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Board Member Mehran Kardar

Self-organized pattern formation is vital for many biological processes. Reaction–
diffusion models have advanced our understanding of how biological systems develop
spatial structures, starting from homogeneity. However, biological processes inherently
involve multiple spatial and temporal scales and transition from one pattern to another
over time, rather than progressing from homogeneity to a pattern. To deal with such
multiscale systems, coarse-graining methods are needed that allow the dynamics to be
reduced to the relevant degrees of freedom at large scales, but without losing information
about the patterns at small scales. Here, we present a semiphenomenological approach
which exploits mass conservation in pattern formation, and enables reconstruction
of information about patterns from the large-scale dynamics. The basic idea is to
partition the domain into distinct regions (coarse grain) and determine instantaneous
dispersion relations in each region, which ultimately inform about local pattern-forming
instabilities. We illustrate our approach by studying the Min system, a paradigmatic
model for protein pattern formation. By performing simulations, we first show that
the Min system produces multiscale patterns in a spatially heterogeneous geometry.
This prediction is confirmed experimentally by in vitro reconstitution of the Min
system. Using a recently developed theoretical framework for mass-conserving reaction–
diffusion systems, we show that the spatiotemporal evolution of the total protein
densities on large scales reliably predicts the pattern-forming dynamics. Our approach
provides an alternative and versatile theoretical framework for complex systems where
analytical coarse-graining methods are not applicable, and can, in principle, be applied
to a wide range of systems with an underlying conservation law.

pattern formation | multiscale systems | reaction–diffusion dynamics | in vitro Min system |
reduced dynamics

Pattern formation is fundamental for the spatiotemporal organization of biological
processes, such as cell division, chemotaxis, and morphogenesis. More than half a century
ago, Turing (1) showed, theoretically, how local interactions (chemical reactions) and
diffusion of chemical species can lead to spontaneous spatial patterns. Such reaction–
diffusion systems have been successfully used to explain pattern formation phenomena
in nature that arise, self-organized, from a stable homogeneous steady state (HSS)
(2–5). The analysis proposed by Turing allows prediction of the emergence of patterns
with a characteristic length scale, as long as the entire dynamics remains in the vicinity
of the HSS (6). The validity of Turing’s approach has been also tested experimentally
for coupled chemical oscillators, and was found to reliably predict the experimental
observations, provided that the model parameters are spatially and temporally uniform
(7). Pattern-forming systems, however, are generally heterogeneous and therefore far from
homogeneity, and involve multiple spatial and temporal scales. An intriguing example
of biological pattern formation is morphogenesis, in which the spatiotemporal patterns of
morphogens dictate the future shape of an organism that is orders of magnitude larger than
its constituents (4). On a smaller scale, protein concentration patterns in cells are essential
for the spatiotemporal control of cellular processes such as cell division and motility
(5, 8, 9). Protein patterns can exhibit fascinating multiscale characteristics (10) and form
in hierarchies of patterns on several scales that affect one another (11).

Such complex multiscale biological processes involve many degrees of freedom at
multiple scales, rendering it difficult to analyze them and gain insight into the underlying
principles. To make progress on this issue, one needs to use systematic coarse-graining
schemes that allow the dynamics to be reduced to the essential degrees of freedom at the
relevant time and length scales. For instance, a well-known and powerful method is the
renormalization group theory (12). Unfortunately, this method is restricted to the vicinity
of critical points. The Mori–Zwanzig formalism (13) is another important approach which
allows decomposition of the dynamics of a system into “fast” and “slow” variables by means
of projection operators. One arrives at a closed set of equations for the slow variables, while
the fast variables are treated as noise. One property that these methods have in common is
that the scales that have been integrated out or eliminated are not resolved, and cannot be
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recovered from the coarse-grained level of description. This is most
apparent in the Mori–Zwanzig formalism, where the eliminated
degrees of freedom appear effectively as noise terms on the resolved
scales. For pattern-forming systems, one is, however, interested in
the patterns on the unresolved scales, as they usually have a specific
function in biological systems.* This raises the question of whether
it is possible to reconstruct information about the unresolved
scales from the dynamics at the resolved scales. Indeed, amplitude
equations describe the long-wavelength amplitude modulations of
an underlying short-wavelength base pattern and therefore resolve
both the small and the large scales. Unfortunately, however, they
are limited to the vicinity of the supercritical onset of pattern
formation (6) (including weakly subcritical cases) and only feasible
in simple geometries where the orthonormal basis functions of the
diffusion operator can be found in closed analytical form. Hence,
to fill these gaps, one relies on new concepts to deal with multiscale
systems.

Here, we propose a semiphenomenological approach to over-
come these mathematical limitations in the concrete context of
mass-conserving reaction–diffusion (MCRD) systems. Recently,
a new theoretical framework for MCRD systems has been in-
troduced (14, 15) that allows one to characterize their dynamics
in the highly nonlinear regime. The basic idea is to consider the
reaction–diffusion system as decomposed into a set of reactive
compartments which are spatially coupled by diffusion. For an
isolated compartment, one can determine the steady state (local
equilibrium) and its stability properties, which both depend on
the total densities within that compartment. Since diffusion causes
the lateral redistribution of these total densities, these local equi-
libria will change over time. This concept of moving local equi-
libria enables one to study the physical mechanisms underlying
pattern formation and characterize the dynamics far away from
the HSS. The fact that one is able to characterize the dynamics
far from homogeneity suggests that the local equilibria theory
may be a promising approach to study heterogeneous systems.
We therefore asked whether the ideas from local equilibria theory
would be applicable to investigate multiscale patterns.

To pursue this question, we use the Min protein system of
Escherichia coli which has emerged as a paradigmatic model system
for the study of pattern formation in cell biology (16–20). Its
dynamics is driven by two proteins, MinD and MinE, which
cycle between cytosolic and membrane-bound states and interact
nonlinearly on the membrane (Fig. 1A). In E. coli, these proteins
oscillate from cell pole to cell pole and thereby position the cell di-
vision machinery to midcell (16, 17). Studying the Min dynamics
in various reconstituted systems has led to the discovery of a rich
set of patterns, including traveling waves and spirals (18), chaotic
patterns (10, 21–23), and “homogeneous pulsing” (24–26), as
well as quasi-stationary labyrinths, spots, and mesh-like patterns
(10, 27). Theoretical analysis of mathematical models has led
to the key insight—and experimentally confirmed prediction—
that the average total densities of MinD and MinE and the
bulk height are key control parameters for pattern formation in
the reconstituted Min system (5, 28). The rich set of patterns,
experimental accessibility in vitro, and theoretical understanding
make the Min system an ideal candidate to investigate the role of
spatial heterogeneity in pattern formation.

