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Abstract

Recent work has shown that offline reinforcement learning (RL) does not generalize well to new
environments compared to behavioral cloning (BC). We propose WSAC-N, an ensemble model
of soft actor-critics with weights to de-emphasize actions with high variance. We compare the
zero-shot generalization abilities of WSAC-N with the baseline BC in a four-room maze-like en-
vironment, testing on unseen tasks. Our findings indicate that WSAC-N has worse zero-shot
generalization compared to BC, aligning with previous work. Additionally, we investigate the im-
pact of dataset characteristics on generalization, finding that dataset size has a negligible impact,
while the quality of trajectories generally has a positive effect. These results are consistent with
prior research. The code for this paper can be found on GitHub.

1 Introduction

Offline reinforcement learning (RL) is a branch of reinforcement learning where, unlike online rein-
forcement learning, the agent cannot perform actions in the environment (Levine et al., 2020). Offline
models can only rely on a static dataset of trajectories. This is useful when the online setting is ex-
pensive (e.g. robotics (Singh et al., 2022)) or dangerous (e.g. healthcare (Liu et al., 2020)). On top of
that, even if online RL is available, we might still prefer to use previously collected data instead, e.g.
when the task requires large datasets to generalize.

Recent work (Ishita Mediratta et al., 2024), however, has shown that state-of-the-art offline RL mod-
els1 do not generalize as well to new environments as behavioral cloning (BC). This shows that more
research needs to be done to improve the generalization abilities of offline RL beyond imitation learning.

This work evaluates the ability of two different methods to generalize to new tasks without requir-
ing online fine-tuning or an adaptation period (referred to as zero-shot generalization). We compare
a baseline method BC with our proposed algorithm WSAC-N, which combines concepts from two
existing methods: SAC-N (An et al., 2021) and SUNRISE DQN (Lee et al., 2021). SAC-N is an
ensemble of soft actor-critics (SAC) (Haarnoja et al., 2018), a standard online reinforcement learning
(RL) algorithm. SUNRISE DQN, on the other hand, is an online ensemble of actor-critics that uses
weights to reduce the impact of actions with high variance or uncertainty. WSAC-N is introduced as a
method where SAC-N is modified using the weighting mechanism from SUNRISE DQN. However, in
our experiments, WSAC-N shows inferior performance compared to BC on the test sets when it comes
to generalization. Additionally, we investigate certain characteristics of the dataset, namely size and
quality of the trajectories, and how they influence the generalization abilities of our algorithms. We
find that higher quality trajectories generally have a positive impact on zero-shot generalization, while
the scale of the dataset does not significantly affect generalization. These findings align with previous
research (Ishita Mediratta et al., 2024).

We use the environment from Weltevrede et al. (2023) (see figure 1) to generate train and test datasets.
We test for zero-shot generalization by evaluating the model on unseen tasks on test sets provided by
the environment. This relatively simple environment makes it manageable to iterate often, or reason
about specific scenarios. We would also like to note that simple environments have often shown surpris-
ing results that would not have been found in more complex environments, e.g. Baird’s counterexample
(Baird, 1995) or the environment Riverswim (Szita and Lorincz, 2008).

2 Background

Offline RL. This study examines how well some offline RL algorithms generalize in Markov decision
processes. A Markov decision process (MDP) is defined as a tuple M = (S,A, T, d0, r, γ), where S is a
set of states s ∈ S, which may be either discrete or continuous (i.e., multi-dimensional vectors), A is a
set of actions a ∈ A, which similarly can be discrete or continuous, T defines a conditional probability
distribution of the form T (st+1|st,at) that describes the dynamics of the system, d0 defines the initial
state distribution d0(s0), r : S × A → R defines a reward function, and γ ∈ (0, 1] is a scalar discount

1Namely BCQ (Fujimoto et al., 2019), CQL (Kumar et al., 2020), IQL (Kostrikov et al., 2021), BCT (Chen et al.,
2021), and DT (Chen et al., 2021)
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Training Testing

Figure 1: Examples of the 4-room grid environment that we use to train and test our algorithms for
zero-shot generalization.

factor. In RL, the goal is to learn a policy π that maximizes the expected reward under the trajectory

distribution Eτ∼pπ(τ)

[∑T
t=0 r(st,at)γ

t
]
. Offline RL is different to online RL because it cannot perform

actions in an environment. Instead, the algorithm can only rely on a static dataset D of trajectories.
D usually does not contain all possible state-action pairs. This means that the model will eventually
have to evaluate actions that are not in the dataset. Errors due to incorrectly evaluating these actions
is called distributional shift, and makes it harder to generalize.

