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Abstract

An important problem in reinforcement learning is the exploration-exploitation dilemma. Es-
pecially for environments with sparse or misleading rewards it has proven difficult to construct
a good exploration strategy. For discrete domains good exploration strategies have been de-
vised, but are often nontrivial to implement on more complex domains with continuous states
and/or actions.

In this work, a novel persistent and directed exploration framework is developed, called Smart
Start. Usually, a reinforcement learning agent executes its learned policy with some explo-
ration strategy from the start until the end of an episode, which we call “normal” learning.
The idea of Smart Start is to split a reinforcement learning episode in two parts, the Smart
Start phase and the “normal” learning phase. The initial Smart Start phase guides the agent
to a region in which the agent expects to learn the most. The region is constructed using
previous experiences and the guiding is done using a model-based planning or trajectory
optimization method. When the agent arrives at the region, it continues its “normal” rein-
forcement learning. This approach leaves the performance of the used reinforcement learning
algorithm unchanged, but augments it with persistent and directed exploration.

The Smart Start framework was evaluated using three reinforcement learning algorithms,
a simple model-based reinforcement learning algorithm (MBRL), R-max and Q-Learning
with ε-greedy, Boltzmann and UCB1 exploration. The evaluation was done on four discrete
gridworld environments. Three environments with sparse rewards and one with misleading
rewards. We showed that the performance of Q-Learning with Smart Start is comparable
to R-max, which performs near optimal in the used scenarios. The MBRL algorithm with
Smart Start is even able to outperform R-max in some of the problems. We show that Smart
Start is a good framework for exploration that can be incorporated with any reinforcement
learning algorithm.
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Chapter 1

Introduction

Many problems involve optimization over time, ranging from controlling heating systems to
playing a game of backgammon. These problems involve sequential decision making and
are often modeled as Markov Decision Processes [1]. A lot of problems can be solved by
designing a controller, this often requires a model of the system involved in the problem. But
for problems where no model is available or the design of a controller is nontrivial a different
solution is necessary.

Reinforcement learning [2] is concerned with solving sequential decision making problems.
In reinforcement learning an agent learns through interaction with its environment. The
environment tells the agent how well it is doing by giving it some reward signal. Based on
this reward feedback the agent tries to find the solution that yields the highest accumulated
reward signal over time.

We will illustrate the reinforcement learning problem with a simple example. Imagine a
completely dark room with a robot in it. The goal of the robot is to learn to find the exit,
starting from its charging station randomly placed in the room. Since it is completely dark
it is not easy to find the exit. When the robot executes an action and traverses to the next
state a supervisor gives the robot a positive reward if it was moving closer to the exit and a
negative reward for moving further away. Based on this reward signal the robot learns that
moving closer to the exit is good and moving away is bad. At the end of the day the robot
returns to its starting position to recharge. The next day it can use the previously learned
knowledge to quickly continue with its search. This is called an episodic problem, since every
day is a new episode.

In order to learn a “good” solution the agent has to know what “good” is by experiencing
high and low rewards. To do so, the agent has to find a proper balance between exploiting
its current best solution and exploring new options for a better solution. This is called the
exploration-exploitation dilemma [3]. Too much exploration may result in a lower accumulated
reward or incredibly long learning time because the agent spends most of its time in low-reward
or irrelevant parts of the state space. Too little exploration may result in a solution that is
suboptimal as the agent stopped searching before it neared optimality. A good balance of
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2 Introduction

the exploration-exploitation trade-off requires an efficient exploration strategy. Developing
an efficient exploration strategy has proven to be a difficult task.
For environments with sparse or misleading rewards it is even more difficult to design a
good exploration strategy. In an environment with sparse rewards the agent often takes
a long time before finding any useful rewards, greatly increasing the learning time if no
efficient exploration strategy is used. Misleading rewards lead the agent away from the optimal
solution, resulting in a suboptimal solution. These problems require a persistent and directed
exploration strategy to find the optimal solution.
To illustrate the difficulty with sparse rewards, we will use the example of the robot in the
dark room. This time though, the robot does not receive a positive nor negative reward for
moving closer or further away from the goal, respectively. Instead, the robot only receives
a reward for finding the exit. After spending a day searching around, the robot returns to
its charging station. As long as the robot does not find the exit, it does not learn anything,
except that nothing it tried resulted in finding the exit. Every day the robot starts with the
same knowledge about the problem as the first day and often explores the same areas over
and over again, which makes the search highly inefficient. For the misleading reward case,
take the same dark room. But this time, the agent is attracted to an area in which a small
positive reward is given to the agent. There is a high probability the agent finds this area
before the exit, i.e., the agent almost certainly finds this area before it finds the exit. The
reward for finding the area is a lot lower than the reward for reaching the exit, but the agent
does not know what the rewards are until it finds them. What will happen is that the agent
learns that this area is good to go to, since it does not know it can achieve a higher reward
when reaching the exit. Therefore, it will go to the low reward area and stay there. To get
out of this suboptimal solution, the agent needs a persistent and directed exploration strategy
to drive it away and search for a better solution.
The goal of this thesis is to develop a general exploration framework for reinforcement learn-
ing problems with sparse or misleading rewards. To create a general strategy, the framework
should not be limited to specific reinforcement learning algorithms or exploration strategies.
Furthermore, the framework should be compatible for domains with discrete and/or contin-
uous states and actions.

1-1 Related Work

Different exploration strategies have been proposed over the years. We can divide these
exploration strategies in two groups: undirected and directed exploration [4].
Undirected exploration uses some form of randomness as exploration strategy. One well known
method is ε-greedy [5], which has a small probability of executing a random explorative action.
Boltzmann exploration chooses actions according to a probability distribution constructed
over the available actions, based on the utility of an action. For continuous actions, Gaussian
noise is often added to the control signal [6]. For environments in which being greedy is
optimal, the performance of undirected exploration is often sufficient. But in environments
with sparse of delayed rewards, these methods can struggle to find a good solution.
Directed exploration utilizes knowledge about the learning process to try and achieve more ef-
ficient exploration. Count-based exploration [4, 7, 8] keeps track of the frequency state-action

Bart Keulen Master of Science Thesis



1-1 Related Work 3

pairs have been executed and derives an exploration bonus from these visitation counts. Other
examples of directed exploration strategies are error-based exploration [9, 10] and recency-
based exploration [4, 11]. In multi-armed bandit problems [12] a near optimal method exists
for choosing an action, called UCB1 [12]. UCB1 constructs an upper confidence bound ac-
cording to Hoeffding’s inequality [13], which ensures the regret rate grows within a constant
factor of the optimal regret rate [12]. The UCB1 algorithm has been converted to be compat-
ible with Markov Decision Processes [14]. Often, directed exploration derives an exploration
bonus from a learned model. For example, the model-error or model-uncertainty can be used
because they indicate which areas require more information to improve the model.

In the directed exploration methods described above, the exploration bonus is often imple-
mented in one of the following two ways. The first implementation is valid for methods using
a policy based on the utility of actions, e.g., value function methods [2]. For each action, the
utility is updated with the exploration bonus and the policy chooses an action greedily with
respect to the updated utilities. An example with count-based exploration can be found in
Thrun [4]. These methods only look at the current time-step and do not necessarily drive
the agent to areas far away that require more exploration. The second implementation is
intrinsic motivation [15, 16]. In most intrinsically motivated reinforcement learning methods
a reshaped reward [17] is used, which is the combination of an extrinsic and intrinsic reward.
The extrinsic reward is the reward obtained from the environment and the intrinsic reward
is the exploration bonus. The agent learns using this modified reward and the policy will
be both explorative and exploitive. Examples with count-based exploration can be found in
Kolter and Ng [7] and Strehl and Littman [8]. A problem is that reward shaping can change
the optimal policy. Ng, Harada and Russel [17] showed that only potential-based reward
transformations leave the optimal policy unchanged.

In model-based reinforcement learning [18], the agent learns a model from previous expe-
riences. This model can for example be used for generating simulated experience or plan-
ning [19]. The model can also be used for improving the exploration. An example of such
an algorithm is R-max [20]. In R-max a transition model and reward function are learned
and subsequently used by a dynamic programming method to plan a policy. The rewards in
the reward function are replaced with bonus rewards for state-action pairs that have been
executed infrequently. These bonus rewards incentivize exploration for the concerned state-
action pairs. Other examples of methods that use a model-based approach are E3 [21] and
MBIE [11].

Model-based exploration works well for discrete environments of relatively small size. These
methods have been extended to continuous domains, often by discretization of the state space
or using simple feature approximations [22, 23]. For complex environments with continuous
state and/or action spaces it can be infeasible to learn a good model. Even planning for a
short horizon does often not perform well [24]. Model-free methods do not have this problem
and can be extended fairly easily to continuous domains using function approximation [2].
In Nagabandi et al. [25] a model-based approach is used with neural networks as function
approximation for the model, but only achieves minor results. A model-free method is required
after the model-based approach to achieve excellent performance.

Intrinsic motivation has become popular as an exploration strategy, because it can be used di-
rectly with model-free reinforcement learning. Examples are approximation of count-based [26,
27, 28, 29], information gain [30] or surprise-based [31] exploration bonus. Although these
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4 Introduction

methods perform better than simple undirected exploration strategies, they do have some
implications. The first one is reward shaping, which changes the optimal policy [17]. Another
issue is the continuously changing reward function the agent is using. The exploration bonus
changes continuously as new experiences are observed, which results in a longer convergence
time for the agent [11].

1-2 Contributions

The main contribution of this work is the development of a novel exploration framework,
called Smart Start. As a framework, Smart Start is not limited to specific reinforcement
learning algorithms or exploration strategies, but can be used in combination with the best
methods at hand. The idea of Smart Start is to split a reinforcement learning episode into
two parts, the Smart Start phase and the “normal” learning phase. In most reinforcement
learning problems, each episode starts at the same initial state or at a random initial state.
We will focus here on problems that start from the same initial state, s0, as this is more
realistic for physical systems. In “normal” reinforcement learning, the agent starts at s0 and
executes its policy, π, with some exploration strategy from s0 until the episode ends. With
Smart Start, the agent first determines the region in which it expects to learn the most. The
region is denoted by a single state, the Smart Start state sss. In other words, if the agent can
choose to start from any known state, sss is the state it believes to be most profitable to start
from. Subsequently a planning or trajectory optimization method is used to guide the agent
efficiently from s0 to sss. Once the agent is close to sss, the exploration policy π is executed
until the end of the episode.

We use the example of the robot in the dark room with sparse rewards for illustration. The
robot only receives a reward for reaching the exit. The first day, it has wandered around and
explored some part of the room. But instead of starting all over again from the beginning
the next day, the agent determines the most promising state to start exploring from. In this
case, where it expects to be the closest to the exit. This avoids searching potentially useless
areas. This state, the Smart Start state sss, is chosen from all previously seen states. After
determining sss, the agent is guided to sss based on the robots prior experience navigating
the room. Once the robot reached sss, it starts exploring again. So instead of starting to
explore from the charging station, the robot starts where it left of in previous episodes.

We evaluate the Smart Start framework for sparse and misleading rewards. The evaluation
is done on four discrete gridworld environments. Three environments are used for testing
the exploration performance and performance in the case of sparse rewards. The fourth
environment is used for evaluating the performance when misleading rewards are present.
Model-free and model-based reinforcement learning algorithms are used in combination with
Smart Start. Q-Learning [2] is used as model-free algorithm with three different exploration
strategies: ε-greedy, Boltzmann and UCB1. A simple model-based reinforcement learning
algorithm was implemented and compared with R-max [12]. The guiding was done using
Value Iteration [1]. We show that the performance of Q-Learning with Smart Start is similar
to R-max, even though R-max is one of the best known algorithms for these problems. Our
simple model-based reinforcement learning algorithm is even able to perform better than R-
max in some of the problems. Smart Start is applicable to continuous state and/or action
spaces as well.
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1-3 Thesis Outline 5

The source code is available on: https://github.com/BartKeulen/smartstart.

1-3 Thesis Outline

The thesis is structured as follows. In Chapter 2 preliminary information on reinforcement
learning and several exploration strategies is given. Chapter 3 presents the Smart Start frame-
work proposed in this thesis together with the implementation details using Q-Learning and
Value Iteration. The experimental setup, experiments and results are discussed in Chapter 4.
The final chapter, Chapter 6, presents the conclusions and recommendations for future work.
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Chapter 2

Reinforcement Learning & Exploration

Reinforcement learning solves sequential decision making problems [2]. This is done by
trial-and-error to gather experiences to learn from. An important aspect is the exploration-
exploitation dilemma [3]. This chapter will provide the background information on reinforce-
ment learning and various exploration strategies.

A few algorithms and exploration strategies will be discussed more thoroughly in this chapter.
These algorithms will be used later on in this thesis by the Smart Start framework and/or the
evaluation of Smart Start. The concerned algorithms are, Value Iteration, MBRL, Q-Learning
and R-max. The exploration strategies being discussed are ε-greedy, Boltzmann and UCB1.

