivial models

We will start by investigating identical compact expressions found in different experi-
ments. These compact equations give an understanding in the relation between the input
variables and the target data. For each input set the algorithm found identical models,
but for the sake of brevity we will only present the models that depend on continuous
time input variables Rr1. The models will be referred to as trivial models, due to their
Master of Science Thesis Stijn Bosma

30 Feedforward controller design by means of genetic programming

non-complex nature. The trivial models U1,triv,U2,triv and U3,triv are presented in Table 3-
7. All three models have complexity less than 25. Model U1,triv and U2,triv are first-order
polynomial, whereas model U3,triv is a second-order polynomial function.

Model Complexity Fitness Variables Expression
U1,triv 19 5310.920 ṙ,

...
r u1 = 2.69− 3.43e−3...r + 33.53ṙ

U2,triv 19 61.922 r, r̈ u2 = 0.44− 0.16r̈ − 155.70r
U3,triv 22 1.065 r, ṙ, r̈ u3 = −3.29e−2 + 0.19ṙ + 6.54e−2r̈r

Table 3-7: The set of trivial models dependent on Rr1

The trivial models can be used to get an intuition for how the compensation signals
evolve as the setpoint signals change in the parameterized space P . This is explained by
means of model U1,triv. First, two setpoint signals are chosen for illustrative purposes by
taking two corner signals in set Q as is illustrated in Figure 3-3. Notice as p2 refers to
the maximum velocity of a setpoint signal, we are considering two signals mainly varying
in their maximum speed.

Figure 3-3: The location of the setpoint signals in space P

The output of the trivial model is calculated for setpoint signals 1 and 2. The model
output and the target data signal u∗1 for both setpoint signals are provided in Figure 3-4.
Please notice the figure presents normalized signals. The accuracy is expressed as mse
and is provided in the title of the plots. mse is given with respect to the unscaled signals.

Stijn Bosma Master of Science Thesis

3-2 Results 31

(a) The output of U1,triv and u∗
1 for setpoint signal 1

(b) The output of U1,triv and u∗
1 for setpoint signal 2

Figure 3-4: The output of the trivial model and the optimal compensation signal for both setpoint
signals

Figure 3-4a shows the output of U1,triv and u∗1 corresponding with setpoint signal 1. First
thing to notice is that signal u∗1 mainly consists of large peak, which are explained by
the model. The accuracy of the model for setpoint signal 1 is mse = 904.37. Figure 3-4b
illustrates the output of U1,triv and the signal u∗1 corresponding with setpoint signal 2.
Here, we can see that the signal behaves differently and a component that occurs between
the peaks of the signal is not explained by the model. The fit on this signal is poorer,
resulting in a higher value of mse = 6047.74.
Since the parameterized values in Q do not vary in their p3 value, they can be visualized
in a 2D plane, as is done in for example Figure 3-3. Now if we compute the mse for the
trivial model U1,triv for all setpoint signals in Q, we can visualize its behavior in a 3D
plot, which is done in Figure 3-5. This illustrates that as the setpoint signals increase in
p2, the trivial model results in a poorer fit, as the mse value increases. The component
of the signal noticed in Figure 3-4b seems to appear for higher p2 values.

0

0.2

2000

5

4000

0.15

6000

0.1 0

Figure 3-5: The mse for all signals in dataset Q for the trivial model U1,triv

Identically, the behavior of the mse for the trivial models U2,triv and U3,triv are visualized
Master of Science Thesis Stijn Bosma

32 Feedforward controller design by means of genetic programming

in Figure 3-6. Likewise, we can see that signals with lower p2 values result in a lower mse,
implicating that there is a component in the target signals which is not explained by the
trivial models that has more influence as the setpoint signals increase in their maximum
velocity. Figure A-10 and A-11 in Appendix A illustrate the fit for U2,triv and U3,triv on
setpoint signal 1 and 2.

0

0.2

100

5
0.15

200

0.1 0

(a) mse for model U2,triv

0.5

0.2

1

5
0.15

1.5

0.1 0

(b) mse for model U3,triv

Figure 3-6: mse for all signals in training set Q for the models U2,triv and U3,triv

Approximating the second order derivative by means of compact models

For the models representing target data u∗2, interesting simple equations are found for all
three combinations of variables Rr1,Rr2 and Rr3. The found expressions are provided
in Table 3-8. First of all, genetic programming was capable of finding almost an identical
expressions while searching in different program spaces. For the experiments searching in
a space constructed ofRr1 andRr3, two similar models are found, where the latter differs
only in one input variable, which is the setpoint signal shifted forward by one step. This
result in different parameters and a slightly lower mse. Secondly, the model dependent
on Rr2 looks similar to the numerical approximation of the second order derivative used
to obtain r̈.

Input Complexity Fitness Variables Expression
Rr1 19 61.922 ṙ,

...
r u2 =0.44-0.16 r̈ - 155.70 r

Rr2 27 62.124 rk−1, rk, rk+1 u2 = 0.44 + 4.87e5 rk - 2.44e5 rk−1 − 2.44e5rk+1
Rr3 19 61.767 rk+1, r̈k u2 = 0.44-0.16 r̈k -155.66 rk+1

Table 3-8: Similar expressions found for experiments with target data u∗
2

A central difference scheme is used to calculated the derivatives, given by:

r̈ = − 2
4h2rk + 1

4h2rk−2 + 1
4h2rk+2 (3-4)

We are comparing the following two expression given in more significant digits as:

u2 = 0.436462− 0.155851r̈ +−155.702r (3-5)
u2 = 0.444085 + 4.87368e5rk − 2.43689e5rk−1 − 2.43836e5rk+1 (3-6)

Although Equation 3-6 has only values shifted by one, please remember that these are
downsampled values. These shifted values are given as rk±p∗1, where p is the downsam-
pling rate, in our case 8.

Stijn Bosma Master of Science Thesis

3-2 Results 33

Now if we take a downsampling rate of 4, and we express the shifted values as rk±8 =
rk±2∗4, we can compare Equation 3-6 with Equation 3-5 as:

− 0.155851r̈ = 0.311702
4h2 rk −

0.155851
4h2 rk−2 −

0.155851
4h2 rk+2 (3-7)

Now taking a sampling time of h = 0.0004 we end up with:
−0.155851r̈ = 4.87034e5rk − 2.43517e5rk−2 − 2.43517e5rk+2 and subsituting this in
Equation 3-5 results in an expression very similar to Equation 3-6.

3-2-2 The influence of of the input variables on the feedforward controller perfor-
mance

In this section we will investigating the influence of the input variables by first directly
comparing the models found with genetic programming with respect to their input vari-
ables. After that, we will structure the results in such a way that we have a subset of
models from which the user can pick an expression to create a feedforward controller.
Three types of feedforward controllers are created dependent on the varying input vari-
ables and together with the trivial models are considered for further analysis.

The influence of the input set on the accuracy of the models

In this sections we will investigate the influence of Rrp on the accuracy of the models.
We refer to Rr1 as input set 1, Rr2 as input set 2 and Rr1 as input set 3. A subset of
found models found with mathematical operators M1 for target data u∗1 are visualized
in a plot in Figure 3-7a. Here, every point corresponds with a model found with genetic
programming which is rated on its complexity and accuracy. We observe that the models
dependent on input set 2 are more accurate than input set 1. Furthermore, models
depending on input set 3 result in even more accurate models than the other input sets,
as these settings result in a lower Pareto front. This trend is noticed in a weaker fashion
for models found with M2 and M3, which can be seen in Figure A-4 in Appendix A.
For the models U2, there is not a general trend visible which returns for all math set, as
is illustrated by Figure A-5 in Appendix A. The models U3 which depend on input set
2 are outperformed by models found with input set 1 and 3. However, the difference in
accuracy is minimal. This trend is found for all three sets of mathematical operators.
Their Pareto fronts are visualized in A-6 in Appendix A.

●
● ● ●●●●●●● ●●

● ●● ●●● ●●● ●
■ ■ ■ ■■■■ ■■ ■

■■■ ■■■ ■

◆

◆◆◆◆
◆

◆ ◆◆◆◆◆ ◆◆◆◆◆◆◆◆ ◆◆◆◆ ◆◆◆◆

● Input Set 1

■ Input Set 2

◆ Input Set 3

0 20 40 60 80 100 120 140
0

2000

4000

6000

8000

10000

Complexity [-]

M
e
a
n

S
q
u
a
re

d
E

rr
o
r
[-
]

(a) U1 models created withM1

●

● ●
●● ●●●

●● ●● ● ● ● ●● ● ● ●

■ ■

■■ ■■
■ ■■■ ■■■

■■

◆

◆ ◆
◆◆ ◆

◆◆ ◆ ◆◆ ◆
◆ ◆

● Input Set 1

■ Input Set 2

◆ Input Set 3

0 20 40 60 80 100 120 140
0

50

100

150

Complexity [-]

M
e
a
n

S
q
u
a
re

d
E

rr
o
r
[-
]

(b) U2 models created withM1

Figure 3-7: The influence of the input variables on the accuracy of the models

Master of Science Thesis Stijn Bosma

34 Feedforward controller design by means of genetic programming

After combining the results found with genetic programming, we can present a subset of
models representing the three different target signals. As was mentioned earlier, we are
not explicitly interested in which set of mathematical operators returns the best models.
Rather, we are looking for a subset of models from which we can select three models
that are both interpretive and have a high fit. Figure 3-8 visualizes all found models for
input variables Rr1. From these models the user can select one per compensation signal
to create a feedforward controller. Table A-1 in Appendix A provides all models on the
Pareto front of Figure 3-8a. Similarly, Figure A-8 and A-9 in Appendix A present the
results for the models depending on Rr2 and Rr3.

●
●

● ●●●●●●● ●●
● ●● ●●● ●●● ●

■

■
■ ■■ ■

■
■
■ ■

■ ■ ■ ■ ■

◆

◆
◆◆ ◆◆◆◆

◆◆
◆
◆
◆◆◆◆◆◆◆◆ ◆ ◆◆

● Math Set 1

■ Math Set 2

◆ Math Set 3

0 20 40 60 80 100 120 140
0

2000

4000

6000

8000

10000

Complexity [-]

M
e
a
n

S
q
u
a
re

d
E

rr
o
r
[-
]

(a) The Pareto fronts of the models U1,IS1(ρr11)

●

●●

●●●●●
●●●●●●● ●●● ● ●

■■

■■■

■■■■■■

■■

■■■ ■■
■■■■■■■ ■ ■ ■ ■

◆◆

◆

◆◆◆
◆

◆
◆◆◆◆◆◆◆◆ ◆◆ ◆◆◆

● Math Set 1

■ Math Set 2

◆ Math Set 3

0 50 100 150 200 250 300
0

20

40

60

80

100

Complexity [-]

M
e
a
n

S
q
u
a
re

d
E

rr
o
r
[-
]

(b) The Pareto fronts of the models U2,IS1(ρr21)
●

●

●

●

●●●●●●● ●●●●●●●●●●●●● ●●

■

■

■■■

■■■

■■■■
■
■■■

■■■
■■■■■■■■■■ ■■ ■ ■ ■■■ ■ ■■ ■

◆

◆

◆◆

◆◆
◆◆◆◆

◆◆
◆
◆
◆◆◆◆◆ ◆◆◆◆◆◆◆◆◆ ◆◆ ◆◆ ◆◆◆◆◆◆ ◆

● Math Set 1

■ Math Set 2

◆ Math Set 3

0 50 100 150 200
0.0

0.5

1.0

1.5

2.0

Complexity [-]

M
e
a
n

S
q
u
a
re

d
E

rr
o
r
[-
]

(c) The Pareto fronts of the models U3,IS1(ρr31)

Figure 3-8: An overview of models which can be chosen from to create the controller UIS1 depen-
dent on Rr1

We will continue by creating a feedforward controller from the trivial models and another
three dependent on Rr1,Rr2 and Rr3 as:

Utriv(Rr1) =
[
U1,triv(ρr11) U2,triv(ρr21) U3,triv(ρr31)

]
(3-8)

UIS1(Rr1) =
[
U1,IS1(ρr11) U2,IS1(ρr21) U3,IS1(ρr31)

]
(3-9)

UIS2(Rr2) =
[
U1,IS2(ρr12) U2,IS2(ρr22) U3,IS2(ρr32)

]
(3-10)

UIS3(Rr3) =
[
U1,IS3(ρr13) U2,IS3(ρr23) U3,IS3(ρr33)

]
(3-11)

These models are chosen such that they are interpretive and nonlinear operators are
avoided. Furthermore, they are sampled at the middle of the Pareto front, considering the

Stijn Bosma Master of Science Thesis

3-2 Results 35

trade-off in the complexity and the mse of the model. The three controllers created from
the three models are presented in Table 3-9 3-10 and 3-11, respectively. The information
of the chosen models is given in Table 3-12, where their complexity, mse and their input
variables are presented.

Input Expression
Rr1 u1 = 4.63 + 152.72 sin(1.93e−2r̈) + 3.87e−3...r + 1.93ṙ3

Rr1 u2 = 2.22− 0.17r̈ + 87.86 cos(3124.49r3)r − 197.43r + 6797.27 cos(22.65r)2r2 − 3.84e5r4

Rr1 u3 = 0.71− 1.87 cos(16.09 + 41.47r)4 − 4.31e−3r̈ − 9.65e−3 sin(41.47 + 11.87r)r̈

Table 3-9: The genetic programming controller UIS1

Input Expression
Rr2 u1 = 4.04 + 7.32e6rk−1 − 4.58e6rk−2 + 4.17e5rk−3 − 4.47e6rk+1 + 1.42e7r3

k+1
−5.81e7rk−3rk+1rk+2 + 1.31e6rk+3 + 4.40rk−1rk−3rk+3

Rr2 u2 = −4.33 + 8.83 cos(38.16− 445.49rk2) + 94.77rk cos(0.75− 445.49rk2)rk + 2.66e5rk
−1.77e5rk−1 − 8.89e4rk+2

Rr2 u3 = −1.29e5 + 0.97 cos(84.97(7.22 + rk)) + 1.29e5 cos(rk+1) + 245.80rk − 240.95rk−1
+1.20e4rk−3rk+1 + 5.15e4rk+1rk+2

Table 3-10: The genetic programming controller UIS2

Input Expression
Rr3 u1 = 4.84 + 5.20r̈k+1 + 3129.67r̈k−1 − 10.72ṙk−2ṙ

2
k−3 + 12.18r̈3

k−3 − 3117.17ṙk+1
+0.19ṙ

Rr3 u2 = −12.06 + 14.67 cos(366.18rk2)− 0.17r̈k + 91.02 cos(366.18rk2)rk − 175.98rk
+3041.98rk2 − 1.74e5rkr

3
k−2

Rr3 u3 = −1.88e−2 − 0.27 ∗ cos(80.93 + rk)2 + cos((cos(rk) + 40.46 + rk)2)
−0.28r̈k−3rk

2 + 0.20ṙk+3 + 7.22e−2r̈krk+3

Table 3-11: The genetic programming controller UIS3

Output Input Complexity MSE Variables
u1 Rr1 38 3975.150 ṙ, r̈,

...
r

u2 Rr1 102 18.843 r, r̈
u3 Rr1 103 0.349 r, ṙ, r̈
u1 Rr2 83 1160.450 rk−3rk−2rk−1rk+1rk+2rk+3
u2 Rr2 112 18.473 rk−1, rk, rk+2
u3 Rr2 87 0.428 rk−3, rk−1, rk, rk+1, rk+2
u1 Rr3 54 350.938 r̈k−3, ṙk−1, r̈k+3, rk−3, rk−2, rk+1
u2 Rr3 105 19.036 rk−2, rk, r̈k
u3 Rr3 108 0.340 rk, rk+3, ṙk+3, r̈k

Table 3-12: Information about the chosen models for the controllers UIS1,UIS2 and UIS3

The accuracy analysis for the models chosen as feedforward controller

The set VQ,1 for the models U1,triv,U1,IS1,U1,IS2 and U1,IS3 are given in Figure 3-9. We
can see that model U1,IS3 is performing the best, as the vaf values are the highest. This
is noticed earlier in Figure 3-7b, where the lowest Pareto front is obtained for input set
3. Furthermore, we can see that the difference in accuracy between U1,triv and U1,IS1 is
Master of Science Thesis Stijn Bosma

36 Feedforward controller design by means of genetic programming

minimal. A time domain plot with the target data, the output of U1,triv and the output
of the best performing model U1,IS3 for setpoint signal 2 is provided in Figure 3-10.