Since varying the bulk height affects the local equilibrium state
and is a key control parameter for pattern formation (5, 28),
we study the Min dynamics in a wedge-shaped geometry with a

*We adapt the term unresolved scales from the computational fluid dynamics literature to
refer to the (small) scales that have been integrated out in the coarse-grained description.

membrane placed on the bottom surface (Fig. 1B). While there are
many distinct ways to introduce large-scale spatial heterogeneities
into the system, for example, by introducing space-dependent
kinetic rates, we chose to use a wedge geometry because it is
relatively easy to implement experimentally. In numerical sim-
ulations, we find that the system exhibits a striking range of
transient patterns that coexist in different spatial regions along the
membrane (Movie S1 and Fig. 1C ). As time progresses, patterns
in different regions change and transition to other patterns.

To characterize these complex dynamics that play out on
multiple spatial and temporal scales, we generalize the concept
of dispersion relations (obtained from a linear stability analysis)
by applying it to sections of the domain, which we term regional
dispersion relations. Combining this approach with the local
equilibria theory (8, 14, 15), we show that one can reconstruct the
type and characteristics of patterns on small scales from the local
protein mass densities, which we identify as the essential degrees
of freedom on large spatial and temporal scales, that is, the “hydro-
dynamic variables” of the system. The key to this reconstruction
is correlations between the regional pattern characteristics and
instantaneous, regional dispersion relations, calculated from the
instantaneous regional mass densities. Over time, these masses
change due to diffusive redistribution, resulting in qualitatively
different regional dispersion relations that indicate the local pat-
tern type in the system. This reconstruction of small-scale features
(on unresolved scales), together with a coarse-grained description
for the mass redistribution dynamics on large scales allows us to
understand and predict the long-term temporal evolution of the
system. A major advantage of our approach is that it is based on
a linear theory and therefore conceptually and technically simple
to apply.

A key prediction from our numerical simulations and theo-
retical analysis is that different pattern types form at different
positions along the wedge-shaped geometry. To test this prediction
experimentally, we performed experiments with a reconstituted
Min system in wedge-shaped microfluidic cells. In agreement with
the theoretical prediction, we find a range of transient patterns
coexisting in different spatial regions along the membrane.

Results

The Min Protein System in Wedge Geometry. Mathematically,
the Min protein dynamics is described by bulk surface cou-
pled reaction–diffusion equations, which describe the concentra-
tions of cytosolic proteins MinD-ATP, MinD-ADP, and MinE,
c= (cDD, cDT, cE), in the bulk volume V , and the concentra-
tions of membrane-bound MinD and MinDE complexes, m=
(md,mde), on the surface S . For the wedge geometry, in spatial
coordinates x= (x , y , z ), we place the membrane surface (with
lateral dimensions L× L) in the x−y plane at z = 0 and let the
bulk height vary as a linear ramp from H0 to H1 along the x
direction (Fig. 1B).

The dynamics of bulk components c(x, t) is governed by the
equation

∂tc(x, t) =Dc∇2c+ Λc, [1]

where Dc denotes the bulk diffusion constant, and the matrix
Λ = diag(−λ,λ, 0) describes nucleotide exchange of MinD in
the bulk. The dynamics of membrane components m(x , y , t) is
constrained to the membrane surface and takes the form

∂tm(x , y , t) =Dm∇2
Sm+ r(c|z=0,m), [2]

whereDm is the membrane diffusion constant and∇2
S = ∂2

x + ∂2
y

is the surface Laplacian. The membrane reactions r, which
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C

A
B

Fig. 1. (A) Schematic illustration of the Min protein reaction network. (B) Wedge geometry with a membrane surface at the bottom plane (z = 0) and bulk
height H(x) increasing linearly along the x direction. (C) Snapshot of the membrane density of MinD, obtained by numerically simulating the Min dynamics Eqs.
1–3 in the geometry shown in B. One observes regions with chaotic patterns, standing waves (SW, dashed green outline), and traveling waves (TW) along the
membrane and at different bulk heights; see Movie S1.

comprise attachment, detachment, and recruitment processes
of Min proteins, are specified in Materials and Methods.

The dynamics in the bulk and on the surface are coupled by
reactive boundary conditions,

−Dc∂zc|z=0 = f (c|z=0,m), [3]

that describe the bulk fluxes induced by attachment and detach-
ment of proteins at the membrane (see Materials and Methods).
At the remaining boundaries, no-flux boundary conditions are
imposed such that the system is closed. Together, the above
dynamics conserve the average mass densities of MinD and MinE,

n̄D |V|= 〈md +mde〉S |S|+ 〈cD 〉V |V|, [4a]
n̄E |V|= 〈mde〉S |S|+ 〈cE〉V |V|, [4b]

where cD = cDD + cDT is the total cytosolic MinD concentra-
tion; 〈·〉S and 〈·〉V denote the mean on the surface and in the
bulk, respectively; and |S| and |V| are the total surface area and
bulk volume (see Materials and Methods).

Using finite element (FEM) simulations, we investigated the
spatiotemporal dynamics of the Min system in wedge geometry.

Our simulations show a broad range of different patterns—
including traveling waves, standing waves and chaotic patterns—
coexisting in different spatial regions of the membrane (Movie S1
and Fig. 1C ). Interestingly, the regions where these patterns are
found change over time as the patterns transition from one type
to another. For long simulation times, we observe that patterns
transition to standing waves, such that the entire domain is cov-
ered by a single pattern type in the final steady state. The pattern
in steady state depends on the specific choice of parameters,
and therefore can be altered by changing the model parameters
(SI Appendix, Fig. S1 and Movie S2).