The chapter is structured as follows. Section 2-1 will define the reinforcement learning problem
and notation. The most common methods for solving reinforcement learning problems try to
learn a value function, Section 2-2 discusses value function methods. An important part of
reinforcement learning is exploration, Section 2-3 presents several exploration strategies for
reinforcement learning. A discussion is given at the end of the chapter, in Section 2-4.

2-1 Reinforcement Learning

At each time-step t the agent receives a representation of the environments state st ∈ S and
a reward rt ∈ R, where S ∈ Rn is the set of possible states with arbitrary dimension n. At
each state st the agent selects an action at ∈ A(st), where A(st) ∈ Rm is the set of possible
actions in state st with arbitrary dimension m. As a result of performing action at the agent
receives the new modified state st+1 together with a reward rt+1. Figure 2-1 shows how an
agent interacts with its environment in a reinforcement learning problem.

In reinforcement learning the environment is modeled as a Markov decision process. A Markov
decision process [1] consists of a set of states S, set of actions A, transition probabilities for
each state-action-state triple P(st,at, st+1), and the expected reward associated with each
state-action pair R(st,at). The transition probability is defined as the probability to transfer
from state, st, under action, at, to state, st+1, and is defined as
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8 Reinforcement Learning & Exploration

Figure 2-1: Agent environment interaction in reinforcement learning. At time-step t the agent
receives a state st and reward rt from the environment and executes an action at in response.
The next time-step t+ 1 the environment emits a new state st+1 and reward rt+1. Source Barto
and Sutton [2].

P(s,a, s′) = Pr
[
st+1 = s′ | st = s,at = a

]
. (2-1)

The expected reward concerned with this transition is defined as

R(s,a) = E [rt+1 | st = s,at = a] . (2-2)

A Markov decision processes has the Markov property. A system is said to have the Markov
property if the current state st+1 only depends on the previous state st and action at. Which
means the current state contains the information of all previous state and actions pairs

Pr [st+1, rt+1 | st,at] = Pr [st+1, rt+1 | st,at, st−1,at−1, . . . , s0,a0] . (2-3)

The goal of the agent is to maximize the total accumulated reward, called the return R.
Beforehand the return is unknown to the agent, therefore the agent tries to estimate the total
reward it is going to receive. This estimate is called the expected return J = E [R]. The
simplest form uses the sum of rewards and is defined for problems in episodic setting with a
final time-step T . For clarity we will also use Tepisode instead of T later on in this thesis. For
time-step t the return is defined as

Rt = rt+1 + rt+2 + . . .+ rT =
T∑
k=0

rt+k+1. (2-4)

During each episode the agent tries to complete a task. The goal is to maximize the total
reward of each episode. An episode can be terminated before it reaches the final time-step T ,
this happens for example when the goal is reached before the final time-step T .

Next to an episodic setting we have a continuous setting. In the continuous setting the task
spans the whole life-time of the agent. Which means a final time-step of T = ∞, therefore
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2-2 Value Function Methods 9

we cannot use the sum of rewards as return. A widely used solution is the discounted return,
defined as

Rt = rt+1 + γrt+2 + γ2rt+3 + . . . =
∞∑
k=0

γkrt+k+1, (2-5)

where γ is the discount rate with a value 0 ≤ γ < 1. Note that when γ = 1 we would get
the sum of rewards with T = ∞. The discounted reward is often used in episodic problems
as well, since rewards obtained later in the episode have less influence on the action that is
currently executed.

The agent uses a policy π to select the actions. The policy π maps states to actions, i.e.
it tells you which action to take in a certain state. The policy can either be stochastic or
deterministic. A stochastic policy for state s is defined as the probability distribution

π(s,a) = Pr [at = a | st = s] ∀ a ∈ A(s), (2-6)

where
∑

a∈A(s) π(s,a) = 1. A deterministic policy for state s is defined as

a = π(s). (2-7)

2-2 Value Function Methods

Most reinforcement learning methods learn a value function. The value function estimates
the expected return the agent is going to receive from a state. Basically the value function
tells the agent how “good” a certain state or state-action pair is. Future rewards depend on
the policy being executed, hence the value function depends on the policy being used.

For a state s and policy π the value function using the discounted return is defined as

V π(s) = Eπ

[
T∑
k=0

γkrt+k+1 | st = s
]
, (2-8)

where Eπ[·] denotes the expected value when following policy π. The value function V (s) only
depends on the state s and is called the state-value function.

We can also estimate the expected return for state-action pairs, i.e. taking action a in state
s and following policy π

Qπ(s,a) = Eπ

[
T∑
k=0

γkrt+k+1 | st = s,at = a
]
. (2-9)

Q(s,a) is called the action-value function.
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10 Reinforcement Learning & Exploration

With value function methods the agent tries to learn the value function from real experiences.
The policy is subsequently derived from the value function. To see how the value function
is estimated from experiences we first have to introduce an important property of the value
function, which is the Bellman equation [1] and is defined as follows

V π(s) = Eπ [Rt | st = s]
=

∑
a∈A(s)

π(s,a)
∑
s′

P(s,a, s′)
[
R(s,a) + γV π(s′)

]
. (2-10)

Equation (2-10) is the Bellman equation for V π. For Qπ the following Bellman equation is
obtained

Qπ(s,a) =
∑
s′

P(s,a, s′)
[
R(s,a) + γV π(s′)

]
. (2-11)

The recursive nature of the Bellman equation gives rise to some interesting properties. From
Equations (2-10) and (2-11) we can see that the value function has to be consistent with
the policy. So when we have an optimal policy, the value function is optimal as well. The
same holds the other way around. We can now write down an equation for the optimal value
function called the Bellman optimality equation [1]. The Bellman optimality equation for the
state- and action-value functions are defined as

V ∗(s) = max
a∈A(s)

∑
s′

P(s,a, s′)
[
R(s,a) + γV ∗(s′)

]
. (2-12)

Q∗(s,a) =
∑
s′

P(s,a, s′)
[
R(s,a) + γ max

a′∈A(s′)
Q∗(s′,a′)

]
. (2-13)

Where the ∗ denotes optimality. Value function methods estimate the value function using
the properties described above. Subsequently they derive the policy from the value function.
Three main methods exist for solving this problem; dynamic programming, Monte Carlo
methods and temporal difference methods. Dynamic programming assumes full knowledge
of the environment, i.e., P and R are available to the agent. Monte Carlo methods and
temporal difference methods do not need a model and estimate the value function from real
experiences. The next two sections discuss dynamic programming and temporal difference
methods.

2-2-1 Dynamic Programming

Dynamic programming [1] requires full knowledge of the environment. Here, full knowledge
means that the transition model P and reward function R are known. No real experience is
required when solving the problem using dynamic programming. Dynamic programming is
often considered a planning method, because the model is known and no real experience is
required.

Bart Keulen Master of Science Thesis



2-2 Value Function Methods 11

Dynamic programming consists of two parts, policy evaluation and policy improvement. Pol-
icy evaluation evaluates the current policy by approximating the value function V π. This
is done by iteratively updating the approximation of V π using the Bellman equation (2-10).
During each iteration k, the agent updates the value function Vk for each state s ∈ S as
follows

Vk+1(s) =
∑

a∈A(s)
π(s,a)

∑
s′

P(s,a, s′)
[
R(s,a) + γVk(s′)

]
. (2-14)

For k → ∞ the sequence Vk will converge to V π. After finding the value function V π we
can subsequently use it to obtain an improved policy π′. For each state s we can evaluate
which action a ∈ A(s) results in the highest value function value in the next state s′. We can
compare the value function of each action using the Bellman equation for the action-value
function (2-11). Since the value function is consistent with the policy we can say the following

Qπ
′(s, π′(s)) ≥ V π(s). (2-15)

This means that the we can always find a new policy, π′, that is better or as good as the
current policy, π, in state s. From the action-value function Q we can derive the new policy
for all states s ∈ S

π′(s) = arg max
a∈A(s)

Qπ(s,a)

= arg max
a∈A(s)

∑
s′

P(s,a, s′)
[
R(s,a) + γV π(s′)

]
.

(2-16)

The new policy π′ can be evaluated using the policy evaluation scheme described in Equation
(2-14). Following the evaluation step the policy can be improved again. This cycle of policy
evaluation and policy improvement is repeated until the policy has converged, i.e., the policy
and value function do not change anymore.

Value Iteration [1] is a dynamic programming algorithm that performs a single iteration
during the policy evaluation step instead of iterating until the value function converged. This
enables the algorithm to combine the policy evaluation and improvement step resulting in the
following update

Vk+1(s) = max
a∈A(s)

∑
s′

P(s,a, s′)
[
R(s,a) + γVk(s′)

]
∀ s ∈ S. (2-17)

The full Value Iteration algorithm is given in Algorithm 1. A termination condition has to
be given to the algorithm. When the value function does not change more then a threshold θ
we say the algorithm has converged, where θ is a small positive number that has to be chosen
accordingly. The optimization is terminated when the value function does not converge within
a maximum number of iterations. The maximum number of iterations has to be chosen by
the user.
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12 Reinforcement Learning & Exploration

Algorithm 1 Value Iteration
Initialize V arbitrarily for all states s ∈ S

repeat
∆ = 0
for s ∈ S do

v = Vi(s)
Vi+1(s) = max

a∈A(s)

∑
s′∈S P(s,a, s′) [R(s,a) + γVi(s′)]

∆ = max (∆, |v − Vi(s)|)
until ∆ < θ (small positive number)

// Output deterministic policy π
π(s) = arg max

a∈A(s)

∑
s′∈S P(s,a, s′) [R(s,a) + γV (s′)]

2-2-2 Model-Based Reinforcement Learning

Reinforcement learning does not require any knowledge of the environment. When the full
model of the environment is known, we are not solving a reinforcement learning problem
anymore but a planning problem, e.g. dynamic programming. Instead we can use gathered
data to learn a model and use the model to improve our learning process, called model-based
reinforcement learning [18]. Often the model is used for planning or generating simulated
experience, e.g., the Dyna architecture [19]. When the agent has learned an accurate model
it does not need to gather new experiences to improve its policy, instead the model can be
used directly by a planning method.

For discrete environments a transition model and reward function can be constructed easily.
These functions are learned by keeping track of visitation counts of the number of times
an action a has been executed in state s, denoted by C(s,a), and of the number of times
executing action a in state s resulted in traversing to state s′, denoted by C(s,a, s′). For the
reward function a sum of rewards for each state-action pair is kept, Rsum(s,a) =

∑
R(s,a).

We can now construct the transition model and reward function

P(s,a, s′) = C(s,a, s′)
C(s,a) , (2-18)

R(s,a) = Rsum(s,a)
C(s,a) . (2-19)

The learned transition model and reward function can for example be used by a dynamic
programming method, e.g., Value Iteration, to construct a policy. An implementation of a
simple model-based reinforcement learning algorithm is given in Algorithm 2. We will refer
to this algorithm as MBRL.
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2-2 Value Function Methods 13

Algorithm 2 MBRL
1: Initialize policy π randomly
2:
3: for each episode do
4: Initialize s0 and t = 0
5: repeat
6: Choose at according to π and some exploration strategy (e.g., ε-greedy)
7: Take action at and observe st+1 and rt+1
8: Increment C(st), C(st,at) and C(st,at, st+1)
9: Update Rsum(st,at) = Rsum(st,at) + rt+1

10:
11: // Update transition model and reward function
12: R(st,at) = Rsum(st,at)

C(st,at)
13: for all s′ ∈ C(s,a, ·) do
14: P(s,a, s′) = C(s,a,s′)

C(s,a)

15:
16: // Obtain policy using value iteration
17: π = Value Iteration(P,R) (See Algorithm 1)
18:
19: t← t+ 1
20: until st is terminal or t = Tepisode

2-2-3 Temporal Difference

Temporal difference methods do not require any knowledge about the environment. Temporal
difference methods estimate the value function using experiences obtained in the environment.
The value function tries to approximate the expected return. Which can be seen as a mini-
mization problem, where the objective is to minimize the error between the expected return
and the value function. This can be written as an incremental update rule

Vt+1(st) = Vt(st) + α [Rt − Vt(st)] , (2-20)

where α is a positive learning rate. The return Rt is not available until the end of an episode.
We can estimate the return Rt using Equation (2-10)

V π(s) = Eπ [Rt | st = s] = Eπ [rt+1 + γV π(st+1) | st = s] . (2-21)

If we substitute Equation (2-21) in Equation (2-20) we get the simplest form of temporal
difference learning, called TD(0)

Vt+1(st) = Vt(st) + α [rt+1 + γVt(st+1)− Vt(st)] , (2-22)

The first two terms between the square brackets, rt+1 + γV (st+1), is called the target. All
the terms between the brackets is called the temporal difference error, δt = rt+1 +γVt(st+1)−
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14 Reinforcement Learning & Exploration

Vt(st). The update is based on an estimate of successor states, this is called bootstrapping.
Bootstrapping is seen in many reinforcement learning algorithms, e.g., dynamic programming
and temporal difference methods.