75

80

85

90

95

Figure 3-9: The accuracy of the models U1 chosen for the four feedforward controllers

Figure 3-10: The output of U1,triv,U1,IS1 and signal u∗
1 for setpoint signal 2

The sets VQ,2 and VQ,3 for the corresponding models in the four considered feedforward
controllers are given in Figure 3-11a and Figure 3-11b. Here, we can see in both cases that
the trivial model is the least accurate. Furthermore, there is little difference in accuracy
for the models dependent on input set 1, 2 and 3. For a time domain plot of the output
of models U2,triv and U2,IS3 and the output of the models U3,triv and U3,IS3 corresponding
with setpoint signal 2, please see Figure A-12 in Appendix A.

Stijn Bosma Master of Science Thesis

3-2 Results 37

60

70

80

90

100

(a) The accuracy of the models U2 chosen for the four feedforward controllers

0

20

40

60

80

(b) The accuracy of the models U3 chosen for the four feedforward controllers

Figure 3-11: The accuracy of the models considered in the four feedforward controllers

3-2-3 Feedforward controller performance

The sets of performance measures EQ for the feedforward controllers UIS1,UIS2,UIS3 and
Utriv are given in Figure 3-12a, where the performance sets for optimal control and no
control, EILC and E0 are also presented. We can see that the ILC signals reduce the
disturbance the most. The other four controllers all reduce the median of the set of
performance measures. Furthermore, the trivial controller reduces the disturbance less
than the other controllers as the set of disturbance measures is more spread out. This
is in line with the previous observations, where we saw that the trivial models had the
lowest set of vaf values. There is little performance difference between the other three
controllers. Figure 3-9 showed that the model U1,IS3 is the most accurate. However, this
is not directly reflected on the performance of the controllers.
Master of Science Thesis Stijn Bosma

38 Feedforward controller design by means of genetic programming

1000

2000

3000

(a) The controller performance for the signals in the training set Q

40

60

80

(b) The controller performance for the signals in the validation set R

Figure 3-12: The controller performance of the 4 feedforward controllers

To investigate if the controllers are satisfying condition 1-2.1, their performance is ex-
pressed in a percentage of reduction ζ. Figure 3-12b shows the sets of reduction measures
ZR for all 4 controllers. From this figure we can conclude that the performance measures
are reduced for all signals in the validation set and that the controllers satisfy Condition
1-2.1. The minimum and maximum percentage of reduction obtained by the controllers
are given in Table 3-13. Furthermore, based on these values, controller UIS3 returns the
best performance, as it has the highest minimum reduction.

Controller Minimum reduction Maximum reduction
Utriv 28.79 % 90.11%
UIS1 27.86 % 88.56 %
UIS2 38.57 % 80.91 %
UIS3 40.01 % 89.65 %

Table 3-13: The minimum and maximum reduction for the controllers found with genetic program-
ming

3-2-4 Concluding remarks

• We observed that the general trend of the compensation signals is explained by a
set of trivial models. Furthermore, we noticed that the trivial models have a better
fit for setpoint signals with lower p2 values and their fit decreases for signals with
higher p2 values. Therefore, we speak of a component that is not captured by the
trivial models, which is dependent on p2 = max(ṙ). We also noticed that genetic
programming managed to find the approximation of the second order derivative.

• The influence of the different input sets on the accuracy of the models was strongly
noticed for the U1 models. For the U2 and U3 models, the influence was minimal.

• The results of the genetic programming experiments are merged to 9 sets of models.
Feedforward controllers are created by taking models that depend on the same input

Stijn Bosma Master of Science Thesis

3-3 Discussion 39

sets. We created four feedforward controllers. The trivial controller was created by
sampling models with low complexity. The other three controller were created by
sampling models that are average in accuracy and complexity. All four controllers
reduced the disturbance measure with at least 28.79 %, therefore satisfying Con-
dition 1-2.1. The difference in performance between the trivial controller and the
other controllers was noticeable but not significant.

3-3 Discussion

We noticed that the models U1 are strongly influenced by the type of input set that was
chosen. From a physical interpretation of the signals, this might be explained by the
fact that both signal u1 and setpoint signal r act in the same dimension. For the other
models, there was no strong increase in accuracy for different input sets. Furthermore,
we noticed that the increase in accuracy was not directly reflected on the performance
of the controller. This indicates that the disturbance force is less dependent on signal u1
than the other two or that the increase of accuracy in u1 was to minimal to influence the
controller performance. From a physical interpretation of the signals, the first suggestion
is more likely, as the disturbance force and signal u1 operate in different dimensions.
There is an increase in the minimal reduction percentage min(ζ) detected for controllers
UIS1,UIS2 and UIS3. Moreover, we noticed that all four genetic programming controllers
are capable of reducing the performance measure for the set of setpoint signals in the
validation set with at least 27.86 %.
The discovery of the numerical approximation of the second order derivative suggest
the mapping dependents on setpoint signal derivatives. By analyzing the trivial models
we could get an insight in the behavior of the compensation signals throughout the
parameterized space P . We discovered a component in the signals which is dependent on
p2 = max(ṙ). Now combining the observation that the trivial models fail to describe a
component that is influenced by p2 and by looking at the dependent variables of the trivial
models, we can select the combination of relevant input variables. For the mapping U2 and
U3, the experiments suggest that the input variables are given as ρr1 = ρr2 =

[
r ṙ r̈

]
.

For model U1, the trivial model suggest that the input set consist of ρr1 =
[
ṙ

...
r
]
.

From the physical system we can also suspect that ρr1 depends on r and r̈ as there
is a mass present in the system, which have second-order dynamics. This is confirmed
when analyzing the Pareto front of models U1 dependent on Rr1 in Table A-1 in the
Appendix A.
Since no significant improvement in controller performance was observed and the algo-
rithm suggested the dependence on the numerical approximation, the input sets ρr1,ρr2
and ρr3 are chosen from the first combination of input variables Rr1 consisting of the
setpoint signals and their numerical derivatives.
The main advantage of genetic programming is its ability to find analytic equations
representing the target data. The set of models that are found with genetic programming
vary in complexity and are composed from mathematical operators from all three sets
of mathematical operators. Therefore, it reflects the trade-off between the transparency
of the model and its accuracy. We sampled a set of models low in complexity and used
it as controller. We also sampled a set of models which where average in complexity
and average in accuracy. The increase in complexity came with an increase in controller
performance. Sampling the models with the highest fit and largest complexity came with
Master of Science Thesis Stijn Bosma

40 Feedforward controller design by means of genetic programming

a controller that did not perform for all signals in validation set R, thus not satisfying
Condition 1-2.1.

3-4 Conclusion

Now to conclude the chapter, we answer the following research questions:

1. Which combination of variables ρr1,ρr2 and ρr3 are beneficial for the performance
of the feedforward controller?
There was minimal difference in controller performance between the models UIS1,UIS2
and UIS3. Furthermore, the discovery of the approximation of the second order
derivative emphasizes that the data is explained by continuous time derivatives.
Therefore, the set of input variables that are used for the neural network models is
presented in Table 3-14.

2. Can we use genetic programming to find a set of models from which the user can
select a model that is interpretive and has a high fit?
We can see that the found models are represented rated on their complexity and
fitness. From this set of results, it is up to the user to select three models to combine
as feedforward controller. Preference might be for models that are created without
any nonlinear functions and are giving more insight in the relation between the
input variables and the output of the model. Perhaps the controller performance is
preferred over the transparency of a model and the user selects a set of models with
high complexity and high fit.

Target data Input set
signal u∗1 ρr1 = [r, ṙ, r̈, ...r]
signal u∗2 ρr2 = [r, ṙ, r̈]
signal u∗3 ρr3 = [r, ṙ, r̈]

Table 3-14: An overview of the relevant input variables per target dataset

Stijn Bosma Master of Science Thesis

Chapter 4

Feedforward controller design by means
of feedforward artificial neural networks

In this chapter we will explain the design of the feedforward controller using feedforward
artificial neural networks. Within the blackbox nonlinear modeling method, the struc-
ture of the model is fixed a priori and the parameters in the structure are optimized by
minimizing the error between the output of the model and its target data. Two networks
are considered, which mainly differ in their activation function. The first network uses
the hyperbolic tangent sigmoid transfer function referred to as the tanh network, whereas
the second network uses the Rectifier Linear Unit activation function, referred to as the
ReLU network.
The neural networks are used to solve Problem 1-2.4, which is formulated as an optimiza-
tion problem directly searching in the program space. Since the neural networks are not
capable of doing that, the problem is written as an optimization problem where we are
looking for the optimal parameter vector θ∗. The feedforward controller is designed by
solving Problem 4-0.1.

Problem 4-0.1. Design a feedforward controller U : RN×n → RN×3 defined as:

U∗(Rr) =
[
U∗1 (ρr1) U∗2 (ρr2) U∗3 (ρr3)

]
(4-1)

by solving the following three optimization problems:

∀(r,u∗i) ∈ Qj,θ
∗
i = arg min

θi∈RM

1
N
||u∗i − Ui(ρri,θi)||

2
2 for i = 1, 2, 3 (4-2)

Here θ1,θ2 and θ3 are vectors containing all the M weight and biases in the neural
network, u∗1,u∗2 and u∗3 are the three optimal compensation signals obtained with ILC,
U1,U2 U3 are the different networks representing different optimal compensation signals,
ρr1,ρr2 and ρr3 are their corresponding input sets and N the amount of samples in the
signals that are considered. Furthermore, Qj is the data set on which the neural networks
are trained and this is always a subset of the training set Q, Qj ⊆ Q.

Master of Science Thesis Stijn Bosma

42 Feedforward controller design by means of feedforward artificial neural networks

The chapter is split up in two main sections. First, the experimental set-up is given,
where we will explain what we are investigating and how we achieve this. After that, the
results of the experiments are presented, followed by the discussion of the results. The
chapter closes with a conclusion based on the experiments.

4-1 Experimental Set-Up

The experimental set-up focuses on the influence of the size of a neural network and
the influence of the training data on the performance of the neural network feedforward
controller. The first subsection will present the research questions we answer in this
chapter. The second subsection will motivate the choices of varying parameters and
explain in detail how these parameters are varied. The third subsection will discuss the
other settings chosen during the experiments. The last subsection provides the framework
used to process the results.

4-1-1 Research questions

Generally, the accuracy of a neural network is influenced by its size [12]. However, using
a neural networks with extensive hidden layers and neurons comes with the risk of over-
fitting, which means that the network performs well on the training data, but fails to
predict unseen data. Contradictory, too little hidden layers and neurons might result in a
neural network that does not succeed in predicting the data accurately. It is therefore of
importance to pick a neural network with sufficient size. Since there is no formal method
to pick a sufficient network size, one of the goals of the experiments is to find a neural
network size which is satisfactory. The research question 1 is given below.

Each combination of setpoint signals and optimal compensation signals in training set
Q contains information on what the model should predict. This means that training a
network on all signals, results in a model that tries to capture all information. However,
since gathering training data is time-consuming and in our case also cost-consuming, it is
beneficial to train on as little data possible. Therefore, the set of experiments investigate
the influence of the training data on the performance of the neural networks, motivating
research question 2.

1. What size of network is sufficient for its performance as feedforward controller?

2. When does the amount of data points influences the performance of the feedforward
controller significantly?

4-1-2 Varying parameters in the experimental set-up

The set of designed experiments are created by varying parameters in the training of
the neural networks. In this subsection, we will present all the parameters that are
varied throughout the experimental set-up. We will present the chosen settings and their
motivation and wrap up the subsection with an overview of all neural networks considered
in this experiment.

Stijn Bosma Master of Science Thesis

4-1 Experimental Set-Up 43

Hidden Layers

Three different hidden layer sizes are considered, which are chosen in empirical fashion.
Networks with 2, 3 and 4 hidden layers are used in the experiment. For the networks
with the tanh activation function, 10 neurons per layers are used. For the networks using
the ReLU activation function, 20 neurons per layers are used. The number of neurons
are increased until the performance of both networks are similar. Adding more neurons
per layer to the ReLU network, resulted in a training process that converged poorly, as
it started to overfit immediately. An overview of the complexity of these networks is
presented in Table 4-1.

Activation Function Hidden Layers Neurons per Layer Inputs Weights and biases
tanh 2 10 3/4 161/171
tanh 3 10 3/4 271/371
tanh 4 10 3/4 381/291
ReLU 2 20 3/4 521/541
ReLU 3 20 3/4 941/961
ReLU 4 20 3/4 1361/1381

Table 4-1: Overview of the used network sizes in the neural networks experiment

Training data sets

Four training data sets are considered, descending in the number of data points. The
training data sets Q1, Q2, Q3 and Q4 contain 72, 54, 36 and 18 signals, respectively. These
signals are uniformly sampled throughout the parameterized training setpoint signals Q
as is illustrated in Figure 4-1. Since all signals have the same p3 value, the training data
sets are provided in a 2D plot. Furthermore, training data set Q4 is converging from the
uniform sampling. The signals with the maximum and minimum p2 in Q are included
in the data sets, with the idea that if once a neural network learns the signals on the
vertices, it is capable of interpolating in between.
Master of Science Thesis Stijn Bosma

44 Feedforward controller design by means of feedforward artificial neural networks

Figure 4-1: The signals per training dataset sampled in the parameterized training set Q in the
neural networks experiment

Each point expressed in Figure 4-1 corresponds with a combination of r and U∗. As
was presented in section 2-1, the signals consist of repetitive periods containing identical
information. The training sets are reduced further by removing redundant periods. For
each signal, the first, the last and two normal periods are considered.

The training data sets are randomly split up in a training, test and validation set. The
training set uses 70 % of the data, whereas both the test and validation set uses 15 % of
the data. The networks are trained on the training set. To see if the neural network is
over-fitting, its error on the validation set is checked. By checking if the error increases
on the validation set, while it does not on the training set, we can get an indication that
the network is over-fitting. The test set is used to give an unbiased indication of the
performance of the neural network.

The Levenberg Marquardt (LM) training algorithm [26] is used to optimize the parame-
ters within the network. This training method uses the gradient of the error. By scaling
both the input and target data we ensure that the data is in the same output range as
the activation function, resulting in a better gradient function. A lower gradient leads
to smaller performance increments per iteration, resulting in a slower training process.
For the tanh network, both in- and output data is scaled between [−1, 1]. This differs
from the scaling used for the ReLU network. Here, the input data is also scaled between
[−1, 1], whereas the target data is scaled between [1, 2]. Please note that the final ac-
tivation of the ReLU network is a ReLU activation function, which is needed following
the convention of sherlock. Therefore, any negative output is saturated at 0, so the
target data cannot be scaled between [−1, 1]. Scaling the data close to zero is preferable
to keep a larger gradient. However, scaling between [0, 2] results in a fragile lower bound,
because a negative output is saturated by the final activation function.

