
Optimising
District Heating
Operations
Lars Stegman

D
el
ft
U
ni
ve
rs
ity

of
Te
ch
no
lo
gy

Optimising
District Heating
Operations

by

Lars Stegman

to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on 16th October 2019

Project duration: 1st February 2019 – 16th October 2019
Thesis committee: Dr. M. de Weerdt, TU Delft, supervisor

Prof. P. Bosman, TU Delft, EEMCS - Algorithmics
R. Everhardt, MSc. withthegrid, external expert

This thesis is confidential and cannot be made public until 16th October 2020.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

During the writing of my thesis I have had great support frommy supervisors Mathijs deWeerdt and Rob
Everhardt. I would like to thank them for all the help, ideas and feedback they have given me during
this project. Mathijs has guided me through the academic process very well and has often helped me
see the bigger picture and the best next steps, while still allowing me to choose my own direction. Rob
has always been accommodating and has helped me solve several problems I ran into by helping me
find the mistakes in my reasoning.

I would also like to thank all the people at withthegrid for making me feel welcome and making me part
of the day-to-day business at withthegrid. I wish them all the luck in expanding their business, which I
am convinced will make a significant impact in the energy transition that is about to begin.

Finally, I would like to thank my family and friends for the support they have given me in both my
academic and personal life. Without their unconditional love and support, it would not have been
possible for me to accomplish this.

Lars Stegman
Barendrecht, 10th October 2019

i

Contents

Preface i

List of Figures vii

List of Tables x

List of Algorithms xi

1 Introduction 1

1.1 Research Questions . 2

1.2 Outline . 2

2 Background 3

2.1 District Heating Systems . 3

2.1.1 Network Topology . 3

2.1.2 Operation . 4

2.2 Physics . 8

2.2.1 Flow . 9

2.2.2 Heat . 9

3 Problem Description 15

3.1 Optimisation . 15

3.2 Control Variables . 16

3.3 Constraints . 16

3.3.1 Physics-Based Constraints . 16

3.3.2 Optimisation-Based Constraints . 18

3.4 Problem Complexity . 18

3.4.1 Non-Linearity . 18

3.4.2 Non-Convexity . 18

3.5 Fitness Function . 20

3.5.1 Operating Costs . 20

3.5.2 Constraint Violations . 20

3.5.3 Complete Fitness Function. 20

3.6 Energy Stored in the Network . 21

3.6.1 Termination Focused Optimisation. 21

3.6.2 Lower Bound . 21

ii

Contents iii

3.7 Lower Bound . 21

3.7.1 Energy Present at the End of the Horizon. 22

3.7.2 Consumed Heat . 23

3.7.3 Minimum Losses . 23

3.7.4 Maximum Produced Heat . 28

3.7.5 Combining the Bounds . 29

4 Related Work 30

4.1 Existing Work . 30

4.1.1 Mathematical Optimisation . 30

4.1.2 Artificial Intelligence Based Optimisation . 31

4.2 Related Problems . 32

4.2.1 Demand Forecasting . 32

4.2.2 System Design . 33

4.2.3 Multi-objective Optimisation . 33

4.3 Conclusions. 34

5 Methods 35

5.1 Initial Solution. 35

5.1.1 Random. 35

5.1.2 Heating Curve . 36

5.1.3 Existing Solution . 36

5.2 Termination . 36

5.3 Genetic Algorithm . 37

5.3.1 Solution Encoding . 37

5.3.2 Mutation. 37

5.3.3 Crossover . 37

5.3.4 Selection . 39

5.3.5 Existing Initial Solution . 39

5.4 Self-Adaptive Differential Evolution . 39

5.4.1 Solution Encoding . 39

5.4.2 Mutation. 40

5.4.3 Crossover . 40

5.4.4 Selection . 40

5.4.5 Parameter Adaptation . 40

5.4.6 Existing Initial Solution . 41

Contents iv

5.5 Covariance Matrix Adaptation Evolutionary Strategy . 42

5.5.1 Solution Encoding . 42

5.5.2 Meta-Parameters and Variables . 42

5.5.3 Algorithm Description. 43

5.5.4 Existing Initial Solution . 44

5.6 Heat Exchanger Approximation . 44

5.6.1 Interpolation. 44

6 Experiments 52

6.1 Measurements . 52

6.1.1 Optimality . 52

6.1.2 Convergence Speed . 52

6.1.3 First Generation With a Valid Solution . 53

6.1.4 Convergence Consistency . 53

6.2 Setup . 53

6.2.1 Scenarios . 53

6.2.2 Experiment Settings . 55

6.3 Hypotheses . 56

6.3.1 Meta-Parameter Influence . 56

6.3.2 Algorithm Performance. 57

6.3.3 Optimisation Savings . 58

7 Results 59

7.1 Preliminary . 59

7.1.1 Constraint Violation Penalty Preferred Over Increasing Costs 59

7.1.2 Number of Valid Solutions per Experiment . 59

7.2 GA. 61

7.2.1 Increased Exploration Improves Performance . 61

7.2.2 Initial Solution Causes Getting Stuck in Local Optimum 64

7.3 SaDE . 64

7.3.1 Large Populations Cause Bad Performance . 64

7.3.2 Initial Solution Improves Performance. 64

7.4 CMA-ES. 66

7.4.1 Sample Size . 66

7.4.2 Initial Step Size . 68

7.4.3 Initial Solution. 68

Contents v

7.5 Relative Performance . 70

7.6 Creeping Behaviour . 70

7.7 Optimisation Savings . 73

7.7.1 Residential . 73

7.7.2 Residential, Static Pricing . 76

7.7.3 Residential, Well Insulated . 78

7.7.4 Residential, Multiple Producers . 79

7.7.5 Conclusions. 79

8 Discussion 81

8.1 Conclusions. 81

8.1.1 Best Metaheuristic Optimisation Approaches . 81

8.1.2 Operational Cost Reduction . 82

8.1.3 Context . 82

8.2 Future Work. 82

8.2.1 Fitness Function . 82

8.2.2 Alternative Optimisation Approaches . 83

8.2.3 Extensions . 84

8.2.4 Low Temperature District Heating Systems . 84

8.2.5 Prerequisites for Deploying the Optimisation . 84

8.3 Closing . 85

A Experiment Scenarios 86

A.1 Residential (Statically Priced) . 86

A.2 Residential, Well Insulated . 89

A.3 Residential, Multiple Producers . 91

B Full Results 93

B.1 Population Size . 93

B.1.1 Optimality . 93

B.1.2 Convergence Speed . 93

B.1.3 First Iteration With a Valid Solution . 93

B.1.4 Consistency. 93

B.2 Variation. 93

B.2.1 Optimality . 93

B.2.2 Convergence Speed . 93

B.2.3 Generations Until Valid . 93

B.2.4 Consistency. .101

Contents vi

B.3 Combination .101

B.3.1 Optimality .101

B.3.2 Convergence Speed .101

B.3.3 Generations Until Valid .101

B.3.4 Consistency. .101

B.4 Initial Solution. .101

B.4.1 Optimality .104

B.4.2 Convergence Speed .104

B.4.3 Consistency. .104

Bibliography 106

List of Figures

2.1 Diagram icons . 3

2.2 DHS schematic topology . 4

2.3 Example heat curve . 5

2.4 Variable triangle for DHS simulation. When two are known, the variable in the corner
opposite the connecting side can be determined . 6

2.5 Grid frequency response with constant supply temperature and dynamic demand from
the point of view of the producer . 7

2.6 Changes in supply temperature lead to delayed changes in mass flow (variable demand) 8

2.7 Temperature effect duration (constant demand) . 9

2.8 Pump mass flow versus pressure characteristic . 10

2.9 Counter flow heat exchanger diagram . 11

2.10 Heat exchanger functions . 13

2.10 Heat exchanger functions (continued) . 14

3.1 DHS with multiple producers, consumers and a controlled join 16

3.2 Three grid settings with their corresponding heat delivery. The third settings proves non-
convexity. 19

3.3 Minimum losses determination concept . 23

3.4 Minimum supply side heat loss algorithm phases visualisation 25

5.1 Crossover operations . 38

5.2 CMA-ES directional search concept visualisation . 43

5.3 Interpolator samples . 47

5.4 Regular interpolated heat exchanger error for sample size of 5 and 120 and the adaptive
interpolator. Note the different y-axis scales. 48

5.4 Regular interpolated heat exchanger error for sample size of 5 and 120 and the adaptive
interpolator. Note the different y-axis scales. (Continued) 49

5.5 Runtime for the regular grid interpolator with respect to an increasing sample size . . . 50

5.6 Interpolation run time for the different interpolation methods. 50

7.1 Piecewise linear step penalty . 60

7.2 Performance ratios of genetic algorithm with varying population size 62

7.3 Iterations before convergence and the first valid solution for the genetic algorithm with
varying population size . 63

7.4 Performance ratios of genetic algorithm with varying mutation probability 63

7.5 Performance ratios for genetic algorithm . 64

vii

List of Figures viii

7.6 Performance ratios of SaDE with varying population size 65

7.7 Oversized SaDE population causes too slow convergence towards optimumwith varying
population size . 65

7.8 SaDE performance with varying initial solutions . 66

7.9 CMA-ES performance ratios with respect to the sample size 67

7.10 CMA-ES consistency and number of iterations before convergence with respect to the
population size . 67

7.11 CMA-ES first generation with valid solution . 68

7.12 CMA-ES performance ratios with respect to varying initial step size 69

7.13 CMA-ES performance ratios with varying initial solutions 69

7.14 Number of iterations until termination after the first valid solution has been found 70

7.15 Algorithm performance ratio over time for S.1 with random initialisation. 71

7.16 The progress of finding the hcF solution . 72

7.17 Performance ratio over time for S.1 with the heating curve initial solution and no maxi-
mum temperature gradient constraint . 73

7.18 Algorithm performance ratio over time with deactivated temperature gradient constraint 74

7.19 Residential scenario S.1 heating schedules . 76

7.20 Residential scenario S.1 heating schedule cost examination from the perspective of the
producer . 76

7.21 Residential scenario S.2 heating schedules . 77

7.22 Residential scenario S.2 heating schedule cost examination from the perspective of the
producer . 77

7.23 Residential scenario S.3 heating schedules . 78

7.24 Residential scenario S.3 heating schedule cost examination from the perspective of the
producer . 78

7.25 Residential, multiple producers scenario S.4 heating schedules 79

7.26 Residential, multiple producers scenario S.4 heating schedule cost examination from the
perspective of the producers . 80

A.1 Average residential demand . 87

A.2 Residential scenario topology . 88

A.3 Average residential well insulated demand . 89

A.4 Well insulated residential scenario topology . 90

A.5 Average residential multiple producers demand . 91

A.6 Residential scenario topology . 92

B.1 Performance ratios with increasing population sizes . 94

B.2 Number of iterations before convergence . 95

B.3 Number of iterations before a valid solution is found . 96

B.4 Final solution distances from other final solutions in the same experiment with varying
population size . 97

List of Figures ix

B.5 Performance ratios genetic algorithm with varying mutation probability 98

B.6 Performance ratios CMA-ES with varying variation . 98

B.7 Number of iterations before convergence genetic algorithm with varying mutation prob-
abilities . 99

B.8 Number of iterations before convergence CMA-ES with varying initial step sizes 99

B.9 First generation with a valid solution GA with varying mutation probability 100

B.10 First valid solution sample CMA-ES with varying initial step size 100

B.11 Final solution distances from other final solutions in the same experiment for the genetic
algorithm with varying mutation probability . 101

B.12 Final solution distances from other final solutions in the same experiment for CMA-ES
with varying initial step size . 102

B.13 Performance ratio with varying crossover . 102

B.14 Number of iterations before convergence with varying crossover 102

B.15 First generation with a valid solution with varying crossover. See Table 7.3 for the number
of valid solution found for every crossover . 103

B.16 Final solution distances from other final solutions in the same experiment varying crossover103

B.17 Performance ratios with varying initial solutions. The blue dashed line is the performance
ratio of the heating curve solution . 104

B.18 Iterations before convergence with varying initial solutions 104

B.19 Final solution distances from other final solutions in the same experiment varying initial
solution . 105

List of Tables

6.1 Algorithm meta-parameters . 54

6.2 Algorithm default meta-parameters . 55

6.3 Fitness function penalty factors . 56

7.1 Number of experiments that resulted in valid solutions with varying population size . . . 60

7.2 Number of experiments that resulted in valid solutions with varying variation 60

7.3 Number of experiments that resulted in valid solutions with varying crossover 61

7.4 Number of experiments that resulted in valid solutions with varying initial solutions . . . 61

7.5 Optimised heating schedule savings per scenario with respect to heating curve heating
schedule . 75

A.1 Heat exchanger parameters used in the scenarios . 86

A.2 Dynamic heat production cost, electricity prices, and residential demand 87

x

List of Algorithms
3.1 Algorithm to find the minimum supply side losses . 26
3.2 Algorithm to find the minimum losses given fixed producer supply temperatures 26
3.3 Algorithm to determine minimum heat losses in the network 28
3.4 Greedy algorithm to divide the heat to be produced over the cheapest producers time

blocks and determine the lower bound on the costs . 28
5.1 Heating curve search algorithm . 36
5.2 Genetic algorithm overview . 37
5.3 Genetic algorithm mutation operation . 38
5.4 Genetic algorithm time crossover . 38
5.5 Self-Adaptive Differential Evolution algorithm . 41
5.6 Covariance Matrix Adaptation Evolutionary Strategy algorithm 44
5.7 𝒪(1) bi-linear interpolation based on the unit square method 45
5.8 Non-Regular Grid Interpolation . 46
5.9 Tree-Based Regular Grid Interpolation . 47

xi

1
Introduction

The Netherlands has set the goal for itself to reduce CO2 emissions by 95% in 2050 [20]. To reach
this goal, many fundamental changes are needed in the way society works. In 2017, buildings were
responsible for 14.7% of CO2 emissions, the majority of which was caused by burning natural gas for
heating. Most buildings use individual gas boilers to generate their own heat. In 2016, more than 75%
of the homes in The Netherlands used a boiler [13]. To reach the emission reduction goal set by the
government, few homes can be heated using gas any more.

One of the alternatives would be to outfit homes with heat pumps and electric boilers for heating and
warm tap water, respectively. However, district heating systems (DHSs) are considered a better,
cheaper alternative as heat pumps and electric boilers use large amounts of electricity, which would
require extensive investments in the electrical grid, despite homes being outfitted with photovoltaic (PV)
panels.

With DHSs heat is produced in a (or multiple) central source(s) and distributed to consumers. The
heat for a DHS can come from any source, renewable or otherwise. In the city of Rotterdam, residual
heat from the chemical refinery Shell Pernis is going to be used for heating homes in the district of
Pernis. In the city of Papendrecht, the use of a geothermal source as a heat source for a DHS is being
researched. [27]

Currently, most DHSs are operated by choosing a temperature once every day depending on the
weather. This setting is chosen such that peak demand can be satisfied. However, when demand
is lower, the supply temperature will be higher than necessary and heat will be wasted. In addition to
this, heat production costs can be dynamic over time, which gives room for more cost-efficient heat
production scheduling. By choosing a dynamic temperature over the day losses and operating costs
can be reduced. However, determining these dynamic temperatures is not easy, as there are several
factors that need to be taken into account to ensure that demand can always be fulfilled. Thus, by
optimising the heating schedule for the DHS both production cost and possibly CO2 emissions can be
lowered.

1

1.1. Research Questions 2

1.1. Research Questions
Optimisation of DHSs is not a new idea, as many approaches can be found in literature [2, 4, 9]. The
novel approach of this research is the application of metaheuristics, whereas other research primarily
focusses on mathematical optimisation.

As the optimisation problem is both non-linear and non-convex, the mathematical optimisation makes
certain assumptions, e.g. approximating exponential terms by linearising them using a simulator. Most
mathematical optimisations build a mathematical model of the DHS under optimisation, but with meta-
heuristics, this is not needed, as the fitness function can be optimised directly. This removes complexity
and makes it possible to use elements of the DHS model that are too complex to model in the mathe-
matical optimisation model.

In this report the following questions will be researched:

RQ 1 What metaheuristic optimisation approaches work well for solving the DHS optimisation problem?

RQ 1.1 What is needed to make the use of metaheuristics feasible?

RQ 2 How much improvement does an optimised heating schedule offer with respect to the existing
operational methods?

RQ 2.1 Is a lower bound on the production costs available (in literature) or is it possible to determine
a useful one?

RQ 3 How do the approaches compare to the existing mathematical optimisation approaches found in
literature?

1.2. Outline
This report is laid out as follows.

Chapter 2 gives a comprehensive description of how DHSs work and the underlying physics required
to understand the problem.

In Chapter 3 the model of the DHS operation optimisation problem is described, including the cor-
responding constraints, problem complexity, resulting objective function and a lower bound for the
problem.

Chapter 4 gives an overview of existing approaches to optimise DHS operations and other related
research, like demand forecasting and DHS system design.

Chapter 5 describes several methods which have been attempted to optimise the problem and amethod
to circumvent an expensive part of the simulation.

Then, in Chapter 6 several DHS scenarios are described. These scenarios are then used in the sub-
sequently described experiments.

In Chapter 7 the results from the experiments in the previous chapter are discussed and the underlying
causes for the results are investigated.

To conclude this report, Chapter 8 draws conclusions from the results, answering the research ques-
tions, and discusses possible future research directions.

2
Background

This chapter gives a description of how district heating systems work and the relevant underlying
physics concepts.

Section 2.1 describes in detail how DHSs work, how they are operated and gives several examples to
illustrate what effects choices in operation have.

Section 2.2 gives an overview of relevant physics concepts to give a more theoretical foundation for
the earlier section. In addition to this, a description of heat exchangers is given, which is one of the
most complex, but also most important, elements of calculations on a DHS.

2.1. District Heating Systems
A district heating system (DHS) consists of three components: producers, consumers, and a district
heating network (DHN) to circulate heated water from producers to consumers and cooled down water
back again. In Figure 2.1 an overview of the icons used in diagrams is given.

2.1.1. Network Topology
In Figure 2.2 a schematic view of a DHS is shown.

Transportation
A typical DHN consists of a primary and a secondary network. The primary network consists of trans-
portation pipes which distribute large amounts of heated water from heat production facilities to heat
transfer stations (HTSs) and/or consumers. From HTSs, heat from the primary network is transferred to

(a) Heat Producer (b) Heat Consumer (c) Heat Transfer Station

(d) Warm Water Pipe (e) Cold Water Pipe (f) Pump

(g) Split (h) Join (i) Controlled Join

Figure 2.1: Diagram icons

3

2.1. District Heating Systems 4

Producer

HTS HTS...

Customer Customer Customer... Customer

Producer... Producer

Customer

Primary network

Secondary network

Figure 2.2: DHS schematic topology

the secondary network. In addition to HTSs, some large consumers, e.g. hospitals or shopping centres,
can also connect to the primary grid directly.

The secondary network consists of smaller pipes than the primary network as the primary network
transports heat for multiple secondary networks combined. As the pipe diameters are smaller, the sur-
face area of the pipes in relation to their diameter is larger, which means heat is lost to the environment
more easily. This means most energy losses occur in the secondary network.

In this research it is assumed that the DHN is tree-like. This means there is only one route from a
producer to a consumer and that there are no bidirectional pipes in the DHN.

Connections
As explained above, the primary and secondary network consist of pipes to transport water. These
pipes can be seen as edges of a graph and anything that connects (to) pipes as nodes. These nodes
are either infrastructure nodes, like pumps, splits, joins, producers, HTSs, or heat sinks, like consumers
and HTSs.

Every element of the network is assumed to have conservation of mass flow, which means that the
sum of outgoing flows is equal to the sum of incoming flows. In other words, it is assumed there are no
leaks in the network.

2.1.2. Operation
A DHS is operated by setting supply temperatures for heat sources, like producers and HTSs, and
controlling pumps in the network. These pumps maintain pressure so consumers receive flow when
they open their valves to consume heat.

Changes in production temperatures propagate through the DHN at a speed depending on the flow
velocities in the network. Higher flow velocities spread water through the DHN faster, resulting in
a low propagation delay. Since the warm water spends less time in the network before it arrives at a
consumer, less heat will be lost to the environment, resulting in higher efficiencies. When flow velocities
are low, water spreads through the network more slowly, leading to higher heat loss.

Central to calculations on DHSs is the heat equation (2.1), which states that the heat power taken
from/put into the system is equal to product of the specific heat capacity of water1, mass flow and the
induced difference in temperature.2

𝑄 = 𝑐�̇�Δ𝑇 [W]3 (2.1)

Increasing the production temperatures at producers leads to lower mass flows in the network, since
consumers need less water to receive the same amount of heat. As this lower mass flow leads to higher
1The amount of energy required to heat 1 kg by 1K
2Note that heat and temperature are different things: heat is a form of energy that causes an object to have a certain temperature.
3Units: J/(kgK) ⋅ kg/s ⋅ K J/s W

2.1. District Heating Systems 5

losses in the network, a simple solution would be to simply lower the temperature as much as possible
until the maximum flow velocities are reached. Unfortunately, demand varies throughout the day and
if an insufficient amount of heat is stored in the network ahead of time, it might become impossible to
fulfil demand later in the day.

15 10 5 0 5 10 15 20 25 30
Mean outdoor temperature []

50

60

70

80

90

100

110

Pr
od

uc
tio

n
te

m
pe

ra
tu

re
 [

]

80.3

8.0

Maximum production temperature
Minimum delivered temperature

Figure 2.3: Example heat curve. A mean outdoor temperature
of 8.0 ∘C results in a supply temperature of 80.3 ∘C at the heat
producer

Both reheating the water to the set point sup-
ply temperatures and maintaining pressure in the
network have costs associated. These costs vary
depending on the time of day and the type of en-
ergy or production plant used. For example, elec-
tricity is usually more expensive in the morning
when everyone is getting ready for the day, thus it
might be more profitable to sell electricity instead
of heat from the production plant.

Currently, heating schedules are determined
once every day by using a predetermined heat-
ing curve. An example of a heating curve can be
seen in Figure 2.3. In this example, the average
outdoor temperature for the day is 8 ∘C, which
leads to a set point supply temperature of 80.3 ∘C
for the producer in the network. Essentially, the
temperature settings are fixed to a set value for
the entire day and only the pumping power is var-
ied to fulfil demand at all times.

Because demand varies throughout the day, operating the DHS like this is not very efficient. When
demand is low, a low flow velocity is needed to fulfil demand, which leads to higher losses in the DHN.
In addition to this, as heating and pumping costs vary over time, it might be more efficient to heat more,
earlier, than less, later, essentially using the DHN itself as a heat store.

Operating Costs
The operating costs of a DHS are determined by the costs for heat generation and pumping costs.

When 𝑄 (T) is defined to be the amount of energy produced by producer 𝑝 at time 𝑡 given output
temperature T and �̇� ̇ is the pumping power by pump �̇� at time 𝑡, then the overall operating cost is
defined by:

𝑐op(T, Ẇ) = 𝛿∑
∈
(∑

∈
𝑐 𝑄 (T)) + (∑

̇∈ ̇
𝑐 ̇Ẇ ̇) (2.2)

where 𝛿 is the interval length, 𝑐 the price of producing one joule of heat by producer 𝑝 at time 𝑡, and 𝑐 ̇

the cost of using one joule of electricity by pump �̇� at time 𝑡. T is the set of output temperature settings
of heat sources.

District Heating System Calculations
As described above, the control variables of a DHS consist of the heat source output temperature
settings and the pumping power.

Three main variables are important to determine how a DHS behaves:

• Heat sources output temperatures

• Mass flows at every point in the network

• Heat consumed by consumers

2.1. District Heating Systems 6

Figure 2.4: Variable triangle for DHS simulation. When two are known, the variable in the corner opposite the connecting side
can be determined

If two variables values are known, the third can be calculated, which can be illustrated by the variable
triangle shown in Figure 2.4. One combination can be easier to calculate than another, though, as cer-
tain combinations would require complex pressure calculations or calculations that require expansive
stateful calculations.

One combination can be ruled out immediately: determining the output temperatures from the mass
flows and consumed heat, as this is exactly the problem under optimisation for simple networks with a
single heat source.

Examples
In this section, several small operation examples will be given to give a better intuition on the frequency
response of a DHS network given changes in supply temperature or demand. In these examples, the
mass flows are determined given the consumed heat and supply temperatures.

All examples consist of 1 producer and 1 consumer which are connected with two DN6004 pipes with
a length of 2704m each. The simulation horizon covers 5 hours with an interval length of 10min.

The vertical axis shows flow velocities (blue) and set point output temperature (red) of the producer.
The horizontal axis is time in blocks of 10min. Everything left of t = 0min is history and can thus no
longer be controlled. The maximum flow velocity for DN600 pipes is 3.0m/s.

Satisfying Demand by Increasing Mass Flow For this first example the demand is dynamic and
is shown in Figure 2.5a. The supply temperature is kept constant at 90 ∘C, which means temperature
changes have no effect on the heating power for consumers. The resulting mass flows can be seen
in Figure 2.5b. When demand drops (t=50min), the flow velocity in the network drops as well. When
the demand increases again at t=130min, the flow velocity increases again as well. In reality there is a
small delay between the change in demand and the change in mass flow at a producer, but this effect
is several orders of magnitude smaller than the time scale at which the optimisation works.

4The number after DN indicates the diameter of the pipe in mm, in this case 600mm

2.1. District Heating Systems 7

0 6 12 18 24 30
Time [10 min]

60 MW

70 MW

80 MW

90 MW

100 MW

110 MW

120 MW

(a) Consumer heat power demand

0 6 12 18 24 30
Time [10 min]

70

75

80

85

90

95

100

105

110

115

Ou
tp

ut
 te

m
pe

ra
tu

re
 se

tp
oi

nt
 [

]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Fl
ow

 v
el

oc
ity

 [m
/s

]

(b) Constant supply temperature of 90 ∘C and the resulting mass flows

Figure 2.5: Grid frequency responsewith constant supply temperature and dynamic demand from the point of view of the producer

2.2. Physics 8

0 6 12 18 24 30
Time [10 min]

70

75

80

85

90

95

100

105

110

115
Ou

tp
ut

 te
m

pe
ra

tu
re

 se
tp

oi
nt

 [
]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Fl
ow

 v
el

oc
ity

 [m
/s

]

Figure 2.6: Changes in supply temperature lead to delayed changes in mass flow (variable demand)

Changes in Demand Lead to Instant Mass Flow Changes, Changes in Supply Temperature Do
Not In this second example, both the demand and the supply temperature are varied over time. The
demand is the same as in the previous example (Figure 2.5a).

The resulting mass flows are illustrated in Figure 2.6. Lowering the supply temperature, leads to higher
mass flows in the network, but since there is a propagation delay, it does not happen instantly. When
the supply temperature is dropped the first time (t = 30min), nothing happens yet to the mass flow. Only
in the next time block (t=40min) does the consumer compensate for the lower supply temperature by
increasing the mass flow.

Then, at t = 50min, the heating power demand drops and the mass flow drops immediately as well. At
t = 70min the mass flow is increased a little, because at t = 60min some warmer water was still left in
the network, which meant less mass flow was needed to provide the same amount of heating power to
the consumer.

High Temperatures Lead to Slower Frequency Response This final example shows that high sup-
ply temperatures have a longer lasting effect in the network than low temperatures. This effect is shown
in Figure 2.7. At 𝑡 = 0min a block of water with temperature 105 ∘C is put into the network. As this
water has more heat in it, the required mass flow for the consumers goes down. At 𝑡 = 180min a
block of only 75 ∘C is put into the network. At time 𝑡 = 190min the mass flows starts to increase to
compensate.

The higher temperature water has an effect for 90min while the lower temperature water has an effect
for only 60min. This is because the total mass of water in the network does not change, but the mass
flow in the network does change. As a low supply temperature leads to higher mass flows, it will take
less time for the cooler water to pass through the consumer than it did for the warmer water.

2.2. Physics
To give a better understanding of why the effects described in the previous section occur, this section
describes the relevant physics concepts.

Flow is the movement of a medium through a channel. In this case the medium is water and the channel
are the pipes in the DHN. In this problem, two types of flow are used: mass flow and flow velocity. This
is described in Section 2.2.1.

The second relevant concept is heat. This is a form of energy that causes a medium to have a cer-
tain temperature. Heat dissipates when there is a temperature differential between two points. This
causes the water in the DHS to lose energy to the environment, which cools it down before it reaches
consumers. Section 2.2.2 describes relevant heat equations and heat exchanger computations.

2.2. Physics 9

0 6 12 18 24 30
Time [10 min]

70

75

80

85

90

95

100

105

110

115
Ou

tp
ut

 te
m

pe
ra

tu
re

 se
tp

oi
nt

 [
]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Fl
ow

 v
el

oc
ity

 [m
/s

]

Figure 2.7: Temperature effect duration (constant demand)

2.2.1. Flow
Mass flow (�̇� [kg/s]) is the amount of water weight that flows through a cross section of a pipe every
second. At every point in a pipe the mass flow is the same. This is because the propagation of
changes in the mass flow are effectively instant. The change in mass flow propagates as a pressure
wave through the pipe at a speed of more than 1400m/s5, which means the change is propagated
through a typical DHS in less than 10 s.

Some parts of the optimisation are easier to define when flow velocity (𝑣 [m/s]) is used instead of mass
flow. Mass flow can be converted to flow velocity using Equation 2.3 where 𝜌 is the density of water
and 𝐴 is the cross section area of the pipe in the direction orthogonal to the flow direction.

𝑣 = �̇�
𝜌𝐴 (2.3)

Energy
To create mass flow, energy is needed. This energy comes from electricity that is used by pumps to
create a pressure difference. The amount of energy a pump uses at any time to create pressure can
be derived using Equation 2.4.

�̇� ̇ = �̇�Δ𝑃
𝜌𝜂 ̇ (2.4)

where Δ𝑃 is the pressure difference between the inlet and outlet of pump �̇�, and 𝜂 ̇ its efficiency.

From this equation is seems like the amount of energy can grow unbounded, but this is not true. Mass
and pressure difference are related to each other, the combination of which results in a characteristic
curve for the pump. This relation can be measured, but if this characteristic and either of two quantities
is known, the third can be determined. An example characteristic is shown in Figure 2.8.

2.2.2. Heat
At the core of the problem is the heat balance equation 2.1 where 𝑐 is the specific heat of the medium
(in this case water) and Δ𝑇 is the difference in temperature between the inlet and the outlet of, e.g. a
pipe or heat exchanger.

�̇� = 𝑐�̇�Δ𝑇 (2.1)

where Δ𝑇 = 𝑇 − 𝑇 .
5The speed of sound in water

2.2. Physics 10

0
m

0

P

Figure 2.8: Pump mass flow versus pressure characteristic

Production
Using this formula, it is possible to calculate how much heat a producer has to generate. The mass flow
is determined from the control variables and the consumer demands. The temperature difference is
simply the difference between the return temperature from the grid and the set point supply temperature.
Because the type of producers considered in this problem can usually increase production much faster
than the time scale of the optimisation, it is assumed producers can respond to changes in mass flow
instantly. In reality, they will temporarily output water of a lower temperature, but this is negligible for
the optimisation.

Heat Losses
Because of the thermal conductivity of the pipes in the network, heat is lost during transport. This
means that heat moves from the water to the pipes and their surroundings. This should be minimised
as this reduces the efficiency of the DHS.

A high temperature differential between two points will cause heat to move faster between these two
points. This means that by minimising the temperature in the pipes, the amount of heat lost to the
environment is also minimised.

The temperature difference with respect to the environment is given by Newton’s law of cooling:

Δ𝑇(𝑡) = Δ𝑇 exp(−𝑡/𝜏) (2.5)

where Δ𝑇 = 𝑇 − 𝑇env and 𝜏 = 𝐴𝜌𝑐𝑅. Here 𝑇env is the environment temperature and 𝑅 is the thermal
resistance of the pipe. Note that 𝜏 is constant, but different for every type of pipe. Newton’s cooling
law thus gives how much the water has cooled down after 𝑡 time in the pipe.
To minimise the amount of heat lost, either 𝑇 or the amount of time water spends in the pipe could be
minimised. It would also be better to have a high thermal resistance, but this is determined during the
design of the DHS, well before this optimisation comes into play.

Heat Exchangers
To consume heat from a DHS or to move heat from the primary to the secondary network in a HTS,
heat exchangers are used. These devices move heat from onemedium to another without mixing them.
A heat exchanger has 2 inlets and 2 outlets; a primary and secondary of both. Heat is moved from
the primary side to the secondary side through a contacting wall between the two fluid streams. This
contacting wall is made of a material with a low heat resistance so heat can easily pass through it.

In a typical DHS so-called counter-flow heat exchangers are used, where the primary flow flows in the
direction opposite to the secondary flow. A diagram of this type of heat exchanger is shown in Figure
2.9. The outer mantel is the primary side as warm water flows into the heat exchanger here.

2.2. Physics 11

Figure 2.9: Counter flow heat ex-
changer diagram

Rewriting Equation 2.1 to 2.6, the amount of heat required at the sec-
ondary side and the secondary supply (outlet) and return (inlet) tem-
peratures, the secondary mass flow can be determined.

�̇� = 𝑄
𝑐Δ𝑇 (2.6)

In Equation 2.7 the primary return temperature for a heat exchanger is
determined. The factor 𝛼 is given in Equation 2.9, but a more detailed
description is given in [9, section 2.6.1]. The factor 𝛼 is determined
using Equation 2.8. 𝑇 and 𝑇 are respectively the primary and sec-
ondary inlet temperatures.