We combine two algorithms that use uncertainty measures. This will help avoid distributional shift
by preferring actions with a high certainty. We hypothesize that this also leads to better generalization.

Zero-shot generalization. When we refer to generalization in this paper, we mean zero-shot gener-
alization (Kirk et al., 2023). An agent exhibits zero-shot generalization if it performs well on testing
tasks that differ from the training tasks without any online fine-tuning or adaptation period.

SAC-N. SAC-N is an ensemble of soft actor-critic (SAC) algorithms (Haarnoja et al., 2018). It
aims to maximize the following objective function:

J(θ) = Es∼D,a∼πθ(.|s)

[
min

i=1,...,N
Qϕi(s,a)− β logπθ

(a|s)
]

(1)

Here Qϕ(s,a) follows the principles of Q-learning (Mnih et al., 2015). The Q-function is a state-action
value function. The Q-function represents a state-action value function, which is essentially a neural
network designed to learn the cumulative discounted reward starting from state s and action a. We
chose SAC-N because it selects the minimum Q-value from the ensemble, which penalizes high-variance
estimates (Fujimoto et al., 2019). This encourages the algorithm to prefer actions from the dataset,
thereby helping to prevent distributional shift. We hypothesize that this leads to improved general-
ization.

SUNRISE weights. The weights from (Lee et al., 2021) are defined as follows. The loss function is
given by:

LWQ (τt, θi) = w (st+1, at+1)
(
Qθi(st, at)− rt − γV̄ (st+1)

)2
(2)

with V̄ (st) = Eat∼πϕ

[
Qθ̄(st, at)− α log πϕ(at|st)

]]
where τt = (st, at, rt, st+1) represents a transition, at+1 ∼ πϕi

(a|st), and w(s, a) is a confidence weight
based on an ensemble of target Q-functions:

w(s, a) = σ
(
−Q̄std(s, a) ∗ T

)
+ 0.5, (3)

where T > 0 is a temperature parameter, σ is the sigmoid function, and Q̄std(s, a) is the empirical
standard deviation of all target Q-functions {Qθ̄i}

N
i=1.” We hypothesize that these weights help prevent

2



distributional shift by down-weighting actions with high variance (or high uncertainty). This reduces
the likelihood of the agent choosing out-of-distribution actions, thereby minimizing errors from in-
correctly evaluating actions not present in D. Additionally, we observed a discrepancy between the
paper and the code regarding the treatment of actors. While the paper states that the actors are not
weighted, the code actually does weight them. We have chosen to follow the paper’s approach as it
has been empirically shown to perform better.

4-room grid environment. We use the environment from Weltevrede et al. (2023). It is a 4-
room grid world derived from the MiniGrid benchmark’s FourRooms environment (see figure 1). The
environment is fully observable with three possible actions: move forward, turn left, and turn right.
During training and testing, the main differences lie in the initial states (or tasks), which vary in
the 4-room topology, the agent’s starting location and direction, and the goal location. The agent is
trained on a fixed number of start states and tested on unseen start states from the same distribution.
In this environment, reachability is determined by the goal location and topology. If two states share
these attributes, they are mutually reachable; otherwise, they are not. The training dataset consists
of 40 different starting states varying in location, direction, goal location, and topology. We can then
test for generalization by testing on 40 new, unseen start states. There are two test sets:

• 100% reachable test set: the agent location and direction are different while the topology and
goal location remain consistent with training states.