Stijn Bosma Master of Science Thesis

4-1 Experimental Set-Up 45

Dataset Number of signals Number of datapoints
Dataset Q1 72 481, 289
Dataset Q2 54 351, 860
Dataset Q3 36 239, 585
Dataset Q4 18 123, 791

Table 4-2: An overview of the amount of data per training dataset used in the neural network
experiment

Repetition, Target Data and Activation Function

The neural network are initialized randomly with the Nguyen-Widrow layer (NWl) ini-
tialization [29], which chooses weight and biases per layer in such manner that the active
regions of the activation functions are approximately evenly distributed over the input
space of that layer. The initialization is random, meaning that the training process of
the networks is nondeterministic. Every experiment has to be repeated several times, to
filter out the influence of the initialization on the performance.
Each experiment is repeated 3 times with the exact same settings. Every signal u∗1,u∗2
and u∗3 is represented by a different neural network, which results in 3 varying options.
Finally, as two types of activation functions are considered, 2 extra varying parameters
are added. As is presented, the training data, amount of hidden layers, target data
and activation function are varied. An overview of the varying parameters is given in
Table 4-3. In total 4× 3× 3× 2 = 72 different neural networks are considered.

Training data (Q1, Q2, Q3, Q4)
Hidden layers (2, 3, 4)
Target data {u∗1,u∗2,u∗3}
Activation function (tanh, ReLU)

Table 4-3: An overview of varying parameters in the neural networks experiment

4-1-3 Other parameters in the experimental set-up

The choices for the settings of the other parameters needed to design the feedforward
controller by means of the neural networks and their motivation are given in this subsec-
tion.

Input variables per network

The local optimum models found in the genetic programming experiments suggested
which derivatives are interesting per target data signal. An overview of the input sets
used for the neural networks is presented in Table 4-4.

Target data Input set
u∗1 ρr1 = [r, ṙ, r̈, ...r]
u∗2 ρr2 = [r, ṙ, r̈]
u∗3 ρr3 = [r, ṙ, r̈]

Table 4-4: An overview of input variables per target dataset used in the neural networks experiment

Master of Science Thesis Stijn Bosma

46 Feedforward controller design by means of feedforward artificial neural networks

Training process of the neural networks

The weights and biases in the neural network are initialized using the NWl initialization.
The networks are trained using the LM optimization algorithm [26], which is a nonlinear
optimization algorithm capable of handling numerically ill-conditioned problems. Batch
training is used, where in one iteration, all training samples in the training set are used
together in the optimization, followed by an update in the weights and biases. An iteration
is referred to as an epoch. The training process is done using the deep learning toolbox
in matlab R2017b [30], which supports parallel computation. The experiments are
performed on an Intel(R) Core (TM) i5-6500 CPU @ 3.20 GHz.
The training of neural networks can be terminated for multiple reasons. First of all, the
training is terminated if 1000 epochs are reached. Secondly, during the training process,
the error on the validation set is monitored. If the error increases for 6 consecutive epochs,
the training process is terminated to prevent over-fitting.
Furthermore, the LM algorithm is given as:

θk+1 = θk − (µkI +H(θk))−1∆U(θk) (4-3)

Where H is the hessian and ∆U(θk) the gradient of function U(θk). If ||H(θk)|| � µ,
the algorithm behaves as Newton’s algorithm, which generally performs more accurate
and faster nearby an error minimum. If ||H(θk)|| � µ, the algorithm behaves as the
gradient descent algorithm with small step size. Therefore, we start the algorithm with
an initial µ0 = 0.001. The µ value is decreased with a factor of µk+1 = µdecrµk and is
only increased if the following steps lead to a decrease in performance. If this happens,
the µ is increased as µk+1 = µincrµk . In this way, the algorithm acts initially as newton’s
algorithm by lowering the µ value. Once the convergence approaches an optimum, the
final steps are done by an approximation of the steepest decent method with a small step
size.
If the µ-value in the LM training algorithm reaches a maximum of µmax = 1010, the train-
ing process is terminated. Continuing training with high µ values does not improve learn-
ing, since we are taking minimal steps with the steepest decent method. Furthermore,
the training process is terminated if a minimum gradient of 10−7 is reached, indicating we
have approximated an optimum. An overview of all training thresholds and parameters is
presented in Table 4-5. Furthermore, the performance of the neural network is measured
using the mse defined as:

ek = 1
N
||u∗ − U(θk)||22 (4-4)

4-1-4 Processing the results of the neural networks experiment

As each experiment was repeated 3 times, the best neural network is chosen based on
the lowest MSE for all target data in training set Q. The best neural network will be
considered for further analysis. The results will be processed equivalent to how the
problem is approached. First, we will analyze how well the neural networks fit their
target data, which is referred to as the accuracy analysis. Secondly, we will combine the
neural networks into a feedforward controller and evaluate how the disturbance force is
attenuated, which we refer to as the feedforward controller analysis.

Stijn Bosma Master of Science Thesis

4-2 Results 47

Algorithm Setting Value
Maximum epochs 1000
Minimum gradient 1e−7

Validation Checks 6
µmax 1e10

µ0 0.001
Increase factor µincr 10
Decrease factor µdecr 0.1
Maximum Time ∞
Performance goal 0

Table 4-5: Parameters used for the training process in the neural networks experiment

Measure Interpretation Formula
vaf The percentage of fit of a model with its target data Equation 2-14
VQ,i The vaf values for all signals in Q Equation 2-15
ζ The reduction of the performance measure in percentage Equation 2-23
ZQ The reduction measures for all signals in Q Equation 2-26
ZR The reduction measures for all signals in R Equation 2-27
ZR3 The reduction measures for all signals in R3 Equation 2-28

Table 4-6: An overview of all measures used to present the results of the neural networks experi-
ments

4-2 Results

In this section we will present the results by first looking at how the neural networks fit
the available optimal compensation signals, which we refer to as the accuracy analysis.
We will investigate when the hidden layers do no longer influence the accuracy of the
networks. After that, we look at what point the number of training data has impact on
the accuracy. From there on we will look at the performance of the feedforward controller
formed by the found networks. Similar to the accuracy analysis, we will first look at when
the increasing of the hidden layers no longer influence of the performance. After that,
we will look at the impact of the reducing of the training data on the performance of the
neural networks.

4-2-1 Accuracy Analysis

We will present the results by means of networks that are trained for signal u2. How-
ever, similar observations are found for the networks representing the other signals. An
overview of all results is presented in Appendix B. To show the results of the networks
with varying hidden layers, we will only show the networks that have been trained on
training data set Q1. To show the results for varying training sets on the accuracy of the
neural networks, we only show the networks with 3 hidden layers.

The influence of the hidden layers on the accuracy of the neural networks

In Figure 4-2a and 4-2c the convergence processes of the tanh and ReLU networks with
all sizes on dataset Q1 are displayed, where the error on the test set is given. We see
that for both cases the neural network with 4 hidden layers converges to the lowest mse.
Master of Science Thesis Stijn Bosma

48 Feedforward controller design by means of feedforward artificial neural networks

The figures show that an increase in hidden layers results in better convergence. In both
figures the difference in convergence between 3 and 4 hidden layers is less than between 2
and 3. Furthermore, we can see that the ReLU network is reaching other stopping criteria
than the epoch threshold for all three sizes. For the 2 hidden layers, the training process
was reached for to prevent further over-fitting. For the networks with 3 and 4 hidden
layers, the maximum µ value was reached, indicating that it is ineffective to continue
training. The convergence processes of the ReLU networks are terminated at a higher
mse than the tanh networks. Figure 4-2d points at an increase in accuracy after adding
a 4th hidden layer.

(a) Convergence process for the tanh networks
U2 trained on Q1

(b) VQ,2 for the tanh networks U2 trained on dataset Q1

(c) Convergence process for the ReLU networks
U2 trained on Q1

(d) VQ,2 for the ReLU networks U2 trained on dataset Q1

Figure 4-2: The influence of the hidden layers on the performance of the networks representing
signal u2

The set of vaf values VQ,i are calculated for the three tanh and ReLU networks and are
visualized in Figure 4-2b and 4-2d. The figures show a similar trend as Figure 4-2a and
4-2c; more hidden layers increases the accuracy of a neural network, as the median of the
set of vaf values is higher. Furthermore, we see that the tanh network reaches higher
vaf-values than the ReLU network. From Figure 4-2b it follows that the difference in
performance for tanh networks with 3 hidden layers and 4 hidden layers is minimal. Fig-
ure 4-2d illustrates a difference in performance between 3 and 4 layered neural networks.
However, this trend is only visible for U2 models. In Figure B-8b and Figure B-8f in
Appendix B this tendency is not occurring and the networks U1 and U2 with 3 and 4
hidden layers have similar accuracy. Figure 4-3 shows the output of both the tanh and
the ReLU network with 3 hidden layers in the time domain. Both networks produce an
output that fits accurately with a vaf of 99.898 % for the tanh network and a vaf of
99.546 % for the ReLU network.

Stijn Bosma Master of Science Thesis

4-2 Results 49

(a) The output of tanh network U2 with 3 hidden layers and its target data u∗
2

(b) The output of ReLU network U2 with 3 hidden layers and its target data u∗
2

Figure 4-3: Time domain plots of the output of a tanh and ReLU network with 3 hidden layers.

To illustrate the performance difference, we consider a zoomed-in section of Figure 4-3.
In Figure 4-4 the output of three tanh networking ascending in size are plotted together
with their target data. The output is smooth and close to the target data. The difference
in vaf between 3 and 4 hidden layers is minimal and hardly visible in the plots.

Figure 4-4: The influence of the hidden layers in time domain for the tanh networks

In Figure 4-5, the same is done for the output of the ReLU networks. First thing we
notice is that the signal is not smooth. Furthermore, the size of the network has more
impact on the vaf values, which is also visible in the plots.
Master of Science Thesis Stijn Bosma

50 Feedforward controller design by means of feedforward artificial neural networks

Figure 4-5: The influence of the hidden layers in time domain for the ReLU networks

The influence of the training data sets on the accuracy of the neural networks

Figure 4-6 illustrates the influence of the training data on the accuracy of the tanh and
ReLU network with 4 hidden layers. Please remember that the data sets are numbered
in descending fashion, i.e. Q1 is the largest training data set, while Q4 is the smallest.
The boxplots show that the networks trained on training data set Q4 have the set with
the lowest vaf values. To get a better view on the influence of dataset Q1, Q2 and Q3
on the accuracy of the networks, their vaf values are plotted in Figure 4-6b and 4-6d.
These figures show that there is little accuracy lost if the networks are trained on less
data. Similar behavior is found for the other signals, where the networks start to predict
poorly when trained on dataset Q4. This is presented in the Figure B-5, B-6, B-7, B-12,
B-13, B-14 in Appendix B.

An overview of all the performed neural networks experiments

An overview of the experiments done for the networks U2 is given in Figure 4-7. Here, the
hidden layer axis refers to amount of hidden layers that is considered in the experiment,
reaching from 2 to 4. The data set axis refers to the training set which was used to
train on in the experiment, reaching from 1 to 4. These numbers refers to the previously
presented datasets Q1, Q2, Q3 and Q4. Three observations can be made, which are all
mentioned earlier. First of all, the tanh networks in blue, are performing better, as the
vaf values are higher. If we look at the results of the experiments for the ReLU networks
in red, we can see that the vaf values are lower and more spread out. Secondly, we see
in both cases that an increase of hidden layers comes with an increase in accuracy and
that little a is gained between the networks with 3 and 4 hidden layers. Finally, we can
see that accuracy decreases significantly if the networks are trained on training data set
Q4.

Stijn Bosma Master of Science Thesis

4-2 Results 51

(a) VQ,2 for the tanh networks U2 with 3 hidden layers (b) Partial representation of the Figure (a)

(c) VQ,2 for the ReLU networks U2 with 3 hidden layers (d) Partial representation of the Figure (c)

Figure 4-6: An overview of the influence of the training data sets on the accuracy of the neural
networks

(a) All experiments for the tanh networks U2 (b) All experiments for the ReLU networks U2

Figure 4-7: All results summarized for the networks U2

4-2-2 Feedforward controller performance

The analysis of the network controllers is done by looking at the reduction of the per-
formance measure in percentages ζ. First, we will discuss the influence of the controllers
with varying layers on the performance of the controllers. After that, we will discuss the
influence of the varying training data sets on the controller performance. The analysis
is split up in two. We will analyze the controllers for the training set Q and the set of
signals that lay in the same plane, R3. After that, the performance of the controller for
all the setpoint signals in the validation set are considered.
Master of Science Thesis Stijn Bosma

52 Feedforward controller design by means of feedforward artificial neural networks

The influence of the hidden layers on the performance of the feedforward controller

Figure 4-8 illustrates the set of performance reduction values ZQ for the feedforward
controller together with ZILC . Figure 4-8a illustrates that there is little performance
difference for the tanh controllers with 3 or 4 hidden layers, as was already noticed in
the accuracy analysis. For the ReLU controllers, there is minimal performance difference
visual, as is shown in Figure 4-8b. For the tanh controllers trained on various training
sets a similar trend occurs, as is presented in Figure B-16 in Appendix B, where we see
that the performance of the controllers with 3 and 4 hidden layer is comparable. For
the ReLU controller, the performance difference between controllers with 3 and 4 layers
is varying minimally (see Figure B-16 in the Appendix). For both controller types, we
can observe that the controllers with 3 and 4 layers are outperforming the controllers
with 2 layers. Noteworthy is the observation that the tanh controller outperforms ILC,
which should not be possible, as it is the optimal solution. For the ReLU networks, the
performance is comparable with ILC. Furthermore, we can see that the ReLU controller
is outperformed by the tanh controller.

(a) ZQ for the tanh controllers trained on Q1 (b) ZQ for the ReLU controllers trained on Q1

Figure 4-8: The influence of the hidden layers on the controllers performing on all signals in training
set Q

To indicate how the network behave for signals that are in the same plane as the training
data, the set ZR3 for various controllers is presented Figure 4-9. Here, we can see a similar
trend. Figure 4-9a illustrates little performance difference between the controllers with 3
and 4 hidden layers. For the ReLU controller, we can see that the largest controller results
in a set of ζ-values with less outliers compared to the set of ζ-values for 3 hidden layers
for signals in set R3, indicating a minimal performance difference. For tanh controllers
trained on other training data sets, we see that the 3 and 4 hidden layers perform similar,
as Figure B-17 in the Appendix illustrates. Figure B-23 in Appendix B illustrate that
the ReLU controllers with 3 and 4 hidden layers have little difference in performance for
signals in set R3.

(a) ZR3 for the tanh controllers trained on Q1 (b) ZR3 for the ReLU controllers trained on Q1

Figure 4-9: The influence of the hidden layers on the controllers performing on all signals in set R3

Stijn Bosma Master of Science Thesis

4-2 Results 53

Figure 4-10 illustrates the performance of the controller for all signals in validation set
R by visualizing various sets ZR in a boxplot. Figure 4-10a shows a notable increase in
performance between 3 and 4 hidden layers for the tanh controllers trained on dataset
Q1. For the tanh networks trained on the other data sets, there is no general tendency
noticed as is illustrated in Figure B-18 in Appendix B. For the ReLU controller there
is little performance difference between the network with 2 and 3 hidden, the controller
with 4 hidden layers is performing a little better. There is once more no general trend
noticeable in controller performance for the controllers trained on the other training data
sets (see Figure B-24 in Appendix B).