Experimental Implementation. We tested our theoretical pre-
diction on this multiscale dynamics in an experimental system
consisting of a wedge-shaped microfluidic flow chamber
(Fig. 2A). The bottom and top surface of the wedge were
covered with a supported lipid bilayer consisting of 1,2-dioleoy-
lphosphatidylglycerol : 1,2-dioleoylphosphatidylcholine (DOPG:
DOPC) (30:70%) which mimics the natural membrane
composition of E. coli (29). The length of the wedge was typically
about 8 mm to 14 mm, and the width was about 3 mm to
4 mm. The bulk height range was approximately 2 μm to 50 μm
(Fig. 2B). Min proteins were distributed in the chamber by rapid

PNAS 2022 Vol. 119 No. 33 e2206888119 https://doi.org/10.1073/pnas.2206888119 3 of 11
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Fig. 2. Experimentally observed Min patterns in a wedge flow cell. (A) Schematic presentation of the experimental setup. Both the bottom and the top surfaces
(glass slides) are covered with a lipid bilayer. (B) Measurement of the bulk height profile of the flow cell versus distance along the lateral length of the wedge.
The height was measured microscopically by z stacks at multiple spots. (C) Snapshot of the Min pattern along the wedge; the picture was obtained by stitching
individual adjacent images. (Top) Shown is a merge of MinD (green) and MinE (red) channels. Bottom shows a kymograph for intensities taken along the center
line in Top.

injection of a solution containing 1 μM MinD and 1 μM MinE
(including 10% fluorescently labeled MinD and MinE proteins
for visualization), together with 5mM adenosine 5′-triphosphate
(ATP) and an ATP regeneration system (28).

Fig. 2C shows a snapshot of Min protein patterns along the
bottom surface of the wedge geometry 30 min after injection.
The experiments exhibit the same essential hallmarks of multiscale
Min protein patterns that we observed in our numerical simula-
tions. In particular, consistent with our simulations, we observe a
sequence of distinct spatiotemporal patterns coexisting in different
spatial regions of the membrane (Fig. 2C and Movie S3): At
regions of low bulk height (approximately between 2 μm and
10 μm), one typically observes chaotic patterns and standing
waves, whereas traveling wave patterns emerge at regions of large
bulk height (>10 μm). Furthermore, as in the simulation, we
observe a sharp boundary between regions that contain traveling
wave patterns and regions that contain rather chaotic and standing
wave patterns, and this boundary establishes quickly, within a few
minutes (SI Appendix, Fig. S2 and Movie S4). Overall, the ob-
servations provide a striking verification of the height-dependent
patterns predicted in the simulations.

There are also some differences between the patterns in the
experiment and in our numerical simulations. First, while we
observed occasional transitions from one pattern into another
in our experiments (SI Appendix, Fig. S3 and Movie S5), these
transitions occurred frequently and were more pronounced in
the simulations. This is explained by the lateral length of the
experimental setup, that is about an order of magnitude larger as
compared to the simulation setup, which is the main reason we ob-
serve more-frequent transitions between different patterns in the
simulations, as will become clear later. Second, in contrast to the
simulations, we noticed some homogeneous oscillations in the ex-
periments, which are characterized by large (homogeneous) den-
sity patches on the membrane (typically a few hundred microme-
ters in size) that oscillate with time (SI Appendix, Figs. S3 and S4
and Movies S5–S7). We attribute this difference to the following:
Due to the fabrication method of the microfluidic flow chamber,
both the bottom and top surfaces of the wedge were covered
with a supported lipid bilayer. In recent work, it has been shown
that membrane-to-membrane cross-talk (i.e., between top and
bottom surfaces) is responsible for the emergence of homogeneous

oscillations (28). In our simulations, however, we assume that Min
proteins can only bind to the bottom membrane, which explains
why we do not observe homogeneous oscillations.

Taken together, we have a system that exhibits a fascinatingly
rich transient dynamics and involves patterns and transitions
between them on multiple spatial and temporal scales. We are
therefore left with the key question, Can we explain why different
patterns form in different spatial regions and how they transition
from one to another over time? Moreover, is it possible to identify
and reduce the system to its essential degrees of freedom? A
standard way to address these questions mathematically would be
to perform a multiscale analysis and to derive amplitude equa-
tions that describe the large-scale spatiotemporal evolution of the
pattern amplitudes (6). This would greatly simplify the problem,
as it allows obtaining a quantitative relationship between the
small-scale patterns and the large-scale dynamics (slowly varying
pattern amplitudes), thus ultimately enabling one to reconstruct
the patterns from the reduced dynamics at large length and time
scales (30–33). Carrying out this analysis requires determining the
set of orthogonal eigenmodes for the diffusion operator that satisfy
the boundary conditions. In a one-dimensional (1D) domain,
these eigenmodes are simply Fourier modes. Unfortunately, in
the wedge geometry with bulk–surface coupling, the eigenmodes
cannot be found analytically, thus precluding the use of the
amplitude equation framework. Moreover, amplitude equations
are restricted to the vicinity of supercritical and weakly subcritical
bifurcations (6, 34). The Min patterns we observe here, how-
ever, are generically subcritical (15) and exhibit large amplitudes
(14, 28). We therefore aim to develop an approach that overcomes
these restrictions.

Instantaneous, Regional Dispersion Relations Predict Pat-
terns. The analysis of pattern-forming systems usually starts with
calculating the HSS solutions and performing a linear stability
analysis around these states. This yields a dispersion relation that
informs about the growth rate σ(q) of small spatial perturbations
with a certain wavenumber q . However, the dispersion relation
is generally only informative in the vicinity of the HSS (1, 6),
and is thus unreliable for large-amplitude patterns. Moreover,
the spatial variation of parameters even precludes the existence
of a global HSS, so that a global dispersion relation can no
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Fig. 3. (A) Rectangular geometry with membrane at the bottom edge representing a slice through the 3D in vitro system. (B) A slice through the wedge
geometry. For each such slice, at a given instance in time, we calculate the instantaneous total densities, averaged along its length 〈ñD,E〉y(t, x), from
the numerical simulation data. From these slice-averaged total densities, we can then calculate the corresponding local HSS and its dispersion relation.
(C) Dispersion relation with fastest-growing mode q∗ and right edge of the band of unstable modes qmax indicated. The ratio qmax/q∗ has been empirically
found to correlate with the type of fully developed pattern, with a sharp transition from chaotic patterns for qmax/q∗ < 2 to ordered patterns for qmax/q∗ > 2.
Close to the transition, standing waves are found, while traveling waves form for larger ratios qmax/q∗ (14). (D) Mode ratio qmax/q∗ as a function of the slice
position x for a given instance in time. The background shading indicates the type of pattern expected from the “commensurability criterion.” (E) Representative
snapshots of the three distinct pattern types: spatiotemporal chaos, SW, and TW.

longer be determined. To overcome these limitations, we adopt a
semiphenomenological approach where we generalize the concept
of dispersion relations.