𝑇 = 𝛼𝑇 + (1 − 𝛼)𝑇 (2.7)

𝐿𝑀𝑇𝐷 =
(𝑇 − 𝑇) − (𝑇 − 𝑇)

ln (𝑇 − 𝑇) − ln (𝑇 − 𝑇) (2.8)

𝛼 =
𝑇 − 𝑇
𝑇 − 𝑇 exp(− 𝑈𝐴𝑐�̇� (�̇��̇� − 1)) (2.9)

𝑈𝐴 = 𝑘
�̇� + �̇� (2.10)

The following variables at the heat exchanger are needed in the logarithmic mean temperature differ-
ence (LMTD) method: primary and secondary mass flow, primary and secondary inlet temperatures,
and the secondary target outlet temperature. Unfortunately, because the primary mass flow is exactly
what needs to be determined for the simulation, no closed form of this equation exists and an iterative
process is required to solve it.

In addition to these variables, several other constant properties of the heat exchanger are needed: the
contacting wall (plate) area 𝐴, maximum primary mass flow �̇�max and 𝑘 and 𝑞 factors which can be
determined experimentally.

Heat Exchanger Function Shapes
To make it clear what the heat exchanger functions look like exactly, they will be described here using
an example heat exchanger.

Taking a typical heat exchanger with the following parameters:

• 𝑘 factor = 6000
• 𝑞 factor = 0.8
• Plate surface area 𝐴 = 1.5m2

• Maximum primary mass flow �̇� max = 300 kg/s
• Secondary return temperature 𝑇 = 45 ∘C

• Target secondary supply temperature 𝑇 = 70 ∘C

and following input domains:

• Primary supply temperature 𝑇 = 70 ∘C to 110 ∘C

• Secondary mass flow �̇� = 0 kg/s to 30 kg/s
Depending on the secondary mass flow, which is linearly dependent on the demand, a minimal temper-
ature is needed to deliver the requested heating power. If the primary supply temperature drops below

2.2. Physics 12

this temperature, the heat exchanger can no longer transfer enough power to its secondary side. This
boundary can clearly be seen in Figure 2.10.

At this boundary, the primary mass flow (Figure 2.10a) goes to its maximum value to deliver as much
heat as possible. The primary return temperature (Figure 2.10e) drops more steeply. The secondary
supply temperature (Figure 2.10g) can no longer be kept at the target 70 ∘C and starts dropping. Finally,
the delivered heat power (Figure 2.10c) can no longer be kept at the demand and the linear dependency
no longer holds.

As can be seen in Figures 2.10b, 2.10d, 2.10f, and 2.10h, doubling the plate area 𝐴, drastically changes
how efficiently the heat exchanger works. The boundary is shifted toward the lower bound of the primary
supply temperature, i.e. the heat exchanger can deliver the same amount of heating power with a much
lower primary supply temperature. It can also be seen that the primary return temperature will be much
lower, which means the heat exchanger is more efficient. Note that doubling the 𝑘 factor would have
the exact same effect.

2.2. Physics 13

Primary supply temperature []

70
75

80
85

90
95

100
105

110

Se
con

da
ry

mass
 flo

w [k
g/s

]

0

5

10

15

20

25

30

Pr
im

ar
y

m
as

s f
lo

w
[k

g/
s]

50

100

150

200

250

300

(a) Primary mass flow, 1.5m2

Primary supply temperature []

70
75

80
85

90
95

100
105

110

Se
con

da
ry

mass
 flo

w [k
g/s

]

0

5

10

15

20

25

30

Pr
im

ar
y

m
as

s f
lo

w
[k

g/
s]

50

100

150

200

250

300

(b) Primary mass flow, 3m2

Primary supply temperature []

70
75

80
85

90
95

100
105

110

Secondary mass flow [kg/s]

0

5

10

15

20

25

30

Delivered heat [M
W

]

0.5

1.0

1.5

2.0

2.5

3.0

(c) Delivered heat, 1.5m2

Primary supply temperature []

70
75

80
85

90
95

100
105

110

Secondary mass flow [kg/s]

0

5

10

15

20

25

30

Delivered heat [M
W

]

0.5

1.0

1.5

2.0

2.5

3.0

(d) Delivered heat, 3m2

Figure 2.10: Heat exchanger functions for a heat exchanger with , . , ̇ max 300 kg/s, 45 ∘C, 70 ∘C.
Figures at the top have 1.5m2, on the bottom 3m2. Note that the figures are rotated along the Z axis to show the
functions’ shapes better. Colours indicate the value on the Z axis.

2.2. Physics 14

Primary supply temperature []

70
75

80
85

90
95

100
105

110

Secondary mass flow [kg/s]

0

5

10

15

20

25

30

Prim
ary return tem

perature [
]

50

55

60

65

70

75

80

85

90

(e) Primary return temperature, 1.5m2

Primary supply temperature []

70
75

80
85

90
95

100
105

110

Secondary mass flow [kg/s]

0

5

10

15

20

25

30

Prim
ary return tem

perature [
]

50

55

60

65

70

75

80

85

90

(f) Primary return temperature, 3m2

Primary supply temperature []
70

75
80

85
90

95
100

105
110

Se
con

da
ry

mass
 flo

w [k
g/s

]

0

5

10

15

20

25

30

Se
co

nd
ar

y
su

pp
ly

 te
m

pe
ra

tu
re

 [
]

50

55

60

65

70

75

80

85

90

(g) Secondary supply temperature, 1.5m2

Primary supply temperature []
70

75
80

85
90

95
100

105
110

Se
con

da
ry

mass
 flo

w [k
g/s

]

0

5

10

15

20

25

30

Se
co

nd
ar

y
su

pp
ly

 te
m

pe
ra

tu
re

 [
]

50

55

60

65

70

75

80

85

90

(h) Actual secondary supply temperature, 3m2

Figure 2.10: Heat exchanger functions (continued). Note that the figures are rotated along the Z axis to show the functions’
shapes better.

3
Problem Description

This chapter gives a description of the optimisation model and the elements added or removed from
the DHS problem as it was described in Chapter 2. In Chapter 2 the fundamental concepts behind
the operation of DHSs were described. This chapter focusses on the actual optimisation problem, by
describing the control variables, the (artificial) constraints of the problem, the problem complexity and
the corresponding fitness function.

First, Section 3.1 gives a short description of what optimisation is. Section 3.2 gives a description of the
control variables in this model and how they are used in the simulator behind the fitness function. Then,
Section 3.3 gives a description of all constraints in the DHS problem, including artificial constraints
added to improve the optimisation. The complexity of this problem is discussed in Section 3.4, which
consists of an explanation of why this problem is not linear and of a convexity counter example.

Section 3.5 then describes the fitness objective for the DHS problem. Then, Section 3.6 describes an
artificial constraint added to the optimisation that solves a problem for the optimisation and makes it
possible to calculate an easy lower bound for the problem. Finally, using this new constraint, Section
3.7 describes a lower bound for this problem, by considering several of its facets.

3.1. Optimisation
Optimisation is the practice of finding the best possible solution to a problem from a (possibly infinite)
solution space. More formally, Equation 3.1 minimises quality measurement function 𝑓 by finding the
solution x which minimises 𝑓. Equation 3.2 defines the solution space using function 𝑔 to indicate that
𝑔 applied to some x should be greater than or equal to some value vector a.

min
x∈𝒳

𝑓(x) (3.1)

s.t. 𝑔(x) ≥ a (3.2)

A simple example of a minimisation problem would be: find a value for 𝑥 ∈ ℕ that minimises 𝑥 such
that 𝑥 − 10 ≥ 4. In this case, 𝑓 is the identity function, which simply returns the given 𝑥. The solution
space is defined by all natural numbers larger than or equal to 14, because 𝑔 = 𝑥 −10 and 𝑎 = 4. The
optimal solution is 14, as 𝑔(13) = 3 ≱ 4, and 𝑔(15) = 5 > 4, which means 14 is more optimal.

Approaches
There are different possible approaches to optimise a problem, depending on the given problem.

Some problems are ”easy” to optimise, namely problems in the complexity class P. An example is the
shortest path problem, which can efficiently be solved using, among others, Dijkstra’s algorithm.

The “hard” problems, from the class NP - P and up, include the travelling salesperson problem (TSP),
for which no efficient algorithm exists (assuming P≠NP) if a guaranteed optimal solution is needed

15

3.2. Control Variables 16

within a reasonable amount of time for any instance. Problems like these are often solved using other
methods, like heuristics, metaheuristics, or machine learning.

These problem classes encompass combinatorial optimisation problems, in which all decision variables
have discrete values. There are also real-valued optimisation problems, which consist of finding the
optimal values for real-valued decision variables. This type of problems are often solved using mathe-
matical optimisation like derivative based optimisation, linear programming, non-linear optimisation or
metaheuristics, like evolutionary strategies.

As the DHS problem is continuous, it might be solved using one of the methods.

3.2. Control Variables
As described in Section 2.1.2, three variables are important in calculations on how a DHS behaves:
the mass flows, the consumed heat and the temperatures. When two are given, the third can be
determined. In the simulation in this model, demand and temperatures are known and the mass flows
need to be determined.

Figure 3.1: DHS with multiple produc-
ers, consumers and a controlled join

There are several methods of controlling a DHS simulator. One of the
methods was described earlier in Section 2.1.2, in which the supply
temperatures and pumping power is controlled, resulting inmass flows
and consumer supply temperatures. This method is more difficult to
simulate though, as complex pressure calculations are required for
this. A different approach was taken based on the node flow method
from Benonysson et al.

In this approach, consumers are leading. They are given their primary
supply temperature and demand from which they can compute their
primary return temperature and primary mass flow.

How water is routed through the DHN can now no longer be con-
trolled by pressure, but by the mass flows resulting from the con-
sumers. There are some areas in the network where more information
is needed than just the consumer mass flows to determine how water
is routed. This information comes from a decision variable that con-
trols what fraction of the incoming flow goes where through the use of
valves.

In Figure 3.1 a DHS with two producers and a controlled join is shown.
There is no secondary network, so both consumers are directly con-
nected to the primary network. The join is controlled to split the total
mass flow from the consumers between the producers. This control
consists of a parameter 𝛼 ∈ [0, 1] which decides what fraction of the
outlet mass flow comes from which producer. It would intuitively make
more sense to have controlled splits, however the simulation is easier
when joins are controlled through the control variables instead. This
change can be made without loss of generality.

3.3. Constraints
The DHS problem has several constraints which are described in this section. The first subsection de-
scribes constraints that come from physical limitations on DHSs, e.g. the maximummass flows through
the network. The second section describes artificial constraints which are added to improve the opti-
misation.

3.3.1. Physics-Based Constraints
Fulfil Demand
The most important constraint to fulfil is that demand must be fulfilled at all times. This is a legal
requirement in The Netherlands.

3.3. Constraints 17

To be able to fulfil this demand it must be possible to deliver enough heating power to the consumers’
secondary heat exchanger side. This can be done by either increasing the primary mass flow of the
consumer or by increasing the primary supply temperature.

This constraint can be described by the following inequality:

𝑄 ≥ 𝑄dem, ∀𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇 (3.3)

which states the delivered power 𝑄 to consumer 𝑐 at time 𝑡 should be at least as much as the power
𝑄dem, demanded by consumer 𝑐 at time 𝑡 for all consumers 𝑐 ∈ 𝐶 at all times 𝑡 ∈ 𝑇

Maximum Edge Flow Velocity
Every edge (pipe) in the network has a maximum amount of water that can flow through it every second.
This mass flow can be translated to flow velocity using Equation 2.3.

Exceeding this limit can damage pipes or other equipment in the network. As every consumer in the
network determines their required primary mass flows, these mass flows will eventually come from a
common source pipe. This compound effect can lead to needing to exceed the maximum flow velocity
in a source pipe. Should this happen, the only solution would be to increase the temperature of the
water in the pipes so consumers will need a lower primary mass flow.

This constraint can be described by the following inequality:

𝑣 ≤ 𝑣max ∀𝑒 ∈ 𝐸, 𝑡 ∈ 𝑇 (3.4)

which states that the flow velocity in pipe 𝑒 at time 𝑡 should be lower than the maximum flow velocity
for pipe 𝑒 for all pipes 𝑒 ∈ 𝐸 at all times 𝑡 ∈ 𝑇.

Minimum Supply Temperature
In addition to needing enough heat to fulfil demand, the supply temperature should also be higher than
70 ∘C to prevent bacterial growth in the network. This is also a legal requirement in The Netherlands,
thus it might be possible this constraint could be omitted in other scenarios.

This constraint can be described by the following inequality:

𝑇 ≥ 70 ∀𝑐 ∈ 𝐶 (3.5)

Which states the primary supply temperature 𝑇 for consumer 𝑐 should be higher than 70 ∘C for all
consumers 𝑐 ∈ 𝐶.

Maximum Production Temperature Differential
The final physics constraint has to do with the production of heat. Heat producers should not need to
change their output temperatures too much within a given time frame. Doing this would put excessive
stress on the network and production equipment.

This can be expressed by the following inequality:

−𝑇∇max ≤ 𝑇 − 𝑇 ≤ 𝑇∇max ∀𝑝 ∈ 𝑃, 𝑡 ∈ 𝑇 (3.6)

which states that the temperature difference for producer 𝑝 between time 𝑡 − 1 and time 𝑡 should not
be greater than the maximum temperature gradient 𝑇∇max for all producers 𝑝 ∈ 𝑃 at all times 𝑡 ∈ 𝑇.

Note that 𝑇 is the output temperature of producer 𝑝 before the optimisation horizon starts. This means
the output temperature before the start of the optimisation horizon is also a constraining factor.

3.4. Problem Complexity 18

3.3.2. Optimisation-Based Constraints
Energy Stored in the Network
As will described in Section 3.6, a constraint should be added to the optimisation which enforces a
lower limit on the amount of energy present in the network at the end of the optimisation horizon.

This can be done by calculating how much energy is stored in the network at the end using equation
2.1:

𝑄 = 𝑐𝑚Δ𝑇 (2.1)

= 𝑐∑
∈
𝑚 𝑇 (3.7)

= 𝑐∑
∈
𝜌𝐴 𝐿 𝑇 (3.8)

where 𝐴 and 𝐿 are the cross sectional area and length of pipe 𝑒 respectively and 𝑇 is the absolute
temperature of the water in pipe 𝑒 at time 𝑡 ∈ 𝑇.
Using this we can then create the constraint:

𝑐𝜌∑
∈
𝐴 𝐿 𝑇 end ≥ Ω (3.9)

where Ω is the amount of energy that should be present in the network at the end of the optimisation.

3.4. Problem Complexity
This section describes the problem characteristics which make this problem hard to optimise with con-
ventional optimisation methods. The first obstacle is the non-linearity of this problem. This is explained
in Section 3.4.1. The second obstacle is the non-convexity of the problem, which is described in 3.4.2.

3.4.1. Non-Linearity
There are several factors in this problem which make the problem non-linear.

Heat Exchangers
The first is the heat exchanger functions, which are not smooth over their entire domain. Certain
sections of the domain are smooth, but these sections are not always linearly dependent on the domain.
The heat exchanger functions have been explored in Section 2.2.2.

Heat Losses
The second factor which causes non-linearity are the heat losses in the DHN. As described in Section
2.2.2, heat loss is calculated using Newton’s cooling law (Equation 2.5), which contains an exponential
dependence on the time water spends in the pipe. This time can be calculated using the mass flow in
the pipes, which is calculated using the demand and the supply temperatures in the network.

As supply temperatures are decision variables, the input variable for the exponential Newton’s cooling
law depends on the decision variables.

3.4.2. Non-Convexity
A problem is relatively easy to optimise when it is convex. A problem is convex when both the goal
function and the solution space are convex. Convex problems can be optimised using hill climbing, as
there are no local optima to get stuck in. Unfortunately, the DHS problem is not convex. To show this,
we show the solution space is not convex by means of a counter example.

3.4. Problem Complexity 19

70

75

80

85

90

95

100
Te

m
pe

ra
tu

re
 [

]
Solution 1 Solution 2 Combined solution

0 5 10
Time [10 min]

50

60

70

80

90

100

He
at

 [M
W

]

0 5 10
Time [10 min]

0 5 10
Time [10 min]

Solution 1
Solution 2
Combined solution

Demand
Delivered heat

Figure 3.2: Three grid settings with their corresponding heat delivery. The third settings proves non-convexity.

A set 𝑆 is convex if:

∀u1,u2, … ,ur ∈ 𝑆, ∀𝜆 ∈ [0, 1], Σ 𝜆 = 1. ∑ 𝜆 uk ∈ 𝑆 (3.10)

We use this definition to show that there exist u1, u2 and 𝜆 , 𝜆 for which the convexity condition does
not hold. In this case, the set 𝑆 is the set of all valid solutions for the DHS problem. To show that this
space is not convex, we make use of the constraint that enforces all demand to be fulfilled.

The grid from the examples in Section 2.1.2 is used again to show this. The demand for the consumer
in the grid is shown in Figure 3.2 in the bottom left subplot.

For this grid u1, u2 are temperature settings for every time step. We choose a value of 81 ∘C for all
time steps in u1.

For u2 we choose a starting temperature of 94 ∘C and at time t=60min start dropping it down to 75 ∘C
as it will no longer need to be as high to fulfil the demand in the peak. Note that this is before the higher
demand peak has started. The demand peak will mostly be fulfilled by heat stored in the network.

These two solutions and their effects on the delivered heat are shown in the two left columns in Figure
3.2. Both solutions store enough heat in the network to fulfil demand at all times, which means they
are valid solutions.

When the two solutions are combined linearly with 𝜆 = 0.8 and 𝜆 = 1 − 𝜆 = 0.2 to create a new
solution, the amount of heat stored in the network is no longer enough to fulfil the demand. This is
shown in the third column. In the last time block of the demand peak, all water with enough heat in it
has been consumed before the end of the peak and not all demand can be fulfilled.

This shows that the convexity condition 3.10 does not hold for all possible solutions and 𝜆 values,
which means the DHS problem is not convex.

3.5. Fitness Function 20

3.5. Fitness Function
A fitness function is a function that takes a solution and returns the fitness of this solution. The fitness
of a solution is based on two factors: the feasibility and the desirability. A solution is feasible when it
violates no hard constraints.

The desirability depends onwhat is beingminimised. In this research the operating costs areminimised,
but something else would be possible as well, like CO emissions. If the operating costs of a solution
are lower than those of another solution, the first will be more desirable, assuming it is a feasible
solution.

3.5.1. Operating Costs
As described in Section 2.1.2, the operating costs (Equation 2.2) depend on the heat produced by the
producers and the energy used to pump water through the DHN. As the operating costs is the main
focus of the minimisation, this is an important part of the fitness function.

𝑐op(T, Ẇ) = 𝛿∑
∈
(∑

∈
𝑐 𝑄 (T)) + (∑

̇∈ ̇
𝑐 ̇�̇� ̇) (2.2)

3.5.2. Constraint Violations
For metaheuristic approaches it is not always possible to incorporate constraints into the optimisa-
tion directly. One possibility is to encode solution such that it becomes impossible to break certain
constraints, but this is not always possible.

Another approach to add the constraints to the optimisation, is to add the constraint violations to the
fitness values. As the optimisation attempts to minimise the objective value, it naturally minimises the
constraint violations as well.

The penalty for every constraint type can be determined by either counting the number of constraint
violations of that type or by using the relative violation. The relative violation method is preferred, as
this allows a degree of ordering to be imposed on the solutions. A solution that never fulfils demand is
worse than a solution that fulfils 90% of the demand, even if both solutions are infeasible.

It is also possible to define how much more important one constraint is than the other, by adding a pun-
ishment factor to every violation. A higher factor will lead to optimisers trying to solve one constraint
violation earlier than others, as most progress can be made by fixing the more strongly punished vio-
lations first.

This means that the feasibility function 𝑔 for the DHS problem is defined by the constraints described
in the previous section and the vector a, the bounds on the constraints. The total violation term of the
fitness function is define as follows:

�̂�(x) = 𝜓 ⋅max (a− 𝑔(x),0) (3.11)

where 𝜓 represents the punishment factor vector for every constraint, max is the element wise max
operator and ⋅ the inner product operator. a is determined from the DHS model, x represents the
decision variables like output temperatures and valve settings, and 𝑔 consists of the relevant output
values of the simulator, like edge velocities, delivered heat, etc.

3.5.3. Complete Fitness Function
By adding the operating costs, constraint violations and penalties together the complete fitness function
for a solution x is given by:

𝑓(x) =𝑐op(x) + �̂�(x) (3.12)

3.6. Energy Stored in the Network 21

3.6. Energy Stored in the Network
As previously described in Section 2.1.1, the network of the DHS consists of pipes that transport water.
As it takes time for water to reach consumers, heat is temporarily “stored” in the network until it is
removed by consumers.

This storage effect results in two other effects that make it difficult to define the optimisation problem:

1. Optimisations can make most of their savings by decreasing heat production at the end as much
as possible;

2. It is hard to find an easy to calculate lower bound.

To solve these problems, a constraint is added to the optimisation problem:

The amount of energy in the DHS network at the end of the optimisation horizon is larger
than some given constant.

3.6.1. Termination Focused Optimisation
As the optimisation is not constrained at the end of the horizon by consumer demand that will need to
be fulfilled, optimisations will find solutions that turn down production as much as possible at the end.
This often leads to many savings at the end of the horizon at the expense of more costs at the start.
This would lead to unnecessarily high costs when the found solutions are applied in practice.

Adding the new constraint, forces optimisations to find solutions that produce enough heat at the end
of the optimisation horizon for future consumption, which means they can no longer make big savings
by producing very little heat at the end.

3.6.2. Lower Bound
Before the start of the optimisation horizon, heat is already stored in the network. Before consumers
receive heat produced during the optimisation horizon, they first consume the heat that was already
stored in the network.

Because of this, it is not possible to simply take the total demand as a lower bound on the heat that
should be produced during the horizon. Subtracting the heat stored in the network from the total demand
is also not possible, as the heat stored in the network is larger than the total demand, which would result
in a lower bound of 0. It is also not possible for consumers to remove all heat from the water in the
network, due to the physics of a heat exchanger.

By constraining the amount of heat stored in the network at the end of the horizon from below, a much
smaller amount of energy remains that can be used to fulfil consumer demand.

A more detailed description on how this new constraint is used to calculate the lower bound is given in
Section 3.7.1.

3.7. Lower Bound
To be able to assess how good a solution for the problem is and how much improvement is theoretically
still possible, a lower bound can be used. This lower bound is a single number that is the absolute lowest
amount of cost that can be made without violating constraints. If settings are given with costs lower
than the lower bound, it can immediately be concluded that these settings are infeasible. However,
because several unrealistic assumptions are made to enable the determination of the lower bound, it
is not necessarily true that a feasible solution exists that is as good as this lower bound.

For the DHS problem, the following lower bound can be determined:

𝑐op ≥ GreedyHeatProductionDivision (𝑄produced) (3.13)
≥ GreedyHeatProductionDivision (max (0, 𝑄consumed + 𝑄loss + 𝛾)) (3.14)

where 𝑄consumed is the total consumption over the entire horizon, 𝑄loss a lower bound on the losses in
the network, 𝛾 the amount of additional heat that needs to be produced to have enough energy stored

3.7. Lower Bound 22

in the network at the end of the horizon, and GreedyHeatProductionDivision a procedure that greedily
assigns heat production to the cheapest producers.

The following subsections give a detailed description of how the different elements of the lower bound
are determined and why. The first element is discussed in Section 3.7.1, which is the 𝛾 term represent-
ing how much additional energy needs to be produced to have a minimum amount of energy stored in
the network at the end of the horizon. The second component, 𝑄consumed, is the total amount of heat that
is consumed, which is discussed in Section 3.7.2. The third component, 𝑄loss is the minimum amount of
heat loss in the network and is discussed in Section 3.7.3. Finally, the GreedyHeatProductionDivision
procedure and the reasoning behind it is discussed in Section 3.7.4. Then, Section 3.7.5 combines all
these components together into the lower bound given above.

3.7.1. Energy Present at the End of the Horizon
This section explains how a lower bound can be determined on the amount of energy that needs to be
produced to maintain a minimal amount of energy in the network at the end of the horizon.

Given the network energy balance equation

𝑄start + 𝑄produced = 𝑄consumed + 𝑄loss + 𝑄end (3.15)

which states the heat in the network at the start of the horizon (known) and the heat produced during
the horizon is equal to the heat consumed during the horizon, the heat lost to the environment and the
heat stored in the network at the end of the horizon combined.

Using the constraint from Section 3.3.2 and the assumption from 3.6:

𝑐𝜌∑
∈
𝐴 𝐿 𝑇 end = 𝑄end ≥ Ω (3.9)

where Ω is a constant amount of energy chosen beforehand, we can make the following argument.

𝑄start + 𝑄produced = 𝑄consumed + 𝑄loss + 𝑄end (3.15)
𝑄start + 𝑄produced ≥ 𝑄consumed + 𝑄loss + Ω using 3.9 (3.16)

𝑄produced ≥ 𝑄consumed + 𝑄loss + Ω − 𝑄start (3.17)
𝑄produced ≥ 𝑄consumed + 𝑄loss + 𝛾 𝛾 = Ω − 𝑄start (3.18)

(3.19)

Since Ω and 𝑄start are known beforehand, 𝛾 is a constant. This term represents the amount of energy
that needs to be added after heat has been removed from the network by consumption and losses to
satisfy the lower bound Ω. As 𝛾 and 𝑄consumed are known, we can determine a lower bound on the heat
production.

𝑄produced ≥max (0, 𝑄consumed + 𝑄loss + 𝛾) (3.20)

In practice, 𝑄loss is not known beforehand, but 𝑄loss ≥ 0 always holds, thus we can replace 𝑄loss with
𝑄loss which still results in a valid (albeit less precise) lower bound.
The produced heat is constrained to be larger than or equal to 0, since producers are unable to extract
heat back from the network.

To show the lower bound is correct we distinguish three cases:

𝑄start > Ω i.e. more energy is stored at the start than at the end. We get: 𝛾 = Ω − 𝑄start < 0. This makes
sense as 𝑄end may be lower than 𝑄start and as such not all energy removed from the network
needs to be refilled by the producers.

If −𝛾 ≥ 𝑄consumed + 𝑄loss, no energy will have to be produced in theory, thus the lower bound is
equal to 0. In practice, energy will need to be produced to prevent breaking any hard constraints.

3.7. Lower Bound 23

𝑄start = Ω i.e. there should be at least as much energy in the network at the end as at the start. We get:
𝛾 = Ω − 𝑄start = 0, thus all energy consumed or lost needs to replaced by the producers. In this
case the lower bound on the produced heat will be equal to 𝑄consumed + 𝑄loss.

𝑄start < Ω i.e. more energy should be stored in the network in the end than what was stored at the start.
We get: 𝛾 = Ω − 𝑄start > 0, which means that in addition to what is consumed or lost, an extra 𝛾
amount of energy needs to be stored in the network at the end of the optimisation horizon, which
is exactly what the lower bound describes.

As shown, in all possible cases of Ω, the lower bound on the amount of heat produced holds.

3.7.2. Consumed Heat
The total amount of heat that is consumed is simply the sum of the total consumer demand, since all
demand is fulfilled by a valid solution.

𝑄consumed = ∑
∈ , ∈

𝑄 (3.21)

3.7.3. Minimum Losses

℃℃

Figure 3.3: Minimum losses determi-
nation concept

In Section 3.7.1 it is mentioned that 𝑄loss is not known before hand,
but that 𝑄loss ≥ 0 always holds. To improve the overall lower bound,
this lower bound on the losses can be improved. This lower bound
represents the heat losses that are unavoidable despite any choices
made in operation of the DHS.

As all demand must be fulfilled, producers must produce at least as
much heat as is demanded. However, due to the loss of heat during
transport, just producing the total demand will not be enough to fulfil
demand. Assuming there is 𝜂 percent heat loss, producers need to
produce an additional 𝜂 percent of heat to fulfil demand.
The amount of heat in the network is defined by 𝑄 = 𝑐𝑚𝑇. As it is
assumed there are no leaks in the network, heat loss must must be
due to a decrease in temperature of the water in the network during
transport. By determining a lower bound on the temperature losses in
the network, a lower bound on the heat losses can be determined.

Equation 3.22 can be used to determine the percentage temperature loss over a pipe path → in the
network. The loss is expressed with respect to 𝑇env, as no more heat can be lost when the water has
reached this temperature.

𝜂→ = 𝑇→ − 𝑇→
𝑇→ − 𝑇env

(3.22)

Using this equation and constraints on the temperatures in the DHS, methods can be devised to find a
lower bound on the heat losses in the supply and the return sides of the network.

The following equations will be used to determine the minimum temperature losses in the network:

Δ𝑇(𝑡) = Δ𝑇 exp(−𝑡/𝜏) (2.5)
𝑇 = 𝑇env + (𝑇 − 𝑇env) exp (−𝑡/𝜏) (3.23)

⇒ 𝑇 = 𝑇 − 𝑇env(1 − exp (−𝑡/𝜏))
exp (−𝑡/𝜏) (3.24)

𝜏 = 𝐴𝜌𝑐𝑅 (3.25)

𝑡 = 𝐿𝜌𝐴
�̇� (3.26)

3.7. Lower Bound 24

To determine the minimum losses in the network, the supply side and the return side are considered
separately. The losses in the supply side are also taken into account, as heat lost here will have to be
refilled by the producers to get the water back to the right temperature.

Supply Side
As explained in Section 2.2.2, following Newton’s cooling law (Equation 2.5), higher producer supply
temperatures lead to higher heat losses in the network. Thus, by finding a lower bound on these supply
temperatures, a lower bound on the heat losses in the supply side of the network can be found.

To find a lower bound on these supply temperatures, we can make use of the minimum consumer
supply temperature constraints. By working backwards through the network, the minimum producer
supply temperature for every consumer can be found. The difference between this supply temperature
and the consumer’s minimum supply temperature is the minimum amount of temperature loss in the
network for this consumer.

Finding the minimum supply temperature of a producer for a consumer is done by finding the path
through the supply side of the network with the smallest temperature losses. These losses can be
determined using Equation 3.24 and the minimum consumer supply temperature constraint. Finding
the path with the smallest temperature loss is done using a shortest path algorithm, where the path
length is defined by the temperature losses along that path.

To determine the “length” of a supply side pipe, assume the outflow temperature is known and that
the mass flow through the pipe is maximal. Then, determine the inflow temperature using Equation
3.24. The source of the path finding algorithm is the consumer, where the outflow temperature of the
consumer’s supply pipe is 𝑇 ,min.
The minimum temperature losses for a consumer can then be found by simply finding the path with the
least losses over all producers.

The assumption of maximum mass flow is made to minimise the temperature loss in a pipe. Given
that the outflow temperature of a pipe is fixed, the inflow temperature can be minimised by minimising
the amount of time the water spends in the pipe. Following Equation 3.26, the amount of time water
spends in the pipe is minimised by maximising the mass flow through the pipe. As temperature loss
is simply the difference between the input and output temperatures, minimising the inflow temperature
also minimises the temperature loss.

In short, finding the minimum temperature loss for a producer with respect to one consumer is done
by determining a lower bound on the producer supply temperature. This lower bound is determined
by assuming mass flow through the network is maximal and the consumer will receive water which
exactly satisfies the minimum supply temperature constraint. As there can be multiple producers in the
network, this shortest path finding should be done for all producers for the consumer.

The lower bound on the percentage temperature loss for consumer 𝑐 is determined by Equation 3.27
where 𝑇 →

,min is the minimum supply temperature for producer 𝑝 given that consumer 𝑐 receives water
of at least 𝑇 ,min. Using this, the lower bound on the supply side heat losses can be determined by
Equation 3.28 where 𝑄 is the demand of consumer 𝑐.

𝜂supply =min
∈

𝑇 →
,min − 𝑇 ,min
𝑇 ,min − 𝑇env

(3.27)

𝑄min supply loss =∑
∈
𝜂supply𝑄 (3.28)

Shared Minimum Producer Supply Temperatures
By realising that producers provide heat to multiple consumers, another opportunity for improving the
lower bound on the supply side losses becomes apparent. As producers provide heat to multiple
consumers and all consumers have a minimum producer supply temperature, a producer must provide
water at at least the maximum minimum producer supply temperature over its consumers, i.e. 𝑇 =

3.7. Lower Bound 25

℃ ℃

...

(a) Phase 1: Backpropagation of minimum sup-
ply temperatures

...

(b) Phase 2: Generation of all possible temper-
ature settings

...

℃℃

(c) Phase 3: Determination of temperature set-
tings with minimum losses

Figure 3.4: Minimum supply side heat loss algorithm phases visualisation

max
∈

𝑇 →
,min where 𝐶 is the set of consumers that receive their heat from producer 𝑝. As this temperature

is higher, more losses will occur in the supply side of the network, leading to a better lower bound on
the minimum supply side losses.

In Figure 3.4 three phases are shown of an algorithm to determine the shared minimum producer
supply temperatures. A quick overview of the algorithm is given in Algorithm 3.1. The algorithm will be
described in more detail next.

Phase 1 In phase 1, all consumers back propagate their minimum supply temperature through the
supply side of the network to all producers like described before. Essentially, this phase is the entire
previous section.

Phase 2 Once these temperatures have been collected at the producers, phase 2 begins. Produc-
ers’ supply side temperatures are determined by choosing the maximum of its consumers’ minimum
producer supply temperatures. This ensures that the consumer that loses the most along the path
through the network will still receive water of at least 𝑇 ,min. Other consumers assigned to this producer
will receive water with a temperature of more than 𝑇 ,min.
If there is only one producer present in the network, this algorithm is quite simple: just take the maxi-
mum minimum producer supply temperature. However, when there are more producers present in the
network, a decision has to be made on what producer a consumer should be assigned to. This is quite
difficult as moving a consumer from one producer to another can have several effects: the original pro-
ducer’s minimum temperature drops or stays the same and the new producer’s minimum temperature
increases or stays the same.