(a) ZR for the tanh controllers trained on Q1 (b) ZR for the tanh controllers trained on Q1

Figure 4-10: The influence of the hidden layers on the controllers performing for all signals in set
R

The influence of the training data sets on the performance of the feedforward controller

For the influence of the training data on the performance of the feedforward controller
we can observe a similar trend. Figure B-19 and Figure B-25 in Appendix B show the
different sets ZQ for various controllers. We observe a similar tendency as is found in the
accuracy analysis. The controllers trained on data set Q4 fail to attenuate the force as
accurate as the controllers trained on the other datasets,

Similarly, Figure B-20 and Figure B-26 in Appendix B illustrate the performance of the
controllers for the signals in set R3. We observe a comparable trend, where the controller
trained on training set Q1, Q2 and Q3 have comparable performance and the controllers
trained on Q4 perform the poorest.
Finally,Figure B-21 and Figure B-27 show the sets of reduction measures ZR for various
tanh and ReLU controllers. Here, the observations we made for the performance on the
setpoint signals in Q and R3 are not reflected in the performance on the validation set.

4-2-3 Concluding remarks

• In the accuracy analysis, we noticed that adding a fourth layer to the networks
improves the accuracy minimally and that a network with 3 hidden layers is accurate.
This is the case for the network with the ReLU and the tanh activation function.
There is a loss of accuracy noticed for the networks trained on the smallest training
data set Q4, while the networks trained on data set Q1, Q2 and Q3 have a similar
accuracy. This is observed for both type of networks.

• Similar trends are observed for the controller performance on signals in training set
Q and set R3. Adding a 4th layer increase the controller performance minimally and

Master of Science Thesis Stijn Bosma

54 Feedforward controller design by means of feedforward artificial neural networks

a drop in performance was noticed for network controllers trained on data set Q4.

• The tendency we noticed for the controller performance on signals from set Q and
R3 are not observed for the performance on all signals in validation set R.

4-3 Discussion

The loss in accuracy after training on the smallest data set Q4 is noticeable as several
outliers occur which are not visible for networks trained on the other 3 training data sets.
One of the reasons why the accuracy drops might not necessarily be the decreasing of
the number of data points but by the way they are sampled throughout space Q. As
was presented in the beginning, a non-uniform sampling was chosen. A network might
perform better if it is trained on an uniform sampled set as it needs to interpolate less.
For the controller performance on validation set R, the trends that we observed for
the performance on set Q and R3 were not found. The signals in Q and R3 vary in
their p3 value, which explains the difference in performance behavior. To obtain a better
performing feedforward controller, we should create a new training set uniformly sampled
throughout the parameterized space. Since we can obtain the optimal compensation
signals for any setpoint signal in P and as we saw that the networks are capable of
approximating the target signals excellently, an uniform sampling should result in a better
performing feedforward controller.
Furthermore, we noticed that the tanh controller outperforms ILC, which should not be
possible. ILC is an iterative approach converging to an optimal solution. The data set
we are working with might be terminated prematurely resulting in a set of sub-optimal
signals. Another explanation might be the objective function. Here it is assumed to be the
2-norm of the disturbance force, but ILC might be optimized over another performance
measure, explaining the sub-optimal performance.
In the next chapter, we will elaborate on how the performance of the controller cultivates
throughout space P . In chapter 6 we will discuss the performance difference between the
ReLU and tanh controller and we will explain the excellent controller performance on
signals with varying p3 values.

4-4 Conclusion

To finalize the experiment, we answer the research questions presented in the beginning
of this chapter. A difference in controller performance on setpoint signals in set Q and
R3 and the controller performance on the signals in the validation set R was noticed.
Therefore, we will base the conclusion on controller performance of setpoint signals in
the training set Q and R3.

1. What size of network is sufficient for its performance as feedforward controller?
We noticed that adding a 4th hidden layer to the network does not influence its
performance significantly and we can conclude that the networks with 3 hidden
layers suffices as feedforward controller.

2. When does the amount of data points influences the performance of the feedforward
controller significantly?

Stijn Bosma Master of Science Thesis

4-4 Conclusion 55

There was little performance difference for feedforward controllers constructed from
neural networks trained on dataset Q1, Q2 or Q3. Training the neural networks
on 18 signals resulted in a drop in accuracy and at last in feedforward controller
performance.

Master of Science Thesis Stijn Bosma

56 Feedforward controller design by means of feedforward artificial neural networks

Stijn Bosma Master of Science Thesis

Chapter 5

Feedforward controller comparison

In this chapter, we will explore the trade-off that arises when choosing a nonlinear data-
driven modeling approach by rating the previously designed controllers on their perfor-
mance and their size. After that, we will compare the controllers based on the four
qualities presented in Chapter 1. We extend on the controller performance by investi-
gating the reduction throughout the setpoint signals P . We discuss the advantages of
the whitebox models returned by genetic programming. Furthermore, we will present the
found output bound for the ReLU controller and finally, we compare the impact of the
amount of training data on the data-driven modeling methods.
We will start by visualizing the trade-off in the designed controllers by rating them on
complexity and performance. The performance of a controller is expressed as the mean of
the set ER defined in Equation 2-20 obtained by the controller. If the controller obtains
a lower ε, this refers to an on average better performing controller, as the mean of set
of performance values is lower. To rate the complexity of the controller, the leaf count
is used. This measure counts the leaves if a function is written as an expression tree.
It can be referred to as the total number of indivisible sub-expressions in an expression.
To illustrate how the previous designed controllers are rated on the performance and
complexity, they are provided in Figure 5-1.

Figure 5-1: a Pareto front of the designed feedforward controllers

If we focus on the genetic programming controllers, visualized in red, we can observe
Master of Science Thesis Stijn Bosma

58 Feedforward controller comparison

that these have a lower complexity but have a higher ε and therefore have a poorer
performance. We can see that the network controllers visualized in blue and black are
performing better, as they result in lower mean values of the set of performance measures.
Nevertheless, the superior performance comes with the increase in their complexity, as
they have a higher leaf count. Furthermore, the figure confirms that the tanh networks
outperform the ReLU networks based on this multi-objective rating, as they have a lower
complexity and a better performance, which we noticed earlier in Chapter 4.

5-1 Comparing the feedforward controllers from a performance per-
spective

In this section, the designed controllers are compared on their ability to attenuate the
disturbance force. For this performance comparison, genetic programming controller
UIS3 is considered as we observed in Chapter 3 that it reached the highest minimum
reduction. Moreover, network controllers with 3 hidden layers and trained on dataset Q1
are considered as we concluded in Chapter 4 that this size is sufficient. The measures
that are used in this section together with their equation in which they are defined are
given in Table 5-1.

Measure Interpretation Formula
ε The performance measure given as the 2-norm of the disturbance force Equation 2-16
EQ The performance measures for all signals in Q Equation 2-20
E0 The performance measures for all signals in Q if no control is applied Equation 2-21
EILC The performance measures for all signals in Q if ILC is applied Equation 2-22
ζ The reduction of the performance measure in percentage Equation 2-23
ZQ The reduction measures for all signals in Q Equation 2-26
ZR The reduction measures for all signals in R Equation 2-27
ZR3 The reduction measures for all signals in R3 Equation 2-28

Table 5-1: An overview of all measures used to present the comparison between the controllers

The different sets of performance measures EQ obtained for the controllers are given in
Figure 5-2. The performance of the optimal compensation signals found with ILC EILC
is also provided. Furthermore, the set of performance measures after applying no control
E0 is given, to envision the proportion of the disturbance forces.

Figure 5-2: The set of performance measures for the controller on the setpoint signals in the
training set R

When comparing the various sets of performance measures, we observe that the distur-
bance measures are the highest if no control is applied, indicating that the controllers are
reducing the disturbance force. Moreover, we see that the tanh controller is performing

Stijn Bosma Master of Science Thesis

5-1 Comparing the feedforward controllers from a performance perspective 59

similar to ILC. Furthermore, we see that the ε values for the ReLU network controller
are higher than the tanh controller and one outlier is occurring. We see that the GP
controller reduces the median of the set of disturbance measures, but is not reaching the
same performance of the other three controllers.

Figure 5-3 visualizes the set of ζ values ZR for all three controllers. We can observe
that each controller is capable of reducing the performance measures for all signals in the
validation set as the worst performing controller is reducing the performance measure
with at least 40.01 %, hence satisfying Condition 1-2.1 presented in Chapter 1. We can
see that the tanh controller has the highest performance, followed by the ReLU controller.
The GP controller reduces the disturbances the least. Table 5-2 shows the extreme values
for the reduction per controller.

Figure 5-3: The set of reduction measures for the feedforward controllers on all setpoint signals in
validation set R

Reduction tanh controller ReLU controller GP controller
min(ZR) 73.33 % 57.64 % 40.01%
ZR 89.76 % 84.69 % 61.23 %
min(ZR) 94.32 % 92.29% 89.65 %

Table 5-2: An overview of the maximum, mean and minimum percentage of reduction in ZR for
each controller

In Chapter 4 we observed a difference in how the controller performs on the setpoint
signals that lay in the same plane as the training data and how it performs for the other
signals in the validation set R. We will investigate the performance for all three controllers
throughout space P .

Figure 5-4 illustrates the reduction percentage per signal plotted in the parameterized
space P for the tanh controller. The ζ value corresponding with each point in R is
visualized with a color, where each color represent a range of percentage reduction values
i.e. the dark green dots visualize the setpoint signals for which the controller reduces
the corresponding disturbance force between 90 and 95 %. In black the training data
set is plotted. We can see that signals with lower p3 values are reduced the poorest.
Furthermore, the controller performs the best for signals with lower p2 values as these
signals are reduced with the highest percentages.
Master of Science Thesis Stijn Bosma

60 Feedforward controller comparison

Figure 5-4: The performance of the tanh controller expressed in percentages of reduction visualized
throughout parameterized space P

In Figure 5-5 the performance of the ReLU controller is plotted throughout the parame-
terized space P . Please note that the colors correspond with different percentage ranges
than in Figure 5-4. In line with Figure 5-3 we can see that the percentages are lower
than those found for the tanh controller. We can again see that the poorer outliers occur
further away from the training data. The signals for which the ReLU controller reaches ζ
values between 90% and 100% are found once more for the signals with lower p2 values.

Figure 5-5: The performance of the ReLU controller expressed in percentages of reduction visualized
throughout parameterized space P

Figure 5-6 gives the percentage of reduction visualized in the parameterized space P for
the GP controller. We observe that the signals with the lower p2 values are reduced the
most. Secondly, we can see that the signals for a reduction of 50 % occur more often for
signals that have a lower p3 value than 320. Generally, the further away we are from plane
R3, the poorer the performance measure is reduced. Lastly, in each plane R1, R2, R3 and
R4 red points occur in a similar diagonal trend.

Stijn Bosma Master of Science Thesis

5-2 Comparing the feedforward controllers from a complexity perspective 61

Figure 5-6: The performance of the GP controller expressed in percentages of reduction visualized
throughout parameterized space P

5-2 Comparing the feedforward controllers from a complexity per-
spective

As we noticed in Figure Figure 5-1, the genetic programming models are less complex
than the network controllers. In this section we will use the trivial models found with
genetic programming to extend on the insight in the problem. After that, we will compare
the memory usage and investigate the computation time of the designed controllers .

5-2-1 Gaining insight in the behavior of the compensation signals in the different
planes

The analytic expressions found with genetic programming can be used to understand how
the compensation signal develops throughout parameterized space P . subsection 3-2-1
accumulated an example, in which we used a set of trivial models to investigate the known
compensation signals in Q, corresponding with plane Q in the parameterized space P .
We concluded that a set of first and second-order polynomials explained the peaks in the
compensation signal and discovered a nonlinear component dependent on p2 = max(ṙ)
which was not captured by these trivial models. In this subsection we will use these same
trivial models to get an intuition in the behavior of the compensation signals in the other
planes R1,R2 and R3. The output of the tanh networks are investigated, as we do not
know any optimal compensation signals for the setpoint signals in these planes. The tanh
controller is the best available approximation of the optimal compensation signal. We
will investigate the behavior of the tanh network using two setpoint signals. The first
setpoint is chosen in plane R4 with a higher p2 value for which the performance measure
is reduced by 85.69 % percent, whereas the other is chosen in plane R1 with a lower
p2 value where the performance measure corresponding with setpoint signal 2 is reduced
by 93.63 % percent. Figure 5-7 illustrates the two setpoint signals chosen for further
analysis.
Master of Science Thesis Stijn Bosma

62 Feedforward controller comparison

Figure 5-7: The two setpoint signals used to gain insight in the behavior of the tanh network
output

The setpoint signals are used to compare the output of network model U2 with the output
of the trivial model found by genetic programming. The trivial model is presented in
Equation 5-2, which is a first-order polynomial of r̈ and r. Figure 5-8 illustrates the
output of the tanh network and the trivial model for both setpoint signals.

u1 = U1,triv(r,
...
r) = 2.69− 3.43e−3...r − 33.53r (5-1)

u2 = U2,triv(r, r̈) = 0.44− 0.16r̈ − 155.70r (5-2)
u3 = U2,triv(r, ṙ, r̈) = −3.29e−2 − 0.19ṙ + 6.54e−2r̈r (5-3)

(a) The output of U2,triv and the tanh network for setpoint signal 1

(b) The output of U2,triv and the tanh network for setpoint signal 2

Figure 5-8: Analyzing the output of the tanh neural network U2 with 3 hidden layers for signals
outside the training set

Based on Figure 5-8 we can make two observations. First of all, we can see that the
trivial model follows the general trend of the output of the tanh network. Secondly,

Stijn Bosma Master of Science Thesis

5-2 Comparing the feedforward controllers from a complexity perspective 63

there is a difference in the appearance of the tanh network output for the two setpoint
signals, which vary strongly in their in p2 = max(ṙ). This difference in appearance is
not explained by the trivial model U1,triv, which suggest that the compensation signals
depend nonlinear on ṙ, but the general trend of the compensation scales linearly with r
and r̈.
Similarly, the output of the tanh networks U1 and U3 for the presented setpoint signals
are compared with the output of the found trivial models U1,triv and U3,triv. The plots
which visualize this comparison can be found in Figure B-28 and Figure B-30 in Appendix
Appendix B, where we notice that the main trends of the output of the tanh network U1
is roughly followed by the trivial model. For the network U3 the trivial model follows the
signal in a weaker fashion.
Throughout this study, the compact analytic models found by genetic programming are
used in two occasions to get an intuition to see how the compensation signals are behaving,
which is not possible for the network models. This can be seen as an advantage of models
with lower complexity.

5-2-2 The memory consumption of the feedforward controllers

Table 5-3 visualizes the memory consumption of all three controllers. We can see that the
GP controllers needs the least kilobytes to be stored, which can be critical depending on
the platform the controller is implemented in. The leaf count of the controller is directly
reflecting in the memory consumption.

tanh controller ReLU controller GP controller
Memory Consumption [kB] 24.15 71.17 1.28

Table 5-3: The memory consumption of the three feedforward controllers

5-2-3 The computation time of the feedforward controllers

The complexity of a controller influences the time it takes to compute the next control
input. If the computation time is higher than the sampling time of the machine, the
controller cannot be implemented in real-time. Therefore, the computation times of the
three controllers are investigated. The controllers are compiled as .mex files, which are
executable C programs that can be called from the matlab interface. By turning the con-
trollers into executable C programs, the computation time is sped up and a more realistic
real-time scenario is created. Each controller is called a 100 times. The experiment is
conducted on an Intel(R) Core(TM) i5-6500 CPU @ 3.20 GHz. Figure 5-9 illustrates the
computation time for the controllers for each iteration.

Figure 5-9: The caluclation time the three feedforward controllers

Master of Science Thesis Stijn Bosma

64 Feedforward controller comparison

We can see see that the computation time is above the sampling time of h = 1e−4s for
all three controllers in the first 8 iterations. After the first iterations we can see that the
computation time stabilizes. If we look at the computation time after the 10th iteration,
we do see the difference in complexity return in the computation time. The simplest GP
controller has the fastest computation time, where as the most complex ReLU controller
has the longest computation time. Furthermore, we can observe that after stabilization,
all 3 controller are implementable in real-time.