Q-Learning [2] is a commonly used method for control in discrete reinforcement learning
problems. For control the action-value function is used instead of the state-value function.
The update used in Q-Learning is defined as

Qt(st,at) = Qt(st,at) + α

[
rt+1 + γ max

a′∈A(st+1)
Qt(st+1,a′)−Qt(st,at)

]
. (2-23)

In the update the value of the next state is bootstrapped. For TD(0) this is just the state-
value function, but when used for control we have an action-value for each action in the
next state. Q-Learning choses the maximum value for bootstrapping, this is called off-policy
learning. A different approach can be to use the policy to determine which action-value is
used for bootstrapping. This is called on-policy learning, e.g., SARSA [2] is the on-policy
version of Q-Learning and uses Qt(st+1, π(st+1)) for bootstrapping. A policy can easily be
derived from the action-value function according to

π(s) = arg max
a∈A(s)

Q(s,a). (2-24)

The full Q-Learning algorithm is given in Algorithm 3.

Algorithm 3 Q-Learning
Initialize Q arbitrarily for all s ∈ S and a ∈ A(s)

for each episode do
Initialize s0 and t = 0
repeat

Choose at according to some policy π derived from Q (e.g., ε-greedy)
Take action at and observe st+1 and rt+1

Q(st,at) = Q(st,at) + α

[
rt+1 + γ max

a′∈A(st+1)
Q(st+1,a′)−Q(st,at)

]
t← t+ 1

until st is terminal or t = Tepisode

2-3 Exploration Strategies

Reinforcement learning agents learn from experiences. In order to evaluate if a certain policy
is good the agent has to try out different policies. By just performing the same policy over
and over the agent will never learn, therefore exploration is needed. Exploration is an import
aspect of reinforcement learning. For exploration, you have to execute actions that may
result in poor rewards. Therefore a typical reinforcement learning agent alternates between
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2-3 Exploration Strategies 15

exploiting its current best solution and exploring for a better solution. This is known as the
exploration-exploitation dilemma [3].

The exploration strategy used has a huge influence on the sample efficiency of the learning
process. With a conservative exploration strategy the agent will always see the same states
and not learn a lot. On the other hand, a too aggressive exploration strategy will visit new
states all the time, but does not give the agent enough time to learn from them. All these
factors have to be weighted in the exploration strategy and each problem may require a
different exploration strategy, making it a difficult but important problem.

A lot of exploration strategies exist. This section will discuss some different exploration
strategies. Exploration strategies can be divided in two groups, undirected and directed
exploration [4], which will be discussed in Sections 2-3-1 and 2-3-2 respectively. Section 2-3-3
discusses model-based exploration.

2-3-1 Undirected Exploration

Undirected exploration uses a random process for exploration. Undirected exploration does
not use any of the knowledge obtained during the learning process to improve the exploration.
The idea is that given enough time the random process will explore throughout the state
space. However, this may take a large amount of time, which can grow exponentially with
the number of states [32]. The most commonly known methods for undirected exploration
are ε-greedy and Boltzmann exploration.

ε-greedy is one of the most used exploration strategies. In ε-greedy there is an ε chance
the agent will perform a random action and a 1 − ε chance of following the current policy.
A larger value for ε means more random actions are being executed, hence more exploration.
Whereas a lower value for ε results in more exploitation.

Instead of using a fixed ε for the whole training one can start with a high value for ε and
gradually reduce it during the learning process. This results in more exploration in the
beginning of the learning process and more exploitation at the end.

Boltzmann exploration creates a probability distribution over the possible actions. Each
action gets assigned a probability based on the associated value function. An action is then
sampled according to the probability distribution. The probability for each action is calculated
using the soft-max function

π(s,a) = eQ(s,a)/τ∑
a′∈A(s)

eQ(s,a′)/τ (2-25)

The parameter τ , called the temperature, is used to vary the amount of exploration. When
τ →∞ the distribution becomes more uniform, resulting in a lot of randomness (exploration).
For τ → 0 the difference between probabilities becomes more extreme resulting in a greedy
policy (exploitation). The parameter τ can be reduced gradually during the learning process
to decrease the amount of exploration.
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16 Reinforcement Learning & Exploration

2-3-2 Directed Exploration

Directed exploration uses knowledge about the learning process to improve exploration. The
knowledge is gained through previous experiences. Where undirected exploration only looks
at the current time-step, directed exploration utilizes the history of the agent to make better
decisions.

UCB1 [12] is a directed exploration method. The UCB1 algorithm, developed for multi-
armed bandit problems, uses the upper confidence bound (UCB) to make the most informed
decision on what action to choose. A more detailed explanation of the UCB1 algorithm is
given in Section 3-2. Kocsis and Szepesvári transformed the algorithm to work with Monte
Carlo Planning, called UCT [14]. The UCT algorithm can be used in combination with
reinforcement learning problems, the UCT policy is described by the following equation

π(s) = arg max
a∈A(s)

[
Q(s,a) + 2Cp

√
log(C(s))
C(s,a)

]
, (2-26)

where Cp is an appropriate constant based on the rewards in the environment. C(s) and
C(s,a) are the visitation counts, where C(s) is the number of times state s has been visited
and C(s,a) the number of times action a has been executed in state s. For C(s) = 0, the
exploration bonus is defined to be 0. And for C(s,a) = 0 the exploration bonus is ∞. The
UCB1 algorithm acts according to an optimistic guess of the value function, this is called
“optimism in the face of uncertainty”. The UCB1 algorithm gives a bonus for rarely visited
state-action pairs. But as C(s,a) increases, the bonus quickly converges to zero. This ensures
the agent stops exploring suboptimal actions once it knows enough about those actions.

2-3-3 Model-Based Exploration

Model-based reinforcement learning can improve the exploration by exploiting the learned
model for generating exploration policies. Often these policies drive the agent to areas where
the model uncertainty is high, in order to learn an accurate model as fast as possible.

R-MAX [20] is such a model-based reinforcement learning algorithm. A model of the envi-
ronment is learned, which is subsequently used in combination with Value Iteration to plan
a policy.

The transition model and reward function are learned according to Equations (2-18) and (2-19)
respectively. For stochastic environments a good transition model for a state-pair cannot be
constructed using a single sample. Therefore R-max requires the count C(s,a) ≥ m for ar-
bitrary m ∈ R. This threshold ensures that the agent can construct a good model before it
uses the model for planning and it makes the agent explore the state space more thoroughly.
R-max also utilizes uncertainty in the face of optimism. This is done by introducing an ab-
sorbing state sr. Unknown transitions, i.e., C(s,a) < m, lead to the absorbing state and have
a transition probability P (s,a, sr) = 1 and a reward function R(s,a) = Rmax. This results
in exploring state-action pairs at least m times before exploiting. The full algorithm can be
found in Algorithm 4.
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2-3 Exploration Strategies 17

Algorithm 4 R-max
1: Initialize policy π randomly
2: Initialize Rmax and absorbing state sr
3:
4: for a ∈ A(sr) do
5: R(sr,a) = Rmax
6: P(sr,a, sr) = 1
7:
8: for each episode do
9: Initialize s0 and t = 0

10: repeat
11: Choose at = π(st)
12: Take action at and observe st+1 and rt+1
13: Increment C(st,at) and C(st,at, st+1)
14: Update Rsum(st,at) = Rsum(st,at) + rt+1
15:
16: if C(st,at) ≥ m then
17: // Known state, update model
18: R(st,at) = Rsum(st,at)

C(st,at)
19: for all s′ ∈ C(st,at, ·) do
20: P(st,at, s′) = C(st,at,s′)

C(st,at)

21: else
22: // Unknown state, set optimistic transition
23: R(st,at) = Rmax
24: P(st,at, sr) = 1
25:
26: Update policy
27: π = ValueIteration(P,R) (See Algorithm 1)
28:
29: t← t+ 1
30: until st is terminal or t = Tepisode
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18 Reinforcement Learning & Exploration

2-4 Discussion

Chapter 2 presented the general theory behind reinforcement learning [2] and several methods
for solving the reinforcement learning problem. When a model of the environment is available
dynamic programming [1] can be used to find an optimal policy, dynamic programming is
often considered to be a planning method. Without a model, temporal difference methods
can be used. Q-Learning [2] is one of the most well known reinforcement learning method
that uses temporal difference learning.

An important characteristic of reinforcement learning is the exploration-exploitation dilemma
[3]. Exploration strategies are often divided in two groups, undirected and direct explo-
ration [4]. Undirected exploration uses randomness as exploration strategy, e.g., ε-greedy
and Boltzmann exploration. Directed exploration uses knowledge about the learning process
to improve exploration. UCB1 [12] gives an exploration bonus for actions that have been
executed infrequently. UCB1 falls under the “optimism in the face of uncertainty” principle.
Another group of exploration strategies is model-based exploration [18], which is part of the
directed exploration group. A model of the environment is constructed and used to determine
which areas need more exploration, for example based on the model error. R-max [20] is such
a model-based method.

A problem with most exploration strategies is that they only look at the current state for their
exploration policy and do not perform persistent exploration. ε-greedy has a small chance of
choosing a random exploratory action, UCB1 on the other hand adds an exploration bonus
for actions that have been executed infrequently. This mainly results in exploration close to
the current policy. UCB1 is smarter compared to ε-greedy in making the trade-off between
exploration and exploitation, because it uses knowledge about the learning process. But
for environments with sparse rewards UCB1 can get stuck in areas that have already been
explored thoroughly, this becomes clear if we look at the policy in Equation (2-26). The first
term Q will be zero as long as no reward has been received. The action chosen will therefore
depend solely on the second term. But C(s,a) will be equal for several or all actions most
of the time. This results in random walk behavior, just like with undirected exploration.
This suggests that more intelligent exploration methods are required. R-max solves this
problem by learning a model and reward function of the environment. The reward function is
constructed in such a way that the agent is guided to regions that need more exploration. But
R-max does need to learn a global model that is accurate enough to be used by a planning
method. For small discrete environments this is trivial but for more complex environments
with continuous state spaces this is nontrivial [24, 25]. Due to modeling errors, model-
based methods often achieve suboptimal performance compared to model-free methods [25].
Furthermore, R-max exhaustively explores the full state space and tries each state-action
pair a minimum number of times. This exhaustive search can be infeasible or undesirable,
especially for environments with large state and/or action spaces.

This suggests a model-free method is wanted for achieving optimal results, whereas the ex-
ploration and sample-efficiency of model-based reinforcement learning is desired. The next
chapter introduce the main contribution of this work, a directed and persistent exploration
framework called Smart Start. The Smart Start framework can be incorporated with any
reinforcement learning algorithm to give it directed and persistent exploration.
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Chapter 3

Smart Start

Sections 2-3 and 2-4 discussed several different exploration strategies and issues encountered
in complex domains. We will now introduce a novel framework for more efficient exploration
called Smart Start. Smart Start is developed for episodic problems that start each episode
from the same initial state and have a maximum number of time-steps, denoted by Tepisode.
Smart Start tries to solve the problem in a different way and is not a self contained exploration
strategy but an addition that can be used in combination with other exploration strategies.
Smart Start can be combined with any reinforcement learning algorithm and only guides the
agent to a region from which it expects to learn the most new information. This region is
denoted by a single state, called the Smart Start state. Therefore Smart Start does not alter
the performance of the reinforcement learning algorithm it is used with, but it does give the
algorithm more persistent and directed exploration.

There are different ways for choosing the Smart Start state, depending on how you define
a good region for exploration or what method you use for choosing the Smart Start state
itself. For getting to the Smart Start state there are also several methods, e.g., trajectory
replay, trajectory optimization or setting up a separate reinforcement learning problem. In
this chapter we will discuss the implementation for discrete systems. We use the UCB1
algorithm for choosing the Smart Start state and dynamic programming for the guiding to
the Smart Start state.

First the Smart Start method is introduced in Section 3-1. Smart Start can be divided in
two parts. The first part is determining the Smart Start state, i.e., the state we want to start
exploring from. The Smart Start state will be discussed in Section 3-2. The second part is
guiding the agent to the Smart Start state, discussed in Section 3-3. Section 3-4-1 describes
an how a full algorithm with Smart Start looks and gives an example with Q-Learning and
Value Iteration. Finally, we end this chapter with a discussion in Section 3-5.
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3-1 Method

For reinforcement learning problems with an episodic setting, the reinforcement learning agent
executes its learned policy together with some exploration strategy from the start until the
end of an episode. This often results in staying close to the current policy and exploring
locally around it, lacking persistency in its exploration. An episode using Smart Start has
a different start of an episode. Instead the agent determines a region where it expects to
gain the most information. The region is denoted by a single state, called the Smart Start
state, sss. Subsequently, the agent is guided to the Smart Start state. There are several
choices on how to get to the Smart Start state. For example, do you want to get there as
fast as possible, without considering regions of low rewards, or do you want to have a high
probability of reaching the Smart Start state. A trajectory optimization strategy has to be
chosen accordingly, depending on what you want to achieve. Once the agent is in the region
of the Smart Start state the learning continues by executing the agent’s learned policy and
some exploration strategy, e.g., ε-greedy or UCB1. In a lot of problems neighboring states
are similar, it may also be difficult to get exactly to the Smart Start state, for example in
continuous state spaces you never visit exactly the same state twice. Therefore it is sufficient
to get near the Smart Start state instead of exactly in it, this does require a metric that
describes the relation between states.
Figure 3-1 shows a flow chart for normal reinforcement learning versus reinforcement learning
with Smart Start. In normal reinforcement learning, the agent begins in the initial state
s0 and executes its learned policy using some exploration strategy, called πexplore, until the
episode ends in a terminal state sterm or when Tepisode is reached. With Smart Start, the agent
first determines the Smart Start state sss and tries to find a policy πss to sss using previous
experiences. The policy πss is executed until the agent is close to the sss and subsequently
the agent executes the learned policy πexplore until the episode ends in a terminal state sterm
or when Tepisode is reached.
For environments with sparse or misleading rewards most normal learning reinforcement learn-
ing agents spend a lot of time re-exploring parts of the state space they have already visited
or the agent is not persistent enough to explore the state space sufficiently. Smart Start on
the other hand uses the information at hand to determine what region is expected to yield
the most new information and goes to this region as reliable and quickly as possible. Smart
Start is used as extension for reinforcement learning algorithms, therefore any algorithm that
is augmented with Smart Start retains its learning performance.