Simply trying every assignment to find the best one is not feasible, as the number of assignments
grows exponentially: 𝑂(𝑘). For example, when there are 𝑛 = 30 consumers and 𝑘 = 2 producers,
this means there are already more than a billion possible assignments. By flipping the problem around,
a more feasible algorithm is possible.

The idea behind this is: as every producer receives the minimum required producer supply temperature
from all consumers, every producer has a limited set of 𝑂(𝑛) supply temperatures it can use. Using
these lists as a basis to find the minimum assignment, only 𝑂(𝑛) possible settings have to be checked.
With an instance of 2 producers and 30 consumers, this is less than a thousand possible temperature
setting combinations.

To generate the possible temperature settings, the crossproduct of all producer minimum supply tem-
peratures is used, e.g. the crossproduct of [75 ∘C,79 ∘C] and [81 ∘C,98 ∘C] is [[75 ∘C,81 ∘C], [75 ∘C,98 ∘C],
[79 ∘C,81 ∘C], [79 ∘C,98 ∘C]].

Phase 3 In the third and final phase, all possible settings have been generated and the setting with the
minimal minimal losses can now be found. In Algorithm 3.2 this process is described in more detail. By

3.7. Lower Bound 26

Algorithm 3.1 Algorithm to find the minimum supply side losses
1: function MinimumSupplySideLosses
2: Back propagate minimum consumer supply temperatures ⇨ Phase 1
3: Generate all 𝑂(𝑛) possible temperature settings ⇨ Phase 2
4: 𝑄supply loss ← ∞
5: for every setting 𝑇 in the possible settings do ⇨ Phase 3
6: 𝑄supply loss ← SettingsMinLosses(𝑇)
7: 𝑄supply loss ←min{𝑄supply loss, 𝑄supply loss}
8: return 𝑄supply loss

Algorithm 3.2 Algorithm to find the minimum losses given fixed producer supply temperatures
1: function SettingsMinLosses(𝑇)
2: 𝑄loss ← 0
3: for every consumer 𝑐 do
4: 𝑄loss, min ← ∞
5: for every producer 𝑝 where 𝑇 ≥ 𝑇 , ,min do
6: 𝑄 ,loss ← least heat loss path from 𝑝 to 𝑐 with 𝑇 , assuming maximum mass flows
7: 𝑄loss, min ←min{𝑄loss, min, 𝑄 ,loss}
8: if 𝑄loss, min = ∞ then
9: return ∞ ⇨ Infeasible as no producer has a high enough supply temperature
10: else
11: 𝑄loss ← 𝑄loss + 𝑄loss, min
12: return 𝑄loss

iterating over all settings and determining the losses that would result from these settings, the minimal
losses can be found. If it becomes apparent that a setting is not feasible due to no producer having a
high enough supply temperature for a consumer, this setting is skipped.

The supply side temperature percentage heat loss is determined the same as before, except that the
consumer supply temperature is likely higher than 𝑇 ,min and the producer supply temperature higher
than the consumer’s minimum producer supply temperature.

Runtime Complexity The algorithm to find this lower bound is polynomial in the number of producers
and as the number of producers is relatively small, running this algorithm is feasible.

This algorithm is polynomial in the number of producers because phase 1 runs in 𝑂(𝑘𝑛𝑁 log𝑁): the
shortest path algorithm runs in 𝑂(𝑁 log𝑁), where 𝑁 is the network size, using Dijkstra’s algorithm with
a priority queue. This has to be repeated for every 𝑂(𝑘𝑛) consumer/producer pair. The second phase
then runs in 𝑂(𝑛) to generate all possible settings. The third phase runs in 𝑂(𝑛 𝑛𝑘), as all 𝑂(𝑛)
possible solutions need to be checked for every 𝑂(𝑘𝑛) consumer/producer pairs. The shortest paths
from phase 1 can be reused here, which means the shortest path algorithm does not need to be run
again.

Thus, the overall complexity of the algorithm is: 𝑂(𝑘𝑛𝑁 log𝑁 + 𝑛 + 𝑘𝑛), which is polynomial in 𝑘,
the number of producers.

Some additional possible improvements for the runtime are possible.

Because the percentage minimum temperature loss will not change when the demand in the network
changes, it is possible to simply store the minimal percentage temperature loss for a network. When
a new horizon is optimised, the stored percentage temperature loss can simply be multiplied with the
demand, leading to the minimum heat loss for the given horizon.

To further decrease the runtime, the DHN can be preprocessed. When producers are placed right after
each other, the producer that is closest to the consumers (in terms of losses) will always be the producer

3.7. Lower Bound 27

consumers are assigned to. Doing otherwise would lead to more heat loss, which is the opposite of
what Algorithm 3.1 does. Thus, producers that are behind the first producer can be removed, reducing
the number of possible settings dramatically.

Finally, it is possible to combine phase 2 and 3 by immediately determining the losses of a solution
when it is generated, however this was not done here to make the algorithm easier to understand.

Return Side
To further improve the lower bound on the overall heat losses, the minimum losses in the return side
of the network can also be determined. A method similar to the method used for the supply side can
be used again.

Here, instead of working backwards from minimum consumer supply temperature, we work forwards
using the secondary return side set point temperature of the consumer’s heat exchanger, e.g. 45 ∘C.
This is the minimum possible primary return temperature of the consumer, as it is physically impossible
to transfer more heat.

It is again assumed that the mass flows through the network are maximal. Now instead of determining
the inflow temperatures for the pipes, we determine the outflow temperatures using Equation 3.23.
Again, the path to the producer with the minimum temperature loss is found.

The lower bound on the percentage temperature loss on the return side is determined by Equation
3.29. This can then be used to determine the lower bound on the return side heat losses, i.e. Equation
3.30.

𝜂return =min
∈

𝑇 ,min − 𝑇
𝑇 ,min − 𝑇env

(3.29)

𝑄min return loss =∑
∈
𝜂return𝑄 (3.30)

Here, the effects of the combined consumer return temperatures are not taken into consideration.

Mass Flows
In the previous sections it was assumed that mass flows in supply (return) side pipes are maximal,
but it can be physically impossible for the mass flow in a pipe to be equal to the pipe’s limits. When
the combined downstream (upstream) mass flows of a pipe are lower than the pipe’s limits, the actual
maximum mass flow is simply the sum of its downstream (upstream) mass flows.

By using the more realistic upper bound on the mass flows, a better lower bound on the temperature
losses can be determined.

Of course, the maximum mass flows in a pipe should not be exceeded, so if the combined downstream
(upstream) mass flows exceed the pipe’s limits we simply use the pipe’s limit as the mass flow used
to calculate the lower bound temperature loss. This assumption breaks the conservation of mass flow
invariant, but this is not a problem for calculations on the lower bound. In essence, the mass flows in
the pipes along the lower bound temperature loss path are considered separately.

𝑑(𝑒) is the set of immediately downstream pipes of pipe 𝑒 and 𝑢(𝑒) the set of immediately upstream
pipes of pipe 𝑒. If the node connecting 𝑒 with its neighbours is a consumer or transfer, 𝑑(𝑒) and 𝑢(𝑒)
are empty. The mass flows can then be determined using the following (recursive) equations:

�̇�supply(𝑒) = {
min (�̇�max, ∑ ∈ () �̇�supply(𝑒)) if 𝑑(𝑒) ≠ ∅
�̇�max otherwise

(3.31)

�̇�return(𝑒) = {
min (�̇�max, ∑ ∈ () �̇�return(𝑒)) if 𝑢(𝑒) ≠ ∅
�̇�max otherwise

(3.32)

3.7. Lower Bound 28

Calculations
To determine the lower bound, it is assumed that the network is in a steady state. This means that if
a temperature or mass flow measurement is taken at time 𝑡, a new measurement at the same point in
the network at time 𝑡 will result in exactly the measurement values.

The overall algorithm to determine this lower bound on the heat losses is shown in Algorithm 3.3.

If a HTS lies along the minimum loss path, the temperatures on the secondary side are simply passed
to the primary side of network. Since a heat exchanger primary supply temperature should always
be at least as high as its secondary supply temperature, simply passing along the minimum found
temperature so far is possible. This same argument holds for the return temperatures.

Algorithm 3.3 Algorithm to determine minimum heat losses in the network
1: Determine maximum mass flows in DHN using Equations 3.31 and 3.32
2: Determine minimum supply side heat losses using Algorithm 3.1
3: Determine minimum return side heat losses using Equation 3.30
4: Return the sum of the supply and return side losses

3.7.4. Maximum Produced Heat
In addition to lower bounds on the amount of heat that needs to be produced and the losses in the
network, an upper bound on how much heat a producer can produce in one unit of time also exists.

This upper bound is defined by 𝑄max = (𝑇 max − 𝑇 min) ⋅ �̇�max ⋅ 𝑐, where 𝑇 max is the maximum output
temperature of producer 𝑝, 𝑇 min the minimum return temperature, and �̇�max the maximum mass flow
through producer 𝑝. The minimum return temperature is chosen such that it never occurs in practice,
e.g. 30 ∘C.

As the maximum output temperatures differ per producer and the production costs differ per producer
and over time, every producer has a maximum amount of costs it can make per block of time.

By dividing the total amount of heat that needs to be produced over the cheapest maximum cost time
blocks, a lower bound on the total heating cost can be determined.

𝜉 = 𝑐 ⋅ 𝑄max is the maximum cost at time 𝑡 by producer 𝑝. ∶ 𝜉 is the 𝑖th cheapest producer time
block to produce the maximum amount of heat.

This means that if 𝑄 amount of heat has to be produced, the total costs can then be determined using
Algorithm 3.4, in which the heat to be produced is greedily divided over the cheapest producer time
blocks.

Algorithm 3.4 Greedy algorithm to divide the heat to be produced over the cheapest producers time
blocks and determine the lower bound on the costs
1: function GreedyHeatProductionDivision(𝑄)
2: 𝑐 ← 0
3: for 𝑖 in 1,… , |𝑃| ⋅ |𝑇| do
4: 𝑝 and 𝑡 are equal to 𝑝 and 𝑡 in ∶ 𝜉
5: if 𝑄max > 𝑄 then
6: 𝑐 ← 𝑐 + 𝑐 ⋅ 𝑄
7: 𝑄 ← 0
8: break
9: else
10: 𝑐 ← 𝑐 + ∶ 𝜉
11: 𝑄 ← 𝑄 − 𝑄max
12: return 𝑐

3.7. Lower Bound 29

3.7.5. Combining the Bounds
Finally, the overall lower bound can be determined.

The lower bound on the heat production is determined by taking into account how much heat is con-
sumed, 𝑄consumed, how much loss there is in the network, 𝑄loss and how much additional heat should
be produced to have the enough heat stored in the network at the end of the horizon, 𝛾.
By using the upper bound on heat production per producer, the lower bound becomes:

𝑐op ≥ GreedyHeatProductionDivision (𝑄produced) (3.33)
≥ GreedyHeatProductionDivision (max (0, 𝑄consumed + 𝑄loss + 𝛾)) (3.34)

This section has answered RQ 2.1. It is possible to determine a lower bound on the DHS problem, by
making certain unrealistic assumptions that do not detract from the essence of the problem. This lower
bound is determined by creating an additional constraint to ensure enough heat is stored at the end
of the horizon. This constraint is not unrealistic to add, as the future beyond the horizon needs to be
kept in mind while optimising for the horizon. In addition to this, a useful lower bound on the losses in
the network has been determined as well. The precision of the lower bound will be further discussed
in Section 7.7.

4
Related Work

Optimisation of district heating operations is not a new topic and much research has been done on it
already. To give an overview of what work has been done already and which areas are still relatively
unexplored, this chapter gives an overview of existing work and related problems. The existing works
have different approaches to the problem, which are discussed in Section 4.1

This research focusses on optimisation of operations, but there are other problems that are related to
this, like demand forecasting and the design of DHSs. These topics are discussed in more detail in
Section 4.2.

Finally, Section 4.3 draws conclusions from the existing work and work on related problems.

4.1. Existing Work
Most of the existing work is focussed on mathematical optimisation techniques, like non-linear optimi-
sation or linear optimisation by linearising certain non-linear components of the optimisation problem.
These works are discussed in more detail in Section 4.1.1.

In more recent years, more research is being done on artificial intelligence based optimisation tech-
niques, although this work mostly focusses on DHS design rather than operations. Some work exists
where metaheuristics are used to optimise operations, but this work is quite limited. This work and
other artificial intelligence based techniques are discussed in more detail in Section 4.1.2.

4.1.1. Mathematical Optimisation
Most of the existing work on the optimisation of district heating operations consists of mathematical
optimisation, which is not unexpected, as the optimisation of this problem has already been under
consideration since 1969 when Sazanov and Mil’man [30] researched how to optimally control the gas
turbines of a DHS gas turbine plant using “a digital computer program […] using the gradient method
to find the optimum”. As climate change has climbed higher on the public agenda in the last decades,
the amount of research done on DHSs has only grown.

Iterative Optimisation
One of the foundational papers on this subject from Benonysson et al. [4] uses a model of a DHS as
part of a non-linear optimisation where the mass flows, and thus the transport delays, in the network
are assumed to be constant. As transport delays are not constant in reality, this assumption leads
to a difference in the actual costs when the DHS is simulated with the optimised settings, compared
to the costs that the optimisation model determined. To solve this problem, the optimisation is run
iteratively updating the mass flows in every iteration until the optimisation converges. The authors
found that this algorithm is not always able to converge without tuning specific parameters for the DHS
under optimisation. This algorithm did find solutions that reduce production peaks by utilising the heat
storage capacity of the network more than a constant supply temperature setting would.

30

4.1. Existing Work 31

Many of the mathematical optimisation approaches researched after this paper were based on [4]. One
of these is Giraud et al. [10]. Where several endogenous variables are again assumed to be constant
during the optimisation and are updated using a simulator. This research follows a model predictive
control (MPC) approach where the optimisation considers a horizon, but only the first interval of the
solution is used. MPC is further discussed in the next section. When the first interval of the optimisation
horizon is about to end, the optimisation is run again with new measurements and improved demand
predictions which is supposed to lead to better results.
The decision variables are the supply temperatures and differential pressures at producers. In addition
to this, unit commitment costs are also taken into account, which means the decision of when to turn on
peak boilers is also under the optimisation’s control. Peak boilers are smaller producers that can also
be present in the secondary network to ensure the ability to fulfil demand even when there is a very high
demand peak. These production sites are often very expensive to run relative to regular production
sites. Compared to “expert law” operations, this approach resulted in 8% cost savings, and reduced
the use of peak boilers significantly by utilising the network storage effect more effectively.

This work is used as one of the building blocks for Bavière and Vallée [2], which describes an MPC
system that is used to advice plant DHS operators in real time. As the DHS in this work is quite
large, the model of the network is changed by using a reduced set of consumers, called representative
consumers. This work also explicitly analyses and uses the effect of network storage on heat load.

Model Predictive Control
Model predictive control (MPC) is a control process in which systems are controlled in real time using a
model of the system. The predictive model makes predictions based on the current state of the system.
Based on these predictions, the control system attempts to make the most optimal control decisions.
Often, the predictive model is updated online to improve the model by incorporating newmeasurements
from the system. These kinds of systems are often built in software, but some specialised hardware
also exists, e.g. for use in electronic power conversion circuits.

In [12] by Grosswindhager et al. MPC is used to control the supply temperatures of a DHS. The MPC
technique used is dynamic matrix control, which is one of the earliest MPC techniques. The model
estimates supply temperatures at different nodes in the network by fitting the model coefficients to
historic data. Given the most recent measurement data, a heuristic way of operating the network,
mass flows predictions and the previous settings suggested by the controller, the controller predicts
the most optimal supply temperature settings for the next time period. The method is called fuzzy
because of the predictive component for the mass flows in the controller. This predictive component
makes allows the controller to more precisely estimate the network state, which allows the controller to
make more optimal choices.

4.1.2. Artificial Intelligence Based Optimisation
In addition to the mathematical optimisation approaches discussed in the previous section, some at-
tempts have been made to optimise the operations using artificial intelligence based approaches.

Markov Decision Processes
With Markov decision processes (MDP) the system under optimisation is modelled as a set of possible
states the system can be in and the possibility of moving from one state to another when a certain action
is performed. [3] A policy is a mapping from states to actions, i.e. when the system is in a certain state,
this action should be taken. Given the transition probabilities are not 1, the system stochastically ends
in a new state. To optimise a policy for a system a technique called value iteration can be used. This
technique uses a dynamic programming approach to determine the expected reward of performing an
action for every state. Using these values it becomes possible to always perform the optimal action in
any state.

In [17, 18], the energy/mass displacement in a hydraulic network is optimised by finding an optimal
operation policy 𝜋∗. Although the work does not explicitly model the problem as anMDP, the terminology
and concepts used are very reminiscent of MDP. The optimal policy is found through a method similar to
value iteration on MDPs. Although the original paper [31] in which the authors describe the optimisation
method was not accessible at the time of writing this research, a description is also given in [32]. This
paper describes “a general framework for the optimal control of non-linear hydrodynamic systems under

4.2. Related Problems 32

uncertainties”. The examples given use the mass flow through distribution stations as control variables,
but a method is described to use “dummy control variables” on which the mass flow control depends.
As explained in Chapter 2 the mass flow is dependent on demand and the supply temperatures, thus
making it possible to use this approach. The research performed in [17] was a preliminary study to
show the feasibility of this method on the DHS problem. In [18] it was reported that the approach is
feasible and promising after applying it to a DHS in Kemi, Finland. Further research would focus on
building a more detailed model of this DHS.

Metaheuristics
The use of metaheuristics for optimising DHS operations is surprisingly limited. Little work has been
found and the work that has been done is quite limited in scope.

One of the most common metaheuristics is the genetic algorithm. Genetic algorithms encode a so-
lution as a string of variables. These variables can represent a single bit, or something much more
complex like the membership of a certain set. The algorithm maintains a population of candidate so-
lutions, the members of which are mutated and bred, through something called crossover, to create a
new offspring population. From this offspring population, only the fittest individuals are selected which
causes unfit individuals to be removed from the population. The algorithm repeats this process until it
reaches a certain termination criterion. The idea behind this is that as the algorithm iterates over the
populations only the fittest solutions will survive selection. Through this selection, the overall fitness of
the population will increase until the algorithm reaches an optimum solution.

One of the earliest works from Hori et al. [16] makes use of a genetic algorithm to optimise operational
planning to minimise costs and dynamic load variation.

Later, Sakawa et al. [29] used a genetic algorithm to find solutions for the binary decision variables
in an integer linear programming (ILP) formulation of district heating/cooling operations. The binary
variables represent the decision of whether to use a producer or not as starting up and shutting down
a producer has cost associated with it, the unit commitment cost. The network storage effect or heat
losses were not taken into account, which enables the linearity of this problem. As computation power
has dramatically increased and much progress has been made in the last decades, the integer linear
programming formulation is likely solvable using conventional methods by now.

More recently, Fang and Lahdelma [7] use a genetic algorithm to determine the optimal heating sched-
ule for an entire day. The decision variables are the producer supply temperatures and the producer
mass flows. It is assumed that fuel, pumping costs and consumer return temperatures are static. The
propagation delays and network storage effect are not taken into account and no mention is made of
a time scale. This leads to the conclusion that the solution found by the optimisation, will be used over
the entire day. The decision variable domain is discretised in intervals of 4% of the input range, e.g.
with an input range of 67 ∘C to 115 ∘C, the possible settings are 67, 68.9, 70.8, …113.1, 115 ∘C. With
the sample network used in the work, savings ranged from 0.6% to 10.6%.

4.2. Related Problems
The problem of optimising district heating operations has some properties in common with other prob-
lems, or assumptions are made that can be improved with other techniques.

The first of these is demand forecasting, which consists of predicting the demand of consumers in the
network over a future horizon, which is discussed in Section 4.2.1.

What design decisions are made for a DHS influences how it is operated. Several works related to this
are discussed in Section 4.2.2.

As described in Chapter 3, the goal in this research is to minimise operating costs. However, it is also
possible to optimise for multiple goals at the same time and then making the trade-off on which solution
is best. Work related to this is discussed in Section 4.2.3.

4.2.1. Demand Forecasting
Most optimisation assume that the demand profile is given, thus the stochasticity of the demand is not
taken into account. As the demand is used as the basis on which the optimisation builds, bad demand

4.2. Related Problems 33

predictions will lead to suboptimal decisions or even decisions that might make it impossible to fulfil
demand. For this reason, work has been done on forecasting the demand profiles of consumers.

One of the earlier papers to consider this problem is from Nielsen and Madsen [25]. In this work, a
model is updated online to do an hour-by-hour prediction of the heat load in DHS. The model consists
of several factors like wind speed, nominal solar radiation, air temperature, home insulation, time of
day, day of the week, etc. This model has many coefficients which are fitted to measurement data
of the past time frame using adaptive recursive least squares estimates. This work is reminiscent of
manually crafting an artificial neural network (ANN) to predict the heat demand, which allows some
domain knowledge to be added to the model.

Dotzauer [6] does something similar, but less complex. The only factors that are taken into account are
the outdoor temperature, historical demand data and time of day/day of the week. Even this relatively
simple model with little domain knowledge is able to predict demand fairly accurately. This makes it
apparent that social factors and outdoor temperature are the most important factors in demand predic-
tion.

In Laakkonen [21] the heat load and customer return temperatures are estimated using an actual ANN
which uses historical demand and (forecast) weather data as input. The predicted demand is then
fed into a “brute-force” optimiser which simply searches for a solution by checking every possible valid
solution. The solution space is limited to 7 possible actions (Δ𝑇 = ±5 ∘C, ±2 ∘C, ±1 ∘C, 0 ∘C) for
every time step and the optimisation is required to end at the same end temperature. This means
only 2 ⋅ 7(/) solutions exist, where 𝑇 is the planning horizon. The ANNs models built to predict the
demand and consumer return temperatures were quite accurate and improve runtime performance, as
simulation is easier with the predicted return temperatures. The optimisation in this research resulted
in 1.2% - 1.7% savings, which is lower than the authors expected. This is explained to be due to the
fact that the case plant was already operated quite efficiently. The use of neural networks did allow the
optimisation to run quite fast and was shown to be a useful tool.

4.2.2. System Design
Before it makes sense to optimise the operations of a DHS, the DHS first has to be designed. Designing
a DHS consists of determining where pipes should be laid and how large they should be.

In [5] the urban area where the DHS will be built is modelled as a graph where edges are streets
and nodes are intersections, dead ends, or heat sources. The problem is modelled as a selection
problem and encoded with mixed integer linear programming (MILP). For every street it is decided
whether a pipe should be built there. Consumers are grouped to the nearest street, their demand
added to the street peak and total annual demand. The pipe diameters are determined by the peak
demand and the profitability of laying a pipe in a street is determined by the total annual demand of a
street. Interestingly, the optimisation goal is not to find the cheapest topology for a network where all
consumers are connected, but to find regions where it would be profitable to connect consumers. This
means it is possible not all consumers are connected to the eventual DHS.

Another facet of systems design is the selection of components like heat exchangers, pumps or pipes.

In [23] by Li et al. and [34] by Zeng et al. genetic algorithms are used to select which types of pipes
should be used in a district heating/cooling network. The possible values for every gene is an integer
indicating which type of pipe should be used at the location that is encoded by the gene.

4.2.3. Multi-objective Optimisation
In this work, the operation cost are the only objective to minimise. However, in other works multiple
(contradicting) goals can be under optimisation.

In [8] by Fazlollahi and Maréchal the design and operation phases of an energy system are optimised
simultaneously while keeping two goals in mind: minimising costs and minimising CO2 emissions. Un-
fortunately, these goals are often contradictory. To solve this problem the optimisation model decision
variables are split into two parts: the master set and slave sets. The optimisation first optimises the
master set using an evolutionary algorithm. This master set consists of system design variables, e.g.
pipe diameters or heat exchanger sizes. The slave sets are then optimised using a MILP solver to find

4.3. Conclusions 34

the optimal operation procedures. This is repeated over several iterations until the maximum number
of iterations has been reached. The solutions found over all iterations are presented as the Pareto fron-
tier, from which the system designers can make a choice. This technique can be used, for example,
for choosing what kind of heat producer will be used in a DHS.

4.3. Conclusions
The field of DHS operations optimisation and related problems is extensive and much work has already
been done, but there are still areas that are not yet explored. The optimisation of DHS operations so far
has mostly been done using mathematical optimisation, like iterated linear programming (LP) or MPC.

Although metaheuristics are already used in the optimisation of DHS design, the use of them in optimi-
sation of operations is still quite unexplored. Some research has already been done on this, but this is
quite limited as many assumptions are made that remove most of the problem’s complexity. Remov-
ing factors like the network storage effect, the non-linearity of heat exchangers and the non-convexity
created by different temperature settings over time make the problem much easier.

Problems related to the optimisation of operations explored quite extensively. Work on demand fore-
casting is already quite advanced and can be done relatively cheaply. With the increase in smart
metering, demand forecasting will become even more precise.

Finally, the goal of RQ 2.1 was to find a method to determine a lower bound on the operating costs for
the DHS problem. However, such a lower bound has not been found in literature.

5
Methods

Multiple different approaches to optimise the district heating system (DHS) operations could be used.
This chapter describes several of these approaches and a method to avoid the need to solve the
expensive heat exchanger equations.

All metaheuristic approaches need a starting point for their search. In Section 5.1 several methods for
creating an initial solution for the DHS problem are described.

Section 5.2 describes what termination criterium is used in the algorithms.

Next, Section 5.3 describes a naive genetic algorithm which can make use of domain knowledge, like
the maximum temperature gradient in the network.

As the concepts behind the genetic algorithm are more suitable for discrete combinatorial optimisation
problems instead of real-valued optimisation problems, Sections 5.4 and 5.5 describe methods that are
specifically designed to optimise real-valued problems.

In Section 5.4 a description is given of the self-adaptive differential evolution (SaDE) algorithm. This
algorithm is designed to work with real-valued non-convex optimisation problems by maintaining a
population of target vectors which are mutated and combined into new target vectors.

Section 5.5 gives a description of the covariance matrix adaptation evolutionary strategies (CMA-ES)
algorithm, which maintains a covariant normal distribution that is iteratively updated to move toward
the optimal solution.

Finally, in Section 5.6, a method is discussed to approximate the heat exchanger functions described
in Section 2.2 as solving these functions iteratively is quite slow.

5.1. Initial Solution
Most metaheuristic optimisation techniques require a starting point for their search toward the optimal
solution. For the DHS problem several possibilities for generating an initial solution are reasonable.

5.1.1. Random
The first and simplest method of generating an initial solution is to initialise all variables randomly. For
temperature variables, this means choosing a value from a uniform distribution between the upper and
lower temperature boundaries. The valve setting variables, if needed, are chosen uniformly in [0, 1].
As no constraints are taken into account with this method, the initial solution will most likely violate
all constraints. However, as the variables are initialised randomly, the chance of biasing an algorithm
toward a local optimum is small as well.

35

5.2. Termination 36

5.1.2. Heating Curve
As described in Chapter 1, a DHS can be controlled using a heating curve which, given the outdoor
temperature, indicates at what temperature the producer should output all day. The pumps in the
network pick up the changes in demand by varying the mass flows in the network. The heating curve
produces feasible solutions, thus it might be a good starting point for optimisations.

To find a heating curve for a network, it is assumed that the DHS problem is convex when time is
removed as a variable factor. This means only temperature is still a relevant variable.

A simple binary search algorithm can now be used to find the minimum required temperature to satisfy
all demand without breaking constraints. Algorithm 5.1 gives short a description of this algorithm.

Algorithm 5.1 Heating curve search algorithm where 𝑓 is the fitness function indicating constraint
violations and operating costs
1: function FindHeatingCurve(𝑇min, 𝑇max, 𝜖)
2: 𝑇 , 𝑇 ← min, max
3: 𝑇 ←
4: while |𝑇 − 𝑇 | > 𝜖 do
5: 𝑇 ←
6: if 𝑓(𝑇) < 𝑓(𝑇) then
7: 𝑇 ← 𝑇
8: else if 𝑓(𝑇) < 𝑓(𝑇) then
9: 𝑇 ← 𝑇
10: else
11: 𝑇 ←
12: 𝑇 ←
13: if 𝑓(𝑇) < 𝑓(𝑇) then
14: 𝑇 ← 𝑇
15: else
16: 𝑇 ← 𝑇
17: if 𝑓(𝑇) < 𝑓(𝑇) then
18: 𝑇 ← 𝑇
19: else
20: 𝑇 ← 𝑇
21: return 𝑇

5.1.3. Existing Solution
The final method to specify the initial solution is to simply use a previously found solution and shifting
it up to the start of the horizon to optimise.

This solution is already optimised, however the information used during the optimisation might be out-
dated. This situation is not uncommon in MPC, where measurements are used to decide on a policy
for the near future. Given the new information, the optimisation will adapt the existing solution to fix
suboptimal behaviour or constraint violations.

Of course, when the solution is shifted, no values are available for the end of the horizon. This is
solved by repeating the last settings until the end of the new optimisation horizon. Should this result in
constraint violations or suboptimal control, the optimisation will fix this.

5.2. Termination
To decide whether an algorithm should terminate different decisions can be made.

One of the most conventional methods to decide this is to terminate the algorithm after a certain amount
of iterations without improvement or when a maximum number of iterations is reached.

The maximum number of iterations without improvement ensures that an algorithm is terminated when

5.3. Genetic Algorithm 37

it has converged. Running the algorithm for a longer amount of time is useless as it is unlikely the
algorithm will improve any further.

The maximum number of iterations is to ensure that the algorithm actually converges. Should this limit
be reached, other measures should be taken as the algorithm is converging too slowly.

5.3. Genetic Algorithm
As a naive implementation, a simple genetic algorithm has been created. This algorithm does not
explicitly make use of the fact that the DHS problem is real-valued in its methods, but it does find
real-valued solutions.

A genetic algorithm maintains a population of solutions and mutates and combines individual solutions
in the population to find new and better solutions. A genetic algorithm consists of 5 main elements.
The initial solution, mutation, combination, selection and termination. How these components work
together is described in Algorithm 5.2.

The previous section describes methods to create initial solutions and the termination criterion. This
section describes the other three components and the solution encoding used in this algorithm (Section
5.3.1). The mutation method (Section 5.3.2) used in this algorithm. In Section 5.3.3, multiple crossover
operations are described. Then, Section 5.3.4 describes how this algorithm selects the solutions for
the next generation. Finally, Section 5.3.5 describes how the algorithm is initialised when an existing
initial solution is used.

5.3.1. Solution Encoding
For the genetic algorithm (GA) solutions are encoded by creating two matrices of variables. In both
matrices columns represent time. For the first matrix, rows represent the temperature settings for one
heat source. In the second matrix, rows represent the settings for one valve.

5.3.2. Mutation
To explore the search space, theGA usesmutation. Individuals in the population are changed (mutated)
by changing variable values.

Whether a solution is mutated or not is decided randomly. This can be influenced through an input of
the algorithm, the mutation probability. In every iteration of the algorithm a random value is drawn from
a uniform distribution in [0, 1] for every individual in the population. If this number is lower than the
mutation probability, the individual is mutated.

The mutation in this algorithm randomly replaces settings with random values. These values are be-
tween the upper and lower temperature limits for the temperature variables and in [0, 1] for valves.
The probability of a variable value being randomly replaced in a solution is 0.05, but at least one vari-
able is changed to ensure the solution differs from the original solution. This algorithm is described in
Algorithm 5.3.

5.3.3. Crossover
With crossover, two individuals are picked from the population and combined into two new offspring
solutions. For the DHS problem two crossover operators are quite natural, which will be explained

Algorithm 5.2 Genetic algorithm overview
1: 𝑔 ← 0
2: X() ← initial solution
3: while not should terminate do
4: M() ← Mutate(X(), mutation probability)
5: O() ← Crossover(X())
6: X() ← Selection(X(), X(), X())
7: 𝑔 ← 𝑔 + 1
8: return X()

5.3. Genetic Algorithm 38

Algorithm 5.3 Genetic algorithm mutation operation
1: function Mutate(X, 𝑝)
2: M ← ∅
3: for X in X do
4: if rand[0, 1] ≤ 𝑝 then
5: 𝑗 ← rand[0, |X |]
6: for X in X do
7: if rand[0, 1] ≤ 0.05 or 𝑗 = 𝑗 then
8: M ← rand[𝑗min, 𝑗max]
9: else
10: M ← X
11: returnM

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [60 min]

70

75

80

85

90

95

100

105

110

Te
m

pe
ra

tu
re

 [
]

Solution 1
Solution 2

(a) Time

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [60 min]

70

75

80

85

90

95

100

105

110

Te
m

pe
ra

tu
re

 [
]

Solution 1
Solution 2

(b) Fade, with a maximum temperature gradient of 5 ∘C/h

Figure 5.1: Crossover operations

here. The crossover operation concepts are also shown in Figure 5.1

Time
The first crossover is over time. The two solutions are each split at two points over time, i.e. the
temperature and valve settings for one time block are not separated, but the settings for time block 𝑏
and 𝑏 + 1 might be separated. This is basic 2-point crossover. The centre parts of the solutions are
switched, which creates two new solutions.

With this crossover operation, if one solution is good for time 𝑡 ∶ 𝑡 + Δ and the other for time 𝑡 ∶
𝑡 +Δ , they can be combined into one better solution. This crossover is described in Algorithm 5.4 and
illustrated in Figure 5.1a.