5-3 Comparing the feedforward controllers controllers on other as-
pects

The controller design methods are compared on two more aspects. First of all, we will use
sherlock to find the output range of the ReLU controller. After that, we will discuss
the influence of the number of training data on the performance of the controllers.

5-3-1 Output bound verification of the feedforward controllers

When comparing the ReLU network with the tanh network based on complexity and
performance, we can conclude that the first mentioned is larger in size and performs
poorer. However, the ReLU network facilitates the use of sherlock, which provides
a guaranteed upper and lower bound on the output given a compact input set. First,
the bounds on the input range are computed by finding the maximum and minimum of
r . . .

...
r for all signals in data sets Q and R. After that, the measured output bounds

are computed by running all setpoint signals in the training and validation set through
the network and storing the maximum and miminum output of the network. The output
range found by sherlock is expressed as fraction of the measured output bound and is
provided for all three networks in Table 5-4.

Signal u1 Signal u2 Signal u3
sherlock output bounds factor [1.7627, 2.3809] [2.8229, 1.0587] [2.5696, 4.8320]

Table 5-4: The guaranteed output bounds found with sherlock for the ReLU controller with
respect to its measured output bounds

The worst output bound is found at 4.8320 higher than the measured upper bound
for network υu3. sherlock cannot reconstruct which signal will trigger these output
bounds. For the GP and tanh controller we are also capable of finding an output bound.
These methods will be discussed in Chapter 6.

5-3-2 The influence of the number of training data points on the performance of
the feedforward controllers

Collecting training data is an expensive procedure, due to the down-time of the machine
which is caused by the learning of compensation signals. Therefore, controllers that
are constructed with less training data are favorable. The implementation of genetic
programming limits the training data usage. Accordingly, the GP controllers are not
designed on the same data set as is used to design the network controllers, which makes
their performance comparison unfair. In this subsection we will investigate the impact

Stijn Bosma Master of Science Thesis

5-3 Comparing the feedforward controllers controllers on other aspects 65

of the training data on the performance of the feedforward controller by training a set of
tanh neural network and ReLU neural network on the training set QGP used for the search
of genetic programming. To extend the training data analysis, we train a tanh and ReLU
controller on a training data set consisting of one signal Qq1, which is down-sampled
and for which the redundant periods are removed as is described in Chapter 3. The
networks are trained and analyzed in the same way as is described in Chapter 4, where
we consider tanh networks with 3 hidden layers with 10 neurons each and ReLU networks
with 3 hidden layers of 20 neurons each. Furthermore, an extra genetic programming
experiment is performed. Since Genetic Programming finds models by analyzing the fit
of given equations with its provided data, we expect it to find the structure of the trivial
models on data set Qq1 as well. Since the trivial models are low in complexity and high
in accuracy, it is expected to be found fast. Accordingly, we let the algorithm run for 100
generations of 300 models per generations. We provide the algorithm with Rr1 andM1.

The set of reduction measures ZR for the network controllers and GP controllers found
with QGP and Qq1 are given in Figure 5-10. Figure 5-10a illustrated that the tanh
controller trained on QGP still outperforms the GP controller. The ReLU controller
reduces most signals better than the GP controller. Now if we compare the ζ-values for
the network controllers trained on QGP with the previous shown values in Figure 5-3, we
can see that the training on less data comes with a significant decrease in performance.
Figure 5-10b illustrates that the network controllers trained on Qq1 fail to reduce all the
signals in validation set R, as it returns negative ζ values. This means these controllers
do not satisfy Condition 1-2.1 and do not meet the design criteria.

(a) The controllers trained on QGP (b) The controllers trained on Qq1

Figure 5-10: The sets ZR for the controllers trained on dataset QGP and Qq1

For two out of the three signals, genetic programming managed to find the same model
structure as the trivial models presented in Chapter 3. The parameters within the struc-
ture vary minimally from these, as they are found with least squares on QGP instead of
Qq1. The controller found on Qq1 performed similar to Utriv.

Figure 5-11 illustrates the influence of the number of training data points on the perfor-
mance of the controller, which are rated on their performance and the number of training
data. The networks trained on Qq1 did not meet the design criterion and are therefore
not considered in the figure.
Master of Science Thesis Stijn Bosma

66 Feedforward controller comparison

Figure 5-11: The influence of the number of training data points on the performance of the
controller

We observe a significant correlation between the number of datapoints and performance
for the network controllers, whereas for genetic programming the degradation in perfor-
mance is less if the number of data points is reduced.

5-4 Concluding Remarks

Now to conclude the chapter we will present the main observations done in this chapter:

• Controller performance
All 3 feedforward controller reduce the performance measure for all signals in vali-
dation set R and Q. The tanh controller reduces the disturbance the most, followed
by the ReLU controller. The genetic programming reduces the performance mea-
sure the least. Furthermore, we observed that the network controller decrease in
performance for signals that are further away from the training data.

• Model complexity
The compact models found by genetic programming is used to investigate how
the network controller output evaluates throughout the parameterized space. We
observed that the general trend of the output of the network is explained by a set of
trivial models. Furthermore, we investigated the effect off the model complexity on
the implementation off the controller. The simplest models resulted in less memory
consumption. Furthermore, we investigated the computation time of the controllers,
where we observed that the complexity of the controller reflects in its computation
time.

• Output bound verification
sherlock was used to find a guaranteed output bound for the ReLU network, which
lead to a maximum output bound of 4.8320 times higher then measured. There are
methods to determine the output bounds for both the GP and tanh controller which
will be discussed in the next chapter.

• Training data set
The data provided to the genetic programming is limited in its size by the imple-
mentation. We saw that a tanh controller trained on QGP resulted in a controller

Stijn Bosma Master of Science Thesis

5-4 Concluding Remarks 67

that is still outperforming the GP controller. However, a significant drop in per-
formance is noticed. The network controllers trained on Qq1 failed to return a
controller that satisfy the design criterion, while the controller found on Qq1 with
genetic programming succeeded.

Master of Science Thesis Stijn Bosma

68 Feedforward controller comparison

Stijn Bosma Master of Science Thesis

Chapter 6

Discussion

In the thesis we designed three types of feedforward controllers to generalize the feedfor-
ward control signals that are found with iterative learning control. We will discuss the
difference in performance between the various controllers. We emphasize the complexity
of the controller, by mentioning extra advantages of low complexity controllers. Further-
more, we will expand on the output bound verification for the designed controllers and
we will discuss the impact of the training data on the performance of the controllers.

6-1 On the performance of the feedforward controllers

In this section the limitation of the accuracy in the models found with genetic program-
ming is discussed. Furthermore, we will discuss the difference in performance between
the two types of neural networks and an explanation is given for the performance of the
network controllers on signals outside the training set.

6-1-1 The limitation in accuracy for the models found with genetic programming

In section 2-3 it was discovered that the compensation signals are roughly explained by a
set of first and second order polynomials build from the setpoint signal and its derivatives.
We also detected a component in the compensation signal which becomes more dominant
as the setpoint signals increase in their maximum velocity, which was not captured by
first and second order polynomial models. The increase in fitness between the trivial
models and models with higher accuracy found by genetic programming is obtained by
either by tracking the mean of the component, as is shown in Figure 6-1a or by roughly
tracking the component, as is shown in Figure 6-1a.
Master of Science Thesis Stijn Bosma

70 Discussion

(a) The output of genetic programming models U1 with
varying complexity

(b) The output of genetic programming models U3
with varying complexity

Figure 6-1: Visualizing the component dependent on p2 and the way in which more complex GP
controllers approximate it

With the current algorithm settings, genetic programming was unable to find models that
fit the region dependent on max(ṙ). The reason for this might be because it is dependent
on a variable that is not explicitly available in the search space or the component is
described by a model that has a high complexity, which the algorithm failed to find.
The neural network models are capable of fitting the compensation signals, which means
that a accurate model is in fact in the search space of M3 and Rr1 for the genetic
programming experiments.
Theoretically, genetic programming is capable of finding a neural network as model.
Nevertheless, it is highly unlikely that the implementation of genetic programming used
in this study is capable of recreating a neural network for two reasons. First of all, it is
improbable that the neural network structure is found with genetic programming. The
algorithm is free to create any model structure possible from its mathematical operators
and input variables. Since a network without trained parameters is high in complexity
and low in fitness, it is unlikely that it is discovered in the multi-objective optimization.
Secondly, the parametric optimization used in the GP experiments is least squares, which
is not adequate for training a nested expression as a neural network. Therefore, the
parameters in a network are drawn randomly from a range of value. The chance that
genetic programming finds the structure of a network in which all parameters are drawn
correctly at random is nil.
The experiments in Chapter 3 are designed to search a large piece of the search space,
by repeating the algorithm for 1000 generation and by selecting a population size of
300. Nevertheless, the algorithm was only able to find models with limited accuracy.
The evolutionary runs might keep stuck at a local optima, however, the use of model
age as secondary objective should help preventing this. Nevertheless, we can choose
to tune the parameters within the algorithm to balance the exploration vs exploitation
trade-off with the idea to find more accurate models. Another approach to find more
accurate models, is the implementation grammar-based genetic programming [31], which
provides the user with the possibility to guide search. However, this only helps if more
information about the compensation signals is known, such that the algorithm can search
with a grammar that is beneficial. Secondly, we could consider to search for recurrent
models, where we explicitly expect the mapping to be depend of its previous output,
u1(k+1) = U1(ρr1(k), u1(k)). To analyze the fitness of each expression in such approach,
we simulate the output for the differential equation and compare it with the target data.
The networks approximate the target data excellently and are therefore able to capture
the component which was not explained by the models found with genetic programming.
This shows that recurrent models are not necessary. However, the network models are

Stijn Bosma Master of Science Thesis

6-1 On the performance of the feedforward controllers 71

large in complexity and therefore differ from the models found with genetic programming.
By searching for recurrent models, genetic programming might be able to find more
compact models that have a high fit.

6-1-2 The difference in accuracy of the neural network models

In Chapter 4 we observed that the tanh controllers are performing better than the ReLU
controllers. This is inconsistent with their size, as the ReLU controllers have more neurons
per layer and are therefore more complex. Figure 6-2 visualizes the output of a ReLU
and tanh network with 3 hidden layers representing signal u2. We observe that the
output of the ReLU network is not smooth, which was observed earlier in Figure 4-5.
In the end, a ReLU network is a piecewise linear function, since the activation function
is either activated and is linear in the input or is not activated and returns a zero.
Therefore, the network output will be a non-smooth signal. Training a ReLU network
translates to steering the different pieces of the network nearby the target data. Unlike
the ReLU network, the tanh network returns a smooth signal as output, which explains
the difference in accuracy for the network types. The non-smooth output signals might
result in issues once the controller is implemented in the physical setup, where it might
not be possible to change direction so abrupt.

Figure 6-2: Zoomed in plot of networks U∈ with 3 hidden layers

The increase in size of the ReLU networks to obtain comparable accuracy has its impact
on the training time. For example, training a tanh network U2 with 3 hidden layers
representing takes 635 s, while training a ReLU network U2 with 20 neurons each takes
1584 s. Furthermore, The training of the ReLU networks tend to terminate prematurely
because the threshold value on the upper bound of µ is reach, which indicates that
converging the optimization longer will not result in any significant improvements. For
the tanh networks trained in the experiments, this did not happen, which indicates that
for this problem, the tanh activation function result in a network with higher accuracy.

6-1-3 The extrapolating qualities of the network controllers

Both network controllers reduce the disturbance for all setpoint signals in the validation
set R, with a percentage of reduction of at least 57.65 %. Both controller managed to
perform for signals that vary in their p3 = max(r̈) value, which is unexpected, as the
controllers are trained on a set of signals with with the same p3 values. All networks
have as input r̈, which means that the neural networks are trained on a set of signals
that have the same maximum r̈ but the neural network learns for various values of r̈
varying between p3 and −p3. The fact that the network are not trained on one values
Master of Science Thesis Stijn Bosma

72 Discussion

for the setpoint acceleration but rather for a range that is similar be an explanation for
the controller performance for setpoint signals with different p3 value. Furthermore, the
validation set R can be split up in 4 planes as is presented in section 2-1. R1, R2 and R4
are all signals with different p3 values than the signals on which the networks are trained.
The planes are relatively close to the training set, which might explain the performance
on setpoint signals outside the training set. Taking signals with smaller or larger p3
values might decrease the performance of the network controllers. Finally, we observed
that the general trend of the output of the tanh network U2 for signals outside plane
R3 was explained by the trivial model U2 found with genetic programming. The trivial
model scales linearly in r̈, which indicates that the compensation signals scale similar.
This might give an explanation on why the controller performs so well for signals with
varying max(r̈).

6-2 On the complexity of the feedforward controllers

We observed that the models found with genetic programming can be used to explain
the behavior of its target data. Furthermore, the memory consumption of the genetic
programming was lower than that of the networks. All three controllers are stored in less
than 1 Mb, which is probably a negligible bottleneck for implementation. Moreover, we
saw that the model complexity reflected on the computation time, where larger models
took longer to compute. We also observed an effect in the computation time that stabi-
lized after a couple of iteration. The difference in computation time for the first iterations
is caused by a variety of compiling tricks which speeds up the executing after repeating
a similar computation multiple times. However, the computation times in the first iter-
ations are slower than the sampling time and to get a conclusive result on the real-time
implementation of the controllers, extra experiments on a device that is comparable with
the machine on which the controller is implemented are needed.

6-3 On the output range analysis of the feedforward controllers

Previously, we discussed the benefits of sherlock tool and applied it for the ReLU
controller to obtain guaranteed output range. There are a two aspect of this tool to
discuss. First of all, the guaranteed output range is based on a provided input bound
as compact polyhedron. We used the maximum and minimum bounds of all input vari-
ables. However, the input variables are derivatives of each other and therefore, they are
linked. Hence, choosing the input bounds as the maximum and minimum in the set is
conservative, since not every combination within these bounds is possible.
Secondly, the convention demanded by the sherlock tool of a network is the use of
a ReLU activation function. This adds another empirical choice to the design of the
network, as we have to pick a range in which we scale the target data. Scaling the range
to far from zero comes with a lower gradient en slower training, while scaling the range
close to zero comes with the risk of saturation by the final activation function. In Chapter
4 the target data is scaled between [1, 2]. Now if the network creates an output that is
less than 0 for any input in the bounded input set provided to sherlock, it is saturated
by the final activation function. Although the bound on the output for the network is
known and is given as 0, the accuracy of the network decreases, since information gets
discarded by the saturation.

Stijn Bosma Master of Science Thesis

6-4 On the training data needed for the design methods 73

Recently, Verisig [32] was published, a tool which can be used to to verify deep neural
networks with tanh activation functions. By translating the entire deep neural network
into a hybrid system, an output bound can be determined using existing hybrid system
reach ability tools such as Flow∗ [33]. The use of Verisig for the output range verification
of the designed tanh feedforward controller is left as future work.
For the found genetic programming controllers, we can determine the output range by
using interval arithmetic. Interval arithmetic focuses on finding bounds on rounding or
measurement errors and is traditionally used to grasp the reliability of numerical methods.
One way of finding the bounded output range of the feedforward controller is by means
of INTLAB [34] and is considered as future work. Due to the analytic character of the
genetic programming controller, we can extend on its output range analysis. For these
controller it is possible to calculate their derivatives analytically. Now by calculating the
output bounds for the analytic derivatives of the controller, the user can get an insight
in both the bounds of the signal and its the dynamic behavior of the signal. In this
way, controllers that produces signals that vary abruptly over time can be refused for
implementation.