• 0% reachable test set: the agent location, direction, and the grid topology are unseen while the
goal location is unchanged.

We evaluate performance on both test sets to gain insights into different types of generalization. For
instance, high performance on the unreachable test set might suggest that the algorithm has effectively
learned the underlying latent representation of the dataset.

3 Related Work

Generalization in RL. A large body of research has focused on improving generalization in rein-
forcement learning (RL) through regularization techniques to prevent overfitting (Song et al., 2019; Igl
et al., 2019; Farebrother et al., 2020; Wang et al., 2020) and data augmentation methods (Ye et al.,
2020; Lee et al., 2020; Laskin et al., 2020; Yarats et al., 2021; Hansen et al., 2021; Ko and Ok, 2023;
Zhao et al., 2024). Additionally, considerable research proposes algorithms specifically designed to
enhance generalization in RL (Osband et al., 2016; Agarwal et al., 2020; Igl et al., 2019; Touati and
Ollivier, 2021; Roberta Raileanu, 2021; Mazoure et al., 2021; Carvalho et al., 2023). However, these
efforts are predominantly for online RL whereas we aim to improve generalization for offline RL.

In offline RL, the primary challenge to generalization is distributional shift, which occurs when evaluat-
ing actions outside the distribution of the training data (Levine et al., 2020). Our approach addresses
this issue by applying uncertainty techniques from (An et al., 2021; Lee et al., 2021) to mitigate the
impact of distributional shift.

Furthermore, while various environments exist that offer benchmarks for testing generalization in
online RL (Juliani et al., 2019; Küttler et al., 2020; Samvelyan et al., 2021; Frans and Isola, 2023;
Albrecht et al., 2022; Yuan et al., 2023; Weltevrede et al., 2023), benchmarks specifically addressing
generalization in offline RL remain scarce. As far as we are aware, (Ishita Mediratta et al., 2024)
stands as the sole existing benchmark that addresses this aspect. Our study, in collaboration with
our research group, aims to fill this gap by evaluating the generalization performance of offline RL
algorithms in a distinct environment.

The research most similar to ours is (Ishita Mediratta et al., 2024). They demonstrate that state-
of-the-art offline RL algorithms2 do not generalize as well as BC. However, our research differs in that

2Namely BCQ (Fujimoto et al., 2019), CQL (Kumar et al., 2020), IQL (Kostrikov et al., 2021), BCT (Chen et al.,
2021), and DT (Chen et al., 2021)
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we use a different environment and different algorithms. Additionally, they tune hyperparameters on-
line, whereas we tune them offline. We chose offline hyperparameter tuning because it aligns with the
offline nature of our training. Tuning hyperparameters online can lead to optimal settings that may
not be suitable for offline training. Moreover, in general, online hyperparameter tuning contradicts
the purpose of offline RL—if tuning can be done online, there is no longer a need to train on a static
dataset3.

4 Methodology

We define WSAC-N as SAC-N enhanced with weights from SUNRISE. The loss function for each
Q-function Qϕi

in WSAC-N is then given by:

L (ϕi) =
1

|B|
∑

(s,a,r,s′)∈B

(
w (s′, a′)

(
Qϕi

(s,a)− y (r, s′)

)2
)

where the target function y(r, s′) is:

y(r, s′) = r + γ

(
min

j=1,...,N
Qϕ′

j
(s′,a′)− β log πθ(a

′ | s′)
)
, a′ ∼ πθ(· | s′) (4)

The policy of the actor is updated by doing gradient ascent on the objective function described in
equation 1.

WSAC-N incorporates two uncertainty measures to reduce variance. We hypothesize that this ap-
proach leads to better generalization with suboptimal data because the actor is more likely to select
actions that have already been observed in the dataset D compared to other offline RL algorithms
like SAC-N. However, we also believe that, compared to BC, WSAC-N is more likely to choose out-of-
distribution actions because it is not explicitly trained to imitate the dataset D.

After hyperparameter tuning, we hypothesize that this balance between selecting more certain ac-
tions and those outside the distribution becomes optimal. The choice of two uncertainty metrics
allows for a potentially more cautious approach if hyperparameter tuning indicates it’s necessary.