Let us consider the wedge as dissected into a collection of
2D slices along the direction of constant bulk height. Each slice
corresponds to a rectangular geometry with a bulk height that
depends on the position of the slice in the wedge (Fig. 3 A and B).
Next, for each slice and at each point in time, we calculate instan-
taneous total densities of MinD and MinE, averaged over the slice
length 〈ñD,E〉y(t , x ) (Materials and Methods). The average total
densities, together with the local bulk height H (x ), then serve as
parameters for the regional dispersion relation in each slice,

σ (q ;H (x ), 〈ñD,E〉y(t , x )), [5]

which is straightforward to determine because the slice repre-
sents a rectangular geometry (14, 23, 28) (Fig. 3 A and B and
SI Appendix). While the bulk height H (x ) varies linearly in space,
the average total densities 〈ñD,E〉y(t , x ) are dynamic quantities
and depend on the slice position x as well as on time t , since
the diffusive coupling between the slices redistributes mass. It
follows that the regional dispersion relation depends on the spatial
position and is dynamic: σ(q ; x , t). This generalizes classical
dispersion relations, which are, by definition, independent of
space and time.

How does this spatially and temporally varying dispersion rela-
tion inform about the system’s dynamics? As in uniform systems
that exhibit HSSs, it serves as a criterion for the onset of pattern
formation and for estimating the characteristic wavelength of the
initial pattern that is formed. While these insights are generally
limited to the linear regime (1, 6), recent theoretical findings for
the Min system in a 2D rectangular geometry (representing a
slice geometry) have shown that the dispersion relation reliably
predicts the pattern type in the fully nonlinear regime (5). In
particular, it was shown that, depending on the total densities
of Min proteins, n̄D and n̄E, and the bulk height H , the system
exhibits a variety of different patterns on the membrane, such as
chaos, standing waves, and traveling waves (14, 28). Moreover, a
careful analysis of numerical simulations has interestingly revealed
a strong one-to-one correlation between the dispersion relation
and the fully developed patterns in the highly nonlinear regime
(14): A commensurability criterion between the unstable mode

with the shortest wavelength qmax and the fastest-growing mode
q∗ has been found that determines the pattern type (Fig. 3 C–E).
In short, it has been shown that qmax/q

∗ < 2 coincides with the
regime of chemical turbulence (spatiotemporal chaos), whereas,
for qmax/q

∗ > 2, the system exhibits ordered patterns (stand-
ing/traveling waves). Standing wave patterns are found close to the
commensurability transition qmax/q

∗ � 2, while traveling waves
are found farther away from the threshold. In the following, we use
this observed one-to-one correspondence between the dispersion
relation and the fully developed patterns to reconstruct the small-
scale pattern types from coarse-grained densities.

To that end, we extracted the average total densities in each
slice as a function of time from the numerical simulation. Based
on these densities, we then calculated the instantaneous regional
dispersion relation in each slice and extracted the ratio qmax/q

∗

as a function of slice position x and time t (Fig. 3 C–E). The
resulting pattern type prediction is shown in the space–time plot
(kymograph) in Fig. 4A. Fig. 4B shows the ratio qmax/q

∗ as
a function of slice position x for a set of representative times
(Fig. 3D). The pattern type prediction (Fig. 4A) is then obtained
from these ratios via the mapping shown in Fig. 3 D and E.

We find that this prediction correlates well with the patterns
observed in the full numerical simulation (Fig. 4 C and D
and Movie S8). In particular, the temporally changing position
xcrit(t), marking regions where qmax/q

∗ = 2 (indicated by the
green arrows and dashed lines in Fig. 4 B and C ), agrees with the
position along the wedge where traveling wave patterns transition
to chaotic patterns. In the vicinity of xcrit(t), we observe a band of
standing waves as expected from the “commensurability criterion”
(14). While the transition from chaos to order at qmax/q

∗ = 2
is sharp, we were not able to identify a sharp criterion for the
transition from standing waves to traveling waves. Accordingly,
we use a smooth color gradient to indicate the pattern type
prediction near qmax/q

∗ = 2 (Figs. 3D and 4A). Since the ratio
qmax/q

∗ and, with it, xcrit(t) are entirely determined by the slice-
averaged masses 〈ñD,E〉y(x , t), we conclude that these masses are
the essential degrees of freedom of the system at large scales.

Notably, we find that there are slight differences between the
predictions and the actual patterns for large times (Fig. 4 A–C ).
The reason for these deviations lies in the model parameters, which
were chosen such that the entire domain is near the critical mode
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A B C D

Fig. 4. (A) Kymograph showing the pattern type prediction from the commensurability criterion (Fig. 3D). The green line shows xcrit(t) where qmax/q∗ = 2,
indicating the transition from chaotic to ordered patterns. Green arrows mark the position xcrit(t) for the times indicated by dashed white lines. (B) Plots of
the mode ratio qmax/q∗, determined from the local dispersion relation, as a function of spatial position x for several representative times (dashed white lines
in A). In the second to last row, the entire domain is near the critical ratio qmax/q∗ = 2, predicting the global emergence of standing waves (see last row).
(C) Snapshots of the membrane patterns (MinD density; Fig. 1) from the full numerical simulation. The green dashed line indicates xcrit(t). Note the SW patterns
found near xcrit(t). Their fronts are aligned along the bulk height gradient such that the sequence of wave nodes lies on lines of constant bulk height. (D) Machine
learning–based pattern classification using ilastik (35) (see Materials and Methods).

ratio qmax/q
∗ = 2 for large times. This renders the dynamics,

and the prediction from the regional dispersion relation, highly
sensitive to slight variations of the regional total masses. Hence,
the fact that our method is still able to qualitatively predict
the dynamics in this case underscores the robustness of our
approach. In SI Appendix, we provide additional results where the
parameters were chosen such that the mode ratio is deep in the
traveling wave regime (qmax/q

∗ > 2) for late times. In this case,
we obtain an excellent agreement between our predictions and
the patterns observed in the numerical simulations (SI Appendix,
Fig. S1).

Next, we ask whether one can find an approximate coarse-
grained dynamics for these redistributed masses. Such a des-
cription would enable us to predict the time evolution of the
redistributed masses independently from the full numerical
simulations. One can then use the commensurability criterion
to predict the pattern types that will form in different spatial
regions as a function of the redistributed masses. In the next
section, we will show how one can find such a description.