3-2 Smart Start State

The first part of the Smart Start method is determining the Smart Start state. We choose
a Smart Start state that is reachable. We define a state reachable when it has been visited
at least once by the agent. Therefore, Smart Start can not be used in the first episode,
because the agent needs to collect data about the environment first. The number of states
grows exponentially in the number of dimensions, which is commonly known as the curse of
dimensionality [1]. For many large problems, the number of states the agent can visit during
its lifetime is very small compared to all the states in state space. By limiting the set of
possible Smart Start states to visited states only, Smart Start does not suffer from the curse
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Figure 3-1: Flow chart for a reinforcement learning episode with and without Smart Start. Solid
lines depict how the agent travels through the chart. Dashed lines indicate fdata flows, e.g., a
state that is being stored in the buffer. States are denote by a red circle. Purple rectangles
display steps within each algorithm. Rectangles with a thick border represent the steps in which
the agent is learning. The green striped rectangle depicts the buffer.
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of dimensionality. We keep track of visited states in a buffer D = {s0, s1, . . .}, comparable to
the replay buffer [33] used in for example DQN [34] and DDPG [6]. All the states in the buffer
automatically qualify as possible Smart Start states. The buffer itself is of finite size and uses
some strategy for replacing states in the buffer, e.g., first-in first-out (FIFO) or distribution
based experience retention [35].

The goal of a reinforcement learning agent is to maximize the return, so naturally we want the
Smart Start state to have a high probability of maximizing the return. But more importantly,
we want to explore the state space as quickly and efficiently as possible in order to find the
optimal solution as fast as possible. There are many ways for choosing the Smart Start state
and a balance between these two criteria has to be found, maximizing the return but at
the same time exploring sufficiently in order to obtain the best result. Multi-armed bandit
problems [12] are concerned with these types of problems. The Smart Start state selection
can be modeled as a multi-armed bandit problem, for which lots of algorithms exist that have
a near optimal balance between exploration and exploitation.

3-2-1 Multi-Armed Bandit Problem

The name multi-armed bandit, also known as a K-armed bandit, comes from gambling on
slot-machines, where the goal is to maximize the total return. Each turn the user has to choose
which lever to pull (action) out of K different slot-machines that results in the highest pay-off
(reward). The reward is a random variables X(i) ∈ [0, 1] for i = 1, . . . ,K and distributed
according to an unknown distribution with expectation µ(i) = E[X(i)]. Each turn t ≥ 1 an
action i is executed and a random variable Xt(i) is obtained. Successive plays of machine i
yield independent, identically distributed rewards X1(i), X2(i), . . . , Xt(i). A policy π tells us
which action to execute at time t based on the sequence of actions and pay-offs. Let Tn(i)
be the number of times machine i has been played by policy π during the first n plays. The
expected regret of a policy π after n plays is defined as

Rn = µ∗n−
K∑
j=1

µ(j)E[Tn(j)], (3-1)

where µ∗ = maxi[µ(i)] for i = 1, . . . ,K. The goal is to find a policy that minimizes the
expected regret. Lai and Robbins [36] showed that for a large class of pay-off distributions
the regret cannot grow slower than O(lnn) for all policies.

The UCB1 algorithm [12] is an algorithm whose regret growth rate has been proven to be
within a constant factor of the best possible regret rate. The UCB1 algorithm calculates an
upper confidence bound for each action i consisting of two terms. The first term is the average
reward X̄Tn(i)(i) obtained for action i, we write X̄t(i) = X̄Tn(i)(i) for shorthand of notation.
The second term is a bias term. The bias is chosen according to Hoeffding’s inequality [13],
to ensure that the true expected reward falls within the upper confidence bound with high
probability. An action I is chosen according to the best upper confidence bound

It+1 = arg max
i

[
X̄t(i) + ct(i)

]
, (3-2)
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where It+1 denotes the action chosen at time-step t+ 1 and

ct(i) =

√√√√2 log
∑K
j=1 Tt(j)

Tt(i)
. (3-3)

Auer et al. [12] showed the probability of X̄t(i) being outside the upper confidence bound is
bounded according to

Pr
[
X̄t(i) ≥ µi + ct(i)

]
≤ t−4, (3-4)

Pr
[
X̄t(i) ≤ µi − ct(i)

]
≤ t−4. (3-5)

3-2-2 Discrete Smart Start State

In the Smart Start state selection we are looking for the best state s ∈ D to start exploring
from instead of what machine i to pull the lever from. We are interested in the return
obtained when starting from state s instead of the immediate reward in multi-armed bandit
problems. The first term in Equation 3-2 can be replaced by an estimate of the expected
return. When a state-value function is used, V (s) can be inserted directly instead of the
first term in Equation 3-2. For algorithms that use an action-value function we can use the
maximum action-value function maxa Q(s,a).

In multi-armed bandit problems, all the actions are independent of each other. For neighbor-
ing states in reinforcement learning problems this is often not the case and a metric is required
to determine how neighboring states are related. The uncertainty of the UCB1 bound is de-
termined by number of times machine i has been played, denoted by Ti(n). In the Smart
Start case, we want this uncertainty to capture the expected new information to gain from a
state. We assume that a state or region with a low visitation density has a high probability
of being close to unvisited states and therefore has a high probability of resulting in new
information. The visitation density of a region requires a metric to determine the relation
between states. In this thesis we have employed a simpler approximation and only look at
the visitation density of discrete states and not regions. The uncertainty can be determined
easily using the visitation counts C(s) for each visited state s.

We can now convert Equation (3-2) for selecting our Smart Start state

sss = arg max
s

[
max

a
Q(s,a) + css

√
log

∑
s∈S C(s)
C(s)

]
∀ s ∈ D. (3-6)

A constant css > 0 is introduced for varying the amount of exploration and exploitation
similar to the UCT algorithm [14] and has to be chosen appropriately. Often you want pure
exploration in the beginning of the learning process and avoid getting stuck in a suboptimal
solution due to misleading rewards for example. A large value for css will result in more
exploration. The value for css can be decreased during the learning process to shift from pure
exploration to a good balance between exploitation and exploration.

Master of Science Thesis Bart Keulen



24 Smart Start

We have shown how to determine the Smart Start state. The next part elaborates on how to
get the agent from the initial state s0 to the Smart Start state sss. The guiding can be done
in several ways, for example using trajectory replay or a model-based planning approach. The
next section discusses how the guiding can be done using dynamic programming.

3-3 Trajectory Optimization

In most reinforcement learning problems the agent cannot be reset to arbitrary states in
state space, e.g., a bipedal robot cannot start in the middle of a step. The second part of
the Smart Start algorithm is concerned with guiding the agent from the initial state s0 to
the Smart Start state sss. The Smart Start state is a state that has been visited before,
therefore we already have a trajectory to the Smart Start. The easiest way of getting to the
Smart Start state would be by replaying the trajectory. But this has certain implications.
For deterministic systems this would work, but not with stochastic systems. Another issue
might be the length of the trajectory. The trajectory can be a random walk containing a
lot of loops. After several iterations the trajectory to the Smart Start state may consist of
multiple concatenated random walk trajectories, resulting in an extremely long trajectory to
the Smart Start state. Which is undesirable since it decreases the sample efficiency.

The guiding to the Smart Start state can be seen as a trajectory optimization problem. The
trajectory optimization can be done while taking into account the environment, e.g., avoiding
regions with large penalties. In this thesis we have excluded environment characteristics in
the trajectory optimization. Instead, the goal here is to find a policy that results in the most
reliable and shortest path to the Smart Start state.

In this work we look at deterministic and stochastic environments with discrete state and
action spaces. For these type of environments a model-based approach can be implemented
easily and has near optimal performance. The next section discusses how the trajectory
optimization can be done using dynamic programming on a learned transition model and
reward function.

3-3-1 Transitioning to the Smart Start State using Dynamic Programming

The trajectory optimization problem can be seen as reinforcement learning problem on its
own. However it would not make sense to train a reinforcement learning agent to get to the
Smart Start state by gathering new real experiences. What we want is to use the knowledge
the agent has gathered to construct a policy to the Smart Start state. Here, we learn a model
and subsequently use it for planning. The goal here is to find the policy that has the highest
probability of reaching the Smart Start state. The planning is done using Value Iteration [1],
a discounted reward is used to get the most reliable and shortest path to the Smart Start
state.

The agent keeps track of visitation counts and learns a transition model in the same way as
the MBRL method, which was presented in Algorithm 2 in Section 2-2-2. We give a reward
for transitions to the Smart Start state according to
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R(s,a) =
{

1, if P(s,a, s′) > 0
0, otherwise

, (3-7)

using this reward function, all transitions that have a probability greater than zero for travers-
ing to the Smart Start state receive a reward. The reason for this, is that we are interested in
getting in the region of the Smart Start and not exactly in the Smart Start state. An optimal
policy to the Smart Start state can now be found using Value Iteration, we refer the reader
to Algorithm 1 in Section 2-2-1 for more details on the Value Iteration algorithm.

Algorithm 5 Smart Start Framework
1: Initialize buffer D and Agent
2:
3: for each episode do
4: Initialize s0 and t = 0
5: u ∼ U(0, 1)
6: if u ≤ η and |D| > 0 then
7: // Choose Smart Start state using upper confidence bound

8: sss = arg max
s

[
max

a
Q(s,a) + css

√
log |D|
C(s)

]
∀ s ∈ D

9:
10: // Obtain policy using trajectory optimization
11: πss = TrajOpt(D, s0, sss)
12:
13: // Execute Smart Start policy
14: repeat
15: Choose at = πss(st)
16: Take action at and observe st+1 and rt+1
17: Add (st, at, st+1, rt+1) to D
18: UpdateAgent(D)
19: t← t+ 1
20: until d(st, sss) < θ, st is terminal or t = Tepisode

21:
22: // Continue using learned policy and exploration strategy
23: if st is not terminal and t < Tepisode then
24: repeat
25: Choose at according to the Agent’s policy π and some exploration strategy
26: Take action at and observe st+1 and rt+1
27: Add (st, at, st+1, rt+1) to D
28: UpdateAgent(D)
29: t← t+ 1
30: until st is terminal or t = Tepisode
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3-4 Smart Start Algorithm

The pseudo-code of how the full Smart Start framework is given in Algorithm 5. This algo-
rithm can be used as template for implementing the Smart Start framework. We will discuss
some important points in the algorithm:

• The Agent is the reinforcement learning algorithm that is being augmented with Smart
Start.

• Instead of using Smart Start every episode it is only used in a certain percentage of
the episodes. On line 5 a random value is sampled from a uniform distribution, u
∼ U(0, 1). If u is below a certain threshold, η, Smart Start is used. Otherwise the
episode executes without Smart Start. The size of the buffer, |D|, also has to be larger
than zero, otherwise there are no states to choose a Smart Start state from.

• On line 8, the buffer size is used instead of the sum of visitation counts as in Equa-
tion (3-6). Note that the size of the buffer and the total count are equal, i.e., |D| =∑

s∈S C(s).

• The TrajOpt function has to be replaced with the trajectory optimization method
that you want to use to get to the Smart Start state.

• When the agent is within some distance θ from the Smart Start state, it continues
with executing its learned policy and some exploration strategy. The distance function
d(st, sss) has to be chosen according to the metric being used to describe the relation
between states.

• The update of the agent is done on lines 18 and 28, denoted by UpdateAgent.

• For on-policy algorithms line 18 should be removed. An example of an on-policy algo-
rithm is SARSA [2].

3-4-1 Q-Learning with Smart Start

With the components discussed in this chapter we can now construct an example of the Smart
Start algorithm. The pseudo-code of Q-Learning in combination with Smart Start is given
in Algorithm 6. In discrete domains, instead of using a buffer to store every experience we
can keep track of visitation counts for states and actions. The Smart Start framework can
be used in combination with different algorithms. An implementation of Smart Start with
the MBRL algorithm is given in Appendix A, the MBRL algorithm itself was presented in
Section 2-2-2.