6-4 On the training data needed for the design methods

We observed a decrease in the accuracy of the networks trained on Q4, which can be due
to the non-uniform sampling through space P . Training network controllers on data set
QGP resulted in a decrease in controller performance. The network controllers trained
on Qq1 resulted in network controllers that did not reach the design criteria. In this
specific user case, genetic programming found a sufficient controller on Qq1. If there is
a constraint on downtime which allows for learning one signal, genetic programming can
be used to design a feedforward controller.
Generally, we noticed that the tanh networks are capable of approximating the target
data accurate and that the network controllers decreased in performance for setpoint
signals the farthest away from the training data. Since we can create the training data by
using ILC, it would be more efficient to sample the training signals uniformly throughout
parameterized space P .

6-5 On another approach to design the feedforward controller

In this thesis we took a data driven approach as we have the possibility of learning opti-
mal compensation signals by means of ILC. Another approach that might be interesting
is directly learning the feedforward controller that produces the compensation signals.
Genetic programming has been used to directly generate control laws [35] and in this
case would directly solve the following Problem:
Design feedforward controller U∗ : RN×n → RN×3 such that:

∀r ∈ R,U∗ = arg min
U∈S

||g(r,U(Rr))||2. (6-1)

By using ε(r) = ||g(r,U(Rr))||2 as fitness function for the models in genetic program-
ming, the algorithm can be adapted to directly search for controller actions. In this case,
we have to tackle the dimensionality of U . In the data-driven approach we could decouple
each signal ui ∈ U . This is not longer possible if no data is known a priori, as all three
signals have impact on ε.
Master of Science Thesis Stijn Bosma

74 Discussion

Stijn Bosma Master of Science Thesis

Chapter 7

Conclusion

We will finalize this chapter by summarizing the comparison that is made in this thesis.
The comparison of the feedforward controller is summarized Table 7-1, where we rate the
controllers on a scale from [−−−, . . . ,+ + +], where −−− is the absolute worst score
and + + + is the absolute best score.

• Disturbance reduction
In this thesis we successfully designed 3 feedforward controller that satisfied the
performance criterion provided in Problem 1-2.1. The tanh controller performs the
best, followed by theReLU controller. The genetic programming controller performs
the worst of the three, but still manages to reduce the disturbance measure with at
least 40.01% for all setpoint signals in the validation set R.

• Complexity
The designed controllers vary in their complexity. The ReLU controller is the
largest, followed by the tanh controller. The genetic programming controller was
composed of the least complex models. This resulted in insights in the design
problem, less memory consumption by the controller and faster average computation
times.

• Output bound verification
sherlock was used to find a guaranteed output bound for the ReLU network, which
lead to a maximum output bound of 4.8320 times higher then measured. There are
methods that compute a guaranteed output bound for the tanh controller and the
genetic programming controller. The analytic nature of the genetic programming
controller allows for guaranteed output bounds on the derivative of its output signal.

• Training data set
The performance of the tanh and ReLU controller is affected by a decrease in train-
ing data. We observed that the performance of the controller found with genetic
programming are barely affected by the size of the dataset. Genetic programming
might be the solution in a scenario where the downtime of the machine is more
critical than the attenuation of the disturbance force.

Master of Science Thesis Stijn Bosma

76 Conclusion

Quality Genetic Programming tanh networks ReLU networks
Controller Performance + + + + ++
Complexity + + + −− −−−
Output bound verification ++ + +
Size of training data set + – –

Table 7-1: An overview of the comparison for the three controller types on the four qualities

Stijn Bosma Master of Science Thesis

Appendix A

Appendix Genetic Programming

(a) Normalized frequency domain envelope for the signals u∗
1 in training set Q

(b) Normalized frequency domain envelope for the signals u∗
2 in training set Q

(c) Normalized frequency domain envelope for the signals u∗
3 in training set Q

Figure A-1: Normalized frequency domain envelope for the compensation signals U in training set
Q

Master of Science Thesis Stijn Bosma

78 Appendix Genetic Programming

(a) Normalized frequency domain envelope for signals r in training set Q

(b) Normalized frequency domain envelope for signals ṙ in training set Q

(c) Normalized frequency domain envelope for signals r̈ in training set Q

(d) Normalized frequency domain envelope for signals ...r in training set Q

Figure A-2: Normalized frequency domain envelope for the input signals in training set Q

Stijn Bosma Master of Science Thesis

79

(a) Normalized frequency domain envelope for signals r in validation set R

(b) Normalized frequency domain envelope for signals ṙ in validation set R

(c) Normalized frequency domain envelope for signals r̈ in validation set R

(d) Normalized frequency domain envelope for signals ...r in validation set R

Figure A-3: Normalized frequency domain envelope for the input signals in validation set R

Master of Science Thesis Stijn Bosma

80 Appendix Genetic Programming

●
● ● ●●●●●●● ●●

● ●● ●●● ●●● ●
■ ■ ■ ■■■■ ■■ ■

■■■ ■■■ ■

◆

◆◆◆◆
◆

◆ ◆◆◆◆◆ ◆◆◆◆◆◆◆◆ ◆◆◆◆ ◆◆◆◆

● Input Set 1

■ Input Set 2

◆ Input Set 3

0 20 40 60 80 100 120 140
0

2000

4000

6000

8000

10000

Complexity [-]

M
e

a
n

S
q

u
a

re
d

E
rr

o
r
[-
]

(a) Pareto fronts for models U1 build withM1

●

●
●

●

●
● ●● ●●

●
● ●

● ● ● ● ●

■ ■■■

■■
■■ ■

■ ■ ■■
■ ■ ■■ ■■ ■■ ■■■■■■■■ ■ ■ ■

◆

◆◆

◆◆◆◆
◆ ◆ ◆◆◆◆◆ ◆◆ ◆◆◆◆◆◆

● Input Set 1

■ Input Set 2

◆ Input Set 3

0 50 100 150
0

5000

10000

15000

Complexity [-]

M
e

a
n

S
q

u
a

re
d

E
rr

o
r
[-
]

(b) Pareto fronts for models U1 build withM2
●

●

●

●
●● ●●● ●● ●

●
●● ●●●● ●●● ● ●●

■ ■ ■

■ ■
■■ ■

■
■ ■ ■ ■■ ■ ■ ■ ■■ ■■■ ■■■■ ■

◆

◆ ◆

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆ ◆◆◆◆ ◆ ◆◆ ◆ ◆◆

● Input Set 1

■ Input Set 2

◆ Input Set 3

0 20 40 60 80 100 120
0

5000

10000

15000

Complexity [-]

M
e

a
n

S
q

u
a

re
d

E
rr

o
r
[-
]

(c) Pareto fronts for models U1 build withM3

Figure A-4: The influence of the input sets on the models U1

●

● ●
●● ●●●

●● ●● ● ● ● ●● ● ● ●

■ ■

■■ ■■
■ ■■■ ■■■

■■

◆

◆ ◆
◆◆ ◆

◆◆ ◆ ◆◆ ◆
◆ ◆

● Input Set 1

■ Input Set 2

◆ Input Set 3

0 20 40 60 80 100 120 140
0

50

100

150

Complexity [-]

M
e

a
n

S
q

u
a

re
d

E
rr

o
r
[-
]

(a) Pareto fronts for models U2 build withM1

●●

●●●

●●●●●●

●●

●●● ●●
●●●●●●● ● ● ● ●

■■

■■■■■■
■■■

■■■■■■ ■■■
■ ■ ■■■ ■■ ■

◆◆

◆◆
◆
◆◆◆
◆◆◆
◆◆◆ ◆◆◆◆◆◆◆◆◆◆ ◆◆ ◆ ◆

● Input Set 1

■ Input Set 2

◆ Input Set 3

0 50 100 150 200 250
0

20

40

60

80

100

120

Complexity [-]

M
e

a
n

S
q

u
a

re
d

E
rr

o
r
[-
]

(b) Pareto fronts for models U2 build withM2

●●

●

●●
●

●

●

●●● ●●●●● ● ● ● ●●

■

■
■■■■

■■■

■ ■
■ ■■■■■ ■■

■ ■

◆◆

◆

◆
◆◆◆◆

◆◆◆◆◆◆◆◆◆◆ ◆◆◆◆◆◆ ◆
◆

● Input Set 1

■ Input Set 2

◆ Input Set 3

0 50 100 150 200
0

20

40

60

80

100

Complexity [-]

M
e

a
n

S
q

u
a

re
d

E
rr

o
r
[-
]

(c) Pareto fronts for models U2 build withM3

Figure A-5: The influence of the input sets on the models U2

Stijn Bosma Master of Science Thesis

81

●

●

●

●

●●●●●●● ●●●●●●●●●●●●● ●●

■
■

■■
■■■■■

■■■ ■■

■■■ ■ ■■■ ■ ■ ■■ ■ ■

◆

◆

◆

◆ ◆
◆◆◆◆◆◆◆◆◆◆◆ ◆◆◆◆◆ ◆◆ ◆◆◆ ◆◆◆ ◆

● Input Set 1

■ Input Set 2

◆ Input Set 3

0 20 40 60 80 100 120
0.0

0.5

1.0

1.5

2.0

Complexity [-]

M
e

a
n

S
q

u
a

re
d

E
rr

o
r
[-
]

(a) Pareto fronts for models U3 build withM1

●

●

●●●

●●●

●●●●
●
●●●

●●●
●●●●●●●●●●●● ● ● ●●● ● ●● ●

■
■

■■■
■■■■

■ ■■

■■

■■

■■■■■
■■■■■■ ■■■ ■■■ ■■ ■ ■ ■

◆

◆

◆◆◆

◆◆◆◆
◆◆◆
◆
◆◆

◆◆◆◆◆◆◆◆◆◆ ◆◆◆◆◆ ◆ ◆◆

● Input Set 1

■ Input Set 2

◆ Input Set 3

0 50 100 150 200 250
0.0

0.5

1.0

1.5

2.0

Complexity [-]

M
e

a
n

S
q

u
a

re
d

E
rr

o
r
[-
]

(b) Pareto fronts for models U3 build withM2
●

●

●●

●●
●
●●●
●●

●
●
●●●●● ●●●●●●●●● ●●●● ●●●●●● ●

■
■

■■■
■

■■■
■

■

■■■■■■ ■ ■ ■■ ■■■ ■■ ■■ ■

◆

◆

◆◆

◆◆◆◆
◆◆◆◆◆

◆

◆◆◆◆ ◆ ◆◆

● Input Set 1

■ Input Set 2

◆ Input Set 3

0 50 100 150 200 250 300
0.0

0.5

1.0

1.5

2.0

Complexity [-]

M
e

a
n

S
q

u
a

re
d

E
rr

o
r
[-
]

(c) Pareto fronts for models U3 build withM3

Figure A-6: The influence of the input sets on the models U3

●
●

● ●●●●●●● ●●
● ●● ●●● ●●● ●

■

■
■ ■■ ■

■
■
■ ■

■ ■ ■ ■ ■

◆

◆
◆◆ ◆◆◆◆

◆◆
◆
◆
◆◆◆◆◆◆◆◆ ◆ ◆◆

● Math Set 1

■ Math Set 2

◆ Math Set 3

0 20 40 60 80 100 120 140
0

2000

4000

6000

8000

10000

Complexity [-]

M
e

a
n

S
q

u
a

re
d

E
rr

o
r
[-
]

(a) All models U1(ρr11)

●

●●

●●●●●
●●●●●●● ●●● ● ●

■■

■■■

■■■■■■

■■

■■■ ■■
■■■■■■■ ■ ■ ■ ■

◆◆

◆

◆◆◆
◆

◆
◆◆◆◆◆◆◆◆ ◆◆ ◆◆◆

● Math Set 1

■ Math Set 2

◆ Math Set 3

0 50 100 150 200 250 300
0

20

40

60

80

100

Complexity [-]

M
e

a
n

S
q

u
a

re
d

E
rr

o
r
[-
]

(b) All models U2(ρr21)
●

●

●

●

●●●●●●● ●●●●●●●●●●●●● ●●

■

■

■■■

■■■

■■■■
■
■■■

■■■
■■■■■■■■■■ ■■ ■ ■ ■■■ ■ ■■ ■

◆

◆

◆◆

◆◆
◆◆◆◆

◆◆
◆
◆
◆◆◆◆◆ ◆◆◆◆◆◆◆◆◆ ◆◆ ◆◆ ◆◆◆◆◆◆ ◆

● Math Set 1

■ Math Set 2

◆ Math Set 3

0 50 100 150 200
0.0

0.5

1.0

1.5

2.0

Complexity [-]

M
e

a
n

S
q

u
a

re
d

E
rr

o
r
[-
]

(c) All models U3(ρr31)

Figure A-7: All models found with genetic programming dependent on Rr1

Master of Science Thesis Stijn Bosma

82 Appendix Genetic Programming

● ●

●

●

● ● ● ●●●● ●● ●
●●● ●●● ●

■ ■■■

■■
■■ ■

■ ■ ■■
■ ■ ■■ ■■ ■■ ■■■■■■■■ ■ ■ ■

◆ ◆◆

◆◆
◆◆◆

◆
◆ ◆ ◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆ ◆

● Math Set 1

■ Math Set 2

◆ Math Set 3

0 50 100 150
0

5000

10000

15000

Complexity [-]

M
e

a
n

S
q

u
a

re
d

E
rr

o
r
[-
]

(a) All models U1(ρr12)

●

●

● ●
●●

● ●
●●●●● ●●● ●●●

●●

■

■

■■■■
■■

■ ■
■■■■■■■■■

■ ■■■■ ■ ■■■■ ■ ■■■ ■■

◆

◆

◆◆
◆

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆ ◆ ◆

● Math Set 1

■ Math Set 2

◆ Math Set 3

0 50 100 150 200
0

50

100

150

200

250

300

350

Complexity [-]

M
e

a
n

S
q

u
a

re
d

E
rr

o
r
[-
]

(b) All models U2(ρr22)
●
●

●●
●●●●●

●●●●●

●●●● ●●●●●●●●●

■
■

■■■
■■■■

■ ■■

■■

■■

■■■■■
■■■■■■ ■■■ ■■■■■■ ■■

◆
◆

◆◆◆
◆

◆◆◆
◆

◆

◆◆◆◆◆◆ ◆ ◆ ◆◆◆◆◆ ◆◆ ◆◆ ◆

● Math Set 1

■ Math Set 2

◆ Math Set 3

0 50 100 150 200 250 300
0.0

0.5

1.0

1.5

2.0

Complexity [-]

M
e

a
n

S
q

u
a

re
d

E
rr

o
r
[-
]

(c) All models U3(ρr32)

Figure A-8: All models found with genetic programming dependent on Rr2

●

●●●

●

● ●●●●● ●●●●●●●● ●●●● ●●● ●

■

■■■

■

■ ■ ■■■ ■ ■■ ■ ■ ■ ■ ■ ■

◆

◆

◆
◆

◆◆◆◆◆◆◆◆◆◆◆ ◆◆◆◆ ◆ ◆◆ ◆ ◆◆

● Math Set 1

■ Math Set 2

◆ Math Set 3

0 20 40 60 80 100 120
0

500

1000

1500

2000

2500

3000

Complexity [-]

M
e

a
n

S
q

u
a

re
d

E
rr

o
r
[-
]

(a) All models U1(ρr13)

●

●●

●● ●

●● ● ●●●
●●

■ ■

■ ■
■

■■■
■■■

■ ■ ■
■■■ ■■■ ■■ ■■ ■ ■ ■ ■

◆◆

◆
◆
◆◆◆◆

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆ ◆
◆

● Math Set 1

■ Math Set 2

◆ Math Set 3

0 50 100 150 200
0

20

40

60

80

100

120

Complexity [-]

M
e

a
n

S
q

u
a

re
d

E
rr

o
r
[-
]

(b) All models U2(ρr23)
●

●

●

● ●
●●●●●●●●●●● ●●●●● ●● ●●● ●●● ●

■

■

■■■

■■■■
■■■

■
■■

■■■■■■ ■ ■■■ ■■■■■ ■ ■■

◆

◆

◆◆

◆◆◆◆
◆◆◆◆◆

◆

◆ ◆ ◆◆ ◆ ◆ ◆

● Math Set 1

■ Math Set 2

◆ Math Set 3

0 20 40 60 80 100 120 140
0.0

0.5

1.0

1.5

2.0

Complexity [-]

M
e

a
n

S
q

u
a

re
d

E
rr

o
r
[-
]

(c) All models U3(ρr33)

Figure A-9: All models found with genetic programming dependent on Rr3

Stijn Bosma Master of Science Thesis

83

(a) The output of the trivial model U2,triv and u∗
2 for setpoint signal 1

(b) The output of the trivial models U2,triv and u∗
2 for setpoint signal 2

Figure A-10: Comparing the output of the trivial model with the target data u∗
2

(a) The output of the trivial model U2,triv and u∗
3 for setpoint signal 1

(b) The output of the trivial model U2,triv and u∗
3 for setpoint signal 2

Figure A-11: Comparing the output of the trivial model with the target data u∗
3

Master of Science Thesis Stijn Bosma

84 Appendix Genetic Programming

Figure A-12: The output of the trivial models Ui,triv and Ui,IS3

Stijn Bosma Master of Science Thesis

85

C
om

pl
ex

it
y

M
SE

V
ar

s
Fu

nc
ti

on
1

16
20

9.
4

4.
83

11
12

54
4.
2

... r
0.