5 Experimental Setup

5.1 Datasets

We generate the datasets by recording the trajectories of various policies. The starting points, goals,
and topologies are determined by the training configuration of the environment (Weltevrede et al.,
2023). The datasets are categorized as follows:

• Expert dataset: Contains trajectories generated by an optimal policy provided by the envi-
ronment.

• Suboptimal dataset: Contains trajectories generated by a suboptimal policy. It is a DQN
model with the same layers as the expert model and was trained until it reached about 50% of
the expert performance.

• Random dataset: Contains trajectories generated by a random policy.

• Mixed expert-suboptimal dataset: Contains a mix of expert and suboptimal trajectories.
Each action has a 50% chance of being an expert action or an action from a DQN model that
achieved 50% performance of the expert model.

After generating the datasets, we perform offline hyperparameter tuning with validation sets. We use
a grid search method and expand the set of hyperparameters if the optimal combination is at the
boundary. After completing this process for each dataset category, we conduct our experiments.

3It is sometimes still possible to fine-tune online after offline training.
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5.2 Experiments

We compare WSAC-N and baseline BC on their generalization abilities across all dataset categories.
Training is paused every 2000 steps to evaluate performance on the test sets. By plotting performance
with confidence intervals and adjusting until 95% confidence intervals no longer overlap, we determine
which algorithm better generalizes across different dataset categories. We expect that WSAC-N will
perform comparably to BC on the expert dataset and better on all the suboptimal datasets. For more
details on hyperparameter tuning and training, see Appendix A.

Using the results from these experiments, we also investigate the effect of certain characteristics
of the dataset. We hypothesize that higher quality trajectories within the dataset will lead to better
generalization by our algorithms. Additionally, we expect that the size of the dataset will have a
positive effect on generalization ability. We verify these hypotheses by plotting the rewards obtained
for varying degrees of the characteristics under investigation.

6 Experimental Results

6.1 Generalization Using Expert Data

Figure 2: Mean rewards over different numbers of training steps, with expert dataset as training
and tested on unreachable test set

Figure 2 illustrates the mean rewards over various training steps, using the expert dataset for
training and testing on the unreachable test set. A 95% confidence interval is applied for accuracy.
The graph shows that the confidence intervals do not overlap, indicating that WSAC-N performs worse
than BC when trained on expert data. This result aligns with our expectations and supports previous
research suggesting that BC can outperform offline RL algorithms when trained on expert trajectories
(Levine et al., 2020; Ishita Mediratta et al., 2024). Similar rewards are observed when training on the
reachable test set, as shown in Figure 6 in Appendix B.

6.2 Generalization Using Non-Expert Data

Figure 3 shows the mean rewards over various training steps, using suboptimal datasets for training
and testing on the unreachable test set, with a 95% confidence interval. The non-overlapping con-
fidence intervals indicate that WSAC-N performs worse when trained on suboptimal data, contrary
to our expectations. This finding also contradicts previous research, which suggests that offline RL
should outperform BC when trained on suboptimal data (Kumar et al., 2020; Kostrikov et al., 2021;
Bhargava et al., 2024). However, it is important to note that the previous studies were conducted with
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Figure 3: Mean rewards over various training steps, using suboptimal datasets for training and
testing on the unreachable test set.

training and testing within the same environment. Our results align with research indicating that BC
outperforms offline RL algorithms when training and testing in different environments (Ishita Medi-
ratta et al., 2024). We see similar results when testing on the reachable test set, and when trained on
the mixed expert-suboptimal and random datasets (see Figure 7 in Appendix B, Figures 9 and 8 in
Appendix C, and Figures 10 and 11 in Appendix D respectively)

6.3 Effect of Dataset Quality on Generalization

Figure 4: Mean rewards of BC over various training steps, using different qualities of the trajectories
for training, and testing on the unreachable test set.