3-4-2 Continuous Domains

So far we have shown how to implement Smart Start in domains with discrete state spaces.
For continuous state spaces a few modifications have to be made. This section will provide
directions on how the Smart Start framework can be implemented in continuous domains.
The framework has not been implemented or evaluated for continuous domains in this work.
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Algorithm 6 Q-Learning with Smart Start
1: Initialize Q(s,a) arbitrarily for all s ∈ S and a ∈ A(s)
2:
3: for each episode do
4: Initialize s0 and t = 0
5: u ∼ U(0, 1)
6: if u ≤ η and

∑
s∈S C(s) > 0 then

7: // Choose Smart Start state using upper confidence bound

8: sss = arg max
s

[
max

a
Q(s,a) + css

√
log
∑

s∈S C(s)
C(s)

]
∀ {s ∈ S : C(s) > 0}

9:
10: // Fit transition model and reward function
11: for all s,a do
12: if C(s,a) > 0 then
13: for all s′ ∈ C(s,a, ·) do
14: P(s,a, s′) = C(s,a,s′)

C(s,a)
15: if s′ = sss then
16: R(s,a) = 1
17: else
18: R(s,a) = 0
19:
20: // Obtain policy to sss using value iteration
21: πss = Value Iteration(P,R) (See Algorithm 1)
22:
23: // Execute Smart Start policy
24: repeat
25: Choose at = πss(st)
26: Take action at and observe st+1 and rt+1
27: Increment C(st), C(st,at) and C(st,at, st+1)
28: // Q-Learning update
29: Qt+1(st,at) = Qt(st,at) + α [rt+1 + γmaxa′ Q(st+1,a′)−Q(st,at)]
30: t← t+ 1
31: until st = sss, st is terminal or t = Tepisode

32:
33: // Continue using learned policy and exploration strategy
34: if st is not terminal and t < Tepisode then
35: repeat
36: Choose at according to some policy π derived from Q (e.g. ε-greedy)
37: Take action at and observe st+1 and rt+1
38: Increment C(st), C(st,at) and C(st,at, st+1)
39: // Q-Learning update
40: Qt+1(st,at) = Qt(st,at) + α [rt+1 + γmaxa′ Q(st+1,a′)−Q(st,at)]
41: t← t+ 1
42: until st is terminal or t = Tepisode
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The Smart Start state selection needs small modifications for the continuous domain. As
mentioned in Section 3-2, a metric is needed that tells us how states are related to each other.
In the implementation for discrete domains we did not use a metric and only looked at the
visitation counts of discrete states. Lets assume we have an enormous state space that is too
large to be fully explored. The current implementation would exhaustively search every single
state. A metric would tell us how states are related and allow us to search through regions
of states that are related. This gives the agent the ability to search the space more crudely.
Once it has a rough idea of how the state space looks and what regions look promising, the
metric can be altered to make the search finer and direct the agent to the most promising
regions.

The state visitation density can be estimated using kernel density estimation [37], where
the used kernel contains the metric. A commonly used kernel is the Gaussian kernel. An
implementation of the Smart Start state selection using kernel density estimation is given
in Appendix B. The bandwidth of the kernel can be modified to make the relation between
states cruder or finer.

The trajectory optimization part is less trivial to implement for continuous environments.
As mentioned before, model-based reinforcement learning methods cannot be converted to
continuous domains easily. Often, they are not able to learn a good solution because of the
poor quality of the learned model. The reason they fail is because the model often needs a
high accuracy to be used for planning or simulated experience. With Smart Start on the other
hand the model is not directly responsible for the learned policy. Instead, only a local model
around the trajectory from the initial state to the Smart Start state is required. Furthermore
the model does not have to be perfect, the agent only has to be brought close to the Smart
Start state.

One way is to use an approximate dynamic programming method, like fitted Value Itera-
tion [38]. But this still requires a good model to be used for planning to the Smart Start
state. A different solution is to use a trajectory optimization method, like iLQG [39]. The tra-
jectory optimization can be done online, also known as model-predictive control [40]. Levine
and Koltun [41, 42] used iLQG in their guided policy search algorithm. In subsequent work,
Levine and Abbeel [43] incorporated a learned model that is used by the iLQG trajectory
optimization. The trajectory optimization and model fitting can be used for the guiding part
in our Smart Start framework.

Another interesting implementation is the model-based deep reinforcement learning method
proposed by Nagabandi et al. [25]. A neural network dynamics model is fitted and used by
a model predictive controller. As more experiences are obtained, the model improves and
subsequently the model predictive controller can generate a better control policy. But they
suffer from poor performance with just the model-predictive controller. Their solution is to
use the learned model-predictive control policy to initialize a policy that can be trained fur-
ther using model-free reinforcement learning. This is similar to the idea of Smart Start, the
neural network dynamics model and model-predictive controller can be used for the trajec-
tory optimization in the Smart Start framework. A big difference is that the method from
Nagabandi et al. requires access to the reward function for the model-predictive controller.
Smart Start does not and learns a policy based on the unknown reward function.
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An example of how the algorithm can look in continuous domains is presented in this
paragraph. The algorithm has not been implemented or verified in this work. The pseudo-
code given in Algorithm 5 is used as template.

The algorithm presented here requires an off-policy reinforcement learning algorithm that
learns a value function, examples of such algorithms are DDPG [6] and NAF [24]. The
reinforcement learning algorithm is denoted by Agent in Algorithm 5. Both algorithms use
a replay buffer D and update their policy and value function by sampling from the buffer.
The update of the agent is given by UpdateAgent. For the Smart Start state selection on
line 8, the count C(s) has to be replaced, for example by the approximate count Ĉ(s) given in
Equation (B-4) in Appendix B. The trajectory optimization can be done using an approach
presented above. The samples in the buffer can be used to construct a policy from the initial
state to the Smart Start state. In Algorithm 5, the trajectory optimization step is given
by TrajOpt. On line 21 in the algorithm, the d(s0, sss) function represents the distance
between s0 and sss, which has to be determined according to the metric that is being used
to describe the relation between states. When the agent is within a certain distance θ of the
Smart Start state, we say that the agent has reached the Smart Start state and continues by
executing its learned policy and some exploration strategy.

3-5 Discussion

In this chapter we introduced a novel exploration framework for reinforcement learning, called
Smart Start. Smart Start solves the exploration problem by dividing learning episodes in two
parts, the Smart Start phase and the “normal” learning phase. During the Smart Start
phase the agent is guided to a region in which it expects to learn the most, denoted by the
Smart Start state. Once the region is reached the agent will continue with the “normal”
learning phase. In the “normal” learning phase the agent executes its learned policy with
some exploration strategy.

The Smart Start state selection can be modeled as a multi-armed bandit problem [12], giv-
ing access to all the knowledge and algorithms on solving them. One of those methods is
UCB1 [12], in which an upper confidence bound is calculated that has an excellent trade-
off between exploration and exploitation. We presented the Smart Start state selection for
discrete state spaces in which the state visitation counts are used to approximate the state
visitation density. But the method can easily be converted to continuous state spaces, for
example using kernel density estimation [37] to estimate the state visitation density. In Ap-
pendix B an implementation of the Smart Start state selection using kernel density estimation
is given. The same approach can be taken for problems with discrete state spaces where states
close to each other are related or the goal is a region spanning multiple states. In these cases
it can be undesirable to exhaustively search the full state space, instead you want to visit
every region containing similar states.

The guiding to the Smart Start state can be seen as a trajectory optimization problem. The
agent has visited the Smart Start state before, but this time it wants to get there faster
and with high probability. For discrete environments this can be done using a model-based
approach [18]. A transition model is fit using visitation counts. The reward function is created
by giving a reward for reaching the Smart Start state. The transition model and reward
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function can be used in combination with dynamic programming, e.g., Value Iteration [1],
to construct an optimal policy to the Smart Start state. Once enough data is available to
construct a good model, a robust policy can be planned, making the method compatible with
stochastic environments as well. The algorithm fits a global transition model and reward
function. For large problems it might be undesirable or intractable to learn a global model.
A local trajectory optimization might be sufficient to get the agent to the Smart Start state.
An example for continuous states is the iLQG method [44]. Only a local model around the
trajectory is necessary for optimization, removing the need to learn a good global model.

An example of the full Smart Start algorithm for discrete environments was presented in
combination with Q-Learning [2] and Value Iteration. The Smart Start framework can be
used with different reinforcement learning algorithms, an example using a simple model-
based reinforcement learning algorithm is given in Appendix A. In this work we focus on
discrete environments with sparse or misleading rewards. Directions on using Smart Start in
continuous domains were given in Section 3-4-2. The framework can easily be used for non-
sparse rewards environments, which will be discussed in the recommendations for future work
in Section 6-2-1. Smart Start improves the exploration of an agent by providing persistent
and directed exploration and therefore it can improve the overall learning efficiency.

In the next chapter the experimental setup used to evaluate the performance of Smart Start
is discussed.
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Chapter 4

Experimental Setup

The previous chapter introduced the Smart Start framework. In this chapter the experimen-
tal setup that is used to evaluate the Smart Start framework is presented. Four gridworld
environments are designed to test the performance in the case of misleading or sparse rewards.

In the sparse rewards case, the agent only receives a reward when the goal is reached. In
the misleading reward case, it is difficult to reach the optimal solution and at the same
time tempting to go for a suboptimal solution. Therefore we have designed four gridworld
environments, depicted in Figure 4-1. The Easy, Medium and Maze gridworld environments
are used for evaluating the exploration performance and performance in the case of sparse
rewards. The Misleading gridworld environment is used for evaluating the performance when
misleading rewards are present. The gridworld environments are surrounded by walls and have
interior walls. The agent only receives a reward upon reaching the goal. Each environment
has a start state sstart and a goal state sgoal, denoted by a red and green dot respectively in
Figure 4-1. The next three sections discuss the specifications of the gridworld environments.

Sections 4-1 discusses the specifications of the deterministic gridworld environments. In Sec-
tion 4-2, the details of the stochastic case are given. Section 4-3 will discuss the specifications
of the Misleading gridworld environment.

4-1 Deterministic Gridworld

In the gridworld environments the position of the agent is given by a 2-dimensional discrete
state s = [s0, s1] ∈ Z2, where Z denotes the set of integers. The set of possible actions for
each state is A(s) = [0, 1, 2, 3] ∀ s. The deterministic state transition is defined as

st+1 = st + ∆st, (4-1)

where
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(a) Easy Gridworld (b) Medium Gridworld

(c) Maze Gridworld (d) Misleading Gridworld

Figure 4-1: Gridworld environments. Intial state sstart is denoted by a red dot and the goal state
sgoal by a green dot. The yellow dot in Figure 4-1d denotes a suboptimal goal. More details can
be found in Table 4-1.
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Table 4-1: Specifications of the gridworld environments. The position of the agent is denoted
by a 2-dimensional discrete state s ∈ [s0, s1]. The total number of accessible states is given by
Nstates. sstart is the start state and sgoal is the goal state. The suboptimal goal in the Misleading
gridworld environment is given by ssubgoal. l(π∗) denotes the shortest path from sstart to sgoal.

Gridworld s0 ∈ s1 ∈ Nstates sstart sgoal ssubgoal l(π∗)

Easy [0, . . . , 11] [0, . . . , 8] 72 {10, 1} {1, 1} - 19
Medium [0, . . . , 14] [0, . . . , 11] 126 {13, 10} {1, 1} - 35
Maze [0, . . . , 17] [0, . . . , 26] 423 {7, 1} {1, 25} - 40
Misleading [0, . . . , 6] [0, . . . , 14] 75 {5, 2} {1, 12} {1, 2} 14

∆st =


[0, 1] if at = 0
[1, 0] if at = 1
[0,−1] if at = 2
[−1, 0] if at = 3

. (4-2)

The agent cannot walk through walls. When the agent tries to enter a wall the state stays the
same, i.e., st+1 = st. The episode is terminated when the agent enters the goal state or the
maximum number of time-steps per episode, Tepisode, is reached. No reward is given except
when the agent enters the goal state

rt+1 =
{

1 if st+1 = sgoal

0 otherwise
. (4-3)

In Table 4-1 the specifications for each gridworld environment are given. The optimal path
length is denoted by l(π∗), the start and goal states are denoted by sstart and sgoal respectively.
The total number of accessible states is denoted by Nstates = max[s0] ·max[s1]− walls.

4-2 Stochastic Gridworld

The stochastic gridworld specifications are the same as for the deterministic case. The only
difference is the state transition. For the stochastic case there is a 0.75 probability of traversing
to the next state according to the deterministic state transition associated with the action
being executed, as declared in Equation (4-2). There is a probability of 0.25 that the agent
uses one of the three remaining state transitions given in Equation (4-2).

For example, when the agent executes action at = 0 in state st, it has a 75% chance of using
the state transition ∆st = [0, 1]. There is a 25% chance the agent traverses to a different state
by randomly choosing one of the other three state transitions. This percentage translates to
a 8.33% chance transition ∆st = [1, 0] is being used, a 8.33% chance transition ∆st = [0,−1]
is being used and a 8.33% chance transition ∆st = [−1, 0] is being used.
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4-3 Misleading Gridworld

The fourth gridworld environment is designed for testing the performance when misleading
rewards are present. The Misleading gridworld environment, depicted Figure 4-1d, has the
same characteristics as the deterministic gridworld environments. There are three differences:

• All the walls are terminal, this means when the agent walks into a wall the episode is
terminated. A reward of rt+1 = −0.1 is given when this happens.