Large-Scale Dynamics Is Driven by Redistribution of Mass.
In general, mass redistribution between different spatial regions
of the wedge is caused by diffusive fluxes due to concentration
gradients. Similarly to the previous section, we consider here the
redistribution of mass between slices along the wedge (Fig. 3B).
Since membrane diffusion is two orders of magnitude slower than

bulk diffusion, it may be neglected, such that redistribution of
protein mass between slices is governed by bulk diffusion alone
(Materials and Methods),

∂t〈ni〉y,z (x , t)≈Dc〈∂2
xci〉y,z +Dc

∂xH (x)
H (x) 〈∂xci〉y,z , [6]

for i =D,E. Here, the second term accounts for the spatial
variation of the bulk height, and thus the different volumes of
neighboring slices between which the diffusive flux Dc〈∂xci〉y,z
redistributes mass. This can be seen by rewriting Eq. 6 in the form
of a continuity equation

∂t
[
H (x ) · 〈ni〉y,z (x , t)

]
≈−∂x

[
H (x ) · J diff

i

]
[7]

with the diffusive fluxes given by J diff
i :=−Dc〈∂xci〉y,z . Since

the area of slices increases along the positive x direction, the
diffusive fluxes J diff

i on the right-hand side of Eq. 7 are rescaled
by the bulk height H (x ). These equations seem to be simple,
but, unfortunately, they are not closed, since the slice-averaged
cytosolic densities 〈ci〉y,z (x , t) appear on the right-hand side.

We are interested in the dynamics of 〈ni〉y,z on timescales
much longer than typical oscillation periods of the patterns.
Therefore, following the intuition gained from previous works on
MCRD systems (15, 36), we assume that one can approximate the
slice-averaged cytosol concentrations by the homogeneous steady-
state concentration in each slice,
〈ci〉y,z (x , t)≈ c∗i (x , t) := c∗i

(
H (x ), 〈nD〉y,z , 〈nE〉y,z

)
. [8]
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This assumes that the spatial average over many wavelengths in
the y direction is well approximated by the instantaneous HSS
in a slice. These steady-state concentrations only depend on the
slices’ bulk height H (x ) and the slice-averaged total densities
〈ni〉y,z (x , t). Thus, the above approximation yields a closed set
of equations for the mass densities,

∂t〈ni〉y,z (x , t)≈Dc∂
2
xc

∗
i (x , t) +Dc

∂xH (x)
H (x) ∂xc

∗
i (x , t). [9]

We will call this the reduced dynamics in the following. Since the
HSSs may also undergo a saddle–node bifurcation, characterized
by the emergence of three steady states (two stable, one unstable),
this may lead to discontinuities in c∗i . To regularize the dynamics,
ci is not set identical to c∗i but relaxes toward it on a fast timescale
(see SI Appendix for details).

Given the initial densities 〈ni〉y,z (x , 0), one can numerically
solve the reduced dynamics Eq. 9 to predict the entire time
evolution of the slice-averaged masses and hence the dispersion
relation at each point along the x direction. Fig. 5C shows the
regional pattern types predicted from the reduced dynamics. We
find good qualitative agreement for the distribution and transition
of patterns as observed in the numerical simulations (Fig. 4A).
The main difference from the full numerical simulations is a
slight quantitative deviation in the timescale, where the dynam-
ics predicted by Eq. 9 is slightly slower compared to the full
numerical simulation. We also note that the reduced dynamics
predicts a larger region of no instabilities as compared to the
numerical simulations (Figs. 4A and 5C ). This is because the
chaotic regime is rather narrow and close to the regime for which
the dispersion relation predicts no instability (Figs. 3D and 4B). In
addition, since the patterns emerge from a subcritical bifurcation
(14) [a generic property of mass-conserving systems (15)], large-
amplitude patterns can be excited and maintained even below the
instability threshold.

Fig. 5 A and B compares the time evolution of the slice-
averaged total densities from the full numerical simulation and the
solution obtained from the reduced dynamics. The colors in the
kymographs indicate the total density ratio of MinE and MinD

C

B

A

Fig. 5. (A and B) Kymographs showing the E:D ratio from the full numer-
ical simulation (A) and from local equilibria–based reduced dynamics (B).
(C) Kymograph showing the pattern type prediction using the commensura-
bility criterion based on the total densities from the reduced dynamics. Note
the excellent qualitative agreement to the pattern type prediction based on
total densities from the full numerical simulation in Fig. 4A.

(E:D ratio), which is a key control parameter in the Min protein
dynamics (14).

Discussion

Multiscale patterns in biological systems often emerge from hi-
erarchical systems, which are organized in a modular fashion.
Each level of the hierarchy instructs dynamics on the next level,
which operates on a smaller spatial scale. For instance, along
developmental trajectories of many organisms, upstream patterns
such as maternal gradients instruct downstream gene expression
patterns on increasingly smaller scales (11, 37). Importantly, on
each level of the hierarchy, there is a clean separation between
(spatially varying) control parameters and dynamical variables.

In contrast, in the system we have studied here, there is no such
separation, as the globally conserved total densities play a dual
role: They are dynamical variables and act as control parameters
(14, 15). Building on this key feature has allowed us to explain
and predict the intriguingly complex patterns found in large-scale
numerical simulations. The values of the total densities of MinD
and MinE locally control the pattern type: We showed that a
“regional dispersion relation” calculated from the regional average
densities reliably predicts the pattern type. At the same time,
concentration gradients in the bulk drive mass redistribution of
MinD and MinE. Therefore, the total densities are hydrodynamic
variables on large scales which control pattern formation on small
scales. This separation of scales enabled us to derive a reduced
dynamics for the total densities on large spatial and temporal scales
which predicts the long-term dynamics of the system.

Notably, the dual role of total densities as dynamic variables
and control parameters also plays out at the small scale of the
patterns themselves (14, 15). Here, instantaneous local total den-
sities control local equilibria and their stability, which serve as
proxies for the local dynamics. The local dynamics cause gradients,
which drive diffusive redistribution of the total densities—in
turn, causing changes in the local dynamics. In the Min system,
this point of view has led to a detailed understanding of the
emergence of chaos near onset and of the transition to standing
and traveling waves (14). From a general perspective, the concept
of local equilibria controlled by total local densities is at the core
of a number of recent theoretical advances in the field of mass-
conserving, pattern-forming systems (8, 15, 36, 38).

In addition to the dynamically changing total densities, the
bulk height is also a (fixed) heterogeneous control parameter in
our system. The bulk height (or, more generally, volume-to-surface
ratio) is an important control parameter for bulk–surface coupled
pattern-forming systems (14, 28). Here, the bulk height gradient
of the wedge serves to induce spatiotemporal heterogeneities in
the total densities. Alternatively, one could induce heterogeneities
in the total densities via spatial gradients of the kinetic rates or by
imposing a heterogeneous initial condition in the total densities.
However, these alternatives are difficult to realize experimentally
in a reproducible and controlled manner, which is the main
reason why we chose the wedge setup in this work. In a third
scenario, large-scale gradients in the densities may also emerge
spontaneously and be maintained in the absence of “external”
heterogeneities.