00
25

... r
+

4.
22

15
11

58
7.
9

ṙ
1.

23
ṙ

3
+

4.
89

18
93

04
.5

ṙ
,r̈

33
.8

9c
os

(r̈
)ṙ

+
7.

55
19

53
10

.9
2

ṙ
,.
.. r

0.
00

34
... r

+
33
.5

3ṙ
+

2.
69

23
46

74
.6
1

ṙ
,.
.. r

1.
86
ṙ

3
+

0.
00

34
... r

+
4.

07
26

43
55

.4
9

ṙ
,.
.. r

0.
00

34
... r

+
8.

78
|ṙ
|ṙ

+
3.

48
33

43
52

.8
4

r
,ṙ
,.
.. r

0.
00

34
... r

+
8.

79
|ṙ
|c

os
(r

)ṙ
+

3.
47

34
42

39
.0
7

r
,ṙ
,.
.. r

0.
00

34
... r

+
8.

77
|ṙ
|ṙ
−

18
7.

24
r

+
3.

86
38

39
75

.1
5

ṙ
,r̈
,.
.. r

1.
31
ṙ

3
+

15
.1

2c
os

(r̈
)ṙ

+
0.

00
31

... r
+

5.
34

43
37

19
.6
1

ṙ
,r̈
,.
.. r

1.
91
ṙ

3
+

0.
00

37
... r
−

0.
55
r̈

+
15

2.
32

ta
nh

(r̈
)+

4.
30

45
35

03
.0
1

ṙ
,r̈
,.
.. r

1.
ṙṙ

3
+

15
2.

72
sin

(0
.0

19
r̈

)+
0.

00
39

... r
+

4.
63

46
33

34
.5
5

ṙ
,r̈
,.
.. r

0.
00

38
... r
−

0.
57
r̈

+
9.

06
|ṙ
|ṙ

+
15

8.
65

ta
nh

(r̈
)+

3.
68

54
27

28
.0
4

ṙ
,r̈
,.
.. r

29
5.

00
σ

(r̈
)+

0.
00

47
... r
−

0.
89
r̈
−
|..
. r
|1
.0

8e
−

5 r̈
+

35
.9

7ṙ
+

2.
79

58
21

28
.9
3

ṙ
,r̈
,.
.. r

1.
96
ṙ

3
+

28
3.

06
σ

(r̈
)+

0.
00

46
... r
−

0.
85
r̈
−
|..
. r
|1
.0

8e
−

5 r̈
+

4.
26

61
17

36
.4
1

ṙ
,r̈
,.
.. r

29
0.

29
σ

(r̈
)+

0.
00

47
... r
−

0.
88
r̈
−
|..
. r
|1
.0

8e
−

5 r̈
+

9.
29
|ṙ
|ṙ

+
3.

63
66

17
24

.0
6

ṙ
,r̈
,.
.. r

55
8.

94
σ

(σ
(r̈

))
+

0.
00

47
... r
−

0.
85
r̈
−
|..
. r
|1
.0

6e
−

5 r̈
+

9.
30
|ṙ
|ṙ

+
3.

67
69

17
02

.5
3

ṙ
,r̈
,.
.. r

27
9.

77
σ

(r̈
)+

0.
00

47
... r
−

0.
90
r̈
−
|..
. r
|1
.0

5e
−

5 r̈
+

9.
32
|ṙ
|ṙ
−

22
7.

33
r

+
4.

09
73

14
85

.0
1

ṙ
,r̈
,.
.. r

28
0.

29
σ

(r̈
)+

0.
00

48
|σ

(r̈
)|
... r
−

0.
85
r̈
−
|..
. r
|1
.0

9e
−

5 r̈
+

9.
17
|ṙ
|ṙ

+
3.
ṙ

76
13

98
.8
6

ṙ
,r̈
,.
.. r

−
0.

01
8r̈
ṙ

2
+

9.
32
|ṙ
|ṙ

+
2ṙ
.5

5σ
(r̈

)+
0.

00
47

... r
−

0.
80
r̈
−
|..
. r
|1
.0

0e
−

5 r̈
+

3.
85

81
13

88
.6
5

ṙ
,r̈
,.
.. r

−
0.

01
8r̈
ṙ

2
+

9.
33
|ṙ
|ṙ

+
56

4.
89
σ

(σ
(r̈

))
+

0.
00

47
... r
−

0.
77
r̈
−
|..
. r
|9
.8

7e
−

6 r̈
+

3.
89

84
13

55
.6
8

r
,ṙ
,r̈
,.
.. r
−

0.
01

8r̈
ṙ

2
+

9.
35
|ṙ
|ṙ

+
28

3.
55
σ

(r̈
)+

0.
00

47
... r
−

0.
83
r̈
−
|..
. r
|9
.7

6e
−

6 r̈
−

21
5.

16
r

+
4.

28
88

11
55

.2
9

ṙ
,r̈
,.
.. r

−
0.

01
8r̈
ṙ

2
+

9.
20
|ṙ
|ṙ

+
28

3.
46
σ

(r̈
)+

0.
00

48
|σ

(r̈
)|
... r
−

0.
77
r̈
−
|..
. r
|1
.0

2e
−

5 r̈
+

4.
14

98
10

89
.0
1

ṙ
,r̈
,.
.. r

−
0.

01
8r̈
ṙ

2
+

9.
17
|ṙ
|ṙ

+
24

5.
58
σ

(r̈
)+

0.
00

49
|σ

(r̈
)|
... r
−

0.
64
r̈
−
|..
. r
r̈
|4
.0

1e
−

8 r̈
+

4.
06

10
6

10
89

.0
1

ṙ
,r̈
,.
.. r

−
0.

01
8r̈
ṙ

2
+

9.
20
|ṙ
|ṙ
−

0.
12
ṙ

+
24

5.
55
σ

(r̈
)+

0.
00

49
|σ

(r̈
)|
... r
−

0.
64
r̈
−
|..
. r
r̈
|4
.0

1e
−

8 r̈
+

4.
06

11
0

10
56

.4
9

ṙ
,r̈
,.
.. r

−
0.

01
8r̈
ṙ

2
+

9.
29
|ṙ
|ṙ

+
29
.9

0σ
(..
. r
)+

23
8.

50
σ

(r̈
)+

0.
00

45
|σ

(r̈
)|
... r
−

0.
62
r̈
−
|..
. r
r̈
|3
.9

4e
−

8 r̈
+

4.
14

Ta
bl
e
A
-1
:
Th

e
Pa

re
to

fro
nt

of
th
e
m
od

els
U 1

de
pe
nd

in
g
on
R

r
1

Master of Science Thesis Stijn Bosma

86 Appendix Genetic Programming

(a) The output for setpoint signal 1

(b) The output for setpoint signal 2

Figure A-13: Comparing the compensation signals for u2 for setpoint signal 1 & 2

(a) The output for setpoint signal 1

(b) The output for setpoint signal 2

Figure A-14: Comparing the compensation signals for u2 for setpoint signal 1 & 2

Stijn Bosma Master of Science Thesis

Appendix B

Neural Networks

Master of Science Thesis Stijn Bosma

88 Neural Networks

B-1 The influence of the hidden layers on the accuracy of the tanh
networks

(a) Convergence process for the tanh networks
U1 trained on Q1

(b) VQ,1 for the tanh networks U1 trained on Q1

(c) Convergence process for the tanh networks
U2 trained on Q1

(d) VQ,2 for the tanh networks U2 trained on Q1

(e) Convergence process for the tanh networks
U3 trained on Q1

(f) VQ,3 for the tanh networks U3 trained on Q1

Figure B-1: The influence of the hidden layers on the accuracy of the tanh neural networks trained
on data set Q1

Stijn Bosma Master of Science Thesis

B-1 The influence of the hidden layers on the accuracy of the tanh networks 89

(a) Convergence process for the tanh networks
U1 trained on Q2

(b) VQ,1 for the tanh networks U1 trained on Q2

(c) Convergence process for the tanh networks
U2 trained on Q2

(d) VQ,2 for the tanh networks U2 trained on Q2

(e) Convergence process for the tanh networks
U3 trained on Q2

(f) VQ,3 for the tanh networks U3 trained on Q2

Figure B-2: The influence of the hidden layers on the accuracy of the tanh neural networks trained
on data set Q2

Master of Science Thesis Stijn Bosma

90 Neural Networks

(a) Convergence process for the tanh networks
U1 trained on Q3

(b) VQ,1 for the tanh networks U1 trained on Q3

(c) Convergence process for the tanh networks
U2 trained on Q3

(d) VQ,2 for the tanh networks U2 trained on Q3

(e) Convergence process for the tanh networks
U3 trained on Q3

(f) VQ,3 for the tanh networks U3 trained on Q3

Figure B-3: The influence of the hidden layers on the accuracy of the tanh neural networks trained
on data set Q3

Stijn Bosma Master of Science Thesis

B-1 The influence of the hidden layers on the accuracy of the tanh networks 91

(a) Convergence process for the tanh networks
U1 trained on Q4

(b) VQ,1 for the tanh networks U1 trained on Q4

(c) Convergence process for the tanh networks
U2 trained on Q4

(d) VQ,2 for the tanh networks U2 trained on Q4

(e) Convergence process for the tanh networks
U3 trained on Q4

(f) VQ,3 for the tanh networks U3 trained on Q4

Figure B-4: The influence of the hidden layers on the accuracy of the tanh neural networks trained
on data set Q4

Master of Science Thesis Stijn Bosma

92 Neural Networks

B-2 The influence of the training data set on the accuracy of the
tanh networks

(a) VQ,1 for the tanh networks U1 with 2 hidden layers (b) Partial representation of the Figure (a)

(c) VQ,1 for the tanh networks U1 with 3 hidden layers (d) Partial representation of the Figure (c)

(e) VQ,1 for the tanh networks U1 with 4 hidden layers (f) Partial representation of the Figure (e)

Figure B-5: The influence of the training data sets on the accuracy of the tanh networks U1

Stijn Bosma Master of Science Thesis

B-2 The influence of the training data set on the accuracy of the tanh networks 93

(a) VQ,2 for the tanh networks U2 with 2 hidden layers (b) Partial representation of the Figure (a)

(c) VQ,2 for the tanh networks U2 with 3 hidden layers (d) Partial representation of the Figure (c)

(e) VQ,2 for the tanh networks U2 with 4 hidden layers (f) Partial representation of the Figure (e)

Figure B-6: The influence of the training data sets on the accuracy of the tanh networks U2

Master of Science Thesis Stijn Bosma

94 Neural Networks

(a) VQ,3 for the tanh networks U3 with 2 hidden layers (b) Partial representation of the Figure (a)

(c) VQ,3 for the tanh networks U3 with 3 hidden layers (d) Partial representation of the Figure (c)

(e) VQ,3 for the tanh networks U3 with 4 hidden layers (f) Partial representation of the Figure (e)

Figure B-7: The influence of the training data sets on the accuracy of the tanh networks U3

Stijn Bosma Master of Science Thesis

B-3 The influence of the hidden layers on the accuracy of the ReLU networks 95

B-3 The influence of the hidden layers on the accuracy of the ReLU
networks

(a) Convergence process for the ReLU networks
U1 trained on Q1

(b) VQ,1 for the ReLU networks U1 trained on Q1

(c) Convergence process for the ReLU networks
U2 trained on Q1

(d) VQ,2 for the ReLU networks U2 trained on Q1

(e) Convergence process for the ReLU networks
U3 trained on Q1

(f) VQ,3 for the ReLU networks U3 trained on Q1

Figure B-8: The influence of the hidden layers on the accuracy of the ReLU neural networks
trained on data set Q1

Master of Science Thesis Stijn Bosma

96 Neural Networks

(a) Convergence process for the ReLU networks
U1 trained on Q2

(b) VQ,1 for the ReLU networks U1 trained on Q2

(c) Convergence process for the ReLU networks
U2 trained on Q2

(d) VQ,2 for the ReLU networks U2 trained on Q2

(e) Convergence process for the ReLU networks
U3 trained on Q2

(f) VQ,3 for the ReLU networks U3 trained on Q2

Figure B-9: The influence of the hidden layers on the accuracy of the ReLU neural networks
trained on data set Q2

Stijn Bosma Master of Science Thesis

B-3 The influence of the hidden layers on the accuracy of the ReLU networks 97

(a) Convergence process for the ReLU networks
U1 trained on Q3

(b) VQ,1 for the ReLU networks U1 trained on Q3

(c) Convergence process for the ReLU networks
U2 trained on Q3

(d) VQ,2 for the ReLU networks U2 trained on Q3

(e) Convergence process for the ReLU networks
U3 trained on Q3

(f) VQ,3 for the ReLU networks U3 trained on Q3

Figure B-10: The influence of the hidden layers on the accuracy of the ReLU neural networks
trained on data set Q3

Master of Science Thesis Stijn Bosma

98 Neural Networks

(a) Convergence process for the ReLU networks
U1 trained on Q4

(b) VQ,1 for the ReLU networks U1 trained on Q4

(c) Convergence process for the ReLU networks
U2 trained on Q4

(d) VQ,2 for the ReLU networks U2 trained on Q4

(e) Convergence process for the ReLU networks
U3 trained on Q4

(f) VQ,3 for the ReLU networks U3 trained on Q4

Figure B-11: The influence of the hidden layers on the accuracy of the ReLU neural networks
trained on data set Q4

Stijn Bosma Master of Science Thesis

B-4 The influence of the training data set on the accuracy of the ReLU networks 99

B-4 The influence of the training data set on the accuracy of the
ReLU networks

(a) VQ,1 for the ReLU networks U1 with 2 hidden layers (b) Partial representation of the Figure (a)

(c) VQ,1 for the ReLU networks U1 with 3 hidden layers (d) Partial representation of the Figure (c)

(e) VQ,1 for the ReLU networks U1 with 4 hidden layers (f) Partial representation of the Figure (e)

Figure B-12: The influence of the training data sets on the accuracy of the ReLU networks U1

Master of Science Thesis Stijn Bosma

100 Neural Networks

(a) VQ,2 for the ReLU networks U2 with 2 hidden layers (b) Partial representation of the Figure (a)

(c) VQ,2 for the ReLU networks U2 with 3 hidden layers (d) Partial representation of the Figure (c)

(e) VQ,2 for the ReLU networks U2 with 4 hidden layers (f) Partial representation of the Figure (d)