• A suboptimal goal state, ssubgoal is added, depicted by a yellow dot in Figure 4-1d.
When the agent reaches this suboptimal goal state the episode is terminated and a
reward of rt+1 = 1.0 is given.

• Entering the true goal state is rewarded with a reward of rt+1 = 100.0.

The moat in the middle of the environment with terminal states, i.e., the walls, on either side
makes it hard for the agent to reach the other side. This is hard because the states next to
the moat are not only terminal but also give the agent a penalty. It is tempting for the agent
to go to the suboptimal goal since it is on the same side of the moat and also gives a positive
reward.

The next chapter presents the the results of this thesis.
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Chapter 5

Results

We are now going to examine the performance of the Smart Start framework, presented in
Chapter 3, in combination with the reinforcement learning methods and exploration strate-
gies discussed in Chapter 2. The four discrete gridworld environments discussed in Chapter 4
are used. Multiple experiments were done for evaluating and comparing the performance of
the Smart Start framework. The first experiment measures the exploration performance of
different exploration strategies in combination with the Smart Start framework. The second
experiment evaluates the influence of the Smart Start parameters. The third and fourth exper-
iments compare the learning performance in deterministic and stochastic environments with
sparse rewards. In the final experiment, the learning performance in the case of misleading
rewards is evaluated.

For each experiment we use the same parameters for the reinforcement learning agents, given
in Table 5-1. The learning rate and discount factor are set to α = 0.1 and λ = 0.99 respec-
tively. The other parameters are chosen by evaluating the performance of different parameter
values, the values performing best are used.

Section 5-1 evaluates the exploration performance of various exploration strategies in com-
bination with Smart Start. In Section 5-2 the influence of the various parameters of the
Smart Start framework is evaluated. Sections 5-3 and 5-4 evaluate the learning performance

Table 5-1: Reinforcement learning parameters

Parameter Symbol Value
Learning rate α 0.1
Discount factor γ 0.99
ε-greedy parameter ε 0.1
Temperature Boltzmann exploration τ 5.0
Exploitation parameter UCB1 Cp 1.0
R-max threshold m 2
R-max maximum reward Rmax 0.1
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of Smart Start in combination with Q-Learning, MBRL and R-max on deterministic and
stochastic gridworld environments respectively. The results in the case of misleading rewards
are presented in Section 5-5. This chapter is finalized with a discussion in Section 5-6.

5-1 Exploration Performance

Reinforcement learning agents learn from the reward signal the environment gives them. In
an environment with sparse rewards like ours this has certain implications. For an algorithm
like Q-Learning this means the value function is zero until the goal has been reached for
the first time. The number of steps it takes the agent to reach the goal for the first time is
therefore an important characteristic of the exploration strategy.

Experimental Details

In this experiment the average number of training-steps it takes the agent to reach the goal
for the first time is measured. The experiment is carried out on the Easy, Medium and Maze
gridworld environments and three exploration strategies are evaluated.

The three exploration strategies are evaluated with and without Smart Start. The first
exploration method is random exploration, effectively ε-greedy and Boltzmann exploration
because they have the same policy with a value function of zero. The second is UCB1
exploration, which calculates an upper confidence bound that trades-off between exploitation
and exploration. The last strategy is model-based exploration, which uses the same approach
as R-max. The model-based exploration strategy constructs a transition model and reward
function from previous experiences and plans to states that have been visited infrequently.
Details on the exploration strategies have been discussed in Section 2-3.

The Smart Start framework is designed for episodic problems. Besides the number of training-
steps it takes the agent to reach the goal, we are also interested in the effect of different
episode lengths on the exploration performance. Thirteen different episode lengths are tested,
Tepisode ∈ [25, 50, 75, 100, 150, 200, 250, 500, 750, 1000, 2500, 5000, 10000]. An experiment
is terminated if the goal has not been reached after Tmax training steps, where Tmax ∈ [50000,
75000, 250000] for the Easy, Medium and Maze gridworld environments respectively.

For the experiments with Smart Start we want the agent to use Smart Start every episode.
Therefore, we use η = 1 in this experiment. Note that the agent cannot use Smart Start in
the first episode because no data is collected yet. The value function will be zero throughout
the experiment. This makes the Smart Start parameter css irrelevant in this experiment and
can be set to an arbitrary positive value, a value of css = 0.1 is used in this experiment.

Discussion

Figure 5-1 shows the average number of training steps needed to reach the goal for the
first time using different exploration strategies on the Easy, Medium and Maze gridworld
environments. The results are averaged over 10 experiments each and depict the mean and
standard deviation.
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Random exploration shows the worst performance. For smaller episode lengths the agent was
not able to reach the goal in the given amount of time-steps. The reason for this is that every
time the agent starts a new episode, it performs a new random walk completely disregarding
prior information. With shorter episode lengths, the probability of finding the goal decreases
exponentially [32], which also explains the high standard deviation. Random exploration
with Smart Start achieves consistent results in reaching the goal. For shorter episode lengths
random exploration with Smart Start performs better and has a lower standard deviation. At
some point random exploration with and without Smart Start results in similar performance.
At this point the episode length is long enough for the agent to reach the goal within the first
episode with high probability and therefore almost never utilizes the Smart Start method.

UCB1 exploration performs better than random exploration. The same trend is seen as
with random exploration. For shorter episode lengths the performance decreases significantly
without Smart Start. When a new episode is started, the agent has to cover the same part of
state space again. After a while this part has been covered almost uniformly and the policy of
the agent starts to look like a random walk for this part of the state space. This greatly reduces
the performance of the exploration strategy for shorter episode lengths. This is exactly one
of the pitfalls Smart Start tries to solve, namely reducing the time spent wandering through
the same areas of the state space over and over and instead providing more persistent and
directed exploration. From the results it is clear that UCB1 with Smart Start shows good
performance for all episode lengths. At some point the results of UCB1 with and without
Smart Start converge to the same values, again this can be explained by the Smart Start
method not being utilized because the agent finds the goal in the first episode with high
probability.

For model-based exploration the difference does not grow as fast for shorter episode lengths
as with random and UCB1 exploration. The model-based policy is guided to regions where
the model uncertainty is high. This guiding is done by giving an exploration bonus to state-
action pairs that have been executed infrequently. The Smart Start state is constructed in a
similar way, giving reward to state-action pairs that result in entering the Smart Start state,
therefore similar results are expected. The difference is that the model-based method explores
every state-action pair at least m times, here m = 2 was used. Smart Start is only guided
to the state that has the highest uncertainty according to the upper confidence bound. This
results in Smart Start spending less time exhaustively exploring the full state space. This
explains the better sample efficiency for shorter episode lengths.

In the next section the influence of the Smart Start parameters is evaluated.
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Figure 5-1: Exploration performance on Easy, Medium and Maze gridworld environments. Ran-
dom, UCB1 and model-based exploration are plotted with and without Smart Start. The perfor-
mance is measured as the average number of training steps it takes the agent to reach the goal
for the first time. The plots depict the episode length versus the average number of training steps
and standard deviation. Both axes are in logarithmic scale.
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5-2 Smart Start Parameters

The previous experiment showed that Smart Start is able to improve the exploration perfor-
mance for random, UCB1 and model-based exploration. In this section we are going to assess
the influence of the Smart Start parameters, η and css. At the start of each learning episode
there is an η ∈ [0, 1] probability of using Smart Start, i.e., η = 0 results in Smart Start not
being used at all and for η = 1, the agent will always use Smart Start at the beginning of
an episode. Parameter css is used in the selection of the Smart Start state and can vary the
influence of the bound determined by the state visitation density. A large value for css will
result in more exploration, whereas a low value results in more exploitation.

Experimental Details

The experiments are done using Q-Learning in combination with ε-greedy, Boltzmann and
UCB1 exploration. During each experiment a test run is carried out after every 100 training
steps. The test run evaluates the learned policy π. The performance is measured as the
number of time-steps of the test episode l(π), versus the number of training steps. We use the
rise time τrise as numerical measure of performance, this gives us a single value for comparing
different experiments. The rise time is defined as the number of training steps it takes to get
within ε of the optimal solution

τrise = {t | l (π) ≤ round ((1 + ε) l (π∗))} , (5-1)

where t is the number of training steps that have occurred and l(π∗) is the optimal path
length and can be found in Table 4-1 for each environment. The value of the threshold is
rounded because we work with discrete steps.

The experiment is done on the Easy and Medium gridworld environments. For the rise time
a parameter value of ε = 0.1 is used. The following parameter values are tested using a grid
search, η ∈ [0.2, 0.4, 0.6, 0.8, 1.0] and css ∈ [0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0, 5.0, 10.0].
For the Easy gridworld environment a maximum episode length of Tepisode = 50 and maxi-
mum simulation length of Tmax = 25000 is used. For the Medium gridworld environment a
maximum episode length of Tepisode = 100 and maximum simulation length of Tmax = 50000
is used. The episode lengths Tepisode were derived from the results found in Section 5-1.

Discussion

From the results, depicted in Figure 5-2, it is not immediately clear which parameters values
have to be chosen. We will first look at the influence of css. Because of the nature of
environments it is hard to clearly measure the influence of css. This is due to the fact that
the upper confidence bound for the Smart Start state is composed of the value function and
the uncertainty of a state. However, the value function is zero most of the time, because of
the sparse reward function that is used. For low css the Smart Start method will therefore
choose points close to the goal as soon as it has reached the goal for the first time, since the
value function has the highest value close to the goal. For higher css the Smart Start method
will focus more on exploration instead of exploitation.
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Figure 5-2: Influence of Smart Start parameters η and css on the learning performance on the
Easy and Medium gridworld environments. The performance is evaluated for Q-Learning with
ε-greedy, Boltzmann and UCB1 exploration. The rise time is in training steps and was calculated
using ε = 0.1.
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For parameter η we see a big difference in the results. Increasing the value of η clearly results
in better performance. After the agent has explored the full state space and reached the
goal it will often choose a Smart Start state close to the goal. This can be explained by
the composition of the Smart Start state. First, the value function is largest near the goal.
Second, the episode is terminated when the goal is reached and the agent receives a reward
when this happens. This means the agent can quickly learn what to do close to the goal. This
results in less time wandering around the goal as compared to other parts of the state space.
Therefore the bound based on state visitation density will be higher near the goal compared
to other parts of the state space. Because of these two factors, the value function and state
visitation density, the Smart Start state will often be a state close to the goal. Together with
the fact that the agent can construct a perfect model to guide the agent to the Smart Start
state, this will result in better performance for higher η.

With the results from the last two section we can now evaluate and compare the full learning
performance of the Smart Start framework. The results are presented in the next three
sections.

5-3 Deterministic Gridworld with Sparse Rewards

The third experiment compares the learning performance of Smart Start in deterministic
environments.

Experimental Details

Smart Start was evaluated for MBRL, R-max and Q-Learning with ε-greedy, Boltzmann
and UCB1 exploration. Details on the algorithms and exploration strategies can be found
in Chapter 2. The Smart Start parameters are set to η = 0.8 and css = 0.1, because they
showed the best combination of consistency and performance in the previous experiment.
For experiments with Smart Start, the episode length was set to Tepisode = [100, 150, 250]
for the Easy, Medium and Maze gridworld environments respectively. Without Smart Start,
Tepisode = 2500 for Q-Learning and Tepisode = 1000 for MBRL and R-max. In the experiment
on exploration performance in Section 5-1 we found that algorithms with Smart Start showed
better exploration performance for shorter episode lengths, whereas algorithms without Smart
Start for longer episode lengths. Therefore, different episode lengths are used. A maximum
simulation time of Tmax = [50000, 100000, 250000] is used for the Easy, Medium and Maze
gridworld environments respectively. After every 100 training steps a test run is executed,
the test results are used for evaluation. The rise time τrise is used as performance measure
with rise time parameter ε = 0.1. For each experiment the results are averaged over 10 trials.
If the agent does not reach a result within ε of the optimal solution, a rise time of τrise = Tmax
is given. The average reward is normalized around the optimal solution, which is 1.0/l(π∗)
for the Easy, Medium and Maze gridworld environments. The optimal path length l(π∗) is
given in Table 4-1.
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Discussion

The normalized average reward of the test episode versus the training steps for Q-Learning
with ε-greedy, Boltzmann and UCB1 exploration on the Easy, Medium and Maze gridworld
environments are depicted in Figure 5-4. The result for MBRL and R-max on all three
environments are depicted in Figure 5-5. Figure 5-3 shows the average rise time and standard
deviation for each algorithm on the Easy, Medium and Maze gridworld environments from
top to bottom respectively. From Figures 5-3 and 5-4 it is immediately clear ε-greedy does
not perform well on this task. With Smart Start, the performance of ε-greedy improves
significantly and achieves similar results to Boltzmann and UCB1 in combination with Smart
Start. Boltzmann and UCB1 also show a huge improvement when Smart Start is used. The
results of Q-Learning with any of the exploration strategies and Smart Start are comparable
to the performance of R-max. For R-max we see a slight decrease in performance. This is
especially clear from Figure 5-5. This was expected, because R-max performs near optimal in
environments like these. The time spent getting to the Smart Start state each episode makes
Smart Start less efficient in this situation. MBRL with Smart Start is able to achieve similar
or better performance than R-max, showing that Smart Start can improve the exploration
of simple reinforcement learning algorithms considerably.