An example for this third scenario is the Aranson–Tsimring
model for pattern formation in vibrated granular media (39) (see
Materials and Methods for details). In the following, we briefly
discuss this model to put our approach into a broader con-
text. In particular, this model has been extensively studied using
amplitude equations, allowing us to connect this mathematical
approach to the regional dispersion relations introduced here.
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C

A

B

Fig. 6. Regional dispersion relations predict localized patterns in the
Aranson–Tsimring model Eq. 24. (A) Snapshot of the order parameter mag-
nitude ψ showing localized patterns. Dashed white line indicates the stability
threshold determined from regional dispersion relations. (B) Coarse-grained
density (Gaussian filter with SD 10). (C) Representative dispersion relations in
the stable and unstable regimes. Domain size: 100 × 50; see Materials and
Methods for model details and remaining parameters.

The Aranson–Tsimring model considers a system with a com-
plex order parameter ψ (describing the surface modulation of a
vibrated granular layer) which is coupled to a conservation law
for the grain density ρ (see Eq. 24 in Materials and Methods). Near
the onset of pattern formation, this coupling gives rise to localized
patterns that have been studied using amplitude equations (30,
32, 33). Fig. 6 and Movie S9 illustrate how these patterns can be
understood in terms of regional dispersion relations. For high den-
sities, there are no unstable modes, and no patterns form. Below a
critical density ρc , a band of unstable modes appears, giving rise
to patterns through a supercritical bifurcation. Indeed, localized
patterns appear only where the average regional density is below
ρc (Fig. 6B). This demonstrates the idea of regional dispersion
relations in a nutshell. Moreover, it shows that this approach gives
rise to qualitatively similar insights such as the technically much
more involved amplitude equation formalism. The conceptual
and technical simplicity of regional dispersion relations make this
approach readily applicable. The caveat is that this approach lacks
the mathematical rigor of the amplitude equation formalism and
requires numerical solutions of the dynamics as a basis.

Because the bifurcation in the Aranson–Tsimring model is
supercritical (39), we can immediately read off, from the regional
dispersion relation, where small-scale patterns will form. There
is only one pattern type (stripes), and, therefore, no additional
information is needed to reconstruct the small-scale patterns. For
the Min system considered here, on the other hand, the onset is
subcritical (i.e., patterns have large amplitude at onset), and the
emergence of a band of unstable modes alone does not inform
about the pattern type. To overcome this problem, we used the
“commensurability criterion” that enabled us to predict the small-
scale patterns from regional dispersion relations. However, this
criterion has, so far, only been shown to hold for the Min protein
system. Whether it also applies to other reaction–diffusion systems
remains an open question. In general, reconstructing subcritical
small-scale patterns from large-scale quantities will require that
adequate criteria are first identified in simplified settings (such as
the “slice geometry” used here). Supercriticality also guarantees
that there is no multistability of different pattern types near onset.
Multistability would lead to hysteresis in the transitions and there-
fore introduce memory in the system. As a result, the one-to-one
correspondence between the regional dispersion relation and the
pattern type that we have used here to reconstruct patterns would
be lost. Handling memory effects in pattern-forming systems

remains an open issue that will require the development of new
methods, providing an interesting task for future research.

Since conservation laws are ubiquitous in many physical sys-
tems, we believe that our approach can be generalized to a
broad class of multiscale pattern-forming systems. For instance,
mass conservation is inherent to particle-based active matter sys-
tems. The local particle density controls emergent orientational
order, that is, local symmetry breaking (40–42). In turn, orienta-
tional order controls mass redistribution due to the particles’ self-
propulsion. Thus, the particle density again plays a dual role as a
control parameter and a dynamic variable (42–44). The dynamic
interplay of mass redistribution and orientational order has been
shown to give rise to the coexistence of different macroscopic
orders (polar flocks, nematic lanes) and the interconversion be-
tween them (42), not unlike the coexistence and interconversion
of different patterns we found for the reaction–diffusion system
studied in this work. One way to induce spatial heterogeneities
in these systems is to introduce a gradient of signaling chemicals
(chemoattractants) that affect the local velocity of active particles.
This would dynamically lead to redistribution of the particle
densities on large scales. Since the particle densities, in turn,
are themselves control parameters locally, nontrivial multiscale
dynamics may emerge in such a setup. Exploring the effects of such
gradients in active matter systems could be, therefore, an exciting
task for future research.

On a broader perspective, our work shows how a linear analysis
on small scales, combined with a reduced description for nonlinear
large-scale dynamics (mass redistribution), can be employed to
study complex multiscale phenomena. We believe that our ap-
proach can be generalized and applied to other multiscale systems
with an underlying conservation law, such as transport processes
in porous media, combustion, and cell migration, to name a few
examples.

Materials and Methods

Mathematical Model. We adopt the Min “skeleton model” introduced in refs.
5, 45, and 46. which is known to qualitatively reproduce Min patterns in vivo and
in vitro (5, 28, 46). The governing equations are given in Eqs. 1–3. The membrane
reactions are

r =
[

ron
D − ron

E , ron
E − roff

DE

]�
, [10]

with

ron
D = (kD + kdDmd)cDT, [11a]

ron
E = kdEmdcE, [11b]

roff
DE = kdemde. [11c]

The reaction terms account for MinD attachment and self-recruitment to the
membrane, MinE recruitment by MinD, and dissociation of MinDE complexes
with subsequent detachment of both proteins into the cytosol. Coupling between
cytosol and membrane is established by reactive boundary conditions at the
membrane (Eq. 3). The boundary fluxes are given by

f =
[

roff
DE , −ron

D , roff
DE − ron

E

]�
, [12]

which follows from mass conservation. For analytical calculations, we adapt the
following change of variables, as it is more convenient: We describe the bulk
dynamics of MinD in terms of the variables cD = cDD + cDT and cDD; that is, in this
case, one defines the bulk concentration vector c = (cD, cDD, cE). The membrane
reaction in Eq. 11a is then slightly modified by substituting cDT = cD − cDD, and
the boundary fluxes are given by

f =
[
−ron

D , roff
DE , roff

DE − ron
E

]�
. [13]

The model parameters used in this study are summarized in Table 1.
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Table 1. Min model parameters

Parameter Symbol Value
Bulk diffusion Dc 60 μm2 · s−1

Membrane diffusion Dm 0.013 μm2 · s−1

Average total MinD density n̄D 665 μm−3

Average total MinE density n̄E 410 μm−3

Attachment rate kD 0.065 μm · s−1

MinD recruitment rate kdD 0.098 μm3 · s−1

MinE recruitment rate kdE 0.126 μm3 · s−1

MinDE dissociation rate kde 0.34 s−1

Nucleotide exchange λ 6 s−1

Numerical Simulations. To investigate the dynamics of the system, we per-
formed 3D FEM simulations using the commercially available software COMSOL
Multiphysics v5.6. Numerical simulations were performed for a wedge geometry
with lateral length L = 500 μm and bulk height H(x) linearly increasing from
H0 = 5μm to H1 = 50μm. The simulation was initialized with the Min proteins
uniformly distributed in the bulk and a small random spatial perturbation around
this uniform state.