Algorithm 5.4 Genetic algorithm time crossover
1: function Crossover(X)
2: O ← ∅
3: for 𝑖 = 0, 2, … , 𝑁 do
4: 𝑡 , 𝑡 ← rand[1, |X |], rand[1, |X | - 1]
5: 𝑡 , 𝑡 ←min (𝑡 , 𝑡) ,max (𝑡 , 𝑡)
6: O , ∶ ,O , ∶ ← X , ∶ ,X , ∶
7: return O

Fade
The second crossover is similar to the time crossover, but instead of just inserting the values from the
other parent, the values are inserted and the existing surrounding temperature values are smoothed

5.4. Self-Adaptive Differential Evolution 39

out so inserting the new values does not create temperature gradient constraint violations. Figure 5.1b
illustrates this crossover operation.

The crossover operation smooths out the temperature settings until the first two consecutive settings
do not violate any constraints. For example, if the temperature at time 𝑡 = 13h would be 70 ∘C for
solution 2 before the crossover, there would be a constraint violation between 𝑡 = 12h and 𝑡 = 13h of
5 ∘C. During crossover, the fade over operation would pull that temperature up to 75 ∘C so no gradient
violation would exist any more. However, should such a violation exist at time 𝑡 = 18h, the fade over
operation would leave that untouched, as the fade over would not have touched that time.

5.3.4. Selection
To decide whether a new solution should be placed in the new population, the fitness of the individual
is used. The algorithm uses 𝑘-tournament selection.
This procedure picks 𝑘 solutions from the current population, the mutated individuals and the crossover
offspring. From these three solutions, the best solution is chosen to be entered into the new populated.
𝑘-tournament selection allows the average fitness of the population to improve while still maintaining
diversity.

In this algorithm 𝑘 = 3 is chosen.

5.3.5. Existing Initial Solution
To use an existing solution as a starting point for the optimisation, a random population is generated
and the existing solution is added to this population. This solution will be the best in the population,
and might be improved through mutation and crossover.

5.4. Self-Adaptive Differential Evolution
The self-adaptive differential evolution (SaDE) algorithm is designed to work with continuous values.
It is based on differential evolution (DE) [26] where certain meta-parameters have to be specified
manually by the user. In self-adaptive differential evolution (SaDE), these parameters are automat-
ically adapted during the optimisation procedure. This allows the algorithm to adapt itself based on
how the optimisation has progressed so far and removes the complexity of manually tuning the meta-
parameters.

Just like the genetic algorithm, SaDE maintains a population of solutions which are mutated and com-
bined to create new, and hopefully better, solutions. In SaDE the population consists of a matrix where
rows are solutions and columns the parameters of these solutions.

How solutions are encoded is described in Section 5.4.1. Then, Section 5.4.2 discusses how mutation
is done in this algorithm. Then, in Section 5.4.3, the crossover procedure is discussed. In the genetic
algorithm, crossover and mutation were independent. In differential evolution (DE) the mutants created
by the mutation procedure are used as one of the parents in the crossover operation. Then, in Sec-
tion 5.4.4, the selection procedure is discussed. Finally, Section 5.4.6 describes how this algorithm is
initialised when an existing initial solution is used.

Many different versions of SaDE exist. The one described here is by Qin and Suganthan [28]. Algorithm
5.5 describes the algorithm as described in [28].

5.4.1. Solution Encoding
For this algorithm, solutions are encoded as a single vector of values. The temperature settings for
heat sources are concatenated. The valve settings are then concatenated as well. Thus, the solution is
represented by an (𝑛+𝑣)⋅𝑇-dimensional vector where 𝑛 is the number of heat sources, 𝑣 the number of
valves and 𝑇 the number of time blocks in the horizon. The temperature settings for producer 0 ≤ 𝑝 < 𝑛
can be found in elements 𝑝 ⋅ 𝑇 until (𝑝+1) ⋅ 𝑇−1 and the valve settings for valve 0 ≤ 𝑗 < 𝑣 in elements
𝑛 ⋅ 𝑇 + 𝑗 ⋅ 𝑣 until 𝑛 ⋅ 𝑇 + (𝑗 + 1) ⋅ 𝑣 − 1.

5.4. Self-Adaptive Differential Evolution 40

5.4.2. Mutation
The set 𝑆 is the set of all mutation strategies. Five strategies are described in the original, but only 2
are used in the SaDE algorithm by Qin and Suganthan. These two strategies are:

• DE/rand/1: V() = X() + F() (X() −X())

• DE/best/2: V() = X() + F() (X()
best −X()) + F() (X() −X())

whereX()best is the best individual in the population of generation 𝑔 and 𝑟 ≠ 𝑟 ≠ 𝑟 ≠ 𝑖 are three random
indices and the current index. DE/rand/1 explores the search space by combining random solutions,
whereas DE/best/2 exploits progress made so far resulting in convergence toward the optimum.

In DE 𝐹 is a user specified constant, whereas in SaDE, F() is drawn from a normal distribution
𝒩(0.5, 0.3) and clamped to (0, 2] for every individual and generation.
To choose between which mutation strategy is used, a distribution is created. Every strategy 𝑧 ∈ 𝑆
has an associated probability of being chosen, p . This probability is updated after a certain number
of iterations, the learning period, by recording how many of the mutants created by the strategy are
used in selected new solutions. The number of accepted solutions is recorded in s and the number of
rejected solutions in f . How the new distribution is created is described in Lines 17 and 18 in Algorithm
5.5. After the new distribution has been created, the recorded numbers are reset.

5.4.3. Crossover
Just like the crossover operation in standard DE, the mutant vector V() and the target vector X()

are combined into a trial vector U() = (U(), … ,U(), …U()) following:

U() = {
V() if rand[0, 1] ≤ 𝐶𝑅 or 𝑗 = 𝑗rand,
X() otherwise

(5.1)

where 𝑗rand, is a random index in [1, 𝑛] to ensure the trial vector differs from the target vector.

In the standard DE algorithm the crossover probability CR is a user defined constant. In the SaDE
algorithm this value is drawn from a normal distribution 𝒩(CRm, 0.1) and clamped to (0, 1]. CRm is
updated every so often depending on how well previously sampled values for CR worked.

5.4.4. Selection
The SaDE algorithm uses a simple hill climbing acceptance strategy where a trial vector is only accepted
if it improves on its target vector.

X() = {U
() if 𝑓 (U()) < 𝑓 (X())

X() otherwise
(5.2)

In Algorithm 5.5 the selection procedure returns the new population, the sum of the CR values of trials
that were accepted ̇CR(), the number of accepted trial vectors 𝑛() and the number of accepted, s(),
and rejected, f(), trials for every mutation strategy.

5.4.5. Parameter Adaptation
The adaptive part of the SaDE algorithm consists of adapting the mutation probability and the strategy
selection distribution.

The mutation probability is drawn from𝒩(CRm, 0.1) for every target vector once every 5 generations.
In each generation, the cumulative moving average of CR values that lead to accepted trial vectors is
updated. Every 5 iterations new values for CR are drawn from the distribution with CRm as the mean.

5.4. Self-Adaptive Differential Evolution 41

Every 25 iterations CRm is updated to the cumulative moving average which is then reset. The initial
value for CRm is 0.5. The original paper stores a collection of all CR values, but this is not necessary
as only the mean of these values is needed.

The strategy selection distribution is used to select which strategy to use for mutation. In each gen-
eration, it is recorded how often the use of a strategy led to a selected solution. This is then used to
update the strategy distribution every 50 generations. The updated distribution is created by dividing
the success ratio for every strategy by the sum of all success ratios. The selection probability for every
strategy z is calculated according to formula 5.3.

p =
s

s f

∑ ∈
s

s f

(5.3)

Algorithm 5.5 Self-Adaptive Differential Evolution algorithm as described in [28]
1: CRm ← 0.5
2: s ← 0, f ← 0,p ← 1

| |
3: CR ← 0, 𝑛 ← 0 ⇨ Cumulative moving average of accepted CR
4:
5: X() ← initial solutions
6: 𝑙 ← |X()|
7: CR ← 𝒩(CRm, 0.1) ∈ (0, 1]
8: while not should terminate do
9: F() ← 𝒩(0.5, 0.3) ∈ (0, 2] ⇨ Draw F values
10: V() ← GenerateMutants(X(), F(), 𝑆, p)
11: U() ← GenerateTrials(X(), V(), CR)
12: X(), ̇CR(), 𝑛(), s(), f() ← Select(X(), U())
13: ⇨ Update learning parameters

14: CR ← CR ⋅ () ̇CR()

max(, () ())
⇨ Update cumulative moving average of accepted CR

15: s ← s+ s(), f ← f+ f()
16: if 𝑔 mod 50 = 0 then ⇨ Update strategy probabilities
17: r = s

s f ⇨ Element wise division
18: p = r

∑ ∈ r
19: s ← 0, f ← 0
20:
21: if 𝑔 mod 25 = 0 then ⇨ Move CR mean to accepted average
22: 𝐶𝑅𝑚 ← CR
23: CR ← 0, 𝑛 ← 0
24:
25: if 𝑔 mod 5 = 0 then ⇨ Redraw CR values
26: CR ← 𝒩(CRm, 0.1) ∈ (0, 1]
27:
28: 𝑔 ← 𝑔 + 1
29:
30: return X()

5.4.6. Existing Initial Solution
To use an existing initial solution, the existing solution is taken and the population is randomly initialised
based on this solution. This is done by taking the initial solution and varying the variable values by 10%
of the variable bounds window size.

5.5. Covariance Matrix Adaptation Evolutionary Strategy 42

For example: we have an initial solution of 95 ∘C. The minimum and maximum supply temperatures
are 70 ∘C and 110 ∘C. This means that the randomised initial variable value can fall between 93 ∘C and
97 ∘C.

5.5. Covariance Matrix Adaptation Evolutionary Strategy
Another method to optimise real-valued problems is covariance matrix adaptation evolutionary strate-
gies (CMA-ES) [14]. This method maintains a normal covariant distribution for the decision variables.

By iteratively sampling from this distribution, the fitness landscape is explored. Every iteration the
distribution is updated with the some of the sampled solution. If certain samples are in a better part of
the solution space, they are more likely to be used to update the distribution, moving the distribution
toward better areas of the solution space.

This concept is shown in Figure 5.2 [33]. The dots are the samples taken during the current genera-
tion, the orange dotted ellipse is the step size, its centre the distribution mean and the covariance is
represented by the rotation of the ellipse with respect to the axes.

5.5.1. Solution Encoding
Just like for SaDE, solutions are encoded as a single vector of values. The temperature settings for
heat sources are concatenated. The valve settings are then concatenated as well. Thus, the solution is
represented by an (𝑛+𝑣)⋅𝑇-dimensional vector where 𝑛 is the number of heat sources, 𝑣 the number of
valves and 𝑇 the number of time blocks in the horizon. The temperature settings for producer 0 ≤ 𝑝 < 𝑛
can be found in elements 𝑝 ⋅ 𝑇 until (𝑝+1) ⋅ 𝑇−1 and the valve settings for valve 0 ≤ 𝑗 < 𝑣 in elements
𝑛 ⋅ 𝑇 + 𝑗 ⋅ 𝑣 until 𝑛 ⋅ 𝑇 + (𝑗 + 1) ⋅ 𝑣 − 1.
For CMA-ES an additional step has to be taken, as the variable scales have to be about the same.
However, the valve settings and the temperature settings are about one to two orders of magnitude
apart from each other. For this reason, the variables are rescaled between 0 – 10. This means
that when a producer has a maximum production temperature of 110 ∘C and a minimum produc-
tion temperature of 70 ∘C, that a CMA-ES variable with value 5.5 represents a temperature setting
of 110

∘C 70 ∘C ⋅ 5.5 + 70 ∘C = 86.5 ∘C.
For valves, the settings are also scaled between 0 – 10, which means a CMA-ES variable of 5.5 rep-
resents a valve setting of ⋅ 5.5 = 0.55.

5.5.2. Meta-Parameters and Variables
The CMA-ES algorithm has several meta-parameters:

• 𝜆 – Population size

• 𝜇 – The number of parents used for recombination, value used in this research: 𝜇 = ⌊ ⌋

• 𝑐 – Learning rate for the mean, value used in this research 𝑐 = 1
• 𝑐 – Learning rate for covariance rank-𝜇 update of the covariance matrix, usually 𝑐 = 1
• 𝑐 – Learning rate for cumulation of the rank-one update of the covariance matrix, usually 𝑐 = 1
• 𝑑 – Damping parameter for step-size update, usually 𝑑 = 1

• 𝑤 – Weighting factor for sample x()∶ for all 1 ≤ 𝑖 ≤ 𝜇

• 𝜇eff = (∑ 𝑤)

• 𝑐 = eff

eff
– Learning rate for the step size,

The following variables are used in the algorithm:

• x() – Solution 1 ≤ 𝑘 ≤ 𝜆 of generation 𝑔

• 𝜎() – Step size at generation 𝑔

5.5. Covariance Matrix Adaptation Evolutionary Strategy 43

Figure 5.2: CMA-ES directional search concept for a 2D problem. The fitness landscape is represented by the background.
White indicates a higher fitness than blue. The black dots are the samples taken from the current distribution. The orange
dotted ellipse indicates the variance for the distributions. Rotation with respect to the vertical and horizontal axis represents the
covariance. [33]

• m() – Mean in generation 𝑔
• C() – Covariance matrix at generation 𝑔

• C()
/
– A transformation matrix to equalise the length of the axes

• x()∶ – The 𝑖th best solution in generation 𝑔 when the solutions are ordered in non-decreasing
order of fitness, i.e. 𝑓 (x()) ≤ … ≤ 𝑓 (x())

• p() – Evolution path, which is the path of the mean has taken over multiple generations. This
is used to update the step size.

5.5.3. Algorithm Description
In Algorithm 5.6 a very high overview of the CMA-ES algorithm is given. For a more in depth description,
the reader is referred to [14].

On line 7 𝜆 samples are taken from the current distribution. Then on line 8, the new weighted mean is
computed using the learning factor 𝑐 .

Next, the covariance matrix is updated. On line 10, the covariance for the current samples is computed.
This is then used in 11 to compute the covariance matrix for the next generation.

Finally, the step size is updated on lines 13 and 14. This is done by computing the conjugate path 𝑝()

using the path learning rate 𝑐 , a normalisation constant √𝑐 (2 − 𝑐)𝜇eff and a transformation matrix
C()

/
that rescales all axes to be equally sized. This conjugate path is used to compute the new

step size. By dividing the length of the conjugate path by the expected length of a 𝒩(0, I) distributed
vector and some scaling, the new step size is computed.

The idea behind this is: if the conjugate path length is larger than expected, many small steps in one
direction are taken over the generations. The same can be achieved by taking one big step, thus the
step size should be larger. When the conjugate path length is smaller than expected, the optimisation
is taking steps back and forth over the optimum, thus the step size should be decreased.

To use this algorithm, the pycma library, version 2.7.0, from [15] is used.

5.6. Heat Exchanger Approximation 44

Algorithm 5.6 Covariance Matrix Adaptation Evolutionary Strategy algorithm
1: 𝑔 ← 0
2: m() ← initial solution
3: C() ← I
4: p() ← 0
5: 𝜎() ← initial step length
6: while not should terminate do
7: x() ∼ 𝜎()𝒩(m(),C()) for 𝑘 = 1,… , 𝜆
8: m() ←m() + 𝑐 ∑ 𝑤 (x()

∶ −m())
9: ⇨ Update the covariance

10: C() ← ∑ 𝑤 (x()
∶ −m()) (x()

∶ −m())
11: C() ← (1 − 𝑐)C() + 𝑐 () C

()

12: ⇨ Update step size
13: p() ← (1 − 𝑐)p() +√𝑐 (2 − 𝑐)𝜇effC()

/ m() m()
()

14: 𝜎() ← 𝜎() exp((||p()||
||𝒩(0,I)|| − 1))

15:
16: 𝑔 ← 𝑔 + 1
17: returnm()

5.5.4. Existing Initial Solution
To use an existing initial solution, the initial mean of the distribution is set to be equal to the initial
solution. The initial step size and covariance is not changed.

5.6. Heat Exchanger Approximation
One of the most expensive parts of the DHS simulation is solving the heat exchanger equations. More
than half of the simulation time is spent solving heat exchanger equations, which are usually reasonably
smooth functions with the exception of certain boundaries. These functions are described in detail in
Section 2.2.2.

The boundaries where the functions are no longer smooth, is exactly where the optimisation works
toward. By lowering the primary supply temperature, the primary mass flow will increase. Because
pumping costs are lower overall than heating, more savings can be made by lowering the supply
temperatures than by lowering the pumping power. This means that an approximation of the heat
exchanger function needs to be reasonably precise at this boundary.

Given the primary supply temperature, secondary return and target supply temperatures and secondary
mass flow, the heat exchanger returns the primary return temperature, primary mass flow, actual sec-
ondary supply temperature and the delivered heat.

There are multiple approaches to approximating the heat exchanger: fitting a function to every returned
value, using machine learning, or interpolating the values. Fitting a function is not easy as the heat
exchanger functions are not smooth over their entire input domain. Using machine learning is an
option, but it is more complex than needed, because interpolation can solve the problem more easily.

5.6.1. Interpolation
Interpolating a function consists of using a limited amount of known function evaluations to estimate
unknown points. Thus, by taking samples of the real heat exchanger functions, values that are not yet
known can be interpolated.

This is done by sampling over a grid of input values that are predefined. The ranges of these variables
should be chosen such that all realistic values are within it, e.g. a primary supply temperature of 40 ∘C
would not be realistic for the type of DHSs in this research.

5.6. Heat Exchanger Approximation 45

Three different interpolation approaches are explored. The first method uses a single interpolator for
the entire domain. The second uses a non-regular grid interpolator with subspaces that have a higher
sample density if the interpolation error is too large in that subspace. The third is a combination of the
previous two but uses an explicit tree structure of regular grid interpolators.

To determine whether an interpolator has a high enough precision, regular samples are taken over the
entire domain and the root mean squared error (RMSE) is determined for every output value.

Regular Grid Interpolator
The regular grid interpolation uses a regular grid of measurement points and bilinear interpolation to
find values for points that have not been solved for. Regular grid bilinear interpolation can be done in
𝒪(1) time which makes it much faster than the iterative process needed to solve the heat exchanger
functions.

The algorithm for 𝒪(1) bilinear interpolation can be seen in Algorithm 5.7 and is based on the unit
square method. 𝑋 and 𝑌 are strictly ascending ordered vectors which elements are evenly spaced.
data is a (|𝑋|, |𝑌|) matrix of data points and point is the point for which the interpolated value has to
be determined.

Algorithm 5.7 𝒪(1) bi-linear interpolation based on the unit square method
1: function interpolate(X, Y, data, point)
2: 𝑖 ← |𝑋|⋅ (point.x - X.first) / (X.last - X.first)
3: 𝑗 ← |𝑌|⋅ (point.y - Y.first) / (Y.last - Y.first)
4: 𝑖 , 𝑖 ← ⌊𝑖⌋, ⌈𝑖⌉
5: 𝑗 , 𝑗 ← ⌊𝑗⌋, ⌈𝑗⌉
6: return data[𝑖 , 𝑗] ⋅(𝑖 − 𝑖) ⋅ (𝑗 − 𝑗)+
7: data[𝑖 , 𝑗] ⋅(𝑖 − 𝑖) ⋅ (𝑗 − 𝑗)+
8: data[𝑖 , 𝑗] ⋅(𝑖 − 𝑖) ⋅ (𝑗 − 𝑗)+
9: data[𝑖 , 𝑗] ⋅(𝑖 − 𝑖) ⋅ (𝑗 − 𝑗)

Arbitrary Point Interpolation
Using arbitrary sample points means it is no longer easy to find out which points are closest to the to be
interpolated point. To do the interpolation with arbitrary points the SciPy1 library was used. This uses
Qhull2 to do Delaunay triangulation and then uses Barycentric interpolation on the found triangles to
do the interpolation.

To create the samples for the interpolator, a regular grid is used. If the RMSE is too large, the grid
is divided into subspaces and the procedure repeats until the precision is high enough or until the
maximum sample density is reached. The entire procedure is described more detailed in Algorithm
5.8.

On line 3 subspaces is defined, which is a queue that contains all the subspaces that need more
precision. Then, while there are still subspaces in the queue, samples are taken, regular interpolators
built based on these samples and it is checked whether there is enough precision now. If not, the
subspace is split into smaller subspaces again, which are added to the queue. If there is enough
precision, the points and associated values are added to the data that is used for the overall interpolator.

Unfortunately, because of the irregular data, construction of the interpolator takes an unreasonable
amount of time and is quite memory intensive. Because of this, no analysis has been performed of this
interpolator, as the construction of even a single function interpolator never finished running.

Constructing this arbitrary point interpolator in reasonable time cannot be done, due to the high number
of sample points required to reach the desired precision. For the typical heat exchanger described
above, more than 30 000 points are required. Even though Delauney triangulation runs in polynomial
time [1], the input size is too high to construct the triangulation within a reasonable amount of time. It
might be possible to generate the sample points in a more efficient manner to reduce the amount of
points needed, but this was not further explored.
1https://www.scipy.org
2https://www.qhull.org

https://www.scipy.org
https://www.qhull.org

5.6. Heat Exchanger Approximation 46

Algorithm 5.8 Non-Regular Grid Interpolation
1: function build_interpolated_htx(space, heat_exchanger, rmse_boundaries)
2: interpolation_points, interpolation_values ← {}, {}
3: subspaces ← {space}
4: while subspaces is not empty do
5: subspace ← pop(subspaces)
6:
7: sample_points ← generate_regular_samples(subspace)
8: sample_values ← heat_exchanger(*sample_points)
9: regular_interpolators ← build_regular_interpolators(sample_points, sample_values)
10:
11: verification_points ← generate_verification_points(subspace)
12: verification_values ← heat_exchanger(*verification_points)
13: actual_values ← regular_interpolators(*verification_points)
14: ⇨ rmse is a 4-tuple, one element for every return value

15: rmse ← √ ∑(verification_values - actual_values)
16: if any rmse > rmse_boundaries and can_split(space) then
17: subspaces ←∪ split(subspace)
18: else
19: interpolation_points, interpolation_values ←∪ sample_points, sample_values
20: return build_interpolators(interpolation_points, interpolation_values)

Tree-Based Regular Grid
This approach is a combination of the previous two. It uses an explicit tree structure to store the data
in regular grid sub-interpolators. The use of regular grid interpolators means building and using the
interpolators is fast, while the tree structure allows the interpolators to use regular grids.

The algorithm to build this interpolated heat exchanger is described in Algorithm 5.9. This function
calls itself recursively until every subspace has enough precision or until the subspace can no longer
divided. Just like in the previous section, samples are taken of the space and regular grid interpolators
are built. The RMSE of these interpolators is then checked. If the RMSE is too high, the space is split
up into subspaces and new child nodes are constructed for every subspace. If the error is low enough,
the regular grid interpolators that were constructed are stored in the node and the recursion terminates.

Experiments
Tomeasure performance of the interpolators, samples are taken on a regular grid over the entire domain
and the error and run times are measured for every sample. Of course, lower errors and run times are
better.

Every experiment is repeated 10 times and the measurement results are averaged when necessary.

Precision To compare the precision of the different interpolators, the heat exchanger described earlier
is used. 300 measurements are taken on every axis, e.g. as the primary supply temperature ranges
from 70 ∘C to 110 ∘C there are 7.5 samples per unit. As there are two variable axis, 300 regular samples
are taken over the entire input domain.

For the regular grid interpolator the sample size can be varied. To explore what sample size leads to an
acceptable error, the resulting error can be measured. In this case the error is defined as the relative
RMSE (rRMSE), which is the RMSE divided by the mean.

The adaptive interpolation precision can be controlled by setting the desired precision. The interpolator
will have this precision, unless the region could no longer be split into subregions. This can be controlled
by the can_split function. For this experiment, regions will no longer be split when the sample density
will exceed 30 samples per unit.

In Figure 5.3a the overall rRMSE of the regular interpolator is shown relative to the sample size. As can
be seen, the error goes down when the sample size increases, although the primary return temperature

5.6. Heat Exchanger Approximation 47

Algorithm 5.9 Tree-Based Regular Grid Interpolation
1: function build_interpolated_htx(space, heat_exchanger, rmse_boundaries)
2: node ← {}
3:
4: sample_points ← generate_regular_samples(space)
5: sample_values ← heat_exchanger(*sample_points)
6: regular_interpolators ← build_regular_interpolators(sample_points, sample_values)
7:
8: verification_points ← generate_verification_points(space)
9: verification_values ← heat_exchanger(*verification_points)
10: actual_values ← regular_interpolators(*verification_points)
11: ⇨ rmse is a 4-tuple, one element for every return value

12: rmse ← √ ∑(verification_values - actual_values)
13: if any rmse > rmse_boundaries and can_split(space) then
14: subspaces ← split(space)
15: node.children ← build_interpolated_htx(*subspaces, heat_exchanger, rmse_boundaries)
16: else
17: node.interpolators ← regular_interpolators
18: return node

0 20 40 60 80 100 120
Sample size per axis

10 4

10 3

10 2

10 1

rR
M

SE

Primary return []
Primary mass flow [kg/s]
Actual secondary supply []
Transferred heat [W]

(a) rRMSE

70 75 80 85 90 95 100 105 110
Primary supply temperature []

0

5

10

15

20

25

30

Se
co

nd
ar

y
m

as
s f

lo
w

[k
g/

s]

Sample density

0

25

50

75

100

125

150

175

200

(b) The adaptive interpolator sample density

Figure 5.3: Interpolator samples

error remains significantly higher than the other variables. This is likely due to the fact that this function
is much less smooth than the other functions. When a sample is taken right at the boundary, values
used in the interpolation are much farther apart from each other than when this happens for the other
heat exchanger functions.

The areas where errors are high can be seen in Figure 5.4. As expected, the areas where the functions
are not smooth have a high error, because values used for interpolation at the boundary are further
apart. By increasing the sample size, the errors become orders of magnitude smaller. The adaptive
interpolator has the smallest error, which is to be expected as it takes as many samples as it needs to
get the error below a certain setting.

The adaptive interpolator takes more samples where the function is harder to interpolate to reduce the
error in that area. In Figure 5.3b the sample density of the interpolator is shown.

As can be seen, most samples are around the boundary and the region close to the secondary mass
flow being 0m/s. Although it is not shown in Figure 2.10, the primary return temperature is of course
equal to the primary supply temperature if the secondary mass flow (demand) is 0, which means more
samples are needed in that area to ensure the interpolation is precise enough.

5.6. Heat Exchanger Approximation 48

Primary supply temperature []

70
75

80
85

90
95

100
105

110

Se
con

da
ry

mass
 flo

w [k
g/s

]
0

5

10

15

20

25

30

Pr
im

ar
y

m
as

s f
lo

w
er

ro
r

0.00

0.01

0.02

0.03

0.04

(a) Primary mass flow, sample size: 5

Primary supply temperature []

70
75

80
85

90
95

100
105

110

Se
con

da
ry

mass
 flo

w [k
g/s

]

0

5

10

15

20

25

30

Tr
an

sf
er

re
d

he
at

 e
rro

r

0.00

0.02

0.04

0.06

0.08

0.10

(b) Delivered heat, sample size: 5

Primary supply temperature []

70
75

80
85

90
95

100
105

110

Se
con

da
ry

mass
 flo

w [k
g/s

]

0

5

10

15

20

25

30

Pr
im

ar
y

m
as

s f
lo

w
er

ro
r

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

(c) Primary mass flow, sample size: 120

Primary supply temperature []

70
75

80
85

90
95

100
105

110

Se
con

da
ry

mass
 flo

w [k
g/s

]

0

5

10

15

20

25

30

Tr
an

sf
er

re
d

he
at

 e
rro

r

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

(d) Delivered heat, sample size: 120

Primary supply temperature []

70
75

80
85

90
95

100
105

110

Se
con

da
ry

mass
 flo

w [k
g/s

]

0

5

10

15

20

25

30

Pr
im

ar
y

m
as

s f
lo

w
er

ro
r

0.00000

0.00005

0.00010

0.00015

0.00020

(e) Primary mass flow, adaptive

Primary supply temperature []

70
75

80
85

90
95

100
105

110

Se
con

da
ry

mass
 flo

w [k
g/s

]

0

5

10

15

20

25

30

Tr
an

sf
er

re
d

he
at

 e
rro

r

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

(f) Delivered heat, adaptive

Figure 5.4: Regular interpolated heat exchanger error for sample size of 5 and 120 and the adaptive interpolator. Note the
different y-axis scales.

5.6. Heat Exchanger Approximation 49

Primary supply temperature []

70
75

80
85

90
95

100
105

110

Se
con

da
ry

mass
 flo

w [k
g/s

]
0

5

10

15

20

25

30

Pr
im

ar
y

re
tu

rn
 te

m
pe

ra
tu

re
 e

rro
r

1.0

0.5

0.0

0.5

1.0

(g) Primary return temperature, sample size: 5

Primary supply temperature []

70
75

80
85

90
95

100
105

110

Se
con

da
ry

mass
 flo

w [k
g/s

]

0

5

10

15

20

25

30

Se
co

nd
ar

y
su

pp
ly

 e
rro

r

0.010

0.005

0.000

0.005

0.010

0.015

0.020

0.025

(h) Secondary supply temperature, sample size: 5

Primary supply temperature []

70
75

80
85

90
95

100
105

110

Se
con

da
ry

mass
 flo

w [k
g/s

]

0

5

10

15

20

25

30

Pr
im

ar
y

re
tu

rn
 te

m
pe

ra
tu

re
 e

rro
r

0.6

0.4

0.2

0.0

0.2

0.4

(i) Primary return temperature, sample size: 120

Primary supply temperature []

70
75

80
85

90
95

100
105

110

Se
con

da
ry

mass
 flo

w [k
g/s

]

0

5

10

15

20

25

30

Se
co

nd
ar

y
su

pp
ly

 e
rro

r

0.0000

0.0002

0.0004

0.0006

0.0008

(j) Actual secondary supply temperature, sample size: 120

Primary supply temperature []

70
75

80
85

90
95

100
105

110

Se
con

da
ry

mass
 flo

w [k
g/s

]

0

5

10

15

20

25

30

Pr
im

ar
y

re
tu

rn
 te

m
pe

ra
tu

re
 e

rro
r

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

(k) Primary return temperature, adaptive

Primary supply temperature []

70
75

80
85

90
95

100
105

110

Se
con

da
ry

mass
 flo

w [k
g/s

]

0

5

10

15

20

25

30

Se
co

nd
ar

y
su

pp
ly

 e
rro

r

0.00000

0.00005

0.00010

0.00015

0.00020

(l) Actual secondary supply temperature, adaptive

Figure 5.4: Regular interpolated heat exchanger error for sample size of 5 and 120 and the adaptive interpolator. Note the
different y-axis scales. (Continued)

5.6. Heat Exchanger Approximation 50

Figure 5.5: Runtime for the regular grid interpolator with respect to an increasing sample size

Figure 5.6: Interpolation run time for the different interpolation methods.

5.6. Heat Exchanger Approximation 51

The samples around the minimum supply temperature boundary are of course needed to ensure the
data around this boundary is correct. The adaptive interpolator, thus behaves as expected.

Runtime As can be seen in Figure 5.5 the runtime of sampling the heat exchanger interpolator is
constant when the sample size increases, which is to be expected as the interpolation algorithm runs
in 𝒪(1).
Something that stands out is that the standard deviation goes up when the sample size is larger than
100. This is likely due to the large number of interpolation points which might outgrow the CPU cache
size, leading to more cache misses when looking up data for interpolation.

The most important reason to create an interpolator is to improve the simulator runtime performance.
Figure 5.6 shows the run time for every interpolator type. As can be seen the performance increase
gained by creating an interpolated heat exchanger is not as large as was expected. However, since
the relative time spent solving the heat exchanger function in the simulation is a significant portion, the
performance increase is still useful to have.

As can also be seen, the run time for interpolators is more stable than for the iterative method. This is
due to the fact that the iterative method can finish early in some cases, which leads to a higher variance
in run time. To further improve the performance of the interpolations, the early exit from the iterative
method might be added to the interpolators.

The average run time for the adaptive interpolator is slightly higher than for the regular interpolator,
which can be explained by the fact that the latter can immediately interpolate the value, whereas the
other first has to traverse down the tree. The adaptive interpolator run time depends on the depth of
the tree which can be controlled with the can_split method and the desired accuracy parameter.

Another interesting thing to note for the regular grid interpolators is that they were first implemented
using the Regular2DGridInterpolator from the SciPy library. During the run time performance
analysis it was found that the interpolators were up to three times slower than the normal heat ex-
changer. This was surprising at first, as it was expected that interpolation would be much faster than
iteratively solving equations.

After inspecting the implementation of the Regular2DGridInterpolator, it was found that it was
implemented using an 𝒪(𝑛) algorithm to be able to interpolate multiple points at once. This is unnec-
essarily slow for our purposes, so the 𝒪(1) bilinear interpolation algorithm was implemented manually
instead.

Conclusions From the results we can conclude that the interpolators offer speed up compared to the
iterative approach, but this speed up was less significant than expected. To further extend the improved
performance of the interpolation, the early exit that is possible for the iterative method can be added to
the interpolated heat exchangers.

Choosing between the regular and the adaptive interpolator depends on what is preferred. The regular
interpolator is faster than the adaptive interpolator, but the adaptive interpolator requires fewer samples
to reach the same precision.