The next section discusses the results of the final experiment in stochastic gridworld environ-
ments.
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Figure 5-3: Rise time of Smart Start on deterministic environments. MBRL, R-max and Q-
Learning with ε-greedy, Boltzmann and UCB1 exploration are evaluated with and without Smart
Start. The results are shown for Easy, Medium and Maze gridworld environments. A rise time
parameter of ε = 0.1 was used. The average rise time and standard deviation are depicted.
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Figure 5-4: Normalized average reward of Smart Start for Q-Learning with ε-greedy, Boltzmann
and UCB1 exploration on deterministic environments. Evaluated on Easy, Medium and Maze
gridworld environments.
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Figure 5-5: Normalized average reward of Smart Start for MBRL and R-max on deterministic
environments. Evaluated on Easy, Medium and Maze gridworld environments.
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5-4 Stochastic Gridworld with Sparse Rewards

The fourth experiment is similar to the previous one, except that we now use stochastic
instead of deterministic environments. The details for the stochastic gridworld environment
can be found in Section 4-2.

Experimental Details

The Smart Start parameters are set to η = 0.8 and css = 0.1. For experiments with Smart
Start, the episode length is set to Tepisode = [100, 150, 250] for the Easy, Medium and Maze
gridworld environments respectively. Without Smart Start, Tepisode = 2500 for Q-Learning
and Tepisode = 1000 for MBRL and R-max. A maximum simulation time of Tmax = [50000,
100000, 250000] is used for the Easy, Medium and Maze gridworld environments. After every
100 training steps a test run is executed, the test results are used for evaluation. The threshold
parameter for R-max is set to m = 5. For the deterministic environments we were interested
in the rise time for the optimal path. In the stochastic case we also need the agent to perform
well if it deviates from the optimal path because of stochasticity. Therefore the rise time is
not a good evaluation metric in this experiment. Next to the normalized average reward per
test episode we also evaluate the correctness of the policy during each test episode. We define
the correctness of the learned policy as follows. For each state s the agent has learned a policy
π(s), which is compared to the optimal policy π∗(s). The optimal policy is determined using
dynamic programming with the true transition model and reward function. We use the ratio
π/π∗ to measure how the policy changes and not as a measure of how good the policy really
is, the policy can be correct with a completely wrong value function. Therefore this measure
can only give us an indication of what is happening and cannot be used as a definite measure.
By averaging over multiple experiments we minimize this error and get a reliable change in
ratio that tells us how the policy changes during learning.

Discussion

The normalized average reward per test episode versus the number of training steps for Q-
Learning is depicted in Figure 5-6 and for MBRL and R-max in Figure 5-7. The Smart Start
method shows good performance on all three environments. ε-greedy exploration always
performs better in combination with Smart Start. Boltzmann and UCB1 exploration do
not differ much in performance on the Easy and Medium gridworld environments. On the
Maze gridworld environment Boltzmann and UCB1 exploration perform better in combination
with Smart Start. For R-max we see a slightly worse performance with Smart Start, similar
to the results found for the deterministic gridworld environments. R-max already has a
good directed exploration strategy, going to the Smart Start state just decreases the sample
efficiency. MBRL does not show much difference in performance when Smart Start is used.
Both R-max and MBRL achieve a lower average reward than Q-Learning, suggesting that
they did not learn a good policy. The policy is directly derived from the learned model and
reward function. This suggest that both R-max and MBRL were not able to learn a good
model and reward function.
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Figures 5-8 and 5-9 show the ratio of policy correctness versus the number of training steps
for Q-Learning, MBRL and R-max. We see similar results on the Easy and Medium grid-
world environments as in Figure 5-6. ε-greedy again performs better with Smart Start for
each environment. But when we look at the policy correctness for Boltzmann and UCB1
exploration on the Maze gridworld environment it is different. With Smart Start, both learn
a decent policy faster but never reach the quality of the policy learned without Smart Start.
This is because the Maze environment contains parts that are suboptimal to go through for
the agent. These regions can be identified in the top and bottom of Figure 4-1c. With Smart
Start, the agent will not go through these regions anymore and not learn a good policy for
those regions. In this experiment the agent did learn the optimal policy, but it is possible that
the agent learns a suboptimal policy instead. Something interesting can be seen for R-max,
the policy learned with Smart Start performs better than without Smart Start. But it takes
longer to learn the policy. The early peak is due to the characteristics of the environments.
The exploration strategy of R-max drives the agent to new states. This exploration policy
coincides with the correct policy, resulting in a very good policy correctness. But once the
agent has explored the state space more thoroughly and starts constructing a policy based on
the learned model and reward function, the policy correctness decreases again. This suggest
the agent has not gathered enough samples to learn an accurate enough model for the entire
state space. Because Smart Start spends more time between getting to the Smart Start state
and exploring using the exploration policy of R-max, it will gather more samples to construct
a more accurate model. The policy correctness of MBRL with Smart Start is slightly better
than without Smart Start.

As was shown in Section 5-1, the exploration performance of Smart Start shows a large
improvement. This explains why algorithms with Smart Start are able to learn a good solution
faster than algorithms without Smart Start. The Smart Start parameters experiment in
Section 5-2 showed that the states close to the goal are being chosen as Smart Start states
more often. With these findings we can explain why Smart Start learns a less robust policy.
After finding the goal, almost every episode that starts with Smart Start will choose a Smart
Start state close to the goal. The agent is subsequently guided to the Smart Start state
using an optimal policy. The optimal policy will not come close to large parts of the state
space in the Maze gridworld environment, because they are far away from the optimal policy.
From Figure 4-1c you can see that the bottom and top part are far away from the optimal
solution through the middle. Therefore the agent will not learn a good policy for these parts
of the state space.

The final experiment on a deterministic gridworld environment with misleading reward is
presented in the next section.
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Figure 5-6: Normalized average reward of Smart Start for Q-Learning with ε-greedy, Boltz-
mann and UCB1 exploration on stochastic environments. Evaluated on Easy, Medium and Maze
gridworld environments.
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Figure 5-7: Normalized average reward of Smart Start for MBRL and R-max on stochastic
environments. Evaluated on Easy, Medium and Maze gridworld environments.
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Figure 5-8: Policy correctness of Smart Start for Q-Learning with ε-greedy, Boltzmann and
UCB1 exploration on stochastic environments. Evaluated on Easy, Medium and Maze gridworld
environments.
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Figure 5-9: Policy correctness of Smart Start for MBRL and R-max on stochastic environments.
Evaluated on Easy, Medium and Maze gridworld environments.
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5-5 Deterministic Gridworld with Misleading Rewards

The final experiment evaluates the performance of Smart Start in a gridworld environment
with misleading rewards, see Section 4-3 for details on the Misleading gridworld environment.
The environment has been designed to trick the agent into going for the suboptimal goal, which
will result in a lower accumulated reward. A persistent and directed exploration strategy is
required to make sure the agent explores the state space thoroughly. We only evaluate the
performance for an environment with deterministic dynamics. We want to encourage the
agent to use Smart Start mainly for exploration, therefore a high value is used for the Smart
Start parameter css.

Experimental Details

For experiments with Smart Start maximum episode length of Tepisode = 100 is used, without
Smart Start Tepisode = 250 is used. A maximum simulation time of Tmax = 25000 is used.
The Smart Start parameters were set to η = 0.8 and css = 100.0. After every 100 training
steps a test episode is executed, the test results are used for evaluation. The rise time is
used for evaluating the performance of each algorithm. A maximum reward of r = 100.0 can
be obtained in the Misleading gridworld environment, which has to be taken into account in
calculating the rise time and normalized average reward. The rise time parameter is set to
ε = 0.1. When the optimal solution is not reached in the given amount of time-steps a rise
time of τrise = Tmax is given. For R-max the maximum reward value is set to Rmax = 250
and a threshold parameter m = 2.

Discussion

The rise times of different algorithms are depicted in Figure 5-10 and the normalized average
reward versus the number of training steps in Figure 5-11. It is immediately clear that random
exploration does not perform well for this problem. ε-greedy, Boltzmann, UCB1 and MBRL
quickly find the suboptimal solution and are not persistent enough to discover the optimal
solution. R-max does have a persistent exploration strategy and learns the optimal solution.
With Smart Start all algorithms are able to find the optimal solution, although Q-Learning
does show a lot of variation in the results. MBRL with Smart Start performs best for this
task and even outperforms R-max. This is due to the fact that R-max exhaustively tries
every state-action pair a minimum number of times, even state-action pairs that terminate
the episode. Varying the value for Rmax can improve its behavior, but it is often undesirable
to perfectly tune each parameter to the problem at hand.

In the next section a discussion is given on the results.
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Figure 5-10: Rise time of Smart Start on the Misleading gridworld environment. MBRL, R-
max and Q-Learning with ε-greedy, Boltzmann and UCB1 exploration were evaluated with and
without Smart Start. A rise time parameter of ε = 0.1 is used. The average rise time and standard
deviation are depicted.
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Figure 5-11: Normalized average reward of Smart Start on the Misleading gridworld environment.
Evaluated for MBRL, R-max and Q-Learning with ε-greedy, Boltzmann and UCB1 exploration.
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5-6 Discussion

The previous section presented the results of this work. This section gives a discussion on the
results.

Exploration Performance

Smart Start showed great performance in exploring the state space for each exploration strat-
egy and outperformed their counterparts without Smart Start. This showed that Smart Start
is a good method for efficiently exploration.

Smart Start Parameters

The influence of the Smart Start parameters is hard to asses. The parameters depend on the
problem you are trying to solve, so it is hard to deduct a clear answer from the results. We
used a high value for η, which resulted in better performance because this brings the agent
often close to the goal in a minimal number of time-steps. Varying the parameter css did
not present clear differences in the results. This is due to the environment characteristics
and the way the Smart Start state is selected. The value function will stay zero for a long
time, meaning the Smart Start state selection only depends on the state visitation density.
By the time the goal is reached for the first time, most of the state space is already explored,
giving states close to the goal not only the highest value function but also the lowest visitation
density. These experiments therefore do not give a clear answer on what values to choose for
the Smart Start parameters.

Deterministic Environment

The most interesting part of the results is the learning performance. Smart Start was eval-
uated for MBRL, R-max and Q-Learning with ε-greedy, Boltzmann and UCB1 exploration.
From Figure 5-3 it is clear that Smart Start gives a huge increase in performance for Q-
Learning. With R-max it was expected Smart Start would perform less well, because R-max
already explores uncertain areas of the state space efficiently. In R-max an exploration bonus
is given to uncertain parts of state space, but the Smart Start state may be on the other side
of the state space. This results in going to the Smart Start state first and then going back to
explore other uncertain parts. This results in a less sample efficient algorithm. MBRL with
Smart Start was able to match the performance of R-max and showed that Smart Start can
improve the exploration of simple reinforcement learning algorithms considerably.

Stochastic Environment

For the stochastic case, Q-Learning with Smart Start was still able to learn a good policy a
lot faster than without Smart Start. But the overall robustness of the policy with Smart Start
was less for Boltzmann and UCB1 exploration on the Maze gridworld environment. Smart
Start quickly starts choosing Smart Start states close to the goal because the value function
is larger in that region. The agent goes to that region using an optimal policy, which does
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not go through suboptimal parts of the state space. This results in a less robust policy for
parts of the state space that are not close to the optimal policy. This can be varied using the
Smart Start parameters η and css.

Misleading Rewards

When misleading rewards are present most exploration strategies, like ε-greedy, Boltzmann
and UCB1, fail to properly explore the state space. Their exploration is not persistent enough
to overcome the exploitation of the reinforcement learning agent. A persistent exploration
framework like Smart Start does not suffer from this problem and is able to guide the agent
efficiently throughout state space. Smart Start showed great performance and was able to
outperform R-max when combined with MBRL.

We were able to achieve similar performance as R-max. R-max has to learn a global model for
its planning, furthermore the model has to be good enough to be used by a planning algorithm.
This is a trivial task in small discrete environments, but for more complex environments with
continuous states this is nontrivial. This was already observed in the results on stochastic
environments with sparse rewards in Section 5-4. The model-based agents were not able to
achieve the same performance as Q-Learning, because they failed to learn a proper model.
The guiding to the Smart Start state is done using a global method in this work, but that
is not necessary. A local model or trajectory optimization method can also be used to guide
the agent to the Smart Start state. The model does not have to be perfect because it is only
used for guiding the agent to an area that needs more exploration. This makes Smart Start
compatible for a wide range of situations and very promising for future work.
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Chapter 6

Conclusion

In this work, a novel exploration framework for reinforcement learning was developed. The
framework, called Smart Start, can be used in combination with different reinforcement learn-
ing algorithms and exploration strategies. Current state of the art deep reinforcement learning
algorithms often take millions of samples to learn a good solution. One of the main issues
is the lack of good exploration in large complex, often, continuous environments. Where
model-based reinforcement learning performs extremely well for discrete state spaces, they
often cannot be converted to problems with continuous state spaces easily. Resulting in sub-
optimal performance as to what model-free reinforcement learning can achieve. Smart Start
tries to fill this gap by introducing a persistent and directed exploration framework that gives
reinforcement learning algorithms the exploration performance of model-based algorithms
without reducing the reinforcement learning algorithms its performance.