Figure 4 shows the mean rewards of BC over various training steps, using different qualities of datasets
for training, and testing on the unreachable test set. In general, the better the quality of the dataset,
the higher the mean rewards. This is in line with our expectations and previous research(Ishita Medi-
ratta et al., 2024).
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Unexpectedly, the confidence intervals for the expert and mixed expert-suboptimal datasets overlap.
This may be due to the additional transitions in the mixed dataset, which includes 50% suboptimal
actions. These suboptimal actions sometimes lead to longer paths to the goal, resulting in more tran-
sitions in the dataset D.

A similar pattern is observed in the WSAC-N results, shown in Figure 12 in Appendix E.

6.4 Effect of Dataset Size on Generalization

Figure 5: Mean rewards of BC over various training steps, using different dataset sizes for training,
and testing on the unreachable test set.

Figure 5 shows the mean rewards of BC over various training steps using different dataset sizes for
training and testing on the unreachable test set. We compare the standard size with datasets that are
3 times and 9 times larger. To control for diversity, all datasets are generated using the same set of
seeds across different sizes. This means each dataset size group uses identical seeds as the other groups.
The overlapping confidence intervals indicate that we cannot confidently determine which dataset size
performs better. Notably, the mean reward for the dataset 9 times larger than the standard size is
very close to that for the dataset 3 times larger. This suggests that, while keeping data diversity fixed,
dataset size has a negligible impact on the generalization of our algorithms, which aligns with prior
research (Ishita Mediratta et al., 2024).

7 Discussion

7.1 Bias

A common bias when comparing algorithms in reinforcement learning (RL) is putting more effort into
tuning the hyperparameters of one algorithm over another, typically favoring the newly proposed algo-
rithm over the baseline. To avoid this bias, we ensure that we test the same number of hyperparameter
combinations for all algorithms being compared. However, this approach can slightly disadvantage al-
gorithms with a larger number of hyperparameters. These more complex algorithms might not reach
their full potential because many possible hyperparameter combinations remain untested. For instance,
in our study, WSAC-N has more hyperparameters than BC, leading to more ”untested” combinations
for WSAC-N. This suggests that WSAC-N could potentially perform better than what our current
results indicate. Future research could address this by ensuring that the number of tested hyperpa-
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rameters is proportional to the total number of hyperparameters for each algorithm (i.e. by tuning
x% of hyperparameters for each algorithm).

7.2 Effect of Seeds

During hyperparameter tuning, we found that random seed selection significantly influences algorithm
performance, more so than many individual hyperparameters. For instance, in BC algorithms, seeds
had a larger impact than any single tunable parameter. Similarly, in WSAC-N, seed choice almost
matched the influence of the most critical hyperparameter, amount of critics.

To mitigate this, we averaged results across three randomly generated prime number seeds per hyper-
parameter combination. This approach helps stabilize performance, but it’s worth noting that using
different seeds could still lead to different optimal hyperparameters and results. Future research should
explore multiple hyperparameter sets to better understand this sensitivity.

8 Responsible Research

Our research emphasizes reproducibility and transparency. To this end, we have open-sourced all
relevant materials, including the code, datasets, procedures for generating datasets, rewards obtained
during evaluation, and scripts for plotting graphs. Additionally, we provide detailed descriptions of
our training methodologies and hyperparameter tuning processes in Appendix A.

From an ethical perspective, our work focuses on enhancing the generalization capabilities of offline
RL. This approach is particularly valuable in scenarios where online RL poses significant risks, such
as in healthcare settings (Liu et al., 2020).

Finally, we are committed to promoting responsible research practices by encouraging scrutiny and
further development of our findings.

9 Future Work

Future research could explore several avenues to enhance the generalization capabilities of offline RL.
One promising direction is combining offline RL with fine-tuning, as demonstrated by previous studies
like Chebotar et al. (2021), which have shown its effectiveness as a pretraining method in practical
applications. Another promising approach could involve experimenting with different ensemble tech-
niques to improve model robustness. Additionally, adopting data augmentation strategies similar to
those used in online RL, applying regularization techniques akin to classical machine learning methods
such as classification, or leveraging algorithms designed to better capture underlying dataset represen-
tations like embeddings could potentially enhance generalization performance.