In the case of the simulator, the adaptive interpolator is preferred as a high sample size is needed to
reach the desired precision. This leads to an unnecessarily high number of samples in ‘easy’ sections
of the heat exchanger functions if the regular interpolator were used.

6
Experiments

This chapter describes experiments with the methods described in Chapter 5 and the expected results.

With these experiments, it can be quantified which algorithm performs best in which instance, which
settings are best for the algorithms and how much savings can be made for different instances with re-
spect to using heating curve based operations. What measurements are needed to get this information
is described in further detail in the first section, 6.1.

Next, Section 6.2 gives a detailed description of the instances used in the experiments to obtain the
information we want. In addition to this the meta parameter settings for the algorithms are also de-
scribed.

Finally, Section 6.3 describes the results expected from the experiments.

6.1. Measurements
To answer research questions RQ 1 and RQ 2 we need to know what makes one algorithm better than
the other and how optimal the solutions that are found are. In addition to this we also need to know
how robust an algorithm is when different kind of DHSs are used and what algorithm settings are best
given an instance. Finally, more information might be needed to explain behaviour observed during
experiments.

To obtain all this information, the following metrics are measured during the experiments:

• Optimality of the solution found compared to a lower bound

• Number of iterations before convergence, i.e. how often is the simulation run before the algorithm
has converged.

• Number of iterations until the first valid solution is found.

• Convergence consistency: Does the algorithm consistently converge to the same solution?

• The solution population over time

These different measurements are further discussed in the remainder of this section.

6.1.1. Optimality
To determine how optimal the solutions found are, the lower bound described in Section 3.7 is used. It
is assumed that the amount of energy at the end of the optimisation horizon is at least as much as at
the start of the optimisation horizon.

6.1.2. Convergence Speed
As described before, the algorithms are terminated when no improvements have been made for a num-
ber of iterations. In the experiments, this is done after 30 iterations without improvement. Algorithms

52

6.2. Setup 53

that converge faster than others might be preferred to the others. In addition to this, it is needed to
investigate why some algorithms might converge very slowly and other faster.

6.1.3. First Generation With a Valid Solution
Algorithms that find a valid solution very quickly might get stuck in local optima or converge very slowly
compared to algorithms that take longer to find the first valid solution, but find a much better solution.

6.1.4. Convergence Consistency
To measure whether the algorithm converges to the same solution during each run, a measure of
similarity is defined. The similarity is defined as the relative Euclidean distance of the solution vectors
(Equation 6.1) where element 𝑗 of solution 𝑥 represents a decision variable, like temperature or valve
setting. 𝑙, 𝑗max and 𝑗min are the dimensionality and the upper and lower bounds for the variable values,
respectively. The distance for every variable is divided by the difference, because variables can have
different scales, e.g. temperature is 2 orders of magnitude larger than valve settings. When the value
of the distance measure is low, the solutions are more similar.

To then known how consistent an algorithm is, for every run of an experiment, the best solution of the
last generation is taken. This includes invalid solutions. Then, for every solution, the average distance
to the other solutions is calculated.

𝑑(𝑥 , 𝑥) = √1𝑙 ∑(
𝑥 − 𝑥
𝑗max − 𝑗min

) (6.1)

6.2. Setup
This section describes how the experiments are set up. First the instances used in the experiments
are described. Then, the setup of the experiments is discussed, which consist of varying the algorithm
meta-parameters and the fitness function penalty factors.

6.2.1. Scenarios
Different DHSs have different characteristics and to know how well an algorithm can deal with these
different characteristics different scenarios have been created. Depending on the values of these char-
acteristics, different possible ways of operating the DHS more optimally exist. The most important
characteristics and their influence on operations are:

• Consumer demand profile

– How much demand is there? If there is much demand, more heat will have to be produced
and the solution space will be smaller as low temperatures will result in demand not being
fulfilled.

– and when? If there is a large amount of demand early in the day and very little during the
rest of the day, maintaining a constant supply temperature will be very inefficient.

• Network topology

– The number of HTSs. As every HTS secondary supply temperature needs to be controlled
as well, the number of decision variables increases.

– The distance from producer to consumer. When the distance between producer and con-
sumer increases, the propagation delay in the network increases as well. In addition to
this, the losses in the network increase as water spends more time in the network before it
reaches the consumer.

– Number of producers in the network and their locations. Producers that are closes to con-
sumers lead to fewer losses.

• Production

6.2. Setup 54

GA SaDE CMA-ES
Population size 10 – 40 10 – 40 10 - 40

Exploration 0.05 – 0.4 DE/rand/1
DE/best/2 5 – 20

Combination Fade-over,
Plain 0.5 -

Initial solution Random,
Heating curve

Random,
Heating curve

Random,
Heating curve

Table 6.1: Algorithm meta-parameters

– Production and electricity costs. Dynamic production costs might make it cheaper to produce
more energy earlier than less energy later by making use of the network storage effect.

To explore how the algorithms perform, scenarios with different values for these characteristics have
been created. The heat exchangers used in the scenarios are described in Table A.1

S.1 Residential DHS

• A residential area with 450 houses with different distances from the production facility. 15
houses are grouped together into one consumer, resulting in 30 consumers in the network
simulation

• Houses are reasonably insulated with a base load of 2 kW per home and a two demand
peaks of 8.5 kW around 06:00 and and 5 kW around 18:00. These peaks are about 5 and
8 hours wide respectively. This demand profile is randomised by scaling it between 0.8–
1.2 and shifting the peak one hour forward or back in time. For more details, please see
Appendix A.1.

• The heat production costs and electricity prices are dynamic. See Table A.2 for the prices
per hour.

• A topological plot of the grid is shown in Appendix A.1

• This scenario is a DHS with typical demand and production prices. Comparing this instance
with the heating curve method can give a good indication of how much can be saved by op-
timising operations. It is likely the optimisation will make most savings by shifting production
to times when production is cheaper than by reducing the amount of heat lost.

S.2 Residential areas with static prices

• Instead of dynamic prices the following prices are used:

– Heat: 0.029€/MWh

– Electricity: 0.09€/MWh

S.3 Residential areas with high insulation.

• The houses are well insulated with a base load of 1 kW per home and one demand peak of
6 kW around 06:00. This peak is 3 hours wide. The demand profiles are randomised like to
before.

• A topological plot of the grid is shown in Appendix A.2. The main difference between these
instances is the pipe diameter, which is smaller for well insulated homes.

S.4 Multiple producers

• The network contains two producers which are placed right after each other.

• Demand is multiplied by a factor 2

• A plot with the topology is shown in Appendix A.3.

6.2. Setup 55

GA SaDE CMA-ES
Population size 20 20 20

Mutation 0.2 DE/rand/1
DE/best/2 5

Combination Plain 0.5 -
Initial solution Random Random Random

Table 6.2: Algorithm default meta-parameters

6.2.2. Experiment Settings
The optimisation algorithms all have meta-parameters that can be tuned. The influence these param-
eters have on the performance of the algorithm is explored by varying one of these parameters while
fixing the others.

The possible parameter values used in the algorithms during the experiments are shown in Table 6.1.
The default values, used when another variable is varied, are shown in Table 6.2.

Population Size
Population-based algorithms allow the user to specify how large the population should be. In addi-
tion to this, although the CMA-ES algorithm does not maintain a population, it does take a number of
samples from its distributions. How many samples are taken is determined automatically based on
the dimensionality of the problem, but it is possible to manually specify how many samples should be
taken.

The population size range is chosen such that the recommended population sizes for CMA-ES fall
within the range.

Mutation
The algorithms do mutation to find new search directions that might be interesting.

With GA, themutation is controlled through themutation probability, which indicates how likely a solution
is to be mutated. The lower bound of the mutation probability range is chosen such that at least there
is some mutation, as that is the only way the algorithm can do some exploration. The upper bound has
been chosen such that there is not an absurd amount of mutation.

For SaDE, mutation is done by using a strategy to combine existing vectors from the population and
combining them using a random value 𝐹. This 𝐹 is drawn from a normal distribution with 𝜇 = 0.5
and 𝜎 = 0.3 and clamping it between 0 and 2. Changing this value is not needed, as the algorithm
manages the exploration automatically by adapting the strategy selection distribution based on the
results achieved so far.

CMA-ES does not have the concept of mutation, but it is possible to specify the initial step size. Chang-
ing this step size influences how wide the distribution is that the algorithm samples from for new solu-
tions. A higher value leads to more exploration, while a lower value leads to more exploitation. The step
size is varied from 5 ∘C to 20 ∘C to explore how this influences the optimisation process. An initial step
size of 5 ∘C seems a reasonable value, as this is the maximum temperature gradient in the instances
used in the experiments. The higher step sizes are chosen such that the algorithm can more easily
do exploration. The step size of 20 ∘C seems unnecessarily high, but it might still lead to interesting
results.

Combination
Combination combines solutions found so far to find new solutions. As both solutions might contain
parts that are good, combining them might result in new solutions that have good parts of both parent
solutions.

For the GA different ways to do crossover exist, which have been explained in detail in Section 5.3.3.
These different crossover methods and their effect on the quality measures are explored.

6.3. Hypotheses 56

Constraint type Penalty factor
Maximum edge velocity 10
Maximum temperature gradient 10
Minimum consumer supply temperature 0.5 ⋅ 10
Energy stored in DHN at end of horizon 1
Unfulfilled demand 10

Table 6.3: Fitness function penalty factors

In SaDE crossover is done by randomly choosing elements from the mutant or the target vector de-
pending on the CR values. The initial CRm value is set to be 0.5 and is adapted by the algorithm itself
during the optimisation.

Initial Solution
To enable fair comparison in experiments where the performance of the heating curve and an optimised
schedule are compared, heating curves are created that cause at least as much energy to be stored in
the network as at the start of the horizon.

Convergence
To measure how fast an algorithm converges compared to another, the algorithms are assumed to have
converged when there have been 30 subsequent iterations without improvement.

Fitness Function Constraint Violation Penalty Factor Values
As described in Section 3.5.2, the importance of constraints can be defined relatively by adding certain
penalty factors for every type of constraint violation.

The penalty factors for every type of constraint violation are shown in Table 6.3. As the energy stored
in the network at the end of the horizon is several orders of magnitude larger than any other constraint
violation, violations of this kind are not multiplied by a large factor.

6.3. Hypotheses
This section discusses the hypotheses for the different experiments. First, the expected influence of the
meta-parameters is discussed in Section 6.3.1. Then, the expected performance of the algorithms rel-
ative to each other is discussed in Section 6.3.2. Finally, Section 6.3.3 discusses the savings expected
from optimising the DHS operations with respect to the heating curve based operations.

6.3.1. Meta-Parameter Influence
In this section the expected influence of the meta-parameters is discussed. Having an idea of what
influence the meta-parameters have allows us to tune the algorithms to make a good balance between
runtime and optimality.

Population Size
For all algorithms, increasing the population size will lead to more optimal solutions, but how much will
differ for ever algorithm.

• The GA will benefit greatly from a bigger population, as this will increase the number of variables
randomly replaced, which increases the probability of finding a good value.

• SaDE will also benefit from a higher population size, as it gives the search more points in the
search space to search from. This will allow the search to search through more optima that
it might get stuck in, which increases the probability of one of those optima being the global
optimum.

• For CMA-ES, the recommended population size is 4+3 ⌊ln𝐷⌋, however higher values are allowed.
It is expected that increasing the population size will have some beneficial effects, but this will
effect will diminish quite quickly.

6.3. Hypotheses 57

Exploration
As described in the previous section, the exploration parameters are conceptually quite different be-
tween all algorithms. As such, no comparisons are made between algorithms given the different meta-
parameter values.

• The GA explores the search space by randomly replacing values in solutions. This means that
new values cannot enter the population if there is no mutation. Increasing the mutation probability
will thus allow the search to do more exploration, which is the only way the algorithm can find new
values that might work better.

• The CMA-ES algorithm samples from its distribution to do exploration. The step size controls
how far from the mean the algorithm samples. Increasing the initial step size allows the algorithm
to make bigger steps at the start of the optimisation. Tuning this parameter manually is not likely
to be useful, because the algorithm adapts this step size automatically based on the samples it
takes.

Combination
The only algorithm that has configurable combination parameters is the GA.

• The genetic algorithm can be configured with which crossover operation is used. It is expected
that fade-over will reach a valid solution in fewer iterations than normal cross-over, but this solution
will be less optimal. Fade-over might reduce the amount of exploration done by the algorithm,
which means it can get stuck in a local optimum more easily.

Initial Solution
Which initial solution is used is likely to have a large influence on the algorithm performance, as it can
bias the algorithms toward a local optimum that is near the initial solution. This might get the algorithms
stuck in that local optimum, while better optima might exist.

• Random initialisation will result in best results but will be slower to converge because it allows
the algorithms to search through more of the solution space before converging.

• A solution based on the heating curve will be a good starting point, but the optimisation will likely
end in a local optimum. The algorithms will improve on the initial solution, as the heating curve is
not a local optimum. By lowering the temperatures at certain times, savings can already be made
without violating constraints, which makes it easier for the algorithms to move further toward an
optimum.

6.3.2. Algorithm Performance
This section discusses the expected performance of the algorithms relative to each other. Exploring
this allows the user of the algorithms to make an informed decision on which algorithm is best to use
for this problem.

In order of decreasing expected optimality performance:

• SaDE is expected to perform best as it maintains a population of solutions instead of a single
solution. This allows the algorithm to explore points that are more widely spread throughout the
search space than the single mean point CMA-ES samples around.

• CMA-ES maintains a covariant normal distribution which it samples to search for more promising
solutions. As the algorithm adapts this distribution based on themeasured fitness values, it makes
a more informed search through the search space. However, since the algorithm moves towards
the optimum it has sampled around, it might miss other better optima.

• The naive GA will be the worst algorithm as it depends heavily on the mutation operation, which
has to be lucky to find a good value for variables. The algorithm does not really do an informed
search of the solution space, which means a lot of operations will be wasted that and certain
areas of the solution space might not be explored at all.

6.3. Hypotheses 58

6.3.3. Optimisation Savings
This section describes how much improvement is expected by optimising the operations of a DHS with
respect to a heating curve considering different scenarios.

Based on the different scenarios, the optimisation is expected to make different amounts of savings.

S.1 Residential with dynamic prices. It is expected that the optimisation will lead to significant savings
for this scenario, as is able to make use of the network storage effect than the heating curve does.
The heating curve forces producers to always output the same temperature during the day, which
means it will be more expensive to produce heat when prices are higher. The optimised schedule
can avoid this, by lowering the amount of heat produced at the most expensive times.

S.2 Residential with static prices. As the heating curve needs to make the temperatures high enough
to fulfil demand at peak times, there are times when the temperatures are unnecessarily high.
This means that optimising the operations, will lead to more savings, as less losses will occur in
the network at the times between the demand peaks. Since prices are static, the optimisation will
likely not make much savings in terms of price, but the total losses will likely be lower than both
the heating curve based operations and the case with dynamic prices.

S.3 Highly insulated residential. The insulation of the homes cause the homes to only need heating
once every day in addition to heat needed for tap water. This means that keeping the temperature
high throughout the day is wasteful. As such, it is expected that even more savings can be made
compared to the normal case.

S.4 Residential with multiple producers. There are two producers in this scenario, but the demand
has also been increased. This means it is not likely more savings can be made in this scenario
compared to S.1. However, it is expected that the optimised schedule lowers supply temperatures
more than the heating curve does, as the producer supply temperatures can be lowered when
there is no demand peak.

7
Results

This chapter describes the results from the experiments and makes some preliminary conclusions. To
increase statistical significance every experiment is run at least 5 times and the results are averaged
when appropriate.

Before the discussion of the results, Section 7.1 gives a short description of a problem with the fitness
function that was encountered while running the experiments and a solution for this problem.

Then, the next three sections of this chapter discuss the most interesting results from the algorithms:
GA in 7.2, SaDE in 7.3, and CMA-ES in Section 7.4. The relative performance of the algorithms is
discussed in more detail in Section 7.5.

Next, Section 7.6 explores creeping behaviour that has been observed and attempts to find a solution
for this behaviour, which should allow the algorithms to converge much more quickly.

To conclude this chapter, Section 7.7 discusses the savings obtained by optimising the DHS operations
compared to the heating curve based operations.

7.1. Preliminary
Some preliminary remarks are given in this section.

Section 7.1.1 describes a problem with the fitness function that was found during the experiments.
Section 7.1.2 gives an overview of the number of valid solutions found in every experiment.

7.1.1. Constraint Violation Penalty Preferred Over Increasing Costs
While running the experiments, something unexpected happened. For some instances it was found
that optimisations would not find valid solutions, while the instances were verified to be feasible by
manually creating a heating schedule. Apparently, the optimisations would find solutions that had (a
small amount of) constraint violations to save on monetary cost, rather than finding a solution with no
constraint violations. The amount of constraint violation had become an order of magnitude smaller
than the monetary cost, which meant increasing temperatures would increase costs more than solving
the constraints would decrease the penalties.

To solve this problem, in addition to the penalty incurred proportionally with the amount of constraint
violation, a constant amount of penalty is added when any amount of constraint violation occurs, es-
sentially creating a piecewise linear step function, as shown in Figure 7.1. The constant offset has
been chosen to be an order of magnitude larger than the typical monetary cost for the instances.

7.1.2. Number of Valid Solutions per Experiment
This subsection contains various tables with the number of valid solutions found by the algorithms in
every experiment.

59

7.1. Preliminary 60

0
Violation

0
Pe

na
lty

Figure 7.1: Piecewise linear step penalty

Table 7.1 contains the data for varying population sizes.

Population size 10 15 20 25 30 35 40
S.1

GA 0/5 2/5 2/5 2/5 1/5 3/5 5/5
SaDE 6/6 6/6 5/6 5/6 6/6 3/6 6/6

CMA-ES 5/5 4/5 4/5 5/5 3/5 4/5 4/5
S.2

GA 2/5 1/5 1/5 1/5 4/5 5/5 4/5
SaDE 5/5 4/5 4/5 4/5 4/5 4/5 3/5

CMA-ES 5/5 5/5 5/5 4/5 5/5 5/5 5/5
S.3

GA 1/5 3/5 2/5 3/5 4/5 5/5 5/5
SaDE 5/5 4/5 5/5 5/5 4/5 2/5 4/5

CMA-ES 5/5 4/5 5/5 5/5 3/5 5/5 3/5
S.4

GA 0/5 0/5 0/5 1/5 1/5 2/5 1/5
SaDE 2/5 3/5 4/5 3/5 5/5 1/5 3/5

CMA-ES 0/5 1/5 2/5 4/5 4/5 3/5 3/5

Table 7.1: Number of experiments that resulted in valid solutions with varying population size

For varying variation parameters, the data is shown in Table 7.2.

GA: Mutation probability 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
S.1 0/5 0/5 3/5 2/5 3/5 2/5 4/5 3/5
S.2 0/5 0/5 3/5 1/5 2/5 4/5 4/5 4/5
S.3 0/5 0/5 2/5 2/5 3/5 3/5 3/5 3/5
S.4 0/5 0/5 0/5 0/5 0/5 1/5 0/5 1/5

CMA-ES: Variation 5 ∘C 10 ∘C 15 ∘C 20 ∘C
S.1 4/5 5/5 5/5 3/5
S.2 5/5 5/5 5/5 3/5
S.3 5/5 5/5 5/5 4/5
S.4 1/5 3/5 0/5 0/5

Table 7.2: Number of experiments that resulted in valid solutions with varying variation

7.2. GA 61

The influence of the different crossover operators is shown in Table 7.3.

GA: Crossover Time Fade-over
S.1 2/5 3/5
S.2 1/5 4/5
S.3 2/5 5/5
S.4 0/5 0/5

Table 7.3: Number of experiments that resulted in valid solutions with varying crossover

With varying initial solutions, the results are shown in Table 7.4.

Initial solution Random Heating curve
S.1

GA 2/5 5/5
SaDE 5/6 5/5

CMA-ES 4/5 5/5
S.2

GA 1/5 5/5
SaDE 4/5 5/5

CMA-ES 5/5 5/5
S.3

GA 2/5 5/5
SaDE 5/5 5/5

CMA-ES 5/5 5/5
S.4

GA 0/5 5/5
SaDE 4/5 5/5

CMA-ES 2/5 5/5

Table 7.4: Number of experiments that resulted in valid solutions with varying initial solutions

7.2. GA
This section discusses the behaviour of the genetic algorithm and the influence the different meta-
parameters have on it. Only the most interesting results are discussed here, the full results can be
found in Appendix B.

This Section presents to interesting conclusions on the GA. The first makes a case for increasing
exploration of the algorithm. The second argues that using an existing initial solution is not always a
good idea.

7.2.1. Increased Exploration Improves Performance
There are multiple ways to increase exploration with the genetic algorithm.

Population Size
The first way is by increasing the population size. As shown in Figure 7.2 the performance improves
when the population size increases. Because there are more individuals in the population, there are
more opportunities for finding new values through mutation.

It is interesting to note that the genetic algorithm is unable to find solutions for S.4 with even reasonably
large population sizes. Even with the largest population size, this the algorithm is often not able to find
one. This is likely due to the increased dimensionality.

As can be seen in Figure 7.3a, the number of iterations before the algorithm converges increases
as the population size increases. This is due to the fact that the algorithm has more opportunity for
exploration, which causes the algorithm to find improving solutions for longer, delaying termination. In

7.2. GA 62

(0/
5)

10

(2/
5)

15

(2/
5)

20

(2/
5)

25

(1/
5)

30

(3/
5)

35

(5/
5)

40

Population size

1.46

1.48

1.50

1.52

1.54

1.56

1.58

1.60
Pe

rfo
rm

an
ce

 ra
tio

residential

(2/
5)

10

(1/
5)

15

(1/
5)

20

(1/
5)

25

(4/
5)

30

(5/
5)

35

(4/
5)

40

Population size

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

Pe
rfo

rm
an

ce
 ra

tio

residential_static

(1/
5)

10

(3/
5)

15

(2/
5)

20

(3/
5)

25

(4/
5)

30

(5/
5)

35

(5/
5)

40

Population size

1.90

1.95

2.00

2.05

2.10

2.15

2.20

Pe
rfo

rm
an

ce
 ra

tio

residential_well_insulated

(0/
5)

10

(0/
5)

15

(0/
5)

20

(1/
5)

25

(1/
5)

30

(2/
5)

35

(1/
5)

40

Population size

1.40

1.42

1.44

1.46

1.48

1.50

1.52

Pe
rfo

rm
an

ce
 ra

tio

residential_mult_producer

Figure 7.2: Performance ratios of genetic algorithm with varying population size

addition to this, the increased exploration also causes the algorithm to find its first valid solution earlier,
as can be seen in Figure 7.3b

Mutation Probability
The second way to increase exploration is by increasing the mutation probability. The effects of this
on the performance ratios are shown in Figure 7.4. As was expected, by increasing the mutation
probability, the performance of the algorithm increases as well.

It is interesting that S.2 is less affected by the mutation probability, which is likely due to the smaller
number of local optima in this instance. This instance has fewer local optima due to the static prices,
which means the algorithm does not have to make a decision on producing more, earlier, but more
cheaply, or producing at a later time with fewer losses. This means that more exploration is no longer
necessary. This effect is also seen in the population size results, as the increase in population size no
longer improves performance when it is increase above 30.

Crossover Operations
The final option to increase exploration is to use the fade over operation instead of the plain crossover
over time. This fade over creates new values as it fixes constraint violations during crossover. Because
of the additional source of exploration, the algorithm is able to find new values more easily.

In Figure 7.5a the effects of the two different crossovers is shown on optimality is shown. The fade
over results in valid solutions much more often than the plain crossover. This makes sense, as the
fade over solves constraint violations explicitly, which creates offspring that are much more likely to be
accepted and guides the algorithm towards the feasible solution space.

With the plain crossover the amount of temperature gradient constraint violation could lead to a much
higher penalty, which would lead to the offspring likely being rejected. As the fade over solves this

7.2. GA 63

10 15 20 25 30 35 40
Population size

100

200

300

400

500

600

700

800

Ite
ra

tio
ns

 b
ef

or
e

co
nv

er
ge

nc
e

residential
residential_well_insulated
residential_static
residential_mult_producer

(a) Number of iterations before convergence

10 15 20 25 30 35 40
Population size

100

200

300

400

500

600

700

Fi
rs

t i
te

ra
tio

n
wi

th
 v

al
id

 so
lu

tio
n

residential
residential_well_insulated
residential_static
residential_mult_producer

(b) First iteration with valid solution

Figure 7.3: Iterations before convergence and the first valid solution for the genetic algorithm with varying population size

(0/
5)

0.0
5

(0/
5)

0.1

(3/
5)

0.1
5

(2/
5)

0.2

(3/
5)

0.2
5

(2/
5)

0.3

(4/
5)

0.3
5

(3/
5)

0.4

Mutation probability

1.450

1.475

1.500

1.525

1.550

1.575

1.600

Pe
rfo

rm
an

ce
 ra

tio

residential

(0/
5)

0.0
5

(0/
5)

0.1

(3/
5)

0.1
5

(1/
5)

0.2

(2/
5)

0.2
5

(4/
5)

0.3

(4/
5)

0.3
5

(4/
5)

0.4

Mutation probability

1.000

1.025

1.050

1.075

1.100

1.125

1.150

Pe
rfo

rm
an

ce
 ra

tio

residential_static

(0/
5)

0.0
5

(0/
5)

0.1

(2/
5)

0.1
5

(2/
5)

0.2

(3/
5)

0.2
5

(3/
5)

0.3

(3/
5)

0.3
5

(3/
5)

0.4

Mutation probability

1.90

1.95

2.00

2.05

2.10

2.15

2.20

Pe
rfo

rm
an

ce
 ra

tio

residential_well_insulated

(0/
5)

0.0
5

(0/
5)

0.1

(0/
5)

0.1
5

(0/
5)

0.2

(0/
5)

0.2
5

(1/
5)

0.3

(0/
5)

0.3
5

(1/
5)

0.4

Mutation probability

1.40

1.42

1.44

1.46

1.48

1.50

1.52

Pe
rfo

rm
an

ce
 ra

tio

residential_mult_producer

Figure 7.4: Performance ratios of genetic algorithm with varying mutation probability

7.3. SaDE 64

(2
/5)

 t
im

e
(3

/5)
 f

ad
e5

 residential

1.46

1.48

1.50

1.52

1.54

1.56

1.58

1.60

(2
/5)

 t
im

e
(5

/5)
 f

ad
e5

 residential
well_insulated

1.90

1.95

2.00

2.05

2.10

2.15

2.20

(1
/5)

 t
im

e
(4

/5)
 f

ad
e5

 residential
static

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

(0
/5)

 t
im

e
(0

/5)
 f

ad
e5

 residential
mult_producer

1.40

1.42

1.44

1.46

1.48

1.50

1.52
Pe

rfo
rm

an
ce

 ra
tio

Crossover

(a) Varying crossover operators

(2
/5)

 r
an

do
m

(5
/5)

 h
c

 residential

1.46

1.48

1.50

1.52

1.54

1.56

1.58

1.60

(2
/5)

 r
an

do
m

(5
/5)

 h
c

 residential
well_insulated

1.90

1.95

2.00

2.05

2.10

2.15

2.20

(1
/5)

 r
an

do
m

(5
/5)

 h
c

 residential
static

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

(0
/5)

 r
an

do
m

(5
/5)

 h
c

 residential
mult_producer

1.40

1.42

1.44

1.46

1.48

1.50

1.52

Pe
rfo

rm
an

ce
 ra

tio

Initial solution

(b) Varying initial solution

Figure 7.5: Performance ratios for genetic algorithm

constraint explicitly, and removes possible constraint violations of times before and after the crossover
point, it finds valid solutions much more easily.

It is also interesting to note that even with this new crossover operator, the algorithm is still unable
to find solutions for S.4. By inspecting the solutions manually, it becomes clear that the algorithm is
unable to find valid valve settings that allow the producers to fulfil demand. The valve settings are not
balanced enough, which causes too much mass flow to be assigned to one producer.

7.2.2. Initial Solution Causes Getting Stuck in Local Optimum
The final meta-parameter is the initial solution. The influence of this meta-parameter is shown in Figure
7.5b. As expected, starting with a valid solution allows the algorithm to always find a valid solution. As
was also expected, the algorithm does get stuck in a local optimum sometimes, although the increase
in the number of valid solutions found, might will be worth it.

7.3. SaDE
In this Section the most interesting results about the SaDE algorithm are discussed. The full results
can be found in Appendix B.

7.3.1. Large Populations Cause Bad Performance
In Figure 7.6 the influence of the population size on the optimality of the results is shown. The population
size seems to have an influence on the results, especially for S.1.

When the population size is increased too much, the quality of the solutions goes down and the number
of valid solutions that are found decreases as well. This indicates that the increase in exploration causes
the algorithm to move to the global optimum too slowly, getting stuck in local optima before the algorithm
is terminated.

This is supported by the fact that the algorithm terminates earlier with an increasing population size, as
shown in Figure 7.7a. The algorithm does not find improving solutions because it explores too much of
the search space, causing the algorithm to have difficulty converging towards one solution. The lack
of improving solutions, causes the algorithm to terminate. This is also supported by the fact that the
algorithm finds it first valid solution later, when the population size is increased, as shown in Figure
7.7b.

7.3.2. Initial Solution Improves Performance
As was expected, starting with an already valid solution causes the algorithm to always find a valid
solution. It was also expected that the algorithm might end up in a local optimum, but this does not
seem to be the case. As shown in Figure 7.8a, the results are comparable or better when the heating

7.3. SaDE 65

(6/
6)

10

(6/
6)

15

(5/
6)

20

(5/
6)

25

(6/
6)

30

(3/
6)

35

(6/
6)

40

Population size

1.46

1.48

1.50

1.52

1.54

1.56

1.58

1.60

Pe
rfo

rm
an

ce
 ra

tio

residential

(5/
5)

10

(4/
5)

15

(4/
5)

20

(4/
5)

25

(4/
5)

30

(4/
5)

35

(3/
5)

40

Population size

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

Pe
rfo

rm
an

ce
 ra

tio

residential_static

(5/
5)

10

(4/
5)

15

(5/
5)

20

(5/
5)

25

(4/
5)

30

(2/
5)

35

(4/
5)

40

Population size

1.90

1.95

2.00

2.05

2.10

2.15

2.20

Pe
rfo

rm
an

ce
 ra

tio

residential_well_insulated

(2/
5)

10

(3/
5)

15

(4/
5)

20

(3/
5)

25

(5/
5)

30

(1/
5)

35

(3/
5)

40

Population size

1.40

1.42

1.44

1.46

1.48

1.50

1.52

Pe
rfo

rm
an

ce
 ra

tio

residential_mult_producer

Figure 7.6: Performance ratios of SaDE with varying population size

10 15 20 25 30 35 40
Population size

0

200

400

600

800

1000

1200

Ite
ra

tio
ns

 b
ef

or
e

co
nv

er
ge

nc
e

residential
residential_well_insulated
residential_static
residential_mult_producer

(a) Number of iterations before convergence

10 15 20 25 30 35 40
Population size

100

150

200

250

300

350

400

Fi
rs

t i
te

ra
tio

n
wi

th
 v

al
id

 so
lu

tio
n

residential
residential_well_insulated
residential_static
residential_mult_producer

(b) Iteration with the first valid solution

Figure 7.7: Oversized SaDE population causes too slow convergence towards optimum with varying population size

7.4. CMA-ES 66

(5
/6)

 r
an

do
m

(5
/5)

 h
c

 residential

1.46

1.48

1.50

1.52

1.54

1.56

1.58

1.60

(5
/5)

 r
an

do
m

(5
/5)

 h
c

 residential
well_insulated

1.90

1.95

2.00

2.05

2.10

2.15

2.20

(4
/5)

 r
an

do
m

(5
/5)

 h
c

 residential
static

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

(4
/5)

 r
an

do
m

(5
/5)

 h
c

 residential
mult_producer

1.40

1.42

1.44

1.46

1.48

1.50

1.52
Pe

rfo
rm

an
ce

 ra
tio

Initial solution

(a) Performance ratios

 ra
nd

om hc

 residential

0

200

400

600

800

1000

 ra
nd

om hc

 residential
well_insulated

 ra
nd

om hc

 residential
static

 ra
nd

om hc

 residential
mult_producer

Ite
ra

tio
n

be
fo

re
 c

on
ve

rg
en

ce

Initial solution

(b) Iterations before convergence

Figure 7.8: SaDE performance with varying initial solutions

curve solution is used as the initial solution.

What is unexpected is that even with an existing solution as starting point, the algorithm still converges
quite slowly. This is shown in Figure 7.8b. For S.4, the algorithm is consistently terminated due to the
algorithm having run for the maximum amount of iterations (1000). This suggests that the algorithm
keeps making small improvements, which delays termination. This behaviour is further explored in
Section 7.6.

7.4. CMA-ES
In this section the performance of the CMA-ES algorithm with respect to the various meta-parameter
values is discussed. Only the most interesting results are discussed. The full results can be found in
Appendix B. In the first subsection the influence of the sample size is investigated. The next subsection
investigates the influence of the initial step size. Finally, the influence of the initial solution is discussed.

7.4.1. Sample Size
In Table 7.1 the number of valid solutions found by the algorithm for every instance is shown.

Increasing Sample Size Too Much Causes Too Much Exploration
As can be seen in Figures 7.9 and 7.10a, the influence of the different sample sizes depends strongly
on the instance.

For S.1, the increase in sample size causes the algorithm to perform worse both in terms of consistency
and optimality. This is likely caused by the increase in exploration, which causes the algorithm to spend
too much time on local optima, causing it to get stuck. This makes it harder to move toward the global
optimum. This conclusion seems to be supported by the decrease in consistency, illustrated in Figure
7.10a.