The Smart Start framework was created for environments with sparse or misleading rewards.
The framework is aimed at episodic problems that start each episode at the same initial state.
The idea of Smart Start is to split the episode into two parts, the Smart Start phase and
“normal” learning phase. In normal reinforcement learning the agent executes its learned
policy with some exploration strategy, e.g., Q-Learning with ε-greedy, from initial start state
until the end of an episode. This is what we call “normal” learning.

With Smart Start the agent first starts with the Smart Start phase before “normal” learning,
see Figure 3-1. The Smart Start phase can be split up in two parts. The first part is
determining a region where to explore based on previous experiences. The region is denoted
by a single state from which the agent expects to learn the most if it was able to start from
that state. This state is called the Smart Start state. After the Smart Start state has been
selected the agent is guided from the initial state to the Smart Start state. Once the agent is
close to the Smart Start state it continues with “normal” learning.

Here, the selection of the Smart Start state is modeled as a multi-armed bandit problem
and solved using the UCB1 algorithm. The UCB1 algorithm constructs an upper confidence
bound based on the value function of the reinforcement learning algorithm that is being used
and uncertainty of the state visitation density. The guiding can, for example, be done using a
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trajectory optimization or model-based planning approach. Where model-based reinforcement
learning methods often need to learn a good global model for the planner, Smart Start only
requires a local model and planner that is good enough to bring the agent close to the Smart
Start state. Value Iteration was used as trajectory optimization for the Smart Start framework
in this work.

In Section 6-1 the conclusions of this work will be presented. Section 6-2-2 discusses several
directions for future work.

6-1 Conclusion

We evaluated the Smart Start framework using three reinforcement learning algorithms,
MBRL, R-max and Q-Learning. For Q-Learning we used three different exploration strate-
gies, ε-greedy, Boltzmann and UCB1. Four gridworld environments of different sizes and
complexities were created for the experiments. The first experiment looked at the explo-
ration performance of Smart Start in combination with three exploration strategies: random,
UCB1 and model-based exploration. The exploration performance was measured as the av-
erage number of training steps it took the agent to reach the goal for the first time. The
experiments showed that Smart Start has good exploration performance and does not suffer
from shorter episode lengths which is the case when Smart Start is not used.

In the second experiment, the influence of the Smart Start parameters η and css was inves-
tigated. Because of the nature of the environment with sparse rewards and the selection of
the Smart Start state it was difficult to clearly asses the influence of css. For η we did find
an increase in performance for higher values. This can be explained by the deterministic
environment and the way the Smart Start state is chosen. From this experiment we cannot
clearly conclude how to choose the parameters and depending on the problem you are trying
to solve, the parameters should be chosen accordingly.

Next, we evaluated the learning performance of Smart Start. The third experiment was
done on deterministic gridworld environments. Smart Start showed a huge improvement
in performance for Q-Learning with various exploration strategies. The agent was able to
quickly achieve a near optimal average reward during the test episodes. The performance
of R-max was slightly worse with Smart Start enabled. This was expected, since R-max
already performs near optimal in situations like these. Therefore, Smart Start slows down the
agent in terms of sample efficiency. Nevertheless, the decrease in performance was minimal.
MBRL with Smart Start showed similar and sometimes better performance than R-max,
showing that Smart Start can improve the exploration of reinforcement learning algorithms
significantly.

The fourth experiment also evaluated the learning performance of Smart Start, but on stochas-
tic environments. In terms of average reward per test episode, the agent quickly learned a
proper solution. But finding a good solution can take longer in the smaller environments
when Smart Start is being used. For the most complex environment, Smart Start clearly
outperforms the algorithms without Smart Start. But when we look at the learned policy
of the agent, i.e., the learned policy compared to the optimal policy for each state, we see
a different result. On the smaller environments Smart Start performs better. But on the
most complex environment, UCB1 and Boltzmann exploration outperform Smart Start. This
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is because the complex environment contains suboptimal parts to go through for the agent,
covering a large portion of the state space. With Smart Start the agent will not be guided
through those suboptimal regions anymore. Resulting in Smart Start learning a good policy
around the optimal path quicker, but a less robust policy for the state space as a whole.
Changing the Smart Start parameters will influence these results. Depending on the prob-
lem, the user has to decide what are desired parameter settings. For problems with a large
state space it is often infeasible to learn a good robust policy for every state, but just a good
policy around the optimal solution is sufficient. The results obtained in this work suggest
that Smart Start is able to efficiently solve the problem with large state spaces. MBRL and
R-max were not able to achieve the same performance as Q-Learning because they failed
to learn a proper model. For more complex environments this becomes even more difficult.
Smart Start with a model-free reinforcement learning algorithm is a promising alternative to
a purely model-based reinforcement learning algorithm.

The final experiment looked at the performance of Smart Start in the case of misleading
rewards. Most algorithms without Smart Start were not able to learn the optimal solu-
tion, clearly showing the need for a persistent and directed exploration strategy. R-max
was able to learn the optimal solution, this is expected because R-max already has a persis-
tent exploration strategy. Smart Start increased the performance of Q-Learning and MBRL
significantly. MBRL with Smart Start even outperformed R-max.

We showed that Smart Start can improve the exploration of reinforcement learning agents on
discrete gridworld environments. This directly resulted in a more sample efficient performance
for the overall learning. The Smart Start framework can easily be incorporated with various
reinforcement learning algorithms and exploration strategies. This makes Smart Start a very
interesting and promising exploration framework for reinforcement learning problems. The
next section proposes directions for future research.

6-2 Recommendations

The Smart Start framework was designed for environments with sparse or misleading rewards.
In this work, we evaluated the performance of Smart Start in discrete environments. But, but
as a framework it is not limited to discrete environments with sparse or misleading rewards.
This immediately gives rise to interesting directions for future research.

The next section, Section 6-2-1, introduces a proposal for environments with non-sparse re-
wards. Section 3-4-2 provides interesting ideas for using Smart Start in continuous environ-
ments. Finally, different ideas for choosing the Smart Start state are discussed in Section 6-2-3.

6-2-1 Non-Sparse Rewards

Smart Start has been designed for environments with misleading or sparse rewards. For
environments with non-sparse rewards, Smart Start can be interesting as well. The Smart
Start state selection is based on the of the value function and visitation density of states.
The value function is a clear measure of how good a state is, especially in non-sparse re-
ward environments. This suggests Smart Start should still be able to perform well in these
environments.
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In this work, the goal of the trajectory optimization was to get to the Smart Start state as
reliable and quickly as possible. For environments with sparse rewards, this results in the
shortest path to the Smart Start state. For non-sparse environment this might not be the
desirable path to follow, maybe you do not want to go through regions with large penalties
for instance. An interesting addition would be to include the value function in the trajectory
optimization step. This will result in trajectories to the Smart Start state that are more
beneficial to the agent, by passing through regions with high rewards for example.

6-2-2 Continuous Environments

Another interesting class of problems are environments with continuous state and/or action
spaces. In this work, we have only looked at discrete problems, but for discrete problems
good model-based solutions are already available, e.g., R-max. But these algorithms are
nontrivial to convert to continuous domains. Smart Start can be a really interesting solution,
because it is able to augment reinforcement learning algorithms with a directed and persistent
exploration strategy. Guidelines on how Smart Start can be implemented for continuous
domains were presented in Section 3-4-2.

6-2-3 Smart Start State Selection

The Smart Start state selection is modeled as a multi-armed bandit problem and in this work
we used the UCB1 algorithm for choosing the Smart Start state. Many algorithms exist for
solving the multi-armed bandit problem [45]. It would be interesting to look at different
algorithms and see which one is most suited for the Smart Start state selection.

We want the Smart Start state to result in the most useful information. Useful information
can for example be a high value function or a region close to unvisited states. In this work,
the upper confidence bound for the Smart Start state consists of the value function and the
bound is based on the state visitation density. We only looked at single discrete states and did
not take related states into account. Using a metric that defines the relation between states
is an interesting addition. The metric can improve exploration by making the search cruder,
avoiding exhaustively visiting every single state. A possible solution is to use kernel density
estimation, an implementation is given in Appendix B. Different expressions might be more
suited to represent the Smart Start state and are an interesting topic for future research.

In this work we evaluated Smart Start using value function methods. In the given implemen-
tation the Smart Start state is based on the value function of the state. For policy search
methods this poses a problem, since no value function is learned. The Smart Start framework
can still be used to improve exploration, by only using the uncertainty of the state visitation
density for the Smart Start state selection and disregarding the value function.
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Appendix A

Model-Based Reinforcement Learning
with Smart Start

In this appendix the implementation of the MBRL algorithm with Smart Start is given. The
full algorithm is given in Algorithm 7. The MBRL algorithm was given in Section 2-2-2. The
update of the MBRL algorithm is done in the Update function in Algorithm 7.

No exploration strategy is used by the MBRL algorithm. Therefore, as long as the agent does
not find a reward it will use random exploration, since the value function is zero. But as soon
as a reward is found, the agent switches to exploitation. This gives the MBRL algorithm
really bad exploration, but the agent should be able to explore efficiently when Smart Start
is being used.
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Algorithm 7 MBRL with Smart Start
1: Initialize Q(s,a) arbitrarily for all s ∈ S and a ∈ A(s)
2:
3: for each episode do
4: Initialize s0 and t = 0
5: u ∼ U(0, 1)
6: if u ≤ η and

∑
s∈S C(s) > 0 then

7: // Choose Smart Start state using upper confidence bound

8: sss = arg max
s

[
max

a
Q(s,a) + css

√
log
∑

s∈S C(s)
C(s)

]
∀ {s ∈ S : C(s) > 0}

9:
10: // Fit reward function
11: for all s,a do
12: for all s′ ∈ C(s,a, ·) do
13: if s′ = sss then
14: Rss(s,a) = 1
15: else
16: Rss(s,a) = 0
17:
18: // Obtain policy to sss using value iteration
19: πss = Value Iteration(P,Rss) (See Algorithm 1)
20:
21: // Execute Smart Start policy
22: repeat
23: Choose at = πss(st)
24: Take action at and observe st+1 and rt+1
25: π = Update(st,at, st+1, rt+1) (See Algorithm 2)
26: t← t+ 1
27: until st = sss, st is terminal or t = Tepisode

28:
29: // Continue using learned policy and exploration strategy
30: if st is not terminal and t < Tepisode then
31: repeat
32: Choose at = π(st)
33: Take action at and observe st+1 and rt+1
34: π = Update(st,at, st+1, rt+1) (See Algorithm 2)
35: t← t+ 1
36: until st is terminal or t = Tepisode
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Appendix B

Continuous Smart Start State

For continuous state spaces a method is needed for approximating the visitation density of
states. The method needs a metric that specifies a relation between states. Instead of keeping
track of counts for each state, we store visited states in a buffer D = {s0, s1, . . .}. For the
discrete case, if we randomly choose a state from D, the probability of picking state s is

Pr [S = s] = C(s)
|D|

, (B-1)

where |D| is the number of states in the buffer. We can estimate the count Ĉ(s) for continuous
states using Equation (B-1) when the probability distribution of D is known. The probability
distribution of a random variable can be estimated using kernel density estimation [37]. The
kernel density estimation for state s ∈ D is

ρ(s) = 1
|D|h

|D|∑
j=0

K

(s− sj
h

)
, (B-2)

whereK is the kernel and h > 0 the bandwidth used for modifying the width of the kernel. The
kernel contains the metric that tells us how states are related to each other. Many different
kernels exists. The most used kernel is the Gaussian kernel, which uses the euclidean distance
as metric

K(a) = e−
1
2 a2

. (B-3)

The estimation for the count becomes

Ĉ(s) = ρ(s)|D| = 1
h

|D|∑
j=0

K

(s− sj
h

)
. (B-4)
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For continuous states and discrete actions we get the following equation for determining the
smart start state sss

sss = arg max
s

[
max

a
Q(s,a) + β

√
log |D|
Ĉ(s)

]
. (B-5)

The inequalities in Equations (3-4) and (3-5) still hold with the assumptions that Ĉ(s) = C(s)
and the probability decreases with the size of the buffer |D|.

Calculating the kernel density estimation for every state in the buffer D scales quadratically
with the size |D| and has a computational complexity of O(|D|2). This is undesirable because
our set of visited states in buffer D grows rapidly and usually contains thousands of values.
To overcome this problem we do not calculate the density for every state in our set. We
uniformly sample a subset Dss containing nss states from our buffer D and assume this gives
a good representation of the complete buffer D. The complexity reduces to O(nss|D|), which
grows linearly with the size |D| for constant nss.
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