HSS and Dispersion Relation. The HSS concentrations (c∗|z=0(H, n̄D, n̄E),
m∗(H, n̄D, n̄E)) are obtained from the stationary solutions of Eqs. 1–3 together
with the mass conservation condition Eq. 4,⎧⎪⎪⎪⎨

⎪⎪⎪⎩
r(c∗|z=0, m∗) = 0,
f
(

c∗|z=0, m∗) = Φ,
c∗D |z=0 + (m∗

d + m∗
de)/H = n̄D,

c∗E |z=0 + m∗
de/H = n̄E,

[14]

where Φ denotes the steady-state fluxes at the membrane, given by

Φ= [0, φ, 0]�, [15a]

φ : =
√

Dcλ tanh
(√

λ/Dc H
)

c∗DD|z=0. [15b]

A concise derivation of these equations and how they can be solved is provided
in SI Appendix. For a thorough presentation of the linear stability analysis of the
Min system in a 2D rectangular geometry, we refer to the SI Appendix of refs. 14
and 28.

Operators for Spatial Averaging. The operators used throughout this study
to calculate mean values of densities on the membrane and in the cytosol are
defined as follows:

〈m〉S : = |S|−1
∫
S

dxdy m, [16a]

〈c〉V : = |V|−1
∫
S

dxdy
∫ H(x)

0
dz c, [16b]

〈·〉y : =
1
L

∫ L

0
dy (·), [16c]

〈·〉y,z : =
1

H(x)

∫ H(x)

0
dz 〈·〉y , [16d]

where the membrane surface area and the bulk volume for the wedge geometry
are explicitly given by |S|= L2 and |V|= L2 (H0 + H1)/2.

Instantaneous Total Densities at the Membrane. Since only cytosolic pro-
teins in close proximity to the membrane participate in the nonlinear dynamics
at the membrane, we define instantaneous total densities at the membrane,

ñD(x, y, t) : =
1

H(x)
(md + mde) + cD|z=0, [17a]

ñE(x, y, t) : =
1

H(x)
mde + cE|z=0. [17b]

We further average these densities along the y direction to obtain the slice-
averaged total densities 〈ñD,E〉y(x, t). Note that the length of a slice is much
larger than the typical pattern wavelength, which also permits approximation
of the slice-averaged mass at the membrane by the vertically averaged mass:
〈ñi〉y(x, t)≈ 〈ni〉y,z(x, t) (see ref. 14). This is because the local deviations
ñi − 〈ni〉z largely cancel when averaging over the pattern wavelength.

Mass Redistribution Dynamics. Here, we provide more details on the deriva-
tion of the mass redistribution dynamics Eq. 7. For specificity, we present the
calculation for MinD. The calculation for MinE works along the same lines. Our
starting point is the slice-averaged total MinD density,

〈nD〉y,z(x, t) :=
1

H(x)

〈
md + mde +

∫ H(x)

0
dz cD

〉
y

. [18]

The time evolution of this quantity then follows from Eqs. 1 and 2,

H(x) ∂t〈nD〉y,z(x, t) = Dm∂
2
x 〈md + mde〉y + Dc∂z〈cD〉y

∣∣
z=H(x)

+

∫ H(x)

0
dz Dc∂

2
x 〈cD〉y , [19]

where we used the reactive boundary condition Eq. 3 to rewrite the integral,∫ H(x)

0
dz Dc∂

2
z cD = Dc∂zcD

∣∣
z=H(x)

− Dc∂zcD
∣∣

z=0

= Dc∂zcD
∣∣

z=H(x)
+ roff

DE − ron
D . [20]

Note that, due to mass conservation, the reaction terms at the membrane cancel.
Since the system is closed, the boundary condition at the inclined top surface

of the wedge reads n · ∇cD|z=H(x) = 0, where n ∝ (−∂xH, 0, 1) is the outward
normal vector at the top surface. Writing out the boundary condition explicitly, we
find that

∂zcD|z=H(x) = (∂xH) ∂xcD|z=H(x). [21]

To proceed, we substitute the relation above into Eq. 19 and slightly rewrite the
resulting equation by applying the chain rule,

H(x) ∂t〈nD〉y,z(x, t) = Dm∂
2
x 〈md + mde〉y

+ ∂x

∫ H(x)

0
dz Dc∂x〈cD〉y︸ ︷︷ ︸

=: −H(x)JD(x)

. [22]

Here, the first term describes diffusion of the averaged membrane concentra-
tions. The integral on the right describes diffusion of the averaged cytosolic
densities, where we defined the diffusive flux JD =−Dc〈∂xcD〉y,z . The factor H(x)
in the cytosolic diffusion term accounts for the increasing area of the slice along
the positive x direction.

Since protein diffusion on the membrane is much smaller than cytosolic
diffusion Dm � Dc (47, 48), one can neglect membrane diffusion to arrive at the
result shown in Eq. 7. For completeness, note that Eq. 22 (without membrane
diffusion) can be recast as

∂t〈nD〉y,z(x, t)≈ 1
H(x)

∂x

∫ H(x)

0
dz Dc∂x〈cD〉y ,

= Dc∂x〈∂xcD〉y,z + Dc
∂xH(x)

H(x)
〈∂xcD〉y,z , [23]

which is the form given in Eq. 6.