With static prices, the algorithm appears to benefit from an increased sample size and eventually seems
to converge to only one solution. In this case, the algorithm is not distracted by local optima to explore,
which were created by the choices between producing more, earlier, but cheaper, or less, later, but
more expensive.

This is likely due to the decrease in the number of local optima, which means the algorithm can less
easily get stuck.

The performance of the well insulated instance is fairly stable when the sample size is increased,
until the sample is increased to 40, when the algorithm’s performance becomes much worse. It is
interesting to note that the performance and consistency seem best when the sample size is 35. This
is surprising, as the algorithm performance decreases with an increasing sample size for scenario S.1.

7.4. CMA-ES 67

(5/
5)

10

(4/
5)

15

(4/
5)

20

(5/
5)

25

(3/
5)

30

(4/
5)

35

(4/
5)

40

Sample size

1.46

1.48

1.50

1.52

1.54

1.56

1.58

1.60

Pe
rfo

rm
an

ce
 ra

tio

residential

(5/
5)

10

(5/
5)

15

(5/
5)

20

(4/
5)

25

(5/
5)

30

(5/
5)

35

(5/
5)

40

Sample size

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

Pe
rfo

rm
an

ce
 ra

tio

residential_static

(5/
5)

10

(4/
5)

15

(5/
5)

20

(5/
5)

25

(3/
5)

30

(5/
5)

35

(3/
5)

40

Sample size

1.90

1.95

2.00

2.05

2.10

2.15

2.20

Pe
rfo

rm
an

ce
 ra

tio

residential_well_insulated

(0/
5)

10

(1/
5)

15

(2/
5)

20

(4/
5)

25

(4/
5)

30

(3/
5)

35

(3/
5)

40

Sample size

1.40

1.42

1.44

1.46

1.48

1.50

1.52

Pe
rfo

rm
an

ce
 ra

tio

residential_mult_producer

Figure 7.9: CMA-ES performance ratios with respect to the sample size. The number between the braces in the labels indicate
the number of valid solutions found

10 15 20 25 30 35 40
Sample size

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Di
st

an
ce

 fr
om

 o
th

er
s

residential
residential_well_insulated
residential_static
residential_mult_producer

(a) CMA-ES distances to other solutions. Both valid an invalid solutions
are considered in the data. Lower results imply the algorithm becomes
more consistent, as the distances between the solutions decrease.

10 15 20 25 30 35 40
Sample size

0

100

200

300

400

500

600

Ite
ra

tio
ns

 b
ef

or
e

co
nv

er
ge

nc
e

residential
residential_well_insulated
residential_static
residential_mult_producer

(b) Number of iterations before convergence

Figure 7.10: CMA-ES consistency and number of iterations before convergence with respect to the population size

7.4. CMA-ES 68

10 15 20 25 30 35 40
Sample size

40

60

80

100

120

140

160

Fi
rs

t i
te

ra
tio

n
wi

th
 v

al
id

 so
lu

tio
n

residential
residential_well_insulated
residential_static
residential_mult_producer

Figure 7.11: CMA-ES first generation with valid solution

This sudden deviation from the trend needs to be investigated further, as it seems likely to be caused
by an insufficient number of samples. From Figure 7.10b it does indeed appear that the algorithm gets
stuck in local optima, as the algorithm terminates earlier, which means the algorithm is unable to make
improvements which would postpone termination.

For the instance with multiple producers, the algorithm seems to need a sample size of at least 25, as
the algorithm is otherwise unable to find solutions consistently. This makes sense as the number of
decision variables for this instance is three times larger than for the other instances, due to the algorithm
needing to find temperatures for 2 producers and valve settings for 1 valve.

First Valid Solution Insensitive to Population Size
Interestingly, the CMA-ES algorithm seems to be fairly insensitive to the population for the instances
with one producer when considering the first iteration in which a valid solution appears. This is shown
in Figure 7.11

This is likely due to the algorithm being able to build a fairly accurate distribution with few samples. In
addition to this, the penalties for constraint violations grow steeply when violations are increased. This
means the algorithm will be steered towards valid solutions quite aggressively.

For the instance with multiple producers, the algorithm finds valid solutions earlier with larger popula-
tion sizes, although this only seems to happen for sample sizes smaller than 20. Interestingly, this is
exactly the population size that is recommended for CMA-ES for instances of this dimensionality. The
recommended sample size, as described in Section 5.5, is 4 + ⌊3 ln 72⌋ = 16. When sample sizes
smaller than this are used, finding the first valid solution takes considerably longer.

7.4.2. Initial Step Size
In Figure 7.12 the performance ratios of the solutions found by the algorithm with a varying initial step
size are shown. As can be seen, the initial step size influences the performance of the algorithm
considerably. Not only in the optimality of the solutions found, but also in the number of solution that
are found. When the step size is increased too much, the algorithm finds a valid solution much less
often.

It is hard to make conclusions on what is “the optimal” initial step size as this seems to vary from
instance to instance and the algorithm is not as sensitive for every instance.

7.4.3. Initial Solution
In Figure 7.13 the performance ratios of the solutions found by the algorithm with varying initial solutions
are shown. As expected, the algorithm is always able to find a solution when a valid initial solution is
used. This makes sense, as moving to an invalid solution would result in high penalties.

However, it was also expected that the algorithm would get stuck in local optima when an existing

7.4. CMA-ES 69

(4/
5)

5

(5/
5)

10

(5/
5)

15

(3/
5)

20

Initial step size

1.46

1.48

1.50

1.52

1.54

1.56

1.58

1.60

Pe
rfo

rm
an

ce
 ra

tio

residential

(5/
5)

5

(5/
5)

10

(5/
5)

15

(3/
5)

20

Initial step size

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

Pe
rfo

rm
an

ce
 ra

tio

residential_static

(5/
5)

5

(5/
5)

10

(5/
5)

15

(4/
5)

20

Initial step size

1.90

1.95

2.00

2.05

2.10

2.15

2.20

Pe
rfo

rm
an

ce
 ra

tio

residential_well_insulated

(1/
5)

5

(3/
5)

10

(0/
5)

15

(0/
5)

20

Initial step size

1.40

1.42

1.44

1.46

1.48

1.50

1.52

Pe
rfo

rm
an

ce
 ra

tio

residential_mult_producer

Figure 7.12: CMA-ES performance ratios with respect to varying initial step size

(4
/5)

 r
an

do
m

(5
/5)

 h
c

 residential

1.46

1.48

1.50

1.52

1.54

1.56

1.58

1.60

(5
/5)

 r
an

do
m

(5
/5)

 h
c

 residential
well_insulated

1.90

1.95

2.00

2.05

2.10

2.15

2.20

(5
/5)

 r
an

do
m

(5
/5)

 h
c

 residential
static

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

(2
/5)

 r
an

do
m

(6
/6)

 h
c

 residential
mult_producer

1.40

1.42

1.44

1.46

1.48

1.50

1.52

Pe
rfo

rm
an

ce
 ra

tio

Initial solution

Figure 7.13: CMA-ES performance ratios with varying initial solutions

7.5. Relative Performance 70

10 15 20 25 30 35 40
Population size

0

200

400

600

800

1000
Ga

p

residential
residential_well_insulated
residential_static
residential_mult_producer

(a) SaDE

10 15 20 25 30 35 40
Sample size

0

100

200

300

400

500

Ga
p

residential
residential_well_insulated
residential_static
residential_mult_producer

(b) CMA-ES

Figure 7.14: Number of iterations until termination after the first valid solution has been found

solution was used, which does not always seem to be the case. The results are usually comparable or
better than the solutions found with random initialisation.

7.5. Relative Performance
From the results in the previous sections it becomes apparent that the genetic algorithm does not
perform as bad as was expected, although the solutions it finds are far from optimal.

SaDE performs quite well in terms of optimality as it is able to outperform all other algorithms. However,
this does come at the expense of convergence speed. As shown in Figure 7.7a, SaDE does not always
converge and thus is terminated after the maximum number of iterations is reached. This does not
mean that the algorithm jumps around the search space, but that it simply keeps making improving
moves. This was also further discussed in Section 7.6.

The CMA-ES algorithm was able to find quite optimal solutions, which are usually close to the SaDE
solutions. Although the solutions are a little less optimal, the algorithm converges much more quickly.
This might be preferable in an MPC setting, as the optimisation can be run more often.

The first question, RQ 1, posed in the introduction questioned which metaheuristic approaches would
work well for the DHS problem. From the results in this chapter it becomes clear that metaheuristics
designed for combinatorial optimisation problems do not work very well. Because of the limited ability
to explore new values, the algorithm often gets stuck in local optima or is completely unable to find
valid solutions. The real-valued metaheuristic approaches are much better suited and are able to get
very close to the global optimum of the problem. This unfortunately does come at the price of slow
convergence, which has to be investigated further before they can be used in an online setting.

7.6. Creeping Behaviour
Although SaDE and CMA-ES both find quite optimal solutions, they are both slow to converge. In
Figure 7.14 the number of iterations the algorithm still runs after the first valid solution has been found
is shown. As can be seen, the algorithm still run for quite a while before termination.

In Figure 7.15 the fitnesses of the best individuals in the populations are shown. For CMA-ES the
results for the population size experiments with a population size of 25 are taken. For SaDE the results
for a population of 15 are taken.

As can be seen in these figures, the algorithms are able to solve the constraints quite quickly, but then
take many iterations to optimise the solution further. This is most unfortunate with SaDE as it is able to
beat CMA-ES in terms of optimality, but it converges much more slowly.

When an existing initial solution is used, the initial starting point is feasible, thus no constraints have
to be solved. This does not seem to speed up the algorithms by much, though, as convergence is still

7.6. Creeping Behaviour 71

0 200 400 600 800 1000
Iterations

1.45

1.50

1.55

1.60

1.65

1.70
Pe

rfo
rm

an
ce

 ra
tio

rA
rB
rC
rD
rE
rF

(a) SaDE, population size of 15, random initial solution

0 200 400 600 800 1000
Iterations

1.45

1.50

1.55

1.60

1.65

1.70

Pe
rfo

rm
an

ce
 ra

tio

rF
rG
rH
rI
rJ

(b) CMA-ES, population size of 25, random initial solution

0 200 400 600 800 1000
Iterations

1.45

1.50

1.55

1.60

1.65

1.70

Pe
rfo

rm
an

ce
 ra

tio

hcA
hcB
hcC
hcD
hcE

(c) SaDE, heating curve initial solution

0 200 400 600 800 1000
Iterations

1.45

1.50

1.55

1.60

1.65

1.70

Pe
rfo

rm
an

ce
 ra

tio

hcF
hcG
hcH
hcI
hcJ

(d) CMA-ES, heating curve initial solution

Figure 7.15: Algorithm performance ratio over time for S.1. The dotted blue line indicates the heating curve performance. Traces
with ‘r’ or ‘hc’ as a prefix are randomly initiated or with a heating curve solution, respectively

quite slow.

To understand why this happens, the evolution of solution hcF is shown in Figure 7.16 for CMA-ES. As
can be seen, the first solution is adjusted quite a lot with respect to the initial solution. From there, the
differences between the solutions become smaller, but the shape of the differences remain similar. This
raises the question of why it takes so long for the optimisation to make all those small steps instead of
just making one big step.

One possible explanation is that the optimisation is constrained by the temperature gradient constraint.
This would make it difficult for the optimisation to make big steps in the right direction, as bigger steps
mean that the step direction needs to be precise to prevent ending up in at an infeasible solution. To
verify this hypothesis, the experiment is rerun without the temperature gradient constraint. This will
likely result in an infeasible solution, but it might offer some insight into the algorithm’s convergence.

The convergence speed of the optimisation with the temperature gradient constraint disabled is shown
in Figure 7.17. From this it becomes apparent that the CMA-ES algorithm does indeed converge much
more quickly when the constraint is disabled. The SaDE algorithm still converges quite slowly.

In Figure 7.18 the evolution of tempF is shown. It does indeed appear that the algorithm is able to make
bigger steps when the constraint is disabled.

It might be interesting to create a new optimisation procedure that runs in two phases. First, the algo-
rithm optimises without the temperature gradient solution. When this has converged, the constraint is
activated again and the optimisation is run to fix the constraint violation.

7.6. Creeping Behaviour 72

70

80

90

100

110

Tp o
 [

]

15
10
5
0
5

10
15

T

70

80

90

100

110

Tp o
 [

]

15
10
5
0
5

10
15

T

70

80

90

100

110

Tp o
 [

]

15
10
5
0
5

10
15

T

70

80

90

100

110

Tp o
 [

]

15
10
5
0
5

10
15

T

70

80

90

100

110

Tp o
 [

]

15
10
5
0
5

10
15

T

70

80

90

100

110

Tp o
 [

]

15
10
5
0
5

10
15

T

70

80

90

100

110

Tp o
 [

]

15
10
5
0
5

10
15

T

0 2 4 6 8 10 12 14 16 18 20 22 24
70

80

90

100

110

Tp o
 [

]

0 2 4 6 8 10 12 14 16 18 20 22 24
15
10
5
0
5

10
15

T

0

1

2

3

Fl
ow

 v
el

oc
ity

 [m
/s

]

0

1

2

3

Fl
ow

 v
el

oc
ity

 [m
/s

]

0

1

2

3

Fl
ow

 v
el

oc
ity

 [m
/s

]

0

1

2

3

Fl
ow

 v
el

oc
ity

 [m
/s

]

0

1

2

3

Fl
ow

 v
el

oc
ity

 [m
/s

]

0

1

2

3

Fl
ow

 v
el

oc
ity

 [m
/s

]

0

1

2

3

Fl
ow

 v
el

oc
ity

 [m
/s

]

0

1

2

3

Fl
ow

 v
el

oc
ity

 [m
/s

]

Figure 7.16: The progress of finding the hcF solution over time. The last row represents the final solution and the first row the
12.5% solution. The rows in between are equally spaced over the iterations. The left column is the solution and the corresponding
mass flows. The right column represents the difference between the current solution and the previous one.

7.7. Optimisation Savings 73

0 200 400 600 800 1000
Iterations

1.46

1.48

1.50

1.52

1.54

1.56
Pe

rfo
rm

an
ce

 ra
tio

tempA
tempB
tempC
tempD
tempE

(a) SaDE

0 200 400 600 800 1000
Iterations

1.46

1.48

1.50

1.52

1.54

1.56

Pe
rfo

rm
an

ce
 ra

tio

tempF
tempG
tempH
tempI
tempJ

(b) CMA-ES

Figure 7.17: Performance ratio over time for S.1 with the heating curve initial solution and no maximum temperature gradient
constraint. The ‘temp’ prefix indicates the lack of temperature gradient constraint

A different possible solution for this might be to encode the problem differently. The encoding used
in the algorithms in this research simply encode the absolute temperature settings for every producer.
It might however work better to encode the solutions as relative temperature changes. This would
remove the explicit temperature gradient constraint, which might make it easier to move towards the
optimum. However, it might also make this problem harder to optimise as variables becomemuch more
dependent on each other. A small change at the start of the optimisation horizon will change the entire
solution instead of just a small part.

7.7. Optimisation Savings
In this final section the savings achieved by the optimisation are described. It assumed that the DHS is
currently operated using a heating curve. The optimisations are done assuming the amount of energy
in the DHS at the end of the optimisation is at least as much as at the start of the horizon.

The best solutions found in Sections 7.3 and 7.4 are used as the minimal optimised costs.

The heating curve has been generated using the method described in Section 5.1.2.

Every subsection will discuss the savings achieved for a scenario as they are described in Section
6.2.1. In Table 7.5 the savings for every scenario are shown.

7.7.1. Residential
The residential scenario S.1 requires a heating curve of 92 ∘C to fulfil all demand and ensure that the
same amount of energy is present in the network at the end of the horizon.

Comparing the costs between the heating curve solution and the optimised solution, the optimisation
leads to a 5% cost reduction. The optimised heating schedule is shown in Figure 7.19 and the corre-
sponding cost analysis in Figure 7.20.

As shown in Table 7.5, a reduction of 2.99% in heat production was reached, but a reduction of 5.07%
in costs was reached. This is possible to due the optimisation rescheduling heat production to produce
more during cheaper times and less when it is expensive.

When looking at the schedule effects on the DHS it becomes clear that it clearly attempts to prevent
producing heat at times when it is most expensive. From 02:00 until 06:00 the optimised schedule
produces more heat than the heating curve schedule does, but from 06:00 until 11:00, the optimised
schedule produces less heat than the heating curve schedule. This makes sense, as the first time
window contains the cheapest times to produce heat and the second are among the most expensive.
This same phenomenon occurs between 13:00 until 18:00 and 18:00 until 23:00.

From Table 7.5 it also becomes clear that the optimisation has increased mass flows, resulting in higher

7.7. Optimisation Savings 74

70

80

90

100

110

Tp o
 [

]

15
10
5
0
5

10
15

T

70

80

90

100

110

Tp o
 [

]

15
10
5
0
5

10
15

T

70

80

90

100

110

Tp o
 [

]

15
10
5
0
5

10
15

T

70

80

90

100

110

Tp o
 [

]

15
10
5
0
5

10
15

T

70

80

90

100

110

Tp o
 [

]

15
10
5
0
5

10
15

T

70

80

90

100

110

Tp o
 [

]

15
10
5
0
5

10
15

T

70

80

90

100

110

Tp o
 [

]

15
10
5
0
5

10
15

T

0 2 4 6 8 10 12 14 16 18 20 22 24
70

80

90

100

110

Tp o
 [

]

0 2 4 6 8 10 12 14 16 18 20 22 24
15
10
5
0
5

10
15

T

0

1

2

3

Fl
ow

 v
el

oc
ity

 [m
/s

]

0

1

2

3

Fl
ow

 v
el

oc
ity

 [m
/s

]

0

1

2

3

Fl
ow

 v
el

oc
ity

 [m
/s

]

0

1

2

3

Fl
ow

 v
el

oc
ity

 [m
/s

]

0

1

2

3

Fl
ow

 v
el

oc
ity

 [m
/s

]

0

1

2

3

Fl
ow

 v
el

oc
ity

 [m
/s

]

0

1

2

3

Fl
ow

 v
el

oc
ity

 [m
/s

]

0

1

2

3

Fl
ow

 v
el

oc
ity

 [m
/s

]

Figure 7.18: Algorithm performance ratio over time with deactivated temperature gradient constraint. Note that these solutions
are not valid.

7.7. Optimisation Savings 75

Heating curve Optimised Difference % Difference
S.1 Residential
Stored in network at end 20.83MWh 8.22MWh −12.61MWh −60.55%
Losses 176.51MWh 172.94MWh −3.57MWh −2.02%
Produced heat 541.38MWh 525.19MWh −16.19MWh −2.99%
Pump electricity usage 8.01 kWh 17.14 kWh 9.13 kWh 113.98%

Heat cost € 7225.04 € 6858.02 € -367.02 −5.07%
Pump electricity cost € 0.23 € 0.55 € 0.32 139.13%
Total costs € 7225.27 € 6858.57 € -366.70 −5.07%
S.2 Residential, static prices
Stored in network at end 20.83MWh 8.06MWh −12.77MWh −61.26%
Losses 176.51MWh 168.21MWh −8.30MWh −4.70%
Produced heat 541.38MWh 520.30MWh −21.08MWh −3.89%
Pump electricity usage 8.01 kWh 38.87 kWh 30.86 kWh 385.27%

Heat cost € 12933.36 € 12429.83 € -503.53 −3.89%
Pump electricty cost € 0.72 € 3.50 € 2.78 386.11%
Total costs € 12934.08 € 12433.33 € -500.75 −3.87%
S.3 Residential, well insulated
Stored in network at end 6.30MWh 0.28MWh −6.02MWh −95.55%
Losses 154.72MWh 153.82MWh −0.90MWh −0.58%
Produced heat 309.41MWh 302.50MWh −6.91MWh −2.23%
Pump electricity usage 4.18 kWh 2.00 kWh −2.18 kWh −52.15%

Heat cost € 4061.67 € 3871.55 € -190.12 −4.68%
Pump electricity cost € 0.12 € 0.06 € -0.06 −50%
Total costs € 4061.79 € 3871.61 € -190.18 −4.68%
S.4 Residential, multiple producers
Stored in network at end 26.10MWh 5.35MWh −20.75MWh −79.50%
Losses 177.07MWh 169.71MWh −7.35MWh −4.15%
Produced heat 891.24MWh 863.13MWh −28.11MWh −3.15%
Pump electricity usage 2.23 kWh 12.62 kWh −10.39 kWh 465.91%

Heat cost € 11945.40 € 11360.44 € -584.61 −4.89%
Pump electricity cost € 0.06 € 0.41 € 0.35 583.33%
Total costs € 11945.46 € 11360.85 € -584.61 −4.89%

Table 7.5: Optimised heating schedule savings per scenario with respect to heating curve heating schedule

7.7. Optimisation Savings 76

electricity usage in the network.

Compared to the heating curve based schedule, the optimised schedule increases supply temperatures
at peak demand times. This is surprising, as pumping costs are several orders of magnitude smaller
than heat production costs, thus it should be preferred to have mass flow as high as possible. From
the cost and network analysis it becomes clear that the optimisation raises temperatures in the entire
network right before a demand peak, because these peaks almost coincide with price peaks. Then,
before the price peaks, the optimisation lowers the temperatures as much as possible. Because the
return temperature is relatively high and the supply temperature is lowered as much as possible, Δ𝑇
becomes quite small. This apparently reduces costs more effectively than maintaining a high mass
flow through the network.

For this instance, the optimisation was able to reduce losses by 2.02% and overall cost by 5.07% by
increasing mass flows, and scheduling heat production at cheaper times.

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [60 min]

70

80

90

100

110

Ou
tp

ut
 te

m
pe

ra
tu

re
 se

tp
oi

nt
 [

]

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Fl
ow

 v
el

oc
ity

 [m
/s

]

(a) Heating curve based heating schedule

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [60 min]

70

80

90

100

110

Ou
tp

ut
 te

m
pe

ra
tu

re
 se

tp
oi

nt
 [

]
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Fl
ow

 v
el

oc
ity

 [m
/s

]

(b) Optimised heating schedule

Figure 7.19: Residential scenario S.1 heating schedules

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [60 min]

10

20

30

T
[

]

Heating curve Optimised

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [60 min]

200

400

600

To
ta

l C
os

t [
]

Heating curve, total: 7225.27 Optimised, total: 6858.57

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [60 min]

500

1000

m
 [k

g/
s]

Heating curve Optimised

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [60 min]

10

20

30

Pr
ice

 [
/M

W
h]

Heat Electricity

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [60 min]

20

40

Pr
od

uc
ed

 h
ea

t [
M

W
] Heating curve Optimised

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [60 min]

10

20

30

De
m

an
d

[M
W

]

Total

Figure 7.20: Residential scenario S.1 heating schedule cost examination from the perspective of the producer

7.7.2. Residential, Static Pricing
As this instance is the same as scenario S.1, but with static prices, the heating curve is exactly the
same as for that scenario, i.e. a constant temperature of 92 ∘C.

The optimised schedule for this instance can be seen in Figure 7.21 and reduces operating costs by

7.7. Optimisation Savings 77

3.87%.
This schedule does indeed attempt to maximise mass flows through the network and lower the supply
temperature as much as possible to reduce losses. This is also apparent from the amount of energy
used to pump the water through the DHN, as this is increased by 386.11%.
As can be seen in Table 7.5, the losses are reduced by 4.70%. This is more than the loss reduction for
S.1. This is due to the fact that in that instance the optimisation was able to make use of the network
storage effect, as it had dynamic prices. It was possible to decide to accept more losses to save on
higher production at expensive times.

For this instance, the optimised schedule indeed lowers temperatures as much as possible to maximise
mass flows through the network. After examining the solution further, it became clear that lowering
the temperatures even further is not possible, as this would violate the minimum consumer supply
temperature constraint for the customer that is farthest from the producer.

For this instance, the optimisation was able to reduce losses by 4.70% and costs by 3.87% by increas-
ing mass flows through the network.

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [60 min]

70

80

90

100

110

Ou
tp

ut
 te

m
pe

ra
tu

re
 se

tp
oi

nt
 [

]

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Fl
ow

 v
el

oc
ity

 [m
/s

]

(a) Heating curve based heating schedule

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [60 min]

70

80

90

100

110

Ou
tp

ut
 te

m
pe

ra
tu

re
 se

tp
oi

nt
 [

]

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Fl
ow

 v
el

oc
ity

 [m
/s

]

(b) Optimised heating schedule

Figure 7.21: Residential scenario S.2 heating schedules

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [60 min]

10

20

30

T
[

]

Heating curve Optimised

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [60 min]

500

1000

To
ta

l C
os

t [
]

Heating curve, total: 12934.08 Optimised, total: 12433.33

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [60 min]

500

1000

m
 [k

g/
s]

Heating curve Optimised

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [60 min]

40

60

80
Pr

ice
 [

/M
W

h]

Heat Electricity

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [60 min]

20

40

Pr
od

uc
ed

 h
ea

t [
M

W
] Heating curve Optimised

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [60 min]

10

20

30

De
m

an
d

[M
W

]

Total

Figure 7.22: Residential scenario S.2 heating schedule cost examination from the perspective of the producer

7.7. Optimisation Savings 78

7.7.3. Residential, Well Insulated
The heating curve for the well insulated residential instance consists of a constant temperature of
86.5 ∘C.
The optimised heating schedule has about the same shape as the optimised heating schedule for S.1,
which is to be expected as the prices and the topology of the network are identical. What is surprising
is the amount of loss reduction made. It was expected this would be much higher than the 0.58% that
was achieved. After further investigating why this was the case, it became clear that the minimum
consumer supply temperature constraint prevents the temperature from being lowered further. This
makes it impossible to further reduce losses without breaking any constraints.

It is interesting to note that the mass flows are apparently lower in the optimised schedule compared to
the heating curve schedule. As the pumping costs are 4 orders of magnitude smaller than the heating
costs, this does not result in significant savings on the overall costs.

As the prices in this schedule are also dynamic, the optimisation attempts to prevent producing heat at
peak times just like it does for S.1.

The optimisation is able to reduce losses by 0.58% and costs by 4.68% for this instance by

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [60 min]

70

80

90

100

110

Ou
tp

ut
 te

m
pe

ra
tu

re
 se

tp
oi

nt
 [

]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Fl

ow
 v

el
oc

ity
 [m

/s
]

(a) Heating curve based heating schedule

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [60 min]

70

80

90

100

110

Ou
tp

ut
 te

m
pe

ra
tu

re
 se

tp
oi

nt
 [

]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Fl
ow

 v
el

oc
ity

 [m
/s

]

(b) Optimised heating schedule

Figure 7.23: Residential scenario S.3 heating schedules

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [60 min]

10

20

T
[

]

Heating curve Optimised

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [60 min]

200

400

To
ta

l C
os

t [
]

Heating curve, total: 4061.79 Optimised, total: 3871.61

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [60 min]

250

500

750

1000

m
 [k

g/
s]

Heating curve Optimised

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [60 min]

10

20

30
Pr

ice
 [

/M
W

h]

Heat Electricity

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [60 min]

20

40

Pr
od

uc
ed

 h
ea

t [
M

W
] Heating curve Optimised

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [60 min]

5

10

15

20

De
m

an
d

[M
W

]

Total

Figure 7.24: Residential scenario S.3 heating schedule cost examination from the perspective of the producer

7.7. Optimisation Savings 79

7.7.4. Residential, Multiple Producers
The heating curve for multiple producers is generated by settings the valve settings equal to 0.5 for all
time slots and then using the same procedure as used for a single producer. In Figure 7.25 the heating
curve and optimised schedule is shown.

As can be seen, the valve setting is very unstable. In this case this does not make sense as both
producers are very close to each other and they have the same production costs. It would have made
more sense to do the same as the heating curve, assigning the same amount of mass flow to both
producers, as this would allow lower temperatures in the network, leading to lower losses.

But, when considering the results of the optimisation, it is surprising that the optimisation was able to
reduce losses by 4.15% as this was expected to be around the same as for S.1. The total amount of
produced heat has been reduced by 3.15%, while the total heating cost has been reduced by 4.68%.
This means the optimisation has been able to make use of the network storage effect to produce more
at cheaper time, while saving on production costs at expensive times.

From this, it can also be concluded that it is possible to reduce the total losses further, although that
might result in more expensive operations. In Figure 7.26, the cost analysis for every producer is shown.
It is interesting that the optimisation has assigned much more heat production to one producer than
the other. Why this happens should be investigated more, but it is likely this is due to the algorithms
getting stuck in a local optimum.

The optimisation is able to reduce operating costs by 4.68% by making use of the network storage
effect and reducing losses.

Time [60 min]70

80

90

100

110

Ou
tp

ut
 te

m
pe

ra
tu

re
 se

tp
oi

nt
 [

] Producer 212

Time [60 min]70

80

90

100

110

Ou
tp

ut
 te

m
pe

ra
tu

re
 se

tp
oi

nt
 [

] Producer 221

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [60 min]

0.0

0.2

0.4

0.6

0.8

1.0

Va
lv

e
se

tti
ng

ControlledJoin 217

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Fl
ow

 v
el

oc
ity

 [m
/s

]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Fl
ow

 v
el

oc
ity

 [m
/s

]

(a) Heating curve based heating schedule

Time [60 min]70

80

90

100

110

Ou
tp

ut
 te

m
pe

ra
tu

re
 se

tp
oi

nt
 [

] Producer 212

Time [60 min]70

80

90

100

110

Ou
tp

ut
 te

m
pe

ra
tu

re
 se

tp
oi

nt
 [

] Producer 221

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [60 min]

0.0

0.2

0.4

0.6

0.8

1.0

Va
lv

e
se

tti
ng

ControlledJoin 217

0

1

2

3

Fl
ow

 v
el

oc
ity

 [m
/s

]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Fl
ow

 v
el

oc
ity

 [m
/s

]

(b) Optimised heating schedule

Figure 7.25: Residential, multiple producers scenario S.4 heating schedules

7.7.5. Conclusions
The question RQ 2 in the introduction questioned how much can be saved by optimising DHS opera-
tions. From the results in this section, it becomes clear that the optimisations are able to make effective
use of the network storage effect to reduce costs and that they are able to reduce losses. Depending
on the scenario, the optimisations are able to reduce operational costs by 3% to 5%. Since operational
costs are often quite large, even this small improvement can lead to significant cost reductions.

7.7. Optimisation Savings 80

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [60 min]

10

20

30

T
[

]

Heating curve Optimised

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [60 min]

0

500

1000

To
ta

l C
os

t [
]

Heating curve, total: 5967.30 Optimised, total: 6575.37

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [60 min]

0

500

1000

m
 [k

g/
s]

Heating curve Optimised

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [60 min]

10

20

30

Pr
ice

 [
/M

W
h]

Heat Electricity

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [60 min]

0

25

50

75

Pr
od

uc
ed

 h
ea

t [
M

W
] Heating curve Optimised

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [60 min]

20

40

60

De
m

an
d

[M
W

]

Total

(a) Cost factors producer 212

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [60 min]

10

20

30

T
[

]

Heating curve Optimised

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [60 min]

0

200

400

To
ta

l C
os

t [
]

Heating curve, total: 5978.10 Optimised, total: 4785.07

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [60 min]

0

250

500

750

m
 [k

g/
s]

Heating curve Optimised

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [60 min]

10

20

30

Pr
ice

 [
/M

W
h]

Heat Electricity

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [60 min]

0

20

40

Pr
od

uc
ed

 h
ea

t [
M

W
] Heating curve Optimised

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [60 min]

20

40

60

De
m

an
d

[M
W

]

Total

(b) Cost factors producer 221

Figure 7.26: Residential, multiple producers scenario S.4 heating schedule cost examination from the perspective of the pro-
ducers

8
Discussion

This final chapter discusses the research and its conclusions. In Section 8.1 conclusions are drawn
from all the results in this report, answering the research questions posed in Section 1. In Section 8.2
several possible future approaches and DHS types are discussed.

8.1. Conclusions
To conclude this research, the main conclusions are given, answering the research questions posed in
Chapter 1.

8.1.1. Best Metaheuristic Optimisation Approaches
The first research question posed in the introduction is RQ 1: What metaheuristic optimisation ap-
proaches work well for solving the DHS optimisation problem?. From the results in Section 7.5 it
becomes clear that the approaches specifically built for real-valued problems perform best in terms
of optimality of the solutions found.

The genetic algorithm is based on concepts behind combinatorial optimisation problems and does not
work very well, although it is able to come close to the other algorithms for the simplest instances. From
the results of using the fade over operation instead of crossover, it becomes clear that incorporating
some domain knowledge can lead to better performance.

The SaDE and CMA-ES algorithms both are very capable of finding good solutions although both
algorithms do have trade-offs. SaDE is able to find very optimal solutions, coming within 2.9% of the
lower bound for certain instances, but this algorithm does converge quite slowly. CMA-ES on the other
hand converges more quickly, but still not as fast as expected. In terms of optimality, CMA-ES comes
very close to the performance of SaDE.

Prerequisites
Some things are needed before metaheuristics can be to optimise the DHS problem. From RQ 1.1:
What is needed to make the use of metaheuristics feasible?

First, as described in Section 3.3.2, an artificial constraint is needed that requires a certain amount
of energy at the end of the optimisation horizon. This is not necessarily exclusive to metaheuristic
optimisation techniques, but without this constrain optimisations will make savings at the end of the
optimisation horizon that are not useful and might even harm actual cost savings. In addition to this,
the constraint allows the determination of a lower bound on the operational costs.