Furthermore, future studies could investigate different workflow optimizations to assess their impact on
offline RL generalization. For instance, exploring cross-validation methods for hyperparameter tuning
or evaluating various training stopping conditions could provide insights into improving model stability
and performance across diverse environments.

An essential area for future investigation would be a detailed analysis of factors contributing to vary-
ing generalization outcomes among different algorithms. For example, understanding why WSAC-N,
in our case, may underperform could involve examining whether its approach is overly conservative
or if its policy struggles with selecting actions outside the training distribution. Such insights could
lead to targeted improvements in algorithm design and training strategies aimed at enhancing overall
generalization capabilities in offline RL settings.
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10 Conclusion

This study explored the generalization capabilities of offline reinforcement learning (RL) algorithms,
specifically examining WSAC-N, a hybrid of SAC-N and SUNRISE weights. Our goal was to address
distributional shift and improve zero-shot generalization.

Our results showed that the baseline behavioral cloning (BC) algorithm consistently outperforms
WASC-N, both with expert and suboptimal data. This highlights the challenges of achieving reli-
able generalization in offline RL, even with advanced uncertainty measures. While WSAC-N incorpo-
rates promising uncertainty measures, it requires further refinement to consistently outperform simpler
methods like BC.

The quality of datasets significantly impacted generalization, with higher quality datasets leading
to improved performance. However, increasing dataset size without enhancing diversity had negligible
effect on performance. This indicates that the quality of the data is more critical than sheer quantity
for generalization in offline RL.
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A Training and Hyperparameter Tuning Details

We tune the hyperparameters offline by selecting a set of hyperparameter-value pairs for each algo-
rithm. It is crucial that the number of hyperparameters to be tuned is the same for all algorithms to
avoid introducing bias. Unequal hyperparameter tuning effort can lead to incorrect conclusions about
the comparative performance of the algorithms.

We conduct hyperparameter tuning using grid search with 3 seeds4 for each combination. If opti-
mal hyperparameters are found at the boundary of the set, we expand the hyperparameter set and
repeat the tuning process for all algorithms to maintain consistency.

We test the hyperparameter combinations on a validation set to prevent overfitting on the train-
ing set and to avoid using the test set, which is intended for final evaluation. Using the test set for
hyperparameter tuning would be inappropriate, as it would invalidate the test set as an independent
measure of performance.

Our validation set comprises 10 out of the 40 paths to the target in the training set. With 3 seeds
per combination, this results in 3 validation sets per hyperparameter combination, providing a form
of cross-validation.

We train the models with N random seeds on N datasets for each dataset category5. Note that
we train on the full dataset, which includes the previously created validation sets. We freeze the
training every 2000 steps to evaluate the current algorithm on the reachable and unreachable test
set. We store the rewards obtained during each evaluation so we can easily increase the amount N .
We then plot the performance of the algorithms over training steps with a 95% confidence interval.
We increment N until the 95% confidence intervals do not overlap, ensuring that we can confidently
determine which algorithm generalizes better on the test sets for every category.

B Results with Reachable Test Set

Figure 6: Mean reward with expert dataset as training over different numbers of training steps

4All seeds are generated using a random prime number generator.
5Note that the expert dataset category only has 1 possible dataset because the optimal policy is deterministic
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Figure 7: Mean reward with suboptimal datasets as training over different numbers of training steps

C Results with Mixed Expert-Suboptimal as Training Sets

Figure 8: Mean reward with mixed expert-suboptimal datasets as training over different numbers of
training steps
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Figure 9: Mean reward with mixed expert-suboptimal datasets as training over different numbers of
training steps

D Results with Random Datasets as Training Sets

Figure 10: Mean reward with random datasets as training over different numbers of training steps
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Figure 11: Mean reward with random datasets as training over different numbers of training steps

E Quality of Datasets on Generalization

Figure 12: Mean rewards of WSAC-N over various training steps, using different qualities of datasets
for training, and testing on the unreachable test set.
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