Machine Learning–Based Pattern Classification. We used the pixel classi-
fier provided by the software ilastik (35). The classifier was trained based on a
few representative snapshots, by manually marking areas where the pattern type
(no pattern, chaos, standing wave, or traveling wave) is easily identified by visual
inspection. The trained classifier then yields probabilities for each pattern type at
each pixel. The classifier was applied to snapshots in 20-s intervals. These data
were then down-sampled and averaged over slices to yield an x–t space time
map of pattern probabilities. To render the kymograph in Fig. 4D, each pixel was
colored based on the most probable pattern.
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Aranson–Tsimring Model. As a second example, we briefly discuss a phe-
nomenological model for pattern formation in vibrated granular media intro-
duced in ref. 39. This model, which we call the Aranson–Tsimring model in the
following, couples a Ginzburg–Landau-type equation (34) for the complex order
parameter ψ to a conservation law for the density ρ,

∂tψ = γψ̄ − (1 − iω)ψ + (1 + ib)∇2ψ − |ψ|2ψ − ρψ, [24a]

∂tρ= β∇2ρ+ α∇ · (ρ∇|ψ|2), [24b]

where ψ̄ denotes the complex conjugate of ψ. The coupling is such that in-
creasing the density ρ suppresses the instability in Eq. 24a, while gradients in
the amplitude |ψ| drive mass redistribution away from high-amplitude regions
(second term in Eq. 24b). This feedback loop amplifies heterogeneities in the
density and gives rise to localized patterns. These patterns have been studied
in detail using amplitude equations in refs. 32 and 33. Moreover, in ref. 30, it
was shown that the system Eq. 24 appears as the amplitude equation for a mass-
conserving version of the classical Swift–Hohenberg–Turing equation (6, 49). The
reason for this is that the conserved density appears as a second hydrodynamic
variable in addition to the pattern amplitude.

A linear stability analysis shows that the system Eq. 24 has a short-
wavelength instability when bω − 1 − ρ0 > 0 and γ > γc = (ω + b(1 +

ρ0))/
√

1 + b2, where ρ0 denotes the average density. Following ref. 33,
we set parameters b = 1, ω = 2.5, α= 1.3, β = 0.3, ρ0 = 0.3. Localized pat-
terns are found near the instability threshold, so we set γ = 1.001γc for the
simulation shown in Fig. 6 and Movie S9.

Preparation of the Wedge Flow Cell. The microfluidic wedge chambers were
prepared using two rectangular coverslips (bottom one of dimensions 22 mm×
50 mm, and top one of dimensions 5 mm × 30 mm). Close to one of the short
edges of the top glass, a tiny inlet hole was drilled using a sandblaster. Coverslips
were cleaned in 1 M potassium hydroxide (KOH) for 1 h followed by a methanol
bath for 10 min in a sonicator bath. Surfaces of the coverslips were activated with
oxygen plasma for 20 s, using oxygen plasma PREEN I (Plasmatic System, Inc.)
with a O2 flow rate of 1 standard cubic feet per minute (SCFH). Furthermore, a
small polydimethylsiloxane (PDMS) slab with a 0.3-mm hole was attached onto
the top glass slide, such that it matches the hole in the PDMS glass slide, and a
metal connector was inserted in the hole for connecting the syringe pump. Tilt of
the top glass slide was achieved by placing a piece of aluminum foil between the
top and bottom slide at the end, with the largest height between top and bottom
at the side of the inlet. At the opposite side with the smallest distance between
top and bottom slide, 2-μm polystyrene beads that were deposited on the bottom
slide provided an outlet and prevented a collapse of the top and bottom slides
(Fig. 2). The lateral sides of the microchamber were sealed with a two-component
epoxy resin, leaving the short edge at the low-height side open for liquid flow
(SI Appendix, Fig. S4). The microfluidic cell was then filled with a solution of small
unilamellar vesicles (SUVs) through an injection tube at the inlet of the PDMS slab
and incubated for 30 min at 30 ◦C—yielding full lipid membrane coverage of the
bottom and top slides. SUVs were prepared as described in ref. 28. Subsequently,
the flow cell was thoroughly washed with a buffer to remove excess SUVs, and Min
protein experiments were started.

Observation of Min Patterns. We purified the Min proteins based on the
method proposed in ref. 50. Injection of Min proteins into the flow cells was
performed through a syringe pump containing a solution of 0.8 M MinD,
0.2 mM MinD-Cy3, 0.8 mM MinE, 0.2 mM MinE-Cy5, 5 mM ATP, 4 mM phospho-
enolpyruvate, 0.01 mg/mL pyruvate kinase, 25 mM Tris·HCl (pH 7.5), 150 mM
KCl, and 5 mM MgCl2. To ensure that all of the buffer solution in the microdevice

is replaced by the protein solution, we chose a volume of the protein solution that
was 50 times larger than the volume in the microdevice. During the filling process
of the microdevice, the entire solution was rapidly injected (in 5 s) to prevent
protein accumulation on the membrane.

For the generation of the fluorescence images, we used the following equip-
ment: Olympus IX-81 inverted microscope equipped with an Andor Revolution
XD spinning disk system with fluorescence recovery after photobleaching and
photoactivation (FRAPPA), illumination and detection system Andor Revolution
and Yokogawa CSU X1, electron multiplying charge coupled device (EM-CCD)
Andor iXon X3 DU897 camera, motorized x–y stage and a z-piezo stage, using
a 20× objective (UPlansApo, numerical aperture 0.85, oil immersion). Imaging
of MinD-Cy3 and MinE-Cy5 was performed with laser spectral lines at 561 and
640 nm, respectively, and we further used a 617/73 band-pass filter as well as
a 690 long-pass filter. We imaged several uniformly sized regions at intervals of
30 or 60 s along the lateral length of the wedge setup. To exclude membrane
imperfections that may have arisen during preparation, we also imaged the
membrane using the spectral line at 491 nm and a 525/50 band-pass filter.

Image Sequence Processing. We processed the fluorescence images using
the following software packages: Andor iQ3 v3.1, ImageJ 1.52j, and custom-
written Matlab 2016a scripts. For better visualization, we additionally applied
background correction and filtering of artifacts. In detail, these were carried out
as follows: For the generation of the movies, each frame was first corrected for
fluorescence bleaching (maximum 20% decay of the intensity for long movies)
by normalizing to the mean intensity of the respective frame. Then, we generated
two different modifications of the images: First, we averaged out all transient
features (i.e., patterns) in the frames to obtain “static background” images which
we call Imstat. Second, we smoothed out the images, determined the aver-
age of all movie frames, and normalized the corresponding result with respect
to its maximum. This way, we obtained an “illumination correction” image,
Imillum. In the final step, each frameImmoviewas corrected according to
the rule Imcorrected= (Immovie− Imstat)/Imillum. On one
hand, this ensures that irregularities in each image are suppressed, and, on the
other hand, the intensity amplitudes at the edges become comparable with the
values at the center of the image.

Data, Materials, and Software Availability. All study data are included
in the article and/or supporting information. The simulation file and addi-
tional codes are publicly available on GitHub https://github.com/leshflash/
multiscale-patterns (51). Raw data of the experimental setup are publicly avail-
able on Zenodo https://zenodo.org/record/6915223 (52).
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