Second, access to a simulator (or equivalent) is needed to determine what the effects of making cer-
tain decision are. This includes information on the actual monetary cost of a heating schedule, but
also physical information like mass flow limits that are exceeded by a schedule or consumer supply
temperatures that are lower than allowed.

81

8.2. Future Work 82

8.1.2. Operational Cost Reduction
The second research question RQ 2 in the introduction: How much improvement does an optimised
heating schedule offer with respect to the existing operational methods? From the results in Section
7.7 it becomes clear that depending on the instance, the optimisation of the operations can lead to a
cost reduction of 3% to 5%.
Due to the large costs of operating DHSs, even this small percentage leads to significant cost reduction.
These cost reductions are thanks to the optimisation’s ability to make use of the network storage effect,
moving heat production to cheaper times and to reduce overall heat production, by reducing heat losses
in the network.

Lower Bound on Operational Costs
One of the larger contributions of this work is the method to determine a lower bound on the operational
costs. A lower bound for the problem helps to get a feeling for whether an algorithm has reached the
optimal solution and makes it easier to compare the quality of solutions. This section answers RQ 2.1:
Is a lower bound on the production costs available (in literature) or is it possible to determine a useful
one?

The first approach to the question was to look for a lower bound in literature. However, after searching
for this, none have been found. Thus, a novel method has been created to determine this lower bound,
as described in 3.7.

From the results in Chapter 7 it has become clear that the method can get very close to the real lower
bound for some instances. For S.2, the optimised values were within 3% of the lower bound. This
means the lower bound is very tight for instances with static prices. For dynamically priced instances,
the lower bound is less tight, which is to be expected, but it is still within a reasonable range.

8.1.3. Context
The final research question compares the new approaches with existing optimisation approaches found
in literature. RQ 3: How do the approaches compare to the existing mathematical optimisation ap-
proaches found in literature?

The main difference between the approaches used in this work and the works discussed in Chapter 4
is the optimisation methods used. Most of the existing work uses mathematical optimisation in combi-
nation with a simulator to optimise the operations. This work uses metaheuristics in combination with
a simulator. This new approach should be better able to deal with the non-convexity of the problem,
as mathematical optimisation is often not able to deal with this.

The existing work that does usemetaheuristics based optimisation, have simplified the problem strongly
by ignoring key characteristics like the network storage effect and the non-linear losses. For smaller
networks this should not be a large problem, but when the networks grow to span several kilometres,
these simplifications will start to add up. The results achieved in this work are comparable to existing
work in terms of savings [10, 21].

8.2. Future Work
This research focussed mainly on whether it is feasible to use metaheuristics to optimise district heating
operations. As has been concluded, it is feasible to do this, but there are some limiting factors and/or
possibly better alternatives. In addition to this, some ideas on what is needed to apply this algorithm in
practice are presented.

8.2.1. Fitness Function
The fitness function is a vital component of the algorithms as it is the only indication the algorithms
have of how good the solutions they propose are.

Simulation Replacement
One of the largest limiting factors is the simulator that backs the fitness function. Even with several
dozen of consumers, the simulation slows down to the point where it becomes too slow to use the

8.2. Future Work 83

optimisation in an MPC setting. To solve this problem, simulator performance should be increased, or
an alternative for online simulation should be found.

A possible alternative for online simulation would be to replace the simulation with a machine learning
model that can provide the information now provided by the simulation like maximum edge velocity
violation and production costs.

In [11] a neural network model was used to replace an expensive traffic simulation in the fitness function
of a genetic algorithm. This genetic algorithm was used to optimise traffic lights in the city of Warsaw
to minimise total waiting time. A similar method could be used to replace a DHS simulation.

A long-short term memory (LSTM) neural network seems the most promising model as these models
maintain an internal state and accept a series of values as inputs. The internal state allows the model
to remember how much heat is stored in which locations in the network and the input series in this case
would be the valve and temperature settings.

Optimising the Fitness Function
As described in Section 3.5, the fitness function is constructed by determining the amount of constraint
violation and multiplying this with penalty factors. These factors have been chosen manually, but it
might be possible to automate this. Doing this might improve the convergence speed of the algorithms
discussed, as the fitness landscape shape determines how quickly the algorithms can move through it.

8.2.2. Alternative Optimisation Approaches
In addition to metaheuristics and mathematical optimisation, several other optimisation techniques
might be promising to explore for this problem. Two possible alternatives are surrogate modelling
and reinforcement learning.

Surrogate Modelling
With surrogate modelling, a model of the fitness function is built online and this model is then used to
find an optimal solution. The algorithm takes an initial measurement of the fitness function and fits a
function to. The algorithm then iteratively takes new measurements of the fitness function and fits a
function to all measurement points. Every new measurement is taken at the minimum of the current
fitted function. Finding this minimum can be problematic if the function is non-convex, but this might be
circumvented by using simulated annealing.

This approach could work, but the high dimensionality of the DHS problem might be problematic as
surrogate modelling can typically not handle more than a few dozen variables. Recent research has
devised a method that would expand this to several thousand variables. [22]

Reinforcement Learning
Reinforcement learning builds a model of the system under optimisation and creates a policy that can
then be used to operate the system. A policy is a mapping of states to actions that indicates what action
should be taken given the current system state to optimise the reward.

An interesting application of reinforcement learning is learning a computer program to play Atari games
[24]. The reinforcement learning model was created using a neural network that was trained with a
variant of Q-learning. Q-learning is a method that can build a Q function that indicates how much
reward can be gained by performing action 𝑎 while currently being in state 𝑠. The input of the neural
network are the raw pixel values that are displayed on screen and the output was a value function that
can estimate the future rewards of performing an action.

The system was able to outperform existing methods in all 6 six games and even outperform human
experts in three of the games.

In the case of the DHS problem the system state consists of the heat stored in the network and the
expected consumer demand. The actions could be defined as increasing the production temperatures
of producers and operating the pumps in the network. A possible problem with approach could be the
high dimensionality in the number of actions. For the Atari games there are 18 possible actions, but
the number of actions for a DHS are much higher, especially when the number of producers and valves
increases.

8.2. Future Work 84

8.2.3. Extensions
The methods used in this researched were mostly quite basic algorithms that were not specialised on
the DHS problem. In addition to this, certain assumptions have been made, which might have been
made too broadly to cover problems that might occur had they been made too narrowly.

Binary Decision Variables for Buffer Storage
The current problem instances have no buffers in the networks. Buffers are components in the network
that can store heat in large water vessels with very little heat loss. For buffers, it can be decided to
either fill them or empty them, which is a binary decision variable. The heat stored in a buffer ahead of
time allows operators to use fewer peak boilers during peak demand times and thus reduce costs.

However, the real-valued algorithms have not been designed to deal with binary decision variables.

To deal with these kinds of problems it might be interesting to combine a binary genetic algorithm with
the real-valued algorithms. The real-valued algorithms would become a sub procedure of the binary
genetic algorithm, where the genetic algorithm first decided whether a buffer should be filled or emptied
and can then use this decision to optimise the real-valued decision variables. This kind of procedure
was already attempted [29] where the binary decision variables were used to decide which production
plants to use.

A different kind of buffer is a aquifer where heat is stored in the ground water. Operation of aquifers is
on a longer time span than what is done in this research, but it might still present an interesting research
direction.

Optimisation Horizon Length
This first assumption is the optimisation horizon length. Depending on the network length and the
minimum flow velocities, a certain optimisation horizon is needed to ensure the algorithm makes good
decisions close to the present. In this research, the required horizon length was estimated by manually
trying several settings and estimating whether the horizon is long enough.

However, the minimum horizon length needed varies depending on the state of the network. If a lot of
heat is stored in the network, consumers will need less mass flow to fulfil their demand which means
the horizon should be longer as decisions will have a longer effect on the network.

This horizon length could possibly be optimised to reduce the problem dimensionality, although it should
not really have a high priority.

8.2.4. Low Temperature District Heating Systems
The DHSs in this research were all high temperature, which means the supply temperatures never go
below 70 ∘C. Other kinds of DHSs also exist in which the supply temperatures are much lower, some-
times as low as 15 ∘C. [19] The operation of these kinds of systems is much different, as consumers
often need additional systems to boost the power received from the DHS to the required temperatures.

Because high temperatures lead to much more losses, requires much more energy and often requires
fossil fuels, low temperatures DHSs are more likely to be the system of the future. Research on opti-
mising the operation of these kinds of systems is a more promising idea.

8.2.5. Prerequisites for Deploying the Optimisation
Before the optimisation in the work can be deployed in practice, several missing pieces should be built.

The first and most important component is to build a model of the DHS under optimisation. This con-
sists of a topological model of the grid and other properties like heat resistances and consumer heat
exchangers.

The second thing that is needed is some way to predict consumer heat demand and production prices.
These predictions are what the optimisation uses to make decisions on when to produce heat and how
much should be produced. Demand prediction could be done by using one of the techniques discussed
in Section 4.2. Production prices can be predicted using other techniques commonly found in literature,
like time series forecasting.

8.3. Closing 85

Finally, some way to deploy the solutions to grid operators is needed. The solution found by the op-
timisation is a set of settings for valves, but it is possible that this is not how grid operators manage
the mass flows in the network. Some grid operators only use the valves to completely close one route
in the network and use pressure settings to do fine-tuned routing. This would require the valve set-
tings to be translated to pressure settings for pumps in the network, which can be done using pressure
calculations.

8.3. Closing
Optimising district heating operations usingmetaheuristics is feasible and does work, but more research
is needed. The biggest challenge is the convergence speed of the algorithms, which is relatively low
compared to conventional optimisation techniques. The algorithms used in this research were quite
basic and little domain knowledge was used in the algorithms. It is likely that adding more of this domain
knowledge to the algorithms will speed up convergence significantly, as this allows algorithms to make
more informed decisions.

Despite this, the algorithms in this research were able to make significant savings on operational cost
with respect to the current method of operating district heating systems. In particular, the algorithms
are able to exploit the network storage effect and do indeed reduce losses to reduce operating costs.

A
Experiment Scenarios

The heat exchanger parameters used in the scenarios are shown in Table A.1.

S.1, S.2, S.3 S.4
𝑘 55000 55000
𝑞 0.8 0.8

𝐴 [m2] 0.15 0.2
𝑇 [∘C] 45 45
𝑇 [∘C] 45 45

�̇� max [kg/s] 30 3000

Table A.1: Heat exchanger parameters used in the scenarios

A.1. Residential (Statically Priced)
The production prices are shown in Table A.2. These prices are based on the average electricity prices
in the EU from 2019-06-26 to 2019-07-04. The heat production costs are equal to 0.45 times the
electricity cost, assuming a combined heating and power (CHP). This means, when heat production
prices are high, the electricity price is high, which would mean generating electricity is more profitable
than generating heat.

The average demand is shown in Table A.2 and in Figure A.1.

86

A.1. Residential (Statically Priced) 87

Costs [€/MWh] Demand [kW]
Time Heat Electricity Residential
00:00 12.0938 26.8750 30.1707
01:00 11.1105 24.6900 31.9669
02:00 10.4805 23.2900 31.6624
03:00 9.5062 21.1250 29.8166
04:00 8.8313 19.6250 66.0272
05:00 11.0092 24.4650 112.2481
06:00 13.4392 29.8650 120.0151
07:00 16.0357 35.6350 66.0511
08:00 16.3800 36.4000 28.8446
09:00 14.9152 33.1450 29.6311
10:00 14.1570 31.4600 29.2258
11:00 14.0152 31.1450 29.8077
12:00 12.8902 28.6450 31.0145
13:00 12.3255 27.3900 30.8380
14:00 12.1905 27.0900 29.9946
15:00 12.2850 27.3000 30.4345
16:00 12.6743 28.1650 31.3260
17:00 13.4865 29.9700 37.5071
18:00 15.4778 34.3950 52.3718
19:00 16.9830 37.7400 64.7837
20:00 16.4655 36.5900 74.5452
21:00 15.2730 33.9400 70.2064
22:00 15.9818 35.5150 54.5279
23:00 13.8105 30.6900 33.7633

Table A.2: Dynamic heat production cost, electricity prices, and residential demand

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [60 min]

200 kW

400 kW

600 kW

800 kW

1 MW

1.2 MW

1.4 MW

1.6 MW

Figure A.1: Average residential demand

A.1. Residential (Statically Priced) 88

Producer 208

1098/0.7/0.08

209/0.7/0.08

Residential 22

330/0.2/0.16

206/0.7/0.08 76/0.5/0.10

409/0.7/0.08

86/0.4/0.11

164/0.35/0.12

218/0.3/0.12
205/0.7/0.08

Residential 4

80/0.2/0.16
Residential 1672/0.25/0.14

Residential 17

193/0.25/0.14

98/0.7/0.08

77/0.4/0.11

91/0.6/0.09

Residential 2

38/0.2/0.16

71/0.35/0.12

99/0.5/0.10

97/0.5/0.10

80/0.4/0.11

64/0.3/0.12

110/0.3/0.12

29/0.35/0.12

Residential 9

14/0.2/0.16

Residential 15

10/0.25/0.14

43/0.3/0.12

3/0.3/0.12
Residential 0

15/0.25/0.14

Residential 28

27/0.2/0.16

Residential 23

37/0.25/0.14

Residential 25

3/0.2/0.16
39/0.3/0.12

39/0.3/0.12

Residential 20

81/0.2/0.16
17/0.3/0.12

Residential 13

30/0.2/0.16

Residential 14
30/0.2/0.16

Residential 1

29/0.2/0.16

Residential 12

17/0.2/0.16

Residential 29

34/0.2/0.16

21/0.25/0.14

Residential 18

23/0.2/0.16

Residential 21

13/0.2/0.16

Residential 10
11/0.25/0.14

82/0.3/0.12

Residential 11 54/0.25/0.14

Residential 24

19/0.25/0.14

58/0.3/0.12

14/0.3/0.12

Residential 8

1/0.2/0.16

136/0.3/0.12

Residential 6

40/0.25/0.14

Residential 19

77/0.2/0.16

Residential 7

16/0.25/0.14

Residential 26

21/0.25/0.14
Residential 3

26/0.2/0.16

26/0.3/0.12

Residential 5

35/0.25/0.14
Residential 27

8/0.2/0.16

Figure A.2: Residential scenario topology, supply side only. Return side is symmetric. Edge labels: length/diameter in meters

A.2. Residential, Well Insulated 89

A.2. Residential, Well Insulated

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [60 min]

200 kW

400 kW

600 kW

800 kW

1 MW

Figure A.3: Average residential well insulated demand

A.2. Residential, Well Insulated 90

Producer 421

1098/0.7/0.08

209/0.7/0.08

Residential 22

330/0.2/0.16

206/0.7/0.08 76/0.4/0.11

409/0.6/0.09

86/0.3/0.12

164/0.3/0.12

218/0.25/0.14
205/0.6/0.09

Residential 4

80/0.2/0.16
Residential 1672/0.2/0.16

Residential 17

193/0.2/0.16

98/0.6/0.09

77/0.3/0.12

91/0.5/0.10

Residential 2

38/0.2/0.16

71/0.3/0.12

99/0.35/0.12

97/0.35/0.12

80/0.3/0.12

64/0.25/0.14

110/0.25/0.14

29/0.3/0.12

Residential 9

14/0.2/0.16

Residential 15

10/0.2/0.16

43/0.25/0.14

3/0.25/0.14
Residential 0

15/0.2/0.16

Residential 28

27/0.15/0.17

Residential 23

37/0.2/0.16

Residential 25

3/0.2/0.16
39/0.25/0.14

39/0.25/0.14

Residential 20

81/0.15/0.17
17/0.25/0.14

Residential 13

30/0.2/0.16

Residential 14
30/0.2/0.16

Residential 1

29/0.2/0.16

Residential 12

17/0.2/0.16

Residential 29

34/0.2/0.16

21/0.2/0.16

Residential 18

23/0.15/0.17

Residential 21

13/0.15/0.17

Residential 10
11/0.2/0.16

82/0.25/0.14

Residential 11 54/0.2/0.16

Residential 24

19/0.2/0.16

58/0.25/0.14

14/0.25/0.14

Residential 8

1/0.2/0.16

136/0.25/0.14

Residential 6

40/0.2/0.16

Residential 19

77/0.2/0.16

Residential 7

16/0.2/0.16

Residential 26

21/0.2/0.16
Residential 3

26/0.2/0.16

26/0.25/0.14

Residential 5

35/0.2/0.16
Residential 27

8/0.2/0.16

Figure A.4: Well insulated residential scenario topology, supply side only. Return side is symmetric. Edge labels: length/diameter
in meters

A.3. Residential, Multiple Producers 91

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [60 min]

500 kW

1 MW

1.5 MW

2 MW

2.5 MW

3 MW

Figure A.5: Average residential multiple producers demand

A.3. Residential, Multiple Producers
The heat exchangers used in this scenario are different from the heat exchangers in S.1, as the demand
is considerably higher. These parameters can be found in Table A.1.

A.3. Residential, Multiple Producers 92

Producer 221

ControlledJoin 217

50/0.7/0.08

50/0.7/0.08

1098/0.7/0.08

209/0.7/0.08

Residential 22

330/0.3/0.12

206/0.7/0.08
76/0.7/0.08

409/0.7/0.08

86/0.5/0.10

164/0.5/0.10

218/0.35/0.12

205/0.7/0.08

Residential 4

80/0.3/0.12 Residential 16
72/0.3/0.12

Residential 17

193/0.3/0.12

98/0.7/0.08
77/0.5/0.10

91/0.7/0.08

Residential 2

38/0.3/0.12

71/0.5/0.10

99/0.6/0.09 97/0.6/0.09

80/0.5/0.10

64/0.4/0.11 110/0.35/0.12

29/0.5/0.10

Residential 914/0.3/0.12

Residential 15

10/0.3/0.12

43/0.35/0.12

3/0.35/0.12

Residential 0

15/0.3/0.12

Residential 28

27/0.25/0.14

Residential 23

37/0.3/0.12

Residential 25

3/0.3/0.12

39/0.35/0.12

39/0.4/0.11

Residential 20

81/0.25/0.14

17/0.35/0.12

Residential 13

30/0.3/0.12

Residential 14

30/0.3/0.12

Residential 1

29/0.3/0.12

Residential 12

17/0.3/0.12

Residential 29

34/0.3/0.12
21/0.35/0.12

Residential 18

23/0.25/0.14
Residential 21

13/0.25/0.14

Residential 10

11/0.3/0.12

82/0.4/0.11

Residential 11

54/0.3/0.12

Residential 24

19/0.3/0.12

58/0.35/0.12

14/0.4/0.11

Residential 8

1/0.3/0.12

136/0.35/0.12

Residential 6

40/0.3/0.12

Residential 19

77/0.3/0.12

Residential 7

16/0.3/0.12

Residential 26

21/0.3/0.12

Residential 3

26/0.25/0.14

26/0.4/0.11

Residential 5

35/0.3/0.12

Residential 27 8/0.25/0.14

Producer 21225/0.7/0.08

Figure A.6: Residential scenario topology with multiple producers, supply side only. Return side is symmetric. Edge labels:
length/diameter/thermal resistance in m/meter/Km/W

B
Full Results

This appendix contains figures that represent all the results. The results are organised by meta-
parameter and then by the measured properties.

B.1. Population Size
This section contains the results for the varying population sizes.

B.1.1. Optimality
In Figure B.1 the performance ratio of the algorithms with respect to the lower bound is shown.

B.1.2. Convergence Speed
Figure B.2 shows the number of iterations needed before the algorithms are converged.

B.1.3. First Iteration With a Valid Solution
Figure B.3 shows the number of iterations before the first valid solution has entered the population.

B.1.4. Consistency
In Figure B.4 the distance from the other final solutions for every final solution is shown.

B.2. Variation
As described in Section 6.3, varying the exploration meta-parameters of an algorithm will likely in-
fluence how optimal the solutions found are. In this section the influence of varying this parameter is
explored. Table 7.2 shows the number of valid solutions found by the algorithms with the given variation
parameters.

B.2.1. Optimality
The optimality of the solutions reached by the algorithms are shown in Figures B.5 and B.6.

B.2.2. Convergence Speed
The number of iterations required before termination are shown in Figures B.7 and B.8

B.2.3. Generations Until Valid
The number of iterations until the algorithm finds its first valid solution, is shown in Figures B.9 and
B.10.

93

B.2. Variation 94

(0/5) ga (6/6) sa
de (5/5) cm

aes

 1
0

1.
50

1.
52

1.
54

1.
56

1.
58

1.
60

1.
62

1.
64

(2/5) ga (6/6) sa
de (4/5) cm

aes

 1
5

(2/5) ga (5/6) sa
de (4/5) cm

aes
 2

0
(2/5) ga (5/6) sa

de (5/5) cm
aes

 2
5

(1/5) ga (6/6) sa
de (3/5) cm

aes

 3
0

(3/5) ga (3/6) sa
de (4/5) cm

aes

 3
5

(5/5) ga (6/6) sa
de (4/5) cm

aes

 4
0

Po
pu

la
tio

n
siz

e

Performance ratio

(a
)S

ce
na
rio

S.
1

(2/5) ga (5/5) sa
de (5/5) cm

aes

 1
0

1.
04

1.
06

1.
08

1.
10

1.
12

(1/5) ga (4/5) sa
de (5/5) cm

aes

 1
5

(1/5) ga (4/5) sa
de (5/5) cm

aes

 2
0

(1/5) ga (4/5) sa
de (4/5) cm

aes

 2
5

(4/5) ga (4/5) sa
de (5/5) cm

aes

 3
0

(5/5) ga (4/5) sa
de (5/5) cm

aes

 3
5

(4/5) ga (3/5) sa
de (5/5) cm

aes

 4
0

Po
pu

la
tio

n
siz

e

Performance ratio

(b
)S

ce
na
rio

S.
2

(1/5) ga (5/5) sa
de (5/5) cm

aes

 1
0

1.
95

2.
00

2.
05

2.
10

2.
15

2.
20

(3/5) ga (4/5) sa
de (4/5) cm

aes

 1
5

(2/5) ga (5/5) sa
de (5/5) cm

aes

 2
0

(3/5) ga (5/5) sa
de (5/5) cm

aes

 2
5

(4/5) ga (4/5) sa
de (3/5) cm

aes

 3
0

(5/5) ga (2/5) sa
de (5/5) cm

aes

 3
5

(5/5) ga (4/5) sa
de (3/5) cm

aes
 4

0
Po

pu
la

tio
n

siz
e

Performance ratio

(c
)S

ce
na
rio

S.
3

(0/5) ga (2/5) sa
de (0/5) cm

aes

 1
0

1.
42

1.
44

1.
46

1.
48

1.
50

1.
52

(0/5) ga (3/5) sa
de (1/5) cm

aes

 1
5

(0/5) ga (4/5) sa
de (2/5) cm

aes

 2
0

(1/5) ga (3/5) sa
de (4/5) cm

aes

 2
5

(1/5) ga (5/5) sa
de (4/5) cm

aes

 3
0

(2/5) ga (1/5) sa
de (3/5) cm

aes

 3
5

(1/5) ga (3/5) sa
de (3/5) cm

aes

 4
0

Po
pu

la
tio

n
siz

e
Performance ratio

(d
)S

ce
na
rio

S.
4

Fi
gu
re

B.
1:

Pe
rfo
rm
an
ce

ra
tio
s
w
ith

in
cr
ea
si
ng

po
pu
la
tio
n
si
ze
s.

Th
e
nu
m
be
ro

fv
al
id
so
lu
tio
ns

is
sh
ow

n
be
tw
ee
n
th
e
br
ac
es
.T

he
da
sh
ed

lin
es

ar
e
th
e
pe
rfo
rm
an
ce

ra
tio
s
of
th
e
he
at
in
g
cu
rv
e

ba
se
d
op
er
at
io
ns
.

B.2. Variation 95

 ga
 sade cm

aes

 1
0

0

20
0

40
0

60
0

80
0

10
00

 ga
 sade cm

aes

 1
5

 ga
 sade cm

aes

 2
0

 ga
 sade cm

aes

 2
5

 ga
 sade cm

aes

 3
0

 ga
 sade cm

aes

 3
5

 ga
 sade cm

aes

 4
0

Po
pu

la
tio

n
siz

e

Iterations before convergence

(a
)S

ce
na
rio

S.
1

 ga
 sade cm

aes

 1
0

0

20
0

40
0

60
0

80
0

10
00

 ga
 sade cm

aes

 1
5

 ga
 sade cm

aes

 2
0

 ga
 sade cm

aes

 2
5

 ga
 sade cm

aes

 3
0

 ga
 sade cm

aes

 3
5

 ga
 sade cm

aes

 4
0

Po
pu

la
tio

n
siz

e

Iterations before convergence

(b
)S

ce
na
rio

S.
2

 ga
 sade cm

aes

 1
0

0

20
0

40
0

60
0

80
0

10
00

 ga
 sade cm

aes

 1
5

 ga
 sade cm

aes

 2
0

 ga
 sade cm

aes

 2
5

 ga
 sade cm

aes

 3
0

 ga
 sade cm

aes

 3
5

 ga
 sade cm

aes
 4

0
Po

pu
la

tio
n

siz
e

Iterations before convergence

(c
)S

ce
na
rio

S.
3

 ga
 sade cm

aes

 1
0

0

20
0

40
0

60
0

80
0

10
00

 ga
 sade cm

aes

 1
5

 ga
 sade cm

aes

 2
0

 ga
 sade cm

aes

 2
5

 ga
 sade cm

aes

 3
0

 ga
 sade cm

aes

 3
5

 ga
 sade cm

aes

 4
0

Po
pu

la
tio

n
siz

e
Iterations before convergence

(d
)S

ce
na
rio

S.
4

Fi
gu
re
B.
2:

N
um

be
ro
fi
te
ra
tio
ns

be
fo
re
co
nv
er
ge
nc
e

B.2. Variation 96

 ga
 sade cm

aes

 1
0

10
0

20
0

30
0

40
0

 ga
 sade cm

aes

 1
5

 ga
 sade cm

aes

 2
0

 ga
 sade cm

aes

 2
5

 ga
 sade cm

aes

 3
0

 ga
 sade cm

aes

 3
5

 ga
 sade cm

aes

 4
0

Po
pu

la
tio

n
siz

e

First iteration with valid solution

(a
)S

ce
na
rio

S.
1

 ga
 sade cm

aes

 1
0

10
0

20
0

30
0

40
0

 ga
 sade cm

aes

 1
5

 ga
 sade cm

aes

 2
0

 ga
 sade cm

aes

 2
5

 ga
 sade cm

aes

 3
0

 ga
 sade cm

aes

 3
5

 ga
 sade cm

aes

 4
0

Po
pu

la
tio

n
siz

e

First iteration with valid solution

(b
)S

ce
na
rio

S.
2

 ga
 sade cm

aes

 1
0

10
0

20
0

30
0

40
0

50
0

60
0

 ga
 sade cm

aes

 1
5

 ga
 sade cm

aes

 2
0

 ga
 sade cm

aes

 2
5

 ga
 sade cm

aes

 3
0

 ga
 sade cm

aes

 3
5

 ga
 sade cm

aes
 4

0
Po

pu
la

tio
n

siz
e

First iteration with valid solution

(c
)S

ce
na
rio

S.
3

 ga
 sade cm

aes

 1
0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

 ga
 sade cm

aes

 1
5

 ga
 sade cm

aes

 2
0

 ga
 sade cm

aes

 2
5

 ga
 sade cm

aes

 3
0

 ga
 sade cm

aes

 3
5

 ga
 sade cm

aes

 4
0

Po
pu

la
tio

n
siz

e
First iteration with valid solution

(d
)S

ce
na
rio

S.
4

Fi
gu
re
B.
3:

N
um

be
ro
fi
te
ra
tio
ns

be
fo
re
a
va
lid

so
lu
tio
n
is
fo
un
d.

Th
e
nu
m
be
ro
fe
xp
er
im
en
ts
th
at
fo
un
d
a
va
lid

so
lu
tio
n
is
sh
ow

n
in
th
e
br
ac
es

B.2. Variation 97

(0/5) ga (6/6) sa
de (5/5) cm

aes

 1
0

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

(2/5) ga (6/6) sa
de (4/5) cm

aes

 1
5

(2/5) ga (5/6) sa
de (4/5) cm

aes
 2

0
(2/5) ga (5/6) sa

de (5/5) cm
aes

 2
5

(1/5) ga (6/6) sa
de (3/5) cm

aes

 3
0

(3/5) ga (3/6) sa
de (4/5) cm

aes

 3
5

(5/5) ga (6/6) sa
de (4/5) cm

aes

 4
0

Po
pu

la
tio

n
siz

e

Distance from other final solutions

(a
)S

ce
na
rio

S.
1

(2/5) ga (5/5) sa
de (5/5) cm

aes

 1
0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

(1/5) ga (4/5) sa
de (5/5) cm

aes

 1
5

(1/5) ga (4/5) sa
de (5/5) cm

aes

 2
0

(1/5) ga (4/5) sa
de (4/5) cm

aes

 2
5

(4/5) ga (4/5) sa
de (5/5) cm

aes

 3
0

(5/5) ga (4/5) sa
de (5/5) cm

aes

 3
5

(4/5) ga (3/5) sa
de (5/5) cm

aes

 4
0

Po
pu

la
tio

n
siz

e

Distance from other final solutions

(b
)S

ce
na
rio

S.
2

(1/5) ga (5/5) sa
de (5/5) cm

aes

 1
0

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

(3/5) ga (4/5) sa
de (4/5) cm

aes

 1
5

(2/5) ga (5/5) sa
de (5/5) cm

aes

 2
0

(3/5) ga (5/5) sa
de (5/5) cm

aes

 2
5

(4/5) ga (4/5) sa
de (3/5) cm

aes

 3
0

(5/5) ga (2/5) sa
de (5/5) cm

aes

 3
5

(5/5) ga (4/5) sa
de (3/5) cm

aes
 4

0
Po

pu
la

tio
n

siz
e

Distance from other final solutions

(c
)S

ce
na
rio

S.
3

(0/5) ga (2/5) sa
de (0/5) cm

aes

 1
0

0.
22

0.
24

0.
26

0.
28

0.
30

0.
32

0.
34

0.
36

(0/5) ga (3/5) sa
de (1/5) cm

aes

 1
5

(0/5) ga (4/5) sa
de (2/5) cm

aes

 2
0

(1/5) ga (3/5) sa
de (4/5) cm

aes

 2
5

(1/5) ga (5/5) sa
de (4/5) cm

aes

 3
0

(2/5) ga (1/5) sa
de (3/5) cm

aes

 3
5

(1/5) ga (3/5) sa
de (3/5) cm

aes

 4
0

Po
pu

la
tio

n
siz

e
Distance from other final solutions

(d
)S

ce
na
rio

S.
4

Fi
gu
re
B.
4:

Fi
na
ls
ol
ut
io
n
di
st
an
ce
s
fro
m
ot
he
rf
in
al
so
lu
tio
ns

in
th
e
sa
m
e
ex
pe
rim

en
tw

ith
va
ry
in
g
po
pu
la
tio
n
si
ze

B.2. Variation 98

(0/5) 0.05

1.46

1.48

1.50

1.52

1.54

1.56

1.58

1.60

(0/5) 0.1 (3/5) 0.15 (2/5) 0.2 (3/5) 0.25 (2/5) 0.3 (4/5) 0.35 (3/5) 0.4
Mutation probability

Pe
rfo

rm
an

ce
 ra

tio

(a) Scenario S.1

(0/5) 0.05
1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

(0/5) 0.1 (3/5) 0.15 (1/5) 0.2 (2/5) 0.25 (4/5) 0.3 (4/5) 0.35 (4/5) 0.4
Mutation probability

Pe
rfo

rm
an

ce
 ra

tio

(b) Scenario S.2

(0/5) 0.05
1.90

1.95

2.00

2.05

2.10

2.15

2.20

(0/5) 0.1 (2/5) 0.15 (2/5) 0.2 (3/5) 0.25 (3/5) 0.3 (3/5) 0.35 (3/5) 0.4
Mutation probability

Pe
rfo

rm
an

ce
 ra

tio

(c) Scenario S.3

(0/5) 0.05
1.40

1.42

1.44

1.46

1.48

1.50

1.52

(0/5) 0.1 (0/5) 0.15 (0/5) 0.2 (0/5) 0.25 (1/5) 0.3 (0/5) 0.35 (1/5) 0.4
Mutation probability

Pe
rfo

rm
an

ce
 ra

tio

(d) Scenario S.4

Figure B.5: Performance ratios genetic algorithm with varying mutation probability

(4/5) 5

1.46

1.48

1.50

1.52

1.54

1.56

1.58

1.60

(5/5) 10 (5/5) 15 (3/5) 20
Initial step size

Pe
rfo

rm
an

ce
 ra

tio

(a) Scenario S.1

(5/5) 5
1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

(5/5) 10 (5/5) 15 (3/5) 20
Initial step size

Pe
rfo

rm
an

ce
 ra

tio

(b) Scenario S.2

(5/5) 5
1.90

1.95

2.00

2.05

2.10

2.15

2.20

(5/5) 10 (5/5) 15 (4/5) 20
Initial step size

Pe
rfo

rm
an

ce
 ra

tio

(c) Scenario S.3

(1/5) 5
1.40

1.42

1.44

1.46

1.48

1.50

1.52

(3/5) 10 (0/5) 15 (0/5) 20
Initial step size

Pe
rfo

rm
an

ce
 ra

tio

(d) Scenario S.4

Figure B.6: Performance ratios CMA-ES with varying variation

B.2. Variation 99

(0/5) 0.05

100

200

300

400

500

600

700

(0/5) 0.1 (3/5) 0.15 (2/5) 0.2 (3/5) 0.25 (2/5) 0.3 (4/5) 0.35 (3/5) 0.4
Initial step size