Figure B-13: The influence of the training data sets on the accuracy of the ReLU networks U2

Stijn Bosma Master of Science Thesis

B-4 The influence of the training data set on the accuracy of the ReLU networks 101

(a) VQ,3 for the ReLU networks U3 with 2 hidden layers (b) Partial representation of the Figure (a)

(c) VQ,3 for the ReLU networks U3 with 3 hidden layers (d) Partial representation of the Figure (c)

(e) VQ,3 for the ReLU networks U3 with 4 hidden layers (f) Partial representation of the Figure (d)

Figure B-14: The influence of the training data sets on the accuracy of the ReLU networks U3

Master of Science Thesis Stijn Bosma

102 Neural Networks

(a) All experiments for the tanh networks U1 (b) All experiments for the ReLU networks U1

(c) All experiments for the tanh networks U2 (d) All experiments for the ReLU networks U2

(e) All experiments for the tanh networks U3 (f) All experiments for the ReLU networks U3

Figure B-15: An overview of the influence of the training data on the performance of the neural
networks

Stijn Bosma Master of Science Thesis

B-5 The influence of the hidden layers on the performance of the tanh controllers on the training set Q103

B-5 The influence of the hidden layers on the performance of the
tanh controllers on the training set Q

(a) ZQ for the tanh controllers trained on Q1 (b) ZQ for the tanh controllers trained on Q2

(c) ZQ for the tanh controllers trained on Q3 (d) ZQ for the tanh controllers trained on Q4

Figure B-16: The influence of the hidden layers on the performance of tanh controllers for signals
in the training data set Q

(a) ZR3 for the tanh controllers trained on Q1 (b) ZR3 for the tanh controllers trained on Q2

(c) ZR3 for the tanh controllers trained on Q3 (d) ZR3 for the tanh controllers trained on Q4

Figure B-17: The influence of the hidden layers on the performance of tanh controllers for signals
in set R3

Master of Science Thesis Stijn Bosma

104 Neural Networks

(a) ZR for the tanh controllers trained on Q1 (b) ZR for the tanh controllers trained on Q2

(c) ZR for the tanh controllers trained on Q3 (d) ZR for the tanh controllers trained on Q4

Figure B-18: The influence of the hidden layers on the performance of tanh controllers for signals
in validation data set R

B-6 The influence of the training data sets on the performance of
the tanh controllers

(a) ZQ for the tanh controllers with 2 hidden layers (b) ZQ for the tanh controllers with 3 hidden layers

(c) ZQ for the tanh controllers with 4 hidden layers

Figure B-19: The influence of the training data on the performance of the tanh controllers on
signals from the training data set Q

Stijn Bosma Master of Science Thesis

B-6 The influence of the training data sets on the performance of the tanh controllers 105

(a) ZR3 for the tanh controllers with 2 hidden layers (b) ZR3 for the tanh controllers with 3 hidden layers

(c) ZR3 for the tanh controllers with 4 hidden layers

Figure B-20: The influence of the training data on the performance of the tanh controllers on
signals from set R3

(a) ZR for the tanh controllers with 2 hidden layers (b) ZR for the tanh controllers with 3 hidden layers

(c) ZR for the tanh controllers with 4 hidden layers

Figure B-21: The influence of the training data on the performance of the tanh controllers on
signals from validation set R

Master of Science Thesis Stijn Bosma

106 Neural Networks

B-7 The influence of the hidden layers on the performance of the
ReLU controllers

(a) ZQ for the ReLU controllers trained on Q1 (b) ZQ for the ReLU controllers trained on Q2

(c) ZQ for the ReLU controllers trained on Q3 (d) ZQ for the ReLU controllers trained on Q4

Figure B-22: The influence of the hidden layers on the performance of the ReLU controllers on
signals from trainig set Q

(a) ZR3 for the ReLU controllers trained on Q1 (b) ZR3 for the ReLU controllers trained on Q2

(c) ZR3 for the ReLU controllers trained on Q3 (d) ZR3 for the ReLU controllers trained on Q4

Figure B-23: The influence of the hidden layers on the performance of the ReLU controllers on
signals from set R3

Stijn Bosma Master of Science Thesis

B-8 The influence of the training data sets on the performance of the ReLU controllers 107

(a) ZR for the ReLU controllers trained on Q1 (b) ZR for the ReLU controllers trained on Q2

(c) ZR for the ReLU controllers trained on Q3 (d) ZR for the ReLU controllers trained on Q4

Figure B-24: The influence of the hidden layers on the performance of the ReLU controllers on
signals from validation set R

B-8 The influence of the training data sets on the performance of
the ReLU controllers

(a) ZQ for the ReLU controllers with 2 hidden layers (b) ZQ for the ReLU controllers with 3 hidden layers

(c) ZQ for the ReLU controllers with 4 hidden layers

Figure B-25: The influence of the training data on the performance of the ReLU controllers on
signals from training set Q

Master of Science Thesis Stijn Bosma

108 Neural Networks

(a) ZR3 for the ReLU controllers with 2 hidden layers (b) ZR3 for the ReLU controllers with 3 hidden layers

(c) ZR3 for the ReLU controllers with 4 hidden layers

Figure B-26: The influence of the training data on the performance of the ReLU controllers on
signals from set R3

(a) ZR for the ReLU controllers with 2 hidden layers (b) ZR for the ReLU controllers with 3 hidden layers

(c) ZR for the ReLU controllers with 4 hidden layers

Figure B-27: The influence of the training data on the performance of the ReLU controllers on
signals from validation set R

Stijn Bosma Master of Science Thesis

B-8 The influence of the training data sets on the performance of the ReLU controllers 109

(a) The output of U1,triv and the tanh network for setpoint signal 1

(b) The output of U1,triv and the tanh network for setpoint signal 2

Figure B-28: Analyzing the output of the tanh neural network U1 with 3 hidden layers for signals
outside the training set

(a) The output of U2,triv and the tanh network for setpoint signal 1

(b) The output of U2,triv and the tanh network for setpoint signal 2

Figure B-29: Analyzing the output of the tanh neural network U2 with 3 hidden layers for signals
outside the training set

Master of Science Thesis Stijn Bosma

110 Neural Networks

(a) The output of U3,triv and the tanh network for setpoint signal 1

(b) The output of U3,triv and the tanh network for setpoint signal 2

Figure B-30: Analyzing the output of the tanh neural network U3 with 3 hidden layers for signals
outside the training set

Stijn Bosma Master of Science Thesis

Bibliography

[1] G. E. Moore, “Cramming more components onto integrated circuits,” Electronics,
vol. 38, no. 8, pp. pp. 114 – 117, April 19 1965.

[2] G. E. Moore et al., “Progress in digital integrated electronics,” in Electron Devices
Meeting, vol. 21, pp. 11–13, 1975.

[3] M. M. Waldrop, “The chips are down for moore’s law,” Nature News, vol. 530,
no. 7589, p. 144, 2016.

[4] D. D. Bristow, M. Tharayil, and A. a.G. Alleyne, “A survey of iterative learning
control,” IEEE Control Systems Magazine, vol. 26, no. June, pp. 96–114, 2006.

[5] K. K. Tan, H. Dou, Y. Chen, and T. H. Lee, “High precision linear motor control via
relay-tuning and iterative learning based on zero-phase filtering,” IEEE Transactions
on Control Systems Technology, vol. 9, pp. 244–253, Mar 2001.

[6] B. E. Helfrich, C. Lee, D. A. Bristow, X. H. Xiao, J. Dong, A. G. Alleyne, S. M.
Salapaka, and P. M. Ferreira, “Combined h∞-feedback control and iterative learning
control design with application to nanopositioning systems,” IEEE Transactions on
Control Systems Technology, vol. 18, pp. 336–351, March 2010.

[7] J. van Zundert, J. Bolder, S. Koekebakker, and T. Oomen, “Resource-efficient ilc for
lti/ltv systems through lq tracking and stable inversion: Enabling large feedforward
tasks on a position-dependent printer,” Mechatronics, vol. 38, pp. 76 – 90, 2016.

[8] B. O. van der Meulen SH, Tousain RL, “Fixed structure feedforward controller design
exploiting iterative trials: Application to a wafer stage and a desktop printer,” J.
Dyn. Sys. Meas. Control., 2008.

[9] R. Poli, L. Vanneschi, W. B. Langdon, and N. F. McPhee, Theoretical results in
genetic programming: The next ten years?, vol. 11. 2010.

[10] S. A. Billings, Nonlinear System identification:. John Wiley & Sons, 2013.

[11] J. Sjöberg, Q. Zhang, L. Ljung, A. Benveniste, B. Delyon, P.-Y. Glorennec, H. Hjal-
marsson, and A. Juditsky, “Nonlinear black-box modeling in system identification:
a unified overview,” Automatica, vol. 31, no. 12, pp. 1691 – 1724, 1995. Trends in
System Identification.

Master of Science Thesis Stijn Bosma

112 Bibliography

[12] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are
universal approximators,” Neural networks, vol. 2, no. 5, pp. 359–366, 1989.

[13] K. J. Hunt, D. Sbarbaro, R. Żbikowski, and P. J. Gawthrop, “Neural networks for
control systems - a survey,” Automatica, vol. 28, no. 6, pp. 1083–1112, 1992.

[14] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553,
p. 436, 2015.

[15] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,” in
Proceedings of the fourteenth international conference on artificial intelligence and
statistics, pp. 315–323, 2011.

[16] S. Dutta, S. Jha, S. Sankaranarayanan, and A. Tiwari, “Output range analysis for
deep feedforward neural networks,” in NASA Formal Methods (A. Dutle, C. Muñoz,
and A. Narkawicz, eds.), (Cham), pp. 121–138, Springer International Publishing,
2018.

[17] R. Poli, W. B. Langdon, N. F. McPhee, and J. R. Koza, A field guide to genetic
programming. Lulu. com, 2008.

[18] J. R. Koza, “Genetic programming as a means for programming computers by natural
selection,” Statistics and computing, vol. 4, no. 2, pp. 87–112, 1994.

[19] M. Schmidt and H. Lipson, “Distilling free-form natural laws from experimental
data,” Science, vol. 324, no. 5923, pp. 81–85, 2009.

[20] W. La Cava, K. Danai, L. Spector, P. Fleming, A. Wright, and M. Lackner, “Auto-
matic identification of wind turbine models using evolutionary multiobjective opti-
mization,” Renewable Energy, vol. 87, pp. 892–902, 2016.

[21] E. M. Clarke Jr, O. Grumberg, D. Kroening, D. Peled, and H. Veith, Model checking.
MIT press, 2018.

[22] Z. Kurd and T. Kelly, “Establishing safety criteria for artificial neural networks,”
in International Conference on Knowledge-Based and Intelligent Information and
Engineering Systems, pp. 163–169, Springer, 2003.

[23] M. Verhaegen and V. Verdult, Filtering and system identification: a least squares
approach. Cambridge university press, 2007.

[24] M. Schmidt and H. Lipson, “Age-fitness pareto optimization,” in Genetic Program-
ming Theory and Practice VIII, pp. 129–146, Springer, 2011.

[25] R. Babuška, Knowledge-Based Control Systems. Delft Center for Systems and Con-
trol, 2010.

[26] D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parame-
ters,” Journal of the society for Industrial and Applied Mathematics, vol. 11, no. 2,
pp. 431–441, 1963.

[27] M. H. Stone, “The generalized weierstrass approximation theorem,” Mathematics
Magazine, vol. 21, no. 5, pp. 237–254, 1948.

[28] Evolved Analytics LLC R©, “Data Modeler 2018.12.03,”
Stijn Bosma Master of Science Thesis

113

[29] D. Nguyen and B. Widrow, “Improving the learning speed of 2-layer neural networks
by choosing initial values of the adaptive weights,” in 1990 IJCNN International
Joint Conference on Neural Networks, pp. 21–26, IEEE, 1990.

[30] Mathworks R©, “Deep learning toolbox R2018B ,”

[31] R. I. Mckay, N. X. Hoai, P. A. Whigham, Y. Shan, and M. O’neill, “Grammar-based
genetic programming: a survey,” Genetic Programming and Evolvable Machines,
vol. 11, no. 3-4, pp. 365–396, 2010.

[32] R. Ivanov, J. Weimer, R. Alur, G. J. Pappas, and I. Lee, “Verisig: verifying
safety properties of hybrid systems with neural network controllers,” arXiv preprint
arXiv:1811.01828, 2018.

[33] X. Chen, E. Ábrahám, and S. Sankaranarayanan, “Flow*: An analyzer for non-
linear hybrid systems,” in International Conference on Computer Aided Verification,
pp. 258–263, Springer, 2013.

[34] S. Rump, “INTLAB - INTerval LABoratory,” in Developments in Reliable Comput-
ing (T. Csendes, ed.), pp. 77–104, Dordrecht: Kluwer Academic Publishers, 1999.
http://www.ti3.tuhh.de/rump/.

[35] R. Li, B. R. Noack, L. Cordier, J. Borée, and F. Harambat, “Drag reduction of a car
model by linear genetic programming control,” Experiments in Fluids, vol. 58, no. 8,
p. 103, 2017.

Master of Science Thesis Stijn Bosma

http://www.ti3.tuhh.de/rump/

114 Bibliography

Stijn Bosma Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Signatures
	Table of Contents
	List of Figures
	List of Tables

	Main Matter
	Introduction
	Motivation
	Problem statement
	Approach
	State of the art

	Contribution of the thesis
	Thesis outline

	Preliminaries
	The data sets available for the feedforward controller design
	Measures used for the processing of te results
	Genetic Programming
	Artificial Neural Networks
	Framework
	Training of a neural network

	SHERLOCK

	Feedforward controller design by means of genetic programming
	Experimental Set-Up
	Research questions
	Varying parameters in the experimental set-up
	Other parameters in the experimental set-up
	Processing the results of the genetic programming experiment

	Results
	The analysis of compact models found by genetic programming
	The influence of of the input variables on the feedforward controller performance
	Feedforward controller performance
	Concluding remarks

	Discussion
	Conclusion

	Feedforward controller design by means of feedforward artificial neural networks
	Experimental Set-Up
	Research questions
	Varying parameters in the experimental set-up
	Other parameters in the experimental set-up
	Processing the results of the neural networks experiment

	Results
	Accuracy Analysis
	Feedforward controller performance
	Concluding remarks

	Discussion
	Conclusion

	Feedforward controller comparison
	Comparing the feedforward controllers from a performance perspective
	Comparing the feedforward controllers from a complexity perspective
	Gaining insight in the behavior of the compensation signals in the different planes
	The memory consumption of the feedforward controllers
	The computation time of the feedforward controllers

	Comparing the feedforward controllers controllers on other aspects
	Output bound verification of the feedforward controllers
	The influence of the number of training data points on the performance of the feedforward controllers

	Concluding Remarks

	Discussion
	On the performance of the feedforward controllers
	The limitation in accuracy for the models found with genetic programming
	The difference in accuracy of the neural network models
	The extrapolating qualities of the network controllers

	On the complexity of the feedforward controllers
	On the output range analysis of the feedforward controllers
	On the training data needed for the design methods
	On another approach to design the feedforward controller

	Conclusion

	Appendices
	Appendix Genetic Programming
	Neural Networks
	The influence of the hidden layers on the accuracy of the tanh networks
	The influence of the training data set on the accuracy of the tanh networks
	The influence of the hidden layers on the accuracy of the ReLU networks
	The influence of the training data set on the accuracy of the ReLU networks
	The influence of the hidden layers on the performance of the tanh controllers on the training set Q
	The influence of the training data sets on the performance of the tanh controllers
	The influence of the hidden layers on the performance of the ReLU controllers
	The influence of the training data sets on the performance of the ReLU controllers

	Back Matter