Ite
ra

tio
ns

 b
ef

or
e

co
nv

er
ge

nc
e

(a) Scenario S.1

(0/5) 0.05

100

200

300

400

500

600

700

(0/5) 0.1 (3/5) 0.15 (1/5) 0.2 (2/5) 0.25 (4/5) 0.3 (4/5) 0.35 (4/5) 0.4
Initial step size

Ite
ra

tio
ns

 b
ef

or
e

co
nv

er
ge

nc
e

(b) Scenario S.2

(0/5) 0.05

100

200

300

400

500

600

700

(0/5) 0.1 (2/5) 0.15 (2/5) 0.2 (3/5) 0.25 (3/5) 0.3 (3/5) 0.35 (3/5) 0.4
Initial step size

Ite
ra

tio
ns

 b
ef

or
e

co
nv

er
ge

nc
e

(c) Scenario S.3

(0/5) 0.05

100

200

300

400

500

600

700

800

(0/5) 0.1 (0/5) 0.15 (0/5) 0.2 (0/5) 0.25 (1/5) 0.3 (0/5) 0.35 (1/5) 0.4
Initial step size

Ite
ra

tio
ns

 b
ef

or
e

co
nv

er
ge

nc
e

(d) Scenario S.4

Figure B.7: Number of iterations before convergence genetic algorithm with varying mutation probabilities

(4/5) 5

100

200

300

400

500

(5/5) 10 (5/5) 15 (3/5) 20
Initial step size

Ite
ra

tio
ns

 b
ef

or
e

co
nv

er
ge

nc
e

(a) Scenario S.1

(5/5) 5

0

100

200

300

400

500

(5/5) 10 (5/5) 15 (3/5) 20
Initial step size

Ite
ra

tio
ns

 b
ef

or
e

co
nv

er
ge

nc
e

(b) Scenario S.2

(5/5) 5

100

200

300

400

500

(5/5) 10 (5/5) 15 (4/5) 20
Initial step size

Ite
ra

tio
ns

 b
ef

or
e

co
nv

er
ge

nc
e

(c) Scenario S.3

(1/5) 5

50

100

150

200

250

300

(3/5) 10 (0/5) 15 (0/5) 20
Initial step size

Ite
ra

tio
ns

 b
ef

or
e

co
nv

er
ge

nc
e

(d) Scenario S.4

Figure B.8: Number of iterations before convergence CMA-ES with varying initial step sizes

B.2. Variation 100

(0/5) 0.05
0

100

200

300

400

(0/5) 0.1 (3/5) 0.15 (2/5) 0.2 (3/5) 0.25 (2/5) 0.3 (4/5) 0.35 (3/5) 0.4
Initial step size

Fi
rs

t i
te

ra
tio

n
wi

th
 v

al
id

 sa
m

pl
e

(a) Scenario S.1

(0/5) 0.05
0

100

200

300

400

(0/5) 0.1 (3/5) 0.15 (1/5) 0.2 (2/5) 0.25 (4/5) 0.3 (4/5) 0.35 (4/5) 0.4
Initial step size

Fi
rs

t i
te

ra
tio

n
wi

th
 v

al
id

 sa
m

pl
e

(b) Scenario S.2

(0/5) 0.05
0

100

200

300

400

(0/5) 0.1 (2/5) 0.15 (2/5) 0.2 (3/5) 0.25 (3/5) 0.3 (3/5) 0.35 (3/5) 0.4
Initial step size

Fi
rs

t i
te

ra
tio

n
wi

th
 v

al
id

 sa
m

pl
e

(c) Scenario S.3

(0/5) 0.05
0

100

200

300

400

(0/5) 0.1 (0/5) 0.15 (0/5) 0.2 (0/5) 0.25 (1/5) 0.3 (0/5) 0.35 (1/5) 0.4
Initial step size

Fi
rs

t i
te

ra
tio

n
wi

th
 v

al
id

 sa
m

pl
e

(d) Scenario S.4

Figure B.9: First generation with a valid solution GA with varying mutation probability

(4/5) 5
0

10

20

30

40

50

60

70

80

(5/5) 10 (5/5) 15 (3/5) 20
Initial step size

Fi
rs

t i
te

ra
tio

n
wi

th
 v

al
id

 sa
m

pl
e

(a) Scenario S.1

(5/5) 5
0

20

40

60

80

(5/5) 10 (5/5) 15 (3/5) 20
Initial step size

Fi
rs

t i
te

ra
tio

n
wi

th
 v

al
id

 sa
m

pl
e

(b) Scenario S.2

(5/5) 5
0

10

20

30

40

50

60

70

(5/5) 10 (5/5) 15 (4/5) 20
Initial step size

Fi
rs

t i
te

ra
tio

n
wi

th
 v

al
id

 sa
m

pl
e

(c) Scenario S.3

(1/5) 5
0

20

40

60

80

100

120

140

160

(3/5) 10 (0/5) 15 (0/5) 20
Initial step size

Fi
rs

t i
te

ra
tio

n
wi

th
 v

al
id

 sa
m

pl
e

(d) Scenario S.4

Figure B.10: First valid solution sample CMA-ES with varying initial step size

B.3. Combination 101

(0/5) 0.05

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

(0/5) 0.1 (3/5) 0.15 (2/5) 0.2 (3/5) 0.25 (2/5) 0.3 (4/5) 0.35 (3/5) 0.4
Mutation probability

Di
st

an
ce

 fr
om

 o
th

er
 fi

na
l s

ol
ut

io
ns

(a) Scenario S.1

(0/5) 0.05

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

(0/5) 0.1 (3/5) 0.15 (1/5) 0.2 (2/5) 0.25 (4/5) 0.3 (4/5) 0.35 (4/5) 0.4
Mutation probability

Di
st

an
ce

 fr
om

 o
th

er
 fi

na
l s

ol
ut

io
ns

(b) Scenario S.2

(0/5) 0.05

0.14

0.16

0.18

0.20

0.22

(0/5) 0.1 (2/5) 0.15 (2/5) 0.2 (3/5) 0.25 (3/5) 0.3 (3/5) 0.35 (3/5) 0.4
Mutation probability

Di
st

an
ce

 fr
om

 o
th

er
 fi

na
l s

ol
ut

io
ns

(c) Scenario S.3

(0/5) 0.05

0.27

0.28

0.29

0.30

0.31

0.32

0.33

0.34

(0/5) 0.1 (0/5) 0.15 (0/5) 0.2 (0/5) 0.25 (1/5) 0.3 (0/5) 0.35 (1/5) 0.4
Mutation probability

Di
st

an
ce

 fr
om

 o
th

er
 fi

na
l s

ol
ut

io
ns

(d) Scenario S.4

Figure B.11: Final solution distances from other final solutions in the same experiment for the genetic algorithm with varying
mutation probability

B.2.4. Consistency
In Figures B.11 and B.12 the distance from the other final solutions for every valid final solution is shown
for the GA and CMA-ES.

B.3. Combination
The only algorithm with configurable combination parameters is the GA. Table 7.3 shows the number
of valid solutions found for every scenario given a crossover operation.

B.3.1. Optimality
In Figure B.13 the effects of the two different crossovers is shown on optimality is shown.

B.3.2. Convergence Speed
In Figure B.14 the number of iterations before convergence is shown for the two different crossover
operations.

B.3.3. Generations Until Valid
The first generation with a valid solution is shown in Figure B.15 for every crossover operation.

B.3.4. Consistency
In Figure B.16 the consistency of the GA with both crossover operations is shown.

B.4. Initial Solution
In these experiments, instead of the algorithms starting with random initial solution, the algorithms
use the existing heating curve solution as a starting point. This is a more realistic scenario when
the optimisation is used in practice, as existing solutions will be used that have already optimised the
operations with the information available at the time of the previous optimisation.

B.4. Initial Solution 102

(4/5) 5

0.125

0.150

0.175

0.200

0.225

0.250

0.275

0.300

(5/5) 10 (5/5) 15 (3/5) 20
Initial step size

Di
st

an
ce

 fr
om

 o
th

er
 fi

na
l s

ol
ut

io
ns

(a) Scenario S.1

(5/5) 5

0.15

0.20

0.25

0.30

0.35

0.40

(5/5) 10 (5/5) 15 (3/5) 20
Initial step size

Di
st

an
ce

 fr
om

 o
th

er
 fi

na
l s

ol
ut

io
ns

(b) Scenario S.2

(5/5) 5

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

(5/5) 10 (5/5) 15 (4/5) 20
Initial step size

Di
st

an
ce

 fr
om

 o
th

er
 fi

na
l s

ol
ut

io
ns

(c) Scenario S.3

(1/5) 5

0.27

0.28

0.29

0.30

0.31

0.32

0.33

(3/5) 10 (0/5) 15 (0/5) 20
Initial step size

Di
st

an
ce

 fr
om

 o
th

er
 fi

na
l s

ol
ut

io
ns

(d) Scenario S.4

Figure B.12: Final solution distances from other final solutions in the same experiment for CMA-ES with varying initial step size

(2/5) time (3/5) fade

1.51

1.52

1.53

1.54

1.55

1.56

1.57

Crossover

Pe
rfo

rm
an

ce
 ra

tio

(a) Scenario S.1

(1/5) time (4/5) fade
1.054

1.056

1.058

1.060

1.062

1.064

1.066

1.068

Crossover

Pe
rfo

rm
an

ce
 ra

tio

(b) Scenario S.2

(2/5) time (5/5) fade

1.98

1.99

2.00

2.01

2.02

2.03

Crossover

Pe
rfo

rm
an

ce
 ra

tio

(c) Scenario S.3

(0/5) time (0/5) fade

1

0

1

2

Crossover

Pe
rfo

rm
an

ce
 ra

tio

(d) Scenario S.4

Figure B.13: Performance ratio with varying crossover

(2/5) time (3/5) fade
0

100

200

300

400

500

600

700

800

Crossover

Ite
ra

tio
ns

 b
ef

or
e

co
nv

er
ge

nc
e

(a) Scenario S.1

(1/5) time (4/5) fade
0

100

200

300

400

500

600

700

800

Crossover

Ite
ra

tio
ns

 b
ef

or
e

co
nv

er
ge

nc
e

(b) Scenario S.2

(2/5) time (5/5) fade
0

100

200

300

400

500

600

700

800

Crossover

Ite
ra

tio
ns

 b
ef

or
e

co
nv

er
ge

nc
e

(c) Scenario S.3

(0/5) time (0/5) fade
0

100

200

300

400

500

600

700

800

Crossover

Ite
ra

tio
ns

 b
ef

or
e

co
nv

er
ge

nc
e

(d) Scenario S.4

Figure B.14: Number of iterations before convergence with varying crossover

B.4. Initial Solution 103

(2/5) time (3/5) fade
0

50

100

150

200

250

300

350

400

Crossover

Fi
rs

t g
en

er
at

io
n

wi
th

 v
al

id
 so

lu
tio

n

(a) Scenario S.1

(1/5) time (4/5) fade
0

50

100

150

200

250

300

350

400

Crossover

Fi
rs

t g
en

er
at

io
n

wi
th

 v
al

id
 so

lu
tio

n

(b) Scenario S.2

(2/5) time (5/5) fade
0

50

100

150

200

250

300

350

400

Crossover

Fi
rs

t g
en

er
at

io
n

wi
th

 v
al

id
 so

lu
tio

n
(c) Scenario S.3

(0/5) time (0/5) fade
0

50

100

150

200

250

300

350

400

Crossover

Fi
rs

t g
en

er
at

io
n

wi
th

 v
al

id
 so

lu
tio

n

(d) Scenario S.4

Figure B.15: First generation with a valid solution with varying crossover. See Table 7.3 for the number of valid solution found
for every crossover

(2/5) time (3/5) fade
0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

0.300

Mutation probability

Di
st

an
ce

 fr
om

 o
th

er
 fi

na
l s

ol
ut

io
ns

(a) Scenario S.1

(1/5) time (4/5) fade
0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

0.300

Mutation probability

Di
st

an
ce

 fr
om

 o
th

er
 fi

na
l s

ol
ut

io
ns

(b) Scenario S.2

(2/5) time (5/5) fade
0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

0.300

Mutation probability

Di
st

an
ce

 fr
om

 o
th

er
 fi

na
l s

ol
ut

io
ns

(c) Scenario S.3

(0/5) time (0/5) fade
0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

0.300

Mutation probability

Di
st

an
ce

 fr
om

 o
th

er
 fi

na
l s

ol
ut

io
ns

(d) Scenario S.4

Figure B.16: Final solution distances from other final solutions in the same experiment varying crossover

B.4. Initial Solution 104

(2
/5)

 g
a

(5
/6)

 s
ad

e
(4

/5)
 c

mae
s

 random

1.49

1.50

1.51

1.52

1.53

1.54

1.55

1.56

1.57

(5
/5)

 g
a

(5
/5)

 s
ad

e
(5

/5)
 c

mae
s

 hc

Initial solution

Pe
rfo

rm
an

ce
 ra

tio

(a) Scenario S.1
(1

/5)
 g

a
(4

/5)
 s

ad
e

(5
/5)

 c
mae

s

 random

1.04

1.06

1.08

1.10

1.12

(5
/5)

 g
a

(5
/5)

 s
ad

e
(5

/5)
 c

mae
s

 hc

Initial solution

Pe
rfo

rm
an

ce
 ra

tio

(b) Scenario S.2

(2
/5)

 g
a

(5
/5)

 s
ad

e
(5

/5)
 c

mae
s

 random

1.94

1.96

1.98

2.00

2.02

(5
/5)

 g
a

(5
/5)

 s
ad

e
(5

/5)
 c

mae
s

 hc

Initial solution

Pe
rfo

rm
an

ce
 ra

tio

(c) Scenario S.3

(0
/5)

 g
a

(4
/5)

 s
ad

e
(2

/5)
 c

mae
s

 random

1.43

1.44

1.45

1.46

1.47

1.48

1.49

(5
/5)

 g
a

(5
/5)

 s
ad

e
(6

/6)
 c

mae
s

 hc

Initial solution

Pe
rfo

rm
an

ce
 ra

tio

(d) Scenario S.4

Figure B.17: Performance ratios with varying initial solutions. The blue dashed line is the performance ratio of the heating curve
solution

 ga
 sa

de
 cm

ae
s

 random

0

200

400

600

800

1000

 ga
 sa

de
 cm

ae
s

 hc
Initial solution

Ite
ra

tio
ns

 b
ef

or
e

co
nv

er
ge

nc
e

(a) Scenario S.1

 ga
 sa

de
 cm

ae
s

 random

200

400

600

800

1000

 ga
 sa

de
 cm

ae
s

 hc
Initial solution

Ite
ra

tio
ns

 b
ef

or
e

co
nv

er
ge

nc
e

(b) Scenario S.3

 ga
 sa

de
 cm

ae
s

 random

0

200

400

600

800

1000

 ga
 sa

de
 cm

ae
s

 hc
Initial solution

Ite
ra

tio
ns

 b
ef

or
e

co
nv

er
ge

nc
e

(c) Scenario S.2

 ga
 sa

de
 cm

ae
s

 random

200

400

600

800

1000

 ga
 sa

de
 cm

ae
s

 hc
Initial solution

Ite
ra

tio
ns

 b
ef

or
e

co
nv

er
ge

nc
e

(d) Scenario S.4

Figure B.18: Iterations before convergence with varying initial solutions

B.4.1. Optimality
In Figure B.17 the performance ratios for the algorithms with varying initial solutions is shown. The blue
dashed line is the performance ratio of the heating curve solution.

B.4.2. Convergence Speed
In Figure B.18 the number of iterations before convergence is shown.

B.4.3. Consistency
In Figure B.19 the consistency of the algorithms is shown.

B.4. Initial Solution 105

(2
/5)

 g
a

(5
/6)

 s
ad

e
(4

/5)
 c

mae
s

 random

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

(5
/5)

 g
a

(5
/5)

 s
ad

e
(5

/5)
 c

mae
s

 hc
Initial solution

Di
st

an
ce

 fr
om

 o
th

er
 fi

na
l s

ol
ut

io
ns

(a) Scenario S.1

(1
/5)

 g
a

(4
/5)

 s
ad

e
(5

/5)
 c

mae
s

 random

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

(5
/5)

 g
a

(5
/5)

 s
ad

e
(5

/5)
 c

mae
s

 hc
Initial solution

Di
st

an
ce

 fr
om

 o
th

er
 fi

na
l s

ol
ut

io
ns

(b) Scenario S.2

(2
/5)

 g
a

(5
/5)

 s
ad

e
(5

/5)
 c

mae
s

 random

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

(5
/5)

 g
a

(5
/5)

 s
ad

e
(5

/5)
 c

mae
s

 hc
Initial solution

Di
st

an
ce

 fr
om

 o
th

er
 fi

na
l s

ol
ut

io
ns

(c) Scenario S.3

(0
/5)

 g
a

(4
/5)

 s
ad

e
(2

/5)
 c

mae
s

 random

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

(5
/5)

 g
a

(5
/5)

 s
ad

e
(6

/6)
 c

mae
s

 hc
Initial solution

Di
st

an
ce

 fr
om

 o
th

er
 fi

na
l s

ol
ut

io
ns

(d) Scenario S.4

Figure B.19: Final solution distances from other final solutions in the same experiment varying initial solution

Bibliography

[1] C. Bradford Barber, David P. Dobkin, and Hannu Huhdanpaa. The quickhull algorithm for convex
hulls. ACM Transactions on Mathematical Software, 22(4):469–483, 1996. ISSN 00983500. doi:
10.1145/235815.235821.

[2] R. Bavière and M. Vallée. Optimal Temperature Control of Large Scale District Heating Networks.
In Energy Procedia, 2018. doi: 10.1016/j.egypro.2018.08.170.

[3] Richard Bellman. A markovian decision process. Journal of mathematics and mechanics, pages
679–684, 1957.

[4] Atli Benonysson, Benny Bøhm, and Hans F. Ravn. Operational Optimization in a District Heating
System. Energy conversion and management, 36(5):297–314, 1995.

[5] Johannes Dorfner and Thomas Hamacher. Large-scale district heating network optimization. IEEE
Transactions on Smart Grid, 5(4):1884–1891, 2014. ISSN 19493053. doi: 10.1109/TSG.2013.
2295856.

[6] Erik Dotzauer. Simple model for prediction of loads in district - heating systems. Applied Energy,
73(3-4):277–284, 2002. ISSN 03062619. doi: 10.1016/S0306-2619(02)00078-8.

[7] Tingting Fang and Risto Lahdelma. Genetic optimization of multi-plant heat production in district
heating networks. Applied Energy, 159:610–619, dec 2015.

[8] Samira Fazlollahi and François Maréchal. Multi-objective, multi-period optimization of biomass
conversion technologies using evolutionary algorithms and mixed integer linear program-
ming (MILP). Applied Thermal Engineering, 50(2):1504–1513, 2013. ISSN 13594311.
doi: 10.1016/j.applthermaleng.2011.11.035. URL http://dx.doi.org/10.1016/j.
applthermaleng.2011.11.035.

[9] Loïc Giraud, Roland Bavière, Cédric Paulus, Mathieu Vallée, and Jean-François Robin. Dy-
namic Modelling , Experimental Validation and Simulation of a Virtual District Heating Network.
ECOS2015, 28th International Conference on Efficiency, Cost, Optimization, Simulation and En-
vironmental Impact of Energy Systems, (June), 2015.

[10] Loïc Giraud, Massinissa Merabet, Roland Baviere, and Mathieu Vallée. Optimal Control of District
Heating Systems using Dynamic Simulation and Mixed Integer Linear Programming. In 12th In-
ternational Modelica Conference, pages 141–150, jul 2017. doi: 10.3384/ecp17132141. URL
http://www.ep.liu.se/ecp/article.asp?issue=132{%}26article=14.

[11] Pawel Gora and Marek Bardoński. Training neural networks to approximate traffic simulation
outcomes. 5th IEEE International Conference on Models and Technologies for Intelligent Trans-
portation Systems, MT-ITS 2017 - Proceedings, pages 889–894, 2017. doi: 10.1109/MTITS.
2017.8005639.

[12] S. Grosswindhager, M. Kozek, Andreas Voigt, and Lukas Haffner. Fuzzy predictive control of
district heating network. International Journal of Modelling, Identification and Control, 19(2):161–
170, 2013. ISSN 1746-6172. doi: 10.1504/ijmic.2013.054320.

[13] Guus Haas de, Frans Haas de, and Oel Clarine van. Cijfers voortgang uitfaser-
ing open- verbrandingstoestellen. Technical Report November, 2016. URL https:
//www.rijksoverheid.nl/binaries/rijksoverheid/documenten/rapporten/
2016/11/22/cijfers-voortgang-uitfasering-open-verbrandingstoestellen/
cijfers-voortgang-uitfasering-open-verbrandingstoestellen.pdf.

106

http://dx.doi.org/10.1016/j.applthermaleng.2011.11.035
http://dx.doi.org/10.1016/j.applthermaleng.2011.11.035
http://www.ep.liu.se/ecp/article.asp?issue=132{%}26article=14
https://www.rijksoverheid.nl/binaries/rijksoverheid/documenten/rapporten/2016/11/22/cijfers-voortgang-uitfasering-open-verbrandingstoestellen/cijfers-voortgang-uitfasering-open-verbrandingstoestellen.pdf
https://www.rijksoverheid.nl/binaries/rijksoverheid/documenten/rapporten/2016/11/22/cijfers-voortgang-uitfasering-open-verbrandingstoestellen/cijfers-voortgang-uitfasering-open-verbrandingstoestellen.pdf
https://www.rijksoverheid.nl/binaries/rijksoverheid/documenten/rapporten/2016/11/22/cijfers-voortgang-uitfasering-open-verbrandingstoestellen/cijfers-voortgang-uitfasering-open-verbrandingstoestellen.pdf
https://www.rijksoverheid.nl/binaries/rijksoverheid/documenten/rapporten/2016/11/22/cijfers-voortgang-uitfasering-open-verbrandingstoestellen/cijfers-voortgang-uitfasering-open-verbrandingstoestellen.pdf

Bibliography 107

[14] Nikolaus Hansen. The CMA Evolution Strategy: A Tutorial. 2016. URL http://arxiv.org/
abs/1604.00772.

[15] Nikolaus Hansen, Youhei Akimoto, and Petr Baudis. CMA-ES/pycma on Github. Zenodo,
DOI:10.5281/zenodo.2559634, February 2019. URL https://doi.org/10.5281/zenodo.
2559634.

[16] Y. Hori, A. Yamada, M. Shimoda, M. Bannai, and K. Ito. Development of optimal planning
method using a genetic algorithm for district heating and cooling plants with heat storage
tanks. Kagaku Kogaku Ronbunshu, 22(4):700–701, 1996. ISSN 0386216X. URL https:
//www.scopus.com/inward/record.uri?eid=2-s2.0-24044478859{&}partnerID=
40{&}md5=4c8bd01e8c6a9eb6e3e0fa2103d6abdc.

[17] Enso Ikonen, Istvan Selek, Jeno Kovacs, Markus Neuvonen, Zador Szabo, Jozsef Bene, and
Jani Peurasaari. Short term optimization of district heating network supply temperatures. ENER-
GYCON 2014 - IEEE International Energy Conference, pages 996–1003, 2014. doi: 10.1109/
ENERGYCON.2014.6850547.

[18] Enso Ikonen, Istvan Selek, Jeno Kovacs, and Markus Neuvonen. Examination of operational
optimization at Kemi district heating network. Thermal Science, 20(2):667–678, 2016. ISSN
03549836. doi: 10.2298/TSCI131119039I.

[19] Sabine Jansen. ’Cool heat grids’ for sustainable urban energy systems, 2019.
URL https://www.tudelft.nl/evenementen/2019/tu-delft/01-january/
urban-energy-lecture-by-sabine-jansen-tu-delft/.

[20] Jesse Klaver, Lodewijk Asscher, Sandra Beckerman, Rob Jetten, Carla Dik-Faber, Dilan Yesilgöz-
Zegerius, Agnes Mulder, and Simon Geleijnse. Klimaatwet, 2018. URL https://www.
eerstekamer.nl/wetsvoorstel/34534_initiatiefvoorstel_klaver. [Accessed Au-
gust 11, 2019].

[21] Leo Laakkonen. Predictive Supply Temperature Optimization of District Heating Networks. PhD
thesis, Tampere University of Technology, 2016.

[22] C Lataniotis, S Marelli, and B Sudret. Extending classical surrogate modelling to ultrahigh di-
mensional problems through supervised dimensionality reduction: a data-driven approach. arXiv
e-prints, page arXiv:1812.06309, dec 2018.

[23] Xiang-li Li, Lin Duanmu, and Hai-wen Shu. Optimal design of district heating and cooling pipe
network of seawater-source heat pump. Energy and Buildings, 42(1):100–104, 2010. ISSN
03787788. doi: 10.1016/j.enbuild.2009.07.016.

[24] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing Atari with Deep Reinforcement Learning. pages 1–9, 2013.
URL http://arxiv.org/abs/1312.5602.

[25] Henrik Aalborg Nielsen and Henrik Madsen. Predicting the heat consumption in district heat-
ing systems using meteorological forecasts. PhD thesis, Technical University of Denmark,
2000. URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.177.
4659{&}rep=rep1{&}type=pdf.

[26] Kenneth Price and Rainer Storn. Differential Evolution – A Simple and Efficient Heuristic for Global
Optimization over Continuous Spaces. Journal of Global Optimization, (11):341–359, 1997.

[27] Provincie Zuid-Holland. Visie Aardwarmte Zuid-Holland. Technical report. URL http://www.
zuid-holland.nl/publish/pages/23180/visieaardwarmtezuid-holland.pdf.

[28] A.K. Qin and P.N. Suganthan. Self-adaptive Differential Evolution Algorithm for Numerical Opti-
mization. (May 2014):1785–1791, 2005. doi: 10.1109/cec.2005.1554904.

http://arxiv.org/abs/1604.00772
http://arxiv.org/abs/1604.00772
https://doi.org/10.5281/zenodo.2559634
https://doi.org/10.5281/zenodo.2559634
https://www.scopus.com/inward/record.uri?eid=2-s2.0-24044478859{&}partnerID=40{&}md5=4c8bd01e8c6a9eb6e3e0fa2103d6abdc
https://www.scopus.com/inward/record.uri?eid=2-s2.0-24044478859{&}partnerID=40{&}md5=4c8bd01e8c6a9eb6e3e0fa2103d6abdc
https://www.scopus.com/inward/record.uri?eid=2-s2.0-24044478859{&}partnerID=40{&}md5=4c8bd01e8c6a9eb6e3e0fa2103d6abdc
https://www.tudelft.nl/evenementen/2019/tu-delft/01-january/urban-energy-lecture-by-sabine-jansen-tu-delft/
https://www.tudelft.nl/evenementen/2019/tu-delft/01-january/urban-energy-lecture-by-sabine-jansen-tu-delft/
https://www.eerstekamer.nl/wetsvoorstel/34534_initiatiefvoorstel_klaver
https://www.eerstekamer.nl/wetsvoorstel/34534_initiatiefvoorstel_klaver
http://arxiv.org/abs/1312.5602
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.177.4659{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.177.4659{&}rep=rep1{&}type=pdf
http://www.zuid-holland.nl/publish/pages/23180/visieaardwarmtezuid-holland.pdf
http://www.zuid-holland.nl/publish/pages/23180/visieaardwarmtezuid-holland.pdf

Bibliography 108

[29] Masatoshi Sakawa, Kosuke Kato, and Satoshi Ushiro. Operational planning of district heating and
cooling plants through genetic algorithms for mixed 0-1 linear programming. European Journal of
Operational Research, 137(3):677–687, 2002. ISSN 03772217. doi: 10.1016/S0377-2217(01)
00095-9.

[30] B.V. Sazanov and O.O. Mil’man. Selection of Cycles and Parameters for District Heating Gas
Turbine Plants. Teploenergetika, (12):76–79, 1969. ISSN 00403636 (ISSN). URL https:
//www.scopus.com/inward/record.uri?eid=2-s2.0-0014660749{&}partnerID=
40{&}md5=7d0fc6acb3c90d14060ef15edf1bbc5f.

[31] I Selek, J G Bene, and E Ikonen. Utilizing permutational symmetries in dynamic pro-
gramming - with an application to the optimal control of water distribution systems un-
der water demand uncertainties. International Journal of Innovative Computing, Infor-
mation and Control, 9(8):3091–3113, 2013. ISSN 13494198 (ISSN). URL https:
//www.scopus.com/inward/record.uri?eid=2-s2.0-84880127865{&}partnerID=
40{&}md5=2d56ff2b5509cb51c777108e8bbccc3c.

[32] Istvan Selek and Jozsef G. Bene. Optimal control of mass / energy distribution networks under
uncertainties. 18th Nordic Process Control Workshop, 2012.

[33] Wikimedia Commons, user: Sentewolf. Concept of directional optimization in cma-es al-
gorithm.png, 2008. URL https://commons.wikimedia.org/wiki/File:Concept_of_
directional_optimization_in_CMA-ES_algorithm.png. [Online; Released into public
domain; accessed August 5, 2019].

[34] Jing Zeng, Jie Han, and Guoqiang Zhang. Diameter optimization of district heating and cooling
piping network based on hourly load. Applied Thermal Engineering, 107:750–757, 2016. ISSN
13594311. doi: 10.1016/j.applthermaleng.2016.07.037. URL http://dx.doi.org/10.
1016/j.applthermaleng.2016.07.037.

https://www.scopus.com/inward/record.uri?eid=2-s2.0-0014660749{&}partnerID=40{&}md5=7d0fc6acb3c90d14060ef15edf1bbc5f
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0014660749{&}partnerID=40{&}md5=7d0fc6acb3c90d14060ef15edf1bbc5f
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0014660749{&}partnerID=40{&}md5=7d0fc6acb3c90d14060ef15edf1bbc5f
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84880127865{&}partnerID=40{&}md5=2d56ff2b5509cb51c777108e8bbccc3c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84880127865{&}partnerID=40{&}md5=2d56ff2b5509cb51c777108e8bbccc3c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84880127865{&}partnerID=40{&}md5=2d56ff2b5509cb51c777108e8bbccc3c
https://commons.wikimedia.org/wiki/File:Concept_of_directional_optimization_in_CMA-ES_algorithm.png
https://commons.wikimedia.org/wiki/File:Concept_of_directional_optimization_in_CMA-ES_algorithm.png
http://dx.doi.org/10.1016/j.applthermaleng.2016.07.037
http://dx.doi.org/10.1016/j.applthermaleng.2016.07.037

	Preface
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Research Questions
	Outline

	Background
	District Heating Systems
	Network Topology
	Operation

	Physics
	Flow
	Heat

	Problem Description
	Optimisation
	Control Variables
	Constraints
	Physics-Based Constraints
	Optimisation-Based Constraints

	Problem Complexity
	Non-Linearity
	Non-Convexity

	Fitness Function
	Operating Costs
	Constraint Violations
	Complete Fitness Function

	Energy Stored in the Network
	Termination Focused Optimisation
	Lower Bound

	Lower Bound
	Energy Present at the End of the Horizon
	Consumed Heat
	Minimum Losses
	Maximum Produced Heat
	Combining the Bounds

	Related Work
	Existing Work
	Mathematical Optimisation
	Artificial Intelligence Based Optimisation

	Related Problems
	Demand Forecasting
	System Design
	Multi-objective Optimisation

	Conclusions

	Methods
	Initial Solution
	Random
	Heating Curve
	Existing Solution

	Termination
	Genetic Algorithm
	Solution Encoding
	Mutation
	Crossover
	Selection
	Existing Initial Solution

	Self-Adaptive Differential Evolution
	Solution Encoding
	Mutation
	Crossover
	Selection
	Parameter Adaptation
	Existing Initial Solution

	Covariance Matrix Adaptation Evolutionary Strategy
	Solution Encoding
	Meta-Parameters and Variables
	Algorithm Description
	Existing Initial Solution

	Heat Exchanger Approximation
	Interpolation

	Experiments
	Measurements
	Optimality
	Convergence Speed
	First Generation With a Valid Solution
	Convergence Consistency

	Setup
	Scenarios
	Experiment Settings

	Hypotheses
	Meta-Parameter Influence
	Algorithm Performance
	Optimisation Savings

	Results
	Preliminary
	Constraint Violation Penalty Preferred Over Increasing Costs
	Number of Valid Solutions per Experiment

	GA
	Increased Exploration Improves Performance
	Initial Solution Causes Getting Stuck in Local Optimum

	SaDE
	Large Populations Cause Bad Performance
	Initial Solution Improves Performance

	CMA-ES
	Sample Size
	Initial Step Size
	Initial Solution

	Relative Performance
	Creeping Behaviour
	Optimisation Savings
	Residential
	Residential, Static Pricing
	Residential, Well Insulated
	Residential, Multiple Producers
	Conclusions

	Discussion
	Conclusions
	Best Metaheuristic Optimisation Approaches
	Operational Cost Reduction
	Context

	Future Work
	Fitness Function
	Alternative Optimisation Approaches
	Extensions
	Low Temperature District Heating Systems
	Prerequisites for Deploying the Optimisation

	Closing

	Experiment Scenarios
	Residential (Statically Priced)
	Residential, Well Insulated
	Residential, Multiple Producers

	Full Results
	Population Size
	Optimality
	Convergence Speed
	First Iteration With a Valid Solution
	Consistency

	Variation
	Optimality
	Convergence Speed
	Generations Until Valid
	Consistency

	Combination
	Optimality
	Convergence Speed
	Generations Until Valid
	Consistency

	Initial Solution
	Optimality
	Convergence Speed
	Consistency

	Bibliography

